WorldWideScience

Sample records for fluorescent lifetime multiplexing

  1. Parallel excitation-emission multiplexed fluorescence lifetime confocal microscopy for live cell imaging.

    Science.gov (United States)

    Zhao, Ming; Li, Yu; Peng, Leilei

    2014-05-05

    We present a novel excitation-emission multiplexed fluorescence lifetime microscopy (FLIM) method that surpasses current FLIM techniques in multiplexing capability. The method employs Fourier multiplexing to simultaneously acquire confocal fluorescence lifetime images of multiple excitation wavelength and emission color combinations at 44,000 pixels/sec. The system is built with low-cost CW laser sources and standard PMTs with versatile spectral configuration, which can be implemented as an add-on to commercial confocal microscopes. The Fourier lifetime confocal method allows fast multiplexed FLIM imaging, which makes it possible to monitor multiple biological processes in live cells. The low cost and compatibility with commercial systems could also make multiplexed FLIM more accessible to biological research community.

  2. Fluorescence lifetime based bioassays

    Science.gov (United States)

    Meyer-Almes, Franz-Josef

    2017-12-01

    Fluorescence lifetime (FLT) is a robust intrinsic property and material constant of fluorescent matter. Measuring this important physical indicator has evolved from a laboratory curiosity to a powerful and established technique for a variety of applications in drug discovery, medical diagnostics and basic biological research. This distinct trend was mainly driven by improved and meanwhile affordable laser and detection instrumentation on the one hand, and the development of suitable FLT probes and biological assays on the other. In this process two essential working approaches emerged. The first one is primarily focused on high throughput applications employing biochemical in vitro assays with no requirement for high spatial resolution. The second even more dynamic trend is the significant expansion of assay methods combining highly time and spatially resolved fluorescence data by fluorescence lifetime imaging. The latter approach is currently pursued to enable not only the investigation of immortal tumor cell lines, but also specific tissues or even organs in living animals. This review tries to give an actual overview about the current status of FLT based bioassays and the wide range of application opportunities in biomedical and life science areas. In addition, future trends of FLT technologies will be discussed.

  3. Fluorescence lifetime imaging of skin cancer

    Science.gov (United States)

    Patalay, Rakesh; Talbot, Clifford; Munro, Ian; Breunig, Hans Georg; König, Karsten; Alexandrov, Yuri; Warren, Sean; Neil, Mark A. A.; French, Paul M. W.; Chu, Anthony; Stamp, Gordon W.; Dunsby, Chris

    2011-03-01

    Fluorescence intensity imaging and fluorescence lifetime imaging microscopy (FLIM) using two photon microscopy (TPM) have been used to study tissue autofluorescence in ex vivo skin cancer samples. A commercially available system (DermaInspect®) was modified to collect fluorescence intensity and lifetimes in two spectral channels using time correlated single photon counting and depth-resolved steady state measurements of the fluorescence emission spectrum. Uniquely, image segmentation has been used to allow fluorescence lifetimes to be calculated for each cell. An analysis of lifetime values obtained from a range of pigmented and non-pigmented lesions will be presented.

  4. Three-dimensional fluorescence lifetime tomography

    International Nuclear Information System (INIS)

    Godavarty, Anuradha; Sevick-Muraca, Eva M.; Eppstein, Margaret J.

    2005-01-01

    Near-infrared fluorescence tomography using molecularly targeted lifetime-sensitive, fluorescent contrast agents have applications for early-stage cancer diagnostics. Yet, although the measurement of fluorescent lifetime imaging microscopy (FLIM) is extensively used in microscopy and spectroscopy applications, demonstration of fluorescence lifetime tomography for medical imaging is limited to two-dimensional studies. Herein, the feasibility of three-dimensional fluorescence-lifetime tomography on clinically relevant phantom volumes is established, using (i) a gain-modulated intensified charge coupled device (CCD) and modulated laser diode imaging system, (ii) two fluorescent contrast agents, e.g., Indocyanine green and 3-3'-Diethylthiatricarbocyanine iodide differing in their fluorescence lifetime by 0.62 ns, and (iii) a two stage approximate extended Kalman filter reconstruction algorithm. Fluorescence measurements of phase and amplitude were acquired on the phantom surface under different target to background fluorescence absorption (70:1, 100:1) and fluorescence lifetime (1:1, 2.1:1) contrasts at target depths of 1.4-2 cm. The Bayesian tomography algorithm was employed to obtain three-dimensional images of lifetime and absorption owing to the fluorophores

  5. Fluorescence lifetime imaging using light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Gordon T; Munro, Ian; Poher, Vincent; French, Paul M W; Neil, Mark A A [Blackett Laboratory, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Elson, Daniel S [Institute of Biomedical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Hares, Jonathan D [Kentech Instruments Ltd, Unit 9, Hall Farm Workshops, South Moreton, Didcot, Oxfordshire, OX11 9AG (United Kingdom)], E-mail: gordon.kennedy@imperial.ac.uk

    2008-05-07

    We demonstrate flexible use of low cost, high-power light emitting diodes as illumination sources for fluorescence lifetime imaging (FLIM). Both time-domain and frequency-domain techniques have been implemented at wavelengths spanning the range 450-640 nm. Additionally, we demonstrate optically sectioned fluorescence lifetime imaging by combining structured illumination with frequency-domain FLIM.

  6. Remote UV Fluorescence Lifetime Spectrometer, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to develop, demonstrate, and deliver to NASA an innovative, portable, and power efficient Remote UV Fluorescence Lifetime Spectrometer...

  7. Bessel beam fluorescence lifetime tomography of live embryos (Conference Presentation)

    Science.gov (United States)

    Xu, Dongli; Peng, Leilei

    2016-03-01

    Optical tomography allows isotropic 3D imaging of embryos. Scanning-laser optical tomography (SLOT) has superior light collecting efficiency than wide-field optical tomography, making it ideal for fluorescence imaging of live embryos. We previously reported an imaging system that combines SLOT with a novel Fourier-multiplexed fluorescence lifetime imaging (FmFLIM) technique named FmFLIM-SLOT. FmFLIM-SLOT performs multiplexed FLIM-FRET readout of multiple FRET sensors in live embryos. Here we report a recent effort on improving the spatial resolution of the FmFLIM-SLOT system in order to image complex biochemical processes in live embryos at the cellular level. Optical tomography has to compromise between resolution and the depth of view. In SLOT, the commonly-used focused Gaussian beam diverges quickly from the focal plane, making it impossible to achieve high resolution imaging in a large volume specimen. We thus introduce Bessel beam laser-scanning tomography, which illuminates the sample with a spatial-light-modulator-generated Bessel beam that has an extended focal depth. The Bessel beam is scanned across the whole specimen. Fluorescence projection images are acquired at equal angular intervals as the sample rotates. Reconstruction artifacts due to annular-rings of the Bessel beam are removed by a modified 3D filtered back projection algorithm. Furthermore, in combination of Fourier-multiplexing fluorescence lifetime imaging (FmFLIM) method, the Bessel FmFLIM-SLOT system is capable of perform 3D lifetime imaging of live embryos at cellular resolution. The system is applied to in-vivo imaging of transgenic Zebrafish embryos. Results prove that Bessel FmFLIM-SLOT is a promising imaging method in development biology research.

  8. Fluorescence lifetime measurement of radical ions

    International Nuclear Information System (INIS)

    Ichinose, Nobuyuki; Kinugasa, Jun-ichiro; Hagiri, Masahide; Nakayama, Toshihiro; Murakami, Hiroshi; Kishimoto, Maki; Daido, Hiroyuki

    2004-01-01

    One-photonic excitation of a charge transfer complex of hexamethoxybenzene (HMB) and nitrosonium tetrafluoroborate (NO + BF 4 - ) in acetonitrile afforded fluorescences emission from excited radical cation of HMB (HMB + *). Lifetime of the excited radical ion species was measured to be 7 ps by the pump-probe transient absorption technique. The lifetime was much shorter than that of free radical ion (63 ps), indicating the presence of an interaction between HMB + * and NO in the excited complex. (author)

  9. Time variation of fluorescence lifetime in enhanced cyan fluorescence protein

    International Nuclear Information System (INIS)

    Lee, Soonhyouk; Kim, Soo Yong; Park, Kyoungsook; Jeong, Jinyoung; Chung, Bong Hyun; Kim, Sok Won

    2010-01-01

    The lifetime variations of enhanced cyan fluorescence protein (ECFP) in relatively short integration time bins were studied via time-correlated single photon counting (TCSPC) measurement. We observed that minimum photon counts are necessary for the lifetime estimation to achieve a certain range of variance. The conditions to decrease the variance of lifetime were investigated and the channel width of the measurement of TCSPC data was found to be another important factor for the variance of lifetime. Though the lifetime of ECFP is best fit by a double exponential, a mono exponential fit for the same integration time is more stable. The results may be useful in the analysis of photophysical dynamics for ensemble molecules in short measurement time windows.

  10. Enhanced speed in fluorescence imaging using beat frequency multiplexing

    Science.gov (United States)

    Mikami, Hideharu; Kobayashi, Hirofumi; Wang, Yisen; Hamad, Syed; Ozeki, Yasuyuki; Goda, Keisuke

    2016-03-01

    Fluorescence imaging using radiofrequency-tagged emission (FIRE) is an emerging technique that enables higher imaging speed (namely, temporal resolution) in fluorescence microscopy compared to conventional fluorescence imaging techniques such as confocal microscopy and wide-field microscopy. It works based on the principle that it uses multiple intensity-modulated fields in an interferometric setup as excitation fields and applies frequency-division multiplexing to fluorescence signals. Unfortunately, despite its high potential, FIRE has limited imaging speed due to two practical limitations: signal bandwidth and signal detection efficiency. The signal bandwidth is limited by that of an acousto-optic deflector (AOD) employed in the setup, which is typically 100-200 MHz for the spectral range of fluorescence excitation (400-600 nm). The signal detection efficiency is limited by poor spatial mode-matching between two interfering fields to produce a modulated excitation field. Here we present a method to overcome these limitations and thus to achieve higher imaging speed than the prior version of FIRE. Our method achieves an increase in signal bandwidth by a factor of two and nearly optimal mode matching, which enables the imaging speed limited by the lifetime of the target fluorophore rather than the imaging system itself. The higher bandwidth and better signal detection efficiency work synergistically because higher bandwidth requires higher signal levels to avoid the contribution of shot noise and amplifier noise to the fluorescence signal. Due to its unprecedentedly high-speed performance, our method has a wide variety of applications in cancer detection, drug discovery, and regenerative medicine.

  11. Fluorescent multiplex cell flow systems and methods

    KAUST Repository

    Merzaban, Jasmeen; Abuelela, Ayman F.; Mohammad, Amal Jehad

    2017-01-01

    scanning system emits multiple electromagnetic wavelengths simultaneously it cause multiple fluorescent labels having different excitation wavelength maximums to fluoresce. The system can simultaneously capture real-time fluorescence images from at least

  12. Theoretical lifetimes and fluorescence yields for multiply-ionized fluorine

    International Nuclear Information System (INIS)

    Tunnell, T.W.; Can, C.; Bhalla, C.P.

    1978-01-01

    Theoretical lifetimes and multiplet partial fluorescence yields for various fluorine ions with a single K-shell vacancy were calculated. For few-electron systems, the lifetimes and line fluorescence yields were computed in the intermediate coupling scheme with the inclusion of the effects arising from configuration interactions. 6 references

  13. Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects.

    Science.gov (United States)

    Dysli, Chantal; Quellec, Gwénolé; Abegg, Mathias; Menke, Marcel N; Wolf-Schnurrbusch, Ute; Kowal, Jens; Blatz, Johannes; La Schiazza, Olivier; Leichtle, Alexander B; Wolf, Sebastian; Zinkernagel, Martin S

    2014-04-03

    Fundus autofluorescence (FAF) cannot only be characterized by the intensity or the emission spectrum, but also by its lifetime. As the lifetime of a fluorescent molecule is sensitive to its local microenvironment, this technique may provide more information than fundus autofluorescence imaging. We report here the characteristics and repeatability of FAF lifetime measurements of the human macula using a new fluorescence lifetime imaging ophthalmoscope (FLIO). A total of 31 healthy phakic subjects were included in this study with an age range from 22 to 61 years. For image acquisition, a fluorescence lifetime ophthalmoscope based on a Heidelberg Engineering Spectralis system was used. Fluorescence lifetime maps of the retina were recorded in a short- (498-560 nm) and a long- (560-720 nm) spectral channel. For quantification of fluorescence lifetimes a standard ETDRS grid was used. Mean fluorescence lifetimes were shortest in the fovea, with 208 picoseconds for the short-spectral channel and 239 picoseconds for the long-spectral channel, respectively. Fluorescence lifetimes increased from the central area to the outer ring of the ETDRS grid. The test-retest reliability of FLIO was very high for all ETDRS areas (Spearman's ρ = 0.80 for the short- and 0.97 for the long-spectral channel, P macula in healthy subjects. By using a custom-built software, we were able to quantify fluorescence lifetimes within the ETDRS grid. Establishing a clinically accessible standard against which to measure FAF lifetimes within the retina is a prerequisite for future studies in retinal disease.

  14. Fluorescence lifetime assays: current advances and applications in drug discovery.

    Science.gov (United States)

    Pritz, Stephan; Doering, Klaus; Woelcke, Julian; Hassiepen, Ulrich

    2011-06-01

    Fluorescence lifetime assays complement the portfolio of established assay formats available in drug discovery, particularly with the recent advances in microplate readers and the commercial availability of novel fluorescent labels. Fluorescence lifetime assists in lowering complexity of compound screening assays, affording a modular, toolbox-like approach to assay development and yielding robust homogeneous assays. To date, materials and procedures have been reported for biochemical assays on proteases, as well as on protein kinases and phosphatases. This article gives an overview of two assay families, distinguished by the origin of the fluorescence signal modulation. The pharmaceutical industry demands techniques with a robust, integrated compound profiling process and short turnaround times. Fluorescence lifetime assays have already helped the drug discovery field, in this sense, by enhancing productivity during the hit-to-lead and lead optimization phases. Future work will focus on covering other biochemical molecular modifications by investigating the detailed photo-physical mechanisms underlying the fluorescence signal.

  15. Fluorescent multiplex cell flow systems and methods

    KAUST Repository

    Merzaban, Jasmeen

    2017-06-01

    Systems and methods are provided for simultaneously assaying cell adhesion or cell rolling for multiple cell specimens. One embodiment provides a system for assaying adhesion or cell rolling of multiple cell specimens that includes a confocal imaging system containing a parallel plate flow chamber, a pump in fluid communication with the parallel plate flow chamber via a flow chamber inlet line and a cell suspension in fluid communication with the parallel plate flow chamber via a flow chamber outlet line. The system also includes a laser scanning system in electronic communication with the confocal imaging system, and a computer in communication with the confocal imaging system and laser scanning system. In certain embodiments, the laser scanning system emits multiple electromagnetic wavelengths simultaneously it cause multiple fluorescent labels having different excitation wavelength maximums to fluoresce. The system can simultaneously capture real-time fluorescence images from at least seven cell specimens in the parallel plate flow chamber.

  16. Nanoparticle discrimination based on wavelength and lifetime-multiplexed cathodoluminescence microscopy.

    Science.gov (United States)

    Garming, Mathijs W H; Weppelman, I Gerward C; de Boer, Pascal; Martínez, Felipe Perona; Schirhagl, Romana; Hoogenboom, Jacob P; Moerland, Robert J

    2017-08-31

    Nanomaterials can be identified in high-resolution electron microscopy images using spectrally-selective cathodoluminescence. Capabilities for multiplex detection can however be limited, e.g., due to spectral overlap or availability of filters. Also, the available photon flux may be limited due to degradation under electron irradiation. Here, we demonstrate single-pass cathodoluminescence-lifetime based discrimination of different nanoparticles, using a pulsed electron beam. We also show that cathodoluminescence lifetime is a robust parameter even when the nanoparticle cathodoluminescence intensity decays over an order of magnitude. We create lifetime maps, where the lifetime of the cathodoluminescence emission is correlated with the emission intensity and secondary-electron images. The consistency of lifetime-based discrimination is verified by also correlating the emission wavelength and the lifetime of nanoparticles. Our results show how cathodoluminescence lifetime provides an additional channel of information in electron microscopy.

  17. Fluorescence lifetime imaging of oxygen in dental biofilm

    Science.gov (United States)

    Gerritsen, Hans C.; de Grauw, Cees J.

    2000-12-01

    Dental biofilm consists of micro-colonies of bacteria embedded in a matrix of polysaccharides and salivary proteins. pH and oxygen concentration are of great importance in dental biofilm. Both can be measured using fluorescence techniques. The imaging of dental biofilm is complicated by the thickness of the biofilms that can be up to several hundred micrometers thick. Here, we employed a combination of two-photon excitation microscopy with fluorescence lifetime imaging to quantify the oxygen concentration in dental biofilm. Collisional quenching of fluorescent probes by molecular oxygen leads to a reduction of the fluorescence lifetime of the probe. We employed this mechanism to measure the oxygen concentration distribution in dental biofilm by means of fluorescence lifetime imaging. Here, TRIS Ruthenium chloride hydrate was used as an oxygen probe. A calibration procedure on buffers was use to measure the lifetime response of this Ruthenium probe. The results are in agreement with the Stern-Volmer equation. A linear relation was found between the ratio of the unquenched and the quenched lifetime and the oxygen concentration. The biofilm fluorescence lifetime imaging results show a strong oxygen gradient at the buffer - biofilm interface and the average oxygen concentration in the biofilm amounted to 50 μM.

  18. Refractive index sensing using Fluorescence Lifetime Imaging (FLIM)

    International Nuclear Information System (INIS)

    Jones, Carolyn; Suhling, Klaus

    2006-01-01

    The fluorescence lifetime is a function of the refractive index of the fluorophore's environment, for example in the case of the biologically important green fluorescent protein (GFP). In order to address the question whether this effect can be exploited to image the local environment of specific proteins in cell biology, we need to determine the distance over which the fluorophore's lifetime is sensitive to the refractive index. To this end, we employ Fluorescence Lifetime Imaging (FLIM) of fluorescein in NaOH buffer at an interface. This approach allows us to map the fluorescence lifetime as a function of distance from a buffer/air and buffer/oil interface. Preliminary data show that the fluorescence lifetime of fluorescein increases near a buffer/air interface and decreases near a buffer/oil interface. The range over which this fluorescence lifetime change occurs is found to be of the order several μm which is consistent with a theoretical model based on the full width at half maximum of the emission spectrum proposed by Toptygin

  19. Fluorescence-Based Multiplex Protein Detection Using Optically Encoded Microbeads

    Directory of Open Access Journals (Sweden)

    Dae Hong Jeong

    2012-03-01

    Full Text Available Potential utilization of proteins for early detection and diagnosis of various diseases has drawn considerable interest in the development of protein-based multiplex detection techniques. Among the various techniques for high-throughput protein screening, optically-encoded beads combined with fluorescence-based target monitoring have great advantages over the planar array-based multiplexing assays. This review discusses recent developments of analytical methods of screening protein molecules on microbead-based platforms. These include various strategies such as barcoded microbeads, molecular beacon-based techniques, and surface-enhanced Raman scattering-based techniques. Their applications for label-free protein detection are also addressed. Especially, the optically-encoded beads such as multilayer fluorescence beads and SERS-encoded beads are successful for generating a large number of coding.

  20. Fluorescence lifetime evaluation of whole soils from the Amazon rainforest.

    Science.gov (United States)

    Nicolodelli, Gustavo; Tadini, Amanda Maria; Nogueira, Marcelo Saito; Pratavieira, Sebastião; Mounier, Stephane; Huaman, Jose Luis Clabel; Dos Santos, Cléber Hilário; Montes, Célia Regina; Milori, Débora Marcondes Bastos Pereira

    2017-08-20

    Time-resolved fluorescence spectroscopy (TRFS) is a new tool that can be used to investigate processes of interaction between metal ions and organic matter (OM) in soils, providing a specific analysis of the structure and dynamics of macromolecules. To the best of our knowledge, there are no studies in the literature reporting the use of this technique applied to whole/non-fractionated soil samples, making it a potential method for use in future studies. This work describes the use of TRFS to evaluate the fluorescence lifetimes of OM of whole soils from the Amazon region. Analysis was made of pellets of soils from an oxisol-spodosol system, collected in São Gabriel da Cachoeira (Amazonas, Brazil). The fluorescence lifetimes in the oxisol-spodosol system were attributed to two different fluorophores. One was related to complexation of an OM fraction with metals, resulting in a shorter fluorophore lifetime. A short fluorescence lifetime (2-12 ns) could be associated with simpler structures of the OM, while a long lifetime (19-66 ns) was associated with more complex OM structures. This new TRFS technique for analysis of the fluorescence lifetime in whole soil samples complies with the principles of green chemistry.

  1. Genetic barcoding with fluorescent proteins for multiplexed applications.

    Science.gov (United States)

    Smurthwaite, Cameron A; Williams, Wesley; Fetsko, Alexandra; Abbadessa, Darin; Stolp, Zachary D; Reed, Connor W; Dharmawan, Andre; Wolkowicz, Roland

    2015-04-14

    Fluorescent proteins, fluorescent dyes and fluorophores in general have revolutionized the field of molecular cell biology. In particular, the discovery of fluorescent proteins and their genes have enabled the engineering of protein fusions for localization, the analysis of transcriptional activation and translation of proteins of interest, or the general tracking of individual cells and cell populations. The use of fluorescent protein genes in combination with retroviral technology has further allowed the expression of these proteins in mammalian cells in a stable and reliable manner. Shown here is how one can utilize these genes to give cells within a population of cells their own biosignature. As the biosignature is achieved with retroviral technology, cells are barcoded 'indefinitely'. As such, they can be individually tracked within a mixture of barcoded cells and utilized in more complex biological applications. The tracking of distinct populations in a mixture of cells is ideal for multiplexed applications such as discovery of drugs against a multitude of targets or the activation profile of different promoters. The protocol describes how to elegantly develop and amplify barcoded mammalian cells with distinct genetic fluorescent markers, and how to use several markers at once or one marker at different intensities. Finally, the protocol describes how the cells can be further utilized in combination with cell-based assays to increase the power of analysis through multiplexing.

  2. Clinical results of fluorescence lifetime imaging in ophthalmology

    Science.gov (United States)

    Schweitzer, D.; Quick, S.; Klemm, M.; Hammer, M.; Jentsch, S.; Dawczynski, J.; Becker, W.

    2009-07-01

    A laser scanner ophthalmoscope was developed for in vivo fluorescence lifetime measurements at the human retina. Measurements were performed in 30 degree fundus images. The fundus was excited by pulses of 75 ps (FWHM). The dynamic fluorescence was detected in two spectral channels K1(490-560nm), K2(560-700 nm) by time-correlated single photon counting. The decay of fluorescence was three-exponentially. Local and global alterations in lifetimes were found between healthy subjects and patients suffering from age-related macular degeneration, diabetic retinopathy, and vessel occlusion. The lifetimes T1, T2, and T3 in both channels are changed to longer values in AMD and diabetic retinopathy in comparison with healthy subjects. The lifetime T2 in K1 is most sensitive to metabolic alterations in branch arterial vessel occlusion.

  3. Fluorescence lifetime imaging microscopy using near-infrared contrast agents.

    Science.gov (United States)

    Nothdurft, R; Sarder, P; Bloch, S; Culver, J; Achilefu, S

    2012-08-01

    Although single-photon fluorescence lifetime imaging microscopy (FLIM) is widely used to image molecular processes using a wide range of excitation wavelengths, the captured emission of this technique is confined to the visible spectrum. Here, we explore the feasibility of utilizing near-infrared (NIR) fluorescent molecular probes with emission >700 nm for FLIM of live cells. The confocal microscope is equipped with a 785 nm laser diode, a red-enhanced photomultiplier tube, and a time-correlated single photon counting card. We demonstrate that our system reports the lifetime distributions of NIR fluorescent dyes, cypate and DTTCI, in cells. In cells labelled separately or jointly with these dyes, NIR FLIM successfully distinguishes their lifetimes, providing a method to sort different cell populations. In addition, lifetime distributions of cells co-incubated with these dyes allow estimate of the dyes' relative concentrations in complex cellular microenvironments. With the heightened interest in fluorescence lifetime-based small animal imaging using NIR fluorophores, this technique further serves as a bridge between in vitro spectroscopic characterization of new fluorophore lifetimes and in vivo tissue imaging. © 2012 The Author Journal of Microscopy © 2012 Royal Microscopical Society.

  4. Multiphoton fluorescence lifetime imaging of chemotherapy distribution in solid tumors

    Science.gov (United States)

    Carlson, Marjorie; Watson, Adrienne L.; Anderson, Leah; Largaespada, David A.; Provenzano, Paolo P.

    2017-11-01

    Doxorubicin is a commonly used chemotherapeutic employed to treat multiple human cancers, including numerous sarcomas and carcinomas. Furthermore, doxorubicin possesses strong fluorescent properties that make it an ideal reagent for modeling drug delivery by examining its distribution in cells and tissues. However, while doxorubicin fluorescence and lifetime have been imaged in live tissue, its behavior in archival samples that frequently result from drug and treatment studies in human and animal patients, and murine models of human cancer, has to date been largely unexplored. Here, we demonstrate imaging of doxorubicin intensity and lifetimes in archival formalin-fixed paraffin-embedded sections from mouse models of human cancer with multiphoton excitation and multiphoton fluorescence lifetime imaging microscopy (FLIM). Multiphoton excitation imaging reveals robust doxorubicin emission in tissue sections and captures spatial heterogeneity in cells and tissues. However, quantifying the amount of doxorubicin signal in distinct cell compartments, particularly the nucleus, often remains challenging due to strong signals in multiple compartments. The addition of FLIM analysis to display the spatial distribution of excited state lifetimes clearly distinguishes between signals in distinct compartments such as the cell nuclei versus cytoplasm and allows for quantification of doxorubicin signal in each compartment. Furthermore, we observed a shift in lifetime values in the nuclei of transformed cells versus nontransformed cells, suggesting a possible diagnostic role for doxorubicin lifetime imaging to distinguish normal versus transformed cells. Thus, data here demonstrate that multiphoton FLIM is a highly sensitive platform for imaging doxorubicin distribution in normal and diseased archival tissues.

  5. Mesh adaptation technique for Fourier-domain fluorescence lifetime imaging

    International Nuclear Information System (INIS)

    Soloviev, Vadim Y.

    2006-01-01

    A novel adaptive mesh technique in the Fourier domain is introduced for problems in fluorescence lifetime imaging. A dynamical adaptation of the three-dimensional scheme based on the finite volume formulation reduces computational time and balances the ill-posed nature of the inverse problem. Light propagation in the medium is modeled by the telegraph equation, while the lifetime reconstruction algorithm is derived from the Fredholm integral equation of the first kind. Stability and computational efficiency of the method are demonstrated by image reconstruction of two spherical fluorescent objects embedded in a tissue phantom

  6. Measuring and sorting cell populations expressing isospectral fluorescent proteins with different fluorescence lifetimes.

    Directory of Open Access Journals (Sweden)

    Bryan Sands

    Full Text Available Study of signal transduction in live cells benefits from the ability to visualize and quantify light emitted by fluorescent proteins (XFPs fused to different signaling proteins. However, because cell signaling proteins are often present in small numbers, and because the XFPs themselves are poor fluorophores, the amount of emitted light, and the observable signal in these studies, is often small. An XFP's fluorescence lifetime contains additional information about the immediate environment of the fluorophore that can augment the information from its weak light signal. Here, we constructed and expressed in Saccharomyces cerevisiae variants of Teal Fluorescent Protein (TFP and Citrine that were isospectral but had shorter fluorescence lifetimes, ∼ 1.5 ns vs ∼ 3 ns. We modified microscopic and flow cytometric instruments to measure fluorescence lifetimes in live cells. We developed digital hardware and a measure of lifetime called a "pseudophasor" that we could compute quickly enough to permit sorting by lifetime in flow. We used these abilities to sort mixtures of cells expressing TFP and the short-lifetime TFP variant into subpopulations that were respectively 97% and 94% pure. This work demonstrates the feasibility of using information about fluorescence lifetime to help quantify cell signaling in living cells at the high throughput provided by flow cytometry. Moreover, it demonstrates the feasibility of isolating and recovering subpopulations of cells with different XFP lifetimes for subsequent experimentation.

  7. Single photon counting fluorescence lifetime detection of pericellular oxygen concentrations.

    Science.gov (United States)

    Hosny, Neveen A; Lee, David A; Knight, Martin M

    2012-01-01

    Fluorescence lifetime imaging microscopy offers a non-invasive method for quantifying local oxygen concentrations. However, existing methods are either invasive, require custom-made systems, or show limited spatial resolution. Therefore, these methods are unsuitable for investigation of pericellular oxygen concentrations. This study describes an adaptation of commercially available equipment which has been optimized for quantitative extracellular oxygen detection with high lifetime accuracy and spatial resolution while avoiding systematic photon pile-up. The oxygen sensitive fluorescent dye, tris(2,2'-bipyridyl)ruthenium(II) chloride hexahydrate [Ru(bipy)(3)](2+), was excited using a two-photon excitation laser. Lifetime was measured using a Becker & Hickl time-correlated single photon counting, which will be referred to as a TCSPC card. [Ru(bipy)(3)](2+) characterization studies quantified the influences of temperature, pH, cellular culture media and oxygen on the fluorescence lifetime measurements. This provided a precisely calibrated and accurate system for quantification of pericellular oxygen concentration based on measured lifetimes. Using this technique, quantification of oxygen concentrations around isolated viable chondrocytes, seeded in three-dimensional agarose gel, revealed a subpopulation of cells that exhibited significant spatial oxygen gradients such that oxygen concentration reduced with increasing proximity to the cell. This technique provides a powerful tool for quantifying spatial oxygen gradients within three-dimensional cellular models.

  8. Two-dimensional fluorescence lifetime correlation spectroscopy. 2. Application.

    Science.gov (United States)

    Ishii, Kunihiko; Tahara, Tahei

    2013-10-03

    In the preceding article, we introduced the theoretical framework of two-dimensional fluorescence lifetime correlation spectroscopy (2D FLCS). In this article, we report the experimental implementation of 2D FLCS. In this method, two-dimensional emission-delay correlation maps are constructed from the photon data obtained with the time-correlated single photon counting (TCSPC), and then they are converted to 2D lifetime correlation maps by the inverse Laplace transform. We develop a numerical method to realize reliable transformation, employing the maximum entropy method (MEM). We apply the developed actual 2D FLCS to two real systems, a dye mixture and a DNA hairpin. For the dye mixture, we show that 2D FLCS is experimentally feasible and that it can identify different species in an inhomogeneous sample without any prior knowledge. The application to the DNA hairpin demonstrates that 2D FLCS can disclose microsecond spontaneous dynamics of biological molecules in a visually comprehensible manner, through identifying species as unique lifetime distributions. A FRET pair is attached to the both ends of the DNA hairpin, and the different structures of the DNA hairpin are distinguished as different fluorescence lifetimes in 2D FLCS. By constructing the 2D correlation maps of the fluorescence lifetime of the FRET donor, the equilibrium dynamics between the open and the closed forms of the DNA hairpin is clearly observed as the appearance of the cross peaks between the corresponding fluorescence lifetimes. This equilibrium dynamics of the DNA hairpin is clearly separated from the acceptor-missing DNA that appears as an isolated diagonal peak in the 2D maps. The present study clearly shows that newly developed 2D FLCS can disclose spontaneous structural dynamics of biological molecules with microsecond time resolution.

  9. Nanoantenna array-induced fluorescence enhancement and reduced lifetimes

    DEFF Research Database (Denmark)

    Bakker, R. M.; Drachev, V. P.; Liu, Z.

    2008-01-01

    Enhanced fluorescence is observed from dye molecules interacting with optical nanoantenna arrays. Elliptical gold dimers form individual nanoantennae with tunable plasmon resonances depending upon the geometry of the two particles and the size of the gap between them. A fluorescent dye, Rhodamine...... 800, is uniformly embedded in a dielectric host that coats the nanoantennae. The nanoantennae act to enhance the dye absorption. In turn, emission from the dye drives the plasmon resonance of the antennae; the nanoantennae act to enhance the fluorescence signal and change the angular distribution...... of emission. These effects depend upon the overlap of the plasmon resonance with the excitation wavelength and the fluorescence emission band. A decreased fluorescence lifetime is observed along with highly polarized emission that displays the characteristics of the nanoantenna's dipole mode. Being able...

  10. Frequency division multiplexed multi-color fluorescence microscope system

    Science.gov (United States)

    Le, Vu Nam; Yang, Huai Dong; Zhang, Si Chun; Zhang, Xin Rong; Jin, Guo Fan

    2017-10-01

    Grayscale camera can only obtain gray scale image of object, while the multicolor imaging technology can obtain the color information to distinguish the sample structures which have the same shapes but in different colors. In fluorescence microscopy, the current method of multicolor imaging are flawed. Problem of these method is affecting the efficiency of fluorescence imaging, reducing the sampling rate of CCD etc. In this paper, we propose a novel multiple color fluorescence microscopy imaging method which based on the Frequency division multiplexing (FDM) technology, by modulating the excitation lights and demodulating the fluorescence signal in frequency domain. This method uses periodic functions with different frequency to modulate amplitude of each excitation lights, and then combine these beams for illumination in a fluorescence microscopy imaging system. The imaging system will detect a multicolor fluorescence image by a grayscale camera. During the data processing, the signal obtained by each pixel of the camera will be processed with discrete Fourier transform, decomposed by color in the frequency domain and then used inverse discrete Fourier transform. After using this process for signals from all of the pixels, monochrome images of each color on the image plane can be obtained and multicolor image is also acquired. Based on this method, this paper has constructed and set up a two-color fluorescence microscope system with two excitation wavelengths of 488 nm and 639 nm. By using this system to observe the linearly movement of two kinds of fluorescent microspheres, after the data processing, we obtain a two-color fluorescence dynamic video which is consistent with the original image. This experiment shows that the dynamic phenomenon of multicolor fluorescent biological samples can be generally observed by this method. Compared with the current methods, this method can obtain the image signals of each color at the same time, and the color video's frame

  11. Refractive index sensing of green fluorescent proteins in living cells using fluorescence lifetime imaging microscopy

    NARCIS (Netherlands)

    van Manen, Henk-Jan; Verkuijlen, Paul; Wittendorp, Paul; Subramaniam, Vinod; van den Berg, Timo K; Roos, Dirk; Otto, Cees

    2008-01-01

    We show that fluorescence lifetime imaging microscopy (FLIM) of green fluorescent protein (GFP) molecules in cells can be used to report on the local refractive index of intracellular GFP. We expressed GFP fusion constructs of Rac2 and gp91(phox), which are both subunits of the phagocyte NADPH

  12. RNA Imaging with Multiplexed Error Robust Fluorescence in situ Hybridization

    Science.gov (United States)

    Moffitt, Jeffrey R.; Zhuang, Xiaowei

    2016-01-01

    Quantitative measurements of both the copy number and spatial distribution of large fractions of the transcriptome in single-cells could revolutionize our understanding of a variety of cellular and tissue behaviors in both healthy and diseased states. Single-molecule Fluorescence In Situ Hybridization (smFISH)—an approach where individual RNAs are labeled with fluorescent probes and imaged in their native cellular and tissue context—provides both the copy number and spatial context of RNAs but has been limited in the number of RNA species that can be measured simultaneously. Here we describe Multiplexed Error Robust Fluorescence In Situ Hybridization (MERFISH), a massively parallelized form of smFISH that can image and identify hundreds to thousands of different RNA species simultaneously with high accuracy in individual cells in their native spatial context. We provide detailed protocols on all aspects of MERFISH, including probe design, data collection, and data analysis to allow interested laboratories to perform MERFISH measurements themselves. PMID:27241748

  13. Multicolor fluorescent biosensor for multiplexed detection of DNA.

    Science.gov (United States)

    Hu, Rong; Liu, Tao; Zhang, Xiao-Bing; Huan, Shuang-Yan; Wu, Cuichen; Fu, Ting; Tan, Weihong

    2014-05-20

    Development of efficient methods for highly sensitive and rapid screening of specific oligonucleotide sequences is essential to the early diagnosis of serious diseases. In this work, an aggregated cationic perylene diimide (PDI) derivative was found to efficiently quench the fluorescence emission of a variety of anionic oligonucleotide-labeled fluorophores that emit at wavelengths from the visible to NIR region. This broad-spectrum quencher was then adopted to develop a multicolor biosensor via a label-free approach for multiplexed fluorescent detection of DNA. The aggregated perylene derivative exhibits a very high quenching efficiency on all ssDNA-labeled dyes associated with biosensor detection, having efficiency values of 98.3 ± 0.9%, 97 ± 1.1%, and 98.2 ± 0.6% for FAM, TAMRA, and Cy5, respectively. An exonuclease-assisted autocatalytic target recycling amplification was also integrated into the sensing system. High quenching efficiency combined with autocatalytic target recycling amplification afforded the biosensor with high sensitivity toward target DNA, resulting in a detection limit of 20 pM, which is about 50-fold lower than that of traditional unamplified homogeneous fluorescent assay methods. The quencher did not interfere with the catalytic activity of nuclease, and the biosensor could be manipulated in either preaddition or postaddition manner with similar sensitivity. Moreover, the proposed sensing system allows for simultaneous and multicolor analysis of several oligonucleotides in homogeneous solution, demonstrating its potential application in the rapid screening of multiple biotargets.

  14. Multiplexed phase-space imaging for 3D fluorescence microscopy.

    Science.gov (United States)

    Liu, Hsiou-Yuan; Zhong, Jingshan; Waller, Laura

    2017-06-26

    Optical phase-space functions describe spatial and angular information simultaneously; examples of optical phase-space functions include light fields in ray optics and Wigner functions in wave optics. Measurement of phase-space enables digital refocusing, aberration removal and 3D reconstruction. High-resolution capture of 4D phase-space datasets is, however, challenging. Previous scanning approaches are slow, light inefficient and do not achieve diffraction-limited resolution. Here, we propose a multiplexed method that solves these problems. We use a spatial light modulator (SLM) in the pupil plane of a microscope in order to sequentially pattern multiplexed coded apertures while capturing images in real space. Then, we reconstruct the 3D fluorescence distribution of our sample by solving an inverse problem via regularized least squares with a proximal accelerated gradient descent solver. We experimentally reconstruct a 101 Megavoxel 3D volume (1010×510×500µm with NA 0.4), demonstrating improved acquisition time, light throughput and resolution compared to scanning aperture methods. Our flexible patterning scheme further allows sparsity in the sample to be exploited for reduced data capture.

  15. Azadioxatriangulenium: exploring the effect of a 20 ns fluorescence lifetime in fluorescence anisotropy measurements

    Science.gov (United States)

    Bogh, Sidsel A.; Bora, Ilkay; Rosenberg, Martin; Thyrhaug, Erling; Laursen, Bo W.; Just Sørensen, Thomas

    2015-12-01

    Azaoxatriangulenium (ADOTA) has been shown to be highly emissive despite a moderate molar absorption coefficient of the primary electronic transition. As a result, the fluorescence lifetime is ~20 ns, longer than all commonly used red fluorescent organic probes. The electronic transitions in ADOTA are highly polarised (r 0  =  0.38), which in combination with the long fluorescence lifetime extents the size-range of biomolecular weights that can be detected in fluorescence polarisation-based experiments. Here, the rotational dynamics of bovine serum albumin (BSA) are monitored with three different ADOTA derivatives, differing only in constitution of the reactive linker. A detailed study of the degree of labelling, the steady-state anisotropy, and the time-resolved anisotropy of the three different ADOTA-BSA conjugates are reported. The fluorescence quantum yields (ϕ fl) of the free dyes in PBS solution are determined to be ~55%, which is reduced to ~20% in the ADOTA-BSA conjugates. Despite the reduction in ϕ fl, a ~20 ns intensity averaged lifetime is maintained, allowing for the rotational dynamics of BSA to be monitored for up to 100 ns. Thus, ADOTA can be used in fluorescence polarisation assays to fill the gap between commonly used organic dyes and the long luminescence lifetime transition metal complexes. This allows for efficient steady-state fluorescence polarisation assays for detecting binding of analytes with molecular weights of up to 100 kDa.

  16. Modulated electron-multiplied fluorescence lifetime imaging microscope: all-solid-state camera for fluorescence lifetime imaging.

    Science.gov (United States)

    Zhao, Qiaole; Schelen, Ben; Schouten, Raymond; van den Oever, Rein; Leenen, René; van Kuijk, Harry; Peters, Inge; Polderdijk, Frank; Bosiers, Jan; Raspe, Marcel; Jalink, Kees; Geert Sander de Jong, Jan; van Geest, Bert; Stoop, Karel; Young, Ian Ted

    2012-12-01

    We have built an all-solid-state camera that is directly modulated at the pixel level for frequency-domain fluorescence lifetime imaging microscopy (FLIM) measurements. This novel camera eliminates the need for an image intensifier through the use of an application-specific charge coupled device design in a frequency-domain FLIM system. The first stage of evaluation for the camera has been carried out. Camera characteristics such as noise distribution, dark current influence, camera gain, sampling density, sensitivity, linearity of photometric response, and optical transfer function have been studied through experiments. We are able to do lifetime measurement using our modulated, electron-multiplied fluorescence lifetime imaging microscope (MEM-FLIM) camera for various objects, e.g., fluorescein solution, fixed green fluorescent protein (GFP) cells, and GFP-actin stained live cells. A detailed comparison of a conventional microchannel plate (MCP)-based FLIM system and the MEM-FLIM system is presented. The MEM-FLIM camera shows higher resolution and a better image quality. The MEM-FLIM camera provides a new opportunity for performing frequency-domain FLIM.

  17. Fluorescence lifetime, dipole orientation and bilayer polymer films

    Science.gov (United States)

    Ho, Xuan Long; Chen, Po-Jui; Woon, Wei-Yen; White, Jonathon David

    2017-10-01

    Bilayer films consisting of the optically transparent polymers, polystyrene (PS) and poly(methyl methacrylate) (PMMA) were spin-cast on glass substrates. The upper 13.5 nm layer (PS) was lightly doped with Rhodamine-6 G (RH6G) or MEH-PPV. While the fluorescence of MEH-PPV was independent of PMMA thickness, the lifetime of RH6G increased 3-fold as the underlying PMMA thickness increased from 0 to 500 nm while the collected flux decreased suggesting a reorientation of the smaller molecule's dipole with respect to the air-polymer interface with PMMA thickness. This suggests lifetime may find application for nondestructive thickness measurements of transparent films with sub-micron lateral resolution and large range.

  18. Fluorescence Lifetime Imaging in Stargardt Disease: Potential Marker for Disease Progression

    OpenAIRE

    Dysli Chantal; Wolf Sebastian; Hatz Katja; Zinkernagel Martin

    2016-01-01

    PURPOSE The purpose of this study was to describe autofluorescence lifetime characteristics in Stargardt disease (STGD) using fluorescence lifetime imaging ophthalmoscopy (FLIO) and to investigate potential prognostic markers for disease activity and progression. METHODS Fluorescence lifetime data of 16 patients with STGD (mean age, 40 years; range, 22-56 years) and 15 age-matched controls were acquired using a fluorescence lifetime imaging ophthalmoscope based on a Heidelberg Eng...

  19. Refractive Index Sensing of Green Fluorescent Proteins in Living Cells Using Fluorescence Lifetime Imaging Microscopy

    Science.gov (United States)

    van Manen, Henk-Jan; Verkuijlen, Paul; Wittendorp, Paul; Subramaniam, Vinod; van den Berg, Timo K.; Roos, Dirk; Otto, Cees

    2008-01-01

    We show that fluorescence lifetime imaging microscopy (FLIM) of green fluorescent protein (GFP) molecules in cells can be used to report on the local refractive index of intracellular GFP. We expressed GFP fusion constructs of Rac2 and gp91phox, which are both subunits of the phagocyte NADPH oxidase enzyme, in human myeloid PLB-985 cells and showed by high-resolution confocal fluorescence microscopy that GFP-Rac2 and GFP-gp91phox are targeted to the cytosol and to membranes, respectively. Frequency-domain FLIM experiments on these PLB-985 cells resulted in average fluorescence lifetimes of 2.70 ns for cytosolic GFP-Rac2 and 2.31 ns for membrane-bound GFP-gp91phox. By comparing these lifetimes with a calibration curve obtained by measuring GFP lifetimes in PBS/glycerol mixtures of known refractive index, we found that the local refractive indices of cytosolic GFP-Rac2 and membrane-targeted GFP-gp91phox are ∼1.38 and ∼1.46, respectively, which is in good correspondence with reported values for the cytosol and plasma membrane measured by other techniques. The ability to measure the local refractive index of proteins in living cells by FLIM may be important in revealing intracellular spatial heterogeneities within organelles such as the plasma and phagosomal membrane. PMID:18223002

  20. Multiplexed Detection of Attomoles of Nucleic Acids Using Fluorescent Nanoparticle Counting Platform.

    Science.gov (United States)

    Pei, Xiaojing; Yin, Haoyan; Lai, Tiancheng; Zhang, Junlong; Liu, Feng; Xu, Xiao; Li, Na

    2018-01-16

    The sensitive multiplexed detection of nucleic acids in a single sample by a simple manner is of pivotal importance for the diagnosis and therapy of human diseases. Herein, we constructed an automatic fluorescent nanoparticle (FNP) counting platform with a common fluorescence microscopic imaging setup for nonamplification multiplexed detection of attomoles of nucleic acids. Taking the advantages of the highly bright, multicolor emitting FNPs and magnetic separation, the platform enables sensitive multiplexed detection without the need for extra fluorescent labels. Quantification for multiplex DNAs, multiplex microRNAs (miRNA), as well as a DNA and miRNA mixture was achieved with a similar dynamic range, a limit of detection down to 5 amol (5 μL detection volume), and a 81-115% spike recovery from different biological sample matrices. In particular, the sensitivity for multiplex miRNA is by far among the highest without using amplification or the lock nucleic acid hybridization enhancement strategy. Results regarding miRNA-141 from four different cell lines were agreeable with those of the quantitative reverse transcription polymerase chain reaction. Simultaneous detection of miRNA-141 and miRNA-21 in four different cell lines yielded consistent results with publications, indicating the potential for monitoring multiplex miRNA expression associated with the collaborative regulation of important cellular events. This work expands the rule set of multiplex nucleic acid detection strategies and shows promising potential application in clinical diagnosis.

  1. The enhanced cyan fluorescent protein: a sensitive pH sensor for fluorescence lifetime imaging.

    Science.gov (United States)

    Poëa-Guyon, Sandrine; Pasquier, Hélène; Mérola, Fabienne; Morel, Nicolas; Erard, Marie

    2013-05-01

    pH is an important parameter that affects many functions of live cells, from protein structure or function to several crucial steps of their metabolism. Genetically encoded pH sensors based on pH-sensitive fluorescent proteins have been developed and used to monitor the pH of intracellular compartments. The quantitative analysis of pH variations can be performed either by ratiometric or fluorescence lifetime detection. However, most available genetically encoded pH sensors are based on green and yellow fluorescent proteins and are not compatible with multicolor approaches. Taking advantage of the strong pH sensitivity of enhanced cyan fluorescent protein (ECFP), we demonstrate here its suitability as a sensitive pH sensor using fluorescence lifetime imaging. The intracellular ECFP lifetime undergoes large changes (32 %) in the pH 5 to pH 7 range, which allows accurate pH measurements to better than 0.2 pH units. By fusion of ECFP with the granular chromogranin A, we successfully measured the pH in secretory granules of PC12 cells, and we performed a kinetic analysis of intragranular pH variations in living cells exposed to ammonium chloride.

  2. Thermally activated delayed fluorescence organic dots for two-photon fluorescence lifetime imaging

    Science.gov (United States)

    He, Tingchao; Ren, Can; Li, Zhuohua; Xiao, Shuyu; Li, Junzi; Lin, Xiaodong; Ye, Chuanxiang; Zhang, Junmin; Guo, Lihong; Hu, Wenbo; Chen, Rui

    2018-05-01

    Autofluorescence is a major challenge in complex tissue imaging when molecules present in the biological tissue compete with the fluorophore. This issue may be resolved by designing organic molecules with long fluorescence lifetimes. The present work reports the two-photon absorption (TPA) properties of a thermally activated delayed fluorescence (TADF) molecule with carbazole as the electron donor and dicyanobenzene as the electron acceptor (i.e., 4CzIPN). The results indicate that 4CzIPN exhibits a moderate TPA cross-section (˜9 × 10-50 cm4 s photon-1), high fluorescence quantum yield, and a long fluorescence lifetime (˜1.47 μs). 4CzIPN was compactly encapsulated into an amphiphilic copolymer via nanoprecipitation to achieve water-soluble organic dots. Interestingly, 4CzIPN organic dots have been utilized in applications involving two-photon fluorescence lifetime imaging (FLIM). Our work aptly demonstrates that TADF molecules are promising candidates of nonlinear optical probes for developing next-generation multiphoton FLIM applications.

  3. Community detection for fluorescent lifetime microscopy image segmentation

    Science.gov (United States)

    Hu, Dandan; Sarder, Pinaki; Ronhovde, Peter; Achilefu, Samuel; Nussinov, Zohar

    2014-03-01

    Multiresolution community detection (CD) method has been suggested in a recent work as an efficient method for performing unsupervised segmentation of fluorescence lifetime (FLT) images of live cell images containing fluorescent molecular probes.1 In the current paper, we further explore this method in FLT images of ex vivo tissue slices. The image processing problem is framed as identifying clusters with respective average FLTs against a background or "solvent" in FLT imaging microscopy (FLIM) images derived using NIR fluorescent dyes. We have identified significant multiresolution structures using replica correlations in these images, where such correlations are manifested by information theoretic overlaps of the independent solutions ("replicas") attained using the multiresolution CD method from different starting points. In this paper, our method is found to be more efficient than a current state-of-the-art image segmentation method based on mixture of Gaussian distributions. It offers more than 1:25 times diversity based on Shannon index than the latter method, in selecting clusters with distinct average FLTs in NIR FLIM images.

  4. Fluorescent genetic barcoding in mammalian cells for enhanced multiplexing capabilities in flow cytometry.

    Science.gov (United States)

    Smurthwaite, Cameron A; Hilton, Brett J; O'Hanlon, Ryan; Stolp, Zachary D; Hancock, Bryan M; Abbadessa, Darin; Stotland, Aleksandr; Sklar, Larry A; Wolkowicz, Roland

    2014-01-01

    The discovery of the green fluorescent protein from Aequorea victoria has revolutionized the field of cell and molecular biology. Since its discovery a growing panel of fluorescent proteins, fluorophores and fluorescent-coupled staining methodologies, have expanded the analytical capabilities of flow cytometry. Here, we exploit the power of genetic engineering to barcode individual cells with genes encoding fluorescent proteins. For genetic engineering, we utilize retroviral technology, which allows for the expression of ectopic genetic information in a stable manner in mammalian cells. We have genetically barcoded both adherent and nonadherent cells with different fluorescent proteins. Multiplexing power was increased by combining both the number of distinct fluorescent proteins, and the fluorescence intensity in each channel. Moreover, retroviral expression has proven to be stable for at least a 6-month period, which is critical for applications such as biological screens. We have shown the applicability of fluorescent barcoded multiplexing to cell-based assays that rely themselves on genetic barcoding, or on classical staining protocols. Fluorescent genetic barcoding gives the cell an inherited characteristic that distinguishes it from its counterpart. Once cell lines are developed, no further manipulation or staining is required, decreasing time, nonspecific background associated with staining protocols, and cost. The increasing number of discovered and/or engineered fluorescent proteins with unique absorbance/emission spectra, combined with the growing number of detection devices and lasers, increases multiplexing versatility, making fluorescent genetic barcoding a powerful tool for flow cytometry-based analysis. © 2013 International Society for Advancement of Cytometry.

  5. Fluorescence-Raman Dual Modal Endoscopic System for Multiplexed Molecular Diagnostics

    Science.gov (United States)

    Jeong, Sinyoung; Kim, Yong-Il; Kang, Homan; Kim, Gunsung; Cha, Myeong Geun; Chang, Hyejin; Jung, Kyung Oh; Kim, Young-Hwa; Jun, Bong-Hyun; Hwang, Do Won; Lee, Yun-Sang; Youn, Hyewon; Lee, Yoon-Sik; Kang, Keon Wook; Lee, Dong Soo; Jeong, Dae Hong

    2015-03-01

    Optical endoscopic imaging, which was recently equipped with bioluminescence, fluorescence, and Raman scattering, allows minimally invasive real-time detection of pathologies on the surface of hollow organs. To characterize pathologic lesions in a multiplexed way, we developed a dual modal fluorescence-Raman endomicroscopic system (FRES), which used fluorescence and surface-enhanced Raman scattering nanoprobes (F-SERS dots). Real-time, in vivo, and multiple target detection of a specific cancer was successful, based on the fast imaging capability of fluorescence signals and the multiplex capability of simultaneously detected SERS signals using an optical fiber bundle for intraoperative endoscopic system. Human epidermal growth factor receptor 2 (HER2) and epidermal growth factor receptor (EGFR) on the breast cancer xenografts in a mouse orthotopic model were successfully detected in a multiplexed way, illustrating the potential of FRES as a molecular diagnostic instrument that enables real-time tumor characterization of receptors during routine endoscopic procedures.

  6. A Compact Fluorescence Lifetime Excitation-Emission Spectrometer (FLEXEMS) for Detecting Trace Organics, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Small Business Innovative Research (SBIR) effort, Leiden Measurement Technology (LMT) proposes to design and build the Fluorescence Lifetime Excitation...

  7. A Compact Fluorescence Lifetime Excitation-Emission Spectrometer (FLEXEMS) for Detecting Trace Organics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Small Business Innovative Research (SBIR) effort, Leiden Measurement Technology (LMT) proposes to design and build the Fluorescence Lifetime Excitation...

  8. An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy

    International Nuclear Information System (INIS)

    Dunsby, C; Lanigan, P M P; McGinty, J; Elson, D S; Requejo-Isidro, J; Munro, I; Galletly, N; McCann, F; Treanor, B; Oenfelt, B; Davis, D M; Neil, M A A; French, P M W

    2004-01-01

    Fluorescence imaging is used widely in microscopy and macroscopic imaging applications for fields ranging from biomedicine to materials science. A critical component for any fluorescence imaging system is the excitation source. Traditionally, wide-field systems use filtered thermal or arc-generated white light sources, while point scanning confocal microscope systems require spatially coherent (point-like) laser sources. Unfortunately, the limited range of visible wavelengths available from conventional laser sources constrains the design and usefulness of fluorescent probes in confocal microscopy. A 'hands-off' laser-like source, electronically tunable across the visible spectrum, would be invaluable for fluorescence imaging and provide new opportunities, e.g. automated excitation fingerprinting and in situ measurement of excitation cross-sections. Yet more information can be obtained using fluorescence lifetime imaging (FLIM), which requires that the light source be pulsed or rapidly modulated. We show how a white light continuum, generated by injecting femtosecond optical radiation into a micro-structured optical fibre, coupled with a simple prism-based tunable filter arrangement, can fulfil all these roles as a continuously electronically tunable (435-1150 nm) visible ultrafast light source in confocal, wide-field and FLIM systems

  9. Time-resolved laser fluorescence spectroscopy of organic ligands by europium: Fluorescence quenching and lifetime properties

    Science.gov (United States)

    Nouhi, A.; Hajjoul, H.; Redon, R.; Gagné, J. P.; Mounier, S.

    2018-03-01

    Time-resolved Laser Fluorescence Spectroscopy (TRLFS) has proved its usefulness in the fields of biophysics, life science and geochemistry to characterize the fluorescence probe molecule with its chemical environment. The purpose of this study is to demonstrate the applicability of this powerful technique combined with Steady-State (S-S) measurements. A multi-mode factor analysis, in particular CP/PARAFAC, was used to analyze the interaction between Europium (Eu) and Humic substances (HSs) extracted from Saint Lawrence Estuary in Canada. The Saint Lawrence system is a semi-enclosed water stream with connections to the Atlantic Ocean and is an excellent natural laboratory. CP/PARAFAC applied to fluorescence S-S data allows introspecting ligands-metal interactions and the one-site 1:1 modeling gives information about the stability constants. From the spectral signatures and decay lifetimes data given by TRLFS, one can deduce the fluorescence quenching which modifies the fluorescence and discuss its mechanisms. Results indicated a relatively strong binding ability between europium and humic substances samples (Log K value varies from 3.38 to 5.08 at pH 7.00). Using the Stern-Volmer plot, it has been concluded that static and dynamic quenching takes places in the case of salicylic acid and europium interaction while for HSs interaction only a static quenching is observed.

  10. Ns-scaled time-gated fluorescence lifetime imaging for forensic document examination

    Science.gov (United States)

    Zhong, Xin; Wang, Xinwei; Zhou, Yan

    2018-01-01

    A method of ns-scaled time-gated fluorescence lifetime imaging (TFLI) is proposed to distinguish different fluorescent substances in forensic document examination. Compared with Video Spectral Comparator (VSC) which can examine fluorescence intensity images only, TFLI can detect questioned documents like falsification or alteration. TFLI system can enhance weak signal by accumulation method. The two fluorescence intensity images of the interval delay time tg are acquired by ICCD and fitted into fluorescence lifetime image. The lifetimes of fluorescence substances are represented by different colors, which make it easy to detect the fluorescent substances and the sequence of handwritings. It proves that TFLI is a powerful tool for forensic document examination. Furthermore, the advantages of TFLI system are ns-scaled precision preservation and powerful capture capability.

  11. The LB Films of Dansyl Chloride Labeled Octadecylamine and Its Fluorescence Lifetime

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Octadecylamine was derivatized with dansyl chloride (5-dimethylaminonaphthalene-1-sulfonyl chloride) in order to simplify and understand the LB films of fluorescent probe labeling proteins.Its monolayer and multilayers in the absence and presence of stearic acid were deposited by LB technique.Fluorescence spectra and lifetimes of the fluorescent products were studied to elucidate the microenvironment of molecules in the LB films.

  12. Fluorescent microarray for multiplexed quantification of environmental contaminants in seawater samples

    Science.gov (United States)

    The development of a fluorescent multiplexed microarray platform able to detect and quantify a wide variety of pollutants in seawater is reported. The microarray platform has been manufactured by spotting 6 different bioconjugate competitors and it uses a cocktail of 6 monoclonal and polyclonal anti...

  13. Non-invasive imaging of skin cancer with fluorescence lifetime imaging using two photon tomography

    Science.gov (United States)

    Patalay, Rakesh; Talbot, Clifford; Alexandrov, Yuriy; Munro, Ian; Breunig, Hans Georg; König, Karsten; Warren, Sean; Neil, Mark A. A.; French, Paul M. W.; Chu, Anthony; Stamp, Gordon W.; Dunsby, Christopher

    2011-07-01

    Multispectral fluorescence lifetime imaging (FLIM) using two photon microscopy as a non-invasive technique for the diagnosis of skin lesions is described. Skin contains fluorophores including elastin, keratin, collagen, FAD and NADH. This endogenous contrast allows tissue to be imaged without the addition of exogenous agents and allows the in vivo state of cells and tissues to be studied. A modified DermaInspect® multiphoton tomography system was used to excite autofluorescence at 760 nm in vivo and on freshly excised ex vivo tissue. This instrument simultaneously acquires fluorescence lifetime images in four spectral channels between 360-655 nm using time-correlated single photon counting and can also provide hyperspectral images. The multispectral fluorescence lifetime images were spatially segmented and binned to determine lifetimes for each cell by fitting to a double exponential lifetime model. A comparative analysis between the cellular lifetimes from different diagnoses demonstrates significant diagnostic potential.

  14. Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods

    International Nuclear Information System (INIS)

    Vishwanath, Karthik; Mycek, Mary-Ann; Pogue, Brian

    2002-01-01

    A Monte Carlo model developed to simulate time-resolved fluorescence propagation in a semi-infinite turbid medium was validated against previously reported theoretical and computational results. Model simulations were compared to experimental measurements of fluorescence spectra and lifetimes on tissue-simulating phantoms for single and dual fibre-optic probe geometries. Experiments and simulations using a single probe revealed that scattering-induced artefacts appeared in fluorescence emission spectra, while fluorescence lifetimes were unchanged. Although fluorescence lifetime measurements are generally more robust to scattering artefacts than are measurements of fluorescence spectra, in the dual-probe geometry scattering-induced changes in apparent lifetime were predicted both from diffusion theory and via Monte Carlo simulation, as well as measured experimentally. In all cases, the recovered apparent lifetime increased with increasing scattering and increasing source-detector separation. Diffusion theory consistently underestimated the magnitude of these increases in apparent lifetime (predicting a maximum increase of ∼15%), while Monte Carlo simulations and experiment were closely matched (showing increases as large as 30%). These results indicate that quantitative simulations of time-resolved fluorescence propagation in turbid media will be important for accurate recovery of fluorophore lifetimes in biological spectroscopy and imaging applications. (author)

  15. Standard reference for instrument response function in fluorescence lifetime measurements in visible and near infrared

    International Nuclear Information System (INIS)

    Chib, Rahul; Shah, Sunil; Gryczynski, Zygmunt; Fudala, Rafal; Borejdo, Julian; Gryczynski, Ignacy; Zelent, Bogumil; Corradini, Maria G; Ludescher, Richard D

    2016-01-01

    Allura red (AR) fluorophore, a common dye in the food industry, displays a broad emission spectrum in water (visible-to-near infrared region of the electromagnetic spectrum) and has a remarkably short fluorescence lifetime of about 10 ps. This short lifetime does not depend on the emission (observation) wavelength. We examined time responses of AR fluorescence across emission wavelengths from 550 nm to 750 nm and found that it is an ideal candidate for impulse response functions in fluorescence lifetime measurements. (technical note)

  16. Chlorophyll fluorescence lifetime imaging provides new insight into the chlorosis induced by plant virus infection.

    Science.gov (United States)

    Lei, Rong; Jiang, Hongshan; Hu, Fan; Yan, Jin; Zhu, Shuifang

    2017-02-01

    Leaf chlorosis induced by plant virus infection has a short fluorescence lifetime, which reflects damaged photosynthetic complexes and degraded chloroplasts. Plant viruses often induce chlorosis and necrosis, which are intimately related to photosynthetic functions. Chlorophyll fluorescence lifetime measurement is a valuable noninvasive tool for analyzing photosynthetic processes and is a sensitive indicator of the environment surrounding the fluorescent molecules. In this study, our central goal was to explore the effect of viral infection on photosynthesis by employing chlorophyll fluorescence lifetime imaging (FLIM), steady-state fluorescence, non-photochemical quenching (NPQ), transmission electron microscopy (TEM), and pigment analysis. The data indicated that the chlorophyll fluorescence lifetime of chlorotic leaves was significantly shorter than that of healthy control leaves, and the fitted short lifetime component of chlorophyll fluorescence of chlorotic leaves was dominant. This dominant short lifetime component may result from damage to the structure of thylakoid, which was confirmed by TEM. The NPQ value of chlorotic leaves was slightly higher than that of healthy green leaves, which can be explained by increased neoxanthin, lutein and violaxanthin content relative to chlorophyll a. The difference in NPQ is slight, but FLIM can provide simple and direct characterization of PSII structure and photosynthetic function. Therefore, this technique shows great potential as a simple and rapid method for studying mechanisms of plant virus infection.

  17. Fluorescence-intensity multiplexing: simultaneous seven-marker, two-color immunophenotyping using flow cytometry.

    Science.gov (United States)

    Bradford, Jolene A; Buller, Gayle; Suter, Michael; Ignatius, Michael; Beechem, Joseph M

    2004-10-01

    Conventional immuno-based multiparameter flow cytometric analysis has been limited by the requirement of a dedicated detection channel for each antibody-fluorophore set. To address the need to resolve multiple biological targets simultaneously, flow cytometers with as many as 10-15 detection channels have been developed. In this study, a new Zenon immunolabeling technology is developed that allows for multiple antigen detection per detection channel using a single fluorophore, through a unique method of fluorescence-intensity multiplexing. By varying the Zenon labeling reagent-to-antibody molar ratio, the fluorescence intensity of the antibody-labeled cellular targets can be used as a unique identifier. Although demonstrated in the present study with lymphocyte immunophenotyping, this approach is broadly applicable for any immuno-based multiplexed flow cytomety assay. Lymphocyte immunophenotyping of 38 clinical blood specimens using CD3, CD4, CD8, CD16, CD56, CD19, and CD20 antibodies was performed using conventional flow cytometric analysis and fluorescence-intensity multiplexing analysis. Conventional analysis measures a single antibody-fluorophore per photomultiplier tube (PMT). Fluorescence-intensity multiplex analysis simultaneously measures seven markers with two PMTs, using Zenon labeling reagent-antibody complexes in a single tube: CD19, CD4, CD8, and CD16 antibodies labeled with Zenon Alexa Fluor 488 Mouse IgG(1) labeling reagent and CD56, CD3, and CD20 antibodies labeled with Zenon R-Phycoerythrin (R-PE) Mouse IgG(1) or IgG(2b) labeling reagents. The lymphocyte immunophenotyping results from fluorescence-intensity multiplexing using Zenon labeling reagents in a single tube were comparable to results from conventional flow cytometric analysis. Simultaneous evaluation of multiple antigens using a single fluorophore can be performed using antibodies labeled with varying ratios of a Zenon labeling reagent. Labeling two sets of antibodies with different Zenon

  18. A Fast Global Fitting Algorithm for Fluorescence Lifetime Imaging Microscopy Based on Image Segmentation

    OpenAIRE

    Pelet, S.; Previte, M.J.R.; Laiho, L.H.; So, P.T. C.

    2004-01-01

    Global fitting algorithms have been shown to improve effectively the accuracy and precision of the analysis of fluorescence lifetime imaging microscopy data. Global analysis performs better than unconstrained data fitting when prior information exists, such as the spatial invariance of the lifetimes of individual fluorescent species. The highly coupled nature of global analysis often results in a significantly slower convergence of the data fitting algorithm as compared with unconstrained ana...

  19. Exploiting fluorescence for multiplex immunoassays on protein microarrays

    International Nuclear Information System (INIS)

    Herbáth, Melinda; Balogh, Andrea; Matkó, János; Papp, Krisztián; Prechl, József

    2014-01-01

    Protein microarray technology is becoming the method of choice for identifying protein interaction partners, detecting specific proteins, carbohydrates and lipids, or for characterizing protein interactions and serum antibodies in a massively parallel manner. Availability of the well-established instrumentation of DNA arrays and development of new fluorescent detection instruments promoted the spread of this technique. Fluorescent detection has the advantage of high sensitivity, specificity, simplicity and wide dynamic range required by most measurements. Fluorescence through specifically designed probes and an increasing variety of detection modes offers an excellent tool for such microarray platforms. Measuring for example the level of antibodies, their isotypes and/or antigen specificity simultaneously can offer more complex and comprehensive information about the investigated biological phenomenon, especially if we take into consideration that hundreds of samples can be measured in a single assay. Not only body fluids, but also cell lysates, extracted cellular components, and intact living cells can be analyzed on protein arrays for monitoring functional responses to printed samples on the surface. As a rapidly evolving area, protein microarray technology offers a great bulk of information and new depth of knowledge. These are the features that endow protein arrays with wide applicability and robust sample analyzing capability. On the whole, protein arrays are emerging new tools not just in proteomics, but glycomics, lipidomics, and are also important for immunological research. In this review we attempt to summarize the technical aspects of planar fluorescent microarray technology along with the description of its main immunological applications. (topical review)

  20. In vivo multiphoton tomography and fluorescence lifetime imaging of human brain tumor tissue.

    Science.gov (United States)

    Kantelhardt, Sven R; Kalasauskas, Darius; König, Karsten; Kim, Ella; Weinigel, Martin; Uchugonova, Aisada; Giese, Alf

    2016-05-01

    High resolution multiphoton tomography and fluorescence lifetime imaging differentiates glioma from adjacent brain in native tissue samples ex vivo. Presently, multiphoton tomography is applied in clinical dermatology and experimentally. We here present the first application of multiphoton and fluorescence lifetime imaging for in vivo imaging on humans during a neurosurgical procedure. We used a MPTflex™ Multiphoton Laser Tomograph (JenLab, Germany). We examined cultured glioma cells in an orthotopic mouse tumor model and native human tissue samples. Finally the multiphoton tomograph was applied to provide optical biopsies during resection of a clinical case of glioblastoma. All tissues imaged by multiphoton tomography were sampled and processed for conventional histopathology. The multiphoton tomograph allowed fluorescence intensity- and fluorescence lifetime imaging with submicron spatial resolution and 200 picosecond temporal resolution. Morphological fluorescence intensity imaging and fluorescence lifetime imaging of tumor-bearing mouse brains and native human tissue samples clearly differentiated tumor and adjacent brain tissue. Intraoperative imaging was found to be technically feasible. Intraoperative image quality was comparable to ex vivo examinations. To our knowledge we here present the first intraoperative application of high resolution multiphoton tomography and fluorescence lifetime imaging of human brain tumors in situ. It allowed in vivo identification and determination of cell density of tumor tissue on a cellular and subcellular level within seconds. The technology shows the potential of rapid intraoperative identification of native glioma tissue without need for tissue processing or staining.

  1. Time gated fluorescence lifetime imaging and micro-volume spectroscopy using two-photon excitation

    NARCIS (Netherlands)

    Sytsma, J.; Vroom, J.M.; de Grauw, C.J.; Gerritsen, H.C.

