WorldWideScience

Sample records for fluorescent hydrolysis probes

  1. Folate receptor targeting silica nanoparticle probe for two-photon fluorescence bioimaging

    Science.gov (United States)

    Wang, Xuhua; Yao, Sheng; Ahn, Hyo-Yang; Zhang, Yuanwei; Bondar, Mykhailo V.; Torres, Joseph A.; Belfield, Kevin D.

    2010-01-01

    Narrow dispersity organically modified silica nanoparticles (SiNPs), diameter ~30 nm, entrapping a hydrophobic two-photon absorbing fluorenyl dye, were synthesized by hydrolysis of triethoxyvinylsilane and (3-aminopropyl)triethoxysilane in the nonpolar core of Aerosol-OT micelles. The surface of the SiNPs were functionalized with folic acid, to specifically deliver the probe to folate receptor (FR) over-expressing Hela cells, making these folate two-photon dye-doped SiNPs potential candidates as probes for two-photon fluorescence microscopy (2PFM) bioimaging. In vitro studies using FR over-expressing Hela cells and low FR expressing MG63 cells demonstrated specific cellular uptake of the functionalized nanoparticles. One-photon fluorescence microscopy (1PFM) imaging, 2PFM imaging, and two-photon fluorescence lifetime microscopy (2P-FLIM) imaging of Hela cells incubated with folate-modified two-photon dye-doped SiNPs were demonstrated. PMID:21258480

  2. Studies of radiation induced membrane damage in lymphocytes using fluorescent probes

    International Nuclear Information System (INIS)

    Nikesch, W.

    1974-01-01

    The fluorescent probes perylene (PER), 1-anilino-8-naphthalene sulfonic acid (ANS), and fluorescein diacetate (FDA) were used to investigate membrane changes caused by ionizing radiation. Probe response to various other perturbations (variation of pH, temperature, and salt concentration, and treatment with phythohemagglutinin (PHA) and saponins) was also investigated to better understand membrane-probe interactions. ANS was used to probe the membrane surface, PER to probe the membrane interior, and FDA to investigate membrane integrity. Polarization of fluorescent light from ANS and PER was used to investigate the microviscosity and order of the membrane surface and interior respectively. Irradiated cells (600 R) were shown to have a decreased rate of hydrolysis of FDA probably due to cytoplasmic changes effecting the enzymatic reaction. Also evident was an increase in loss of intracellular fluorescein and a decrease in PER polarization indicating that the cells have a decreased membrane integrity, possibly the result of an increased disorganization of the phospholipid hydrocarbon chains in the membrane interior. Experiments with PHA link the decreased membrane integrity with the eventual interphase death of the cells. In general it is shown that the fluorescent probes ANS, PER, and FDA provide useful ways to investigate order and microviscosity in the cell membrane surface and interior, membrane surface charges, internal membrane polarity changes, and membrane integrity. (U.S.)

  3. Exciton-controlled fluorescence: application to hybridization-sensitive fluorescent DNA probe.

    Science.gov (United States)

    Okamoto, Akimitsu; Ikeda, Shuji; Kubota, Takeshi; Yuki, Mizue; Yanagisawa, Hiroyuki

    2009-01-01

    A hybridization-sensitive fluorescent probe has been designed for nucleic acid detection, using the concept of fluorescence quenching caused by the intramolecular excitonic interaction of fluorescence dyes. We synthesized a doubly thiazole orange-labeled nucleotide showing high fluorescence intensity for a hybrid with the target nucleic acid and effective quenching for the single-stranded state. This exciton-controlled fluorescent probe was applied to living HeLa cells using microinjection to visualize intracellular mRNA localization. Immediately after injection of the probe into the cell, fluorescence was observed from the probe hybridizing with the target RNA. This fluorescence rapidly decreased upon addition of a competitor DNA. Multicoloring of this probe resulted in the simple simultaneous detection of plural target nucleic acid sequences. This probe realized a large, rapid, reversible change in fluorescence intensity in sensitive response to the amount of target nucleic acid, and facilitated spatiotemporal monitoring of the behavior of intracellular RNA.

  4. Nine New Fluorescent Probes

    Science.gov (United States)

    Lin, Tsung-I.; Jovanovic, Misa V.; Dowben, Robert M.

    1989-06-01

    Absorption and fluorescence spectroscopic studies are reported here for nine new fluorescent probes recently synthesized in our laboratories: four pyrene derivatives with substituents of (i) 1,3-diacetoxy-6,8-dichlorosulfonyl, (ii) 1,3-dihydroxy-6,8-disodiumsulfonate, (iii) 1,3-disodiumsulfonate, and (iv) l-ethoxy-3,6,8-trisodiumsulfonate groups, and five [7-julolidino] coumarin derivatives with substituents of (v) 3-carboxylate-4-methyl, (vi) 3- methylcarboxylate, (vii) 3-acetate-4-methyl, (viii) 3-propionate-4-methyl, and (ix) 3-sulfonate-4-methyl groups. Pyrene compounds i and ii and coumarin compounds v and vi exhibit interesting absorbance and fluorescence properties: their absorption maxima are red shifted compared to the parent compound to the blue-green region, and the band width broadens considerably. All four blue-absorbing dyes fluoresce intensely in the green region, and the two pyrene compounds emit at such long wavelengths without formation of excimers. The fluorescence properties of these compounds are quite environment-sensitive: considerable spectral shifts and fluorescence intensity changes have been observed in the pH range from 3 to 10 and in a wide variety of polar and hydrophobic solvents with vastly different dielectric constants. The high extinction and fluorescence quantum yield of these probes make them ideal fluorescent labeling reagents for proteins, antibodies, nucleic acids, and cellular organelles. The pH and hydrophobicity-dependent fluorescence changes can be utilized as optical pH and/or hydrophobicity indicators for mapping environmental difference in various cellular components in a single cell. Since all nine probes absorb in the UV, but emit at different wavelengths in the visible, these two groups of compounds offer an advantage of utilizing a single monochromatic light source (e.g., a nitrogen laser) to achieve multi-wavelength detection for flow cytometry application. As a first step to explore potential application in

  5. A simple rhodamine hydrazide-based turn-on fluorescent probe for HOCl detection.

    Science.gov (United States)

    Zhang, Zhen; Zou, Yuan; Deng, Chengquan; Meng, Liesu

    2016-06-01

    Hypochlorous acid (HOCl) plays a crucial role in daily life and mediates a variety of physiological processes, however, abnormal levels of HOCl have been associated with numerous human diseases. It is therefore of significant interest to establish a simple, selective, rapid and sensitive fluorogenic method for the detection of HOCl in environmental and biological samples. A hydrazide-containing fluorescent probe based on a rhodamine scaffold was facilely developed that could selectively detect HOCl over other biologically relevant reactive oxygen species, reactive nitrogen species and most common metal ions in vitro. Via an irreversible oxidation-hydrolysis mechanism, and upon HOCl-triggered opening of the intramolecular spirocyclic ring during detection, the rhodamine hydrazide-based probe exhibited large fluorescence enhancement in the emission spectra with a fast response, low detection limit and comparatively wide pH detection range in aqueous media. The probe was further successfully applied to monitoring trace HOCl in tap water and imaging both exogenous and endogenous HOCl within living cells. It is anticipated that this simple and useful probe might be an efficient tool with which to facilitate more HOCl-related chemical and biological research. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  6. In Situ Live-Cell Nucleus Fluorescence Labeling with Bioinspired Fluorescent Probes.

    Science.gov (United States)

    Ding, Pan; Wang, Houyu; Song, Bin; Ji, Xiaoyuan; Su, Yuanyuan; He, Yao

    2017-08-01

    Fluorescent imaging techniques for visualization of nuclear structure and function in live cells are fundamentally important for exploring major cellular events. The ideal cellular labeling method is capable of realizing label-free, in situ, real-time, and long-term nucleus labeling in live cells, which can fully obtain the nucleus-relative information and effectively alleviate negative effects of alien probes on cellular metabolism. However, current established fluorescent probes-based strategies (e.g., fluorescent proteins-, organic dyes-, fluorescent organic/inorganic nanoparticles-based imaging techniques) are unable to simultaneously realize label-free, in situ, long-term, and real-time nucleus labeling, resulting in inevitable difficulties in fully visualizing nuclear structure and function in live cells. To this end, we present a type of bioinspired fluorescent probes, which are highly efficacious for in situ and label-free tracking of nucleus in long-term and real-time manners. Typically, the bioinspired polydopamine (PDA) nanoparticles, served as fluorescent probes, can be readily synthesized in situ within live cell nucleus without any further modifications under physiological conditions (37 °C, pH ∼7.4). Compared with other conventional nuclear dyes (e.g., propidium iodide (PI), Hoechst), superior spectroscopic properties (e.g., quantum yield of ∼35.8% and high photostability) and low cytotoxicity of PDA-based probes enable long-term (e.g., 3 h) fluorescence tracking of nucleus. We also demonstrate the generality of this type of bioinspired fluorescent probes in different cell lines and complex biological samples.

  7. Modeling enzymatic hydrolysis of lignocellulosic substrates using confocal fluorescence microscopy I: filter paper cellulose.

    Science.gov (United States)

    Luterbacher, Jeremy S; Moran-Mirabal, Jose M; Burkholder, Eric W; Walker, Larry P

    2015-01-01

    Enzymatic hydrolysis is one of the critical steps in depolymerizing lignocellulosic biomass into fermentable sugars for further upgrading into fuels and/or chemicals. However, many studies still rely on empirical trends to optimize enzymatic reactions. An improved understanding of enzymatic hydrolysis could allow research efforts to follow a rational design guided by an appropriate theoretical framework. In this study, we present a method to image cellulosic substrates with complex three-dimensional structure, such as filter paper, undergoing hydrolysis under conditions relevant to industrial saccharification processes (i.e., temperature of 50°C, using commercial cellulolytic cocktails). Fluorescence intensities resulting from confocal images were used to estimate parameters for a diffusion and reaction model. Furthermore, the observation of a relatively constant bound enzyme fluorescence signal throughout hydrolysis supported our modeling assumption regarding the structure of biomass during hydrolysis. The observed behavior suggests that pore evolution can be modeled as widening of infinitely long slits. The resulting model accurately predicts the concentrations of soluble carbohydrates obtained from independent saccharification experiments conducted in bulk, demonstrating its relevance to biomass conversion work. © 2014 Wiley Periodicals, Inc.

  8. A turn-on fluorescent rhodamine-acyl hydrazide for selective detection of Cu"2"+ ions

    International Nuclear Information System (INIS)

    Yoon, Jung Won; Jeong, Hyuk; Lee, Min Hee

    2017-01-01

    We present a rhodamine-based probe that can detect Cu"2"+ ions via Cu"2"+-promoted hydrolysis in aqueous solutions. In solution, the probe is non-fluorescent and colorless, but gives a strong fluorescence at 586 nm and shows a color change to pink on the addition of Cu"2"+ ions. We demonstrate that the rhodamine-based probe undergoes Cu"2"+-promoted hydrolysis with a moderate reaction time (within 3 min) and provides a fluorescence off–on change, even in the presence of other competitive metal ions. The rhodamine-based probe shows a linear correlation between increasing fluorescence at 586 nm and the Cu"2"+ concentration, and can detect Cu"2"+ at nanomolar levels (10 nM) in CH_3CN:H_2O (v/v, 90:10)

  9. Recent developments in multimodality fluorescence imaging probes

    Directory of Open Access Journals (Sweden)

    Jianhong Zhao

    2018-05-01

    Full Text Available Multimodality optical imaging probes have emerged as powerful tools that improve detection sensitivity and accuracy, important in disease diagnosis and treatment. In this review, we focus on recent developments of optical fluorescence imaging (OFI probe integration with other imaging modalities such as X-ray computed tomography (CT, magnetic resonance imaging (MRI, positron emission tomography (PET, single-photon emission computed tomography (SPECT, and photoacoustic imaging (PAI. The imaging technologies are briefly described in order to introduce the strengths and limitations of each techniques and the need for further multimodality optical imaging probe development. The emphasis of this account is placed on how design strategies are currently implemented to afford physicochemically and biologically compatible multimodality optical fluorescence imaging probes. We also present studies that overcame intrinsic disadvantages of each imaging technique by multimodality approach with improved detection sensitivity and accuracy. KEY WORDS: Optical imaging, Fluorescence, Multimodality, Near-infrared fluorescence, Nanoprobe, Computed tomography, Magnetic resonance imaging, Positron emission tomography, Single-photon emission computed tomography, Photoacoustic imaging

  10. A turn-on fluorescent rhodamine-acyl hydrazide for selective detection of Cu{sup 2+} ions

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jung Won; Jeong, Hyuk; Lee, Min Hee [Dept. of Chemistry, Sookmyung Women' s University, Seoul (Korea, Republic of)

    2017-03-15

    We present a rhodamine-based probe that can detect Cu{sup 2+} ions via Cu{sup 2+}-promoted hydrolysis in aqueous solutions. In solution, the probe is non-fluorescent and colorless, but gives a strong fluorescence at 586 nm and shows a color change to pink on the addition of Cu{sup 2+} ions. We demonstrate that the rhodamine-based probe undergoes Cu{sup 2+}-promoted hydrolysis with a moderate reaction time (within 3 min) and provides a fluorescence off–on change, even in the presence of other competitive metal ions. The rhodamine-based probe shows a linear correlation between increasing fluorescence at 586 nm and the Cu{sup 2+} concentration, and can detect Cu{sup 2+} at nanomolar levels (10 nM) in CH{sub 3}CN:H{sub 2}O (v/v, 90:10)

  11. Fluorescent-increase kinetics of different fluorescent reporters used for qPCR depend on monitoring chemistry, targeted sequence, type of DNA input and PCR efficiency

    International Nuclear Information System (INIS)

    Ruijter, Jan M.; Hoff, Maurice J. B. van den; Lorenz, Peter; Tuomi, Jari M.; Hecker, Michael

    2014-01-01

    The analysis of quantitative PCR data usually does not take into account the fact that the increase in fluorescence depends on the monitoring chemistry, the input of ds-DNA or ss-cDNA, and the directionality of the targeting of probes or primers. The monitoring chemistries currently available can be categorized into six groups: (A) DNA-binding dyes; (B) hybridization probes; (C) hydrolysis probes; (D) LUX primers; (E) hairpin primers; and (F) the QZyme system. We have determined the kinetics of the increase in fluorescence for each of these groups with respect to the input of both ds-DNA and ss-cDNA. For the latter, we also evaluated mRNA and cDNA targeting probes or primers. This analysis revealed three situations. Hydrolysis probes and LUX primers, compared to DNA-binding dyes, do not require a correction of the observed quantification cycle. Hybridization probes and hairpin primers require a correction of −1 cycle (dubbed C-lag), while the QZyme system requires the C-lag correction and an efficiency-dependent C-shift correction. A PCR efficiency value can be derived from the relative increase in fluorescence in the exponential phase of the amplification curve for all monitoring chemistries. In case of hydrolysis probes, LUX primers and hairpin primers, however, this should be performed after cycle 12, and for the QZyme system after cycle 19, to keep the overestimation of the PCR efficiency below 0.5 %. (author)

  12. Fluorenyl benzothiadiazole and benzoselenadiazole near-IR fluorescent probes for two-photon fluorescence imaging (Conference Presentation)

    Science.gov (United States)

    Belfield, Kevin D.; Yao, Sheng; Kim, Bosung; Yue, Xiling

    2016-03-01

    Imaging biological samples with two-photon fluorescence (2PF) microscopy has the unique advantage of resulting high contrast 3D resolution subcellular image that can reach up to several millimeters depth. 2PF probes that absorb and emit at near IR region need to be developed. Two-photon excitation (2PE) wavelengths are less concerned as 2PE uses wavelengths doubles the absorption wavelength of the probe, which means 2PE wavelengths for probes even with absorption at visible wavelength will fall into NIR region. Therefore, probes that fluoresce at near IR region with high quantum yields are needed. A series of dyes based on 5-thienyl-2, 1, 3-benzothiadiazole and 5-thienyl-2, 1, 3-benzoselenadiazole core were synthesized as near infrared two-photon fluorophores. Fluorescence maxima wavelengths as long as 714 nm and fluorescence quantum yields as high as 0.67 were achieved. The fluorescence quantum yields of the dyes were nearly constant, regardless of solvents polarity. These diazoles exhibited large Stokes shift (GM), and high two-photon fluorescence figure of merit (FM , 1.04×10-2 GM). Cells incubated on a 3D scaffold with one of the new probes (encapsulated in Pluronic micelles) exhibited bright fluorescence, enabling 3D two-photon fluorescence imaging to a depth of 100 µm.

  13. Fluorescence spectral studies on interaction of fluorescent probes with Bovine Serum Albumin (BSA)

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Kaushik, E-mail: ghoshfcy@iitr.ac.in; Rathi, Sweety; Arora, Deepshikha

    2016-07-15

    Interaction of 2-(1-(naphthale-1-ylimino)ethyl)phenol (1), 2-methoxy-4-(((4-methoxyphenyl)imino)methyl)phenol (2) and 2-methoxy-4-((naphthalene-1-ylimino)methyl)phenol (3) with Bovine Serum Albumin (BSA) was examined. Fluorescence spectral data were obtained from the probes by varying the concentration of BSA as well as from BSA by varying the concentration of probes. Synchronous fluorescence measurements were performed and binding constants of the probes were calculated. To understand mode of quenching, Stern–Volmer plot, absorption spectral studies and life time measurements were performed. Förster resonance energy transfer (FRET) was also scrutinized. - Highlights: • Schiff bases with pendant phenolato function and interaction with BSA. • Synchronous fluorescence studies and a preferred interaction with tryptophan. • Probable interaction of probes with Trp-213 residue in the hydrophobic cavity. • 1:1 binding stoichiometry of probes and BSA in Benesi–Hildebrand graph.

  14. A new fluorescent pH probe for extremely acidic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yu [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Taishan College, Shandong University, Jinan 250100 (China); Jiang, Zheng [School of Life Science, Shandong University, Jinan 250100 (China); Taishan College, Shandong University, Jinan 250100 (China); Xiao, Yu [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Taishan College, Shandong University, Jinan 250100 (China); Bi, Fu-Zhen [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Miao, Jun-Ying, E-mail: miaojy@sdu.edu.cn [School of Life Science, Shandong University, Jinan 250100 (China); Zhao, Bao-Xiang, E-mail: bxzhao@sdu.edu.cn [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2014-04-01

    A new coumarin-based fluorescent probe can detect highly acidic conditions in both solution and bacteria with high selectivity and sensitivity. Highlights: • A new fluorescence probe for very low pH was synthesized and characterized. • The probe can monitor pH in solution and bacteria. • The two-step protonation of N atoms of the probe leads to fluorescence quenching. Abstract: A novel turn-off fluorescent probe based on coumarin and imidazole moiety for extremely acidic conditions was designed and developed. The probe with pKa = 2.1 is able to respond to very low pH value (below 3.5) with high sensitivity relying on fluorescence quenching at 460 nm in fluorescence spectra or the ratios of absorbance maximum at 380 nm to that at 450 nm in UV–vis spectra. It can quantitatively detect pH value based on equilibrium equation, pH = pKa -log[(Ix - Ib)/(Ia - Ix)]. It had very short response time that was less than 1 min, good reversibility and nearly no interference from common metal ions. Moreover, using ¹H NMR analysis and theoretical calculation of molecular orbital, we verified that a two-step protonation process of two N atoms of the probe leaded to photoinduced electron transfer (PET), which was actually the mechanism of the fluorescence quenching phenomenon under strongly acidic conditions. Furthermore, the probe was also applied to imaging strong acidity in bacteria, E.coli and had good effect. This work illustrates that the new probe could be a practical and ideal pH indicator for strongly acidic conditions with good biological significance.

  15. Protein recognition by a pattern-generating fluorescent molecular probe

    Science.gov (United States)

    Pode, Zohar; Peri-Naor, Ronny; Georgeson, Joseph M.; Ilani, Tal; Kiss, Vladimir; Unger, Tamar; Markus, Barak; Barr, Haim M.; Motiei, Leila; Margulies, David

    2017-12-01

    Fluorescent molecular probes have become valuable tools in protein research; however, the current methods for using these probes are less suitable for analysing specific populations of proteins in their native environment. In this study, we address this gap by developing a unimolecular fluorescent probe that combines the properties of small-molecule-based probes and cross-reactive sensor arrays (the so-called chemical 'noses/tongues'). On the one hand, the probe can detect different proteins by generating unique identification (ID) patterns, akin to cross-reactive arrays. On the other hand, its unimolecular scaffold and selective binding enable this ID-generating probe to identify combinations of specific protein families within complex mixtures and to discriminate among isoforms in living cells, where macroscopic arrays cannot access. The ability to recycle the molecular device and use it to track several binding interactions simultaneously further demonstrates how this approach could expand the fluorescent toolbox currently used to detect and image proteins.

  16. A simple and sensitive fluorescent probe for specific detection of ...

    Indian Academy of Sciences (India)

    Yan-Fei Kang

    A fluorescent probe, with simplicity of structure and convenience of synthesis, is capable of detecting ... Yan-Fei Kang et al. .... Pastore A, Federici G, Bertini E and Ptemonte F 2003 ... Urano Y 2010 New Strategies for Fluorescent Probe.

  17. [Development of a Fluorescence Probe for Live Cell Imaging].

    Science.gov (United States)

    Shibata, Aya

    2017-01-01

    Probes that detect specific biological materials are indispensable tools for deepening our understanding of various cellular phenomena. In live cell imaging, the probe must emit fluorescence only when a specific substance is detected. In this paper, we introduce a new probe we developed for live cell imaging. Glutathione S-transferase (GST) activity is higher in tumor cells than in normal cells and is involved in the development of resistance to various anticancer drugs. We previously reported the development of a general strategy for the synthesis of probes for detection of GST enzymes, including fluorogenic, bioluminogenic, and 19 F-NMR probes. Arylsulfonyl groups were used as caging groups during probe design. The fluorogenic probes were successfully used to quantitate very low levels of GST activity in cell extracts and were also successfully applied to the imaging of microsomal MGST1 activity in living cells. The bioluminogenic and 19 F-NMR probes were able to detect GST activity in Escherichia coli cells. Oligonucleotide-templated reactions are powerful tools for nucleic acid sensing. This strategy exploits the target strand as a template for two functionalized probes and provides a simple molecular mechanism for multiple turnover reactions. We developed a nucleophilic aromatic substitution reaction-triggered fluorescent probe. The probe completed its reaction within 30 s of initiation and amplified the fluorescence signal from 0.5 pM target oligonucleotide by 1500 fold under isothermal conditions. Additionally, we applied the oligonucleotide-templated reaction for molecular releasing and peptide detection.

  18. Fluoromodule-based reporter/probes designed for in vivo fluorescence imaging

    Science.gov (United States)

    Zhang, Ming; Chakraborty, Subhasish K.; Sampath, Padma; Rojas, Juan J.; Hou, Weizhou; Saurabh, Saumya; Thorne, Steve H.; Bruchez, Marcel P.; Waggoner, Alan S.

    2015-01-01

    Optical imaging of whole, living animals has proven to be a powerful tool in multiple areas of preclinical research and has allowed noninvasive monitoring of immune responses, tumor and pathogen growth, and treatment responses in longitudinal studies. However, fluorescence-based studies in animals are challenging because tissue absorbs and autofluoresces strongly in the visible light spectrum. These optical properties drive development and use of fluorescent labels that absorb and emit at longer wavelengths. Here, we present a far-red absorbing fluoromodule–based reporter/probe system and show that this system can be used for imaging in living mice. The probe we developed is a fluorogenic dye called SC1 that is dark in solution but highly fluorescent when bound to its cognate reporter, Mars1. The reporter/probe complex, or fluoromodule, produced peak emission near 730 nm. Mars1 was able to bind a variety of structurally similar probes that differ in color and membrane permeability. We demonstrated that a tool kit of multiple probes can be used to label extracellular and intracellular reporter–tagged receptor pools with 2 colors. Imaging studies may benefit from this far-red excited reporter/probe system, which features tight coupling between probe fluorescence and reporter binding and offers the option of using an expandable family of fluorogenic probes with a single reporter gene. PMID:26348895

  19. Fluorescence detection of natural RNA using rationally designed "clickable" oligonucleotide probes

    DEFF Research Database (Denmark)

    Okholm, Anders; Kjems, Jørgen; Astakhova, Kira

    2014-01-01

    Herein a reliable approach to the design of effective fluorescent probes for RNA detection is described. The fluorescence signalling of hybridization by internally positioned polyaromatic hydrocarbons and rhodamine dyes was achieved with a low fluorescence background signal, high fluorescence qua...... quantum yields at ambient and elevated temperature, high selectivity and signal specificity of the probes when binding to miR-7 and circRNA targets....

  20. Fluorescent probes and nanoparticles for intracellular sensing of pH values

    Science.gov (United States)

    Shi, Wen; Li, Xiaohua; Ma, Huimin

    2014-12-01

    Intracellular pH regulates a number of cell metabolism processes and its sensing is thus of great importance for cell studies. Among various methods, fluorescent probes have been widely used for sensing intracellular pH values because of their high sensitivity and spatiotemporal resolution capability. In this article, the development of fluorescent probes with good practicability in sensing intracellular pH values and pH variation during 2009 - 2014 is reviewed. These fluorescence probes are divided into two kinds: small molecules and nanoparticles. Photophysical properties, advantages/disadvantages and applications of the two kinds of probes are discussed in detail.

  1. Probing Zeolite Crystal Architecture and Structural Imperfections using Differently Sized Fluorescent Organic Probe Molecules.

    Science.gov (United States)

    Hendriks, Frank C; Schmidt, Joel E; Rombouts, Jeroen A; Lammertsma, Koop; Bruijnincx, Pieter C A; Weckhuysen, Bert M

    2017-05-05

    A micro-spectroscopic method has been developed to probe the accessibility of zeolite crystals using a series of fluorescent 4-(4-diethylaminostyryl)-1-methylpyridinium iodide (DAMPI) probes of increasing molecular size. Staining large zeolite crystals with MFI (ZSM-5) topology and subsequent mapping of the resulting fluorescence using confocal fluorescence microscopy reveal differences in structural integrity: the 90° intergrowth sections of MFI crystals are prone to develop structural imperfections, which act as entrance routes for the probes into the zeolite crystal. Polarization-dependent measurements provide evidence for the probe molecule's alignment within the MFI zeolite pore system. The developed method was extended to BEA (Beta) crystals, showing that the previously observed hourglass pattern is a general feature of BEA crystals with this morphology. Furthermore, the probes can accurately identify at which crystal faces of BEA straight or sinusoidal pores open to the surface. The results show this method can spatially resolve the architecture-dependent internal pore structure of microporous materials, which is difficult to assess using other characterization techniques such as X-ray diffraction. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  2. Smart optical probes for near-infrared fluorescence imaging of Alzheimer's disease pathology

    International Nuclear Information System (INIS)

    Raymond, Scott B.; Bacskai, Brian J.; Skoch, Jesse; Hills, Ivory D.; Swager, Timothy M.; Nesterov, Evgueni E.

    2008-01-01

    Near-infrared fluorescent probes for amyloid-beta (Aβ) are an exciting option for molecular imaging in Alzheimer's disease research and may translate to clinical diagnostics. However, Aβ-targeted optical probes often suffer from poor specificity and slow clearance from the brain. We are designing smart optical probes that emit characteristic fluorescence signal only when bound to Aβ. We synthesized a family of dyes and tested Aβ-binding sensitivity with fluorescence spectroscopy and tissue-staining. Select compounds exhibited Aβ-dependent changes in fluorescence quantum yield, lifetime, and emission spectra that may be imaged microscopically or in vivo using new lifetime and spectral fluorescence imaging techniques. Smart optical probes that turn on when bound to Aβ will improve amyloid detection and may enable quantitative molecular imaging in vivo. (orig.)

  3. Flow Cytometric Applicability of Fluorescent Vitality Probes on Phytoplankton

    NARCIS (Netherlands)

    Peperzak, L.; Brussaard, C.P.D.

    2011-01-01

    The applicability of six fluorescent probes (four esterase probes: acetoxymethyl ester of Calcein [Calcein-AM], 5-chloromethylfluorescein diacetate [CMFDA], fluorescein diacetate [FDA], and 2',7'-dichlorofluorescein diacetate [H(2)DCFDA]; and two membrane probes: bis-(1,3-dibutylbarbituric acid)

  4. Fluorescent probes and nanoparticles for intracellular sensing of pH values

    International Nuclear Information System (INIS)

    Shi, Wen; Li, Xiaohua; Ma, Huimin

    2014-01-01

    Intracellular pH regulates a number of cell metabolism processes and its sensing is thus of great importance for cell studies. Among various methods, fluorescent probes have been widely used for sensing intracellular pH values because of their high sensitivity and spatiotemporal resolution capability. In this article, the development of fluorescent probes with good practicability in sensing intracellular pH values and pH variation during 2009 − 2014 is reviewed. These fluorescence probes are divided into two kinds: small molecules and nanoparticles. Photophysical properties, advantages/disadvantages and applications of the two kinds of probes are discussed in detail. (topical review)

  5. Molecular engineering of two-photon fluorescent probes for bioimaging applications

    Science.gov (United States)

    Liu, Hong-Wen; Liu, Yongchao; Wang, Peng; Zhang, Xiao-Bing

    2017-03-01

    During the past two decades, two-photon microscopy (TPM), which utilizes two near-infrared photons as the excitation source, has emerged as a novel, attractive imaging tool for biological research. Compared with one-photon microscopy, TPM offers several advantages, such as lowering background fluorescence in living cells and tissues, reducing photodamage to biosamples, and a photobleaching phenomenon, offering better 3D spatial localization, and increasing penetration depth. Small-molecule-based two-photon fluorescent probes have been well developed for the detection and imaging of various analytes in biological systems. In this review, we will give a general introduction of molecular engineering of two-photon fluorescent probes based on different fluorescence response mechanisms for bioimaging applications during the past decade. Inspired by the desired advantages of small-molecule two-photon fluorescent probes in biological imaging applications, we expect that more attention will be devoted to the development of new two-photon fluorophores and applications of TPM in areas of bioanalysis and disease diagnosis.

  6. Retarded Local Dynamics of Single Fluorescent Probes in Polymeric Glass due to Interaction Strengthening

    Science.gov (United States)

    Zhang, Hao; Yang, Jingfa; Zhao, Jiang

    The effect of strengthening of interaction between single fluorescent probes and polymer matrix to the probes dynamics is investigated using single molecule fluorescence defocus microscopy. By introducing multiple hydroxyl groups to the fluorescent probes, which builds up hydrogen bonds between the probe and polymer matrix, the dynamics is discovered to be retarded. This is evidenced by the lowering of the frequency of the vibrational modes in the power spectra of the rotation trajectories of individual fluorescent probes, and also by the lowering of population of rotating probes. The results show that by strengthening the probe-matrix interaction, the local dynamics detected by the probes is equivalent to that detected by a bigger probe, due to the enhanced friction between the probe and the polymer matrix. the National Basic Research Program of China (2012CB821500).

  7. Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations

    Science.gov (United States)

    Kalyanaraman, Balaraman; Darley-Usmar, Victor; Davies, Kelvin J.A.; Dennery, Phyllis A.; Forman, Henry Jay; Grisham, Matthew B.; Mann, Giovanni E.; Moore, Kevin; Roberts, L. Jackson; Ischiropoulos, Harry

    2013-01-01

    The purpose of this position paper is to present a critical analysis of the challenges and limitations of the most widely used fluorescent probes for detecting and measuring reactive oxygen and nitrogen species. Where feasible, we have made recommendations for the use of alternate probes and appropriate analytical techniques that measure the specific products formed from the reactions between fluorescent probes and reactive oxygen and nitrogen species. We have proposed guidelines that will help present and future researchers with regard to the optimal use of selected fluorescent probes and interpretation of results. PMID:22027063

  8. A fluorescent probe for ecstasy.

    Science.gov (United States)

    Masseroni, D; Biavardi, E; Genovese, D; Rampazzo, E; Prodi, L; Dalcanale, E

    2015-08-18

    A nanostructure formed by the insertion in silica nanoparticles of a pyrene-derivatized cavitand, which is able to specifically recognize ecstasy in water, is presented. The absence of effects from interferents and an efficient electron transfer process occurring after complexation of ecstasy, makes this system an efficient fluorescent probe for this popular drug.

  9. Coumarin-Based Fluorescent Probes for Dual Recognition of Copper(II and Iron(III Ions and Their Application in Bio-Imaging

    Directory of Open Access Journals (Sweden)

    Olimpo García-Beltrán

    2014-01-01

    Full Text Available Two new coumarin-based “turn-off” fluorescent probes, (E-3-((3,4-dihydroxybenzylideneamino-7-hydroxy-2H-chromen-2-one (BS1 and (E-3-((2,4-dihydroxybenzylideneamino-7-hydroxy-2H-chromen-2-one (BS2, were synthesized and their detection of copper(II and iron(III ions was studied. Results show that both compounds are highly selective for Cu2+ and Fe3+ ions over other metal ions. However, BS2 is detected directly, while detection of BS1 involves a hydrolysis reaction to regenerate 3-amino-7-hydroxycoumarin (3 and 3,4-dihydroxybenzaldehyde, of which 3 is able to react with copper(II or iron(III ions. The interaction between the tested compounds and copper or iron ions is associated with a large fluorescence decrease, showing detection limits of ca. 10−5 M. Preliminary studies employing epifluorescence microscopy demonstrate that Cu2+ and Fe3+ ions can be imaged in human neuroblastoma SH-SY5Y cells treated with the tested probes.

  10. Use of a Novel Rover-mounted Fluorescence Imager and Fluorescent Probes to Detect Biological Material in the Atacama Desert in Daylight

    Science.gov (United States)

    Weinstein, S.; Pane, D.; Warren-Rhodes, K.; Cockell, C.; Ernst, L. A.; Minkley, E.; Fisher, G.; Emani, S.; Wettergreen, D. S.; Wagner, M.

    2005-01-01

    We have developed an imaging system, the Fluorescence Imager (FI), for detecting fluorescence signals from sparse microorganisms and biofilms during autonomous rover exploration. The fluorescence signals arise both from naturally occurring chromophores, such as chlorophyll of cyanobacteria and lichens, and from fluorescent probes applied to soil and rocks. Daylight imaging has been accomplished by a novel use of a high-powered flashlamp synchronized to a CCD camera. The fluorescent probes are cell permanent stains that have extremely low intrinsic fluorescence (quantum yields less than 0.01) and a large fluorescence enhancement (quantum yields greater than 0.4) when bound to the target. Each probe specifically targets either carbohydrates, proteins, nucleic acids or membrane lipids, the four classes of macromolecules found in terrestrial life. The intent of the probes is to interrogate the environment for surface and endolithic life forms.

  11. Three-dimensional fluorescence excitation-emission matrix (EEM) spectroscopy with regional integration analysis for assessing waste sludge hydrolysis treated with multi-enzyme and thermophilic bacteria.

    Science.gov (United States)

    Guo, Liang; Lu, Mingmin; Li, Qianqian; Zhang, Jiawen; Zong, Yan; She, Zonglian

    2014-11-01

    The hydrolysis effect of waste sludge after multi-enzyme and thermophilic bacteria pretreatments is investigated using excitation-emission matrix (EEM) with fluorescence regional integration (FRI) in this study. The compositional characteristics of extracellular polymeric substances (EPS) and dissolved organic matters (DOM) were analyzed to evaluate the sludge disintegration. The EPS and cell wall in sludge were disrupted after hydrolysis which led to carbohydrate, protein and soluble chemical oxygen demand (SCOD) of DOM increasing in sludge supernatant. The bio-degradability level in the extracted fractions of EPS and DOM depending on the fluorescence zones was found after hydrolysis. The highest proportion of percent fluorescence response (Pi,n) in EPS and DOM was soluble microbial by-product and humic acid-like organics. A significant increase of humic acid-like organics in DOM after thermophilic bacteria hydrolysis was obtained. The assessment of hydrolysis using EEM coupled with FRI provided a new insight toward the bio-utilization process of waste sludge. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. A chromenoquinoline-based fluorescent off-on thiol probe for bioimaging.

    Science.gov (United States)

    Kand, Dnyaneshwar; Kalle, Arunasree Marasanapalli; Varma, Sreejith Jayasree; Talukdar, Pinaki

    2012-03-11

    A new chromenoquinoline-based fluorescent off-on thiol probe 2 is reported. In aqueous buffer solutions at physiological pH, the probe exhibited 223-fold enhancement in fluorescence intensity by a Michael addition of cysteine to the maleimide appended to a chromenoquinoline. Cell permeability and live cell imaging of thiols are also demonstrated. This journal is © The Royal Society of Chemistry 2012

  13. Zwitterionic Silane Copolymer for Ultra-Stable and Bright Biomolecular Probes Based on Fluorescent Quantum Dot Nanoclusters.

    Science.gov (United States)

    Dembele, Fatimata; Tasso, Mariana; Trapiella-Alfonso, Laura; Xu, Xiangzhen; Hanafi, Mohamed; Lequeux, Nicolas; Pons, Thomas

    2017-05-31

    Fluorescent semiconductor quantum dots (QDs) exhibit several unique properties that make them suitable candidates for biomolecular sensing, including high brightness, photostability, broad excitation, and narrow emission spectra. Assembling these QDs into robust and functionalizable nanosized clusters (QD-NSCs) can provide fluorescent probes that are several orders of magnitude brighter than individual QDs, thus allowing an even greater sensitivity of detection with simplified instrumentation. However, the formation of compact, antifouling, functionalizable, and stable QD-NSCs remains a challenging task, especially for a use at ultralow concentrations for single-molecule detection. Here, we describe the development of fluorescent QD-NSCs envisioned as a tool for fast and sensitive biomolecular recognition. First, QDs were assembled into very compact 100-150 nm diameter spherical aggregates; the final QD-NSCs were obtained by growing a cross-linked silica shell around these aggregates. Hydrolytic stability in several concentration and pH conditions is a key requirement for a potential and efficient single-molecule detection tool. However, the hydrolysis of Si-O-Si bonds leads to desorption of monosilane-based surface groups at very low silica concentrations or in a slightly basic medium. Thus, we designed a novel multidentate copolymer composed of multiple silane as well as zwitterionic monomers. Coating silica beads with this multidentate copolymer provided a robust surface chemistry that was demonstrated to be stable against hydrolysis, even at low concentrations. Copolymer-coated silica beads also showed low fouling properties and high colloidal stability in saline solutions. Furthermore, incorporation of additional azido-monomers enabled easy functionalization of QD-NSCs using copper-free bio-orthogonal cyclooctyne-azide click chemistry, as demonstrated by a biotin-streptavidin affinity test.

  14. Fluorescence suppression using wavelength modulated Raman spectroscopy in fiber-probe-based tissue analysis.

    Science.gov (United States)

    Praveen, Bavishna B; Ashok, Praveen C; Mazilu, Michael; Riches, Andrew; Herrington, Simon; Dholakia, Kishan

    2012-07-01

    In the field of biomedical optics, Raman spectroscopy is a powerful tool for probing the chemical composition of biological samples. In particular, fiber Raman probes play a crucial role for in vivo and ex vivo tissue analysis. However, the high-fluorescence background typically contributed by the auto fluorescence from both a tissue sample and the fiber-probe interferes strongly with the relatively weak Raman signal. Here we demonstrate the implementation of wavelength-modulated Raman spectroscopy (WMRS) to suppress the fluorescence background while analyzing tissues using fiber Raman probes. We have observed a significant signal-to-noise ratio enhancement in the Raman bands of bone tissue, which have a relatively high fluorescence background. Implementation of WMRS in fiber-probe-based bone tissue study yielded usable Raman spectra in a relatively short acquisition time (∼30  s), notably without any special sample preparation stage. Finally, we have validated its capability to suppress fluorescence on other tissue samples such as adipose tissue derived from four different species.

  15. Flow cytometry, fluorescent probes, and flashing bacteria

    NARCIS (Netherlands)

    Bunthof, C.J.

    2002-01-01


    Key words: fluorescent probes, flow cytometry, CSLM, viability, survival, microbial physiology, lactic acid bacteria, Lactococcus lactis , Lactobacillus plantarum , cheese, milk,

  16. Azaphthalocyanines: Red Fluorescent Probes for Cations

    Czech Academy of Sciences Publication Activity Database

    Nováková, V.; Lochman, L.; Zajícová, I.; Kopecký, K.; Miletin, M.; Lang, Kamil; Kirakci, Kaplan; Zimcik, P.

    2013-01-01

    Roč. 19, č. 16 (2013), s. 5025-5028 ISSN 0947-6539 R&D Projects: GA ČR GAP208/10/1678 Institutional support: RVO:61388980 Keywords : crown compounds * fluorescent probes * phthalocyanine s * potassium * sodium Subject RIV: CA - Inorganic Chemistry Impact factor: 5.696, year: 2013

  17. Hydrazine selective dual signaling chemodosimetric probe in physiological conditions and its application in live cells

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, Sandip; Sahana, Animesh; Mandal, Sandip [Department of Chemistry, The University of Burdwan, Burdwan, 713104 West Bengal (India); Sengupta, Archya; Chatterjee, Ansuman [Department of Zoology, Visva Bharati University, Santiniketan, West Bengal (India); Safin, Damir A., E-mail: damir.a.safin@gmail.com [Institute of Condensed Matter and Nanosciences, Molecules, Solids and Reactivity (IMCN/MOST), Université catholique de Louvain, Place L. Pasteur 1, 1348 Louvain-la-Neuve (Belgium); Babashkina, Maria G.; Tumanov, Nikolay A.; Filinchuk, Yaroslav [Institute of Condensed Matter and Nanosciences, Molecules, Solids and Reactivity (IMCN/MOST), Université catholique de Louvain, Place L. Pasteur 1, 1348 Louvain-la-Neuve (Belgium); Das, Debasis, E-mail: ddas100in@yahoo.com [Department of Chemistry, The University of Burdwan, Burdwan, 713104 West Bengal (India)

    2015-09-17

    A rhodamine–cyanobenzene conjugate, (E)-4-((2-(3′,6′-bis(diethylamino)-3-oxospiro[isoindoline-1,9′-xanthene] -2-yl)ethylimino)methyl)benzonitrile (1), which structure has been elucidated by single crystal X-ray diffraction, was synthesized for selective fluorescent “turn-on” and colorimetric recognition of hydrazine at physiological pH 7.4. It was established that 1 detects hydrazine up to 58 nM. The probe is useful for the detection of intracellular hydrazine in the human breast cancer cells MCF-7 using a fluorescence microscope. Spirolactam ring opening of 1, followed by its hydrolysis, was established as a probable mechanism for the selective sensing of hydrazine. - Highlights: • A selective rhodamine–cyanobenzene conjugate is synthesized. • The conjugate is a selective dual signaling chemodosimetric probe towards hydrazine. • Spirolactam ring opening of the probe, followed by its hydrolysis, is the sensing mechanism. • The probe detects hydrazine in the human breast cancer cells MCF-7 imaging.

  18. Optical imaging of non-fluorescent nanoparticle probes in live cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gufeng; Stender, Anthony S.; Sun, Wei; and Fang, Ning

    2009-12-17

    Precise imaging of cellular and subcellular structures and dynamic processes in live cells is crucial for fundamental research in life sciences and in medical applications. Non-fluorescent nanoparticles are an important type of optical probe used in live-cell imaging due to their photostability, large optical cross-sections, and low toxicity. Here, we provide an overview of recent developments in the optical imaging of non-fluorescent nanoparticle probes in live cells.

  19. A highly sensitive fluorescent probe based on BODIPY for Hg2+ in aqueous solution

    Directory of Open Access Journals (Sweden)

    ZHAO Junwei

    2016-12-01

    Full Text Available A highly sensitive fluorescent probe based on BODIPY and hydrazine for Hg2+ was designed and synthesized.This probe could detect mercury ions in aqueous solutions within 5 min.With the increase of Hg2+ mole concentration,an obvious red shift of UV-Vis absorption wavelength was observed and the fluorescence intensity significantly enhanced.It was found that the fluorescence intensity of an aqueous solution containing 0.1 μmol/L Hg2+ is much stronger than that of blank solution,which indicats that the fluorescent probe has high sensitivity.In addition,other metal ions could not cause the change of fluorescent spectra,which means this probe has good selectivity,as well.

  20. Bifunctional fluorescent probes for detection of amyloid aggregates and reactive oxygen species.

    Science.gov (United States)

    Needham, Lisa-Maria; Weber, Judith; Fyfe, James W B; Kabia, Omaru M; Do, Dung T; Klimont, Ewa; Zhang, Yu; Rodrigues, Margarida; Dobson, Christopher M; Ghandi, Sonia; Bohndiek, Sarah E; Snaddon, Thomas N; Lee, Steven F

    2018-02-01

    Protein aggregation into amyloid deposits and oxidative stress are key features of many neurodegenerative disorders including Parkinson's and Alzheimer's disease. We report here the creation of four highly sensitive bifunctional fluorescent probes, capable of H 2 O 2 and/or amyloid aggregate detection. These bifunctional sensors use a benzothiazole core for amyloid localization and boronic ester oxidation to specifically detect H 2 O 2 . We characterized the optical properties of these probes using both bulk fluorescence measurements and single-aggregate fluorescence imaging, and quantify changes in their fluorescence properties upon addition of amyloid aggregates of α-synuclein and pathophysiological H 2 O 2 concentrations. Our results indicate these new probes will be useful to detect and monitor neurodegenerative disease.

  1. Bifunctional fluorescent probes for detection of amyloid aggregates and reactive oxygen species

    Science.gov (United States)

    Needham, Lisa-Maria; Weber, Judith; Fyfe, James W. B.; Kabia, Omaru M.; Do, Dung T.; Klimont, Ewa; Zhang, Yu; Rodrigues, Margarida; Dobson, Christopher M.; Ghandi, Sonia; Bohndiek, Sarah E.; Snaddon, Thomas N.; Lee, Steven F.

    2018-02-01

    Protein aggregation into amyloid deposits and oxidative stress are key features of many neurodegenerative disorders including Parkinson's and Alzheimer's disease. We report here the creation of four highly sensitive bifunctional fluorescent probes, capable of H2O2 and/or amyloid aggregate detection. These bifunctional sensors use a benzothiazole core for amyloid localization and boronic ester oxidation to specifically detect H2O2. We characterized the optical properties of these probes using both bulk fluorescence measurements and single-aggregate fluorescence imaging, and quantify changes in their fluorescence properties upon addition of amyloid aggregates of α-synuclein and pathophysiological H2O2 concentrations. Our results indicate these new probes will be useful to detect and monitor neurodegenerative disease.

  2. An effective colorimetric and ratiometric fluorescent probe for bisulfite in aqueous solution

    International Nuclear Information System (INIS)

    Dai, Xi; Zhang, Tao; Du, Zhi-Fang; Cao, Xiang-Jian; Chen, Ming-Yu; Hu, Sheng-Wen; Miao, Jun-Ying; Zhao, Bao-Xiang

    2015-01-01

    We have developed the first two-photon colorimetric and ratiometric fluorescent probe, BICO, for the detection of bisulfite (HSO 3 − ) in aqueous solution. The probe contains coumarin and benzimidazole moieties and can detect HSO 3 − based on the Michael addition reaction with a limit of detection 5.3 × 10 −8  M in phosphate-buffered saline solution. The probe was used to detect bisulfite in tap water, sugar and dry white wine. Moreover, test strips were made and used easily. We successfully applied the probe to image living cells, using one-photon fluorescence imaging. BICO overcomes the limitations in sensitivity of previously reported probes and the solvation effect of bisulfite, which demonstrates its excellent value in practical application. - Highlights: • A colorimetric and ratiometric fluorescent probe was developed. • The probe could detect bisulfite in PBS buffer solution and real samples. • Bisulfite test paper was made to naked-eye detect bisulfite. • This probe successfully used to living cell imaging in ratiometric manner

  3. An effective colorimetric and ratiometric fluorescent probe for bisulfite in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Xi [Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Zhang, Tao [Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100 (China); Du, Zhi-Fang; Cao, Xiang-Jian; Chen, Ming-Yu [Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Taishan College, Shandong University, Jinan 250100 (China); Hu, Sheng-Wen [Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Miao, Jun-Ying, E-mail: miaojy@sdu.edu.cn [Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100 (China); Zhao, Bao-Xiang, E-mail: bxzhao@sdu.edu.cn [Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2015-08-12

    We have developed the first two-photon colorimetric and ratiometric fluorescent probe, BICO, for the detection of bisulfite (HSO{sub 3}{sup −}) in aqueous solution. The probe contains coumarin and benzimidazole moieties and can detect HSO{sub 3}{sup −} based on the Michael addition reaction with a limit of detection 5.3 × 10{sup −8} M in phosphate-buffered saline solution. The probe was used to detect bisulfite in tap water, sugar and dry white wine. Moreover, test strips were made and used easily. We successfully applied the probe to image living cells, using one-photon fluorescence imaging. BICO overcomes the limitations in sensitivity of previously reported probes and the solvation effect of bisulfite, which demonstrates its excellent value in practical application. - Highlights: • A colorimetric and ratiometric fluorescent probe was developed. • The probe could detect bisulfite in PBS buffer solution and real samples. • Bisulfite test paper was made to naked-eye detect bisulfite. • This probe successfully used to living cell imaging in ratiometric manner.

  4. Highly selective detection of glutathione using a NIP/Cu2+ complex fluorescent probe

    International Nuclear Information System (INIS)

    Liang Wenrui; Zhao Zhi; Zhang Yang; Wang Qiusheng; Zhao Xin; Ouyang Jie

    2012-01-01

    A novel fluorescent compound, 4-(trimethyl ammonium chloride)acetamide-2-(1H-naphtho[2,3-d]imidazol-2-yl)phenol (TMACA-NIP), was synthesized and used as a fluorescent probe for detecting glutathione reduced (GSH). The new NIP-based probe exhibited high fluorescence in water, which was quenched during the presence of copper (II) due to the complexation between TMACA-NIP and Cu 2+ . But after adding GSH into the TMACA-NIP and Cu 2+ system, the fluorescence of TMACA-NIP was recovered because the binding force between GSH and Cu 2+ is stronger than that between TMACA-NIP and Cu 2+ , which destroys the equilibrium between NIP and copper (II) ions and releases the fluorescence probe of TMACA-NIP. This three-component competing system of NIP/Cu 2+ /GSH can be used to detect GSH simply and rapidly. - Highlights: ► A novel fluorescence probe was developed to detect GSH that operates in aqueous solution. ► TMACA-NIP was synthesized and employed as “read-out” units of NIP/Cu 2+ /GSH. ► NIP-based probe shows high selectivity over other sulfhydryl compounds.

  5. The influence of NBD fluorescent probe on model membranes containing POPC and DPPC.

    Science.gov (United States)

    Weng, Chi-Jung; Wu, Ju-Ping; Kuo, Ming-Yen; Hsueh, Ya-Wei

    2016-03-01

    To investigate the effect of fluorescent probe on the properties of membranes, we studied model membranes composed of 1,2- dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1-palmitoyl 2-oleoyl-sn-glycero-3-phosphocholine (POPC) in the presence and absence of fluorescent probe. The morphology of giant unilamellar vesicles (GUVs) has been observed as a function of temperature and composition by fluorescence microscopy using NBD-DOPE or C 6 -NBD-PC as the probe. The phase behavior of model membranes containing no fluorescent probe was investigated by 2 H-NMR spectroscopy. We found that the bright phase observed on GUVs was the fluid phase enriched in POPC and the dark phase was the gel phase enriched in DPPC. NBD-DOPE and C 6 -NBD-PC preferentially participated in the fluid-phase domains when GUVs were in the gel + fluid phase coexistence. Inclusion of both fluorescent probes (1 mol%) lowered the transition temperature of POPC/DPPC membranes. In addition, C 6 -NBD-PC exhibited a stronger effect than NBD-DOPE, which was considered to be associated with the structures of fluorescent molecules.

  6. Piezoresistor-equipped fluorescence-based cantilever probe for near-field scanning.

    Science.gov (United States)

    Kan, Tetsuo; Matsumoto, Kiyoshi; Shimoyama, Isao

    2007-08-01

    Scanning near-field optical microscopes (SNOMs) with fluorescence-based probes are promising tools for evaluating the optical characteristics of nanoaperture devices used for biological investigations, and this article reports on the development of a microfabricated fluorescence-based SNOM probe with a piezoresistor. The piezoresistor was built into a two-legged root of a 160-microm-long cantilever. To improve the displacement sensitivity of the cantilever, the piezoresistor's doped area was shallowly formed on the cantilever surface. A fluorescent bead, 500 nm in diameter, was attached to the bottom of the cantilever end as a light-intensity-sensitive material in the visible-light range. The surface of the scanned sample was simply detected by the probe's end being displaced by contact with the sample. Measuring displacements piezoresistively is advantageous because it eliminates the noise arising from the use of the optical-lever method and is free of any disturbance in the absorption or the emission spectrum of the fluorescent material at the probe tip. The displacement sensitivity was estimated to be 6.1 x 10(-6) nm(-1), and the minimum measurable displacement was small enough for near-field measurement. This probe enabled clear scanning images of the light field near a 300 x 300 nm(2) aperture to be obtained in the near-field region where the tip-sample distance is much shorter than the light wavelength. This scanning result indicates that the piezoresistive way of tip-sample distance regulation is effective for characterizing nanoaperture optical devices.

  7. A Dansyl-Rhodamine Based Fluorescent Probe for Detection of Hg2+ and Cu2.

    Science.gov (United States)

    Yuan, Shizhuang; Su, Wei; Wang, Enju

    2017-09-01

    A novel fluorescent probe based on dansyl-appended rhodamine B was developed. The probe can selectively recognize and sense Hg2+ and Cu2+ from other common metal ions by showing unique fluorescence and absorption characteristics. In MeCN/HEPES buffer solution, the probe gives a ratiometric fluorescent response to Hg2+, which was ascribed to the fluorescence resonance energy transfer from dansyl moiety to the ring-opened rhodamine B moiety, while the presence of Cu2+ causes fluorescence quenching. Beside the fluorescence change, the presence of Cu2+ and Hg2+ can induce intensive absorption at about 555 nm, which resulted in a color change from colorless to pink.

  8. Phenylethynylpyrene excimer forming hybridization probes for fluorescence SNP detection

    DEFF Research Database (Denmark)

    Prokhorenko, Igor A.; Astakhova, Irina V.; Momynaliev, Kuvat T.

    2009-01-01

    Excimer formation is a unique feature of some fluorescent dyes (e.g., pyrene) which can be used for probing the proximity of biomolecules. Pyrene excimer fluorescence has previously been used for homogeneous detection of single nucleotide polymorphism (SNP) on DNA. 1-Phenylethynylpyrene (1-1-PEPy...

  9. Molecularly imprinted fluorescent probe based on FRET for selective and sensitive detection of doxorubicin

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhifeng, E-mail: 897061147@qq.com [College of Chemistry and Materials Science, Hengyang Normal University, Key Laboratory of Functional Organometallic Materials of Hunan Province University, Hengyang 421008 (China); Deng, Peihong; Li, Junhua [College of Chemistry and Materials Science, Hengyang Normal University, Key Laboratory of Functional Organometallic Materials of Hunan Province University, Hengyang 421008 (China); Xu, Li [Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642 (China); Tang, Siping [College of Chemistry and Materials Science, Hengyang Normal University, Key Laboratory of Functional Organometallic Materials of Hunan Province University, Hengyang 421008 (China)

    2017-04-15

    Highlights: • FRET-based molecularly imprinted probe for detection of doxorubicin was prepared. • The detection limit of the probe was 13.8 nM for doxorubicin. • The FRET-based probe had a higher selectivity for the template than ordinary MIMs. - Abstract: In this work, a new type of fluorescent probe for detection of doxorubicin has been constructed by the combined use of fluorescence resonance energy transfer (FRET) technology and molecular imprinting technique (MIT). Using doxorubicin as the template, the molecularly imprinted polymer thin layer was fabricated on the surfaces of carbon dot (CD) modified silica by sol-gel polymerization. The excitation energy of the fluorescent donor (CDs) could be transferred to the fluorescent acceptor (doxorubicin). The FRET based fluorescent probe demonstrated high sensitivity and selectivity for doxorubicin. The detection limit was 13.8 nM. The fluorescent probe was successfully applied for detecting doxorubicin in doxorubicin-spiked plasmas with a recovery of 96.8–103.8%, a relative standard deviation (RSD) of 1.3–2.8%. The strategy for construction of FRET-based molecularly imprinted materials developed in this work is very promising for analytical applications.

  10. Mechanistic studies of the genetically encoded fluorescent protein voltage probe ArcLight.

    Directory of Open Access Journals (Sweden)

    Zhou Han

    Full Text Available ArcLight, a genetically encoded fluorescent protein voltage probe with a large ΔF/ΔV, is a fusion between the voltage sensing domain of the Ciona instestinalis voltage sensitive phosphatase and super ecliptic pHluorin carrying a single mutation (A227D in the fluorescent protein. Without this mutation the probe produces only a very small change in fluorescence in response to voltage deflections (∼ 1%. The large signal afforded by this mutation allows optical detection of action potentials and sub-threshold electrical events in single-trials in vitro and in vivo. However, it is unclear how this single mutation produces a probe with such a large modulation of its fluorescence output with changes in membrane potential. In this study, we identified which residues in super ecliptic pHluorin (vs eGFP are critical for the ArcLight response, as a similarly constructed probe based on eGFP also exhibits large response amplitude if it carries these critical residues. We found that D147 is responsible for determining the pH sensitivity of the fluorescent protein used in these probes but by itself does not result in a voltage probe with a large signal. We also provide evidence that the voltage dependent signal of ArcLight is not simply sensing environmental pH changes. A two-photon polarization microscopy study showed that ArcLight's response to changes in membrane potential includes a reorientation of the super ecliptic pHluorin. We also explored different changes including modification of linker length, deletion of non-essential amino acids in the super ecliptic pHluorin, adding a farnesylation site, using tandem fluorescent proteins and other pH sensitive fluorescent proteins.

  11. A novel dansyl-based fluorescent probe for highly selective detection of ferric ions.

    Science.gov (United States)

    Yang, Min; Sun, Mingtai; Zhang, Zhongping; Wang, Suhua

    2013-02-15

    A novel dansyl-based fluorescent probe was synthesized and characterized. It exhibits high selectivity and sensitivity towards Fe(3+) ion. This fluorescent probe is photostable, water soluble and pH insensitive. The limit of detection is found to be 0.62 μM. These properties make it a good fluorescent probe for Fe(3+) ion detection in both chemical and biological systems. Spike recovery test confirms its practical application in tap water samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. A novel acidic pH fluorescent probe based on a benzothiazole derivative

    Science.gov (United States)

    Ma, Qiujuan; Li, Xian; Feng, Suxiang; Liang, Beibei; Zhou, Tiqiang; Xu, Min; Ma, Zhuoyi

    2017-04-01

    A novel acidic pH fluorescent probe 1 based on a benzothiazole derivative has been designed, synthesized and developed. The linear response range covers the acidic pH range from 3.44 to 6.46, which is valuable for pH researches in acidic environment. The evaluated pKa value of the probe 1 is 4.23. The fluorescence enhancement of the studied probe 1 with an increase in hydrogen ions concentration is based on the hindering of enhanced photo-induced electron transfer (PET) process. Moreover, the pH sensor possesses a highly selective response to H+ in the presence of metal ions, anions and other bioactive small molecules which would be interfere with its fluorescent pH response. Furthermore, the probe 1 responds to acidic pH with short response time that was less than 1 min. The probe 1 has been successfully applied to confocal fluorescence imaging in live HeLa cells and can selectively stain lysosomes. All of such good properties prove it can be used to monitoring pH fluctuations in acidic environment with high sensitivity, pH dependence and short response time.

  13. Ultrasensitive near-infrared fluorescence-enhanced probe for in vivo nitroreductase imaging.

    Science.gov (United States)

    Li, Yuhao; Sun, Yun; Li, Jiachang; Su, Qianqian; Yuan, Wei; Dai, Yu; Han, Chunmiao; Wang, Qiuhong; Feng, Wei; Li, Fuyou

    2015-05-20

    Nitroreductase (NTR) can be overexpressed in hypoxic tumors, thus the selective and efficient detection of NTR is of great importance. To date, although a few optical methods have been reported for the detection of NTR in solution, an effective optical probe for NTR monitoring in vivo is still lacking. Therefore, it is necessary to develop a near-infrared (NIR) fluorescent detection probe for NTR. In this study, five NIR cyanine dyes with fluorescence reporting structure decorated with different nitro aromatic groups, Cy7-1-5, have been designed and explored for possible rapid detection of NTR. Our experimental results presented that only a para-nitro benzoate group modified cyanine probe (Cy7-1) could serve as a rapid NIR fluorescence-enhanced probe for monitoring and bioimaging of NTR. The structure-function relationship has been revealed by theoretical study. The linker connecting the detecting and fluorescence reporting groups and the nitro group position is a key factor for the formation of hydrogen bonds and spatial structure match, inducing the NTR catalytic ability enhancement. The in vitro response and mechanism of the enzyme-catalyzed reduction of Cy7-1 have been investigated through kinetic optical studies and other methods. The results have indicated that an electro-withdrawing group induced electron-transfer process becomes blocked when Cy7-1 is catalytically reduced to Cy7-NH2 by NTR, which is manifested in enhanced fluorescence intensity during the detection process. Confocal fluorescence imaging of hypoxic A549 cells has confirmed the NTR detection ability of Cy7-1 at the cellular level. Importantly, Cy7-1 can detect tumor hypoxia in a murine hypoxic tumor model, showing a rapid and significant enhancement of its NIR fluorescence characteristics suitable for fluorescence bioimaging. This method may potentially be used for tumor hypoxia diagnosis.

  14. Development of Ultrasonic Modulation Probe for Fluorescence Tomography Based on Acousto-Optic Effect

    Directory of Open Access Journals (Sweden)

    Trinh Quang Duc

    2011-01-01

    Full Text Available We have developed an ultrasonic probe for fluorescence modulation to image fluorescence within biological tissues. The probe consists of a focused ultrasonic transducer mounted on actuators for mechanical fan scanning, which can be used in contact with the measuring object aiming for clinical application. The mechanical fan scanning employed in the probe has a beneficial feature of portability. As a result, fluorescent beads, which were localized with the diameter of 2 mm at 20 mm depth in a pork meat tissue, were detected with resolution of 3 mm. The system performance denotes the feasibility of development towards the final goal of ultrasonic fluorescence modulation tomography for clinical applications.

  15. An easily Prepared Fluorescent pH Probe Based on Dansyl.

    Science.gov (United States)

    Sha, Chunming; Chen, Yuhua; Chen, Yufen; Xu, Dongmei

    2016-09-01

    A novel fluorescent pH probe from dansyl chloride and thiosemicarbazide was easily prepared and fully characterized by (1)H NMR, (13)C NMR, LC-MS, Infrared spectra and elemental analysis. The probe exhibited high selectivity and sensitivity to H(+) with a pK a value of 4.98. The fluorescence intensity at 510 nm quenched 99.5 % when the pH dropped from 10.88 to 1.98. In addition, the dansyl-based probe could respond quickly and reversibly to the pH variation and various common metal ions showed negligible interference. The recognition could be ascribed to the intramolecular charge transfer caused by the protonation of the nitrogen in the dimethylamino group.

  16. Fluorescence intensity and lifetime-based cyanide sensitive probes for physiological safeguard

    International Nuclear Information System (INIS)

    Badugu, Ramachandram; Lakowicz, Joseph R.; Geddes, Chris D.

    2004-01-01

    We characterize six new fluorescent probes that show both intensity and lifetime changes in the presence of free uncomplexed aqueous cyanide, allowing for fluorescence based cyanide sensing up to physiological safeguard levels, i.e. 2 to the anionic R-B - (CN) 3 form, a new cyanide binding mechanism which we have recently reported. The presence of an electron deficient quaternary heterocyclic nitrogen nucleus, and the electron rich cyanide bound form, provides for the intensity changes observed. We have determined the disassociation constants of the probes to be in the range ∼15-84 μM 3 . In addition we have synthesized control compounds which do not contain the boronic acid moiety, allowing for a rationale of the cyanide responses between the probe isomers to be made. The lifetime of the cyanide bound probes are significantly shorter than the free R-B(OH) 2 probe forms, providing for the opportunity of lifetime based cyanide sensing up to physiologically lethal levels. Finally, while fluorescent probes containing the boronic acid moiety have earned a well-deserved reputation for monosaccharide sensing, we show that strong bases such as CN - and OH - preferentially bind as compared to glucose, enabling the potential use of these probes for cyanide safeguard and determination in physiological fluids, especially given that physiologies do not experience any notable changes in pH

  17. New Fluorescence Probes for Biomolecules

    Directory of Open Access Journals (Sweden)

    Katarzyna Jurek

    2015-07-01

    Full Text Available Steady state fluorescence measurements have been used for the investigation of interaction between the bovine serum albumin (BSA and fluorescence probes: 3-hydroxy-2,4- bis[(3-methyl-1,3-benzoxazol-2(3H-ylidenemethyl]cyclobut-2-en-1-one (SQ6, 3-hydroxy- 2,4-bis[(3-methyl-1,3-benzothiazol-2(3H-ylidenemethyl]cyclobut-2-en-1-one (SQ7 and 3-hydroxy-2,4-bis[(1,3,3-trimethyl-1,3-dihydro-2H-indol-2-ylidenemethyl]cyclobut-2-en-1-one (SQ8. The binding constant between bovine serum albumin and squarine dyes has been determined by using both the Benesi-Hildebrand and Stern-Volmer equations. The negative value of free energy change indicates the existence of a spontaneous complexation process of BSA with squarine dyes.

  18. Application of locked nucleic acid-based probes in fluorescence in situ hybridization

    DEFF Research Database (Denmark)

    Fontenete, Sílvia; Carvalho, Daniel R; Guimarães, Nuno

    2016-01-01

    of nucleic acid mimics used as mixmers in LNA-based probes strongly influence the efficiency of detection. LNA probes with 10 to 15 mers showed the highest efficiency. Additionally, the combination of 2′-OMe RNA with LNA allowed an increase on the fluorescence intensities of the probes. Overall......Fluorescence in situ hybridization (FISH) employing nucleic acid mimics as probes is becoming an emerging molecular tool in the microbiology area for the detection and visualization of microorganisms. However, the impact that locked nucleic acid (LNA) and 2′-O-methyl (2′-OMe) RNA modifications have...

  19. Photoswitchable non-fluorescent thermochromic dye-nanoparticle hybrid probes

    OpenAIRE

    Harrington, Walter N.; Haji, Mwafaq R.; Galanzha, Ekaterina I.; Nedosekin, Dmitry A.; Nima, Zeid A.; Watanabe, Fumiya; Ghosh, Anindya; Biris, Alexandru S.; Zharov, Vladimir P.

    2016-01-01

    Photoswitchable fluorescent proteins with controllable light?dark states and spectral shifts in emission in response to light have led to breakthroughs in the study of cell biology. Nevertheless, conventional photoswitching is not applicable for weakly fluorescent proteins and requires UV light with low depth penetration in bio-tissue. Here we introduce a novel concept of photoswitchable hybrid probes consisting of thermochromic dye and absorbing nanoparticles, in which temperature-sensitive ...

  20. Detection of Pathogenic Biofilms with Bacterial Amyloid Targeting Fluorescent Probe, CDy11

    DEFF Research Database (Denmark)

    Kim, Jun Young; Sahu, Srikanta; Yau, Yin Hoe

    2016-01-01

    Bacterial biofilms are responsible for a wide range of persistent infections. In the clinic, diagnosis of biofilm-associated infections relies heavily on culturing methods, which fail to detect nonculturable bacteria. Identification of novel fluorescent probes for biofilm imaging will greatly...... facilitate diagnosis of pathogenic bacterial infection. Herein, we report a novel fluorescent probe, CDy11 (compound of designation yellow 11), which targets amyloid in the Pseudomonas aeruginosa biofilm matrix through a diversity oriented fluorescent library approach (DOFLA). CDy11 was further demonstrated...

  1. Study of protein-probe complexation equilibria and protein-surfactant interaction using charge transfer fluorescence probe methyl ester of N,N-dimethylamino naphthyl acrylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Mahanta, Subrata; Balia Singh, Rupashree; Bagchi, Arnab [Department of Chemistry University of Calcutta 92, A.P.C. Road, Kolkata 700009 (India); Nath, Debnarayan [Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Guchhait, Nikhil, E-mail: nguchhait@yahoo.co [Department of Chemistry University of Calcutta 92, A.P.C. Road, Kolkata 700009 (India)

    2010-06-15

    In this paper, we demonstrate the interaction between intramolecular charge transfer (ICT) probe-Methyl ester of N,N-dimethylamino naphthyl acrylic acid (MDMANA) with bovine serum albumin (BSA) using absorption and fluorescence emission spectroscopy. The nature of probe protein binding interaction, fluorescence resonance energy transfer from protein to probe and time resolved fluorescence decay measurement predict that the probe molecule binds strongly to the hydrophobic cavity of the protein. Furthermore, the interaction of the anionic surfactant sodium dodecyl sulphate (SDS) with water soluble protein BSA has been investigated using MDMANA as fluorescenece probe. The changes in the spectral characteristics of charge transfer fluorescence probe MDMANA in BSA-SDS environment reflects well the nature of the protein-surfactant binding interaction such as specific binding, non-cooperative binding, cooperative binding and saturation binding.

  2. In situ hybridization of phytoplankton using fluorescently labeled rRNA probes

    OpenAIRE

    Groben, R.; Medlin, Linda

    2005-01-01

    Fluorescently-labelled molecular probes were used to identify and characterise phytoplankton species using in situ hybridisation coupled with fluorescence microscopy and flow cytometry. The application of this technique is sometimes problematic, because of the many different species with which this method is to be used. Problems that may occur are: probe penetration versus maintanance of cell stability, strong autofluorescence and/or cell lost during the sample processing. Here we present a m...

  3. Chromenoquinoline-based thiol probes: a study on the quencher position for controlling fluorescent Off-On characteristics.

    Science.gov (United States)

    Kand, Dnyaneshwar; Kalle, Arunasree Marasanapalli; Talukdar, Pinaki

    2013-02-13

    The design, synthesis and thiol sensing ability of chromenoquinoline-based fluorescent probes 4, 5 and 6 and are reported here. The relative position of the maleimide moiety was varied along the chromenoquinoline fluorophore to decrease the background fluorescence. Lower background fluorescence in probes 4 and 6 was rationalized by the smaller k(r)/k(nr) values compared to that of probe 5. An intramolecular charge transfer (ICT) mechanism was proposed for quenching and the extent was dependent on the position of the maleimide quencher. Fluorescent Off-On characteristics were evaluated by theoretical calculations. All probes were selective only towards thiol containing amino acids. Thiol sensing by probes 4 and 6 were much better compared to 5. Probe 4 displayed a better fluorescence response for less hindered thiol (185-, 223- and 156-fold for Hcy, Cys and GSH, respectively), while for probe 6, a higher enhancement in fluorescence was observed with more hindered thiols (180-, 205- and 245-fold for Hcy, Cys and GSH, respectively). The better response to bulkier thiol, GSH by probe 6 was attributed to the steric crowding at the C-4 position and bulkiness of the GSH group which force the succinimide unit to be in a nearly orthogonal conformation. This spatial arrangement was important in reducing the fluorescence quenching ability of the succinimide moiety. The application of probes 4, 5 and 6 was demonstrated by naked eye detection thiols using a 96-well plate system as well as by live-cell imaging.