    A scanning microscope utilizing two-photon excitation in combination with fluorescence lifetime contrast is presented. The microscope makes use of a tunable femtosecond titanium:sapphire laser enabling the two-photon excitation of a broad range of fluorescent molecules, including UV probes.

  2. Fluorophore:dendrimer ratio impacts cellular uptake and intracellular fluorescence lifetime.

    Science.gov (United States)

    Dougherty, Casey A; Vaidyanathan, Sriram; Orr, Bradford G; Banaszak Holl, Mark M

    2015-02-18

    G5-NH2-TAMRAn (n = 1-4, 5+, and 1.5(avg)) were prepared with n = 1-4 as a precise dye:dendrimer ratio, 5+ as a mixture of dendrimers with 5 or more dye per dendrimer, and 1.5(avg) as a Poisson distribution of dye:dendrimer ratios with a mean of 1.5 dye per dendrimer. The absorption intensity increased sublinearly with n whereas the fluorescence emission and lifetime decreased with an increasing number of dyes per dendrimer. Flow cytometry was employed to quantify uptake into HEK293A cells. Dendrimers with 2-4 dyes were found to have greater uptake than dendrimer with a single dye. Fluorescence lifetime imaging microscopy (FLIM) showed that the different dye:dendrimer ratio alone was sufficient to change the fluorescence lifetime of the material observed inside cells. We also observed that the lifetime of G5-NH2-TAMRA5+ increased when present in the cell as compared to solution. However, cells treated with G5-NH2-TAMRA1.5(avg) did not exhibit the high lifetime components present in G5-NH2-TAMRA1 and G5-NH2-TAMRA5+. In general, the effects of the dye:dendrimer ratio on fluorescence lifetime were of similar magnitude to environmentally induced lifetime shifts.

  3. Fluorescence Lifetime Correlation Spectroscopy (FLCS): Concepts, Applications and Outlook

    Czech Academy of Sciences Publication Activity Database

    Kapusta, Peter; Macháň, Radek; Benda, A.; Hof, Martin

    2012-01-01

    Roč. 13, č. 10 (2012), s. 12890-12910 E-ISSN 1422-0067 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388955 Keywords : fluorescence correlation spectroscopy (FCS) * time correlated single photon counting (TCSPC) * fluorescence cross-correlation spectroscopy (FCCS) Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.464, year: 2012

  4. Polarization Multiplexing of Fluorescent Emission Using Multiresonant Plasmonic Antennas.

    Science.gov (United States)

    De Leo, Eva; Cocina, Ario; Tiwari, Preksha; Poulikakos, Lisa V; Marqués-Gallego, Patricia; le Feber, Boris; Norris, David J; Prins, Ferry

    2017-12-26

    Combining the ability to localize electromagnetic fields at the nanoscale with a directional response, plasmonic antennas offer an effective strategy to shape the far-field pattern of coupled emitters. Here, we introduce a family of directional multiresonant antennas that allows for polarization-resolved spectral identification of fluorescent emission. The geometry consists of a central aperture surrounded by concentric polygonal corrugations. By varying the periodicity of each axis of the polygon individually, this structure can support multiple resonances that provide independent control over emission directionality for multiple wavelengths. Moreover, since each resonant wavelength is directly mapped to a specific polarization orientation, spectral information can be encoded in the polarization state of the out-scattered beam. To demonstrate the potential of such structures in enabling simplified detection schemes and additional functionalities in sensing and imaging applications, we use the central subwavelength aperture as a built-in nanocuvette and manipulate the fluorescent response of colloidal-quantum-dot emitters coupled to the multiresonant antenna.

  5. An ion quencher operated lamp for multiplexed fluorescent bioassays.

    Science.gov (United States)

    Qing, Taiping; Sun, Huanhuan; He, Xiaoxiao; Huang, Xiaoqin; He, Dinggeng; Bu, Hongchang; Qiao, Zhenzhen; Wang, Kemin

    2018-02-01

    A novel and adjustable lamp based on competitive interaction among dsDNA-SYBR Green I (SGI), ion quencher, and analyte was designed for bioanalysis. The "filament" and switch of the lamp could be customized by employing different dsDNA and ion quencher. The poly(AT/TA) dsDNA was successfully screened as the most effective filament of the lamp. Two common ions, Hg 2+ and Fe 3+ , were selected as the model switch, and the corresponding ligand molecules cysteine (Cys) and pyrophosphate ions (PPi) were selected as the targets. When the fluorescence-quenched dsDNA/SGI-ion complex was introduced into a target-containing system, ions could be bound by competitive molecules and separate from the complex, thereby lighting the lamp. However, no light was observed if the biomolecule could not snatch the metal ions from the complex. Under the optimal conditions, sensitive and selective detection of Cys and PPi was achieved by the lamp, with practical applications in fetal bovine serum and human urine. This ion quencher regulated lamp for fluorescent bioassays is simple in design, fast in operation, and is more convenient than other methods. Significantly, as many molecules could form stable complexes with metal ions selectively, this ion quencher operated lamp has potential for the detection of a wide spectrum of analytes. Graphical abstract A novel and adjustable lamp on the basis of competitive interaction among dsDNA-SYBR Green I, ions quencher and analyte was designed for bioanalysis. The filament and switch of lamp could be customized by employing different dsDNA and ions quencher.

  6. Miniaturized side-viewing imaging probe for fluorescence lifetime imaging (FLIM): validation with fluorescence dyes, tissue structural proteins and tissue specimens

    OpenAIRE

    Elson, DS; Jo, JA; Marcu, L

    2007-01-01

    We report a side viewing fibre-based endoscope that is compatible with intravascular imaging and fluorescence lifetime imaging microscopy (FLIM). The instrument has been validated through testing with fluorescent dyes and collagen and elastin powders using the Laguerre expansion deconvolution technique to calculate the fluorescence lifetimes. The instrument has also been tested on freshly excised unstained animal vascular tissues.

  7. Distribution of diffusion times determined by fluorescence (lifetime) correlation spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Pánek, Jiří; Loukotová, Lenka; Hrubý, Martin; Štěpánek, Petr

    2018-01-01

    Roč. 51, č. 8 (2018), s. 2796-2804 ISSN 0024-9297 R&D Projects: GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : polymer solution * fluorescence correlation spectroscopy * diffusion time distribution Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 5.835, year: 2016

  8. In vivo fluorescence lifetime imaging for monitoring the efficacy of the cancer treatment.

    Science.gov (United States)

    Ardeshirpour, Yasaman; Chernomordik, Victor; Hassan, Moinuddin; Zielinski, Rafal; Capala, Jacek; Gandjbakhche, Amir

    2014-07-01

    Advances in tumor biology created a foundation for targeted therapy aimed at inactivation of specific molecular mechanisms responsible for cell malignancy. In this paper, we used in vivo fluorescence lifetime imaging with HER2-targeted fluorescent probes as an alternative imaging method to investigate the efficacy of targeted therapy with 17-DMAG (an HSP90 inhibitor) on tumors with high expression of HER2 receptors. HER2-specific Affibody, conjugated to Alexafluor 750, was injected into nude mice bearing HER2-positive tumor xenograft. The fluorescence lifetime was measured before treatment and monitored after the probe injections at 12 hours after the last treatment dose, when the response to the 17-DMAG therapy was the most pronounced as well as a week after the last treatment when the tumors grew back almost to their pretreatment size. Imaging results showed significant difference between the fluorescence lifetimes at the tumor and the contralateral site (∼0.13 ns) in the control group (before treatment) and 7 days after the last treatment when the tumors grew back to their pretreatment dimensions. However, at the time frame that the treatment had its maximum effect (12 hours after the last treatment), the difference between the fluorescence lifetime at the tumor and contralateral site decreased to 0.03 ns. The results showed a good correlation between fluorescence lifetime and the efficacy of the treatment. These findings show that in vivo fluorescence lifetime imaging can be used as a promising molecular imaging tool for monitoring the treatment outcome in preclinical models and potentially in patients. ©2014 American Association for Cancer Research.

  9. In-vivo fluorescence lifetime imaging for monitoring the efficacy of the cancer treatment

    Science.gov (United States)

    Ardeshirpour, Yasaman; Chernomordik, Victor; Hassan, Moinuddin; Zielinski, Rafal; Capala, Jacek; Gandjbakhche, Amir

    2015-01-01

    Purpose Advances in tumor biology created a foundation for targeted therapy aimed at inactivation of specific molecular mechanisms responsible for cell malignancy. In this paper, we used in-vivo fluorescence lifetime imaging with HER2 targeted fluorescent probes as an alternative imaging method to investigate the efficacy of targeted therapy with 17-DMAG (an HSP90 inhibitor) on tumors with high expression of HER2 receptors. Experimental Design HER2-specific Affibody, conjugated to Alexafluor 750, was injected into nude mice, bearing HER2-positive tumor xenograft. The fluorescence lifetime was measured before treatment and monitored after the probe injections at 12 hours after the last treatment dose, when the response to the 17-DMAG therapy was the most pronounced as well as a week after the last treatment when the tumors grew back almost to their pre-treatment size. Results Imaging results showed significant difference between the fluorescence lifetimes at the tumor and the contralateral site (~0.13ns) in the control group (before treatment) and 7 days after the last treatment when the tumors grew back to their pretreatment dimensions. However, at the time frame that the treatment had its maximum effect (12 hours after the last treatment) the difference between the fluorescence lifetime at the tumor and contralateral site decreased to 0.03ns. Conclusions The results showed a good correlation between fluorescence lifetime and the efficacy of the treatment. These findings show that in-vivo fluorescence lifetime imaging can be used as a promising molecular imaging tool for monitoring the treatment outcome in preclinical models and potentially in patients. PMID:24671949

  10. Nanoparticle discrimination based on wavelength and lifetime-multiplexed cathodoluminescence microscopy

    NARCIS (Netherlands)

    Garming, Mathijs W H; Weppelman, I Gerward C; de Boer, Pascal; Martínez, Felipe Perona; Schirhagl, Romana; Hoogenboom, Jacob P; Moerland, Robert J

    2017-01-01

    Nanomaterials can be identified in high-resolution electron microscopy images using spectrally-selective cathodoluminescence. Capabilities for multiplex detection can however be limited, e.g., due to spectral overlap or availability of filters. Also, the available photon flux may be limited due to

  11. Portable fluorescence lifetime spectroscopy system for in-situ interrogation of biological tissues

    Science.gov (United States)

    Saito Nogueira, Marcelo; Cosci, Alessandro; Teixeira Rosa, Ramon Gabriel; Salvio, Ana Gabriela; Pratavieira, Sebastião; Kurachi, Cristina

    2017-12-01

    Fluorescence spectroscopy and lifetime techniques are potential methods for optical diagnosis and characterization of biological tissues with an in-situ, fast, and noninvasive interrogation. Several diseases may be diagnosed due to differences in the fluorescence spectra of targeted fluorophores, when, these spectra are similar, considering steady-state fluorescence, others may be detected by monitoring their fluorescence lifetime. Despite this complementarity, most of the current fluorescence lifetime systems are not robust and portable, and not being feasible for clinical applications. We describe the assembly of a fluorescence lifetime spectroscopy system in a suitcase, its characterization, and validation with clinical measurements of skin lesions. The assembled system is all encased and robust, maintaining its mechanical, electrical, and optical stability during transportation, and is feasible for clinical measurements. The instrument response function measured was about 300 ps, and the system is properly calibrated. At the clinical study, the system showed to be reliable, and the achieved spectroscopy results support its potential use as an auxiliary tool for skin diagnostics.

  12. Portable fluorescence lifetime spectroscopy system for in-situ interrogation of biological tissues.

    Science.gov (United States)

    Saito Nogueira, Marcelo; Cosci, Alessandro; Teixeira Rosa, Ramon Gabriel; Salvio, Ana Gabriela; Pratavieira, Sebastião; Kurachi, Cristina

    2017-10-01

    Fluorescence spectroscopy and lifetime techniques are potential methods for optical diagnosis and characterization of biological tissues with an in-situ, fast, and noninvasive interrogation. Several diseases may be diagnosed due to differences in the fluorescence spectra of targeted fluorophores, when, these spectra are similar, considering steady-state fluorescence, others may be detected by monitoring their fluorescence lifetime. Despite this complementarity, most of the current fluorescence lifetime systems are not robust and portable, and not being feasible for clinical applications. We describe the assembly of a fluorescence lifetime spectroscopy system in a suitcase, its characterization, and validation with clinical measurements of skin lesions. The assembled system is all encased and robust, maintaining its mechanical, electrical, and optical stability during transportation, and is feasible for clinical measurements. The instrument response function measured was about 300 ps, and the system is properly calibrated. At the clinical study, the system showed to be reliable, and the achieved spectroscopy results support its potential use as an auxiliary tool for skin diagnostics. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  13. Use of multiphoton tomography and fluorescence lifetime imaging to investigate skin pigmentation in vivo

    Science.gov (United States)

    Dancik, Yuri; Favre, Amandine; Loy, Chong Jin; Zvyagin, Andrei V.; Roberts, Michael S.

    2013-02-01

    There is a growing body of literature showing the usefulness of multiphoton tomography (MPT) and fluorescence lifetime imaging for in situ characterization of skin constituents and the ensuing development of noninvasive diagnostic tools against skin diseases. Melanin and pigmentation-associated skin cancers constitute some of the major applications. We show that MPT and fluorescence lifetime imaging can be used to measure changes in cutaneous melanin concentration and that these can be related to the visible skin color. Melanin in the skin of African, Indian, Caucasian, and Asian volunteers is detected on the basis of its emission wavelength and fluorescence lifetimes in solution and in a melanocyte-keratinocyte cell culture. Fluorescence intensity is used to characterize the melanin content and distribution as a function of skin type and depth into the skin (stratum granulosum and stratum basale). The measured fluorescence intensities in given skin types agree with melanin amounts reported by others using biopsies. Our results suggest that spatial distribution of melanin in skin can be studied using MPT and fluorescence lifetime imaging, but further studies are needed to ascertain that the method can resolve melanin amount in smaller depth intervals.

  14. Plasmonic-based instrument response function for time-resolved fluorescence: toward proper lifetime analysis

    Energy Technology Data Exchange (ETDEWEB)

    Szlazak, Radoslaw; Tutaj, Krzysztof; Grudzinski, Wojciech; Gruszecki, Wieslaw I.; Luchowski, Rafal, E-mail: rafal.luchowski@umcs.pl [Maria Curie-Sklodowska University, Department of Biophysics, Institute of Physics (Poland)

    2013-06-15

    In this report, we investigated the so-called plasmonic platforms prepared to target ultra-short fluorescence and accurate instrumental response function in a time-domain spectroscopy and microscopy. The interaction of metallic nanoparticles with nearby fluorophores results in the increase of the dye fluorescence quantum yield, photostability and decrease of the lifetime parameter. The mentioned properties of platforms were applied to achieve a picosecond fluorescence lifetime (21 ps) of erythrosin B, used later as a better choice for deconvolution of fluorescence decays measured with 'color' sensitive photo-detectors. The ultra-short fluorescence standard based on combination of thin layers of silver film, silver colloidal nanoparticles (about 60 nm in diameter), and top layer of erythrosin B embedded in 0.2 % poly(vinyl) alcohol. The response functions were monitored on two photo-detectors; microchannel plate photomultiplier and single photon avalanche photodiode as a Rayleigh scattering and ultra-short fluorescence. We demonstrated that use of the plasmonic base fluorescence standard as an instrumental response function results in the absence of systematic error in lifetime measurements and analysis.

  15. Olive oil DNA fingerprinting by multiplex SNP genotyping on fluorescent microspheres.

    Science.gov (United States)

    Kalogianni, Despina P; Bazakos, Christos; Boutsika, Lemonia M; Targem, Mehdi Ben; Christopoulos, Theodore K; Kalaitzis, Panagiotis; Ioannou, Penelope C

    2015-04-01

    Olive oil cultivar verification is of primary importance for the competitiveness of the product and the protection of consumers and producers from fraudulence. Single-nucleotide polymorphisms (SNPs) have emerged as excellent DNA markers for authenticity testing. This paper reports the first multiplex SNP genotyping assay for olive oil cultivar identification that is performed on a suspension of fluorescence-encoded microspheres. Up to 100 sets of microspheres, with unique "fluorescence signatures", are available. Allele discrimination was accomplished by primer extension reaction. The reaction products were captured via hybridization on the microspheres and analyzed, within seconds, by a flow cytometer. The "fluorescence signature" of each microsphere is assigned to a specific allele, whereas the signal from a reporter fluorophore denotes the presence of the allele. As a model, a panel of three SNPs was chosen that enabled identification of five common Greek olive cultivars (Adramytini, Chondrolia Chalkidikis, Kalamon, Koroneiki, and Valanolia).

  16. Fluorescence lifetime correlation spectroscopy combined with lifetime tuning: New perspectives in supported phospholipid bilayer research

    Czech Academy of Sciences Publication Activity Database

    Benda, Aleš; Fagulová, Veronika; Deyneka, Alexander; Enderlain, J.; Hof, Martin

    2006-01-01

    Roč. 22, č. 23 (2006), s. 9580-9585 ISSN 0743-7463 R&D Projects: GA ČR GA203/05/2308; GA MŠk LC06063 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z10100522 Keywords : spectroscopy * fluorescence * FLCS Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.902, year: 2006

  17. Time-Resolved Fluorescence Spectroscopy and Fluorescence Lifetime Imaging Microscopy for Characterization of Dendritic Polymer Nanoparticles and Applications in Nanomedicine

    Directory of Open Access Journals (Sweden)

    Alexander Boreham

    2016-12-01

    Full Text Available The emerging field of nanomedicine provides new approaches for the diagnosis and treatment of diseases, for symptom relief and for monitoring of disease progression. One route of realizing this approach is through carefully constructed nanoparticles. Due to the small size inherent to the nanoparticles a proper characterization is not trivial. This review highlights the application of time-resolved fluorescence spectroscopy and fluorescence lifetime imaging microscopy (FLIM for the analysis of nanoparticles, covering aspects ranging from molecular properties to particle detection in tissue samples. The latter technique is particularly important as FLIM allows for distinguishing of target molecules from the autofluorescent background and, due to the environmental sensitivity of the fluorescence lifetime, also offers insights into the local environment of the nanoparticle or its interactions with other biomolecules. Thus, these techniques offer highly suitable tools in the fields of particle development, such as organic chemistry, and in the fields of particle application, such as in experimental dermatology or pharmaceutical research.

  18. Time-Resolved Fluorescence Spectroscopy and Fluorescence Lifetime Imaging Microscopy for Characterization of Dendritic Polymer Nanoparticles and Applications in Nanomedicine.

    Science.gov (United States)

    Boreham, Alexander; Brodwolf, Robert; Walker, Karolina; Haag, Rainer; Alexiev, Ulrike

    2016-12-24

    The emerging field of nanomedicine provides new approaches for the diagnosis and treatment of diseases, for symptom relief and for monitoring of disease progression. One route of realizing this approach is through carefully constructed nanoparticles. Due to the small size inherent to the nanoparticles a proper characterization is not trivial. This review highlights the application of time-resolved fluorescence spectroscopy and fluorescence lifetime imaging microscopy (FLIM) for the analysis of nanoparticles, covering aspects ranging from molecular properties to particle detection in tissue samples. The latter technique is particularly important as FLIM allows for distinguishing of target molecules from the autofluorescent background and, due to the environmental sensitivity of the fluorescence lifetime, also offers insights into the local environment of the nanoparticle or its interactions with other biomolecules. Thus, these techniques offer highly suitable tools in the fields of particle development, such as organic chemistry, and in the fields of particle application, such as in experimental dermatology or pharmaceutical research.

  19. Measurements of fluorescence lifetime of group III metalo-8-quinolinolates and their use in analytical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, Y; Hiraki, K; Morishige, K; Takahashi, K [Kinki Univ., Higashi-Osaka, Osaka (Japan). Faculty of Science and Technology; Shigematsu, T

    1976-07-01

    8-Quinolinolates of aluminum, gallium, and indium in chloroform exhibit strong yellowish green fluorescence with an emission maximum at 510, 526, and 528 nm, respectively. The time resolved fluorescence spectra and the fluorescence lifetime properties of these chelates were measured with a time-resolved spectrofluorometer. The fluorescence intensity of these chelates decays exponentially with time t, and obeys the following equation: F=F/sub 0/e-t/tau=F/sub 0/e-k sub(f).t where F/sub 0/ and F are the fluorescence intensity when the exciting light is irradiating and shut off, respectively; tau and k sub(f) being the lifetime and the rate constant for the process of fluorescence emission. The lifetimes of these chelates in chloroform solution at the ordinary temperature were 17.8, 10.1, and 8.4 ns for Al(C/sub 9/H/sub 6/ON)/sub 3/, Ga(C/sub 9/H/sub 6/ON)/sub 3/, and In(C/sub 9/H/sub 6/ON)/sub 3/, respectively. Thus, 8-quinolinolates of group III metals emit the same type radiation with different lifetimes. Between Al-chelate and In-chelate, there were significant difference in the lifetime by 9.4 ns. Then, the logarithmic plot of the composite fluorescence intensity against time is the overlap of some straight lines with different slopes which indicate k sub(f) of various decay processes. The linear portion of the logarithmic plot of the composite fluorescence intensity corresponded to the longer lifetime component (Al-chelate), and by substracting this component from the whole one, the straight line due to the shorter lifetime component (In-chelate) is obtained. Aluminum and indium contents were then determined by comparing the fluorescence intensity of the sample with that of the standard at a definite time (extrapolated to t=0). By using this composite decay curve, the composition of mixtures of nx10/sup -4/ mol/l of Al and In-chelates in chloroform could be determined.

  20. Multiphoton Laser Microscopy and Fluorescence Lifetime Imaging for the Evaluation of the Skin

    Directory of Open Access Journals (Sweden)

    Stefania Seidenari

    2012-01-01

    Full Text Available Multiphoton laser microscopy is a new, non-invasive technique providing access to the skin at a cellular and subcellular level, which is based both on autofluorescence and fluorescence lifetime imaging. Whereas the former considers fluorescence intensity emitted by epidermal and dermal fluorophores and by the extra-cellular matrix, fluorescence lifetime imaging (FLIM, is generated by the fluorescence decay rate. This innovative technique can be applied to the study of living skin, cell cultures and ex vivo samples. Although still limited to the clinical research field, the development of multiphoton laser microscopy is thought to become suitable for a practical application in the next few years: in this paper, we performed an accurate review of the studies published so far, considering the possible fields of application of this imaging method and providing high quality images acquired in the Department of Dermatology of the University of Modena.

  1. Fluorescence lifetime measurements of native and glycated human serum albumin and bovine serum albumin

    Science.gov (United States)

    Joshi, Narahari V.; Joshi, Virgina O. d.; Contreras, Silvia; Gil, Herminia; Medina, Honorio; Siemiarczuk, Aleksander

    1999-05-01

    Nonenzymatic glycation, also known as Maillard reaction, plays an important role in the secondary complications of the diabetic pathology and aging, therefore, human serum albumin (HSA) and bovine serum albumin (BSA) were glycated by a conventional method in our laboratory using glucose as the glycating agent. Fluorescence lifetime measurements were carried out with a laser strobe fluorometer equipped with a nitrogen/dye laser and a frequency doubler as a pulsed excitation source. The samples were excited at 295 nm and the emission spectra were recorded at 345 nm. The obtained decay curves were tried for double and triple exponential functions. It has been found that the shorter lifetime increases for glycated proteins as compared with that of the native ones. For example, in the case of glycated BSA the lifetime increased from 1.36 ns to 2.30 ns. Similarly, for HSA, the lifetime increases from 1.58 ns to 2.26 ns. Meanwhile, the longer lifetime changed very slightly for both proteins (from 6.52 ns to 6.72 ns). The increase in the lifetime can be associated with the environmental effect; originated from the attachment of glucose to some lysine residues. A good example is Trp 214 which is in the cage of Lys 225, Lys 212, Lys 233, Lys 205, Lys 500, Lys 199 and Lys 195. If fluorescence lifetime technique is calibrated and properly used it could be employed for assessing glycation of proteins.

  2. Multiplex and high-throughput DNA detection using surface plasmon mediated fluorescence

    Science.gov (United States)

    Mei, Zhong

    The overall objective of this research project was to develop a user-friendly and sensitive biosensor for nucleic acid aptamers with multiplexing and high-throughput capability. The sensing was based on the fluorescence signals emitted by the fluorophores coupling with plamonic nanoparticle (gold nanorod) deposited on a patterned substrate. Gold nanorods (GNRs) were synthesized using a binary mixture of hexadecyltrimethylammonium bromide (CTAB) and sodium oleate (NaOL) in seed mediated growth method. Polytetrafluoroethylene (PTFE) printed glass slides were selectively coated with a gold thin-film to define hydrophilic areas for GNR deposition. Due to the wettablity contrast, GNR solution dropped on the slide was induced to assemble exclusively in the hydrophilic spots. By controlling temperature and humidity of the evaporation process, vertically-standing GNR arrays were achieved on the pattered slide. Fluorescence was conjugated to GNR surface via DNA double strand with tunable length. Theoretical simulation predicted a flat layer ( 30 nm thick) of uniform "hot spots" presented on the GNR tips, which could modify the nearby fluorescence. Experimentally, the vertical GNR arrays yielded metallic enhanced fluorescence (MEF) effect, which was dependent on the spectrum overlap and GNR-fluorophore distance. Specifically, the maximum enhancement of Quasar 670 and Alexa 750 was observed when it was coupled with GNR664 (plasmonic wavelength 664 nm) and GNR778 respectively at a distance of 16 nm, while the carboxyfluorescein (FAM) was at maximal intensity when attached to gold nanosphere520. This offers an opportunity for multiplexed DNA sensing. Based on this, we developed a novel GNR mediated fluorescence biosensor for DNA detection. Fluorescence labeled haipin-DNA probes were introduced to designated spots of GNR array with the matching LSPR wavelengths on the substrate. The fluorescence was quenched originally because of Forster resonance energy transfer (FRET) effect

  3. Fluorescence lifetime imaging of lipids during 3T3-L1 cell differentiation

    Science.gov (United States)

    Song, Young Sik; Won, Young Jae; Lee, Sang-Hak; Kim, Dug Young

    2014-03-01

    Obesity is becoming a big health problem in these days. Since increased body weight is due to increased number and size of the triglyceride-storing adipocytes, many researchers are working on differentiation conditions and processes of adipocytes. Adipocytes also work as regulators of whole-body energy homeostasis by secreting several proteins that regulate processes as diverse as haemostasis, blood pressure, immune function, angiogenesis and energy balance. 3T3-L1 cells are widely used cell line for studying adipogenesis because it can differentiate into an adipocyte-like phenotype under appropriate conditions. In this paper, we propose an effective fluorescence lifetime imaging technique which can easily distinguish lipids in membrane and those in lipid droplets. Nile red dyes are attached to lipids in 3T3-L1 cells. Fluorescence lifetime images were taken for 2 week during differentiation procedure of 3T3-L1 cells into adipocytes. We used 488 nm pulsed laser with 5MHz repetition rate and emission wavelength is 520 nm of Nile Red fluorescent dye. Results clearly show that the lifetime of Nile red in lipid droplets are smaller than those in cell membrane. Our results suggest that fluorescence lifetime imaging can be a very powerful tool to monitor lipid droplet formation in adipocytes from 3T3-L1 cells.

  4. Fluorescence lifetime of emitters with broad homogeneous linewidths modified in opal photonic crystals

    DEFF Research Database (Denmark)

    Nikolaev, Ivan S.; Lodahl, Peter; Vos, Willem L.

    2008-01-01

    We have investigated the dynamics of spontaneous emission from dye molecules embedded in opal photonic crystals. Fluorescence lifetimes of Rhodamine 6G (R6G) dye were measured as a function of both optical frequency and crystal lattice parameter of the polystyrene opals. Due to the broad...

  5. Towards sensitive, high-throughput, biomolecular assays based on fluorescence lifetime

    Science.gov (United States)

    Ioanna Skilitsi, Anastasia; Turko, Timothé; Cianfarani, Damien; Barre, Sophie; Uhring, Wilfried; Hassiepen, Ulrich; Léonard, Jérémie

    2017-09-01

    Time-resolved fluorescence detection for robust sensing of biomolecular interactions is developed by implementing time-correlated single photon counting in high-throughput conditions. Droplet microfluidics is used as a promising platform for the very fast handling of low-volume samples. We illustrate the potential of this very sensitive and cost-effective technology in the context of an enzymatic activity assay based on fluorescently-labeled biomolecules. Fluorescence lifetime detection by time-correlated single photon counting is shown to enable reliable discrimination between positive and negative control samples at a throughput as high as several hundred samples per second.

  6. Multiplex fluorescence melting curve analysis for mutation detection with dual-labeled, self-quenched probes.

    Directory of Open Access Journals (Sweden)

    Qiuying Huang

    2011-04-01

    Full Text Available Probe-based fluorescence melting curve analysis (FMCA is a powerful tool for mutation detection based on melting temperature generated by thermal denaturation of the probe-target hybrid. Nevertheless, the color multiplexing, probe design, and cross-platform compatibility remain to be limited by using existing probe chemistries. We hereby explored two dual-labeled, self-quenched probes, TaqMan and shared-stem molecular beacons, in their ability to conduct FMCA. Both probes could be directly used for FMCA and readily integrated with closed-tube amplicon hybridization under asymmetric PCR conditions. Improved flexibility of FMCA by using these probes was illustrated in three representative applications of FMCA: mutation scanning, mutation identification and mutation genotyping, all of which achieved improved color-multiplexing with easy probe design and versatile probe combination and all were validated with a large number of real clinical samples. The universal cross-platform compatibility of these probes-based FMCA was also demonstrated by a 4-color mutation genotyping assay performed on five different real-time PCR instruments. The dual-labeled, self-quenched probes offered unprecedented combined advantage of enhanced multiplexing, improved flexibility in probe design, and expanded cross-platform compatibility, which would substantially improve FMCA in mutation detection of various applications.

  7. Time-Domain Fluorescence Lifetime Imaging Techniques Suitable for Solid-State Imaging Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Robert K. Henderson

    2012-05-01

    Full Text Available We have successfully demonstrated video-rate CMOS single-photon avalanche diode (SPAD-based cameras for fluorescence lifetime imaging microscopy (FLIM by applying innovative FLIM algorithms. We also review and compare several time-domain techniques and solid-state FLIM systems, and adapt the proposed algorithms for massive CMOS SPAD-based arrays and hardware implementations. The theoretical error equations are derived and their performances are demonstrated on the data obtained from 0.13 μm CMOS SPAD arrays and the multiple-decay data obtained from scanning PMT systems. In vivo two photon fluorescence lifetime imaging data of FITC-albumin labeled vasculature of a P22 rat carcinosarcoma (BD9 rat window chamber are used to test how different algorithms perform on bi-decay data. The proposed techniques are capable of producing lifetime images with enough contrast.

  8. Enhancement of early cervical cancer diagnosis with epithelial layer analysis of fluorescence lifetime images.

    Directory of Open Access Journals (Sweden)

    Jun Gu

    Full Text Available This work reports the use of layer analysis to aid the fluorescence lifetime diagnosis of cervical intraepithelial neoplasia (CIN from H&E stained cervical tissue sections. The mean and standard deviation of lifetimes in single region of interest (ROI of cervical epithelium were previously shown to correlate to the gold standard histopathological classification of early cervical cancer. These previously defined single ROIs were evenly divided into layers for analysis. A 10-layer model revealed a steady increase in fluorescence lifetime from the inner to the outer epithelial layers of healthy tissue sections, suggesting a close association with cellular maturity. The shorter lifetime and minimal lifetime increase towards the epithelial surface of CIN-affected regions are in good agreement with the absence of cellular maturation in CIN. Mean layer lifetimes in the top-half cervical epithelium were used as feature vectors for extreme learning machine (ELM classifier discriminations. It was found that the proposed layer analysis technique greatly improves the sensitivity and specificity to 94.6% and 84.3%, respectively, which can better supplement the traditional gold standard cervical histopathological examinations.

  9. Azadioxatriangulenium: a long fluorescence lifetime fluorophore for large biomolecule binding assay

    International Nuclear Information System (INIS)

    Sørensen, Thomas Just; Thyrhaug, Erling; Szabelski, Mariusz; Gryczynski, Ignacy; Gryczynski, Zygmunt; Luchowski, Rafal; Laursen, Bo W

    2013-01-01

    Of the many optical bioassays available, sensing by fluorescence anisotropy has great advantages as it provides a sensitive, instrumentally simple, ratiometric method of detection. However, it is hampered by a severe limitation, as the emission lifetime of the label needs to be comparable to the correlation lifetime (tumbling time) of the biomolecule which is labelled. For proteins of moderate size this is on the order of 20–200 ns, which due to practical issues currently limits the choice of labels to the dansyl-type dyes and certain aromatic dyes. These have the significant drawback of UV/blue absorption and emission as well as an often significant solvent sensitivity. Here, we report the synthesis and characterization of a new fluorescent label for high molecular weight biomolecule assay based on the azadioxatriangulenium motif. The NHS ester of the long fluorescence lifetime, red-emitting fluorophore: azadioxatriangulenium (ADOTA-NHS) was conjugated to anti-rabbit Immunoglobulin G (antiIgG). The long fluorescence lifetime was exploited to determine the correlation time of the high molecular weight antibody and its complex with rabbit Immunoglobulin G (IgG) with steady-state fluorescence anisotropy and time-resolved methods: solution phase immuno-assay was performed following either steady-state or time-resolved fluorescence anisotropy. By performing a variable temperature experiment it was determined that the binding of the ligand resulted in an increase in correlation time of more than 75%, and an increase in the steady-state anisotropy of 18%. The results show that the triangulenium class of dyes can be used in anisotropy assay to detect binding events involving biomolecules of far larger size than what is possible with most other red-emitting organic dyes. (paper)

  10. Azadioxatriangulenium: a long fluorescence lifetime fluorophore for large biomolecule binding assay

    Science.gov (United States)

    Just Sørensen, Thomas; Thyrhaug, Erling; Szabelski, Mariusz; Luchowski, Rafal; Gryczynski, Ignacy; Gryczynski, Zygmunt; Laursen, Bo W.

    2013-06-01

    Of the many optical bioassays available, sensing by fluorescence anisotropy has great advantages as it provides a sensitive, instrumentally simple, ratiometric method of detection. However, it is hampered by a severe limitation, as the emission lifetime of the label needs to be comparable to the correlation lifetime (tumbling time) of the biomolecule which is labelled. For proteins of moderate size this is on the order of 20-200 ns, which due to practical issues currently limits the choice of labels to the dansyl-type dyes and certain aromatic dyes. These have the significant drawback of UV/blue absorption and emission as well as an often significant solvent sensitivity. Here, we report the synthesis and characterization of a new fluorescent label for high molecular weight biomolecule assay based on the azadioxatriangulenium motif. The NHS ester of the long fluorescence lifetime, red-emitting fluorophore: azadioxatriangulenium (ADOTA-NHS) was conjugated to anti-rabbit Immunoglobulin G (antiIgG). The long fluorescence lifetime was exploited to determine the correlation time of the high molecular weight antibody and its complex with rabbit Immunoglobulin G (IgG) with steady-state fluorescence anisotropy and time-resolved methods: solution phase immuno-assay was performed following either steady-state or time-resolved fluorescence anisotropy. By performing a variable temperature experiment it was determined that the binding of the ligand resulted in an increase in correlation time of more than 75%, and an increase in the steady-state anisotropy of 18%. The results show that the triangulenium class of dyes can be used in anisotropy assay to detect binding events involving biomolecules of far larger size than what is possible with most other red-emitting organic dyes.

  11. Azadioxatriangulenium (ADOTA+): A long fluorescence lifetime fluorophore for large biomolecule binding assay

    Science.gov (United States)

    Sørensen, Thomas Just; Thyrhaug, Erling; Szabelski, Mariusz; Luchowski, Rafal; Gryczynski, Ignacy; Gryczynski, Zygmunt; Laursen, Bo W.

    2013-01-01

    Of the many optical bioassays available, sensing by fluorescence anisotropy have great advantages as it provides a sensitive, instrumentally simple, ratiometric method of detection. However, it is hampered by a severe limitation as the emission lifetime of the label needs to be comparable to the correlation lifetime (tumbling time) of the biomolecule which is labelled. For proteins of moderate size this is in the order of 20–200 ns, which due to practical issues currently limits the choice of labels to the dansyl-type dyes and certain aromatics dyes. These have the significant drawback of UV/blue absorption and emission as well as an often significant solvent sensitivity. Here, we report the synthesis and characterization of a new fluorescent label for high molecular weight biomolecules assay based on the azadioxatriangulenium motif. The NHS ester of the long fluorescence lifetime, red emitting fluorophore: azadioxatriangulenium (ADOTA-NHS) was conjugated to anti-rabbit Immunoglobulin G (antiIgG). The long fluorescence lifetime was exploited to determine the correlation time of the high molecular weight antibody and its complex with rabbit Immuniglobulin G (IgG) with steady-state fluorescence anisotropy and time-resolved methods: solution phase immuno-assay was performed following either steady-state or time-resolved fluorescence anisotropy. By performing a variable temperature experiment it was determined that the binding of the ligand resulted in an increase in correlation time by more than 75 %, and a change in the steady-state anisotropy increase of 18%. The results show that the triangulenium class of dyes can be used in anisotropy assay for detecting binding events involving biomolecules of far larger size than what is possible with the other red emitting organic dyes. PMID:24058730

  12. Online multispectral fluorescence lifetime values estimation and overlay onto tissue white-light video frames

    Science.gov (United States)

    Gorpas, Dimitris; Ma, Dinglong; Bec, Julien; Yankelevich, Diego R.; Marcu, Laura

    2016-03-01

    Fluorescence lifetime imaging has been shown to be a robust technique for biochemical and functional characterization of tissues and to present great potential for intraoperative tissue diagnosis and guidance of surgical procedures. We report a technique for real-time mapping of fluorescence parameters (i.e. lifetime values) onto the location from where the fluorescence measurements were taken. This is achieved by merging a 450 nm aiming beam generated by a diode laser with the excitation light in a single delivery/collection fiber and by continuously imaging the region of interest with a color CMOS camera. The interrogated locations are then extracted from the acquired frames via color-based segmentation of the aiming beam. Assuming a Gaussian profile of the imaged aiming beam, the segmentation results are fitted to ellipses that are dynamically scaled at the full width of three automatically estimated thresholds (50%, 75%, 90%) of the Gaussian distribution's maximum value. This enables the dynamic augmentation of the white-light video frames with the corresponding fluorescence decay parameters. A fluorescence phantom and fresh tissue samples were used to evaluate this method with motorized and hand-held scanning measurements. At 640x512 pixels resolution the area of interest augmented with fluorescence decay parameters can be imaged at an average 34 frames per second. The developed method has the potential to become a valuable tool for real-time display of optical spectroscopy data during continuous scanning applications that subsequently can be used for tissue characterization and diagnosis.

  13. Rotational multispectral fluorescence lifetime imaging and intravascular ultrasound: bimodal system for intravascular applications

    Science.gov (United States)

    Ma, Dinglong; Bec, Julien; Yankelevich, Diego R.; Gorpas, Dimitris; Fatakdawala, Hussain; Marcu, Laura

    2014-01-01

    Abstract. We report the development and validation of a hybrid intravascular diagnostic system combining multispectral fluorescence lifetime imaging (FLIm) and intravascular ultrasound (IVUS) for cardiovascular imaging applications. A prototype FLIm system based on fluorescence pulse sampling technique providing information on artery biochemical composition was integrated with a commercial IVUS system providing information on artery morphology. A customized 3-Fr bimodal catheter combining a rotational side-view fiberoptic and a 40-MHz IVUS transducer was constructed for sequential helical scanning (rotation and pullback) of tubular structures. Validation of this bimodal approach was conducted in pig heart coronary arteries. Spatial resolution, fluorescence detection efficiency, pulse broadening effect, and lifetime measurement variability of the FLIm system were systematically evaluated. Current results show that this system is capable of temporarily resolving the fluorescence emission simultaneously in multiple spectral channels in a single pullback sequence. Accurate measurements of fluorescence decay characteristics from arterial segments can be obtained rapidly (e.g., 20 mm in 5 s), and accurate co-registration of fluorescence and ultrasound features can be achieved. The current finding demonstrates the compatibility of FLIm instrumentation with in vivo clinical investigations and its potential to complement conventional IVUS during catheterization procedures. PMID:24898604

  14. A fast global fitting algorithm for fluorescence lifetime imaging microscopy based on image segmentation.

    Science.gov (United States)

    Pelet, S; Previte, M J R; Laiho, L H; So, P T C

    2004-10-01

    Global fitting algorithms have been shown to improve effectively the accuracy and precision of the analysis of fluorescence lifetime imaging microscopy data. Global analysis performs better than unconstrained data fitting when prior information exists, such as the spatial invariance of the lifetimes of individual fluorescent species. The highly coupled nature of global analysis often results in a significantly slower convergence of the data fitting algorithm as compared with unconstrained analysis. Convergence speed can be greatly accelerated by providing appropriate initial guesses. Realizing that the image morphology often correlates with fluorophore distribution, a global fitting algorithm has been developed to assign initial guesses throughout an image based on a segmentation analysis. This algorithm was tested on both simulated data sets and time-domain lifetime measurements. We have successfully measured fluorophore distribution in fibroblasts stained with Hoechst and calcein. This method further allows second harmonic generation from collagen and elastin autofluorescence to be differentiated in fluorescence lifetime imaging microscopy images of ex vivo human skin. On our experimental measurement, this algorithm increased convergence speed by over two orders of magnitude and achieved significantly better fits. Copyright 2004 Biophysical Society

  15. High-throughput screening of hybridoma supernatants using multiplexed fluorescent cell barcoding on live cells.

    Science.gov (United States)

    Lu, Mei; Chan, Brian M; Schow, Peter W; Chang, Wesley S; King, Chadwick T

    2017-12-01

    With current available assay formats using either immobilized protein (ELISA, enzyme-linked immunosorbent assay) or immunostaining of fixed cells for primary monoclonal antibody (mAb) screening, researchers often fail to identify and characterize antibodies that recognize the native conformation of cell-surface antigens. Therefore, screening using live cells has become an integral and important step contributing to the successful identification of therapeutic antibody candidates. Thus the need for developing high-throughput screening (HTS) technologies using live cells has become a major priority for therapeutic mAb discovery and development. We have developed a novel technique called Multiplexed Fluorescent Cell Barcoding (MFCB), a flow cytometry-based method based upon the Fluorescent Cell Barcoding (FCB) technique and the Luminex fluorescent bead array system, but is applicable to high-through mAb screens on live cells. Using this technique in our system, we can simultaneously identify or characterize the antibody-antigen binding of up to nine unique fluorescent labeled cell populations in the time that it would normally take to process a single population. This has significantly reduced the amount of time needed for the identification of potential lead candidates. This new technology enables investigators to conduct large-scale primary hybridoma screens using flow cytometry. This in turn has allowed us to screen antibodies more efficiently than before and streamline identification and characterization of lead molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Using multiphoton fluorescence lifetime imaging to characterize liver damage and fluorescein disposition in liver in vivo

    Science.gov (United States)

    Thorling, Camilla A.; Studier, Hauke; Crawford, Darrell; Roberts, Michael S.

    2016-03-01

    Liver disease is the fifth most common cause of death and unlike many other major causes of mortality, liver disease rates are increasing rather than decreasing. There is no ideal measurement of liver disease and although biopsies are the gold standard, this only allows for a spot examination and cannot follow dynamic processes of the liver. Intravital imaging has the potential to extract detailed information over a larger sampling area continuously. The aim of this project was to investigate whether multiphoton and fluorescence lifetime imaging microscopy could detect early liver damage and to assess whether it could detect changes in metabolism of fluorescein in normal and diseased livers. Four experimental groups were used in this study: 1) control; 2) ischemia reperfusion injury; 3) steatosis and 4) steatosis with ischemia reperfusion injury. Results showed that multiphoton microscopy could visualize morphological changes such as decreased fluorescence of endogenous fluorophores and the presence of lipid droplets, characteristic of steatosis. Fluorescence lifetime imaging microscopy showed increase in NADPH in steatosis with and without ischemia reperfusion injury and could detect changes in metabolism of fluorescein to fluorescein monoglurcuronide, which was impaired in steatosis with ischemia reperfusion injury. These results concluded that the combination of multiphoton microscopy and fluorescence lifetime imaging is a promising method of assessing early stage liver damage and that it can be used to study changes in drug metabolism in the liver as an indication of liver disease and has the potential to replace the traditional static liver biopsy currently used.

  17. Fluorescence lifetime spectroscopy in multiple-scattering environments: an application to biotechnology

    Science.gov (United States)

    Cerussi, Albert E.; Gratton, Enrico; Fantini, Sergio

    1999-07-01

    Over the past few years, there has been significant research activity devoted to the application of fluorescence spectroscopy to strongly scattering media, where photons propagate diffusely. Much of this activity focused on fluorescence as a source of contrast enhancement in optical tomography. Our efforts have emphasized the quantitative recovery of fluorescence parameters for spectroscopy. Using a frequency-domain diffusion-based model, we have successfully recovered the lifetime, the absolute quantum yield, the fluorophore concentration, and the emission spectrum of the fluorophore, as well as the absorption and the reduced scattering coefficients at the emission wavelength of the medium in different measurements. In this contribution, we present a sensitive monitor of the binding between ethidium bromide and bovine cells in fresh milk. The spectroscopic contrast was the approximately tenfold increase in the ethidium bromide lifetime upon binding to DNA. The measurement clearly demonstrated that we could quantitatively measure the density of cells in the milk, which is an application vital to the tremendous economic burden of bovine subclinical mastitis detection. Furthermore, we may in principle use the spirit of this technique as a quantitative monitor of the binding of fluorescent drugs inside tissues. This is a first step towards lifetime spectroscopy in tissues.

  18. Fluorescence lifetime imaging of endogenous molecules in live mouse cancer models (Conference Presentation)

    Science.gov (United States)

    Svindrych, Zdenek; Wang, Tianxiong; Hu, Song; Periasamy, Ammasi

    2017-02-01

    NADH and FAD are important endogenous fluorescent coenzymes participating in key enzymatic reactions of cellular metabolism. While fluorescence intensities of NADH and FAD have been used to determine the redox state of cells and tissues, this simple approach breaks down in the case of deep-tissue intravital imaging due to depth- and wavelength-dependent light absorption and scattering. To circumvent this limitation, our research focuses on fluorescence lifetimes of two-photon excited NADH and FAD emission to study the metabolic state of live tissues. In our custom-built scanning microscope we combine tunable femtosecond Ti:sapphire laser (operating at 740 nm for NADH excitation and 890 nm for FAD excitation), two GaAsP hybrid detectors for registering individual fluorescence photons and two Becker and Hickl time correlator boards for high precision lifetime measurements. Together with our rigorous FLIM analysis approach (including image segmentation, multi-exponential decay fitting and detailed statistical analysis) we are able to detect metabolic changes in cancer xenografts (human pancreatic cancer MPanc96 cells injected subcutaneously into the ear of an immunodeficient nude mouse), relative to surrounding healthy tissue. Advantageously, with the same instrumentation we can also take high-resolution and high-contrast images of second harmonic signal (SHG) originating from collagen fibers of both the healthy skin and the growing tumor. The combination of metabolic measurements (NADH and FAD lifetime) and morphological information (collagen SHG) allows us to follow the tumor growth in live mouse model and the changes in tumor microenvironment.

  19. In Vivo Fluorescence Lifetime Imaging Monitors Binding of Specific Probes to Cancer Biomarkers

    Science.gov (United States)

    Ardeshirpour, Yasaman; Chernomordik, Victor; Zielinski, Rafal; Capala, Jacek; Griffiths, Gary; Vasalatiy, Olga; Smirnov, Aleksandr V.; Knutson, Jay R.; Lyakhov, Ilya; Achilefu, Samuel; Gandjbakhche, Amir; Hassan, Moinuddin

    2012-01-01

    One of the most important factors in choosing a treatment strategy for cancer is characterization of biomarkers in cancer cells. Particularly, recent advances in Monoclonal Antibodies (MAB) as primary-specific drugs targeting tumor receptors show that their efficacy depends strongly on characterization of tumor biomarkers. Assessment of their status in individual patients would facilitate selection of an optimal treatment strategy, and the continuous monitoring of those biomarkers and their binding process to the therapy would provide a means for early evaluation of the efficacy of therapeutic intervention. In this study we have demonstrated for the first time in live animals that the fluorescence lifetime can be used to detect the binding of targeted optical probes to the extracellular receptors on tumor cells in vivo. The rationale was that fluorescence lifetime of a specific probe is sensitive to local environment and/or affinity to other molecules. We attached Near-InfraRed (NIR) fluorescent probes to Human Epidermal Growth Factor 2 (HER2/neu)-specific Affibody molecules and used our time-resolved optical system to compare the fluorescence lifetime of the optical probes that were bound and unbound to tumor cells in live mice. Our results show that the fluorescence lifetime changes in our model system delineate HER2 receptor bound from the unbound probe in vivo. Thus, this method is useful as a specific marker of the receptor binding process, which can open a new paradigm in the “image and treat” concept, especially for early evaluation of the efficacy of the therapy. PMID:22384092

  20. In vivo fluorescence lifetime imaging monitors binding of specific probes to cancer biomarkers.

    Directory of Open Access Journals (Sweden)

    Yasaman Ardeshirpour

    Full Text Available One of the most important factors in choosing a treatment strategy for cancer is characterization of biomarkers in cancer cells. Particularly, recent advances in Monoclonal Antibodies (MAB as primary-specific drugs targeting tumor receptors show that their efficacy depends strongly on characterization of tumor biomarkers. Assessment of their status in individual patients would facilitate selection of an optimal treatment strategy, and the continuous monitoring of those biomarkers and their binding process to the therapy would provide a means for early evaluation of the efficacy of therapeutic intervention. In this study we have demonstrated for the first time in live animals that the fluorescence lifetime can be used to detect the binding of targeted optical probes to the extracellular receptors on tumor cells in vivo. The rationale was that fluorescence lifetime of a specific probe is sensitive to local environment and/or affinity to other molecules. We attached Near-InfraRed (NIR fluorescent probes to Human Epidermal Growth Factor 2 (HER2/neu-specific Affibody molecules and used our time-resolved optical system to compare the fluorescence lifetime of the optical probes that were bound and unbound to tumor cells in live mice. Our results show that the fluorescence lifetime changes in our model system delineate HER2 receptor bound from the unbound probe in vivo. Thus, this method is useful as a specific marker of the receptor binding process, which can open a new paradigm in the "image and treat" concept, especially for early evaluation of the efficacy of the therapy.

  1. Efficacy of photodynamic therapy against larvae of Aedes aegypti: confocal microscopy and fluorescence-lifetime imaging

    Science.gov (United States)

    de Souza, L. M.; Pratavieira, S.; Inada, N. M.; Kurachi, C.; Corbi, J.; Guimarães, F. E. G.; Bagnato, V. S.

    2014-03-01

    Recently a few demonstration on the use of Photodynamic Reaction as possibility to eliminate larvae that transmit diseases for men has been successfully demonstrated. This promising tool cannot be vastly used due to many problems, including the lake of investigation concerning the mechanisms of larvae killing as well as security concerning the use of photosensitizers in open environment. In this study, we investigate some of the mechanisms in which porphyrin (Photogem) is incorporated on the Aedes aegypti larvae previously to illumination and killing. Larvae at second instar were exposed to the photosensitizer and after 30 minutes imaged by a confocal fluorescence microscope. It was observed the presence of photosensitizer in the gut and at the digestive tract of the larva. Fluorescence-Lifetime Imaging showed greater photosensitizer concentration in the intestinal wall of the samples, which produces a strong decrease of the Photogem fluorescence lifetime. For Photodynamic Therapy exposition to different light doses and concentrations of porphyrin were employed. Three different light sources (LED, Fluorescent lamp, Sun light) also were tested. Sun light and fluorescent lamp shows close to 100% of mortality after 24 hrs. of illumination. These results indicate the potential use of photodynamic effect against the LARVAE of Aedes aegypti.

  2. In vivo imaging of cerebral energy metabolism with two-photon fluorescence lifetime microscopy of NADH.

    Science.gov (United States)

    Yaseen, Mohammad A; Sakadžić, Sava; Wu, Weicheng; Becker, Wolfgang; Kasischke, Karl A; Boas, David A

    2013-02-01

    Minimally invasive, specific measurement of cellular energy metabolism is crucial for understanding cerebral pathophysiology. Here, we present high-resolution, in vivo observations of autofluorescence lifetime as a biomarker of cerebral energy metabolism in exposed rat cortices. We describe a customized two-photon imaging system with time correlated single photon counting detection and specialized software for modeling multiple-component fits of fluorescence decay and monitoring their transient behaviors. In vivo cerebral NADH fluorescence suggests the presence of four distinct components, which respond differently to brief periods of anoxia and likely indicate different enzymatic formulations. Individual components show potential as indicators of specific molecular pathways involved in oxidative metabolism.

  3. Fluorescence lifetime measurement with confocal endomicroscopy for direct analysis of tissue biochemistry in vivo

    Directory of Open Access Journals (Sweden)

    Youngjae Won

    2016-08-01

    Full Text Available Confocal endomicroscopy is a powerful tool for in vivo real-time imaging at cellular resolution inside a living body without tissue resection. Microscopic fluorescence lifetime measurement can provide information about localized biochemical conditions such as pH and the concentrations of oxygen and calcium. We hypothesized that combining these techniques could assist accurate cancer discrimination by providing both biochemical and morphological information. We designed a dual-mode experimental setup for confocal endomicroscopic imaging and fluorescence lifetime measurement and applied it to a mouse xenograft model of activated human pancreatic cancer generated by subcutaneous injection of AsPC-1 tumor cells. Using this method with pH-sensitive sodium fluorescein injection, we demonstrated discrimination between normal and cancerous tissues in a living mouse. With further development, this method may be useful for clinical cancer detection.

  4. Label-free identification of macrophage phenotype by fluorescence lifetime imaging microscopy

    Science.gov (United States)

    Alfonso-García, Alba; Smith, Tim D.; Datta, Rupsa; Luu, Thuy U.; Gratton, Enrico; Potma, Eric O.; Liu, Wendy F.

    2016-04-01

    Macrophages adopt a variety of phenotypes that are a reflection of the many functions they perform as part of the immune system. In particular, metabolism is a phenotypic trait that differs between classically activated, proinflammatory macrophages, and alternatively activated, prohealing macrophages. Inflammatory macrophages have a metabolism based on glycolysis while alternatively activated macrophages generally rely on oxidative phosphorylation to generate chemical energy. We employ this shift in metabolism as an endogenous marker to identify the phenotype of individual macrophages via live-cell fluorescence lifetime imaging microscopy (FLIM). We demonstrate that polarized macrophages can be readily discriminated with the aid of a phasor approach to FLIM, which provides a fast and model-free method for analyzing fluorescence lifetime images.

  5. Single pulse two photon fluorescence lifetime imaging (SP-FLIM) with MHz pixel rate.

    Science.gov (United States)

    Eibl, Matthias; Karpf, Sebastian; Weng, Daniel; Hakert, Hubertus; Pfeiffer, Tom; Kolb, Jan Philip; Huber, Robert

    2017-07-01

    Two-photon-excited fluorescence lifetime imaging microscopy (FLIM) is a chemically specific 3-D sensing modality providing valuable information about the microstructure, composition and function of a sample. However, a more widespread application of this technique is hindered by the need for a sophisticated ultra-short pulse laser source and by speed limitations of current FLIM detection systems. To overcome these limitations, we combined a robust sub-nanosecond fiber laser as the excitation source with high analog bandwidth detection. Due to the long pulse length in our configuration, more fluorescence photons are generated per pulse, which allows us to derive the lifetime with a single excitation pulse only. In this paper, we show high quality FLIM images acquired at a pixel rate of 1 MHz. This approach is a promising candidate for an easy-to-use and benchtop FLIM system to make this technique available to a wider research community.

  6. Fluorescently labelled multiplex lateral flow immunoassay based on cadmium-free quantum dots.

    Science.gov (United States)

    Beloglazova, Natalia V; Sobolev, Aleksander M; Tessier, Mickael D; Hens, Zeger; Goryacheva, Irina Yu; De Saeger, Sarah

    2017-03-01

    A sensitive tool for simultaneous qualitative detection of two mycotoxins based on use of non-cadmium quantum dots (QDs) is presented for the first time. QDs have proven themselves as promising fluorescent labels for biolabeling and chemical analysis. With an increasing global tendency to regulate and limit the use of hazardous elements, indium phosphide (InP) QDs are highlighted as environmentally-friendly alternatives to the highly efficient and well-studied, but potentially toxic Cd- and Pb-based QDs. Here, we developed water-soluble InP QDs-based fluorescent nanostructures. They consisted of core/shell InP/ZnS QDs enrobed in a silica shell that allowed the water solubility (QD@SiO 2 ). Then we applied the QD@SiO 2 as novel, silica shell-encapsulated fluorescent labels in immunoassays for rapid multiplexed screening. Two mycotoxins, zearalenone and deoxynivalenol, were simultaneously detected in maize and wheat, since the two QD@SiO 2 labelled conjugates emit at two different, individually detectable wavelengths. The cutoff values for the simultaneous determination were 50 and 500μgkg -1 for zearalenone and deoxynivalenol, respectively, in both maize and wheat. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was used to confirm the result. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Exciton-polaron quenching in organic thin-film transistors studied by fluorescence lifetime imaging microscopy

    DEFF Research Database (Denmark)

    Jensen, Per Baunegaard With; Leißner, Till; Osadnik, Andreas

    Organic semiconductors show great potential in electronic and optical applications. However, a major challenge is the degradation of the semiconductor materials that cause a reduction in device performance. Here, we present our investigations of Organic Thin Film Transistors (OTFT) based...... that correlates with the local charge density indicates a pronounced exciton quenching by the injected charges. Subsequent FLIM measurements on previously biased OTFT devices show a general decrease in fluorescence lifetime suggesting degradation of the organic semiconductor. This is correlated with the results...

  8. Diagnosis of basal cell carcinoma by two photon excited fluorescence combined with lifetime imaging

    Science.gov (United States)

    Fan, Shunping; Peng, Xiao; Liu, Lixin; Liu, Shaoxiong; Lu, Yuan; Qu, Junle

    2014-02-01

    Basal cell carcinoma (BCC) is the most common type of human skin cancer. The traditional diagnostic procedure of BCC is histological examination with haematoxylin and eosin staining of the tissue biopsy. In order to reduce complexity of the diagnosis procedure, a number of noninvasive optical methods have been applied in skin examination, for example, multiphoton tomography (MPT) and fluorescence lifetime imaging microscopy (FLIM). In this study, we explored two-photon optical tomography of human skin specimens using two-photon excited autofluorescence imaging and FLIM. There are a number of naturally endogenous fluorophores in skin sample, such as keratin, melanin, collagen, elastin, flavin and porphyrin. Confocal microscopy was used to obtain structures of the sample. Properties of epidermic and cancer cells were characterized by fluorescence emission spectra, as well as fluorescence lifetime imaging. Our results show that two-photon autofluorescence lifetime imaging can provide accurate optical biopsies with subcellular resolution and is potentially a quantitative optical diagnostic method in skin cancer diagnosis.

  9. Assessment of post-implantation integration of engineered tissues using fluorescence lifetime spectroscopy

    Science.gov (United States)

    Elahi, Sakib F.; Lee, Seung Y.; Lloyd, William R.; Chen, Leng-Chun; Kuo, Shiuhyang; Zhou, Ying; Kim, Hyungjin M.; Kennedy, Robert; Marcelo, Cynthia; Feinberg, Stephen E.; Mycek, Mary-Ann

    2018-02-01

    Clinical translation of engineered tissue constructs requires noninvasive methods to assess construct health and viability after implantation in patients. However, current practices to monitor post-implantation construct integration are either qualitative (visual assessment) or destructive (tissue histology). As label-free fluorescence lifetime sensing can noninvasively characterize pre-implantation construct viability, we employed a handheld fluorescence lifetime spectroscopy probe to quantitatively and noninvasively assess tissue constructs that were implanted in a murine model. We designed the system to be suitable for intravital measurements: portability, localization with precise maneuverability, and rapid data acquisition. Our model tissue constructs were manufactured from primary human cells to simulate patient variability and were stressed to create a range of health states. Secreted amounts of three cytokines that relate to cellular viability were measured in vitro to assess pre-implantation construct health. In vivo optical sensing assessed tissue integration of constructs at one-week and three-weeks post-implantation. At one-week post-implantation, optical parameters correlated with in vitro pre-implantation secretion levels of all three cytokines (p clinical optical diagnostic tools based on label-free fluorescence lifetime sensing of endogenous tissue fluorophores could noninvasively monitor post-implantation integration of engineered tissues.

  10. Fluorescence intensity and lifetime-based cyanide sensitive probes for physiological safeguard

    International Nuclear Information System (INIS)

    Badugu, Ramachandram; Lakowicz, Joseph R.; Geddes, Chris D.

    2004-01-01

    We characterize six new fluorescent probes that show both intensity and lifetime changes in the presence of free uncomplexed aqueous cyanide, allowing for fluorescence based cyanide sensing up to physiological safeguard levels, i.e. 2 to the anionic R-B - (CN) 3 form, a new cyanide binding mechanism which we have recently reported. The presence of an electron deficient quaternary heterocyclic nitrogen nucleus, and the electron rich cyanide bound form, provides for the intensity changes observed. We have determined the disassociation constants of the probes to be in the range ∼15-84 μM 3 . In addition we have synthesized control compounds which do not contain the boronic acid moiety, allowing for a rationale of the cyanide responses between the probe isomers to be made. The lifetime of the cyanide bound probes are significantly shorter than the free R-B(OH) 2 probe forms, providing for the opportunity of lifetime based cyanide sensing up to physiologically lethal levels. Finally, while fluorescent probes containing the boronic acid moiety have earned a well-deserved reputation for monosaccharide sensing, we show that strong bases such as CN - and OH - preferentially bind as compared to glucose, enabling the potential use of these probes for cyanide safeguard and determination in physiological fluids, especially given that physiologies do not experience any notable changes in pH

  11. Multimodal optical coherence tomography and fluorescence lifetime imaging with interleaved excitation sources for simultaneous endogenous and exogenous fluorescence.

    Science.gov (United States)

    Shrestha, Sebina; Serafino, Michael J; Rico-Jimenez, Jesus; Park, Jesung; Chen, Xi; Zhaorigetu, Siqin; Walton, Brian L; Jo, Javier A; Applegate, Brian E

    2016-09-01

    Multimodal imaging probes a variety of tissue properties in a single image acquisition by merging complimentary imaging technologies. Exploiting synergies amongst the data, algorithms can be developed that lead to better tissue characterization than could be accomplished by the constituent imaging modalities taken alone. The combination of optical coherence tomography (OCT) with fluorescence lifetime imaging microscopy (FLIM) provides access to detailed tissue morphology and local biochemistry. The optical system described here merges 1310 nm swept-source OCT with time-domain FLIM having excitation at 355 and 532 nm. The pulses from 355 and 532 nm lasers have been interleaved to enable simultaneous acquisition of endogenous and exogenous fluorescence signals, respectively. The multimodal imaging system was validated using tissue phantoms. Nonspecific tagging with Alexa Flour 532 in a Watanbe rabbit aorta and active tagging of the LOX-1 receptor in human coronary artery, demonstrate the capacity of the system for simultaneous acquisition of OCT, endogenous FLIM, and exogenous FLIM in tissues.

  12. Differentiation of ocular fundus fluorophores by fluorescence lifetime imaging using multiple excitation and emission wavelengths

    Science.gov (United States)

    Hammer, M.; Schweitzer, D.; Schenke, S.; Becker, W.; Bergmann, A.

    2006-10-01

    Ocular fundus autofluorescence imaging has been introduced into clinical diagnostics recently. It is in use for the observation of the age pigment lipofuscin, a precursor of age - related macular degeneration (AMD). But other fluorophores may be of interest too: The redox pair FAD - FADH II provides information on the retinal energy metabolism, advanced glycation end products (AGE) indicate protein glycation associated with pathologic processes in diabetes as well as AMD, and alterations in the fluorescence of collagen and elastin in connective tissue give us the opportunity to observe fibrosis by fluorescence imaging. This, however, needs techniques able to differentiate particular fluorophores despite limited permissible ocular exposure as well as excitation wavelength (limited by the transmission of the human ocular lens to >400 nm). We present an ophthalmic laser scanning system (SLO), equipped with picosecond laser diodes (FWHM 100 ps, 446 nm or 468 nm respectively) and time correlated single photon counting (TCSPC) in two emission bands (500 - 560 nm and 560 - 700 nm). The decays were fitted by a bi-exponential model. Fluorescence spectra were measured by a fluorescence spectrometer fluorolog. Upon excitation at 446 nm, the fluorescence of AGE, FAD, and lipofuscin were found to peak at 503 nm, 525 nm, and 600 nm respectively. Accordingly, the statistical distribution of the fluorescence decay times was found to depend on the different excitation wavelengths and emission bands used. The use of multiple excitation and emission wavelengths in conjunction with fluorescence lifetime imaging allows us to discriminate between intrinsic fluorophores of the ocular fundus. Taken together with our knowledge on the anatomical structure of the fundus, these findings suggest an association of the short, middle and long fluorescence decay time to the retinal pigment epithelium, the retina, and connective tissue respectively.

  13. Fluorescence lifetime microscopy for monitoring cell adhesion using metal induced energy transfer

    Science.gov (United States)

    Hwang, Wonsang; Seo, JinWon; Song, Jun ho; Kim, DongEun; Won, YoungJae; Choi, In-Hong; Yoo, Kyung-Hwa; Kim, Dug Young

    2018-02-01

    A precise control and a reliable monitoring tool for the adhesion properties of a cell are very important in atherosclerosis studies. If endothelial cells in contact with the intracellular membrane are not attached securely, low-density lipoprotein (LDL) particles can enter into the inner membrane. It is therefore necessary to measure conditions under which endothelial cell detachment occurs. When a cell is attached to a metal thin film, the lifetime of a fluorescence probe attached to the membrane of the cell is reduced by the metal-induced energy transfer (MIET). Fluorescence lifetime imaging microscopy (FLIM) is used to monitor the attachment condition of a cell to a metal surface using FRET. However, this requires high numerical aperture (NA) objective lens because axial confocal resolution must be smaller than the cell thickness. This requirement limits the field of view of the measurement specimen. In this study we provides a new method which can measure adhesion properties of endothelial cells even with a low NA objective lens by resolving two lifetime components in FLIM.

  14. Xanthophyll cycle-dependent quenching of photosystem II chlorophyll a fluorescence: Formation of a quenching complex with a short fluorescence lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, A.M.; Hazlett, T.L.; Govindjee [Univ. of Illinois, Urbana, IL (United States)

    1995-03-14

    Excess light triggers protective nonradiative dissipation of excitation energy in photosystem II through the formation of a trans-thylakoid pH gradient that in turn stimulates formation of zeaxanthin and antheraxanthin. These xanthophylls when combined with protonation of antenna pigment-protein complexes may increase nonradiative dissipation and, thus, quench chlorophyll a fluorescence. Here we measured, in parallel, the chlorophyll a fluorescence lifetime and intensity to understand the mechanism of this process. Increasing the xanthophyll concentration in the presence of a pH gradient (quenched conditions) decreases the fractional intensity of a fluorescence lifetime component centered at {approx}2 ns and increases a component at {approx}0.4 ns. Uncoupling the pH gradient (unquenched conditions) eliminates the 0.4-ns component. Changes in the xanthophyll concentration do not significantly affect the fluorescence lifetimes in either the quenched or unquenched sample conditions. However, there are differences in fluorescence lifetimes between the quenched and unquenched states that are due to pH-related, but nonxanthophyll-related, processes. Quenching of the maximal fluorescence intensity correlates with both the xanthophyll concentration and the fractional intensity of the 0.4-ns component. The unchanged fluorescence lifetimes and the proportional quenching of the maximal and dark-level fluorescence intensities indicate that the xanthophyllact on antenna, not reaction center processes. Further, the fluorescence quenching is interpreted as the combined effect of the pH gradient and xanthophyll concentration, resulting in the formation of a quenching complex with a short ({approx}0.4 ns) fluorescence lifetime. 33 refs., 6 figs., 2 tabs.

  15. Fluorescence lifetime microscopy of NADH distinguishes alterations in cerebral metabolism in vivo.

    Science.gov (United States)

    Yaseen, Mohammad A; Sutin, Jason; Wu, Weicheng; Fu, Buyin; Uhlirova, Hana; Devor, Anna; Boas, David A; Sakadžić, Sava

    2017-05-01

    Evaluating cerebral energy metabolism at microscopic resolution is important for comprehensively understanding healthy brain function and its pathological alterations. Here, we resolve specific alterations in cerebral metabolism in vivo in Sprague Dawley rats utilizing minimally-invasive 2-photon fluorescence lifetime imaging (2P-FLIM) measurements of reduced nicotinamide adenine dinucleotide (NADH) fluorescence. Time-resolved fluorescence lifetime measurements enable distinction of different components contributing to NADH autofluorescence. Ostensibly, these components indicate different enzyme-bound formulations of NADH. We observed distinct variations in the relative proportions of these components before and after pharmacological-induced impairments to several reactions involved in glycolytic and oxidative metabolism. Classification models were developed with the experimental data and used to predict the metabolic impairments induced during separate experiments involving bicuculline-induced seizures. The models consistently predicted that prolonged focal seizure activity results in impaired activity in the electron transport chain, likely the consequence of inadequate oxygen supply. 2P-FLIM observations of cerebral NADH will help advance our understanding of cerebral energetics at a microscopic scale. Such knowledge will aid in our evaluation of healthy and diseased cerebral physiology and guide diagnostic and therapeutic strategies that target cerebral energetics.