  4. Cyanine-based probe\\tag-peptide pair fluorescence protein imaging and fluorescence protein imaging methods

    Science.gov (United States)

    Mayer-Cumblidge, M. Uljana; Cao, Haishi

    2013-01-15

    A molecular probe comprises two arsenic atoms and at least one cyanine based moiety. A method of producing a molecular probe includes providing a molecule having a first formula, treating the molecule with HgOAc, and subsequently transmetallizing with AsCl.sub.3. The As is liganded to ethanedithiol to produce a probe having a second formula. A method of labeling a peptide includes providing a peptide comprising a tag sequence and contacting the peptide with a biarsenical molecular probe. A complex is formed comprising the tag sequence and the molecular probe. A method of studying a peptide includes providing a mixture containing a peptide comprising a peptide tag sequence, adding a biarsenical probe to the mixture, and monitoring the fluorescence of the mixture.

  5. Selective imaging of cancer cells with a pH-activatable lysosome-targeting fluorescent probe.

    Science.gov (United States)

    Shi, Rongguang; Huang, Lu; Duan, Xiaoxue; Sun, Guohao; Yin, Gui; Wang, Ruiyong; Zhu, Jun-Jie

    2017-10-02

    Fluorescence imaging with tumor-specific fluorescent probe has emerged as a tool to aid surgeons in the identification and removal of tumor tissue. We report here a new lysosome-targeting fluorescent probe (NBOH) with BODIPY fluorephore to distinguish tumor tissue out of normal tissue based on different pH environment. The probe exhibited remarkable pH-dependent fluorescence behavior in a wide pH range from 3.0 to 11.0, especially a sensitive pH-dependent fluorescence change at pH range between 3.5 and 5.5, corresponding well to the acidic microenvironment of tumor cells, in aqueous solution. The response time of NBOH was extremely short and the photostability was proved to be good. Toxicity test and fluorescence cell imaging together with a sub-cellular localization study were carried out revealing its low biotoxicity and good cell membrane permeability. And NBOH was successfully applied to the imaging of tumor tissue in tumor-bearing mice suggesting potential application to surgery as a tumor-specific probe. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Copper nanoclusters as probes for turn-on fluorescence sensing of L-lysine.

    Science.gov (United States)

    Zhang, Mingming; Qiao, Juan; Zhang, Shufeng; Qi, Li

    2018-05-15

    Herein, a unique protocol based on copper nanoclusters (CuNCs) probe for turn-on fluorescence sensing of L-lysine was developed. The fluorescent CuNCs with ovalbumin as the stabilizer was prepared by a simple, one-step and green method. When 370 nm was used as the excitation wavelength, the resultant CuNCs exhibited a pale blue fluorescence with the maximum emission at 440 nm. Interestingly, existence of L-lysine evoked the obvious fluorescence intensity increase of CuNCs. The detection limit of the proposed method for L-lysine was 5.5 μM, with a good linear range from 10.0 μM to 1.0 mM (r 2 = 0.999). Moreover, the possible mechanism for enhanced fluorescence intensity of CuNCs by addition of L-lysine was explored and discussed briefly. Further, the as-prepared fluorescent CuNCs was successfully applied in detection of L-lysine in urine. Our results demonstrated that L-lysine could be monitored by the probe, providing new path for construction of CuNCs as fluorescent probes and showing great potential in quantification of L-lysine in real samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Polarization of fluorescence: a probe of molecular autoionization

    International Nuclear Information System (INIS)

    Leroi, G.E.; Dehmer, J.L.; Parr, A.C.; Poliakoff, E.D.

    1983-01-01

    The polarization of fluorescence from excited-state molecular photoions provides a direct probe of the photoionization dynamics and the symmetry signatures of autoionizing resonances. Measurements on CO 2 and CS 2 are presented as examples

  8. Instant live-cell super-resolution imaging of cellular structures by nanoinjection of fluorescent probes.

    Science.gov (United States)

    Hennig, Simon; van de Linde, Sebastian; Lummer, Martina; Simonis, Matthias; Huser, Thomas; Sauer, Markus

    2015-02-11

    Labeling internal structures within living cells with standard fluorescent probes is a challenging problem. Here, we introduce a novel intracellular staining method that enables us to carefully control the labeling process and provides instant access to the inner structures of living cells. Using a hollow glass capillary with a diameter of <100 nm, we deliver functionalized fluorescent probes directly into the cells by (di)electrophoretic forces. The label density can be adjusted and traced directly during the staining process by fluorescence microscopy. We demonstrate the potential of this technique by delivering and imaging a range of commercially available cell-permeable and nonpermeable fluorescent probes to cells.

  9. Fluorescent probe based on heteroatom containing styrylcyanine: pH-sensitive properties and bioimaging in vivo

    International Nuclear Information System (INIS)

    Yang, Xiaodong; Gao, Ya; Huang, Zhibing; Chen, Xiaohui; Ke, Zhiyong; Zhao, Peiliang; Yan, Yichen; Liu, Ruiyuan; Qu, Jinqing

    2015-01-01

    A novel fluorescent probe based on heteroatom containing styrylcyanine is synthesized. The fluorescence of probe is bright green in basic and neutral media but dark orange in strong acidic environments, which could be reversibly switched. Such behavior enables it to work as a fluorescent pH sensor in the solution state and a chemosensor for detecting acidic and basic volatile organic compounds. Analyses by NMR spectroscopy confirm that the protonation or deprotonation of pyridinyl moiety is responsible for the sensing process. In addition, the fluorescent microscopic images of probe in live cells and zebrafish are achieved successfully, suggesting that the probe has good cell membrane permeability and low cytotoxicity. - Graphical abstract: A novel styrylcyanine-based fluorescent pH probe was designed and synthesized, the fluorescence of which is bright green in basic and neutral media but dark orange in strong acidic environments. Such behavior enables it to work as a fluorescent pH sensor in solution states, and a chemosensor for detecting volatile organic compounds with high acidity and basicity in solid state. In addition, it can be used for fluorescent imaging in living cell and living organism. - Highlights: • Bright green fluorescence was observed in basic and neutral media. • Dark orange fluorescence was found in strong acidic environments. • Volatile organic compounds with high acidity and basicity could be detected. • Bioimaging in living cell and living organism was achieved successfully

  10. Highly selective and rapidly responsive fluorescent probe for hydrogen sulfide detection in wine.

    Science.gov (United States)

    Wang, Hao; Wang, Jialin; Yang, Shaoxiang; Tian, Hongyu; Liu, Yongguo; Sun, Baoguo

    2018-08-15

    A new fluorescent probe 6-(2, 4-dinitrophenoxy)-2-naphthonitrile (probe 1) was designed and synthesized for the selective detection of hydrogen sulfide (H 2 S). The addition of H 2 S to a solution of probe 1 resulted in a marked fluorescence turn-on alongside a visual color change from colorless to light yellow. Importantly, this distinct color response indicated that probe 1 could be used as a visual sensor for H 2 S. Moreover, probe 1 was successfully used as a signal tool to determine the H 2 S levels in beer and red wine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Hemoglobin detection using carbon dots as a fluorescence probe.

    Science.gov (United States)

    Barati, Ali; Shamsipur, Mojtaba; Abdollahi, Hamid

    2015-09-15

    Herein, we have described the application of high fluorescent carbon dots (CDs) without any surface modification as a simple and fast responding fluorescence probe for sensitive and selective determination of hemoglobin (Hb) in the presence of H2O2. Although Hb itself was able to quench the fluorescence of CDs, based on the inner filter effect (IFE) of the protein that affects both excitation and emission spectra of CDs, the presence of H2O2 resulted in further improvement of the sensitivity of Hb detection. The assay is based on the reaction of Hb with H2O2 that generates reactive oxygen species including hydroxyl (OH•) and superoxide (O2(•-)) radicals under heme degradation and/or iron release from Hb and the subsequent reaction of hydroxyl radicals, as strong oxidizing agents, with CDs resulting in high fluorescence quenching. The proposed probe was used for determination of Hb in concentration range of 1-100 nM with a detection limit of 0.4 nM. The method was successfully applied to the determination of Hb in human blood samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Determination of paraquat in water samples using a sensitive fluorescent probe titration method.

    Science.gov (United States)

    Yao, Feihu; Liu, Hailong; Wang, Guangquan; Du, Liming; Yin, Xiaofen; Fu, Yunlong

    2013-06-01

    Paraquat (PQ), a nonselective herbicide, is non-fluorescent in aqueous solutions. Thus, its determination through direct fluorescent methods is not feasible. The supramolecular inclusion interaction of PQ with cucurbit[7]uril was studied by a fluorescent probe titration method. Significant quenching of the fluorescence intensity of the cucurbit[7]uril-coptisine fluorescent probe was observed with the addition of PQ. A new fluorescent probe titration method with high selectivity and sensitivity at the ng/mL level was developed to determine PQ in aqueous solutions with good precision and accuracy based on the significant quenching of the supramolecular complex fluorescence intensity. The proposed method was successfully used in the determination of PQ in lake water, tap water, well water, and ditch water in an agricultural area, with recoveries of 96.73% to 105.77%. The fluorescence quenching values (deltaF) showed a good linear relationship with PQ concentrations from 1.0 x 10(-8) to 1.2 x 10(-5) mol/L with a detection limit of 3.35 x 10(-9) mol/L. In addition, the interaction models of the supramolecular complexes formed between the host and the guest were established using theoretical calculations. The interaction mechanism between the cucurbit[7]uril and PQ was confirmed by 1H NMR spectroscopy.

  13. A rhodamine chromene-based turn-on fluorescence probe for selectively imaging Cu2+ in living cell

    Science.gov (United States)

    Liu, Wei-Yong; Li, Hai-Ying; Lv, Hong-Shui; Zhao, Bao-Xiang; Miao, Jun-Ying

    We describe the development of a rhodamine chromene-based turn-on fluorescence probe to monitor the intracellular Cu2+ level in living cells. The new fluorescent probe with a chlorine group in chromene moiety exhibits good membrane-permeable property than previous reported because the predicted lipophilicity of present probe 4 is stronger than that of methoxyl substituted probe in our previous work (CLogP of 4: 8.313, CLogP of methoxyl substituted probe: 7.706), and a fluorescence response toward Cu2+ under physiological conditions with high sensitivity and selectivity, and facilitates naked-eye detection of Cu2+. The fluorescence intensity was remarkably increased upon the addition of Cu2+ within 1 or 2 min, while the other sixteen metal ions caused no significant effect.

  14. A Pyridazine-Based Fluorescent Probe Targeting Aβ Plaques in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Yong Dae Park

    2018-01-01

    Full Text Available Accumulation of β-amyloid (Aβ plaques comprising Aβ40 and Aβ42 in the brain is the most significant factor in the pathogenesis of Alzheimer’s disease (AD. Thus, the detection of Aβ plaques has increasingly attracted interest in the context of AD diagnosis. In the present study, a fluorescent pyridazine-based dye that can detect and image Aβ plaques was designed and synthesized, and its optical properties in the presence of Aβ aggregates were evaluated. An approximately 34-fold increase in emission intensity was exhibited by the fluorescent probe after binding with Aβ aggregates, for which it showed high affinity (KD = 0.35 µM. Moreover, the reasonable hydrophobic properties of the probe (log P = 2.94 allow it to penetrate the blood brain barrier (BBB. In addition, the pyridazine-based probe was used in the histological costaining of transgenic mouse (APP/PS1 brain sections to validate the selective binding of the probe to Aβ plaques. The results suggest that the pyridazine-based compound has the potential to serve as a fluorescent probe for the diagnosis of AD.

  15. Cyanine-based probe\\tag-peptide pair for fluorescence protein imaging and fluorescence protein imaging methods

    Science.gov (United States)

    Mayer-Cumblidge, M Uljana [Richland, WA; Cao, Haishi [Richland, WA

    2010-08-17

    A molecular probe comprises two arsenic atoms and at least one cyanine based moiety. A method of producing a molecular probe includes providing a molecule having a first formula, treating the molecule with HgOAc, and subsequently transmetallizing with AsCl.sub.3. The As is liganded to ethanedithiol to produce a probe having a second formula. A method of labeling a peptide includes providing a peptide comprising a tag sequence and contacting the peptide with a biarsenical molecular probe. A complex is formed comprising the tag sequence and the molecular probe. A method of studying a peptide includes providing a mixture containing a peptide comprising a peptide tag sequence, adding a biarsenical probe to the mixture, and monitoring the fluorescence of the mixture.

  16. A Fluorescent Probe for Sensitive Detection of Hydrazine and Its Application in Red Wine and Water.

    Science.gov (United States)

    Wang, Jialin; Wang, Hao; Yang, Shaoxiang; Tian, Hongyu; Liu, Yongguo; Hao, Yanfeng; Zhang, Jie; Sun, Baoguo

    2018-01-01

    A fluorescent probe, 7-(diethylamino)-2-oxo-2H-chromene-4-carbaldehyde (probe 1), was designed and synthesized for the sensitive detection of hydrazine. The addition of N 2 H 4 caused the fluorescence intensity of probe 1 to decrease. The probe's fluorescence was turn-off after adding N 2 H 4 , which could be observed under UV light at 365 nm. Moreover, once treated with different concentrations N 2 H 4 solutions, the solution color change could be distinguished, which indicates that probe 1 could be used as a visual sensor for hydrazine. Moreover, probe 1 can be used as a signal tool to determine hydrazine levels in solutions, such as red wine and water.

  17. Genetically encoded fluorescent probe to visualize phosphatidylinositol

    Czech Academy of Sciences Publication Activity Database

    Eisenreichová, Andrea; Humpolíčková, Jana; Bouřa, Evžen

    2017-01-01

    Roč. 284, Suppl 1 (2017), s. 364-365 ISSN 1742-464X. [FEBS Congress /42./ From Molecules to Cells and Back. 10.09.2017-14.09.2017, Jerusalem] R&D Projects: GA ČR GJ15-21030Y; GA MŠk LO1302 Institutional support: RVO:61388963 Keywords : phosphatidylinositol * fluorescent probe Subject RIV: CE - Biochemistry

  18. Fluorescent nanodiamonds as non-photobleachable responsive probes

    Czech Academy of Sciences Publication Activity Database

    Cígler, Petr

    2016-01-01

    Roč. 14, č. 5 (2016), s. 232 ISSN 2336-7202. [Sjezd českých a slovenských chemických společností /68./. 04.09.2016-07.09.2016, Praha] R&D Projects: GA ČR(CZ) GA16-16336S Institutional support: RVO:61388963 Keywords : fluorescent nanodiamonds * FNDs * probes Subject RIV: CG - Electrochemistry

  19. Fluorescent Reporters and Biosensors for Probing the Dynamic Behavior of Protein Kinases

    Directory of Open Access Journals (Sweden)

    Juan A. González-Vera

    2015-11-01

    Full Text Available Probing the dynamic activities of protein kinases in real-time in living cells constitutes a major challenge that requires specific and sensitive tools tailored to meet the particular demands associated with cellular imaging. The development of genetically-encoded and synthetic fluorescent biosensors has provided means of monitoring protein kinase activities in a non-invasive fashion in their native cellular environment with high spatial and temporal resolution. Here, we review existing technologies to probe different dynamic features of protein kinases and discuss limitations where new developments are required to implement more performant tools, in particular with respect to infrared and near-infrared fluorescent probes and strategies which enable improved signal-to-noise ratio and controlled activation of probes.

  20. A new fluorescent pH probe for imaging lysosomes in living cells.

    Science.gov (United States)

    Lv, Hong-Shui; Huang, Shu-Ya; Xu, Yu; Dai, Xi; Miao, Jun-Ying; Zhao, Bao-Xiang

    2014-01-15

    A new rhodamine B-based pH fluorescent probe has been synthesized and characterized. The probe responds to acidic pH with short response time, high selectivity and sensitivity, and exhibits a more than 20-fold increase in fluorescence intensity within the pH range of 7.5-4.1 with the pKa value of 5.72, which is valuable to study acidic organelles in living cells. Also, it has been successfully applied to HeLa cells, for its low cytotoxicity, brilliant photostability, good membrane permeability and no 'alkalizing effect' on lysosomes. The results demonstrate that this probe is a lysosome-specific probe, which can selectively stain lysosomes and monitor lysosomal pH changes in living cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Visualizing tributyltin (TBT) in bacterial aggregates by specific rhodamine-based fluorescent probes.

    Science.gov (United States)

    Jin, Xilang; Hao, Likai; She, Mengyao; Obst, Martin; Kappler, Andreas; Yin, Bing; Liu, Ping; Li, Jianli; Wang, Lanying; Shi, Zhen

    2015-01-01

    Here we present the first examples of fluorescent and colorimetric probes for microscopic TBT imaging. The fluorescent probes are highly selective and sensitive to TBT and have successfully been applied for imaging of TBT in bacterial Rhodobacter ferrooxidans sp. strain SW2 cell-EPS-mineral aggregates and in cell suspensions of the marine cyanobacterium Synechococcus PCC 7002 by using confocal laser scanning microscopy. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Synergistic Combination of Unquenching and Plasmonic Fluorescence Enhancement in Fluorogenic Nucleic Acid Hybridization Probes.

    Science.gov (United States)

    Vietz, Carolin; Lalkens, Birka; Acuna, Guillermo P; Tinnefeld, Philip

    2017-10-11

    Fluorogenic nucleic acid hybridization probes are widely used for detecting and quantifying nucleic acids. The achieved sensitivity strongly depends on the contrast between a quenched closed form and an unquenched opened form with liberated fluorescence. So far, this contrast was improved by improving the quenching efficiency of the closed form. In this study, we modularly combine these probes with optical antennas used for plasmonic fluorescence enhancement and study the effect of the nanophotonic structure on the fluorescence of the quenched and the opened form. As quenched fluorescent dyes are usually enhanced more by fluorescence enhancement, a detrimental reduction of the contrast between closed and opened form was anticipated. In contrast, we could achieve a surprising increase of the contrast with full additivity of quenching of the dark form and fluorescence enhancement of the bright form. Using single-molecule experiments, we demonstrate that the additivity of the two mechanisms depends on the perfect quenching in the quenched form, and we delineate the rules for new nucleic acid probes for enhanced contrast and absolute brightness. Fluorogenic hybridization probes optimized not only for quenching but also for the brightness of the open form might find application in nucleic acid assays with PCR avoiding detection schemes.

  3. A novel polymer probe for Zn(II) detection with ratiometric fluorescence signal

    Science.gov (United States)

    Diao, Haipeng; Guo, Lixia; Liu, Wen; Feng, Liheng

    2018-05-01

    A conjugated polymer probe comprised of fluorene, quinolone and benzothiazole units was designed and synthesized by the Suzuki coupling reaction. Through the studies of photophysical and thermal properties, the polymer displays blue-emitting feature and good thermal stability. A ratiometric fluorescence signal of the probe for Zn(II) was observed in ethanol with a new emission peak at 555 nm. The probe possesses a high selectivity and sensitivity for Zn(II) during familiar metal ions in ethanol. The detection limit of the probe for Zn (II) is up to 10-8 mol/L. The electron distributions of the polymer before and after bonding with Zn (II) were investigated by the Gaussian 09 software, which agreed with the experimental results. Noticeably, based on the color property of the probe with Zn(II), a series of color test paper were developed for visual detecting Zn(II) ions. This work helps to provide a platform or pattern for the development of polymer fluorescence probe in the chemosensor field.

  4. An off-on fluorescence probe targeting mitochondria based on oxidation-reduction response for tumor cell and tissue imaging

    Science.gov (United States)

    Yao, Hanchun; Cao, Li; Zhao, Weiwei; Zhang, Suge; Zeng, Man; Du, Bin

    2017-10-01

    In this study, a tumor-targeting poly( d, l-lactic-co-glycolic acid) (PLGA) loaded "off-on" fluorescent probe nanoparticle (PFN) delivery system was developed to evaluate the region of tumor by off-on fluorescence. The biodegradability of the nanosize PFN delivery system readily released the probe under tumor acidic conditions. The probe with good biocompatibility was used to monitor the intracellular glutathione (GSH) of cancer cells and selectively localize to mitochondria for tumor imaging. The incorporated tumor-targeting probe was based on the molecular photoinduced electron transfer (PET) mechanism preventing fluorescence ("off" state) and could be easily released under tumor acidic conditions. However, the released tumor-targeting fluorescence probe molecule was selective towards GSH with high selectivity and an ultra-sensitivity for the mitochondria of cancer cells and tissues significantly increasing the probe molecule fluorescence signal ("on" state). The tumor-targeting fluorescence probe showed sensitivity to GSH avoiding interference from cysteine and homocysteine. The PFNs could enable fluorescence-guided cancer imaging during cancer therapy. This work may expand the biological applications of PFNs as a diagnostic reagent, which will be beneficial for fundamental research in tumor imaging. [Figure not available: see fulltext.

  5. A small molecular pH-dependent fluorescent probe for cancer cell imaging in living cell.

    Science.gov (United States)

    Ma, Junbao; Li, Wenqi; Li, Juanjuan; Shi, Rongguang; Yin, Gui; Wang, Ruiyong

    2018-05-15

    A novel pH-dependent two-photon fluorescent molecular probe ABMP has been prepared based on the fluorophore of 2, 4, 6-trisubstituted pyridine. The probe has an absorption wavelength at 354 nm and corresponding emission wavelength at 475 nm with the working pH range from 2.20 to 7.00, especially owning a good liner response from pH = 2.40 to pH = 4.00. ABMP also has excellent reversibility, photostability and selectivity which promotes its ability in analytical application. The probe can be excited with a two-photon fluorescence microscopy and the fluorescence cell imaging indicated that the probe can distinguish Hela cancer cells out of normal cells with a two-photon fluorescence microscopy which suggested its potential application in tumor cell detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Characterization of a new series of fluorescent probes for imaging membrane order.

    Directory of Open Access Journals (Sweden)

    Joanna M Kwiatek

    Full Text Available Visualization and quantification of lipid order is an important tool in membrane biophysics and cell biology, but the availability of environmentally sensitive fluorescent membrane probes is limited. Here, we present the characterization of the novel fluorescent dyes PY3304, PY3174 and PY3184, whose fluorescence properties are sensitive to membrane lipid order. In artificial bilayers, the fluorescence emission spectra are red-shifted between the liquid-ordered and liquid-disordered phases. Using ratiometric imaging we demonstrate that the degree of membrane order can be quantitatively determined in artificial liposomes as well as live cells and intact, live zebrafish embryos. Finally, we show that the fluorescence lifetime of the dyes is also dependent on bilayer order. These probes expand the current palate of lipid order-sensing fluorophores affording greater flexibility in the excitation/emission wavelengths and possibly new opportunities in membrane biology.

  7. In Vivo Fluorescence Lifetime Imaging Monitors Binding of Specific Probes to Cancer Biomarkers

    Science.gov (United States)

    Ardeshirpour, Yasaman; Chernomordik, Victor; Zielinski, Rafal; Capala, Jacek; Griffiths, Gary; Vasalatiy, Olga; Smirnov, Aleksandr V.; Knutson, Jay R.; Lyakhov, Ilya; Achilefu, Samuel; Gandjbakhche, Amir; Hassan, Moinuddin

    2012-01-01

    One of the most important factors in choosing a treatment strategy for cancer is characterization of biomarkers in cancer cells. Particularly, recent advances in Monoclonal Antibodies (MAB) as primary-specific drugs targeting tumor receptors show that their efficacy depends strongly on characterization of tumor biomarkers. Assessment of their status in individual patients would facilitate selection of an optimal treatment strategy, and the continuous monitoring of those biomarkers and their binding process to the therapy would provide a means for early evaluation of the efficacy of therapeutic intervention. In this study we have demonstrated for the first time in live animals that the fluorescence lifetime can be used to detect the binding of targeted optical probes to the extracellular receptors on tumor cells in vivo. The rationale was that fluorescence lifetime of a specific probe is sensitive to local environment and/or affinity to other molecules. We attached Near-InfraRed (NIR) fluorescent probes to Human Epidermal Growth Factor 2 (HER2/neu)-specific Affibody molecules and used our time-resolved optical system to compare the fluorescence lifetime of the optical probes that were bound and unbound to tumor cells in live mice. Our results show that the fluorescence lifetime changes in our model system delineate HER2 receptor bound from the unbound probe in vivo. Thus, this method is useful as a specific marker of the receptor binding process, which can open a new paradigm in the “image and treat” concept, especially for early evaluation of the efficacy of the therapy. PMID:22384092

  8. In vivo fluorescence lifetime imaging monitors binding of specific probes to cancer biomarkers.

    Directory of Open Access Journals (Sweden)

    Yasaman Ardeshirpour

    Full Text Available One of the most important factors in choosing a treatment strategy for cancer is characterization of biomarkers in cancer cells. Particularly, recent advances in Monoclonal Antibodies (MAB as primary-specific drugs targeting tumor receptors show that their efficacy depends strongly on characterization of tumor biomarkers. Assessment of their status in individual patients would facilitate selection of an optimal treatment strategy, and the continuous monitoring of those biomarkers and their binding process to the therapy would provide a means for early evaluation of the efficacy of therapeutic intervention. In this study we have demonstrated for the first time in live animals that the fluorescence lifetime can be used to detect the binding of targeted optical probes to the extracellular receptors on tumor cells in vivo. The rationale was that fluorescence lifetime of a specific probe is sensitive to local environment and/or affinity to other molecules. We attached Near-InfraRed (NIR fluorescent probes to Human Epidermal Growth Factor 2 (HER2/neu-specific Affibody molecules and used our time-resolved optical system to compare the fluorescence lifetime of the optical probes that were bound and unbound to tumor cells in live mice. Our results show that the fluorescence lifetime changes in our model system delineate HER2 receptor bound from the unbound probe in vivo. Thus, this method is useful as a specific marker of the receptor binding process, which can open a new paradigm in the "image and treat" concept, especially for early evaluation of the efficacy of the therapy.

  9. A flavone-based turn-on fluorescent probe for intracellular cysteine/homocysteine sensing with high selectivity.

    Science.gov (United States)

    Zhang, Jian; Lv, Yanlin; Zhang, Wei; Ding, Hui; Liu, Rongji; Zhao, Yongsheng; Zhang, Guangjin; Tian, Zhiyuan

    2016-01-01

    A new type of flavone-based fluorescent probe (DMAF) capable of cysteine (Cys)/homocysteine (Hcy) sensing with high selectivity over other amino acids was developed. Such type of probe undergoes Cys/Hcy-mediated cyclization reaction with the involvement of its aldehyde group, which suppresses of the photoinduced electron transfer (PET) process of the probe molecule and consequently leads to the enhancement of fluorescence emission upon excitation using visible light. The formation of product of the Cys/Hcy-mediated cyclization reaction was confirmed and the preliminary fluorescence imaging experiments revealed the biocompatibility of the as-prepared probe and validated its practicability for intracellular Cys/Hcy sensing. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Fluorescent Probes for Analysis and Imaging of Monoamine Oxidase Activity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dokyoung; Jun, Yong Woong; Ahn, Kyo Han [POSTECH, Pohang (Korea, Republic of)

    2014-05-15

    Monoamine oxidases catalyze the oxidative deamination of dietary amines and amine neurotransmitters, and assist in maintaining the homeostasis of the amine neurotransmitters in the brain. Dysfunctions of these enzymes can cause neurological and behavioral disorders including Parkinson's and Alzheimer's diseases. To understand their physiological roles, efficient assay methods for monoamine oxidases are essential. Reviewed in this Perspective are the recent progress in the development of fluorescent probes for monoamine oxidases and their applications to enzyme assays in cells and tissues. It is evident that still there is strong need for a fluorescent probe with desirable substrate selectivity and photophysical properties to challenge the much unsolved issues associated with the enzymes and the diseases.

  11. A benzothiazole-based fluorescent probe for hypochlorous acid detection and imaging in living cells

    Science.gov (United States)

    Nguyen, Khac Hong; Hao, Yuanqiang; Zeng, Ke; Fan, Shengnan; Li, Fen; Yuan, Suke; Ding, Xuejing; Xu, Maotian; Liu, You-Nian

    2018-06-01

    A benzothiazole-based turn-on fluorescent probe with a large Stokes shift (190 nm) has been developed for hypochlorous acid detection. The probe displays prompt fluorescence response for HClO with excellent selectivity over other reactive oxygen species as well as a low detection limit of 0.08 μM. The sensing mechanism involves the HClO-induced specific oxidation of oxime moiety of the probe to nitrile oxide, which was confirmed by HPLC-MS technique. Furthermore, imaging studies demonstrated that the probe is cell permeable and can be applied to detect HClO in living cells.

  12. Design and Evaluation of Novel Polymyxin Fluorescent Probes

    Directory of Open Access Journals (Sweden)

    Bo Yun

    2017-11-01

    Full Text Available Polymyxins (polymyxin B and colistin are cyclic lipopeptide antibiotics that serve as a last-line defence against Gram-negative “superbugs”. In the present study, two novel fluorescent polymyxin probes were designed through regio-selective modifications of the polymyxin B core structure at the N-terminus and the hydrophobic motif at positions 6 and 7. The resulting probes, FADDI-285 and FADDI-286 demonstrated comparable antibacterial activity (MICs 2–8 mg/L to polymyxin B and colistin (MICs 0.5–8 mg/L against a panel of gram-negative clinical isolates of Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa. These probes should prove to be of considerable utility for imaging cellular uptake and mechanistic investigations of these important last-line antibiotics.

  13. Cu2+-labeled dansyl compounds as fluorescent and PET probes for imaging apoptosis.

    Science.gov (United States)

    Han, Junyan; Wang, Xukui; Yu, MeiXiang

    2016-11-15

    Compound DNSTT-Cu 2+ , a novel chelate of Cu 2+ with DOTA conjugated to a fluorescent dansyl fragment, is developed for imaging cell apoptosis. Apoptotic U-87MG cells could be selectively visualized by the fluorescence of DNSTT-Cu 2+ from cytoplasm of cells, confirmed by the fluorescence of apoptosis cells co-labeled with Alexa Fluor 568-labeled annexin V, a conventional probe for selectively labeling membranes of apoptosis cells. A radioactive 64 Cu 2 + analog, DNSTT- 64 Cu 2+ , was easily synthesized, providing a potential PET probe for imaging apoptosis in vivo. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Spectrally-resolved response properties of the three most advanced FRET based fluorescent protein voltage probes.

    Directory of Open Access Journals (Sweden)

    Hiroki Mutoh

    Full Text Available Genetically-encoded optical probes for membrane potential hold the promise of monitoring electrical signaling of electrically active cells such as specific neuronal populations in intact brain tissue. The most advanced class of these probes was generated by molecular fusion of the voltage sensing domain (VSD of Ci-VSP with a fluorescent protein (FP pair. We quantitatively compared the three most advanced versions of these probes (two previously reported and one new variant, each involving a spectrally distinct tandem of FPs. Despite these different FP tandems and dissimilarities within the amino acid sequence linking the VSD to the FPs, the amplitude and kinetics of voltage dependent fluorescence changes were surprisingly similar. However, each of these fluorescent probes has specific merits when considering different potential applications.

  15. Detection of Dysplastic Intestinal Adenomas Using a Fluorescent Folate Imaging Probe

    Directory of Open Access Journals (Sweden)

    Wei-Tsung Chen

    2005-01-01

    Full Text Available Macrophages have long been recognized as a prominent component of tumors. Activated macrophages overexpress folate receptors and we used this phenomenon to image inflammatory reactions in colon dysplasia using a fluorescent folate probe (FFP. APCΔ468 mice injected with FFP showed fluorescent adenomas (target-to-background ratio, adenoma vs. adjacent normal mucosa, of 2.46 ± 0.41, significantly higher (p < .001 than adenomas in animals injected with a non-folate-containing control probe. Fluorescence-activated cell-sorting analysis revealed a 3-fold higher content of Mac1-positive cells in colonic adenomas compared with normal adjacent mucosa (6.8% vs. 2.2%, and confirmed the source of FFP-positive cells to be primarily an F4/80-positive macrophage subpopulation. Taken together, these results indicate that FFP potentially can be used to image dysplastic intestinal adenomas in vivo.

  16. Synchronous fluorescence based biosensor for albumin determination by cooperative binding of fluorescence probe in a supra-biomolecular host-protein assembly.

    Science.gov (United States)

    Patra, Digambara

    2010-01-15

    A synchronous fluorescence probe based biosensor for estimation of albumin with high sensitivity and selectivity was developed. Unlike conventional fluorescence emission or excitation spectral measurements, synchronous fluorescence measurement offered exclusively a new synchronous fluorescence peak in the shorter wavelength range upon binding of chrysene with protein making it an easy identification tool for albumin determination. The cooperative binding of a fluorescence probe, chrysene, in a supramolecular host-protein assembly during various albumin assessments was investigated. The presence of supramolecular host molecules such as beta-cyclodextrin, curucurbit[6]uril or curucurbit[7]uril have little influence on sensitivity or limit of detection during albumin determination but reduced dramatically interference from various coexisting metal ion quenchers/enhancers. Using the present method the limit of detection for BSA and gamma-Globulin was found to be 0.005 microM which is more sensitive than reported values. Copyright 2009 Elsevier B.V. All rights reserved.

  17. An intramolecular charge transfer process based fluorescent probe for monitoring subtle pH fluctuation in living cells.

    Science.gov (United States)

    Sun, Mingtai; Du, Libo; Yu, Huan; Zhang, Kui; Liu, Yang; Wang, Suhua

    2017-01-01

    It is crucial to monitor intracellular pH values and their fluctuation since the organelles of cells have different pH distribution. Herein we construct a new small molecule fluorescent probe HBT-O for monitoring the subtle pH values within the scope of neutral to acid in living cells. The probe exhibited good water solubility, a marked turquoise to olivine emission color change in response to pH, and tremendous fluorescence hypochromatic shift of ∼50nm (1718cm -1 ) as well as the increased fluorescence intensity when the pH value changed from neutral to acid. Thus, the probe HBT-O can distinguish the subtle changes in the range of normal pH values from neutral to acid with significant fluorescence changes. These properties can be attributed to the intramolecular charge transfer (ICT) process of the probe upon protonation in buffer solutions at varied pH values. Moreover, the probe was reversible and nearly non-toxic for living cells. Then the probe was successfully used to detect pH fluctuation in living cells by exhibiting different fluorescence colors and intensity. These findings demonstrate that the probe will find useful applications in biology and biomedical research. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. The application of anti-ESAT-6 monoclonal antibody fluorescent probe in ex vivo near-infrared fluorescence imaging in mice with pulmonary tuberculosis.

    Science.gov (United States)

    Feng, Feng; Zhang, Haoling; Zhu, Zhaoqin; Li, Cong; Shi, Yuxin; Zhang, Zhiyong

    2014-09-01

    Here, we aimed to assess the feasibility of anti-ESAT-6 monoclonal antibody (mAb) coupling with IR783 and rhodamine fluorescent probe in the detection of ESAT-6 expression in tuberculosis tissue of mice using near-infrared fluorescence imaging. IR783 and rhodamine were conjugated to the anti-ESAT-6 mAb or IgG. Mice in the experimental group were injected with fluorescence-labeled mAb probe, and mice in the control group were injected with fluorescence-labeled non-specific IgG antibody. Twenty-four hours later, the lung tissue of mice was examined using ex vivo near-infrared fluorescence imaging. In addition, the contrast-to-noise ratio (CNR) was calculated by measuring the signal intensities of the pulmonary lesions, normal lung tissue and background noise. The frozen lung tissue section was examined under fluorescence microscopy and compared with hemoxylin and eosin (HE) staining. The ex vivo near-infrared fluorescence imaging showed that the fluorescence signal in the lung tuberculosis lesions in the experimental group was significantly enhanced, whereas there was only a weak fluorescence signal or even no fluorescence signal in the control group. CNR values were 64.40 ± 7.02 (n = 6) and 8.75 ± 3.87 (n = 6), respectively (t = 17.01, p fluorescence accumulation distribution detected under fluorescence microscopy was consistent with HE staining of the tuberculosis region. In conclusion, anti-ESAT-6 mAb fluorescent probe could target and be applied in specific ex vivo imaging of mice tuberculosis, and may be of further use in tuberculosis in living mice. Copyright © 2013 John Wiley & Sons, Ltd.

  19. A dansyl-rhodamine ratiometric fluorescent probe for Hg2+ based on FRET mechanism.

    Science.gov (United States)

    Xie, Puhui; Guo, Fengqi; Wang, Lingyu; Yang, Sen; Yao, Denghui; Yang, Guoyu

    2015-03-01

    Based on resonance energy transfer (FRET) from dansyl to rhodamine 101, a new fluorescent probe (compound 1) containing rhodamine 101 and a dansyl unit was synthesized for detecting Hg(2+) through ratiometric sensing in DMSO aqueous solutions. This probe shows a fast, reversible and selective response toward Hg(2+) in a wide pH range. Hg(2+) induced ring-opening reactions of the spirolactam rhodamine moiety of 1, leading to the formation of fluorescent derivatives that can serve as the FRET acceptors. Very large stokes shift (220 nm) was observed in this case. About 97-fold increase in fluorescence intensity ratio was observed upon its binding with Hg(2+).

  20. Probing phosphate ion via the europium(III)-modulated fluorescence of gold nanoclusters

    International Nuclear Information System (INIS)

    Ding, Shou-Nian; Li, Chun-Mei; Gao, Bu-Hong; Kargbo, Osman; Zhou, Chan; Chen, Xi; Wan, Neng

    2014-01-01

    Fluorescent gold nanoclusters (Au-NCs) were synthesized by a one-pot method using 11-mercaptoundecanoic acid as a reducing and capping reagent. It is found that the red fluorescence of the Au-NCs is quenched by the introduction of Eu(III) at pH 7.0, but that fluorescence is restored on addition of phosphate. The Au-NCs were investigated by transmission electron microscopy and fluorescence photographs. The effect of pH on fluorescence was studied in the range from pH 6 to 10 and is found to be strong. Based on these findings, we have developed an assay for phosphate. Ions such as citrate, Fe(CN) 6 3− , SO 4 2− , S 2 O 8 2− , Cl − , HS − , Br − , AcO − , NO 2 − , SCN − , ClO 4 − , HCO 3 − , NO 3 − , Cd 2+ , Ba 2+ , Zn 2+ , Mg 2+ , and glutamate do not interfere, but ascorbate and Fe 3+ can quench Au-NCs fluorescence. The fluorescent nanocluster probe responds to phosphate in the range from 0.18 to 250 μM, and the detection limit is 180 nM. The probe also responds to pyrophosphate and ATP. (author)

  1. A sensitive fluorescent probe for the polar solvation dynamics at protein-surfactant interfaces.

    Science.gov (United States)

    Singh, Priya; Choudhury, Susobhan; Singha, Subhankar; Jun, Yongwoong; Chakraborty, Sandipan; Sengupta, Jhimli; Das, Ranjan; Ahn, Kyo-Han; Pal, Samir Kumar

    2017-05-17

    Relaxation dynamics at the surface of biologically important macromolecules is important taking into account their functionality in molecular recognition. Over the years it has been shown that the solvation dynamics of a fluorescent probe at biomolecular surfaces and interfaces account for the relaxation dynamics of polar residues and associated water molecules. However, the sensitivity of the dynamics depends largely on the localization and exposure of the probe. For noncovalent fluorescent probes, localization at the region of interest in addition to surface exposure is an added challenge compared to the covalently attached probes at the biological interfaces. Here we have used a synthesized donor-acceptor type dipolar fluorophore, 6-acetyl-(2-((4-hydroxycyclohexyl)(methyl)amino)naphthalene) (ACYMAN), for the investigation of the solvation dynamics of a model protein-surfactant interface. A significant structural rearrangement of a model histone protein (H1) upon interaction with anionic surfactant sodium dodecyl sulphate (SDS) as revealed from the circular dichroism (CD) studies is nicely corroborated in the solvation dynamics of the probe at the interface. The polarization gated fluorescence anisotropy of the probe compared to that at the SDS micellar surface clearly reveals the localization of the probe at the protein-surfactant interface. We have also compared the sensitivity of ACYMAN with other solvation probes including coumarin 500 (C500) and 4-(dicyanomethylene)-2-methyl-6-(p-dimethylamino-styryl)-4H-pyran (DCM). In comparison to ACYMAN, both C500 and DCM fail to probe the interfacial solvation dynamics of a model protein-surfactant interface. While C500 is found to be delocalized from the protein-surfactant interface, DCM becomes destabilized upon the formation of the interface (protein-surfactant complex). The timescales obtained from this novel probe have also been compared with other femtosecond resolved studies and molecular dynamics simulations.

  2. Hoechst tagging: a modular strategy to design synthetic fluorescent probes for live-cell nucleus imaging.

    Science.gov (United States)

    Nakamura, Akinobu; Takigawa, Kazumasa; Kurishita, Yasutaka; Kuwata, Keiko; Ishida, Manabu; Shimoda, Yasushi; Hamachi, Itaru; Tsukiji, Shinya

    2014-06-11

    We report a general strategy to create small-molecule fluorescent probes for the nucleus in living cells. Our strategy is based on the attachment of the DNA-binding Hoechst compound to a fluorophore of interest. Using this approach, simple fluorescein, BODIPY, and rhodamine dyes were readily converted to novel turn-on fluorescent nucleus-imaging probes.

  3. A benzothiazole-based fluorescent probe for distinguishing and bioimaging of Hg{sup 2+} and Cu{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Biao; Huang, Liyan; Su, Wei; Duan, Xiaoli; Li, Haitao, E-mail: haitao-li@hunnu.edu.cn; Yao, Shouzhuo

    2017-02-15

    A new benzothiazole-based fluorescent probe 2-(benzo[d]thiazol-2-yl)-4-(1,3- dithian-2-yl)phenol (BT) with two different reaction sites, a thioacetal group (site 1 for Hg{sup 2+}), and O and N atoms of the benzothiazole dye (site 2 for Cu{sup 2+}), was designed and synthesized. The probe BT showed ratiometric fluorescent response to Hg{sup 2+} and fluorescence quenching behavior to Cu{sup 2+}, which induces naked-eye fluorescent color changes from green to blue and colorless, respectively. Moreover, it displayed highly sensitivity and selectivity toward Hg{sup 2+} and Cu{sup 2+} without interference from other metal ions. The sensing mechanisms were also confirmed by {sup 1}H NMR titration, mass spectrum and Job's plot analyses. Finally, probe BT was successfully used for fluorescent imaging of Hg{sup 2+} and Cu{sup 2+} in living cells, demonstrating its potential applications in biological science. - Highlights: • A benzothiazole-based probe for multiple metal ions has been firstly developed. • The differential sensing mechanisms of Hg{sup 2+} and Cu{sup 2+} relied on different reaction. • The probe could be used to monitor Hg{sup 2+} and Cu{sup 2+}in vitro and in vivo with distinct fluorescence changes.

  4. Glucose oxidase-functionalized fluorescent gold nanoclusters as probes for glucose

    International Nuclear Information System (INIS)

    Xia, Xiaodong; Long, Yunfei; Wang, Jianxiu

    2013-01-01

    Highlights: ► A glucose oxidase/gold nanocluster conjugates formed by etching chemistry. ► Integration of the bioactivities and fluorescence properties within a single unit. ► These conjugates serve as novel fluorescent probe for glucose. -- Abstract: Creation and application of noble metal nanoclusters have received continuous attention. By integrating enzyme activity and fluorescence for potential applications, enzyme-capped metal clusters are more desirable. This work demonstrated a glucose oxidase (an enzyme for glucose)-functionalized gold cluster as probe for glucose. Under physiological conditions, such bioconjugate was successfully prepared by an etching reaction, where tetrakis (hydroxylmethyl) phosphonium-protected gold nanoparticle and thioctic acid-modified glucose oxidase were used as precursor and etchant, respectively. These bioconjugates showed unique fluorescence spectra (λ em max = 650 nm, λ ex max = 507 nm) with an acceptable quantum yield (ca. 7%). Moreover, the conjugated glucose oxidase remained active and catalyzed reaction of glucose and dissolved O 2 to produce H 2 O 2 , which quenched quantitatively the fluorescence of gold clusters and laid a foundation of glucose detection. A linear range of 2.0 × 10 −6 –140 × 10 −6 M and a detection limit of 0.7 × 10 −6 M (S/N = 3) were obtained. Also, another horseradish peroxidase/gold cluster bioconjugate was produced by such general synthesis method. Such enzyme/metal cluster bioconjugates represented a promising class of biosensors for biologically important targets in organelles or cells

  5. Gd(iii)-doped carbon dots as a dual fluorescent-MRI probe

    KAUST Repository

    Bourlinos, Athanasios B.; Bakandritsos, Aristides; Kouloumpis, Antonios; Gournis, Dimitrios; Krysmann, Marta; Giannelis, Emmanuel P.; Polakova, Katerina; Safarova, Klara; Hola, Katerina; Zboril, Radek

    2012-01-01

    We describe the synthesis of Gd(iii)-doped carbon dots as dual fluorescence-MRI probes for biomedical applications. The derived Gd(iii)-doped carbon dots show uniform particle size (3-4 nm) and gadolinium distribution and form stable dispersions in water. More importantly, they exhibit bright fluorescence, strong T1-weighted MRI contrast and low cytotoxicity. © The Royal Society of Chemistry 2012.

  6. Colorimetric and Fluorescent Bimodal Ratiometric Probes for pH Sensing of Living Cells.

    Science.gov (United States)

    Liu, Yuan-Yuan; Wu, Ming; Zhu, Li-Na; Feng, Xi-Zeng; Kong, De-Ming

    2015-06-01

    pH measurement is widely used in many fields. Ratiometric pH sensing is an important way to improve the detection accuracy. Herein, five water-soluble cationic porphyrin derivatives were synthesized and their optical property changes with pH value were investigated. Their pH-dependent assembly/disassembly behaviors caused significant changes in both absorption and fluorescence spectra, thus making them promising bimodal ratiometric probes for both colorimetric and fluorescent pH sensing. Different substituent identity and position confer these probes with different sensitive pH-sensing ranges, and the substituent position gives a larger effect. By selecting different porphyrins, different signal intensity ratios and different fluorescence excitation wavelengths, sensitive pH sensing can be achieved in the range of 2.1-8.0. Having demonstrated the excellent reversibility, good accuracy and low cytotoxicity of the probes, they were successfully applied in pH sensing inside living cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. An Amidochlorin-Based Colorimetric Fluorescent Probe for Selective Cu2+ Detection

    Directory of Open Access Journals (Sweden)

    Wenting Li

    2016-01-01

    Full Text Available The design and synthesis of selective and sensitive chemosensors for the quantification of environmentally and biologically important ionic species has attracted widespread attention. Amidochlorin p6 (ACP; an effective colorimetric and fluorescent probe for copper ions (Cu2+ in aqueous solution derived from methyl pheophorbide-a (MPa was designed and synthesized. A remarkable color change from pale yellow to blue was easily observed by the naked eye upon addition of Cu2+; and a fluorescence quenching was also determined. The research of fluorescent quenching of ACP-Cu2+ complexation showed the detection limit was 7.5 × 10−8 mol/L; which suggested that ACP can act as a high sensitive probe for Cu2+ and can be used to quantitatively detect low levels of Cu2+ in aqueous solution. In aqueous solution the probe exhibits excellent selectivity and sensitivity toward Cu2+ ions over other metal ions (M = Zn2+; Ni2+; Ba2+; Ag+; Co2+; Na+; K+; Mg2+; Cd2+; Pb2+; Mn2+; Fe3+; and Ca2+. The obvious change from pale yellow to blue upon the addition of Cu2+ could make it a suitable “naked eye” indicator for Cu2+.

  8. Two colorimetric and ratiometric fluorescence probes for hydrogen sulfide based on AIE strategy of α-cyanostilbenes

    Science.gov (United States)

    Zhao, Baoying; Yang, Binsheng; Hu, Xiangquan; Liu, Bin

    2018-06-01

    Aggregation-induced emission (AIE) active fluorescent probes have attracted great potential in biological sensors. In this paper two cyanostilbene based fluorescence chemoprobe Cya-NO2 (1) and Cya-N3 (2) were developed and evaluated for the selective and sensitive detection of hydrogen sulfide (H2S). Both of these probes behave aggression-induced emission (AIE) activity which fluoresces in the red region with a large Stokes shift. They exhibit rapid response to H2S with enormous colorimetric and ratiometric fluorescent changes. They are readily employed for assessing intracellular H2S levels.

  9. Fluorescent and Colorimetric Molecular Recognition Probe for Hydrogen Bond Acceptors

    OpenAIRE

    Pike, Sarah Jane; Hunter, Christopher Alexander

    2018-01-01

    The association constants for formation of 1 : 1 complexes between a H-bond donor, 1-naphthol, and a diverse range of charged and neutral H-bond acceptors have been measured using UV/vis absorption and fluorescence emission titrations. The performance of 1-naphthol as a dual colorimetric and fluorescent molecular recognition probe for determining the H-bond acceptor (HBA) parameters of charged and neutral solutes has been investigated in three solvents. The data were employed to establish sel...

  10. Far-red fluorescent probes for canonical and non-canonical nucleic acid structures: current progress and future implications.

    Science.gov (United States)

    Suseela, Y V; Narayanaswamy, Nagarjun; Pratihar, Sumon; Govindaraju, Thimmaiah

    2018-02-05

    The structural diversity and functional relevance of nucleic acids (NAs), mainly deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), are indispensable for almost all living organisms, with minute aberrations in their structure and function becoming causative factors in numerous human diseases. The standard structures of NAs, termed canonical structures, are supported by Watson-Crick hydrogen bonding. Under special physiological conditions, NAs adopt distinct spatial organisations, giving rise to non-canonical conformations supported by hydrogen bonding other than the Watson-Crick type; such non-canonical structures have a definite function in controlling gene expression and are considered as novel diagnostic and therapeutic targets. Development of molecular probes for these canonical and non-canonical DNA/RNA structures has been an active field of research. Among the numerous probes studied, probes with turn-on fluorescence in the far-red (600-750 nm) region are highly sought-after due to minimal autofluorescence and cellular damage. Far-red fluorescent probes are vital for real-time imaging of NAs in live cells as they provide good resolution and minimal perturbation of the cell under investigation. In this review, we present recent advances in the area of far-red fluorescent probes of DNA/RNA and non-canonical G-quadruplex structures. For the sake of continuity and completeness, we provide a brief overview of visible fluorescent probes. Utmost importance is given to design criteria, characteristic properties and biological applications, including in cellulo imaging, apart from critical discussion on limitations of the far-red fluorescent probes. Finally, we offer current and future prospects in targeting canonical and non-canonical NAs specific to cellular organelles, through sequence- and conformation-specific far-red fluorescent probes. We also cover their implications in chemical and molecular biology, with particular focus on decoding various disease

  11. A new rhodamine-based fluorescent probe for the discrimination of Fe"3"+ from Fe"2"+

    International Nuclear Information System (INIS)

    You, Qi Hua; Huang, Hua Bin; Zhuang, Zhi Xia; Wang, Xiao Ru; Chan, Wing Hong

    2016-01-01

    A new rhodamine-based fluorescent probe for the discrimination of Fe"3"+ from Fe"2"+ has been designed and investigated. The probe shows an immediate visual color change in response to Fe"3"+ and Cu"2"+, while only Fe"3"+ triggers the fluorescent change of the probe. The existence of large amount of other metal ions shows negligible interference in the detection of Fe"3"+. The association constant K_a_s_s of 4.64 × 10"8 M"-"2 (R"2 = 0.994) and 5.38 × 10"8 M"-"2 (R"2 = 0.991) of the complex was derived from UV/Vis and fluorescence titration assuming 1:2 stoichiometry of probe–Fe"3"+ complex, respectively

  12. [A cell-based detection of ciguatoxin using sodium fluorescence probe].

    Science.gov (United States)

    Yuan, Jian-hui; Yang, Hui; Tang, Huan-wen; Huang, Wei; Xu, Xin-yun; Liu, Jian-jun; Ke, Yue-bin; Cheng, Jin-quan; Zhuang, Zhi-xiong

    2011-04-01

    To establish a cell-based detection method of ciguatoxin using fluorescence assay. Mouse neuroblastoma N-2A cells were exposed to ouabain and veratridine and different concentrations of standard ciguatoxin samples (P-CTX-1) to establish the curvilinear relationship between the toxin dosage and fluorescence intensity using the sodium fluorescence probe CoroNaTM Green. The toxicity curvilinear relationship was also generated between the toxin dosage and cell survival using CCK-8 method. Based on these standard curves, the presence of ciguatoxin was detected in 33 samples of deep-sea coral fish. A correlation was found between the detection results of cell-based fluorescence assay and cytotoxicity assay, whose detection limit reached 103 g/ml and 1012 g/ml, respectively. The cell-based fluorescent assay sensitivity showed a higher sensitivity than cytotoxicity assay with a 2-4 h reduction of the detection time. The cell-based fluorescent assay can quickly and sensitively detect ciguatoxin and may serve as a good option for preliminary screening of the toxin.

  13. In vivo near-infrared fluorescence imaging of amyloid-β plaques with a dicyanoisophorone-based probe

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jia-ying; Zhou, Lin-fu; Li, Yu-kun [School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006 (China); Chen, Shuo-bin [School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006 (China); Yan, Jin-wu, E-mail: yjw@scut.edu.cn [School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006 (China); Zhang, Lei, E-mail: lzhangce@scut.edu.cn [School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006 (China)

    2017-04-08

    A dicyanoisophorone-based probe with two-photon absorption and NIR emission was developed for the in vivo fluorescence imaging of amyloid-β plaques, which exhibited high selectivity toward Aβ aggregates over other intracellular proteins. The detection limit was calculated to be as low as 109 nM. In vivo imaging studies indicated that the probe could penetrate the blood–brain barrier and label Aβ plaques in the living transgenic mice, and its specific binding to cerebral Aβ plaques was further confirmed by one- and two-photon ex vivo fluorescence imaging. All these results featured its promising application prospects for amyloid-β sensing in basic research and biomedical research. - Highlights: • A two-photon probe (DCIP-1) with NIR emission based on dicyanoisophorone group, for the in vivo fluorescence imaging of amyloid-β plaques, was reported. • The probe showed turn-on fluorescence (13-fold) with a large Stokes shift upon inserting into the hydrophobic pockets of Aβ aggregates. • The in vivo imaging studies indicated that the probe can penetrate the blood–brain barrier efficiently and discriminate APP/PS1 transgenic mice from WT controls.

  14. In vivo near-infrared fluorescence imaging of amyloid-β plaques with a dicyanoisophorone-based probe

    International Nuclear Information System (INIS)

    Zhu, Jia-ying; Zhou, Lin-fu; Li, Yu-kun; Chen, Shuo-bin; Yan, Jin-wu; Zhang, Lei

    2017-01-01

    A dicyanoisophorone-based probe with two-photon absorption and NIR emission was developed for the in vivo fluorescence imaging of amyloid-β plaques, which exhibited high selectivity toward Aβ aggregates over other intracellular proteins. The detection limit was calculated to be as low as 109 nM. In vivo imaging studies indicated that the probe could penetrate the blood–brain barrier and label Aβ plaques in the living transgenic mice, and its specific binding to cerebral Aβ plaques was further confirmed by one- and two-photon ex vivo fluorescence imaging. All these results featured its promising application prospects for amyloid-β sensing in basic research and biomedical research. - Highlights: • A two-photon probe (DCIP-1) with NIR emission based on dicyanoisophorone group, for the in vivo fluorescence imaging of amyloid-β plaques, was reported. • The probe showed turn-on fluorescence (13-fold) with a large Stokes shift upon inserting into the hydrophobic pockets of Aβ aggregates. • The in vivo imaging studies indicated that the probe can penetrate the blood–brain barrier efficiently and discriminate APP/PS1 transgenic mice from WT controls.

  15. Two sugar-rhodamine "turn-on" fluorescent probes for the selective detection of Fe3 +

    Science.gov (United States)

    Chen, Qing; Fang, Zhijie

    2018-03-01

    Two new sugar-rhodamine fluorescent probes (RDG1 and RDG2) have been synthesized and characterized by 1H NMR, 13C NMR and HRMS. Their UV-Vis, fluorescence spectra and fluorescence-response to Fe3 + are investigated and discussed. RDG1 had a very nice linear relationship between UV absorbance and Fe3 + concentration with the correlation coefficient as high as 0.997 and the detection limit is 3.46 × 10- 6 M. Upon the addition of Fe3 +, the spirolactam ring of RDG1 was opened and a 1:1 metal ligand complex was formed from Job's plot. The results showed that RDG1 can be used as an effective fluorescent probe for selective detection of Fe3 + in water. RDG2 was incorporated the well-known rhodamine group and a water-soluble D-glucose group within one molecule and can be used for detecting Fe3 + in natural water as a selective fluorescent sensor. The addition of Fe3 + into RDG2 resulted in a strongly enhanced fluorescence as well as color change of solution from colorless to pink. Job's plot of RDG2 indicated 1:1 stoichiometry of RDG2-Fe3 +. RDG2 can serve as a probe for Fe3 + between pH = 4.0 to 7.0 and it's detection limit is 2.09 × 10- 6 M. The OFF-ON fluorescent mechanisms of RDG1-Fe3 + and RDG2-Fe3 + are proposed.

  16. Selective and sensitive fluorescence-shift probes based on two dansyl groups for mercury(ii) ion detection.

    Science.gov (United States)

    Ma, Li-Jun; Liu, Jialun; Deng, Lefang; Zhao, Meili; Deng, Zhifu; Li, Xutian; Tang, Jian; Yang, Liting

    2014-11-01

    Two probes ( and ) bearing two dansyl fluorophores were synthesized and applied to the detection of mercury(ii) ions in aqueous solution. These probes exhibited a selective response to Hg(2+) in a buffered solution, with high sensitivity and a unique fluorescence response signal which displayed a blue-shift effect in the fluorescence emission peak. The Hg(2+) recognition mechanisms of the probes were determined by NMR spectroscopy, ESI-MS and UV-vis spectroscopy. The results showed that probe and mercury(ii) ions formed an unusual 2:2 stoichiometric ratio complex, while probe and Hg(2+) formed a multidentate complex with a stoichiometric ratio of 2:1.

  17. Sensitive and Selective Ratiometric Fluorescence Probes for Detection of Intracellular Endogenous Monoamine Oxidase A.

    Science.gov (United States)

    Wu, Xiaofeng; Li, Lihong; Shi, Wen; Gong, Qiuyu; Li, Xiaohua; Ma, Huimin

    2016-01-19

    Monoamine oxidase A (MAO-A) is known to widely exist in most cell lines in the body, and its dysfunction (unusually high or low levels of MAO-A) is thought to be responsible for several psychiatric and neurological disorders. Thus, a sensitive and selective method for evaluating the relative MAO-A levels in different live cells is urgently needed to better understand the function of MAO-A, but to our knowledge such a method is still lacking. Herein, we rationally design two new ratiometric fluorescence probes (1 and 2) that can sensitively and selectively detect MAO-A. The probes are constructed by incorporating a recognition group of propylamine into the fluorescent skeleton of 1,8-naphthalimide, and the detection mechanism is based on amine oxidation and β-elimination to release the fluorophore (4-hydroxy-N-butyl-1,8-naphthalimide), which is verified by HPLC analysis. Reaction of the probes with MAO-A produces a remarkable fluorescence change from blue to green, and the ratio of fluorescence intensity at 550 and 454 nm is directly proportional to the concentration of MAO-A in the ranges of 0.5-1.5 and 0.5-2.5 μg/mL with detection limits of 1.1 and 10 ng/mL (k = 3) for probes 1 and 2, respectively. Surprisingly, these probes show strong fluorescence responses to MAO-A but almost none to MAO-B (one of two isoforms of MAO), indicating superior ability to distinguish MAO-A from MAO-B. The high specificity of the probes for MAO-A over MAO-B is further supported by different inhibitor experiments. Moreover, probe 1 displays higher sensitivity than probe 2 and is thus investigated to image the relative MAO-A levels in different live cells, such as HeLa and NIH-3T3 cells. It is found that the concentration of endogenous MAO-A in HeLa cells is approximately 1.8 times higher than that in NIH-3T3 cells, which is validated by the result from an ELISA kit. Additionally, the proposed probes may find more uses in the specific detection of MAO-A between the two isoforms of MAO

  18. Pulsed Laser Deposition of Polymers Doped with Fluorescent Probes. Application to Environmental Sensors

    International Nuclear Information System (INIS)

    Rebollar, E; Villavieja, Mm; Gaspard, S; Oujja, M; Corrales, T; Georgiou, S; Domingo, C; Bosch, P; Castillejo, M

    2007-01-01

    Pulsed laser deposition (PLD) has been used to obtain thin films of poly(methyl methacrylate) and polystyrene doped with fluorescent probes, amino aromatic compounds S5 and S6, that could be used to sense the presence of contaminating environmental agents. These dopants both in solution and inserted in polymeric films are sensitive to changes in pH, viscosity and polarity, increasing their fluorescence emission and/or modifying the position of their emission band. Films deposits on quartz substrates, obtained by irradiating targets with a Ti:Sapphire laser (800 nm, 120 fs pulse) were analyzed by optical and Environmental Scanning Electron Microscopy, Fluorescence Microscopy, Laser-Induced Fluorescence, Micro Raman Spectroscopy and Flow Injection Analysis-Mass Spectrometry. The transfer of the polymer and the probe to the substrate is observed to be strongly dependent on the optical absorption coefficient of the polymeric component of the target at the irradiation wavelength

  19. Synthesis and application of a highly selective copper ions fluorescent probe based on the coumarin group

    Science.gov (United States)

    He, Guangjie; Liu, Xiangli; Xu, Jinhe; Ji, Liguo; Yang, Linlin; Fan, Aiying; Wang, Songjun; Wang, Qingzhi

    2018-02-01

    A highly selective copper ions fluorescent probe based on the coumarin-type Schiff base derivative 1 (probe) was produced by condensation reaction between coumarin carbohydrazide and 1H-indazole-3-carbaldehyde. The UV-vis spectroscopy showed that the maximum absorption peak of compound 1 appeared at 439 nm. In the presence of Cu2 + ions, the maximum peak decreased remarkably compared with other physiological important metal ions and a new absorption peak at 500 nm appeared. The job's plot experiments showed that complexes of 1:2 binding mode were formed in CH3CN:HEPES (3:2, v/v) solution. Compound 1 exhibited a strong blue fluorescence. Upon addition of copper ions, the fluorescence gradually decreased and reached a plateau with the fluorescence quenching rate up to 98.73%. The detection limit for Cu2 + ions was estimated to 0.384 ppm. Fluorescent microscopy experiments demonstrated that probe 1 had potential to be used to investigate biological processes involving Cu2 + ions within living cells.

  20. Glucose oxidase-functionalized fluorescent gold nanoclusters as probes for glucose

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Xiaodong [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China); Long, Yunfei, E-mail: l_yunfei927@163.com [School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China); Wang, Jianxiu, E-mail: jxiuwang@csu.edu.cn [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)

    2013-04-15

    Highlights: ► A glucose oxidase/gold nanocluster conjugates formed by etching chemistry. ► Integration of the bioactivities and fluorescence properties within a single unit. ► These conjugates serve as novel fluorescent probe for glucose. -- Abstract: Creation and application of noble metal nanoclusters have received continuous attention. By integrating enzyme activity and fluorescence for potential applications, enzyme-capped metal clusters are more desirable. This work demonstrated a glucose oxidase (an enzyme for glucose)-functionalized gold cluster as probe for glucose. Under physiological conditions, such bioconjugate was successfully prepared by an etching reaction, where tetrakis (hydroxylmethyl) phosphonium-protected gold nanoparticle and thioctic acid-modified glucose oxidase were used as precursor and etchant, respectively. These bioconjugates showed unique fluorescence spectra (λ{sub em} {sub max} = 650 nm, λ{sub ex} {sub max} = 507 nm) with an acceptable quantum yield (ca. 7%). Moreover, the conjugated glucose oxidase remained active and catalyzed reaction of glucose and dissolved O{sub 2} to produce H{sub 2}O{sub 2}, which quenched quantitatively the fluorescence of gold clusters and laid a foundation of glucose detection. A linear range of 2.0 × 10{sup −6}–140 × 10{sup −6} M and a detection limit of 0.7 × 10{sup −6} M (S/N = 3) were obtained. Also, another horseradish peroxidase/gold cluster bioconjugate was produced by such general synthesis method. Such enzyme/metal cluster bioconjugates represented a promising class of biosensors for biologically important targets in organelles or cells.

  1. Fluorescent porous silicon biological probes with high quantum efficiency and stability.

    Science.gov (United States)

    Tu, Chang-Ching; Chou, Ying-Nien; Hung, Hsiang-Chieh; Wu, Jingda; Jiang, Shaoyi; Lin, Lih Y

    2014-12-01

    We demonstrate porous silicon biological probes as a stable and non-toxic alternative to organic dyes or cadmium-containing quantum dots for imaging and sensing applications. The fluorescent silicon quantum dots which are embedded on the porous silicon surface are passivated with carboxyl-terminated ligands through stable Si-C covalent bonds. The porous silicon bio-probes have shown photoluminescence quantum yield around 50% under near-UV excitation, with high photochemical and thermal stability. The bio-probes can be efficiently conjugated with antibodies, which is confirmed by a standard enzyme-linked immunosorbent assay (ELISA) method.

  2. Hairpin-like fluorescent probe for imaging of NF-κB transcription factor activity.

    Science.gov (United States)

    Metelev, Valeri; Zhang, Surong; Tabatadze, David; Bogdanov, Alexei

    2011-04-20

    Three oligodeoxyribonucleotides (ODN) covalently labeled with near-infrared (NIR) fluorochromes were synthesized and characterized with a goal of comparing in vitro a hairpin-based and a duplex-based FRET probe designed for the detection of human recombinant NF-κB p50/p65 heterodimer binding to DNA. Using deoxyguanosine phosphoramidite with a phosphorus-linked aminoethylene (diethylene glycol) hydrophilic linker, we synthesized ODNs with internucleoside reactive sites. The hairpin loop amino linker was modified with IRDye 800CW (FRET acceptor), and the 3'-end was modified with Cy5.5 (FRET donor) using a dithio-linker. To obtain a duplex probe, we conjugated Cy5.5 and 800CW to complementary strands at the distance of ten base pairs in the resultant duplex. No quenching of dyes was observed in either probe. The FRET efficiency was higher in the duplex (71%) than in the hairpin (56%) due to a more favorable distance between the donor and the acceptor. However, the hairpin design allowed more precise ratiometric measurement of fluorescence intensity changes as a result of NF-κB p50/p65 binding to the probe. We determined that as a result of binding there was a statistically significant increase of fluorescence intensity of Cy5.5 (donor) due to a decrease of FRET if normalized by 800CW intensity measured independently of FRET. We conclude that the hairpin based probe design allows for the synthesis of a dual fluorescence imaging probe that renders signal changes that are simple to interpret and stoichiometrically correct for detecting transcription factor-DNA interactions.

  3. A new simple phthalimide-based fluorescent probe for highly selective cysteine and bioimaging for living cells

    Science.gov (United States)

    Shen, Youming; Zhang, Xiangyang; Zhang, Youyu; Zhang, Chunxiang; Jin, Junling; Li, Haitao

    2017-10-01

    A new turn-on phthalimide fluorescent probe has designed and synthesized for sensing cysteine (Cys) based on excited state intramolecular proton transfer (ESIPT) process. It is consisted of a 3-hydroxyphthalimide derivative moiety as the fluorophore and an acrylic ester group as a recognition receptor. The acrylic ester acts as an ESIPT blocking agent. Upon addition of cystein, intermolecular nucleophilic attack of cysteine on acrylic ester releases the fluorescent 3-hydroxyphthalimide derivative, thereby enabling the ESIPT process and leading to enhancement of fluorescence. The probe displays high sensitivity, excellent selectivity and with large Stokes shift toward cysteine. The linear interval range of the fluorescence titration ranged from 0 to 1.0 × 10- 5 M and detection limit is low (6 × 10- 8 M). In addition, the probe could be used for bio-imaging in living cells.

  4. Establishment of a novel immunoassay system for rapid detection of 2,4-dichlorophenoxyacetic acid residues based on magnetic-fluorescent probes

    Directory of Open Access Journals (Sweden)

    WANG Yuanfeng

    2014-12-01

    Full Text Available A novel immunoassay system based on magnetic-fluorescent probes was established to detect 2.4-dichlorophenoxyacetic acid (2,4-D residue in liquid system in food and agricultural products.The composites of anti-2,4-D antibody bound to Fe3O4@SiO2-NH2 was employed as the solid phase as well as magnetic probe.The composites composed of 2,4-D-OVA labeled with CdTe@SiO2-NH2 as the fluorescent probe was used to produce fluorescent signal.2,4-D and its fluorescent probe competed binding the antibody on the surface of the magnetic probe.The optimization of 2,4-D-OVA dosage,coupling PH and reaction time in preparing the fluorescent probe were investigated.It showed that in the synthesis of fluorescent probe 8.2 was the optimal pH,70 min was the optimal coupling time,500 μL amount of 2,4-D-OVA.The standard curve was obtained with the concentration of 2,4-D and the maximum fluorescence intensity.The detection limit of the assay was gotten and it was 3.55×10-8.One reaction step and one washing step were needed.The assay significantly shortened the testing time and amplified the detection signal compared with classic ELISA.

  5. Synovitis in mice with inflammatory arthritis monitored with quantitative analysis of dynamic contrast-enhanced NIR fluorescence imaging using iRGD-targeted liposomes as fluorescence probes

    Directory of Open Access Journals (Sweden)

    Wu H

    2018-03-01

    Full Text Available Hao Wu,1,2,* Haohan Wu,1,2,* Yanni He,1 Zhen Gan,2 Zhili Xu,1,2 Meijun Zhou,1,2 Sai Liu,1,2 Hongmei Liu1 1Department of Ultrasonography, Guangdong Second Provincial General Hospital Affiliated to Southern Medical University, Guangzhou, China; 2Department of Ultrasonography, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China *These authors contributed equally to this work Background: Rheumatoid arthritis (RA is a common inflammatory disorder characterized primarily by synovitis and pannus formation in multiple joints, causing joints destruction and irreversible disability in most cases. Early diagnosis and effective therapy monitoring of RA are of importance for achieving the favorable prognosis. Methods: We first prepared the targeted fluorescence probes, and then explored the feasibility of near-infrared (NIR fluorescence molecular imaging to detect and evaluate the RA via the targeted fluorescence probes by quantitative analysis in this study. Results: The targeted fluorescence probes (indocyanine green-liposomes decorated with iRGD peptide [iLPs] was successfully prepared. The quantitative analysis found that strong fluorescence signal was detected in inflamed paws and the fluorescence signal in iLPs group was 3.03-fold higher than that in non-targeted (indocyanine green-liposomes decorated without iRGD peptide [LPs] group (P<0.01 at 15 min after injection, whereas the fluorescence signal from iLPs signal can almost not be observed in the non-inflamed paws, showing the high sensitivity and accuracy for arthritis by the NIR fluorescence imaging based on iLPs. Conclusion: The NIR fluorescence imaging by iLPs may facilitate improved arthritis diagnosis and early assessment of the disease progression by providing an in vivo characterization of angiogenesis in inflammatory joint diseases. Keywords: rheumatoid arthritis, synovitis, diagnosis, near-infrared fluorescence imaging, iRGD-targeted probes

  6. Design and Investigation of Optical Properties of N-(Rhodamine-B)-Lactam-Ethylenediamine (RhB-EDA) Fluorescent Probe.

    Science.gov (United States)

    Soršak, Eva; Volmajer Valh, Julija; Korent Urek, Špela; Lobnik, Aleksandra

    2018-04-14

    This study presents chemical modification of a Rhodamine B (RhB) sensor probe by ethylenediamine (EDA), and investigation of its spectral as well as sensor properties to the various metals. The synthesised N -(Rhodamine-B)-lactam-ethylenediamine (RhB-EDA) fluorescent probe shows interesting optical sensor properties, and high sensitivity and selectivity to Ag⁺ ions among all the tested metal ions (K⁺, Mg 2+ , Cu 2+ , Ni 2+ , Fe 2+ , Pb 2+ , Na⁺, Mn 2+ , Li⁺, Al 3+ , Co 2+ , Hg 2+ , Sr 2+ , Ca 2+ , Ag⁺, Cd 2+ and Zn 2+ ), while the well-known Rhodamine B (RhB) fluorescent probe shows much less sensitivity to Ag⁺ ions, but high sensitivity to Fe 2+ ions. The novel fluorescent sensor probe RhB-EDA has the capabilities to sense Ag⁺ ions up to µM ranges by using the fluorescence quenching approach. The probe displayed a dynamic response to Ag⁺ in the range of 0.43 × 10 -3 -10 -6 M with a detection limit of 0.1 μM. The sensing system of an RhB-EDA novel fluorescent probe was optimised according to the spectral properties, effect of pH and buffer, photostability, incubation time, sensitivity, and selectivity. Since all the spectral and sensing properties were tested in green aqueous media, although many other similar sensor systems rely on organic solvent solutions, the RhB-EDA sensing probe may be a good candidate for measuring Ag⁺ ions in real-life applications.

  7. An excited-state intramolecular photon transfer fluorescence probe for localizable live cell imaging of cysteine

    Science.gov (United States)

    Liu, Wei; Chen, Wen; Liu, Si-Jia; Jiang, Jian-Hui

    2017-03-01

    Small molecule probes suitable for selective and specific fluorescence imaging of some important but low-concentration intracellular reactive sulfur species such as cysteine (Cys) pose a challenge in chemical biology. We present a readily available, fast-response fluorescence probe CHCQ-Ac, with 2-(5‧-chloro-2-hydroxyl-phenyl)-6-chloro-4(3 H)-quinazolinone (CHCQ) as the fluorophore and acrylate group as the functional moiety, that enables high-selectivity and high-sensitivity for detecting Cys in both solution and biological system. After specifically reacted with Cys, the probe undergoes a seven-membered intramolecular cyclization and released the fluorophore CHCQ with excited-state intramolecular photon transfer effect. A highly fluorescent, insoluble aggregate was then formed to facilitate high-sensitivity and high-resolution imaging. The results showed that probe CHCQ-Ac affords a remarkably large Stokes shift and can detect Cys under physiological pH condition with no interference from other analytes. Moreover, this probe was proved to have excellent chemical stability, low cytotoxicity and good cell permeability. Our design of this probe provides a novel potential tool to visualize and localize cysteine in bioimaging of live cells that would greatly help to explore various Cys-related physiological and pathological cellular processes in cell biology and diagnostics.

  8. Smart lanthanide coordination polymer fluorescence probe for mercury(II) determination

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Baoxia [Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000 (China); Huang, Yankai [Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000 (China); College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 (China); Zhu, Xu; Hao, Yuanqiang [Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000 (China); Ding, Yujie [College of Biochemical Engineering, Anhui Polytechnic University, Wuhu 241000 (China); Wei, Wei; Wang, Qi [Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000 (China); Qu, Peng, E-mail: qupeng0212@163.com [Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000 (China); College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 (China); Xu, Maotian, E-mail: xumaotian@sqnc.edu.cn [Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000 (China); College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 (China)

    2016-03-17

    Lanthanide coordination polymers (LCPs) have recently emerged as attractive biosensor materials due to their flexible components, high tailorable properties and unique luminescence features. In this work, we designed a smart LCP probe of Tb-CIP/AMP {(CIP, ciprofloxacin) (AMP, adenosine monophosphate)} for Hg{sup 2+} detection by using lanthanide ions as metal nodes, CIP as ligand molecule, and AMP as bridging linker and recognition unit. Tb-CIP/AMP emits strong green luminescence due to the inclusion of AMP, which withdraws the coordinated water molecules and shields Tb{sup 3+} from the quenching effect of O–H vibration in water molecules. The subsequent addition of Hg{sup 2+} into Tb-CIP/AMP can strongly quench the fluorescence because of the specific coordination interaction between AMP and Hg{sup 2+}. As a kind of Hg{sup 2+} nanosensor, the probe exhibited excellent selectivity for Hg{sup 2+} and high sensitivity with detection limit of 0.16 nM. In addition, the probe has long fluorescence lifetime up to millisecond and has been applied to detect Hg{sup 2+} in drinking water and human urine samples with satisfactory results. We envision that our strategy, in the future, could be extended to the designation of other LCP-based hypersensitive time-gated luminescence assays in biological media and biomedical imaging. - Highlights: • Lanthanide coordination polymer of Tb-CIP/AMP was synthesized via a simple self-assembly process. • AMP was employed as a bifunctional molecule for both fluorescence sensitization and target recognition. • Hypersensitive detection of Hg{sup 2+} was achieved based on time-resolved spectroscopy.

  9. Smart lanthanide coordination polymer fluorescence probe for mercury(II) determination

    International Nuclear Information System (INIS)

    Liu, Baoxia; Huang, Yankai; Zhu, Xu; Hao, Yuanqiang; Ding, Yujie; Wei, Wei; Wang, Qi; Qu, Peng; Xu, Maotian

    2016-01-01

    Lanthanide coordination polymers (LCPs) have recently emerged as attractive biosensor materials due to their flexible components, high tailorable properties and unique luminescence features. In this work, we designed a smart LCP probe of Tb-CIP/AMP {(CIP, ciprofloxacin) (AMP, adenosine monophosphate)} for Hg"2"+ detection by using lanthanide ions as metal nodes, CIP as ligand molecule, and AMP as bridging linker and recognition unit. Tb-CIP/AMP emits strong green luminescence due to the inclusion of AMP, which withdraws the coordinated water molecules and shields Tb"3"+ from the quenching effect of O–H vibration in water molecules. The subsequent addition of Hg"2"+ into Tb-CIP/AMP can strongly quench the fluorescence because of the specific coordination interaction between AMP and Hg"2"+. As a kind of Hg"2"+ nanosensor, the probe exhibited excellent selectivity for Hg"2"+ and high sensitivity with detection limit of 0.16 nM. In addition, the probe has long fluorescence lifetime up to millisecond and has been applied to detect Hg"2"+ in drinking water and human urine samples with satisfactory results. We envision that our strategy, in the future, could be extended to the designation of other LCP-based hypersensitive time-gated luminescence assays in biological media and biomedical imaging. - Highlights: • Lanthanide coordination polymer of Tb-CIP/AMP was synthesized via a simple self-assembly process. • AMP was employed as a bifunctional molecule for both fluorescence sensitization and target recognition. • Hypersensitive detection of Hg"2"+ was achieved based on time-resolved spectroscopy.

  10. Organic liquids-responsive β-cyclodextrin-functionalized graphene-based fluorescence probe: label-free selective detection of tetrahydrofuran.

    Science.gov (United States)

    Hu, Huawen; Xin, John H; Hu, Hong; Wang, Xiaowen; Lu, Xinkun

    2014-06-06

    In this study, a label-free graphene-based fluorescence probe used for detection of volatile organic liquids was fabricated by a simple, efficient and low-cost method. To fabricate the probe, a bio-based β-cyclodextrin (β-CD) was firstly grafted on reduced graphene surfaces effectively and uniformly, as evidenced by various characterization techniques such as Ultraviolet/Visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, scanning electron microscopy and transmission electron microscopy. The subsequent inclusion of Rhodamine B (RhB) into the inner cavities of the β-CD grafted on the graphene surfaces was achieved easily by a solution mixing method, which yielded the graphene-based fluorescent switch-on probe. In addition, the gradual and controllable quenching of RhB by Fluorescence Resonance Energy Transfer from RhB to graphene during the process of stepwise accommodation of the RhB molecules into the β-CD-functionalized graphene was investigated in depth. A wide range of organic solvents was examined using the as-fabricated fluorescence probe, which revealed the highest sensitivity to tetrahydrofuran with the detection limit of about 1.7 μg/mL. Some insight into the mechanism of the different responsive behaviors of the fluorescence sensor to the examined targets was also described.

  11. Organic Liquids-Responsive β-Cyclodextrin-Functionalized Graphene-Based Fluorescence Probe: Label-Free Selective Detection of Tetrahydrofuran

    Directory of Open Access Journals (Sweden)

    Huawen Hu

    2014-06-01

    Full Text Available In this study, a label-free graphene-based fluorescence probe used for detection of volatile organic liquids was fabricated by a simple, efficient and low-cost method. To fabricate the probe, a bio-based β-cyclodextrin (β-CD was firstly grafted on reduced graphene surfaces effectively and uniformly, as evidenced by various characterization techniques such as Ultraviolet/Visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, scanning electron microscopy and transmission electron microscopy. The subsequent inclusion of Rhodamine B (RhB into the inner cavities of the β-CD grafted on the graphene surfaces was achieved easily by a solution mixing method, which yielded the graphene-based fluorescent switch-on probe. In addition, the gradual and controllable quenching of RhB by Fluorescence Resonance Energy Transfer from RhB to graphene during the process of stepwise accommodation of the RhB molecules into the β-CD-functionalized graphene was investigated in depth. A wide range of organic solvents was examined using the as-fabricated fluorescence probe, which revealed the highest sensitivity to tetrahydrofuran with the detection limit of about 1.7 μg/mL. Some insight into the mechanism of the different responsive behaviors of the fluorescence sensor to the examined targets was also described.

  12. Fluorescent probe encapsulated hydrogel microsphere for selective and reversible detection of Hg{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Song, Zhenhu; Wang, Fang; Qiang, Jian; Zhang, Zhijie; Chen, Yahui; Wang, Yong; Zhang, Wei; Chen, Xiaoqiang

    2017-03-15

    We developed a simple and sensitive hydrogel sensor in the form of microspheres by using fluorescence probe encapsulated within a hydrogel matrix for the detection of Hg{sup 2+}. The traditional fluorescence probes suspended in solution are not transportable and recoverable. To overcome these disadvantages, we devised poly(ethylene glycol) diacrylate-based hydrogel microspheres in which fluorescence probe (R19S) was embedded at high density. The functionalized hydrogel microspheres were prepared by combining a microfluidic device with UV light. The hydrogel microspheres-based sensor exhibited good selectivity to Hg{sup 2+} among various metal ions and high sensitivity with a detection limit of 90 nM. Furthermore, after binding with Hg{sup 2+}, the R19S encapsulated hydrogel microspheres can be separated from testing samples easily and treated with the solution containing KI to remove Hg{sup 2+} and realize reusable detection. The current work may offer a new method for Hg{sup 2+} recognition with a more efficient manner.

  13. Terbium fluorescence as a sensitive, inexpensive probe for UV-induced damage in nucleic acids

    International Nuclear Information System (INIS)

    El-Yazbi, Amira F.; Loppnow, Glen R.

    2013-01-01

    Graphical abstract: -- Highlights: •Simple, inexpensive, mix-and-read assay for positive detection of DNA damage. •Recognition of undamaged DNA via hybridization to a hairpin probe. •Terbium(III) fluorescence reports the amount of damage by binding to ssDNA. •Tb/hairpin is a highly selective and sensitive fluorescent probe for DNA damage. -- Abstract: Much effort has been focused on developing methods for detecting damaged nucleic acids. However, almost all of the proposed methods consist of multi-step procedures, are limited, require expensive instruments, or suffer from a high level of interferences. In this paper, we present a novel simple, inexpensive, mix-and-read assay that is generally applicable to nucleic acid damage and uses the enhanced luminescence due to energy transfer from nucleic acids to terbium(III) (Tb 3+ ). Single-stranded oligonucleotides greatly enhance the Tb 3+ emission, but duplex DNA does not. With the use of a DNA hairpin probe complementary to the oligonucleotide of interest, the Tb 3+ /hairpin probe is applied to detect ultraviolet (UV)-induced DNA damage. The hairpin probe hybridizes only with the undamaged DNA. However, the damaged DNA remains single-stranded and enhances the intrinsic fluorescence of Tb 3+ , producing a detectable signal directly proportional to the amount of DNA damage. This allows the Tb 3+ /hairpin probe to be used for sensitive quantification of UV-induced DNA damage. The Tb 3+ /hairpin probe showed superior selectivity to DNA damage compared to conventional molecular beacons probes (MBs) and its sensitivity is more than 2.5 times higher than MBs with a limit of detection of 4.36 ± 1.2 nM. In addition, this probe is easier to synthesize and more than eight times cheaper than MBs, which makes its use recommended for high-throughput, quantitative analysis of DNA damage

  14. Nitroolefin-based BODIPY as a novel water-soluble ratiometric fluorescent probe for detection of endogenous thiols

    Science.gov (United States)

    Kang, Jin; Huo, Fangjun; Chao, Jianbin; Yin, Caixia

    2018-04-01

    Small molecule biothiols, including cysteine (Cys), homocysteine (Hcy), and glutathione (GSH), play many crucial roles in physiological processes. In this work, we have prepared a nitroolefin-based BODIPY fluorescent probe with excellent water solubility for detection thiols, which displayed ratiometric fluorescent signal for thiols. Incorporation of a nitroolefin unit to the BODIPY dye would transform it into a strong Michael acceptor, which would be highly susceptible to sulfhydryl nucleophiles. This probe shows an obvious ratio change upon response with thiols, an increase of the emission at 517 nm along with a concomitant decrease of fluorescence peak at 573 nm. Moreover, these successes of intracellular imaging experiments in A549 cells indicated that this probe is suitable for imaging of ex-/endogenous thiols in living cells.

  15. A highly selective turn-on fluorescent probe for hypochlorous acid based on hypochlorous acid-induced oxidative intramolecular cyclization of boron dipyrromethene-hydrazone

    International Nuclear Information System (INIS)

    Chen, Wei-Chieh; Venkatesan, Parthiban; Wu, Shu-Pao

    2015-01-01

    Highlights: • A BODIPY-based fluorescent probe for sensing HOCl was developed. • The probe utilizes the HOCl-promoted cyclization in response to the amount of HOCl. • The probe might have application in the investigation of HOCl in biological systems. - Abstract: A BODIPY-based fluorescent probe, HBP, was developed for the detection of hypochlorous acid based on the specific hypochlorous acid-promoted oxidative intramolecular cyclization of heterocyclic hydrazone in response to the amount of HOCl. The reaction is accompanied by a 41-fold increase in the fluorescent quantum yield (from 0.004 to 0.164). The fluorescence intensity of the reaction between HOCl and HBP is linear in the HOCl concentration range of 1–8 μM with a detection limit of 2.4 nM (S/N = 3). Confocal fluorescence microscopy imaging using RAW264.7 cells showed that the new probe HBP could be used as an effective fluorescent probe for detecting HOCl in living cells

  16. A highly selective turn-on fluorescent probe for hypochlorous acid based on hypochlorous acid-induced oxidative intramolecular cyclization of boron dipyrromethene-hydrazone

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Chieh; Venkatesan, Parthiban; Wu, Shu-Pao, E-mail: spwu@mail.nctu.edu.tw

    2015-07-02

    Highlights: • A BODIPY-based fluorescent probe for sensing HOCl was developed. • The probe utilizes the HOCl-promoted cyclization in response to the amount of HOCl. • The probe might have application in the investigation of HOCl in biological systems. - Abstract: A BODIPY-based fluorescent probe, HBP, was developed for the detection of hypochlorous acid based on the specific hypochlorous acid-promoted oxidative intramolecular cyclization of heterocyclic hydrazone in response to the amount of HOCl. The reaction is accompanied by a 41-fold increase in the fluorescent quantum yield (from 0.004 to 0.164). The fluorescence intensity of the reaction between HOCl and HBP is linear in the HOCl concentration range of 1–8 μM with a detection limit of 2.4 nM (S/N = 3). Confocal fluorescence microscopy imaging using RAW264.7 cells showed that the new probe HBP could be used as an effective fluorescent probe for detecting HOCl in living cells.

  17. Direct fluorescence in situ hybridization on human metaphase chromosomes using quantum dot-platinum labeled DNA probes

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Gyoyeon [Chemical Kinomics Research Center, Future Convergence Research Division, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Biological Chemistry, Korea University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Deajeon (Korea, Republic of); Lee, Hansol [Chemical Kinomics Research Center, Future Convergence Research Division, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Lee, Jiyeon, E-mail: jylee@kist.re.kr [Chemical Kinomics Research Center, Future Convergence Research Division, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Biological Chemistry, Korea University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Deajeon (Korea, Republic of)

    2015-11-13

    The telomere shortening in chromosomes implies the senescence, apoptosis, or oncogenic transformation of cells. Since detecting telomeres in aging and diseases like cancer, is important, the direct detection of telomeres has been a very useful biomarker. We propose a telomere detection method using a newly synthesized quantum dot (QD) based probe with oligonucleotide conjugation and direct fluorescence in situ hybridization (FISH). QD-oligonucleotides were prepared with metal coordination bonding based on platinum-guanine binding reported in our previous work. The QD-oligonucleotide conjugation method has an advantage where any sequence containing guanine at the end can be easily bound to the starting QD-Pt conjugate. A synthesized telomeric oligonucleotide was bound to the QD-Pt conjugate successfully and this probe hybridized specifically on the telomere of fabricated MV-4-11 and MOLT-4 chromosomes. Additionally, the QD-telomeric oligonucleotide probe successfully detected the telomeres on the CGH metaphase slide. Due to the excellent photostability and high quantum yield of QDs, the QD-oligonucleotide probe has high fluorescence intensity when compared to the organic dye-oligonucleotide probe. Our QD-oligonucleotide probe, conjugation method of this QD probe, and hybridization protocol with the chromosomes can be a useful tool for chromosome painting and FISH. - Highlights: • We prepared a probe linked between QD and telomeric oligonucleotide with platinum-guanine bonding. • Telomeres were detected by our new telomere probes successfully in three different human metaphase chromosomes. • QDPt-DNA probe has high fluorescence intensity in comparison with organic dye-DNA probe.

  18. Bias in the Cq value observed with hydrolysis probe based quantitative PCR can be corrected with the estimated PCR efficiency value

    NARCIS (Netherlands)

    Tuomi, Jari Michael; Voorbraak, Frans; Jones, Douglas L.; Ruijter, Jan M.

    2010-01-01

    For real-time monitoring of PCR amplification of DNA, quantitative PCR (qPCR) assays use various fluorescent reporters. DNA binding molecules and hybridization reporters (primers and probes) only fluoresce when bound to DNA and result in the non-cumulative increase in observed fluorescence.

  19. Non-Covalent Fluorescent Labeling of Hairpin DNA Probe Coupled with Hybridization Chain Reaction for Sensitive DNA Detection.

    Science.gov (United States)

    Song, Luna; Zhang, Yonghua; Li, Junling; Gao, Qiang; Qi, Honglan; Zhang, Chengxiao

    2016-04-01

    An enzyme-free signal amplification-based assay for DNA detection was developed using fluorescent hairpin DNA probes coupled with hybridization chain reaction (HCR). The hairpin DNAs were designed to contain abasic sites in the stem moiety. Non-covalent labeling of the hairpin DNAs was achieved when a fluorescent ligand was bound to the abasic sites through hydrogen bonding with the orphan cytosine present on the complementary strand, accompanied by quench of ligand fluorescence. As a result, the resultant probes, the complex formed between the hairpin DNA and ligand, showed almost no fluorescence. Upon hybridization with target DNA, the probe underwent a dehybridization of the stem moiety containing an abasic site. The release of ligand from the abasic site to the solution resulted in an effective fluorescent enhancement, which can be used as a signal. Compared with a sensing system without HCR, a 20-fold increase in the sensitivity was achieved using the sensing system with HCR. The fluorescent intensity of the sensing system increased with the increase in target DNA concentration from 0.5 nM to 100 nM. A single mismatched target ss-DNA could be effectively discriminated from complementary target DNA. Genotyping of a G/C single-nucleotide polymorphism of polymerase chain reaction (PCR) products was successfully demonstrated with the sensing system. Therefore, integrating HCR strategy with non-covalent labeling of fluorescent hairpin DNA probes provides a sensitive and cost-effective DNA assay. © The Author(s) 2016.

  20. A cell-surface-anchored ratiometric fluorescent probe for extracellular pH sensing.

    Science.gov (United States)

    Ke, Guoliang; Zhu, Zhi; Wang, Wei; Zou, Yuan; Guan, Zhichao; Jia, Shasha; Zhang, Huimin; Wu, Xuemeng; Yang, Chaoyong James

    2014-09-10

    Accurate sensing of the extracellular pH is a very important yet challenging task in biological and clinical applications. This paper describes the development of an amphiphilic lipid-DNA molecule as a simple yet useful cell-surface-anchored ratiometric fluorescent probe for extracellular pH sensing. The lipid-DNA probe, which consists of a hydrophobic diacyllipid tail and a hydrophilic DNA strand, is modified with two fluorescent dyes; one is pH-sensitive as pH indicator and the other is pH-insensitive as an internal reference. The lipid-DNA probe showed sensitive and reversible response to pH change in the range of 6.0-8.0, which is suitable for most extracellular studies. In addition, based on simple hydrophobic interactions with the cell membrane, the lipid-DNA probe can be easily anchored on the cell surface with negligible cytotoxicity, excellent stability, and unique ratiometric readout, thus ensuring its accurate sensing of extracellular pH. Finally, this lipid-DNA-based ratiometric pH indicator was successfully used for extracellular pH sensing of cells in 3D culture environment, demonstrating the potential applications of the sensor in biological and medical studies.

  1. Poly(o-phenylenediamine) colloid-quenched fluorescent oligonucleotide as a probe for fluorescence-enhanced nucleic acid detection.

    Science.gov (United States)

    Tian, Jingqi; Li, Hailong; Luo, Yonglan; Wang, Lei; Zhang, Yingwei; Sun, Xuping

    2011-02-01

    In this Letter, we demonstrate that chemical oxidation polymerization of o-phenylenediamine (OPD) by potassium bichromate at room temperature results in the formation of submicrometer-scale poly(o-phenylenediamine) (POPD) colloids. Such colloids can absorb and quench dye-labeled single-stranded DNA (ssDNA) very effectively. In the presence of a target, a hybridization event occurs, which produces a double-stranded DNA (dsDNA) that detaches from the POPD surface, leading to recovery of dye fluorescence. With the use of an oligonucleotide (OND) sequence associated with human immunodeficiency virus (HIV) as a model system, we demonstrate the proof of concept that POPD colloid-quenched fluorescent OND can be used as a probe for fluorescence-enhanced nucleic acid detection with selectivity down to single-base mismatch.

  2. A new Schiff base based on vanillin and naphthalimide as a fluorescent probe for Ag+ in aqueous solution

    Science.gov (United States)

    Zhou, Yanmei; Zhou, Hua; Ma, Tongsen; Zhang, Junli; Niu, Jingyang

    2012-03-01

    A new Schiff base based on vanillin and naphthalimide was designed and synthesized as fluorescent probe. The probe showed high selectivity for Ag+ over other metal ions such as Pb2+, Na+, K+, Cd2+, Ba2+, Cr3+, Zn2+, Cu2+, Ni2+, Ca2+, Al3+ and Mg2+ in aqueous solution. A new fluorescence emission was observed at 682 nm in the presence of Ag+ ion. The fluorescence intensity quenched with increasing the concentration of Ag+ at 682 nm. The method of job's plot confirmed the 1:2 complex between Ag+ and probe, and the mechanism was proposed.

  3. Bodipy-FL-Verapamil: A Fluorescent Probe for the Study of Multidrug Resistance Proteins

    Directory of Open Access Journals (Sweden)

    Anna Rosati

    2004-01-01

    Full Text Available Most of the substances used as fluorescent probes to study drug transport and the effect of efflux blockers in multidrug resistant cells have many drawbacks, such as toxicity, unspecific background, accumulation in mitochondria. New fluorescent compounds, among which Bodipy‐FL‐verapamil (BV, have been therefore proposed as more useful tools. The uptake of BV has been evaluated by cytofluorimetry and fluorescence microscopy using cell lines that overexpress P‐glycoprotein (P388/ADR and LLC‐PK1/ADR or MRP (multidrug resistance‐related protein (PANC‐1 and clinical specimens from patients. The effect of specific inhibitors for P‐glycoprotein (verapamil and vinblastine or MRP (MK571 and probenecid has been also studied. BV intracellular concentrations were significantly lower in the two P‐glycoprotein overexpressing cell lines in comparison with the parental lines. In addition, verapamil and vinblastine increased the intracellular concentrations of the dye; MK571 and probenecid, two MRP inhibitors, increased BV levels in PANC‐1 cells, that express this protein. These findings were confirmed in clinical specimens from patients. Fluorescence microscopy revealed a faint fluorescence emission in P‐glycoprotein or MRP expressing cell lines; however, treatment with specific inhibitors significantly increased the fluorescence. BV is a useful tool for studying multidrug resistance proteins with different techniques such as cytofluorimetry and fluorescence microscopy, but does not discriminate between P‐glycoprotein and MRP. In comparison with other classic fluorescent probes, the assay with this dye is extremely rapid, simple, not toxic for cells, devoid of fluorescent background, and can be useful in the clinical settings.

  4. A Thiazole Coumarin (TC) Turn-On Fluorescence Probe for AT-Base Pair Detection and Multipurpose Applications in Different Biological Systems

    Science.gov (United States)

    Narayanaswamy, Nagarjun; Kumar, Manoj; Das, Sadhan; Sharma, Rahul; Samanta, Pralok K.; Pati, Swapan K.; Dhar, Suman K.; Kundu, Tapas K.; Govindaraju, T.

    2014-01-01

    Sequence-specific recognition of DNA by small turn-on fluorescence probes is a promising tool for bioimaging, bioanalytical and biomedical applications. Here, the authors report a novel cell-permeable and red fluorescent hemicyanine-based thiazole coumarin (TC) probe for DNA recognition, nuclear staining and cell cycle analysis. TC exhibited strong fluorescence enhancement in the presence of DNA containing AT-base pairs, but did not fluoresce with GC sequences, single-stranded DNA, RNA and proteins. The fluorescence staining of HeLa S3 and HEK 293 cells by TC followed by DNase and RNase digestion studies depicted the selective staining of DNA in the nucleus over the cytoplasmic region. Fluorescence-activated cell sorting (FACS) analysis by flow cytometry demonstrated the potential application of TC in cell cycle analysis in HEK 293 cells. Metaphase chromosome and malaria parasite DNA imaging studies further confirmed the in vivo diagnostic and therapeutic applications of probe TC. Probe TC may find multiple applications in fluorescence spectroscopy, diagnostics, bioimaging and molecular and cell biology. PMID:25252596

  5. Selective turn-on fluorescent probes for imaging hydrogen sulfide in living cells.

    Science.gov (United States)

    Montoya, Leticia A; Pluth, Michael D

    2012-05-16

    Hydrogen sulfide (H(2)S) is an important biological messenger but few biologically-compatible methods are available for its detection. Here we report two bright fluorescent probes that are selective for H(2)S over cysteine, glutathione and other reactive sulfur, nitrogen, and oxygen species. Both probes are demonstrated to detect H(2)S in live cells. This journal is © The Royal Society of Chemistry 2012

  6. A lysosome-locating and acidic pH-activatable fluorescent probe for visualizing endogenous H2O2 in lysosomes.

    Science.gov (United States)

    Liu, Jun; Zhou, Shunqing; Ren, Jing; Wu, Chuanliu; Zhao, Yibing

    2017-11-20

    There is increasing evidence indicating that lysosomal H 2 O 2 is closely related to autophagy and apoptotic pathways under both physiological and pathological conditions. Therefore, fluorescent probes that can be exploited to visualize H 2 O 2 in lysosomes are potential tools for exploring diverse roles of H 2 O 2 in cells. However, functional exploration of lysosomal H 2 O 2 is limited by the lack of fluorescent probes capable of compatibly sensing H 2 O 2 under weak acidic conditions (pH = 4.5) of lysosomes. Lower spatial resolution of the fluorescent visualization of lysosomal H 2 O 2 might be caused by the interference of signals from cytosolic and mitochondrial H 2 O 2 , as well as the non-specific distribution of the probes in cells. In this work, we developed a lysosome-locating and acidic-pH-activatable fluorescent probe for the detection and visualization of H 2 O 2 in lysosomes, which consists of a H 2 O 2 -responsive boronate unit, a lysosome-locating morpholine group, and a pH-activatable benzorhodol fluorophore. The response of the fluorescent probe to H 2 O 2 is significantly more pronounced under acidic pH conditions than that under neutral pH conditions. Notably, the present probe enables the fluorescence sensing of endogenous lysosomal H 2 O 2 in living cells without external stimulations, with signal interference from the cytoplasm and other intracellular organelles being negligible.

  7. Selective and Sensitive Detection of Cyanide Based on the Displacement Strategy Using a Water-Soluble Fluorescent Probe

    Science.gov (United States)

    La, Ming; Hao, Yuanqiang; Wang, Zhaoyang; Han, Guo-Cheng; Qu, Lingbo

    2016-01-01

    A water-soluble fluorescent probe (C-GGH) was used for the highly sensitive and selective detection of cyanide (CN−) in aqueous media based on the displacement strategy. Due to the presence of the recognition unit GGH (Gly-Gly-His), the probe C-GGH can coordinate with Cu2+ and consequently display ON-OFF type fluorescence response. Furthermore, the in situ formed nonfluorescent C-GGH-Cu2+ complex can act as an effective OFF-ON type fluorescent probe for sensing CN− anion. Due to the strong binding affinity of CN− to Cu2+, CN− can extract Cu2+ from C-GGH-Cu2+ complex, leading to the release of C-GGH and the recovery of fluorescent emission of the system. The probe C-GGH-Cu2+ allowed detection of CN− in aqueous solution with a LOD (limit of detection) of 0.017 μmol/L which is much lower than the maximum contaminant level (1.9 μmol/L) for CN− in drinking water set by the WHO (World Health Organization). The probe also displayed excellent specificity for CN− towards other anions, including F−, Cl−, Br−, I−, SCN−, PO4 3−, N3 −, NO3 −, AcO−, SO4 2−, and CO3 2−. PMID:26881185

  8. Selective and Sensitive Detection of Cyanide Based on the Displacement Strategy Using a Water-Soluble Fluorescent Probe

    Directory of Open Access Journals (Sweden)

    Ming La

    2016-01-01

    Full Text Available A water-soluble fluorescent probe (C-GGH was used for the highly sensitive and selective detection of cyanide (CN− in aqueous media based on the displacement strategy. Due to the presence of the recognition unit GGH (Gly-Gly-His, the probe C-GGH can coordinate with Cu2+ and consequently display ON-OFF type fluorescence response. Furthermore, the in situ formed nonfluorescent C-GGH-Cu2+ complex can act as an effective OFF-ON type fluorescent probe for sensing CN− anion. Due to the strong binding affinity of CN− to Cu2+, CN− can extract Cu2+ from C-GGH-Cu2+ complex, leading to the release of C-GGH and the recovery of fluorescent emission of the system. The probe C-GGH-Cu2+ allowed detection of CN− in aqueous solution with a LOD (limit of detection of 0.017 μmol/L which is much lower than the maximum contaminant level (1.9 μmol/L for CN− in drinking water set by the WHO (World Health Organization. The probe also displayed excellent specificity for CN− towards other anions, including F−, Cl−, Br−, I−, SCN−, PO43-, N3-, NO3-, AcO−, SO42-, and CO32-.

  9. Detection of nitrite based on fluorescent carbon dots by the hydrothermal method with folic acid

    Science.gov (United States)

    Lin, Haitao; Ding, Liyun; Zhang, Bingyu; Huang, Jun

    2018-05-01

    A fluorescent carbon dots probe for the detection of aqueous nitrite was fabricated by a one-pot hydrothermal method, and the transmission electron microscope, X-ray diffractometer, UV-Vis absorption spectrometer and fluorescence spectrophotometer were used to study the property of carbon dots. The fluorescent property of carbon dots influenced by the concentration of aqueous nitrite was studied. The interaction between the electron-donating functional groups and the electron-accepting nitrous acid could account for the quenching effect on carbon dots by adding aqueous nitrite. The products of the hydrolysis of aqueous nitrite performed a stronger quenching effect at lower pH. The relationship between the relative fluorescence intensity of carbon dots and the concentration of nitrite was described by the Stern-Volmer equation (I0/I - 1 = 0.046[Q]) with a fine linearity (R2 = 0.99). The carbon dots-based probe provides a convenient method for the detection of nitrite concentration.

  10. Intrinsically Labeled Fluorescent Oligonucleotide Probes on Quantum Dots for Transduction of Nucleic Acid Hybridization.

    Science.gov (United States)

    Shahmuradyan, Anna; Krull, Ulrich J

    2016-03-15

    Quantum dots (QDs) have been widely used in chemical and biosensing due to their unique photoelectrical properties and are well suited as donors in fluorescence resonance energy transfer (FRET). Selective hybridization interactions of oligonucleotides on QDs have been determined by FRET. Typically, the QD-FRET constructs have made use of labeled targets or have implemented labeled sandwich format assays to introduce dyes in proximity to the QDs for the FRET process. The intention of this new work is to explore a method to incorporate the acceptor dye into the probe molecule. Thiazole orange (TO) derivatives are fluorescent intercalating dyes that have been used for detection of double-stranded nucleic acids. One such dye system has been reported in which single-stranded oligonucleotide probes were doubly labeled with adjacent thiazole orange derivatives. In the absence of the fully complementary (FC) oligonucleotide target, the dyes form an H-aggregate, which results in quenching of fluorescence emission due to excitonic interactions between the dyes. The hybridization of the FC target to the probe provides for dissociation of the aggregate as the dyes intercalate into the double stranded duplex, resulting in increased fluorescence. This work reports investigation of the dependence of the ratiometric signal on the type of linkage used to conjugate the dyes to the probe, the location of the dye along the length of the probe, and the distance between adjacent dye molecules. The limit of detection for 34mer and 90mer targets was found to be identical and was 10 nM (2 pmol), similar to analogous QD-FRET using labeled oligonucleotide target. The detection system could discriminate a one base pair mismatch (1BPM) target and was functional without substantial compromise of the signal in 75% serum. The 1BPM was found to reduce background signal, indicating that the structure of the mismatch affected the environment of the intercalating dyes.

  11. Kinetics of catalyzed hydrolysis of 4-methylumbelliferyl caprylate (MUCAP) salmonella reagent

    Science.gov (United States)

    Al-Kady, Ahmed S.; Ahmed, El-Sadat I.; Gaber, M.; Hussein, Mohamed M.; Ebeid, El-Zeiny M.

    2011-09-01

    The kinetics of chemical hydrolysis including neutral, acid- and base-catalyzed hydrolysis of 4-methylumbelliferyl caprylate (MUCAP) salmonella reagent were studied at different temperatures. The rate constants and activation parameters were determined by following the build-up of fluorescence peak of the hydrolysis product 4-methylumbelliferone (4-MU). The time scale of esterase enzyme hydrolysis caused by salmonella was compared with chemical hydrolysis as a background process.

  12. ESIPT-Based Photoactivatable Fluorescent Probe for Ratiometric Spatiotemporal Bioimaging

    Directory of Open Access Journals (Sweden)

    Xiaohong Zhou

    2016-10-01

    Full Text Available Photoactivatable fluorophores have become an important technique for the high spatiotemporal resolution of biological imaging. Here, we developed a novel photoactivatable probe (PHBT, which is based on 2-(2-hydroxyphenylbenzothiazole (HBT, a small organic fluorophore known for its classic luminescence mechanism through excited-state intramolecular proton transfer (ESIPT with the keto form and the enol form. After photocleavage, PHBT released a ratiometric fluorophore HBT, which showed dual emission bands with more than 73-fold fluorescence enhancement at 512 nm in buffer and more than 69-fold enhancement at 452 nm in bovine serum. The probe displayed a high ratiometric imaging resolution and is believed to have a wide application in biological imaging.

  13. Sensing for intracellular thiols by water-insoluble two-photon fluorescent probe incorporating nanogel

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xudong; Zhang, Xin; Wang, Shuangqing; Li, Shayu [Beijing National Laboratory for Molecular Sciences, Key laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Hu, Rui, E-mail: hurui@iccas.ac.cn [Beijing National Laboratory for Molecular Sciences, Key laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Li, Yi, E-mail: yili@mail.ipc.ac.cn [Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Yang, Guoqiang, E-mail: gqyang@iccas.ac.cn [Beijing National Laboratory for Molecular Sciences, Key laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-04-15

    Highlights: • A novel “turn-on” two-photon fluorescent probe based on a π-conjugated triarylboron luminogen was designed and synthesized. • Fast, selective and sensitive detection of biothiols in 100% aqueous solution by simply loaded on a nanogel. • Single-photon and two-photon fluorescent bioimaging of biothiols in NIH/3T3 fibroblasts. - Abstract: A novel “turn-on” two-photon fluorescent probe containing a π-conjugated triarylboron luminogen and a maleimide moiety DMDP-M based on the photo-induced electron transfer (PET) mechanism for biothiol detection was designed and synthesized. By simply loading the hydrophobic DMDP-M on a cross-linked Pluronic{sup ®} F127 nanogel (CL-F127), a probing system DMDP-M/CL-F127 was established, which shows quick response, high selectivity and sensitivity to cysteine (Cys), homocysteine (Hcy) and glutathione (GSH) in aqueous phase. The DMDP-M/CL-F127 system presented the fastest response to Cys with a rate constant of 0.56 min{sup −1}, and the detection limit to Cys was calculated to be as low as 0.18 μM. The DMDP-M/CL-F127 system has been successfully applied to the fluorescence imaging of biothiols in NIH/3T3 fibroblasts either with single-photon or two-photon excitation because of its high biocompatibility and cell-membrane permeability. The present work provides a general, simple and efficient strategy for the application of hydrophobic molecules to sensing biothiols in aqueous phase, and a novel sensing system for intracellular biothiols fitted for both single-photon and two-photon fluorescence imaging.

  14. In vivo imaging of membrane type-1 matrix metalloproteinase with a novel activatable near-infrared fluorescence probe.

    Science.gov (United States)

    Shimizu, Yoichi; Temma, Takashi; Hara, Isao; Makino, Akira; Kondo, Naoya; Ozeki, Ei-Ichi; Ono, Masahiro; Saji, Hideo

    2014-08-01

    Membrane type-1 matrix metalloproteinase (MT1-MMP) is a protease activating MMP-2 that mediates cleavage of extracellular matrix components and plays pivotal roles in tumor migration, invasion and metastasis. Because in vivo noninvasive imaging of MT1-MMP would be useful for tumor diagnosis, we developed a novel near-infrared (NIR) fluorescence probe that can be activated following interaction with MT1-MMP in vivo. MT1-hIC7L is an activatable fluorescence probe comprised of anti-MT1-MMP monoclonal antibodies conjugated to self-assembling polymer micelles that encapsulate NIR dyes (IC7-1, λem : 858 nm) at concentrations sufficient to cause fluorescence self-quenching. In aqueous buffer, MT1-hIC7L fluorescence was suppressed to background levels and increased approximately 35.5-fold in the presence of detergent. Cellular uptake experiments revealed that in MT1-MMP positive C6 glioma cells, MT1-hIC7L showed significantly higher fluorescence that increased with time as compared to hIC7L, a negative control probe lacking the anti-MT1-MMP monoclonal antibody. In MT1-MMP negative MCF-7 breast adenocarcinoma cells, both MT1-hIC7L and hIC7L showed no obvious fluorescence. In addition, the fluorescence intensity of C6 cells treated with MT1-hIC7L was suppressed by pre-treatment with an MT1-MMP endocytosis inhibitor (P imaging using probes intravenously administered to tumor-bearing mice showed that MT1-hIC7L specifically visualized C6 tumors (tumor-to-background ratios: 3.8 ± 0.3 [MT1-hIC7L] vs 3.1 ± 0.2 [hIC7L] 48 h after administration, P fluorescence in MCF-7 tumors. Together, these results show that MT1-hIC7L would be a potential activatable NIR probe for specifically detecting MT1-MMP-expressing tumors. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  15. A Novel Water-soluble Ratiometric Fluorescent Probe Based on FRET for Sensing Lysosomal pH.

    Science.gov (United States)

    Song, Guang-Jie; Bai, Su-Yun; Luo, Jing; Cao, Xiao-Qun; Zhao, Bao-Xiang

    2016-11-01

    A new ratiometric fluorescent probe based on Förster resonance energy transfer (FRET) for sensing lysosomal pH has been developed. The probe (RMPM) was composed of imidazo[1,5-α]pyridine quaternary ammonium salt fluorophore as the FRET donor and the rhodamine moiety as the FRET acceptor. It's the first time to report that imidazo[1,5-α]pyridine quaternary ammonium salt acts as the FRET donor. The ratio of fluorescence intensity of the probe at two wavelengths (I 424 /I 581 ) changed significantly and responded linearly toward minor pH changes in the range of 5.4-6.6. It should be noted that it's rare to report that a ratiometric pH probe could detect so weak acidic pH with pKa = 6.31. In addition, probe RMPM exhibited excellent water-solubility, fast-response, all-right selectivity and brilliant reversibility. Moreover, RMPM has been successfully applied to sensing lysosomal pH in HeLa cells and has low cytotoxicity.

  16. A NBD-based simple but effective fluorescent pH probe for imaging of lysosomes in living cells

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xiang-Jian [Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Taishan College, Shandong University, Jinan 250100 (China); Chen, Li-Na [Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100 (China); Zhang, Xuan [Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Taishan College, Shandong University, Jinan 250100 (China); Liu, Jin-Ting [Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Chen, Ming-Yu [Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Taishan College, Shandong University, Jinan 250100 (China); Wu, Qiu-Rong [Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100 (China); Taishan College, Shandong University, Jinan 250100 (China); Miao, Jun-Ying, E-mail: miaojy@sdu.edu.cn [Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100 (China); Zhao, Bao-Xiang, E-mail: bxzhao@sdu.edu.cn [Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2016-05-12

    NBDlyso with lysosome-locating morpholine moiety has been developed as a high selective and sensitive fluorescent pH probe. This probe can respond to acidic pH (2.0–7.0) in a short time (less than 1 min) and not almost change after continuously illuminated for an extended period by ultraviolet light. The fluorescence intensity of NBDlyso enhanced 100-fold in acidic solution, with very good linear relationship (R{sup 2} = 0.996). The pK{sub a} of probe NBDlyso is 4.10. Therefore, NBDlyso was used to detect lysosomal pH changes successfully. Besides, X-ray crystallography was used to verify the structure of NBDlyso, and the recognition mechanism involving photo-induced electron transfer was interpreted theoretically by means of DFT and TDDFT calculations skillfully when NBDlyso comes into play under the acidic condition. This probe showed good ability to sense pH change in living cell image. - Highlights: • An effective NBD-based fluorescent pH probe was developed. • The sensing mechanism was interpreted by theoretical calculation. • This probe was successfully used to monitor lysosoml pH changes in Hela cells.

  17. A NBD-based simple but effective fluorescent pH probe for imaging of lysosomes in living cells

    International Nuclear Information System (INIS)

    Cao, Xiang-Jian; Chen, Li-Na; Zhang, Xuan; Liu, Jin-Ting; Chen, Ming-Yu; Wu, Qiu-Rong; Miao, Jun-Ying; Zhao, Bao-Xiang

    2016-01-01

    NBDlyso with lysosome-locating morpholine moiety has been developed as a high selective and sensitive fluorescent pH probe. This probe can respond to acidic pH (2.0–7.0) in a short time (less than 1 min) and not almost change after continuously illuminated for an extended period by ultraviolet light. The fluorescence intensity of NBDlyso enhanced 100-fold in acidic solution, with very good linear relationship (R"2 = 0.996). The pK_a of probe NBDlyso is 4.10. Therefore, NBDlyso was used to detect lysosomal pH changes successfully. Besides, X-ray crystallography was used to verify the structure of NBDlyso, and the recognition mechanism involving photo-induced electron transfer was interpreted theoretically by means of DFT and TDDFT calculations skillfully when NBDlyso comes into play under the acidic condition. This probe showed good ability to sense pH change in living cell image. - Highlights: • An effective NBD-based fluorescent pH probe was developed. • The sensing mechanism was interpreted by theoretical calculation. • This probe was successfully used to monitor lysosoml pH changes in Hela cells.

  18. FLOW CYTOMETRIC APPLICABILITY OF FLUORESCENT VITALITY PROBES ON PHYTOPLANKTON1.

    Science.gov (United States)

    Peperzak, Louis; Brussaard, Corina P D

    2011-06-01

    The applicability of six fluorescent probes (four esterase probes: acetoxymethyl ester of Calcein [Calcein-AM], 5-chloromethylfluorescein diacetate [CMFDA], fluorescein diacetate [FDA], and 2',7'-dichlorofluorescein diacetate [H 2 DCFDA]; and two membrane probes: bis-(1,3-dibutylbarbituric acid) trimethine oxonol [DiBAC 4 (3)] and SYTOX-Green) as vitality stains was tested on live and killed cells of 40 phytoplankton strains in exponential and stationary growth phases, belonging to 12 classes and consisting of four cold-water, 26 temperate, and four warm-water species. The combined live/dead ratios of all six probes indicated significant differences between the 12 plankton classes (P live/dead ratios of FDA and CMFDA were not significantly different from each other, and both performed better than Calcein-AM and H 2 DCFDA (P live/dead ratios) among all six probes belonged to nine genera from six classes of phytoplankton. In conclusion, FDA, CMFDA, DIBAC 4 (3), and SYTOX-Green represent a wide choice of vitality probes in the study of phytoplankton ecology, applicable in many species from different algal classes, originating from different regions and at different stages of growth. © 2011 Phycological Society of America.

  19. Fluorescent molecular probes based on excited state prototropism in lipid bilayer membrane

    Science.gov (United States)

    Mohapatra, Monalisa; Mishra, Ashok K.

    2012-03-01

    Excited state prototropism (ESPT) is observed in molecules having one or more ionizable protons, whose proton transfer efficiency is different in ground and excited states. The interaction of various ESPT molecules like naphthols and intramolecular ESPT (ESIPT) molecules like hydroxyflavones etc. with different microheterogeneous media have been studied in detail and excited state prototropism as a probe concept has been gaining ground. The fluorescence of different prototropic forms of such molecules, on partitioning to an organized medium like lipid bilayer membrane, often show sensitive response to the local environment with respect to the local structure, physical properties and dynamics. Our recent work using 1-naphthol as an ESPT fluorescent molecular probe has shown that the incorporation of monomeric bile salt molecules into lipid bilayer membranes composed from dipalmitoylphosphatidylcholine (DPPC, a lung surfactant) and dimyristoylphosphatidylcholine (DMPC), in solid gel and liquid crystalline phases, induce appreciable wetting of the bilayer up to the hydrocarbon core region, even at very low (fisetin, an ESIPT molecule having antioxidant properties, in lipid bilayer membrane has been sensitively monitored from its intrinsic fluorescence behaviour.

  20. Turn-on fluorescence probes based on pyranine/viologen charge-transfer complexes for the determination of nucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Schäferling, Michael, E-mail: Michael.schaeferling@utu.fi; Lang, Thomas; Schnettelker, Annette

    2014-10-15

    The formation of ground state charge-transfer complexes between pyranine (8-hydroxypyrene-1,3,6-trisulfonic acid) and viologen (paraquat) derivatives is utilized for the design of novel fluoroionophores for the determination of phosphate species, particularly of nucleotides. The strong quenching of the pyranine fluorescence by viologen-type charge transfer acceptors can be countermanded if these are functionalized with triethylammonium groups that serve as recognition elements for phosphate anions. We report on the fluorogenic responses of these water-soluble molecular probes in presence of different phosphates. Absorbance measurements give additional information on the charge transfer complex formation and the interaction with nucleotides. The experimental data show that these aggregates form attractive, simple and versatile fluorescence turn-on probes for nucleoside triphosphates. The reversibility of the fluorescence response is demonstrated by means of an enzymatic model assay using ATPase for the decomposition of adenosine triphosphate. - Highlights: • Pyranine/viologen charge-transfer complexes as molecular probe for ATP recognition. • Fluorescence turn on mechanism. • Selective compared to other nucleotides and phosphate anions. • Fast and reversible response applicable to monitor enzymatic reactions.

  1. Probe for intracellular concentrations of drugs: delayed fluorescence from acridine orange

    International Nuclear Information System (INIS)

    Wardman, P.; Dennis, M.F.; White, J.

    1989-01-01

    The aim of this work is to develop fluorescent probes that will indicate effective concentrations of therapeutic agents, or endogenous protectors, at important cellular sites. Acridine orange associates with nucleic acids and emits a 'delayed' fluorescence signal. This signal is quenched by oxidants such as oxygen, nitroaryl radiosensitizers, adriamycin and mitomycin-c, and reductants such as thiols, ascorbate and other radioprotectors. The quenching of the acridine orange delayed fluorescence reflects the effective concentration of these therapeutically-important oxidants and reductants near DNA. The relative concentration of basic radiosensitizers such as pimonidazole (Ro 03-8799) near the DNA is greater than that of misonidazole. Thiols quench the delayed fluorescence signal according to the degree of ionization of the thiol function; this may model the reactivity of thiols with guanine radical sites in DNA. Ascorbate and aminopyrine do not quench the delayed fluorescence from cells stained with acridine orange as these compounds are taken up by cells very inefficiently

  2. A quick response fluorescent probe based on coumarin and quinone for glutathione and its application in living cells

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Xi [Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Du, Zhi-Fang [Taishan College, Shandong University, Jinan 250100 (China); Wang, Li-Hong; Miao, Jun-Ying [Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100 (China); Zhao, Bao-Xiang, E-mail: bxzhao@sdu.edu.cn [Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2016-05-30

    We have designed and synthesized a simple but effective fluorescent probe for sensing glutathione (GSH) by PET process based on coumarin and quinone, which worked as fluorophore and reaction site, respectively. The probe could discriminate GSH from cysteine and homocysteine within 1 min in PBS-buffered solution. The sensing mechanism was confirmed by density functional theory (DFT), viscosity test, fluorescence spectrum analysis and HRMS, respectively. The probe has a low limit of detection (0.1 μM) and finally been used in cell imaging successfully. - Highlights: • This probe can discriminate glutathione from sulfhydryl compound by PET process. • This probe can be used to determine glutathione in aqueous solution within 1 min. • This probe has been successfully applied in living cell image.

  3. A quick response fluorescent probe based on coumarin and quinone for glutathione and its application in living cells

    International Nuclear Information System (INIS)

    Dai, Xi; Du, Zhi-Fang; Wang, Li-Hong; Miao, Jun-Ying; Zhao, Bao-Xiang

    2016-01-01

    We have designed and synthesized a simple but effective fluorescent probe for sensing glutathione (GSH) by PET process based on coumarin and quinone, which worked as fluorophore and reaction site, respectively. The probe could discriminate GSH from cysteine and homocysteine within 1 min in PBS-buffered solution. The sensing mechanism was confirmed by density functional theory (DFT), viscosity test, fluorescence spectrum analysis and HRMS, respectively. The probe has a low limit of detection (0.1 μM) and finally been used in cell imaging successfully. - Highlights: • This probe can discriminate glutathione from sulfhydryl compound by PET process. • This probe can be used to determine glutathione in aqueous solution within 1 min. • This probe has been successfully applied in living cell image.

  4. Intravascular atherosclerotic imaging with combined fluorescence and optical coherence tomography probe based on a double-clad fiber combiner

    Science.gov (United States)

    Liang, Shanshan; Saidi, Arya; Jing, Joe; Liu, Gangjun; Li, Jiawen; Zhang, Jun; Sun, Changsen; Narula, Jagat; Chen, Zhongping

    2012-07-01

    We developed a multimodality fluorescence and optical coherence tomography probe based on a double-clad fiber (DCF) combiner. The probe is composed of a DCF combiner, grin lens, and micromotor in the distal end. An integrated swept-source optical coherence tomography and fluorescence intensity imaging system was developed based on the combined probe for the early diagnoses of atherosclerosis. This system is capable of real-time data acquisition and processing as well as image display. For fluorescence imaging, the inflammation of atherosclerosis and necrotic core formed with the annexin V-conjugated Cy5.5 were imaged. Ex vivo imaging of New Zealand white rabbit arteries demonstrated the capability of the combined system.

  5. A single pH fluorescent probe for biosensing and imaging of extreme acidity and extreme alkalinity.

    Science.gov (United States)

    Chao, Jian-Bin; Wang, Hui-Juan; Zhang, Yong-Bin; Li, Zhi-Qing; Liu, Yu-Hong; Huo, Fang-Jun; Yin, Cai-Xia; Shi, Ya-Wei; Wang, Juan-Juan

    2017-07-04

    A simple tailor-made pH fluorescent probe 2-benzothiazole (N-ethylcarbazole-3-yl) hydrazone (Probe) is facilely synthesized by the condensation reaction of 2-hydrazinobenzothiazole with N-ethylcarbazole-3-formaldehyde, which is a useful fluorescent probe for monitoring extremely acidic and alkaline pH, quantitatively. The pH titrations indicate that Probe displays a remarkable emission enhancement with a pK a of 2.73 and responds linearly to minor pH fluctuations within the extremely acidic range of 2.21-3.30. Interestingly, Probe also exhibits strong pH-dependent characteristics with pK a 11.28 and linear response to extreme-alkalinity range of 10.41-12.43. In addition, Probe shows a large Stokes shift of 84 nm under extremely acidic and alkaline conditions, high selectivity, excellent sensitivity, good water-solubility and fine stability, all of which are favorable for intracellular pH imaging. The probe is further successfully applied to image extremely acidic and alkaline pH values fluctuations in E. coli cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A new rhodamine-based fluorescent probe for the discrimination of Fe{sup 3+} from Fe{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    You, Qi Hua; Huang, Hua Bin; Zhuang, Zhi Xia; Wang, Xiao Ru [Dept. of Science and Technology for Inspection, Xiamen Huaxia University, Xiamen (China); Chan, Wing Hong [Dept. of of Chemistry, Hong Kong Bap tist University, Hong Kong (China)

    2016-11-15

    A new rhodamine-based fluorescent probe for the discrimination of Fe{sup 3+} from Fe{sup 2+} has been designed and investigated. The probe shows an immediate visual color change in response to Fe{sup 3+} and Cu{sup 2+}, while only Fe{sup 3+} triggers the fluorescent change of the probe. The existence of large amount of other metal ions shows negligible interference in the detection of Fe{sup 3+}. The association constant K{sub ass} of 4.64 × 10{sup 8} M{sup -2} (R{sup 2} = 0.994) and 5.38 × 10{sup 8} M{sup -2} (R{sup 2} = 0.991) of the complex was derived from UV/Vis and fluorescence titration assuming 1:2 stoichiometry of probe–Fe{sup 3+} complex, respectively.

  7. A novel fluorescence probe based on triphenylamine Schiff base for bioimaging and responding to pH and Fe3+

    International Nuclear Information System (INIS)

    Wang, Lei; Yang, Xiaodong; Chen, Xiuli; Zhou, Yuping; Lu, Xiaodan; Yan, Chenggong; Xu, Yikai; Liu, Ruiyuan; Qu, Jinqing

    2017-01-01

    A novel fluorescence probe 1 based on triphenylamine was synthesized and characterized by NMR, IR, high resolution mass spectrometry and elemental analysis. Its fluorescence was quenched when pH below 2. There was a linear relationship between the fluorescence intensity and pH value ranged from 2 to 7. And its fluorescence emission was reversibility in acidic and alkaline solution. Furthermore, it exhibited remarkable selectivity and high sensitivity to Fe 3+ and was able to detect Fe 3+ in aqueous solution with low detection limit of 0.511 μM. Job plot showed that the binding stoichiometry of 1 with Fe 3+ was 1:1. Further observations of 1 H NMR titration suggested that coordination interaction between Fe 3+ and nitrogen atom on C =N bond promoted the intramolecular charge transfer (ICT) or energy transfer process causing fluorescence quenching. Additionally, 1 was also able to be applied for detecting Fe 3+ in living cell and bioimaging. - Graphical abstract: Triphenylamine based fluorescence probe can detect pH and Fe 3+ simultaneously in aqueous solution and be applied for detecting Fe 3+ in living cell and bioimaging. - Highlights: • The fluorescence probe is sensitive to pH in strong acid conditions. • The fluorescence chemosensor can detect pH and Fe 3+ simultaneously. • The recognition is able to carry out in aqueous solution. • The probe can also be applied for detecting Fe 3+ in living cell and bioimaging. • The sensor is synthesized easily with one step.

  8. New fluorescent probes for detection and characterization of amyloid fibrils

    Science.gov (United States)

    Gorbenko, Galyna; Trusova, Valeriya; Kirilova, Elena; Kirilov, Georgiy; Kalnina, Inta; Vasilev, Aleksey; Kaloyanova, Stefka; Deligeorgiev, Todor

    2010-08-01

    The applicability of the novel fluorescent probes, aminoderivative of benzanthrone ABM, squaraine dye SQ-1 and polymethine dye V2 to identification and structural analysis of amyloid fibrils has been evaluated using the lysozyme model system in which fibrillar aggregates have been formed in concentrated ethanol solution. The association constant, binding stoichiometry and molar fluorescence of the bound dye have been determined. ABM was found to surpass classical amyloid marker ThT in the sensitivity to the presence of fibrillar aggregates. Resonance energy transfer measurements involving ABM-SQ-1 and SQ-1-V2 donor-acceptor pairs yielded the limits for fractal-like dimension of lysozyme fibrils.

  9. Benzothiadiazole Derivatives as Fluorescence Imaging Probes: Beyond Classical Scaffolds.

    Science.gov (United States)

    Neto, Brenno A D; Carvalho, Pedro H P R; Correa, Jose R

    2015-06-16

    This Account describes the origins, features, importance, and trends of the use of fluorescent small-molecule 2,1,3-benzothiadiazole (BTD) derivatives as a new class of bioprobes applied to bioimaging analyses of several (live and fixed) cell types. BTDs have been successfully used as probes for a plethora of biological analyses for only a few years, and the impressive responses obtained by using this important class of heterocycle are fostering the development of new fluorescent BTDs and expanding the biological applications of such derivatives. The first use of a fluorescent small-molecule BTD derivative as a selective cellular probe dates back to 2010, and since then impressive advances have been described by us and others. The well-known limitations of classical scaffolds urged the development of new classes of bioprobes. Although great developments have been achieved by using classical scaffolds such as coumarins, BODIPYs, fluoresceins, rhodamines, cyanines, and phenoxazines, there is still much to be done, and BTDs aim to succeed where these dyes have shown their limitations. Important organelles and cell components such as nuclear DNA, mitochondria, lipid droplets, and others have already been successfully labeled by fluorescent small-molecule BTD derivatives. New technological systems that use BTDs as the fluorophores for bioimaging experiments have been described in recent scientific literature. The successful application of BTDs as selective bioprobes has led some groups to explore their potential for use in studying membrane pores or tumor cells under hypoxic conditions. Finally, BTDs have also been used as fluorescent tags to investigate the action mechanism of some antitumor compounds. The attractive photophysical data typically observed for π-extended BTD derivatives is fostering interest in the use of this new class of bioprobes. Large Stokes shifts, large molar extinction coefficients, high quantum yields, high stability when stored in solution or

  10. A fast-response two-photon fluorescent probe for imaging endogenous H2O2 in living cells and tissues

    Science.gov (United States)

    Lu, Yanan; Shi, Xiaomin; Fan, Wenlong; Black, Cory A.; Lu, Zhengliang; Fan, Chunhua

    2018-02-01

    As a second messenger, hydrogen peroxide plays significant roles in numerous physiological and pathological processes and is related to various diseases including inflammatory disease, diabetes, neurodegenerative disorders, cardiovascular disease and Alzheimer's disease. Two-photon (TP) fluorescent probes reported for the detection of endogenous H2O2 are rare and most have drawbacks such as slow response and low sensitivity. In this report, we demonstrate a simple H2O2-specific TP fluorescent probe (TX-HP) containing a two-photon dye 6-hydroxy-2,3,4,4a-tetrahydro-1H-xanthen-1-one (TX) on the modulation of the ICT process. The probe exhibits a rapid fluorescent response to H2O2 in 9 min with both high sensitivity and selectivity. The probe can detect exogenous H2O2 in living cells. Furthermore, the probe is successfully utilized for imaging H2O2 in liver tissues.

  11. A fusion-spliced near-field optical fiber probe using photonic crystal fiber for nanoscale thermometry based on fluorescence-lifetime measurement of quantum dots.

    Science.gov (United States)

    Fujii, Takuro; Taguchi, Yoshihiro; Saiki, Toshiharu; Nagasaka, Yuji

    2011-01-01

    We have developed a novel nanoscale temperature-measurement method using fluorescence in the near-field called fluorescence near-field optics thermal nanoscopy (Fluor-NOTN). Fluor-NOTN enables the temperature distributions of nanoscale materials to be measured in vivo/in situ. The proposed method measures temperature by detecting the temperature dependent fluorescence lifetimes of Cd/Se quantum dots (QDs). For a high-sensitivity temperature measurement, the auto-fluorescence generated from a fiber probe should be reduced. In order to decrease the noise, we have fabricated a novel near-field optical-fiber probe by fusion-splicing a photonic crystal fiber (PCF) and a conventional single-mode fiber (SMF). The validity of the novel fiber probe was assessed experimentally by evaluating the auto-fluorescence spectra of the PCF. Due to the decrease of auto-fluorescence, a six- to ten-fold increase of S/N in the near-field fluorescence lifetime detection was achieved with the newly fabricated fusion-spliced near-field optical fiber probe. Additionally, the near-field fluorescence lifetime of the quantum dots was successfully measured by the fabricated fusion-spliced near-field optical fiber probe at room temperature, and was estimated to be 10.0 ns.

  12. Rapid probing of photocatalytic activity on titania-based self-cleaning materials using 7-hydroxycoumarin fluorescent probe

    International Nuclear Information System (INIS)

    Guan Huimin; Zhu Lihua; Zhou Hehui; Tang Heqing

    2008-01-01

    Self-cleaning materials are widely applied, but the available methods for determining their photocatalytic activity are time consuming. A simple analysis method was proposed to evaluate rapidly the photocatalytic activity of self-cleaning materials. This method is based on monitoring of a highly fluorescent product generated by the self-cleaning materials after illumination. Under UV irradiation, holes photo-induced on the surface of self-cleaning materials can oxidize water molecules (or hydroxide ions) adsorbed on the surface to produce hydroxyl radicals, which then quantitatively oxidize coumarin to highly fluorescent 7-hydroxycoumarin. It was observed that the fluorescence intensity of photo-generated 7-hydroxycoumarin at 456 nm (excited at 346 nm) linearly increased with irradiation time, and the fluorescence intensity at a given irradiation time was linearly proportional to the photocatalytic activity of self-cleaning materials. Consequently, the photocatalytic activity of self-cleaning materials was able to be probed simply by using this new method, which requires an analysis time of 40 min, being much less than 250 min required for a dye method

  13. Probing the graphite band structure with resonant soft-x-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Carlisle, J.A.; Shirley, E.L.; Hudson, E.A. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Soft x-ray fluorescence (SXF) spectroscopy using synchrotron radiation offers several advantages over surface sensitive spectroscopies for probing the electronic structure of complex multi-elemental materials. Due to the long mean free path of photons in solids ({approximately}1000 {angstrom}), SXF is a bulk-sensitive probe. Also, since core levels are involved in absorption and emission, SXF is both element- and angular-momentum-selective. SXF measures the local partial density of states (DOS) projected onto each constituent element of the material. The chief limitation of SXF has been the low fluorescence yield for photon emission, particularly for light elements. However, third generation light sources, such as the Advanced Light Source (ALS), offer the high brightness that makes high-resolution SXF experiments practical. In the following the authors utilize this high brightness to demonstrate the capability of SXF to probe the band structure of a polycrystalline sample. In SXF, a valence emission spectrum results from transitions from valence band states to the core hole produced by the incident photons. In the non-resonant energy regime, the excitation energy is far above the core binding energy, and the absorption and emission events are uncoupled. The fluorescence spectrum resembles emission spectra acquired using energetic electrons, and is insensitive to the incident photon`s energy. In the resonant excitation energy regime, core electrons are excited by photons to unoccupied states just above the Fermi level (EF). The absorption and emission events are coupled, and this coupling manifests itself in several ways, depending in part on the localization of the empty electronic states in the material. Here the authors report spectral measurements from highly oriented pyrolytic graphite.

  14. Evolution of group 14 rhodamines as platforms for near-infrared fluorescence probes utilizing photoinduced electron transfer.

    Science.gov (United States)

    Koide, Yuichiro; Urano, Yasuteru; Hanaoka, Kenjiro; Terai, Takuya; Nagano, Tetsuo

    2011-06-17

    The absorption and emission wavelengths of group 14 pyronines and rhodamines, which contain silicon, germanium, or tin at the 10 position of the xanthene chromophore, showed large bathochromic shifts compared to the original rhodamines, owing to stabilization of the LUMO energy levels by σ*-π* conjugation between group 14 atom-C (methyl) σ* orbitals and a π* orbital of the fluorophore. These group 14 pyronines and rhodamines retain the advantages of the original rhodamines, including high quantum efficiency in aqueous media (Φ(fl) = 0.3-0.45), tolerance to photobleaching, and high water solubility. Group 14 rhodamines have higher values of reduction potential than other NIR light-emitting original rhodamines, and therefore, we speculated their NIR fluorescence could be controlled through the photoinduced electron transfer (PeT) mechanism. Indeed, we found that the fluorescence quantum yield (Φ(fl)) of Si-rhodamine (SiR) and Ge-rhodamine (GeR) could be made nearly equal to zero, and the threshold level for fluorescence on/off switching lies at around 1.3-1.5 V for the SiRs. This is about 0.1 V lower than in the case of TokyoGreens, in which the fluorophore is well established to be effective for PeT-based probes. That is to say, the fluorescence of SiR and GeR can be drastically activated by more than 100-fold through a PeT strategy. To confirm the validity of this strategy for developing NIR fluorescence probes, we employed this approach to design two kinds of novel fluorescence probes emitting in the far-red to NIR region, i.e., a series of pH-sensors for use in acidic environments and a Zn(2+) sensor. We synthesized these probes and confirmed that they work well.

  15. Quantitative generalized ratiometric fluorescence spectroscopy for turbid media based on probe encapsulated by biologically localized embedding

    International Nuclear Information System (INIS)

    Yan, Xiu-Fang; Chen, Zeng-Ping; Cui, Yin-Yin; Hu, Yuan-Liang; Yu, Ru-Qin

    2016-01-01

    PEBBLE (probe encapsulated by biologically localized embedding) nanosensor encapsulating an intensity-based fluorescence indicator and an inert reference fluorescence dye inside the pores of stable matrix can be used as a generalized wavelength-ratiometric probe. However, the lack of an efficient quantitative model render the choices of inert reference dyes and intensity-based fluorescence indicators used in PEBBLEs based generalized wavelength-ratiometric probes rather limited. In this contribution, an extended quantitative fluorescence model was derived specifically for generalized wavelength-ratiometric probes based on PEBBLE technique (QFM GRP ) with a view to simplify the design of PEBBLEs and hence further extend their application potentials. The effectiveness of QFM GRP has been tested on the quantitative determination of free Ca 2+ in both simulated and real turbid media using a Ca 2+ sensitive PEBBLE nanosensor encapsulating Rhod-2 and eosin B inside the micropores of stable polyacrylamide matrix. Experimental results demonstrated that QFM GRP could realize precise and accurate quantification of free Ca 2+ in turbid samples, even though there is serious overlapping between the fluorescence excitation peaks of eosin B and Ca 2+ bound Rhod-2. The average relative predictive error value of QFM GRP for the test simulated turbid samples was 5.9%, about 2–4 times lower than the corresponding values of partial least squares calibration model and the empirical ratiometric model based on the ratio of fluorescence intensities at the excitation peaks of Ca 2+ bound Rhod-2 and eosin B. The recovery rates of QFM GRP for the real and spiked turbid samples varied from 93.1% to 101%, comparable to the corresponding results of atomic absorption spectrometry. - Highlights: • An advanced model was derived for generalized wavelength-ratiometric PEBBLEs. • The model can simplify the design of generalized wavelength-ratiometric PEBBLEs. • The model realized accurate

  16. Comparison of N-alkyl acridine orange dyes as fluorescence probes for the determination of cardiolipin

    Energy Technology Data Exchange (ETDEWEB)

    Kaewsuya, P.; Miller, J.D. [Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056 (United States); Danielson, N.D. [Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056 (United States)], E-mail: danielnd@muohio.edu; Sanjeevi, J.; James, P.F. [Department of Zoology, Miami University, Oxford, OH 45056 (United States)

    2008-09-26

    The phospholipid (PL), cardiolipin (CL), is found almost exclusively in the inner membrane of mitochondria and loss of CL is considered as an important indication of cell apoptosis. Previously, 10-N-nonyl acridine orange (NAO) has been used as a fluorescent probe for the visualization of CL in mitochondrial cell membranes and in solution. In this work for the determination of CL, we have synthesized two new fluorescent probes, n-tetradecyl acridine orange (C14-AO), and n-octadecyl acridine orange (C18-AO) by reacting acridine orange with the corresponding n-alkyl bromide. Using excitation and emission wavelengths at about 500 and 525 nm and varying the percentage of methanol in water as the solvent, no interaction between CL and the fluorescent probes at 75% is noted but a proportional quenching of the fluorescence signal by CL is observed at 50% or less for C14-AO and 60% or less for C18-AO. Binding efficiency of these fluorescent probes to CL is compared using dye concentrations of 5, 10, and 20 {mu}M. C18-AO shows a better sensitivity than C14-AO and NAO, respectively, but is less selective. For C14-AO, the detection limit and limit of quantitation are 0.07 and 0.21 {mu}M, respectively, which are better than those previously reported for NAO. One anionic PL, phosphatidic acid, shows some quenching interference to both the C14 and C18 dyes but only at concentrations above the working range for sample analysis. The CL in mitochondrial membrane samples is determined by standard addition using C14-AO. The level of CL in the outer mitochondrial membrane compared to the inner membrane is significantly increased due to the addition of cadmium chloride into the cells causing cell apoptosis.