  16. Carrier Lifetimes in Fluorescent 6H-SiC for LEDs Application

    DEFF Research Database (Denmark)

    Grivickas, Vytautas; Gulbinas, Karolis; Jokubavičius, Valdas

    Recently it was shown a new approach based on all-semiconductor material technology which is composed with a near ultra-violet GaN LED excitation source and fluorescent silicon carbide (f-6H-SiC) substrate which generates a visible broad spectral light by N and B dopants and an efficient donor...... to acceptor pair recombination [1,2]. This combination can achieve higher electric-light conversion efficiency and high color rendering in comparison with today’s used blue GaN LED based and phosphors. The devices are promising candidates for general lightning applications and may obtain stability...... under co-linear and orthogonal probe geometry was used to measure carrier lifetimes in the layers under variable injection conditions. Same results are shown in Fig. 1 exaggerating the fact that longer electron lifetime responsible for higher emission and n-type doping should prevail the p-type doping...

  17. Monitoring macular pigment changes in macular holes using fluorescence lifetime imaging ophthalmoscopy.

    Science.gov (United States)

    Sauer, Lydia; Peters, Sven; Schmidt, Johanna; Schweitzer, Dietrich; Klemm, Matthias; Ramm, Lisa; Augsten, Regine; Hammer, Martin

    2017-08-01

    To investigate the impact of macular pigment (MP) on fundus autofluorescence (FAF) lifetimes in vivo by characterizing full-thickness idiopathic macular holes (MH) and macular pseudo-holes (MPH). A total of 37 patients with MH and 52 with MPH were included. Using the fluorescence lifetime imaging ophthalmoscope (FLIO), based on a Heidelberg Engineering Spectralis system, a 30° retinal field was investigated. FAF decays were detected in a short (498-560 nm; ch1) and long (560-720 nm; ch2) wavelength channel. τ m , the mean fluorescence lifetime, was calculated from a three-exponential approximation of the FAF decays. Macular coherence tomography scans were recorded, and macular pigment's optical density (MPOD) was measured (one-wavelength reflectometry). Two MH subgroups were analysed according to the presence or absence of an operculum above the MH. A total of 17 healthy fellow eyes were included. A longitudinal FAF decay examination was conducted in nine patients, which were followed up after surgery and showed a closed MH. In MH without opercula, significant τ m differences (p hole area (MHa) and surrounding areas (MHb) (ch1: MHa 238 ± 64 ps, MHb 181 ± 78 ps; ch2: MHa 275 ± 49 ps, MHb 223 ± 48 ps), as well as between MHa and healthy eyes or closed MH. Shorter τ m , adjacent to the hole, can be assigned to areas with equivalently higher MPOD. Opercula containing MP also show short τ m . In MPH, the intactness of the Hele fibre layer is associated with shortest τ m . Shortest τ m originates from MP-containing retinal layers, especially from the Henle fibre layer. Fluorescence lifetime imaging ophthalmoscope (FLIO) provides information on the MP distribution, the pathogenesis and topology of MH. Macular pigment (MP) fluorescence may provide a biomarker for monitoring pathological changes in retinal diseases. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  18. Fluorescence lifetime imaging of microviscosity changes during ER autophagy in live cells

    Science.gov (United States)

    He, Ying; Samanta, Soham; Gong, Wanjun; Liu, Wufan; Pan, Wenhui; Yang, Zhigang; Qu, Junle

    2018-02-01

    Unfolded or misfolded protein accumulation inside Endoplasmic Reticulum (ER) will cause ER stress and subsequently will activate cellular autophagy to release ER stress, which would ultimately result in microviscosity changes. However, even though, it is highly significant to gain a quantitative assessment of microviscosity changes during ER autophagy to study ER stress and autophagy behaviors related diseases, it has rarely been reported yet. In this work, we have reported a BODIPY based fluorescent molecular rotor that can covalently bind with vicinal dithiols containing nascent proteins in ER and hence can result in ER stress through the inhibition of the folding of nascent proteins. The change in local viscosity, caused by the release of the stress in cells through autophagy, was quantified by the probe using fluorescence lifetime imaging. This work basically demonstrates the possibility of introducing synthetic chemical probe as a promising tool to diagnose ER-viscosity-related diseases.

  19. Fluorescence lifetime components reveal kinetic intermediate states upon equilibrium denaturation of carbonic anhydrase II.

    Science.gov (United States)

    Nemtseva, Elena V; Lashchuk, Olesya O; Gerasimova, Marina A; Melnik, Tatiana N; Nagibina, Galina S; Melnik, Bogdan S

    2017-12-21

    In most cases, intermediate states of multistage folding proteins are not 'visible' under equilibrium conditions but are revealed in kinetic experiments. Time-resolved fluorescence spectroscopy was used in equilibrium denaturation studies. The technique allows for detecting changes in the conformation and environment of tryptophan residues in different structural elements of carbonic anhydrase II which in its turn has made it possible to study the intermediate states of carbonic anhydrase II under equilibrium conditions. The results of equilibrium and kinetic experiments using wild-type bovine carbonic anhydrase II and its mutant form with the substitution of leucine for alanine at position 139 (L139A) were compared. The obtained lifetime components of intrinsic tryptophan fluorescence allowed for revealing that, the same as in kinetic experiments, under equilibrium conditions the unfolding of carbonic anhydrase II ensues through formation of intermediate states.

  20. CVD grown 2D MoS{sub 2} layers: A photoluminescence and fluorescence lifetime imaging study

    Energy Technology Data Exchange (ETDEWEB)

    Oezden, Ayberk; Madenoglu, Buesra [Department of Materials Science and Engineering, Faculty of Engineering, Anadolu University, Eskisehir (Turkey); Sar, Hueseyin; Ay, Feridun; Perkgoez, Nihan Kosku [Department of Electrical and Electronics Engineering, Faculty of Engineering, Anadolu University, Eskisehir (Turkey); Yeltik, Aydan [Department of Physics, UNAM Institute of Materials Science and Nanotechnology, Bilkent University, Ankara (Turkey); Sevik, Cem [Department of Mechanical Engineering, Faculty of Engineering, Anadolu University, Eskisehir (Turkey)

    2016-11-15

    In this letter, we report on the fluorescence lifetime imaging and accompanying photoluminescence properties of a chemical vapour deposition (CVD) grown atomically thin material, MoS{sub 2}. μ-Raman, μ-photoluminescence (PL) and fluorescence lifetime imaging microscopy (FLIM) are utilized to probe the fluorescence lifetime and photoluminescence properties of individual flakes of MoS{sub 2} films. Usage of these three techniques allows identification of the grown layers, grain boundaries, structural defects and their relative effects on the PL and fluorescence lifetime spectra. Our investigation on individual monolayer flakes reveals a clear increase of the fluorescence lifetime from 0.3 ns to 0.45 ns at the edges with respect to interior region. On the other hand, investigation of the film layer reveals quenching of PL intensity and lifetime at the grain boundaries. These results could be important for applications where the activity of edges is important such as in photocatalytic water splitting. Finally, it has been demonstrated that PL mapping and FLIM are viable techniques for the investigation of the grain-boundaries. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Measurement of pH micro-heterogeneity in natural cheese matrices by fluorescence lifetime imaging

    Directory of Open Access Journals (Sweden)

    Zuzana eBurdikova

    2015-03-01

    Full Text Available Cheese, a product of microbial fermentation may be defined as a protein matrix entrapping fat, moisture, minerals and solutes as well as dispersed bacterial colonies. The growth and physiology of bacterial cells in these colonies may be influenced by the microenvironment around the colony, or alternatively the cells within the colony may modify the microenvironment (e.g. pH, redox potential due to their metabolic activity. While cheese pH may be measured at macro level there remains a significant knowledge gap relating to the degree of micro-heterogeneity of pH within the cheese matrix and its relationship with microbial, enzymatic and physiochemical parameters and ultimately with cheese quality, consistency and ripening patterns. The pH of cheese samples was monitored both at macroscopic scale and at microscopic scale, using a non-destructive microscopic technique employing C-SNARF-4 and Oregon Green 488 fluorescent probes. The objectives of this work were to evaluate the suitability of these dyes for microscale pH measurements in natural cheese matrices and to enhance the sensitivity and extend the useful pH range of these probes using fluorescence lifetime imaging (FLIM. In particular, fluorescence lifetime of Oregon Green 488 proved to be sensitive probe to map pH micro heterogeneity within cheese matrices. Good agreement was observed between macroscopic scale pH measurement by FLIM and by traditional pH methods, but in addition considerable localized microheterogeneity in pH was evident within the curd matrix with pH range between 4.0 and 5.5. This technique provides significant potential to further investigate the relationship between cheese matrix physico-chemistry and bacterial metabolism during cheese manufacture and ripening.

  2. Measurement of pH micro-heterogeneity in natural cheese matrices by fluorescence lifetime imaging.

    Science.gov (United States)

    Burdikova, Zuzana; Svindrych, Zdenek; Pala, Jan; Hickey, Cian D; Wilkinson, Martin G; Panek, Jiri; Auty, Mark A E; Periasamy, Ammasi; Sheehan, Jeremiah J

    2015-01-01

    Cheese, a product of microbial fermentation may be defined as a protein matrix entrapping fat, moisture, minerals and solutes as well as dispersed bacterial colonies. The growth and physiology of bacterial cells in these colonies may be influenced by the microenvironment around the colony, or alternatively the cells within the colony may modify the microenvironment (e.g., pH, redox potential) due to their metabolic activity. While cheese pH may be measured at macro level there remains a significant knowledge gap relating to the degree of micro-heterogeneity of pH within the cheese matrix and its relationship with microbial, enzymatic and physiochemical parameters and ultimately with cheese quality, consistency and ripening patterns. The pH of cheese samples was monitored both at macroscopic scale and at microscopic scale, using a non-destructive microscopic technique employing C-SNARF-4 and Oregon Green 488 fluorescent probes. The objectives of this work were to evaluate the suitability of these dyes for microscale pH measurements in natural cheese matrices and to enhance the sensitivity and extend the useful pH range of these probes using fluorescence lifetime imaging (FLIM). In particular, fluorescence lifetime of Oregon Green 488 proved to be sensitive probe to map pH micro heterogeneity within cheese matrices. Good agreement was observed between macroscopic scale pH measurement by FLIM and by traditional pH methods, but in addition considerable localized microheterogeneity in pH was evident within the curd matrix with pH range between 4.0 and 5.5. This technique provides significant potential to further investigate the relationship between cheese matrix physico-chemistry and bacterial metabolism during cheese manufacture and ripening.

  3. Multiplex competitive microbead-based flow cytometric immunoassay using quantum dot fluorescent labels

    International Nuclear Information System (INIS)

    Yu, Hye-Weon; Kim, In S.; Niessner, Reinhard; Knopp, Dietmar

    2012-01-01

    Highlights: ► First time, duplex competitive bead-based flow cytometric immunoassay was developed using ODs. ► Antibody-coated QD detection probes and antigen-immobilized microspheres were synthesized. ► The two model target analytes were low molecular weight compounds of microbial and chemical origin. ► The determination of different water types was possible after simple filtration of samples. - Abstract: In answer to the ever-increasing need to perform the simultaneous analysis of environmental hazards, microcarrier-based multiplex technologies show great promise. Further integration with biofunctionalized quantum dots (QDs) creates new opportunities to extend the capabilities of multicolor flow cytometry with their unique fluorescence properties. Here, we have developed a competitive microbead-based flow cytometric immunoassay using QDs fluorescent labels for simultaneous detection of two analytes, bringing the benefits of sensitive, rapid and easy-of-manipulation analytical tool for environmental contaminants. As model target compounds, the cyanobacterial toxin microcystin-LR and the polycyclic aromatic hydrocarbon compound benzo[a]pyrene were selected. The assay was carried out in two steps: the competitive immunological reaction of multiple targets using their exclusive sensing elements of QD/antibody detection probes and antigen-coated microsphere, and the subsequent flow cytometric analysis. The fluorescence of the QD-encoded microsphere was thus found to be inversely proportional to target analyte concentration. Under optimized conditions, the proposed assay performed well within 30 min for the identification and quantitative analysis of the two environmental contaminants. For microcystin-LR and benzo[a]pyrene, dose–response curves with IC 50 values of 5 μg L −1 and 1.1 μg L −1 and dynamic ranges of 0.52–30 μg L −1 and 0.13–10 μg L −1 were obtained, respectively. Recovery was 92.6–106.5% for 5 types of water samples like bottled

  4. Generation of a new spectral format, the lifetime synchronous spectrum (LiSS), using phase-resolved fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Shaver, J.M.; McGown, L.B.

    1994-01-01

    A new fluorescence spectral format is introduced in which fluorescence lifetime is shown as a function of synchronously scanned wavelength to generate a Lifetime Synchronous Spectrum (LiSS). Lifetimes are determined in the frequency domain with the use of Phase-Resolved Fluorescence Spectroscopy (PRFS) to obtain the phase of the fluorescence signal. Theory and construction of the LiSS are presented and experimental results are shown for solutions of single components and simple binary and ternary mixtures. These results show how the lifetime information in the LiSS augments the steady-state intensity information of a standard synchronous spectrum, providing unique information for identification of components and resolution of overlapping spectral peaks. The LiSS technique takes advantage of noise reduction inherent in the extraction of lifetime from PRFS in addition to standard spectral smoothing techniques. The precision of phase determination through PRFS is found to be comparable to that of direct phase measurements at normal fluorescence intensities and superior for low-intensity signals

  5. GPU accelerated real-time confocal fluorescence lifetime imaging microscopy (FLIM) based on the analog mean-delay (AMD) method

    Science.gov (United States)

    Kim, Byungyeon; Park, Byungjun; Lee, Seungrag; Won, Youngjae

    2016-01-01

    We demonstrated GPU accelerated real-time confocal fluorescence lifetime imaging microscopy (FLIM) based on the analog mean-delay (AMD) method. Our algorithm was verified for various fluorescence lifetimes and photon numbers. The GPU processing time was faster than the physical scanning time for images up to 800 × 800, and more than 149 times faster than a single core CPU. The frame rate of our system was demonstrated to be 13 fps for a 200 × 200 pixel image when observing maize vascular tissue. This system can be utilized for observing dynamic biological reactions, medical diagnosis, and real-time industrial inspection. PMID:28018724

  6. Direct Vpr-Vpr Interaction in Cells monitored by two Photon Fluorescence Correlation Spectroscopy and Fluorescence Lifetime Imaging

    Directory of Open Access Journals (Sweden)

    Mély Yves

    2008-09-01

    Full Text Available Abstract Background The human immunodeficiency virus type 1 (HIV-1 encodes several regulatory proteins, notably Vpr which influences the survival of the infected cells by causing a G2/M arrest and apoptosis. Such an important role of Vpr in HIV-1 disease progression has fuelled a large number of studies, from its 3D structure to the characterization of specific cellular partners. However, no direct imaging and quantification of Vpr-Vpr interaction in living cells has yet been reported. To address this issue, eGFP- and mCherry proteins were tagged by Vpr, expressed in HeLa cells and their interaction was studied by two photon fluorescence lifetime imaging microscopy and fluorescence correlation spectroscopy. Results Results show that Vpr forms homo-oligomers at or close to the nuclear envelope. Moreover, Vpr dimers and trimers were found in the cytoplasm and in the nucleus. Point mutations in the three α helices of Vpr drastically impaired Vpr oligomerization and localization at the nuclear envelope while point mutations outside the helical regions had no effect. Theoretical structures of Vpr mutants reveal that mutations within the α-helices could perturb the leucine zipper like motifs. The ΔQ44 mutation has the most drastic effect since it likely disrupts the second helix. Finally, all Vpr point mutants caused cell apoptosis suggesting that Vpr-mediated apoptosis functions independently from Vpr oligomerization. Conclusion We report that Vpr oligomerization in HeLa cells relies on the hydrophobic core formed by the three α helices. This oligomerization is required for Vpr localization at the nuclear envelope but not for Vpr-mediated apoptosis.

  7. Second-harmonic generation and fluorescence lifetime imaging microscopy through a rodent mammary imaging window

    Science.gov (United States)

    Young, Pamela A.; Nazir, Muhammad; Szulczewski, Michael J.; Keely, Patricia J.; Eliceiri, Kevin W.

    2012-03-01

    Tumor-Associated Collagen Signatures (TACS) have been identified that manifest in specific ways during breast tumor progression and that correspond to patient outcome. There are also compelling metabolic changes associated with carcinoma invasion and progression. We have characterized the difference in the autofluorescent properties of metabolic co-factors, NADH and FAD, between normal and carcinoma breast cell lines. Also, we have shown in vitro that increased collagen density alters metabolic genes which are associated with glycolysis and leads to a more invasive phenotype. Establishing the relationship between collagen density, cellular metabolism, and metastasis in physiologically relevant cancer models is crucial for developing cancer therapies. To study cellular metabolism with respect to collagen density in vivo, we use multiphoton fluorescence excitation microscopy (MPM) in conjunction with a rodent mammary imaging window implanted in defined mouse cancer models. These models are ideal for the study of collagen changes in vivo, allowing determination of corresponding metabolic changes in breast cancer invasion and progression. To measure cellular metabolism, we collect fluorescence lifetime (FLIM) signatures of NADH and FAD, which are known to change based on the microenvironment of the cells. Additionally, MPM systems are capable of collecting second harmonic generation (SHG) signals which are a nonlinear optical property of collagen. Therefore, MPM, SHG, and FLIM are powerful tools with great potential for characterizing key features of breast carcinoma in vivo. Below we present the current efforts of our collaborative group to develop intravital approaches based on these imaging techniques to look at defined mouse mammary models.

  8. In vivo multiphoton and fluorescence lifetime imaging microscopy of the healthy and cholestatic liver

    Science.gov (United States)

    Kuznetsova, Daria S.; Dudenkova, Varvara V.; Rodimova, Svetlana A.; Bobrov, Nikolai V.; Zagainov, Vladimir E.; Zagaynova, Elena V.

    2018-02-01

    A cholestatic liver disease presents one of the most common liver diseases and can potentially progress to cirrhosis or even cholangiocarcinoma. Conventional techniques are insufficient to precisely describe the complex internal structure, heterogeneous cell populations and the dynamics of biological processes of the liver. Currently, the methods of multiphoton and fluorescence lifetime imaging microscopy are actively introducing to biomedical research. Those methods are extremely informative and non-destructive that allows studying of a large number of processes occurring inside cells and tissues, analyzing molecular cellular composition, as well as evaluating the state of connective tissue fibers due to their ability to generate a second optical harmonic. Multiphoton and FLIM microscopy do not need additional staining of samples or the incorporation of any markers to study metabolism, lipid composition, microstructure analysis, evaluation of fibrous structures. These parameters have pronounced changes in hepatocytes of liver with common pathological diseases. Thereby in this study we investigated metabolic changes in the healthy and cholestatic liver based on the fluorescence of the metabolic co-factors NAD(P)H and FAD by multiphoton microscopy combined with FLIM. To estimate the contribution of energy metabolism and lipogenesis in the observed changes of the metabolic profile, a separate analysis of NADH and NADPH was presented. The data can be used to develop new criteria for the identification of hepatic pathology at the level of hepatocyte changes directed to personalized medicine in the future.

  9. Two-photon excitation with pico-second fluorescence lifetime imaging to detect nuclear association of flavanols

    Energy Technology Data Exchange (ETDEWEB)

    Mueller-Harvey, Irene, E-mail: i.mueller-harvey@reading.ac.uk [Chemistry and Biochemistry Laboratory, Food Production and Quality Research Division, School of Agriculture, Policy and Development, University of Reading, P O Box 236, Reading RG6 6AT (United Kingdom); Feucht, Walter, E-mail: walter.feucht@gmail.com [Department of Plant Sciences, Technical University of Munich (TUM), Wissenschaftszentrum Weihenstephan (WZW), D-85354 Freising (Germany); Polster, Juergen, E-mail: j.polster@wzw.tum.de [Department of Physical Biochemistry, Technical University of Munich (TUM), Wissenschaftszentrum Weihenstephan (WZW), D-85354 Freising (Germany); Trnkova, Lucie, E-mail: lucie.trnkova@uhk.cz [University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 50003 Hradec Kralove (Czech Republic); Burgos, Pierre, E-mail: pierre.burgos@stfc.ac.uk [Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell-Oxford, Didcot, Oxfordshire, OX11 0QX (United Kingdom); Parker, Anthony W., E-mail: tony.parker@stfc.ac.uk [Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell-Oxford, Didcot, Oxfordshire, OX11 0QX (United Kingdom); Botchway, Stanley W., E-mail: stan.botchway@stfc.ac.uk [Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell-Oxford, Didcot, Oxfordshire, OX11 0QX (United Kingdom)

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer This fluorescence lifetime imaging microscopy (FLIM) technique for flavanols overcomes autofluorescence interference in cells. Black-Right-Pointing-Pointer Plant flavanols differed in their lifetimes. Black-Right-Pointing-Pointer Dissolved and bound flavanols revealed contrasting lifetime changes. Black-Right-Pointing-Pointer This technique will allow studying of flavanol trafficking in live cells. - Abstract: Two-photon excitation enabled for the first time the observation and measurement of excited state fluorescence lifetimes from three flavanols in solution, which were {approx}1.0 ns for catechin and epicatechin, but <45 ps for epigallocatechin gallate (EGCG). The shorter lifetime for EGCG is in line with a lower fluorescence quantum yield of 0.003 compared to catechin (0.015) and epicatechin (0.018). In vivo experiments with onion cells demonstrated that tryptophan and quercetin, which tend to be major contributors of background fluorescence in plant cells, have sufficiently low cross sections for two-photon excitation at 630 nm and therefore do not interfere with detection of externally added or endogenous flavanols in Allium cepa or Taxus baccata cells. Applying two-photon excitation to flavanols enabled 3-D fluorescence lifetime imaging microscopy and showed that added EGCG penetrated the whole nucleus of onion cells. Interestingly, EGCG and catechin showed different lifetime behaviour when bound to the nucleus: EGCG lifetime increased from <45 to 200 ps, whilst catechin lifetime decreased from 1.0 ns to 500 ps. Semi-quantitative measurements revealed that the relative ratios of EGCG concentrations in nucleoli associated vesicles: nucleus: cytoplasm were ca. 100:10:1. Solution experiments with catechin, epicatechin and histone proteins provided preliminary evidence, via the appearance of a second lifetime ({tau}{sub 2} = 1.9-3.1 ns), that both flavanols may be interacting with histone proteins. We conclude that there

  10. Long-term fluorescence lifetime imaging of a genetically encoded sensor for caspase-3 activity in mouse tumor xenografts

    Science.gov (United States)

    Zherdeva, Victoria; Kazachkina, Natalia I.; Shcheslavskiy, Vladislav; Savitsky, Alexander P.

    2018-03-01

    Caspase-3 is known for its role in apoptosis and programmed cell death regulation. We detected caspase-3 activation in vivo in tumor xenografts via shift of mean fluorescence lifetimes of a caspase-3 sensor. We used the genetically encoded sensor TR23K based on the red fluorescent protein TagRFP and chromoprotein KFP linked by 23 amino acid residues (TagRFP-23-KFP) containing a specific caspase cleavage DEVD motif to monitor the activity of caspase-3 in tumor xenografts by means of fluorescence lifetime imaging-Forster resonance energy transfer. Apoptosis was induced by injection of paclitaxel for A549 lung adenocarcinoma and etoposide and cisplatin for HEp-2 pharynx adenocarcinoma. We observed a shift in lifetime distribution from 1.6 to 1.9 ns to 2.1 to 2.4 ns, which indicated the activation of caspase-3. Even within the same tumor, the lifetime varied presumably due to the tumor heterogeneity and the different depth of tumor invasion. Thus, processing time-resolved fluorescence images allows detection of both the cleaved and noncleaved states of the TR23K sensor in real-time mode during the course of several weeks noninvasively. This approach can be used in drug screening, facilitating the development of new anticancer agents as well as improvement of chemotherapy efficiency and its adaptation for personal treatment.

  11. Using non-empirically tuned range-separated functionals with simulated emission bands to model fluorescence lifetimes.

    Science.gov (United States)

    Wong, Z C; Fan, W Y; Chwee, T S; Sullivan, Michael B

    2017-08-09

    Fluorescence lifetimes were evaluated using TD-DFT under different approximations for the emitting molecule and various exchange-correlation functionals, such as B3LYP, BMK, CAM-B3LYP, LC-BLYP, M06, M06-2X, M11, PBE0, ωB97, ωB97X, LC-BLYP*, and ωB97X* where the range-separation parameters in the last two functionals were tuned in a non-empirical fashion. Changes in the optimised molecular geometries between the ground and electronically excited states were found to affect the quality of the calculated lifetimes significantly, while the inclusion of vibronic features led to further improvements over the assumption of a vertical electronic transition. The LC-BLYP* functional was found to return the most accurate fluorescence lifetimes with unsigned errors that are mostly within 1.5 ns of experimental values.

  12. FLIMX: A Software Package to Determine and Analyze the Fluorescence Lifetime in Time-Resolved Fluorescence Data from the Human Eye.

    Directory of Open Access Journals (Sweden)

    Matthias Klemm

    Full Text Available Fluorescence lifetime imaging ophthalmoscopy (FLIO is a new technique for measuring the in vivo autofluorescence intensity decays generated by endogenous fluorophores in the ocular fundus. Here, we present a software package called FLIM eXplorer (FLIMX for analyzing FLIO data. Specifically, we introduce a new adaptive binning approach as an optimal tradeoff between the spatial resolution and the number of photons required per pixel. We also expand existing decay models (multi-exponential, stretched exponential, spectral global analysis, incomplete decay to account for the layered structure of the eye and present a method to correct for the influence of the crystalline lens fluorescence on the retina fluorescence. Subsequently, the Holm-Bonferroni method is applied to FLIO measurements to allow for group comparisons between patients and controls on the basis of fluorescence lifetime parameters. The performance of the new approaches was evaluated in five experiments. Specifically, we evaluated static and adaptive binning in a diabetes mellitus patient, we compared the different decay models in a healthy volunteer and performed a group comparison between diabetes patients and controls. An overview of the visualization capabilities and a comparison of static and adaptive binning is shown for a patient with macular hole. FLIMX's applicability to fluorescence lifetime imaging microscopy is shown in the ganglion cell layer of a porcine retina sample, obtained by a laser scanning microscope using two-photon excitation.

  13. FLIMX: A Software Package to Determine and Analyze the Fluorescence Lifetime in Time-Resolved Fluorescence Data from the Human Eye.

    Science.gov (United States)

    Klemm, Matthias; Schweitzer, Dietrich; Peters, Sven; Sauer, Lydia; Hammer, Martin; Haueisen, Jens

    2015-01-01

    Fluorescence lifetime imaging ophthalmoscopy (FLIO) is a new technique for measuring the in vivo autofluorescence intensity decays generated by endogenous fluorophores in the ocular fundus. Here, we present a software package called FLIM eXplorer (FLIMX) for analyzing FLIO data. Specifically, we introduce a new adaptive binning approach as an optimal tradeoff between the spatial resolution and the number of photons required per pixel. We also expand existing decay models (multi-exponential, stretched exponential, spectral global analysis, incomplete decay) to account for the layered structure of the eye and present a method to correct for the influence of the crystalline lens fluorescence on the retina fluorescence. Subsequently, the Holm-Bonferroni method is applied to FLIO measurements to allow for group comparisons between patients and controls on the basis of fluorescence lifetime parameters. The performance of the new approaches was evaluated in five experiments. Specifically, we evaluated static and adaptive binning in a diabetes mellitus patient, we compared the different decay models in a healthy volunteer and performed a group comparison between diabetes patients and controls. An overview of the visualization capabilities and a comparison of static and adaptive binning is shown for a patient with macular hole. FLIMX's applicability to fluorescence lifetime imaging microscopy is shown in the ganglion cell layer of a porcine retina sample, obtained by a laser scanning microscope using two-photon excitation.

  14. Actin cytoskeleton-dependent Rab GTPase-regulated angiotensin type I receptor lysosomal degradation studied by fluorescence lifetime imaging microscopy

    Science.gov (United States)

    Li, Hewang; Yu, Peiying; Sun, Yuansheng; Felder, Robin A.; Periasamy, Ammasi; Jose, Pedro A.

    2010-09-01

    The dynamic regulation of the cellular trafficking of human angiotensin (Ang) type 1 receptor (AT1R) is not well understood. Therefore, we investigated the cellular trafficking of AT1R-enhanced green fluorescent protein (EGFP) (AT1R-EGFP) heterologously expressed in HEK293 cells by determining the change in donor lifetime (AT1R-EGFP) in the presence or absence of acceptor(s) using fluorescence lifetime imaging-fluorescence resonance energy transfer (FRET) microscopy. The average lifetime of AT1R-EGFP in our donor-alone samples was ~2.33 ns. The basal state lifetime was shortened slightly in the presence of Rab5 (2.01+/-0.10 ns) or Rab7 (2.11+/-0.11 ns) labeled with Alexa 555, as the acceptor fluorophore. A 5-min Ang II treatment markedly shortened the lifetime of AT1R-EGFP in the presence of Rab5-Alexa 555 (1.78+/-0.31 ns) but was affected minimally in the presence of Rab7-Alexa 555 (2.09+/-0.37 ns). A 30-min Ang II treatment further decreased the AT1R-EGFP lifetime in the presence of both Rab5- and Rab7-Alexa 555. Latrunculin A but not nocodazole pretreatment blocked the ability of Ang II to shorten the AT1R-EGFP lifetime. The occurrence of FRET between AT1R-EGFP (donor) and LAMP1-Alexa 555 (acceptor) with Ang II stimulation was impaired by photobleaching the acceptor. These studies demonstrate that Ang II-induced AT1R lysosomal degradation through its association with LAMP1 is regulated by Rab5/7 via mechanisms that are dependent on intact actin cytoskeletons.

  15. Study on the effect of deposition rate and concentration of Eu on the fluorescent lifetime of CsI: Tl thin film

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yijun; Guo, Lina [University of Electronic Science and Technology of China, State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, Chengdu 610054 (China); Liu, Shuang, E-mail: shuangliu@uestc.edu.cn [University of Electronic Science and Technology of China, State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, Chengdu 610054 (China); Wang, Qianfeng; Zhang, Shangjian; Liu, Yong [University of Electronic Science and Technology of China, State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, Chengdu 610054 (China); Zhong, Zhiyong [University of Electronic Science and Technology of China, State Key Laboratory of Electronic Thin Films and Integrated Devices, Chengdu 610054 (China)

    2017-06-21

    Although there are many new scintillators being developed recently, CsI: Tl is still very efficient among them. The fluorescent lifetime is a very important parameter of CsI: Tl thin film and two series of experiments have been conducted to learn about it. Our experiments, however, have demonstrated that the deposition rate and the codoping of Eu{sup 2+} will significantly influence its fluorescent lifetime. In order to increase the efficiency of the imaging system, we intend to obtain a higher fluorescent lifetime for CsI: Tl thin film by controlling these two conditions. - Highlights: • We used vacuum vapor deposition method to grow the high-quality thin films. • The relationship between the deposition rate and the fluorescent lifetime of CsI: Tl thin film was tested. • Concentration of Eu on fluorescent lifetime of the CsI: Tl thin film was studied.

  16. Automated detection of breast cancer in resected specimens with fluorescence lifetime imaging

    Science.gov (United States)

    Phipps, Jennifer E.; Gorpas, Dimitris; Unger, Jakob; Darrow, Morgan; Bold, Richard J.; Marcu, Laura

    2018-01-01

    Re-excision rates for breast cancer lumpectomy procedures are currently nearly 25% due to surgeons relying on inaccurate or incomplete methods of evaluating specimen margins. The objective of this study was to determine if cancer could be automatically detected in breast specimens from mastectomy and lumpectomy procedures by a classification algorithm that incorporated parameters derived from fluorescence lifetime imaging (FLIm). This study generated a database of co-registered histologic sections and FLIm data from breast cancer specimens (N  =  20) and a support vector machine (SVM) classification algorithm able to automatically detect cancerous, fibrous, and adipose breast tissue. Classification accuracies were greater than 97% for automated detection of cancerous, fibrous, and adipose tissue from breast cancer specimens. The classification worked equally well for specimens scanned by hand or with a mechanical stage, demonstrating that the system could be used during surgery or on excised specimens. The ability of this technique to simply discriminate between cancerous and normal breast tissue, in particular to distinguish fibrous breast tissue from tumor, which is notoriously challenging for optical techniques, leads to the conclusion that FLIm has great potential to assess breast cancer margins. Identification of positive margins before waiting for complete histologic analysis could significantly reduce breast cancer re-excision rates.

  17. From morphology to biochemical state - intravital multiphoton fluorescence lifetime imaging of inflamed human skin

    Science.gov (United States)

    Huck, Volker; Gorzelanny, Christian; Thomas, Kai; Getova, Valentina; Niemeyer, Verena; Zens, Katharina; Unnerstall, Tim R.; Feger, Julia S.; Fallah, Mohammad A.; Metze, Dieter; Ständer, Sonja; Luger, Thomas A.; Koenig, Karsten; Mess, Christian; Schneider, Stefan W.

    2016-03-01

    The application of multiphoton microscopy in the field of biomedical research and advanced diagnostics promises unique insights into the pathophysiology of inflammatory skin diseases. In the present study, we combined multiphoton-based intravital tomography (MPT) and fluorescence lifetime imaging (MPT-FLIM) within the scope of a clinical trial of atopic dermatitis with the aim of providing personalised data on the aetiopathology of inflammation in a non-invasive manner at patients’ bedsides. These ‘optical biopsies’ generated via MPT were morphologically analysed and aligned with classical skin histology. Because of its subcellular resolution, MPT provided evidence of a redistribution of mitochondria in keratinocytes, indicating an altered cellular metabolism. Two independent morphometric algorithms reliably showed an even distribution in healthy skin and a perinuclear accumulation in inflamed skin. Moreover, using MPT-FLIM, detection of the onset and progression of inflammatory processes could be achieved. In conclusion, the change in the distribution of mitochondria upon inflammation and the verification of an altered cellular metabolism facilitate a better understanding of inflammatory skin diseases and may permit early diagnosis and therapy.

  18. Characterization of a pulsed x-ray source for fluorescent lifetime measurements

    International Nuclear Information System (INIS)

    Blankespoor, S.C.; Derenzo, S.E.; Moses, W.W.; Rossington, C.S.; Ito, M.; Oba, K.

    1994-01-01

    To search for new, fast, inorganic scintillators, the authors have developed a bench-top pulsed x-ray source for determining fluorescent lifetimes and wavelengths of compounds in crystal or powdered form. This source uses a light-excited x-ray tube which produces x-rays when light from a laser diode strikes its photocathode. The x-ray tube has a tungsten anode, a beryllium exit window, a 30 kV maximum tube bias, and a 50 μA maximum average cathode current. The laser produces 3 x 10 7 photons at 650 nm per ∼100 ps pulse, with up to 10 7 pulses/sec. The time spread for the laser diode, x-ray tube, and a microchannel plate photomultiplier tube is less than 120 ps fwhm. The mean x-ray energy at tube biases of 20, 25, and 30 kV is 9.4, 10.3, and 11.1 keV, respectively. The authors measured 140, 230, and 330 x-ray photons per laser diode pulse per steradian, at tube biases of 20, 25, and 30 kV, respectively. Background x-rays due to dark current occur at a rate of 1 x 10 6 and 3 x 10 6 photons/sec/steradian at biases of 25 and 30 kV, respectively. Data characterizing the x-ray output with an aluminum filter in the x-ray beam are also presented

  19. Alterations in cerebral metabolism observed in living rodents using fluorescence lifetime microscopy of intrinsic NADH (Conference Presentation)

    Science.gov (United States)

    Yaseen, Mohammad A.; Sakadžić, Sava; Sutin, Jason; Wu, Weicheng; Fu, Buyin; Boas, David A.

    2017-02-01

    Monitoring cerebral energy metabolism at a cellular level is essential to improve our understanding of healthy brain function and its pathological alterations. In this study, we resolve specific alterations in cerebral metabolism utilizing minimally-invasive 2-Photon fluorescence lifetime imaging (2P-FLIM) measurements of reduced nicotinamide adenine dinucleotide (NADH) fluorescence, collected in vivo from anesthetized rats and mice. Time-resolved lifetime measurements enables distinction of different components contributing to NADH autofluorescence. These components reportedly represent different enzyme-bound formulations of NADH. Our observations from this study confirm the hypothesis that NADH FLIM can identify specific alterations in cerebral metabolism. Using time-correlated single photon counting (TCSPC) equipment and a custom-built multimodal imaging system, 2-photon fluorescence lifetime imaging (FLIM) was performed in cerebral tissue with high spatial and temporal resolution. Multi-exponential fits for NADH fluorescence lifetimes indicate 4 distinct components, or 'species.' We observed distinct variations in the relative proportions of these components before and after pharmacological-induced impairments to several reactions involved in anaerobic glycolysis and aerobic oxidative metabolism. Classification models developed with experimental data correctly predict the metabolic impairments associated with bicuculline-induced focal seizures in separate experiments. Compared to traditional intensity-based NADH measurements, lifetime imaging of NADH is less susceptible to the adverse effects of overlying blood vessels. Evaluating NADH measurements will ultimately lead to a deeper understanding of cerebral energetics and its pathology-related alterations. Such knowledge will likely aid development of therapeutic strategies for neurodegenerative diseases such as Alzheimer's Disease, Parkinson's disease, and stroke.

  20. CONSTRAINING THE LIFETIME AND OPENING ANGLE OF QUASARS USING FLUORESCENT Ly α EMISSION: THE CASE OF Q0420–388

    International Nuclear Information System (INIS)

    Borisova, Elena; Lilly, Simon J.; Cantalupo, Sebastiano; Prochaska, J. Xavier; Rakic, Olivera; Worseck, Gabor

    2016-01-01

    A toy model is developed to understand how the spatial distribution of fluorescent emitters in the vicinity of bright quasars could be affected by the geometry of the quasar bi-conical radiation field and by its lifetime. The model is then applied to the distribution of high-equivalent-width Ly α emitters (with rest-frame equivalent widths above 100 Å, threshold used in, e.g., Trainor and Steidel) identified in a deep narrow-band 36 × 36 arcmin 2 image centered on the luminous quasar Q0420–388. These emitters are found near the edge of the field and show some evidence of an azimuthal asymmetry on the sky of the type expected if the quasar is radiating in a bipolar cone. If these sources are being fluorescently illuminated by the quasar, the two most distant objects require a lifetime of at least 15 Myr for an opening angle of 60° or more, increasing to more than 40 Myr if the opening angle is reduced to a minimum of 30°. However, some other expected signatures of boosted fluorescence are not seen at the current survey limits, e.g., a fall off in Ly α brightness, or equivalent width, with distance. Furthermore, to have most of the Ly α emission of the two distant sources to be fluorescently boosted would require the quasar to have been significantly brighter in the past. This suggests that these particular sources may not be fluorescent, invalidating the above lifetime constraints. This would cast doubt on the use of this relatively low equivalent width threshold and thus also on the lifetime analysis in Trainor and Steidel.

  1. CONSTRAINING THE LIFETIME AND OPENING ANGLE OF QUASARS USING FLUORESCENT Ly α EMISSION: THE CASE OF Q0420–388

    Energy Technology Data Exchange (ETDEWEB)

    Borisova, Elena; Lilly, Simon J.; Cantalupo, Sebastiano [Institute for Astronomy, ETH Zurich, Zurich, CH-8093 (Switzerland); Prochaska, J. Xavier [UCO/Lick Observatory, UC Santa Cruz, Santa Cruz, CA 95064 (United States); Rakic, Olivera; Worseck, Gabor, E-mail: borisova@phys.ethz.ch [Max-Planck-Institut für Astronomie, Heidelberg, D-69117 (Germany)

    2016-10-20

    A toy model is developed to understand how the spatial distribution of fluorescent emitters in the vicinity of bright quasars could be affected by the geometry of the quasar bi-conical radiation field and by its lifetime. The model is then applied to the distribution of high-equivalent-width Ly α emitters (with rest-frame equivalent widths above 100 Å, threshold used in, e.g., Trainor and Steidel) identified in a deep narrow-band 36 × 36 arcmin{sup 2} image centered on the luminous quasar Q0420–388. These emitters are found near the edge of the field and show some evidence of an azimuthal asymmetry on the sky of the type expected if the quasar is radiating in a bipolar cone. If these sources are being fluorescently illuminated by the quasar, the two most distant objects require a lifetime of at least 15 Myr for an opening angle of 60° or more, increasing to more than 40 Myr if the opening angle is reduced to a minimum of 30°. However, some other expected signatures of boosted fluorescence are not seen at the current survey limits, e.g., a fall off in Ly α brightness, or equivalent width, with distance. Furthermore, to have most of the Ly α emission of the two distant sources to be fluorescently boosted would require the quasar to have been significantly brighter in the past. This suggests that these particular sources may not be fluorescent, invalidating the above lifetime constraints. This would cast doubt on the use of this relatively low equivalent width threshold and thus also on the lifetime analysis in Trainor and Steidel.

  2. Fluorescence life-time imaging and steady state polarization for examining binding of fluorophores to gold nanoparticles.

    Science.gov (United States)

    Schwartz, Shmulik; Fixler, Dror; Popovtzer, Rachela; Shefi, Orit

    2015-11-01

    Nanocomposites as multifunctional agents are capable of combing imaging and cell biology technologies. The conventional methods used for validation of the conjugation process of nanoparticles (NPs) to fluorescent molecules such as spectroscopy analysis and surface potential measurements, are not sufficient. In this paper we present a new and highly sensitive procedure that uses the combination of (1) fluorescence spectrum, (2) fluorescence lifetime, and (3) steady state fluorescence polarization measurements. We characterize and analyze gold NPs with Lucifer yellow (LY) surface coating as a model. We demonstrate the ability to differentiate between LY-GNP (the conjugated complex) and a mixture of coated NP and free dyes. We suggest the approach for neuroscience applications where LY is used for detecting and labeling cells, studying morphology and intracellular communications. Histograms of Fluorescence lifetime imaging (FLIM) of free LY dye (Left) in comparison to the conjugated dye to gold nanoparticles, LY-GNP (Middle) enable the differentiation between LY-GNP (the conjugated complex) and a mixture of coated NP and free dyes (Right). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. From morphology to clinical pathophysiology: multiphoton fluorescence lifetime imaging at patients' bedside

    Science.gov (United States)

    Mess, Christian; Zens, Katharina; Gorzelanny, Christian; Metze, Dieter; Luger, Thomas A.; König, Karsten; Schneider, Stefan W.; Huck, Volker

    2017-02-01

    Application of multiphoton microscopy in the field of biomedical research and advanced diagnostics promises unique insights into the pathophysiology of skin diseases. By means of multiphoton excitation, endogenous biomolecules like NADH, collagen or elastin show autofluorescence or second harmonic generation. Thus, these molecules provide information about the subcellular morphology, epidermal architecture and physiological condition of the skin. To gain a deeper understanding of the linkage between cellular structure and physiological processes, non-invasive multiphotonbased intravital tomography (MPT) and fluorescence lifetime imaging (FLIM) were combined within the scopes of inflammatory skin, chronic wounds and drug delivery in clinical application. The optical biopsies generated via MPT were morphologically analyzed and aligned with classical skin histology. Because of its subcellular resolution, MPT provided evidence of a redistribution of mitochondria in keratinocytes, indicating an altered cellular metabolism. Independent morphometric algorithms reliably showed a perinuclear accumulation in lesional skin in contrast to an even distribution in healthy skin. Confirmatively, MPT-FLIM showed an obvious metabolic shift in lesions. Moreover, detection of the onset and progression of inflammatory processes could be achieved. The feasibility of primary in vivo tracking of applied therapeutic agents further broadened our scope: We examined the permeation and subsequent distribution of agents directly visualized in patientś skin in short-term repetitive measurements. Furthermore, we performed MPT-FLIM follow-up investigations in the long-term course of therapy. Therefore, clinical MPT-FLIM application offers new insights into the pathophysiology and the individual therapeutic course of skin diseases, facilitating a better understanding of the processes of inflammation and wound healing.

  4. Imaging Amyloid Tissues Stained with Luminescent Conjugated Oligothiophenes by Hyperspectral Confocal Microscopy and Fluorescence Lifetime Imaging.

    Science.gov (United States)

    Nyström, Sofie; Bäck, Marcus; Nilsson, K Peter R; Hammarström, Per

    2017-10-20

    Proteins that deposit as amyloid in tissues throughout the body can be the cause or consequence of a large number of diseases. Among these we find neurodegenerative diseases such as Alzheimer's and Parkinson's disease afflicting primarily the central nervous system, and systemic amyloidosis where serum amyloid A, transthyretin and IgG light chains deposit as amyloid in liver, carpal tunnel, spleen, kidney, heart, and other peripheral tissues. Amyloid has been known and studied for more than a century, often using amyloid specific dyes such as Congo red and Thioflavin T (ThT) or Thioflavin (ThS). In this paper, we present heptamer-formyl thiophene acetic acid (hFTAA) as an example of recently developed complements to these dyes called luminescent conjugated oligothiophenes (LCOs). hFTAA is easy to use and is compatible with co-staining in immunofluorescence or with other cellular markers. Extensive research has proven that hFTAA detects a wider range of disease associated protein aggregates than conventional amyloid dyes. In addition, hFTAA can also be applied for optical assignment of distinct aggregated morphotypes to allow studies of amyloid fibril polymorphism. While the imaging methodology applied is optional, we here demonstrate hyperspectral imaging (HIS), laser scanning confocal microscopy and fluorescence lifetime imaging (FLIM). These examples show some of the imaging techniques where LCOs can be used as tools to gain more detailed knowledge of the formation and structural properties of amyloids. An important limitation to the technique is, as for all conventional optical microscopy techniques, the requirement for microscopic size of aggregates to allow detection. Furthermore, the aggregate should comprise a repetitive β-sheet structure to allow for hFTAA binding. Excessive fixation and/or epitope exposure that modify the aggregate structure or conformation can render poor hFTAA binding and hence pose limitations to accurate imaging.

  5. Magnetic field and temperature dependence of the fluorescence lifetime of Cr sup(3+) in GdA103

    International Nuclear Information System (INIS)

    Helman, J.S.; Caride, A.O.; Basso, H.C.; Terrile, M.C.; Carvalho, R.A.

    1991-01-01

    The fluorescence lifetime of Cr sup(3+) in GdA10 sub(3) was measured in the range 1.8 - 4.2 K in magnetic fields up to 6 T. The results show a remarkable dependence of the transition probabilities on magnetic order. A model based on the exchange interaction between Cr sup(3+) in highly excited states and the Gd sup(3+) ions is proposed. (author)

  6. Gentamicin differentially alters cellular metabolism of cochlear hair cells as revealed by NAD(P)H fluorescence lifetime imaging

    Science.gov (United States)

    Zholudeva, Lyandysha V.; Ward, Kristina G.; Nichols, Michael G.; Smith, Heather Jensen

    2015-05-01

    Aminoglycoside antibiotics are implicated as culprits of hearing loss in more than 120,000 individuals annually. Research has shown that the sensory cells, but not supporting cells, of the cochlea are readily damaged and/or lost after use of such antibiotics. High-frequency outer hair cells (OHCs) show a greater sensitivity to antibiotics than high- and low-frequency inner hair cells (IHCs). We hypothesize that variations in mitochondrial metabolism account for differences in susceptibility. Fluorescence lifetime microscopy was used to quantify changes in NAD(P)H in sensory and supporting cells from explanted murine cochleae exposed to mitochondrial uncouplers, inhibitors, and an ototoxic antibiotic, gentamicin (GM). Changes in metabolic state resulted in a redistribution of NAD(P)H between subcellular fluorescence lifetime pools. Supporting cells had a significantly longer lifetime than sensory cells. Pretreatment with GM increased NAD(P)H intensity in high-frequency sensory cells, as well as the NAD(P)H lifetime within IHCs. GM specifically increased NAD(P)H concentration in high-frequency OHCs, but not in IHCs or pillar cells. Variations in NAD(P)H intensity in response to mitochondrial toxins and GM were greatest in high-frequency OHCs. These results demonstrate that GM rapidly alters mitochondrial metabolism, differentially modulates cell metabolism, and provides evidence that GM-induced changes in metabolism are significant and greatest in high-frequency OHCs.

  7. Fluorescence lifetime FRET imaging of receptor-ligand complexes in tumor cells in vitro and in vivo

    Science.gov (United States)

    Rudkouskaya, Alena; Sinsuebphon, Nattawut; Intes, Xavier; Mazurkiewicz, Joseph E.; Barroso, Margarida

    2017-02-01

    To guide the development of targeted therapies with improved efficacy and accelerated clinical acceptance, novel imaging methodologies need to be established. Toward this goal, fluorescence lifetime Förster resonance energy transfer (FLIM-FRET) imaging assays capitalize on the ability of antibodies or protein ligands to bind dimerized membrane bound receptors to measure their target engagement levels in cancer cells. Conventional FLIM FRET microscopy has been widely applied at visible wavelengths to detect protein-protein interactions in vitro. However, operation at these wavelengths restricts imaging quality and ability to quantitate lifetime changes in in vivo small animal optical imaging due to high auto-fluorescence and light scattering. Here, we have analyzed the uptake of iron-bound transferrin (Tf) probes into human breast cancer cells using FLIM-FRET microscopy in the visible and near-infrared (NIR) range. The development of NIR FLIM FRET microscopy allows for the use of quantitative lifetime-based molecular assays to measure drug-target engagement levels at multiple scales: from in vitro microscopy to in vivo small animal optical imaging (macroscopy). This novel approach can be extended to other receptors, currently targeted in oncology. Hence, lifetime-based molecular imaging can find numerous applications in drug delivery and targeted therapy assessment and optimization.

  8. A novel lab-on-chip platform with integrated solid phase PCR and Supercritical Angle Fluorescence (SAF) microlens array for highly sensitive and multiplexed pathogen detection

    DEFF Research Database (Denmark)

    Hung, Tran Quang; Chin, Wai Hoe; Sun, Yi

    2016-01-01

    technology. In this paper, we addressed this challenge by combining the SP-PCR with super critical angle fluorescence (SAF) microlens array embedded in a microchip. We fabricated miniaturized SAF microlens array as part of a microfluidic chamber in thermoplastic material and performed multiplexed SP...

  9. A high-throughput direct fluorescence resonance energy transfer-based assay for analyzing apoptotic proteases using flow cytometry and fluorescence lifetime measurements.

    Science.gov (United States)

    Suzuki, Miho; Sakata, Ichiro; Sakai, Takafumi; Tomioka, Hiroaki; Nishigaki, Koichi; Tramier, Marc; Coppey-Moisan, Maïté

    2015-12-15

    Cytometry is a versatile and powerful method applicable to different fields, particularly pharmacology and biomedical studies. Based on the data obtained, cytometric studies are classified into high-throughput (HTP) or high-content screening (HCS) groups. However, assays combining the advantages of both are required to facilitate research. In this study, we developed a high-throughput system to profile cellular populations in terms of time- or dose-dependent responses to apoptotic stimulations because apoptotic inducers are potent anticancer drugs. We previously established assay systems involving protease to monitor live cells for apoptosis using tunable fluorescence resonance energy transfer (FRET)-based bioprobes. These assays can be used for microscopic analyses or fluorescence-activated cell sorting. In this study, we developed FRET-based bioprobes to detect the activity of the apoptotic markers caspase-3 and caspase-9 via changes in bioprobe fluorescence lifetimes using a flow cytometer for direct estimation of FRET efficiencies. Different patterns of changes in the fluorescence lifetimes of these markers during apoptosis were observed, indicating a relationship between discrete steps in the apoptosis process. The findings demonstrate the feasibility of evaluating collective cellular dynamics during apoptosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Multiplexed fluorescent microarray for human salivary protein analysis using polymer microspheres and fiber-optic bundles.

    Science.gov (United States)

    Nie, Shuai; Benito-Peña, Elena; Zhang, Huaibin; Wu, Yue; Walt, David R

    2013-10-10

    Herein, we describe a protocol for simultaneously measuring six proteins in saliva using a fiber-optic microsphere-based antibody array. The immuno-array technology employed combines the advantages of microsphere-based suspension array fabrication with the use of fluorescence microscopy. As described in the video protocol, commercially available 4.5 μm polymer microspheres were encoded into seven different types, differentiated by the concentration of two fluorescent dyes physically trapped inside the microspheres. The encoded microspheres containing surface carboxyl groups were modified with monoclonal capture antibodies through EDC/NHS coupling chemistry. To assemble the protein microarray, the different types of encoded and functionalized microspheres were mixed and randomly deposited in 4.5 μm microwells, which were chemically etched at the proximal end of a fiber-optic bundle. The fiber-optic bundle was used as both a carrier and for imaging the microspheres. Once assembled, the microarray was used to capture proteins in the saliva supernatant collected from the clinic. The detection was based on a sandwich immunoassay using a mixture of biotinylated detection antibodies for different analytes with a streptavidin-conjugated fluorescent probe, R-phycoerythrin. The microarray was imaged by fluorescence microscopy in three different channels, two for microsphere registration and one for the assay signal. The fluorescence micrographs were then decoded and analyzed using a homemade algorithm in MATLAB.

  11. Design, construction, and validation of a rotary multifunctional intravascular diagnostic catheter combining multispectral fluorescence lifetime imaging and intravascular ultrasound.

    Science.gov (United States)

    Bec, Julien; Xie, Hongtao; Yankelevich, Diego R; Zhou, Feifei; Sun, Yang; Ghata, Narugopal; Aldredge, Ralph; Marcu, Laura

    2012-10-01

    We report the development and validation of an intravascular rotary catheter for bimodal interrogation of arterial pathologies. This is based on a point-spectroscopy scanning time-resolved fluorescence spectroscopy technique enabling reconstruction of fluorescence lifetime images (FLIm) and providing information on arterial intima composition and intravascular ultrasound (IVUS) providing information on arterial wall morphology. The catheter design allows for independent rotation of the ultrasonic and optical channels within an 8 Fr outer diameter catheter sheath and integrates a low volume flushing channel for blood removal in the optical pathways. In the current configuration, the two channels consist of (a) a standard 3 Fr IVUS catheter with single element transducer (40 MHz) and (b) a side-viewing fiber optic (400 μm core). Experiments conducted in tissue phantoms showed the ability of the catheter to operate in an intraluminal setting and to generate coregistered FLIm and IVUS in one pull-back scan. Current results demonstrate the feasibility of the catheter for simultaneous bimodal interrogation of arterial lumen and for generation of robust fluorescence lifetime data under IVUS guidance. These results facilitate further development of a FLIm-IVUS technique for intravascular diagnosis of atherosclerotic cardiovascular diseases including vulnerable plaques.

  12. Effect of calcinations temperature on the luminescence intensity and fluorescent lifetime of Tb3+-doped hydroxyapatite (Tb-HA nanocrystallines

    Directory of Open Access Journals (Sweden)

    Hairong Yin

    2017-06-01

    Full Text Available Hydroxyapatite luminescent nanocrystallines doped with 6 mol.% Tb3+ (Tb-HA were prepared via chemical deposition method and calcined at different temperature, and the effects of calcinations temperature on the luminescence intensity and fluorescent lifetime were studied. TEM image of Tb-HA revealed that the shape of nanocrystallines changed from needle-like to short rod-like and sphere-like with the increase of calcinations temperature; while the particles sizes decreased from 190 nm to 110 nm. The crystallinity degree increased. The typical emission peaks attributed to Tb3+ ions were observed in emission spectra of 6 mol.% Tb-HA under 378 nm excitation. The luminescent intensity of Tb-HA, which showed the fluorescence quenching, firstly enhanced and then decreased at 700 °C; while the fluorescent lifetime increased firstly and then decreased after 600 °C. Furthermore, the ratio of intensity between 545 nm and 490 nm corresponding to electric-dipole and magnetic-dipole transition (IR: IO increases firstly and then decreases, which revealed that the proportion of substitute type and site of Ca2+ ions by Tb3+ ions were helpful to realize the substitute process and functional structure design.

  13. Segmented frequency-domain fluorescence lifetime measurements: minimizing the effects of photobleaching within a multi-component system.

    Science.gov (United States)

    Marwani, Hadi M; Lowry, Mark; Keating, Patrick; Warner, Isiah M; Cook, Robert L

    2007-11-01

    This study introduces a newly developed frequency segmentation and recombination method for frequency-domain fluorescence lifetime measurements to address the effects of changing fractional contributions over time and minimize the effects of photobleaching within multi-component systems. Frequency segmentation and recombination experiments were evaluated using a two component system consisting of fluorescein and rhodamine B. Comparison of experimental data collected in traditional and segmented fashion with simulated data, generated using different changing fractional contributions, demonstrated the validity of the technique. Frequency segmentation and recombination was also applied to a more complex system consisting of pyrene with Suwannee River fulvic acid reference and was shown to improve recovered lifetimes and fractional intensity contributions. It was observed that photobleaching in both systems led to errors in recovered lifetimes which can complicate the interpretation of lifetime results. Results showed clear evidence that the frequency segmentation and recombination method reduced errors resulting from a changing fractional contribution in a multi-component system, and allowed photobleaching issues to be addressed by commercially available instrumentation.

  14. The fluorescence lifetime of BRI1-GFP as probe for the noninvasive determination of the membrane potential in living cells

    Science.gov (United States)

    Elgass, K.; Caesar, K.; Schleifenbaum, F.; Meixner, A. J.; Harter, K.

    2010-02-01

    As the excited state lifetime of a fluorescent molecule depends on its environment, it is possible to use it as a probe for physico-chemical parameters of the surrounding medium. Whereas this is well known for many solid guest/host systems, only few reports of quantitative, temporal resolved in vivo studies to monitor the nano-environment for a protein-coupled chromophore such as GFP are known from literature. Here we present a novel approach to determine the membrane potential of living (plant) cells based on the fluorescence lifetime (FLT) analysis of membrane-located GFP. By using confocal sample scanning microscopy (CSSM) combined with fluorescence lifetime imaging microscopy, we recently showed that the phytohormone brassinolide (BL) induces cell wall expansion and a decrease in the FLT of the BRI1-GFP in living cells of Arabidopsis thaliana seedlings. BRI1 is the dominant functional receptor for BL in Arabidopsis and locates to the plasma membrane. Although the dependence of the FLT of GFP on its physico-chemical environment such as pH-value, refractive index and pressure has been reported, the observed FLT decrease of BRI1-GFP in response to BL application could not be explained by these parameters. However, our in vivo FLT and CSSM analyses indicate that the BLinduced change in the FLT of BRI1-GFP is caused by hyperpolarisation of the plasma membrane (Em). Thus, our results indicate that BRI1-GFP serves as sensitive and non-invasive probe for recording the Em of the plasma membrane in living plant cells with high spatio-temporal resolution.

  15. Developing a novel fiber optic fluorescence device for multiplexed high-throughput cytotoxic screening.

    Science.gov (United States)

    Lee, Dennis; Barnes, Stephen

    2010-01-01

    The need for new pharmacological agents is unending. Yet the drug discovery process has changed substantially over the past decade and continues to evolve in response to new technologies. There is presently a high demand to reduce discovery time by improving specific lab disciplines and developing new technology platforms in the area of cell-based assay screening. Here we present the developmental concept and early stage testing of the Ab-Sniffer, a novel fiber optic fluorescence device for high-throughput cytotoxicity screening using an immobilized whole cell approach. The fused silica fibers are chemically functionalized with biotin to provide interaction with fluorescently labeled, streptavidin functionalized alginate-chitosan microspheres. The microspheres are also functionalized with Concanavalin A to facilitate binding to living cells. By using lymphoma cells and rituximab in an adaptation of a well-known cytotoxicity protocol we demonstrate the utility of the Ab-Sniffer for functional screening of potential drug compounds rather than indirect, non-functional screening via binding assay. The platform can be extended to any assay capable of being tied to a fluorescence response including multiple target cells in each well of a multi-well plate for high-throughput screening.

  16. Platform for Quantitative Evaluation of Spatial Intratumoral Heterogeneity in Multiplexed Fluorescence Images.

    Science.gov (United States)

    Spagnolo, Daniel M; Al-Kofahi, Yousef; Zhu, Peihong; Lezon, Timothy R; Gough, Albert; Stern, Andrew M; Lee, Adrian V; Ginty, Fiona; Sarachan, Brion; Taylor, D Lansing; Chennubhotla, S Chakra

    2017-11-01

    We introduce THRIVE (Tumor Heterogeneity Research Interactive Visualization Environment), an open-source tool developed to assist cancer researchers in interactive hypothesis testing. The focus of this tool is to quantify spatial intratumoral heterogeneity (ITH), and the interactions between different cell phenotypes and noncellular constituents. Specifically, we foresee applications in phenotyping cells within tumor microenvironments, recognizing tumor boundaries, identifying degrees of immune infiltration and epithelial/stromal separation, and identification of heterotypic signaling networks underlying microdomains. The THRIVE platform provides an integrated workflow for analyzing whole-slide immunofluorescence images and tissue microarrays, including algorithms for segmentation, quantification, and heterogeneity analysis. THRIVE promotes flexible deployment, a maintainable code base using open-source libraries, and an extensible framework for customizing algorithms with ease. THRIVE was designed with highly multiplexed immunofluorescence images in mind, and, by providing a platform to efficiently analyze high-dimensional immunofluorescence signals, we hope to advance these data toward mainstream adoption in cancer research. Cancer Res; 77(21); e71-74. ©2017 AACR . ©2017 American Association for Cancer Research.

  17. Lifetime-based optical sensor for high-level pCO2 detection employing fluorescence resonance energy transfer

    International Nuclear Information System (INIS)

    Bueltzingsloewen, Christoph von; McEvoy, Aisling K.; McDonagh, Colette; MacCraith, Brian D.

    2003-01-01

    An optical sensor for the measurement of high levels of carbon dioxide in gas phase has been developed. It is based on fluorescence resonance energy transfer (FRET) between a long-lifetime ruthenium polypyridyl complex and the pH-active disazo dye Sudan III. The donor luminophore and the acceptor dye are both immobilised in a hydrophobic silica sol-gel/ethyl cellulose hybrid matrix material. Tetraoctylammonium hydroxide (TOA-OH) is used as an internal buffering system. Fluorescence lifetime is measured in the frequency domain, using low-cost phase modulation measurement technology. The use of Sudan III as an acceptor dye has enabled the sensor to have a dynamic range up to 100% carbon dioxide. The sensor displays 11.2 deg. phase shift between the limit of detection (LOD) of 0.06 and 100% CO 2 with a resolution of better than 2%. The encapsulation in the silica/polymer hybrid material has provided the sensor with good mechanical and chemical stability. The effect of molecular oxygen, humidity and temperature on the sensor performance was studied in detail

  18. Mercury effects on Thalassiosira weissflogii: Applications of two-photon excitation chlorophyll fluorescence lifetime imaging and flow cytometry

    International Nuclear Information System (INIS)

    Wu Yun; Zeng Yan; Qu, Jianan Y.; Wang Wenxiong

    2012-01-01

    The toxic effects of inorganic mercury [Hg(II)] and methylmercury (MeHg) on the photosynthesis and population growth in a marine diatom Thalassiosira weissflogii were investigated using two methods: two-photon excitation fluorescence lifetime imaging (FLIM) and flow cytometry (FCM). For photosynthesis, Hg(II) exposure increased the average chlorophyll fluorescence lifetime, whereas such increment was not found under MeHg stress. This may be caused by the inhibitory effect of Hg(II) instead of MeHg on the electron transport chain. For population growth, modeled specific growth rate data showed that the reduction in population growth by Hg(II) mainly resulted from an increased number of injured cells, while the live cells divided at the normal rates. However, MeHg inhibitory effects on population growth were contributed by the reduced division rates of all cells. Furthermore, the cell images and the FCM data reflected the morphological changes of diatom cells under Hg(II)/MeHg exposure vividly and quantitatively. Our results demonstrated that the toxigenicity mechanisms between Hg(II) and MeHg were different in the algal cells.

  19. Cell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes

    Science.gov (United States)

    Bray, Mark-Anthony; Singh, Shantanu; Han, Han; Davis, Chadwick T.; Borgeson, Blake; Hartland, Cathy; Kost-Alimova, Maria; Gustafsdottir, Sigrun M.; Gibson, Christopher C.; Carpenter, Anne E.

    2016-01-01

    In morphological profiling, quantitative data are extracted from microscopy images of cells to identify biologically relevant similarities and differences among samples based on these profiles. This protocol describes the design and execution of experiments using Cell Painting, a morphological profiling assay multiplexing six fluorescent dyes imaged in five channels, to reveal eight broadly relevant cellular components or organelles. Cells are plated in multi-well plates, perturbed with the treatments to be tested, stained, fixed, and imaged on a high-throughput microscope. Then, automated image analysis software identifies individual cells and measures ~1,500 morphological features (various measures of size, shape, texture, intensity, etc.) to produce a rich profile suitable for detecting subtle phenotypes. Profiles of cell populations treated with different experimental perturbations can be compared to suit many goals, such as identifying the phenotypic impact of chemical or genetic perturbations, grouping compounds and/or genes into functional pathways, and identifying signatures of disease. Cell culture and image acquisition takes two weeks; feature extraction and data analysis take an additional 1-2 weeks. PMID:27560178

  20. An aggregated perylene-based broad-spectrum, efficient and label-free quencher for multiplexed fluorescent bioassays.

    Science.gov (United States)

    Liu, Tao; Hu, Rong; Lv, Yi-Fan; Wu, Yuan; Liang, Hao; Huan, Shuang-Yan; Zhang, Xiao-Bing; Tan, Weihong; Yu, Ru-Qin

    2014-08-15

    Fluorescent sensing systems based on the quenching of fluorophores have found wide applications in bioassays. An efficient quencher will endow the sensing system a high sensitivity. The frequently used quenchers are based on organic molecules or nanomaterials, which usually need tedious synthesizing and modifying steps, and exhibit different quenching efficiencies to different fluorophores. In this work, we for the first time report that aggregated perylene derivative can serve as a broad-spectrum and label-free quencher that is able to efficiently quench a variety of fluorophores, such as green, red and far red dyes labeled on DNA. By choosing nucleases as model biomolecules, such a broad-spectrum quencher was then employed to construct a multiplexed bioassay platform through a label-free manner. Due to the high quenching efficiency of the aggregated perylene, the proposed platform could detect nuclease with high sensitivity, with a detection limit of 0.03U/mL for EcoRV, and 0.05U/mL for EcoRI. The perylene quencher does not affect the activity of nuclease, which makes it possible to design post-addition type bioassay platform. Moreover, the proposed platform allows simultaneous and multicolor analysis of nucleases in homogeneous solution, demonstrating its value of potential application in rapid screening of multiple bio-targets. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Fluorescence lifetime studies of MeV erbium implanted silica glass

    International Nuclear Information System (INIS)

    Lidgard, A.; Polman, A.; Jacobsen, D.C.; Blonder, G.E.; Kistler, R.; Poate, J.M.; Becker, P.C.

    1991-01-01

    MeV erbium ion implantation into various SiO 2 glasses has been studied with the aim of incorporating the rare-earth dopant as an optically active ion in the silica network. The lifetime of the excited state ranges from 1.6 to 12.8 ms, depending on base material and implantation fluence. These results have positive implications for silica-based integrated optical technology. (Author)

  2. Fluorescence lifetime studies of MeV erbium implanted silica glass

    Energy Technology Data Exchange (ETDEWEB)

    Lidgard, A.; Polman, A.; Jacobsen, D.C.; Blonder, G.E.; Kistler, R.; Poate, J.M.; Becker, P.C. (AT and T Bell Labs., Murray Hill, NJ (USA))

    1991-05-23

    MeV erbium ion implantation into various SiO{sub 2} glasses has been studied with the aim of incorporating the rare-earth dopant as an optically active ion in the silica network. The lifetime of the excited state ranges from 1.6 to 12.8 ms, depending on base material and implantation fluence. These results have positive implications for silica-based integrated optical technology. (Author).

  3. A fusion-spliced near-field optical fiber probe using photonic crystal fiber for nanoscale thermometry based on fluorescence-lifetime measurement of quantum dots.

    Science.gov (United States)

    Fujii, Takuro; Taguchi, Yoshihiro; Saiki, Toshiharu; Nagasaka, Yuji

    2011-01-01

    We have developed a novel nanoscale temperature-measurement method using fluorescence in the near-field called fluorescence near-field optics thermal nanoscopy (Fluor-NOTN). Fluor-NOTN enables the temperature distributions of nanoscale materials to be measured in vivo/in situ. The proposed method measures temperature by detecting the temperature dependent fluorescence lifetimes of Cd/Se quantum dots (QDs). For a high-sensitivity temperature measurement, the auto-fluorescence generated from a fiber probe should be reduced. In order to decrease the noise, we have fabricated a novel near-field optical-fiber probe by fusion-splicing a photonic crystal fiber (PCF) and a conventional single-mode fiber (SMF). The validity of the novel fiber probe was assessed experimentally by evaluating the auto-fluorescence spectra of the PCF. Due to the decrease of auto-fluorescence, a six- to ten-fold increase of S/N in the near-field fluorescence lifetime detection was achieved with the newly fabricated fusion-spliced near-field optical fiber probe. Additionally, the near-field fluorescence lifetime of the quantum dots was successfully measured by the fabricated fusion-spliced near-field optical fiber probe at room temperature, and was estimated to be 10.0 ns.