  17. Amino acid detection using fluoroquinolone–Cu2+ complex as a switch-on fluorescent probe by competitive complexation without derivatization

    International Nuclear Information System (INIS)

    Farokhcheh, Alireza; Alizadeh, Naader

    2014-01-01

    In this work, we describe the use of fluoroquinolone–Cu 2+ complex as a competitive switch-on fluorescence probe for amino acid determination without derivatization. The fluorescence intensity of this probe, which has been reduced due to effective quenching by Cu 2+ ion, increases drastically by an addition of amino acid (glycine, phenylalanine, sarcosine, aspargine, alanine, proline, arginine, aspartic acid, glutamic acid, lysine, leucine and isoleucine). The overall stability constants of Cu 2+ ion complexes with amino acids were determined by fluorometric titration of fluoroquinolone-Cu 2+ complex with the amino acid solution. Furthermore, the probe shows high calibration sensitivity toward aspartic acid. The fluorescence signal depends linearly on the amino acid concentration within the range of concentration from 1.2×10 −7 to 1.1×10 −5 mol L −1 for aspartic acid. The detection limit was found 2.7×10 −8 mol L −1 with the relative standard deviation (RSD%) about 2.1% (five replicate). -- Highlights: • Amino acids are detected by using fluoroquinolone–Cu 2+ complex as fluorescent probe. • Amino acids were detected based on a competitive complexation reaction. • Probe has been able to recognize amino acids through switch-on fluorescence behavior. • Ultra-trace level of aspartic and glutamic acid is determined without derivatization

  18. Spectroscopic quantification of 5-hydroxymethylcytosine in genomic DNA using boric acid-functionalized nano-microsphere fluorescent probes.

    Science.gov (United States)

    Chen, Hua-Yan; Wei, Jing-Ru; Pan, Jiong-Xiu; Zhang, Wei; Dang, Fu-Quan; Zhang, Zhi-Qi; Zhang, Jing

    2017-05-15

    5-hydroxymethylcytosine (5hmC) is the sixth base of DNA. It is involved in active DNA demethylation and can be a marker of diseases such as cancer. In this study, we developed a simple and sensitive 2-(4-boronophenyl)quinoline-4-carboxylic acid modified poly (glycidyl methacrylate (PBAQA-PGMA) fluorescent probe to detect the 5hmC content of genomic DNA based on T4 β-glucosyltransferase-catalyzed glucosylation of 5hmC. The fluorescence-enhanced intensity recorded from the DNA sample was proportional to its 5-hydroxymethylcytosine content and could be quantified by fluorescence spectrophotometry. The developed probe showed good detection sensitivity and selectivity and a good linear relationship between the fluorescence intensity and the concentration of 5 hmC within a 0-100nM range. Compared with other fluorescence detection methods, this method not only could determine trace amounts of 5 hmC from genomic DNA but also could eliminate the interference of fluorescent dyes and the need for purification. It also could avoid multiple labeling. Because the PBAQA-PGMA probe could enrich the content of glycosyl-5-hydroxymethyl-2-deoxycytidine from a complex ground substance, it will broaden the linear detection range and improve sensitivity. The limit of detection was calculated to be 0.167nM after enrichment. Furthermore, the method was successfully used to detect 5-hydroxymethylcytosine from mouse tissues. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. A novel NBD-based fluorescent turn-on probe for the detection of cysteine and homocysteine in living cells

    Science.gov (United States)

    Wang, Jiamin; Niu, Linqiang; Huang, Jing; Yan, Zhijie; Wang, Jianhong

    2018-03-01

    Biothiols, such as cysteine (Cys), homocysteine (Hcy) and glutathione (GSH), are involved in a number of biological processes and play crucial roles in biological systems. Thus, the detection of biothiols is highly important for early diagnosis of diseases and evaluation of disease progression. Herein, we developed a new turn-on fluorescent probe 1 based on 7-nitro-2,1,3-benzoxadiazole (NBD) with high selectivity and sensitivity for Cys/Hcy on account of nucleophilic substitution and Smiles rearrangement reaction. The probe could sense Cys/Hcy rapidly, the intensity of fluorescence increased immediately within 1 min. Furthermore, the probe is low toxic and has been successfully applied to detect intracellular Cys/Hcy by cell fluorescence imaging in living normal and cancer cells.

  20. Molecular Imaging of β-Amyloid Plaques with Near-Infrared Boron Dipyrromethane (BODIPY-Based Fluorescent Probes

    Directory of Open Access Journals (Sweden)

    Hiroyuki Watanabe

    2013-07-01

    Full Text Available The formation of β-amyloid (Aβ plaques is a critical neurodegenerative change in Alzheimer disease (AD. We designed and synthesized novel boron dipyrromethane (BODIPY-based Aβ probes (BAPs and evaluated their utility for near-infrared fluorescence imaging of Aβ plaques in the brain. In binding experiments in vitro, BAPs showed high affinity for synthetic Aβ aggregates (Kd = 18–149 nM. Furthermore, BAPs clearly stained Aβ plaques in sections of Tg2576 mice. In mouse brain tissue, BAPs showed sufficient uptake for optical imaging. In addition, ex vivo fluorescent staining of brain sections from Tg2576 mice after the injection of BAP-2 showed selective binding of Aβ plaques with little nonspecific binding. BAPs may be useful as a near-infrared fluorescent probe for imaging Aβ plaques.

  1. A new s-adenosylhomocysteine hydrolase-linked method for adenosine detection based on DNA-templated fluorescent Cu/Ag nanoclusters.

    Science.gov (United States)

    Ahn, Jun Ki; Kim, Hyo Yong; Baek, Songyi; Park, Hyun Gyu

    2017-07-15

    We herein describe a novel fluorescent method for the rapid and selective detection of adenosine by utilizing DNA-templated Cu/Ag nanoclusters (NCs) and employing s-adenosylhomocysteine hydrolase (SAHH). SAHH is allowed to promote hydrolysis reaction of s-adenosylhomocysteine (SAH) and consequently produces homocysteine, which would quench the fluorescence signal from DNA-templated Cu/Ag nanoclusters employed as a signaling probe in this study. On the other hand, adenosine significantly inhibits the hydrolysis reaction and prevent the formation of homocysteine. Consequently, highly enhanced fluorescence signal from DNA-Cu/Ag NCs is retained, which could be used to identify the presence of adenosine. By employing this design principle, adenosine was sensitively detected down to 19nM with high specificity over other adenosine analogs such as AMP, ADP, ATP, cAMP, guanosine, cytidine, and urine. Finally, the diagnostic capability of this method was successfully verified by reliably detecting adenosine present in a real human serum sample. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Fluorescent water-Soluble Probes Based on Ammonium Cation Peg Substituted Perylenepisimides: Synthesis, Photophysical Properties, and Live Cell Images

    Science.gov (United States)

    Yang, Wei; Cai, Jiaxuan; Zhang, Shuchen; Yi, Xuegang; Gao, Baoxiang

    2018-01-01

    To synthesize perylenbisimides (PBI) fluorescent probes that will improve the water-soluble ability and the cytocompatibility, the synthesis and properties of fluorescent water-soluble probes based on dendritic ammonium cation polyethylene glycol (PEG) substituted perylenebisimides(GPDIs) are presented. As we expected, with increased ammonium cation PEG, the aggregation of the PBI in an aqueous solution is completely suppressed by the hydrophilic ammonium cation PEG groups. And the fluorescence quantum yield increases from 25% for GPDI-1 to 62% for GPDI-2. When incubated with Hela cells for 48 h, the viabilities are 71% (for GPDI-1) and 76% (for GPDI-2). Live cell imaging shows that these probes are efficiently internalized by HeLa cells. The study of the photophysical properties indicated increasing the ammonium cation PEG generation can increase the fluorescence quantum yield. Live cell imaging shows that with the ammonium cation PEG chains of perylenebisimides has high biocompatibility. The exceptionally low cytotoxicity is ascribed to the ammonium cation PEG chains, which protect the dyes from nonspecifically interacting with the extracellular proteins. Live cell imaging shows that ammonium cations PEG chains can promote the internalization of these probes.

  3. Determination of ATP as a fluorescence probe with europium(III)-doxycycline.

    Science.gov (United States)

    Hou, Faju; Wang, Xiaolei; Jiang, Chongqiu

    2005-03-01

    A new spectrofluorimetric method has been developed for the determination of adenosine disodium triphosphate (ATP). We studied the interactions between the doxycycline (DC)-Eu3+ complex and adenosine disodium triphosphate (ATP) by using UV-visible absorption and fluorescence spectra. Using doxycycline (DC)-Eu3+ as a fluorescence probe, under the optimum conditions, ATP could remarkably enhance the fluorescence intensity of the DC-Eu3+ complex at lambda = 612 nm. The enhanced fluorescence intensity of the Eu3+ ion was in proportion to the concentration of ATP. The optimum conditions for the determination of ATP were also investigated. The linear ranges for ATP were 1.00 x 10(-7) - 2.00 x 10(-6) mol L(-1) with detection limits of 4.07 x 10(-8) mol L(-1). This method is simple, practical and relatively free of interference from coexisting substances, and can be successfully applied to the determination of ATP in samples. The mechanism of fluorescence enhancement between the doxycycline (DC)-Eu3+ complex and ATP was also studied.

  4. Design of mitochondria-targeted colorimetric and ratiometric fluorescent probes for rapid detection of SO2 derivatives in living cells

    Science.gov (United States)

    Yang, Yutao; Zhou, Tingting; Bai, Bozan; Yin, Caixia; Xu, Wenzhi; Li, Wei

    2018-05-01

    Two mitochondria-targeted colorimetric and ratiometric fluorescent probes for SO2 derivatives were constructed based on the SO2 derivatives-triggered Michael addition reaction. The probes exhibit high specificity toward HSO3-/SO32- by interrupting their conjugation system resulting in a large ratiometric blue shift of 46-121 nm in their emission spectrum. The two well-resolved emission bands can ensure accurate detection of HSO3-. The detection limits were calculated to be 1.09 and 1.35 μM. Importantly, probe 1 and probe 2 were successfully used to fluorescence ratiometric imaging of endogenous HSO3- in BT-474 cells.

  5. A novel “Turn-On” fluorescent probe for F− detection in aqueous solution and its application in live-cell imaging

    International Nuclear Information System (INIS)

    Xu, Jian; Sun, Shaobo; Li, Qian; Yue, Ying; Li, Yingdong; Shao, Shijun

    2014-01-01

    Highlights: • A novel BODIPY-based “Turn-On” fluorescent probe was synthesized. • Highly selective detection of fluoride ions in 100% aqueous solution. • Study of sensing mechanism using density functional theory (DFT) calculations. • Fluorescent bioimaging of F − ion in A549 and ATII cells. - Abstract: A novel probe incorporating quaternized 4-pyridinium group into a BODIPY molecule was synthesized and studied for the selective detection of fluoride ions (F − ) in aqueous solution. The design was based on a fluoride-specific desilylation reaction and the “Turn-On” fluorescent response of probe 1 to F − was ascribed to the inhibition of photoinduced electron transfer (PET) process. The probe displayed many desired properties such as high specificity, appreciable solubility, desirable response time and low toxicity to mammalian cells. There was a good linearity between the fluorescence intensity and the concentrations of F − in the range of 0.1–1 mM with a detection limit of 0.02 mM. The sensing mechanism was confirmed by the NMR, electrospray ionization mass spectrum, optical spectroscopy and the mechanism of “Turn-On” fluorescent response was also determinated by a density functional theory (DFT) calculation using Gaussian 03 program. Moreover, the probe was successfully applied for the fluorescence imaging of F − in human epithelial lung cancer (A549) cells and alveolar type II (ATII) cells under physiological conditions

  6. Dual-Color Fluorescence Imaging of Magnetic Nanoparticles in Live Cancer Cells Using Conjugated Polymer Probes

    Science.gov (United States)

    Sun, Minjie; Sun, Bin; Liu, Yun; Shen, Qun-Dong; Jiang, Shaojun

    2016-01-01

    Rapid growth in biological applications of nanomaterials brings about pressing needs for exploring nanomaterial-cell interactions. Cationic blue-emissive and anionic green-emissive conjugated polymers are applied as dual-color fluorescence probes to the surface of negatively charged magnetic nanoparticles through sequentially electrostatic adsorption. These conjugated polymers have large extinction coefficients and high fluorescence quantum yield (82% for PFN and 62% for ThPFS). Thereby, one can visualize trace amount (2.7 μg/mL) of fluorescence-labeled nanoparticles within cancer cells by confocal laser scanning microscopy. Fluorescence labeling by the conjugated polymers is also validated for quantitative determination of the internalized nanoparticles in each individual cell by flow cytometry analysis. Extensive overlap of blue and green fluorescence signals in the cytoplasm indicates that both conjugated polymer probes tightly bind to the surface of the nanoparticles during cellular internalization. The highly charged and fluorescence-labeled nanoparticles non-specifically bind to the cell membranes, followed by cellular uptake through endocytosis. The nanoparticles form aggregates inside endosomes, which yields a punctuated staining pattern. Cellular internalization of the nanoparticles is dependent on the dosage and time. Uptake efficiency can be enhanced three-fold by application of an external magnetic field. The nanoparticles are low cytotoxicity and suitable for simultaneously noninvasive fluorescence and magnetic resonance imaging application. PMID:26931282

  7. Quinoline Fluorescent Probes for Zinc - from Diagnostic to Therapeutic Molecules in Treating Neurodegenerative Diseases.

    Science.gov (United States)

    Czaplinska, Barbara; Spaczynska, Ewelina; Musiol, Robert

    2018-01-01

    Fluorescent compounds had gained strong attention due to their wide and appealing applications. Microscopic techniques and visualization are good examples among others. Introduction of fluorescent dyes into microbiology opens the possibility to observe tissues, organisms or organelle with exceptional sensitivity and resolution. Probes for detection of biologically relevant metals as zinc, iron or copper seems to be particularly important for drug design and pharmaceutical sciences. Quinoline derivatives are well known for their good metal affinity and wide spectrum of biological activity. In this regard, molecular sensors built on this scaffold may be useful not only as analytical but also as therapeutic agents. In the present review, application of quinoline moiety in designing of novel fluorescent probes for zinc is presented and discussed. Zinc cations are relevant for vast majority of processes and recently attract a great deal of attention for their role in neurodegenerative diseases. Compounds interacting with Zn2+ may be used for early diagnosis of such disorders, for example the Alzheimer disease. Quinoline-based zinc probes may exert some beneficial role in organism acting as theranostic agents. First preliminary drugs for Alzheimer therapy that are based on quinoline moiety are good example of this trend. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Photobleaching kinetics and time-integrated emission of fluorescent probes in cellular membranes

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Christensen, Tanja; Solanko, Lukasz Michal

    2014-01-01

    Since the pioneering work of Hirschfeld, it is known that time-integrated emission (TiEm) of a fluorophore is independent of fluorescence quantum yield and illumination intensity. Practical implementation of this important result for determining exact probe distribution in living cells is often h...

  9. Simultaneous fitting of real-time PCR data with efficiency of amplification modeled as Gaussian function of target fluorescence

    Directory of Open Access Journals (Sweden)

    Lazar Andreas

    2008-02-01

    Full Text Available Abstract Background In real-time PCR, it is necessary to consider the efficiency of amplification (EA of amplicons in order to determine initial target levels properly. EAs can be deduced from standard curves, but these involve extra effort and cost and may yield invalid EAs. Alternatively, EA can be extracted from individual fluorescence curves. Unfortunately, this is not reliable enough. Results Here we introduce simultaneous non-linear fitting to determine – without standard curves – an optimal common EA for all samples of a group. In order to adjust EA as a function of target fluorescence, and still to describe fluorescence as a function of cycle number, we use an iterative algorithm that increases fluorescence cycle by cycle and thus simulates the PCR process. A Gauss peak function is used to model the decrease of EA with increasing amplicon accumulation. Our approach was validated experimentally with hydrolysis probe or SYBR green detection with dilution series of 5 different targets. It performed distinctly better in terms of accuracy than standard curve, DART-PCR, and LinRegPCR approaches. Based on reliable EAs, it was possible to detect that for some amplicons, extraordinary fluorescence (EA > 2.00 was generated with locked nucleic acid hydrolysis probes, but not with SYBR green. Conclusion In comparison to previously reported approaches that are based on the separate analysis of each curve and on modelling EA as a function of cycle number, our approach yields more accurate and precise estimates of relative initial target levels.

  10. A quinoline-based Cu2 + ion complex fluorescence probe for selective detection of inorganic phosphate anion in aqueous solution and its application to living cells

    Science.gov (United States)

    Dai, Yanpeng; Wang, Peng; Fu, Jiaxin; Yao, Kun; Xu, Kuoxi; Pang, Xiaobin

    2017-08-01

    A quinaldine functionalized probe QP has been designed and synthesized. It exhibited selective turn-off fluorescence response toward Cu2 + ion over most of the biologically important ions at physiological pH. The binding ratio of the probe QP and Cu2 + ion was determined to be 1:1 through fluorescence titration, Job's plot and ESI-MS. The binding constant (K) of Cu2 + to probe QP was found to be 2.12 × 104 M- 1. Further, the Cu2 + ensemble of probe QP was found to respond H2PO4- and HPO42 - among other important biological anions via fluorescence turn-on response at physiological pH. Fluorescence microscopy imaging using living Hela cells showed that probe QP could be used as an effective fluorescent probe for detecting Cu2 + cation and H2PO4- and HPO42 - anions in living cells.

  11. Fluorescence detection of glutathione and oxidized glutathione in blood with a NIR-excitable cyanine probe

    Science.gov (United States)

    Liu, Chang-hui; Qi, Feng-pei; Wen, Fu-bin; Long, Li-ping; Liu, Ai-juan; Yang, Rong-hua

    2018-04-01

    Cyanine has been widely utilized as a near infrared (NIR) fluorophore for detection of glutathione (GSH). However, the excitation of most of the reported cyanine-based probes was less than 800 nm, which inevitably induce biological background absorption and lower the sensitivity, limiting their use for detection of GSH in blood samples. To address this issue, here, a heptamethine cyanine probe (DNIR), with a NIR excitation wavelength at 804 nm and a NIR emission wavelength at 832 nm, is employed for the detection of GSH and its oxidized form (GSSG) in blood. The probe displays excellent selectivity for GSH over GSSG and other amino acids, and rapid response to GSH, in particular a good property for indirect detection of GSSG in the presence of enzyme glutathione reductase and the reducing agent nicotinamideadenine dinucleotide phosphate, without further separation prior to fluorescent measurement. To the best of our knowledge, this is the first attempt to explore NIR fluorescent approach for the simultaneous assay of GSH and GSSG in blood. As such, we expect that our fluorescence sensors with both NIR excitation and NIR emission make this strategy suitable for the application in complex physiological systems.

  12. Determination of the activity of telomerase in cancer cells by using BSA-protected gold nanoclusters as a fluorescent probe.

    Science.gov (United States)

    Xu, Yujuan; Zhang, Peng; Wang, Zhen; Lv, Shaoping; Ding, Caifeng

    2018-02-27

    Gold nanoclusters (AuNCs) protected with a bovine serum albumin (BSA) coating are known to emit red fluorescence (peaking at 650 nm) on photoexcitation with ultraviolet light (365 nm). On addition of Cu(II) ions, fluorescence is quenched because Cu(II) complexes certain amino acid units in the BSA chain. Fluorescence is, however, restored if pyrophosphate (PPi) is added because it will chelate Cu(II) and remove it from the BSA coating on the AuNCs. Because PPi is involved in the function of telomerase, the BSA@AuNCs loaded with Cu(II) can act as a fluorescent probe for determination of the activity of telomerase. A fluorescent assay was worked out for telomerase that is highly sensitive and has a wide linear range (10 nU to 10 fM per mL). The fluorescent probe was applied to the determination of telomerase activity in cervix carcinoma cells via imaging. It is shown that tumor cells can be well distinguished from normal cells by monitoring the differences in intracellular telomerase activity. Graphical abstract Gold nanoclusters (AuNCs) protected by bovine serum albumin (BSA) and displaying red photoluminescence were prepared as fluorescent probe for the determination of telomerase activity and used for imaging of cervix carcinoma (HeLa) cells.

  13. A spirobifluorene-based two-photon fluorescence probe for mercury ions and its applications in living cells

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Haibo, E-mail: xiaohb@shnu.edu.cn; Zhang, Yanzhen; Zhang, Wu; Li, Shaozhi; Tan, Jingjing; Han, Zhongying

    2017-05-01

    A novel spirobifluorene derivative SPF-TMS, which containing dithioacetal groups and triphenylamine units, was synthesized. The probing behaviors toward various metal ions were investigated via UV/Vis absorption spectra as well as one-photon fluorescence changes. The results indicated that SPF-TMS exhibits high sensitivity and selectivity for mercury ions. The detection limit was at least 8.6 × 10{sup −8}M, which is excellent comparing with other optical sensors for Hg{sup 2+}. When measured by two-photon excited fluorescence technique in THF at 800 nm, the two-photon cross-section of SPF-TMS is 272 GM. Especially, upon reaction with mercury species, SPF-TMS yielded another two-photon dye SPF-DA. Both SPF-TMS and SPF-DA emit strong two-photon induced fluorescence and can be applied in cell imaging by two-photon microscopy. - Highlights: • We report a spirobifluorene-based molecule as two-photon fluorescent probe with large two-photon cross-section. • The molecule has exclusive selectivity and sensitivity for mercury species. • The molecule has large two-photon emission changes before and after addition of Hg{sup 2+}. • Both the probe and the mercury ion-promoted reaction product can be applied in cell imaging by two-photon microscopy.

  14. Synthesis of novel fluorescent probe Tb(III)-7-carboxymethoxy-4-methylcoumarin complex for sensing of DNA

    International Nuclear Information System (INIS)

    Hussein, Belal H.M.; Azab, Hassan A.; Fathalla, Walid; Ali, Sherin A.M.

    2013-01-01

    New fluorescent probe Tb(III) (7-carboxymethoxy-4-methylcoumarin)2(SCN) (C2H5OH)(H2O) was synthesized and characterized by spectroscopy and thermal analysis. The absorption and fluorescence spectra of 7-carboxymethoxy-4-methylcoumarin (CMMC) and Tb(III)–CMMC complex have been measured in different solvents. The interactions of Tb(III)–CMMC complex with calf thymus nucleic acid (CT-DNA) have been investigated using steady state fluorescence measurements. The changes in the fluorescence intensity have been used for the quantitative determination of DNA with LOD of 3.45 ng in methanol–water (9:1, v/v). The association constants of DNA with Tb(III)–CMMC complex was found to be 2.62×1010 M −1 . - Highlights: ► New fluorescent probe Terbium (III)-7-carboxy methoxy-4-methylcoumarin complex has been synthesized and characterized. ► FTIR spectrum of Tb(III)-complex shows a characteristic band for thiocyanate group. ► DNA interaction with Terbium (III)-7-carboxy methoxy-4-methylcoumarin has been studied by fluorescence techniques. ► The change in the fluorescence intensity has been used for the quantitative determination of DNA. ► The result was better than most of the well-known methods including the ethidium bromide method.

  15. A subnanomolar fluorescent probe for protein kinase CK2 interaction studies

    DEFF Research Database (Denmark)

    Enkvist, Erki; Viht, Kaido; Bischoff, Nils

    2012-01-01

    of the functions of CK2 could be facilitated by the application of small-molecule fluorescent probes that bind to the active site of the enzyme with high affinity and selectivity. We have used a bisubstrate approach for the development of a highly potent inhibitor of CK2. 4,5,6,7-Tetrabromo-1H-benzimidazole...

  16. Amino acid detection using fluoroquinolone–Cu{sup 2+} complex as a switch-on fluorescent probe by competitive complexation without derivatization

    Energy Technology Data Exchange (ETDEWEB)

    Farokhcheh, Alireza; Alizadeh, Naader, E-mail: alizaden@modares.ac.ir

    2014-01-15

    In this work, we describe the use of fluoroquinolone–Cu{sup 2+} complex as a competitive switch-on fluorescence probe for amino acid determination without derivatization. The fluorescence intensity of this probe, which has been reduced due to effective quenching by Cu{sup 2+} ion, increases drastically by an addition of amino acid (glycine, phenylalanine, sarcosine, aspargine, alanine, proline, arginine, aspartic acid, glutamic acid, lysine, leucine and isoleucine). The overall stability constants of Cu{sup 2+} ion complexes with amino acids were determined by fluorometric titration of fluoroquinolone-Cu{sup 2+} complex with the amino acid solution. Furthermore, the probe shows high calibration sensitivity toward aspartic acid. The fluorescence signal depends linearly on the amino acid concentration within the range of concentration from 1.2×10{sup −7} to 1.1×10{sup −5} mol L{sup −1} for aspartic acid. The detection limit was found 2.7×10{sup −8} mol L{sup −1} with the relative standard deviation (RSD%) about 2.1% (five replicate). -- Highlights: • Amino acids are detected by using fluoroquinolone–Cu{sup 2+} complex as fluorescent probe. • Amino acids were detected based on a competitive complexation reaction. • Probe has been able to recognize amino acids through switch-on fluorescence behavior. • Ultra-trace level of aspartic and glutamic acid is determined without derivatization.

  17. Synthesis of improved upconversion nanoparticles as ultrasensitive fluorescence probe for mycotoxins

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Quansheng, E-mail: q.s.chen@hotmail.com; Hu, Weiwei; Sun, Cuicui; Li, Huanhuan; Ouyang, Qin

    2016-09-28

    Rare earth-doped upconversion nanoparticles (UCNPs) have promising potentials in biodetection due to their unique frequency upconverting capability and high detection sensitivity. This paper reports an improved UCNPs-based fluorescence probe for dual-sensing of Aflatoxin B1 (AFB1) and Deoxynivalenol (DON) using a magnetism-induced separation and the specific formation of antibody-targets complex. Herein, the improved UCNPs, which were namely NaYF{sub 4}:Yb/Ho/Gd and NaYF{sub 4}:Yb/Tm/Gd, were systematically studied based on the optimization of reaction time, temperature and the concentration of dopant ions with simultaneous phase and size controlled NaYF{sub 4} nanoparticles; and the targets were detected using the pattern of competitive combination assay. Under an optimized condition, the advanced fluorescent probes revealed stronger fluorescent properties, broader biological applications and better storage stabilities compared to traditional UCNPs-based ones; and ultrasensitive determinations of AFB1 and DON were achieved under a wide sensing range of 0.001–0.1 ng ml{sup −1} with the limit of detection (LOD) of 0.001 ng ml{sup −1}. Additionally, the applicability of the improved nanosensor for the detection of mycotoxins was also confirmed in adulterated oil samples. - Highlights: • Improved rare earth-doped upconversion nanoparticles were prepared with detailed optimizations. • Setup of an upconversion fluorescence spectrometer. • An advanced UCNPs-based immunosensor for dual-sensing mycotoxins was developed with a LOD of 0.001 ng ml{sup −1}. • Application of this biosensor to detect targets in real samples were confirmed with satisfied results.

  18. Construction of an efficient two-photon fluorescent probe for imaging nitroreductase in live cells and tissues

    Science.gov (United States)

    Zhou, Liyi; Gong, Liang; Hu, Shunqin

    2018-06-01

    Compared with traditional confocal microscopy, two-photon fluorescence microscopy (TPFM), which excites a two-photon (TP) fluorophore by near-infrared light, provides improved three-dimensional image resolution with increased tissue-image depth (>500 μm) and an extended observation time. Therefore, the development of novel functional TP fluorophores has attracted great attention in recent years. Herein, a novel TP fluorophore CM-NH2, which have the donor-π-acceptor (D-π-A)-structure, was designed and synthesized. We further used this dye developed a new type of TP fluorescent probe CM-NO2 for detecting nitroreductase (NTR). Upon incubated with NTR for 15 min, CM-NO2 displayed a 90-fold fluorescence enhancement at 505 nm and the maximal TP action cross-section value after reaction was detected and calculated to be 200 GM at 760 nm. The probe exhibited excellent properties such as high sensitivity, high selectivity, low cytotoxicity, and high photostability. Moreover, the probe was utilized to image the tumor hypoxia in live HeLa cells. Finally, using the CM-NO2 to image NTR in tissues was demonstrated.

  19. Smart near-infrared fluorescence probes with donor-acceptor structure for in vivo detection of β-amyloid deposits.

    Science.gov (United States)

    Cui, Mengchao; Ono, Masahiro; Watanabe, Hiroyuki; Kimura, Hiroyuki; Liu, Boli; Saji, Hideo

    2014-03-05

    The deposition of β-amyloid (Aβ) plaques in the parenchymal and cortical brain is accepted as the main pathological hallmark of Alzheimer's disease (AD); however, early detection of AD still presents a challenge. With the assistance of molecular imaging techniques, imaging agents specifically targeting Aβ plaques in the brain may lead to the early diagnosis of AD. Herein, we report the design, synthesis, and evaluation of a series of smart near-infrared fluorescence (NIRF) imaging probes with donor-acceptor architecture bridged by a conjugated π-electron chain for Aβ plaques. The chemical structure of these NIRF probes is completely different from Congo Red and Thioflavin-T. Probes with a longer conjugated π system (carbon-carbon double bond) displayed maximum emission in PBS (>650 nm), which falls in the best range for NIRF probes. These probes were proved to have affinity to Aβ plaques in fluorescent staining of brain sections from an AD patient and double transgenic mice, as well as in an in vitro binding assay using Aβ(1-42) aggregates. One probe with high affinity (K(i) = 37 nM, K(d) = 27 nM) was selected for in vivo imaging. It can penetrate the blood-brain barrier of nude mice efficiently and is quickly washed out of the normal brain. Moreover, after intravenous injection of this probe, 22-month-old APPswe/PSEN1 mice exhibited a higher relative signal than control mice over the same period of time, and ex vivo fluorescent observations confirmed the existence of Aβ plaques. In summary, this probe meets most of the requirements for a NIRF contrast agent for the detection of Aβ plaques both in vitro and in vivo.

  20. A novel fluorescence probe based on triphenylamine Schiff base for bioimaging and responding to pH and Fe{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lei; Yang, Xiaodong; Chen, Xiuli [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China); Zhou, Yuping [Guangdong Provincial key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515 (China); Lu, Xiaodan; Yan, Chenggong; Xu, Yikai [Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515 (China); Liu, Ruiyuan, E-mail: ruiyliu@smu.edu.cn [Guangdong Provincial key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515 (China); Qu, Jinqing, E-mail: cejqqu@scut.edu.cn [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China)

    2017-03-01

    A novel fluorescence probe 1 based on triphenylamine was synthesized and characterized by NMR, IR, high resolution mass spectrometry and elemental analysis. Its fluorescence was quenched when pH below 2. There was a linear relationship between the fluorescence intensity and pH value ranged from 2 to 7. And its fluorescence emission was reversibility in acidic and alkaline solution. Furthermore, it exhibited remarkable selectivity and high sensitivity to Fe{sup 3+} and was able to detect Fe{sup 3+} in aqueous solution with low detection limit of 0.511 μM. Job plot showed that the binding stoichiometry of 1 with Fe{sup 3+} was 1:1. Further observations of {sup 1}H NMR titration suggested that coordination interaction between Fe{sup 3+} and nitrogen atom on C =N bond promoted the intramolecular charge transfer (ICT) or energy transfer process causing fluorescence quenching. Additionally, 1 was also able to be applied for detecting Fe{sup 3+} in living cell and bioimaging. - Graphical abstract: Triphenylamine based fluorescence probe can detect pH and Fe{sup 3+} simultaneously in aqueous solution and be applied for detecting Fe{sup 3+} in living cell and bioimaging. - Highlights: • The fluorescence probe is sensitive to pH in strong acid conditions. • The fluorescence chemosensor can detect pH and Fe{sup 3+} simultaneously. • The recognition is able to carry out in aqueous solution. • The probe can also be applied for detecting Fe{sup 3+} in living cell and bioimaging. • The sensor is synthesized easily with one step.

  1. Imaging of Fluoride Ion in Living Cells and Tissues with a Two-Photon Ratiometric Fluorescence Probe

    Directory of Open Access Journals (Sweden)

    Xinyue Zhu

    2015-01-01

    Full Text Available A reaction-based two-photon (TP ratiometric fluorescence probe Z2 has been developed and successfully applied to detect and image fluoride ion in living cells and tissues. The Z2 probe was designed designed to utilize an ICT mechanism between n-butylnaphthalimide as a fluorophore and tert-butyldiphenylsilane (TBDPS as a response group. Upon addition of fluoride ion, the Si-O bond in the Z2 would be cleaved, and then a stronger electron-donating group was released. The fluorescent changes at 450 and 540 nm, respectively, made it possible to achieve ratiometric fluorescence detection. The results indicated that the Z2 could ratiometrically detect and image fluoride ion in living cells and tissues in a depth of 250 μm by two-photon microscopy (TPM.

  2. Absolute and direct microRNA quantification using DNA-gold nanoparticle probes.

    Science.gov (United States)

    Degliangeli, Federica; Kshirsagar, Prakash; Brunetti, Virgilio; Pompa, Pier Paolo; Fiammengo, Roberto

    2014-02-12

    DNA-gold nanoparticle probes are implemented in a simple strategy for direct microRNA (miRNA) quantification. Fluorescently labeled DNA-probe strands are immobilized on PEGylated gold nanoparticles (AuNPs). In the presence of target miRNA, DNA-RNA heteroduplexes are formed and become substrate for the endonuclease DSN (duplex-specific nuclease). Enzymatic hydrolysis of the DNA strands yields a fluorescence signal due to diffusion of the fluorophores away from the gold surface. We show that the molecular design of our DNA-AuNP probes, with the DNA strands immobilized on top of the PEG-based passivation layer, results in nearly unaltered enzymatic activity toward immobilized heteroduplexes compared to substrates free in solution. The assay, developed in a real-time format, allows absolute quantification of as little as 0.2 fmol of miR-203. We also show the application of the assay for direct quantification of cancer-related miR-203 and miR-21 in samples of extracted total RNA from cell cultures. The possibility of direct and absolute quantification may significantly advance the use of microRNAs as biomarkers in the clinical praxis.

  3. Double-labeled donor probe can enhance the signal of fluorescence resonance energy transfer (FRET) in detection of nucleic acid hybridization

    Science.gov (United States)

    Okamura, Yukio; Kondo, Satoshi; Sase, Ichiro; Suga, Takayuki; Mise, Kazuyuki; Furusawa, Iwao; Kawakami, Shigeki; Watanabe, Yuichiro

    2000-01-01

    A set of fluorescently-labeled DNA probes that hybridize with the target RNA and produce fluorescence resonance energy transfer (FRET) signals can be utilized for the detection of specific RNA. We have developed probe sets to detect and discriminate single-strand RNA molecules of plant viral genome, and sought a method to improve the FRET signals to handle in vivo applications. Consequently, we found that a double-labeled donor probe labeled with Bodipy dye yielded a remarkable increase in fluorescence intensity compared to a single-labeled donor probe used in an ordinary FRET. This double-labeled donor system can be easily applied to improve various FRET probes since the dependence upon sequence and label position in enhancement is not as strict. Furthermore this method could be applied to other nucleic acid substances, such as oligo RNA and phosphorothioate oligonucleotides (S-oligos) to enhance FRET signal. Although the double-labeled donor probes labeled with a variety of fluorophores had unexpected properties (strange UV-visible absorption spectra, decrease of intensity and decay of donor fluorescence) compared with single-labeled ones, they had no relation to FRET enhancement. This signal amplification mechanism cannot be explained simply based on our current results and knowledge of FRET. Yet it is possible to utilize this double-labeled donor system in various applications of FRET as a simple signal-enhancement method. PMID:11121494

  4. Dual-Modal Colorimetric/Fluorescence Molecular Probe for Ratiometric Sensing of pH and Its Application.

    Science.gov (United States)

    Wu, Luling; Li, Xiaolin; Huang, Chusen; Jia, Nengqin

    2016-08-16

    As traditional pH meters cannot work well for minute regions (such as subcellular organelles) and in harsh media, molecular pH-sensitive devices for monitoring pH changes in diverse local heterogeneous environments are urgently needed. Here, we report a new dual-modal colorimetric/fluorescence merocyanine-based molecular probe (CPH) for ratiometric sensing of pH. Compared with previously reported pH probes, CPH bearing the benzyl group at the nitrogen position of the indolium group and the phenol, which is used as the acceptor for proton, could respond to pH changes immediately through both the ratiometric fluorescence signal readout and naked-eye colorimetric observation. The sensing process was highly stable and reversible. Most importantly, the suitable pKa value (6.44) allows CPH to presumably accumulate in lysosomes and become a lysosome-target fluorescent probe. By using CPH, the intralysosomal pH fluctuation stimulated by antimalaria drug chloroquine was successfully tracked in live cells through the ratiometric fluorescence images. Additionally, CPH could be immobilized on test papers, which exhibited a rapid and reversible colorimetric response to acid/base vapor through the naked-eye colorimetric analysis. This proof-of-concept study presents the potential application of CPH as a molecular tool for monitoring intralysosomal pH fluctuation in live cells, as well as paves the way for developing the economic, reusable, and fast-response optical pH meters for colorimetric sensing acid/base vapor with direct naked-eye observation.

  5. An image fiber based fluorescent probe with associated signal processing scheme for biomedical diagnostics

    International Nuclear Information System (INIS)

    Vaishakh, M; Murukeshan, V M; Seah, L K

    2008-01-01

    A dual-modality image fiber based fluorescent probe that can be used for depth sensitive imaging and suppression of fluorescent emissions with nanosecond lifetime difference is proposed and illustrated in this paper. The system can give high optical sectioning and employs an algorithm for obtaining phase sensitive images. The system can find main application in in vivo biomedical diagnostics for detecting biochemical changes for distinguishing malignant tissue from healthy tissue

  6. Tissue classification and diagnostics using a fiber probe for combined Raman and fluorescence spectroscopy

    Science.gov (United States)

    Cicchi, Riccardo; Anand, Suresh; Crisci, Alfonso; Giordano, Flavio; Rossari, Susanna; De Giorgi, Vincenzo; Maio, Vincenza; Massi, Daniela; Nesi, Gabriella; Buccoliero, Anna Maria; Guerrini, Renzo; Pimpinelli, Nicola; Pavone, Francesco S.

    2015-07-01

    Two different optical fiber probes for combined Raman and fluorescence spectroscopic measurements were designed, developed and used for tissue diagnostics. Two visible laser diodes were used for fluorescence spectroscopy, whereas a laser diode emitting in the NIR was used for Raman spectroscopy. The two probes were based on fiber bundles with a central multimode optical fiber, used for delivering light to the tissue, and 24 surrounding optical fibers for signal collection. Both fluorescence and Raman spectra were acquired using the same detection unit, based on a cooled CCD camera, connected to a spectrograph. The two probes were successfully employed for diagnostic purposes on various tissues in a good agreement with common routine histology. This study included skin, brain and bladder tissues and in particular the classification of: malignant melanoma against melanocytic lesions and healthy skin; urothelial carcinoma against healthy bladder mucosa; brain tumor against dysplastic brain tissue. The diagnostic capabilities were determined using a cross-validation method with a leave-one-out approach, finding very high sensitivity and specificity for all the examined tissues. The obtained results demonstrated that the multimodal approach is crucial for improving diagnostic capabilities. The system presented here can improve diagnostic capabilities on a broad range of tissues and has the potential of being used for endoscopic inspections in the near future.

  7. Synthesis of novel fluorescent probe Tb(III)-7-carboxymethoxy-4-methylcoumarin complex for sensing of DNA

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, Belal H.M., E-mail: belalhussein102@yahoo.com [Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia (Egypt); Azab, Hassan A. [Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia (Egypt); Fathalla, Walid [Department of Mathematical and Physical Sciences, Faculty of Engineering, Port-Said University, Port-Said (Egypt); Ali, Sherin A.M. [Department of Mathematical and Physical Sciences, Faculty of Engineering, Suez Canal University, Ismailia (Egypt)

    2013-02-15

    New fluorescent probe Tb(III) (7-carboxymethoxy-4-methylcoumarin)2(SCN) (C2H5OH)(H2O) was synthesized and characterized by spectroscopy and thermal analysis. The absorption and fluorescence spectra of 7-carboxymethoxy-4-methylcoumarin (CMMC) and Tb(III)-CMMC complex have been measured in different solvents. The interactions of Tb(III)-CMMC complex with calf thymus nucleic acid (CT-DNA) have been investigated using steady state fluorescence measurements. The changes in the fluorescence intensity have been used for the quantitative determination of DNA with LOD of 3.45 ng in methanol-water (9:1, v/v). The association constants of DNA with Tb(III)-CMMC complex was found to be 2.62 Multiplication-Sign 1010 M{sup -1}. - Highlights: Black-Right-Pointing-Pointer New fluorescent probe Terbium (III)-7-carboxy methoxy-4-methylcoumarin complex has been synthesized and characterized. Black-Right-Pointing-Pointer FTIR spectrum of Tb(III)-complex shows a characteristic band for thiocyanate group. Black-Right-Pointing-Pointer DNA interaction with Terbium (III)-7-carboxy methoxy-4-methylcoumarin has been studied by fluorescence techniques. Black-Right-Pointing-Pointer The change in the fluorescence intensity has been used for the quantitative determination of DNA. Black-Right-Pointing-Pointer The result was better than most of the well-known methods including the ethidium bromide method.

  8. Sensitive determination of nucleic acids using organic nanoparticle fluorescence probes

    Science.gov (United States)

    Zhou, Yunyou; Bian, Guirong; Wang, Leyu; Dong, Ling; Wang, Lun; Kan, Jian

    2005-06-01

    This paper describes the preparation of organic nanoparticles by reprecipitation method under sonication and vigorous stirring. Transmission electron microscopy (TEM) was used to characterize the size and size distribution of the luminescent nanoparticles. Their average diameter was about 25 nm with a size variation of ±18%. The fluorescence decay lifetime of the nanoparticles also was determined on a self-equipped fluorospectrometer with laser light source. The lifetime (˜0.09 μs) of nanoparticles is about three times long as that of the monomer. The nanoparticles were in abundant of hydrophilic groups, which increased their miscibility in aqueous solution. These organic nanoparticles have high photochemical stability, excellent resistance to chemical degradation and photodegradation, and a good fluorescence quantum yield (25%). The fluorescence can be efficiently quenched by nucleic acids. Based on the fluorescence quenching of nanoparticles, a fluorescence quenching method was developed for determination of microamounts of nucleic acids by using the nanoparticles as a new fluorescent probe. Under optimal conditions, maximum fluorescence quenching is produced, with maximum excitation and emission wavelengths of 345 and 402 nm, respectively. Under optimal conditions, the calibration graphs are linear over the range 0.4-19.0 μg ml -1 for calf thymus DNA (ct-DNA) and 0.3-19.0 μg ml -1 for fish sperm DNA (fs-DNA). The corresponding detection limits are 0.25 μg ml -1 for ct-DNA and 0.17 μg ml -1 for fs-DNA. The relative standard deviation of six replicate measurements is 1.3-2.1%. The method is simple, rapid and sensitive with wide linear range. The recovery and relative standard deviation are very satisfactory.

  9. In-vivo fluorescence detection of breast cancer growth factor receptors by fiber-optic probe

    Science.gov (United States)

    Bustamante, Gilbert; Wang, Bingzhi; DeLuna, Frank; Sun, LuZhe; Ye, Jing Yong

    2018-02-01

    Breast cancer treatment options often include medications that target the overexpression of growth factor receptors, such as the proto-oncogene human epidermal growth factor receptor 2 (HER2/neu) and epidermal growth factor receptor (EGFR) to suppress the abnormal growth of cancerous cells and induce cancer regression. Although effective, certain treatments are toxic to vital organs, and demand assurance that the pursued receptor is present at the tumor before administration of the drug. This requires diagnostic tools to provide tumor molecular signatures, as well as locational information. In this study, we utilized a fiber-optic probe to characterize in vivo HER2 and EGFR overexpressed tumors through the fluorescence of targeted dyes. HER2 and EGFR antibodies were conjugated with ICG-Sulfo-OSu and Alexa Fluor 680, respectively, to tag BT474 (HER2+) and MDA-MB-468 (EGFR+) tumors. The fiber was inserted into the samples via a 30-gauge needle. Different wavelengths of a supercontinuum laser were selected to couple into the fiber and excite the corresponding fluorophores in the samples. The fluorescence from the dyes was collected through the same fiber and quantified by a time-correlated single photon counter. Fluorescence at different antibody-dye concentrations was measured for calibration. Mice with subcutaneous HER2+ and/or EGFR+ tumors received intravenous injections of the conjugates and were later probed at the tumor sites. The measured fluorescence was used to distinguish between tumor types and to calculate the concentration of the antibody-dye conjugates, which were detectable at levels as low as 40 nM. The fiber-optic probe presents a minimally invasive instrument to characterize the molecular signatures of breast cancer in vivo.

  10. Hyaluronan functionalizing QDs as turn-on fluorescent probe for targeted recognition CD44 receptor

    Science.gov (United States)

    Zhou, Shang; Huo, Danqun; Hou, Changjun; Yang, Mei; Fa, Huanbao

    2017-09-01

    The recognition of tumor markers in living cancer cells has attracted increasing interest. In the present study, the turn-on fluorescence probe was designed based on the fluorescence of thiolated chitosan-coated CdTe QDs (CdTe/TCS QDs) quenched by hyaluronan, which could provide the low background signal for sensitive cellular imaging. This system is expected to offer specific recognition of CD44 receptor over other substances owing to the specific affinity of hyaluronan and CD44 receptor ( 8-9 kcal/mol). The probe is stable in aqueous and has little toxicity to living cells; thus, it can be utilized for targeted cancer cell imaging. The living lung cancer cell imaging experiments further demonstrate its value in recognizing cell-surface CD44 receptor with turn-on mode. In addition, the probe can be used to recognize and differentiate the subtypes of lung cancer cells based on the difference of CD44 expression on the surface of lung cancer cells. And, the western blot test further confirmed that the expression level of the CD44 receptor in lung cancer cells is different. Therefore, this probe may be potentially applied in recognizing lung cancer cells with higher contrast and sensitivity and provide new tools for cancer prognosis and therapy. [Figure not available: see fulltext.

  11. Reaction-based small-molecule fluorescent probes for dynamic detection of ROS and transient redox changes in living cells and small animals.

    Science.gov (United States)

    Lü, Rui

    2017-09-01

    Dynamic detection of transient redox changes in living cells and animals has broad implications for human health and disease diagnosis, because intracellular redox homeostasis regulated by reactive oxygen species (ROS) plays important role in cell functions, normal physiological functions and some serious human diseases (e.g., cancer, Alzheimer's disease, diabetes, etc.) usually have close relationship with the intracellular redox status. Small-molecule ROS-responsive fluorescent probes can act as powerful tools for dynamic detection of ROS and redox changes in living cells and animals through fluorescence imaging techniques; and great advances have been achieved recently in the design and synthesis of small-molecule ROS-responsive fluorescent probes. This article highlights up-to-date achievements in designing and using the reaction-based small-molecule fluorescent probes (with high sensitivity and selectivity to ROS and redox cycles) in the dynamic detection of ROS and transient redox changes in living cells and animals through fluorescence imaging. Copyright © 2017. Published by Elsevier Ltd.

  12. A lysosome-targetable turn-on fluorescent probe for the detection of thiols in living cells based on a 1,8-naphthalimide derivative

    Science.gov (United States)

    Liang, Beibei; Wang, Baiyan; Ma, Qiujuan; Xie, Caixia; Li, Xian; Wang, Suiping

    2018-03-01

    Biological thiols, like cysteine (Cys), homocysteine (Hcy) and glutathione (GSH), play crucial roles in biological systems and in lysosomal processes. Highly selective probes for detecting biological thiols in lysomes of living cells are rare. In this work, a lysosome-targetable turn-on fluorescent probe for the detection of thiols in living cells was designed and synthesized based on a 1,8-naphthalimide derivative. The probe has a 4-(2-aminoethyl)morpholine unit as a lysosome-targetable group and an acrylate group as the thiol recognition unit as well as a fluorescence quencher. In the absence of biothiols, the probe displayed weak fluorescence due to the photoinduced electron transfer (PET) process. Upon the addition of biothiols, the probe exhibited an enhanced fluorescence emission centered at 550 nm due to cleavage of the acrylate moiety. The probe had high selectivity toward biothiols. Moreover, the probe features fast response time, excitation in the visible region and ability of working in a wide pH range. The linear response range covers a concentration range of Cys from 1.5 × 10- 7 to 1.0 × 10- 5 mol·L- 1 and the detection limit is 6.9 × 10- 8 mol·L- 1 for Cys. The probe has been successfully applied to the confocal imaging of biothiols in lysosomes of A549 cells with low cell toxicity. Furthermore, the method was successfully applied to the determination of thiols in a complex multicomponent mixture such as human serum, which suggests our proposed method has great potential for diagnostic purposes. All of such good properties prove it can be used to monitor biothiols in lysosomes of living cells and to be a good fluorescent probe for the selective detection of thiols.

  13. Fluorescent probe for turn-on sensing of L-cysteine by ensemble of AuNCs and polymer protected AuNPs.

    Science.gov (United States)

    Xu, Xiaozhe; Qiao, Juan; Li, Nan; Qi, Li; Zhang, Shufeng

    2015-06-16

    A new fluorescent probe based on ensemble of gold nanoclusters (AuNCs) and polymer protected gold nanoparticles (AuNPs) for turn-on sensing of L-cysteine was designed and prepared. The AuNCs were protected by bovine serum albumin and had strong fluorescence. The polymer protected AuNPs were synthesized by a facile in situ strategy at room temperature and could quench the fluorescence of AuNCs due to the Förster resonance energy transfer. Interestingly, it has been observed that the quenched fluorescence of AuNCs was recovered by L-cysteine, which could induce the aggregation of polymer protected AuNPs by sulfur group. Then the prepared fluorescent probe was successfully used for determination of L-Cys in human urines, which would have an evolving aspect and promote the subsequent exploration. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Monitoring membrane hydration with 2-(dimethylamino)-6-acylnaphtalenes fluorescent probes

    DEFF Research Database (Denmark)

    Bagatolli, Luis

    2015-01-01

    of LAURDAN and PRODAN are exquisitely sensitive to cholesterol effects, allowing interpretations that correlate changes in membrane packing with membrane hydration. Different membrane model systems as well as innate biological membranes have been studied with this family of probes allowing interesting...... comparative studies. This chapter presents a short historical overview about these fluorescent reporters, discusses on different models proposed to explain their sensitivity to membrane hydration, and includes relevant examples from experiments performed in artificial and biological membranes....

  15. Highly selective and sensitive detection of Cu2+ with lysine enhancing bovine serum albumin modified-carbon dots fluorescent probe.

    Science.gov (United States)

    Liu, Jia-Ming; Lin, Li-ping; Wang, Xin-Xing; Lin, Shao-Qin; Cai, Wen-Lian; Zhang, Li-Hong; Zheng, Zhi-Yong

    2012-06-07

    Based on the ability of lysine (Lys) to enhance the fluorescence intensity of bovine serum albumin modified-carbon dots (CDs-BSA) to decrease surface defects and quench fluorescence of the CDs-BSA-Lys system in the presence of Cu(2+) under conditions of phosphate buffer (PBS, pH = 5.0) at 45 °C for 10 min, a sensitive Lys enhancing CDs-BSA fluorescent probe was designed. The environment-friendly, simple, rapid, selective and sensitive fluorescent probe has been utilized to detect Cu(2+) in hair and tap water samples and it achieved consistent results with those obtained by inductively coupled plasma mass spectroscopy (ICP-MS). The mechanism of the proposed assay for the detection of Cu(2+) is discussed.

  16. Conception, synthesis and evaluation of fluorescent probes and PET radioligands for the oxytocin and vasopressin receptors

    International Nuclear Information System (INIS)

    Karpenko, Iuliia

    2014-01-01

    In order to better understand the role of OTR and AVPR in ASD, to reveal new features in its pharmacology and signaling and to establish high-throughput screening method on wild-type G protein-coupled receptors, we developed imaging probes for the oxytocin-vasopressin receptors family, namely radiotracers for positron emission tomography and optical probes for fluorescence detection and imaging. The fluorescent ligands have been used to establish TR-FRET binding assay for OTR and to initiate the development the screening assay for the wild-type oxytocin receptor. The PET radiotracers will be shortly tested in mice and monkeys to evaluate their potency in detecting the central oxytocin receptors. (author)

  17. A highly selective turn-on fluorescent probe for Al3+ in aqueous solution based on quinoline Schiff-base

    Science.gov (United States)

    Huang, Peng-Cheng; Fang, Hao; Xiong, Jing-Jing; Wu, Fang-Ying

    2017-06-01

    A new Al3+-specific fluorescent probe NQ was designed and synthesized from 2-hydroxy-1-naphthaldehyde and 2-aminoquinoline. Upon the addition of Al3+, the fluorescent intensity of NQ was significantly enhanced compared with other examined metal ions in aqueous solution. The result of a Job’s plot indicated the formation of a 1:1 complex between the probe and Al3+, and the possible binding mode of the system between NQ and Al3+ was clarified by IR analysis and 1H NMR titration. Moreover, other metal ions examined had little effect on the detection of Al3+. The detection limit of NQ for Al3+ detection was 1.98 μM, which is lower than the level (7.4 μM) in drinking water defined by the World Health Organization. In addition, the fluorescent probe NQ could be recyclable simply through treatment with a proper reagent such as F-, and could also be used for the detection of Al3+ in real samples.

  18. A novel fluorescent probe based on rhodamine hydrazone derivatives bearing a thiophene group for Al³⁺.

    Science.gov (United States)

    Li, Meng-xiao; Zhang, Xia; Fan, Yu-hua; Bi, Cai-feng

    2016-05-01

    In the present work, a novel 5-methyl-thiophene-carbaldehyde-functionalized rhodamine 6G Schiff base (RA) was designed and easily prepared as an Al(3+) fluorescent and colorimetric probe, which could selectively and sensitively detect Al(3+) by showing enhanced fluorescence emission. Meanwhile distinct color variation from colorless to pink also provided 'naked eye' detection of Al(3+), due to the ring spirolactam opening of the rhodamine derivative. Other metal ions (including K(+), Mg(2+), Na(+), Ba(2+), Mn(2+), Cd(2+), Fe(2+), Ni(2+), Pb(2+), Zn(2+), Hg(2+), Co(2+), Li(+), Sr(2+) and Cu(2+)) could only induce limited interference. The detection limit of the fluorescent probe was estimated to be 4.17 × 10(-6) M, the binding constant of the RA-Al(3+) complex was 1.4 × 10(6)  M(-1). Moreover, this fluorescent probe RA possessed high reversibility. As aluminum is a ubiquitous metal in nature and plays vital roles in many biological processes, this chemosensor could be explored for biological study applications. Copyright © 2015 John Wiley & Sons, Ltd.

  19. A novel “Turn-On” fluorescent probe for F{sup −} detection in aqueous solution and its application in live-cell imaging

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jian [Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Sun, Shaobo [Institute of Integrated Traditional and Western Medicine, Gansu University of Chinese Medicine, Lanzhou 730000 (China); Li, Qian; Yue, Ying [Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Li, Yingdong [Institute of Integrated Traditional and Western Medicine, Gansu University of Chinese Medicine, Lanzhou 730000 (China); Shao, Shijun, E-mail: sjshao@licp.cas.cn [Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2014-11-07

    Highlights: • A novel BODIPY-based “Turn-On” fluorescent probe was synthesized. • Highly selective detection of fluoride ions in 100% aqueous solution. • Study of sensing mechanism using density functional theory (DFT) calculations. • Fluorescent bioimaging of F{sup −} ion in A549 and ATII cells. - Abstract: A novel probe incorporating quaternized 4-pyridinium group into a BODIPY molecule was synthesized and studied for the selective detection of fluoride ions (F{sup −}) in aqueous solution. The design was based on a fluoride-specific desilylation reaction and the “Turn-On” fluorescent response of probe 1 to F{sup −} was ascribed to the inhibition of photoinduced electron transfer (PET) process. The probe displayed many desired properties such as high specificity, appreciable solubility, desirable response time and low toxicity to mammalian cells. There was a good linearity between the fluorescence intensity and the concentrations of F{sup −} in the range of 0.1–1 mM with a detection limit of 0.02 mM. The sensing mechanism was confirmed by the NMR, electrospray ionization mass spectrum, optical spectroscopy and the mechanism of “Turn-On” fluorescent response was also determinated by a density functional theory (DFT) calculation using Gaussian 03 program. Moreover, the probe was successfully applied for the fluorescence imaging of F{sup −} in human epithelial lung cancer (A549) cells and alveolar type II (ATII) cells under physiological conditions.

  20. Dual Mechanism of an Intramolecular Charge Transfer (ICT)-FRET-Based Fluorescent Probe for the Selective Detection of Hydrogen Peroxide.

    Science.gov (United States)

    Liang, Xiao; Xu, Xiaoyi; Qiao, Dan; Yin, Zheng; Shang, Luqing

    2017-12-14

    A dual-mechanism intramolecular charge transfer (ICT)-FRET fluorescent probe for the selective detection of H 2 O 2 in living cells has been designed and synthesized. This probe used a coumarin-naphthalimide hybrid as the FRET platform and a boronate moiety as the recognition group. Upon the addition of H 2 O 2 , the probe exhibited a redshifted (73 nm) fluorescence emission, and the ratio of fluorescence intensities at λ=558 and 485 nm (F 558 /F 485 ) shifted notably (up to 100-fold). Moreover, there was a good linearity (R 2 =0.9911) between the ratio and concentration of H 2 O 2 in the range of 0 to 60 μm, with a limit of detection of 0.28 μm (signal to noise ratio (S/N)=3). This probe could also detect enzymatically generated H 2 O 2 . Importantly, it could be used to visualize endogenous H 2 O 2 produced by stimulation from epidermal growth factor. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Sensitive detection of alkaline phosphatase by switching on gold nanoclusters fluorescence quenched by pyridoxal phosphate.

    Science.gov (United States)

    Halawa, Mohamed Ibrahim; Gao, Wenyue; Saqib, Muhammad; Kitte, Shimeles Addisu; Wu, Fengxia; Xu, Guobao

    2017-09-15

    In this work, we designed highly sensitive and selective luminescent detection method for alkaline phosphatase using bovine serum albumin functionalized gold nanoclusters (BSA-AuNCs) as the nanosensor probe and pyridoxal phosphate as the substrate of alkaline phosphatase. We found that pyridoxal phosphate can quench the fluorescence of BSA-AuNCs and pyridoxal has little effect on the fluorescence of BSA-AuNCs. The proposed mechanism of fluorescence quenching by PLP was explored on the basis of data obtained from high-resolution transmission electron microscopy (HRTEM), dynamic light scattering (DLS), UV-vis spectrophotometry, fluorescence spectroscopy, fluorescence decay time measurements and circular dichroism (CD) spectroscopy. Alkaline phosphatase catalyzes the hydrolysis of pyridoxal phosphate to generate pyridoxal, restoring the fluorescence of BSA-AuNCs. Therefore, a recovery type approach has been developed for the sensitive detection of alkaline phosphatase in the range of 1.0-200.0U/L (R 2 =0.995) with a detection limit of 0.05U/L. The proposed sensor exhibit excellent selectivity among various enzymes, such as glucose oxidase, lysozyme, trypsin, papain, and pepsin. The present switch-on fluorescence sensing strategy for alkaline phosphatase was successfully applied in human serum plasma with good recoveries (100.60-104.46%), revealing that this nanosensor probe is a promising tool for ALP detection. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Fluorescent and colorimetric molecular recognition probe for hydrogen bond acceptors.

    Science.gov (United States)

    Pike, Sarah J; Hunter, Christopher A

    2017-11-22

    The association constants for formation of 1 : 1 complexes between a H-bond donor, 1-naphthol, and a diverse range of charged and neutral H-bond acceptors have been measured using UV/vis absorption and fluorescence emission titrations. The performance of 1-naphthol as a dual colorimetric and fluorescent molecular recognition probe for determining the H-bond acceptor (HBA) parameters of charged and neutral solutes has been investigated in three solvents. The data were employed to establish self-consistent H-bond acceptor parameters (β) for benzoate, azide, chloride, thiocyanate anions, a series of phosphine oxides, phosphate ester, sulfoxide and a tertiary amide. The results demonstrate both the transferability of H-bond parameters between different solvents and the utility of the naphthol-based dual molecular recognition probe to exploit orthogonal spectroscopic techniques to determine the HBA properties of neutral and charged solutes. The benzoate anion is the strongest HBA studied with a β parameter of 15.4, and the neutral tertiary amide is the weakest H-bond acceptor investigated with a β parameter of 8.5. The H-bond acceptor strength of the azide anion is higher than that of chloride (12.8 and 12.2 respectively), and the thiocyanate anion has a β value of 10.8 and thus is a significantly weaker H-bond acceptor than both the azide and chloride anions.

  3. A NBD-based simple but effective fluorescent pH probe for imaging of lysosomes in living cells.

    Science.gov (United States)

    Cao, Xiang-Jian; Chen, Li-Na; Zhang, Xuan; Liu, Jin-Ting; Chen, Ming-Yu; Wu, Qiu-Rong; Miao, Jun-Ying; Zhao, Bao-Xiang

    2016-05-12

    NBDlyso with lysosome-locating morpholine moiety has been developed as a high selective and sensitive fluorescent pH probe. This probe can respond to acidic pH (2.0-7.0) in a short time (less than 1 min) and not almost change after continuously illuminated for an extended period by ultraviolet light. The fluorescence intensity of NBDlyso enhanced 100-fold in acidic solution, with very good linear relationship (R(2) = 0.996). The pKa of probe NBDlyso is 4.10. Therefore, NBDlyso was used to detect lysosomal pH changes successfully. Besides, X-ray crystallography was used to verify the structure of NBDlyso, and the recognition mechanism involving photo-induced electron transfer was interpreted theoretically by means of DFT and TDDFT calculations skillfully when NBDlyso comes into play under the acidic condition. This probe showed good ability to sense pH change in living cell image. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Beveled fiber-optic probe couples a ball lens for improving depth-resolved fluorescence measurements of layered tissue: Monte Carlo simulations

    International Nuclear Information System (INIS)

    Jaillon, Franck; Zheng Wei; Huang Zhiwei

    2008-01-01

    In this study, we evaluate the feasibility of designing a beveled fiber-optic probe coupled with a ball lens for improving depth-resolved fluorescence measurements of epithelial tissue using Monte Carlo (MC) simulations. The results show that by using the probe configuration with a beveled tip collection fiber and a flat tip excitation fiber associated with a ball lens, discrimination of fluorescence signals generated in different tissue depths is achievable. In comparison with a flat-tip collection fiber, the use of a large bevel angled collection fiber enables a better differentiation between the shallow and deep tissue layers by changing the excitation-collection fiber separations. This work suggests that the beveled fiber-optic probe coupled with a ball lens has the potential to facilitate depth-resolved fluorescence measurements of epithelial tissues

  5. NONINVASIVE OPTICAL IMAGING OF STAPHYLOCOCCUS AUREUS INFECTION IN VIVO USING AN ANTIMICROBIAL PEPTIDE FRAGMENT BASED NEAR-INFRARED FLUORESCENT PROBES

    Directory of Open Access Journals (Sweden)

    CUICUI LIU

    2013-07-01

    Full Text Available The diagnosis of bacterial infections remains a major challenge in medicine. Optical imaging of bacterial infection in living animals is usually conducted with genetic reporters such as light-emitting enzymes or fluorescent proteins. However, there are many circumstances where genetic reporters are not applicable, and there is an urgent need for exogenous synthetic probes that can selectively target bacteria. Optical imaging of bacteria in vivo is much less developed than methods such as radioimaging and MRI. Furthermore near-infrared (NIR dyes with emission wavelengths in the region of 650–900 nm can propagate through two or more centimeters of tissue and may enable deeper tissue imaging if sensitive detection techniques are employed. Here we constructed an antimicrobial peptide fragment UBI29-41-based near-infrared fluorescent imaging probe. The probe is composed of UBI29-41 conjugated to a near infrared dye ICG-Der-02. UBI29-41 is a cationic antimicrobial peptide that targets the anionic surfaces of bacterial cells. The probe allows detection of Staphylococcus aureus infection (5 × 107 cells in a mouse local infection model using whole animal near-infrared fluorescence imaging. Furthermore, we demonstrate that the UBI29-41-based imaging probe can selectively accumulate within bacteria. The significantly higher accumulation in bacterial infection suggests that UBI29-41-based imaging probe may be a promising imaging agent to detect bacterial infections.

  6. Excited state hydrogen bonding fluorescent probe: Role of structure and environment

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Debarati, E-mail: debaratidey07@gmail.com [Department of Chemistry, Vidyasagar College, 39 Sankar Ghosh Lane, Kolkata 700006 (India); Sarangi, Manas Kumar [Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India); Ray, Angana; Bhattacharyya, Dhananjay [Computational Science Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India); Maity, Dilip Kumar [Department of Chemistry, University College of Science and Technology, 92 A.P.C. Road, Kolkata 700009 (India)

    2016-05-15

    An environment sensitive fluorescent probe, 11-benzoyl-dibenzo[a,c]phenazine (BDBPZ), has been synthesized and characterized that acts via excited state hydrogen bonding (ESHB). On interaction with hydrogen bond donating solvents the fluorescence intensity of BDBPZ increases abruptly with a concomitant bathochromic shift. The extent of fluorescence increment and the red-shift of λ{sub max} depend on hydrogen bond donating ability of the solvent associated. ESHB restricts the free rotation of the benzoyl group and hence blocks the non-radiative deactivation pathway. BDBPZ forms an exciplex with organic amine in nonpolar medium that readily disappears on increasing the polarity of the solvent. In polar environment the fluorescence of both the free molecule and excited state hydrogen bonded species are quenched on addition of amine unlike its parent dibenzo[a,c]phenazine (DBPZ), that remains very much inaccessible towards the solvent as well as quencher molecules due to its structure. This newly synthesized derivative BDBPZ is much more interactive due to the benzoyl group that is flanked outside the skeletal aromatic rings of DBPZ, which helps to sense the environment properly and thus shows better ESHB capacity than DBPZ.

  7. Label-free fluorescence strategy for sensitive detection of adenosine triphosphate using a loop DNA probe with low background noise.

    Science.gov (United States)

    Lin, Chunshui; Cai, Zhixiong; Wang, Yiru; Zhu, Zhi; Yang, Chaoyong James; Chen, Xi

    2014-07-15

    A simple, rapid, label-free, and ultrasensitive fluorescence strategy for adenosine triphosphate (ATP) detection was developed using a loop DNA probe with low background noise. In this strategy, a loop DNA probe, which is the substrate for both ligation and digestion enzyme reaction, was designed. SYBR green I (SG I), a double-stranded specific dye, was applied for the readout fluorescence signal. Exonuclease I (Exo I) and exonuclease III (Exo III), sequence-independent nucleases, were selected to digest the loop DNA probe in order to minimize the background fluorescence signal. As a result, in the absence of ATP, the loop DNA was completely digested by Exo I and Exo III, leading to low background fluorescence owing to the weak electrostatic interaction between SG I and mononucleotides. On the other hand, ATP induced the ligation of the nicking site, and the sealed loop DNA resisted the digestion of Exo I and ExoIII, resulting in a remarkable increase of fluorescence response. Upon background noise reduction, the sensitivity of the ATP determination was improved significantly, and the detection limitation was found to be 1.2 pM, which is much lower than that in almost all the previously reported methods. This strategy has promise for wide application in the determination of ATP.

  8. Real-Time Tracking the Synthesis and Degradation of Albumin in Complex Biological Systems with a near-Infrared Fluorescent Probe.

    Science.gov (United States)

    Jin, Qiang; Feng, Lei; Zhang, Shui-Jun; Wang, Dan-Dan; Wang, Fang-Jun; Zhang, Yi; Cui, Jing-Nan; Guo, Wen-Zhi; Ge, Guang-Bo; Yang, Ling

    2017-09-19

    In this study, a novel fluorescent detection system for biological sensing of human albumin (HA) was developed on the basis of the pseudoesterase activity and substrate preference of HA. The designed near-infrared (NIR) fluorescent probe (DDAP) could be effectively hydrolyzed by HA, accompanied by significant changes in both color and fluorescence spectrum. The sensing mechanism was fully investigated by fluorescence spectroscopy, NMR, and mass spectra. DDAP exhibited excellent selectivity and sensitivity toward HA over a variety of human plasma proteins, hydrolases, and abundant biomolecules found in human body. The probe has been successfully applied to measure native HA in diluted plasma samples and the secreted HA in the hepatocyte culture supernatant. DDAP has also been used for fluorescence imaging of HA reabsorption in living renal cells, and the results show that the probe exhibits good cell permeability, low cytotoxicity and high imaging resolution. Furthermore, DDAP has been successfully used for real-time tracking the uptaking and degradation of albumin in ex vivo mouse kidney models for the first time. All these results clearly demonstrated that DDAP-based assay held great promise for real-time sensing and tracking HA in complex biological systems, which would be very useful for basic researches and clinical diagnosis of HA-associated diseases.

  9. A ratiometric fluorescent probe based on boron dipyrromethene and rhodamine Förster resonance energy transfer platform for hypochlorous acid and its application in living cells

    International Nuclear Information System (INIS)

    Liu, Ying; Zhao, Zhi-Min; Miao, Jun-Ying; Zhao, Bao-Xiang

    2016-01-01

    We have developed a ratiometric fluorescent probe BRT based on boron dipyrromethene (BODIPY) and rhodamine-thiohydrazide Förster resonance energy transfer (FRET) platform for sensing hypochlorous acid (HOCl) with high selectivity and sensitivity. The probe can detect HOCl in 15 s with the detection limit of 38 nM. Upon mixing with HOCl the fluorescence colour of probe BRT changed from green to orange. Moreover, probe BRT was applied to successfully monitor HOCl in living RAW 264.7 cells. - Highlights: • A probe based on BODIPY and rhodamine was developed for sensing HOCl. • The probe could sense HOCl in a ratiometric manner based on the FRET platform in PBS buffer solution. • The probe can detect HOCl in 15 s accompanied with a fluorescence colour change. • This probe was successfully used to monitor HOCl in living RAW 264.7 cells.

  10. Synthesis of strongly fluorescent carbon quantum dots modified with polyamidoamine and a triethoxysilane as quenchable fluorescent probes for mercury(II)

    International Nuclear Information System (INIS)

    Tang, Wenjie; Wang, Yan; Wang, Panpan; Di, Junwei; Wu, Ying; Yang, Jianping

    2016-01-01

    This article reports on the synthesis of water dispersible carbon quantum dots (CDs) by a one-step hydrothermal method using polyamidoamine (PAMAM) and (3-aminopropyl)triethoxysilane (APTES) as a platform and passivant. The resulting CDs are highly uniform and finely dispersed. The synergistic effect between PAMAM and APTES on the surface of the CDs results in a fluorescence that is much brighter than that of CDs modified with either APTES or PAMAM only. The fluorescence of the co-modified CDs is quenched by Hg(II) ions at fairly low concentrations. Under the optimum conditions, the intensity of quenched fluorescence drops with Hg(II) concentration in the range from 0.2 nM to 10 μM, and the detection limit is 87 fM. The effect of potentially interfering cations on the fluorescence revealed a high selectivity for Hg 2+ . The fluorescent probe was applied to the determination of Hg(II) in (spiked) waters and milk and gave recoveries between 95.6 and 107 %, with relative standard deviation between 4.4 and 6.0 %. (author)

  11. A novel water-soluble 1,8-naphthalimide as a fluorescent pH-probe and a molecular logic circuit

    International Nuclear Information System (INIS)

    Georgiev, Nikolai I.; Dimitrova, Margarita D.; Krasteva, Paoleta V.; Bojinov, Vladimir B.

    2017-01-01

    A novel highly water-soluble fluorescence sensing 1,8-naphthalimide is synthesized and investigated. The novel compound is designed on the “fluorophore-receptor 1 -spacer-receptor 2 ” model as a molecular fluorescence probe for determination of ions in 100% aqueous media. The novel probe comprising hydrazide and N-methylpiperazine substituents is capable of operating simultaneously via ICT and PET signaling mechanism and of recognizing selectively protons and hydroxyl anions over the representative metal ions and anions. Due to the remarkable fluorescence changes as a function of pH the system is able to act as a three output combinatorial logic circuit with two chemical inputs. Two INHIBIT gates in fluorescence and absorption mode as well as an IMPLICATION logic gate are obtained. Because of the parallel action of both INHIBIT gates a magnitude digital comparator is achieved for the first time in this way.

  12. CdTe/ZnS quantum dots as fluorescent probes for ammonium determination.

    Science.gov (United States)

    Yi, Kui-Yu

    2016-06-01

    Novel CdTe/ZnS quantum dot (QD) probes based on the quenching effect were proposed for the simple, rapid, and specific determination of ammonium in aqueous solutions. The QDs were modified using 3-mercaptopropionic acid, and the fluorescence responses of the CdTe/ZnS QD probes to ammonium were detected through regularity quenching. The quenching levels of the CdTe/ZnS QDs and ammonium concentration showed a good linear relationship between 4.0 × 10(-6) and 5.0 × 10(-4) mol/L; the detection limit was 3.0 × 10(-7) mol/L. Ammonium contents in synthetic explosion soil samples were measured to determine the practical applications of the QD probes and a probable quenching mechanism was described. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Preparation of a Two-Photon Fluorescent Probe for Imaging H2O2 in Lysosomes in Living Cells and Tissues.

    Science.gov (United States)

    Ren, Mingguang; Deng, Beibei; Kong, Xiuqi; Tang, Yonghe; Lin, Weiying

    2017-01-01

    Hydrogen peroxide (H 2 O 2 ) plays important roles in many physiological and pathological processes. At the cellular organelle level, the abnormal concentrations of H 2 O 2 in the lysosomes may cause redox imbalance and the loss of the critical functions of the lysosomes. Herein, we describe the preparation of a potent lysosome-targeted two-photon fluorescent probe (Lyso-HP) for the detection of H 2 O 2 in the lysosomes in the living cells. This unique fluorescent probe can also be employed to effectively detect H 2 O 2 in the living tissues using two-photon fluorescence microscopy.

  14. Multiplex fluorescence melting curve analysis for mutation detection with dual-labeled, self-quenched probes.

    Directory of Open Access Journals (Sweden)

    Qiuying Huang

    2011-04-01

    Full Text Available Probe-based fluorescence melting curve analysis (FMCA is a powerful tool for mutation detection based on melting temperature generated by thermal denaturation of the probe-target hybrid. Nevertheless, the color multiplexing, probe design, and cross-platform compatibility remain to be limited by using existing probe chemistries. We hereby explored two dual-labeled, self-quenched probes, TaqMan and shared-stem molecular beacons, in their ability to conduct FMCA. Both probes could be directly used for FMCA and readily integrated with closed-tube amplicon hybridization under asymmetric PCR conditions. Improved flexibility of FMCA by using these probes was illustrated in three representative applications of FMCA: mutation scanning, mutation identification and mutation genotyping, all of which achieved improved color-multiplexing with easy probe design and versatile probe combination and all were validated with a large number of real clinical samples. The universal cross-platform compatibility of these probes-based FMCA was also demonstrated by a 4-color mutation genotyping assay performed on five different real-time PCR instruments. The dual-labeled, self-quenched probes offered unprecedented combined advantage of enhanced multiplexing, improved flexibility in probe design, and expanded cross-platform compatibility, which would substantially improve FMCA in mutation detection of various applications.

  15. Two-photon fluorescence and fluorescence imaging of two styryl heterocyclic dyes combined with DNA.

    Science.gov (United States)

    Gao, Chao; Liu, Shu-yao; Zhang, Xian; Liu, Ying-kai; Qiao, Cong-de; Liu, Zhao-e

    2016-03-05

    Two new styryl heterocyclic two-photon (TP) materials, 4-[4-(N-methyl)styrene]-imidazo [4,5-f][1,10] phenanthroline-benzene iodated salt (probe-1) and 4,4-[4-(N-methyl)styrene]-benzene iodated salt (probe-2) were successfully synthesized and studied as potential fluorescent probes of DNA detection. The linear and nonlinear photophysical properties of two compounds in different solvents were investigated. The absorption, one- and two-photon fluorescent spectra of the free dye and dye-DNA complex were also examined to evaluate their photophysical properties. The binding constants of dye-DNA were obtained according to Scatchard equation with good values. The results showed that two probes could be used as fluorescent DNA probes by two-photon excitation, and TP fluorescent properties of probe-1 are superior to that of probe-2. The fluorescent method date indicated that the mechanisms of dye-DNA complex interaction may be groove binding for probe-1 and electrostatic interaction for probe-2, respectively. The MTT assay experiments showed two probes are low toxicity. Moreover, the TP fluorescence imaging of DNA detection in living cells at 800 nm indicated that the ability to locate in cell nuclei of probe-1 is better than that of probe-2. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Blue emitting copper nanoclusters as colorimetric and fluorescent probe for the selective detection of bilirubin

    Science.gov (United States)

    R. S., Aparna; J. S., Anjali Devi; John, Nebu; Abha, K.; S. S., Syamchand; George, Sony

    2018-06-01

    Hurdles to develop point of care diagnostic methods restrict the translation of progress in the health care sector from bench side to bedside. In this article a simple, cost effective fluorescent as well as colorimetric nanosensor was developed for the early and easy detection of hyperbilirubinemia. A stable, water soluble bovine serum albumin stabilised copper nanocluster (BSA CuNC) was used as the fluorescent probe which exhibited strong blue emission (404 nm) upon 330 nm excitation. The fluorescence of the BSA CuNC can be effectively quenched by the addition of bilirubin by the formation of copper-bilirubin complex. Meanwhile the copper-bilirubin complex resulted in an observable colour change from pale violet to green facilitating colorimetric detection. The prepared sensor displayed good selectivity and sensitivity over other co-existing molecules, and can be used for quantifying bilirubin with a detection limit down to 257 fM. Additionally, the as-prepared probe was coated on a paper strip to develop a portable paper strip sensor of bilirubin. Moreover, the method was successfully applied in real sample analysis and obtained promising result.

  17. Turn-on Fluorescent Probe for Exogenous and Endogenous Imaging of Hypochlorous Acid in Living Cells and Quantitative Application in Flow Cytometry.

    Science.gov (United States)

    Zhan, Zixuan; Liu, Rui; Chai, Li; Li, Qiuyan; Zhang, Kexin; Lv, Yi

    2017-09-05

    Hypochlorous acid (HClO) acts as a dominant microbicidal mediator in the natural immune system, and the excess production of hypochlorites is related to a series of diseases. Thus, it is vitally important and necessary to develop a highly sensitive and selective method for HClO detection in living systems, and most of fluorescent probes are mainly focused on cells imaging. Besides, accurate HClO quantitative information about individual cells in a large cell population is extremely important for understanding inflammation and cellular apoptosis as well. In our work, a turn-on fluorescent probe has been synthesized, which can selectively and sensitively detect HClO with fast response time. The probe is almost nonfluorescent possibly due to both the spirolactam form of fluorescein and unbridged C═N bonds which can undergo a nonradiative decay process in the excited state. Upon the addition of ClO - , the probe was oxidized to ring-opened fluorescent form and the fluorescence intensity was greatly enhanced. In live cell experiments, the probe was successfully applied to image exogenous ClO - in HeLa cells and endogenous HClO in RAW 264.7 macrophage cells. In particular, the quantitative information on exogenous and endogenous HClO can also be acquired in flow cytometry. Therefore, the probe not only can image exogenous and endogenous HClO but also provides a new and promising platform to quantitatively detect HClO in flow cytometry.

  18. A Conjugate of Pentamethine Cyanine and 18F as a Positron Emission Tomography/Near-Infrared Fluorescence Probe for Multimodality Tumor Imaging

    Directory of Open Access Journals (Sweden)

    Fei-Fei An

    2017-06-01

    Full Text Available The novel synthesis of a dual-modality, pentamethine cyanine (Cy5 fluorescent, 18F positron emission tomography (PET imaging probe is reported. The probe shows a large extinction coefficient and large quantum yield in the biologically transparent, near-infrared window (650–900 nm for in vivo fluorescent imaging. This fluorophore bears the isotope, 18F, giving a 18F-PET/near-infrared fluorescent (NIRF, bi-modal imaging probe, that combines the long-term stability of NIRF and the unlimited penetration depth of PET imaging. The bi-modal probe is labeled with 18F in a quick, one-step reaction, which is important in working with the rapid decay of 18F. The bi-modal probe bears a free carboxyl group, highlighting a PET/NIRF synthon that can be conjugated onto many advanced biomolecules for biomarker-specific in vivo dual-modal PET/NIR tumor imaging, confocal histology, and utility in multi-fluorophore, fluorescence-guided surgery. Its potential in vivo biocompatibility is explored in a quick proof-of-principal in vivo study. The dye is delivered to A549 xenograft flank-tumors to generate PET and NIRF signals at the tumor site. The tumor distribution is confirmed in ex vivo gamma counting and imaging. Pentamethine cyanine (Cy5 has the ability to preferentially accumulate in tumor xenografts. We substitute the PET/NIRF probe for Cy5, and explore this phenomenon.

  19. Calix[2]pyreno[2]pyrrole as a Fluorescence Chemical Probe for Polynitroaromatics

    International Nuclear Information System (INIS)

    Park, Kyung Hwa; Yoo, Jae Duk; Lee, Chang Hee; Ka, Jae Won

    2012-01-01

    We have demonstrated that the new, readily synthesized and well characterized calix pyreno pyrrole fluorescence molecular probe can detect polynitroaromatic compounds with high affinity. In addition, this highly fluorescent neutral molecular receptor also exhibits enhanced binding affinity towards TNT which is associated with the formation of a pi-complex. The dynamic nature of the current system may enable it to serve as an excellent scaffold for electron-deficient guest molecular binding. Studies for other neutral molecules including metal ions are under in active progress. The elevated selectivity and sensitivity for specific analytes are the core requirements for an ideal chemical probes. A signal induced by guest binding must be sensitive enough so that accurate real time monitoring could be satisfactorily achieved. Introduction of signaling units at suitable places in which they can directly interact with the recognition events is critical in designing chemosensors. Among various signaling events, fluorescence changes are often applied for the sensitive detection of various analytes. An easy modulation of the photochemical properties of the signaling units is an additional advantage in compatibility and applications. Chemosensors for the detection of explosives becomes important due to their immediate applications in remedation of explosive manufacturing sites, homeland security or forensic sciences. With that in mind, numerous methods for the explosive detection have been reported in recent years. Nevertheless, some detection methods sometimes require sophisticated instrumentation which is not easy for on-site testing

  20. Development of tumor-targeted near infrared probes for fluorescence guided surgery.

    Science.gov (United States)

    Kelderhouse, Lindsay E; Chelvam, Venkatesh; Wayua, Charity; Mahalingam, Sakkarapalayam; Poh, Scott; Kularatne, Sumith A; Low, Philip S

    2013-06-19

    Complete surgical resection of malignant disease is the only reliable method to cure cancer. Unfortunately, quantitative tumor resection is often limited by a surgeon's ability to locate all malignant disease and distinguish it from healthy tissue. Fluorescence-guided surgery has emerged as a tool to aid surgeons in the identification and removal of malignant lesions. While nontargeted fluorescent dyes have been shown to passively accumulate in some tumors, the resulting tumor-to-background ratios are often poor, and the boundaries between malignant and healthy tissues can be difficult to define. To circumvent these problems, our laboratory has developed high affinity tumor targeting ligands that bind to receptors that are overexpressed on cancer cells and deliver attached molecules selectively into these cells. In this study, we explore the use of two tumor-specific targeting ligands (i.e., folic acid that targets the folate receptor (FR) and DUPA that targets prostate specific membrane antigen (PSMA)) to deliver near-infrared (NIR) fluorescent dyes specifically to FR and PSMA expressing cancers, thereby rendering only the malignant cells highly fluorescent. We report here that all FR- and PSMA-targeted NIR probes examined bind cultured cancer cells in the low nanomolar range. Moreover, upon intravenous injection into tumor-bearing mice with metastatic disease, these same ligand-NIR dye conjugates render receptor-expressing tumor tissues fluorescent, enabling their facile resection with minimal contamination from healthy tissues.

  1. Radiation-induced polymerization monitored in situ by time-resolved fluorescence of probe molecules in methyl methacrylate

    International Nuclear Information System (INIS)

    Frahn, Mark S.; Abellon, Ruben D.; Luthjens, Leonard H.; Vermeulen, Martien J.W.; Warman, John M.

    2003-01-01

    A technique is presented for monitoring radiation-induced polymerizations in situ based on the measurement of the fluorescence lifetime of molecular probes dissolved in the polymerizing medium. This method is illustrated with results on methyl methacrylate (MMA) using two fluorogenic probe molecules; N-(2-anthracene)methacrylamide (AnMA) and maleimido-fluoroprobe (MFP), a molecule which has a highly dipolar excited state

  2. Cellular Activation of the Self-Quenched Fluorescent Reporter Probe in Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Alexei A. Bogdanov, Jr.

    2002-01-01

    Full Text Available The effect of intralysosomal proteolysis of near-infrared fluorescent (NIRF self-quenched macromolecular probe (PGC-Cy5.5 has been previously reported and used for tumor imaging. Here we demonstrate that proteolysis can be detected noninvasively in vivo at the cellular level. A codetection of GFP fluorescence (using two-photon excitation and NIRF was performed in tumor-bearing animals injected with PGC-Cy5.5. In vivo microscopy of tumor cells in subdermal tissue layers (up to 160 μm showed a strong Cy5.5 dequenching effect in GFP-negative cells. This observation was corroborated by flow cytometry, sorting, and reverse transcription polymerase chain reaction analysis of tumor-isolated cells. Both GFP-positive (81% total and GFP-negative (19% total populations contained Cy5.5-positive cells. The GFP-negative cells were confirmed to be host mouse cells by the absence of rat cathepsin mRNA signal. The subfraction of GFPnegative cells (2.5-3.0% had seven times higher NIRF intensity than the majority of GFP-positive or GFPnegative cells (372 and 55 AU, respectively. Highly NIRF-positive, FP-negative cells were CD45-and MAC3-positive. Our results indicate that: 1 intracellular proteolysis can be imaged in vivo at the cellular level using cathepsin-sensitive probes; 2 tumor-recruited cells of hematopoetic origin participate most actively in uptake and degradation of long-circulating macromolecular probes.

  3. Rational design of reversible fluorescent probes for live-cell imaging and quantification of fast glutathione dynamics

    Science.gov (United States)

    Umezawa, Keitaro; Yoshida, Masafumi; Kamiya, Mako; Yamasoba, Tatsuya; Urano, Yasuteru

    2017-03-01

    Alterations in glutathione (GSH) homeostasis are associated with a variety of diseases and cellular functions, and therefore, real-time live-cell imaging and quantification of GSH dynamics are important for understanding pathophysiological processes. However, existing fluorescent probes are unsuitable for these purposes due to their irreversible fluorogenic mechanisms or slow reaction rates. In this work, we have successfully overcome these problems by establishing a design strategy inspired by Mayr's work on nucleophilic reaction kinetics. The synthesized probes exhibit concentration-dependent, reversible and rapid absorption/fluorescence changes (t1/2 = 620 ms at [GSH] = 1 mM), as well as appropriate Kd values (1-10 mM: within the range of intracellular GSH concentrations). We also developed FRET-based ratiometric probes, and demonstrated that they are useful for quantifying GSH concentration in various cell types and also for real-time live-cell imaging of GSH dynamics with temporal resolution of seconds.

  4. Mass amplifying probe for sensitive fluorescence anisotropy detection of small molecules in complex biological samples.

    Science.gov (United States)

    Cui, Liang; Zou, Yuan; Lin, Ninghang; Zhu, Zhi; Jenkins, Gareth; Yang, Chaoyong James

    2012-07-03

    Fluorescence anisotropy (FA) is a reliable and excellent choice for fluorescence sensing. One of the key factors influencing the FA value for any molecule is the molar mass of the molecule being measured. As a result, the FA method with functional nucleic acid aptamers has been limited to macromolecules such as proteins and is generally not applicable for the analysis of small molecules because their molecular masses are relatively too small to produce observable FA value changes. We report here a molecular mass amplifying strategy to construct anisotropy aptamer probes for small molecules. The probe is designed in such a way that only when a target molecule binds to the probe does it activate its binding ability to an anisotropy amplifier (a high molecular mass molecule such as protein), thus significantly increasing the molecular mass and FA value of the probe/target complex. Specifically, a mass amplifying probe (MAP) consists of a targeting aptamer domain against a target molecule and molecular mass amplifying aptamer domain for the amplifier protein. The probe is initially rendered inactive by a small blocking strand partially complementary to both target aptamer and amplifier protein aptamer so that the mass amplifying aptamer domain would not bind to the amplifier protein unless the probe has been activated by the target. In this way, we prepared two probes that constitute a target (ATP and cocaine respectively) aptamer, a thrombin (as the mass amplifier) aptamer, and a fluorophore. Both probes worked well against their corresponding small molecule targets, and the detection limits for ATP and cocaine were 0.5 μM and 0.8 μM, respectively. More importantly, because FA is less affected by environmental interferences, ATP in cell media and cocaine in urine were directly detected without any tedious sample pretreatment. Our results established that our molecular mass amplifying strategy can be used to design aptamer probes for rapid, sensitive, and selective

  5. [Sentinel node detection using optonuclear probe (gamma and fluorescence) after green indocyanine and radio-isotope injections].

    Science.gov (United States)

    Poumellec, M-A; Dejode, M; Figl, A; Darcourt, J; Haudebourg, J; Sabah, Y; Voury, A; Martaens, A; Barranger, E

    2016-04-01

    Assess the biopsy's feasibility of the sentinel lymph node biopsy (SLNB) using optonuclear probe after of indocyanine green (ICG) and radio-isotope (RI) injections. Twenty-one patients with a localized breast cancer and unsuspicious axillary nodes underwent a SLNB after both injections of ICG and radio-isotope. One or more SLN were identified on the 21 patients (identification rate of 100%). The median number SLN was 2 (1-3). Twenty SLN were both radio-actives and fluorescents (54.1%), 11 fluorescent only (29.7%) and 6 were only radio-actives (16.2%). Seven patients had a metastatic SLN (8 SLN overall). Among them, only one had a micrometastasic SLN, 5 others had a macrometastatic SLN and one patient had two macrometastatic SLNs. Among the 8 metastatic SLN, 5 were both fluorescent and radioactive, 2 were only fluorescent and 1 was only radioactive. Detection SLN using optonuclear probe after indocyanine green and radio-isotope injections is effective and could be, after validation by randomized trial, a reliable alternative to the blue dye injection for teams who consider that combined detection as the reference. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. A novel universal real-time PCR system using the attached universal duplex probes for quantitative analysis of nucleic acids

    Directory of Open Access Journals (Sweden)

    Wilson Zoe A

    2008-06-01

    Full Text Available Abstract Background Real-time PCR techniques are being widely used for nucleic acids analysis, but one limitation of current frequently employed real-time PCR is the high cost of the labeled probe for each target molecule. Results We describe a real-time PCR technique employing attached universal duplex probes (AUDP, which has the advantage of generating fluorescence by probe hydrolysis and strand displacement over current real-time PCR methods. AUDP involves one set of universal duplex probes in which the 5' end of the fluorescent probe (FP and a complementary quenching probe (QP lie in close proximity so that fluorescence can be quenched. The PCR primer pair with attached universal template (UT and the FP are identical to the UT sequence. We have shown that the AUDP technique can be used for detecting multiple target DNA sequences in both simplex and duplex real-time PCR assays for gene expression analysis, genotype identification, and genetically modified organism (GMO quantification with comparable sensitivity, reproducibility, and repeatability with other real-time PCR methods. Conclusion The results from GMO quantification, gene expression analysis, genotype identification, and GMO quantification using AUDP real-time PCR assays indicate that the AUDP real-time PCR technique has been successfully applied in nucleic acids analysis, and the developed AUDP real-time PCR technique will offer an alternative way for nucleic acid analysis with high efficiency, reliability, and flexibility at low cost.

  7. Studies of bio-mimetic medium of ionic and non-ionic micelles by a simple charge transfer fluorescence probe N,N-dimethylaminonapthyl-(acrylo)-nitrile

    Science.gov (United States)

    Samanta, Anuva; Paul, Bijan Kumar; Guchhait, N.

    2011-05-01

    In this report we have studied micellization process of anionic, cationic and non-ionic surfactants using N,N-dimethylaminonapthyl-(acrylo)-nitrile (DMANAN) as an external fluorescence probe. Micropolarity, microviscosity, critical micellar concentration of these micelles based on steady state absorption and fluorescence and time resolved emission spectroscopy of the probe DMANAN show that the molecule resides in the micelle-water interface for ionic micelles and in the core for the non-ionic micelle. The effect of variation of pH of the micellar solution as well as fluorescence quenching measurements of DMANAN provide further support for the location of the probe in the micelles.

  8. Fluorescent eosin probe in investigations of structural changes in glycated proteins

    Science.gov (United States)

    Pravdin, A. B.; Kochubey, V. I.; Mel'Nikov, A. G.

    2010-08-01

    The possibility of using the luminescent-kinetic probe method to investigate structural changes in bovine serum albumin (BSA) upon nonenzymatic thermal glycation is studied. An increase in the glycation time lead to a decrease in the intensity of the probe (eosin) fluorescence and to a long-wavelength shift of its maximum, as well as to an increase in the eosin phosphorescence intensity, which indicates that eosin binds to hydrophobic regions of protein at any times of incubation of BSA with glucose. From a decrease in the rate constant of the triplet-triplet energy transfer between the donor (eosin) and acceptor (anthracene) bound to proteins, it is found that the changes observed in the spectral characteristics of eosin are caused by structural changes in albumin globules as a result of glycosylation.

  9. A novel fluorescent probe (dtpa-bis(cytosine)) for detection of Eu(III) in rare earth metal ions

    Science.gov (United States)

    Yang, Fan; Ren, Peipei; Liu, Guanhong; Song, Youtao; Bu, Naishun; Wang, Jun

    2018-03-01

    In this paper, a novel fluorescent probe, dtpa-bis(cytosine), was designed and synthesized for detecting europium (Eu3 +) ion. Upon addition of Eu3 + ions into the dtpa-bis(cytosine) solution, the fluorescence intensity can strongly be enhanced. Conversely, adding other rare earth metal ions, such as Y3 +, Ce3 +, Pr3 +, Nd3 +, Sm3 +, Gd3 +, Tb3 +, Dy3 +, Ho3 +, Er3 +, Yb3 + and Lu3 +, into dtpa-bis(cytosine) solution, the fluorescence intensity is decreased slightly. Some parameters affecting the fluorescence intensity of dtpa-bis(cytosine) solution in the presence of Eu3 + ions were investigated, including solution pH value, Eu3 + ion concentration and interfering substances. The detection mechanism of Eu3 + ion using dtpa-bis(cytosine) as fluorescent probe was proposed. Under optimum conditions, the fluorescence emission intensities of EuIII-dtpa-bis(cytosine) at 375 nm in the concentration range of 0.50 × 10- 5 mol • L- 1-5.00 × 10- 5 mol • L- 1 of Eu3 + ion display a better linear relationship. The limit of detection (LOD) was determined as 8.65 × 10- 7 mol • L- 1 and the corresponding correlation coefficient (R2) of the linear equation is 0.9807. It is wished that the proposed method could be applied for sensitively and selectively detecting Eu3 + ion.

  10. A Novel “Off-On” Fluorescent Probe Based on Carbon Nitride Nanoribbons for the Detection of Citrate Anion and Live Cell Imaging

    Directory of Open Access Journals (Sweden)

    Yanling Hu

    2018-04-01

    Full Text Available A novel fluorescent “off-on” probe based on carbon nitride (C3N4 nanoribbons was developed for citrate anion (C6H5O73− detection. The fluorescence of C3N4 nanoribbons can be quenched by Cu2+ and then recovered by the addition of C6H5O73−, because the chelation between C6H5O73− and Cu2+ blocks the electron transfer between Cu2+ and C3N4 nanoribbons. The turn-on fluorescent sensor using this fluorescent “off-on” probe can detect C6H5O73− rapidly and selectively, showing a wide detection linear range (1~400 μM and a low detection limit (0.78 μM in aqueous solutions. Importantly, this C3N4 nanoribbon-based “off-on” probe exhibits good biocompatibility and can be used as fluorescent visualizer for exogenous C6H5O73− in HeLa cells.

  11. Time-resolved spectroscopy of the probe fluorescence in the study of human blood protein dynamic structure on SR beam

    International Nuclear Information System (INIS)

    Dobretsov, G.E.; Kurek, N.K.; Syrejshchikova, T.I.; Yakimenko, M.N.; Clarke, D.T.; Jones, G.R.; Munro, I.H.

    2000-01-01

    Time-resolved spectroscopy on the SRS of the Daresbury Laboratory was used for the study of the human serum lipoproteins and human blood albumins with fluorescent probes K-37 and K-35, developed in Russia. The probe K-37 was found sensitive to the difference in dynamic properties of the lipid objects. Two sets of the parameters were used for the description of lipid dynamic structure: (1) time-resolved fluorescence spectra and (2) time-resolved fluorescence depolarization as a function of rotational mobility of lipid molecules. Each measured dynamic parameter reflected the monotonous changes of dynamic properties in the range: lipid spheres-very low density lipoproteins-low density lipoproteins-high density lipoproteins-phospholipid liposomes. The range is characterized by the increase of the ratio polar/ nonpolar lipids. Thus, time-resolved fluorescence could be used to detect some structural modifications in lipoproteins related to atherosclerosis and subsequent cardiovascular diseases development

  12. Real-Time Discrimination and Versatile Profiling of Spontaneous Reactive Oxygen Species in Living Organisms with a Single Fluorescent Probe.

    Science.gov (United States)

    Zhang, Ruilong; Zhao, Jun; Han, Guangmei; Liu, Zhengjie; Liu, Cui; Zhang, Cheng; Liu, Bianhua; Jiang, Changlong; Liu, Renyong; Zhao, Tingting; Han, Ming-Yong; Zhang, Zhongping

    2016-03-23

    Fluorescent probes are powerful tools for the investigations of reactive oxygen species (ROS) in living organisms by visualization and imaging. However, the multiparallel assays of several ROS with multiple probes are often limited by the available number of spectrally nonoverlapping chromophores together with large invasive effects and discrepant biological locations. Meanwhile, the spontaneous ROS profilings in various living organs/tissues are also limited by the penetration capability of probes across different biological barriers and the stability in reactive in vivo environments. Here, we report a single fluorescent probe to achieve the effective discrimination and profiling of hydroxyl radicals (•OH) and hypochlorous acid (HClO) in living organisms. The probe is constructed by chemically grafting an additional five-membered heterocyclic ring and a lateral triethylene glycol chain to a fluorescein mother, which does not only turn off the fluorescence of fluorescein, but also create the dual reactive sites to ROS and the penetration capability in passing through various biological barriers. The reactions of probe with •OH and HClO simultaneously result in cyan and green emissions, respectively, providing the real-time discrimination and quantitative analysis of the two ROS in cellular mitochondria. Surprisingly, the accumulation of probes in the intestine and liver of a normal-state zebrafish and the transfer pathway from intestine-to-blood-to-organ/tissue-to-kidney-to-excretion clearly present the profiling of spontaneous •OH and HClO in these metabolic organs. In particular, the stress generation of •OH at the fresh wound of zebrafish is successfully visualized for the first time, in spite of its extremely short lifetime.

  13. Fluorescent quenching-based quantitative detection of specific DNA/RNA using a BODIPY® FL-labeled probe or primer

    Science.gov (United States)

    Kurata, Shinya; Kanagawa, Takahiro; Yamada, Kazutaka; Torimura, Masaki; Yokomaku, Toyokazu; Kamagata, Yoichi; Kurane, Ryuichiro

    2001-01-01

    We have developed a simple method for the quantitative detection of specific DNA or RNA molecules based on the finding that BODIPY® FL fluorescence was quenched by its interaction with a uniquely positioned guanine. This approach makes use of an oligonucleotide probe or primer containing a BODIPY® FL-modified cytosine at its 5′-end. When such a probe was hybridized with a target DNA, its fluorescence was quenched by the guanine in the target, complementary to the modified cytosine, and the quench rate was proportional to the amount of target DNA. This widely applicable technique will be used directly with larger samples or in conjunction with the polymerase chain reaction to quantify small DNA samples. PMID:11239011

  14. Fluorescent Protein Voltage Probes Derived from ArcLight that Respond to Membrane Voltage Changes with Fast Kinetics

    Science.gov (United States)

    Han, Zhou; Jin, Lei; Platisa, Jelena; Cohen, Lawrence B.; Baker, Bradley J.; Pieribone, Vincent A.

    2013-01-01

    We previously reported the discovery of a fluorescent protein voltage probe, ArcLight, and its derivatives that exhibit large changes in fluorescence intensity in response to changes of plasma membrane voltage. ArcLight allows the reliable detection of single action potentials and sub-threshold activities in individual neurons and dendrites. The response kinetics of ArcLight (τ1-on ~10 ms, τ2-on ~ 50 ms) are comparable with most published genetically-encoded voltage probes. However, probes using voltage-sensing domains other than that from the Ciona intestinalis voltage sensitive phosphatase exhibit faster kinetics. Here we report new versions of ArcLight, in which the Ciona voltage-sensing domain was replaced with those from chicken, zebrafish, frog, mouse or human. We found that the chicken and zebrafish-based ArcLight exhibit faster kinetics, with a time constant (τ) less than 6ms for a 100 mV depolarization. Although the response amplitude of these two probes (8-9%) is not as large as the Ciona-based ArcLight (~35%), they are better at reporting action potentials from cultured neurons at higher frequency. In contrast, probes based on frog, mouse and human voltage sensing domains were either slower than the Ciona-based ArcLight or had very small signals. PMID:24312287

  15. Fluorescent protein voltage probes derived from ArcLight that respond to membrane voltage changes with fast kinetics.

    Directory of Open Access Journals (Sweden)

    Zhou Han

    Full Text Available We previously reported the discovery of a fluorescent protein voltage probe, ArcLight, and its derivatives that exhibit large changes in fluorescence intensity in response to changes of plasma membrane voltage. ArcLight allows the reliable detection of single action potentials and sub-threshold activities in individual neurons and dendrites. The response kinetics of ArcLight (τ1-on ~10 ms, τ2-on ~ 50 ms are comparable with most published genetically-encoded voltage probes. However, probes using voltage-sensing domains other than that from the Ciona intestinalis voltage sensitive phosphatase exhibit faster kinetics. Here we report new versions of ArcLight, in which the Ciona voltage-sensing domain was replaced with those from chicken, zebrafish, frog, mouse or human. We found that the chicken and zebrafish-based ArcLight exhibit faster kinetics, with a time constant (τ less than 6 ms for a 100 mV depolarization. Although the response amplitude of these two probes (8-9% is not as large as the Ciona-based ArcLight (~35%, they are better at reporting action potentials from cultured neurons at higher frequency. In contrast, probes based on frog, mouse and human voltage sensing domains were either slower than the Ciona-based ArcLight or had very small signals.

  16. Hydrangea-like magneto-fluorescent nanoparticles through thiol-inducing assembly

    Science.gov (United States)

    Chen, Shun; Zhang, Junjun; Song, Shaokun; Xiong, Chuanxi; Dong, Lijie

    2017-01-01

    Magneto-fluorescent nanoparticles (NPs), recognized as an emerging class of materials, have drawn much attention because of their potential applications. Due to surface functionalization and thiol-metal bonds, a simple method has been put forward for fabricating hydrangea-like magneto-fluorescent Fe3O4-SH@QD NPs, through assembling thiol-modified Fe3O4 NPs with sub-size multi-layer core/shell CdSe/CdS/ZnS QDs. After a refined but controllable silane hydrolysis process, thiol-modified Fe3O4 was fabricated, resulting in Fe3O4-SH@QD NPs with QDs, while preventing the quenching of the QDs. As a result, the core Fe3O4 NPs were 18 nm in diameter, while the scattered CdSe/CdS/ZnS QDs were 7 nm in diameter. The resultant magneto-fluorescent Fe3O4-SH@QD NPs exhibit efficient fluorescence, superparamagnetism at room temperature, and rapid response to the external field, which make them ideal candidates for difunctional probes in MRI and bio-labels, targeting and photodynamic therapy, and cell tracking and separation.

  17. Two rhodamine lactam modulated lysosome-targetable fluorescence probes for sensitively and selectively monitoring subcellular organelle pH change

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongmei [Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi' an 710069 (China); Wang, Cuiling [Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi' an 710069 (China); She, Mengyao; Zhu, Yuelu; Zhang, Jidong; Yang, Zheng [Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi' an 710069 (China); Liu, Ping, E-mail: liuping@nwu.edu.cn [Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi' an 710069 (China); Wang, Yaoyu [Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi' an 710069 (China); Li, Jianli, E-mail: lijianli@nwu.edu.cn [Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi' an 710069 (China)

    2015-11-05

    Be a powerful technique for convenient detection of pH change in living cells, especially at subcellular level, fluorescent probes has attracted more and more attention. In this work, we designed and synthesized three rhodamine lactam modulated fluorescent probes RS1, RS2 and RS3, which all respond sensitively toward weak acidity (pH range 4–6) via the photophysical property in buffer solution without interference from the other metal ions, and they also show ideal pKa values and excellent reversibility. Particularly, by changing the lone pair electrons distribution of lactam-N atom with different conjugations, RS2 and RS3 exhibit high quantum yield, negligible cytotoxicity and excellent permeability. They are suitable to stain selectively lysosomes of tumor cells and monitor its pH changes sensitively via optical molecular imaging. The above findings suggest that the probes we designed could act as ideal and easy method for investigating the pivotal role of H{sup +} in lysosomes and are potential pH detectors in disease diagnosis through direct intracellular imaging. - Highlights: • Two probes for sensitively and selectively monitoring weak acidic pH change. • The pKa of the probes was highly suitable for staining lysosomes in tumor cells. • The properties of those probes were changed by different conjugate system. • These probes have negligible cytotoxicity and good sensitivity in vivo.

  18. Two rhodamine lactam modulated lysosome-targetable fluorescence probes for sensitively and selectively monitoring subcellular organelle pH change

    International Nuclear Information System (INIS)

    Li, Hongmei; Wang, Cuiling; She, Mengyao; Zhu, Yuelu; Zhang, Jidong; Yang, Zheng; Liu, Ping; Wang, Yaoyu; Li, Jianli

    2015-01-01

    Be a powerful technique for convenient detection of pH change in living cells, especially at subcellular level, fluorescent probes has attracted more and more attention. In this work, we designed and synthesized three rhodamine lactam modulated fluorescent probes RS1, RS2 and RS3, which all respond sensitively toward weak acidity (pH range 4–6) via the photophysical property in buffer solution without interference from the other metal ions, and they also show ideal pKa values and excellent reversibility. Particularly, by changing the lone pair electrons distribution of lactam-N atom with different conjugations, RS2 and RS3 exhibit high quantum yield, negligible cytotoxicity and excellent permeability. They are suitable to stain selectively lysosomes of tumor cells and monitor its pH changes sensitively via optical molecular imaging. The above findings suggest that the probes we designed could act as ideal and easy method for investigating the pivotal role of H + in lysosomes and are potential pH detectors in disease diagnosis through direct intracellular imaging. - Highlights: • Two probes for sensitively and selectively monitoring weak acidic pH change. • The pKa of the probes was highly suitable for staining lysosomes in tumor cells. • The properties of those probes were changed by different conjugate system. • These probes have negligible cytotoxicity and good sensitivity in vivo.

  19. DHA-fluorescent probe is sensitive to membrane order and reveals molecular adaptation of DHA in ordered lipid microdomains☆

    Science.gov (United States)

    Teague, Heather; Ross, Ron; Harris, Mitchel; Mitchell, Drake C.; Shaikh, Saame Raza

    2012-01-01

    Docosahexaenoic acid (DHA) disrupts the size and order of plasma membrane lipid microdomains in vitro and in vivo. However, it is unknown how the highly disordered structure of DHA mechanistically adapts to increase the order of tightly packed lipid microdomains. Therefore, we studied a novel DHA-Bodipy fluorescent probe to address this issue. We first determined if the DHA-Bodipy probe localized to the plasma membrane of primary B and immortal EL4 cells. Image analysis revealed that DHA-Bodipy localized into the plasma membrane of primary B cells more efficiently than EL4 cells. We then determined if the probe detected changes in plasma membrane order. Quantitative analysis of time-lapse movies established that DHA-Bodipy was sensitive to membrane molecular order. This allowed us to investigate how DHA-Bodipy physically adapted to ordered lipid microdomains. To accomplish this, we employed steady-state and time-resolved fluorescence anisotropy measurements in lipid vesicles of varying composition. Similar to cell culture studies, the probe was highly sensitive to membrane order in lipid vesicles. Moreover, these experiments revealed, relative to controls, that upon incorporation into highly ordered microdomains, DHA-Bodipy underwent an increase in its fluorescence lifetime and molecular order. In addition, the probe displayed a significant reduction in its rotational diffusion compared to controls. Altogether, DHA-Bodipy was highly sensitive to membrane order and revealed for the first time that DHA, despite its flexibility, could become ordered with less rotational motion inside ordered lipid microdomains. Mechanistically, this explains how DHA acyl chains can increase order upon formation of lipid microdomains in vivo. PMID:22841541

  20. A turn-on supramolecular fluorescent probe for sensing benzimidazole fungicides and its application in living cell imaging

    Science.gov (United States)

    Tang, Qing; Zhang, Jing; Sun, Tao; Wang, Cheng-Hui; Huang, Ying; Zhou, Qingdi; Wei, Gang

    2018-02-01

    A cucurbit[8]uril-based turn-on supramolecular fluorescent probe between cucurbit[8]uril (Q[8]) and pyronine Y (PyY) (designated 2PyY@Q[8]) in acidic aqueous solution showed a remarkable fluorescence 'turn-on' response to benzimidazole fungicides such as thiabendazole, fuberidazole and carbendazim. The 2PyY@Q[8] fluorescent probe can be used to detect benzimidazole fungicides with high sensitivity and selectivity with a detection limit of 10- 8 mol/L. A good linear relationship of emission intensity at 580 nm for benzimidazole fungicides at concentrations of 0.4-5.0 μmol/L was observed. The proposed sensing mechanism was investigated using 1H NMR spectroscopy combined with density functional theory calculations at the B3LYP/6-31G(d) level. The cell imaging study showed that the 2PyY@Q[8] complex could be used to image benzimidazole fungicide in prostate cancer (PC3) cells, which may help to elucidate relevant biological processes at the molecular level.

  1. Phenotypical characteristics of leukocyte membranes in Chernobyl clean-up workers from Latvia: use of the fluorescent probe ABM

    International Nuclear Information System (INIS)

    Kalnina, I.; Meirovics, I.; Garbuseva, N.; Bruvere, R.; Heisele, O.; Zvagule, T.; Volrate, A.; Feldmane, G.

    2001-01-01

    A fluorescent probe - aminoderivative of benzanthrone, AMB (developed at the Riga Technical University, Riga, Latvia) - has been previously shown to localise within the phospholipid bilayer of the cell membrane, and shown to affect the structural and functional properties of peripheral blood mononuclear cells (PBMC). The probe ABM was used to characterise the PBMC membranes of 97 Chernobyl clean-up workers from Latvia. The study was conducted in the years 1997-1998. After addition of the probe to PBMC, fluorescence intensity of ABM (F) was measured, the depolarisation value P was calculated, and emission spectra were recorded. Screening of all individuals showed 5 different patterns of fluorescence spectra. Four of the patterns had never been previously observed in healthy individuals or patients with tuberculosis, multiple sclerosis, oncologic patients, etc., examined by us. The spectral patterns of ABM suspensions were associated with ability of leukocytes to produce interferons, with the levels of immunoglobulins A, G, and M, the concentration of lead in peripheral blood, and with several neurologic diseases. The use of ABM allowed to show phenotypic differences in PBMC between Chernobyl clean-up workers and individuals who had never had professional contact with radioactivity. (author)

  2. Development of species-specific rDNA probes for Giardia by multiple fluorescent in situ hybridization combined with immunocytochemical identification of cyst wall antigens.

    Science.gov (United States)

    Erlandsen, Stanley L; Jarroll, Edward; Wallis, Peter; van Keulen, Harry

    2005-08-01

    In this study, we describe the development of fluorescent oligonucleotide probes to variable regions in the small subunit of 16S rRNA in three distinct Giardia species. Sense and antisense probes (17-22 mer) to variable regions 1, 3, and 8 were labeled with digoxygenin or selected fluorochomes (FluorX, Cy3, or Cy5). Optimal results were obtained with fluorochome-labeled oligonucleotides for detection of rRNA in Giardia cysts. Specificity of fluorescent in situ hybridization (FISH) was shown using RNase digestion and high stringency to diminish the hybridization signal, and oligonucleotide probes for rRNA in Giardia lamblia, Giardia muris, and Giardia ardeae were shown to specifically stain rRNA only within cysts or trophozoites of those species. The fluorescent oligonucleotide specific for rRNA in human isolates of Giardia was positive for ten different strains. A method for simultaneous FISH detection of cysts using fluorescent antibody (genotype marker) and two oligonucleotide probes (species marker) permitted visualization of G. lamblia and G. muris cysts in the same preparation. Testing of an environmental water sample revealed the presence of FISH-positive G. lamblia cysts with a specific rDNA probe for rRNA, while negative cysts were presumed to be of animal or bird origin.

  3. Fluorescent Bisphosphonate and Carboxyphosphonate Probes: A Versatile Imaging Toolkit for Applications in Bone Biology and Biomedicine.

    Science.gov (United States)

    Sun, Shuting; Błażewska, Katarzyna M; Kadina, Anastasia P; Kashemirov, Boris A; Duan, Xuchen; Triffitt, James T; Dunford, James E; Russell, R Graham G; Ebetino, Frank H; Roelofs, Anke J; Coxon, Fraser P; Lundy, Mark W; McKenna, Charles E

    2016-02-17

    A bone imaging toolkit of 21 fluorescent probes with variable spectroscopic properties, bone mineral binding affinities, and antiprenylation activities has been created, including a novel linking strategy. The linking chemistry allows attachment of a diverse selection of dyes fluorescent in the visible to near-infrared range to any of the three clinically important heterocyclic bisphosphonate bone drugs (risedronate, zoledronate, and minodronate or their analogues). The resultant suite of conjugates offers multiple options to "mix and match" parent drug structure, fluorescence emission wavelength, relative bone affinity, and presence or absence of antiprenylation activity, for bone-related imaging applications.

  4. Fluorescent Sterols and Cholesteryl Esters as Probes for Intracellular Cholesterol Transport

    Science.gov (United States)

    Solanko, Katarzyna A.; Modzel, Maciej; Solanko, Lukasz M.; Wüstner, Daniel

    2015-01-01

    Cholesterol transport between cellular organelles comprised vesicular trafficking and nonvesicular exchange; these processes are often studied by quantitative fluorescence microscopy. A major challenge for using this approach is producing analogs of cholesterol with suitable brightness and structural and chemical properties comparable with those of cholesterol. This review surveys currently used fluorescent sterols with respect to their behavior in model membranes, their photophysical properties, as well as their transport and metabolism in cells. In the first part, several intrinsically fluorescent sterols, such as dehydroergosterol or cholestatrienol, are discussed. These polyene sterols (P-sterols) contain three conjugated double bonds in the steroid ring system, giving them slight fluorescence in ultraviolet light. We discuss the properties of P-sterols relative to cholesterol, outline their chemical synthesis, and explain how to image them in living cells and organisms. In particular, we show that P-sterol esters inserted into low-density lipoprotein can be tracked in the fibroblasts of Niemann–Pick disease using high-resolution deconvolution microscopy. We also describe fluorophore-tagged cholesterol probes, such as BODIPY-, NBD-, Dansyl-, or Pyrene-tagged cholesterol, and eventual esters of these analogs. Finally, we survey the latest developments in the synthesis and use of alkyne cholesterol analogs to be labeled with fluorophores by click chemistry and discuss the potential of all approaches for future applications. PMID:27330304

  5. A convenient colorimetric and ratiometric fluorescent probe for detection of cyanide based on BODIPY derivative in aqueous media

    Directory of Open Access Journals (Sweden)

    Yanhua Yu

    2017-06-01

    Full Text Available A convenient colorimetric and ratiometric fluorescent probe based on BODIPY derivative for cyanide detection has been synthesized, whose structural contains a dicyanovinyl group used as a sensing unit. Among the tested analytes, such as CN−, F−, Cl−, Br−, I−, ClO4−, AcO−, NO3−, H2PO4− HSO4−, S2− and N3−, only CN− could react with dicyanovinyl moiety by nucleophilic addition, which disrupted the π-conjugation of the probe and hindered the intramolecular charge transfer (ICT, leading a blue shift of absorption and fluorescence spectrum and a concomitant color change from yellow to light pink. The detection limit of this probe was calculated to be 0.98 μM, which is lower than the maximum concentration in drinking water (1.9 μM permitted by the World Health Organization (WHO. Moreover, the probe showed excellent selectivity and anti-interference ability towards CN− over other anions. The reaction mechanism was fully supported by 1H NMR and MS spectrum.

  6. Folic acid-targeted magnetic Tb-doped CeF3 fluorescent nanoparticles as bimodal probes for cellular fluorescence and magnetic resonance imaging.

    Science.gov (United States)

    Ma, Zhi-Ya; Liu, Yu-Ping; Bai, Ling-Yu; An, Jie; Zhang, Lin; Xuan, Yang; Zhang, Xiao-Shuai; Zhao, Yuan-Di

    2015-10-07

    Magnetic fluorescent nanoparticles (NPs) have great potential applications for diagnostics, imaging and therapy. We developed a facile polyol method to synthesize multifunctional Fe3O4@CeF3:Tb@CeF3 NPs with small size (CA) to obtain carboxyl-functionalized NPs (Fe3O4@CeF3:Tb@CeF3-COOH). Folic acid (FA) as an affinity ligand was then covalently conjugated onto NPs to yield Fe3O4@CeF3:Tb@CeF3-FA NPs. They were then applied as multimodal imaging agents for simultaneous in vitro targeted fluorescence imaging and magnetic resonance imaging (MRI) of HeLa cells with overexpressed folate receptors (FR). The results indicated that these NPs had strong luminescence and enhanced T2-weighted MR contrast and would be promising candidates as multimodal probes for both fluorescence and MRI imaging.

  7. ICT-Isomerization-Induced Turn-On Fluorescence Probe with a Large Emission Shift for Mercury Ion: Application in Combinational Molecular Logic.

    Science.gov (United States)

    Bhatta, Sushil Ranjan; Mondal, Bijan; Vijaykumar, Gonela; Thakur, Arunabha

    2017-10-02

    A unique turn-on fluorescent device based on a ferrocene-aminonaphtholate derivative specific for Hg 2+ cation was developed. Upon binding with Hg 2+ ion, the probe shows a dramatic fluorescence enhancement (the fluorescence quantum yield increases 58-fold) along with a large red shift of 68 nm in the emission spectrum. The fluorescence enhancement with a red shift may be ascribed to the combinational effect of C═N isomerization and an extended intramolecular charge transfer (ICT) mechanism. The response was instantaneous with a detection limit of 2.7 × 10 -9 M. Upon Hg 2+ recognition, the ferrocene/ferrocenium redox peak was anodically shifted by ΔE 1/2 = 72 mV along with a "naked eye" color change from faint yellow to pale orange for this metal cation. Further, upon protonation of the imine nitrogen, the present probe displays a high fluorescence output due to suppression of the C═N isomerization process. Upon deprotonation using strong base, the fluorescence steadily decreases, which indicates that H + and OH - can be used to regulate the off-on-off fluorescence switching of the present probe. Density functional theory studies revealed that the addition of acid leads to protonation of the imine N (according to natural bond orbital analysis), and the resulting iminium proton forms a strong H-bond (2.307 Å) with one of the triazole N atoms to form a five-membered ring, which makes the molecule rigid; hence, enhancement of the ICT process takes place, thereby leading to a fluorescence enhancement with a red shift. The unprecedented combination of H + , OH - , and Hg 2+ ions has been used to generate a molecular system exhibiting the INHIBIT-OR combinational logic operation.

  8. Determination of adenosine disodium triphosphate using prulifloxacin-terbium(III) as a fluorescence probe by spectrofluorimetry

    International Nuclear Information System (INIS)

    Yu Fengshan; Li Lin; Chen Fang

    2008-01-01

    A new spectrofluorimetric method is developed for determination of adenosine disodium triphosphate (ATP). The interactions between prulifloxacin (PUFX)-Tb 3+ complex and adenosine disodium triphosphate has been studied by using UV-vis absorption and fluorescence spectra. Using prulifloxacin-Tb 3+ as a fluorescence probe, under the optimum conditions, ATP can remarkably enhance the fluorescence intensity of the prulifloxacin-Tb 3+ complex at λ = 545 nm and the enhanced fluorescence intensity is in proportion to the concentration of ATP. Optimum conditions for the determination of ATP were also investigated. The dynamic range for the determination of ATP is 4.0 x 10 -7 to 2.0 x 10 -5 mol L -1 , and the detection limit (3 σ/k) is 1.7 x 10 -8 mol L -1 . This method is simple, practical and relatively free interference from coexisting substances and can be successfully applied to determination of ATP in real pharmaceutical samples. The mechanism of fluorescence enhancement of prulifloxacin-Tb 3+ complex by ATP was also discussed

  9. Pronase hydrolysis as a pretreatment for quantifying Maillard intermediates during toasting of cornflakes

    Directory of Open Access Journals (Sweden)

    Mario A. Cueto

    2016-04-01

    Full Text Available Some of the products generated by the Maillard reaction are desired and very important for defining consumer acceptance of breakfast cereals. However, in recent years there has been an increased concern about compounds that are potentially harmful such as furfurals. The aim of this work was to analyze the effectiveness of protein hydrolysis with pronase as a pretreament for the evaluation of furfurals generated by the Maillard reaction during toasting of cornflakes and the parallel development of brown and fluorescent compounds. Furfurals were more accurately quantified with the pronase hydrolysis pretreatment because the protein matrix binds furfurals and fluorescent compounds. For control of the early reaction steps in the toasting process, the most sensitive parameter was fluorescence.

  10. “Turn-on” fluorescence probe integrated polymer nanoparticles for sensing biological thiol molecules

    Science.gov (United States)

    Ang, Chung Yen; Tan, Si Yu; Lu, Yunpeng; Bai, Linyi; Li, Menghuan; Li, Peizhou; Zhang, Quan; Selvan, Subramanian Tamil; Zhao, Yanli

    2014-11-01

    A ``turn-on'' thiol-responsive fluorescence probe was synthesized and integrated into polymeric nanoparticles for sensing intracellular thiols. There is a photo-induced electron transfer process in the off state of the probe, and this process is terminated upon the reaction with thiol compounds. Configuration interaction singles (CIS) calculation was performed to confirm the mechanism of this process. A series of sensing studies were carried out, showing that the probe-integrated nanoparticles were highly selective towards biological thiol compounds over non-thiolated amino acids. Kinetic studies were also performed to investigate the relative reaction rate between the probe and the thiolated amino acids. Subsequently, the Gibbs free energy of the reactions was explored by means of the electrochemical method. Finally, the detection system was employed for sensing intracellular thiols in cancer cells, and the sensing selectivity could be further enhanced with the use of a cancer cell-targeting ligand in the nanoparticles. This development paves a path for the sensing and detection of biological thiols, serving as a potential diagnostic tool in the future.

  11. Biophysical characterization of the fluorescent protein voltage probe VSFP2.3 based on the voltage-sensing domain of Ci-VSP

    DEFF Research Database (Denmark)

    Lundby, Alicia; Akemann, Walther; Knöpfel, Thomas

    2010-01-01

    A voltage sensitive phosphatase was discovered in the ascidian Ciona intestinalis. The phosphatase, Ci-VSP, contains a voltage-sensing domain homologous to those known from voltage-gated ion channels, but unlike ion channels, the voltage-sensing domain of Ci-VSP can reside in the cell membrane...... as a monomer. We fused the voltage-sensing domain of Ci-VSP to a pair of fluorescent reporter proteins to generate a genetically encodable voltage-sensing fluorescent probe, VSFP2.3. VSFP2.3 is a fluorescent voltage probe that reports changes in membrane potential as a FRET (fluorescence resonance energy....... Neutralization of an arginine in S4, previously suggested to be a sensing charge, and measuring associated sensing currents indicate that this charge is likely to reside at the membrane-aqueous interface rather than within the membrane electric field. The data presented give us insights into the voltage-sensing...

  12. Thioglycolic acid-capped CuInS2/ZnS quantum dots as fluorescent probe for cobalt ion detection

    International Nuclear Information System (INIS)

    Zi, Lili; Huang, Yu; Yan, Zhengyu; Liao, Shenghua

    2014-01-01

    A novel sensing fluorescent probe based on the fluorescence quenching of the thioglycolic acid-capped CuInS 2 /ZnS quantum dots (CuInS 2 /ZnS/TGA QDs) was established for cobalt ions detection. The fluorescence quenching of CuInS 2 /ZnS/TGA QDs was due to the increasing surface deficiency and the inner-filter effect, which were attributed to the reaction between Co 2+ and sulfur bonds on the surface of QDs. The quenching curve could be fitted by a typical Stern–Volmer-type equation, with a linear relationship between the quenching efficiency and the concentration of cobalt ions in the range of 0.3012–90.36 μmol L −1 . And the detection limit (S/N=3) for Co 2+ was 0.16 μmol L −1 . Therefore, the established probe provided a simple, rapid, cheap and sensitive method for Co 2+ detection. In a word, this method can be used to detect Co 2+ in the environment. -- Highlights: • The CuInS2/ZnS QDs were used for the first time as a fluorescent probe for Co 2+ detection. • The dramatic color change could be observed when Co 2+ was added into the QDs solution. • The quenching of QDs was due to the increasing surface deficiency and the inner-filter effect. • This rapid, cheap and sensitive method was applied to the detection of Co 2+ in simulated water

  13. Fluorescent peptide biosensor for probing the relative abundance of cyclin-dependent kinases in living cells.

    Directory of Open Access Journals (Sweden)

    Laetitia Kurzawa

    Full Text Available Cyclin-dependant kinases play a central role in coordinating cell growth and division, and in sustaining proliferation of cancer cells, thereby constituting attractive pharmacological targets. However, there are no direct means of assessing their relative abundance in living cells, current approaches being limited to antigenic and proteomic analysis of fixed cells. In order to probe the relative abundance of these kinases directly in living cells, we have developed a fluorescent peptide biosensor with biligand affinity for CDKs and cyclins in vitro, that retains endogenous CDK/cyclin complexes from cell extracts, and that bears an environmentally-sensitive probe, whose fluorescence increases in a sensitive fashion upon recognition of its targets. CDKSENS was introduced into living cells, through complexation with the cell-penetrating carrier CADY2 and applied to assess the relative abundance of CDK/Cyclins through fluorescence imaging and ratiometric quantification. This peptide biosensor technology affords direct and sensitive readout of CDK/cyclin complex levels, and reports on differences in complex formation when tampering with a single CDK or cyclin. CDKSENS further allows for detection of differences between different healthy and cancer cell lines, thereby enabling to distinguish cells that express high levels of these heterodimeric kinases, from cells that present decreased or defective assemblies. This fluorescent biosensor technology provides information on the overall status of CDK/Cyclin complexes which cannot be obtained through antigenic detection of individual subunits, in a non-invasive fashion which does not require cell fixation or extraction procedures. As such it provides promising perspectives for monitoring the response to therapeutics that affect CDK/Cyclin abundance, for cell-based drug discovery strategies and fluorescence-based cancer diagnostics.

  14. Modeling the mechanisms of biological GTP hydrolysis

    DEFF Research Database (Denmark)

    Carvalho, Alexandra T.P.; Szeler, Klaudia; Vavitsas, Konstantinos

    2015-01-01

    Enzymes that hydrolyze GTP are currently in the spotlight, due to their molecular switch mechanism that controls many cellular processes. One of the best-known classes of these enzymes are small GTPases such as members of the Ras superfamily, which catalyze the hydrolysis of the γ-phosphate bond...... in GTP. In addition, the availability of an increasing number of crystal structures of translational GTPases such as EF-Tu and EF-G have made it possible to probe the molecular details of GTP hydrolysis on the ribosome. However, despite a wealth of biochemical, structural and computational data, the way...

  15. Sensitive fluorescence on-off probes for the fast detection of a chemical warfare agent mimic.

    Science.gov (United States)

    Khan, Muhammad Shar Jhahan; Wang, Ya-Wen; Senge, Mathias O; Peng, Yu

    2018-01-15

    Two highly sensitive probes bearing a nucleophilic imine moiety have been utilized for the selective detection of chemical warfare agent (CWA) mimics. Diethyl chlorophosphate (DCP) was used as mimic CWAs. Both iminocoumarin-benzothiazole-based probes not only demonstrated a remarkable fluorescence ON-OFF response and good recognition, but also exhibited fast response times (10s) along with color changes upon addition of DCP. Limits of detection for the two sensors 1 and 2 were calculated as 0.065μM and 0.21μM, respectively, which are much lower than most other reported probes. These two probes not only show high sensitivity and selectivity in solution, but can also be applied for the recognition of DCP in the gas state, with significant color changes easily observed by the naked eye. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Sets of RNA repeated tags and hybridization-sensitive fluorescent probes for distinct images of RNA in a living cell.

    Directory of Open Access Journals (Sweden)

    Takeshi Kubota

    Full Text Available BACKGROUND: Imaging the behavior of RNA in a living cell is a powerful means for understanding RNA functions and acquiring spatiotemporal information in a single cell. For more distinct RNA imaging in a living cell, a more effective chemical method to fluorescently label RNA is now required. In addition, development of the technology labeling with different colors for different RNA would make it easier to analyze plural RNA strands expressing in a cell. METHODOLOGY/PRINCIPAL FINDINGS: Tag technology for RNA imaging in a living cell has been developed based on the unique chemical functions of exciton-controlled hybridization-sensitive oligonucleotide (ECHO probes. Repetitions of selected 18-nucleotide RNA tags were incorporated into the mRNA 3'-UTR. Pairs with complementary ECHO probes exhibited hybridization-sensitive fluorescence emission for the mRNA expressed in a living cell. The mRNA in a nucleus was detected clearly as fluorescent puncta, and the images of the expression of two mRNAs were obtained independently and simultaneously with two orthogonal tag-probe pairs. CONCLUSIONS/SIGNIFICANCE: A compact and repeated label has been developed for RNA imaging in a living cell, based on the photochemistry of ECHO probes. The pairs of an 18-nt RNA tag and the complementary ECHO probes are highly thermostable, sequence-specifically emissive, and orthogonal to each other. The nucleotide length necessary for one tag sequence is much shorter compared with conventional tag technologies, resulting in easy preparation of the tag sequences with a larger number of repeats for more distinct RNA imaging.

  17. Curcumin-Based "Enhanced SNAr" Promoted Ultrafast Fluorescent Probe for Thiophenols Detection in Aqueous Solution and in Living Cells.

    Science.gov (United States)

    Yue, Yongkang; Huo, Fangjun; Zhang, Yongbin; Chao, Jianbin; Martínez-Máñez, Ramón; Yin, Caixia

    2016-11-01

    We report herein a highly selective and sensitive turn-on fluorescent probe (compound 1) with a fast response time (less than 2 min) for thiophenol detection based on an "enhanced S N Ar" reaction between thiophenols and a sulfonyl-ester moiety covalently attach to curcumin. Reaction of 1 in Hepes-MeOH (1:1, v/v, pH 7.4) in the presence of 4-methylthiophenol (MTP) resulted in a remarkable enhancement of the fluorescence. A linear response in the presence of MTP of the relative fluorescent intensity (F - F 0 ) of 1 at 536 nm in the 0-40 μM MTP concentration range was found. A limit of detection (LOD) for the detection of MTP of 26 nM, based on the definition by IUPAC (C DL = 3 Sb/m), was calculated. Probe 1 was applied to monitor and imaging exogenous MTP in live cells and to the detection of MTP in real water samples.

  18. Multiplex hydrolysis probe real-time PCR for simultaneous detection of hepatitis A virus and hepatitis E virus.

    Science.gov (United States)

    Qiu, Feng; Cao, Jingyuan; Su, Qiudong; Yi, Yao; Bi, Shengli

    2014-05-30

    Detection of hepatitis viral infections has traditionally relied on the circulating antibody test using the enzyme-linked immunosorbent assay. However, multiplex real-time PCR has been increasingly used for a variety of viral nucleic acid detections and has proven to be superior to traditional methods. Hepatitis A virus (HAV) and hepatitis E virus (HEV) are the major causes of acute hepatitis worldwide; both HAV and HEV infection are a main public health problem. In the present study, a one-step multiplex reverse transcriptase quantitative polymerase chain reaction assay using hydrolysis probes was developed for simultaneously detecting HAV and HEV. This novel detection system proved specific to the target viruses, to be highly sensitive and to be applicable to clinical sera samples, making it useful for rapid, accurate and feasible identification of HAV and HEV.

  19. A Fluorescent Molecular Probe for the Detection of Hydrogen Based on Oxidative Addition Reactions with Crabtree-Type Hydrogenation Catalysts.

    Science.gov (United States)

    Kos, Pavlo; Plenio, Herbert

    2015-11-02

    A Crabtree-type Ir(I) complex tagged with a fluorescent dye (bodipy) was synthesized. The oxidative addition of H2 converts the weakly fluorescent Ir(I) complex (Φ=0.038) into a highly fluorescent Ir(III) species (Φ=0.51). This fluorogenic reaction can be utilized for the detection of H2 and to probe the oxidative addition step in the catalytic hydrogenation of olefins. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Use of selenium to detect mercury in water and cells: an enhancement of the sensitivity and specificity of a seleno fluorescent probe.

    Science.gov (United States)

    Tang, Bo; Ding, Baiyu; Xu, Kehua; Tong, Lili

    2009-01-01

    Seleno fluorescent probe: An organoselenium fluorescent probe (FSe-1) for mercury was designed based on the irreversible deselenation mechanism. FSe-1 exhibits an ultrahigh selectivity and sensitivity for Hg(2+) detection only for reactive selenium atom sites, due the strong affinity between Se and Hg. Furthermore, the new probe has been successfully used for imaging mercury ions in RAW 264.7 cells (a mouse macrophage cell line; see figure).Inspired by the antitoxic function of selenium towards heavy-metal ions, we designed an organoselenium fluorescent probe (FSe-1) for mercury. The reaction of FSe-1 and Hg(2+) is an irreversible deselenation mechanism based on the selenophilic character of mercury. FSe-1 exhibits an ultrahigh selectivity and sensitivity for Hg(2+) detection only for reactive selenium atom sites due to the strong affinity between Se and Hg. The experimental results proved that FSe-1 was selective for Hg(2+) ions over other relevant metal ions and bioanalytes, and also showed an enhancement in sensitivity of up to 1.0 nM, which is lower than the current Environmental Protection Agency standard for drinking water. Furthermore, the new probe has been successfully applied to the imaging of mercury ions in RAW 264.7 cells (a mouse macrophage cell line) with high sensitivity and selectivity.

  1. A dual-emission and large Stokes shift fluorescence probe for real-time discrimination of ROS/RNS and imaging in live cells.

    Science.gov (United States)

    Guo, Ting; Cui, Lei; Shen, Jiaoning; Wang, Rui; Zhu, Weiping; Xu, Yufang; Qian, Xuhong

    2013-03-04

    A novel dual-emission fluorescence probe has been developed for specific and sensitive detection of hypochlorite (ClO(-)). Upon addition of ClO(-), significant changes in fluorescence emission intensity at two discrete wavelengths were observed. Meanwhile OONO(-) led to only a single-channel fluorescence enhancement. This feature makes it a clear advantage in distinguishing ClO(-), RNS from other ROS.

  2. Molecularly Imprinted Core-Shell CdSe@SiO2/CDs as a Ratiometric Fluorescent Probe for 4-Nitrophenol Sensing

    Science.gov (United States)

    Liu, Mingyue; Gao, Zhao; Yu, Yanjun; Su, Rongxin; Huang, Renliang; Qi, Wei; He, Zhimin

    2018-01-01

    4-Nitrophenol (4-NP) is a priority pollutant in water and is both carcinogenic and genotoxic to humans and wildlife even at very low concentrations. Thus, we herein fabricated a novel molecularly imprinted core-shell nanohybrid as a ratiometric fluorescent sensor for the highly sensitive and selective detection of 4-NP. This sensor was functioned by the transfer of fluorescence resonance energy between photoluminescent carbon dots (CDs) and 4-NP. This sensor was synthesized by linking organosilane-functionalized CDs to silica-coated CdSe quantum dots (CdSe@SiO2) via Si-O bonds. The nanohybrids were further modified by anchoring a molecularly imprinted polymer (MIP) layer on the ratiometric fluorescent sensor through a facile sol-gel polymerization method. The morphology, chemical structure, and optical properties of the resulting molecularly imprinted dual-emission fluorescent probe were characterized by transmission electron microscopy and spectroscopic analysis. The probe was then applied in the detection of 4-NP and exhibited good linearity between 0.051 and 13.7 μg/mL, in addition to a low detection limit of 0.026 μg/mL. Furthermore, the simplicity, reliability, high selectivity, and high sensitivity of the developed sensor demonstrate that the combination of MIPs and ratiometric fluorescence allows the preparation of excellent fluorescent sensors for the detection of trace or ultra-trace analytes.

  3. Dual lanthanide-doped complexes: the development of a time-resolved ratiometric fluorescent probe for anthrax biomarker and a paper-based visual sensor.

    Science.gov (United States)

    Wang, Qi-Xian; Xue, Shi-Fan; Chen, Zi-Han; Ma, Shi-Hui; Zhang, Shengqiang; Shi, Guoyue; Zhang, Min

    2017-08-15

    In this work, a novel time-resolved ratiometric fluorescent probe based on dual lanthanide (Tb: terbium, and Eu: europium)-doped complexes (Tb/DPA@SiO 2 -Eu/GMP) has been designed for detecting anthrax biomarker (dipicolinic acid, DPA), a unique and major component of anthrax spores. In such complexes-based probe, Tb/DPA@SiO 2 can serve as a stable reference signal with green fluorescence and Eu/GMP act as a sensitive response signal with red fluorescence for ratiometric fluorescent sensing DPA. Additionally, the probe exhibits long fluorescence lifetime, which can significantly reduce the autofluorescence interferences from biological samples by using time-resolved fluorescence measurement. More significantly, a paper-based visual sensor for DPA has been devised by using filter paper embedded with Tb/DPA@SiO 2 -Eu/GMP, and we have proved its utility for fluorescent detection of DPA, in which only a handheld UV lamp is used. In the presence of DPA, the paper-based visual sensor, illuminated by a handheld UV lamp, would result in an obvious fluorescence color change from green to red, which can be easily observed with naked eyes. The paper-based visual sensor is stable, portable, disposable, cost-effective and easy-to-use. The feasibility of using a smartphone with easy-to-access color-scanning APP as the detection platform for quantitative scanometric assays has been also demonstrated by coupled with our proposed paper-based visual sensor. This work unveils an effective method for accurate, sensitive and selective monitoring anthrax biomarker with backgroud-free and self-calibrating properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Fluorescent probes for understanding soil water repellency: the novel application of a chemist's tool to soil science

    Science.gov (United States)

    Balshaw, Helen M.; Davies, Matthew L.; Doerr, Stefan H.; Douglas, Peter

    2015-04-01

    Food security and production is one of the key global issues faced by society. It has become essential to work the land efficiently, through better soil management and agronomy whilst protecting the environment from air and water pollution. The failure of soil to absorb water - soil water repellency can lead to major environmental problems such as increased overland flow and soil erosion, poor uptake of agricultural chemicals, and increased risk of groundwater pollution due to the rapid transfer of contaminants and nutrient leaching through uneven wetting and preferential flow pathways. Understanding the causes of soil hydrophobicity is essential for the development of effective methods for its amelioration, supporting environmental stability and food security. Organic compounds deposited on soil mineral or aggregate surfaces have long been recognised as a major factor in causing soil water repellency. It is widely accepted that the main groups of compounds responsible are long-chain acids, alkanes and other organic compounds with hydrophobic properties. However, when reapplied to sands and soils, the degree of water repellency induced by these compounds and mixtures varied widely with compound type, amount, and mixture, in a seemingly unpredictable way. Fluorescent and phosphorescent probes are widely used in chemistry and biochemistry due to their sensitive response to their physical and chemical environment, such as polarity, and viscosity. However, they have to-date not been used to study soil water repellency. Here we present preliminary work on the evaluation of fluorescent probes as tools to study two poorly understood features that determine the degree of wettability for water repellent soils: (i) the distribution of organics on soils; (ii) the changes in polarity at soil surfaces required for water drops to infiltrate. In our initial work we have examined probes adsorbed onto model soils, prepared by adsorption of specific organics onto acid washed sand

  5. A highly selective and sensitive photoswitchable fluorescent probe for Hg2+ based on bisthienylethene-rhodamine 6G dyad and for live cells imaging.