  4. The increase of NADH fluorescence lifetime is associated with the metabolic change during osteogenic differentiation of human mesenchymal stem cells (hMSCs)

    Science.gov (United States)

    Guo, Han Wen; Yu, Jia Sin; Hsu, Shu Han; Wei, Yau Huei; Lee, Oscar K.; Wang, Hsing Wen

    2011-03-01

    Fluorescence lifetime of NADH had been used as an optical marker for monitoring cellular metabolism. In our pervious studies, we have demonstrated that NADH lifetime of hMSCs increase gradually with time of osteogenic differentiation. In this study, we measured NADH lifetime of hMSCs from a different donor as well as the corresponding metabolic indices such as ATP level, oxygen consumption and lactate release. We also measure the quantity of Complex I, III, IV and V. The results show that during differentiation more oxygen consumed, higher ATP level expressed and less lactate released, and the increase of NADH lifetime was associated with ATP level. Higher expression of the total Complex protein was observed at 3 and 4 weeks after differentiation than controls. However, Complex I expression did not show significant correlation with the increase of NADH fluorescence lifetime. In summary, we demonstrated that the change of NADH lifetime was associated with the metabolic change during osteogenic differentiation of hMSCs. The increase of NADH lifetime was in part due to the increased Complex protein interaction in mitochondria after differentiation.

  5. High resolution multiplexed functional imaging in live embryos (Conference Presentation)

    Science.gov (United States)

    Xu, Dongli; Zhou, Weibin; Peng, Leilei

    2017-02-01

    Fourier multiplexed fluorescence lifetime imaging (FmFLIM) scanning laser optical tomography (FmFLIM-SLOT) combines FmFLIM and Scanning laser optical tomography (SLOT) to perform multiplexed 3D FLIM imaging of live embryos. The system had demonstrate multiplexed functional imaging of zebrafish embryos genetically express Foster Resonant Energy Transfer (FRET) sensors. However, previous system has a 20 micron resolution because the focused Gaussian beam diverges quickly from the focused plane, makes it difficult to achieve high resolution imaging over a long projection depth. Here, we present a high-resolution FmFLIM-SLOT system with achromatic Bessel beam, which achieves 3 micron resolution in 3D deep tissue imaging. In Bessel-FmFLIM-SLOT, multiple laser excitation lines are firstly intensity modulated by a Michelson interferometer with a spinning polygon mirror optical delay line, which enables Fourier multiplexed multi-channel lifetime measurements. Then, a spatial light modulator and a prism are used to transform the modulated Gaussian laser beam to an achromatic Bessel beam. The achromatic Bessel beam scans across the whole specimen with equal angular intervals as sample rotated. After tomography reconstruction and the frequency domain lifetime analysis method, both the 3D intensity and lifetime image of multiple excitation-emission can be obtained. Using Bessel-FmFLIM-SLOT system, we performed cellular-resolution FLIM tomography imaging of live zebrafish embryo. Genetically expressed FRET sensors in these embryo will allow non-invasive observation of multiple biochemical processes in vivo.

  6. Retrospective Species Identification of Microsporidian Spores in Diarrheic Fecal Samples from Human Immunodeficiency Virus/AIDS Patients by Multiplexed Fluorescence In Situ Hybridization▿

    Science.gov (United States)

    Graczyk, Thaddeus K.; Johansson, Michael A.; Tamang, Leena; Visvesvara, Govinda S.; Moura, Laci S.; DaSilva, Alexandre J.; Girouard, Autumn S.; Matos, Olga

    2007-01-01

    In order to assess the applicability of multiplexed fluorescence in situ hybridization (FISH) assay for the clinical setting, we conducted retrospective analysis of 110 formalin-stored diarrheic stool samples from human immunodeficiency virus (HIV)/AIDS patients with intestinal microsporidiosis collected between 1992 and 2003. The multiplexed FISH assay identified microsporidian spores in 94 of 110 (85.5%) samples: 49 (52.1%) were positive for Enterocytozoon bieneusi, 43 (45.8%) were positive for Encephalitozoon intestinalis, 2 (2.1%) were positive for Encephalitozoon hellem, and 9 samples (9.6%) contained both E. bieneusi and E. intestinalis spores. Quantitative spore counts per ml of stool yielded concentration values from 3.5 × 103 to 4.4 × 105 for E. bieneusi (mean, 8.8 × 104/ml), 2.3 × 102 to 7.8 × 104 (mean, 1.5 × 104/ml) for E. intestinalis, and 1.8 × 102 to 3.6 × 102 for E. hellem (mean, 2.7 × 102/ml). Identification of microsporidian spores by multiplex FISH assay was more sensitive than both Chromotrope-2R and CalcoFluor White M2R stains; 85.5% versus 72.7 and 70.9%, respectively. The study demonstrated that microsporidian coinfection in HIV/AIDS patients with intestinal microsporidiosis is not uncommon and that formalin-stored fecal samples older than 10 years may not be suitable for retrospective analysis by techniques targeting rRNA. Multiplexed FISH assay is a reliable, quantitative fluorescence microscopy method for the simultaneous identification of E. bieneusi, E. intestinalis, and E. hellem, as well as Encephalitozoon cuniculi, spores in fecal samples and is a useful tool for assessing spore shedding intensity in intestinal microsporidiosis. The method can be used for epidemiological investigations and applied in clinical settings. PMID:17287331

  7. On-chip multiplexed solid-phase nucleic acid hybridization assay using spatial profiles of immobilized quantum dots and fluorescence resonance energy transfer.

    Science.gov (United States)

    Noor, M Omair; Tavares, Anthony J; Krull, Ulrich J

    2013-07-25

    A microfluidic based solid-phase assay for the multiplexed detection of nucleic acid hybridization using quantum dot (QD) mediated fluorescence resonance energy transfer (FRET) is described herein. The glass surface of hybrid glass-polydimethylsiloxane (PDMS) microfluidic channels was chemically modified to assemble the biorecognition interface. Multiplexing was demonstrated using a detection system that was comprised of two colors of immobilized semi-conductor QDs and two different oligonucleotide probe sequences. Green-emitting and red-emitting QDs were paired with Cy3 and Alexa Fluor 647 (A647) labeled oligonucleotides, respectively. The QDs served as energy donors for the transduction of dye labeled oligonucleotide targets. The in-channel assembly of the biorecognition interface and the subsequent introduction of oligonucleotide targets was accomplished within minutes using a combination of electroosmotic flow and electrophoretic force. The concurrent quantification of femtomole quantities of two target sequences was possible by measuring the spatial coverage of FRET sensitized emission along the length of the channel. In previous reports, multiplexed QD-FRET hybridization assays that employed a ratiometric method for quantification had challenges associated with lower analytical sensitivity arising from both donor and acceptor dilution that resulted in reduced energy transfer pathways as compared to single-color hybridization assays. Herein, a spatial method for quantification that is based on in-channel QD-FRET profiles provided higher analytical sensitivity in the multiplexed assay format as compared to single-color hybridization assays. The selectivity of the multiplexed hybridization assays was demonstrated by discrimination between a fully-complementary sequence and a 3 base pair sequence at a contrast ratio of 8 to 1. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Gating circuit for single photon-counting fluorescence lifetime instruments using high repetition pulsed light sources

    International Nuclear Information System (INIS)

    Laws, W.R.; Potter, D.W.; Sutherland, J.C.

    1984-01-01

    We have constructed a circuit that permits conventional timing electronics to be used in single photon-counting fluorimeters with high repetition rate excitation sources (synchrotrons and mode-locked lasers). Most commercial time-to-amplitude and time-to-digital converters introduce errors when processing very short time intervals and when subjected to high-frequency signals. This circuit reduces the frequency of signals representing the pulsed light source (stops) to the rate of detected fluorescence events (starts). Precise timing between the start/stop pair is accomplished by using the second stop pulse after a start pulse. Important features of our design are that the circuit is insensitive to the simultaneous occurrence of start and stop signals and that the reduction in the stop frequency allows the start/stop time interval to be placed in linear regions of the response functions of commercial timing electronics

  9. Probing the photoluminescence properties of gold nanoclusters by fluorescence lifetime correlation spectroscopy

    International Nuclear Information System (INIS)

    Yuan, C. T.; Lin, T. N.; Shen, J. L.; Lin, C. A.; Chang, W. H.; Cheng, H. W.; Tang, J.

    2013-01-01

    Gold nanoclusters (Au NCs) have attracted much attention for promising applications in biological imaging owing to their tiny sizes and biocompatibility. So far, most efforts have been focused on the strategies for fabricating high-quality Au NCs and then characterized by conventional ensemble measurement. Here, a fusion single-molecule technique combining fluorescence correlation spectroscopy and time-correlated single-photon counting can be successfully applied to probe the photoluminescence (PL) properties for sparse Au NCs. In this case, the triplet-state dynamics and diffusion process can be observed simultaneously and the relevant time constants can be derived. This work provides a complementary insight into the PL mechanism at the molecular levels for Au NCs in solution

  10. Fluorescence lifetime imaging ophthalmoscopy in type 2 diabetic patients who have no signs of diabetic retinopathy

    Science.gov (United States)

    Schweitzer, Dietrich; Deutsch, Lydia; Klemm, Matthias; Jentsch, Susanne; Hammer, Martin; Peters, Sven; Haueisen, Jens; Müller, Ulrich A.; Dawczynski, Jens

    2015-06-01

    The time-resolved autofluorescence of the eye is used for the detection of metabolic alteration in diabetic patients who have no signs of diabetic retinopathy. One eye from 37 phakic and 11 pseudophakic patients with type 2 diabetes, and one eye from 25 phakic and 23 pseudophakic healthy subjects were included in the study. After a three-exponential fit of the decay of autofluorescence, histograms of lifetimes τi, amplitudes αi, and relative contributions Qi were statistically compared between corresponding groups in two spectral channels (490diabetic patients and age-matched controls (p450 ps, and the shift of τ3 from ˜3000 to 3700 ps in ch1 of diabetic patients when compared with healthy subjects indicate an increased production of free flavin adenine dinucleotide, accumulation of advanced glycation end products (AGE), and, probably, a change from free to protein-bound reduced nicotinamide adenine dinucleotide at the fundus. AGE also accumulated in the crystalline lens.

  11. Comparitive study of fluorescence lifetime quenching of rhodamine 6G by MoS2 and Au-MoS2

    Science.gov (United States)

    Shakya, Jyoti; Kasana, Parath; Mohanty, T.

    2018-04-01

    Time resolved fluorescence study of Rhodamine 6G (R6G) in the presence of Molybdenum disulfide (MoS2) nanosheets and gold doped MoS2 (Au-MoS2) have been carried out and discussed. We have analyzed the fluorescence decay curves of R6G and it is observed that Au-MoS2 is a better fluorescence lifetime quencher as compare to MoS2 nanosheets. Also, the energy transfer efficiency and energy transfer rate from R6G to MoS2 and Au-MoS2 has been calculated and found higher for Au-MoS2.

  12. Preparation and properties of Nd{sup 3+}:SrAlF{sub 5} nanocrystals embedded fluorophosphate transparent glass-ceramic with long fluorescence lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ruilin; Wang, Jinlong; Zhang, Liaolin; Liu, Chunxiao; Wei, Wei [Nanjing University of Posts and Telecommunications, School of Optoelectronic Engineering, Nanjing (China)

    2016-07-15

    Nd{sup 3+}:SrAlF{sub 5} nanocrystals embedded fluorophosphate glass-ceramics were prepared by the melt quenching and subsequent thermal treatment method. The formation of SrAlF{sub 5} nanocrystals in the glass was confirmed by X-ray diffraction and scanning electron microscope. The fluorescence intensity and lifetime of the glass-ceramics increased with the increase of size of nanocrystals. Importantly, by controlling growth of nanocrystals, an obvious enhancement of lifetime (725 μs) emerged in the glass-ceramics heat-treated at 510 C and the transmittance can reach to 72.2 % at 1049 nm. The enhanced fluorescence intensity and lifetime were ascribed to the comfortable local environment to the Nd{sup 3+} ion and scattering of the nanoparticle embedded into the glass matrix. (orig.)

  13. Fluorescence Lifetime Readouts of Troponin-C-Based Calcium FRET Sensors: A Quantitative Comparison of CFP and mTFP1 as Donor Fluorophores

    Science.gov (United States)

    Laine, Romain; Stuckey, Daniel W.; Manning, Hugh; Warren, Sean C.; Kennedy, Gordon; Carling, David

    2012-01-01

    We have compared the performance of two Troponin-C-based calcium FRET sensors using fluorescence lifetime read-outs. The first sensor, TN-L15, consists of a Troponin-C fragment inserted between CFP and Citrine while the second sensor, called mTFP-TnC-Cit, was realized by replacing CFP in TN-L15 with monomeric Teal Fluorescent Protein (mTFP1). Using cytosol preparations of transiently transfected mammalian cells, we have measured the fluorescence decay profiles of these sensors at controlled concentrations of calcium using time-correlated single photon counting. These data were fitted to discrete exponential decay models using global analysis to determine the FRET efficiency, fraction of donor molecules undergoing FRET and calcium affinity of these sensors. We have also studied the decay profiles of the donor fluorescent proteins alone and determined the sensitivity of the donor lifetime to temperature and emission wavelength. Live-cell fluorescence lifetime imaging (FLIM) of HEK293T cells expressing each of these sensors was also undertaken. We confirmed that donor fluorescence of mTFP-TnC-Cit fits well to a two-component decay model, while the TN-L15 lifetime data was best fitted to a constrained four-component model, which was supported by phasor analysis of the measured lifetime data. If the constrained global fitting is employed, the TN-L15 sensor can provide a larger dynamic range of lifetime readout than the mTFP-TnC-Cit sensor but the CFP donor is significantly more sensitive to changes in temperature and emission wavelength compared to mTFP and, while the mTFP-TnC-Cit solution phase data broadly agreed with measurements in live cells, this was not the case for the TN-L15 sensor. Our titration experiment also indicates that a similar precision in determination of calcium concentration can be achieved with both FRET biosensors when fitting a single exponential donor fluorescence decay model to the fluorescence decay profiles. We therefore suggest that m

  14. Fluorescence lifetime measurements to determine the core-shell nanostructure of FITC-doped silica nanoparticles: An optical approach to evaluate nanoparticle photostability

    International Nuclear Information System (INIS)

    Santra, Swadeshmukul; Liesenfeld, Bernd; Bertolino, Chiara; Dutta, Debamitra; Cao Zehui; Tan Weihong; Moudgil, Brij M.; Mericle, Robert A.

    2006-01-01

    In this paper, we described a novel fluorescence lifetime-based approach to determine the core-shell nanostructure of FITC-(fluorescein isothiocyanate, isomer I) doped fluorescent silica nanoparticles (FSNPs). Because of phase homogeneity between the core and the shell, electron microscopic technique could not be used to characterize such core-shell nanostructure. Our optical approach not only revealed the core-shell nanostructure of FSNPs but also evaluated photobleaching of FSNPs both in the solvated and non-solvated (dry) states. The FSNPs were produced via Stoeber's method by hydrolysis and co-condensation reaction of tetraethylorthosilicate (TEOS) and fluorescein linked (3-aminopropyl)triethoxysilane (FITC-APTS conjugate) in the presence of ammonium hydroxide catalyst. To obtain a pure silica surface coating, FSNPs were then post-coated with TEOS. The average particle size was 135 nm as determined by TEM (transmission electron microscope) measurements. Fluorescence excitation and emission spectral data demonstrated successful doping of FITC dye molecules in FSNPs. Fluorescence lifetime data revealed that approximately 62% of dye molecules remained in the solvated silica shell, while 38% of dye molecules remained in the non-solvated (dry) silica core. Photobleaching experiments of FSNPs were conducted both in DI water (solution state) and in air (dry state). Severe photobleaching of FSNPs was observed in air. However, FSNPs were moderately photostable in the solution state. Photostability of FSNPs in both solution and dry states was explained on the basis of fluorescence lifetime data

  15. Automatic Segmentation of Fluorescence Lifetime Microscopy Images of Cells Using Multi-Resolution Community Detection -A First Study

    Science.gov (United States)

    Hu, Dandan; Sarder, Pinaki; Ronhovde, Peter; Orthaus, Sandra; Achilefu, Samuel; Nussinov, Zohar

    2014-01-01

    Inspired by a multi-resolution community detection (MCD) based network segmentation method, we suggest an automatic method for segmenting fluorescence lifetime (FLT) imaging microscopy (FLIM) images of cells in a first pilot investigation on two selected images. The image processing problem is framed as identifying segments with respective average FLTs against the background in FLIM images. The proposed method segments a FLIM image for a given resolution of the network defined using image pixels as the nodes and similarity between the FLTs of the pixels as the edges. In the resulting segmentation, low network resolution leads to larger segments, and high network resolution leads to smaller segments. Further, using the proposed method, the mean-square error (MSE) in estimating the FLT segments in a FLIM image was found to consistently decrease with increasing resolution of the corresponding network. The MCD method appeared to perform better than a popular spectral clustering based method in performing FLIM image segmentation. At high resolution, the spectral segmentation method introduced noisy segments in its output, and it was unable to achieve a consistent decrease in MSE with increasing resolution. PMID:24251410

  16. Automatic segmentation of fluorescence lifetime microscopy images of cells using multiresolution community detection--a first study.

    Science.gov (United States)

    Hu, D; Sarder, P; Ronhovde, P; Orthaus, S; Achilefu, S; Nussinov, Z

    2014-01-01

    Inspired by a multiresolution community detection based network segmentation method, we suggest an automatic method for segmenting fluorescence lifetime (FLT) imaging microscopy (FLIM) images of cells in a first pilot investigation on two selected images. The image processing problem is framed as identifying segments with respective average FLTs against the background in FLIM images. The proposed method segments a FLIM image for a given resolution of the network defined using image pixels as the nodes and similarity between the FLTs of the pixels as the edges. In the resulting segmentation, low network resolution leads to larger segments, and high network resolution leads to smaller segments. Furthermore, using the proposed method, the mean-square error in estimating the FLT segments in a FLIM image was found to consistently decrease with increasing resolution of the corresponding network. The multiresolution community detection method appeared to perform better than a popular spectral clustering-based method in performing FLIM image segmentation. At high resolution, the spectral segmentation method introduced noisy segments in its output, and it was unable to achieve a consistent decrease in mean-square error with increasing resolution. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  17. In vivo detection of oral epithelial cancer using endogenous fluorescence lifetime imaging: a pilot human study (Conference Presentation)

    Science.gov (United States)

    Jo, Javier A.; Hwang, Dae Yon; Palma, Jorge; Cheng, Shuna; Cuenca, Rodrigo; Malik, Bilal; Jabbour, Joey; Cheng, Lisa; Wright, John; Maitland, Kristen

    2016-03-01

    Endogenous fluorescence lifetime imaging (FLIM) provides direct access to the concomitant functional and biochemical changes accompanying tissue transition from benign to precancerous and cancerous. Since FLIM can noninvasively measure different and complementary biomarkers of precancer and cancer, we hypothesize that it will aid in clinically detecting early oral epithelial cancer. Our group has recently demonstrated the detection of benign from premalignant and malignant lesions based on endogenous multispectral FLIM in the hamster cheek-pouch model. Encouraged by these positive preliminary results, we have developed a handheld endoscope capable of acquiring multispectral FLIM images in real time from the oral mucosa. This novel FLIM endoscope is being used for imaging clinically suspicious pre-malignant and malignant lesions from patients before undergoing tissue biopsy for histopathological diagnosis of oral epithelial cancer. Our preliminary results thus far are already suggesting the potential of endogenous FLIM for distinguishing a variety of benign lesions from advanced dysplasia and squamous cell carcinoma (SCC). To the best of out knowledge, this is the first in vivo human study aiming to demonstrate the ability to predict the true malignancy of clinically suspicious lesions using endogenous FLIM. If successful, the resulting clinical tool will allow noninvasive real-time detection of epithelial precancerous and cancerous lesions in the oral mucosa and could potentially be used to assist at every step involved on the clinical management of oral cancer patients, from early screening and diagnosis, to treatment and monitoring of recurrence.

  18. The modifier effects of chymotrypsin and trypsin enzymes on fluorescence lifetime distribution of "N-(1-pyrenyl)maleimide-bovine serum albumin" complex.

    Science.gov (United States)

    Özyiğit, İbrahim Ethem; Karakuş, Emine; Pekcan, Önder

    2016-02-05

    Chymotrypsin and trypsin are the well known proteolytic enzymes, both of which are synthesized in the pancreas as their precursors - the inactive forms; chymotrypsinogen and trypsinogen - and then are released into the duodenum to cut proteins into smaller peptides. In this paper, the effects of activities of chymotrypsin and trypsin enzymes on fluorescence lifetime distributions of the substrat bovine serum albumin (BSA) modified with N-(1-pyrenyl)maleimide (PM) were examined. In the labeling study of BSA with PM, it is aimed to attach PM to the single free thiol (Cys34) and to all the free amine groups in accessible positions in order to produce excimers of pyrene planes of the possible highest amount to form the lifetime distributions in the widest range, that may show specifically distinguishing changes resulting from the activities of the proteases. The time resolved spectrofluorometer was used to monitor fluorescence decays, which were analyzed by using the exponential series method (ESM) to obtain the changes of lifetime distributions. After the exposure of the synthesized substrat PM-BSA to the enzymes, the fluorescence lifetime distributions exhibited different structures which were attributed to the different activities of the proteases. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. The modifier effects of chymotrypsin and trypsin enzymes on fluorescence lifetime distribution of "N-(1-pyrenyl)maleimide-bovine serum albumin" complex

    Science.gov (United States)

    Özyiğit, İbrahim Ethem; Karakuş, Emine; Pekcan, Önder

    2016-02-01

    Chymotrypsin and trypsin are the well known proteolytic enzymes, both of which are synthesized in the pancreas as their precursors - the inactive forms; chymotrypsinogen and trypsinogen - and then are released into the duodenum to cut proteins into smaller peptides. In this paper, the effects of activities of chymotrypsin and trypsin enzymes on fluorescence lifetime distributions of the substrat bovine serum albumin (BSA) modified with N-(1-pyrenyl)maleimide (PM) were examined. In the labeling study of BSA with PM, it is aimed to attach PM to the single free thiol (Cys34) and to all the free amine groups in accessible positions in order to produce excimers of pyrene planes of the possible highest amount to form the lifetime distributions in the widest range, that may show specifically distinguishing changes resulting from the activities of the proteases. The time resolved spectrofluorometer was used to monitor fluorescence decays, which were analyzed by using the exponential series method (ESM) to obtain the changes of lifetime distributions. After the exposure of the synthesized substrat PM-BSA to the enzymes, the fluorescence lifetime distributions exhibited different structures which were attributed to the different activities of the proteases.

  20. Selective plane illumination microscopy (SPIM) with time-domain fluorescence lifetime imaging microscopy (FLIM) for volumetric measurement of cleared mouse brain samples

    Science.gov (United States)

    Funane, Tsukasa; Hou, Steven S.; Zoltowska, Katarzyna Marta; van Veluw, Susanne J.; Berezovska, Oksana; Kumar, Anand T. N.; Bacskai, Brian J.

    2018-05-01

    We have developed an imaging technique which combines selective plane illumination microscopy with time-domain fluorescence lifetime imaging microscopy (SPIM-FLIM) for three-dimensional volumetric imaging of cleared mouse brains with micro- to mesoscopic resolution. The main features of the microscope include a wavelength-adjustable pulsed laser source (Ti:sapphire) (near-infrared) laser, a BiBO frequency-doubling photonic crystal, a liquid chamber, an electrically focus-tunable lens, a cuvette based sample holder, and an air (dry) objective lens. The performance of the system was evaluated with a lifetime reference dye and micro-bead phantom measurements. Intensity and lifetime maps of three-dimensional human embryonic kidney (HEK) cell culture samples and cleared mouse brain samples expressing green fluorescent protein (GFP) (donor only) and green and red fluorescent protein [positive Förster (fluorescence) resonance energy transfer] were acquired. The results show that the SPIM-FLIM system can be used for sample sizes ranging from single cells to whole mouse organs and can serve as a powerful tool for medical and biological research.

  1. Efficiency of semi-automated fluorescent multiplex PCRs with 11 microsatellite markers for genetic studies of deer populations.

    Science.gov (United States)

    Bonnet, A; Thévenon, S; Maudet, F; Maillard, J C

    2002-10-01

    Thirty bovine and eight ovine microsatellite primer pairs were tested on four tropical deer species: Eld's and Swamp deer (highly threatened) and Rusa and Vietnamese Sika deer (economically important). Thirty markers gave an amplified product in all four species (78.9%). The number of polymorphic microsatellite markers varied among the species from 14 in Eld's deer (47%) to 20 in Swamp deer (67%). Among them, 11 microsatellite loci were multiplexed in three polymerase chain reactions (PCRs) and labelled with three different fluorochromes that can be loaded in one gel-lane. To test the efficiency of the multiplex, primary genetic studies (mean number of alleles, expected heterozygosities and Fis values) were carried out on four deer populations. Parentage exclusion probability and probability of identity were computed and discussed on a Swamp deer population. These multiplexes PCRs were also tested on several other deer species and subspecies. The aim of this study is to establish a tool useful for genetic studies of population structure and diversity in four tropical deer species which with few modifications can be applied to other species of the genus Cervus.

  2. Ultrasensitive Single Fluorescence-Labeled Probe-Mediated Single Universal Primer-Multiplex-Droplet Digital Polymerase Chain Reaction for High-Throughput Genetically Modified Organism Screening.

    Science.gov (United States)

    Niu, Chenqi; Xu, Yuancong; Zhang, Chao; Zhu, Pengyu; Huang, Kunlun; Luo, Yunbo; Xu, Wentao

    2018-05-01

    As genetically modified (GM) technology develops and genetically modified organisms (GMOs) become more available, GMOs face increasing regulations and pressure to adhere to strict labeling guidelines. A singleplex detection method cannot perform the high-throughput analysis necessary for optimal GMO detection. Combining the advantages of multiplex detection and droplet digital polymerase chain reaction (ddPCR), a single universal primer-multiplex-ddPCR (SUP-M-ddPCR) strategy was proposed for accurate broad-spectrum screening and quantification. The SUP increases efficiency of the primers in PCR and plays an important role in establishing a high-throughput, multiplex detection method. Emerging ddPCR technology has been used for accurate quantification of nucleic acid molecules without a standard curve. Using maize as a reference point, four heterologous sequences ( 35S, NOS, NPTII, and PAT) were selected to evaluate the feasibility and applicability of this strategy. Surprisingly, these four genes cover more than 93% of the transgenic maize lines and serve as preliminary screening sequences. All screening probes were labeled with FAM fluorescence, which allows the signals from the samples with GMO content and those without to be easily differentiated. This fiveplex screening method is a new development in GMO screening. Utilizing an optimal amplification assay, the specificity, limit of detection (LOD), and limit of quantitation (LOQ) were validated. The LOD and LOQ of this GMO screening method were 0.1% and 0.01%, respectively, with a relative standard deviation (RSD) < 25%. This method could serve as an important tool for the detection of GM maize from different processed, commercially available products. Further, this screening method could be applied to other fields that require reliable and sensitive detection of DNA targets.

  3. Fluorescence lifetime spectroscopy: potential for in-vivo estimation of skin fluorophores changes after low power laser treatment

    Science.gov (United States)

    Ferulova, Inesa; Lihachev, Alexey; Spigulis, Janis

    2013-11-01

    The impact of visible cwlaser irradiation on skin autofluorescence lifetimes was investigated in spectral range from 450 nm to 600 nm. Skin optical provocations were performed during 1 min by 405 nm low power cw laser with power density up to 20 mW/cm2. Autofluorescence lifetimes were measured before and immediately after the optical provocation.

  4. Multiplexed salivary protein profiling for patients with respiratory diseases using fiber-optic bundles and fluorescent antibody-based microarrays.

    Science.gov (United States)

    Nie, Shuai; Benito-Peña, Elena; Zhang, Huaibin; Wu, Yue; Walt, David R

    2013-10-01

    Over the past 40 years, the incidence and prevalence of respiratory diseases have increased significantly throughout the world, damaging economic productivity and challenging health care systems. Current diagnoses of different respiratory diseases generally involve invasive sampling methods such as induced sputum or bronchoalveolar lavage that are uncomfortable, or even painful, for the patient. In this paper, we present a platform incorporating fiber-optic bundles and antibody-based microarrays to perform multiplexed protein profiling of a panel of six salivary biomarkers for asthma and cystic fibrosis (CF) diagnosis. The platform utilizes an optical fiber bundle containing approximately 50,000 individual 4.5 μm diameter fibers that are chemically etched to create microwells in which modified microspheres decorated with monoclonal capture antibodies can be deposited. On the basis of a sandwich immunoassay format, the array quantifies human vascular endothelial growth factor (VEGF), interferon gamma-induced protein 10 (IP-10), interleukin-8 (IL-8), epidermal growth factor (EGF), matrix metalloproteinase 9 (MMP-9), and interleukin-1 beta (IL-1β) salivary biomarkers in the subpicomolar range. Saliva supernatants collected from 291 individuals (164 asthmatics, 71 CF patients, and 56 healthy controls (HC)) were analyzed on the platform to profile each group of patients using this six-analyte suite. It was found that four of the six proteins were observed to be significantly elevated (p < 0.01) in asthma and CF patients compared with HC. These results demonstrate the potential to use the multiplexed protein array platform for respiratory disease diagnosis.

  5. Laser induced fluorescence lifetime characterization of Bacillus endospore species using time correlated single photon counting analysis with the multi-exponential fit method

    Science.gov (United States)

    Smith, Clint; Edwards, Jarrod; Fisher, Andmorgan

    2010-04-01

    Rapid detection of biological material is critical for determining presence/absence of bacterial endospores within various investigative programs. Even more critical is that if select material tests positive for bacillus endospores then tests should provide data at the species level. Optical detection of microbial endospore formers such as Bacillus sp. can be heavy, cumbersome, and may only identify at the genus level. Data provided from this study will aid in characterization needed by future detection systems for further rapid breakdown analysis to gain insight into a more positive signature collection of Bacillus sp. Literature has shown that fluorescence spectroscopy of endospores could be statistically separated from other vegetative genera, but could not be separated among one another. Results of this study showed endospore species separation is possible using laser-induce fluorescence with lifetime decay analysis for Bacillus endospores. Lifetime decays of B. subtilis, B. megaterium, B. coagulans, and B. anthracis Sterne strain were investigated. Using the Multi-Exponential fit method data showed three distinct lifetimes for each species within the following ranges, 0.2-1.3 ns; 2.5-7.0 ns; 7.5-15.0 ns, when laser induced at 307 nm. The four endospore species were individually separated using principle component analysis (95% CI).

  6. Fluorescent Quantification of DNA Based on Core-Shell Fe3O4@SiO2@Au Nanocomposites and Multiplex Ligation-Dependent Probe Amplification.

    Science.gov (United States)

    Fan, Jing; Yang, Haowen; Liu, Ming; Wu, Dan; Jiang, Hongrong; Zeng, Xin; Elingarami, Sauli; Ll, Zhiyang; Li, Song; Liu, Hongna; He, Nongyue

    2015-02-01

    In this research, a novel method for relative fluorescent quantification of DNA based on Fe3O4@SiO2@Au gold-coated magnetic nanocomposites (GMNPs) and multiplex ligation- dependent probe amplification (MLPA) has been developed. With the help of self-assembly, seed-mediated growth and chemical reduction method, core-shell Fe3O4@SiO2@Au GMNPs were synthesized. Through modified streptavidin on the GMNPs surface, we obtained a bead chip which can capture the biotinylated probes. Then we designed MLPA probes which were tagged with biotin or Cy3 and target DNA on the basis of human APP gene sequence. The products from the thermostable DNA ligase induced ligation reactions and PCR amplifications were incubated with SA-GMNPs. After washing, magnetic separation, spotting, the fluorescent scanning results showed our method can be used for the relative quantitative analysis of the target DNA in the concentration range of 03004~0.5 µM.

  7. Non-Euclidean phasor analysis for quantification of oxidative stress in ex vivo human skin exposed to sun filters using fluorescence lifetime imaging microscopy

    Science.gov (United States)

    Osseiran, Sam; Roider, Elisabeth M.; Wang, Hequn; Suita, Yusuke; Murphy, Michael; Fisher, David E.; Evans, Conor L.

    2017-12-01

    Chemical sun filters are commonly used as active ingredients in sunscreens due to their efficient absorption of ultraviolet (UV) radiation. Yet, it is known that these compounds can photochemically react with UV light and generate reactive oxygen species and oxidative stress in vitro, though this has yet to be validated in vivo. One label-free approach to probe oxidative stress is to measure and compare the relative endogenous fluorescence generated by cellular coenzymes nicotinamide adenine dinucleotides and flavin adenine dinucleotides. However, chemical sun filters are fluorescent, with emissive properties that contaminate endogenous fluorescent signals. To accurately distinguish the source of fluorescence in ex vivo skin samples treated with chemical sun filters, fluorescence lifetime imaging microscopy data were processed on a pixel-by-pixel basis using a non-Euclidean separation algorithm based on Mahalanobis distance and validated on simulated data. Applying this method, ex vivo samples exhibited a small oxidative shift when exposed to sun filters alone, though this shift was much smaller than that imparted by UV irradiation. Given the need for investigative tools to further study the clinical impact of chemical sun filters in patients, the reported methodology may be applied to visualize chemical sun filters and measure oxidative stress in patients' skin.

  8. Quantitative time domain analysis of lifetime-based Förster resonant energy transfer measurements with fluorescent proteins: Static random isotropic fluorophore orientation distributions

    DEFF Research Database (Denmark)

    Alexandrov, Yuriy; Nikolic, Dino Solar; Dunsby, Christopher

    2018-01-01

    Förster resonant energy transfer (FRET) measurements are widely used to obtain information about molecular interactions and conformations through the dependence of FRET efficiency on the proximity of donor and acceptor fluorophores. Fluorescence lifetime measurements can provide quantitative...... into new software for fitting donor emission decay profiles. Calculated FRET parameters, including molar population fractions, are compared for the analysis of simulated and experimental FRET data under the assumption of static and dynamic fluorophores and the intermediate regimes between fully dynamic...... analysis of FRET efficiency and interacting population fraction. Many FRET experiments exploit the highly specific labelling of genetically expressed fluorescent proteins, applicable in live cells and organisms. Unfortunately, the typical assumption of fast randomization of fluorophore orientations...

  9. Study of lifetimes of fluorescence levels of tetravalent uranium in the incommensurate phase of thorium tetrabromide and tetrachloride

    International Nuclear Information System (INIS)

    Milicic, A.

    1989-01-01

    The lifetimes of radiative levels of tetravalent uranium in the incommensurate phase of thorium tetrahalides have been measured as a function of different parameters: site symmetry, temperature and concentration. The incommensurate phase of thorium tetrabromide and tetrachloride is characterized by a continuous distribution of site symmetries induced by a continuous and weak displacement of the halides around the thorium (uranium) ions. At low temperature, 4.2 K, the lifetime variation as a function of excited classes of symmetry is governed by the radiative process probability as well as the energy transfer between uranium ions in different sites. At higher temperature, a model based on a Boltzmann equilibrium between closed energy levels is able to reproduce the experimental lifetime variation as a function of the temperature, for a given class of symmetry. For the variation of lifetime as a function of uranium ion concentrations, at high dilution and in the case of U 4+ : ThBr 4 , there is a competition between the energy transfer and thermal population of excited states [fr

  10. Multiplexed interfacial transduction of nucleic acid hybridization using a single color of immobilized quantum dot donor and two acceptors in fluorescence resonance energy transfer.

    Science.gov (United States)

    Algar, W Russ; Krull, Ulrich J

    2010-01-01

    A multiplexed solid-phase assay for the detection of nucleic acid hybridization was developed on the basis of a single color of immobilized CdSe/ZnS quantum dot (QD) as a donor in fluorescence resonance energy transfer (FRET). This work demonstrated that two channels of detection did not necessitate two different QD donors. Two probe oligonucleotides were coimmobilized on optical fibers modified with QDs, and a sandwich assay was used to associate the acceptor dyes with interfacial hybridization events without target labeling. FRET-sensitized acceptor emission provided an analytical signal that was concentration dependent down to 10 nM. Changes in the ratio of coimmobilized probe oligonucleotides were found to yield linear changes in the relative amounts of acceptor emission. These changes were compared to previous studies that used mixed films of two QD donors for two detection channels. The analysis indicated that probe dilution effects were primarily driven by changes in acceptor number density and that QD dilution effects or changes in mean donor-acceptor distance were secondary. Hybridization kinetics were found to be consistent between different ratios of coimmobilized probes, suggesting that hybridization in this type of system occurred via the accepted model for solid-phase hybridization, where adsorption and then diffusion at the solid interface drove hybridization.

  11. Demonstration of the lack of cytotoxicity of unmodified and folic acid modified graphene oxide quantum dots, and their application to fluorescence lifetime imaging of HaCaT cells.

    Science.gov (United States)

    Goreham, Renee V; Schroeder, Kathryn L; Holmes, Amy; Bradley, Siobhan J; Nann, Thomas

    2018-01-24

    The authors describe the synthesis of water-soluble and fluorescent graphene oxide quantum dots via acid exfoliation of graphite nanoparticles. The resultant graphene oxide quantum dots (GoQDs) were then modified with folic acid. Folic acid receptors are overexpressed in cancer cells and hence can bind to functionalized graphene oxide quantum dots. On excitation at 305 nm, the GoQDs display green fluorescence with a peak wavelength at ~520 nm. The modified GoQDs are non-toxic to macrophage cells even after prolonged exposure and high concentrations. Fluorescence lifetime imaging and multiphoton microscopy was used (in combination) to image HeCaT cells exposed to GoQDs, resulting in a superior method for bioimaging. Graphical abstract Schematic representation of graphene oxide quantum dots, folic acid modified graphene oxide quantum dots (red), and the use of fluorescence lifetime to discriminate against green auto-fluorescence of HeCaT cells.

  12. An Automated System for the Control of, and Data Acquisition from Multiphoton Ionization and Fluorescence Lifetime Measurements.

    Science.gov (United States)

    1986-09-01

    Quanta- Ray company , which also supplied the laser used for the multiphoton work. The, burner was mounted on a translator stage from Velmex, Inc...and no longer exists as a process in the system. When the user analysis program has completed, the lifetime program is again automatically re-started...KCHAR) RETURN 100 FORMAT(I3) 101 FORMAT(F7.2) END SUBROUTINE LAB4 FODA SE"oteD C This routine puts the label "INTEGRAL FROM DATA SET" on the MDP C screen

  13. On optical detection of densely labeled synapses in neuropil and mapping connectivity with combinatorially multiplexed fluorescent synaptic markers.

    Directory of Open Access Journals (Sweden)

    Yuriy Mishchenko

    Full Text Available We propose a new method for mapping neural connectivity optically, by utilizing Cre/Lox system Brainbow to tag synapses of different neurons with random mixtures of different fluorophores, such as GFP, YFP, etc., and then detecting patterns of fluorophores at different synapses using light microscopy (LM. Such patterns will immediately report the pre- and post-synaptic cells at each synaptic connection, without tracing neural projections from individual synapses to corresponding cell bodies. We simulate fluorescence from a population of densely labeled synapses in a block of hippocampal neuropil, completely reconstructed from electron microscopy data, and show that high-end LM is able to detect such patterns with over 95% accuracy. We conclude, therefore, that with the described approach neural connectivity in macroscopically large neural circuits can be mapped with great accuracy, in scalable manner, using fast optical tools, and straightforward image processing. Relying on an electron microscopy dataset, we also derive and explicitly enumerate the conditions that should be met to allow synaptic connectivity studies with high-resolution optical tools.

  14. Distinct roles of the photosystem II protein PsbS and zeaxanthin in the regulation of light harvesting in plants revealed by fluorescence lifetime snapshots.

    Science.gov (United States)

    Sylak-Glassman, Emily J; Malnoë, Alizée; De Re, Eleonora; Brooks, Matthew D; Fischer, Alexandra Lee; Niyogi, Krishna K; Fleming, Graham R

    2014-12-09

    The photosystem II (PSII) protein PsbS and the enzyme violaxanthin deepoxidase (VDE) are known to influence the dynamics of energy-dependent quenching (qE), the component of nonphotochemical quenching (NPQ) that allows plants to respond to fast fluctuations in light intensity. Although the absence of PsbS and VDE has been shown to change the amount of quenching, there have not been any measurements that can detect whether the presence of these proteins alters the type of quenching that occurs. The chlorophyll fluorescence lifetime probes the excited-state chlorophyll relaxation dynamics and can be used to determine the amount of quenching as well as whether two different genotypes with the same amount of NPQ have similar dynamics of excited-state chlorophyll relaxation. We measured the fluorescence lifetimes on whole leaves of Arabidopsis thaliana throughout the induction and relaxation of NPQ for wild type and the qE mutants, npq4, which lacks PsbS; npq1, which lacks VDE and cannot convert violaxanthin to zeaxanthin; and npq1 npq4, which lacks both VDE and PsbS. These measurements show that although PsbS changes the amount of quenching and the rate at which quenching turns on, it does not affect the relaxation dynamics of excited chlorophyll during quenching. In addition, the data suggest that PsbS responds not only to ΔpH but also to the Δψ across the thylakoid membrane. In contrast, the presence of VDE, which is necessary for the accumulation of zeaxanthin, affects the excited-state chlorophyll relaxation dynamics.

  15. Fluorescence lifetime selectivity in excitation-emission matrices for qualitative analysis of a two-component system

    International Nuclear Information System (INIS)

    Millican, D.W.; McGown, L.B.

    1989-01-01

    Steady-state fluorescence excitation-emission matrices (EEMs), and phase-resolved EEMs (PREEMs) collected at modulation frequencies of 6, 18, and 30 MHz, were used for qualitative analysis of mixtures of benzo[k]fluoranthene (τ = 8 ns) and benzo[b]fluoranthene (τ = 29 ns) in ethanol. The EEMs of the individual components were extracted from mixture EEMs by means of wavelength component vector-gram (WCV) analysis. Phase resolution was found to be superior to steady-state measurements for extraction of the component spectra, for mixtures in which the intensity contributions from the two components are unequal

  16. Paper-based solid-phase multiplexed nucleic acid hybridization assay with tunable dynamic range using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    Science.gov (United States)

    Noor, M Omair; Krull, Ulrich J

    2013-08-06

    A multiplexed solid-phase nucleic acid hybridization assay on a paper-based platform is presented using multicolor immobilized quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET). The surface of paper was modified with imidazole groups to immobilize two types of QD-probe oligonucleotide conjugates that were assembled in solution. Green-emitting QDs (gQDs) and red-emitting QDs (rQDs) served as donors with Cy3 and Alexa Fluor 647 (A647) acceptors. The gQD/Cy3 FRET pair served as an internal standard, while the rQD/A647 FRET pair served as a detection channel, combining the control and analytical test zones in one physical location. Hybridization of dye-labeled oligonucleotide targets provided the proximity for FRET sensitized emission from the acceptor dyes, which served as an analytical signal. Hybridization assays in the multicolor format provided a limit of detection of 90 fmol and an upper limit of dynamic range of 3.5 pmol. The use of an array of detection zones was designed to provide improved analytical figures of merit compared to that which could be achieved on one type of array design in terms of relative concentration of multicolor QDs. The hybridization assays showed excellent resistance to nonspecific adsorption of oligonucleotides. Selectivity of the two-plex hybridization assay was demonstrated by single nucleotide polymorphism (SNP) detection at a contrast ratio of 50:1. Additionally, it is shown that the use of preformed QD-probe oligonucleotide conjugates and consideration of the relative number density of the two types of QD-probe conjugates in the two-color assay format is advantageous to maximize assay sensitivity and the upper limit of dynamic range.

  17. Analogue multiplexer

    International Nuclear Information System (INIS)

    Gorshkov, V.A.; Kuznetsov, A.N.

    1980-01-01

    In systems of signal recording from several parallel spectrometric channels one can considerably reduce the total apparatus volume using a special unit - an analog multiplexer. A description of the multiplexer in the CAMAC system on the base of fast linear gating circuits which allows one analog-to-code converter to attend four spectrometric channels is given. On the example of the 4-channel spectrometer the logics of interaction of the multiple with analog-to-digital coxernver and signal recorder is shown. Electrical and functional multiplexer flow-sheets are given and its main characteristics are presented

  18. Penetration of silver nanoparticles into porcine skin ex vivo using fluorescence lifetime imaging microscopy, Raman microscopy, and surface-enhanced Raman scattering microscopy.

    Science.gov (United States)

    Zhu, Yongjian; Choe, Chun-Sik; Ahlberg, Sebastian; Meinke, Martina C; Alexiev, Ulrike; Lademann, Juergen; Darvin, Maxim E

    2015-05-01

    In order to investigate the penetration depth of silver nanoparticles (Ag NPs) inside the skin, porcine ears treated with Ag NPs are measured by two-photon tomography with a fluorescence lifetime imaging microscopy (TPT-FLIM) technique, confocal Raman microscopy (CRM), and surface-enhanced Raman scattering (SERS) microscopy. Ag NPs are coated with poly-N-vinylpyrrolidone and dispersed in pure water solutions. After the application of Ag NPs, porcine ears are stored in the incubator for 24 h at a temperature of 37°C. The TPT-FLIM measurement results show a dramatic decrease of the Ag NPs' signal intensity from the skin surface to a depth of 4 μm. Below 4 μm, the Ag NPs' signal continues to decline, having completely disappeared at 12 to 14 μm depth. CRM shows that the penetration depth of Ag NPs is 11.1 ± 2.1 μm. The penetration depth measured with a highly sensitive SERS microscopy reaches 15.6 ± 8.3 μm. Several results obtained with SERS show that the penetration depth of Ag NPs can exceed the stratum corneum (SC) thickness, which can be explained by both penetration of trace amounts of Ag NPs through the SC barrier and by the measurements inside the hair follicle, which cannot be excluded in the experiment.

  19. High-resolution imaging of basal cell carcinoma: a comparison between multiphoton microscopy with fluorescence lifetime imaging and reflectance confocal microscopy.

    Science.gov (United States)

    Manfredini, Marco; Arginelli, Federica; Dunsby, Christopher; French, Paul; Talbot, Clifford; König, Karsten; Pellacani, Giovanni; Ponti, Giovanni; Seidenari, Stefania

    2013-02-01

    The aim of this study was to compare morphological aspects of basal cell carcinoma (BCC) as assessed by two different imaging methods: in vivo reflectance confocal microscopy (RCM) and multiphoton tomography with fluorescence lifetime imaging implementation (MPT-FLIM). The study comprised 16 BCCs for which a complete set of RCM and MPT-FLIM images were available. The presence of seven MPT-FLIM descriptors was evaluated. The presence of seven RCM equivalent parameters was scored in accordance to their extension. Chi-squared test with Fisher's exact test and Spearman's rank correlation coefficient were determined between MPT-FLIM scores and adjusted-RCM scores. MPT-FLIM and RCM descriptors of BCC were coupled to match the descriptors that define the same pathological structures. The comparison included: Streaming and Aligned elongated cells, Streaming with multiple directions and Double alignment, Palisading (RCM) and Palisading (MPT-FLIM), Typical tumor islands, and Cell islands surrounded by fibers, Dark silhouettes and Phantom islands, Plump bright cells and Melanophages, Vessels (RCM), and Vessels (MPT-FLIM). The parameters that were significantly correlated were Melanophages/Plump Bright Cells, Aligned elongated cells/Streaming, Double alignment/Streaming with multiple directions, and Palisading (MPT-FLIM)/Palisading (RCM). According to our data, both methods are suitable to image BCC's features. The concordance between MPT-FLIM and RCM is high, with some limitations due to the technical differences between the two devices. The hardest difficulty when comparing the images generated by the two imaging modalities is represented by their different field of view. © 2012 John Wiley & Sons A/S.

  20. Nuclear lifetimes

    International Nuclear Information System (INIS)

    Caraca, J.M.G.

    1976-01-01

    The importance of the results obtained in experiments of measurement of lifetimes for a detailed knowledge of nuclear structure is referred. Direct methods of measurement of nuclear lifetimes are described, namely, electronic methods, recoil-distance method, doppler shift atenuation method and blocking-method. A brief reference is made to indirect methods for measurement of life-times

  1. Lifetime measurements

    International Nuclear Information System (INIS)

    Fossan, D.B.; Warburton, E.K.

    1974-01-01

    Lifetime measurements are discussed, concentrating on the electronic technique, the recoil distance method (RDM), and the Doppler shift attenuation method (DSAM). A brief review of several indirect timing techniques is given, and their specific advantages and applicability are considered. The relationship between lifetimes of nuclear states and the nuclear structure information obtained from them is examined. A short discussion of channeling and microwave methods of lifetime measurement is presented. (23 figures, 171 references) (U.S.)

  2. Carcinoma multiplex

    International Nuclear Information System (INIS)

    Shah, S. A.; Riaz, U.; Zahoor, I.; Jalil, A.; Zubair, M.

    2013-01-01

    Multiple primaries in a single patient are uncommon, though not very rare. The existence of such cancers in two un-related, non-paired organs is even more un-common. Here, we present a case of 55 years old male who presented to us with a mucoepidermoid carcinoma of the parotid gland and was operated. Later on, he presented with a large cystic swelling in the pelvis which turned out to be pseudomyxoma peritonei. A review of slides and immunohistochemistry indicated it to be adenocarcinoma colon. He presented again with recurrent mucoepidermoid carcinoma of the parotid which was operated successfully with the use of myocutaneous flap for wound closure. He is currently undergoing chemotherapy. In order to establish a separate mono-clonal etiology of both tumours, immunohistochemistry was performed. To the best of our knowledge, carcinoma multiplex in the colon and the parotid has never been reported before. (author)

  3. Comparative study of the fatty acid binding process of a new FABP from Cherax quadricarinatus by fluorescence intensity, lifetime and anisotropy.

    Directory of Open Access Journals (Sweden)

    Jiayao Li

    Full Text Available Fatty acid-binding proteins (FABPs are small cytosolic proteins, largely distributed in invertebrates and vertebrates, which accomplish uptake and intracellular transport of hydrophobic ligands such as fatty acids. Although long chain fatty acids play multiple crucial roles in cellular functions (structural, energy metabolism, regulation of gene expression, the precise functions of FABPs, especially those of invertebrate species, remain elusive. Here, we have identified and characterized a novel FABP family member, Cq-FABP, from the hepatopancreas of red claw crayfish Cherax quadricarinatus. We report the characterization of fatty acid-binding affinity of Cq-FABP by four different competitive fluorescence-based assays. In the two first approaches, the fluorescent probe 8-Anilino-1-naphthalenesulfonate (ANS, a binder of internal cavities of protein, was used either by directly monitoring its fluorescence emission or by monitoring the fluorescence resonance energy transfer occurring between the single tryptophan residue of Cq-FABP and ANS. The third and the fourth approaches were based on the measurement of the fluorescence emission intensity of the naturally fluorescent cis-parinaric acid probe or the steady-state fluorescence anisotropy measurements of a fluorescently labeled fatty acid (BODIPY-C16, respectively. The four methodologies displayed consistent equilibrium constants for a given fatty acid but were not equivalent in terms of analysis. Indeed, the two first methods were complicated by the existence of non specific binding modes of ANS while BODIPY-C16 and cis-parinaric acid specifically targeted the fatty acid binding site. We found a relationship between the affinity and the length of the carbon chain, with the highest affinity obtained for the shortest fatty acid, suggesting that steric effects primarily influence the interaction of fatty acids in the binding cavity of Cq-FABP. Moreover, our results show that the binding affinities

  4. A Rotational BODIPY Nucleotide: An Environment-Sensitive Fluorescence-Lifetime Probe for DNA Interactions and Applications in Live-Cell Microscopy

    Czech Academy of Sciences Publication Activity Database

    Dziuba, Dmytro; Jurkiewicz, Piotr; Cebecauer, Marek; Hof, Martin; Hocek, Michal

    2016-01-01

    Roč. 55, č. 1 (2016), s. 174-178 ISSN 1433-7851 R&D Projects: GA ČR GBP206/12/G151; GA ČR(CZ) GC14-03141J Institutional support: RVO:61388963 ; RVO:61388955 Keywords : DNA * fluorescence spectroscopy * fluorescent probes * nucleosides * time-resolved spectroscopy Subject RIV: CC - Organic Chemistry ; BO - Biophysics (UFCH-W) Impact factor: 11.994, year: 2016

  5. Simultaneous detection of genetically modified organisms by multiplex ligation-dependent genome amplification and capillary gel electrophoresis with laser-induced fluorescence.

    Science.gov (United States)

    García-Cañas, Virginia; Mondello, Monica; Cifuentes, Alejandro

    2010-07-01

    In this work, an innovative method useful to simultaneously analyze multiple genetically modified organisms is described. The developed method consists in the combination of multiplex ligation-dependent genome dependent amplification (MLGA) with CGE and LIF detection using bare-fused silica capillaries. The MLGA process is based on oligonucleotide constructs, formed by a universal sequence (vector) and long specific oligonucleotides (selectors) that facilitate the circularization of specific DNA target regions. Subsequently, the circularized target sequences are simultaneously amplified with the same couple of primers and analyzed by CGE-LIF using a bare-fused silica capillary and a run electrolyte containing 2-hydroxyethyl cellulose acting as both sieving matrix and dynamic capillary coating. CGE-LIF is shown to be very useful and informative for optimizing MLGA parameters such as annealing temperature, number of ligation cycles, and selector probes concentration. We demonstrate the specificity of the method in detecting the presence of transgenic DNA in certified reference and raw commercial samples. The method developed is sensitive and allows the simultaneous detection in a single run of percentages of transgenic maize as low as 1% of GA21, 1% of MON863, and 1% of MON810 in maize samples with signal-to-noise ratios for the corresponding DNA peaks of 15, 12, and 26, respectively. These results demonstrate, to our knowledge for the first time, the great possibilities of MLGA techniques for genetically modified organisms analysis.

  6. Lifetime measurements

    International Nuclear Information System (INIS)

    Poletti, A.R.

    1976-01-01

    Recent developments in experimental methods of measuring the lifetimes of excited nuclear states is reviewed in three main areas. (a) Doppler Shift Attenuation Measurements (DSAM) Times: 10 -14 - 10 -11 sec.; (b) Recoil Distance Measurements (RDM) Times: 10 -9 - 10 -12 sec.; (c) Direct Electronic Timing Times: down to 10 -10 sec.; A measurement of an excited state lifetime can answer a large number of different questions. Two examples are discussed: (a) The determination of the lifetime of an isomeric transition in 93 Tc and its use in determining an upper limit for the magnitude of the parity non-conserving matrix element - /Hsub(PN)/17/2 + >. (b) The dependence of the strength of M2 transitions on isospin in nuclei in the 1dsub(3/2) -1fsub(7/2) region. (author)

  7. Precision lifetime measurements

    International Nuclear Information System (INIS)

    Tanner, C.E.

    1994-01-01

    Precision measurements of atomic lifetimes provide important information necessary for testing atomic theory. The authors employ resonant laser excitation of a fast atomic beam to measure excited state lifetimes by observing the decay-in-flight of the emitted fluorescence. A similar technique was used by Gaupp, et al., who reported measurements with precisions of less than 0.2%. Their program includes lifetime measurements of the low lying p states in alkali and alkali like systems. Motivation for this work comes from a need to test the atomic many-body-perturbation theory (MBPT) that is necessary for interpretation of parity nonconservation experiments in atomic cesium. The authors have measured the cesium 6p 2 P 1/2 and 6p 2 P 3/2 state lifetimes to be 34.934±0.094 ns and 30.499±0.070 ns respectively. With minor changes to the apparatus, they have extended their measurements to include the lithium 2p 2 P 1/2 and 2p 2 P 3/2 states

  8. Detection of MDM2/CDK4 amplification in lipomatous soft tissue tumors from formalin-fixed, paraffin-embedded tissue: comparison of multiplex ligation-dependent probe amplification (MLPA) and fluorescence in situ hybridization (FISH).

    Science.gov (United States)

    Creytens, David; van Gorp, Joost; Ferdinande, Liesbeth; Speel, Ernst-Jan; Libbrecht, Louis

    2015-02-01

    In this study, the detection of MDM2 and CDK4 amplification was evaluated in lipomatous soft tissue tumors using multiplex ligation-dependent probe amplification (MLPA), a PCR-based technique, in comparison with fluorescence in situ hybridization (FISH). These 2 techniques were evaluated in a series of 77 formalin-fixed, paraffin-embedded lipomatous tumors (27 benign adipose tumors, 28 atypical lipomatous tumors/well-differentiated liposarcomas, 18 dedifferentiated liposarcomas, and 4 pleomorphic liposarcomas). Using MLPA, with a cut-off ratio of >2, 36/71 samples (22 atypical lipomatous tumors/well-differentiated liposarcomas, and 14 dedifferentiated liposarcomas) showed MDM2 and CDK4 amplification. Using FISH as gold standard, MLPA showed a sensitivity of 90% (36/40) and a specificity of 100% (31/31) in detecting amplification of MDM2 and CDK4 in lipomatous soft tissue tumors. In case of high-level amplification (MDM2-CDK4/CEP12 ratio >5), concordance was 100%. Four cases of atypical lipomatous tumor/well-differentiated liposarcoma (4/26, 15%) with a low MDM2 and CDK4 amplification level (MDM2-CDK4/CEP12 ratio ranging between 2 and 2.5) detected by FISH showed no amplification by MLPA, although gain of MDM2 and CDK4 (ratios ranging between 1.6 and 1.9) was seen with MLPA. No amplification was detected in benign lipomatous tumors and pleomorphic liposarcomas. Furthermore, there was a very high concordance between the ratios obtained by FISH and MLPA. In conclusion, MLPA proves to be an appropriate and straightforward technique for screening MDM2/CDK4 amplification in lipomatous tumors, especially when a correct cut-off value and reference samples are chosen, and could be considered a good alternative to FISH to determine MDM2 and CDK4 amplification in liposarcomas. Moreover, because MLPA, as a multiplex technique, allows simultaneous detection of multiple chromosomal changes of interest, it could be in the future a very reliable and fast molecular analysis on

  9. FUNDUS AUTOFLUORESCENCE LIFETIMES AND CENTRAL SEROUS CHORIORETINOPATHY.

    Science.gov (United States)

    Dysli, Chantal; Berger, Lieselotte; Wolf, Sebastian; Zinkernagel, Martin S

    2017-11-01

    To quantify retinal fluorescence lifetimes in patients with central serous chorioretinopathy (CSC) and to identify disease specific lifetime characteristics over the course of disease. Forty-seven participants were included in this study. Patients with central serous chorioretinopathy were imaged with fundus photography, fundus autofluorescence, optical coherence tomography, and fluorescence lifetime imaging ophthalmoscopy (FLIO) and compared with age-matched controls. Retinal autofluorescence was excited using a 473-nm blue laser light and emitted fluorescence light was detected in 2 distinct wavelengths channels (498-560 nm and 560-720 nm). Clinical features, mean retinal autofluorescence lifetimes, autofluorescence intensity, and corresponding optical coherence tomography (OCT) images were further analyzed. Thirty-five central serous chorioretinopathy patients with a mean visual acuity of 78 ETDRS letters (range, 50-90; mean Snellen equivalent: 20/32) and 12 age-matched controls were included. In the acute stage of central serous chorioretinopathy, retinal fluorescence lifetimes were shortened by 15% and 17% in the respective wavelength channels. Multiple linear regression analysis showed that fluorescence lifetimes were significantly influenced by the disease duration (P autofluorescence lifetimes, particularly in eyes with retinal pigment epithelial atrophy, were associated with poor visual acuity. This study establishes that autofluorescence lifetime changes occurring in central serous chorioretinopathy exhibit explicit patterns which can be used to estimate perturbations of the outer retinal layers with a high degree of statistical significance.

  10. Upgrading the GSI beamline microscope with a confocal fluorescence lifetime scanner to monitor charged particle induced chromatin decondensation in living cells

    Energy Technology Data Exchange (ETDEWEB)

    Abdollahi, Elham; Taucher-Scholz, Gisela [Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Planckstrasse 1, 64291 Darmstadt (Germany); Durante, Marco [Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Planckstrasse 1, 64291 Darmstadt (Germany); Institute for Condensed Matter Physics, Darmstadt University of Technology, 64289 Darmstadt (Germany); Jakob, Burkhard, E-mail: B.Jakob@gsi.de [Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Planckstrasse 1, 64291 Darmstadt (Germany)

    2015-12-15

    We report the upgrade of the GSI beamline microscope coupled to the linear accelerator UNILAC by a confocal FLIM scanner utilizing time correlated single photon counting technique (TCSPC). The system can now be used to address the radiation induced chromatin decondensation in more detail and with higher sensitivity compared to intensity based methods. This decondensation of heterochromatic areas is one of the early DNA damage responses observed after charged particle irradiation and might facilitate the further processing of the induced lesions. We describe here the establishment of different DNA dyes as chromatin compaction probes usable for quantification of the DNA condensation status in living cells utilizing lifetime imaging. In addition, we find an evidence of heterochromatic chromatin decondensation in ion irradiated murine chromocenters detected after subsequent fixation using FLIM measurements.

  11. An automated wide-field time-gated optically sectioning fluorescence lifetime imaging multiwell plate reader for high-content analysis of protein-protein interactions

    Science.gov (United States)

    Alibhai, Dominic; Kumar, Sunil; Kelly, Douglas; Warren, Sean; Alexandrov, Yuriy; Munro, Ian; McGinty, James; Talbot, Clifford; Murray, Edward J.; Stuhmeier, Frank; Neil, Mark A. A.; Dunsby, Chris; French, Paul M. W.

    2011-03-01

    We describe an optically-sectioned FLIM multiwell plate reader that combines Nipkow microscopy with wide-field time-gated FLIM, and its application to high content analysis of FRET. The system acquires sectioned FLIM images in fluorescent protein. It has been applied to study the formation of immature HIV virus like particles (VLPs) in live cells by monitoring Gag-Gag protein interactions using FLIM FRET of HIV-1 Gag transfected with CFP or YFP. VLP formation results in FRET between closely packed Gag proteins, as confirmed by our FLIM analysis that includes automatic image segmentation.

  12. Highly efficient exciplex formation via radical ion pair recombination in X-irradiated alkane solutions for luminophores with short fluorescence lifetimes.

    Science.gov (United States)

    Melnikov, Anatoly R; Kalneus, Evgeny V; Korolev, Valeri V; Dranov, Igor G; Kruppa, Alexander I; Stass, Dmitri V

    2014-08-01

    X-irradiation of alkane solutions of N,N-dimethylaniline with various organic luminophores produces characteristic emission bands ascribed to the corresponding exciplexes. In contrast to optical generation, which requires diffusion-controlled quenching of excited states, an additional channel of exciplex formation via irreversible recombination of radical ion pairs is operative here, which produces exciplexes in solution with high efficiency even for p-terphenyl and diphenylacetylene having fluorescence decay times of 0.95 ns and 8 ps, respectively. The exciplex emission band is sensitive to an external magnetic field and exerts a very large observed magnetic field effect of up to 20%, the maximum possible value under the conditions of the described experiment.

  13. In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles.

    Science.gov (United States)

    Gu, Luo; Hall, David J; Qin, Zhengtao; Anglin, Emily; Joo, Jinmyoung; Mooney, David J; Howell, Stephen B; Sailor, Michael J

    2013-01-01

    Fluorescence imaging is one of the most versatile and widely used visualization methods in biomedical research. However, tissue autofluorescence is a major obstacle confounding interpretation of in vivo fluorescence images. The unusually long emission lifetime (5-13 μs) of photoluminescent porous silicon nanoparticles can allow the time-gated imaging of tissues in vivo, completely eliminating shorter-lived (50-fold in vitro and by >20-fold in vivo when imaging porous silicon nanoparticles. Time-gated imaging of porous silicon nanoparticles accumulated in a human ovarian cancer xenograft following intravenous injection is demonstrated in a live mouse. The potential for multiplexing of images in the time domain by using separate porous silicon nanoparticles engineered with different excited state lifetimes is discussed.

  14. Integrated photonics : compact multiplexing

    NARCIS (Netherlands)

    Pile, D.; Chen, H.; Uden, van R.G.H.; Okonkwo, C.M.; Koonen, A.M.J.

    2015-01-01

    Spatial multiplexers (SMUXs) for mode division multiplexing often involve multiple strategies for mode-selective excitation and the minimization of insertion and other losses. Haoshuo Chen, Roy van Uden, Chigo Okonkwo and Ton Koonen, working at the COBRA Institute at the Eindhoven University of

  15. Dynamic Optically Multiplexed Imaging

    Science.gov (United States)

    2015-07-29

    Dynamic Optically Multiplexed Imaging Yaron Rachlin, Vinay Shah, R. Hamilton Shepard, and Tina Shih Lincoln Laboratory, Massachusetts Institute of...V. Shah, and T. Shih “Design Architectures for Optically Multiplexed Imaging,” in submission 9 R. Gupta , P. Indyk, E. Price, and Y. Rachlin

  16. Principles of fluorescence techniques

    CERN Document Server

    2016-01-01

    Fluorescence techniques are being used and applied increasingly in academics and industry. The Principles of Fluorescence Techniques course will outline the basic concepts of fluorescence techniques and the successful utilization of the currently available commercial instrumentation. The course is designed for students who utilize fluorescence techniques and instrumentation and for researchers and industrial scientists who wish to deepen their knowledge of fluorescence applications. Key scientists in the field will deliver theoretical lectures. The lectures will be complemented by the direct utilization of steady-state and lifetime fluorescence instrumentation and confocal microscopy for FLIM and FRET applications provided by leading companies.

  17. Multiplex PageRank.

    Science.gov (United States)

    Halu, Arda; Mondragón, Raúl J; Panzarasa, Pietro; Bianconi, Ginestra

    2013-01-01

    Many complex systems can be described as multiplex networks in which the same nodes can interact with one another in different layers, thus forming a set of interacting and co-evolving networks. Examples of such multiplex systems are social networks where people are involved in different types of relationships and interact through various forms of communication media. The ranking of nodes in multiplex networks is one of the most pressing and challenging tasks that research on complex networks is currently facing. When pairs of nodes can be connected through multiple links and in multiple layers, the ranking of nodes should necessarily reflect the importance of nodes in one layer as well as their importance in other interdependent layers. In this paper, we draw on the idea of biased random walks to define the Multiplex PageRank centrality measure in which the effects of the interplay between networks on the centrality of nodes are directly taken into account. In particular, depending on the intensity of the interaction between layers, we define the Additive, Multiplicative, Combined, and Neutral versions of Multiplex PageRank, and show how each version reflects the extent to which the importance of a node in one layer affects the importance the node can gain in another layer. We discuss these measures and apply them to an online multiplex social network. Findings indicate that taking the multiplex nature of the network into account helps uncover the emergence of rankings of nodes that differ from the rankings obtained from one single layer. Results provide support in favor of the salience of multiplex centrality measures, like Multiplex PageRank, for assessing the prominence of nodes embedded in multiple interacting networks, and for shedding a new light on structural properties that would otherwise remain undetected if each of the interacting networks were analyzed in isolation.

  18. Multiplex PageRank.

    Directory of Open Access Journals (Sweden)

    Arda Halu

    Full Text Available Many complex systems can be described as multiplex networks in which the same nodes can interact with one another in different layers, thus forming a set of interacting and co-evolving networks. Examples of such multiplex systems are social networks where people are involved in different types of relationships and interact through various forms of communication media. The ranking of nodes in multiplex networks is one of the most pressing and challenging tasks that research on complex networks is currently facing. When pairs of nodes can be connected through multiple links and in multiple layers, the ranking of nodes should necessarily reflect the importance of nodes in one layer as well as their importance in other interdependent layers. In this paper, we draw on the idea of biased random walks to define the Multiplex PageRank centrality measure in which the effects of the interplay between networks on the centrality of nodes are directly taken into account. In particular, depending on the intensity of the interaction between layers, we define the Additive, Multiplicative, Combined, and Neutral versions of Multiplex PageRank, and show how each version reflects the extent to which the importance of a node in one layer affects the importance the node can gain in another layer. We discuss these measures and apply them to an online multiplex social network. Findings indicate that taking the multiplex nature of the network into account helps uncover the emergence of rankings of nodes that differ from the rankings obtained from one single layer. Results provide support in favor of the salience of multiplex centrality measures, like Multiplex PageRank, for assessing the prominence of nodes embedded in multiple interacting networks, and for shedding a new light on structural properties that would otherwise remain undetected if each of the interacting networks were analyzed in isolation.

  19. Multiplex gas chromatography

    Science.gov (United States)

    Valentin, Jose R.

    1990-01-01

    The principles of the multiplex gas chromatography (GC) technique, which is a possible candidate for chemical analysis of planetary atmospheres, are discussed. Particular attention is given to the chemical modulators developed by present investigators for multiplex GC, namely, the thermal-desorption, thermal-decomposition, and catalytic modulators, as well as to mechanical modulators. The basic technique of multiplex GC using chemical modulators and a mechanical modulator is demonstrated. It is shown that, with the chemical modulators, only one gas stream consisting of the carrier in combination with the components is being analyzed, resulting in a simplified instrument that requires relatively few consumables. The mechanical modulator demonstrated a direct application of multiplex GC for the analysis of gases in atmosphere of Titan at very low pressures.