    Science.gov (United States)

    Xu, Li; Wang, Sheng; Lv, Yingnian; Son, Young-A; Cao, Derong

    2014-07-15

    A new photochromic diarylethene derivative bearing rhodamine 6G dimmer as a fluorescent molecular probe is designed and synthesized successfully. All the compounds are characterized by nuclear magnetic resonance and mass spectrometry. The bisthienylethene-rhodamine 6G dyad exhibit excellent phtochromism with reversibly color and fluorescence changes alternating irradiation with ultraviolet and visible light. Upon addition of Hg(2+), its color changes from colorless to red and its fluorescence is remarkably enhanced. Whereas other ions including K(+), Na(+), Ca(2+), Mg(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Mn(2+), Pb(2+), Ni(2+), Fe(3+), Al(3+), Cr(3+) and so on induce basically no spectral changes, which constitute a highly selective and sensitive photoswitchable fluorescent probe toward Hg(2+). Furthermore, by means of laser confocal scanning microscopy experiments, it is demonstrated that this probe can be applied for live cell imaging and monitoring Hg(2+) in living lung cancer cells with satisfying results, which shows its value of potential application in environmental and biological systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Nitrogen-Doped Carbon Quantum Dots as Fluorescent Probes for Sensitive and Selective Detection of Nitrite

    Directory of Open Access Journals (Sweden)

    Zhibiao Feng

    2017-11-01

    Full Text Available Nitrites are the upstream precursors of the carcinogenic nitrosamines, which are widely found in the natural environment and many food products. It is important to develop a simple and sensitive sensor for detecting nitrites. In this work, a fluorescence probe based on nitrogen-doped carbon quantum dots (N-CQDs was developed for the sensitive and selective determination of nitrites. At pH 2, the fluorescence of N-CQDs can be selectively quenched by nitrite due to the fact N-nitroso compounds can be formed in the reaction of amide groups with nitrous acid, which results in fluorescence static quenching. Under optimal conditions, fluorescence intensity quenching upon addition of nitrite gives a satisfactory linear relationship covering the linear range of 0.2–20 μM, and the limit of detection (LOD is 40 nM. Moreover, this method has been successfully applied to the determination of nitrites in tap water, which indicates its great potential for monitoring of nitrites in environmental samples.

  7. An evanescent wave biosensor--Part I: Fluorescent signal acquisition from step-etched fiber optic probes.

    Science.gov (United States)

    Anderson, G P; Golden, J P; Ligler, F S

    1994-06-01

    A fiber-optic biosensor capable of remote continuous monitoring has recently been designed. To permit sensing at locations separate from the optoelectronic instrumentation, long optical fibers are utilized. An evanescent wave immuno-probe is prepared by removing the cladding near the distal end of the fiber and covalently attaching antibodies to the core. Probes with a radius unaltered from that of the original core inefficiently returned the signal produced upon binding the fluorescent-labelled antigen. To elucidate the limiting factors in signal acquisition, a series of fibers with increasingly reduced probe core radius was examined. The results were consistent with the V-number mismatch, the difference in mode carrying capacity between the clad and unclad fiber, being a critical factor in limiting signal coupling from the fiber probe. However, it was also delineated that conditions which conserve excitation power, such that power in the evanescent wave is optimized, must also be met to obtain a maximal signal. The threshold sensitivity for the optimal step-etched fiber probe was improved by over 20-fold in an immunoassay, although, it was demonstrated that signal acquisition decreased along the probe length, suggesting that a sensor region of uniform radius is not ideal.

  8. A Rotational BODIPY Nucleotide: An Environment-Sensitive Fluorescence-Lifetime Probe for DNA Interactions and Applications in Live-Cell Microscopy

    Czech Academy of Sciences Publication Activity Database

    Dziuba, Dmytro; Jurkiewicz, Piotr; Cebecauer, Marek; Hof, Martin; Hocek, Michal

    2016-01-01

    Roč. 55, č. 1 (2016), s. 174-178 ISSN 1433-7851 R&D Projects: GA ČR GBP206/12/G151; GA ČR(CZ) GC14-03141J Institutional support: RVO:61388963 ; RVO:61388955 Keywords : DNA * fluorescence spectroscopy * fluorescent probes * nucleosides * time-resolved spectroscopy Subject RIV: CC - Organic Chemistry ; BO - Biophysics (UFCH-W) Impact factor: 11.994, year: 2016

  9. Development of a Novel Fiber Optic Sensor Combined with a Fluorescence Turn-on Probe for Cu (II Detection

    Directory of Open Access Journals (Sweden)

    Ma J.

    2013-04-01

    Full Text Available Existing staining-based methodology for the detection of metal ions is not well suited for real-time or in situ use. This is a significant problem, given that these ions can have a considerable impact on both human health and the environment. Thus, there is growing interest and need for simple, rapid and in-situ monitoring techniques for the purpose of detecting various target analytes (e.g. heavy metals, which is of a significant importance in many fields ranging from environmental monitoring to the study of intracellular processes. Among various sensors developed, optical fiber-optic sensors (FOS, based on fluorescence, are one class of sensors that address this goal [1]. Optical fibers are ideal for environmental sensing applications because of their ability to transmit optical signals to and from the sensing region without the use of free-space optics. In this work, we present, for the first time, a simple FOS incorporating novel fluorescence turn-on mechanism [2] that could detect Cu (II as low as 10−4 M. Traditionally, fluorescence quenching or “turn-off” was used to detect Cu (II [3]. In recent years, fluorescence “turn-on” emerges as a preferable tool. The developed fiber-optic sensor has two fiber leads and one probe head. One fiber lead includes 6 fibers for He-Ne laser excitation light delivery (e-fibers. Another fiber lead has one receiving fiber (r-fiber connected to an Ocean Optics QE65000 scientific grade spectrometer, which is interrogated by a computer via USB connection. The SpectroSuite software is used to observe and to record all spectra. The probe head combines all fibers together to form a coaxial structure with the r-fiber placed in the center. The key component in the proposed fluorescent sensing system is a probe prepared by binding a receptor containing a zwitterionic chromophore (M1, through noncovalent interactions, to the fluorescent polymer (P1 resulting in quenching its emission. The sensing mechanism

  10. Far-Red Fluorescent Probe for Imaging of Vicinal Dithiol-Containing Proteins in Living Cells Based on a pKa Shift Mechanism.

    Science.gov (United States)

    Zhang, Shengrui; Chen, Guojun; Wang, Yuanyuan; Wang, Qin; Zhong, Yaogang; Yang, Xiao-Feng; Li, Zheng; Li, Hua

    2018-02-20

    Vicinal dithiol-containing proteins (VDPs) play fundamental roles in intracellular redox homeostasis and are responsible for many diseases. In this work, we report a far-red fluorescence turn-on probe MCAs for VDPs exploiting the pK a shift of the imine functionality of the probe. MCAs is composed of a merocyanine Schiff base as the fluorescent reporter and a cyclic 1,3,2-dithiarsenolane as the specific ligand for VDPs. The imine pK a of MCAs is 4.8, and it exists predominantly in the Schiff base (SB) form at physiological pH. Due to the absence of a resonating positive charge, it absorbs at a relatively short wavelength and is essentially nonfluorescent. Upon selective binding to reduced bovine serum albumin (rBSA, selected as the model protein), MCAs was brought from aqueous media to the binding pockets of the protein, causing a large increase in pK a value of MCAs (pK a = 7.1). As a result, an increase in the protonated Schiff base (PSB) form of MCAs was observed at the physiological pH conditions, which in turn leads to a bathochromically shifted chromophore (λ abs = 634 nm) and a significant increase in fluorescence intensity (λ em = 657 nm) simultaneously. Furthermore, molecular dynamics simulations indicate that the salt bridges formed between the iminium in MCAs and the residues D72 and D517 in rBSA resist the dissociation of proton from the probe, thus inducing an increase of the pK a value. The proposed probe shows excellent sensitivity and specificity toward VDPs over other proteins and biologically relevant species and has been successfully applied for imaging of VDPs in living cells. We believe that the present pK a shift switching strategy may facilitate the development of new fluorescent probes that are useful for a wide range of applications.

  11. Rotational and translational diffusions of fluorescent probes during gelation process

    Science.gov (United States)

    Hattori, Yusuke; Panizza, Pascal; Letamendia, Louis; Ushiki, Hideharu

    2006-04-01

    Gelation process has been investigated by using light scattering techniques in recent years. We measured both of rotational and translational motions of fluorescent probes during gelation process. The measurements were performed after the temperature quenched at 30 °C. As the results, rotational diffusion coefficient of fluorescein was decreased after 6.0 × 10 4 s and energy transfer rate was reduced after 2.0 × 10 4 s. We sorted the gelation process into the following three parts, (I) pre-gelation, (II) reduction of translational diffusion (aging), and (III) reduction of rotational diffusion with saturating translational diffusion (post-gelation). The time scale of the process was completely different from the results of other methods.

  12. TaqMan MGB probe fluorescence real-time quantitative PCR for rapid detection of Chinese Sacbrood virus.

    Directory of Open Access Journals (Sweden)

    Ma Mingxiao

    Full Text Available Sacbrood virus (SBV is a picorna-like virus that affects honey bees (Apis mellifera and results in the death of the larvae. Several procedures are available to detect Chinese SBV (CSBV in clinical samples, but not to estimate the level of CSBV infection. The aim of this study was develop an assay for rapid detection and quantification of this virus. Primers and probes were designed that were specific for CSBV structural protein genes. A TaqMan minor groove binder (MGB probe-based, fluorescence real-time quantitative PCR was established. The specificity, sensitivity and stability of the assay were assessed; specificity was high and there were no cross-reactivity with healthy larvae or other bee viruses. The assay was applied to detect CSBV in 37 clinical samples and its efficiency was compared with clinical diagnosis, electron microscopy observation, and conventional RT-PCR. The TaqMan MGB-based probe fluorescence real-time quantitative PCR for CSBV was more sensitive than other methods tested. This assay was a reliable, fast, and sensitive method that was used successfully to detect CSBV in clinical samples. The technology can provide a useful tool for rapid detection of CSBV. This study has established a useful protocol for CSBV testing, epidemiological investigation, and development of animal models.

  13. Accumulation of polyunsaturated aldehydes in the gonads of the copepod Acartia tonsa revealed by tailored fluorescent probes.

    Science.gov (United States)

    Wolfram, Stefanie; Nejstgaard, Jens C; Pohnert, Georg

    2014-01-01

    Polyunsaturated aldehydes (PUAs) are released by several diatom species during predation. Besides other attributed activities, these oxylipins can interfere with the reproduction of copepods, important predators of diatoms. While intensive research has been carried out to document the effects of PUAs on copepod reproduction, little is known about the underlying mechanistic aspects of PUA action. Especially PUA uptake and accumulation in copepods has not been addressed to date. To investigate how PUAs are taken up and interfere with the reproduction in copepods we developed a fluorescent probe containing the α,β,γ,δ-unsaturated aldehyde structure element that is essential for the activity of PUAs as well as a set of control probes. We developed incubation and monitoring procedures for adult females of the calanoid copepod Acartia tonsa and show that the PUA derived fluorescent molecular probe selectively accumulates in the gonads of this copepod. In contrast, a saturated aldehyde derived probe of an inactive parent molecule was enriched in the lipid sac. This leads to a model for PUAs' teratogenic mode of action involving accumulation and covalent interaction with nucleophilic moieties in the copepod reproductive tissue. The teratogenic effect of PUAs can therefore be explained by a selective targeting of the molecules into the reproductive tissue of the herbivores, while more lipophilic but otherwise strongly related structures end up in lipid bodies.

  14. Accumulation of polyunsaturated aldehydes in the gonads of the copepod Acartia tonsa revealed by tailored fluorescent probes.

    Directory of Open Access Journals (Sweden)

    Stefanie Wolfram

    Full Text Available Polyunsaturated aldehydes (PUAs are released by several diatom species during predation. Besides other attributed activities, these oxylipins can interfere with the reproduction of copepods, important predators of diatoms. While intensive research has been carried out to document the effects of PUAs on copepod reproduction, little is known about the underlying mechanistic aspects of PUA action. Especially PUA uptake and accumulation in copepods has not been addressed to date. To investigate how PUAs are taken up and interfere with the reproduction in copepods we developed a fluorescent probe containing the α,β,γ,δ-unsaturated aldehyde structure element that is essential for the activity of PUAs as well as a set of control probes. We developed incubation and monitoring procedures for adult females of the calanoid copepod Acartia tonsa and show that the PUA derived fluorescent molecular probe selectively accumulates in the gonads of this copepod. In contrast, a saturated aldehyde derived probe of an inactive parent molecule was enriched in the lipid sac. This leads to a model for PUAs' teratogenic mode of action involving accumulation and covalent interaction with nucleophilic moieties in the copepod reproductive tissue. The teratogenic effect of PUAs can therefore be explained by a selective targeting of the molecules into the reproductive tissue of the herbivores, while more lipophilic but otherwise strongly related structures end up in lipid bodies.

  15. Hydrothermal synthesis of functionalized CdS nanoparticles and their application as fluorescence probes in the determination of uracil and thymine

    International Nuclear Information System (INIS)

    Lu Yaxiang; Li Li; Ding Yaping; Zhang Fenfen; Wang Yaping; Yu Weijun

    2012-01-01

    A novel, sensitive, and convenient method for the determination of uracil and thymine by functionalized CdS nanoparticles (NPs) was proposed. CdS NPs were prepared by hydrothermal process and modified with thioglycollic acid (TGA) in aqueous solution. The fluorescence intensity of functionalized CdS NPs was quenched in the presence of uracil or thymine. Under optimal conditions, the relative fluorescence intensity (F 0 /F) was proportional to the concentration in the range of 9.0x10 -6 -1.0x10 -4 mol/L for uracil (r=0.9985) and 8.8x10 -7 -1.5x10 -4 mol/L for thymine (r=0.9960). The corresponding detection limits were 9.6x10 -7 mol/L and 3.2x10 -7 mol/L, respectively. In addition, the possible quenching mechanism was also discussed. - Highlights: → Nano-CdS fluorescence probes were synthesized with good optical properties. → Uracil and thymine were successfully detected by CdS fluorescence probes. → Wide linear ranges and low detection limits were obtained.

  16. Synthesis and evaluation of [{sup 14}C]-Labelled and fluorescent-Tagged paclitaxel derivatives as new biological probes

    Energy Technology Data Exchange (ETDEWEB)

    Rao, C.S.; Chu, J.-J.; Lai, Y.-K. [Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan (China); Liu, R.-S. [Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan (China)

    1998-11-01

    Our present report deals with the preparation of hitherto unreported 7-([carbonyl-{sup 14}C]-acetyl)paclitaxel 4 and two new bioactive 7-substituted fluorescent taxoids (FITC 9 and rhodamine 11), as well as evaluation towards their applications as biological probes. The results in this report demonstrate that (a) the new paclitaxel derivatives 4, 9, 11 could be prepared with good yields starting from paclitaxel; (b) the [{sup 14}C]acetylation step was found to be better by using [{sup 14}C]acetic anhydride rather than [{sup 14}C]sodium acetate; (c) the radiochemical purity of 4 was 96% and its specific activity was 48 mCi/mmol; (d) the cytotoxicity of 4 was close to that of paclitaxel whereas 9, 11 were far less active than paclitaxel, but these cytotoxic levels were good enough for their biological applications; (e) the drug-quantitation by flow cytometric analysis using 9 and 11 was proved to be equally efficient with respect to the radioactivity-based determination employing 4; (f) the intracellular fluorescence mapping by 9 and 11 was found to be effective and the microtubule network pattern was visible in both the cases; (g) the overall fluorescence imaging efficiency was better with 11 while the intensity of fluorescence was higher with 9; (h) staining of nucleolus was observed in fluorescence studies of both 9 and 11. Based on these results, the newly prepared paclitaxel derivatives can be considered as efficient biological probes and should find further use in relevant applications. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  17. Characterisation of corrosion processes of using electron micro-probe, scanning probe microscopy and synchrotron-generated x-ray fluorescence imaging

    International Nuclear Information System (INIS)

    Neufeld, A.K.; Cole, I.S.; Furman, S.A.; Isaacs, H.S.

    2002-01-01

    Full text: With recent advances in computerized technology, the study of chemical reactions can now be visualized as they occur in real time and has resulted in analytical techniques with orders of magnitude greater sensitivity and resolution. This ability offers the corrosion scientist a unique opportunity to study the processes relevant to degradation science which could only be theoretically considered. Neufeld el al (1,2) have attempted to explain in great detail the mechanism of corrosion initiation of zinc by using X-ray micro-probe, Scanning Kelvin probe, and more recently by using synchrotron-generated X-rays and X-ray fluorescence imaging. New results are presented from the synchrotron studies where the transport of ions in-situ has been investigated. The synthesis of information from the techniques will also be discussed in its relevance to atmospheric corrosion processes. Copyright (2002) Australian Society for Electron Microscopy Inc

  18. Fluorescence-Guided Probes of Aptamer-Targeted Gold Nanoparticles with Computed Tomography Imaging Accesses for in Vivo Tumor Resection.

    Science.gov (United States)

    Li, Cheng-Hung; Kuo, Tsung-Rong; Su, Hsin-Jan; Lai, Wei-Yun; Yang, Pan-Chyr; Chen, Jinn-Shiun; Wang, Di-Yan; Wu, Yi-Chun; Chen, Chia-Chun

    2015-10-28

    Recent development of molecular imaging probes for fluorescence-guided surgery has shown great progresses for determining tumor margin to execute the tissue resection. Here we synthesize the fluorescent gold nanoparticles conjugated with diatrizoic acid and nucleolin-targeted AS1411 aptamer. The nanoparticle conjugates exhibit high water-solubility, good biocompatibility, visible fluorescence and strong X-ray attenuation for computed tomography (CT) contrast enhancement. The fluorescent nanoparticle conjugates are applied as a molecular contrast agent to reveal the tumor location in CL1-5 tumor-bearing mice by CT imaging. Furthermore, the orange-red fluorescence emitting from the conjugates in the CL1-5 tumor can be easily visualized by the naked eyes. After the resection, the IVIS measurements show that the fluorescence signal of the nanoparticle conjugates in the tumor is greatly enhanced in comparison to that in the controlled experiment. Our work has shown potential application of functionalized nanoparticles as a dual-function imaging agent in clinical fluorescence-guided surgery.

  19. A new fluorescence/PET probe for targeting intracellular human telomerase reverse transcriptase (hTERT) using Tat peptide-conjugated IgM

    International Nuclear Information System (INIS)

    Jung, Kyung oh; Youn, Hyewon; Kim, Seung Hoo; Kim, Young-Hwa; Kang, Keon Wook; Chung, June-Key

    2016-01-01

    Despite an increasing need for methods to visualize intracellular proteins in vivo, the majority of antibody-based imaging methods available can only detect membrane proteins. The human telomerase reverse transcriptase (hTERT) is an intracellular target of great interest because of its high expression in several types of cancer. In this study, we developed a new probe for hTERT using the Tat peptide. An hTERT antibody (IgG or IgM) was conjugated with the Tat peptide, a fluorescence dye and "6"4Cu. HT29 (hTERT+) and U2OS (hTERT−) were used to visualize the intracellular hTERT. The hTERT was detected by RT-PCR and western blot. Fluorescence signals for hTERT were obtained by confocal microscopy, live cell imaging, and analyzed by Tissue-FAXS. In nude mice, tumors were visualized using the fluorescence imaging devices Maestro™ and PETBOX. In RT-PCR and western blot, the expression of hTERT was detected in HT29 cells, but not in U2OS cells. Fluorescence signals were clearly observed in HT29 cells and in U2OS cells after 1 h of treatment, but signals were only detected in HT29 cells after 24 h. Confocal microscopy showed that 9.65% of U2OS and 78.54% of HT29 cells had positive hTERT signals. 3D animation images showed that the probe could target intranuclear hTERT in the nucleus. In mice models, fluorescence and PET imaging showed that hTERT in HT29 tumors could be efficiently visualized. In summary, we developed a new method to visualize intracellular and intranuclear proteins both in vitro and in vivo. - Highlights: • We developed new probes for imaging hTERT using Tat-conjugated IgM antibodies labeled with a fluorescent dye and radioisotope. • This probes could be used to overcome limitation of conventional antibody imaging system in live cell imaging. • This system could be applicable to monitor intracellular and intranuclear proteins in vitro and in vivo.

  20. A new fluorescence/PET probe for targeting intracellular human telomerase reverse transcriptase (hTERT) using Tat peptide-conjugated IgM

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Kyung oh [Department of Nuclear Medicine, Seoul National University College of Medicine (Korea, Republic of); Biomedical Sciences, Seoul National University College of Medicine (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine (Korea, Republic of); Tumor Microenvironment Global Core Research Center, Seoul National University (Korea, Republic of); Youn, Hyewon, E-mail: hwyoun@snu.ac.kr [Department of Nuclear Medicine, Seoul National University College of Medicine (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine (Korea, Republic of); Tumor Microenvironment Global Core Research Center, Seoul National University (Korea, Republic of); Cancer Imaging Center, Seoul National University Hospital, Seoul (Korea, Republic of); Kim, Seung Hoo [Department of Nuclear Medicine, Seoul National University College of Medicine (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine (Korea, Republic of); Kim, Young-Hwa [Department of Nuclear Medicine, Seoul National University College of Medicine (Korea, Republic of); Biomedical Sciences, Seoul National University College of Medicine (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine (Korea, Republic of); Kang, Keon Wook [Department of Nuclear Medicine, Seoul National University College of Medicine (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine (Korea, Republic of); Chung, June-Key, E-mail: jkchung@snu.ac.kr [Department of Nuclear Medicine, Seoul National University College of Medicine (Korea, Republic of); Biomedical Sciences, Seoul National University College of Medicine (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine (Korea, Republic of); Tumor Microenvironment Global Core Research Center, Seoul National University (Korea, Republic of)

    2016-08-26

    Despite an increasing need for methods to visualize intracellular proteins in vivo, the majority of antibody-based imaging methods available can only detect membrane proteins. The human telomerase reverse transcriptase (hTERT) is an intracellular target of great interest because of its high expression in several types of cancer. In this study, we developed a new probe for hTERT using the Tat peptide. An hTERT antibody (IgG or IgM) was conjugated with the Tat peptide, a fluorescence dye and {sup 64}Cu. HT29 (hTERT+) and U2OS (hTERT−) were used to visualize the intracellular hTERT. The hTERT was detected by RT-PCR and western blot. Fluorescence signals for hTERT were obtained by confocal microscopy, live cell imaging, and analyzed by Tissue-FAXS. In nude mice, tumors were visualized using the fluorescence imaging devices Maestro™ and PETBOX. In RT-PCR and western blot, the expression of hTERT was detected in HT29 cells, but not in U2OS cells. Fluorescence signals were clearly observed in HT29 cells and in U2OS cells after 1 h of treatment, but signals were only detected in HT29 cells after 24 h. Confocal microscopy showed that 9.65% of U2OS and 78.54% of HT29 cells had positive hTERT signals. 3D animation images showed that the probe could target intranuclear hTERT in the nucleus. In mice models, fluorescence and PET imaging showed that hTERT in HT29 tumors could be efficiently visualized. In summary, we developed a new method to visualize intracellular and intranuclear proteins both in vitro and in vivo. - Highlights: • We developed new probes for imaging hTERT using Tat-conjugated IgM antibodies labeled with a fluorescent dye and radioisotope. • This probes could be used to overcome limitation of conventional antibody imaging system in live cell imaging. • This system could be applicable to monitor intracellular and intranuclear proteins in vitro and in vivo.

  1. Validation of a simple and fast method to quantify in vitro mineralization with fluorescent probes used in molecular imaging of bone

    International Nuclear Information System (INIS)

    Moester, Martiene J.C.; Schoeman, Monique A.E.; Oudshoorn, Ineke B.; Beusekom, Mara M. van; Mol, Isabel M.; Kaijzel, Eric L.; Löwik, Clemens W.G.M.; Rooij, Karien E. de

    2014-01-01

    Highlights: •We validate a simple and fast method of quantification of in vitro mineralization. •Fluorescently labeled agents can detect calcium deposits in the mineralized matrix of cell cultures. •Fluorescent signals of the probes correlated with Alizarin Red S staining. -- Abstract: Alizarin Red S staining is the standard method to indicate and quantify matrix mineralization during differentiation of osteoblast cultures. KS483 cells are multipotent mouse mesenchymal progenitor cells that can differentiate into chondrocytes, adipocytes and osteoblasts and are a well-characterized model for the study of bone formation. Matrix mineralization is the last step of differentiation of bone cells and is therefore a very important outcome measure in bone research. Fluorescently labelled calcium chelating agents, e.g. BoneTag and OsteoSense, are currently used for in vivo imaging of bone. The aim of the present study was to validate these probes for fast and simple detection and quantification of in vitro matrix mineralization by KS483 cells and thus enabling high-throughput screening experiments. KS483 cells were cultured under osteogenic conditions in the presence of compounds that either stimulate or inhibit osteoblast differentiation and thereby matrix mineralization. After 21 days of differentiation, fluorescence of stained cultures was quantified with a near-infrared imager and compared to Alizarin Red S quantification. Fluorescence of both probes closely correlated to Alizarin Red S staining in both inhibiting and stimulating conditions. In addition, both compounds displayed specificity for mineralized nodules. We therefore conclude that this method of quantification of bone mineralization using fluorescent compounds is a good alternative for the Alizarin Red S staining

  2. Validation of a simple and fast method to quantify in vitro mineralization with fluorescent probes used in molecular imaging of bone

    Energy Technology Data Exchange (ETDEWEB)

    Moester, Martiene J.C. [Department of Radiology, Leiden University Medical Center (Netherlands); Schoeman, Monique A.E. [Department of Orthopedic Surgery, Leiden University Medical Center (Netherlands); Oudshoorn, Ineke B. [Department of Radiology, Leiden University Medical Center (Netherlands); Percuros BV, Leiden (Netherlands); Beusekom, Mara M. van [Department of Radiology, Leiden University Medical Center (Netherlands); Mol, Isabel M. [Department of Radiology, Leiden University Medical Center (Netherlands); Percuros BV, Leiden (Netherlands); Kaijzel, Eric L.; Löwik, Clemens W.G.M. [Department of Radiology, Leiden University Medical Center (Netherlands); Rooij, Karien E. de, E-mail: k.e.de_rooij@lumc.nl [Department of Radiology, Leiden University Medical Center (Netherlands); Percuros BV, Leiden (Netherlands)

    2014-01-03

    Highlights: •We validate a simple and fast method of quantification of in vitro mineralization. •Fluorescently labeled agents can detect calcium deposits in the mineralized matrix of cell cultures. •Fluorescent signals of the probes correlated with Alizarin Red S staining. -- Abstract: Alizarin Red S staining is the standard method to indicate and quantify matrix mineralization during differentiation of osteoblast cultures. KS483 cells are multipotent mouse mesenchymal progenitor cells that can differentiate into chondrocytes, adipocytes and osteoblasts and are a well-characterized model for the study of bone formation. Matrix mineralization is the last step of differentiation of bone cells and is therefore a very important outcome measure in bone research. Fluorescently labelled calcium chelating agents, e.g. BoneTag and OsteoSense, are currently used for in vivo imaging of bone. The aim of the present study was to validate these probes for fast and simple detection and quantification of in vitro matrix mineralization by KS483 cells and thus enabling high-throughput screening experiments. KS483 cells were cultured under osteogenic conditions in the presence of compounds that either stimulate or inhibit osteoblast differentiation and thereby matrix mineralization. After 21 days of differentiation, fluorescence of stained cultures was quantified with a near-infrared imager and compared to Alizarin Red S quantification. Fluorescence of both probes closely correlated to Alizarin Red S staining in both inhibiting and stimulating conditions. In addition, both compounds displayed specificity for mineralized nodules. We therefore conclude that this method of quantification of bone mineralization using fluorescent compounds is a good alternative for the Alizarin Red S staining.

  3. Surface-enhanced Raman spectroscopic monitor of triglyceride hydrolysis in a skin pore phantom

    Science.gov (United States)

    Weldon, Millicent K.; Morris, Michael D.

    1999-04-01

    Bacterial hydrolysis of triglycerides is followed in a sebum probe phantom by microprobe surface-enhanced Raman scattering (SERS) spectroscopy. The phantom consists of a purpose-built syringe pump operating at physiological flow rates connected to a 300 micron i.d. capillary. We employ silicon substrate SERS microprobes to monitor the hydrolysis products. The silicon support allows some tip flexibility that makes these probes ideal for insertion into small structures. Propionibacterium acnes are immobilized on the inner surface of the capillary. These bacteria hydrolyze the triglycerides in a model sebum emulsion flowing through the capillary. The transformation is followed in vitro as changes in the SERS caused by hydrolysis of triglyceride to fatty acid. The breakdown products consists of a mixture of mono- and diglycerides and their parent long chain fatty acids. The fatty acids adsorb as their carboxylates and can be readily identified by their characteristic spectra. The technique can also confirm the presence of bacteria by detection of short chain carboxylic acids released as products of glucose fermentation during the growth cycle of these cells. Co-adsorption of propionate is observed. Spatial localization of the bacteria is obtained by ex-situ line imaging of the probe.

  4. Analysis of chemical equilibrium of silicon-substituted fluorescein and its application to develop a scaffold for red fluorescent probes.

    Science.gov (United States)

    Hirabayashi, Kazuhisa; Hanaoka, Kenjiro; Takayanagi, Toshio; Toki, Yuko; Egawa, Takahiro; Kamiya, Mako; Komatsu, Toru; Ueno, Tasuku; Terai, Takuya; Yoshida, Kengo; Uchiyama, Masanobu; Nagano, Tetsuo; Urano, Yasuteru

    2015-09-01

    Fluorescein is a representative green fluorophore that has been widely used as a scaffold of practically useful green fluorescent probes. Here, we report synthesis and characterization of a silicon-substituted fluorescein, i.e., 2-COOH TokyoMagenta (2-COOH TM), which is a fluorescein analogue in which the O atom at the 10' position of the xanthene moiety of fluorescein is replaced with a Si atom. This fluorescein analogue forms a spirolactone ring via intramolecular nucleophilic attack of the carboxylic group in a pH-dependent manner. Consequently, 2-COOH TM exhibits characteristic large pH-dependent absorption and fluorescence spectral changes: (1) 2-COOH TM is colorless at acidic pH, whereas fluorescein retains observable absorption and fluorescence even at acidic pH, and the absorption maximum is also shifted; (2) the absorption spectral change occurs above pH 7.0 for 2-COOH TM and below pH 7.0 for fluorescein; (3) 2-COOH TM shows a much sharper pH response than fluorescein because of its pKa inversion, i.e., pKa1 > pKa2. These features are also different from those of a compound without the carboxylic group, 2-Me TokyoMagenta (2-Me TM). Analysis of the chemical equilibrium between pH 3.0 and 11.0 disclosed that 2-COOH TM favors the colorless and nonfluorescent lactone form, compared with fluorescein. Substitution of Cl atoms at the 4' and 5' positions of the xanthene moiety of 2-COOH TM to obtain 2-COOH DCTM shifted the equilibrium so that the new derivative exists predominantly in the strongly fluorescent open form at physiological pH (pH 7.4). To demonstrate the practical utility of 2-COOH DCTM as a novel scaffold for red fluorescent probes, we employed it to develop a probe for β-galactosidase.

  5. A homogeneous and “off–on” fluorescence aptamer-based assay for chloramphenicol using vesicle quantum dot-gold colloid composite probes

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yang-Bao [State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Ren, Hong-Xia [Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); University of Chinese Academy of Sciences, Beijing 10049 (China); Gan, Ning, E-mail: ganning@nbu.edu.cn [State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Zhou, You [State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Cao, Yuting, E-mail: caoyuting@nbu.edu.cn [State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Li, Tianhua [State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Chen, Yinji [Faculty of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210000 (China)

    2016-07-27

    In this work, a novel homogeneous and signal “off–on” aptamer based fluorescence assay was successfully developed to detect chloramphenicol (CAP) residues in food based on the fluorescence resonance energy transfer (FRET). The vesicle nanotracer was prepared through labeling single stranded DNA binding protein (SSB) on limposome-CdSe/ZnS quantum dot (SSB/L-QD) complexes. It was worth mentioning that the signal tracer (SSB/L-QD) with vesicle shape, which was fabricated being encapsulated with a number of quantum dots and SSB. The nanotracer has excellent signal amplification effects. The vesicle composite probe was formed by combining aptamer labeled nano-gold (Au-Apt) and SSB/L-QD. Which based on SSB's specific affinity towards aptamer. This probe can't emit fluoresce which is in “off” state because the signal from SSB/L-QD as donor can be quenched by the Au-aptas acceptor. When CAP was added in the composite probe solution, the aptamer on the Au-Apt can be preferentially bounded with CAP then release from the composite probe, which can turn the “off” signal of SSB/L-QD tracer into “on” state. The assay indicates excellent linear response to CAP from 0.001 nM to 10 nM and detection limit down to 0.3 pM. The vesicle probes with size of 88 nm have strong signal amplification. Because a larger number of QDs can be labeled inside the double phosphorus lipid membrane. Besides, it was employed to detect CAP residues in the milk samples with results being agreed well with those from ELISA, verifying its accuracy and reliability. - Highlights: • Homogeneous and “off–on” fluorescence aptamer-based assay was developed to detect chloramphenicol (CAP) residues in food. • This probe was fabricated based on a vesicle QDs signal tracer (SSB/L-QD) combining with Au-Aptamer. • The detection mechanism was based on FRET with high specificity. • The results for CAP detection in the milk samples agreed well with those from ELISA, while

  6. Thioglycolic acid-capped CuInS{sub 2}/ZnS quantum dots as fluorescent probe for cobalt ion detection

    Energy Technology Data Exchange (ETDEWEB)

    Zi, Lili; Huang, Yu [Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, 4 Tongjia Lane, Gulou District, Nanjing 210009 (China); Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009 (China); Yan, Zhengyu, E-mail: yanzhengyujiang@126.com [Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, 4 Tongjia Lane, Gulou District, Nanjing 210009 (China); Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009 (China); Liao, Shenghua, E-mail: liaoshenghuacpu@hotmail.com [Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, 4 Tongjia Lane, Gulou District, Nanjing 210009 (China); Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009 (China)

    2014-04-15

    A novel sensing fluorescent probe based on the fluorescence quenching of the thioglycolic acid-capped CuInS{sub 2}/ZnS quantum dots (CuInS{sub 2}/ZnS/TGA QDs) was established for cobalt ions detection. The fluorescence quenching of CuInS{sub 2}/ZnS/TGA QDs was due to the increasing surface deficiency and the inner-filter effect, which were attributed to the reaction between Co{sup 2+} and sulfur bonds on the surface of QDs. The quenching curve could be fitted by a typical Stern–Volmer-type equation, with a linear relationship between the quenching efficiency and the concentration of cobalt ions in the range of 0.3012–90.36 μmol L{sup −1}. And the detection limit (S/N=3) for Co{sup 2+} was 0.16 μmol L{sup −1}. Therefore, the established probe provided a simple, rapid, cheap and sensitive method for Co{sup 2+} detection. In a word, this method can be used to detect Co{sup 2+} in the environment. -- Highlights: • The CuInS2/ZnS QDs were used for the first time as a fluorescent probe for Co{sup 2+} detection. • The dramatic color change could be observed when Co{sup 2+} was added into the QDs solution. • The quenching of QDs was due to the increasing surface deficiency and the inner-filter effect. • This rapid, cheap and sensitive method was applied to the detection of Co{sup 2+} in simulated water.

  7. L-cysteine-capped core/shell/shell quantum dot-graphene oxide nanocomposite fluorescence probe for polycyclic aromatic hydrocarbon detection.

    Science.gov (United States)

    Adegoke, Oluwasesan; Forbes, Patricia B C

    2016-01-01

    Environmental pollutants, such as the polycyclic aromatic hydrocarbons (PAHs), become widely distributed in the environment after emission from a range of sources, and they have potential biological effects, including toxicity and carcinogenity. In this work, we have demonstrated the analytical potential of a covalently linked L-cysteine-capped CdSeTe/ZnSe/ZnS core/shell/shell quantum dot (QD)-graphene oxide (GO) nanocomposite fluorescence probe to detect PAH compounds in aqueous solution. Water-soluble L-cysteine-capped CdSeTe/ZnSe/ZnS QDs were synthesized for the first time and were covalently bonded to GO. The fluorescence of the QD-GO nanocomposite was enhanced relative to the unconjugated QDs. Various techniques including TEM, SEM, HRSEM, XRD, Raman, FT-IR, UV/vis and fluorescence spectrophotometry were employed to characterize both the QDs and the QD-GO nanocomposite. Four commonly found priority PAH analytes namely; phenanthrene (Phe), anthracene (Ant), pyrene (Py) and naphthalene (Naph), were tested and it was found that each of the PAH analytes enhanced the fluorescence of the QD-GO probe. Phe was selected for further studies as the PL enhancement was significantly greater for this PAH. A limit of detection (LOD) of 0.19 µg/L was obtained for Phe under optimum conditions, whilst the LOD of Ant, Py and Naph were estimated to be ~0.26 µg/L. The fluorescence detection mechanism is proposed. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Development and cytotoxicity of Schiff base derivative as a fluorescence probe for the detection of L-Arginine

    Science.gov (United States)

    Shang, Xuefang; Li, Jie; Guo, Kerong; Ti, Tongyu; Wang, Tianyun; Zhang, Jinlian

    2017-04-01

    Inspired from biological counter parts, chemical modification of Schiff base derivatives with function groups may provide a highly efficient method to detect amino acids. Therefore, a fluorescent probe involving Schiff base and hydroxyl group has been designed and prepared, which showed high response and specificity for Arginine (Arg) among normal eighteen standard kinds of amino acids (Alanine, Valine, Leucine, Isoleucine, Methionine, Asparticacid, Glutamicacid, Arginine, Glycine, Serine, Threonine, Asparagine, Phenylalanine, Histidine, Tryptophan, Proline, Lysine, Glutamine, Tyrosine and Cysteine). Furthermore, theoretical investigation further illustrated the possible binding mode in the host-guest interaction and the roles of molecular frontier orbitals in molecular interplay. In addition, the synthesized fluorescent probe exhibited high binding ability for Arg and low cytotoxicity to MCF-7 cells over a concentration range of 0-200 μg mL-1 which can be also used as a biosensor for the Arg detection in vivo.

  9. Probing Contaminant-Induced Alterations in Chlorophyll Fluorescence by AC-Dielectrophoresis-Based 2D-Algal Array

    Directory of Open Access Journals (Sweden)

    Coralie Siebman

    2018-02-01

    Full Text Available The investigation of contaminant impact on algae requires rapid and reliable cell collection and optical detection. The capability of alternative current (AC dielectrophoresis (DEP collection of whole cell arrays with combined fluorescence microscopy detection to follow the alterations of chlorophyll fluorescence during environmental contaminant exposure was explored. The application of an AC-field of 100 V cm−1, 100 Hz for 30 min to capture and immobilize the cells of green alga Chlamydomonas reinhardtii in two-dimensional (2D arrays does not induce changes in chlorophyll fluorescence. The results demonstrate that DEP-based 2D-arrays allow non-invasive detection of chlorophyll fluorescence change upon exposure to high concentrations of copper oxide nanoparticles and ionic copper. These results were in agreement with data obtained by flow cytometry used as a comparative method. The tool was also applied to follow the effect of a number of ubiquitous contaminants such as inorganic mercury, methylmercury, and diuron. However, a statistically significant short-term effect was observed only for mercury. Overall, DEP-based 2D-arrays of algal cells with fluorescence detection appear to be suitable for stain-free probing the effects on the photosynthetic microorganisms in highly polluted environment.

  10. Observing Fluorescent Probes in Living Cells using a Low-Cost LED Flashlight Retrofitted to a Common Vintage Light Microscope

    Directory of Open Access Journals (Sweden)

    G. A. Babbitt

    2013-03-01

    Full Text Available While the application of molecular biological techniques based upon fluorescent probes has rapidly expanded over recent decades, the equipment cost of fluorescent microscopy has largely prevented its adoption in the college and high school classroom. We offer a simple solution to this problem by describing in detail how to build with simple tools, a fluorescent microscope using a common brand of colored LED flashlights and second-hand components of vintage Nikon microscopes. This extremely low cost solution is qualitatively compared to an expensive modern Zeiss system.

  11. Synthesis and spectral properties of novel chlorinated pH fluorescent probes

    International Nuclear Information System (INIS)

    Wu Xianglong; Jin Xilang; Wang Yunxia; Mei Qibing; Li Jianli; Shi Zhen

    2011-01-01

    Eight chlorinated fluoresceins have been synthesized by the reaction of chlorinated resorcinols with 4, 5, 6, 7-tetrachlorophthalic anhydride or 3, 6-dichloro-4-carboxyphthalic anhydride in the presence of methanesulfonic acid. The spectral properties of the chlorinated fluoresceins were studied. It was found that they have absorption and emission maxima at long wavelengths and high fluorescence quantum yields. Emission spectra of chlorinated fluoresceins shifted towards long wavelength with increase in chlorine. pH-dependent properties of chlorinated fluoresceins were studied in detail. These compounds showed a strongly pH-sensitive range of 3.0-7.0. These chlorinated fluoresceins will be used as pH probes for pH measurement of the cell because of the high quantum yield and strong pH-sensitivity. - Research highlights: → Eight chlorinated fluoresceins have been synthesized in the presence of methanesulfonic acid. → Emission spectra of these compounds shifted towards long wavelength with increase in chlorine. → Eight chlorinated fluoresceins showed a strongly pH-sensitive range of 3.0-7.0. → They have emission maxima at long wavelengths and high fluorescence quantum yields.

  12. Synthesis of water-soluble, ring-substituted squaraine dyes and their evaluation as fluorescent probes and labels

    Energy Technology Data Exchange (ETDEWEB)

    Tatarets, Anatoliy L. [SSI ' Institute for Single Crystals' of the National Academy of Sciences of Ukraine, 60 Lenin Ave., Kharkov 61001 (Ukraine); Fedyunyayeva, Irina A. [SSI ' Institute for Single Crystals' of the National Academy of Sciences of Ukraine, 60 Lenin Ave., Kharkov 61001 (Ukraine); Dyubko, Tatyana S. [SSI ' Institute for Single Crystals' of the National Academy of Sciences of Ukraine, 60 Lenin Ave., Kharkov 61001 (Ukraine); Povrozin, Yevgeniy A. [SSI ' Institute for Single Crystals' of the National Academy of Sciences of Ukraine, 60 Lenin Ave., Kharkov 61001 (Ukraine); Doroshenko, Andrey O. [Institute of Chemistry, V.N. Karazin National University, 4 Svobody Sq., Kharkov 61077 (Ukraine); Terpetschnig, Ewald A. [SETA BioMedicals, LLC, 2014 Silver Ct East, Urbana, IL 61801 (United States) and ISS, Inc., 1602 Newton Drive, Champaign, IL 61822 (United States)]. E-mail: ewaldte@juno.com; Patsenker, Leonid D. [SSI ' Institute for Single Crystals' of the National Academy of Sciences of Ukraine, 60 Lenin Ave., Kharkov 61001 (Ukraine); SETA BioMedicals, LLC, 2014 Silver Ct East, Urbana, IL 61801 (United States)

    2006-06-16

    A series of ring-substituted squaraines absorbing and emitting in the red and NIR spectral region was synthesized and their spectral and photophysical properties (quantum yields, fluorescence lifetimes) and photostabilities were measured and compared to Cy5, a commonly used fluorescent label. The absorption maxima in aqueous media were found to be between 628 and 667 nm and the emission maxima are between 642 and 685 nm. Squaraine dyes exhibit high extinction coefficients (163,000-265,000 M{sup -1} cm{sup -1}) and lower quantum yields (2-7%) in aqueous buffer but high quantum yields (up to 45%) and long fluorescence lifetimes (up to 3.3 ns) in presence of BSA. Dicyanomethylene- and thio-substituted squaraines exhibit an additional absorption around 400 nm with extinction coefficients between 21,500 and 44,500 M{sup -1} cm{sup -1}. These dyes are excitable not only with red but also with blue diode lasers or light emitting diodes. Due to the favourable spectral and photophysical properties these dyes can be used as fluorescent probes and labels for intensity- and fluorescence lifetime-based biomedical applications.

  13. Synthesis of water-soluble, ring-substituted squaraine dyes and their evaluation as fluorescent probes and labels

    International Nuclear Information System (INIS)

    Tatarets, Anatoliy L.; Fedyunyayeva, Irina A.; Dyubko, Tatyana S.; Povrozin, Yevgeniy A.; Doroshenko, Andrey O.; Terpetschnig, Ewald A.; Patsenker, Leonid D.

    2006-01-01

    A series of ring-substituted squaraines absorbing and emitting in the red and NIR spectral region was synthesized and their spectral and photophysical properties (quantum yields, fluorescence lifetimes) and photostabilities were measured and compared to Cy5, a commonly used fluorescent label. The absorption maxima in aqueous media were found to be between 628 and 667 nm and the emission maxima are between 642 and 685 nm. Squaraine dyes exhibit high extinction coefficients (163,000-265,000 M -1 cm -1 ) and lower quantum yields (2-7%) in aqueous buffer but high quantum yields (up to 45%) and long fluorescence lifetimes (up to 3.3 ns) in presence of BSA. Dicyanomethylene- and thio-substituted squaraines exhibit an additional absorption around 400 nm with extinction coefficients between 21,500 and 44,500 M -1 cm -1 . These dyes are excitable not only with red but also with blue diode lasers or light emitting diodes. Due to the favourable spectral and photophysical properties these dyes can be used as fluorescent probes and labels for intensity- and fluorescence lifetime-based biomedical applications

  14. Detection of malachite green in fish based on magnetic fluorescent probe of CdTe QDs/nano-Fe3O4@MIPs

    Science.gov (United States)

    Wu, Le; Lin, Zheng-Zhong; Zeng, Jun; Zhong, Hui-Ping; Chen, Xiao-Mei; Huang, Zhi-Yong

    2018-05-01

    A magnetic fluorescent probe of CdTe QDs/nano-Fe3O4@MIPs was prepared using CdTe QDs and Fe3O4 nanoparticles as co-nucleus and molecularly imprinted polymers (MIPs) as specific recognition sites based on a reverse microemulsion method. With the specific enrichment and magnetic separation properties, the probe of CdTe QDs/nano-Fe3O4@MIPs was used to detect malachite green (MG) in fish samples. The TEM analysis showed that the particles of CdTe QDs/nano-Fe3O4@MIPs were spherical with average diameter around 53 nm, and a core-shell structure was well-shaped with several Fe3O4 nanoparticles and CdTe QDs embedded in each of the microsphere. Quick separation of the probes from solutions could be realized with a magnet, indicating the excellent magnetic property of CdTe QDs/nano-Fe3O4@MIPs. The probe exhibited high specific adsorption towards MG and excellent fluorescence emission at λem 598 nm. The fluorescence of CdTe QDs/nano-Fe3O4@MIPs could be linearly quenched by MG at the concentrations from 0.025 to 1.5 μmol L-1. The detection limit was 0.014 μmol L-1. The average recovery of spiked MG in fish samples was 105.2%. The result demonstrated that the as-prepared CdTe QDs/nano-Fe3O4@MIPs could be used as a probe to the detection of trace MG in fish samples.

  15. Applications of fluorescence techniques to the study of uranium in homogeneous and heterogeneous environments: hydrolysis and photo-reduction reactions on titanium dioxide

    International Nuclear Information System (INIS)

    Eliet, Veronique

    1996-01-01

    This thesis describes the use of Time-Resolved Fluorescence to characterise the spectroscopy of hydroxo-complexes of hexavalent Uranium, and to study photochemical reactions involving these species at mineral/water interfaces. The instrumentation used comprised of either an excimer laser coupled to an optical multichannel analyser OMA or a Nd-YAG laser coupled to a stroboscopic photomultiplier. The hydrolysis of Uranium at a constant temperature of 25 deg. C, has been studied in the pH ranges 0-5 and 9-12. Deconvolution of spectra and fluorescence decay curves for Uranium yielded individual fluorescence spectra and decay times for uranyl UO 2 2+ and its hydroxo-complexes UO 2 OH + , (UO 2 )2(OH) 2 2+ , (UO 2 ) 3 (OH) 5 + et UO 2 (OH) 3 - . The comparison of fluorescence efficiencies for the various species showed that the complex (UO 2 )2(OH) 2 2+ is up to 85 times more fluorescent than uranyl, depending on the emission wavelength. Further, investigations of fluorescence decays as a function of temperature in the pH range 0-6, yielded activation energies for the various Uranium hydroxo species. The knowledge gained in homogeneous media served in the study of the photochemical behaviour of Uranium in suspensions of the semi-conductor mineral, TiO 2 . After UV-light absorption, charge carriers formed at the mineral surface were found to reduce hexavalent Uranium to the tetravalent oxidation state. Time-Resolved Fluorescence Spectroscopy has been used to monitor the kinetics of the oxidation state change. A reaction mechanism is proposed on the basis of results obtained by studying the kinetics of the process at different values of pH The role of humic substances on the heterogeneous redox reaction has also been examined. (author) [fr

  16. Dansyl-8-aminoquinoline as a sensitive pH fluorescent probe with dual-responsive ranges in aqueous solutions.

    Science.gov (United States)

    Zhang, Min; Zheng, Shuyu; Ma, Liguo; Zhao, Meili; Deng, Lengfang; Yang, Liting; Ma, Li-Jun

    2014-04-24

    A sensitive pH fluorescent probe based on dansyl group, dansyl-8-aminoquinoline (DAQ), has been synthesized. The probe showed dual-responsive ranges to pH changes, one range from 2.00 to 7.95 and another one from 7.95 to 10.87 in aqueous solution, as it showed pKa values of 5.73 and 8.56 under acid and basic conditions, respectively. Furthermore, the pH response mechanism of the probe was explored successfully by using NMR spectra. The results indicated that the responses of DAQ to pH changes should attribute to the protonation of the nitrogen atom in the dimethylamino group and deprotonation of sulfonamide group. Copyright © 2014. Published by Elsevier B.V.

  17. Spectrofluorimetric determination of trace amount of coenzyme II using ciprofloxacin-terbium complex as a fluorescent probe

    International Nuclear Information System (INIS)

    Bian Weiwei; Wang Yusheng; Zhu Xiaojing; Jiang Chongqiu

    2006-01-01

    A new spectrofluorimetric method was developed for the determination of trace amount of nicotinamide adenine dinucleotide phosphate (NADP). Using terbium ion (Tb 3+ )-ciprofloxacin (CIP) complex as a fluorescent probe, in the buffer solution of pH=9.00, NADP can remarkably enhance the fluorescence intensity of the Tb 3+ -CIP complex at λ=545nm and the enhanced fluorescence intensity of Tb 3+ ion is in proportion to the concentration of NADP. Optimum conditions for the determination of NADP were also investigated. The dynamic range for the determination of NADP is 4.9x10 -7 -3.7x10 -6 molL -1 with detection limit of 1.3x10 -7 molL -1 . This method is simple, practical and relatively free interference from coexisting substances and can be successfully applied to determination of NADP in synthetic water samples. Moreover, the enhancement mechanisms of the fluorescence intensity in the Tb 3+ -CIP system and the Tb 3+ -CIP-NADP system have been also discussed

  18. Whole-slide imaging is a robust alternative to traditional fluorescent microscopy for fluorescence in situ hybridization imaging using break-apart DNA probes.

    Science.gov (United States)

    Laurent, Camille; Guérin, Maxime; Frenois, François-Xavier; Thuries, Valérie; Jalabert, Laurence; Brousset, Pierre; Valmary-Degano, Séverine

    2013-08-01

    Fluorescence in situ hybridization is an indispensable technique used in routine pathology and for theranostic purposes. Because fluorescence in situ hybridization techniques require sophisticated microscopic workstations and long procedures of image acquisition with sometimes subjective and poorly reproducible results, we decided to test a whole-slide imaging system as an alternative approach. In this study, we used the latest generation of Pannoramic 250 Flash digital microscopes (P250 Flash digital microscopes; 3DHISTECH, Budapest, Hungary) to digitize fluorescence in situ hybridization slides of diffuse large B cells lymphoma cases for detecting MYC rearrangement. The P250 Flash digital microscope was found to be precise with better definition of split signals in cells containing MYC rearrangement with fewer truncated signals as compared to traditional fluorescence microscopy. This digital technique is easier thanks to the preview function, which allows almost immediate identification of the tumor area, and the panning and zooming functionalities as well as a shorter acquisition time. Moreover, fluorescence in situ hybridization analyses using the digital technique appeared to be more reproducible between pathologists. Finally, the digital technique also allowed prolonged conservation of photos. In conclusion, whole-slide imaging technologies represent rapid, robust, and highly sensitive methods for interpreting fluorescence in situ hybridization slides with break-apart probes. In addition, these techniques offer an easier way to interpret the signals and allow definitive storage of the images for pathology expert networks or e-learning databases. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Development of dual-emission ratiometric probe-based on fluorescent silica nanoparticle and CdTe quantum dots for determination of glucose in beverages and human body fluids.

    Science.gov (United States)

    Zhai, Hong; Feng, Ting; Dong, Lingyu; Wang, Liyun; Wang, Xiangfeng; Liu, Hailing; Liu, Yuan; Chen, Luan; Xie, MengXia

    2016-08-01

    A novel dual emission ratiometric fluorescence probe for determination of glucose has been developed. The reference dye fluorescence isothiocyanate (FITC) has been encapsulated in the silica nanoparticles and then the red emission CdTe QDs were grafted on the surface of the silica particles to obtain the fluorescence probe. With glucose and dopamine as substrates, the glucose level was proportional to the fluorescence ratio change of above probe caused by dopamine oxidation, which was produced via bienzyme catalysis (glucose oxidase and horseradish peroxidase). The established approach was sensitive and selective, and has been applied to determine the glucose in beverage, urine and serum samples. The average recoveries of the glucose at various spiking levels ranged from 95.5% to 108.9% with relative standard deviations from 1.5% to 4.3%. The results provided a clue to develop sensors for rapid determination of the target analytes from complex matrices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Fluorescence probes for real-time remote cyanobacteria monitoring: A review of challenges and opportunities.

    Science.gov (United States)

    Bertone, Edoardo; Burford, Michele A; Hamilton, David P

    2018-05-10

    In recent years, there has been a widespread deployment of submersible fluorescence sensors by water utilities. They are used to measure diagnostic pigments and estimate algae and cyanobacteria abundance in near real-time. Despite being useful and promising tools, operators and decision-makers often rely on the data provided by these probes without a full understanding of their limitations. As a result, this may lead to wrong and misleading estimations which, in turn, means that researchers and technicians distrust these sensors. In this review paper, we list and discuss the main limitations of such probes, as well as identifying the effect of environmental factors on pigment production, and in turn, the conversion to cyanobacteria abundance estimation. We argue that a comprehensive calibration approach to obtain reliable readings goes well beyond manufacturers' recommendations, and should involve several context-specific experiments. We also believe that if such a comprehensive set of experiments is conducted, the data collected from fluorescence sensors could be used in artificial intelligence modelling approaches to reliably predict, in near real-time, the presence and abundance of different cyanobacteria species. This would have significant benefits for both drinking and recreational water management, given that cyanobacterial toxicity, and taste and odour compounds production, are species-dependent. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. FLUORESCENCE PROBING OF THE FORMATION OF HYDROPHOBIC MICRODOMAINS BY CROSS-LINKED POLY(ALKYLMETHYLDIALLYLAMMONIUM BROMIDES) IN AQUEOUS-SOLUTION

    NARCIS (Netherlands)

    WANG, GJ; ENGBERTS, J B F N

    Pyrene has been used as a fluorescence probe to investigate the conformational behavior of cross-linked poly(alkylmethyldiallylammonium bromides) in aqueous solutions. Binding of pyrene to hydrophobic microdomains, formed by the polysoaps, is reflected by a change in the ratio I-1/I-3 of the

  2. Interface-Targeting Strategy Enables Two-Photon Fluorescent Lipid Droplet Probes for High-Fidelity Imaging of Turbid Tissues and Detecting Fatty Liver.

    Science.gov (United States)

    Guo, Lifang; Tian, Minggang; Feng, Ruiqing; Zhang, Ge; Zhang, Ruoyao; Li, Xuechen; Liu, Zhiqiang; He, Xiuquan; Sun, Jing Zhi; Yu, Xiaoqiang

    2018-04-04

    Lipid droplets (LDs) with unique interfacial architecture not only play crucial roles in protecting a cell from lipotoxicity and lipoapoptosis but also closely relate with many diseases such as fatty liver and diabetes. Thus, as one of the important applied biomaterials, fluorescent probes with ultrahigh selectivity for in situ and high-fidelity imaging of LDs in living cells and tissues are critical to elucidate relevant physiological and pathological events as well as detect related diseases. However, available probes only utilizing LDs' waterless neutral cores but ignoring the unique phospholipid monolayer interfaces exhibit low selectivity. They cannot differentiate neutral cores of LDs from intracellular other lipophilic microenvironments, which results in extensively cloud-like background noise and severely limited their bioapplications. Herein, to design LD probes with ultrahigh selectivity, the exceptional interfacial architecture of LDs is considered adequately and thus an interface-targeting strategy is proposed for the first time. According to the novel strategy, we have developed two amphipathic fluorescent probes (N-Cy and N-Py) by introducing different cations into a lipophilic fluorophore (nitrobenzoxadiazole (NBD)). Consequently, their cationic moiety precisely locates the interfaces through electrostatic interaction and simultaneously NBD entirely embeds into the waterless core via hydrophobic interaction. Thus, high-fidelity and background-free fluorescence imaging of LDs are expectably realized in living cells in situ. Moreover, LDs in turbid tissues like skeletal muscle slices have been clearly imaged (up to 82 μm depth) by a two-photon microscope. Importantly, using N-Cy, we not only intuitively monitored the variations of LDs in number, size, and morphology but also clearly revealed their abnormity in hepatic tissues resulting from fatty liver. Therefore, these unique probes provide excellent imaging tools for elucidating LD

  3. Study of probe-sample distance for biomedical spectra measurement

    Directory of Open Access Journals (Sweden)

    Li Lei

    2011-11-01

    Full Text Available Abstract Background Fiber-based optical spectroscopy has been widely used for biomedical applications. However, the effect of probe-sample distance on the collection efficiency has not been well investigated. Method In this paper, we presented a theoretical model to maximize the illumination and collection efficiency in designing fiber optic probes for biomedical spectra measurement. This model was in general applicable to probes with single or multiple fibers at an arbitrary incident angle. In order to demonstrate the theory, a fluorescence spectrometer was used to measure the fluorescence of human finger skin at various probe-sample distances. The fluorescence spectrum and the total fluorescence intensity were recorded. Results The theoretical results show that for single fiber probes, contact measurement always provides the best results. While for multi-fiber probes, there is an optimal probe distance. When a 400- μm excitation fiber is used to deliver the light to the skin and another six 400- μm fibers surrounding the excitation fiber are used to collect the fluorescence signal, the experimental results show that human finger skin has very strong fluorescence between 475 nm and 700 nm under 450 nm excitation. The fluorescence intensity is heavily dependent on the probe-sample distance and there is an optimal probe distance. Conclusions We investigated a number of probe-sample configurations and found that contact measurement could be the primary choice for single-fiber probes, but was very inefficient for multi-fiber probes. There was an optimal probe-sample distance for multi-fiber probes. By carefully choosing the probe-sample distance, the collection efficiency could be enhanced by 5-10 times. Our experiments demonstrated that the experimental results of the probe-sample distance dependence of collection efficiency in multi-fiber probes were in general agreement with our theory.

  4. Challenges for Super-Resolution Localization Microscopy and Biomolecular Fluorescent Nano-Probing in Cancer Research

    Science.gov (United States)

    Ilić, Nataša; Pilarczyk, Götz; Lee, Jin-Ho; Logeswaran, Abiramy; Borroni, Aurora Paola; Krufczik, Matthias; Theda, Franziska; Waltrich, Nadine; Bestvater, Felix; Hildenbrand, Georg; Cremer, Christoph; Blank, Michael

    2017-01-01

    Understanding molecular interactions and regulatory mechanisms in tumor initiation, progression, and treatment response are key requirements towards advanced cancer diagnosis and novel treatment procedures in personalized medicine. Beyond decoding the gene expression, malfunctioning and cancer-related epigenetic pathways, investigations of the spatial receptor arrangements in membranes and genome organization in cell nuclei, on the nano-scale, contribute to elucidating complex molecular mechanisms in cells and tissues. By these means, the correlation between cell function and spatial organization of molecules or molecular complexes can be studied, with respect to carcinogenesis, tumor sensitivity or tumor resistance to anticancer therapies, like radiation or antibody treatment. Here, we present several new applications for bio-molecular nano-probes and super-resolution, laser fluorescence localization microscopy and their potential in life sciences, especially in biomedical and cancer research. By means of a tool-box of fluorescent antibodies, green fluorescent protein (GFP) tagging, or specific oligonucleotides, we present tumor relevant re-arrangements of Erb-receptors in membranes, spatial organization of Smad specific ubiquitin protein ligase 2 (Smurf2) in the cytosol, tumor cell characteristic heterochromatin organization, and molecular re-arrangements induced by radiation or antibody treatment. The main purpose of this article is to demonstrate how nano-scaled distance measurements between bio-molecules, tagged by appropriate nano-probes, can be applied to elucidate structures and conformations of molecular complexes which are characteristic of tumorigenesis and treatment responses. These applications open new avenues towards a better interpretation of the spatial organization and treatment responses of functionally relevant molecules, at the single cell level, in normal and cancer cells, offering new potentials for individualized medicine. PMID:28956810

  5. Challenges for Super-Resolution Localization Microscopy and Biomolecular Fluorescent Nano-Probing in Cancer Research

    Directory of Open Access Journals (Sweden)

    Michael Hausmann

    2017-09-01

    Full Text Available Understanding molecular interactions and regulatory mechanisms in tumor initiation, progression, and treatment response are key requirements towards advanced cancer diagnosis and novel treatment procedures in personalized medicine. Beyond decoding the gene expression, malfunctioning and cancer-related epigenetic pathways, investigations of the spatial receptor arrangements in membranes and genome organization in cell nuclei, on the nano-scale, contribute to elucidating complex molecular mechanisms in cells and tissues. By these means, the correlation between cell function and spatial organization of molecules or molecular complexes can be studied, with respect to carcinogenesis, tumor sensitivity or tumor resistance to anticancer therapies, like radiation or antibody treatment. Here, we present several new applications for bio-molecular nano-probes and super-resolution, laser fluorescence localization microscopy and their potential in life sciences, especially in biomedical and cancer research. By means of a tool-box of fluorescent antibodies, green fluorescent protein (GFP tagging, or specific oligonucleotides, we present tumor relevant re-arrangements of Erb-receptors in membranes, spatial organization of Smad specific ubiquitin protein ligase 2 (Smurf2 in the cytosol, tumor cell characteristic heterochromatin organization, and molecular re-arrangements induced by radiation or antibody treatment. The main purpose of this article is to demonstrate how nano-scaled distance measurements between bio-molecules, tagged by appropriate nano-probes, can be applied to elucidate structures and conformations of molecular complexes which are characteristic of tumorigenesis and treatment responses. These applications open new avenues towards a better interpretation of the spatial organization and treatment responses of functionally relevant molecules, at the single cell level, in normal and cancer cells, offering new potentials for individualized medicine.

  6. New fluorescent probes of the hydroxyl radical: characterisation and modelization of the reactivity of coumarin derivatives with HO

    International Nuclear Information System (INIS)

    Louit, G.

    2005-10-01

    The hydroxyl radical is involved in a wide range of different fields, from oxidative stress to atmospheric chemistry. In addition to the study of oxidative damage in biological media, the hydroxyl radical detection allows to perform a dosimetry when it is produced by ionising radiation. The aims of this work have been double: - to improve the detection of the hydroxyl radical by the design of new probes - to improve knowledge on the reactive pathways in which the hydroxyl radical is involved. We have studied the coumarin molecule, as well as 6 derivatives that we have synthesised, as fluorescent probes of the hydroxyl radical. Firstly, fluorescence spectroscopy and HPLC chromatography have allowed the evaluation of the sensibility and selectivity of detection of the probes. Consequently to this study, two applications have been developed, concerning the determination of rate constants by competition kinetics and bidimensional dosimetry. Secondly, we have studied the reactivity of the hydroxyl radical through the regioselectivity of its addition on the aromatic cycle. This problem was addressed by the combined use of experimental methods such as time resolved kinetics and HPLC along with interpretation from classical and ab initio modelization. (author)

  7. Identification of Cannabis sativa L. using the 1-kbTHCA synthase-fluorescence in situ hybridization probe.

    Science.gov (United States)

    Jeangkhwoa, Pattraporn; Bandhaya, Achirapa; Umpunjun, Puangpaka; Chuenboonngarm, Ngarmnij; Panvisavas, Nathinee

    2017-03-01

    This study reports a successful application of fluorescence in situ hybridization (FISH) technique in the identification of Cannabis sativa L. cells recovered from fresh and dried powdered plant materials. Two biotin-16-dUTP-labeled FISH probes were designed from the Cannabis-specific tetrahydrocannabinolic acid synthase (THCAS) gene and the ITS region of the 45S rRNA gene. Specificity of probe-target hybridization was tested against the target and 4 non-target plant species, i.e., Humulus lupulus, Mitragyna speciosa, Papaver sp., and Nicotiana tabacum. The 1-kb THCA synthase hybridization probe gave Cannabis-specific hybridization signals, unlike the 700-bp Cannabis-ITS hybridization probe. Probe-target hybridization was also confirmed against 20 individual Cannabis plant samples. The 1-kb THCA synthase and 700-bp Cannabis-ITS hybridization probes clearly showed 2 hybridization signals per cell with reproducibility. The 1-kb THCA synthase probe did not give any FISH signal when tested against H. lupulus, its closely related member of the Canabaceae family. It was also showed that 1-kb THCA synthase FISH probe can be applied to identify small amount of dried powdered Cannabis material with an addition of rehydration step prior to the experimental process. This study provided an alternative identification method for Cannabis trace. Copyright © 2016. Published by Elsevier B.V.

  8. Probing GFP-actin diffusion in living cells using fluorescence correlation spectroscopy

    International Nuclear Information System (INIS)

    Engelke, Hanna; Heinrich, Doris; Rädler, Joachim O.

    2010-01-01

    The cytoskeleton of eukaryotic cells is continuously remodeled by polymerization and depolymerization of actin. Consequently, the relative content of polymerized filamentous actin (F-actin) and monomeric globular actin (G-actin) is subject to temporal and spatial fluctuations. Since fluorescence correlation spectroscopy (FCS) can measure the diffusion of fluorescently labeled actin it seems likely that FCS allows us to determine the dynamics and hence indirectly the structural properties of the cytoskeleton components with high spatial resolution. To this end we investigate the FCS signal of GFP-actin in living Dictyostelium discoideum cells and explore the inherent spatial and temporal signatures of the actin cytoskeleton. Using the free green fluorescent protein (GFP) as a reference, we find that actin diffusion inside cells is dominated by G-actin and slower than diffusion in diluted cell extract. The FCS signal in the dense cortical F-actin network near the cell membrane is probed using the cytoskeleton protein LIM and is found to be slower than cytosolic G-actin diffusion. Furthermore, we show that polymerization of the cytoskeleton induced by Jasplakinolide leads to a substantial decrease of G-actin diffusion. Pronounced fluctuations in the distribution of the FCS correlation curves can be induced by latrunculin, which is known to induce actin waves. Our work suggests that the FCS signal of GFP-actin in combination with scanning or spatial correlation techniques yield valuable information about the local dynamics and concomitant cytoskeletal properties

  9. Fluorescent Probes and Fluorescence (Microscopy Techniques — Illuminating Biological and Biomedical Research

    Directory of Open Access Journals (Sweden)

    Gregor P. C. Drummen

    2012-11-01

    Full Text Available Fluorescence, the absorption and re-emission of photons with longer wavelengths, is one of those amazing phenomena of Nature. Its discovery and utilization had, and still has, a major impact on biological and biomedical research, since it enables researchers not just to visualize normal physiological processes with high temporal and spatial resolution, to detect multiple signals concomitantly, to track single molecules in vivo, to replace radioactive assays when possible, but also to shed light on many pathobiological processes underpinning disease states, which would otherwise not be possible. Compounds that exhibit fluorescence are commonly called fluorochromes or fluorophores and one of these fluorescent molecules in particular has significantly enabled life science research to gain new insights in virtually all its sub-disciplines: Green Fluorescent Protein. Because fluorescent proteins are synthesized in vivo, integration of fluorescent detection methods into the biological system via genetic techniques now became feasible. Currently fluorescent proteins are available that virtually span the whole electromagnetic spectrum. Concomitantly, fluorescence imaging techniques were developed, and often progress in one field fueled innovation in the other. Impressively, the properties of fluorescence were utilized to develop new assays and imaging modalities, ranging from energy transfer to image molecular interactions to imaging beyond the diffraction limit with super-resolution microscopy. Here, an overview is provided of recent developments in both fluorescence imaging and fluorochrome engineering, which together constitute the “fluorescence toolbox” in life science research.

  10. Development of a 16S rRNA-targeted fluorescence in situ hybridization probe for quantification of the ammonia-oxidizer Nitrosotalea devanaterra and its relatives.

    Science.gov (United States)

    Restrepo-Ortiz, C X; Merbt, S N; Barrero-Canossa, J; Fuchs, B M; Casamayor, E O

    2018-04-28

    The Thaumarchaeota SAGMCG-1 group and, in particular, members of the genus Nitrosotalea have high occurrence in acidic soils, the rhizosphere, groundwater and oligotrophic lakes, and play a potential role in nitrogen cycling. In this study, the specific oligonucleotide fluorescence in situ hybridization probe SAG357 was designed for this Thaumarchaeota group based on the available 16S rRNA gene sequences in databases, and included the ammonia-oxidizing species Nitrosotalea devanaterra. Cell permeabilization for catalyzed reporter deposition fluorescence in situ detection and the hybridization conditions were optimized on enrichment cultures of the target species N. devanaterra, as well as the non-target ammonia-oxidizing archaeon Nitrosopumilus maritimus. Probe specificity was improved with a competitor oligonucleotide, and fluorescence intensity and cell visualization were enhanced by the design and application of two adjacent helpers. Probe performance was tested in soil samples along a pH gradient, and counting results matched the expected in situ distributions. Probe SAG357 and the CARD-FISH protocol developed in the present study will help to improve the current understanding of the ecology and physiology of N. devanaterra and its relatives in natural environments. Copyright © 2018 Elsevier GmbH. All rights reserved.