  20. Multiplexed Engineering in Biology.

    Science.gov (United States)

    Rogers, Jameson K; Church, George M

    2016-03-01

    Biotechnology is the manufacturing technology of the future. However, engineering biology is complex, and many possible genetic designs must be evaluated to find cells that produce high levels of a desired drug or chemical. Recent advances have enabled the design and construction of billions of genetic variants per day, but evaluation capacity remains limited to thousands of variants per day. Here we evaluate biological engineering through the lens of the design–build–test cycle framework and highlight the role that multiplexing has had in transforming the design and build steps. We describe a multiplexed solution to the ‘test’ step that is enabled by new research. Achieving a multiplexed test step will permit a fully multiplexed engineering cycle and boost the throughput of biobased product development by up to a millionfold.

  1. Bilevel alarm monitoring multiplexer

    International Nuclear Information System (INIS)

    Johnson, C.S.

    1977-06-01

    This report describes the operation of the Bilevel Alarm Monitoring Multiplexer used in the Adaptive Intrusion Data System (AIDS) to transfer and control alarm signals being sent to the Nova 2 computer, the Memory Controlled Data Processor, and its own integral Display Panel. The multiplexer can handle 48 alarm channels and format the alarms into binary formats compatible with the destination of the alarm data

  2. Multimodal fluorescence imaging spectroscopy

    NARCIS (Netherlands)

    Stopel, Martijn H W; Blum, Christian; Subramaniam, Vinod; Engelborghs, Yves; Visser, Anthonie J.W.G.

    2014-01-01

    Multimodal fluorescence imaging is a versatile method that has a wide application range from biological studies to materials science. Typical observables in multimodal fluorescence imaging are intensity, lifetime, excitation, and emission spectra which are recorded at chosen locations at the sample.

  3. Statistical filtering in fluorescence microscopy and fluorescence correlation spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Macháň, Radek; Kapusta, Peter; Hof, Martin

    Roč. 406 , č. 20 (2014), s. 4797-4813 ISSN 1618-2642 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388955 Keywords : Filtered fluorescence correlation spectroscopy * Fluorescence lifetime correlation spectroscopy * Fluorescence spectral correlation spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.436, year: 2014

  4. Super-multiplex vibrational imaging

    Science.gov (United States)

    Wei, Lu; Chen, Zhixing; Shi, Lixue; Long, Rong; Anzalone, Andrew V.; Zhang, Luyuan; Hu, Fanghao; Yuste, Rafael; Cornish, Virginia W.; Min, Wei

    2017-04-01

    The ability to visualize directly a large number of distinct molecular species inside cells is increasingly essential for understanding complex systems and processes. Even though existing methods have successfully been used to explore structure-function relationships in nervous systems, to profile RNA in situ, to reveal the heterogeneity of tumour microenvironments and to study dynamic macromolecular assembly, it remains challenging to image many species with high selectivity and sensitivity under biological conditions. For instance, fluorescence microscopy faces a ‘colour barrier’, owing to the intrinsically broad (about 1,500 inverse centimetres) and featureless nature of fluorescence spectra that limits the number of resolvable colours to two to five (or seven to nine if using complicated instrumentation and analysis). Spontaneous Raman microscopy probes vibrational transitions with much narrower resonances (peak width of about 10 inverse centimetres) and so does not suffer from this problem, but weak signals make many bio-imaging applications impossible. Although surface-enhanced Raman scattering offers high sensitivity and multiplicity, it cannot be readily used to image specific molecular targets quantitatively inside live cells. Here we use stimulated Raman scattering under electronic pre-resonance conditions to image target molecules inside living cells with very high vibrational selectivity and sensitivity (down to 250 nanomolar with a time constant of 1 millisecond). We create a palette of triple-bond-conjugated near-infrared dyes that each displays a single peak in the cell-silent Raman spectral window; when combined with available fluorescent probes, this palette provides 24 resolvable colours, with the potential for further expansion. Proof-of-principle experiments on neuronal co-cultures and brain tissues reveal cell-type-dependent heterogeneities in DNA and protein metabolism under physiological and pathological conditions, underscoring the

  5. Application of time-correlated single photon counting and stroboscopic detection methods with an evanescent-wave fibre-optic sensor for fluorescence-lifetime-based pH measurements

    International Nuclear Information System (INIS)

    Henning, Paul E; Geissinger, Peter

    2012-01-01

    Quasi-distributed optical fibre sensor arrays containing luminescent sensor molecules can be read out spatially resolved utilizing optical time-of-flight detection (OTOFD) methods, which employ pulsed laser interrogation of the luminosensors and time-resolved detection of the sensor signals. In many cases, sensing is based on a change in sensor luminescence intensity; however, sensing based on luminescence lifetime changes is preferable because it reduces the need for field calibration. Because in OTOFD detection is time-resolved, luminescence-lifetime information is already available through the signal pulses, although in practise applications were restricted to sensors with long luminescence lifetimes (hundreds of ns). To implement lifetime-based sensing in crossed-optical-fibre-sensor arrays for sensor molecules with lifetimes less than 10 ns, two time-domain methods, time-correlated single photon counting and stroboscopic detection, were used to record the pH-dependent emission of a fluorescein derivative covalently attached to a highly-porous polymer. A two-term nonexponential decay function yielded both a good fit for experimental lifetime data during reconvolution and a pH response that matches Henderson–Hasselbalch behaviour, yielding a sensor accuracy of 0.02 pH units. Moreover, strong agreement was obtained for the two lifetime determination methods and with intensity-based measurements taken previously. (paper)

  6. Coherence Multiplex System Topologies

    NARCIS (Netherlands)

    Meijerink, Arjan; Taniman, R.O.; Heideman, G.H.L.M.; van Etten, Wim

    2007-01-01

    Coherence multiplexing is a potentially inexpensive form of optical code-division multiple access, which is particularly suitable for short-range applications with moderate bandwidth requirements, such as access networks, LANs, or interconnects. Various topologies are known for constructing an

  7. Microprocessorized message multiplexer

    International Nuclear Information System (INIS)

    Ejzman, S.; Guglielmi, L.; Jaeger, J.J.

    1980-07-01

    The 'Microprocessorized Message Multiplexer' is an elementary development tool used to create and debug the software of a target microprocessor (User Module: UM). It connects together four devices: a terminal, a cassette recorder, the target microprocessor and a host computer where macro and editor for the M 6800 microprocessor are resident [fr

  8. Multiplex editing system

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a multiplex editing system. The system allows multiple editing of nucleic acid sequences such as genomic sequences, such as knockins of genes of interest in a genome, knockouts of genomic sequences and/or allele replacement. Also provided herein are a method...... for editing nucleic acids and a cell comprising a stably integrated endonuclease....

  9. Extracting information from multiplex networks

    Science.gov (United States)

    Iacovacci, Jacopo; Bianconi, Ginestra

    2016-06-01

    Multiplex networks are generalized network structures that are able to describe networks in which the same set of nodes are connected by links that have different connotations. Multiplex networks are ubiquitous since they describe social, financial, engineering, and biological networks as well. Extending our ability to analyze complex networks to multiplex network structures increases greatly the level of information that is possible to extract from big data. For these reasons, characterizing the centrality of nodes in multiplex networks and finding new ways to solve challenging inference problems defined on multiplex networks are fundamental questions of network science. In this paper, we discuss the relevance of the Multiplex PageRank algorithm for measuring the centrality of nodes in multilayer networks and we characterize the utility of the recently introduced indicator function Θ ˜ S for describing their mesoscale organization and community structure. As working examples for studying these measures, we consider three multiplex network datasets coming for social science.

  10. Multiplexing a high-throughput liability assay to leverage efficiencies.

    Science.gov (United States)

    Herbst, John; Anthony, Monique; Stewart, Jeremy; Connors, David; Chen, Taosheng; Banks, Martyn; Petrillo, Edward W; Agler, Michele

    2009-06-01

    In order to identify potential cytochrome P-450 3A4 (drug-metabolizing enzyme) inducers at an early stage of the drug discovery process, a cell-based transactivation high-throughput luciferase reporter assay for the human pregnane X receptor (PXR) in HepG2 cells has been implemented and multiplexed with a viability end point for data interpretation, as part of a Lead Profiling portfolio of assays. As a routine part of Lead Profiling operations, assays are periodically evaluated for utility as well as for potential improvements in technology or process. We used a recent evaluation of our PXR-transactivation assay as a model for the application of Lean Thinking-based process analysis to lab-bench assay optimization and automation. This resulted in the development of a 384-well multiplexed homogeneous assay simultaneously detecting PXR transactivation and HepG2 cell cytotoxicity. In order to multiplex fluorescent and luminescent read-outs, modifications to each assay were necessary, which included optimization of multiple assay parameters such as cell density, plate type, and reagent concentrations. Subsequently, a set of compounds including known cytotoxic compounds and PXR inducers were used to validate the multiplexed assay. Results from the multiplexed assay correlate well with those from the singleplexed assay formats measuring PXR transactivation and viability separately. Implementation of the multiplexed assay for routine compound profiling provides improved data quality, sample conservation, cost savings, and resource efficiencies.

  11. Tumor specific lung cancer diagnostics with multiplexed FRET immunoassays

    Science.gov (United States)

    Geißler, D.; Hill, D.; Löhmannsröben, H.-G.; Thomas, E.; Lavigne, A.; Darbouret, B.; Bois, E.; Charbonnière, L. J.; Ziessel, R. F.; Hildebrandt, N.

    2010-02-01

    An optical multiplexed homogeneous (liquid phase) immunoassay based on FRET from a terbium complex to eight different fluorescent dyes is presented. We achieved highly sensitive parallel detection of four different lung cancer specific tumor markers (CEA, NSE, SCC and CYFRA21-1) within a single assay and show a proof-of-principle for 5- fold multiplexing. The method is well suited for fast and low-cost miniaturized point-of-care testing as well as for highthroughput screening in a broad range of in-vitro diagnostic applications.

  12. Forensic typing of autosomal SNPs with a 29 SNP-multiplex--results of a collaborative EDNAP exercise

    DEFF Research Database (Denmark)

    Sanchez, Juan Jose; Børsting, C; Balogh, K

    2008-01-01

    base extension (SBE) multiplex reactions with 29 and 23 SNPs, respectively, using SNaPshot kit, capillary electrophoresis and multicolour fluorescence detection. For practical reasons, only the 29 SBE multiplex reaction was carried out by the participating laboratories. A total of 11 bloodstains on FTA...

  13. Multiplexed measurements by time resolved spectroscopy using colloidal CdSe/ZnS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, U.; Jimenez de Aberasturi, D.; Malinowski, R.; Amin, F.; Parak, W. J.; Heimbrodt, W., E-mail: Wolfram.Heimbrodt@physik.uni-marburg.de [Department of Physics and Materials Sciences Center, Philipps-University of Marburg, Renthof 5, D-35032 Marburg (Germany)

    2014-01-27

    Multiplexed measurements of analytes in parallel is a topical demand in bioanalysis and bioimaging. An interesting alternative to commonly performed spectral multiplexing is lifetime multiplexing. In this Letter, we present a proof of principle of single-color lifetime multiplexing by coupling the same fluorophore to different nanoparticles. The effective lifetime of the fluorophores can be tuned by more than one order of magnitude due to resonance energy transfer from donor states. Measurements have been done on a model systems consisting of ATTO-590 dye molecules linked to either gold particles or to CdSe/ZnS core shell quantum dots. Both systems show the same luminescence spectrum of ATTO-590 dye emission in continuous wave excitation, but can be distinguished by means of time resolved measurements. The dye molecules bound to gold particles exhibit a mono-exponential decay with a lifetime of 4.5 ns, whereas the dye molecules bound to CdSe/ZnS dots show a nonexponential decay with a slow component of about 135 ns due to the energy transfer from the quantum dots. We demonstrate the fundamental possibility to determine the mixing ratio for dyes with equal luminescence spectra but very different transients. This opens up a pathway independent of the standard optical multiplexing with many different fluorophores emitting from the near ultraviolet to the near infrared spectral region.

  14. Nuclear lifetime measurement

    International Nuclear Information System (INIS)

    Guillaume, Georges

    Three direct techniques of lifetime measurement are emphasized: electronic methods and two methods based on the Doppler effect (the recoil distance methods or RDM, the Doppler shift attenuation methods or DSAM). Said direct methods are concerned with the direct measurement of the radioactive decay constants of nuclear excited states. They allow lifetimes of nucleus bound states whose deexcitations occur by electromagnetic transitions, to be determined. Other methods for measuring lifetimes are also examined: microwave techniques and those involving the blocking effect in crystals (direct methods) and also various indirect methods of obtaining lifetimes (γ resonance scattering, capture reactions, inelastic electron and nucleus scattering, and Coulomb deexcitation) [fr

  15. Functional Multiplex PageRank

    Science.gov (United States)

    Iacovacci, Jacopo; Rahmede, Christoph; Arenas, Alex; Bianconi, Ginestra

    2016-10-01

    Recently it has been recognized that many complex social, technological and biological networks have a multilayer nature and can be described by multiplex networks. Multiplex networks are formed by a set of nodes connected by links having different connotations forming the different layers of the multiplex. Characterizing the centrality of the nodes in a multiplex network is a challenging task since the centrality of the node naturally depends on the importance associated to links of a certain type. Here we propose to assign to each node of a multiplex network a centrality called Functional Multiplex PageRank that is a function of the weights given to every different pattern of connections (multilinks) existent in the multiplex network between any two nodes. Since multilinks distinguish all the possible ways in which the links in different layers can overlap, the Functional Multiplex PageRank can describe important non-linear effects when large relevance or small relevance is assigned to multilinks with overlap. Here we apply the Functional Page Rank to the multiplex airport networks, to the neuronal network of the nematode C. elegans, and to social collaboration and citation networks between scientists. This analysis reveals important differences existing between the most central nodes of these networks, and the correlations between their so-called pattern to success.

  16. Multiplex measuring systems in physics

    International Nuclear Information System (INIS)

    Soroko, L.M.

    1980-01-01

    The principles of operation of multiplex devices used in different spheres of physics are discussed. The ''multiplex'' notion means that the data output of the device is an integral image of the functional dependence under investigation, but not its readings as in usual instruments. The analysis of the present state of developments of the multiplex systems in optics, nuclear magnetic resonance spectroscopy, in time-of-flight spectrometers for slow and fast neutrons, as well as elementary particle detectors, is given. The construction algorithms for the digital codes are presented, the history of development of the multiplex measuring principle is given [ru

  17. Lifetime of organic photovoltaics

    DEFF Research Database (Denmark)

    Corazza, Michael; Krebs, Frederik C; Gevorgyan, Suren A.

    2015-01-01

    tests. Comparison of the indoor and outdoor lifetimes was performed by means of the o-diagram, which constitutes the initial steps towards establishing a method for predicting the lifetime of an organic photovoltaic device under real operational conditions based on a selection of accelerated indoor...

  18. A simple electron multiplexer

    International Nuclear Information System (INIS)

    Dobrzynski, L; Akjouj, A; Djafari-Rouhani, B; Al-Wahsh, H; Zielinski, P

    2003-01-01

    We present a simple multiplexing device made of two atomic chains coupled by two other transition metal atoms. We show that this simple atomic device can transfer electrons at a given energy from one wire to the other, leaving all other electron states unaffected. Closed-form relations between the transmission coefficients and the inter-atomic distances are given to optimize the desired directional electron ejection. Such devices can be adsorbed on insulating substrates and characterized by current surface technologies. (letter to the editor)

  19. Multiplex Recurrence Networks

    Science.gov (United States)

    Eroglu, Deniz; Marwan, Norbert

    2017-04-01

    The complex nature of a variety of phenomena in physical, biological, or earth sciences is driven by a large number of degrees of freedom which are strongly interconnected. Although the evolution of such systems is described by multivariate time series (MTS), so far research mostly focuses on analyzing these components one by one. Recurrence based analyses are powerful methods to understand the underlying dynamics of a dynamical system and have been used for many successful applications including examples from earth science, economics, or chemical reactions. The backbone of these techniques is creating the phase space of the system. However, increasing the dimension of a system requires increasing the length of the time series in order get significant and reliable results. This requirement is one of the challenges in many disciplines, in particular in palaeoclimate, thus, it is not easy to create a phase space from measured MTS due to the limited number of available obervations (samples). To overcome this problem, we suggest to create recurrence networks from each component of the system and combine them into a multiplex network structure, the multiplex recurrence network (MRN). We test the MRN by using prototypical mathematical models and demonstrate its use by studying high-dimensional palaeoclimate dynamics derived from pollen data from the Bear Lake (Utah, US). By using the MRN, we can distinguish typical climate transition events, e.g., such between Marine Isotope Stages.

  20. Hadronization, spin and lifetimes

    International Nuclear Information System (INIS)

    Grossman, Yuval; Nachshon, Itay

    2008-01-01

    Measurements of lifetimes can be done in two ways. For very short lived particles, the width can be measured. For long lived ones, the lifetime can be directly measured, for example, using a displaced vertex. Practically, the lifetime cannot be extracted for particles with intermediate lifetimes. We show that for such cases information about the lifetime can be extracted for heavy colored particles that can be produced with known polarization. For example, a t-like particle with intermediate lifetime hadronizes into a superposition of the lowest two hadronic states, T* and T (the equivalent of B* and B). Depolarization effects are governed by time scales that are much longer than the hadronization time scale, Λ QCD -1 . After a time of order 1/Δm, with Δm≡m(T*)-m(T), half of the initial polarization is lost. The polarization is totally lost after a time of order 1/Γ γ , with Γ γ = Γ(T* → Tγ). Thus, by comparing the initial and final polarization, we get information on the particle's lifetime.

  1. Gated Detection Measurements of Phosphorescence Lifetimes

    Directory of Open Access Journals (Sweden)

    Yordan Kostov

    2004-10-01

    Full Text Available A low-cost, gated system for measurements of phosphorescence lifetimes is presented. An extensive description of the system operating principles and metrological characteristics is given. Remarkably, the system operates without optical filtering of the LED excitation source. A description of a practical system is also given and its performance is discussed. Because the device effectively suppresses high-level background fluorescence and scattered light, it is expected to find wide-spread application in bioprocess, environmental and biomedical fields.

  2. Charmed particle lifetimes

    International Nuclear Information System (INIS)

    Rosner, J.L.

    1979-01-01

    Conventional estimates are reviewed for charmed particle lifetimes. Free-quark models give values of (a few) x 10 -13 sec to (a few) x 10 -12 sec. The shorter of these values also follows from an extrapolation based on D → Ke/sup nu/. Possible differences among the lifetimes and production rates of D 0 , D + , F + , C 0 + , the heavy lepton tau, and the fifth quark b are discussed. Extreme values of mixing angles in a six-quark model could extend charmed particle lifetimes by a factor of at most three from the above estimates, while shorter lifetimes than those predicted could occur for some species like D 0 or F + if their nonleptonic decays were enhanced. The predictions are discussed in the light of some current experimental results, and it is estimated that sigma(pp → charm) approx. = 10 μb at 400 GeV/c. 95 references

  3. Multiplex families with epilepsy

    Science.gov (United States)

    Afawi, Zaid; Oliver, Karen L.; Kivity, Sara; Mazarib, Aziz; Blatt, Ilan; Neufeld, Miriam Y.; Helbig, Katherine L.; Goldberg-Stern, Hadassa; Misk, Adel J.; Straussberg, Rachel; Walid, Simri; Mahajnah, Muhammad; Lerman-Sagie, Tally; Ben-Zeev, Bruria; Kahana, Esther; Masalha, Rafik; Kramer, Uri; Ekstein, Dana; Shorer, Zamir; Wallace, Robyn H.; Mangelsdorf, Marie; MacPherson, James N.; Carvill, Gemma L.; Mefford, Heather C.; Jackson, Graeme D.; Scheffer, Ingrid E.; Bahlo, Melanie; Gecz, Jozef; Heron, Sarah E.; Corbett, Mark; Mulley, John C.; Dibbens, Leanne M.; Korczyn, Amos D.

    2016-01-01

    Objective: To analyze the clinical syndromes and inheritance patterns of multiplex families with epilepsy toward the ultimate aim of uncovering the underlying molecular genetic basis. Methods: Following the referral of families with 2 or more relatives with epilepsy, individuals were classified into epilepsy syndromes. Families were classified into syndromes where at least 2 family members had a specific diagnosis. Pedigrees were analyzed and molecular genetic studies were performed as appropriate. Results: A total of 211 families were ascertained over an 11-year period in Israel. A total of 169 were classified into broad familial epilepsy syndrome groups: 61 generalized, 22 focal, 24 febrile seizure syndromes, 33 special syndromes, and 29 mixed. A total of 42 families remained unclassified. Pathogenic variants were identified in 49/211 families (23%). The majority were found in established epilepsy genes (e.g., SCN1A, KCNQ2, CSTB), but in 11 families, this cohort contributed to the initial discovery (e.g., KCNT1, PCDH19, TBC1D24). We expand the phenotypic spectrum of established epilepsy genes by reporting a familial LAMC3 homozygous variant, where the predominant phenotype was epilepsy with myoclonic-atonic seizures, and a pathogenic SCN1A variant in a family where in 5 siblings the phenotype was broadly consistent with Dravet syndrome, a disorder that usually occurs sporadically. Conclusion: A total of 80% of families were successfully classified, with pathogenic variants identified in 23%. The successful characterization of familial electroclinical and inheritance patterns has highlighted the value of studying multiplex families and their contribution towards uncovering the genetic basis of the epilepsies. PMID:26802095

  4. Polarization-multiplexing ghost imaging

    Science.gov (United States)

    Dongfeng, Shi; Jiamin, Zhang; Jian, Huang; Yingjian, Wang; Kee, Yuan; Kaifa, Cao; Chenbo, Xie; Dong, Liu; Wenyue, Zhu

    2018-03-01

    A novel technique for polarization-multiplexing ghost imaging is proposed to simultaneously obtain multiple polarimetric information by a single detector. Here, polarization-division multiplexing speckles are employed for object illumination. The light reflected from the objects is detected by a single-pixel detector. An iterative reconstruction method is used to restore the fused image containing the different polarimetric information by using the weighted sum of the multiplexed speckles based on the correlation coefficients obtained from the detected intensities. Next, clear images of the different polarimetric information are recovered by demultiplexing the fused image. The results clearly demonstrate that the proposed method is effective.

  5. Signal multiplexing scheme for LINAC

    International Nuclear Information System (INIS)

    Sujo, C.I.; Mohan, Shyam; Joshi, Gopal; Singh, S.K.; Karande, Jitendra

    2004-01-01

    For the proper operation of the LINAC some signals, RF (radio frequency) as well as LF (low frequency) have to be available at the Master Control Station (MCS). These signals are needed to control, calibrate and characterize the RF fields in the resonators. This can be achieved by proper multiplexing of various signals locally and then routing the selected signals to the MCS. A multiplexing scheme has been designed and implemented, which will allow the signals from the selected cavity to the MCS. High isolation between channels and low insertion loss for a given signal are important issues while selecting the multiplexing scheme. (author)

  6. Percolation in real multiplex networks

    Science.gov (United States)

    Bianconi, Ginestra; Radicchi, Filippo

    2016-12-01

    We present an exact mathematical framework able to describe site-percolation transitions in real multiplex networks. Specifically, we consider the average percolation diagram valid over an infinite number of random configurations where nodes are present in the system with given probability. The approach relies on the locally treelike ansatz, so that it is expected to accurately reproduce the true percolation diagram of sparse multiplex networks with negligible number of short loops. The performance of our theory is tested in social, biological, and transportation multiplex graphs. When compared against previously introduced methods, we observe improvements in the prediction of the percolation diagrams in all networks analyzed. Results from our method confirm previous claims about the robustness of real multiplex networks, in the sense that the average connectedness of the system does not exhibit any significant abrupt change as its individual components are randomly destroyed.

  7. Time-resolved fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Gustavsson, Thomas; Mialocq, Jean-Claude

    2007-01-01

    This article addresses the evolution in time of light emitted by a molecular system after a brief photo-excitation. The authors first describe fluorescence from a photo-physical point of view and discuss the characterization of the excited state. Then, they explain some basic notions related to fluorescence characterization (lifetime and decays, quantum efficiency, so on). They present the different experimental methods and techniques currently used to study time-resolved fluorescence. They discuss basic notions of time resolution and spectral reconstruction. They briefly present some conventional methods: intensified Ccd cameras, photo-multipliers and photodiodes associated with a fast oscilloscope, and phase modulation. Other methods and techniques are more precisely presented: time-correlated single photon counting (principle, examples, and fluorescence lifetime imagery), streak camera (principle, examples), and optical methods like the Kerr optical effect (principle and examples) and fluorescence up-conversion (principle and theoretical considerations, examples of application)

  8. Thermally multiplexed polymerase chain reaction.

    Science.gov (United States)

    Phaneuf, Christopher R; Pak, Nikita; Saunders, D Curtis; Holst, Gregory L; Birjiniuk, Joav; Nagpal, Nikita; Culpepper, Stephen; Popler, Emily; Shane, Andi L; Jerris, Robert; Forest, Craig R

    2015-07-01

    Amplification of multiple unique genetic targets using the polymerase chain reaction (PCR) is commonly required in molecular biology laboratories. Such reactions are typically performed either serially or by multiplex PCR. Serial reactions are time consuming, and multiplex PCR, while powerful and widely used, can be prone to amplification bias, PCR drift, and primer-primer interactions. We present a new thermocycling method, termed thermal multiplexing, in which a single heat source is uniformly distributed and selectively modulated for independent temperature control of an array of PCR reactions. Thermal multiplexing allows amplification of multiple targets simultaneously-each reaction segregated and performed at optimal conditions. We demonstrate the method using a microfluidic system consisting of an infrared laser thermocycler, a polymer microchip featuring 1 μl, oil-encapsulated reactions, and closed-loop pulse-width modulation control. Heat transfer modeling is used to characterize thermal performance limitations of the system. We validate the model and perform two reactions simultaneously with widely varying annealing temperatures (48 °C and 68 °C), demonstrating excellent amplification. In addition, to demonstrate microfluidic infrared PCR using clinical specimens, we successfully amplified and detected both influenza A and B from human nasopharyngeal swabs. Thermal multiplexing is scalable and applicable to challenges such as pathogen detection where patients presenting non-specific symptoms need to be efficiently screened across a viral or bacterial panel.

  9. Helicity multiplexed broadband metasurface holograms.

    Science.gov (United States)

    Wen, Dandan; Yue, Fuyong; Li, Guixin; Zheng, Guoxing; Chan, Kinlong; Chen, Shumei; Chen, Ming; Li, King Fai; Wong, Polis Wing Han; Cheah, Kok Wai; Pun, Edwin Yue Bun; Zhang, Shuang; Chen, Xianzhong

    2015-09-10

    Metasurfaces are engineered interfaces that contain a thin layer of plasmonic or dielectric nanostructures capable of manipulating light in a desirable manner. Advances in metasurfaces have led to various practical applications ranging from lensing to holography. Metasurface holograms that can be switched by the polarization state of incident light have been demonstrated for achieving polarization multiplexed functionalities. However, practical application of these devices has been limited by their capability for achieving high efficiency and high image quality. Here we experimentally demonstrate a helicity multiplexed metasurface hologram with high efficiency and good image fidelity over a broad range of frequencies. The metasurface hologram features the combination of two sets of hologram patterns operating with opposite incident helicities. Two symmetrically distributed off-axis images are interchangeable by controlling the helicity of the input light. The demonstrated helicity multiplexed metasurface hologram with its high performance opens avenues for future applications with functionality switchable optical devices.

  10. Laboratory Tests of Multiplex Detection of PCR Amplicons Using the Luminex 100 Flow Analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Venkateswaran, K.S.; Nasarabadi, S.; Langlois, R.G.

    2000-05-05

    Lawrence Livermore National Laboratory (LLNL) demonstrated the power of flow cytometry in detecting the biological agents simulants at JFT III. LLNL pioneered in the development of advanced nucleic acid analyzer (ANM) for portable real time identification. Recent advances in flow cytometry provide a means for multiplexed nucleic acid detection and immunoassay of pathogenic microorganisms. We are presently developing multiplexed immunoassays for the simultaneous detection of different simulants. Our goal is to build an integrated instrument for both nucleic acid analysis and immuno detection. In this study we evaluated the Luminex LX 100 for concurrent identification of more than one PCR amplified product. ANAA has real-time Taqman fluorescent detection capability for rapid identification of field samples. However, its multiplexing ability is limited by the combination of available fluorescent labels. Hence integration of ANAA with flow cytometry can give the rapidity of ANAA amplification and the multiplex capability of flow cytometry. Multiplexed flow cytometric analysis is made possible using a set of fluorescent latex microsphere that are individually identified by their red and infrared fluorescence. A green fluorochrome is used as the assay signal. Methods were developed for the identification of specific nucleic acid sequences from Bacillus globigii (Bg), Bacillus thuringensis (Bt) and Erwinia herbicola (Eh). Detection sensitivity using different reporter fluorochromes was tested with the LX 100, and also different assay formats were evaluated for their suitability for rapid testing. A blind laboratory trial was carried out December 22-27, 1999 to evaluate bead assays for multiplex identification of Bg and Bt PCR products. This report summarizes the assay development, fluorochrome comparisons, and the results of the blind trial conducted at LLNL for the laboratory evaluation of the LX 100 flow analyzer.

  11. Filter replacement lifetime prediction

    Science.gov (United States)

    Hamann, Hendrik F.; Klein, Levente I.; Manzer, Dennis G.; Marianno, Fernando J.

    2017-10-25

    Methods and systems for predicting a filter lifetime include building a filter effectiveness history based on contaminant sensor information associated with a filter; determining a rate of filter consumption with a processor based on the filter effectiveness history; and determining a remaining filter lifetime based on the determined rate of filter consumption. Methods and systems for increasing filter economy include measuring contaminants in an internal and an external environment; determining a cost of a corrosion rate increase if unfiltered external air intake is increased for cooling; determining a cost of increased air pressure to filter external air; and if the cost of filtering external air exceeds the cost of the corrosion rate increase, increasing an intake of unfiltered external air.

  12. Laguerre Gaussian beam multiplexing through turbulence

    CSIR Research Space (South Africa)

    Trichili, A

    2014-08-17

    Full Text Available We analyze the effect of atmospheric turbulence on the propagation of multiplexed Laguerre Gaussian modes. We present a method to multiplex Laguerre Gaussian modes using digital holograms and decompose the resulting field after encountering a...

  13. Spatial analysis of various multiplex cinema types

    Directory of Open Access Journals (Sweden)

    Young-Seo Park

    2016-03-01

    Full Text Available This study identifies the spatial characteristics and relationships of each used space according to the multiplex type. In this study, multiplexes are classified according to screen rooms and circulation systems, and each used space is quantitatively analyzed. The multiplex type based on screen rooms and moving line systems influences the relationship and characteristics of each used space in various ways. In particular, the structure of the used space of multiplexes has a significant effect on profit generation and audience convenience.

  14. On-chip mode division multiplexing technologies

    DEFF Research Database (Denmark)

    Ding, Yunhong; Frellsen, Louise Floor; Guan, Xiaowei

    2016-01-01

    Space division multiplexing (SDM) is currently widely investigated in order to provide enhanced capacity thanks to the utilization of space as a new degree of multiplexing freedom in both optical fiber communication and on-chip interconnects. Basic components allowing the processing of spatial...... photonic integrated circuit mode (de) multiplexer for few-mode fibers (FMFs)....

  15. B Lifetimes and Mixing

    International Nuclear Information System (INIS)

    Evans, Harold G.

    2009-01-01

    The Tevatron experiments, CDF and D0, have produced a wealth of new B-physics results since the start of Run II in 2001. We've observed new B-hadrons, seen new effects, and increased many-fold the precision with which we know the properties of b-quark systems. In these proceedings, we will discuss two of the most fruitful areas in the Tevatron B-physics program: lifetimes and mixing. We'll examine the experimental issues driving these analyses, present a summary of the latest results, and discuss prospects for the future.

  16. Capillaries for use in a multiplexed capillary electrophoresis system

    Science.gov (United States)

    Yeung, E.S.; Chang, H.T.; Fung, E.N.

    1997-12-09

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.

  17. Lifetimes of heavy flavour particles

    International Nuclear Information System (INIS)

    Forty, R.

    1994-01-01

    The lifetimes of heavy-flavour hadrons are reviewed. After a brief discussion of the theoretical predictions, the problem of averaging lifetime measurements is discussed. The various experimental measurements are then presented and suitable averages performed. Charmed meson lifetimes are now measured to the few percent level, better that theory can predict, whilst for charmed baryons the lifetime hierarchy has been established for the first time. For beauty hadrons the lifetimes are measured at the 6-10 % level, and are in reasonable agreement with theoretical expectations. Beauty baryon studies ar just beginning. (author)

  18. Absorbance and fluorescence studies on porphyrin Nanostructures ...

    African Journals Online (AJOL)

    The aim of this work was to study some photophysical properties of PNR for application as light harvester in dye sensitized solar cells. These properties included absorbance, fluorescence, and fluorescence quantum yield and lifetime. The results of Transmission Electron Microscope (TEM) images showed the formation of ...

  19. Multiplex polymerase chain reaction (PCR) and fluorescence-based ...

    African Journals Online (AJOL)

    reading 7

    2011-12-28

    Dec 28, 2011 ... mitochondrial DNA and cytochrome b as an internal PCR control. The amplified species- ... more labour-saving than using each pair of species- specific primers separately for .... obtained from the NCBI nucleotide data bank.

  20. Metabolic Mapping of Breast Cancer with Multiphoton Spectral and Lifetime Imaging

    Science.gov (United States)

    2007-03-01

    2002. Spectrally resolved fluorescence lifetime imaging microscopy. Appl. Spec- trosc. 56 :155-166. 38. Becker, W., A. Bergmann, E. Haustein , Z...photon fluores- cence lifetime imaging microscopy of macrophage-mediated antigen processing. J. Microsc. 185 :339-353. 45. Lin, H.J., P. Herman , and

  1. Autofluorescence Lifetimes in Geographic Atrophy in Patients With Age-Related Macular Degeneration.

    Science.gov (United States)

    Dysli, Chantal; Wolf, Sebastian; Zinkernagel, Martin S

    2016-05-01

    To investigate fluorescence lifetime characteristics in patients with geographic atrophy (GA) in eyes with age-related macular degeneration and to correlate the measurements with clinical data and optical coherence tomography (OCT) findings. Patients with GA were imaged with a fluorescence lifetime imaging ophthalmoscope. Retinal autofluorescence lifetimes were measured in a short and a long spectral channel (498-560 nm and 560-720 nm). Mean retinal fluorescence lifetimes were analyzed within GA and the surrounding retina, and data were correlated with best corrected visual acuity and OCT measurements. Fluorescence lifetime maps of 41 eyes of 41 patients (80 ± 7 years) with GA were analyzed. Mean lifetimes within areas of atrophy were prolonged by 624 ± 276 ps (+152%) in the short spectral channel and 418 ± 186 ps (+83%) in the long spectral channel compared to the surrounding tissue. Autofluorescence lifetime abnormalities in GA occurred with particular patterns, similar to those seen in fundus autofluorescence intensity images. Within the fovea short mean autofluorescence lifetimes were observed, presumably representing macular pigment. Short lifetimes were preserved even in the absence of foveal sparing but were decreased in patients with advanced retinal atrophy in OCT. Short lifetimes in the fovea correlated with better best corrected visual acuity in both spectral channels. This study established that autofluorescence lifetime changes in GA present with explicit patterns. We hypothesize that the short lifetimes seen within the atrophy may be used to estimate damage induced by atrophy and to monitor disease progression in the context of natural history or interventional therapeutic studies.

  2. A Novel Multiplex HRM Assay to Detect Clopidogrel Resistance.

    Science.gov (United States)

    Zhang, Lichen; Ma, Xiaowei; You, Guoling; Zhang, Xiaoqing; Fu, Qihua

    2017-11-22

    Clopidogrel is an antiplatelet medicine used to prevent blood clots in patients who have had a heart attack, stroke, or other symptoms. Variability in the clinical response to clopidogrel treatment has been attributed to genetic factors. In particular, five SNPs of rs4244285, rs4986893, rs12248560, rs662 and rs1045642 have been associated with resistance to clopidogrel therapy in Chinese population. This work involves the development of a multiplex high-resolution melting (HRM) assay to genotype all five of these loci in 2 tubes. Amplicons corresponding to distinct SNPs in a common tube were designed with the aid of uMelt prediction software to have different melting temperatures Tm by addition of a GC-rich tail to the 5' end of the certain primers. Two kinds of commercial methods, Digital Fluorescence Molecular Hybridization (DFMH) and Sanger sequencing, were used as a control. Three hundred sixteen DFMH pretested samples from consecutive acute coronary syndrome patients were used for a blinded study of multiplex HRM. The sensitivity of HRM was 100% and the specificity was 99.93% reflecting detection of variants other than the known resistance SNPs. Multiplex HRM is an effective closed-tube, highly accurate, fast, and inexpensive method for genotyping the 5 clopidogrel resistance associated SNPs.

  3. B meson lifetime measurement

    International Nuclear Information System (INIS)

    Piccolo, M.

    1989-01-01

    The lifetime of hadrons containing b-quark has been the subject of extensive experimental work and theoretical speculation; its importance is due to implications on some of the fundamental parameters of the Standard Model, such as the top quark mass and the mixing angles. Since the pioneer measurements of the MAC and MARK II collaborations at PEP in 1983 the progress has been impressive; but many issues still remain open and await further study. In this paper the field's present status is discussed. An overview of the theoretical motivations for this measurements in the Standard Model framework is done. Then the experimental techniques used are reviewed, emphasizing the most recent measurements. A comparison of the results obtained is done and systematic errors are discussed. In conclusion there are some remarks on the further developments foreseen in the near future

  4. Nanoscale Test Strips for Multiplexed Blood Analysis

    Science.gov (United States)

    Chan, Eugene

    2015-01-01

    A critical component of the DNA Medicine Institute's Reusable Handheld Electrolyte and Lab Technology for Humans (rHEALTH) sensor are nanoscale test strips, or nanostrips, that enable multiplexed blood analysis. Nanostrips are conceptually similar to the standard urinalysis test strip, but the strips are shrunk down a billionfold to the microscale. Each nanostrip can have several sensor pads that fluoresce in response to different targets in a sample. The strips carry identification tags that permit differentiation of a specific panel from hundreds of other nanostrip panels during a single measurement session. In Phase I of the project, the company fabricated, tested, and demonstrated functional parathyroid hormone and vitamin D nanostrips for bone metabolism, and thrombin aptamer and immunoglobulin G antibody nanostrips. In Phase II, numerous nanostrips were developed to address key space flight-based medical needs: assessment of bone metabolism, immune response, cardiac status, liver metabolism, and lipid profiles. This unique approach holds genuine promise for space-based portable biodiagnostics and for point-of-care (POC) health monitoring and diagnostics here on Earth.

  5. Centrality in earthquake multiplex networks

    Science.gov (United States)

    Lotfi, Nastaran; Darooneh, Amir Hossein; Rodrigues, Francisco A.

    2018-06-01

    Seismic time series has been mapped as a complex network, where a geographical region is divided into square cells that represent the nodes and connections are defined according to the sequence of earthquakes. In this paper, we map a seismic time series to a temporal network, described by a multiplex network, and characterize the evolution of the network structure in terms of the eigenvector centrality measure. We generalize previous works that considered the single layer representation of earthquake networks. Our results suggest that the multiplex representation captures better earthquake activity than methods based on single layer networks. We also verify that the regions with highest seismological activities in Iran and California can be identified from the network centrality analysis. The temporal modeling of seismic data provided here may open new possibilities for a better comprehension of the physics of earthquakes.

  6. Solvent isotope effect on the fluorescence of azoalkanes

    International Nuclear Information System (INIS)

    Mirbach, M.J.; Mirbach, M.F.; Cherry, W.R.; Turro, N.J.; Engel, P.

    1977-01-01

    A study of fluorescence quantum yields and fluorescence lifetimes of two cyclic azoalkanes reveal a striking dependence of phisub(F) and tausub(F) on solvent and on isotopic substitution (OH → OD). A mechanism involving specific deactivation of the fluorescent state from a hydrogen bonded complex is proposed to rationalize the data. (orig./HK) [de

  7. Multiplex detection of tumor markers with photonic suspension array

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Yuanjin; Zhao Xiangwei [State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096 (China); Pei Xiaoping [Department of Hematology, Affiliated Zhongda Hospital, Southeast University, Nanjing 210009 (China); Hu Jing; Zhao Wenju [State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096 (China); Chen Baoan [Department of Hematology, Affiliated Zhongda Hospital, Southeast University, Nanjing 210009 (China); Gu Zhongze [State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096 (China); Laboratory of Environment and Biosafety, Research Institute of Southeast University in Suzhou, Dushu Lake Higher Education Town, Suzhou 215123 (China)], E-mail: gu@seu.edu.cn

    2009-02-02

    A novel photonic suspension array was developed for multiplex immunoassay. The carries of this array were silica colloidal crystal beads (SCCBs). The codes of these carriers are the characteristic reflection peak originated from their structural periodicity, and therefore they do not suffer from fading, bleaching, quenching, and chemical instability. In addition, because no dyes or materials related with fluorescence are included, the fluorescence background of SCCBs is very low. With a sandwich format, the proposed suspension array was used for simultaneous multiplex detection of tumor markers in one test tube. The results showed that the four tumor markers, {alpha}-fetoprotein (AFP), carcinoembryonic antigen (CEA), carcinoma antigen 125 (CA 125) and carcinoma antigen 19-9 (CA 19-9) could be assayed in the ranges of 1.0-500 ng mL{sup -1}, 1.0-500 ng mL{sup -1}, 1.0-500 U mL{sup -1} and 3.0-500 U mL{sup -1} with limits of detection of 0.68 ng mL{sup -1}, 0.95 ng mL{sup -1}, 0.99 U mL{sup -1} and 2.30 U mL{sup -1} at 3{sigma}, respectively. The proposed array showed acceptable accuracy, detection reproducibility, storage stability and the results obtained were in acceptable agreement with those from parallel single-analyte test of practical clinical sera. This technique provides a new strategy for low cost, automated, and simultaneous multiplex immunoassay.

  8. Effect of pharmacologically induced retinal degeneration on retinal autofluorescence lifetimes in mice.

    Science.gov (United States)

    Dysli, Chantal; Dysli, Muriel; Zinkernagel, Martin S; Enzmann, Volker

    2016-12-01

    Fluorescence lifetime imaging ophthalmoscopy (FLIO) was used to investigate retinal autofluorescence lifetimes in mouse models of pharmacologically induced retinal degeneration over time. Sodium iodate (NaIO 3 , 35 mg/kg intravenously) was used to induce retinal pigment epithelium (RPE) degeneration with subsequent loss of photoreceptors (PR) whereas N-methyl-N-nitrosourea (MNU, 45 mg/kg intraperitoneally) was employed for degeneration of the photoreceptor cell layer alone. All mice were measured at day 3, 7, 14, and 28 after the respective injection of NaIO 3 , MNU or NaCl (control). Fluorescence lifetime imaging was performed using a fluorescence lifetime imaging ophthalmoscope (Heidelberg Engineering, Heidelberg, Germany). Fluorescence was excited at 473 nm and fluorescence lifetimes were measured in a short and a long spectral channel (498-560 nm and 560-720 nm). Corresponding optical coherence tomography (OCT) images were consecutively acquired and histology was performed at the end of the experiments. Segmentation of OCT images and histology verified the cell type-specific degeneration process over time. Retinal autofluorescence lifetimes increased from day 3 to day 28 in mice after NaIO 3 treatment. Finally, at day 28, fluorescence lifetimes were prolonged by 8% in the short and 61% in the long spectral channel compared to control animals (p = 0.21 and p = 0.004, respectively). In mice after MNU treatment, the mean retinal autofluorescence lifetimes were already decreased at day 3 and retinal lifetimes were finally shortened by 27% in the short and 51% in the long spectral channel at day 28 (p = 0.0028). In conclusion, degeneration of the RPE with subsequent photoreceptor degeneration by NaIO 3 lead to longer mean fluorescence lifetimes of the retina compared to control mice, whereas during specific degeneration of the photoreceptor layer induced by MNU shorter lifetimes were measured. Therefore, short retinal fluorescence lifetimes may originate

  9. QUANTIFYING THE SHORT LIFETIME WITH TCSPC-FLIM: FIRST MOMENT VERSUS FITTING METHODS

    Directory of Open Access Journals (Sweden)

    LINGLING XU

    2013-10-01

    Full Text Available Combing the time-correlated single photon counting (TCSPC with fluorescence lifetime imaging microscopy (FLIM provides promising opportunities in revealing important information on the microenvironment of cells and tissues, but the applications are thus far mainly limited by the accuracy and precision of the TCSPC-FLIM technique. Here we present a comprehensive investigation on the performance of two data analysis methods, the first moment (M1 method and the conventional least squares (Fitting method, in quantifying fluorescence lifetime. We found that the M1 method is more superior than the Fitting method when the lifetime is short (70 ~ 400 ps or the signal intensity is weak (<103 photons.

  10. Mining the bulk positron lifetime

    International Nuclear Information System (INIS)

    Aourag, H.; Guittom, A.

    2009-01-01

    We introduce a new approach to investigate the bulk positron lifetimes of new systems based on data-mining techniques. Through data mining of bulk positron lifetimes, we demonstrate the ability to predict the positron lifetimes of new semiconductors on the basis of available semiconductor data already studied. Informatics techniques have been applied to bulk positron lifetimes for different tetrahedrally bounded semiconductors in order to discover computational design rules. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Energy Savings Lifetimes and Persistence

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Ian M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schiller, Steven R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Todd, Annika [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Billingsley, Megan A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Goldman, Charles A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schwartz, Lisa C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-02-01

    This technical brief explains the concepts of energy savings lifetimes and savings persistence and discusses how program administrators use these factors to calculate savings for efficiency measures, programs and portfolios. Savings lifetime is the length of time that one or more energy efficiency measures or activities save energy, and savings persistence is the change in savings throughout the functional life of a given efficiency measure or activity. Savings lifetimes are essential for assessing the lifecycle benefits and cost effectiveness of efficiency activities and for forecasting loads in resource planning. The brief also provides estimates of savings lifetimes derived from a national collection of costs and savings for electric efficiency programs and portfolios.

  12. Positron lifetimes in deformed copper

    International Nuclear Information System (INIS)

    Hinode, Kenji; Tanigawa, Shoichiro; Doyama, Masao

    1976-01-01

    Positron lifetime measurements were performed for Cu samples with different densities of lattice defects. The lifetime spectra were successfully resolved into two components with the help of the well established analysis program. Obtained results were quite consistent with those expected from the trapping model. The positron trapping mechanism from free to trapped states and the initial condition of the model were especially checked. Deduced values obtained for tau sub(c) (lifetime of free positrons) and tau sub(t) (lifetime of trapped positrons) were 122+-5 psec and 176+-5 psec, respectively. (auth.)

  13. Consideration for wavelength multiplexing versus time multiplexing in optical transport network

    DEFF Research Database (Denmark)

    Limal, Emmanuel; Stubkjær, Kristian Elmholdt

    1999-01-01

    We compare optical wavelength multiplexing and time multiplexing techniquesfor optical transport network by studying the space switch sizes of OXCs andtheir interfaces as a function of the fraction of add/drop traffic....

  14. Strain measurement using multiplexed fiber optic sensors

    International Nuclear Information System (INIS)

    Kwon, Il Bum; Kim, Chi Yeop; Yoon, Dong Jin; Lee, Seung Seok

    2003-01-01

    FBG(Fiber Bragg grating) sensor, which is one of the fiber optic sensors for the application of smart structures, can not only measure one specific point but also multiple points by multiplexing techniques. We have proposed a novel multiplexing technique of FBG sensor by the intensity modulation of light source. This technique is applicable to WDM(Wavelength Division Multiplexing) technique and number of sensors in this system can be increased by using this technique with WDM technique.

  15. Lifetime measurement of the 8s level in francium

    International Nuclear Information System (INIS)

    Gomez, E.; Sprouse, G.D.; Orozco, L.A.; Galvan, A. Perez

    2005-01-01

    We measure the lifetime of the 8s level of 210 Fr atoms on a magneto-optically trapped sample with time-correlated single-photon counting. The 7P 1/2 state serves as the resonant intermediate level for two-step excitation of the 8s level completed with a 1.3-μm laser. Analysis of the fluorescence decay through the 7P 3/2 level gives 53.30±0.44 ns for the 8s level lifetime

  16. Lifetime of Mechanical Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Leland, K.

    1999-07-01

    The gas plant at Kaarstoe was built as part of the Statpipe gas transport system and went on stream in 1985. In 1993 another line was routed from the Sleipner field to carry condensate, and the plant was extended accordingly. Today heavy additional supply- and export lines are under construction, and the plant is extended more than ever. The main role of the factory is to separate the raw gas into commercial products and to pump or ship it to the markets. The site covers a large number of well-known mechanical equipment. This presentation deals with piping, mechanical and structural disciplines. The lifetime of mechanical equipment is often difficult to predict as it depends on many factors, and the subject is complex. Mechanical equipment has been kept in-house, which provides detailed knowledge of the stages from a new to a 14 years old plant. The production regularity has always been very high, as required. The standard of the equipment is well kept, support systems are efficient, and human improvisation is extremely valuable.

  17. Frequency multiplexing for readout of spin qubits

    Energy Technology Data Exchange (ETDEWEB)

    Hornibrook, J. M.; Colless, J. I.; Mahoney, A. C.; Croot, X. G.; Blanvillain, S.; Reilly, D. J., E-mail: david.reilly@sydney.edu.au [ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Lu, H.; Gossard, A. C. [Materials Department, University of California, Santa Barbara, California 93106 (United States)

    2014-03-10

    We demonstrate a low loss, chip-level frequency multiplexing scheme for readout of scaled-up spin qubit devices. By integrating separate bias tees and resonator circuits on-chip for each readout channel, we realise dispersive gate-sensing in combination with charge detection based on two radio frequency quantum point contacts. We apply this approach to perform multiplexed readout of a double quantum dot in the few-electron regime and further demonstrate operation of a 10-channel multiplexing device. Limitations for scaling spin qubit readout to large numbers of multiplexed channels are discussed.

  18. Accurate Rapid Lifetime Determination on Time-Gated FLIM Microscopy with Optical Sectioning.

    Science.gov (United States)

    Silva, Susana F; Domingues, José Paulo; Morgado, António Miguel

    2018-01-01

    Time-gated fluorescence lifetime imaging microscopy (FLIM) is a powerful technique to assess the biochemistry of cells and tissues. When applied to living thick samples, it is hampered by the lack of optical sectioning and the need of acquiring many images for an accurate measurement of fluorescence lifetimes. Here, we report on the use of processing techniques to overcome these limitations, minimizing the acquisition time, while providing optical sectioning. We evaluated the application of the HiLo and the rapid lifetime determination (RLD) techniques for accurate measurement of fluorescence lifetimes with optical sectioning. HiLo provides optical sectioning by combining the high-frequency content from a standard image, obtained with uniform illumination, with the low-frequency content of a second image, acquired using structured illumination. Our results show that HiLo produces optical sectioning on thick samples without degrading the accuracy of the measured lifetimes. We also show that instrument response function (IRF) deconvolution can be applied with the RLD technique on HiLo images, improving greatly the accuracy of the measured lifetimes. These results open the possibility of using the RLD technique with pulsed diode laser sources to determine accurately fluorescence lifetimes in the subnanosecond range on thick multilayer samples, providing that offline processing is allowed.

  19. Upconversion Nanoparticles-Encoded Hydrogel Microbeads-Based Multiplexed Protein Detection

    Science.gov (United States)

    Shikha, Swati; Zheng, Xiang; Zhang, Yong

    2018-06-01

    Fluorescently encoded microbeads are in demand for multiplexed applications in different fields. Compared to organic dye-based commercially available Luminex's xMAP technology, upconversion nanoparticles (UCNPs) are better alternatives due to their large anti-Stokes shift, photostability, nil background, and single wavelength excitation. Here, we developed a new multiplexed detection system using UCNPs for encoding poly(ethylene glycol) diacrylate (PEGDA) microbeads as well as for labeling reporter antibody. However, to prepare UCNPs-encoded microbeads, currently used swelling-based encapsulation leads to non-uniformity, which is undesirable for fluorescence-based multiplexing. Hence, we utilized droplet microfluidics to obtain encoded microbeads of uniform size, shape, and UCNPs distribution inside. Additionally, PEGDA microbeads lack functionality for probe antibodies conjugation on their surface. Methods to functionalize the surface of PEGDA microbeads (acrylic acid incorporation, polydopamine coating) reported thus far quench the fluorescence of UCNPs. Here, PEGDA microbeads surface was coated with silica followed by carboxyl modification without compromising the fluorescence intensity of UCNPs. In this study, droplet microfluidics-assisted UCNPs-encoded microbeads of uniform shape, size, and fluorescence were prepared. Multiple color codes were generated by mixing UCNPs emitting red and green colors at different ratios prior to encapsulation. UCNPs emitting blue color were used to label the reporter antibody. Probe antibodies were covalently immobilized on red UCNPs-encoded microbeads for specific capture of human serum albumin (HSA) as a model protein. The system was also demonstrated for multiplexed detection of both human C-reactive protein (hCRP) and HSA protein by immobilizing anti-hCRP antibodies on green UCNPs.

  20. Fluorescence spectroscopy

    DEFF Research Database (Denmark)

    Bagatolli, Luis

    2016-01-01

    Fluorescence spectroscopy is a powerful experimental tool used by scientists from many disciplines. During the last decades there have been important developments on distinct fluorescence methods, particularly those related to the study of biological phenomena. This chapter discusses the foundati......Fluorescence spectroscopy is a powerful experimental tool used by scientists from many disciplines. During the last decades there have been important developments on distinct fluorescence methods, particularly those related to the study of biological phenomena. This chapter discusses...

  1. Fluorescence lifetime imaging of induced pluripotent stem cells

    Science.gov (United States)

    Uchugonova, Aisada; Batista, Ana; König, Karsten

    2014-02-01

    The multiphoton FLIM tomograph MPTflex with its flexible scan head, articulated arm, and the tunable femtosecond laser source was employed to study cell monolayers and 3D cell clusters. FLIM was performed with 250 ps temporal resolution and submicron special resolution using time-correlated single photon counting. The autofluorescence based on NAD(P)H and flavins/flavoproteins has been measured in mouse embryonic fibroblasts, induced pluripotent stem cells (iPS cells) originated from mouse embryonic fibroblasts and non-proliferative mouse embryonic fibroblasts.

  2. Silica nanodisks as platforms for fluorescence lifetime-based ...

    Indian Academy of Sciences (India)

    Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India ... The nanoconjugates are found to sense the pH of the medium, through systematic ..... form pH sensing with a good level of sensitivity, with.

  3. Lifetime Improvement by Battery Scheduling

    NARCIS (Netherlands)

    Jongerden, M.R.; Schmitt, Jens B.; Haverkort, Boudewijn R.H.M.

    The use of mobile devices is often limited by the lifetime of their batteries. For devices that have multiple batteries or that have the option to connect an extra battery, battery scheduling, thereby exploiting the recovery properties of the batteries, can help to extend the system lifetime. Due to

  4. Lifetime improvement by battery scheduling

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.

    The use of mobile devices is often limited by the lifetime of its battery. For devices that have multiple batteries or that have the option to connect an extra battery, battery scheduling, thereby exploiting the recovery properties of the batteries, can help to extend the system lifetime. Due to the

  5. A fully sealed plastic chip for multiplex PCR and its application in bacteria identification.

    Science.gov (United States)

    Xu, Youchun; Yan, He; Zhang, Yan; Jiang, Kewei; Lu, Ying; Ren, Yonghong; Wang, Hui; Wang, Shan; Xing, Wanli

    2015-07-07

    Multiplex PCR is an effective tool for simultaneous multiple target detection but is limited by the intrinsic interference and competition among primer pairs when it is performed in one reaction tube. Dividing a multiplex PCR into many single PCRs is a simple strategy to overcome this issue. Here, we constructed a plastic, easy-to-use, fully sealed multiplex PCR chip based on reversible centrifugation for the simultaneous detection of 63 target DNA sequences. The structure of the chip is quite simple, which contains sine-shaped infusing channels and a number of reaction chambers connecting to one side of these channels. Primer pairs for multiplex PCR were sequentially preloaded in the different reaction chambers, and the chip was enclosed with PCR-compatible adhesive tape. For usage, the PCR master mix containing a DNA template is pipetted into the infusing channels and centrifuged into the reaction chambers, leaving the infusing channels filled with air to avoid cross-contamination of the different chambers. Then, the chip is sealed and placed on a flat thermal cycler for PCR. Finally, amplification products can be detected in situ using a fluorescence scanner or recovered by reverse centrifugation for further analyses. Therefore, our chip possesses two functions: 1) it can be used for multi-target detection based on end-point in situ fluorescence detection; and 2) it can work as a sample preparation unit for analyses that need multiplex PCR such as hybridization and target sequencing. The performance of this chip was carefully examined and further illustrated in the identification of 8 pathogenic bacterial genomic DNA samples and 13 drug-resistance genes. Due to simplicity of its structure and operation, accuracy and generality, high-throughput capacity, and versatile functions (i.e., for in situ detection and sample preparation), our multiplex PCR chip has great potential in clinical diagnostics and nucleic acid-based point-of-care testing.

  6. Steatocystoma multiplex hos 39-årig kvinde

    DEFF Research Database (Denmark)

    Duffy, Jonas Raymond; Siersen, Hans Erik; Bonde, Christian T

    2011-01-01

    -coloured cystic lesions on the chest, abdomen, axillae and back. The patient's clinical presentations and history were compatible with steatocystoma multiplex. Various treatment options for steatocystoma multiplex and steatocystoma multiplex suppurativum have been published and include oral antibiotics...

  7. Fluorescent nanoparticles for intracellular sensing: A review

    International Nuclear Information System (INIS)

    Ruedas-Rama, Maria J.; Walters, Jamie D.; Orte, Angel; Hall, Elizabeth A.H.

    2012-01-01

    Highlights: ► Analytical applications of fluorescent nanoparticles (NPs) in intracellular sensing. ► Critical review on performance of QDots, metal NPs, silica NPs, and polymer NPs. ► Highlighted potential of fluorescence lifetime imaging microscopy (FLIM). - Abstract: Fluorescent nanoparticles (NPs), including semiconductor NPs (Quantum Dots), metal NPs, silica NPs, polymer NPs, etc., have been a major focus of research and development during the past decade. The fluorescent nanoparticles show unique chemical and optical properties, such as brighter fluorescence, higher photostability and higher biocompatibility, compared to classical fluorescent organic dyes. Moreover, the nanoparticles can also act as multivalent scaffolds for the realization of supramolecular assemblies, since their high surface to volume ratio allow distinct spatial domains to be functionalized, which can provide a versatile synthetic platform for the implementation of different sensing schemes. Their excellent properties make them one of the most useful tools that chemistry has supplied to biomedical research, enabling the intracellular monitoring of many different species for medical and biological purposes. In this review, we focus on the developments and analytical applications of fluorescent nanoparticles in chemical and biological sensing within the intracellular environment. The review also points out the great potential of fluorescent NPs for fluorescence lifetime imaging microscopy (FLIM). Finally, we also give an overview of the current methods for delivering of fluorescent NPs into cells, where critically examine the benefits and liabilities of each strategy.

  8. Fluorescent nanoparticles for intracellular sensing: A review

    Energy Technology Data Exchange (ETDEWEB)

    Ruedas-Rama, Maria J., E-mail: mjruedas@ugr.esmailto [Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Campus Cartuja, 18071, Granada (Spain); Walters, Jamie D. [Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, UK CB2 1QT (United Kingdom); Orte, Angel [Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Campus Cartuja, 18071, Granada (Spain); Hall, Elizabeth A.H., E-mail: lisa.hall@biotech.cam.ac.uk [Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT (United Kingdom)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer Analytical applications of fluorescent nanoparticles (NPs) in intracellular sensing. Black-Right-Pointing-Pointer Critical review on performance of QDots, metal NPs, silica NPs, and polymer NPs. Black-Right-Pointing-Pointer Highlighted potential of fluorescence lifetime imaging microscopy (FLIM). - Abstract: Fluorescent nanoparticles (NPs), including semiconductor NPs (Quantum Dots), metal NPs, silica NPs, polymer NPs, etc., have been a major focus of research and development during the past decade. The fluorescent nanoparticles show unique chemical and optical properties, such as brighter fluorescence, higher photostability and higher biocompatibility, compared to classical fluorescent organic dyes. Moreover, the nanoparticles can also act as multivalent scaffolds for the realization of supramolecular assemblies, since their high surface to volume ratio allow distinct spatial domains to be functionalized, which can provide a versatile synthetic platform for the implementation of different sensing schemes. Their excellent properties make them one of the most useful tools that chemistry has supplied to biomedical research, enabling the intracellular monitoring of many different species for medical and biological purposes. In this review, we focus on the developments and analytical applications of fluorescent nanoparticles in chemical and biological sensing within the intracellular environment. The review also points out the great potential of fluorescent NPs for fluorescence lifetime imaging microscopy (FLIM). Finally, we also give an overview of the current methods for delivering of fluorescent NPs into cells, where critically examine the benefits and liabilities of each strategy.

  9. High speed fluorescence imaging with compressed ultrafast photography

    Science.gov (United States)

    Thompson, J. V.; Mason, J. D.; Beier, H. T.; Bixler, J. N.

    2017-02-01

    Fluorescent lifetime imaging is an optical technique that facilitates imaging molecular interactions and cellular functions. Because the excited lifetime of a fluorophore is sensitive to its local microenvironment,1, 2 measurement of fluorescent lifetimes can be used to accurately detect regional changes in temperature, pH, and ion concentration. However, typical state of the art fluorescent lifetime methods are severely limited when it comes to acquisition time (on the order of seconds to minutes) and video rate imaging. Here we show that compressed ultrafast photography (CUP) can be used in conjunction with fluorescent lifetime imaging to overcome these acquisition rate limitations. Frame rates up to one hundred billion frames per second have been demonstrated with compressed ultrafast photography using a streak camera.3 These rates are achieved by encoding time in the spatial direction with a pseudo-random binary pattern. The time domain information is then reconstructed using a compressed sensing algorithm, resulting in a cube of data (x,y,t) for each readout image. Thus, application of compressed ultrafast photography will allow us to acquire an entire fluorescent lifetime image with a single laser pulse. Using a streak camera with a high-speed CMOS camera, acquisition rates of 100 frames per second can be achieved, which will significantly enhance our ability to quantitatively measure complex biological events with high spatial and temporal resolution. In particular, we will demonstrate the ability of this technique to do single-shot fluorescent lifetime imaging of cells and microspheres.

  10. Lifetime costs of cerebral palsy

    DEFF Research Database (Denmark)

    Kruse, Marie; Michelsen, Susan Ishøy; Flachs, Esben Meulengracht

    2009-01-01

    This study quantified the lifetime costs of cerebral palsy (CP) in a register-based setting. It was the first study outside the US to assess the lifetime costs of CP. The lifetime costs attributable to CP were divided into three categories: health care costs, productivity costs, and social costs....... social care costs and productivity costs associated with CP point to a potential gain from labour market interventions that benefit individuals with CP.......This study quantified the lifetime costs of cerebral palsy (CP) in a register-based setting. It was the first study outside the US to assess the lifetime costs of CP. The lifetime costs attributable to CP were divided into three categories: health care costs, productivity costs, and social costs...... in 2000. The prevalence of CP in eastern Denmark was approximately 1.7 per 1000. Information on productivity and the use of health care was retrieved from registers. The lifetime cost of CP was about euro860 000 for men and about euro800 000 for women. The largest component was social care costs...

  11. madSTORM: a superresolution technique for large-scale multiplexing at single-molecule accuracy

    Science.gov (United States)

    Yi, Jason; Manna, Asit; Barr, Valarie A.; Hong, Jennifer; Neuman, Keir C.; Samelson, Lawrence E.

    2016-01-01

    Investigation of heterogeneous cellular structures using single-molecule localization microscopy has been limited by poorly defined localization accuracy and inadequate multiplexing capacity. Using fluorescent nanodiamonds as fiducial markers, we define and achieve localization precision required for single-molecule accuracy in dSTORM images. Coupled with this advance, our new multiplexing strategy, madSTORM, allows accurate targeting of multiple molecules using sequential binding and elution of fluorescent antibodies. madSTORM is used on an activated T-cell to localize 25 epitopes, 14 of which are on components of the same multimolecular T-cell receptor complex. We obtain an average localization precision of 2.6 nm, alignment error of 2.0 nm, and molecules within structures. Probing the molecular topology of complex signaling cascades and other heterogeneous networks is feasible with madSTORM. PMID:27708141

  12. Polar plot representation of time-resolved fluorescence.

    Science.gov (United States)

    Eichorst, John Paul; Wen Teng, Kai; Clegg, Robert M

    2014-01-01

    Measuring changes in a molecule's fluorescence emission is a common technique to study complex biological systems such as cells and tissues. Although the steady-state fluorescence intensity is frequently used, measuring the average amount of time that a molecule spends in the excited state (the fluorescence lifetime) reveals more detailed information about its local environment. The lifetime is measured in the time domain by detecting directly the decay of fluorescence following excitation by short pulse of light. The lifetime can also be measured in the frequency domain by recording the phase and amplitude of oscillation in the emitted fluorescence of the sample in response to repetitively modulated excitation light. In either the time or frequency domain, the analysis of data to extract lifetimes can be computationally intensive. For example, a variety of iterative fitting algorithms already exist to determine lifetimes from samples that contain multiple fluorescing species. However, recently a method of analysis referred to as the polar plot (or phasor plot) is a graphical tool that projects the time-dependent features of the sample's fluorescence in either the time or frequency domain into the Cartesian plane to characterize the sample's lifetime. The coordinate transformations of the polar plot require only the raw data, and hence, there are no uncertainties from extensive corrections or time-consuming fitting in this analysis. In this chapter, the history and mathematical background of the polar plot will be presented along with examples that highlight how it can be used in both cuvette-based and imaging applications.

  13. An alarm multiplexer communication system

    International Nuclear Information System (INIS)

    Herrera, G.V.

    1986-01-01

    A low cost Alarm Multiplexer Communication System (AMCS) has been developed to perform the security sensor monitoring and control functions and to provide remote relay control capability for integrated security systems. AMCS has a distributed multiplexer/repeater architecture with up to four dual communication loops and dual control computers that guarantee total system operation under any single point failure condition. Each AMCS can control up to 4096 sensors and 2048 remote relays. AMCS reports alarm status information to and is controlled by either one or two Host computers. This allows for independent operation of primary and backup security command centers. AMCS communicates with the Host computers over an asynchronous serial communication link and has a message protocol which allows AMCS to fully recover from lost messages or large blocks of data communication errors. This paper describes the AMCS theory of operation, AMCS fault modes, and AMCS system design methodology. Also, cost and timing information is presented. AMCS is being used and considered for several DOE and DOD facilities

  14. Electricite de France: Lifetime Project

    International Nuclear Information System (INIS)

    Combes, Jean-Pierre

    1991-01-01

    Electricite de France produces almost 80% of its electricity by means of standardized PWR nuclear power stations. Starting in 1986, therefore, a project known as the 'Lifetime Project' was developed, whose aim was initially to ensure that the lifetime defined at design stage (40 years in general) could be attained without major difficulty (follow up of the aging process). It then became apparent that it would be useful to know just how far it would be technically and economically possible to go. As a result, the project is now working towards increasing the lifetime of power stations. (author)

  15. Multiphoton autofluorescence lifetime imaging of induced pluripotent stem cells

    Science.gov (United States)

    Uchugonova, Aisada

    2017-06-01

    The multiphoton fluorescence lifetime imaging tomograph MPTflex with its flexible 360-deg scan head, articulated arm, and tunable femtosecond laser source was employed to study induced pluripotent stem cell (iPS) cultures. Autofluorescence (AF) lifetime imaging was performed with 250-ps temporal resolution and submicron spatial resolution using time-correlated single-photon counting. The two-photon excited AF was based on the metabolic coenzymes NAD(P)H and flavin adenine dinucleotide/flavoproteins. iPS cells generated from mouse embryonic fibroblasts (MEFs) and cocultured with growth-arrested MEFs as feeder cells have been studied. Significant differences on AF lifetime signatures were identified between iPS and feeder cells as well as between their differentiating counterparts.

  16. Recombinant Helicobacter bilis Protein P167 for Mouse Serodiagnosis in a Multiplex Microbead Assay

    OpenAIRE

    Feng, Sunlian; Kendall, Lon V.; Hodzic, Emir; Wong, Scott; Lorenzana, Edward; Freet, Kimberly; Ku, Karin S.; Luciw, Paul A.; Barthold, Stephen W.; Khan, Imran H.

    2004-01-01

    Infection of mice with Helicobacter bilis is widespread in research and commercial mouse colonies. Therefore, sensitive, specific, and high-throughput assays are needed for rapid and accurate testing of mice in large numbers. This report describes a novel multiplex assay, based on fluorescent microbeads, for serodetection of H. bilis infection. The assay requires only a few microliters of serum to perform and is amenable to a high-throughput format. Individual microbead sets were conjugated t...

  17. Characterization of porcine eyes based on autofluorescence lifetime imaging

    Science.gov (United States)

    Batista, Ana; Breunig, Hans Georg; Uchugonova, Aisada; Morgado, António Miguel; König, Karsten

    2015-03-01

    Multiphoton microscopy is a non-invasive imaging technique with ideal characteristics for biological applications. In this study, we propose to characterize three major structures of the porcine eye, the cornea, crystalline lens, and retina using two-photon excitation fluorescence lifetime imaging microscopy (2PE-FLIM). Samples were imaged using a laser-scanning microscope, consisting of a broadband sub-15 femtosecond (fs) near-infrared laser. Signal detection was performed using a 16-channel photomultiplier tube (PMT) detector (PML-16PMT). Therefore, spectral analysis of the fluorescence lifetime data was possible. To ensure a correct spectral analysis of the autofluorescence lifetime data, the spectra of the individual endogenous fluorophores were acquired with the 16-channel PMT and with a spectrometer. All experiments were performed within 12h of the porcine eye enucleation. We were able to image the cornea, crystalline lens, and retina at multiple depths. Discrimination of each structure based on their autofluorescence intensity and lifetimes was possible. Furthermore, discrimination between different layers of the same structure was also possible. To the best of our knowledge, this was the first time that 2PE-FLIM was used for porcine lens imaging and layer discrimination. With this study we further demonstrated the feasibility of 2PE-FLIM to image and differentiate three of the main components of the eye and its potential as an ophthalmologic technique.

  18. THESEUS: A wavelength division multiplexed/microwave subcarrier multiplexed optical network, its ATM switch applications and device requirements

    Science.gov (United States)

    Xin, Wei

    1997-10-01

    A Terabit Hybrid Electro-optical /underline[Se]lf- routing Ultrafast Switch (THESEUS) has been proposed. It is a self-routing wavelength division multiplexed (WDM) / microwave subcarrier multiplexed (SCM) asynchronous transfer mode (ATM) switch for the multirate ATM networks. It has potential to be extended to a large ATM switch as 1000 x 1000 without internal blocking. Among the advantages of the hybrid implementation are flexibility in service upgrade, relaxed tolerances on optical filtering, protocol simplification and less processing overhead. For a small ATM switch, the subcarrier can be used as output buffers to solve output contention. A mathematical analysis was conducted to evaluate different buffer configurations. A testbed has been successfully constructed. Multirate binary data streams have been switched through the testbed and error free reception ([<]10-9 bit error rate) has been achieved. A simple, intuitive theoretical model has been developed to describe the heterodyne optical beat interference. A new concept of interference time and interference length has been introduced. An experimental confirmation has been conducted. The experimental results match the model very well. It shows that a large portion of optical bandwidth is wasted due to the beat interference. Based on the model, several improvement approaches have been proposed. The photo-generated carrier lifetime of silicon germanium has been measured using time-resolved reflectivity measurement. Via oxygen ion implantation, the carrier lifetime has been reduced to as short as 1 ps, corresponding to 1 THz of photodetector bandwidth. It has also been shown that copper dopants act as recombination centers in the silicon germanium.

  19. Measurement of Charm Meson Lifetimes

    International Nuclear Information System (INIS)

    Bonvicini, G.; Cinabro, D.; Greene, R.; Perera, L.P.; Zhou, G.J.; Chan, S.; Eigen, G.; Lipeles, E.; Schmidtler, M.; Shapiro, A.; Sun, W.M.; Urheim, J.; Weinstein, A.J.; Wuerthwein, F.; Jaffe, D.E.; Masek, G.; Paar, H.P.; Potter, E.M.; Prell, S.; Sharma, V.; Asner, D.M.; Eppich, A.; Gronberg, J.; Hill, T.S.; Korte, C.M.; Lange, D.J.; Morrison, R.J.; Nelson, H.N.; Nelson, T.K.; Roberts, D.; Tajima, H.; Behrens, B.H.; Ford, W.T.; Gritsan, A.; Krieg, H.; Roy, J.; Smith, J.G.; Alexander, J.P.; Baker, R.; Bebek, C.; Berger, B.E.; Berkelman, K.; Boisvert, V.; Cassel, D.G.; Crowcroft, D.S.; Dickson, M.; Dombrowski, S. von; Drell, P.S.; Dumas, D.J.; Ecklund, K.M.; Ehrlich, R.; Foland, A.D.; Gaidarev, P.; Gibbons, L.; Gittelman, B.; Gray, S.W.; Hartill, D.L.; Heltsley, B.K.; Henderson, S.; Hopman, P.I.; Katayama, N.; Kreinick, D.L.; Lee, T.; Liu, Y.; Meyer, T.O.; Mistry, N.B.; Ng, C.R.; Nordberg, E.; Ogg, M.; Patterson, J.R.; Peterson, D.; Riley, D.; Soffer, A.; Thayer, J.G.; Thies, P.G.; Valant-Spaight, B.; Warburton, A.; Ward, C.; Athanas, M.; Avery, P.; Jones, C.D.; Lohner, M.; Prescott, C.; Rubiera, A.I.; Yelton, J.; Zheng, J.; Brandenburg, G.; Briere, R.A.; Ershov, A.; Gao, Y.S.; Kim, D.Y.; Wilson, R.; Browder, T.E.; Li, Y.; Rodriguez, J.L.; Yamamoto, H.; Bergfeld, T.; Eisenstein, B.I.; Ernst, J.; Gladding, G.E.; Gollin, G.D

    1999-01-01

    We report measurements of the D 0 , D + , and D + s meson lifetimes using 3.7 fb -1 of e + e - annihilation data collected near the Υ(4S) resonance with the CLEO detector. The measured lifetimes of the D 0 , D + , and D + s mesons are 408.5±4.1 +3.5 -3.4 fs , 1033.6±22.1 +9.9 -12.7 fs , and 486.3±15.0 +4.9 -5.1 fs . The precision of these lifetimes are comparable to those of the best previous measurements, and the systematic errors are very different. In a single experiment we find that the ratio of the D + s and D 0 lifetimes is 1.19±0.04 . copyright 1999 The American Physical Society

  20. Deconvolution of Positrons' Lifetime spectra

    International Nuclear Information System (INIS)

    Calderin Hidalgo, L.; Ortega Villafuerte, Y.

    1996-01-01

    In this paper, we explain the iterative method previously develop for the deconvolution of Doppler broadening spectra using the mathematical optimization theory. Also, we start the adaptation and application of this method to the deconvolution of positrons' lifetime annihilation spectra

  1. Anthracene Fluorescence Quenching by a Tetrakis (Ketocarboxamide Cavitand

    Directory of Open Access Journals (Sweden)

    Tibor Zoltan Janosi

    2014-01-01

    Full Text Available Quenching of both fluorescence lifetime and fluorescence intensity of anthracene was investigated in the presence of a newly derived tetrakis (ketocarboxamide cavitand at various concentrations. Time-correlated single photon counting method was applied for the lifetime measurements. A clear correlation between the fluorescence lifetime of anthracene as a function of cavitand concentration in dimethylformamide solution was observed. The bimolecular collisional quenching constant was derived from the decrease of lifetime. Fluorescence intensity was measured in the emission wavelength region around 400 nm as a result of excitation at 280 nm. Effective quenching was observed in the presence of the cavitand. The obtained Stern-Volmer plot displayed upward curvature. The results did not follow even extended Stern-Volmer behavior, often used to describe deviations from static bimolecular quenching. To explain our results we adopted the Smoluchowski model and obtained a reasonable estimate for the molecular radius of the cavitand in solution.

  2. The fluorescence behaviour of methyl and phenyl salicylate

    Science.gov (United States)

    Ford, D.; Thistlethwaite, P. J.; Woolfe, G. J.

    1980-01-01

    Fluorcsccnce lifetimes tor the 450 nm emission of methyl and phenyl salicylate in various solvents have been measured. Qucnching studics on the 340 nm fluorescence of these molecules point to the existence of three distinct ground state conformers.

  3. Development of a multiplex PCR for the genetic analysis of paddlefish (Polyodon spathula Walbaum,1792 populations

    Directory of Open Access Journals (Sweden)

    K. Kurta

    2017-12-01

    Full Text Available Purpose. Paddlefish is commercially important species owing to its biological features and consumer characteristics, namely it produces valuable and delicious fish products, such as high quality meat and black caviar. Consequently, its cultivation under Ukrainian fish farm conditions and further realization in domestic and foreign markets are economically efficient. However, the paddlefish broodstock in Ukraine requires the efficient solution of increasing its productivity, identification and assessment of its genetic variation. Thus, the aim of our study was to develop and implement a multiplex PCR-analysis of paddlefish (Polyodon spathula for population-genetic monitoring of its artificial broodstocks in Ukraine. Methodology. A multiplex PCR was used for the study. The multiplex PCR development was performed for four microsatellite DNA markers: Psp12, Psp21, Psp26 and Psp28. Each investigated DNA loci, for which the multiplex PCR was optimized, was selected in such a way that the colored PCR products labeled with fluorescent dye did not overlap the length of the amplified fragments. Evaluation of the multiplex PCR effectiveness and processing of the data were performed by fragment analysis of DNA on the genetic analyzer ABI Prism 3130 (Applied Biosystem, USA. The size of the identified alleles was determined using the "Gene Mapper 3.7" program (Applied Biosystems, USA and LIZ-500 size standard (Applied Biosystems, USA. Results. Based on the results of capillary electrophoresis of multiplex PCR products, it was found that the amplified fragments for each of the four studied loci: Psp12, Psp21, Psp26 and Psp28 in one PCR reaction were within the expected size range. Data analysis on the electrophoregram demonstrated that Psp21 had the highest peak intensity at 611 fluorescent units (FU and the lowest peak intensity at 105 FU was observed for Psp26 locus. In the multiplex PCR after proper interpretation of the data we identified heterozygous

  4. Functionalization of optical nanotip arrays with an electrochemical microcantilever for multiplexed DNA detection.

    Science.gov (United States)

    Descamps, Emeline; Duroure, Nathalie; Deiss, Frédérique; Leichlé, Thierry; Adam, Catherine; Mailley, Pascal; Aït-Ikhlef, Ali; Livache, Thierry; Nicu, Liviu; Sojic, Neso

    2013-08-07

    Optical nanotip arrays fabricated on etched fiber bundles were functionalized with DNA spots. Such unconventional substrates (3D and non-planar) are difficult to pattern with standard microfabrication techniques but, using an electrochemical cantilever, up to 400 spots were electrodeposited on the nanostructured optical surface in 5 min. This approach allows each spot to be addressed individually and multiplexed fluorescence detection is demonstrated. Finally, remote fluorescence detection was performed by imaging through the optical fiber bundle itself after hybridisation with the complementary sequence.

  5. Cooperative epidemics on multiplex networks

    Science.gov (United States)

    Azimi-Tafreshi, N.

    2016-04-01

    The spread of one disease, in some cases, can stimulate the spreading of another infectious disease. Here, we treat analytically a symmetric coinfection model for spreading of two diseases on a two-layer multiplex network. We allow layer overlapping, but we assume that each layer is random and locally loopless. Infection with one of the diseases increases the probability of getting infected with the other. Using the generating function method, we calculate exactly the fraction of individuals infected with both diseases (so-called coinfected clusters) in the stationary state, as well as the epidemic spreading thresholds and the phase diagram of the model. With increasing cooperation, we observe a tricritical point and the type of transition changes from continuous to hybrid. Finally, we compare the coinfected clusters in the case of cooperating diseases with the so-called "viable" clusters in networks with dependencies.

  6. Multiplexed detection of mycotoxins in foods with a regenerable array.

    Science.gov (United States)

    Ngundi, Miriam M; Shriver-Lake, Lisa C; Moore, Martin H; Ligler, Frances S; Taitt, Chris R

    2006-12-01

    The occurrence of different mycotoxins in cereal products calls for the development of a rapid, sensitive, and reliable detection method that is capable of analyzing samples for multiple toxins simultaneously. In this study, we report the development and application of a multiplexed competitive assay for the simultaneous detection of ochratoxin A (OTA) and deoxynivalenol (DON) in spiked barley, cornmeal, and wheat, as well as in naturally contaminated maize samples. Fluoroimmunoassays were performed with the Naval Research Laboratory array biosensor, by both a manual and an automated version of the system. This system employs evanescent-wave fluorescence excitation to probe binding events as they occur on the surface of a waveguide. Methanolic extracts of the samples were diluted threefold with buffer containing a mixture of fluorescent antibodies and were then passed over the arrays of mycotoxins immobilized on a waveguide. Fluorescent signals of the surface-bound antibody-antigen complexes decreased with increasing concentrations of free mycotoxins in the extract. After sample analysis was completed, surfaces were regenerated with 6 M guanidine hydrochloride in 50 mM glycine, pH 2.0. The limits of detection determined by the manual biosensor system were as follows: 1, 180, and 65 ng/g for DON and 1, 60, and 85 ng/g for OTA in cornmeal, wheat, and barley, respectively. The limits of detection in cornmeal determined with the automated array biosensor were 15 and 150 ng/g for OTA and DON, respectively.

  7. Fluorescence resonance energy transfer imaging of CFP/YFP labeled NDH in cyanobacterium cell

    International Nuclear Information System (INIS)

    Ji Dongmei; Lv Wei; Huang Zhengxi; Xia Andong; Xu Min; Ma Weimin; Mi Hualing; Ogawa Teruo

    2007-01-01

    The laser confocal scanning microscopy combined with time-correlated single photon counting imaging technique to obtain fluorescence intensity and fluorescence lifetime images for fluorescence resonance energy transfer measurement is reported. Both the fluorescence lifetime imaging microscopy (FLIM) and intensity images show inhomogeneous cyan fluorescent protein and yellow fluorescent protein (CFP /YFP) expression or inhomogeneous energy transfer between CFP and YFP over whole cell. The results presented in this work show that FLIM could be a potential method to reveal the structure-function behavior of NAD(P)H dehydrogenase complexes in living cell

  8. Occupational risk and lifetime exposure

    International Nuclear Information System (INIS)

    Lapp, R.E.

    1991-01-01

    Any lowering of annual radiation limits for occupational exposure should be based on industry experience with lifetime doses and not on a worst case career exposure of 47 years. Two decades of experience show a lifetime accumulation of less than 1.5 rem for workers with measurable exposure. This is 5% of the normal lifetime exposure of Americans to natural and medical radiation. Any epidemiology of the US nuclear power workforce's two decade long exposure would have to focus on excess leukemia. Application of the Hiroshima and Nagasaki cancer mortality shows that too few leukemias would be expressed to permit a feasible epidemiology. Ionizing radiation appears to be a mild carcinogen as compared to physical and chemical agents presented in the occupational environment. A realistic factor in determining any change in occupational exposure limits for ionizing radiation should take into account the past performance of the licensee and potential health effects applicable to the workplace. Specifically, the lifetime exposure data for workers at nuclear power plants and naval shipyards should be considered. The nuclear industry and the US Navy have detailed data on the annual exposure of workers with a combined collective exposure approaching 1 million worker-rem. The lifetime dose for naval personnel and shipyard workers averages 1.1 rem J 1990. Shipyard workers have an annual dose of 0.28 rem per work-year and a mean exposure time of 4.4 years. The data apply to workers with measurable dose

  9. Confocal fluorescence techniques in industrial application

    Science.gov (United States)

    Eggeling, Christian; Gall, Karsten; Palo, Kaupo; Kask, Peet; Brand, Leif

    2003-06-01

    The FCS+plus family of evaluation tools for confocal fluorescence spectroscopy, which was developed during recent years, offers a comprehensive view to a series of fluorescence properties. Originating in fluorescence correlation spectroscopy (FCS) and using similar experimental equipment, a system of signal processing methods such as fluorescence intensity distribution analysis (FIDA) was created to analyze in detail the fluctuation behavior of fluorescent particles within a small area of detection. Giving simultaneous access to molecular parameters like concentration, translational and rotational diffusion, molecular brightness, and multicolor coincidence, this portfolio was enhanced by more traditional techniques of fluorescence lifetime as well as time-resolved anisotropy determination. The cornerstones of the FCS+plus methodology will be shortly described. The inhibition of a phosphatase enzyme activity gives a comprehensive industrial application that demonstrates FCS+plus' versatility and its potential for pharmaceutical drug discovery.

  10. Multiplexed Quantitation of Intraphagocyte Mycobacterium tuberculosis Secreted Protein Effectors

    Directory of Open Access Journals (Sweden)

    Fadel Sayes

    2018-04-01

    Full Text Available Summary: The pathogenic potential of Mycobacterium tuberculosis largely depends on ESX secretion systems exporting members of the multigenic Esx, Esp, and PE/PPE protein families. To study the secretion and regulation patterns of these proteins while circumventing immune cross-reactions due to their extensive sequence homologies, we developed an approach that relies on the recognition of their MHC class II epitopes by highly discriminative T cell receptors (TCRs of a panel of T cell hybridomas. The latter were engineered so that each expresses a unique fluorescent reporter linked to specific antigen recognition. The resulting polychromatic and multiplexed imaging assay enabled us to measure the secretion of mycobacterial effectors inside infected host cells. We applied this novel technology to a large panel of mutants, clinical isolates, and host-cell types to explore the host-mycobacteria interplay and its impact on the intracellular bacterial secretome, which also revealed the unexpected capacity of phagocytes from lung granuloma to present mycobacterial antigens via MHC class II. : Sayes et al. develop an approach to express distinct fluorescent reporters that is based on the recognition of specific Mycobacterium tuberculosis MHC class II epitopes by highly discriminative T cell hybridomas. This multiplexed technology allows the study of secretion, subcellular location, and regulation patterns of these instrumental protein members. Keywords: mycobacterium tuberculosis, type VII secretion systems, intracellular bacteria, T-cell hybridomas, mycobacterial virulence factors, bacterial antigen presentation, lentiviral vectors, reporter T cells, in vivo antigen presentation, protein localization

  11. Immunization of Epidemics in Multiplex Networks

    Science.gov (United States)

    Zhao, Dawei; Wang, Lianhai; Li, Shudong; Wang, Zhen; Wang, Lin; Gao, Bo

    2014-01-01

    Up to now, immunization of disease propagation has attracted great attention in both theoretical and experimental researches. However, vast majority of existing achievements are limited to the simple assumption of single layer networked population, which seems obviously inconsistent with recent development of complex network theory: each node could possess multiple roles in different topology connections. Inspired by this fact, we here propose the immunization strategies on multiplex networks, including multiplex node-based random (targeted) immunization and layer node-based random (targeted) immunization. With the theory of generating function, theoretical analysis is developed to calculate the immunization threshold, which is regarded as the most critical index for the effectiveness of addressed immunization strategies. Interestingly, both types of random immunization strategies show more efficiency in controlling disease spreading on multiplex Erdös-Rényi (ER) random networks; while targeted immunization strategies provide better protection on multiplex scale-free (SF) networks. PMID:25401755

  12. 16-channel analog store and multiplexer unit

    Energy Technology Data Exchange (ETDEWEB)

    Brossard, M; Kulka, Z [Clermont-Ferrand-2 Univ., 63 - Aubiere (France). Lab. de Physique Corpusculaire

    1979-03-15

    A 16-channel analog store and multiplexer unit is described. The unit enables storing and selection of analog information which is then digitally encoded by single ADC. This solution becomes economically attractive particularly in multidetector pulse height analysis systems.

  13. Packaged mode multiplexer based on silicon photonics

    NARCIS (Netherlands)

    Chen, H.; Koonen, A.M.J.; Snyder, B.; Raz, O.; Boom, van den H.P.A.; Chen, X.

    2012-01-01

    A silicon photonics based mode multiplexer is proposed. Four chirped grating couplers structure can support all 6 channels in a two-mode fiber and realize LP01 and LP11 mode selective exciting. The packaged device is tested.

  14. Immunization of epidemics in multiplex networks.

    Science.gov (United States)

    Zhao, Dawei; Wang, Lianhai; Li, Shudong; Wang, Zhen; Wang, Lin; Gao, Bo

    2014-01-01

    Up to now, immunization of disease propagation has attracted great attention in both theoretical and experimental researches. However, vast majority of existing achievements are limited to the simple assumption of single layer networked population, which seems obviously inconsistent with recent development of complex network theory: each node could possess multiple roles in different topology connections. Inspired by this fact, we here propose the immunization strategies on multiplex networks, including multiplex node-based random (targeted) immunization and layer node-based random (targeted) immunization. With the theory of generating function, theoretical analysis is developed to calculate the immunization threshold, which is regarded as the most critical index for the effectiveness of addressed immunization strategies. Interestingly, both types of random immunization strategies show more efficiency in controlling disease spreading on multiplex Erdös-Rényi (ER) random networks; while targeted immunization strategies provide better protection on multiplex scale-free (SF) networks.

  15. Immunization of epidemics in multiplex networks.

    Directory of Open Access Journals (Sweden)

    Dawei Zhao

    Full Text Available Up to now, immunization of disease propagation has attracted great attention in both theoretical and experimental researches. However, vast majority of existing achievements are limited to the simple assumption of single layer networked population, which seems obviously inconsistent with recent development of complex network theory: each node could possess multiple roles in different topology connections. Inspired by this fact, we here propose the immunization strategies on multiplex networks, including multiplex node-based random (targeted immunization and layer node-based random (targeted immunization. With the theory of generating function, theoretical analysis is developed to calculate the immunization threshold, which is regarded as the most critical index for the effectiveness of addressed immunization strategies. Interestingly, both types of random immunization strategies show more efficiency in controlling disease spreading on multiplex Erdös-Rényi (ER random networks; while targeted immunization strategies provide better protection on multiplex scale-free (SF networks.

  16. Plasmonic enhancement of ultraviolet fluorescence

    Science.gov (United States)

    Jiao, Xiaojin

    Plasmonics relates to the interaction between electromagnetic radiation and conduction electrons at metallic interfaces or in metallic nanostructures. Surface plasmons are collective electron oscillations at a metal surface, which can be manipulated by shape, texture and material composition. Plasmonic applications cover a broad spectrum from visible to near infrared, including biosensing, nanolithography, spectroscopy, optoelectronics, photovoltaics and so on. However, there remains a gap in this activity in the ultraviolet (UV, research. Motivating factors in the study of UV Plasmonics are the direct access to biomolecular resonances and native fluorescence, resonant Raman scattering interactions, and the potential for exerting control over photochemical reactions. This dissertation aims to fill in the gap of Plasmonics in the UV with efforts of design, fabrication and characterization of aluminium (Al) and magnesium (Mg) nanostructures for the application of label-free bimolecular detection via native UV fluorescence. The first contribution of this dissertation addresses the design of Al nanostructures in the context of UV fluorescence enhancement. A design method that combines analytical analysis with numerical simulation has been developed. Performance of three canonical plasmonic structures---the dipole antenna, bullseye nanoaperture and nanoaperture array---has been compared. The optimal geometrical parameters have been determined. A novel design of a compound bullseye structure has been proposed and numerically analyzed for the purpose of compensating for the large Stokes shift typical of UV fluorescence. Second, UV lifetime modification of diffusing molecules by Al nanoapertures has been experimentally demonstrated for the first time. Lifetime reductions of ~3.5x have been observed for the high quantum yield (QY) laser dye p-terphenyl in a 60 nm diameter aperture with 50 nm undercut. Furthermore, quantum-yield-dependence of lifetime reduction has been

  17. Lifetime results from heavy quark systems

    International Nuclear Information System (INIS)

    Papadimitriou, V.

    1997-11-01

    We present the latest measurements of weakly decaying b-hadrons from experiments at e + e - and p anti p colliders. These measurements include the average lifetime of b-hadrons, lifetimes of the B - , B 0 and B 0 s mesons, the average lifetime of b-baryons and lifetimes of the Λ b and Ξ b baryons

  18. Fluorescent Nanodiamonds in Biomedical Applications.

    Science.gov (United States)

    Mitura, Katarzyna Anna; Włodarczyk, Elżbieta

    2018-04-18

    Nanoparticles have an extended surface and a large surface area, which is the ratio of the size of the surfacearea to the volume. A functionalized surface can give rise to more modifications and therefore allows this nanomaterial to have new properties. Fluorescent molecules contain fluorophore, which is capable of being excited via the absorption of light energy at a specific wavelength and subsequently emitting radiation energy of a longer wavelength. A chemically modified surface of nanodiamond (ND; by carboxylation) demonstrated biocompatibility with DNA, cytochrome C, and antigens. In turn, fluorescent nanodiamonds (FNDs) belong to a group of new nanomaterials. Their surface can be modified by joining functional groups such as carboxyl, hydroxyl, or amino, after which they can be employed as a fluorescence agent. Their fluorescent properties result from defects in the crystal lattice. FNDs reach dimensions of 4-100 nm, have attributes such as photostability, long fluorescence lifetimes (10 ns), and fluorescence emission between 600 and 700 nm. They are also nontoxic, chemically inert, biocompatible, and environmentally harmless. The main purpose of this article was to present the medical applications of various types of modified NDs.

  19. Generating multiplex gradients of biomolecules for controlling cellular adhesion in parallel microfluidic channels.

    Science.gov (United States)

    Didar, Tohid Fatanat; Tabrizian, Maryam

    2012-11-07

    Here we present a microfluidic platform to generate multiplex gradients of biomolecules within parallel microfluidic channels, in which a range of multiplex concentration gradients with different profile shapes are simultaneously produced. Nonlinear polynomial gradients were also generated using this device. The gradient generation principle is based on implementing parrallel channels with each providing a different hydrodynamic resistance. The generated biomolecule gradients were then covalently functionalized onto the microchannel surfaces. Surface gradients along the channel width were a result of covalent attachments of biomolecules to the surface, which remained functional under high shear stresses (50 dyn/cm(2)). An IgG antibody conjugated to three different fluorescence dyes (FITC, Cy5 and Cy3) was used to demonstrate the resulting multiplex concentration gradients of biomolecules. The device enabled generation of gradients with up to three different biomolecules in each channel with varying concentration profiles. We were also able to produce 2-dimensional gradients in which biomolecules were distributed along the length and width of the channel. To demonstrate the applicability of the developed design, three different multiplex concentration gradients of REDV and KRSR peptides were patterned along the width of three parallel channels and adhesion of primary human umbilical vein endothelial cell (HUVEC) in each channel was subsequently investigated using a single chip.

  20. Lifetime value in business process

    Directory of Open Access Journals (Sweden)

    Martin Souček

    2011-01-01

    Full Text Available The paper focuses on lifetime value assessment and its implementation and application in business processes. The lifetime value is closely connected to customer relationship management. The paper presents results of three consecutive researches devoted to issues of customer relationship management. The first two from 2008 and 2010 were conducted as quantitative ones; the one from 2009 had qualitative nature. The respondents were representatives of particular companies. The means for data collection was provided by ReLa system. We will focus on individual attributes of lifetime value of a customer, and relate them to approaches of authors mentioned in introduction. Based on the qualitative research data, the paper focuses on individual customer lifetime value parameters. These parameters include: the cost to the customer relationship acquisition and maintenance, profit generated from a particular customer, customer awareness value, the level of preparedness to adopt new products, the value of references and customer loyalty level. For each of these parameters, the paper provides specific recommendations. Moreover, it is possible to learn about the nature of these parameter assessments in the Czech environment.

  1. Lifetime of heavy flavour particles

    International Nuclear Information System (INIS)

    Lueth, V.

    1985-10-01

    Recent measurements of the lifetime of the tau leptons and charm and beauty hadrons are reviewed and their significance for the couplings of the charged weak current, flavour mixing, and models relating quarks to hadron decay are discussed. 70 refs., 17 figs., 5 tabs

  2. Fluorescence Decay Dynamics of Ethidium Bromide in Polymers

    International Nuclear Information System (INIS)

    Jee, Ah Young; Min Yung

    2010-01-01

    The fluorescence lifetimes of EB in five polymers covering LDPE, HDPE, PC, PS, and PAA were measured by picosecond time-correlated single photon counting. The lifetime change of EB has been previously described by hydrogen bonding ability. In this work, we have observed that the lifetime of EB depends strongly on the Young's modulus of medium. Thus, it is possible that the fluorescence decay dynamics of EB could be influenced by medium rigidity rather than hydrogen bonding ability in polymer. The medium influence on the fluorescence decay dynamics of ethidium bromide (EB) has been investigated in various environments. For example, Ohmstead and Kearns related the fluorescence lifetime of EB to the excited-state proton transfer process. In addition, they reported that the solvent viscosity plays a minor role in the excited state decay process of EB. Chirico et al. measured the fluorescence decay of EB as 1.7 ns in water and 6.5 ns in ethanol and concluded that hydrogen bonding ability is a key factor for the nonradiative relaxation. Pal et al. measured the fluorescence decay time of EB in acetone, acetonitrile, and their mixtures. They observed that the fluorescence decay processes were independent on the solvent polarity. These results show that the EB lifetime does not depend much on polarity or viscosity, but is mainly influenced by hydrogen bonding. Overall, EB is one of most widely used dyes for probing DNA. When EB is intercalated into the helical structure of DNA, a large increase in the fluorescence lifetime has been observed in comparison with water environment, and the fluorescence enhancement was attributed to the blocking of the excited-state proton transfer

  3. Heritability of lifetime ecstasy use.

    Science.gov (United States)

    Verweij, Karin J H; Treur, Jorien L; Vreeker, Annabel; Brunt, Tibor M; Willemsen, Gonneke; Boomsma, Dorret I; Vink, Jacqueline M

    2017-09-01

    Ecstasy is a widely used psychoactive drug that users often take because they experience positive effects such as increased euphoria, sociability, elevated mood, and heightened sensations. Ecstasy use is not harmless and several immediate and long term side effects have been identified. Lifetime ecstasy use is likely to be partly influenced by genetic factors, but no twin study has determined the heritability. Here, we apply a classical twin design to a large sample of twins and siblings to estimate the heritability of lifetime ecstasy use. The sample comprised 8500 twins and siblings aged between 18 and 45 years from 5402 families registered at the Netherlands Twin Registry. In 2013-2014 participants filled out a questionnaire including a question whether they had ever used ecstasy. We used the classical twin design to partition the individual differences in liability to ecstasy use into that due to genetic, shared environmental, and residual components. Overall, 10.4% of the sample had used ecstasy during their lifetime, with a somewhat higher prevalence in males than females. Twin modelling indicated that individual differences in liability to lifetime ecstasy use are for 74% due to genetic differences between individuals, whereas shared environmental and residual factors explain a small proportion of its liability (5% and 21%, respectively). Although heritability estimates appeared to be higher for females than males, this difference was not significant. Lifetime ecstasy use is a highly heritable trait, which indicates that some people are genetically more vulnerable to start using ecstasy than others. Copyright © 2017. Published by Elsevier B.V.

  4. Study on the fluorescence characteristics of carbon dots

    Science.gov (United States)

    Mao, Xiao-Jiao; Zheng, Hu-Zhi; Long, Yi-Juan; Du, Juan; Hao, Jian-Yu; Wang, Ling-Ling; Zhou, Dong-Bo

    2010-02-01

    Herein, we prepared water-soluble fluorescent carbon dots with diameter about 1.5 nm from cheap commercial lampblack. These fluorescent carbon nanoparticles are stable toward photobleaching and stable in water for more than half a year without fluorescence decrease. In order to improve its fluorescence properties, we passivated these nanoparticles with bisamino-terminated polyethylene glycol (PEG 1500N). Therefore, both fluorescence quantum yield and lifetime increased after this progress. In addition, the passivated carbon dots were more inert to solvent than the bare one and showed different responses to pH change.

  5. Riboflavin enhanced fluorescence of highly reduced graphene oxide

    Science.gov (United States)

    Iliut, Maria; Gabudean, Ana-Maria; Leordean, Cosmin; Simon, Timea; Teodorescu, Cristian-Mihail; Astilean, Simion

    2013-10-01

    The improvement of graphene derivates' fluorescence properties is a challenging topic and very few ways were reported up to now. In this Letter we propose an easy method to enhance the fluorescence of highly reduced graphene oxide (rGO) through non-covalent binding to a molecular fluorophore, namely the riboflavin (Rb). While the fluorescence of Rb is quenched, the Rb - decorated rGO exhibits strong blue fluorescence and significantly increased fluorescence lifetime, as compared to its pristine form. The data reported here represent a promising start towards tailoring the optical properties of rGOs, having utmost importance in optical applications.

  6. Silicon Chip-to-Chip Mode-Division Multiplexing

    DEFF Research Database (Denmark)

    Baumann, Jan Markus; Porto da Silva, Edson; Ding, Yunhong

    2018-01-01

    A chip-to-chip mode-division multiplexing connection is demonstrated using a pair of multiplexers/demultiplexers fabricated on the silicon-on-insulator platform. Successful mode multiplexing and demultiplexing is experimentally demonstrated, using the LP01, LP11a and LP11b modes.......A chip-to-chip mode-division multiplexing connection is demonstrated using a pair of multiplexers/demultiplexers fabricated on the silicon-on-insulator platform. Successful mode multiplexing and demultiplexing is experimentally demonstrated, using the LP01, LP11a and LP11b modes....

  7. Droplet-based microscale colorimetric biosensor for multiplexed DNA analysis via a graphene nanoprobe

    International Nuclear Information System (INIS)

    Xiang Xia; Luo Ming; Shi Liyang; Ji Xinghu; He Zhike

    2012-01-01

    Graphical abstract: With a microvalve manipulate technique combined with droplet platform, a microscale fluorescence-based colorimetric sensor for multiplexed DNA analysis is developed via a graphene nanoprobe. Highlights: ► A quantitative detection for multiplexed DNA is first realized on droplet platform. ► The DNA detection is relied on a simple fluorescence-based colorimetric method. ► GO is served as a quencher for two different DNA fluorescent probes. ► This present work provides a rapid, sensitive, visual and convenient detection tool for droplet biosensor. - Abstract: The development of simple and inexpensive DNA detection strategy is very significant for droplet-based microfluidic system. Here, a droplet-based biosensor for multiplexed DNA analysis is developed with a common imaging device by using fluorescence-based colorimetric method and a graphene nanoprobe. With the aid of droplet manipulation technique, droplet size adjustment, droplet fusion and droplet trap are realized accurately and precisely. Due to the high quenching efficiency of graphene oxide (GO), in the absence of target DNAs, the droplet containing two single-stranded DNA probes and GO shows dark color, in which the DNA probes are labeled carboxy fluorescein (FAM) and 6-carboxy-X-rhodamine (ROX), respectively. The droplet changes from dark to bright color when the DNA probes form double helix with the specific target DNAs leading to the dyes far away from GO. This colorimetric droplet biosensor exhibits a quantitative capability for simultaneous detection of two different target DNAs with the detection limits of 9.46 and 9.67 × 10 −8 M, respectively. It is also demonstrated that this biosensor platform can become a promising detection tool in high throughput applications with low consumption of reagents. Moreover, the incorporation of graphene nanoprobe and droplet technique can drive the biosensor field one more step to some extent.

  8. Dual fluorescence of single LH2 antenna nanorings

    International Nuclear Information System (INIS)

    Freiberg, A.; Raetsep, M.; Timpmann, K.; Trinkunas, G.

    2004-01-01

    A dual nature of fluorescence from LH2 pigment-protein complexes, which is a part of the light harvesting system of purple bacteria, is confirmed by fluorescence-lifetime dependence on recording wavelength and spectrally selective spectroscopy. An analysis based on the Holstein molecular crystal model, modified by allowing diagonal disorder, suggests coexistence of large- and small-radius self-trapped excitons, which serve as the origin of the dual fluorescence

  9. Emerging biomedical applications of time-resolved fluorescence spectroscopy

    Science.gov (United States)

    Lakowicz, Joseph R.; Szmacinski, Henryk; Koen, Peter A.

    1994-07-01

    Time-resolved fluorescence spectroscopy is presently regarded as a research tool in biochemistry, biophysics, and chemical physics. Advances in laser technology, the development of long-wavelength probes, and the use of lifetime-based methods are resulting in the rapid migration of time-resolved fluorescence to the clinical chemistry lab, to the patient's bedside, to flow cytometers, to the doctor's office, and even to home health care. Additionally, time-resolved imaging is now a reality in fluorescence microscopy, and will provide chemical imaging of a variety of intracellular analytes and/or cellular phenomena. In this overview paper we attempt to describe some of the opportunities available using chemical sensing based on fluorescence lifetimes, and to predict those applications of lifetime-based sensing which are most likely in the near future.

  10. Lifetime of a black hole

    International Nuclear Information System (INIS)

    Carlitz, R.D.; Willey, R.S.

    1987-01-01

    We study the constraints placed by quantum mechanics upon the lifetime of a black hole. In the context of a moving-mirror analog model for the Hawking radiation process, we conclude that the period of Hawking radiation must be followed by a much longer period during which the remnant mass (of order m/sub P/) may be radiated away. We are able to place a lower bound on the time required for this radiation process, which translates into a lower bound for the lifetime of the black hole. Particles which are emitted during the decay of the remnant, like the particles which comprise the Hawking flux, may be uncorrelated with each other. But each particle emitted from the decaying remnant is correlated with one particle emitted as Hawking radiation. The state which results after the remnant has evaporated is one which locally appears to be thermal, but which on a much larger scale is marked by extensive correlations

  11. Luminosity lifetime in the Tevatron

    International Nuclear Information System (INIS)

    Jackson, G.; Finley, D.; Johnson, R.P.; Kerns, Q.; McCarthy, J.; Siemann, R.; Zhang, P.

    1988-01-01

    Since the inauguration of colliding proton-antiproton operations in 1987, the Tevatron has exhibited luminosity lifetimes shorter than expected. During a typical colliding beam storage period, called a store, luminosity is calculated periodically by measuring the charge and emittances of each bunch. The growth of the transverse bunch emittances is the dominant cause of luminosity deterioration. Throughout, this period, the position spectrum of the bunches exhibited betatron signals larger than expected from Schottky noise. A model assuming externally driven betatron oscillations explains both the betatron signals and the emittance growth. A program is underway to improve the Tevatron luminosity lifetime. The abort kickers have been identified as sources of emittance growth, and some quadrupole power supplies are further candidates. Because the horizontal dispersion through the RF cavities is nonzero, RF phase noise has been investigated. Noise in the main dipole regulation circuit has also been studied. 13 refs., 4 figs

  12. Angular distributions as lifetime probes

    Energy Technology Data Exchange (ETDEWEB)

    Dror, Jeff Asaf; Grossman, Yuval [Department of Physics, LEPP, Cornell University,Ithaca, NY 14853 (United States)

    2014-06-27

    If new TeV scale particles are discovered, it will be important to determine their width. There is, however, a problematic region, where the width is too small to be determined directly, and too large to generate a secondary vertex. For a collection of colored, spin polarized particles, hadronization depolarizes the particles prior to their decay. The amount of depolarization can be used to probe the lifetime in the problematic region. In this paper we apply this method to a realistic scenario of a top-like particle that can be produced at the LHC. We study how depolarization affects the angular distributions of the decay products and derive an equation for the distributions that is sensitive to the lifetime.

  13. Fluorescence microscopy.

    Science.gov (United States)

    Sanderson, Michael J; Smith, Ian; Parker, Ian; Bootman, Martin D

    2014-10-01

    Fluorescence microscopy is a major tool with which to monitor cell physiology. Although the concepts of fluorescence and its optical separation using filters remain similar, microscope design varies with the aim of increasing image contrast and spatial resolution. The basics of wide-field microscopy are outlined to emphasize the selection, advantages, and correct use of laser scanning confocal microscopy, two-photon microscopy, scanning disk confocal microscopy, total internal reflection, and super-resolution microscopy. In addition, the principles of how these microscopes form images are reviewed to appreciate their capabilities, limitations, and constraints for operation. © 2014 Cold Spring Harbor Laboratory Press.

  14. Forensic typing of autosomal SNPs with a 29 SNP-multiplex--results of a collaborative EDNAP exercise.

    Science.gov (United States)

    Sanchez, J J; Børsting, C; Balogh, K; Berger, B; Bogus, M; Butler, J M; Carracedo, A; Court, D Syndercombe; Dixon, L A; Filipović, B; Fondevila, M; Gill, P; Harrison, C D; Hohoff, C; Huel, R; Ludes, B; Parson, W; Parsons, T J; Petkovski, E; Phillips, C; Schmitter, H; Schneider, P M; Vallone, P M; Morling, N

    2008-06-01

    We report the results of an inter-laboratory exercise on typing of autosomal single nucleotide polymorphisms (SNP) for forensic genetic investigations in crime cases. The European DNA Profiling Group (EDNAP), a working group under the International Society for Forensic Genetics (ISFG), organised the exercise. A total of 11 European and one US forensic genetic laboratories tested a subset of a 52 SNP-multiplex PCR kit developed by the SNPforID consortium. The 52 SNP-multiplex kit amplifies 52 DNA fragments with 52 autosomal SNP loci in one multiplex PCR. The 52 SNPs are detected in two separate single base extension (SBE) multiplex reactions with 29 and 23 SNPs, respectively, using SNaPshot kit, capillary electrophoresis and multicolour fluorescence detection. For practical reasons, only the 29 SBE multiplex reaction was carried out by the participating laboratories. A total of 11 bloodstains on FTA cards including a sample of poor quality and a negative control were sent to the laboratories together with the essential reagents for the initial multiplex PCR and the multiplex SBE reaction. The total SNP locus dropout rate was 2.8% and more than 50% of the dropouts were observed with the poor quality sample. The overall rate of discrepant SNP allele assignments was 2.0%. Two laboratories reported 60% of all the discrepancies. Two laboratories reported all 29 SNP alleles in all 10 positive samples correctly. The results of the collaborative exercise were surprisingly good and demonstrate that SNP typing with SBE, capillary electrophoresis and multicolour detection methods can be developed for forensic genetics.

  15. Multiplex quantification of four DNA targets in one reaction with Bio-Rad droplet digital PCR system for GMO detection

    Science.gov (United States)

    Dobnik, David; Štebih, Dejan; Blejec, Andrej; Morisset, Dany; Žel, Jana

    2016-10-01

    The advantages of the digital PCR technology are already well documented until now. One way to achieve better cost efficiency of the technique is to use it in a multiplexing strategy. Droplet digital PCR platforms, which include two fluorescence filters, support at least duplex reactions and with some developments and optimization higher multiplexing is possible. The present study not only shows a development of multiplex assays in droplet digital PCR, but also presents a first thorough evaluation of several parameters in such multiplex digital PCR. Two 4-plex assays were developed for quantification of 8 different DNA targets (7 genetically modified maize events and maize endogene). Per assay, two of the targets were labelled with one fluorophore and two with another. As current analysis software does not support analysis of more than duplex, a new R- and Shiny-based web application analysis tool (http://bit.ly/ddPCRmulti) was developed that automates the analysis of 4-plex results. In conclusion, the two developed multiplex assays are suitable for quantification of GMO maize events and the same approach can be used in any other field with a need for accurate and reliable quantification of multiple DNA targets.

  16. Social contagions on correlated multiplex networks

    Science.gov (United States)

    Wang, Wei; Cai, Meng; Zheng, Muhua

    2018-06-01

    The existence of interlayer degree correlations has been disclosed by abundant multiplex network analysis. However, how they impose on the dynamics of social contagions are remain largely unknown. In this paper, we propose a non-Markovian social contagion model in multiplex networks with inter-layer degree correlations to delineate the behavior spreading, and develop an edge-based compartmental (EBC) theory to describe the model. We find that multiplex networks promote the final behavior adoption size. Remarkably, it can be observed that the growth pattern of the final behavior adoption size, versus the behavioral information transmission probability, changes from discontinuous to continuous once decreasing the behavior adoption threshold in one layer. We finally unravel that the inter-layer degree correlations play a role on the final behavior adoption size but have no effects on the growth pattern, which is coincidence with our prediction by using the suggested theory.

  17. Multiplexed image storage by electromagnetically induced transparency in a solid

    Science.gov (United States)

    Heinze, G.; Rentzsch, N.; Halfmann, T.

    2012-11-01

    We report on frequency- and angle-multiplexed image storage by electromagnetically induced transparency (EIT) in a Pr3+:Y2SiO5 crystal. Frequency multiplexing by EIT relies on simultaneous storage of light pulses in atomic coherences, driven in different frequency ensembles of the inhomogeneously broadened solid medium. Angular multiplexing by EIT relies on phase matching of the driving laser beams, which permits simultaneous storage of light pulses propagating under different angles into the crystal. We apply the multiplexing techniques to increase the storage capacity of the EIT-driven optical memory, in particular to implement multiplexed storage of larger two-dimensional amounts of data (images). We demonstrate selective storage and readout of images by frequency-multiplexed EIT and angular-multiplexed EIT, as well as the potential to combine both multiplexing approaches towards further enhanced storage capacities.

  18. Performance modeling, loss networks, and statistical multiplexing

    CERN Document Server

    Mazumdar, Ravi

    2009-01-01

    This monograph presents a concise mathematical approach for modeling and analyzing the performance of communication networks with the aim of understanding the phenomenon of statistical multiplexing. The novelty of the monograph is the fresh approach and insights provided by a sample-path methodology for queueing models that highlights the important ideas of Palm distributions associated with traffic models and their role in performance measures. Also presented are recent ideas of large buffer, and many sources asymptotics that play an important role in understanding statistical multiplexing. I

  19. Digital holograms for laser mode multiplexing

    CSIR Research Space (South Africa)

    Mhlanga, T

    2014-10-02

    Full Text Available multiplexing Thandeka Mhlangaa, b, Abderrahmen Trichilic, Angela Dudleya, Darryl Naidooa, b, Mourad Zghalc and Andrew Forbesa, b aCSIR National Laser Centre, P.O. Box 395, Pretoria 0001, South Africa bSchool of Physics, University of KwaZulu-Natal, Private Bag... problems. In this context, we demonstrate a method of multiplexing laser modes using spatial light modulators (SLMs). In our proposed technique, we use Laguerre Gaussian (LG) modes, which form a complete basis set; hence multi-mode masks can be created...

  20. Simple Multiplexing Hand-Held Control Unit

    Science.gov (United States)

    Hannaford, Blake

    1989-01-01

    Multiplexer consists of series of resistors, each shunted by single-pole, single-throw switch. User operates switches by pressing buttons or squeezing triggers. Prototype includes three switches operated successfully in over 200 hours of system operations. Number of switches accommodated determined by signal-to-noise ratio of current source, noise induced in control unit and cable, and number of bits in output of analog-to-digital converter. Because many computer-contolled robots have extra analog-to-digital channels, such multiplexer added at little extra cost.

  1. Cooperative spreading processes in multiplex networks.

    Science.gov (United States)

    Wei, Xiang; Chen, Shihua; Wu, Xiaoqun; Ning, Di; Lu, Jun-An

    2016-06-01

    This study is concerned with the dynamic behaviors of epidemic spreading in multiplex networks. A model composed of two interacting complex networks is proposed to describe cooperative spreading processes, wherein the virus spreading in one layer can penetrate into the other to promote the spreading process. The global epidemic threshold of the model is smaller than the epidemic thresholds of the corresponding isolated networks. Thus, global epidemic onset arises in the interacting networks even though an epidemic onset does not arise in each isolated network. Simulations verify the analysis results and indicate that cooperative spreading processes in multiplex networks enhance the final infection fraction.

  2. Maintenance engineering of lifetime management programs

    International Nuclear Information System (INIS)

    Hervia Ruperez, F.

    1997-01-01

    The complexity of nuclear power plants obliges to stablish the adecuated management of its lifetime. This article describes the methodologies and the improvement the evaluation of lifetime programs and specially in Garona and Vandellos II Nuclear Power Plants. (Author)

  3. Advanced combinational microfluidic multiplexer for fuel cell reactors

    International Nuclear Information System (INIS)

    Lee, D W; Kim, Y; Cho, Y-H; Doh, I

    2013-01-01

    An advanced combinational microfluidic multiplexer capable to address multiple fluidic channels for fuel cell reactors is proposed. Using only 4 control lines and two different levels of control pressures, the proposed multiplexer addresses up to 19 fluidic channels, at least two times larger than the previous microfluidic multiplexers. The present multiplexer providing high control efficiency and simple structure for channel addressing would be used in the application areas of the integrated microfluidic systems such as fuel cell reactors and dynamic pressure generators

  4. Review of charm and beauty lifetimes

    International Nuclear Information System (INIS)

    Cheung, Harry W. K.

    1999-01-01

    A review of the latest experimental results on charm and beauty particle lifetimes is presented together with a brief summary of measurement methods used for beauty particle lifetime measurements. There have been significant updates to the D s + /D 0 , B + /B d 0 and Λ b 0 /B d 0 lifetime ratios which have some theoretical implications. However more precise measurements are still needed before one can make conclusive statements about the theory used to calculate the particle lifetimes

  5. Spatial Multiplexing of Atom-Photon Entanglement Sources using Feedforward Control and Switching Networks.

    Science.gov (United States)

    Tian, Long; Xu, Zhongxiao; Chen, Lirong; Ge, Wei; Yuan, Haoxiang; Wen, Yafei; Wang, Shengzhi; Li, Shujing; Wang, Hai

    2017-09-29

    The light-matter quantum interface that can create quantum correlations or entanglement between a photon and one atomic collective excitation is a fundamental building block for a quantum repeater. The intrinsic limit is that the probability of preparing such nonclassical atom-photon correlations has to be kept low in order to suppress multiexcitation. To enhance this probability without introducing multiexcitation errors, a promising scheme is to apply multimode memories to the interface. Significant progress has been made in temporal, spectral, and spatial multiplexing memories, but the enhanced probability for generating the entangled atom-photon pair has not been experimentally realized. Here, by using six spin-wave-photon entanglement sources, a switching network, and feedforward control, we build a multiplexed light-matter interface and then demonstrate a ∼sixfold (∼fourfold) probability increase in generating entangled atom-photon (photon-photon) pairs. The measured compositive Bell parameter for the multiplexed interface is 2.49±0.03 combined with a memory lifetime of up to ∼51  μs.

  6. Dual-excitation upconverting nanoparticle and quantum dot aptasensor for multiplexed food pathogen detection.

    Science.gov (United States)

    Kurt, Hasan; Yüce, Meral; Hussain, Babar; Budak, Hikmet

    2016-07-15

    In this report, a dual-excitation sensing method was developed using aptamer-functionalized quantum dots and upconverting nanoparticles, exhibiting Stokes and anti-Stokes type excitation profiles, respectively. Conjugation of the aptamer-functionalized luminescent nanoparticles with the magnetic beads, comprising short DNA sequences that were partially complementary to the aptamer sequences, enabled facile separation of the analyte-free conjugates for fluorescent measurement. UV-Visible spectroscopy, Circular Dichroism spectroscopy, Dynamic Light Scattering and Polyacrylamide Gel Electrophoresis techniques were used to characterize the aptamer probes developed. The target-specific luminescent conjugates were applied for multiplex detection of model food pathogens, Salmonella typhimurium, and Staphylococcus aureus, in which the fluorescent emission spectra were obtained under UV excitation at 325nm for quantum dots and NIR excitation at 980nm for upconverting nanoparticles, respectively. The dual-excitation strategy was aimed to minimize cross-talk between the luminescent signals for multiplexed detection, and yielded limit of detection values of 16 and 28cfumL(-1) for Staphylococcus aureus, and Salmonella typhimurium, respectively. By employing a greater number of quantum dots and upconverting nanoparticles with non-overlapping fluorescent emissions, the proposed methodology might be exploited further to detect several analytes, simultaneously. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Fluorescence kinetics of Trp-Trp dipeptide and its derivatives in water via ultrafast fluorescence spectroscopy.

    Science.gov (United States)

    Jia, Menghui; Yi, Hua; Chang, Mengfang; Cao, Xiaodan; Li, Lei; Zhou, Zhongneng; Pan, Haifeng; Chen, Yan; Zhang, Sanjun; Xu, Jianhua

    2015-08-01

    Ultrafast fluorescence dynamics of Tryptophan-Tryptophan (Trp-Trp/Trp2) dipeptide and its derivatives in water have been investigated using a picosecond resolved time correlated single photon counting (TCSPC) apparatus together with a femtosecond resolved upconversion spectrophotofluorometer. The fluorescence decay profiles at multiple wavelengths were fitted by a global analysis technique. Nanosecond fluorescence kinetics of Trp2, N-tert-butyl carbonyl oxygen-N'-aldehyde group-l-tryptophan-l-tryptophan (NBTrp2), l-tryptophan-l-tryptophan methyl ester (Trp2Me), and N-acetyl-l-tryptophan-l-tryptophan methyl ester (NATrp2Me) exhibit multi-exponential decays with the average lifetimes of 1.99, 3.04, 0.72 and 1.22ns, respectively. Due to the intramolecular interaction between two Trp residues, the "water relaxation" lifetime was observed around 4ps, and it is noticed that Trp2 and its derivatives also exhibit a new decay with a lifetime of ∼100ps, while single-Trp fluorescence decay in dipeptides/proteins shows 20-30ps. The intramolecular interaction lifetime constants of Trp2, NBTrp2, Trp2Me and NATrp2Me were then calculated to be 3.64, 0.93, 11.52 and 2.40ns, respectively. Candidate mechanisms (including heterogeneity, solvent relaxation, quasi static self-quenching or ET/PT quenching) have been discussed. Copyright © 2015. Published by Elsevier B.V.

  8. On luminescence lifetimes in quartz

    International Nuclear Information System (INIS)

    Chithambo, M.L.; Galloway, R.B.

    2000-01-01

    In this paper we present results of investigations concerning the time dependence of luminescence emission relative to the time of stimulation in quartz. Measurements of time-resolved spectra were performed on a new versatile pulsed light emitting diode system using 525 nm stimulation, an 11 μs duration pulse, a repetition rate of 11 kHz and a 64 μs dynamic range. Effects on luminescence lifetime resulting from sample treatments such as optical stimulation, irradiation, and preheating, are reported

  9. Lifetime measurement in 144Gd

    International Nuclear Information System (INIS)

    Jensen, H.J.; Gast, W.; Georgiev, A.; Jaeger, H.M.; Lieder, R.M.; Utzelmann, S.; Gierlik, M.; Morek, T.; Przestrzelska, K.; Rzaca-Urban, T.; Dewald, A.; Kuehn, R.; Meier, C.; Ender, C.; Haertlein, T.

    1996-01-01

    The lifetime measurements of excited states in 144 Gd were carried out using the Koeln RDM-plunger together with the 2 x 3 CLUSTER detector setup in Heidelberg. The nucleus was populated in the 100 Mo( 48 Ti,4n) 144 Gd reaction at a beam energy of 205 MeV giving a recoil velocity of v/c = 2.6 %. Three and higher fold γ-ray coincidences were measured at 12 target-stopper distances ranged from 0 to 400 μm. Both the dipole and quadrupole bands in 144 Gd have been observed. The analysis is in progress

  10. Lifetime of superheated steam components

    International Nuclear Information System (INIS)

    Stoklossa, K.H.; Oude-Hengel, H.H.; Kraechter, H.J.

    1974-01-01

    The current evaluation schemes in use for judging the lifetime expectations of superheated steam components are compared with each other. The influence of pressure and temperature fluctuations, the differences in the strength of the wall, and the spread band of constant-strainrates are critically investigated. The distribution of these contributory effects are demonstrated in the hight of numerous measuring results. As an important supplement to these evaluation schemes a newly developed technique is introduced which is designed to calculate failure probabilities. (orig./RW) [de

  11. The mass-lifetime relation

    Science.gov (United States)

    LoPresto, Michael C.

    2018-05-01

    In a recent "AstroNote," I described a simple exercise on the mass-luminosity relation for main sequence stars as an example of exposing students in a general education science course of lower mathematical level to the use of quantitative skills such as collecting and analyzing data. Here I present another attempt at a meaningful experience for such students that again involves both the gathering and analysis of numerical data and comparison with accepted result, this time on the relationship of the mass and lifetimes of main sequence stars. This experiment can stand alone or be used as an extension of the previous mass-luminosity relationship experiment.

  12. The puzzle of neutron lifetime

    International Nuclear Information System (INIS)

    Paul, Stephan

    2009-01-01

    In this paper we review the role of the neutron lifetime and discuss the present status of measurements. In view of the large discrepancy observed by the two most precise individual measurements so far we describe the different techniques and point out the principle strengths and weaknesses. In particular we discuss the estimation of systematic uncertainties and its correlation to the statistical ones. In order to solve the present puzzle, many new experiments are either ongoing or being proposed. An overview on their possible contribution to this field will be given.

  13. Personality, IQ, and Lifetime Earnings

    DEFF Research Database (Denmark)

    Gensowski, Miriam

    2018-01-01

    This paper estimates the effects of personality traits and IQ on lifetime earnings of the men and women of the Terman study, a high-IQ U.S. sample. Age-by-age earnings profiles allow a study of when personality traits affect earnings most, and for whom the effects are strongest. I document...... a concave life-cycle pattern in the payoffs to personality traits, with the largest effects between the ages of 40 and 60. An interaction of traits with education reveals that personality matters most for highly educated men. The largest effects are found for Conscientiousness, Extraversion...

  14. Lifetime measurement in 136Pm

    International Nuclear Information System (INIS)

    Toney, D.; Zhong, Q.; De Angelis, G.

    2005-01-01

    The aim of the present work is to investigate the electromagnetic transition probabilities in the doublet bands of 136 Pm. These two bands have been observed up to Iπ = (21 + ). Contrary to the case of 134 Pr, the B(M1)/B(E2) ratios take similar values within the error bars in 136 Pm. This is a strong indication that there is considerable difference between the two nuclei. However, a lifetime measurement in 136 Pm is needed to shed light on the scale and the origin of the difference

  15. Nanodiamond arrays on glass for quantification and fluorescence characterisation.

    Science.gov (United States)

    Heffernan, Ashleigh H; Greentree, Andrew D; Gibson, Brant C

    2017-08-23

    Quantifying the variation in emission properties of fluorescent nanodiamonds is important for developing their wide-ranging applicability. Directed self-assembly techniques show promise for positioning nanodiamonds precisely enabling such quantification. Here we show an approach for depositing nanodiamonds in pre-determined arrays which are used to gather statistical information about fluorescent lifetimes. The arrays were created via a layer of photoresist patterned with grids of apertures using electron beam lithography and then drop-cast with nanodiamonds. Electron microscopy revealed a 90% average deposition yield across 3,376 populated array sites, with an average of 20 nanodiamonds per site. Confocal microscopy, optimised for nitrogen vacancy fluorescence collection, revealed a broad distribution of fluorescent lifetimes in agreement with literature. This method for statistically quantifying fluorescent nanoparticles provides a step towards fabrication of hybrid photonic devices for applications from quantum cryptography to sensing.

  16. Enhancing molecular logic through modulation of temporal and spatial constraints with quantum dot-based systems that use fluorescent (Förster) resonance energy transfer

    Science.gov (United States)

    Claussen, Jonathan C.; Algar, W. Russ; Hildebrandt, Niko; Susumu, Kimihiro; Ancona, Mario G.; Medintz, Igor L.

    2013-10-01

    Luminescent semiconductor nanocrystals or quantum dots (QDs) contain favorable photonic properties (e.g., resistance to photobleaching, size-tunable PL, and large effective Stokes shifts) that make them well-suited for fluorescence (Förster) resonance energy transfer (FRET) based applications including monitoring proteolytic activity, elucidating the effects of nanoparticles-mediated drug delivery, and analyzing the spatial and temporal dynamics of cellular biochemical processes. Herein, we demonstrate how unique considerations of temporal and spatial constraints can be used in conjunction with QD-FRET systems to open up new avenues of scientific discovery in information processing and molecular logic circuitry. For example, by conjugating both long lifetime luminescent terbium(III) complexes (Tb) and fluorescent dyes (A647) to a single QD, we can create multiple FRET lanes that change temporally as the QD acts as both an acceptor and donor at distinct time intervals. Such temporal FRET modulation creates multi-step FRET cascades that produce a wealth of unique photoluminescence (PL) spectra that are well-suited for the construction of a photonic alphabet and photonic logic circuits. These research advances in bio-based molecular logic open the door to future applications including multiplexed biosensing and drug delivery for disease diagnostics and treatment.

  17. Moving through a multiplex holographic scene

    Science.gov (United States)

    Mrongovius, Martina

    2013-02-01

    This paper explores how movement can be used as a compositional element in installations of multiplex holograms. My holographic images are created from montages of hand-held video and photo-sequences. These spatially dynamic compositions are visually complex but anchored to landmarks and hints of the capturing process - such as the appearance of the photographer's shadow - to establish a sense of connection to the holographic scene. Moving around in front of the hologram, the viewer animates the holographic scene. A perception of motion then results from the viewer's bodily awareness of physical motion and the visual reading of dynamics within the scene or movement of perspective through a virtual suggestion of space. By linking and transforming the physical motion of the viewer with the visual animation, the viewer's bodily awareness - including proprioception, balance and orientation - play into the holographic composition. How multiplex holography can be a tool for exploring coupled, cross-referenced and transformed perceptions of movement is demonstrated with a number of holographic image installations. Through this process I expanded my creative composition practice to consider how dynamic and spatial scenes can be conveyed through the fragmented view of a multiplex hologram. This body of work was developed through an installation art practice and was the basis of my recently completed doctoral thesis: 'The Emergent Holographic Scene — compositions of movement and affect using multiplex holographic images'.

  18. Prototype data terminal-multiplexer/demultiplexer

    Science.gov (United States)

    Leck, D. E.; Goodwin, J. E.

    1972-01-01

    The design and operation of a quad redundant data terminal and a multiplexer/demultiplexer (MDU) is described. The most unique feature is the design of the quad redundant data terminal. This is one of the few designs where the unit is fail/op, fail/op, fail/safe. Laboratory tests confirm that the unit will operate satisfactorily with the failure of three out of four channels. Although the design utilizes state-of-the-art technology, the waveform error checks, the voting techniques, and the parity bit checks are believed to be used in unique configurations. Correct word selection routines are also novel. The MDU design, while not redundant, utilizes, the latest state-of-the-art advantages of light coupler and interested amplifiers. Much of the technology employed was an evolution of prior NASA contracts related to the Addressable Time Division Data System. A good example of the earlier technology development was the development of a low level analog multiplexer, a high level analog multiplexer, and a digital multiplexer. A list of all drawings is included for reference and all schematic, block and timing diagrams are incorporated.

  19. Silicon Photonic Integrated Circuit Mode Multiplexer

    DEFF Research Database (Denmark)

    Ding, Yunhong; Ou, Haiyan; Xu, Jing

    2013-01-01

    We propose and demonstrate a novel silicon photonic integrated circuit enabling multiplexing of orthogonal modes in a few-mode fiber (FMF). By selectively launching light to four vertical grating couplers, all six orthogonal spatial and polarization modes supported by the FMF are successfully...

  20. Coherence-Multiplexed Optical RF Feeder Networks

    NARCIS (Netherlands)

    Meijerink, Arjan; Taniman, R.O.; van Etten, Wim

    2007-01-01

    An optical RF feeding system for wireless access is proposed, in which the radio access points are distinguished by means of coherence multiplexing (CM). CM is a rather unknown and potentially inexpensive optical code division multiple access technique, which is particularly suitable for relatively

  1. Multiple routes transmitted epidemics on multiplex networks

    International Nuclear Information System (INIS)

    Zhao, Dawei; Li, Lixiang; Peng, Haipeng; Luo, Qun; Yang, Yixian

    2014-01-01

    This letter investigates the multiple routes transmitted epidemic process on multiplex networks. We propose detailed theoretical analysis that allows us to accurately calculate the epidemic threshold and outbreak size. It is found that the epidemic can spread across the multiplex network even if all the network layers are well below their respective epidemic thresholds. Strong positive degree–degree correlation of nodes in multiplex network could lead to a much lower epidemic threshold and a relatively smaller outbreak size. However, the average similarity of neighbors from different layers of nodes has no obvious effect on the epidemic threshold and outbreak size. -- Highlights: •We studies multiple routes transmitted epidemic process on multiplex networks. •SIR model and bond percolation theory are used to analyze the epidemic processes. •We derive equations to accurately calculate the epidemic threshold and outbreak size. •ASN has no effect on the epidemic threshold and outbreak size. •Strong positive DDC leads to a lower epidemic threshold and a smaller outbreak size.

  2. Beyond Multiplexing Gain in Large MIMO Systems

    DEFF Research Database (Denmark)

    Cakmak, Burak; Müller, Ralf R.; Fleury, Bernard Henri

    growth (multiplexing gain). Even when the channel entries are i.i.d. the deviation from the linear growth is significant. We also find an additive property of the deviation for a concatenated MIMO system. Finally, we quantify the deviation of the large SNR capacity from the exact capacity and find...

  3. Multiple routes transmitted epidemics on multiplex networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dawei [Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, P.O. Box 145, Beijing 100876 (China); National Engineering Laboratory for Disaster Backup and Recovery, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Shandong Provincial Key Laboratory of Computer Network, Shandong Computer Science Center, Jinan 250014 (China); Li, Lixiang [Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, P.O. Box 145, Beijing 100876 (China); National Engineering Laboratory for Disaster Backup and Recovery, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Peng, Haipeng, E-mail: penghaipeng@bupt.edu.cn [Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, P.O. Box 145, Beijing 100876 (China); National Engineering Laboratory for Disaster Backup and Recovery, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Luo, Qun; Yang, Yixian [Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, P.O. Box 145, Beijing 100876 (China); National Engineering Laboratory for Disaster Backup and Recovery, Beijing University of Posts and Telecommunications, Beijing 100876 (China)

    2014-02-01

    This letter investigates the multiple routes transmitted epidemic process on multiplex networks. We propose detailed theoretical analysis that allows us to accurately calculate the epidemic threshold and outbreak size. It is found that the epidemic can spread across the multiplex network even if all the network layers are well below their respective epidemic thresholds. Strong positive degree–degree correlation of nodes in multiplex network could lead to a much lower epidemic threshold and a relatively smaller outbreak size. However, the average similarity of neighbors from different layers of nodes has no obvious effect on the epidemic threshold and outbreak size. -- Highlights: •We studies multiple routes transmitted epidemic process on multiplex networks. •SIR model and bond percolation theory are used to analyze the epidemic processes. •We derive equations to accurately calculate the epidemic threshold and outbreak size. •ASN has no effect on the epidemic threshold and outbreak size. •Strong positive DDC leads to a lower epidemic threshold and a smaller outbreak size.

  4. Microwave multiplex readout for superconducting sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ferri, E., E-mail: elena.ferri@mib.infn.it [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Becker, D.; Bennett, D. [NIST, Boulder, CO (United States); Faverzani, M. [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Fowler, J.; Gard, J. [NIST, Boulder, CO (United States); Giachero, A. [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Hays-Wehle, J.; Hilton, G. [NIST, Boulder, CO (United States); Maino, M. [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Mates, J. [NIST, Boulder, CO (United States); Puiu, A.; Nucciotti, A. [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Reintsema, C.; Schmidt, D.; Swetz, D.; Ullom, J.; Vale, L. [NIST, Boulder, CO (United States)

    2016-07-11

    The absolute neutrino mass scale is still an outstanding challenge in both particle physics and cosmology. The calorimetric measurement of the energy released in a nuclear beta decay is a powerful tool to determine the effective electron-neutrino mass. In the last years, the progress on low temperature detector technologies has allowed to design large scale experiments aiming at pushing down the sensitivity on the neutrino mass below 1 eV. Even with outstanding performances in both energy (~ eV on keV) and time resolution (~ 1 μs) on the single channel, a large number of detectors working in parallel is required to reach a sub-eV sensitivity. Microwave frequency domain readout is the best available technique to readout large array of low temperature detectors, such as Transition Edge Sensors (TESs) or Microwave Kinetic Inductance Detectors (MKIDs). In this way a multiplex factor of the order of thousands can be reached, limited only by the bandwidth of the available commercial fast digitizers. This microwave multiplexing system will be used to readout the HOLMES detectors, an array of 1000 microcalorimeters based on TES sensors in which the {sup 163}Ho will be implanted. HOLMES is a new experiment for measuring the electron neutrino mass by means of the electron capture (EC) decay of {sup 163}Ho. We present here the microwave frequency multiplex which will be used in the HOLMES experiment and the microwave frequency multiplex used to readout the MKID detectors developed in Milan as well.

  5. Determinants of public cooperation in multiplex networks

    Science.gov (United States)

    Battiston, Federico; Perc, Matjaž; Latora, Vito

    2017-07-01

    Synergies between evolutionary game theory and statistical physics have significantly improved our understanding of public cooperation in structured populations. Multiplex networks, in particular, provide the theoretical framework within network science that allows us to mathematically describe the rich structure of interactions characterizing human societies. While research has shown that multiplex networks may enhance the resilience of cooperation, the interplay between the overlap in the structure of the layers and the control parameters of the corresponding games has not yet been investigated. With this aim, we consider here the public goods game on a multiplex network, and we unveil the role of the number of layers and the overlap of links, as well as the impact of different synergy factors in different layers, on the onset of cooperation. We show that enhanced public cooperation emerges only when a significant edge overlap is combined with at least one layer being able to sustain some cooperation by means of a sufficiently high synergy factor. In the absence of either of these conditions, the evolution of cooperation in multiplex networks is determined by the bounds of traditional network reciprocity with no enhanced resilience. These results caution against overly optimistic predictions that the presence of multiple social domains may in itself promote cooperation, and they help us better understand the complexity behind prosocial behavior in layered social systems.