  11. [1,10]Phenanthroline based cyanine dyes as fluorescent probes for ribonucleic acids in live cells

    Science.gov (United States)

    Kovalska, Vladyslava; Kuperman, Marina; Varzatskii, Oleg; Kryvorotenko, Dmytro; Kinski, Elisa; Schikora, Margot; Janko, Christina; Alexiou, Christoph; Yarmoluk, Sergiy; Mokhir, Andriy

    2017-12-01

    A series of monomethine, trimethine- and styrylcyanine dyes based on a [1,10]phenanthroline moiety was synthesized, characterized and investigated as potential fluorescent probes for nucleic acids in cell free settings and in cells. The dyes were found to be weakly fluorescent in the unbound state, whereas upon the binding to dsDNA or RNA their emission intensity raised up to 50 times (for monomethine benzothiazole derivative FT1 complexed with RNA). The strongest fluorescence intensity in assemblies with dsDNA and RNA was observed for the trimethine benzothiazole derivative FT4. The quantum yield of FT4 fluorescence in its complex with dsDNA was found to be 1.5% and the binding constant (K b) was estimated to be 7.9 × 104 M-1 that is a typical value for intercalating molecules. The FT4 dye was found to be cell membrane permeable. It stains RNA rich components—the nucleoli and most probably the cytoplasmic RNA. FT4 bound to RNAs delivers a very strong fluorescence signal, which makes this easily accessible dye a potentially useful alternative to known RNA stains, e.g. expensive SYTO® 83. The advantage of FT4 is its easy synthetic access including no chromatographic purification steps, which will be reflected in its substantially lower price.

  12. Metal-organic framework based highly selective fluorescence turn-on probe for hydrogen sulphide

    Science.gov (United States)

    Nagarkar, Sanjog S.; Saha, Tanmoy; Desai, Aamod V.; Talukdar, Pinaki; Ghosh, Sujit K.

    2014-11-01

    Hydrogen sulphide (H2S) is known to play a vital role in human physiology and pathology which stimulated interest in understanding complex behaviour of H2S. Discerning the pathways of H2S production and its mode of action is still a challenge owing to its volatile and reactive nature. Herein we report azide functionalized metal-organic framework (MOF) as a selective turn-on fluorescent probe for H2S detection. The MOF shows highly selective and fast response towards H2S even in presence of other relevant biomolecules. Low cytotoxicity and H2S detection in live cells, demonstrate the potential of MOF towards monitoring H2S chemistry in biological system. To the best of our knowledge this is the first example of MOF that exhibit fast and highly selective fluorescence turn-on response towards H2S under physiological conditions.

  13. Pentamethinium fluorescent probes: The impact of molecular structure on photophysical properties and subcellular localization

    Czech Academy of Sciences Publication Activity Database

    Bříza, T.; Rimpelová, S.; Králová, Jarmila; Záruba, K.; Kejík, Z.; Ruml, T.; Martásek, P.; Král, V.

    2014-01-01

    Roč. 107, August 2014 (2014), s. 51-59 ISSN 0143-7208 R&D Projects: GA AV ČR KAN200100801; GA ČR(CZ) GAP303/11/1291; GA MŠk(CZ) CZ.01.05/2.1.00/01.00.30; GA MŠk(CZ) CZ.1.07/2.300/30.0060 Institutional support: RVO:68378050 Keywords : Pentamethinium salts * Fluorescent probes * Mitochondria * Cardiolipin Photostability * Organelle imaging Subject RIV: CE - Biochemistry Impact factor: 3.966, year: 2014

  14. Hydrophobic analogues of rhodamine B and rhodamine 101: potent fluorescent probes of mitochondria in living C. elegans

    Directory of Open Access Journals (Sweden)

    Laurie F. Mottram

    2012-12-01

    Full Text Available Mitochondria undergo dynamic fusion and fission events that affect the structure and function of these critical energy-producing cellular organelles. Defects in these dynamic processes have been implicated in a wide range of human diseases including ischemia, neurodegeneration, metabolic disease, and cancer. To provide new tools for imaging of mitochondria in vivo, we synthesized novel hydrophobic analogues of the red fluorescent dyes rhodamine B and rhodamine 101 that replace the carboxylate with a methyl group. Compared to the parent compounds, methyl analogues termed HRB and HR101 exhibit slightly red-shifted absorbance and emission spectra (5–9 nm, modest reductions in molar extinction coefficent and quantum yield, and enhanced partitioning into octanol compared with aqueous buffer of 10-fold or more. Comparison of living C. elegans (nematode roundworm animals treated with the classic fluorescent mitochondrial stains rhodamine 123, rhodamine 6G, and rhodamine B, as well as the structurally related fluorophores rhodamine 101, and basic violet 11, revealed that HRB and HR101 are the most potent mitochondrial probes, enabling imaging of mitochondrial motility, fusion, and fission in the germline and other tissues by confocal laser scanning microscopy after treatment for 2 h at concentrations as low as 100 picomolar. Because transgenes are poorly expressed in the germline of these animals, these small molecules represent superior tools for labeling dynamic mitochondria in this tissue compared with the expression of mitochondria-targeted fluorescent proteins. The high bioavailabilty of these novel fluorescent probes may facilitate the identification of agents and factors that affect diverse aspects of mitochondrial biology in vivo.

  15. A novel single fluorophore-labeled double-stranded oligonucleotide probe for fluorescence-enhanced nucleic acid detection based on the inherent quenching ability of deoxyguanosine bases and competitive strand-displacement reaction.

    Science.gov (United States)

    Zhang, Yingwei; Tian, Jingqi; Li, Hailong; Wang, Lei; Sun, Xuping

    2012-01-01

    We develop a novel single fluorophore-labeled double-stranded oligonucleotide (OND) probe for rapid, nanostructure-free, fluorescence-enhanced nucleic acid detection for the first time. We further demonstrate such probe is able to well discriminate single-base mutation in nucleic acid. The design takes advantage of an inherent quenching ability of guanine bases. The short strand of the probe is designed with an end-labeled fluorophore that is placed adjacent to two guanines as the quencher located on the long opposite strand, resulting in great quenching of dye fluorescence. In the presence of a target complementary to the long strand of the probe, a competitive strand-displacement reaction occurs and the long strand forms a more stable duplex with the target, resulting in the two strands of the probe being separated from each other. As a consequence of this displacement, the fluorophore and the quencher are no longer in close proximity and dye fluorescence increases, signaling the presence of target.

  16. A BODIPY-Based Fluorescent Probe to Visually Detect Phosgene: Toward the Development of a Handheld Phosgene Detector.

    Science.gov (United States)

    Sayar, Melike; Karakuş, Erman; Güner, Tuğrul; Yildiz, Busra; Yildiz, Umit Hakan; Emrullahoğlu, Mustafa

    2018-03-02

    A boron-dipyrromethene (BODIPY)-based fluorescent probe with a phosgene-specific reactive motif shows remarkable selectivity toward phosgene, in the presence of which the nonfluorescent dye rapidly transforms into a new structure and induces a fluorescent response clearly observable to the naked eye under ultraviolet light. Given that dynamic, a prototypical handheld phosgene detector with a promising sensing capability that expedites the detection of gaseous phosgene without sophisticated instrumentation was developed. The proposed method using the handheld detector involves a rapid response period suitable for issuing early warnings during emergency situations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The Effects of Heteroatoms Si and S on Tuning the Optical Properties of Rhodamine- and Fluorescein-Based Fluorescence Probes: A Theoretical Analysis.

    Science.gov (United States)

    Zhou, Panwang; Ning, Cai; Alsaedi, Ahmed; Han, Keli

    2016-10-05

    The effects of the incorporated heteroatoms Si and S on tuning the optical properties of rhodamine- and fluorescein-based fluorescence probes is investigated using DFT and time-dependent DFT with four different functionals. As previously proposed, the large redshift (90 nm) produced by a Si atom in both the absorption and emission spectra can be attributed to the σ*-π* conjugation between the σ* orbital of the Si atom and the π* orbital of the adjacent carbon atoms. However, the presence of a Si atom does not alter the fluorescence quenching mechanism of the nonfluorescent forms of the investigated compounds. For the first time, these theoretical results indicate that the n orbital of the S atom plays an important role in determining the optical properties of the nonfluorescent form of rhodamine-based fluorescence probes. It alters the fluorescence quenching mechanism by lowering the energy of the dark nπ* state, which is due to breakage of the C10-S52 bond upon photoexcitation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Kinetics of intercalation of fluorescent probes in magnesium–aluminium layered double hydroxide within a multiscale reaction–diffusion framework

    Science.gov (United States)

    Saliba, Daniel

    2016-01-01

    We report the synthesis of magnesium–aluminium layered double hydroxide (LDH) using a reaction–diffusion framework (RDF) that exploits the multiscale coupling of molecular diffusion with chemical reactions, nucleation and growth of crystals. In an RDF, the hydroxide anions are allowed to diffuse into an organic gel matrix containing the salt mixture needed for the precipitation of the LDH. The chemical structure and composition of the synthesized magnesium–aluminium LDHs are determined using powder X-ray diffraction (PXRD), thermo-gravimetric analysis, differential scanning calorimetry, solid-state nuclear magnetic resonance (SSNMR), Fourier transform infrared and energy dispersive X-ray spectroscopy. This novel technique also allows the investigation of the mechanism of intercalation of some fluorescent probes, such as the neutral three-dimensional rhodamine B (RhB) and the negatively charged two-dimensional 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS), using in situ steady-state fluorescence spectroscopy. The incorporation of these organic dyes inside the interlayer region of the LDH is confirmed via fluorescence microscopy, solid-state lifetime, SSNMR and PXRD. The activation energies of intercalation of the corresponding molecules (RhB and HPTS) are computed and exhibit dependence on the geometry of the involved probe (two or three dimensions), the charge of the fluorescent molecule (anionic, cationic or neutral) and the cationic ratio of the corresponding LDH. This article is part of the themed issue ‘Multiscale modelling at the physics–chemistry–biology interface’. PMID:27698034

  19. Kinetics of intercalation of fluorescent probes in magnesium-aluminium layered double hydroxide within a multiscale reaction-diffusion framework

    Science.gov (United States)

    Saliba, Daniel; Al-Ghoul, Mazen

    2016-11-01

    We report the synthesis of magnesium-aluminium layered double hydroxide (LDH) using a reaction-diffusion framework (RDF) that exploits the multiscale coupling of molecular diffusion with chemical reactions, nucleation and growth of crystals. In an RDF, the hydroxide anions are allowed to diffuse into an organic gel matrix containing the salt mixture needed for the precipitation of the LDH. The chemical structure and composition of the synthesized magnesium-aluminium LDHs are determined using powder X-ray diffraction (PXRD), thermo-gravimetric analysis, differential scanning calorimetry, solid-state nuclear magnetic resonance (SSNMR), Fourier transform infrared and energy dispersive X-ray spectroscopy. This novel technique also allows the investigation of the mechanism of intercalation of some fluorescent probes, such as the neutral three-dimensional rhodamine B (RhB) and the negatively charged two-dimensional 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS), using in situ steady-state fluorescence spectroscopy. The incorporation of these organic dyes inside the interlayer region of the LDH is confirmed via fluorescence microscopy, solid-state lifetime, SSNMR and PXRD. The activation energies of intercalation of the corresponding molecules (RhB and HPTS) are computed and exhibit dependence on the geometry of the involved probe (two or three dimensions), the charge of the fluorescent molecule (anionic, cationic or neutral) and the cationic ratio of the corresponding LDH. This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.

  20. New concepts of fluorescent probes for specific detection of DNA sequences: bis-modified oligonucleotides in excimer and exciplex detection.

    Science.gov (United States)

    Gbaj, A; Bichenkova, Ev; Walsh, L; Savage, He; Sardarian, Ar; Etchells, Ll; Gulati, A; Hawisa, S; Douglas, Kt

    2009-12-01

    The detection of single base mismatches in DNA is important for diagnostics, treatment of genetic diseases, and identification of single nucleotide polymorphisms. Highly sensitive, specific assays are needed to investigate genetic samples from patients. The use of a simple fluorescent nucleoside analogue in detection of DNA sequence and point mutations by hybridisation in solution is described in this study. The 5'-bispyrene and 3'-naphthalene oligonucleotide probes form an exciplex on hybridisation to target in water and the 5'-bispyrene oligonucleotide alone is an adequate probe to determine concentration of target present. It was also indicated that this system has a potential to identify mismatches and insertions. The aim of this work was to investigate experimental structures and conditions that permit strong exciplex emission for nucleic acid detectors, and show how such exciplexes can register the presence of mismatches as required in SNP analysis. This study revealed that the hybridisation of 5'-bispyrenyl fluorophore to a DNA target results in formation of a fluorescent probe with high signal intensity change and specificity for detecting a complementary target in a homogeneous system. Detection of SNP mutations using this split-probe system is a highly specific, simple, and accessible method to meet the rigorous requirements of pharmacogenomic studies. Thus, it is possible for the system to act as SNP detectors and it shows promise for future applications in genetic testing.

  1. Fluorescent probes as a tool for labelling and tracking the amphibian chytrid fungus Batrachochytrium dendrobatidis.

    Science.gov (United States)

    Herbert, Sarah M; Leung, Tommy L F; Bishop, Phillip J

    2011-09-09

    The dissemination of the virulent pathogen Batrachochytrium dendrobatidis (Bd) has contributed to the decline and extinction of many amphibian species worldwide. Several different strains have been identified, some of which are sympatric. Interactions between co-infecting strains of a pathogen can have significant influences on disease epidemiology and evolution; therefore the dynamics of multi-strain infections is an important area of research. We stained Bd cells with 2 fluorescent BODIPY fatty acid probes to determine whether these can potentially be used to distinguish and track Bd cell lines in multi-strain experiments. Bd cells in broth culture were stained with 5 concentrations of green-fluorescent BODIPY FL and red-fluorescent BODIPY 558/568 and visualised under an epifluorescent microscope for up to 16 d post-dye. Dyed strains were also assessed for growth inhibition. The most effective concentration for both dyes was 10 pM. This concentration of dye produced strong fluorescence for 12 to 16 d in Bd cultures held at 23 degrees C (3 to 4 generations), and did not inhibit Bd growth. Cells dyed with BODIPY FL and BODIPY 558/568 can be distinguished from each other on the basis of their fluorescence characteristics. Therefore, it is likely that this technique will be useful for research into multi-strain dynamics of Bd infections.

  2. Development and use of fluorescent 16S rRNA-targeted probes for the specific detection of Methylophaga species by in situ hybridization in marine sediments.

    Science.gov (United States)

    Janvier, Monique; Regnault, Béatrice; Grimont, Patrick

    2003-09-01

    Methylotrophic bacteria are widespread in nature. They may play an important role in the cycling of carbon and in the metabolism of dimethylsulfide in a marine environment. Bacteria belonging to the genus Methylophaga are a unique group of aerobic, halophilic, non-methane-utilizing methylotrophs. Two 16S rRNA-targeted oligonucleotide probes were developed for the specific detection of Methylophaga species, marine methylobacteria, by fluorescence in situ hybridization. Probe MPH-730 was highly specific for all members of the genus Methylophaga while probe MPHm-994 targeted exclusively M. marina. The application of these probes were demonstrated by the detection of Methylophaga species in enrichment cultures from various marine sediments. All isolates recovered were visualized by using the genus specific probe MPH-730. The results were confirmed by 16S rDNA sequencing which demonstrated that all selected isolates belong to Methylophaga. Five isolates could be detected by the M. marina-specific probe MPHm-994 and were confirmed by rRNA gene restriction pattern (ribotyping). With the development of these specific probes, fluorescence in situ hybridization shows that the genus Methylophaga is widespread in marine samples.

  3. 1-(2-Methyl-5H-chromeno[2,3-b]pyridin-5-ylidene) hydrazone as fluorescent probes for selective zinc sensing in DMSO

    Energy Technology Data Exchange (ETDEWEB)

    Nouri, Hela [URCA—Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Groupe Chimie de Coordination, UFR Sciences, BP 1039, 51687 Reims Cedex 2 (France); LACReSNE—Université de Carthage, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte (Tunisia); Cadiou, Cyril, E-mail: cyril.cadiou@univ-reims.fr [URCA—Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Groupe Chimie de Coordination, UFR Sciences, BP 1039, 51687 Reims Cedex 2 (France); Henry, Axelle; Déchamps-Olivier, Isabelle [URCA—Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Groupe Chimie de Coordination, UFR Sciences, BP 1039, 51687 Reims Cedex 2 (France); Ternane, Riadh; Trabelsi-Ayadi, Malika [LACReSNE—Université de Carthage, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte (Tunisia); Lemercier, Gilles; Chuburu, Françoise [URCA—Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Groupe Chimie de Coordination, UFR Sciences, BP 1039, 51687 Reims Cedex 2 (France)

    2014-04-15

    Two methyl-chromeno-pyridinylidene hydrazone derivatives L1, a cyclen derivative, and L2 were studied as potential fluorescent OFF–ON sensors towards Zn{sup 2+} in DMSO. Upon addition of one equivalent of Zn{sup 2+}, L1 fluorescence was quenched, but addition of a second equivalent of Zn{sup 2+} restored partially the signal. Therefore ZnL1 behaved as a OFF–ON sensor for zinc. By comparison, L2 behaved as a very sensitive probe for zinc. ZnL1 and L2 sensor efficiencies were correlated to Zn{sup 2+} coordination via the hydrazone moiety of the fluorophore, which prevented a photoinduced electron transfer (PET), and allowed an efficient CHelation-Enhanced Fluorescence (CHEF) effect. -- Highlights: • According to Zn{sup 2+} concentration, L1 behaves as an on-off-on sensor. • Given that L1 concentration is known, its fluorescence response could give an immediate suggestion about the range of Zn{sup 2+} concentration. • L2 exhibited a strong fluorescence enhancement upon Zn{sup 2+} addition. • It was demonstrated that L2 was highly specific to Zn{sup 2+}, which rendered this very straightforward ligand as an efficient and selective probe for this ion.

  4. Combined fluorescence-Raman spectroscopy measurements with an optical fiber probe for the diagnosis of melanocytic lesions

    Science.gov (United States)

    Cosci, Alessandro; Cicchi, Riccardo; Rossari, Susanna; De Giorgi, Vincenzo; Massi, Daniela; Pavone, Francesco S.

    2012-02-01

    We have designed and developed an optical fiber-probe for spectroscopic measurements on human tissues. The experimental setup combines fluorescence spectroscopy and Raman spectroscopy in a multidimensional approach. Concerning fluorescence spectroscopy, the excitation is provided by two laser diodes, one emitting in the UV (378 nm) and the other emitting in the visible (445 nm). These two lasers are used to selectively excite fluorescence from NADH and FAD, which are among the brightest endogenous fluorophores in human tissues. For Raman and NIR spectroscopy, the excitation is provided by a third laser diode with 785 nm excitation wavelength. Laser light is delivered to the tissue through the central optical fiber of a fiber bundle. The surrounding 48 fibers of the bundle are used for collecting fluorescence and Raman and for delivering light to the spectrograph. Fluorescence and Raman spectra are acquired on a cooled CCD camera. The instrument has been tested on fresh human skin biopsies clinically diagnosed as malignant melanoma, melanocytic nevus, or healthy skin, finding an optimal correlation with the subsequent histological exam. In some cases our examination was not in agreement with the clinical observation, but it was with the histological exam, demonstrating that the system can potentially contribute to improve clinical diagnostic capabilities and hence reduce the number of unnecessary biopsies.

  5. Structural design of intrinsically fluorescent oxysterols

    DEFF Research Database (Denmark)

    Nåbo, Lina J; Modzel, Maciej; Krishnan, Kathiresan

    2018-01-01

    Oxysterols are oxidized derivatives of cholesterol with many important biological functions. Trafficking of oxysterols in and between cells is not well studied, largely due to the lack of appropriate oxysterol analogs. Intrinsically fluorescent oxysterols present a new route towards direct...... observation of intracellular oxysterol trafficking by fluorescence microscopy. We characterize the fluorescence properties of the existing fluorescent 25-hydroxycholesterol analog 25-hydroxycholestatrienol, and propose a new probe with an extended conjugated system. The location of both probes inside...

  6. A Conjugated Aptamer-Gold Nanoparticle Fluorescent Probe for Highly Sensitive Detection of rHuEPO-α

    Directory of Open Access Journals (Sweden)

    Zhaoyang Zhang

    2011-11-01

    Full Text Available We present here a novel conjugated aptamer-gold nanoparticle (Apt-AuNPs fluorescent probe and its application for specific detection of recombinant human erythropoietin-α (rHuEPO-α. In this nanobiosensor, 12 nm AuNPs function as both a nano-scaffold and a nano-quencher (fluorescent energy acceptor, on the surface of which the complementary sequences are linked (as cODN-AuNPs and pre-hybridized with carboxymethylfluorescein (FAM-labeled anti-rHuEPO-α aptamers. Upon target protein binding, the aptamers can be released from the AuNP surface and the fluorescence signal is restored. Key variables such as the length of linker, the hybridization site and length have been designed and optimized. Full performance evaluation including sensitivity, linear range and interference substances are also described. This nanobiosensor provides a promising approach for a simple and direct quantification of rHuEPO-α concentrations as low as 0.92 nM within a few hours.

  7. Optical Aptamer Probes of Fluorescent Imaging to Rapid Monitoring of Circulating Tumor Cell

    Directory of Open Access Journals (Sweden)

    Ji Yeon Hwang

    2016-11-01

    Full Text Available Fluorescence detecting of exogenous EpCAM (epithelial cell adhesion molecule or muc1 (mucin1 expression correlated to cancer metastasis using nanoparticles provides pivotal information on CTC (circulating tumor cell occurrence in a noninvasive tool. In this study, we study a new skill to detect extracellular EpCAM/muc1 using quantum dot-based aptamer beacon (QD-EpCAM/muc1 ALB (aptamer linker beacon. The QD-EpCAM/muc1 ALB was designed using QDs (quantum dots and probe. The EpCAM/muc1-targeting aptamer contains a Ep-CAM/muc1 binding sequence and BHQ1 (black hole quencher 1 or BHQ2 (black hole quencher2. In the absence of target EpCAM/muc1, the QD-EpCAM/muc1 ALB forms a partial duplex loop-like aptamer beacon and remained in quenched state because the BHQ1/2 quenches the fluorescence signal-on of the QD-EpCAM/muc1 ALB. The binding of EpCAM/muc1 of CTC to the EpCAM/muc1 binding aptamer sequence of the EpCAM/muc1-targeting oligonucleotide triggered the dissociation of the BHQ1/2 quencher and subsequent signal-on of a green/red fluorescence signal. Furthermore, acute inflammation was stimulated by trigger such as caerulein in vivo, which resulted in increased fluorescent signal of the cy5.5-EpCAM/muc1 ALB during cancer metastasis due to exogenous expression of EpCAM/muc1 in Panc02-implanted mouse model.

  8. Photophysical properties of a surfactive long-chain styryl merocyanine dye as fluorescent probe

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, L.F.M., E-mail: Lailafmi@yahoo.com [Al-Azhar University, Faculty of Science, Chemistry Department, Nasr City, 12 Ibrahim El-Nagar, El-Hegaz Sq. Heliopolis, Cairo 11315 (Egypt)

    2012-09-15

    environment, which have often been used as models for more complex bioaggregates. The results point out to a possible use of this dye as a fluorescence probe for microenvironmental parameters as well as in some micellar systems.

  9. Biophysical characterization of the fluorescent protein voltage probe VSFP2.3 based on the voltage-sensing domain of Ci-VSP.

    Science.gov (United States)

    Lundby, Alicia; Akemann, Walther; Knöpfel, Thomas

    2010-11-01

    A voltage sensitive phosphatase was discovered in the ascidian Ciona intestinalis. The phosphatase, Ci-VSP, contains a voltage-sensing domain homologous to those known from voltage-gated ion channels, but unlike ion channels, the voltage-sensing domain of Ci-VSP can reside in the cell membrane as a monomer. We fused the voltage-sensing domain of Ci-VSP to a pair of fluorescent reporter proteins to generate a genetically encodable voltage-sensing fluorescent probe, VSFP2.3. VSFP2.3 is a fluorescent voltage probe that reports changes in membrane potential as a FRET (fluorescence resonance energy transfer) signal. Here we report sensing current measurements from VSFP2.3, and show that VSFP2.3 carries 1.2 e sensing charges, which are displaced within 1.5 ms. The sensing currents become faster at higher temperatures, and the voltage dependence of the decay time constants is temperature dependent. Neutralization of an arginine in S4, previously suggested to be a sensing charge, and measuring associated sensing currents indicate that this charge is likely to reside at the membrane-aqueous interface rather than within the membrane electric field. The data presented give us insights into the voltage-sensing mechanism of Ci-VSP, which will allow us to further improve the sensitivity and kinetics of the family of VSFP proteins.

  10. Vitamin B2 content determination in liver paste by using acid and acid-enzyme hydrolysis

    Directory of Open Access Journals (Sweden)

    Basić Zorica

    2007-01-01

    Full Text Available Background/Aim. Vitamin B2 is available in foodstuff in the form of coenzyme and in free form. For its content determination a few procedures should be performed (deliberation from a complex, extraction of free and deliberated form and detection, identification and quantification. There is a particular problem in determination of vitamin B2 in the meat products. For a determination of total vitamin B2 content in liver paste two preparation procedures are compared: acid and acid-enzymatic hydrolysis. The aim of this study thus, was to compare the effectiveness of these two different procedures for vitamin B2 content determination in liver paste. Methods. High pressure liquid chromatography (HPLC method with fluorescence detector, as specific and adequately sensitive for the foodstuff of a complex composition with a natural vitamin content, was used for determination of vitamin B2 in liver paste. Acid hydrolysis was performed with the application 0.1 M hydrochloric acid in a pressure cooker, and enzymatic hydrolysis was performed with the 10% takadiastase on 45 ºC within four hours. Ten samples of liver paste from the supply of the Serbian Army were examined. Separation was performed on the analytical column Nucleosil 50−5 C18 with mobile phase 450 ml CH3OH + 20 ml 5 mM CH3COONH4, and detection on the fluorescent detector with the variable wave length. Both methods were validated: examining a detection limit, quantification limit, specificity (because of a possible B2 vitamin interference with reagents, linearity of a peak area and standard concentration of B2 vitamin ratio in the range from 0.05 μg/ml to 2 μg/ml, precision for the 0.05 μg/ml concentration and recovery. Results. All the previously examined parameters validated both methods as specific, precise and reproductive, with a high recovery (98.5% for acid and 98.2% for acid - enzymatic hydrolysis, as well as linearity in a range that significantly superseded the expected content in

  11. Probing the photoluminescence properties of gold nanoclusters by fluorescence lifetime correlation spectroscopy

    International Nuclear Information System (INIS)

    Yuan, C. T.; Lin, T. N.; Shen, J. L.; Lin, C. A.; Chang, W. H.; Cheng, H. W.; Tang, J.

    2013-01-01

    Gold nanoclusters (Au NCs) have attracted much attention for promising applications in biological imaging owing to their tiny sizes and biocompatibility. So far, most efforts have been focused on the strategies for fabricating high-quality Au NCs and then characterized by conventional ensemble measurement. Here, a fusion single-molecule technique combining fluorescence correlation spectroscopy and time-correlated single-photon counting can be successfully applied to probe the photoluminescence (PL) properties for sparse Au NCs. In this case, the triplet-state dynamics and diffusion process can be observed simultaneously and the relevant time constants can be derived. This work provides a complementary insight into the PL mechanism at the molecular levels for Au NCs in solution

  12. Terbium(III)/gold nanocluster conjugates: the development of a novel ratiometric fluorescent probe for mercury(II) and a paper-based visual sensor.

    Science.gov (United States)

    Qi, Yan-Xia; Zhang, Min; Zhu, Anwei; Shi, Guoyue

    2015-08-21

    In this work, a novel ratiometric fluorescent probe was developed for rapid, highly accurate, sensitive and selective detection of mercury(II) (Hg(2+)) based on terbium(III)/gold nanocluster conjugates (Tb(3+)/BSA-AuNCs), in which bovine serum albumin capped gold nanoclusters (BSA-AuNCs) acted as the signal indicator and terbium(III) (Tb(3+)) was used as the build-in reference. Our proposed ratiometric fluorescent probe exhibited unique specificity toward Hg(2+) against other common environmentally and biologically important metal ions, and had high accuracy and sensitivity with a low detection limit of 1 nM. In addition, our proposed probe was effectively employed to detect Hg(2+) in the biological samples from the artificial Hg(2+)-infected rats. More significantly, an appealing paper-based visual sensor for Hg(2+) was designed by using filter paper embedded with Tb(3+)/BSA-AuNC conjugates, and we have further demonstrated its feasibility for facile fluorescent sensing of Hg(2+) in a visual format, in which only a handheld UV lamp is used. In the presence of Hg(2+), the paper-based visual sensor, illuminated by a handheld UV lamp, would undergo a distinct fluorescence color change from red to green, which can be readily observed with naked eyes even in trace Hg(2+) concentrations. The Tb(3+)/BSA-AuNC-derived paper-based visual sensor is cost-effective, portable, disposable and easy-to-use. This work unveiled a facile approach for accurate, sensitive and selective measuring of Hg(2+) with self-calibration.

  13. A fluorescent pH probe for acidic organelles in living cells.

    Science.gov (United States)

    Chen, Jyun-Wei; Chen, Chih-Ming; Chang, Cheng-Chung

    2017-09-26

    A water-soluble pH sensor, 2-(6-(4-aminostyryl)-1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)-N, N-dimethylethanamine (ADA), was synthesized based on the molecular design of photoinduced electron transfer (PET) and intramolecular charge transfer (ICT). The fluorescence emission response against a pH value is in the range 3-6, which is suitable for labelling intracellular pH-dependent microenvironments. After biological evolution, ADA is more than a pH biosensor because it is also an endocytosis pathway tracking biosensor that labels endosomes, late endosomes, and lysosome pH gradients. From this, the emissive aggregates of ADA and protonated-ADA in these organs were evaluated to explore how this probe stresses emission colour change to cause these unique cellular images.

  14. Sensitive and rapid detection of endogenous hydrogen sulfide distributing in different mouse viscera via a two-photon fluorescent probe

    International Nuclear Information System (INIS)

    Chen, Qian; Yang, Jinfeng; Li, Yinhui; Zheng, Jing; Yang, Ronghua

    2015-01-01

    Development of efficient methods for detection of endogenous H 2 S in living cells and tissues is of considerable significance for better understanding the biological and pathological functions of H 2 S. Two-photon (TP) fluorescent probes are favorable as powerful molecular tools for studying physiological process due to its non-invasiveness, high spatiotemporal resolution and deep-tissues imaging. Up to date, several TP probes for intracellular H 2 S imaging have been designed, but real-time imaging of endogenous H 2 S-related biological processes in tissues is hampered due to low sensitivity, long response time and interference from other biothiols. To address this issue, we herein report a novel two-photon fluorescent probe (TPP-H 2 S) for highly sensitive and fast monitoring and imaging H 2 S levels in living cells and tissues. In the presence of H 2 S, it exhibits obviously improved sensitivity (LOD: 0.12 μM) and fast response time (about 2 min) compared with the reported two-photon H 2 S probes. With two-photon excitation, TPP-H 2 S displays high signal-to-noise ratio and sensitivity even no interference in cell growth media. As further application, TPP-H 2 S is applied for fast imaging of H 2 S in living cells and different fresh tissues by two-photon confocal microscope. Most importantly we first measured the endogenous H 2 S level in different viscera by vivisection and found that the distribution of endogenous H 2 S mostly in brain, liver and lung. The excellent sensing properties of TPP-H 2 S make it a practically useful tool for further studying biological roles of H 2 S. - Highlights: • This two-photon probe exhibits an improved sensitivity and response time to H 2 S. • This probe shows excellent membrane permeability and fast visualization of H 2 S in living cells and tissues. • This probe is successfully applied to measure the endogenously produced H 2 S levels in different viscera of mouse.

  15. Fluorescent pH-Sensing Probe Based on Biorefinery Wood Lignosulfonate and Its Application in Human Cancer Cell Bioimaging.

    Science.gov (United States)

    Xue, Yuyuan; Liang, Wanshan; Li, Yuan; Wu, Ying; Peng, Xinwen; Qiu, Xueqing; Liu, Jinbin; Sun, Runcang

    2016-12-28

    A water-soluble, ratiometric fluorescent pH probe, L-SRhB, was synthesized via grafting spirolactam Rhodamine B (SRhB) to lignosulfonate (LS). As the ring-opening product of L-SRhB, FL-SRhB was also prepared. The pH-response experiment indicated that L-SRhB showed a rapid response to pH changes from 4.60 to 6.20 with a pK a of 5.35, which indicated that L-SRhB has the potential for pH detection of acidic organelle. In addition, the two probes were internalized successfully by living cells through the endocytosis pathway and could distinguish normal cells from cancer cells by different cell staining rates. In addition, L-SRhB showed obvious cytotoxicity to cancer cells, whereas it was nontoxic to normal cells in the same condition. L-SRhB might have potential in cancer therapy. L-SRhB might be a promising ratiometric fluorescent pH sensor and bioimaging dye for the recognition of cancer cells. The results also provided a new perspective to the high-value utilization of lignin.

  16. A turn-on fluorescent probe for endogenous formaldehyde in the endoplasmic reticulum of living cells

    Science.gov (United States)

    Tang, Yonghe; Ma, Yanyan; Xu, An; Xu, Gaoping; Lin, Weiying

    2017-06-01

    As the simplest aldehyde compounds, formaldehyde (FA) is implicated in nervous system diseases and cancer. Endoplasmic reticulum is an organelle that plays important functions in living cells. Accordingly, the development of efficient methods for FA detection in the endoplasmic reticulum (ER) is of great biomedical importance. In this work, we developed the first ER-targeted fluorescent FA probe Na-FA-ER. The detection is based on the condensation reaction of the hydrazine group and FA to suppress the photo-induced electron transfer (PET) pathway, resulting in a fluorescence increase. The novel Na-FA-ER showed high sensitivity to FA. In addition, the Na-FA-ER enabled the bio-imaging of exogenous and endogenous FA in living HeLa cells. Most significantly, the new Na-FA-ER was employed to visualize the endogenous FA in the ER in living cells for the first time.

  17. A light-up fluorescent probe for citrate detection based on bispyridinum amides with aggregation-induced emission feature.

    Science.gov (United States)

    Liu, Chenchen; Hang, Yandi; Jiang, Tao; Yang, Ji; Zhang, Xiao; Hua, Jianli

    2018-02-01

    Citrate is an important intermediate in the citric acid cycle, a vital metabolic pathway for animals, plants and bacteria. It is of great significance to detect its levels in human beings because several diseases may cause the abnormal of citrate. In this paper, a new turn-on fluorescent sensor (TPE-Py) using the classic tetraphenylethylene (TPE) as the aggregation-induced emission (AIE) fluorophore and bipyridinium-based amides as the recognition receptor has been synthesized for the detection of citrate. The probe exhibits good selectivity and sensitivity to citrate with a relatively low detection limit (1.0 × 10 -7 M). The enhancement of the fluorescence is relevant with the AIE property based on the complexation of TPE-Py with citrate caused by the hydrogen bonding and electrostatic interactions between the bipyridinium diamides and citrate, which has been proved by 1 H NMR and mass spectra titration, scanning electronic microscope and dynamic light scattering analyses. More importantly, the quantification of citrate in artificial urine may develop TPE-Py fluorometric probe for the citrate detection in real biosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. mathFISH, a web tool that uses thermodynamics-based mathematical models for in silico evaluation of oligonucleotide probes for fluorescence in situ hybridization.

    Science.gov (United States)

    Yilmaz, L Safak; Parnerkar, Shreyas; Noguera, Daniel R

    2011-02-01

    Mathematical models of RNA-targeted fluorescence in situ hybridization (FISH) for perfectly matched and mismatched probe/target pairs are organized and automated in web-based mathFISH (http://mathfish.cee.wisc.edu). Offering the users up-to-date knowledge of hybridization thermodynamics within a theoretical framework, mathFISH is expected to maximize the probability of success during oligonucleotide probe design.

  19. Dopamine-functionalized InP/ZnS quantum dots as fluorescence probes for the detection of adenosine in microfluidic chip.

    Science.gov (United States)

    Ankireddy, Seshadri Reddy; Kim, Jongsung

    2015-01-01

    Microbeads are frequently used as solid supports for biomolecules such as proteins and nucleic acids in heterogeneous microfluidic assays. Chip-based, quantum dot (QD)-bead-biomolecule probes have been used for the detection of various types of DNA. In this study, we developed dopamine (DA)-functionalized InP/ZnS QDs (QDs-DA) as fluorescence probes for the detection of adenosine in microfluidic chips. The photoluminescence (PL) intensity of the QDs-DA is quenched by Zn(2+) because of the strong coordination interactions. In the presence of adenosine, Zn(2+) cations preferentially bind to adenosine, and the PL intensity of the QDs-DA is recovered. A polydimethylsiloxane-based microfluidic chip was fabricated, and adenosine detection was confirmed using QDs-DA probes.

  20. A fluorescent probe distinguishes between inhibition of early and late steps of lipopolysaccharide biogenesis in whole cells

    Science.gov (United States)

    Moison, Eileen; Xie, Ran; Zhang, Ge; Lebar, Matthew D.; Meredith, Timothy C.; Kahne, Daniel

    2017-01-01

    Lipopolysaccharide (LPS) biogenesis in Gram-negative organisms involves its biosynthesis in the cytoplasm and subsequent transport across three cellular compartments to the cell surface. We developed a fluorescent probe that allows us to determine the spatial distribution of LPS in whole cells. We show that polymyxin B nonapeptide (PMBN) containing a dansyl fluorophore specifically binds to LPS in membranes. We show that this probe detects decreases in LPS levels on the cell surface when LPS biosynthesis is inhibited at an early step. We also can detect accumulation of LPS in particular subcellular locations when LPS assembly is blocked during transport, allowing us to differentiate inhibitors targeting early and late stages of LPS biogenesis. PMID:28248483

  1. Fluorescent Quantification of DNA Based on Core-Shell Fe3O4@SiO2@Au Nanocomposites and Multiplex Ligation-Dependent Probe Amplification.

    Science.gov (United States)

    Fan, Jing; Yang, Haowen; Liu, Ming; Wu, Dan; Jiang, Hongrong; Zeng, Xin; Elingarami, Sauli; Ll, Zhiyang; Li, Song; Liu, Hongna; He, Nongyue

    2015-02-01

    In this research, a novel method for relative fluorescent quantification of DNA based on Fe3O4@SiO2@Au gold-coated magnetic nanocomposites (GMNPs) and multiplex ligation- dependent probe amplification (MLPA) has been developed. With the help of self-assembly, seed-mediated growth and chemical reduction method, core-shell Fe3O4@SiO2@Au GMNPs were synthesized. Through modified streptavidin on the GMNPs surface, we obtained a bead chip which can capture the biotinylated probes. Then we designed MLPA probes which were tagged with biotin or Cy3 and target DNA on the basis of human APP gene sequence. The products from the thermostable DNA ligase induced ligation reactions and PCR amplifications were incubated with SA-GMNPs. After washing, magnetic separation, spotting, the fluorescent scanning results showed our method can be used for the relative quantitative analysis of the target DNA in the concentration range of 03004~0.5 µM.

  2. Deposition of molecular probes in heavy ion tracks

    CERN Document Server

    Esser, M

    1999-01-01

    By using polarized fluorescence techniques the physical properties of heavy ion tracks such as the dielectric number, molecular alignment and track radius can be traced by molecular fluorescence probes. Foils of poly(ethylene terephthalate) (PET) were used as a matrix for the ion tracks wherein fluorescence probes such as aminostyryl-derivatives can be incorporated using a suitable solvent, e.g. N,N'-dimethylformamide (DMF) as transport medium. The high sensitivity of fluorescence methods allowed the comparison of the probe properties in ion tracks with the virgin material. From the fluorescence Stokes shift the dielectric constants could be calculated, describing the dielectric surroundings of the molecular probes. The lower dielectric constant in the tracks gives clear evidence that there is no higher accommodation of the highly polar solvent DMF in the tracks compared with the virgin material. Otherwise the dielectric constant in the tracks should be higher than in the virgin material. The orientation of t...

  3. Comparison of three-way and four-way calibration for the real-time quantitative analysis of drug hydrolysis in complex dynamic samples by excitation-emission matrix fluorescence

    Science.gov (United States)

    Yin, Xiao-Li; Gu, Hui-Wen; Liu, Xiao-Lu; Zhang, Shan-Hui; Wu, Hai-Long

    2018-03-01

    Multiway calibration in combination with spectroscopic technique is an attractive tool for online or real-time monitoring of target analyte(s) in complex samples. However, how to choose a suitable multiway calibration method for the resolution of spectroscopic-kinetic data is a troubling problem in practical application. In this work, for the first time, three-way and four-way fluorescence-kinetic data arrays were generated during the real-time monitoring of the hydrolysis of irinotecan (CPT-11) in human plasma by excitation-emission matrix fluorescence. Alternating normalization-weighted error (ANWE) and alternating penalty trilinear decomposition (APTLD) were used as three-way calibration for the decomposition of the three-way kinetic data array, whereas alternating weighted residual constraint quadrilinear decomposition (AWRCQLD) and alternating penalty quadrilinear decomposition (APQLD) were applied as four-way calibration to the four-way kinetic data array. The quantitative results of the two kinds of calibration models were fully compared from the perspective of predicted real-time concentrations, spiked recoveries of initial concentration, and analytical figures of merit. The comparison study demonstrated that both three-way and four-way calibration models could achieve real-time quantitative analysis of the hydrolysis of CPT-11 in human plasma under certain conditions. However, it was also found that both of them possess some critical advantages and shortcomings during the process of dynamic analysis. The conclusions obtained in this paper can provide some helpful guidance for the reasonable selection of multiway calibration models to achieve the real-time quantitative analysis of target analyte(s) in complex dynamic systems.

  4. Synthesis and characterization of time-resolved fluorescence probes for evaluation of competitive binding to melanocortin receptors.

    Science.gov (United States)

    Alleti, Ramesh; Vagner, Josef; Dehigaspitiya, Dilani Chathurika; Moberg, Valerie E; Elshan, N G R D; Tafreshi, Narges K; Brabez, Nabila; Weber, Craig S; Lynch, Ronald M; Hruby, Victor J; Gillies, Robert J; Morse, David L; Mash, Eugene A

    2013-09-01

    Probes for use in time-resolved fluorescence competitive binding assays at melanocortin receptors based on the parental ligands MSH(4), MSH(7), and NDP-α-MSH were prepared by solid phase synthesis methods, purified, and characterized. The saturation binding of these probes was studied using HEK-293 cells engineered to overexpress the human melanocortin 4 receptor (hMC4R) as well as the human cholecystokinin 2 receptor (hCCK2R). The ratios of non-specific binding to total binding approached unity at high concentrations for each probe. At low probe concentrations, receptor-mediated binding and uptake was discernable, and so probe concentrations were kept as low as possible in determining Kd values. The Eu-DTPA-PEGO-MSH(4) probe exhibited low specific binding relative to non-specific binding, even at low nanomolar concentrations, and was deemed unsuitable for use in competition binding assays. The Eu-DTPA-PEGO probes based on MSH(7) and NDP-α-MSH exhibited Kd values of 27±3.9nM and 4.2±0.48nM, respectively, for binding with hMC4R. These probes were employed in competitive binding assays to characterize the interactions of hMC4R with monovalent and divalent MSH(4), MSH(7), and NDP-α-MSH constructs derived from squalene. Results from assays with both probes reflected only statistical enhancements, suggesting improper ligand spacing on the squalene scaffold for the divalent constructs. The Ki values from competitive binding assays that employed the MSH(7)-based probe were generally lower than the Ki values obtained when the probe based on NDP-α-MSH was employed, which is consistent with the greater potency of the latter probe. The probe based on MSH(7) was also competed with monovalent, divalent, and trivalent MSH(4) constructs that previously demonstrated multivalent binding in competitive binding assays against a variant of the probe based on NDP-α-MSH. Results from these assays confirm multivalent binding, but suggest a more modest increase in avidity for these

  5. A potential fluorescent probe: Maillard reaction product from glutathione and ascorbic acid for rapid and label-free dual detection of Hg(2+) and biothiols.

    Science.gov (United States)

    Dong, Jiang Xue; Song, Xiao Fang; Shi, Yan; Gao, Zhong Feng; Li, Bang Lin; Li, Nian Bing; Luo, Hong Qun

    2016-07-15

    Maillard reactions and their fluorescent products have drawn much attention in the fields of food and life science, however, the application of fluorescent products separated from the reaction as an indicator for detection of certain substances in sensor field has not been mentioned. In this article, we report on an easy-to-synthesize and water-soluble fluorescent probe separated from the typical Maillard reaction products of glutathione and ascorbic acid, with excellent stability and high quantum yield (18.2%). The further application of the probe has been explored for dual detection of Hg(2+) and biothiols including cysteine, homocysteine, and glutathione, which is based on Hg(2+)-induced fluorescence quenching of the Maillard reaction fluorescent products (MRFPs) and the fluorescence recovery as the introduction of biothiols. This sensing system exhibits a good selectivity and sensitivity, and the linear ranges for Hg(2+), cysteine, homocysteine, and glutathione are 0.05-12, 0.5-10, 0.3-20, and 0.3-20μM, respectively. The detection limits for Hg(2+), cysteine, homocysteine, and glutathione are 22, 47, 96, and 30nM at a signal-to-noise ratio of 3, respectively. Furthermore, the practical applications of this sensor for Hg(2+) and biothiols determination in water samples and human plasma sample have been demonstrated with satisfactory results. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. In vivo fluorescence imaging of hepatocellular carcinoma using a novel GPC3-specific aptamer probe

    Science.gov (United States)

    Zhao, Menglong; Dong, Lili; Liu, Zhuang; Yang, Shuohui

    2018-01-01

    Background Glypican-3 (GPC3) is highly expressed in most of the hepatocellular carcinomas (HCCs), even in small HCCs. It may be used as a potential biomarker for early detection of HCC. The aptamer is a promising targeting agent with unique advantages over antibody. This study was to introduce a novel GPC3 specific aptamer (AP613-1), to verify its specific binding property in vitro, and to evaluate its targeting efficiency in vivo by performing near-infrared (NIR) fluorescence imaging on an HCC xenograft model. Methods AP613-1 was generated from the systematic evolution of ligands by exponential enrichment. Flow cytometry and aptamer-based immunofluorescence imaging were performed to verify the binding affinity of AP613-1 to GPC3 in vitro. NIR Fluorescence images of nude mice with unilateral (n=12) and bilateral (n=4) subcutaneous xenograft tumors were obtained. Correlation between the tumor fluorescence intensities in vivo and ex vivo was analyzed. Results AP613-1 could specifically bind to GPC3 in vitro. In vivo and ex vivo tumors, fluorescence intensities were in excellent correlation (Pfluorescence intensity is significantly higher in tumors given Alexa Fluor 750 (AF750) labeled AP613-1 than in those given AF750 labeled initial ssDNA library both in vivo (Pfluorescence intensities than A549 tumors both in vivo (P=0.016) and ex vivo (P=0.004). Conclusions AP613-1 displays a specific binding affinity to GPC3 positive HCC. Fluorescently labeled AP613-1 could be used as an imaging probe to subcutaneous HCC in xenograft models. PMID:29675356

  7. Noninvasive imaging of multiple myeloma using near infrared fluorescent molecular probe

    Science.gov (United States)

    Hathi, Deep; Zhou, Haiying; Bollerman-Nowlis, Alex; Shokeen, Monica; Akers, Walter J.

    2016-03-01

    Multiple myeloma is a plasma cell malignancy characterized by monoclonal gammopathy and osteolytic bone lesions. Multiple myeloma is most commonly diagnosed in late disease stages, presenting with pathologic fracture. Early diagnosis and monitoring of disease status may improve quality of life and long-term survival for multiple myeloma patients from what is now a devastating and fatal disease. We have developed a near-infrared targeted fluorescent molecular probe with high affinity to the α4β1 integrin receptor (VLA-4)overexpressed by a majority of multiple myeloma cells as a non-radioactive analog to PET/CT tracer currently being developed for human diagnostics. A near-infrared dye that emits about 700 nm was conjugated to a high affinity peptidomimmetic. Binding affinity and specificity for multiple myeloma cells was investigated in vitro by tissue staining and flow cytometry. After demonstration of sensitivity and specificity, preclinical optical imaging studies were performed to evaluate tumor specificity in murine subcutaneous and metastatic multiple myeloma models. The VLA-4-targeted molecular probe showed high affinity for subcutaneous MM tumor xenografts. Importantly, tumor cells specific accumulation in the bone marrow of metastatic multiple myeloma correlated with GFP signal from transfected cells. Ex vivo flow cytometry of tumor tissue and bone marrow further corroborated in vivo imaging data, demonstrating the specificity of the novel agent and potential for quantitative imaging of multiple myeloma burden in these models.

  8. Study of the Conformational State of Non-Cross-Linked and Cross-Linked Poly(alkylmethyldiallylammonium chlorides) in Aqueous Solution by Fluorescence Probing

    NARCIS (Netherlands)

    Wang, Guang-Jia; Engberts, Jan B.F.N.

    The aggregation behaviour of novel non-cross-linked and cross-linked poly(alkylmethyldiallylammonium chlorides) in aqueous solutions has been investigated by fluorescence spectroscopy using pyrene as a probe. These copolymers were found to exhibit similar aggregate properties as the corresponding

  9. Fluorescence In Situ Hybridization with Peptide Nucleic Acid Probes for Rapid Identification of Candida albicans Directly from Blood Culture Bottles

    Science.gov (United States)

    Rigby, Susan; Procop, Gary W.; Haase, Gerhard; Wilson, Deborah; Hall, Geraldine; Kurtzman, Cletus; Oliveira, Kenneth; Von Oy, Sabina; Hyldig-Nielsen, Jens J.; Coull, James; Stender, Henrik

    2002-01-01

    A new fluorescence in situ hybridization (FISH) method that uses peptide nucleic acid (PNA) probes for identification of Candida albicans directly from positive-blood-culture bottles in which yeast was observed by Gram staining (herein referred to as yeast-positive blood culture bottles) is described. The test (the C. albicans PNA FISH method) is based on a fluorescein-labeled PNA probe that targets C. albicans 26S rRNA. The PNA probe is added to smears made directly from the contents of the blood culture bottle and hybridized for 90 min at 55°C. Unhybridized PNA probe is removed by washing of the mixture (30 min), and the smears are examined by fluorescence microscopy. The specificity of the method was confirmed with 23 reference strains representing phylogenetically related yeast species and 148 clinical isolates covering the clinically most significant yeast species, including C. albicans (n = 72), C. dubliniensis (n = 58), C. glabrata (n = 5), C. krusei (n = 2), C. parapsilosis (n = 4), and C. tropicalis (n = 3). The performance of the C. albicans PNA FISH method as a diagnostic test was evaluated with 33 routine and 25 simulated yeast-positive blood culture bottles and showed 100% sensitivity and 100% specificity. It is concluded that this 2.5-h method for the definitive identification of C. albicans directly from yeast-positive blood culture bottles provides important information for optimal antifungal therapy and patient management. PMID:12037084

  10. Water soluble two-photon fluorescent organic probes for long-term imaging of lysosomes in live cells and tumor spheroids.

    Science.gov (United States)

    Kumari, Pratibha; Verma, Sanjay K; Mobin, Shaikh M

    2018-01-11

    The morphological alteration of lysosomes is a powerful indicator of various pathological disorders. In this regard, we have designed and synthesized a new water soluble fluorescent Schiff-base ligand (L-lyso) containing two hydroxyl groups. L-lyso exhibits excellent two-photon properties with tracking of lysosomes in live cells as well as in 3D tumor spheroids. Furthermore, it can label lysosomes for more than 3 days. Thus, L-lyso has an edge over the commercially available expensive LysoTracker probes and also over other reported probes in terms of its long-term imaging, water solubility and facile synthesis.

  11. Preparation of dual-responsive hybrid fluorescent nano probe based on graphene oxide and boronic acid/BODIPY-conjugated polymer for cell imaging

    Energy Technology Data Exchange (ETDEWEB)

    Khoerunnisa [Department of IT Convergence, Korea National University of Transportation, Chungju 380–702 (Korea, Republic of); Kang, Eun Bi [Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380–702 (Korea, Republic of); Mazrad, Zihnil Adha Islamy [Department of IT Convergence, Korea National University of Transportation, Chungju 380–702 (Korea, Republic of); Lee, Gibaek [Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380–702 (Korea, Republic of); In, Insik [Department of IT Convergence, Korea National University of Transportation, Chungju 380–702 (Korea, Republic of); Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju 380–702 (Korea, Republic of); Park, Sung Young, E-mail: parkchem@ut.ac.kr [Department of IT Convergence, Korea National University of Transportation, Chungju 380–702 (Korea, Republic of); Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380–702 (Korea, Republic of)

    2017-02-01

    Here, we report a pH- and thermo-responsive fluorescent nanomaterial of functionalized reduced graphene oxide (rGO) with cross-linked polymer produced via catechol-boronate diol binding mechanism. When conjugated with the hydrophobic dye boron dipyrromethane (BODIPY), this material can act as a dual-responsive nanoplatform for cells imaging. 2-Chloro-3′,4′-dihydroxyacetophenone (CCDP)-quaternized-poly(dimethylaminoethyl methacrylate-co-N-isopropylacrylamide) [C-PDN] was cross-linked with BODIPY and 4-chlorophenyl boronic acid (BA)-quaternized-poly(ethylene glycol)-g-poly(dimethylaminoethyl methacrylate-co-N-isopropylacrylamide) [BB-PPDN]. The GO was then reduced by the catechol group in the cross-linked polymer to synthesize rGO nanoparticles, which able to stabilize the quenching mechanism. This nanoplatform exhibits intense fluorescence at acidic pH and low fluorescence at physiological pH. Confocal laser scanning microscopy (CLSM) images shows bright fluorescence at lysosomal pH and total quench at physiological pH. Therefore, we have successfully developed a promising sensitive bio-imaging probe for identifying cancer cells. - Graphical abstract: [BB-PPDN]-[C-PDN]/rGO nanoparticles with boronic acid-catechol cis-diol binding mechanism toward change in pH demonstrated good biocompatibility and effective quenching for cancer cell detection. - Highlights: • Dual responsive (pH- and thermo) fluorescent nano probe was proposed for cells imaging. • The mechanism was based on cis-diol binding mechanism of boronic acid and catechol. • Reduced graphene oxide was used as quencher on nano-platform. • Detection was controlled dependent on pH based on diol compound of boron chemistry.

  12. Ultrafast Dynamics of Sb-Corroles: A Combined Vis-Pump Supercontinuum Probe and Broadband Fluorescence Up-Conversion Study

    Directory of Open Access Journals (Sweden)

    Clark Zahn

    2017-07-01

    Full Text Available Corroles are a developing class of tetrapyrrole-based molecules with significant chemical potential and relatively unexplored photophysical properties. We combined femtosecond broadband fluorescence up-conversion and fs broadband Vis-pump Vis-probe spectroscopy to comprehensively characterize the photoreaction of 5,10,15-tris-pentafluorophenyl-corrolato-antimony(V-trans-difluoride (Sb-tpfc-F2. Upon fs Soret band excitation at ~400 nm, the energy relaxed almost completely to Q band electronic excited states with a time constant of 500 ± 100 fs; this is evident from the decay of Soret band fluorescence at around 430 nm and the rise time of Q band fluorescence, as well as from Q band stimulated emission signals at 600 and 650 nm with the same time constant. Relaxation processes on a time scale of 10 and 20 ps were observed in the fluorescence and absorption signals. Triplet formation showed a time constant of 400 ps, with an intersystem crossing yield from the Q band to the triplet manifold of between 95% and 99%. This efficient triplet formation is due to the spin-orbit coupling of the antimony ion.

  13. Chloroquine transport in Plasmodium falciparum. 1. Influx and efflux kinetics for live trophozoite parasites using a novel fluorescent chloroquine probe.

    Science.gov (United States)

    Cabrera, Mynthia; Natarajan, Jayakumar; Paguio, Michelle F; Wolf, Christian; Urbach, Jeffrey S; Roepe, Paul D

    2009-10-13

    Several models for how amino acid substitutions in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) confer resistance to chloroquine (CQ) and other antimalarial drugs have been proposed. Distinguishing between these models requires detailed analysis of high-resolution CQ transport data that is unfortunately impossible to obtain with traditional radio-tracer methods. Thus, we have designed and synthesized fluorescent CQ analogues for drug transport studies. One probe places a NBD (6-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)hexanoic acid) group at the tertiary aliphatic N of CQ, via a flexible 6 C amide linker. This probe localizes to the malarial parasite digestive vacuole (DV) during initial perfusion under physiologic conditions and exhibits similar pharmacology relative to CQ, vs both CQ-sensitive (CQS) and CQ-resistant (CQR) parasites. Using live, synchronized intraerythrocytic parasites under continuous perfusion, we define NBD-CQ influx and efflux kinetics for CQS vs CQR parasites. Since this fluorescence approach provides data at much higher kinetic resolution relative to fast-filtration methods using (3)H-CQ, rate constants vs linear initial rates for CQ probe flux can be analyzed in detail. Importantly, we find that CQR parasites have a decreased rate constant for CQ influx into the DV and that this is due to mutation of PfCRT. Analysis of zero trans efflux for CQS and CQR parasites suggests that distinguishing between bound vs free pools of intra-DV drug probe is essential for proper kinetic analysis of efflux. The accompanying paper (DOI 10.1021/bi901035j ) further probes efflux kinetics for proteoliposomes containing purified, reconstituted PfCRT.

  14. One-pot fabrication of FRET-based fluorescent probe for detecting copper ion and sulfide anion in 100% aqueous media

    Science.gov (United States)

    Lv, Kun; Chen, Jian; Wang, Hong; Zhang, Peisheng; Yu, Maolin; Long, Yunfei; Yi, Pinggui

    2017-04-01

    The design of effective tools for detecting copper ion (Cu2 +) and sulfide anion (S2 -) is of great importance due to the abnormal level of Cu2 + and S2 - has been associated with an increase in risk of many diseases. Herein, we report on the fabrication of fluorescence resonance energy transfer (FRET) based fluorescent probe PF (PEI-FITC) for detecting Cu2 + and S2 - in 100% aqueous media via a facile one-pot method by covalent linking fluorescein isothiocyanate (FITC) with branched-polyethylenimine (b-PEI). PF could selectively coordinate with Cu2 + among 10 metal ions to form PF-Cu2 + complex, resulting in fluorescence quenching through FRET mechanism. Furthermore, the in situ generated PF-Cu2 + complex can be used to selectively detect S2 - based on the displacement approach, resulting in an off-on type sensing. There is no obvious interference from other anions, such as Cl-, NO3-, ClO4-, SO42 -, HCO3-, CO32 -, Br-, HPO42 -, F- and S2O32 -. In addition, PF was successfully used to determine Cu2 + and S2 - in human serum and tap water samples. Therefore, the FRET-based probe PF may provide a new method for selective detection of multifarious analysts in biological and environmental applications, and even hold promise for application in more complicated systems.

  15. mathFISH, a Web Tool That Uses Thermodynamics-Based Mathematical Models for In Silico Evaluation of Oligonucleotide Probes for Fluorescence In Situ Hybridization▿ †

    OpenAIRE

    Yilmaz, L. Safak; Parnerkar, Shreyas; Noguera, Daniel R.

    2010-01-01

    Mathematical models of RNA-targeted fluorescence in situ hybridization (FISH) for perfectly matched and mismatched probe/target pairs are organized and automated in web-based mathFISH (http://mathfish.cee.wisc.edu). Offering the users up-to-date knowledge of hybridization thermodynamics within a theoretical framework, mathFISH is expected to maximize the probability of success during oligonucleotide probe design.

  16. A rhodamine-labeled citalopram analogue as a high-affinity fluorescent probe for the serotonin transporter

    DEFF Research Database (Denmark)

    Zhang, Peng; Jørgensen, Trine Nygaard; Løland, Claus Juul

    2013-01-01

    A novel fluorescent ligand was synthesized as a high-affinity, high specificity probe for visualizing the serotonin transporter (SERT). The rhodamine fluorophore was extended from an aniline substitution on the 5-position of the dihydroisobenzofuran ring of citalopram (2, 1-(3-(dimethylamino......)propyl)-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-5-carbonitrile), using an ethylamino linker. The resulting rhodamine-labeled ligand 8 inhibited [3H]5-HT uptake in COS-7 cells (Ki = 225 nM) with similar potency to the tropane-based JHC 1-064 (1), but with higher specificity towards the SERT relative...

  17. Ultrasound Pretreatment as an Useful Tool to Enhance Egg White Protein Hydrolysis: Kinetics, Reaction Model, and Thermodinamics.

    Science.gov (United States)

    Jovanović, Jelena R; Stefanović, Andrea B; Šekuljica, Nataša Ž; Tanasković, Sonja M Jakovetić; Dojčinović, Marina B; Bugarski, Branko M; Knežević-Jugović, Zorica D

    2016-09-28

    The impact of ultrasound waves generated by probe-type sonicator and ultrasound cleaning bath on egg white protein susceptibility to hydrolysis by alcalase compared to both thermal pretreatment and conventional enzymatic hydrolysis was quantitatively investigated. A series of hydrolytic reactions was carried out in a stirred tank reactor at different substrate concentrations, enzyme concentrations, and temperatures using untreated, and pretreated egg white proteins (EWPs). The kinetic model based on substrate inhibition and second-order enzyme deactivation successfully predicts the experimental behavior providing an effective tool for comparison and optimization. The ultrasound pretreatments appear to greatly improve the enzymatic hydrolysis of EWPs under different conditions when compare to other methods. The apparent reaction rate constants for proteolysis (k 2 ) are 0.009, 0.011, 0.053, and 0.045 min -1 for untreated EWPs, and those pretreated with heat, probe-type sonicator, and ultrasound cleaning bath technologies, respectively. The ultrasound pretreatment also decreases hydrolysis activation (E a ) and enzyme deactivation (E d ) energy, enthalpy (ΔH), and entropy (ΔS) of activation and for the probe-type sonication this decrease is 61.7%, 61.6%, 63.6%, and 32.2%, respectively, but ultrasound has little change in Gibbs free energy value in the temperature range of 318 to 338 K. The content of sulfhydryl groups and ζ potential show a significant increase (P < 0.05) for both applied ultrasound pretreatments and the reduction of particle size distribution are achieved, providing some evidence that the ultrasound causes EWP structural changes affecting the proteolysis rate. © 2016 Institute of Food Technologists®

  18. NADH-fluorescence scattering correction for absolute concentration determination in a liquid tissue phantom using a novel multispectral magnetic-resonance-imaging-compatible needle probe

    Science.gov (United States)

    Braun, Frank; Schalk, Robert; Heintz, Annabell; Feike, Patrick; Firmowski, Sebastian; Beuermann, Thomas; Methner, Frank-Jürgen; Kränzlin, Bettina; Gretz, Norbert; Rädle, Matthias

    2017-07-01

    In this report, a quantitative nicotinamide adenine dinucleotide hydrate (NADH) fluorescence measurement algorithm in a liquid tissue phantom using a fiber-optic needle probe is presented. To determine the absolute concentrations of NADH in this phantom, the fluorescence emission spectra at 465 nm were corrected using diffuse reflectance spectroscopy between 600 nm and 940 nm. The patented autoclavable Nitinol needle probe enables the acquisition of multispectral backscattering measurements of ultraviolet, visible, near-infrared and fluorescence spectra. As a phantom, a suspension of calcium carbonate (Calcilit) and water with physiological NADH concentrations between 0 mmol l-1 and 2.0 mmol l-1 were used to mimic human tissue. The light scattering characteristics were adjusted to match the backscattering attributes of human skin by modifying the concentration of Calcilit. To correct the scattering effects caused by the matrices of the samples, an algorithm based on the backscattered remission spectrum was employed to compensate the influence of multiscattering on the optical pathway through the dispersed phase. The monitored backscattered visible light was used to correct the fluorescence spectra and thereby to determine the true NADH concentrations at unknown Calcilit concentrations. Despite the simplicity of the presented algorithm, the root-mean-square error of prediction (RMSEP) was 0.093 mmol l-1.

  19. Detection of Misdistribution of Tyrosinase from Melanosomes to Lysosomes and Its Upregulation under Psoralen/Ultraviolet A with a Melanosome-Targeting Tyrosinase Fluorescent Probe.

    Science.gov (United States)

    Zhou, Jin; Shi, Wen; Li, Lihong; Gong, Qiuyu; Wu, Xiaofeng; Li, Xiaohua; Ma, Huimin

    2016-04-19

    Tyrosinase is regarded as an important biomarker of melanoma cancer, and its metabolism is closely related to some severe skin diseases such as vitiligo. Since tyrosinase is mainly located in the melanosomes of melanocytes, a probe that can specifically detect and image tysosinase in melanosomes would be in urgent demand to study the behavior of the enzyme in cells, but unfortunately, no melanosome-targeting tyrosinase fluorescent probe has been reported so far to the best of our knowledge. In this work, we have developed such a new probe, Mela-TYR, which bears morpholine as a melanosome-targeting group and 4-aminophenol as a tyrosinase reaction group. The probe exhibits not only a highly sensitive and selective off-on response to tyrosinase via oxidization cleavage, but also an accurate targeting ability toward the acidic organelles of melanosomes and lyososomes, which is validated by colocalization experiments with mCherry-tagged melanosomes as well as DND-99 (a commercial dye). The probe has been used to image the relative contents of tyrosinase in different cells. Notably, because of the tyrosinase deficiency in normal lysosomes, the probe only fluoresces in melanosomes in principle although it can accumulate in other acidic organelles like lysosomes. By virtue of this property, the misdistribution of tyrosinase from melanosomes to lysosomes in murine melanoma B16 cells under the stimulation of inulavosin is imaged in real time for the first time. Moreover, the upregulation of melanosomal tyrosinase in live B16 cells under the stimulation of psoralen/ultraviolet A is detected with our probe, and this upregulation is further verified by standard colorimetric assay. The probe provides a simple, visual method to study the metabolism of tyrosinase in cells and shows great potential in clinical diagnosis and treatments of tyrosinase-associated diseases.

  20. A novel CXCR4-targeted near-infrared (NIR) fluorescent probe (Peptide R-NIR750) specifically detects CXCR4 expressing tumors.

    Science.gov (United States)

    Santagata, Sara; Portella, Luigi; Napolitano, Maria; Greco, Adelaide; D'Alterio, Crescenzo; Barone, Maria Vittoria; Luciano, Antonio; Gramanzini, Matteo; Auletta, Luigi; Arra, Claudio; Zannetti, Antonella; Scala, Stefania

    2017-05-31

    C-X-C chemokine receptor 4 (CXCR4) is over-expressed in multiple human cancers and correlates with tumor aggressiveness, poor prognosis and increased risk for distant metastases. Imaging agents for CXCR4 are thus highly desirable. We developed a novel CXCR4-targeted near-infrared (NIR) fluorescent probe (Peptide R-NIR750) conjugating the new developed CXCR4 peptidic antagonist Peptide R with the NIR fluorescent dye VivoTag-S750. Specific CXCR4 binding was obtained in cells overexpressing human CXCR4 (B16-hCXCR4 and human melanoma cells PES43), but not in CXCR4 low expressing cells (FB-1). Ex vivo evaluation demonstrated that PepR-NIR750 specifically detects B16-hCXCR4-derived subcutaneous tumors and lung metastases. Fluorescence Molecular Tomography (FMT) in vivo imaging was performed on mice carrying subcutaneous CHO and CHO-CXCR4 tumors. PepR-NIR750 accumulates only in CXCR4-positive expressing subcutaneous tumors. Additionally, an intense NIR fluorescence signal was detected in PES43-derived lung metastases of nude mice injected with PepR-NIR750 versus mice injected with VivoTag-S750. With a therapeutic intent, mice bearing PES43-derived lung metastases were treated with Peptide R. A the dramatic reduction in PES43-derived lung metastases was detected through a decrease of the PepR-NIR750 signal. PepR-NIR750 is a specific probe for non-invasive detection of human high CXCR4-expressing tumors and metastatic lesion and thus a valuable tool for cancer molecular imaging.

  1. Preparation of graphene quantum dots based core-satellite hybrid spheres and their use as the ratiometric fluorescence probe for visual determination of mercury(II) ions

    International Nuclear Information System (INIS)

    Hua, Mengjuan; Wang, Chengquan; Qian, Jing; Wang, Kan; Yang, Zhenting; Liu, Qian; Mao, Hanping; Wang, Kun

    2015-01-01

    We herein proposed a simple and effective strategy for preparing graphene quantum dots (GQDs)-based core-satellite hybrid spheres and further explored the feasibility of using such spheres as the ratiometric fluorescence probe for the visual determination of Hg 2+ . The red-emitting CdTe QDs were firstly entrapped in the silica nanosphere to reduce their toxicity and improve their photo and chemical stabilities, thus providing a built-in correction for environmental effects, while the GQDs possessing good biocompatibility and low toxicity were electrostatic self-assembly on the silica surface acting as reaction sites. Upon exposure to the increasing contents of Hg 2+ , the blue fluorescence of GQDs can be gradually quenched presumably due to facilitating nonradiative electron/hole recombination annihilation. With the embedded CdTe QDs as the internal standard, the variations of the tested solution display continuous fluorescence color changes from blue to red, which can be easily observed by the naked eye without any sophisticated instrumentations and specially equipped laboratories. This sensor exhibits high sensitivity and selectivity toward Hg 2+ in a broad linear range of 10 nM–22 μM with a low detection limit of 3.3 nM (S/N = 3), much lower than the allowable Hg 2+ contents in drinking water set by U.S. Environmental Protection Agency. This prototype ratiometric probe is of good simplicity, low toxicity, excellent stabilities, and thus potentially attractive for Hg 2+ quantification related biological systems. - Highlights: • A facile strategy for preparing GQDs based core-satellite hybrid spheres was reported. • Such spheres can be used as the ratiometric fluorescence probe for Hg 2+ detection. • The Hg 2+ content can be easily distinguished by the naked eye. • The sensor shows high sensitivity and selectivity toward Hg 2+ detection. • The ratiometric probe is of good simplicity, low toxicity, and excellent stability

  2. Evaluation of acridine orange, LysoTracker Red, and quinacrine as fluorescent probes for long-term tracking of acidic vesicles.