  6. Enhancement of uranyl fluorescence using trimesic acid: Ligand sensitization and co-fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Maji, S. [Chemistry Group, Materials Chemistry Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Viswanathan, K.S., E-mail: vish@igcar.gov.in [Chemistry Group, Materials Chemistry Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2011-09-15

    Trimesic acid (TMA) was shown to sensitize and enhance uranyl fluorescence in aqueous medium, with the enhancement being a maximum at pH 5.0. Fluorescence spectra and lifetime data together suggest that TMA complexes with uranyl (UO{sub 2}{sup 2+}). The fluorescence of UO{sub 2}{sup 2+} in its acid complex is further enhanced by more than two orders of magnitude following the addition of Y{sup 3+}; a process referred to as co-fluorescence, leading to the possibility of detecting uranium at sub ng/mL level. The present study demonstrates, for the first time, fluorescence enhancement of the uranyl species due to co-fluorescence. - Highlights: > Trimesic acid was shown to sensitize and enhance the fluorescence of uranium in aqueous medium. > This ligand also exhibited co-fluorescence of uranium with Y{sup 3+}. > To the best of our knowledge this is the first report of co-fluorescence in uranium. > The enhancement of uranium fluorescence, resulted in detection limits in the ng/mL regime.

  7. Uncertainties in the proton lifetime

    International Nuclear Information System (INIS)

    Ellis, J.; Nanopoulos, D.V.; Rudaz, S.; Gaillard, M.K.

    1980-04-01

    We discuss the masses of the leptoquark bosons m(x) and the proton lifetime in Grand Unified Theories based principally on SU(5). It is emphasized that estimates of m(x) based on the QCD coupling and the fine structure constant are probably more reliable than those using the experimental value of sin 2 theta(w). Uncertainties in the QCD Λ parameter and the correct value of α are discussed. We estimate higher order effects on the evolution of coupling constants in a momentum space renormalization scheme. It is shown that increasing the number of generations of fermions beyond the minimal three increases m(X) by almost a factor of 2 per generation. Additional uncertainties exist for each generation of technifermions that may exist. We discuss and discount the possibility that proton decay could be 'Cabibbo-rotated' away, and a speculation that Lorentz invariance may be violated in proton decay at a detectable level. We estimate that in the absence of any substantial new physics beyond that in the minimal SU(5) model the proton lifetimes is 8 x 10 30+-2 years

  8. Photocleavable DNA Barcoding Antibodies for Multiplexed Protein Analysis in Single Cells.

    Science.gov (United States)

    Ullal, Adeeti V; Weissleder, Ralph

    2015-01-01

    We describe a DNA-barcoded antibody sensing technique for single cell protein analysis in which the barcodes are photocleaved and digitally detected without amplification steps (Ullal et al., Sci Transl Med 6:219, 2014). After photocleaving the unique ~70 mer DNA barcodes we use a fluorescent hybridization technology for detection, similar to what is commonly done for nucleic acid readouts. This protocol offers a simple method for multiplexed protein detection using 100+ antibodies and can be performed on clinical samples as well as single cells.

  9. Metal Stable Isotope Tagging: Renaissance of Radioimmunoassay for Multiplex and Absolute Quantification of Biomolecules.

    Science.gov (United States)

    Liu, Rui; Zhang, Shixi; Wei, Chao; Xing, Zhi; Zhang, Sichun; Zhang, Xinrong

    2016-05-17

    The unambiguous quantification of biomolecules is of great significance in fundamental biological research as well as practical clinical diagnosis. Due to the lack of a detectable moiety, the direct and highly sensitive quantification of biomolecules is often a "mission impossible". Consequently, tagging strategies to introduce detectable moieties for labeling target biomolecules were invented, which had a long and significant impact on studies of biomolecules in the past decades. For instance, immunoassays have been developed with radioisotope tagging by Yalow and Berson in the late 1950s. The later languishment of this technology can be almost exclusively ascribed to the use of radioactive isotopes, which led to the development of nonradioactive tagging strategy-based assays such as enzyme-linked immunosorbent assay, fluorescent immunoassay, and chemiluminescent and electrochemiluminescent immunoassay. Despite great success, these strategies suffered from drawbacks such as limited spectral window capacity for multiplex detection and inability to provide absolute quantification of biomolecules. After recalling the sequences of tagging strategies, an apparent question is why not use stable isotopes from the start? A reasonable explanation is the lack of reliable means for accurate and precise quantification of stable isotopes at that time. The situation has changed greatly at present, since several atomic mass spectrometric measures for metal stable isotopes have been developed. Among the newly developed techniques, inductively coupled plasma mass spectrometry is an ideal technique to determine metal stable isotope-tagged biomolecules, for its high sensitivity, wide dynamic linear range, and more importantly multiplex and absolute quantification ability. Since the first published report by our group, metal stable isotope tagging has become a revolutionary technique and gained great success in biomolecule quantification. An exciting research highlight in this area

  10. Preliminary Assessment of Microwave Readout Multiplexing Factor

    Energy Technology Data Exchange (ETDEWEB)

    Croce, Mark Philip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Koehler, Katrina Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rabin, Michael W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bennett, D. A. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Mates, J. A. B. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Gard, J. D. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Becker, D. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Schmidt, D. R. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Ullom, J. N. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States)

    2017-01-23

    Ultra-high resolution microcalorimeter gamma spectroscopy is a new non-destructive assay technology for measurement of plutonium isotopic composition, with the potential to reduce total measurement uncertainty to a level competitive with destructive analysis methods [1-4]. Achieving this level of performance in practical applications requires not only the energy resolution now routinely achieved with transition-edge sensor microcalorimeter arrays (an order of magnitude better than for germanium detectors) but also high throughput. Microcalorimeter gamma spectrometers have not yet achieved detection efficiency and count rate capability that is comparable to germanium detectors, largely because of limits from existing readout technology. Microcalorimeter detectors must be operated at low temperature to achieve their exceptional energy resolution. Although the typical 100 mK operating temperatures can be achieved with reliable, cryogen-free systems, the cryogenic complexity and heat load from individual readout channels for large sensor arrays is prohibitive. Multiplexing is required for practical systems. The most mature multiplexing technology at present is time-division multiplexing (TDM) [3, 5-6]. In TDM, the sensor outputs are switched by applying bias current to one SQUID amplifier at a time. Transition-edge sensor (TES) microcalorimeter arrays as large as 256 pixels have been developed for X-ray and gamma-ray spectroscopy using TDM technology. Due to bandwidth limits and noise scaling, TDM is limited to a maximum multiplexing factor of approximately 32-40 sensors on one readout line [8]. Increasing the size of microcalorimeter arrays above the kilopixel scale, required to match the throughput of germanium detectors, requires the development of a new readout technology with a much higher multiplexing factor.

  11. A novel IPTV program multiplex access system to EPON

    Science.gov (United States)

    Xu, Xian; Liu, Deming; He, Wei; Lu, Xi

    2007-11-01

    With the rapid development of high speed networks, such as Ethernet Passive Optical Network (EPON), traffic patterns in access networks have evolved from traditional text-oriented service to the mixed text-, voice- and video- based services, leading to so called "Triple Play". For supporting IPTV service in EPON access network infrastructure, in this article we propose a novel IPTV program multiplex access system to EPON, which enables multiple IPTV program source servers to seamlessly access to IPTV service access port of optical line terminal (OLT) in EPON. There are two multiplex schemes, namely static multiplex scheme and dynamic multiplex scheme, in implementing the program multiplexing. Static multiplex scheme is to multiplex all the IPTV programs and forward them to the OLT, regardless of the need of end-users. While dynamic multiplex scheme can dynamically multiplex and forward IPTV programs according to what the end-users actually demand and those watched by no end-user would not be multiplexed. By comparing these two schemes, a reduced traffic of EPON can be achieved by using dynamic multiplex scheme, especially when most end-users are watching the same few IPTV programs. Both schemes are implemented in our system, with their hardware and software designs described.

  12. Fluorescent nanoparticles for intracellular sensing: a review.

    Science.gov (United States)

    Ruedas-Rama, Maria J; Walters, Jamie D; Orte, Angel; Hall, Elizabeth A H

    2012-11-02

    Fluorescent nanoparticles (NPs), including semiconductor NPs (Quantum Dots), metal NPs, silica NPs, polymer NPs, etc., have been a major focus of research and development during the past decade. The fluorescent nanoparticles show unique chemical and optical properties, such as brighter fluorescence, higher photostability and higher biocompatibility, compared to classical fluorescent organic dyes. Moreover, the nanoparticles can also act as multivalent scaffolds for the realization of supramolecular assemblies, since their high surface to volume ratio allow distinct spatial domains to be functionalized, which can provide a versatile synthetic platform for the implementation of different sensing schemes. Their excellent properties make them one of the most useful tools that chemistry has supplied to biomedical research, enabling the intracellular monitoring of many different species for medical and biological purposes. In this review, we focus on the developments and analytical applications of fluorescent nanoparticles in chemical and biological sensing within the intracellular environment. The review also points out the great potential of fluorescent NPs for fluorescence lifetime imaging microscopy (FLIM). Finally, we also give an overview of the current methods for delivering of fluorescent NPs into cells, where critically examine the benefits and liabilities of each strategy. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Steady state and time-resolved fluorescence spectroscopy of quinine sulfate dication bound to sodium dodecylsulfate micelles: Fluorescent complex formation

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Sunita; Pant, Debi D., E-mail: ddpant@pilani.bits-pilani.ac.in

    2014-01-15

    Interaction of quinine sulfate dication (QSD) with anionic, sodium dodecylsulphate (SDS) surfactant has been studied at different premicellar, micellar and postmicellar concentrations in aqueous phase using steady state, time-resolved fluorescence and fluorescence anisotropy techniques. At premicellar concentrations of SDS, the decrease in absorbance, appearance of an extra fluorescence band at lower wavelengths and tri-exponential decay behavior of fluorescence, are attributed to complex formation between QSD molecules and surfactant monomers. At postmicellar concentrations the red shift in fluorescence spectrum, increase in quantum yield and increase in fluorescence lifetimes are attributed to incorporation of solute molecules to micelles. At lower concentrations of SDS, a large shift in fluorescence is observed on excitation at the red edge of absorption spectrum and this is explained in terms of distribution of ion pairs of different energies in the ground state and the observed fluorescence lifetime behavior corroborates with this model. The temporal fluorescence anisotropy decay of QSD in SDS micelles allowed determination of restriction on the motion of the fluorophore. All the different techniques used in this study reveal that the photophysics of QSD is very sensitive to the microenvironments of SDS micelles and QSD molecules reside at the water-micelle interface. -- Highlights: • Probe molecule is very sensitive to microenvironment of micelles. • Highly fluorescent ion-pair formation has been observed. • Modulated photophysics of probe molecule in micellar solutions has been observed. • Probe molecules strongly bind with micelles and reside at probe–micelle interface.

  14. Combination of confocal principle and aperture stop separation improves suppression of crystalline lens fluorescence in an eye model

    OpenAIRE

    Klemm, Matthias; Blum, Johannes; Link, Dietmar; Hammer, Martin; Haueisen, Jens; Schweitzer, Dietrich

    2016-01-01

    Fluorescence lifetime imaging ophthalmoscopy (FLIO) is a new technique to detect changes in the human retina. The autofluorescence decay over time, generated by endogenous fluorophores, is measured in vivo. The strong autofluorescence of the crystalline lens, however, superimposes the intensity decay of the retina fluorescence, as the confocal principle is not able to suppress it sufficiently. Thus, the crystalline lens autofluorescence causes artifacts in the retinal fluorescence lifetimes d...

  15. Personality, IQ, and Lifetime Earnings

    DEFF Research Database (Denmark)

    Gensowski, Miriam

    2014-01-01

    Talented individuals are seen as drivers of long-term growth, but how do they realize their full potential? In this paper, I show that lifetime earnings of high-IQ men and women are substantially influenced by their personality traits, in addition to intelligence and education. Personality traits......, as identified in a factor model, significantly affect earnings, but not for young workers. The effects are furthermore heterogeneous by educational attainment. For women, personality traits do not affect family earnings in the same way as own earnings. Personality and IQ also influence earnings indirectly...... through education, which has sizeable positive rates of return for men in this sample. Women’s returns to education past a bachelor’s degree are lowered through worse marriage prospects, which offset gains to education in terms of own earnings. The causal effect of education is identified through matching...

  16. Measurement of the BS lifetime

    International Nuclear Information System (INIS)

    Siccama, I.

    1996-01-01

    This thesis presents a measurement of the B s lifetime using 3 million hadronic Z decays collected by the DELPHI detector at LEP from 1991 to 1994. Decays of B s mesons are tagged by the reconstruction of a D s - →φπ - or D s - →K *0 K - decay (including the charge conjugated states of these decay modes). The decay time is obtained by reconstructing both the B s momentum and the B s flight distance. The combined result for the D s -lepton and D s -hadron samples is: τ(B s )=1.54±0.31±0.15 ps where the first error is statistical and the second is systematic. (orig./HSI)

  17. A multiplex branched DNA assay for parallel quantitative gene expression profiling.

    Science.gov (United States)

    Flagella, Michael; Bui, Son; Zheng, Zhi; Nguyen, Cung Tuong; Zhang, Aiguo; Pastor, Larry; Ma, Yunqing; Yang, Wen; Crawford, Kimberly L; McMaster, Gary K; Witney, Frank; Luo, Yuling

    2006-05-01

    We describe a novel method to quantitatively measure messenger RNA (mRNA) expression of multiple genes directly from crude cell lysates and tissue homogenates without the need for RNA purification or target amplification. The multiplex branched DNA (bDNA) assay adapts the bDNA technology to the Luminex fluorescent bead-based platform through the use of cooperative hybridization, which ensures an exceptionally high degree of assay specificity. Using in vitro transcribed RNA as reference standards, we demonstrated that the assay is highly specific, with cross-reactivity less than 0.2%. We also determined that the assay detection sensitivity is 25,000 RNA transcripts with intra- and interplate coefficients of variance of less than 10% and less than 15%, respectively. Using three 10-gene panels designed to measure proinflammatory and apoptosis responses, we demonstrated sensitive and specific multiplex gene expression profiling directly from cell lysates. The gene expression change data demonstrate a high correlation coefficient (R(2)=0.94) compared with measurements obtained using the single-plex bDNA assay. Thus, the multiplex bDNA assay provides a powerful means to quantify the gene expression profile of a defined set of target genes in large sample populations.

  18. Choice of Illumination System & Fluorophore for Multiplex Immunofluorescence on FFPE Tissue Sections.

    Directory of Open Access Journals (Sweden)

    Sandrine Prost

    Full Text Available The recent availability of novel dyes and alternative light sources to facilitate complex tissue immunofluorescence studies such as multiplex labelling has not been matched by reports critically evaluating the considerations and relative benefits of these new tools, particularly in combination. Product information is often limited to wavelengths used for older fluorophores (FITC, TRITC & corresponding Alexa dyes family. Consequently, novel agents such as Quantum dots are not widely appreciated or used, despite highly favourable properties including extremely bright emission, stability and potentially reduced tissue autofluorescence at the excitation wavelength. Using spectral analysis, we report here a detailed critical appraisal and comparative evaluation of different light sources and fluorophores in multiplex immunofluorescence of clinical biopsy sections. The comparison includes mercury light, metal halide and 3 different LED-based systems, using 7 Qdots (525, 565, 585, 605, 625, 705, Cy3 and Cy5. We discuss the considerations relevant to achieving the best combination of light source and fluorophore for accurate multiplex fluorescence quantitation. We highlight practical limitations and confounders to quantitation with filter-based approaches.

  19. Lifetime of Organic Photovoltaics: Status and Predictions

    DEFF Research Database (Denmark)

    Gevorgyan, Suren; Madsen, Morten Vesterager; Roth, Bérenger

    2016-01-01

    The results of a meta-analysis conducted on organic photovoltaics (OPV) lifetime data reported in the literature is presented through the compilation of an extensive OPV lifetime database based on a large number of articles, followed by analysis of the large body of data. We fully reveal the prog......The results of a meta-analysis conducted on organic photovoltaics (OPV) lifetime data reported in the literature is presented through the compilation of an extensive OPV lifetime database based on a large number of articles, followed by analysis of the large body of data. We fully reveal...... the progress of reported OPV lifetimes. Furthermore, a generic lifetime marker has been defi ned, which helps with gauging and comparing the performance of different architectures and materials from the perspective of device stability. Based on the analysis, conclusions are drawn on the bottlenecks...

  20. Multiplex detection of plant pathogens using a microsphere immunoassay technology.

    Directory of Open Access Journals (Sweden)

    Ratthaphol Charlermroj

    Full Text Available Plant pathogens are a serious problem for seed export, plant disease control and plant quarantine. Rapid and accurate screening tests are urgently required to protect and prevent plant diseases spreading worldwide. A novel multiplex detection method was developed based on microsphere immunoassays to simultaneously detect four important plant pathogens: a fruit blotch bacterium Acidovorax avenae subsp. citrulli (Aac, chilli vein-banding mottle virus (CVbMV, potyvirus, watermelon silver mottle virus (WSMoV, tospovirus serogroup IV and melon yellow spot virus (MYSV, tospovirus. An antibody for each plant pathogen was linked on a fluorescence-coded magnetic microsphere set which was used to capture corresponding pathogen. The presence of pathogens was detected by R-phycoerythrin (RPE-labeled antibodies specific to the pathogens. The assay conditions were optimized by identifying appropriate antibody pairs, blocking buffer, concentration of RPE-labeled antibodies and assay time. Once conditions were optimized, the assay was able to detect all four plant pathogens precisely and accurately with substantially higher sensitivity than enzyme-linked immunosorbent assay (ELISA when spiked in buffer and in healthy watermelon leaf extract. The assay time of the microsphere immunoassay (1 hour was much shorter than that of ELISA (4 hours. This system was also shown to be capable of detecting the pathogens in naturally infected plant samples and is a major advancement in plant pathogen detection.

  1. Multiplex detection of plant pathogens using a microsphere immunoassay technology.

    Science.gov (United States)

    Charlermroj, Ratthaphol; Himananto, Orawan; Seepiban, Channarong; Kumpoosiri, Mallika; Warin, Nuchnard; Oplatowska, Michalina; Gajanandana, Oraprapai; Grant, Irene R; Karoonuthaisiri, Nitsara; Elliott, Christopher T

    2013-01-01

    Plant pathogens are a serious problem for seed export, plant disease control and plant quarantine. Rapid and accurate screening tests are urgently required to protect and prevent plant diseases spreading worldwide. A novel multiplex detection method was developed based on microsphere immunoassays to simultaneously detect four important plant pathogens: a fruit blotch bacterium Acidovorax avenae subsp. citrulli (Aac), chilli vein-banding mottle virus (CVbMV, potyvirus), watermelon silver mottle virus (WSMoV, tospovirus serogroup IV) and melon yellow spot virus (MYSV, tospovirus). An antibody for each plant pathogen was linked on a fluorescence-coded magnetic microsphere set which was used to capture corresponding pathogen. The presence of pathogens was detected by R-phycoerythrin (RPE)-labeled antibodies specific to the pathogens. The assay conditions were optimized by identifying appropriate antibody pairs, blocking buffer, concentration of RPE-labeled antibodies and assay time. Once conditions were optimized, the assay was able to detect all four plant pathogens precisely and accurately with substantially higher sensitivity than enzyme-linked immunosorbent assay (ELISA) when spiked in buffer and in healthy watermelon leaf extract. The assay time of the microsphere immunoassay (1 hour) was much shorter than that of ELISA (4 hours). This system was also shown to be capable of detecting the pathogens in naturally infected plant samples and is a major advancement in plant pathogen detection.

  2. Spin and wavelength multiplexed nonlinear metasurface holography

    Science.gov (United States)

    Ye, Weimin; Zeuner, Franziska; Li, Xin; Reineke, Bernhard; He, Shan; Qiu, Cheng-Wei; Liu, Juan; Wang, Yongtian; Zhang, Shuang; Zentgraf, Thomas

    2016-06-01

    Metasurfaces, as the ultrathin version of metamaterials, have caught growing attention due to their superior capability in controlling the phase, amplitude and polarization states of light. Among various types of metasurfaces, geometric metasurface that encodes a geometric or Pancharatnam-Berry phase into the orientation angle of the constituent meta-atoms has shown great potential in controlling light in both linear and nonlinear optical regimes. The robust and dispersionless nature of the geometric phase simplifies the wave manipulation tremendously. Benefitting from the continuous phase control, metasurface holography has exhibited advantages over conventional depth controlled holography with discretized phase levels. Here we report on spin and wavelength multiplexed nonlinear metasurface holography, which allows construction of multiple target holographic images carried independently by the fundamental and harmonic generation waves of different spins. The nonlinear holograms provide independent, nondispersive and crosstalk-free post-selective channels for holographic multiplexing and multidimensional optical data storages, anti-counterfeiting, and optical encryption.

  3. Multiplexing Short Primers for Viral Family PCR

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, S N; Hiddessen, A L; Hara, C A; Williams, P L; Wagner, M; Colston, B W

    2008-06-26

    We describe a Multiplex Primer Prediction (MPP) algorithm to build multiplex compatible primer sets for large, diverse, and unalignable sets of target sequences. The MPP algorithm is scalable to larger target sets than other available software, and it does not require a multiple sequence alignment. We applied it to questions in viral detection, and demonstrated that there are no universally conserved priming sequences among viruses and that it could require an unfeasibly large number of primers ({approx}3700 18-mers or {approx}2000 10-mers) to generate amplicons from all sequenced viruses. We then designed primer sets separately for each viral family, and for several diverse species such as foot-and-mouth disease virus, hemagglutinin and neuraminidase segments of influenza A virus, Norwalk virus, and HIV-1.

  4. Wireless Multiplexed Surface Acoustic Wave Sensors Project

    Science.gov (United States)

    Youngquist, Robert C.

    2014-01-01

    Wireless Surface Acoustic Wave (SAW) Sensor is a new technology for obtaining multiple, real-time measurements under extreme environmental conditions. This project plans to develop a wireless multiplexed sensor system that uses SAW sensors, with no batteries or semiconductors, that are passive and rugged, can operate down to cryogenic temperatures and up to hundreds of degrees C, and can be used to sense a wide variety of parameters over reasonable distances (meters).

  5. The Susquehanna plant lifetime excellence program

    International Nuclear Information System (INIS)

    McNamara, R.W.

    1988-01-01

    This paper discusses how the Susquehanna plant lifetime excellence program (SPLEX) blends many of the objectives of a new managing for excellence program with plant life extension objectives to achieve excellence in the lifetime operation and availability of the two-unit Susquehanna steam electric station. Investments in lifetime excellence improvements will provide near-term, as well as plant life extension, benefits. A high-quality lifetime experience record, together with extensive, periodic technical assessments and cost-benefit analyses, will provide conclusive justification for future extensions of the unit operating licenses

  6. A novel multiplex bead-based platform highlights the diversity of extracellular vesicles.

    Science.gov (United States)

    Koliha, Nina; Wiencek, Yvonne; Heider, Ute; Jüngst, Christian; Kladt, Nikolay; Krauthäuser, Susanne; Johnston, Ian C D; Bosio, Andreas; Schauss, Astrid; Wild, Stefan

    2016-01-01

    The surface protein composition of extracellular vesicles (EVs) is related to the originating cell and may play a role in vesicle function. Knowledge of the protein content of individual EVs is still limited because of the technical challenges to analyse small vesicles. Here, we introduce a novel multiplex bead-based platform to investigate up to 39 different surface markers in one sample. The combination of capture antibody beads with fluorescently labelled detection antibodies allows the analysis of EVs that carry surface markers recognized by both antibodies. This new method enables an easy screening of surface markers on populations of EVs. By combining different capture and detection antibodies, additional information on relative expression levels and potential vesicle subpopulations is gained. We also established a protocol to visualize individual EVs by stimulated emission depletion (STED) microscopy. Thereby, markers on single EVs can be detected by fluorophore-conjugated antibodies. We used the multiplex platform and STED microscopy to show for the first time that NK cell-derived EVs and platelet-derived EVs are devoid of CD9 or CD81, respectively, and that EVs isolated from activated B cells comprise different EV subpopulations. We speculate that, according to our STED data, tetraspanins might not be homogenously distributed but may mostly appear as clusters on EV subpopulations. Finally, we demonstrate that EV mixtures can be separated by magnetic beads and analysed subsequently with the multiplex platform. Both the multiplex bead-based platform and STED microscopy revealed subpopulations of EVs that have been indistinguishable by most analysis tools used so far. We expect that an in-depth view on EV heterogeneity will contribute to our understanding of different EVs and functions.

  7. Thermally activated delayed fluorescence of fluorescein derivative for time-resolved and confocal fluorescence imaging.

    Science.gov (United States)

    Xiong, Xiaoqing; Song, Fengling; Wang, Jingyun; Zhang, Yukang; Xue, Yingying; Sun, Liangliang; Jiang, Na; Gao, Pan; Tian, Lu; Peng, Xiaojun

    2014-07-09

    Compared with fluorescence imaging utilizing fluorophores whose lifetimes are in the order of nanoseconds, time-resolved fluorescence microscopy has more advantages in monitoring target fluorescence. In this work, compound DCF-MPYM, which is based on a fluorescein derivative, showed long-lived luminescence (22.11 μs in deaerated ethanol) and was used in time-resolved fluorescence imaging in living cells. Both nanosecond time-resolved transient difference absorption spectra and time-correlated single-photon counting (TCSPC) were employed to explain the long lifetime of the compound, which is rare in pure organic fluorophores without rare earth metals and heavy atoms. A mechanism of thermally activated delayed fluorescence (TADF) that considers the long wavelength fluorescence, large Stokes shift, and long-lived triplet state of DCF-MPYM was proposed. The energy gap (ΔEST) of DCF-MPYM between the singlet and triplet state was determined to be 28.36 meV by the decay rate of DF as a function of temperature. The ΔE(ST) was small enough to allow efficient intersystem crossing (ISC) and reverse ISC, leading to efficient TADF at room temperature. The straightforward synthesis of DCF-MPYM and wide availability of its starting materials contribute to the excellent potential of the compound to replace luminescent lanthanide complexes in future time-resolved imaging technologies.

  8. Fluorescence spectroscopy and confocal microscopy of the mycotoxin citrinin in condensed phase and hydrogel films.

    Science.gov (United States)

    Lauer, Milena H; Gehlen, Marcelo H; de Jesus, Karen; Berlinck, Roberto G S

    2014-05-01

    The emission spectra, quantum yields and fluorescence lifetimes of citrinin in organic solvents and hydrogel films have been determined. Citrinin shows complex fluorescence decays due to the presence of two tautomers in solution and interconversion from excited-state double proton transfer (ESDPT) process. The fluorescence decay times associated with the two tautomers have values near 1 and 5 ns depending on the medium. In hydrogel films of agarose and alginate, fluorescence imaging showed that citrinin is not homogeneously dispersed and highly emissive micrometer spots may be formed. Fluorescence spectrum and decay analysis are used to recognize the presence of citrinin in hydrogel films using confocal fluorescence microscopy and spectroscopy.

  9. Improving fluorescence diagnosis of cancer by SLIM

    Science.gov (United States)

    Rück, Angelika; Dolp, Frank; Kinzler, Ingrid; Hauser, Carmen; Scalfi-Happ, Claudia

    2006-02-01

    Although during the last years, significant progress was made in cancer diagnosis, using either intrinsic or specially designed fluorophores, still problems exist, due to difficulties in spectral separation of highly overlapping probes or in lack of specificity. Many of the problems could be circumvented by focusing on time-resolved methods. In combination with spectral resolved detection (spectral fluorescence lifetime imaging, SLIM) highly sophisticated fluorescence lifetime imaging can be performed which might improve specificity of cell diagnosis. To record lifetime images (τ-mapping) with spectral resolution a setup was realized consisting of a laser scanning microscope equipped with a 16 channel array for time-correlated single photon counting (TCSPC) and a spectrograph in front of the array. A Ti:Saphir laser can be used for excitation or alternatively ps diode lasers. With this system the time- and spectral-resolved fluorescence characteristics of different fluorophores were investigated in solution and in cell culture. As an example, not only the mitochondria staining dye rhodamine 123 could be easily distinguished from DAPI, which intercalates into nucleic acids, but also different binding sites of DAPI. This was proved by the appearance of different lifetime components within different spectral channels. Another example is Photofrin, a photosensitizer which is approved for bladder cancer and for palliative lung and esophageal cancer in 20 countries, including the United States, Canada and many European countries. Photofrin is a complex mixture of different monomeric and aggregated porphyrins. The phototoxic efficiency during photodynamic therapy (PDT) seems to be correlated with the relative amounts of monomers and aggregates. With SLIM different lifetimes could be attributed to various, spectrally highly overlapping compounds. In addition, a detailed analysis of the autofluorescence by SLIM could explain changes of mitochondrial metabolism during

  10. Multiplex congruence network of natural numbers.

    Science.gov (United States)

    Yan, Xiao-Yong; Wang, Wen-Xu; Chen, Guan-Rong; Shi, Ding-Hua

    2016-03-31

    Congruence theory has many applications in physical, social, biological and technological systems. Congruence arithmetic has been a fundamental tool for data security and computer algebra. However, much less attention was devoted to the topological features of congruence relations among natural numbers. Here, we explore the congruence relations in the setting of a multiplex network and unveil some unique and outstanding properties of the multiplex congruence network. Analytical results show that every layer therein is a sparse and heterogeneous subnetwork with a scale-free topology. Counterintuitively, every layer has an extremely strong controllability in spite of its scale-free structure that is usually difficult to control. Another amazing feature is that the controllability is robust against targeted attacks to critical nodes but vulnerable to random failures, which also differs from ordinary scale-free networks. The multi-chain structure with a small number of chain roots arising from each layer accounts for the strong controllability and the abnormal feature. The multiplex congruence network offers a graphical solution to the simultaneous congruences problem, which may have implication in cryptography based on simultaneous congruences. Our work also gains insight into the design of networks integrating advantages of both heterogeneous and homogeneous networks without inheriting their limitations.

  11. Epidemics in partially overlapped multiplex networks.

    Directory of Open Access Journals (Sweden)

    Camila Buono

    Full Text Available Many real networks exhibit a layered structure in which links in each layer reflect the function of nodes on different environments. These multiple types of links are usually represented by a multiplex network in which each layer has a different topology. In real-world networks, however, not all nodes are present on every layer. To generate a more realistic scenario, we use a generalized multiplex network and assume that only a fraction [Formula: see text] of the nodes are shared by the layers. We develop a theoretical framework for a branching process to describe the spread of an epidemic on these partially overlapped multiplex networks. This allows us to obtain the fraction of infected individuals as a function of the effective probability that the disease will be transmitted [Formula: see text]. We also theoretically determine the dependence of the epidemic threshold on the fraction [Formula: see text] of shared nodes in a system composed of two layers. We find that in the limit of [Formula: see text] the threshold is dominated by the layer with the smaller isolated threshold. Although a system of two completely isolated networks is nearly indistinguishable from a system of two networks that share just a few nodes, we find that the presence of these few shared nodes causes the epidemic threshold of the isolated network with the lower propagating capacity to change discontinuously and to acquire the threshold of the other network.

  12. Functional characterization of Gram-negative bacteria from different genera as multiplex cadmium biosensors.

    Science.gov (United States)

    Bereza-Malcolm, Lara; Aracic, Sanja; Kannan, Ruban; Mann, Gülay; Franks, Ashley E

    2017-08-15

    Widespread presence of cadmium in soil and water systems is a consequence of industrial and agricultural processes. Subsequent accumulation of cadmium in food and drinking water can result in accidental consumption of dangerous concentrations. As such, cadmium environmental contamination poses a significant threat to human health. Development of microbial biosensors, as a novel alternative method for in situ cadmium detection, may reduce human exposure by complementing traditional analytical methods. In this study, a multiplex cadmium biosensing construct was assembled by cloning a single-output cadmium biosensor element, cadRgfp, and a constitutively expressed mrfp1 onto a broad-host range vector. Incorporation of the duplex fluorescent output [green and red fluorescence proteins] allowed measurement of biosensor functionality and viability. The biosensor construct was tested in several Gram-negative bacteria including Pseudomonas, Shewanella and Enterobacter. The multiplex cadmium biosensors were responsive to cadmium concentrations ranging from 0.01 to 10µgml -1 , as well as several other heavy metals, including arsenic, mercury and lead at similar concentrations. The biosensors were also responsive within 20-40min following exposure to 3µgml -1 cadmium. This study highlights the importance of testing biosensor constructs, developed using synthetic biology principles, in different bacterial genera. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Molecular identification of common Salmonella serovars using multiplex DNA sensor-based suspension array.

    Science.gov (United States)

    Aydin, Muhsin; Carter-Conger, Jacqueline; Gao, Ning; Gilmore, David F; Ricke, Steven C; Ahn, Soohyoun

    2018-04-01

    Salmonella is one of major foodborne pathogens and the leading cause of foodborne illness-related hospitalizations and deaths. It is critical to develop a sensitive and rapid detection assay that can identify Salmonella to ensure food safety. In this study, a DNA sensor-based suspension array system of high multiplexing ability was developed to identify eight Salmonella serovars commonly associated with foodborne outbreaks to the serotype level. Each DNA sensor was prepared by activating pre-encoded microspheres with oligonucleotide probes that are targeting virulence genes and serovar-specific regions. The mixture of 12 different types of DNA sensors were loaded into a 96-well microplate and used as a 12-plex DNA sensor array platform. DNA isolated from Salmonella was amplified by multiplex polymerase chain reaction (mPCR), and the presence of Salmonella was determined by reading fluorescent signals from hybridization between probes on DNA sensors and fluorescently labeled target DNA using the Bio-Plex® system. The developed multiplex array was able to detect synthetic DNA at the concentration as low as 100 fM and various Salmonella serovars as low as 100 CFU/mL within 1 h post-PCR. Sensitivity of this assay was further improved to 1 CFU/mL with 6-h enrichment. The array system also correctly and specifically identified serotype of tested Salmonella strains without any cross-reactivity with other common foodborne pathogens. Our results indicate the developed DNA sensor suspension array can be a rapid and reliable high-throughput method for simultaneous detection and molecular identification of common Salmonella serotypes.

  14. Quantitative and multiplexed detection for blood typing based on quantum dot-magnetic bead assay.

    Science.gov (United States)

    Xu, Ting; Zhang, Qiang; Fan, Ya-Han; Li, Ru-Qing; Lu, Hua; Zhao, Shu-Ming; Jiang, Tian-Lun

    2017-01-01

    Accurate and reliable blood grouping is essential for safe blood transfusion. However, conventional methods are qualitative and use only single-antigen detection. We overcame these limitations by developing a simple, quantitative, and multiplexed detection method for blood grouping using quantum dots (QDs) and magnetic beads. In the QD fluorescence assay (QFA), blood group A and B antigens were quantified using QD labeling and magnetic beads, and the blood groups were identified according to the R value (the value was calculated with the fluorescence intensity from dual QD labeling) of A and B antigens. The optimized performance of QFA was established by blood typing 791 clinical samples. Quantitative and multiplexed detection for blood group antigens can be completed within 35 min with more than 10 5 red blood cells. When conditions are optimized, the assay performance is satisfactory for weak samples. The coefficients of variation between and within days were less than 10% and the reproducibility was good. The ABO blood groups of 791 clinical samples were identified by QFA, and the accuracy obtained was 100% compared with the tube test. Receiver-operating characteristic curves revealed that the QFA has high sensitivity and specificity toward clinical samples, and the cutoff points of the R value of A and B antigens were 1.483 and 1.576, respectively. In this study, we reported a novel quantitative and multiplexed method for the identification of ABO blood groups and presented an effective alternative for quantitative blood typing. This method can be used as an effective tool to improve blood typing and further guarantee clinical transfusion safety.

  15. Toward photostable multiplex analyte detection on a single mode planar optical waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Mukundan, Harshini [Los Alamos National Laboratory; Xei, Hongshi [Los Alamos National Laboratory; Anderson, Aaron S [Los Alamos National Laboratory; Grace, Wynne K [Los Alamos National Laboratory; Martinez, Jennifer S [NON LANL; Swanson, Basil [Los Alamos National Laboratory

    2009-01-01

    We have developed a waveguide-based optical biosensor for the sensitive and specific detection of biomarkers associated with disease. Our technology combines the superior optical properties of single-mode planar waveguides, the robust nature of functionalized self-assembled monolayer sensing films and the specificity of fluorescence sandwich immunoassays to detect biomarkers in complex biological samples such as serum, urine and sputum. We have previously reported the adaptation of our technology to the detection of biomarkers associated with breast cancer and anthrax. However, these approaches primarily used phospholipid bilayers as the functional film and organic dyes (ex: AlexaFluors) as the fluorescence reporter. Organic dyes are easily photodegraded and are not amenable to multiplexing because of their narrow Stokes' shift. Here we have developed strategies for conjugation of the detector antibodies with quantum dots for use in a multiplex detection platform. We have previously evaluated dihydroxylipoic acid quantum dots for the detection of a breast cancer biomarker. In this manuscript, we investigate the detection of the Bacillus anthracis protective antigen using antibodies conjugated with polymer-coated quantum dots. Kinetics of binding on the waveguide-based biosensor is reported. We compare the sensitivity of quantum dot labeled antibodies to those labeled with AlexaFluor and demonstrate the photostability of the former in our assay platform. In addition, we compare sulfydryl labeling of the antibody in the hinge region to that of nonspecific amine labeling. This is but the first step in developing a multiplex assay for such biomarkers on our waveguide platform.

  16. Demonstration of hybrid orbital angular momentum multiplexing and time-division multiplexing passive optical network.

    Science.gov (United States)

    Wang, Andong; Zhu, Long; Liu, Jun; Du, Cheng; Mo, Qi; Wang, Jian

    2015-11-16

    Mode-division multiplexing passive optical network (MDM-PON) is a promising scheme for next-generation access networks to further increase fiber transmission capacity. In this paper, we demonstrate the proof-of-concept experiment of hybrid mode-division multiplexing (MDM) and time-division multiplexing (TDM) PON architecture by exploiting orbital angular momentum (OAM) modes. Bidirectional transmissions with 2.5-Gbaud 4-level pulse amplitude modulation (PAM-4) downstream and 2-Gbaud on-off keying (OOK) upstream are demonstrated in the experiment. The observed optical signal-to-noise ratio (OSNR) penalties for downstream and upstream transmissions at a bit-error rate (BER) of 2 × 10(-3) are less than 2.0 dB and 3.0 dB, respectively.

  17. Double-gated spectral snapshots for biomolecular fluorescence

    International Nuclear Information System (INIS)

    Nakamura, Ryosuke; Hamada, Norio; Ichida, Hideki; Tokunaga, Fumio; Kanematsu, Yasuo

    2007-01-01

    A versatile method to take femtosecond spectral snapshots of fluorescence has been developed based on a double gating technique in the combination of an optical Kerr gate and an image intensifier as an electrically driven gate set in front of a charge-coupled device detector. The application of a conventional optical-Kerr-gate method is limited to molecules with the short fluorescence lifetime up to a few hundred picoseconds, because long-lifetime fluorescence itself behaves as a source of the background signal due to insufficiency of the extinction ratio of polarizers employed for the Kerr gate. By using the image intensifier with the gate time of 200 ps, we have successfully suppressed the background signal and overcome the application limit of optical-Kerr-gate method. The system performance has been demonstrated by measuring time-resolved fluorescence spectra for laser dye solution and the riboflavin solution as a typical sample of biomolecule

  18. Fusion-component lifetime analysis

    International Nuclear Information System (INIS)

    Mattas, R.F.

    1982-09-01

    A one-dimensional computer code has been developed to examine the lifetime of first-wall and impurity-control components. The code incorporates the operating and design parameters, the material characteristics, and the appropriate failure criteria for the individual components. The major emphasis of the modeling effort has been to calculate the temperature-stress-strain-radiation effects history of a component so that the synergystic effects between sputtering erosion, swelling, creep, fatigue, and crack growth can be examined. The general forms of the property equations are the same for all materials in order to provide the greatest flexibility for materials selection in the code. The individual coefficients within the equations are different for each material. The code is capable of determining the behavior of a plate, composed of either a single or dual material structure, that is either totally constrained or constrained from bending but not from expansion. The code has been utilized to analyze the first walls for FED/INTOR and DEMO and to analyze the limiter for FED/INTOR

  19. Aspects of silicon bulk lifetimes

    Science.gov (United States)

    Landsberg, P. T.

    1985-01-01

    The best lifetimes attained for bulk crytalline silicon as a function of doping concentrations are analyzed. It is assumed that the dopants which set the Fermi level do not contribute to the recombination traffic which is due to the unknown defect. This defect is assumed to have two charge states: neutral and negative, the neutral defect concentration is frozen-in at some temperature T sub f. The higher doping concentrations should include the band-band Auger effect by using a generalization of the Shockley-Read-Hall (SRH) mechanism. The generalization of the SRH mechanism is discussed. This formulation gives a straightforward procedure for incorporating both band-band and band-trap Auger effects in the SRH procedure. Two related questions arise in this context: (1) it may sometimes be useful to write the steady-state occupation probability of the traps implied by SRH procedure in a form which approximates to the Fermi-Dirac distribution; and (2) the effect on the SRH mechanism of spreading N sub t levels at one energy uniformly over a range of energies is discussed.

  20. A nucleic acid strand displacement system for the multiplexed detection of tuberculosis-specific mRNA using quantum dots

    Science.gov (United States)

    Gliddon, H. D.; Howes, P. D.; Kaforou, M.; Levin, M.; Stevens, M. M.

    2016-05-01

    The development of rapid, robust and high performance point-of-care diagnostics relies on the advancement and combination of various areas of research. We have developed an assay for the detection of multiple mRNA molecules that combines DNA nanotechnology with fluorescent nanomaterials. The core switching mechanism is toehold-mediated strand displacement. We have used fluorescent quantum dots (QDs) as signal transducers in this assay, as they bring many benefits including bright fluorescence and multiplexing abilities. The resulting assay is capable of multiplexed detection of long RNA targets against a high concentration of background non-target RNA, with high sensitivity and specificity and limits of detection in the nanomolar range using only a standard laboratory plate reader. We demonstrate the utility of our QD-based system for the detection of two genes selected from a microarray-derived tuberculosis-specific gene expression signature. Levels of up- and downregulated gene transcripts comprising this signature can be combined to give a disease risk score, making the signature more amenable for use as a diagnostic marker. Our QD-based approach to detect these transcripts could pave the way for novel diagnostic assays for tuberculosis.The development of rapid, robust and high performance point-of-care diagnostics relies on the advancement and combination of various areas of research. We have developed an assay for the detection of multiple mRNA molecules that combines DNA nanotechnology with fluorescent nanomaterials. The core switching mechanism is toehold-mediated strand displacement. We have used fluorescent quantum dots (QDs) as signal transducers in this assay, as they bring many benefits including bright fluorescence and multiplexing abilities. The resulting assay is capable of multiplexed detection of long RNA targets against a high concentration of background non-target RNA, with high sensitivity and specificity and limits of detection in the nanomolar

  1. Design of a Modular DNA Triangular-Prism Sensor Enabling Ratiometric and Multiplexed Biomolecule Detection on a Single Microbead.

    Science.gov (United States)

    Liu, Yu; Chen, Qiaoshu; Liu, Jianbo; Yang, Xiaohai; Guo, Qiuping; Li, Li; Liu, Wei; Wang, Kemin

    2017-03-21

    DNA nanostructures have emerged as powerful and versatile building blocks for the construction of programmable nanoscale structures and functional sensors for biomarker detection, disease diagnostics, and therapy. Here we integrated multiple sensing modules into a single DNA three-dimensional (3D) nanoarchitecture with a triangular-prism (TP) structure for ratiometric and multiplexed biomolecule detection on a single microbead. In our design, the complementary hybridization of three clip sequences formed TP nanoassemblies in which the six single-strand regions in the top and bottom faces act as binding sites for different sensing modules, including an anchor module, reference sequence module, and capture sequence module. The multifunctional modular TP nanostructures were thus exploited for ratiometric and multiplexed biomolecule detection on microbeads. Microbead imaging demonstrated that, after ratiometric self-calibration analysis, the imaging deviations resulting from uneven fluorescence intensity distribution and differing probe concentrations were greatly reduced. The rigid nanostructure also conferred the TP as a framework for geometric positioning of different capture sequences. The inclusion of multiple targets led to the formation of sandwich hybridization structures that gave a readily detectable optical response at different fluorescence channels and distinct fingerprint-like pattern arrays. This approach allowed us to discriminate multiplexed biomolecule targets in a simple and efficient fashion. In this module-designed strategy, the diversity of the controlled DNA assembly coupled with the geometrically well-defined rigid nanostructures of the TP assembly provides a flexible and reliable biosensing approach that shows great promise for biomedical applications.

  2. Baselines for Lifetime of Organic Solar Cells

    DEFF Research Database (Denmark)

    Gevorgyan, Suren; Espinosa Martinez, Nieves; Ciammaruchi, Laura

    2016-01-01

    The process of accurately gauging lifetime improvements in organic photovoltaics (OPVs) or other similar emerging technologies, such as perovskites solar cells is still a major challenge. The presented work is part of a larger effort of developing a worldwide database of lifetimes that can help...

  3. Maximizing System Lifetime by Battery Scheduling

    NARCIS (Netherlands)

    Jongerden, M.R.; Haverkort, Boudewijn R.H.M.; Bohnenkamp, H.C.; Katoen, Joost P.

    2009-01-01

    The use of mobile devices is limited by the battery lifetime. Some devices have the option to connect an extra battery, or to use smart battery-packs with multiple cells to extend the lifetime. In these cases, scheduling the batteries over the load to exploit recovery properties usually extends the

  4. Highly sensitive and multiplexed platforms for allergy diagnostics

    Science.gov (United States)

    Monroe, Margo R.

    Allergy is a disorder of the immune system caused by an immune response to otherwise harmless environmental allergens. Currently 20% of the US population is allergic and 90% of pediatric patients and 60% of adult patients with asthma have allergies. These percentages have increased by 18.5% in the past decade, with predicted similar trends for the future. Here we design sensitive, multiplexed platforms to detect allergen-specific IgE using the Interferometric Reflectance Imaging Sensor (IRIS) for various clinical settings. A microarray platform for allergy diagnosis allows for testing of specific IgE sensitivity to a multitude of allergens, while requiring only small volumes of patient blood sample. However, conventional fluorescent microarray technology is limited by i) the variation of probe immobilization, which hinders the ability to make quantitative, assertive, and statistically relevant conclusions necessary in immunodiagnostics and ii) the use of fluorophore labels, which is not suitable for some clinical applications due to the tendency of fluorophores to stick to blood particulates and require daily calibration methods. This calibrated fluorescence enhancement (CaFE) method integrates the low magnification modality of IRIS with enhanced fluorescence sensing in order to directly correlate immobilized probe (major allergens) density to allergen-specific IgE in patient serum. However, this platform only operates in processed serum samples, which is not ideal for point of care testing. Thus, a high magnification modality of IRIS was adapted as an alternative allergy diagnostic platform to automatically discriminate and size single nanoparticles bound to specific IgE in unprocessed, characterized human blood and serum samples. These features make IRIS an ideal candidate for clinical and diagnostic applications, such a POC testing. The high magnification (nanoparticle counting) modality in conjunction with low magnification of IRIS in a combined instrument

  5. Comparison of multiplex reverse transcription-PCR-enzyme ...

    African Journals Online (AJOL)

    Comparison of multiplex reverse transcription-PCR-enzyme hybridization assay with immunofluorescence techniques for the detection of four viral respiratory pathogens in pediatric community acquired pneumonia.

  6. Fully time-resolved near-field scanning optical microscopy fluorescence imaging

    International Nuclear Information System (INIS)

    Kwak, Eun-Soo; Vanden Bout, David A.

    2003-01-01

    Time-correlated single photon counting has been coupled with near-field scanning optical microscopy (NSOM) to record complete fluorescence lifetime decays at each pixel in an NSOM image. The resulting three-dimensional data sets can be binned in the time dimension to create images of photons at particular time delays or images of the fluorescence lifetime. Alternatively, regions of interest identified in the topography and fluorescence images can be used to bin the data in the spatial dimensions resulting in high signal to noise fluorescence decays of particular regions of the sample. The technique has been demonstrated on films of poly(vinylalcohol), doped with the fluorescent dye, cascade blue (CB). The CB segregates into small circular regions of high concentration within the films during the drying process. The lifetime imaging shows that the spots have slightly faster excited state decays due to quenching of the luminescence as a result of the higher concentration. The technique is also used to image the fluorescence lifetime of an annealed film of poly(dihexylfluorene). The samples show high contrast in the total intensity fluorescence image, but the lifetime image reveals the sample to be extremely uniform

  7. Autofluorescence lifetime imaging during transoral robotic surgery: a clinical validation study of tumor detection (Conference Presentation)

    Science.gov (United States)

    Lagarto, João. L.; Phipps, Jennifer E.; Unger, Jakob; Faller, Leta M.; Gorpas, Dimitris; Ma, Dinglong M.; Bec, Julien; Moore, Michael G.; Bewley, Arnaud F.; Yankelevich, Diego R.; Sorger, Jonathan M.; Farwell, Gregory D.; Marcu, Laura

    2017-02-01

    Autofluorescence lifetime spectroscopy is a promising non-invasive label-free tool for characterization of biological tissues and shows potential to report structural and biochemical alterations in tissue owing to pathological transformations. In particular, when combined with fiber-optic based instruments, autofluorescence lifetime measurements can enhance intraoperative diagnosis and provide guidance in surgical procedures. We investigate the potential of a fiber-optic based multi-spectral time-resolved fluorescence spectroscopy instrument to characterize the autofluorescence fingerprint associated with histologic, morphologic and metabolic changes in tissue that can provide real-time contrast between healthy and tumor regions in vivo and guide clinicians during resection of diseased areas during transoral robotic surgery. To provide immediate feedback to the surgeons, we employ tracking of an aiming beam that co-registers our point measurements with the robot camera images and allows visualization of the surgical area augmented with autofluorescence lifetime data in the surgeon's console in real-time. For each patient, autofluorescence lifetime measurements were acquired from normal, diseased and surgically altered tissue, both in vivo (pre- and post-resection) and ex vivo. Initial results indicate tumor and normal regions can be distinguished based on changes in lifetime parameters measured in vivo, when the tumor is located superficially. In particular, results show that autofluorescence lifetime of tumor is shorter than that of normal tissue (p robot assisted cancer removal interventions.

  8. 76 FR 71982 - Advancing Regulatory Science for Highly Multiplexed Microbiology/Medical Countermeasure Devices...

    Science.gov (United States)

    2011-11-21

    ... Multiplexed Microbiology Devices: Their clinical application and public health/clinical needs; inclusion of...] Advancing Regulatory Science for Highly Multiplexed Microbiology/ Medical Countermeasure Devices; Public... Multiplexed Microbiology/ Medical Countermeasure Devices'' that published in the Federal Register of August 8...

  9. Fluorescence detection of single molecules using pulsed near-field optical excitation and time correlated photon counting

    International Nuclear Information System (INIS)

    Ambrose, W.P.; Goodwin, P.M.; Martin, J.C.; Keller, R.A.

    1994-01-01

    Pulsed excitation, time correlated single photon counting and time gated detection are used in near-field optical microscopy to enhance fluorescence images and measure the fluorescence lifetimes of single molecules of Rhodamine 6G on silica surfaces. Time gated detection is used to reject prompt scattered background and to improve the image signal to noise ratio. The excited state lifetime of a single Rhodamine 6G molecule is found to depend on the position of the near-field probe. We attribute the lifetime variations to spontaneous emission rate alterations by the fluorescence reflected from and quenching by the aluminum coated probe

  10. Multiplex flow cytometry barcoding and antibody arrays identify surface antigen profiles of primary and metastatic colon cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Kumar Sukhdeo

    Full Text Available Colon cancer is a deadly disease affecting millions of people worldwide. Current treatment challenges include management of disease burden as well as improvements in detection and targeting of tumor cells. To identify disease state-specific surface antigen signatures, we combined fluorescent cell barcoding with high-throughput flow cytometric profiling of primary and metastatic colon cancer lines (SW480, SW620, and HCT116. Our multiplexed technique offers improvements over conventional methods by permitting the simultaneous and rapid screening of cancer cells with reduced effort and cost. The method uses a protein-level analysis with commercially available antibodies on live cells with intact epitopes to detect potential tumor-specific targets that can be further investigated for their clinical utility. Multiplexed antibody arrays can easily be applied to other tumor types or pathologies for discovery-based approaches to target identification.

  11. Multiplexed Western Blotting Using Microchip Electrophoresis.

    Science.gov (United States)

    Jin, Shi; Furtaw, Michael D; Chen, Huaxian; Lamb, Don T; Ferguson, Stephen A; Arvin, Natalie E; Dawod, Mohamed; Kennedy, Robert T

    2016-07-05

    Western blotting is a commonly used protein assay that combines the selectivity of electrophoretic separation and immunoassay. The technique is limited by long time, manual operation with mediocre reproducibility, and large sample consumption, typically 10-20 μg per assay. Western blots are also usually used to measure only one protein per assay with an additional housekeeping protein for normalization. Measurement of multiple proteins is possible; however, it requires stripping membranes of antibody and then reprobing with a second antibody. Miniaturized alternatives to Western blot based on microfluidic or capillary electrophoresis have been developed that enable higher-throughput, automation, and greater mass sensitivity. In one approach, proteins are separated by electrophoresis on a microchip that is dragged along a polyvinylidene fluoride membrane so that as proteins exit the chip they are captured on the membrane for immunoassay. In this work, we improve this method to allow multiplexed protein detection. Multiple injections made from the same sample can be deposited in separate tracks so that each is probed with a different antibody. To further enhance multiplexing capability, the electrophoresis channel dimensions were optimized for resolution while keeping separation and blotting times to less than 8 min. Using a 15 μm deep × 50 μm wide × 8.6 cm long channel, it is possible to achieve baseline resolution of proteins that differ by 5% in molecular weight, e.g., ERK1 (44 kDa) from ERK2 (42 kDa). This resolution allows similar proteins detected by cross-reactive antibodies in a single track. We demonstrate detection of 11 proteins from 9 injections from a single Jurkat cell lysate sample consisting of 400 ng of total protein using this procedure. Thus, multiplexed Western blots are possible without cumbersome stripping and reprobing steps.

  12. Multiplex serology of paraneoplastic antineuronal antibodies.

    Science.gov (United States)

    Maat, Peter; Brouwer, Eric; Hulsenboom, Esther; VanDuijn, Martijn; Schreurs, Marco W J; Hooijkaas, Herbert; Smitt, Peter A E Sillevis

    2013-05-31

    Paraneoplastic neurological syndromes (PNS) are devastating neurological disorders secondary to cancer, associated with onconeural autoantibodies. Such antibodies are directed against neuronal antigens aberrantly expressed by the tumor. The detection of onconeural antibodies in a patient is extremely important in diagnosing a neurological syndrome as paraneoplastic (70% is not yet known to have cancer) and in directing the search for the underlying neoplasm. At present six onconeural antibodies are considered 'well characterized' and recognize the antigens HuD, CDR62 (Yo), amphiphysin, CRMP-5 (CV2), NOVA-1 (Ri), and Ma2. The gold standard of detection is the characteristic immunohistochemical staining pattern on brain tissue sections combined with confirmation by immunoblotting using recombinant purified proteins. Since all six onconeural antibodies are usually analyzed simultaneously and objective cut-off values for these analyses are warranted, we developed a multiplex assay based on Luminex technology. Reaction of serial dilutions of six onconeural standard sera with microsphere-bound antigens showed lower limits of detection than with Western blotting. Using the six standard sera at a dilution of 1:200, the average within-run coefficient of variation (CV) was 4% (range 1.9-7.3%). The average between-run within-day CV was 5.1% (range 2.9-6.7%) while the average between-day CV was 8.1% (range 2.8-11.6%). The shelf-life of the antigen coupled microspheres was at least two months. The sensitivity of the multiplex assay ranged from 83% (Ri) to 100% (Yo, amphiphysin, CV2) and the specificity from 96% (CV2) to 100% (Ri). In conclusion, Luminex-based multiplex serology is highly reproducible with high sensitivity and specificity for the detection of onconeural antibodies. Conventional immunoblotting for diagnosis of onconeural antibodies in the setting of a routine laboratory may be replaced by this novel, robust technology. Copyright © 2013 Elsevier B.V. All rights

  13. Nanostructure induced changes in lifetime and enhanced second-harmonic response of organic-plasmonic hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Leißner, Till [NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, 6400 Sønderborg (Denmark); Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense (Denmark); Kostiučenko, Oksana; Rubahn, Horst-Günter; Fiutowski, Jacek, E-mail: fiutowski@mci.sdu.dk [NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, 6400 Sønderborg (Denmark); Brewer, Jonathan R. [Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense (Denmark)

    2015-12-21

    In this letter we show that the optical response of organic nanofibers, grown from functionalized para-quaterphenylene molecules, can be controlled by forming organic-plasmonic hybrid systems. The interaction between nanofibers and supporting regular arrays of nanostructures leads to a strongly enhanced second harmonic response. At the same time, the fluorescence lifetime of the nanofibers is reduced from 0.32 ns for unstructured gold films to 0.22 ns for gold nanosquare arrays, demonstrating efficient organic–plasmonic interaction. To study the origin of these effects, we applied two-photon laser scanning microscopy and fluorescence lifetime imaging microscopy. These findings provide an effective approach for plasmon-enhanced second-harmonic generation at the nanoscale, which is attractive for nanophotonic circuitry.

  14. Fluorescein Derivatives in Intravital Fluorescence Imaging

    Directory of Open Access Journals (Sweden)

    Michael S. Roberts

    2013-08-01

    Full Text Available Intravital fluorescence microscopy enables the direct imaging of fluorophores in vivo and advanced techniques such as fluorescence lifetime imaging (FLIM enable the simultaneous detection of multiple fluorophores. Consequently, it is now possible to record distribution and metabolism of a chemical in vivo and to optimise the delivery of fluorophores in vivo. Recent clinical applications with fluorescein and other intravital fluorescent stains have occurred in neurosurgery, dermatology [including photodynamic therapy (PDT] and endomicroscopy. Potential uses have been identified in periodontal disease, skin graft and cancer surgery. Animal studies have demonstrated that diseased tissue can be specifically stained with fluorophore conjugates. This review focuses on the fluorescein derived fluorophores in common clinical use and provides examples of novel applications from studies in tissue samples.

  15. Wavelength division multiplexing a practical engineering guide

    CERN Document Server

    Grobe, Klaus

    2013-01-01

    In this book, Optical Wavelength Division Multiplexing (WDM) is approached from a strictly practical and application-oriented point of view. Based on the characteristics and constraints of modern fiber-optic components, transport systems and fibers, the text provides relevant rules of thumb and practical hints for technology selection, WDM system and link dimensioning, and also for network-related aspects such as wavelength assignment and resilience mechanisms. Actual 10/40 Gb/s WDM systems are considered, and a preview of the upcoming 100 Gb/s systems and technologies for even higher bit rate

  16. Performance modeling, stochastic networks, and statistical multiplexing

    CERN Document Server

    Mazumdar, Ravi R

    2013-01-01

    This monograph presents a concise mathematical approach for modeling and analyzing the performance of communication networks with the aim of introducing an appropriate mathematical framework for modeling and analysis as well as understanding the phenomenon of statistical multiplexing. The models, techniques, and results presented form the core of traffic engineering methods used to design, control and allocate resources in communication networks.The novelty of the monograph is the fresh approach and insights provided by a sample-path methodology for queueing models that highlights the importan

  17. Subcarrier multiplexing optical quantum key distribution

    International Nuclear Information System (INIS)

    Ortigosa-Blanch, A.; Capmany, J.

    2006-01-01

    We present the physical principles of a quantum key distribution system that opens the possibility of parallel quantum key distribution and, therefore, of a substantial improvement in the bit rate of such systems. Quantum mechanics allows for multiple measurements at different frequencies and thus we exploit this concept by extending the concept of frequency coding to the case where more than one radio-frequency subcarrier is used for independently encoding the bits onto an optical carrier. Taking advantage of subcarrier multiplexing techniques we demonstrate that the bit rate can be greatly improved as parallel key distribution is enabled

  18. Nuclear Power Plant Lifetime Management Study (I)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Yull; Jeong, Ill Seok; Jang, Chang Heui; Song, Taek Ho; Song, Woo Young [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Jin, Tae Eun [Korea Power Engineering Company Consulting and Architecture Engineers, (Korea, Republic of); Kim, Woo Chul [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    As the operation-year of nuclear power plant increases and finding sites for new nuclear power plant becomes harder, a comprehensive and systematic nuclear plant lifetime management(PLIM) program including life extension has to be established for stable and safe supply of electricity. A feasibility study was conducted to systematically evaluate technical, economic and regulatory aspect of plant lifetime managements and plant life extension for Kori-1 nuclear power plant. For technical evaluation of nuclear power plant, 13 major components were selected for lifetime evaluation by screening system. structure, and components(SSCs) of the plant. It was found that except reactor pressure vessel, which needs detailed integrity analysis, and low pressure turbine, which is scheduled to be replaced, 11 out of 13 major components have sufficient service life, for more than 40 years. Because domestic rules and regulations related to license renewal has not yet been written, review on the regulatory aspect of life extensions was conducted using US NRC rules and regulations. A cooperative effort with nuclear regulatory body is needed for early completion of license renewal rules and regulations. For economic evaluation of plant lifetime extension, a computer program was developed and used. It was found that 10 to 20 year of extension operation of Kori-1 nuclear power plant was proved. Based on the results, next phase of plant lifetime management program for detailed lifetime evaluation and presenting detailed implementation schedule for plant refurbishment for lifetime extension should be followed. (author). 74 refs., figs.

  19. Nuclear Power Plant Lifetime Management Study (I)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Yull; Jeong, Ill Seok; Jang, Chang Heui; Song, Taek Ho; Song, Woo Young [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Jin, Tae Eun [Korea Power Engineering Company Consulting and Architecture Engineers, (Korea, Republic of); Kim, Woo Chul [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-12-31

    As the operation-year of nuclear power plant increases and finding sites for new nuclear power plant becomes harder, a comprehensive and systematic nuclear plant lifetime management(PLIM) program including life extension has to be established for stable and safe supply of electricity. A feasibility study was conducted to systematically evaluate technical, economic and regulatory aspect of plant lifetime managements and plant life extension for Kori-1 nuclear power plant. For technical evaluation of nuclear power plant, 13 major components were selected for lifetime evaluation by screening system. structure, and components(SSCs) of the plant. It was found that except reactor pressure vessel, which needs detailed integrity analysis, and low pressure turbine, which is scheduled to be replaced, 11 out of 13 major components have sufficient service life, for more than 40 years. Because domestic rules and regulations related to license renewal has not yet been written, review on the regulatory aspect of life extensions was conducted using US NRC rules and regulations. A cooperative effort with nuclear regulatory body is needed for early completion of license renewal rules and regulations. For economic evaluation of plant lifetime extension, a computer program was developed and used. It was found that 10 to 20 year of extension operation of Kori-1 nuclear power plant was proved. Based on the results, next phase of plant lifetime management program for detailed lifetime evaluation and presenting detailed implementation schedule for plant refurbishment for lifetime extension should be followed. (author). 74 refs., figs.

  20. Lifetime measurement of ATF damping ring

    International Nuclear Information System (INIS)

    Okugi, T.; Hayano, H.; Kubo, K.; Naito, T.; Terunuma, N.; Urakawa, J.; Zimmermann, F.

    1998-06-01

    The purpose of the ATF damping ring is the development of technologies for producing a low emittance beam required in future linear colliders such as JLC. The lifetime of the damping ring is very short (typically a few minutes). It is limited by elastic beam-gas scattering along with a small dynamic aperture, and by single intra-beam scattering (Touschek effect). The Touschek lifetime strongly depends upon the charge density of the beam, especially, the size of the vertical emittance. In this paper, the authors report the results of beam lifetime measurements in the ATF damping ring and the estimation of the vertical emittance from these measurements

  1. Lifetime of B hadrons from CDF

    International Nuclear Information System (INIS)

    Miao, Ting.

    1996-08-01

    A review of the lifetimes of B hadrons measured by the CDF collaboration at Fermilab is presented. The data corresponds to 110 pb -1 of p anti p collisions at √s = 1.8 TeV. The inclusive B hadron lifetime is measured using a high statistics sample of B → J/ΨΧ decays. Species specific lifetimes of the B + , B 0 , B 0 s , and Λ 0 b are determined using both fully reconstructed decays and partially reconstructed decays consisting of a lepton associated with a charm hadron

  2. Models for Battery Reliability and Lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G. H.; Neubauer, J.; Pesaran, A.

    2014-03-01

    Models describing battery degradation physics are needed to more accurately understand how battery usage and next-generation battery designs can be optimized for performance and lifetime. Such lifetime models may also reduce the cost of battery aging experiments and shorten the time required to validate battery lifetime. Models for chemical degradation and mechanical stress are reviewed. Experimental analysis of aging data from a commercial iron-phosphate lithium-ion (Li-ion) cell elucidates the relative importance of several mechanical stress-induced degradation mechanisms.

  3. Statistical Models and Methods for Lifetime Data

    CERN Document Server

    Lawless, Jerald F

    2011-01-01

    Praise for the First Edition"An indispensable addition to any serious collection on lifetime data analysis and . . . a valuable contribution to the statistical literature. Highly recommended . . ."-Choice"This is an important book, which will appeal to statisticians working on survival analysis problems."-Biometrics"A thorough, unified treatment of statistical models and methods used in the analysis of lifetime data . . . this is a highly competent and agreeable statistical textbook."-Statistics in MedicineThe statistical analysis of lifetime or response time data is a key tool in engineering,

  4. Study on lifetime of C stripping foils

    International Nuclear Information System (INIS)

    Zhang Hongbin; Lu Ziwei; Zhao Yongtao; Li Zhankui; Xu Hushan; Xiao Guoqing; Wang Yuyu; Zhang Ling; Li Longcai; Fang Yan

    2007-01-01

    The carbon stripping foils can be prepared with the AC and DC arc discharge methods, or even sandwiched with AC-DC alternative layers. The lifetime of the carbon stripping foils of 19 μg/cm 2 prepared with different methods and/or structures was measured. The factors affecting the bombarding lifetime of the carbon stripping foils, especially the method of the foil preparation and the structure of the carbon stripping foils, were discussed. It is observed that the foils prepared with the DC arc discharge method have a longer bombarding lifetime than those prepared with the AC arc discharge method. (authors)

  5. Enhanced capillary electrophoretic screening of Alzheimer based on direct apolipoprotein E genotyping and one-step multiplex PCR.

    Science.gov (United States)

    Woo, Nain; Kim, Su-Kang; Sun, Yucheng; Kang, Seong Ho

    2018-01-01

    Human apolipoprotein E (ApoE) is associated with high cholesterol levels, coronary artery disease, and especially Alzheimer's disease. In this study, we developed an ApoE genotyping and one-step multiplex polymerase chain reaction (PCR) based-capillary electrophoresis (CE) method for the enhanced diagnosis of Alzheimer's. The primer mixture of ApoE genes enabled the performance of direct one-step multiplex PCR from whole blood without DNA purification. The combination of direct ApoE genotyping and one-step multiplex PCR minimized the risk of DNA loss or contamination due to the process of DNA purification. All amplified PCR products with different DNA lengths (112-, 253-, 308-, 444-, and 514-bp DNA) of the ApoE genes were analyzed within 2min by an extended voltage programming (VP)-based CE under the optimal conditions. The extended VP-based CE method was at least 120-180 times faster than conventional slab gel electrophoresis methods In particular, all amplified DNA fragments were detected in less than 10 PCR cycles using a laser-induced fluorescence detector. The detection limits of the ApoE genes were 6.4-62.0pM, which were approximately 100-100,000 times more sensitive than previous Alzheimer's diagnosis methods In addition, the combined one-step multiplex PCR and extended VP-based CE method was also successfully applied to the analysis of ApoE genotypes in Alzheimer's patients and normal samples and confirmed the distribution probability of allele frequencies. This combination of direct one-step multiplex PCR and an extended VP-based CE method should increase the diagnostic reliability of Alzheimer's with high sensitivity and short analysis time even with direct use of whole blood. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Photoluminescence decay lifetime measurements of hemicyanine derivatives of different alkyl chain lengths

    International Nuclear Information System (INIS)

    Shim, Taekyu; Lee, Myounghee; Kim, Sungho; Sung, Jaeho; Rhee, Bum Ku; Kim, Doseok; Kim, Hyunsung; Yoon, Kyung Byung

    2004-01-01

    The fluorescence upconversion setup for the detection of photoluminescence (PL) decay lifetime with subpicosecond time resolution was constructed, and the photoluminescence phenomena of several hemicyanine dyes with alkyl chains of different chain lengths tethered to the N atom of the pyridine moiety (HC-n, n=6, 15, 22) in methanol were investigated. The average decay lifetimes of the solutions determined from the measured data by multi-order exponential decay curve fitting were ∼27 ps at the PL peak wavelength. It was found that the PL decay properties did not depend on the alkyl chain length in the molecule, implying that the twist of the alkylpyridinium ring of the molecule is not possible as a nonfluorescing relaxation pathway. The time-dependent PL spectra constructed from the PL lifetime data showed the dynamic Stokes shift of ∼1000 cm -1

  7. Lifetimes of partial charge transfer exciplexes of 9-cyanophenanthrene and 9-cyanoanthracene

    OpenAIRE

    Dolotova, Elena; Dogadkin, Denis; Soboleva, Irina; Kuzmin, Michael; Nicolet, Olivier; Vauthey, Eric

    2003-01-01

    The fluorescence decays of several exciplexes with partial charge transfer have been investigated in solvents of various polarity. The measured lifetimes are found to be in reasonable agreement with the activation enthalpy and entropy of exciplex decay obtained earlier from the temperature dependence of the exciplex emission quantum yields. For exciplexes with 9-cyanophenanthrene substantial contribution of the higher local excited state into the exciplex electronic structure is found and bor...

  8. Origins of fluorescence in evolved bacteriophytochromes.

    Science.gov (United States)

    Bhattacharya, Shyamosree; Auldridge, Michele E; Lehtivuori, Heli; Ihalainen, Janne A; Forest, Katrina T

    2014-11-14

    Use of fluorescent proteins to study in vivo processes in mammals requires near-infrared (NIR) biomarkers that exploit the ability of light in this range to penetrate tissue. Bacteriophytochromes (BphPs) are photoreceptors that couple absorbance of NIR light to photoisomerization, protein conformational changes, and signal transduction. BphPs have been engineered to form NIR fluorophores, including IFP1.4, Wi-Phy, and the iRFP series, initially by replacement of Asp-207 by His. This position was suggestive because its main chain carbonyl is within hydrogen-bonding distance to pyrrole ring nitrogens of the biliverdin chromophore, thus potentially functioning as a crucial transient proton sink during photoconversion. To explain the origin of fluorescence in these phytofluors, we solved the crystal structures of IFP1.4 and a comparison non-fluorescent monomeric phytochrome DrCBDmon. Met-186 and Val-288 in IFP1.4 are responsible for the formation of a tightly packed hydrophobic hub around the biliverdin D ring. Met-186 is also largely responsible for the blue-shifted IFP1.4 excitation maximum relative to the parent BphP. The structure of IFP1.4 revealed decreased structural heterogeneity and a contraction of two surface regions as direct consequences of side chain substitutions. Unexpectedly, IFP1.4 with Asp-207 reinstalled (IFPrev) has a higher fluorescence quantum yield (∼9%) than most NIR phytofluors published to date. In agreement, fluorescence lifetime measurements confirm the exceptionally long excited state lifetimes, up to 815 ps, in IFP1.4 and IFPrev. Our research helps delineate the origin of fluorescence in engineered BphPs and will facilitate the wide-spread adoption of phytofluors as biomarkers. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Preliminary study of visual effect of multiplex hologram

    Science.gov (United States)

    Fu, Huaiping; Xiong, Bingheng; Yang, Hong; Zhang, Xueguo

    2004-06-01

    The process of any movement of real object can be recorded and displayed by a multiplex holographic stereogram. An embossing multiplex holographic stereogram and a multiplex rainbow holographic stereogram have been made by us, the multiplex rainbow holographic stereogram reconstructs the dynamic 2D line drawing of speech organs, the embossing multiplex holographic stereogram reconstructs the process of an old man drinking water. In this paper, we studied the visual result of an embossing multiplex holographic stereogram made with 80 films of 2-D pictures. Forty-eight persons of aged from 13 to 67 were asked to see the hologram and then to answer some questions about the feeling of viewing. The results indicate that this kind of holograms could be accepted by human visual sense organ without any problem. This paper also discusses visual effect of the multiplex holography stereograms base on visual perceptual psychology. It is open out that the planar multiplex holograms can be recorded and present the movement of real animal and object. Not only have the human visual perceptual constancy for shape, just as that size, color, etc... but also have visual perceptual constancy for binocular parallax.

  10. Topology-optimized silicon photonic wire mode (de)multiplexer

    DEFF Research Database (Denmark)

    Frellsen, Louise Floor; Frandsen, Lars Hagedorn; Ding, Yunhong

    2015-01-01

    We have designed and for the first time experimentally verified a topology optimized mode (de)multiplexer, which demultiplexes the fundamental and the first order mode of a double mode photonic wire to two separate single mode waveguides (and multiplexes vice versa). The device has a footprint...

  11. Computerized multiplexing and processing of in-core signals

    International Nuclear Information System (INIS)

    Meyer, J.

    1982-09-01

    After a presentation of the in-core instrumentation the main objectives of electric connection multiplexing are given. The conclusion of a study led to choose the multiplexing solution for the reactor building/electric building connections and to associate an information order management system based on the utilization of microprocessors. Finally, the control system (processors, organization, communication, language) is presented [fr

  12. Multiplexing and data processing of in-core signals

    International Nuclear Information System (INIS)

    Meyer, M.

    1983-01-01

    The application of multiplexing and signal processing techniques used for reactor operation and utilisation of data from the in-core instrumentation system is described. After a brief recall about in-core instrumentation, the aims, the advantages of multiplexing are presented. One of the aims of this realization is to show the compatibity between the technologies used with a PWR environment [fr

  13. Explaining HIV Risk Multiplexity: A Social Network Analysis.

    Science.gov (United States)

    Felsher, Marisa; Koku, Emmanuel

    2018-04-21

    Risk multiplexity (i.e., overlap in drug-use, needle exchange and sexual relations) is a known risk factor for HIV. However, little is known about predictors of multiplexity. This study uses egocentric data from the Colorado Springs study to examine how individual, behavioral and social network factors influence engagement in multiplex risk behavior. Analyses revealed that compared to Whites, Hispanics were significantly more likely to engage in risk multiplexity and Blacks less so. Respondents who were similar to each other (e.g., in terms of race) had significantly higher odds of being in risk multiplex relationships, and respondents' risk perceptions and network size were significantly associated with engaging in multiplex risk behaviors. Findings from interaction analysis showed the effect of knowing someone with HIV on the odds of multiplexity depends partly on whether respondents' know their HIV status. Findings suggest that demographics, HIV behaviors and network factors impact engagement in multiplex risk behaviors, highlighting the need for multi-level interventions aimed at reducing HIV risk behavior.

  14. Long term optical stability of fluorescent solar concentrator plates

    NARCIS (Netherlands)

    Slooff, L.H.; Bakker, N.J.; Sommeling, P.M.; Büchtemann, A.; Wedel, A.; Sark, W.G.J.H.M. van

    2014-01-01

    Fluorescent solar concentrators offer an alternative approach for low-cost photovoltaic energy conversion. For successful application, not only the power conversion efficiency and cost are important, but also lifetime or stability of the devices. As today’s concentrator is made of polymer sheets

  15. Long-term optical stability of fluorescent solar concentrator plates

    NARCIS (Netherlands)

    Slooff, Lenneke H.; Bakker, Nicolaas J.; Sommeling, Paul M.; Büchtemann, Andreas; Wedel, Armin; Van Sark, Wilfried G J H M

    2014-01-01

    Fluorescent solar concentrators offer an alternative approach for low-cost photovoltaic energy conversion. For successful application, not only the power conversion efficiency and cost are important, but also lifetime or stability of the devices. As today's concentrator is made of polymer sheets

  16. Data multiplexing in radio interferometric calibration

    Science.gov (United States)

    Yatawatta, Sarod; Diblen, Faruk; Spreeuw, Hanno; Koopmans, L. V. E.

    2018-03-01

    New and upcoming radio interferometers will produce unprecedented amount of data that demand extremely powerful computers for processing. This is a limiting factor due to the large computational power and energy costs involved. Such limitations restrict several key data processing steps in radio interferometry. One such step is calibration where systematic errors in the data are determined and corrected. Accurate calibration is an essential component in reaching many scientific goals in radio astronomy and the use of consensus optimization that exploits the continuity of systematic errors across frequency significantly improves calibration accuracy. In order to reach full consensus, data at all frequencies need to be calibrated simultaneously. In the SKA regime, this can become intractable if the available compute agents do not have the resources to process data from all frequency channels simultaneously. In this paper, we propose a multiplexing scheme that is based on the alternating direction method of multipliers with cyclic updates. With this scheme, it is possible to simultaneously calibrate the full data set using far fewer compute agents than the number of frequencies at which data are available. We give simulation results to show the feasibility of the proposed multiplexing scheme in simultaneously calibrating a full data set when a limited number of compute agents are available.

  17. Multiplexed microsatellite recovery using massively parallel sequencing

    Science.gov (United States)

    Jennings, T.N.; Knaus, B.J.; Mullins, T.D.; Haig, S.M.; Cronn, R.C.

    2011-01-01

    Conservation and management of natural populations requires accurate and inexpensive genotyping methods. Traditional microsatellite, or simple sequence repeat (SSR), marker analysis remains a popular genotyping method because of the comparatively low cost of marker development, ease of analysis and high power of genotype discrimination. With the availability of massively parallel sequencing (MPS), it is now possible to sequence microsatellite-enriched genomic libraries in multiplex pools. To test this approach, we prepared seven microsatellite-enriched, barcoded genomic libraries from diverse taxa (two conifer trees, five birds) and sequenced these on one lane of the Illumina Genome Analyzer using paired-end 80-bp reads. In this experiment, we screened 6.1 million sequences and identified 356958 unique microreads that contained di- or trinucleotide microsatellites. Examination of four species shows that our conversion rate from raw sequences to polymorphic markers compares favourably to Sanger- and 454-based methods. The advantage of multiplexed MPS is that the staggering capacity of modern microread sequencing is spread across many libraries; this reduces sample preparation and sequencing costs to less than $400 (USD) per species. This price is sufficiently low that microsatellite libraries could be prepared and sequenced for all 1373 organisms listed as 'threatened' and 'endangered' in the United States for under $0.5M (USD).

  18. Multiplexed electrospray scaling for liquid fuel injection

    International Nuclear Information System (INIS)

    Waits, C Mike; Hanrahan, Brendan; Lee, Ivan

    2010-01-01

    Evaporation and space-charge requirements are evaluated to understand the effect of device scaling and fuel preheating for a liquid fuel injector using a multiplexed electrospray (MES) configuration in compact combustion applications. This work reveals the influence of the droplet diameter, droplet velocity and droplet surface temperature as well as the surrounding gas temperature on the size and performance of microfabricated MES. Measurements from MES devices are used in the model to accurately account for the droplet diameter versus flow rate relationship, the minimum droplet diameter and the relevant droplet velocities. A maximum extractor electrode to ground electrode distance of 3.1 mm required to overcome space-charge forces is found to be independent of voltage or droplet velocity for large levels of multiplexing. This maximum distance also becomes the required evaporation length scale which imposes minimum fuel pre-heating requirements for large flow densities. Required fuel preheating is therefore evaluated for both ethanol and 1-butanol with combustor parameters relevant to fuel reformation, thermoelectric conversion, thermophotovoltaic conversion and thermionic conversion

  19. Non-identical multiplexing promotes chimera states

    Science.gov (United States)

    Ghosh, Saptarshi; Zakharova, Anna; Jalan, Sarika

    2018-01-01

    We present the emergence of chimeras, a state referring to coexistence of partly coherent, partly incoherent dynamics in networks of identical oscillators, in a multiplex network consisting of two non-identical layers which are interconnected. We demonstrate that the parameter range displaying the chimera state in the homogeneous first layer of the multiplex networks can be tuned by changing the link density or connection architecture of the same nodes in the second layer. We focus on the impact of the interconnected second layer on the enlargement or shrinking of the coupling regime for which chimeras are displayed in the homogeneous first layer. We find that a denser homogeneous second layer promotes chimera in a sparse first layer, where chimeras do not occur in isolation. Furthermore, while a dense connection density is required for the second layer if it is homogeneous, this is not true if the second layer is inhomogeneous. We demonstrate that a sparse inhomogeneous second layer which is common in real-world complex systems can promote chimera states in a sparse homogeneous first layer.

  20. Multiplexed Colorimetric Solid-Phase Extraction

    Science.gov (United States)

    Gazda, Daniel B.; Fritz, James S.; Porter, Marc D.

    2009-01-01

    Multiplexed colorimetric solid-phase extraction (MC-SPE) is an extension of colorimetric solid-phase extraction (C-SPE) an analytical platform that combines colorimetric reagents, solid phase extraction, and diffuse reflectance spectroscopy to quantify trace analytes in water. In CSPE, analytes are extracted and complexed on the surface of an extraction membrane impregnated with a colorimetric reagent. The analytes are then quantified directly on the membrane surface using a handheld diffuse reflectance spectrophotometer. Importantly, the use of solid-phase extraction membranes as the matrix for impregnation of the colorimetric reagents creates a concentration factor that enables the detection of low concentrations of analytes in small sample volumes. In extending C-SPE to a multiplexed format, a filter holder that incorporates discrete analysis channels and a jig that facilitates the concurrent operation of multiple sample syringes have been designed, enabling the simultaneous determination of multiple analytes. Separate, single analyte membranes, placed in a readout cartridge create unique, analyte-specific addresses at the exit of each channel. Following sample exposure, the diffuse reflectance spectrum of each address is collected serially and the Kubelka-Munk function is used to quantify each water quality parameter via calibration curves. In a demonstration, MC-SPE was used to measure the pH of a sample and quantitate Ag(I) and Ni(II).

  1. Link prediction in multiplex online social networks

    Science.gov (United States)

    Jalili, Mahdi; Orouskhani, Yasin; Asgari, Milad; Alipourfard, Nazanin; Perc, Matjaž

    2017-02-01

    Online social networks play a major role in modern societies, and they have shaped the way social relationships evolve. Link prediction in social networks has many potential applications such as recommending new items to users, friendship suggestion and discovering spurious connections. Many real social networks evolve the connections in multiple layers (e.g. multiple social networking platforms). In this article, we study the link prediction problem in multiplex networks. As an example, we consider a multiplex network of Twitter (as a microblogging service) and Foursquare (as a location-based social network). We consider social networks of the same users in these two platforms and develop a meta-path-based algorithm for predicting the links. The connectivity information of the two layers is used to predict the links in Foursquare network. Three classical classifiers (naive Bayes, support vector machines (SVM) and K-nearest neighbour) are used for the classification task. Although the networks are not highly correlated in the layers, our experiments show that including the cross-layer information significantly improves the prediction performance. The SVM classifier results in the best performance with an average accuracy of 89%.

  2. A micro-controlled universal message multiplexer

    International Nuclear Information System (INIS)

    Fontaine, G.; Guglielmi, L.; Jaeger, J.J.; Szafran, S.

    1981-01-01

    Based on the Motorola 6800, this multiplexer is designed to provide a microprocessor development tool in the specific environment of a high energy physics laboratory. The basic philosophy of this device is to allow communication of a target (prototype) processor with a host computer under control of a human operator. The host can be an experimental on-line computer or any remote machine with a time-sharing network. It is thus possible to speed up design and debugging of a physics application program by taking advantage of the sophisticated resources usually available in a computer centre (powerful editor, large disk space, source management via ''Patchy'' etc...). In addition to the classical cross-macroassembler, a loader is available on the host for down-line loading binary code, via the multiplexer, into the prototype memory. Such a scheme is easiextended to the communication of any host interactive processing program with a data acquisition microprocessor, and provides the latter with a convenient and easily portable extension of its computing power. A typical application of this mode is described in a separate paper

  3. Multiplex PCR identification of Taenia spp. in rodents and carnivores.

    Science.gov (United States)

    Al-Sabi, Mohammad N S; Kapel, Christian M O

    2011-11-01

    The genus Taenia includes several species of veterinary and public health importance, but diagnosis of the etiological agent in definitive and intermediate hosts often relies on labor intensive and few specific morphometric criteria, especially in immature worms and underdeveloped metacestodes. In the present study, a multiplex PCR, based on five primers targeting the 18S rDNA and ITS2 sequences, produced a species-specific banding patterns for a range of Taenia spp. Species typing by the multiplex PCR was compared to morphological identification and sequencing of cox1 and/or 12S rDNA genes. As compared to sequencing, the multiplex PCR identified 31 of 32 Taenia metacestodes from rodents, whereas only 14 cysts were specifically identified by morphology. Likewise, the multiplex PCR identified 108 of 130 adult worms, while only 57 were identified to species by morphology. The tested multiplex PCR system may potentially be used for studies of Taenia spp. transmitted between rodents and carnivores.

  4. RDM lifetime measurements in 187Tl

    International Nuclear Information System (INIS)

    Chamoli, S.K.; Joshi, P.; Kumar, A.; Govil, I.M.; Mukherjee, G.; Singh, R.P.; Muralithar, S.; Bhowmik, R.K.

    2003-01-01

    The present work is an attempt to study the shape changes in 187 Tl through a measurement of electromagnetic transition probabilities of the high spin states. The Doppler shifted recoil distance technique was used to measure the lifetimes

  5. Improved b lifetime measurement from MAC

    International Nuclear Information System (INIS)

    Ford, W.T.

    1984-03-01

    Two recent publications, from the MAC and Mark II collaborations, have reported the somewhat surprising result that the lifetime of particles made up of b quarks is in the 1 to 2 picosecond range, or somewhat longer than the lifetimes of charm particles. Although the charm decays are favored transitions while those of b particles depend upon off-diagonal elements of the weak flavor mixing matrix, the smallness of the b decay rates in face of the large available phase space indicates that the off-diagonal elements are indeed very small. The possibility for complete determination of the mixing matrix was brought significantly nearer by the availability of the lifetime information; what is needed now is to reduce the uncertainty of the measurements, which was about 33% for both experiments. We describe here an extension of the b lifetime study with the MAC detector, incorporating some new data and improvements in the analysis. 12 references

  6. Lifetime measurements of excited Co I levels

    CERN Document Server

    Klotz, W D; Gobel, L H

    1977-01-01

    In the region of 3500 AA the lifetimes of eight excited Cobalt I levels have been measured by means of the zero field level crossing method. The measured lifetimes belong to the odd configurations 3d/sup 7/4s4p and 3d/sup 8/4p and are of the accuracy of about 5%. The hyperfine structure of levels with I not=J has to be taken into account in evaluating lifetimes from level crossing data, because the nuclear spin of the natural isotope /sup 59/Co is I=7/2. Therefore the influence of the line profile of the exciting resonance lines on the lifetimes has been investigated. The results are compared with those of other authors. Furthermore absolute oscillator strengths were calculated with known branching ratios and a new absolute scale has been established. (23 refs).

  7. Quantum lifetime in electron storage rings

    International Nuclear Information System (INIS)

    Chao, A.W.

    1977-02-01

    One of the mechanisms which contribute to beam lifetime in electron storage rings is the quantum emission of energetic photons causing particles to be lost from the rf bucket. This quantum lifetime is among other things important in defining the required aperture in a storage ring. An approximate expression of quantum lifetime, predicted by a one-dimensional model which takes into account only the betatron motion, has been used in most storage ring designs. If the beam is aperture-limited at a position with nonzero dispersion, both the betatron and synchrotron motions have to be included and a two-dimensional model must be used. An exact expression of quantum lifetime for the one-dimensional case and an approximate expression for the two-dimensional case are given

  8. Quantum lifetime in electron storage rings

    International Nuclear Information System (INIS)

    Chao, A.W.

    1977-01-01

    One of the mechanisms which contributes to beam lifetime in electron storage rings is the quantum emission of energetic photons causing particles to be lost from the rf bucket. This quantum lifetime is among other things important in defining the required aperture in a storage ring. An approximate expression of quantum lifetime, predicted by a one-dimensional model which takes into account only the betatron motion, has been used in most storage ring designs. If the beam is aperture-limited at a position with nonzero dispersion, both the betatron and synchrotron motions have to be included, and a two-dimensional model must be used. An exact expression of quantum lifetime for the one-dimensional case and an approximate expression for the two-dimensional case are given

  9. Lifetime measurements of hadrons containing heavy quarks

    International Nuclear Information System (INIS)

    Forden, G.E.

    1985-01-01

    Recent lifetime measurements of heavy particles at PETRA and PEP are reviewed. A comparison of the methods used is given. The world averages for the lifetimes of the D 0 and D +- mesons are found to be (tau/dub D/ 0 ) - 3.97 +/- 0.3 x 10 -13 sec and (tau/dub D +-/) = 8.6 +/- 0.7 x 10 -13 sec. This difference in lifetimes is discussed in light of recent information about exclusive decays. The world average for the lifetime of bottom hadrons is determined to be (tau/sub b/) = 11.0 +/- 1.5 x 10 -13 sec and new estimates for the b quark mixing elements, absolute value V/sub bu/ and absolute value V/sub bc/, are given

  10. Multiplexing real-time timed events

    NARCIS (Netherlands)

    Holenderski, M.J.; Cools, W.A.; Bril, R.J.; Lukkien, J.J.

    2009-01-01

    This paper presents the design and implementation of RELTEQ, a timed event management algorithm based on relative event times, supporting long event interarrival time, long lifetime of the event queue, no drift and low overhead. It is targeted at embedded operating systems. RELTEQ has been conceived

  11. Lifetime measurement in {sup 195}Po

    Energy Technology Data Exchange (ETDEWEB)

    Grahn, T.; Page, R.D. [University of Liverpool, Department of Physics, Oliver Lodge Laboratory, Liverpool (United Kingdom); Dewald, A.; Jolie, J.; Melon, B.; Pissulla, T. [Universitaet zu Koeln, Institut fuer Kernphysik, Koeln (Germany); Greenlees, P.T.; Jakobsson, U.; Jones, P.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Nyman, M.; Peura, P.; Rahkila, P.; Saren, J.; Scholey, C.; Sorri, J.; Uusitalo, J. [University of Jyvaeskylae, Department of Physics, P.O. Box 35, Jyvaeskylae (Finland); Kroell, T.; Kruecken, R.; Maierbeck, P. [TU Muenchen, Physik-Department E12, Garching (Germany)

    2009-03-15

    The lifetime of the 17/2{sup +} yrast state in {sup 195}Po has been measured using the recoil distance Doppler-shift technique to be {tau}=43(11) ps. The lifetime was extracted from the singles {gamma}-ray spectra obtained by using the recoil-decay tagging method. The present work provides more information of the coupling schemes, shapes and configuration mixing in neutron-deficient odd-mass Po nuclei. (orig.)

  12. The measurement of subnanosecond nuclear lifetimes

    International Nuclear Information System (INIS)

    White, D.C.S.

    1974-01-01

    This research dealt with the measurement of subnanosecond nuclear lifetimes using the pulsed beam delayed-coincidence technique. Measurements were performed on isotopes in the f7/2 shell and specifically the isotopes of titanium and vanadium. Experimental investigations were also pursued in 59 Ni and 65 Zn. Several new lifetimes were determined and confirmation was obtained for some previous values which were measured with different techniques. More information was also obtained on certain levels where previous results are in disagreement. (author)

  13. Masses and lifetimes of B hadrons

    International Nuclear Information System (INIS)

    Kkkroll, I.J.

    1996-02-01

    The latest measurements of the masses and lifetimes of weakly decaying B hadrons from experiments at e + e - and p bar p colliders are presented. These measurements include the lifetimes of the bar B o , bar B o s , B - and b baryons, as well as searches for the B c meson. The observation of B*, p-wave B mesons (B**), and excited b baryons using inclusive and exclusive B hadron reconstruction are discussed. Results on b quark flavour tagging are given

  14. Λc photoproduction and lifetime measurement

    International Nuclear Information System (INIS)

    Amendolia, S.R.; Bagliesi, G.; Batignani, G.; Bertolucci, E.; Bettoni, D.; Bizetti, A.; Bosisio, L.; Bottigli, U.; Bradaschia, C.; Dell'Orso, M.; Fidecaro, F.; Foa, L.; Focardi, E.; Giannetti, P.; Giorgi, M.A.; Marrocchesi, P.S.; Menzione, A.; Raso, G.; Ristori, L.; Scribano, A.; Stefanini, A.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Beck, G.A.; Bologna, G.; D'Ettorre Piazzoli, B.; Picchi, P.; Budinich, M.; Liello, F.; Milotti, E.; Rolandi, L.; Carter, J.; Green, M.G.; Landon, M.P.J.; March, P.V.; Sacks, L.; Sanjari, A.H.; Strong, J.A.; Ciocci, M.A.; Enorini, M.; Fabbri, F.L.; Laurelli, P.; Mannocchi, G.; Simonelli, L.; Spillantini, P.; Zallo, A.

    1987-01-01

    A measurement of the lifetime of the Λ c baryon photoproduced coherently of a germanium-silicon target is presented. A signal of Λ c → ΔΚ * → pKππ 0 has been observed and the two different decay diagrams for this process are compared. A sample of 9 Λ c decays give a lifetime of 1.1(+0.8-0.4)10 13 s. (orig.)

  15. Measurement of the Omega0(c) lifetime

    International Nuclear Information System (INIS)

    Iori, M.

    2007-01-01

    The authors report a precise measurement of the (Omega) c 0 lifetime. The data were taken by the SELEX (E781) experiment using 600 GeV/c Σ - , π - and p beams. The measurement has been made using 83 ± 19 reconstructed (Omega) c 0 in the (Omega) - π - π + π + and (Omega) - π + decay modes. The lifetime of the (Omega) c 0 is measured to be 65 ± 13(stat) ± 9(sys) fs

  16. The total lifetime costs of smoking

    DEFF Research Database (Denmark)

    Rasmussen, S.R.; Prescott, E.; Sørensen, T.I.A.

    2004-01-01

    Net costs of smoking in a lifetime perspective and, hence, the economic interests in antismoking policies have been questioned. It has been proposed that the health-related costs of smoking are balanced by smaller expenditure due to shorter life expectancy.......Net costs of smoking in a lifetime perspective and, hence, the economic interests in antismoking policies have been questioned. It has been proposed that the health-related costs of smoking are balanced by smaller expenditure due to shorter life expectancy....

  17. Positron lifetime studies on thorium oxide powders

    International Nuclear Information System (INIS)

    Upadhyaya, D.D.; Muraleedharan, R.V.; Sharma, B.D.

    1982-01-01

    Positron lifetime spectra have been studied for ThO 2 powders, calcined at different temperatures and having different particle sizes. Three lifetime components could be resolved, the longest component being of low intensity. An observed strong dependence on the particle size of the annihilation process and the variation of positronium diffusion constant is explained on the basis of defect density variations in these powders. (author)

  18. Development of a GeXP-multiplex PCR assay for the simultaneous detection and differentiation of six cattle viruses.

    Directory of Open Access Journals (Sweden)

    Qing Fan

    Full Text Available Foot-and-mouth disease virus (FMDV, Bluetongue virus (BTV, Vesicular stomatitis Virus (VSV, Bovine viral diarrheal (BVDV, Bovine rotavirus (BRV, and Bovine herpesvirus 1 (IBRV are common cattle infectious viruses that cause a great economic loss every year in many parts of the world. A rapid and high-throughput GenomeLab Gene Expression Profiler (GeXP analyzer-based multiplex PCR assay was developed for the simultaneous detection and differentiation of these six cattle viruses. Six pairs of chimeric primers consisting of both the gene-specific primer and a universal primer were designed and used for amplification. Then capillary electrophoresis was used to separate the fluorescent labeled PCR products according to the amplicons size. The specificity of GeXP-multiplex PCR assay was examined with samples of the single template and mixed template of six viruses. The sensitivity was evaluated using the GeXP-multiplex PCR assay on serial 10-fold dilutions of ssRNAs obtained via in vitro transcription. To further evaluate the reliability, 305 clinical samples were tested by the GeXP-multiplex PCR assay. The results showed that the corresponding virus specific fragments of genes were amplified. The detection limit of the GeXP-multiplex PCR assay was 100 copies/μL in a mixed sample of ssRNAs containing target genes of six different cattle viruses, whereas the detection limit for the Gexp-mono PCR assay for a single target gene was 10 copies/μL. In detection of viruses in 305 clinical samples, the results of GeXP were consistent with simplex real-time PCR. Analysis of positive samples by sequencing demonstrated that the GeXP-multiplex PCR assay had no false positive samples of nonspecific amplification. In conclusion, this GeXP-multiplex PCR assay is a high throughput, specific, sensitive, rapid and simple method for the detection and differentiation of six cattle viruses. It is an effective tool that can be applied for the rapid differential diagnosis

  19. Measurements of heavy quark and lepton lifetimes

    International Nuclear Information System (INIS)

    Jaros, J.A.

    1985-02-01

    The PEP/PETRA energy range has proved to be well-suited for the study of the lifetimes of hadrons containing the b and c quarks and the tau lepton for several reasons. First, these states comprise a large fraction of the total interaction rate in e + e - annihilation and can be cleanly identified. Second, the storage rings have operated at high luminosity and so produced these exotic states copiously. And finally, thanks to the interplay of the Fermi coupling strength, the quark and lepton masses, and the beam energy, the expected decay lengths are in the 1/2 mm range and so are comparatively easy to measure. This pleasant coincidence of cleanly identified and abundant signal with potentially large effects has made possible the first measurements of two fundamental weak couplings, tau → nu/sub tau/W and b → cW. These measurements have provided a sharp test of the standard model and allowed, for the first time, the full determination of the magnitudes of the quark mixing matrix. This paper reviews the lifetime studies made at PEP during the past year. It begins with a brief review of the three detectors, DELCO, MAC and MARK II, which have reported lifetime measurements. Next it discusses two new measurements of the tau lifetime, and briefly reviews a measurement of the D 0 lifetime. Finally, it turns to measurements of the B lifetime, which are discussed in some detail. 18 references, 14 figures, 1 table

  20. Lifetimes of charm and beauty hadrons

    International Nuclear Information System (INIS)

    Bellini, G.; Dornan, P.J.

    1997-01-01

    Major breakthroughs have been achieved in the determination of the lifetimes of charm and beauty hadrons. Much larger data samples than previously have become available and new experimental devices and techniques have been developed and employed. The lifetimes of all weakly decaying singly charmed hadrons have been measured, some with an accuracy of a few percent. The difference in the shortest lifetime - τ(Ω c ) - and the longest one - τ(D + ) - is given by a factor of close to ten. The experimental status of beauty lifetimes, while less complete, has still reached a new level of quality and is now better than 5% for the commoner states. New theoretical tools, based mainly on heavy quark expansions, have been developed; they incorporate as well as transcend earlier phenomenological descriptions. The observed pattern in the charm lifetime ratios is reproduced in a semi-quantitative manner as well as could be expected; as far as the beauty lifetime ratios are concerned some problems may well be emerging. The maturity level achieved in the measurements bodes quite well for future challenges where reliable and efficient tracking of the decay vertices will be crucial. (orig.)

  1. Submicrometre geometrically encoded fluorescent barcodes self-assembled from DNA

    Science.gov (United States)

    Lin, Chenxiang; Jungmann, Ralf; Leifer, Andrew M.; Li, Chao; Levner, Daniel; Church, George M.; Shih, William M.; Yin, Peng

    2012-10-01

    The identification and differentiation of a large number of distinct molecular species with high temporal and spatial resolution is a major challenge in biomedical science. Fluorescence microscopy is a powerful tool, but its multiplexing ability is limited by the number of spectrally distinguishable fluorophores. Here, we used (deoxy)ribonucleic acid (DNA)-origami technology to construct submicrometre nanorods that act as fluorescent barcodes. We demonstrate that spatial control over the positioning of fluorophores on the surface of a stiff DNA nanorod can produce 216 distinct barcodes that can be decoded unambiguously using epifluorescence or total internal reflection fluorescence microscopy. Barcodes with higher spatial information density were demonstrated via the construction of super-resolution barcodes with features spaced by ˜40 nm. One species of the barcodes was used to tag yeast surface receptors, which suggests their potential applications as in situ imaging probes for diverse biomolecular and cellular entities in their native environments.

  2. Picosecond wide-field time-correlated single photon counting fluorescence microscopy with a delay line anode detector

    Energy Technology Data Exchange (ETDEWEB)

    Hirvonen, Liisa M.; Le Marois, Alix; Suhling, Klaus, E-mail: klaus.suhling@kcl.ac.uk [Department of Physics, King' s College London, Strand, London WC2R 2LS (United Kingdom); Becker, Wolfgang; Smietana, Stefan [Becker & Hickl GmbH, Nahmitzer Damm 30, 12277 Berlin (Germany); Milnes, James; Conneely, Thomas [Photek Ltd., 26 Castleham Rd, Saint Leonards-on-Sea TN38 9NS (United Kingdom); Jagutzki, Ottmar [Institut für Kernphysik, Max-von-Laue-Str. 1, 60438 Frankfurt (Germany)

    2016-08-15

    We perform wide-field time-correlated single photon counting-based fluorescence lifetime imaging (FLIM) with a crossed delay line anode image intensifier, where the pulse propagation time yields the photon position. This microchannel plate-based detector was read out with conventional fast timing electronics and mounted on a fluorescence microscope with total internal reflection (TIR) illumination. The picosecond time resolution of this detection system combines low illumination intensity of microwatts with wide-field data collection. This is ideal for fluorescence lifetime imaging of cell membranes using TIR. We show that fluorescence lifetime images of living HeLa cells stained with membrane dye di-4-ANEPPDHQ exhibit a reduced lifetime near the coverslip in TIR compared to epifluorescence FLIM.

  3. Laser-induced fluorescence imaging of subsurface tissue structures with a volume holographic spatial-spectral imaging system.

    Science.gov (United States)

    Luo, Yuan; Gelsinger-Austin, Paul J; Watson, Jonathan M; Barbastathis, George; Barton, Jennifer K; Kostuk, Raymond K

    2008-09-15

    A three-dimensional imaging system incorporating multiplexed holographic gratings to visualize fluorescence tissue structures is presented. Holographic gratings formed in volume recording materials such as a phenanthrenquinone poly(methyl methacrylate) photopolymer have narrowband angular and spectral transmittance filtering properties that enable obtaining spatial-spectral information within an object. We demonstrate this imaging system's ability to obtain multiple depth-resolved fluorescence images simultaneously.

  4. Investigation into constant envelope orthogonal frequency division multiplexing for polarization-division multiplexing coherent optical communication

    Science.gov (United States)

    Li, Yupeng; Ding, Ding

    2017-09-01

    Benefiting from the high spectral efficiency and low peak-to-average power ratio, constant envelope orthogonal frequency division multiplexing (OFDM) is a promising technique in coherent optical communication. Polarization-division multiplexing (PDM) has been employed as an effective way to double the transmission capacity in the commercial 100 Gb/s PDM-QPSK system. We investigated constant envelope OFDM together with PDM. Simulation results show that the acceptable maximum launch power into the fiber improves 10 and 6 dB for 80- and 320-km transmission, respectively (compared with the conventional PDM OFDM system). The maximum reachable distance of the constant envelope OFDM system is able to reach 800 km, and even 1200 km is reachable if an ideal erbium doped fiber amplifier is employed.

  5. Prototype data terminal: Multiplexer/demultiplexer

    Science.gov (United States)

    Leck, D. E.; Goodwin, J. E.

    1972-01-01

    The design and operation of a quad redundant data terminal and a multiplexer/demultiplexer (MDU) design are described. The most unique feature is the design of the quad redundant data terminal. This is one of the few designs where the unit is fail/op, fail/op, fail/safe. Laboratory tests confirm that the unit will operate satisfactorily with the failure of three out of four channels. Although the design utilizes state-of-the-art technology. The waveform error checks, the voting techniques, and the parity bit checks are believed to be used in unique configurations. Correct word selection routines are also novel, if not unique. The MDU design, while not redundant, utilizes, the latest state-of-the-art advantages of light couplers and integrated circuit amplifiers.

  6. Mode demultiplexer using angularly multiplexed volume holograms.

    Science.gov (United States)

    Wakayama, Yuta; Okamoto, Atsushi; Kawabata, Kento; Tomita, Akihisa; Sato, Kunihiro

    2013-05-20

    This study proposes a volume holographic demultiplexer (VHDM) for extracting the spatial modes excited in a multimode fiber. A unique feature of the demultiplexer is that it can separate a number of multiplexed modes output from a fiber in different directions by using multi-recorded holograms without beam splitters, which results in a simple configuration as compared with that using phase plates instead of holograms. In this study, an experiment is conducted to demonstrate the basic operations for three LP mode groups to confirm the performance of the proposed VHDM and to estimate the signal-to-crosstalk noise ratio (SNR). As a result, an SNR of greater than 20 dB is obtained.

  7. Reviews in fluorescence 2010

    CERN Document Server

    Geddes, Chris D

    2011-01-01

    ""Reviews in Fluorescence 2010"", the seventh volume of the book serial from Springer, serves as a comprehensive collection of current trends and emerging hot topics in the field of fluorescence and closely related disciplines. It summarizes the year's progress in fluorescence and its applications, with authoritative analytical reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of fluorescence. ""Reviews in Fluorescence"" offers an essential reference material for any lab working in the fluoresc

  8. Multiwavelength FLIM: new concept for fluorescence diagnosis

    Science.gov (United States)

    Rück, Angelika; Lorenz, S.; Hauser, Carmen; Mosch, S.; Kalinina, S.

    2012-03-01

    Fluorescence guided tumor resection is very well accepted in the case of bladder cancer and brain tumor, respectively. However, false positive results are one of the major problems, which will make the discrimination between tumor tissue and inflammation difficult. In contrast fluorescence lifetime imaging (FLIM) and especially spectral resolved FLIM (SLIM) can significantly improve the analysis. The fluorescence decay of a fluorophore in many cases does not show a simple monoexponential profile. A very complex situation arises, when more than one compound has to be analyzed. This could be the case when endogenous fluorophores of living cells and tissues have to be discriminated to identify oxidative metabolic changes. Other examples are PDT, when different photosensitizer metabolites are observed simultaneously. In those cases a considerable improvement could be achieved when time-resolved and spectral-resolved techniques are simultaneously incorporated. Within this presentation the principles of spectral and time-resolved fluorescence imaging will be discussed. Successful applications as autofluorescence and 5-ALA induced porphyrin fluorescence will be described in more detail.

  9. ConA-based glucose sensing using the long-lifetime azadioxatriangulenium fluorophore

    Science.gov (United States)

    Cummins, Brian; Simpson, Jonathan; Gryczynski, Zygmunt; Sørensen, Thomas Just; Laursen, Bo W.; Graham, Duncan; Birch, David; Coté, Gerard

    2014-02-01

    Fluorescent glucose sensing technologies have been identified as possible alternatives to current continuous glucose monitoring approaches. We have recently introduced a new, smart fluorescent ligand to overcome the traditional problems of ConA-based glucose sensors. For this assay to be translated into a continuous glucose monitoring device where both components are free in solution, the molecular weight of the smart fluorescent ligand must be increased. We have identified ovalbumin as a naturally-occurring glycoprotein that could serve as the core-component of a 2nd generation smart fluorescent ligand. It has a single asparagine residue that is capable of displaying an N-linked glycan and a similar isoelectric point to ConA. Thus, binding between ConA and ovalbumin can potentially be monovalent and sugar specific. This work is the preliminary implementation of fluorescently-labeled ovalbumin in the ConA-based assay. We conjugate the red-emitting, long-lifetime azadioxatriangulenium (ADOTA+) dye to ovalbumin, as ADOTA have many advantageous properties to track the equilibrium binding of the assay. The ADOTA-labeled ovalbumin is paired with Alexa Fluor 647-labeled ConA to create a Förster Resonance Energy Transfer (FRET) assay that is glucose dependent. The assay responds across the physiologically relevant glucose range (0-500 mg/dL) with increasing intensity from the ADOTA-ovalbumin, showing that the strategy may allow for the translation of the smart fluorescent ligand concept into a continuous glucose monitoring device.

  10. Real-time multiplex PCR assay for detection of Yersinia pestis and Yersinia pseudotuberculosis.

    Science.gov (United States)

    Matero, Pirjo; Pasanen, Tanja; Laukkanen, Riikka; Tissari, Päivi; Tarkka, Eveliina; Vaara, Martti; Skurnik, Mikael

    2009-01-01

    A multiplex real-time polymerase chain reaction (PCR) assay was developed for the detection of Yersinia pestis and Yersinia pseudotuberculosis. The assay includes four primer pairs, two of which are specific for Y. pestis, one for Y. pestis and Y. pseudotuberculosis and one for bacteriophage lambda; the latter was used as an internal amplification control. The Y. pestis-specific target genes in the assay were ypo2088, a gene coding for a putative methyltransferase, and the pla gene coding for the plasminogen activator. In addition, the wzz gene was used as a target to specifically identify both Y. pestis and the closely related Y. pseudotuberculosis group. The primer and probe sets described for the different genes can be used either in single or in multiplex PCR assays because the individual probes were designed with different fluorochromes. The assays were found to be both sensitive and specific; the lower limit of the detection was 10-100 fg of extracted Y. pestis or Y. pseudotuberculosis total DNA. The sensitivity of the tetraplex assay was determined to be 1 cfu for the ypo2088 and pla probe labelled with FAM and JOE fluorescent dyes, respectively.

  11. Control of Angular Intervals for Angle-Multiplexed Holographic Memory

    Science.gov (United States)

    Kinoshita, Nobuhiro; Muroi, Tetsuhiko; Ishii, Norihiko; Kamijo, Koji; Shimidzu, Naoki

    2009-03-01

    In angle-multiplexed holographic memory, the full width at half maximum of the Bragg selectivity curves is dependent on the angle formed between the medium and incident laser beams. This indicates the possibility of high density and high multiplexing number by varying the angular intervals between adjacent holograms. We propose an angular interval scheduling for closely stacking holograms into medium even when the angle range is limited. We obtained bit error rates of the order of 10-4 under the following conditions: medium thickness of 1 mm, laser beam wavelength of 532 nm, and angular multiplexing number of 300.

  12. Multiplexing schemes for an achromatic programmable diffractive lens

    Energy Technology Data Exchange (ETDEWEB)

    Millan, M S; Perez-Cabre, E; Oton, J [Technical University of Catalonia, Dep. Optics and Optometry, Terrassa-Barcelona, 08222 (Spain)], E-mail: millan@oo.upc.edu

    2008-11-01

    A multiplexed programmable diffractive lens, displayed on a pixelated liquid crystal device under broadband illumination, is proposed to compensate for the severe chromatic aberration that affects diffractive elements. The proposed lens is based on multiplexing a set of sublenses with a common focal length for different wavelengths. We consider different types of integration of the optical information (spatial only, temporal only and hybrid spatial-temporal) combined with a proper selection of the spectral bandwidth. The properties and limits of the achromatic programmable multiplexed lens are described. Experimental results are presented and discussed.

  13. Multiplexing schemes for an achromatic programmable diffractive lens

    International Nuclear Information System (INIS)

    Millan, M S; Perez-Cabre, E; Oton, J

    2008-01-01

    A multiplexed programmable diffractive lens, displayed on a pixelated liquid crystal device under broadband illumination, is proposed to compensate for the severe chromatic aberration that affects diffractive elements. The proposed lens is based on multiplexing a set of sublenses with a common focal length for different wavelengths. We consider different types of integration of the optical information (spatial only, temporal only and hybrid spatial-temporal) combined with a proper selection of the spectral bandwidth. The properties and limits of the achromatic programmable multiplexed lens are described. Experimental results are presented and discussed.

  14. Opportunities and Challenges of Multiplex Assays: A Machine Learning Perspective.

    Science.gov (United States)

    Chen, Junfang; Schwarz, Emanuel

    2017-01-01

    Multiplex assays that allow the simultaneous measurement of multiple analytes in small sample quantities have developed into a widely used technology. Their implementation spans across multiple assay systems and can provide readouts of similar quality as the respective single-plex measures, albeit at far higher throughput. Multiplex assay systems are therefore an important element for biomarker discovery and development strategies but analysis of the derived data can face substantial challenges that may limit the possibility of identifying meaningful biological markers. This chapter gives an overview of opportunities and challenges of multiplexed biomarker analysis, in particular from the perspective of machine learning aimed at identification of predictive biological signatures.

  15. Experimental demonstration of subcarrier multiplexed quantum key distribution system.

    Science.gov (United States)

    Mora, José; Ruiz-Alba, Antonio; Amaya, Waldimar; Martínez, Alfonso; García-Muñoz, Víctor; Calvo, David; Capmany, José

    2012-06-01

    We provide, to our knowledge, the first experimental demonstration of the feasibility of sending several parallel keys by exploiting the technique of subcarrier multiplexing (SCM) widely employed in microwave photonics. This approach brings several advantages such as high spectral efficiency compatible with the actual secure key rates, the sharing of the optical fainted pulse by all the quantum multiplexed channels reducing the system complexity, and the possibility of upgrading with wavelength division multiplexing in a two-tier scheme, to increase the number of parallel keys. Two independent quantum SCM channels featuring a sifted key rate of 10 Kb/s/channel over a link with quantum bit error rate <2% is reported.

  16. Plant lifetime management at Jose Cabrera NPP

    International Nuclear Information System (INIS)

    Martin, Jorge; Garcia, Piedad

    1998-01-01

    This paper presents the results obtained during the development and implementation of the Jose Cabrera NPP Lifetime Management Program according to the methodology applied in the Plant. The implementation of the Lifetime Management Program began in 1995 with the elaboration of the annual revision document 'Lifetime Management Plan', which describes the level of development of the Lifetime Management activities, the results that have been obtained during the implementation of the Program, and the schedule of the upcoming activities. The drawing up of a weighted list of 135 important components and the elaboration of 17 dossiers integrating the ageing mechanisms analysis and its corresponding evaluation, control and mitigation methods, were the result of the activities completed during 1996. A group of 62 component/degradation phenomena pairs with a high degradation risk classification has been considered within the scope of the activity 'Assessment of Maintenance Practices. Improvement Proposal', performed by the plant during 1997 and the first term of 1998 in parallel with other Lifetime Management related activities. The results obtained within this activity have revealed for the components included in the scope of the assessment that the associated degradation phenomena are practically covered by the current maintenance, inspection and testing practices. Recommendations and improvements of the maintenance practices have been particularly proposed from a technical, supporting, proceeding and documentary point of view, and currently an analysis is being made in relation to the feasibility of implementing them at the Jose Cabrera NPP. (author)

  17. Positron lifetime studies of electron irradiated copper

    International Nuclear Information System (INIS)

    Hadnagy, T.D.

    1976-01-01

    Single-crystal copper was irradiated with 4.5-MeV electrons producing simple Frenkel defects as well as a significant concentration of divacancies. Mean positron lifetime characteristics, which are sensitive to the presence of vacancies and multivacancies in copper, was monitored after isochronal anneals between 80 and 800 0 K to determine the relative change of characteristic mean lifetimes and their associated intensities. Also a study of the dependence of the mean positron lifetime on the total electron fluence was made and compared with existing theories relating these lifetimes to vacancy or multivacancy concentrations. Numerical data from curve fitting procedures using a conventional trapping model for defect-induced changes in positron lifetimes indicate that upon irradiation with 4.5-MeV electrons at 80 0 K, about 8 percent of the defects produced are divacancy units. Divacancy units appear to be several times more effective in trapping positrons than are monovacancies. Further, the experimental data suggest that the stage III annealing processes in electron-irradiated copper most probably involve the motion and removal of both monovacancies and divacancies. A conglomerate (multivacancy) unit appears to exist as a stable entity even after annealing procedures are carried out at temperatures slightly above the stage III region. Such a stable unit could serve as a nucleation center for the appearance of voids

  18. FastFLIM, the all-in-one engine for measuring photoluminescence lifetime of 100 picoseconds to 100 milliseconds

    Science.gov (United States)

    Sun, Yuansheng; Coskun, Ulas; Liao, Shih-Chu Jeff; Barbieri, Beniamino

    2018-02-01

    Photoluminescence (PL) refers to light emission initiated by any form of photon excitation. PL spectroscopy and microscopy imaging has been widely applied in material, chemical and life sciences. Measuring its lifetime yields a new dimension of the PL imaging and opens new opportunities for many PL applications. In solar cell research, quantification of the PL lifetime has become an important evaluation for the characteristics of the Perovskite thin film. Depending upon the PL process (fluorescence, phosphorescence, photon upconversion, etc.), the PL lifetimes to be measured can vary in a wide timescale range (e.g. from sub-nanoseconds to microseconds or even milliseconds) - it is challenging to cover this wide range of lifetime measurements by a single technique efficiently. Here, we present a novel digital frequency domain (DFD) technique named FastFLIM, capable of measuring the PL lifetime from 100 ps to 100 ms at the high data collection efficiency (up to 140-million counts per second). Other than the traditional nonlinear leastsquare fitting analysis, the raw data acquired by FastFLIM can be directly processed by the model-free phasor plots approach for instant and unbiased lifetime results, providing the ideal routine for the PL lifetime microscopy imaging.

  19. Improved lifetime of microchannel-plate PMTs

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, A., E-mail: lehmann@physik.uni-erlangen.de [Physikalisches Institut IV, Friedrich Alexander-University of Erlangen-Nuremberg, Erlangen (Germany); Britting, A.; Eyrich, W.; Uhlig, F. [Physikalisches Institut IV, Friedrich Alexander-University of Erlangen-Nuremberg, Erlangen (Germany); Dzhygadlo, R.; Gerhardt, A.; Götzen, K.; Höhler, R.; Kalicy, G.; Kumawat, H.; Lehmann, D.; Lewandowski, B.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwarz, C.; Schwiening, J.; Traxler, M.; Zühlsdorf, M. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany); and others

    2014-12-01

    The charged particle identification at the PANDA experiment will be mainly performed with DIRC detectors. Because of their advantageous properties the preferred photon sensors are MCP-PMTs. However, until recently these devices showed serious aging problems which resulted in a diminishing quantum efficiency (QE) of the photo cathode. By applying innovative countermeasures against the aging causes, the manufacturers recently succeeded in drastically improving the lifetime of MCP-PMTs. Especially the application of an ALD coating technique to seal the material of the micro-channels proves very powerful and results in a lifetime of ≈6C/cm{sup 2} integrated anode charge without a substantial QE degradation for the latest PHOTONIS XP85112. This paper will present a comparative measurement of the lifetime of several older and recent MCP-PMTs demonstrating this progress.

  20. Measurement of the $\\tau$ lepton lifetime

    CERN Document Server

    Buskulic, Damir; De Bonis, I; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Ariztizabal, F; Chmeissani, M; Crespo, J M; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Gaitan, V; Garrido, L; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Engelhardt, A; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Markou, C; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wiedenmann, W; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Bardadin-Otwinowska, Maria; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Saadi, F; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Kyriakis, A; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Passalacqua, L; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Delfino, M C; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Pepé-Altarelli, M; Dorris, S J; Halley, A W; ten Have, I; Knowles, I G; Lynch, J G; Morton, W T; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Smith, M G; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Braun, O; Geweniger, C; Graefe, G; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Colling, D J; Dornan, Peter J; Konstantinidis, N P; Moneta, L; Moutoussi, A; Nash, J; San Martin, G; Sedgbeer, J K; Stacey, A M; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Raab, J; Renk, B; Sander, H G; Wanke, R; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Thulasidas, M; Nicod, D; Payre, P; Rousseau, D; Talby, M; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Brown, D; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wolf, G; Alemany, R; Boucrot, J; Callot, O; Cordier, A; Courault, F; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Musolino, G; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Abbaneo, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Fidecaro, F; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Triggiani, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Mir, L M; Perrodo, P; Strong, J A; Bertin, V; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Edwards, M; Maley, P; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Cartwright, S L; Combley, F; Dawson, I; Köksal, A; Letho, M; Newton, W M; Rankin, C; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Feigl, E; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1996-01-01

    The mean lifetime of the \\tau lepton is measured in a sample of 25700 \\tau pairs collected in 1992 with the ALEPH detector at LEP. A new analysis of the 1-1 topology events is introduced. In this analysis, the dependence of the impact parameter sum distribution on the daughter track momenta is taken into account, yielding improved precision compared to other impact parameter sum methods. Three other analyses of the one- and three-prong \\tau decays are updated with increased statistics. The measured lifetime is 293.5 \\pm 3.1 \\pm 1.7 \\fs. Including previous (1989--1991) ALEPH measurements, the combined \\tau lifetime is 293.7 \\pm 2.7 \\pm 1.6 \\fs.

  1. Lifetime for the Ti X spectrum

    International Nuclear Information System (INIS)

    Singh, Jagjit; Jha, A K S; Mohan, M

    2010-01-01

    We present configuration interaction calculations for the lifetime of 294 fine-structure levels of the Ti X spectrum in the LSJ coupling scheme. The calculations include all the major correlation effects. The relativistic effects are included by adding the mass correction term, Darwin term and spin-orbit interaction term to the non-relativistic Hamiltonian in the Breit-Pauli approximation. The calculated lifetime values are in very close agreement with other available experimental and theoretical results. We have predicted new lifetime results for levels belonging to 3p 2 3d, 3s 2 4p, 3s3p4s, 3s3p4p and various other configurations of Ti X, where no other theoretical and experimental results are available.

  2. The neutron lifetime experiment PENeLOPE

    Energy Technology Data Exchange (ETDEWEB)

    Schreyer, Wolfgang [Technische Universitaet Muenchen (Germany); Collaboration: PENeLOPE-Collaboration

    2015-07-01

    The neutron lifetime τ{sub n}=880.3±1.1 s is an important parameter in the Standard Model of particle physics and in Big Bang cosmology. Several systematic corrections of previously published results reduced the PDG world average by several σ in the last years and call for a new experiment with complementary systematics. The experiment PENeLOPE, currently under construction at the Physik-Department of Technische Universitaet Muenchen, aims to determine the neutron lifetime with a precision of 0.1 s. It will trap ultra-cold neutrons in a magneto-gravitational trap using a large superconducting magnet and will measure their lifetime by both neutron counting and online proton detection. This presentation gives an overview over the latest developments of the experiment.

  3. Data transformation methods for multiplexed assays

    Science.gov (United States)

    Tammero, Lance F. Bentley; Dzenitis, John M; Hindson, Benjamin J

    2013-07-23

    Methods to improve the performance of an array assay are described. A correlation between fluorescence intensity-related parameters and negative control values of the assay is determined. The parameters are then adjusted as a function of the correlation. As a result, sensitivity of the assay is improved without changes in its specificity.

  4. Reviews in fluorescence 2008

    CERN Document Server

    Geddes, Chris D

    2010-01-01

    This volume serves as a comprehensive collection of current trends and emerging hot topics in the field of fluorescence spectroscopy. It summarizes the year's progress in fluorescence and its applications as well as includes authoritative analytical reviews.

  5. Fluorescent optical position sensor

    Science.gov (United States)

    Weiss, Jonathan D.

    2005-11-15

    A fluorescent optical position sensor and method of operation. A small excitation source side-pumps a localized region of fluorescence at an unknown position along a fluorescent waveguide. As the fluorescent light travels down the waveguide, the intensity of fluorescent light decreases due to absorption. By measuring with one (or two) photodetectors the attenuated intensity of fluorescent light emitted from one (or both) ends of the waveguide, the position of the excitation source relative to the waveguide can be determined by comparing the measured light intensity to a calibrated response curve or mathematical model. Alternatively, excitation light can be pumped into an end of the waveguide, which generates an exponentially-decaying continuous source of fluorescent light along the length of the waveguide. The position of a photodetector oriented to view the side of the waveguide can be uniquely determined by measuring the intensity of the fluorescent light emitted radially at that location.

  6. Vibrational lifetimes of protein amide modes

    International Nuclear Information System (INIS)

    Peterson, K.A.; Rella, C.A.

    1995-01-01

    Measurement of the lifetimes of vibrational modes in proteins has been achieved with a single frequency infrared pump-probe technique using the Stanford Picosecond Free-electron Laser, These are the first direct measurements of vibrational dynamics in the polyamide structure of proteins. In this study, modes associated with the protein backbone are investigated. Results for the amide I band, which consists mainly of the stretching motion of the carbonyl unit of the amide linkage, show that relaxation from the first vibrational excited level (v=1) to the vibrational ground state (v=0) occurs within 1.5 picoseconds with apparent first order kinetics. Comparison of lifetimes for myoglobin and azurin, which have differing secondary structures, show a small but significant difference. The lifetime for the amide I band of myoglobin is 300 femtoseconds shorter than for azurin. Further measurements are in progress on other backbone vibrational modes and on the temperature dependence of the lifetimes. Comparison of vibrational dynamics for proteins with differing secondary structure and for different vibrational modes within a protein will lead to a greater understanding of energy transfer and dissipation in biological systems. In addition, these results have relevance to tissue ablation studies which have been conducted with pulsed infrared lasers. Vibrational lifetimes are necessary for calculating the rate at which the energy from absorbed infrared photons is converted to equilibrium thermal energy within the irradiated volume. The very fast vibrational lifetimes measured here indicate that mechanisms which involve direct vibrational up-pumping of the amide modes with consecutive laser pulses, leading to bond breakage or weakening, are not valid

  7. Multiplexed homogeneous assays of proteolytic activity using a smartphone and quantum dots.

    Science.gov (United States)

    Petryayeva, Eleonora; Algar, W Russ

    2014-03-18

    Semiconductor quantum dot (QD) bioconjugates, with their unique and highly advantageous physicochemical and optical properties, have been extensively utilized as probes for bioanalysis and continue to generate widespread interest for these applications. An important consideration for expanding the utility of QDs and making their use routine is to make assays with QDs more accessible for laboratories that do not specialize in nanomaterials. Here, we show that digital color imaging of QD photoluminescence (PL) with a smartphone camera is a viable, easily accessible readout platform for quantitative, multiplexed, and real-time bioanalyses. Red-, green-, and blue-emitting CdSeS/ZnS QDs were conjugated with peptides that were labeled with a deep-red fluorescent dye, Alexa Fluor 647, and the dark quenchers, QSY9 and QSY35, respectively, to generate Förster resonance energy transfer (FRET) pairs sensitive to proteolytic activity. Changes in QD PL caused by the activity of picomolar to nanomolar concentrations of protease were detected as changes in the red-green-blue (RGB) channel intensities in digital color images. Importantly, measurements of replicate samples made with smartphone imaging and a sophisticated fluorescence plate reader yielded the same quantitative results, including initial proteolytic rates and specificity constants. Homogeneous two-plex and three-plex assays for the activity of trypsin, chymotrypsin, and enterokinase were demonstrated with RGB imaging. Given the ubiquity of smartphones, this work largely removes any instrumental impediments to the adoption of QDs as routine tools for bioanalysis in research laboratories and is a critical step toward the use of QDs for point-of-care diagnostics. This work also adds to the growing utility of smartphones in analytical methods by enabling multiplexed fluorimetric assays within a single sample volume and across multiple samples in parallel.

  8. Safe biodegradable fluorescent particles

    Science.gov (United States)

    Martin, Sue I [Berkeley, CA; Fergenson, David P [Alamo, CA; Srivastava, Abneesh [Santa Clara, CA; Bogan, Michael J [Dublin, CA; Riot, Vincent J [Oakland, CA; Frank, Matthias [Oakland, CA

    2010-08-24

    A human-safe fluorescence particle that can be used for fluorescence detection instruments or act as a safe simulant for mimicking the fluorescence properties of microorganisms. The particle comprises a non-biological carrier and natural fluorophores encapsulated in the non-biological carrier. By doping biodegradable-polymer drug delivery microspheres with natural or synthetic fluorophores, the desired fluorescence can be attained or biological organisms can be simulated without the associated risks and logistical difficulties of live microorganisms.

  9. Permeability log using new lifetime measurements

    International Nuclear Information System (INIS)

    Dowling, D.J.; Boyd, J.F.; Fuchs, J.A.

    1975-01-01

    Comparative measurements of thermal neutron decay time are obtained for a formation after irradiation with a pulsed neutron source. Chloride ions in formation fluids are concentrated by the electrosmosis effect using charged poles on a well logging sonde. The formation is irradiated with fast neutrons and a first comparative measure of the thermal neutron decay time or neutron lifetime is taken. The chloride ions are then dispersed by acoustic pumping with a magnetostrictive transducer. The formation is then again irradiated with fast neutrons and a comparative measure of neutron lifetime is taken. The comparison is a function of the variation in chloride concentration between the two measurements which is related to formation permeability

  10. An approach for longer lifetime MCFCs

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Masaru; Tatsumi, Masahiko; Hayano, Takuro [MCFC Research Association, Tokyo (Japan)] [and others

    1996-12-31

    For entering into commercialization of MCFC power plants in the beginning of the 21st century, we will devote to research for increasing lifetime as long as 40,000 hours with cell performance decay rate of 0.25 %/1000hrs as the target in FY 1999. This paper will discuss on our approach for longer lifetime MCFCs through electrolyte-loss management and NiO precipitation management as well as micro-structural control of electrodes and matrix plates. Cell voltage decay rate will be estimated by simulation through series of experiments on accelerated conditions.

  11. Lifetimes of some b-flavored hadrons

    International Nuclear Information System (INIS)

    Stone, S.

    2014-06-01

    Recent measurements of lifetimes of some b-flavored hadrons are presented and interpreted in the context of theoretical models, especially the Heavy Quark Expansion. Decay widths and decay width differences in the B s 0 - B-bar s 0 system are discussed from the studies of decays into the final states J/ψK + K - , J/ψπ + π - , D s + D s - , K + K - and D s ± π ± . Lifetime measurements of the baryons Λ b 0 , Ξ b - , Ξ b 0 , and Ω b - are also shown. (author)

  12. Positron lifetime in vanadium oxide bronzes

    International Nuclear Information System (INIS)

    Dryzek, J.; Dryzek, E.

    2003-01-01

    The positron lifetime (PL) and Doppler broadening (DB) of annihilation line measurements have been performed in vanadium oxide bronzes M x V 2 O 5 . The dependence of these annihilation characteristics on the kind and concentration of the metal M donor has been observed. In the PL spectrum only one lifetime component has been detected in all studied bronzes. The results indicate the positron localization in the structural tunnels present in the crystalline lattice of the vanadium oxide bronzes. (copyright 2003 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Quantum system lifetimes and measurement perturbations

    International Nuclear Information System (INIS)

    Najakov, E.

    1977-05-01

    The recently proposed description of quantum system decay in terms of repeated measurement perturbations is modified. The possibility of retarded reductions to a unique quantum state, due to ineffective localization of the decay products at initial time measurements, is simply taken into account. The exponential decay law is verified again. A modified equation giving the observed lifetime in terms of unperturbed quantum decay law, measurement frequency and reduction law is derived. It predicts deviations of the observed lifetime from the umperturbed one, together with a dependence on experimental procedures. The influence of different model unperturbed decay laws and reduction laws on this effect is studied

  14. Extension of the nuclear power plant lifetime

    International Nuclear Information System (INIS)

    Keramsi, Alain

    2011-01-01

    After a presentation of the French nuclear context (history of the reactor fleet, choice of reactor type, PWR operation principle, competitiveness, environmental performance), this Power Point presentation addresses the context and challenges of the operation lifetime (average fleet age in different countries, examples of extensions, case of the United States, what is at stake with lifetime extension, decennial visits, EDF strategy), discusses the EDF's safety objectives (definition of the three main safety functions, impact of the operation duration and of the coexistence of two generations for the safety functions), discusses how to manage the ageing phenomenon for replaceable and non-replaceable components

  15. Lifetime, money and cost-benefit analysis

    International Nuclear Information System (INIS)

    Bengtsson, G.

    1984-01-01

    The paper describes briefly many methods for explicit or implicit valuation of the loss of lifetime expectancy due to radiation exposures or other hazards. The health gain from investment in protection is compared with the health gain from a general increase in wealth. It is concluded that in many instances lifetime is valued at 1 to 10 times the gross national product produced in this time. This seems to be reasonable for rich countries whereas it may be questionable for poorer countries. Here, any investment that raises the level of living of the poorer segment of the population may have a greater effect on life expectancy. (author)

  16. Lifetimes for some excited states of sodium

    International Nuclear Information System (INIS)

    Thomas, P.; Campos, J.

    1979-01-01

    The lifetimes of some s,p and d levels of sodium have been measured by the delayed coincidence method, using a single-photon counting technique. The results are compared with the calculated values of the present work, and with other results. The lifetimes of the ns, np, and levels up to n10; of the nf levels up to n-9;and of the ng, nh,n1 and nk levels up to n-8, have been calculated and the transition probabilities of lines with origin in these levels are given. (Author) 38 refs

  17. Magnon lifetimes in terbium at low temperatures

    International Nuclear Information System (INIS)

    Bjerrum Moeller, H.; Mackintosh, A.R.

    1979-01-01

    The lifetimes of magnons propagating in the c-direction of Tb at 4.2 K have been measured by inelastic neutron scattering. In contrast to the behaviour at higher temperatures, where magnon-magnon scattering predominates, the broadening of the magnons increases towards the boundary of the single Brillouin zone, both in the acoustic and optical branches. This suggests that the scattering of the magnons by conduction electrons is important, and the observed lifetimes are consistent with a recent estimate of the magnitude of this effect. The acoustic magnons of very long wavelength behave anomalously, presumably due to dipolar interactions

  18. Measurement of the Bs0 lifetime

    Science.gov (United States)

    Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Odier, P.; Pietrzyk, B.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Martinez, M.; Mattison, T.; Orteu, S.; Pacheco, A.; Padilla, C.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Marinelli, N.; Natali, S.; Nuzzo, S.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Chai, Y.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhang, L.; Zhao, W.; Bonvicini, G.; Boudreau, J.; Casper, D.; Drevermann, H.; Forty, R. W.; Ganis, G.; Gay, C.; Girone, M.; Hagelberg, R.; Harvey, J.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lehraus, I.; Maggi, M.; Markou, C.; Mato, P.; Meinhard, H.; Minten, A.; Miquel, R.; Moser, H.-G.; Palazzi, P.; Pater, J. R.; Perlas, J. A.; Perrodo, P.; Pusztaszeri, J.-F.; Ranjard, F.; Rolandi, L.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Tomalin, I. R.; Veenhof, R.; Wachsmuth, H.; Wasserbaech, S.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Bardadin-Otwinowska, M.; Barres, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Saadi, F.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Johnson, S. D.; Møllerud, R.; Nilsson, B. S.; Kyriakis, A.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Fouque, G.; Passalacqua, L.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Focardi, E.; Moneta, L.; Parrini, G.; Corden, M.; Delfino, M.; Georgiopoulos, C.; Jaffe, D. E.; Levinthal, D.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Pepe-Altarelli, M.; Salomone, S.; Colrain, P.; Ten Have, I.; Knowles, I. G.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Thorn, S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geweniger, C.; Graefe, G.; Hanke, P.; Hepp, V.; Karger, C.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Hassard, J. F.; Lieske, N. M.; Moutoussi, A.; Nash, J.; Patton, S.; Payne, D. G.; Phillips, M. J.; San Martin, G.; Sedgbeer, J. K.; Wright, A. G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Vogl, R.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Galla, A.; Greene, A. M.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Walther, S. M.; Wanke, R.; Wolf, B.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Calvet, D.; Carr, J.; Coyle, P.; Diaconu, C.; Drinkard, J.; Etienne, F.; Nicod, D.; Payre, P.; Ross, L.; Rousseau, D.; Schwemling, P.; Talby, M.; Adlung, S.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Cattaneo, P.; Dehning, B.; Dietl, H.; Dydak, F.; Frank, M.; Halley, A. W.; Jakobs, K.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Richter, R.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Stiegler, U.; Denis, R. St.; Wolf, G.; Alemany, R.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Janot, P.; Kimfn 19, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Musolino, G.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Abbaneo, D.; Bagliesi, G.; Batignani, G.; Bottigli, U.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Mannelli, E. B.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Valassi, A.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Gao, Y.; Green, M. G.; Johnson, D. L.; March, P. V.; Medcalf, T.; Mir, Ll. M.; Quazi, I. S.; Strong, J. A.; Bertin, V.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Edwards, M.; Norton, P. R.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Babbage, W.; Booth, C. N.; Buttar, C.; Cartwright, S.; Combley, F.; Dawson, I.; Thompson, L. F.; Barberio, E.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Lutters, G.; Rivera, F.; Schäfer, U.; Smolik, L.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Pitis, L.; Ragusa, F.; Bellantoni, L.; Chen, W.; Conway, J. S.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Hayes, O. J.; Nachtman, J. M.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I.; Sharma, V.; Shi, Z. H.; Turk, J. D.; Walsh, A. M.; Weber, F. V.; Lan Wu, Sau; Wu, X.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1994-02-01

    The lifetime of the Bs0 has been measured in a data sample of 8890000 hadronic events recorded with the ALEPH detector at LEP. After background subtraction 30.8 ± 6.9 events are attributed to the semileptonic decay of the Bs0 to a Ds- and an opposite-sign lepton. A maximum-likelihood fit to the distribution of the proper times of these events yields a Bs0 lifetime of τBs = 1.92 -0.35+0.45 ± 0.04 ps.

  19. Prompt Neutron Lifetime for the NBSR Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, A.L.; Diamond, D.

    2012-06-24

    In preparation for the proposed conversion of the National Institute of Standards and Technology (NIST) research reactor (NBSR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel, certain point kinetics parameters must be calculated. We report here values of the prompt neutron lifetime that have been calculated using three independent methods. All three sets of calculations demonstrate that the prompt neutron lifetime is shorter for the LEU fuel when compared to the HEU fuel and longer for the equilibrium end-of-cycle (EOC) condition when compared to the equilibrium startup (SU) condition for both the HEU and LEU fuels.

  20. Eigenmode multiplexing with SLM for volume holographic data storage

    Science.gov (United States)

    Chen, Guanghao; Miller, Bo E.; Takashima, Yuzuru

    2017-08-01

    The cavity supports the orthogonal reference beam families as its eigenmodes while enhancing the reference beam power. Such orthogonal eigenmodes are used as additional degree of freedom to multiplex data pages, consequently increase storage densities for volume Holographic Data Storage Systems (HDSS) when the maximum number of multiplexed data page is limited by geometrical factor. Image bearing holograms are multiplexed by orthogonal phase code multiplexing via Hermite-Gaussian eigenmodes in a Fe:LiNbO3 medium with a 532 nm laser at multiple Bragg angles by using Liquid Crystal on Silicon (LCOS) spatial light modulators (SLMs) in reference arms. Total of nine holograms are recorded with three angular and three eigenmode.