    Science.gov (United States)

    Pierzyńska-Mach, Agnieszka; Janowski, Paweł A; Dobrucki, Jurek W

    2014-08-01

    Acidic vesicles can be imaged and tracked in live cells after staining with several low molecular weight fluorescent probes, or with fluorescently labeled proteins. Three fluorescent dyes, acridine orange, LysoTracker Red DND-99, and quinacrine, were evaluated as acidic vesicle tracers for confocal fluorescence imaging and quantitative analysis. The stability of fluorescent signals, achievable image contrast, and phototoxicity were taken into consideration. The three tested tracers exhibit different advantages and pose different problems in imaging experiments. Acridine orange makes it possible to distinguish acidic vesicles with different internal pH but is fairly phototoxic and can cause spectacular bursts of the dye-loaded vesicles. LysoTracker Red is less phototoxic but its rapid photobleaching limits the range of useful applications considerably. We demonstrate that quinacrine is most suitable for long-term imaging when a high number of frames is required. This capacity made it possible to trace acidic vesicles for several hours, during a process of drug-induced apoptosis. An ability to record the behavior of acidic vesicles over such long periods opens a possibility to study processes like autophagy or long-term effects of drugs on endocytosis and exocytosis. © 2014 International Society for Advancement of Cytometry.

  3. Comparison of three-way and four-way calibration for the real-time quantitative analysis of drug hydrolysis in complex dynamic samples by excitation-emission matrix fluorescence.

    Science.gov (United States)

    Yin, Xiao-Li; Gu, Hui-Wen; Liu, Xiao-Lu; Zhang, Shan-Hui; Wu, Hai-Long

    2018-03-05

    Multiway calibration in combination with spectroscopic technique is an attractive tool for online or real-time monitoring of target analyte(s) in complex samples. However, how to choose a suitable multiway calibration method for the resolution of spectroscopic-kinetic data is a troubling problem in practical application. In this work, for the first time, three-way and four-way fluorescence-kinetic data arrays were generated during the real-time monitoring of the hydrolysis of irinotecan (CPT-11) in human plasma by excitation-emission matrix fluorescence. Alternating normalization-weighted error (ANWE) and alternating penalty trilinear decomposition (APTLD) were used as three-way calibration for the decomposition of the three-way kinetic data array, whereas alternating weighted residual constraint quadrilinear decomposition (AWRCQLD) and alternating penalty quadrilinear decomposition (APQLD) were applied as four-way calibration to the four-way kinetic data array. The quantitative results of the two kinds of calibration models were fully compared from the perspective of predicted real-time concentrations, spiked recoveries of initial concentration, and analytical figures of merit. The comparison study demonstrated that both three-way and four-way calibration models could achieve real-time quantitative analysis of the hydrolysis of CPT-11 in human plasma under certain conditions. However, it was also found that both of them possess some critical advantages and shortcomings during the process of dynamic analysis. The conclusions obtained in this paper can provide some helpful guidance for the reasonable selection of multiway calibration models to achieve the real-time quantitative analysis of target analyte(s) in complex dynamic systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Measurement of fluorescent probes concentration ratio in the cerebrospinal fluid for early detection of Alzheimer's disease

    Science.gov (United States)

    Harbater, Osnat; Gannot, Israel

    2014-03-01

    The pathogenic process of Alzheimer's Disease (AD), characterized by amyloid plaques and neurofibrillary tangles in the brain, begins years before the clinical diagnosis. Here, we suggest a novel method which may detect AD up to nine years earlier than current exams, minimally invasive, with minimal risk, pain and side effects. The method is based on previous reports which relate the concentrations of biomarkers in the Cerebrospinal Fluid (CSF) (Aβ and Tau proteins) to the future development of AD in mild cognitive impairment patients. Our method, which uses fluorescence measurements of the relative concentrations of the CSF biomarkers, replaces the lumbar puncture process required for CSF drawing. The process uses a miniature needle coupled trough an optical fiber to a laser source and a detector. The laser radiation excites fluorescent probes which were prior injected and bond to the CSF biomarkers. Using the ratio between the fluorescence intensities emitted from the two biomarkers, which is correlated to their concentration ratio, the patient's risk of developing AD is estimated. A theoretical model was developed and validated using Monte Carlo simulations, demonstrating the relation between fluorescence emission and biomarker concentration. The method was tested using multi-layered tissue phantoms simulating the epidural fat, the CSF in the sub-arachnoid space and the bone. These phantoms were prepared with different scattering and absorption coefficients, thicknesses and fluorescence concentrations in order to simulate variations in human anatomy and in the needle location. The theoretical and in-vitro results are compared and the method's accuracy is discussed.

  5. Development of ultrasound-assisted fluorescence imaging of indocyanine green.

    Science.gov (United States)

    Morikawa, Hiroyasu; Toyota, Shin; Wada, Kenji; Uchida-Kobayashi, Sawako; Kawada, Norifumi; Horinaka, Hiromichi

    2017-01-01

    Indocyanine green (ICG) accumulation in hepatocellular carcinoma means tumors can be located by fluorescence. However, because of light scattering, it is difficult to detect ICG fluorescence from outside the body. We propose a new fluorescence imaging method that detects changes in the intensity of ICG fluorescence by ultrasound-induced temperature changes. ICG fluorescence intensity decreases as the temperature rises. Therefore, it should theoretically be possible to detect tissue distribution of ICG using ultrasound to heat tissue, moving the point of ultrasound transmission, and monitoring changes in fluorescence intensity. A new probe was adapted for clinical application. It consisted of excitation light from a laser, fluorescence sensing through a light pipe, and heating by ultrasound. We applied the probe to bovine liver to image the accumulation of ICG. ICG emits fluorescence (820 nm) upon light irradiation (783 nm). With a rise in temperature, the fluorescence intensity of ICG decreased by 0.85 %/°C. The distribution of fluorescent ICG was detected using an ultrasonic warming method in a new integrated probe. Modulating fluorescence by changing the temperature using ultrasound can determine where ICG accumulates at a depth, highlighting its potential as a means to locate hepatocellular carcinoma.

  6. Visualization of Fluoride Ions In Vivo Using a Gadolinium(III)-Coumarin Complex-Based Fluorescence/MRI Dual-Modal Probe.

    Science.gov (United States)

    Wang, Yue; Song, Renfeng; Feng, Huan; Guo, Ke; Meng, Qingtao; Chi, Haijun; Zhang, Run; Zhang, Zhiqiang

    2016-12-16

    A new Gadolinium(III)-coumarin complex, DO3A-Gd- CA , was designed and prepared as a dual-modal probe for simultaneous fluorescence and relaxivity responses to fluoride ions (F - ) in aqueous media and mice. DO3A-Gd- CA was designed by using Gd(III) center as an MRI signal output unit and fluoride binding site, and the 4-(diethylamino)-coumarin-3-carboxylic acid ( CA ) as a fluorescence reporter. Upon the addition of fluoride ions to the solution of DO3A-Gd- CA , the liberation of the coordinated CA ligand led to a 5.7-fold fluorescence enhancement and a 75% increase in the longitudinal relaxivity ( r ₁). The fluorescent detection limit for fluoride ions was determined to be 8 μM based on a 3 σ / slope . The desirable features of the proposed DO3A-Gd- CA , such as high sensitivity and specificity, reliability at physiological pH and low cytotoxicity enable its application in visualization of fluoride ion in mice. The successful in vivo imaging indicates that DO3A-Gd- CA could be potentially used in biomedical diagnosis fields.

  7. Fluorogen-activating proteins: beyond classical fluorescent proteins

    Directory of Open Access Journals (Sweden)

    Shengnan Xu

    2018-05-01

    Full Text Available Fluorescence imaging is a powerful technique for the real-time noninvasive monitoring of protein dynamics. Recently, fluorogen activating proteins (FAPs/fluorogen probes for protein imaging were developed. Unlike the traditional fluorescent proteins (FPs, FAPs do not fluoresce unless bound to their specific small-molecule fluorogens. When using FAPs/fluorogen probes, a washing step is not required for the removal of free probes from the cells, thus allowing rapid and specific detection of proteins in living cells with high signal-to-noise ratio. Furthermore, with different fluorogens, living cell multi-color proteins labeling system was developed. In this review, we describe about the discovery of FAPs, the design strategy of FAP fluorogens, the application of the FAP technology and the advances of FAP technology in protein labeling systems. KEY WORDS: Fluorogen activating proteins, Fluorogens, Genetically encoded sensors, Fluorescence imaging, Molecular imaging

  8. A novel ''donor-π-acceptor'' type fluorescence probe for sensing pH: mechanism and application in vivo.

    Science.gov (United States)

    Chao, Jianbin; Wang, Huijuan; Zhang, Yongbin; Yin, Caixia; Huo, Fangjun; Song, Kailun; Li, Zhiqing; Zhang, Ting; Zhao, Yaqin

    2017-11-01

    A novel pH fluorescent probe 1-(pyren-1-yl)-3-(6-methoxypridin-3-yl)-acrylketone, (PMPA), which had a pyrene structure attached to methoxypyridine, was synthesized for monitoring extremely acidic and alkaline pH. The pH titrations indicated that PMPA displayed a remarkable emission enhancement with a pK a of 2.70 and responded linearly to minor pH fluctuations within the extremely acidic range of 1.26-3.97. Interestingly, PMPA also exhibited strong pH-dependent characteristics with pK a 9.32 and linear response to extreme-alkalinity range of 8.54-10.36. In addition, PMPA displayed a good selectivity, excellent photostability and large Stokes shift (167nm). Furthermore, the probe PMPA had excellent cell membrane permeability and was applied successfully to rapidly detect pH in living cells. pH value in these organs was closely related to many diseases, so these findings suggested that the probe had potential application in pH detecting for disease diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. NOVEL FLUORESCENT PROBES FOR THE DOPAMINE TRANSPORTER

    DEFF Research Database (Denmark)

    Cha, J; Vægter, Christian Bjerggaard; Adkins, Erica

    -reactive rhodamine red derivatives. The resulting N-substituted (JHC 1-64) and 2-substituted (JHC 1-53) ligands showed high affinity binding to DAT expressed in HEK 293 cells (Ki= 6.4 and 29 nM, respectively). Their ability to selectively label the DAT was demonstrated by confocal laser scanning microscopy of HEK......To enable visualization of the dopamine transporter (DAT) through fluorescence technologies we have synthesized a novel series of fluorescently tagged analogs of cocaine. Previous structure-activity relationship (SAR) studies have demonstrated that the dopamine transporter (DAT) can tolerate...... in untransfected control cells. The possibility of using these ligands for direct labeling of the DAT in living cells represents a new and important approach for understanding cellular targeting and trafficking of the DAT. Moreover, these fluorescent ligands might also provide the molecular tools...

  10. Imaging lysosomal highly reactive oxygen species and lighting up cancer cells and tumors enabled by a Si-rhodamine-based near-infrared fluorescent probe.

    Science.gov (United States)

    Zhang, Hongxing; Liu, Jing; Liu, Chenlu; Yu, Pengcheng; Sun, Minjia; Yan, Xiaohan; Guo, Jian-Ping; Guo, Wei

    2017-07-01

    Lysosomes have recently been regarded as the attractive pharmacological targets for selectively killing of cancer cells via lysosomal cell death (LCD) pathway that is closely associated with reactive oxygen species (ROS). However, the details on the ROS-induced LCD of cancer cells are still poorly understood, partially due to the absence of a lysosome-targetable, robust, and biocompatible imaging tool for ROS. In this work, we brought forward a Si-rhodamine-based fluorescent probe, named PSiR, which could selectively and sensitively image the pathologically more relavent highly reactive oxygen species (hROS: HClO, HO, and ONOO - ) in lysosomes of cancer cells. Compared with many of the existing hROS fluorescent probes, its superiorities are mainly embodied in the high stability against autoxidation and photoxidation, near-infrared exitation and emission, fast fluorescence off-on response, and specific lysosomal localization. Its practicality has been demonstrated by the real-time imaging of hROS generation in lysosomes of human non-small-cell lung cancer cells stimulated by anticancer drug β-lapachone. Moreover, the probe was sensitive enough for basal hROS in cancer cells, allowing its further imaging applications to discriminate not only cancer cells from normal cells, but also tumors from healthy tissues. Overall, our results strongly indicated that PSiR is a very promising imaging tool for the studies of ROS-related LCD of cancer cells, screening of new anticancer drugs, and early diagnosis of cancers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Intra-operative probe for brain cancer: feasibility study

    Science.gov (United States)

    Vu Thi, M. H.; Charon, Y.; Duval, M. A.; Lefebvre, F.; Menard, L.; Pitre, S.; Pinot, L.; Siebert, R.

    2007-07-01

    The present work aims a new medical probe for surgeons devoted to brain cancers, in particular glioblastoma multiforme. Within the last years, our group has started the development of a new intra-operative beta imaging probe. More recently, we took an alternative approach for the same application: a fluorescence probe. In both cases the purpose is to differentiate normal from tumor brain tissue. In a first step, we developed set-ups capable to measure autofluorescence. They are based on a dedicated epi-fluorescence design and on specific fiber optic probes. Relative signal amplitude, spectral shape and fluorescence lifetime measurements are foreseen to distinguish normal and cancer tissue by analyzing fluorophores like NADH, lipopigments and porphyrines. The autofluorescence spectra are recorded in the 460-640 nm range with a low resolution spectrometer. For lifetime measurements a fast detector (APD) is used together with a TCSPC-carte. Intrinsic wavelength- and time-resolutions are a few nm and 200 ps, respectively. Different samples have been analyzed to validate our new detection system and to allow a first configuration of our medical fluorescence probe. First results from the tissue measurements are shown.

  12. Novel lanthanide pH fluorescent probes based on multiple emissions and its visible-light-sensitized feature

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jintai [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Zheng, Yuhui, E-mail: yhzheng78@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Wang, Qianming, E-mail: qmwang@scnu.edu.cn [Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangzhou 510006 (China); State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Zeng, Zhi [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Zhang, Cheng Cheng [Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, Dallas (United States)

    2014-08-11

    Graphical abstract: A new type of Eu(III) ofloxacin complex as the fluorescent pH indicator has been reported. Compared to pure ligand, the complex offers more distinguished color changes (green–red–blue) derived from both lanthanide line emissions and the secondary ionization steps of ofloxacin. - Highlights: • The pH probe offers a very wide working range in water (pH 1–14). • The emission changes have multiple colors. • Long-lived excited state lifetimes of Eu(III) has been used. • Two types of pH sensitive hydrogels were fabricated. - Abstract: A new type of Eu(III) ofloxacin complex as the fluorescent pH indicator has been presented. Compared to pure ligand, the complex offers more distinguished color changes (green–red–blue) derived from both lanthanide line emissions and the secondary ionization steps of ofloxacin. During the concentration dependence experiments, the photoluminescence studies on the complex showed that the excitation of this pH probe can occur at a very long wavelength which extends to visible range (Ex = 427 nm). Furthermore, the functional complex was successfully incorporated into soft networks and two novel luminescent hydrogels (rod and film) were fabricated. The soft materials also exhibited specific responses towards the pH variation. Finally, the onion cell-stain experiments were carried out to further confirm the validity of pH dependence and the results support the idea that the material will be suitable for monitoring biological samples in the future.

  13. Aptamer based fluorescent cocaine assay based on the use of graphene oxide and exonuclease III-assisted signal amplification

    International Nuclear Information System (INIS)

    Zhang, Yulin; Zhang, Guo-Jun; Sun, Zhongyue; Tang, Lina; Zhang, Hong

    2016-01-01

    The article reports an aptamer based assay for cocaine by employing graphene oxide and exonuclease III-assisted signal amplification. It is based on the following scheme and experimental steps: (1) Exo III can digest dsDNA with blunt or recessed 3-terminus, but it has limited activity to ssDNA or dsDNA with protruding 3-terminus; (2) GO can absorb the FAM-labeled ssDNA probe and quench the fluorescence of probe, while the affinity between FAM-labeled mononucleotide and GO is negligible; (3) Cocaine aptamer can be split into two flexible ssDNA pieces (Probe 1 and Probe 2) without significant perturbation of cocaine-binding abilities; (4) The triple complex consisting of Probe 1, Probe 2 and cocaine can be digested by Exo III with the similar efficiency as normal dsDNA. Cocaine aptamer is split into two flexible ssDNA pieces (Probe 2 and 3′-FAM-labeled Probe 1). Cocaine can mediate the cocaine aptamer fragments forming a triplex. The triple complex has unique characteristic with 3′-FAM-labeled blunt end at the Probe 1 and 3′-overhang end at Probe 2. If exonuclease III is added, it will catalyze the stepwise removal of fluorescein (FAM) labeled mononucleotides from the 3-hydroxy termini of the special triplex complex, resulting in liberation of cocaine. The cocaine released in this step can produce a new cleavage cycle, thereby leading to target recycling. Through such a cyclic bound-hydrolysis process, small amounts of cocaine can induce the cleavage of a large number of FAM-labeled probe 1. The cleaved FAM-labeled mononucleotides are not adsorbed on the surface of graphene oxide (GO), so a strong fluorescence signal enhancement is observed as the cocaine triggers enzymatic digestion. Under optimized conditions, the assay allows cocaine to be detected in the 1 to 500 nM concentration range with a detection limit of 0.1 nM. The method was applied to the determination of cocaine in spiked human plasma, with recoveries ranging from 92.0 to 111.8 % and RSD of <12

  14. Y2O3: Eu,Zn nanocrystals as a fluorescent probe for the detection of biotin

    International Nuclear Information System (INIS)

    Ganjkhanlou, Y.; Hosseinnia, A.; Kazemzad, M.; Khanlarkhani, A.; Moghaddam, A.B.

    2012-01-01

    We report on the application of nanocrystals (NCs) of the type Y 2 O 3 : Eu,Zn as a probe for the fluorescent detection of biotin in aqueous solution. The NCs were dispersed in water in the presence of various surface modifiers including mercaptoethanol (ME), monoethanolamine and ethylene glycol. Both the absorbance of surfactant and the stability of the suspensions were investigated in order to optimize the experimental conditions. ME is found to be the most suitable surfactant for stabilization of the suspended NCs. Their photoluminescence intensity is found to be quenched by biotin. The Stern-Volmer constant for the quenching process is 7.6 x 10 3 M -1 . This NC probe can be applied to the detection of biotin in the 1-60 μM concentration range with detection limit of 1.89 μM. The possible mechanisms of quenching also are discussed. (author)

  15. Fluorescence lifetime imaging of oxygen in dental biofilm

    Science.gov (United States)

    Gerritsen, Hans C.; de Grauw, Cees J.

    2000-12-01

    Dental biofilm consists of micro-colonies of bacteria embedded in a matrix of polysaccharides and salivary proteins. pH and oxygen concentration are of great importance in dental biofilm. Both can be measured using fluorescence techniques. The imaging of dental biofilm is complicated by the thickness of the biofilms that can be up to several hundred micrometers thick. Here, we employed a combination of two-photon excitation microscopy with fluorescence lifetime imaging to quantify the oxygen concentration in dental biofilm. Collisional quenching of fluorescent probes by molecular oxygen leads to a reduction of the fluorescence lifetime of the probe. We employed this mechanism to measure the oxygen concentration distribution in dental biofilm by means of fluorescence lifetime imaging. Here, TRIS Ruthenium chloride hydrate was used as an oxygen probe. A calibration procedure on buffers was use to measure the lifetime response of this Ruthenium probe. The results are in agreement with the Stern-Volmer equation. A linear relation was found between the ratio of the unquenched and the quenched lifetime and the oxygen concentration. The biofilm fluorescence lifetime imaging results show a strong oxygen gradient at the buffer - biofilm interface and the average oxygen concentration in the biofilm amounted to 50 μM.

  16. Intermolecular G-quadruplex structure-based fluorescent DNA detection system.

    Science.gov (United States)

    Zhou, Hui; Wu, Zai-Sheng; Shen, Guo-Li; Yu, Ru-Qin

    2013-03-15

    Adopting multi-donors to pair with one acceptor could improve the performance of fluorogenic detection probes. However, common dyes (e.g., fluorescein) in close proximity to each other would self-quench the fluorescence, and the fluorescence is difficult to restore. In this contribution, we constructed a novel "multi-donors-to-one acceptor" fluorescent DNA detection system by means of the intermolecular G-quadruplex (IGQ) structure-based fluorescence signal enhancement combined with the hairpin oligonucleotide. The novel IGQ-hairpin system was characterized using the p53 gene as the model target DNA. The proposed system showed an improved assay performance due to the introduction of IGQ-structure into fluorescent signaling probes, which could inhibit the background fluorescence and increase fluorescence restoration amplitude of fluoresceins upon target DNA hybridization. The proof-of-concept scheme is expected to provide new insight into the potential of G-quadruplex structure and promote the application of fluorescent oligonucleotide probes in fundamental research, diagnosis, and treatment of genetic diseases. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Simultaneous analysis of aspartame and its hydrolysis products of Coca-Cola Zero by on-line postcolumn derivation fluorescence detection and ultraviolet detection coupled two-dimensional high-performance liquid chromatography.

    Science.gov (United States)

    Cheng, Cheanyeh; Wu, Shing-Chen

    2011-05-20

    An innovative two-dimensional high-performance liquid chromatography system was developed for the simultaneous analysis of aspartame and its hydrolysis products of Coca-Cola Zero. A C8 reversed-phase chromatographic column with ultraviolet detection was used as the first dimension for the determination of aspartame, and a ligand-exchange chromatographic column with on-line postcolumn derivation fluorescence detection was employed as the second dimension for the analysis of amino acid enantiomers. The fluorimetric derivative reagent of amino acid enantiomers was o-phthaldialdehyde. The hydrolysis of aspartame in Coca-Cola Zero was induced by electric-heating or microwave heating. Aspartame was quantified by the matrix matched external standard calibration curve with a linear concentration range of 0-50 μg mL(-1) (r(2)=0.9984). The limit of detection (LOD) and the limit of quantification (LOQ) were 1.3 μg mL(-1) and 4.3 μg mL(-1), respectively. The amino acid enantiomers was analyzed by the matrix matched internal standard calibration method (D-leucine as the internal standard) with a linear concentration range of 0-10 μg mL(-1) (r(2)=0.9988-0.9997). The LODs and LOQs for L- and D-aspartic acid and L- and D-phenylalanine were 0.16-0.17 μg mL(-1) and 0.52-0.55 μg mL(-1), respectively, that was 12-13 times more sensitive than ultraviolet detection. The overall analysis accuracy for aspartame and amino acid enantiomers was 90.2-99.2% and 90.4-96.2%, respectively. The overall analysis precision for aspartame and amino acid enantiomers was 0.1-1.7% and 0.5-6.7%, respectively. Generally, the extent of aspartame hydrolysis increases with the increase of electro-thermal temperature, microwave power, and the duration of hydrolysis time. D-aspartic acid and D-phenylalanine can be observed with the electro-thermal racemization at the hydrolysis temperature 120°C for 1 day and only D-aspartic acid can be observed at the hydrolysis temperature 90°C for 2 and 3 days. For

  18. Steady state and time-resolved fluorescence spectroscopy of quinine sulfate dication bound to sodium dodecylsulfate micelles: Fluorescent complex formation

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Sunita; Pant, Debi D., E-mail: ddpant@pilani.bits-pilani.ac.in

    2014-01-15

    Interaction of quinine sulfate dication (QSD) with anionic, sodium dodecylsulphate (SDS) surfactant has been studied at different premicellar, micellar and postmicellar concentrations in aqueous phase using steady state, time-resolved fluorescence and fluorescence anisotropy techniques. At premicellar concentrations of SDS, the decrease in absorbance, appearance of an extra fluorescence band at lower wavelengths and tri-exponential decay behavior of fluorescence, are attributed to complex formation between QSD molecules and surfactant monomers. At postmicellar concentrations the red shift in fluorescence spectrum, increase in quantum yield and increase in fluorescence lifetimes are attributed to incorporation of solute molecules to micelles. At lower concentrations of SDS, a large shift in fluorescence is observed on excitation at the red edge of absorption spectrum and this is explained in terms of distribution of ion pairs of different energies in the ground state and the observed fluorescence lifetime behavior corroborates with this model. The temporal fluorescence anisotropy decay of QSD in SDS micelles allowed determination of restriction on the motion of the fluorophore. All the different techniques used in this study reveal that the photophysics of QSD is very sensitive to the microenvironments of SDS micelles and QSD molecules reside at the water-micelle interface. -- Highlights: • Probe molecule is very sensitive to microenvironment of micelles. • Highly fluorescent ion-pair formation has been observed. • Modulated photophysics of probe molecule in micellar solutions has been observed. • Probe molecules strongly bind with micelles and reside at probe–micelle interface.

  19. Electric dipole moments of the fluorescent probes Prodan and Laurdan: experimental and theoretical evaluations.

    Science.gov (United States)

    Vequi-Suplicy, Cíntia C; Coutinho, Kaline; Lamy, M Teresa

    2014-03-01

    Several experimental and theoretical approaches can be used for a comprehensive understanding of solvent effects on the electronic structure of solutes. In this review, we revisit the influence of solvents on the electronic structure of the fluorescent probes Prodan and Laurdan, focusing on their electric dipole moments. These biologically used probes were synthesized to be sensitive to the environment polarity. However, their solvent-dependent electronic structures are still a matter of discussion in the literature. The absorption and emission spectra of Prodan and Laurdan in different solvents indicate that the two probes have very similar electronic structures in both the ground and excited states. Theoretical calculations confirm that their electronic ground states are very much alike. In this review, we discuss the electric dipole moments of the ground and excited states calculated using the widely applied Lippert-Mataga equation, using both spherical and spheroid prolate cavities for the solute. The dimensions of the cavity were found to be crucial for the calculated dipole moments. These values are compared to those obtained by quantum mechanics calculations, considering Prodan in vacuum, in a polarizable continuum solvent, and using a hybrid quantum mechanics-molecular mechanics methodology. Based on the theoretical approaches it is evident that the Prodan dipole moment can change even in the absence of solute-solvent-specific interactions, which is not taken into consideration with the experimental Lippert-Mataga method. Moreover, in water, for electric dipole moment calculations, it is fundamental to consider hydrogen-bonded molecules.

  20. Development of an event-specific hydrolysis probe quantitative real-time polymerase chain reaction assay for Embrapa 5.1 genetically modified common bean (Phaseolus vulgaris).

    Science.gov (United States)

    Treml, Diana; Venturelli, Gustavo L; Brod, Fábio C A; Faria, Josias C; Arisi, Ana C M

    2014-12-10

    A genetically modified (GM) common bean event, namely Embrapa 5.1, resistant to the bean golden mosaic virus (BGMV), was approved for commercialization in Brazil. Brazilian regulation for genetically modified organism (GMO) labeling requires that any food containing more than 1% GMO be labeled. The event-specific polymerase chain reaction (PCR) method has been the primary trend for GMO identification and quantitation because of its high specificity based on the flanking sequence. This work reports the development of an event-specific assay, named FGM, for Embrapa 5.1 detection and quantitation by use of SYBR Green or hydrolysis probe. The FGM assay specificity was tested for Embrapa 2.3 event (a noncommercial GM common bean also resistant to BGMV), 46 non-GM common bean varieties, and other crop species including maize, GM maize, soybean, and GM soybean. The FGM assay showed high specificity to detect the Embrapa 5.1 event. Standard curves for the FGM assay presented a mean efficiency of 95% and a limit of detection (LOD) of 100 genome copies in the presence of background DNA. The primers and probe developed are suitable for the detection and quantitation of Embrapa 5.1.

  1. Hypochlorous acid turn-on boron dipyrromethene probe based on oxidation of methyl phenyl sulfide

    International Nuclear Information System (INIS)

    Liu, Shi-Rong; Vedamalai, Mani; Wu, Shu-Pao

    2013-01-01

    Graphical abstract: -- Highlights: •A BODIPY-based green fluorescent probe for sensing HOCl was developed. •The probe utilizes HOCl-promoted oxidation of methyl phenyl sulfide to produce a proportional fluorescence response to the concentration of HOCl. •Confocal fluorescence microscopy imaging of RAW264.7 cells demonstrated that the HCS probe might have application in the investigation of HOCl roles in biological systems. -- Abstract: A boron dipyrromethene (BODIPY)-based fluorometric probe, HCS, has been successfully developed for the highly sensitive and selective detection of hypochlorous acid (HOCl). The probe is based on the specific HOCl-promoted oxidation of methyl phenyl sulfide. The reaction is accompanied by a 160-fold increase in the fluorescent quantum yield (from 0.003 to 0.480). The fluorescent turn-on mechanism is accomplished by suppression of photoinduced electron transfer (PET) from the methyl phenyl sulfide group to BODIPY. The fluorescence intensity of the reaction between HOCl and HCS shows a good linearity in the HOCl concentration range 1–10 μM. The detection limit is 23.7 nM (S/N = 3). In addition, confocal fluorescence microscopy imaging using RAW264.7 macrophages demonstrates that the HCS probe could be an efficient fluorescent detector for HOCl in living cells

  2. Hypochlorous acid turn-on boron dipyrromethene probe based on oxidation of methyl phenyl sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shi-Rong; Vedamalai, Mani; Wu, Shu-Pao, E-mail: spwu@mail.nctu.edu.tw

    2013-10-24

    Graphical abstract: -- Highlights: •A BODIPY-based green fluorescent probe for sensing HOCl was developed. •The probe utilizes HOCl-promoted oxidation of methyl phenyl sulfide to produce a proportional fluorescence response to the concentration of HOCl. •Confocal fluorescence microscopy imaging of RAW264.7 cells demonstrated that the HCS probe might have application in the investigation of HOCl roles in biological systems. -- Abstract: A boron dipyrromethene (BODIPY)-based fluorometric probe, HCS, has been successfully developed for the highly sensitive and selective detection of hypochlorous acid (HOCl). The probe is based on the specific HOCl-promoted oxidation of methyl phenyl sulfide. The reaction is accompanied by a 160-fold increase in the fluorescent quantum yield (from 0.003 to 0.480). The fluorescent turn-on mechanism is accomplished by suppression of photoinduced electron transfer (PET) from the methyl phenyl sulfide group to BODIPY. The fluorescence intensity of the reaction between HOCl and HCS shows a good linearity in the HOCl concentration range 1–10 μM. The detection limit is 23.7 nM (S/N = 3). In addition, confocal fluorescence microscopy imaging using RAW264.7 macrophages demonstrates that the HCS probe could be an efficient fluorescent detector for HOCl in living cells.

  3. Highly selective ratiometric fluorescent detection of Fe{sup 3+} with a polyphenyl derivative

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhan-Xian, E-mail: lizx@zzu.edu.cn [The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 (China); Zhou, Wan; Zhang, Li-Feng; Yuan, Rui-Li; Liu, Xing-Jiang; Wei, Liu-He [The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 (China); Yu, Ming-Ming, E-mail: yumm@zzu.edu.cn [The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 (China)

    2013-04-15

    Compared with other fluorescent probes, ratiometric fluorescence responses are more attractive because the ratio between the two emission intensities can be used to measure the analyte concentration and provide a built-in correction for environmental effects. A highly selective and sensitive ratiometric fluorescent probe for Fe{sup 3+} was synthesized, which exhibits an enhanced fluorescence with a large red-shift in emission from 361 to 455 nm upon addition of Fe{sup 3+}. The red-shift of the emission peak can be ascribed to the reformed orbital, and the increase of emission intensity may be ascribed to the inhibition of the rotation of C–C bonds between each two aromatic rings. -- Graphical abstract: A highly selective and sensitive ratiometric fluorescent probe for Fe{sup 3+} was synthesized, which exhibits an enhanced fluorescence with a large red-shift in emission from 361 to 455 nm upon addition of Fe{sup 3+}. Highlights: ► A ratiometric fluorescent probe for Fe{sup 3+} was synthesized. ► The probe exhibits an enhanced fluorescence with a red-shift upon addition of Fe{sup 3+}. ► Inhibition of the rotation of C–C bonds was possible detection mechanism for Fe{sup 3+}.

  4. Preparation of graphene quantum dots based core-satellite hybrid spheres and their use as the ratiometric fluorescence probe for visual determination of mercury(II) ions

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Mengjuan [Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Wang, Chengquan [School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013 (China); Qian, Jing, E-mail: qianj@ujs.edu.cn [Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Wang, Kan; Yang, Zhenting; Liu, Qian; Mao, Hanping [Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Wang, Kun, E-mail: wangkun@ujs.edu.cn [Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2015-08-12

    We herein proposed a simple and effective strategy for preparing graphene quantum dots (GQDs)-based core-satellite hybrid spheres and further explored the feasibility of using such spheres as the ratiometric fluorescence probe for the visual determination of Hg{sup 2+}. The red-emitting CdTe QDs were firstly entrapped in the silica nanosphere to reduce their toxicity and improve their photo and chemical stabilities, thus providing a built-in correction for environmental effects, while the GQDs possessing good biocompatibility and low toxicity were electrostatic self-assembly on the silica surface acting as reaction sites. Upon exposure to the increasing contents of Hg{sup 2+}, the blue fluorescence of GQDs can be gradually quenched presumably due to facilitating nonradiative electron/hole recombination annihilation. With the embedded CdTe QDs as the internal standard, the variations of the tested solution display continuous fluorescence color changes from blue to red, which can be easily observed by the naked eye without any sophisticated instrumentations and specially equipped laboratories. This sensor exhibits high sensitivity and selectivity toward Hg{sup 2+} in a broad linear range of 10 nM–22 μM with a low detection limit of 3.3 nM (S/N = 3), much lower than the allowable Hg{sup 2+} contents in drinking water set by U.S. Environmental Protection Agency. This prototype ratiometric probe is of good simplicity, low toxicity, excellent stabilities, and thus potentially attractive for Hg{sup 2+} quantification related biological systems. - Highlights: • A facile strategy for preparing GQDs based core-satellite hybrid spheres was reported. • Such spheres can be used as the ratiometric fluorescence probe for Hg{sup 2+} detection. • The Hg{sup 2+} content can be easily distinguished by the naked eye. • The sensor shows high sensitivity and selectivity toward Hg{sup 2+} detection. • The ratiometric probe is of good simplicity, low toxicity, and

  5. Hydration of poly( N-isopropylacrylamide) brushes on micro-silica beads measured by a fluorescent probe

    Science.gov (United States)

    Hattori, Yusuke; Nagase, Kenichi; Kobayashi, Jun; Kikuchi, Akihiko; Akiyama, Yoshikatsu; Kanazawa, Hideko; Okano, Teruo

    2010-05-01

    Hydration of poly( N-isopropylacrylamide) brushes on silica micro-beads was investigated using a fluorescent probe method. The free ends, the bottom, and the random of brushes were labeled with dansyl group. The emission spectra at the thin brushes were reduced with increasing temperature regardless of their labeling locations. At the free ends of thick brushes, the emission intensity was enhanced at 500 nm and reduced at 455 nm by heating, which was corresponding to the local micro-environmental change around the free ends. The spectral shift was speculated to be due to the enhancement of the flexibility and the hydration of thick brushes.

  6. A novel mitochondria-targeted two-photon fluorescent probe for dynamic and reversible detection of the redox cycles between peroxynitrite and glutathione.

    Science.gov (United States)

    Sun, Chunlong; Du, Wen; Wang, Peng; Wu, Yang; Wang, Baoqin; Wang, Jun; Xie, Wenjun

    2017-12-16

    Redox homeostasis is important for maintenance of normal physiological functions within cells. Redox state of cells is primarily a consequence of precise balance between levels of reducing equivalents and reactive oxygen species. Redox homeostasis between peroxynitrite (ONOO - ) and glutathione (GSH) is closely associated with physiological and pathological processes, such as prolonged relaxation in vascular tissues and smooth muscle preparations, attenuation of hepatic necrosis, and activation of matrix metalloproteinase-2. We report a two-photon fluorescent probe (TP-Se) based on water-soluble carbazole-based compound, which integrates with organic selenium, to monitor changes in ONOO - /GSH levels in cells. This probe can reversibly respond to ONOO - and GSH and exhibits high selectivity, sensitivity, and mitochondrial targeting. The probe was successfully applied to visualize changes in redox cycles during ONOO - outbreak and antioxidant GSH repair in cells. The probe will lead to significant development on redox events involved in cellular redox regulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Non-invasive In Vivo Fluorescence Optical Imaging of Inflammatory MMP Activity Using an Activatable Fluorescent Imaging Agent.

    Science.gov (United States)

    Schwenck, Johannes; Maier, Florian C; Kneilling, Manfred; Wiehr, Stefan; Fuchs, Kerstin

    2017-05-08

    This paper describes a non-invasive method for imaging matrix metalloproteinases (MMP)-activity by an activatable fluorescent probe, via in vivo fluorescence optical imaging (OI), in two different mouse models of inflammation: a rheumatoid arthritis (RA) and a contact hypersensitivity reaction (CHR) model. Light with a wavelength in the near infrared (NIR) window (650 - 950 nm) allows a deeper tissue penetration and minimal signal absorption compared to wavelengths below 650 nm. The major advantages using fluorescence OI is that it is cheap, fast and easy to implement in different animal models. Activatable fluorescent probes are optically silent in their inactivated states, but become highly fluorescent when activated by a protease. Activated MMPs lead to tissue destruction and play an important role for disease progression in delayed-type hypersensitivity reactions (DTHRs) such as RA and CHR. Furthermore, MMPs are the key proteases for cartilage and bone degradation and are induced by macrophages, fibroblasts and chondrocytes in response to pro-inflammatory cytokines. Here we use a probe that is activated by the key MMPs like MMP-2, -3, -9 and -13 and describe an imaging protocol for near infrared fluorescence OI of MMP activity in RA and control mice 6 days after disease induction as well as in mice with acute (1x challenge) and chronic (5x challenge) CHR on the right ear compared to healthy ears.

  8. Towards Fluorescence In Vivo Hybridization (FIVH) Detection of H. pylori in Gastric Mucosa Using Advanced LNA Probes

    DEFF Research Database (Denmark)

    Fontenete, Sílvia; Leite, Marina; Guimarães, Nuno

    2015-01-01

    acid (LNA)/ 2' O-methyl RNA (2'OMe) probe using standard phosphoramidite chemistry and FISH hybridization was then successfully performed both on adhered and suspended bacteria at 37°C. In this work we simplified, shortened and adapted FISH to work at gastric pH values, meaning that the hybridization...... step now takes only 30 minutes and, in addition to the buffer, uses only urea and probe at non-toxic concentrations. Importantly, the sensitivity and specificity of the FISH method was maintained in the range of conditions tested, even at low stringency conditions (e.g., low pH). In conclusion......In recent years, there have been several attempts to improve the diagnosis of infection caused by Helicobacter pylori. Fluorescence in situ hybridization (FISH) is a commonly used technique to detect H. pylori infection but it requires biopsies from the stomach. Thus, the development of an in vivo...

  9. Scattered and Fluorescent Photon Track Reconstruction in a Biological Tissue

    Directory of Open Access Journals (Sweden)

    Maria N. Kholodtsova

    2014-01-01

    Full Text Available Appropriate analysis of biological tissue deep regions is important for tumor targeting. This paper is concentrated on photons’ paths analysis in such biotissue as brain, because optical probing depth of fluorescent and excitation radiation differs. A method for photon track reconstruction was developed. Images were captured focusing on the transparent wall close and parallel to the source fibres, placed in brain tissue phantoms. The images were processed to reconstruct the photons most probable paths between two fibres. Results were compared with Monte Carlo simulations and diffusion approximation of the radiative transfer equation. It was shown that the excitation radiation optical probing depth is twice more than for the fluorescent photons. The way of fluorescent radiation spreading was discussed. Because of fluorescent and excitation radiation spreads in different ways, and the effective anisotropy factor, geff, was proposed for fluorescent radiation. For the brain tissue phantoms it were found to be 0.62±0.05 and 0.66±0.05 for the irradiation wavelengths 532 nm and 632.8 nm, respectively. These calculations give more accurate information about the tumor location in biotissue. Reconstruction of photon paths allows fluorescent and excitation probing depths determination. The geff can be used as simplified parameter for calculations of fluorescence probing depth.

  10. Europium-decorated graphene quantum dots as a fluorescent probe for label-free, rapid and sensitive detection of Cu{sup 2+} and L-cysteine

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Liping [College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 (China); Song, Xinhong; Chen, Yiying; Rong, Mingcong; Wang, Yiru [Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 (China); Zhao, Li; Zhao, Tingting [Xiamen Huaxia College, Xiamen, 361024 (China); Chen, Xi, E-mail: xichen@xmu.edu.cn [Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 (China); State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005 (China)

    2015-09-03

    In this work, europium-decorated graphene quantum dots (Eu-GQDs) were prepared by treating three-dimensional Eu-decorated graphene (3D Eu-graphene) via a strong acid treatment. Various characterizations revealed that Eu atoms were successfully complexed with the oxygen functional groups on the surface of graphene quantum dots (GQDs) with the atomic ratio of 2.54%. Compared with Eu free GQDs, the introduction of Eu atoms enhanced the electron density and improved the surface chemical activities of Eu-GQDs. Therefore, the obtained Eu-GQDs were used as a novel “off-on” fluorescent probe for the label-free determination of Cu{sup 2+} and L-cysteine (L-Cys) with high sensitivity and selectivity. The fluorescence intensity of Eu-GQDs was quenched in the presence of Cu{sup 2+} owing to the coordination reaction between Cu{sup 2+} and carboxyl groups on the surface of the Eu-GQDs. The fluorescence intensity of Eu-GQDs recovered with the subsequent addition of L-Cys because of the strong affinity of Cu{sup 2+} to L-Cys via the Cu–S bond. The experimental results showed that the fluorescence variation of the proposed approach had a good linear relationship in the range of 0.1–10 μM for Cu{sup 2+} and 0.5–50 μM for L-Cys with corresponding detection limits of 0.056 μM for Cu{sup 2+} and 0.31 μM for L-Cys. The current approach also displayed a special response to Cu{sup 2+} and L-Cys over the other co-existing metal ions and amino acids, and the results obtained from buffer-diluted serum samples suggested its applicability in biological samples. - Highlights: • The europium-decorated graphene quantum dots (Eu-GQDs) have been successfully prepared. • Various characterizations results proved that Eu atoms were successfully introduced into graphene quantum dots. • The introduced Eu atoms changed the electron density and surface chemical activities of Eu-GQDs. • Eu-GQDs were used as an “off-on” fluorescent probe for Cu{sup 2+} and L-cysteine detection

  11. Carbon quantum dots-based recyclable real-time fluorescence assay for alkaline phosphatase with adenosine triphosphate as substrate.

    Science.gov (United States)

    Qian, Zhaosheng; Chai, Lujing; Tang, Cong; Huang, Yuanyuan; Chen, Jianrong; Feng, Hui

    2015-03-03

    A convenient, reliable, and highly sensitive real-time assay for alkaline phosphatase (ALP) activity in the continuous and recyclable way is established on the basis of aggregation and disaggregation of carbon quantum dots (CQDs) through the competitive assay approach. CQDs and adenosine triphosphate (ATP) were used as the fluorescent indicator and substrate for ALP activity assessment, respectively. Richness of carboxyl groups on the surface of CQDs enables their severe aggregation triggered by cerium ions, which results in effective fluorescence quenching. Under the catalytic hydrolysis of ALP, ATP can be rapidly transformed to phosphate ions. Stronger affinity of phosphate ions to cerium ions than carboxyl groups is taken advantage of to achieve fluorescence recovery induced by redispersion of CQDs in the presence of ALP and ATP. Quantitative evaluation of ALP activity in a broad range from 4.6 to 383.3 U/L with the detection limit of 1.4 U/L can be realized in this way, which endows the assay with high enough sensitivity for practical detection in human serum. The assay can be used in a recyclable way for more than three times since the generated product CePO4 as a precipitate can be easily removed from the standard assay system. This strategy broadens the sensing application of fluorescent CQDs with excellent biocompatibility and provides an example based on disaggregation in optical probe development.

  12. A fluorescent DNA based probe for Hg(II) based on thymine-Hg(II)-thymine interaction and enrichment via magnetized graphene oxide.

    Science.gov (United States)

    Li, Meng-Ke; Hu, Liu-Yin; Niu, Cheng-Gang; Huang, Da-Wei; Zeng, Guang-Ming

    2018-03-03

    The authors describe a fluorometric assay for the determination of Hg(II). A naphthalimide derivative is used as a label for a thymine (T) rich ssDNA, and graphene oxide magnetized with Fe 3 O 4 nanoparticles acts as a quencher and preconcentrators. In the absence of Hg(II), the labeled ssDNA does not separate from the magnetized graphene oxide. As a result, fluorescence is fully quenched. In the presence of Hg(II), a T-Hg(II)-T link is formed dues to the highly affinity between T and Hg(II). Hence, fluorescence is restored. The assay has a linear response in the 1.0 to 10.0 nM Hg(II) concentration range, and a 0.65 nM detection limit. The method is selective and sensitive. It was applied to the analysis of spiked environmental water samples, and data agreed well with those obtained by atomic fluorescence spectrometry. Graphical abstract Strategy of a fluorescent probe for detecting Hg(II). The method has a 0.65 nM detection limit and is selective. MGO: magnetized graphene oxide, AHN: a fluorescent derivative of naphthalimide.

  13. Analysis of Cholesterol Trafficking with Fluorescent Probes

    DEFF Research Database (Denmark)

    Maxfield, Frederick R.; Wustner, Daniel

    2012-01-01

    Cholesterol plays an important role in determining the biophysical properties of biological membranes, and its concentration is tightly controlled by homeostatic processes. The intracellular transport of cholesterol among organelles is a key part of the homeostatic mechanism, but sterol transport...... that can bind to cholesterol to reveal its distribution in cells. We also discuss the use of intrinsically fluorescent sterols that closely mimic cholesterol, as well as some minimally modified fluorophore-labeled sterols. Methods for imaging these sterols by conventional fluorescence microscopy...... and by multiphoton microscopy are described. Some label-free methods for imaging cholesterol itself are also discussed briefly....

  14. Development of a carbazole-based fluorescence probe for G-quadruplex DNA: The importance of side-group effect on binding specificity

    Science.gov (United States)

    Wang, Ming-Qi; Ren, Gui-Ying; Zhao, Shuang; Lian, Guang-Chang; Chen, Ting-Ting; Ci, Yang; Li, Hong-Yao

    2018-06-01

    G-quadruplex DNAs are highly prevalent in the human genome and involved in many important biological processes. However, many aspects of their biological mechanism and significance still need to be elucidated. Therefore, the development of fluorescent probes for G-quadruplex detection is important for the basic research. We report here on the development of small molecular dyes designed on the basis of carbazole scaffold by introducing styrene-like substituents at its 9-position, for the purpose of G-quadruplex recognition. Results revealed that the side group on the carbazole scaffold was very important for their ability to selectively recognize G-quadruplex DNA structures. 1a with the pyridine side group displayed excellent fluorescence signal turn-on property for the specific discrimination of G-quadruplex DNAs against other nucleic acids. The characteristics of 1a were further investigated with UV-vis spectrophotometry, fluorescence, circular dichroism, FID assay and molecular docking to validate the selectivity, sensitivity and detailed binding mode toward G-quadruplex DNAs.

  15. Spectral-fluorescent study of the interaction of the polymethine dye probe Cyan 2 with chondroitin-4-sulfate

    Science.gov (United States)

    Tatikolov, Alexander S.; Akimkin, Timofey M.; Panova, Ina G.; Yarmoluk, Sergiy M.

    2017-04-01

    The noncovalent interaction of the polymethine dye probe 3,3‧,9-trimethylthiacarbocyanine iodide (Cyan 2) with chondroitin-4-sulfate (C4S) in buffer solutions with different pH and in water in the absence of buffers has been studied by spectral-fluorescent methods. It has been shown that in all media studied, at relatively high concentrations, the dye is bound to C4S mainly as a monomer, which is accompanied by a steep rise of fluorescence (the intermediate formation of dye aggregates on the biopolymer is also observed). From the dependence of the fluorescence quantum yield on the concentration of C4S, the parameters of binding of the dye monomer to C4S were obtained: the effective binding constant K, the number of the monomeric C4S units n per one dye monomer bound to C4S, and the fluorescence quantum yield of the bound dye monomer Φfb. The dependence of Φfb (and K) on pH of the medium is not monotonic: it has a minimum in the region of neutral pH and a growth in the regions of acid and basic pH. This can be explained by changing the charge of a C4S macromolecule as a function of pH and related conformational alterations in the biopolymer, which can affect the rigidity of a dye molecule and the energy of its interaction with the biopolymer.

  16. The fluorescence lifetime of BRI1-GFP as probe for the noninvasive determination of the membrane potential in living cells

    Science.gov (United States)

    Elgass, K.; Caesar, K.; Schleifenbaum, F.; Meixner, A. J.; Harter, K.

    2010-02-01

    As the excited state lifetime of a fluorescent molecule depends on its environment, it is possible to use it as a probe for physico-chemical parameters of the surrounding medium. Whereas this is well known for many solid guest/host systems, only few reports of quantitative, temporal resolved in vivo studies to monitor the nano-environment for a protein-coupled chromophore such as GFP are known from literature. Here we present a novel approach to determine the membrane potential of living (plant) cells based on the fluorescence lifetime (FLT) analysis of membrane-located GFP. By using confocal sample scanning microscopy (CSSM) combined with fluorescence lifetime imaging microscopy, we recently showed that the phytohormone brassinolide (BL) induces cell wall expansion and a decrease in the FLT of the BRI1-GFP in living cells of Arabidopsis thaliana seedlings. BRI1 is the dominant functional receptor for BL in Arabidopsis and locates to the plasma membrane. Although the dependence of the FLT of GFP on its physico-chemical environment such as pH-value, refractive index and pressure has been reported, the observed FLT decrease of BRI1-GFP in response to BL application could not be explained by these parameters. However, our in vivo FLT and CSSM analyses indicate that the BLinduced change in the FLT of BRI1-GFP is caused by hyperpolarisation of the plasma membrane (Em). Thus, our results indicate that BRI1-GFP serves as sensitive and non-invasive probe for recording the Em of the plasma membrane in living plant cells with high spatio-temporal resolution.

  17. The photostability of the commonly used biotin-4-fluorescein probe.

    Science.gov (United States)

    Haack, Richard A; Swift, Kerry M; Ruan, Qiaoqiao; Himmelsbach, Richard J; Tetin, Sergey Y

    2017-08-15

    Biotin-4-fluorescein (B4F) is a commonly used fluorescent probe for studying biotin-(strept)avidin interactions. During a characterization study of an anti-biotin antibody, using B4F as the probe, we noticed a discrepancy in the expected and experimentally determined number of biotin binding sites. Analytical testing showed that the biotin moiety in the probe undergoes a photosensitized oxidation to produce a mixture of biotin sulfoxides which has the potential to impact the quantitation of binding sites using this fluorescent probe. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Kinetic α-deuterium isotope effect as a probe of transition state structure and reaction mechanism in nucleoside hydrolysis

    International Nuclear Information System (INIS)

    Stein, R.L.

    1978-01-01

    Theoretical equilibrium α-deuterium isotope effects were calculated for systems modeling nucleoside and glycoside hydrolyses using a computer program (Burton, G.W., Sims, L.B., Wilson, J.C., and Fry, A.J., J. Amer. Chem. Soc., 99, 3374(1977)) which computes isotope effects directly from the expression of Biegeleisen and Mayer (Biegeleisen, J. and Mayer, M.G., J. Chem. Phys., 17, 675(1949)). For nucleoside hydrolysis proceeding through an oxocarbonium ion intermediate, KH/KD = 1.21 to 1.25; while for nucleoside hydrolysis proceeding through an oxocarbonium ion intermediate KH/KD = 1.15 to 1.19. The models used in the calculations were generated systematically and involved a minimum of subjectivity in the selection of molecular parameters. The isotope effects calculated formed the basis for the interpretation of experimental kinetic α-deuterium isotope effects for nucleoside and glycoside hydrolysis

  19. Hybridization-based biosensor containing hairpin probes and use thereof

    Science.gov (United States)

    Miller, Benjamin L.; Strohsahl, Christopher M.

    2010-10-12

    A sensor chip that includes: a fluorescence quenching surface; a nucleic acid probe that contains first and second ends with the first end bound to the fluorescence quenching surface, and is characterized by being able to self-anneal into a hairpin conformation; and a first fluorophore bound to the second end of the first nucleic acid molecule. When the first nucleic acid molecule is in the hairpin conformation, the fluorescence quenching surface substantially quenches fluorescent emissions by the first fluorophore; and when the first nucleic acid molecule is in a non-hairpin conformation, fluorescent emissions by the fluorophore are substantially free of quenching by the fluorescence quenching surface. Various nucleic acid probes, methods of making the sensor chip, biological sensor devices that contain the sensor chip, and their methods of use are also disclosed.

  20. Carbon dots as fluorescent probes for "off-on" detection of Cu2+ and L-cysteine in aqueous solution.

    Science.gov (United States)

    Zong, Jie; Yang, Xiaoling; Trinchi, Adrian; Hardin, Simon; Cole, Ivan; Zhu, Yihua; Li, Chunzhong; Muster, Tim; Wei, Gang

    2014-01-15

    Copper ion (Cu(2+)) and L-cysteine (L-Cys) detection is critically important since an abnormal level of Cu(2+) or L-Cys is an indicator for many diseases. In this paper, we demonstrate an "off-on" approach for highly sensitive and selective detection of Cu(2+) and L-Cys using carbon dots (CDs) as fluorescent probes. CDs were prepared by using mesoporous silica (MS) spheres as nanoreactors. The binding ability of CDs towards metal ions was examined by comparing the fluorescence intensities of CDs before and after the addition of the metal ions. The addition of Cu(2+) cations leads to their absorption on the surface of CDs and the significant fluorescence quench of CDs (turn-off). The resulting in CDs-Cu(2+) system was found to be sensitive to L-Cys. The addition of L-Cys not only serves to shelter the CDs effectively from being quenched, but also to reverse the quenching and restore the fluorescence (turn-on) due to its ability to remove Cu(2+) from the surface of CDs. This method is facile, rapid, low cost, and environment-friendly. A detection limit as low as 2.3×10(-8) M for Cu(2+) and 3.4×10(-10) M for L-Cys is obtained, which is promising for biological applications. © 2013 Elsevier B.V. All rights reserved.

  1. Phenylboronic acid functionalized reduced graphene oxide based fluorescence nano sensor for glucose sensing

    Energy Technology Data Exchange (ETDEWEB)

    Basiruddin, SK; Swain, Sarat K., E-mail: swainsk2@yahoo.co.in

    2016-01-01

    Reduced graphene has emerged as promising tools for detection based application of biomolecules as it has high surface area with strong fluorescence quenching property. We have used the concept of fluorescent quenching property of reduced graphene oxide to the fluorescent probes which are close vicinity of its surface. In present work, we have synthesized fluorescent based nano-sensor consist of phenylboronic acid functionalized reduced graphene oxide (rGO–PBA) and di-ol modified fluorescent probe for detection of biologically important glucose molecules. This fluorescent graphene based nano-probe has been characterized by high resolution transmission electron microscope (HRTEM), Atomic force microscope (AFM), UV–visible, Photo-luminescence (PL) and Fourier transformed infrared (FT-IR) spectroscopy. Finally, using this PBA functionalized reduced GO based nano-sensor, we were able to detect glucose molecule in the range of 2 mg/mL to 75 mg/mL in aqueous solution of pH 7.4. - Highlights: • Easy and simple synthesis of PBA functionalized reduced GO based nano probe. • PBA functionalized reduced GO graphene based nano-probes are characterized. • PBA functionalized reduced GO nano probe is used to detect glucose molecules. • It is very cost-effective and enzyme-free detection of glucose in solution.

  2. New turn-on fluorescent and colorimetric probe for cyanide detection based on BODIPY-salicylaldehyde and its application in cell imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sukato, Rangsarit [Program of Petrochemistry and Polymer Science, Chulalongkorn University, Bangkok 10330 (Thailand); Sangpetch, Nuanphan; Palaga, Tanapat [Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330 (Thailand); Jantra, Suthikorn; Vchirawongkwin, Viwat; Jongwohan, Chanantida [Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Sukwattanasinitt, Mongkol [Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Wacharasindhu, Sumrit, E-mail: sumrit.w@chula.ac.th [Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand)

    2016-08-15

    Highlights: • A novel salicylaldehyde-BODIPY fluorescent sensor is prepared. • The sensor shows dual colorimetric & turn-on fluorescence response to cyanide ion. • Detection limit is 0.88 μM (below WHO standard for drinking water). • It is effective for cyanide detection an in vitro cellular system. - Abstract: Development of cyanide sensor is important as the anion is harmful to human health and the environment. Herein, a new colorimetric and fluorescent probe GSB based on boron dipyrrole-methene (BODIPY) containing salicylaldehyde group for cyanide detection has been reported. GSB undergoes exclusive colorimetric change from orange to colorless and exhibits selective fluorescence turn-on at 504 nm upon the addition of cyanide. Other 13 anions give almost no interference under physiological condition. Detection limit of the new cyanide-sensing GSB is 0.88 μM, which is below World Health Organization (WHO) recommended level in drinking water. A calculation by density functional theory (DFT) shows suppression of photoinduced electron transfer (PET) mechanism along with the interruption of π-conjugation between salicylaldehyde and BODIPY core by cyanide anion. Cell imaging studies demonstrated that GSB is compatible and capable of sensing cyanide anion in living cells.

  3. New turn-on fluorescent and colorimetric probe for cyanide detection based on BODIPY-salicylaldehyde and its application in cell imaging

    International Nuclear Information System (INIS)

    Sukato, Rangsarit; Sangpetch, Nuanphan; Palaga, Tanapat; Jantra, Suthikorn; Vchirawongkwin, Viwat; Jongwohan, Chanantida; Sukwattanasinitt, Mongkol; Wacharasindhu, Sumrit

    2016-01-01

    Highlights: • A novel salicylaldehyde-BODIPY fluorescent sensor is prepared. • The sensor shows dual colorimetric & turn-on fluorescence response to cyanide ion. • Detection limit is 0.88 μM (below WHO standard for drinking water). • It is effective for cyanide detection an in vitro cellular system. - Abstract: Development of cyanide sensor is important as the anion is harmful to human health and the environment. Herein, a new colorimetric and fluorescent probe GSB based on boron dipyrrole-methene (BODIPY) containing salicylaldehyde group for cyanide detection has been reported. GSB undergoes exclusive colorimetric change from orange to colorless and exhibits selective fluorescence turn-on at 504 nm upon the addition of cyanide. Other 13 anions give almost no interference under physiological condition. Detection limit of the new cyanide-sensing GSB is 0.88 μM, which is below World Health Organization (WHO) recommended level in drinking water. A calculation by density functional theory (DFT) shows suppression of photoinduced electron transfer (PET) mechanism along with the interruption of π-conjugation between salicylaldehyde and BODIPY core by cyanide anion. Cell imaging studies demonstrated that GSB is compatible and capable of sensing cyanide anion in living cells.

  4. Anti-VEGF antibody conjugated CdHgTe quantum dots as a fluorescent probe for imaging in living mouse

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Lili; Cui, Hongjing [Department of Analytical Chemistry, China Pharmaceutical University, Nanjing (China); Liu, Yu [Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing (China); Zhong, Wenying, E-mail: wyzhong@cpu.edu.cn [Department of Analytical Chemistry, China Pharmaceutical University, Nanjing (China); Key laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing (China)

    2016-05-15

    The dual-function anti-VEGF antibody conjugated CdHgTe quantum dots with good targeting property was successfully prepared. In this system, anti-VEGF antibody is not only a target agent but also a therapeutic drug. The anti-VEGF antibody conjugated near-infrared quantum dots can achieve the purposes of detection and treatment at the same time. As-prepared dual-function fluorescent probe in this work has been successfully applied for in vivo and in vitro imaging, which is promising in rapid tumor detection.

  5. Naphthalene-based fluorescent probes for glutathione and their applications in living cells and patients with sepsis

    Science.gov (United States)

    Li, Jun; Kwon, Younghee; Chung, Kyung Soo; Lim, Chang Su; Lee, Dayoung; Yue, Yongkang; Yoon, Jisoo; Kim, Gyoungmi; Nam, Sang-Jip; Chung, Youn Wook; Kim, Hwan Myung; Yin, Caixia; Ryu, Ji-Hwan; Yoon, Juyoung

    2018-01-01

    Rationale: Among the biothiols-related diseases, sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection and can result in severe oxidative stress and damage to multiple organs. In this study, we aimed to develop a fluorescence chemosensor that can both detect GSH and further predict sepsis. Methods: In this study, two new naphthalene dialdehyde compounds containing different functional groups were synthesized, and the sensing abilities of these compounds towards biothiols and its applications for prediction of sepsis were investigated. Results: Our study revealed that the newly developed probe 6-methoxynaphthalene-2, 3-dicarbaldehyde (MNDA) has two-photon is capable of detecting GSH in live cells with two-photon microscopy (TPM) under the excitation at a wavelength of 900 nm. Furthermore, two GSH detection probes naphthalene-2,3-dicarboxaldehyde (NDA) and 6-fluoronaphthalene-2,3-dicarbaldehyde (FNDA) not only can detect GSH in living cells, but also showed clinical significance for the diagnosis and prediction of mortality in patients with sepsis. Conclusions: These results open up a promising direction for further medical diagnostic techniques. PMID:29507630

  6. Preparation and characterization of alginate based-fluorescent magnetic nanoparticles for fluorescence/magnetic resonance multimodal imaging applications

    Science.gov (United States)

    Kwon, Yong-Su; Choi, Kee-Bong; Lim, Hyungjun; Lee, Sunghwi; Lee, Jae-Jong

    2018-06-01

    Simple and versatile methodologies have been reported that customize the surface of superparamagnetic iron oxide (SPIO) nanoparticles and impart additional fluorescence capabilities to these contrast agents. Herein, we present the rational design, synthesis, characterization, and biological applications of a new magnetic-based fluorescent probe. The dual modality imaging protocol was developed by labeling fluorophore with alginate natural polymers that have excellent biocompatibility and biodegradability, and using gelification method to form nanocomposites containing SPIO. The formation of alginate-based fluorescent magnetic (AFM) nanoparticles was observed in spherical and elliptical forms with a diameter of less than 500 nm by a transmission electron microscope (TEM). The fluorescent wavelength band in the range of 560 nm was also confirmed in the UV–visible spectrophotometer. In this study, we demonstrate that the multi-tasking design of AFM nanoparticles provides an ideal platform for building balanced dual-image probes of magnetic resonance imaging and optical imaging.

  7. Intracellular Biosynthesis of Fluorescent CdSe Quantum Dots in Bacillus subtilis: A Strategy to Construct Signaling Bacterial Probes for Visually Detecting Interaction Between Bacillus subtilis and Staphylococcus aureus.

    Science.gov (United States)

    Yan, Zheng-Yu; Ai, Xiao-Xia; Su, Yi-Long; Liu, Xin-Ying; Shan, Xiao-Hui; Wu, Sheng-Mei

    2016-02-01

    In this work, fluorescent Bacillus subtilis (B. subtilis) cells were developed as probes for imaging applications and to explore behaviorial interaction between B. subtilis and Staphylococcus aureus (S. aureus). A novel biological strategy of coupling intracellular biochemical reactions for controllable biosynthesis of CdSe quantum dots by living B. subtilis cells was demonstrated, through which highly luminant and photostable fluorescent B. subtilis cells were achieved with good uniformity. With the help of the obtained fluorescent B. subtilis cells probes, S. aureus cells responded to co-cultured B. subtilis and to aggregate. The degree of aggregation was calculated and nonlinearly fitted to a polynomial model. Systematic investigations of their interactions implied that B. subtilis cells inhibit the growth of neighboring S. aureus cells, and this inhibition was affected by both the growth stage and the amount of surrounding B. subtilis cells. Compared to traditional methods of studying bacterial interaction between two species, such as solid culture medium colony observation and imaging mass spectrometry detection, the procedures were more simple, vivid, and photostable due to the efficient fluorescence intralabeling with less influence on the cells' surface, which might provide a new paradigm for future visualization of microbial behavior.

  8. Subunits of highly Fluorescent Protein R-Phycoerythrin as Probes for Cell Imaging and Single-Molecule Detection

    Energy Technology Data Exchange (ETDEWEB)

    Isailovic, Dragan [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    The purposes of our research were: (1) To characterize subunits of highly fluorescent protein R-Phycoerythrin (R-PE) and check their suitability for single-molecule detection (SMD) and cell imaging, (2) To extend the use of R-PE subunits through design of similar proteins that will be used as probes for microscopy and spectral imaging in a single cell, and (3) To demonstrate a high-throughput spectral imaging method that will rival spectral flow cytometry in the analysis of individual cells. We first demonstrated that R-PE subunits have spectroscopic and structural characteristics that make them suitable for SMD. Subunits were isolated from R-PE by high-performance liquid chromatography (HPLC) and detected as single molecules by total internal reflection fluorescence microscopy (TIRFM). In addition, R-PE subunits and their enzymatic digests were characterized by several separation and detection methods including HPLC, capillary electrophoresis, sodium dodecyl sulfate-polyacrilamide gel electrophoresis (SDS-PAGE) and HPLC-electrospray ionization mass spectrometry (ESI-MS). Favorable absorption and fluorescence of the R-PE subunits and digest peptides originate from phycoerythrobilin (PEB) and phycourobilin (PUB) chromophores that are covalently attached to cysteine residues. High absorption coefficients and strong fluorescence (even under denaturing conditions), broad excitation and emission fluorescence spectra in the visible region of electromagnetic spectrum, and relatively low molecular weights make these molecules suitable for use as fluorescence labels of biomolecules and cells. We further designed fluorescent proteins both in vitro and in vivo (in Escherichia coli) based on the highly specific attachment of PEB chromophore to genetically expressed apo-subunits of R-PE. In one example, apo-alpha and apo-beta R-PE subunits were cloned from red algae Polisiphonia boldii (P. boldii), and expressed in E. coli. Although expressed apo-subunits formed inclusion

  9. Ion beam induced fluorescence imaging in biological systems

    International Nuclear Information System (INIS)

    Bettiol, Andrew A.; Mi, Zhaohong; Vanga, Sudheer Kumar; Chen, Ce-belle; Tao, Ye; Watt, Frank

    2015-01-01

    Imaging fluorescence generated by MeV ions in biological systems such as cells and tissue sections requires a high resolution beam (<100 nm), a sensitive detection system and a fluorescent probe that has a high quantum efficiency and low bleaching rate. For cutting edge applications in bioimaging, the fluorescence imaging technique needs to break the optical diffraction limit allowing for sub-cellular structure to be visualized, leading to a better understanding of cellular function. In a nuclear microprobe this resolution requirement can be readily achieved utilizing low beam current techniques such as Scanning Transmission Ion Microscopy (STIM). In recent times, we have been able to extend this capability to fluorescence imaging through the development of a new high efficiency fluorescence detection system, and through the use of new novel fluorescent probes that are resistant to ion beam damage (bleaching). In this paper we demonstrate ion beam induced fluorescence imaging in several biological samples, highlighting the advantages and challenges associated with using this technique

  10. Fluorescence correction in electron probe microanalysis

    International Nuclear Information System (INIS)

    Castellano, Gustavo; Riveros, J.A.

    1987-01-01

    In this work, several expressions for characteristic fluorescence corrections are computed, for a compilation of experimental determinations on standard samples. Since this correction does not take significant values, the performance of the different models is nearly the same; this fact suggests the use of the simplest available expression. (Author) [es

  11. Fluorescent Gold Nanoprobes for the Sensitive and Selective Detection for Hg2+

    Directory of Open Access Journals (Sweden)

    Chai Fang

    2010-01-01

    Full Text Available Abstract A simple, cost-effective yet rapid and sensitive sensor for on-site and real-time Hg2+ detection based on bovine serum albumin functionalized fluorescent gold nanoparticles as novel and environmentally friendly fluorescent probes was developed. Using this probe, aqueous Hg2+ can be detected at 0.1 nM in a facile way based on fluorescence quenching. This probe was also applied to determine the Hg2+ in the lake samples, and the results demonstrate low interference and high sensitivity.

  12. Fluorescence molecular tomography in the presence of background fluorescence

    International Nuclear Information System (INIS)

    Soubret, Antoine; Ntziachristos, Vasilis

    2006-01-01

    Fluorescence molecular tomography is an emerging imaging technique that resolves the bio-distribution of engineered fluorescent probes developed for in vivo reporting of specific cellular and sub-cellular targets. The method can detect fluorochromes in picomole amounts or less, imaged through entire animals, but the detection sensitivity and imaging performance drop in the presence of background, non-specific fluorescence. In this study, we carried out a theoretical and an experimental investigation on the effect of background fluorescence on the measured signal and on the tomographic reconstruction. We further examined the performance of three subtraction methods based on physical models of photon propagation, using experimental data on phantoms and small animals. We show that the data pre-processing with subtraction schemes can improve image quality and quantification when non-specific background florescence is present

  13. Fluorescent sensors based on quinoline-containing styrylcyanine: determination of ferric ions, hydrogen peroxide, and glucose, pH-sensitive properties and bioimaging.

    Science.gov (United States)

    Yang, Xiaodong; Zhao, Peiliang; Qu, Jinqing; Liu, Ruiyuan

    2015-08-01

    A novel styrylcyanine-based fluorescent probe 1 was designed and synthesized via facile methods. Ferric ions quenched the fluorescence of probe 1, whereas the addition of ferrous ions led to only small changes in the fluorescence signal. When hydrogen peroxide was introduced into the solution containing probe 1 and Fe(2+) , Fe(2+) was oxidized to Fe(3+), resulting in the quenching of the fluorescence. The probe 1/Fe(2+) solution fluorescence could also be quenched by H2 O2 released from glucose oxidation by glucose oxidase (GOD), which means that probe 1/Fe(2+) platform could be used to detect glucose. Probe 1 is fluorescent in basic and neutral media but almost non-fluorescent in strong acidic environments. Such behaviour enables it to work as a fluorescent pH sensor in both the solution and solid states and as a chemosensor for detecting volatile organic compounds with high acidity and basicity. Subsequently, the fluorescence microscopic images of probe 1 in live cells and in zebrafish were achieved successfully, suggesting that the probe has good cell membrane permeability and a potential application for imaging in living cells and living organisms. Copyright © 2014 John Wiley & Sons, Ltd.

  14. Inference of protein diffusion probed via fluorescence correlation spectroscopy

    Science.gov (United States)

    Tsekouras, Konstantinos

    2015-03-01

    Fluctuations are an inherent part of single molecule or few particle biophysical data sets. Traditionally, ``noise'' fluctuations have been viewed as a nuisance, to be eliminated or minimized. Here we look on how statistical inference methods - that take explicit advantage of fluctuations - have allowed us to draw an unexpected picture of single molecule diffusional dynamics. Our focus is on the diffusion of proteins probed using fluorescence correlation spectroscopy (FCS). First, we discuss how - in collaboration with the Bustamante and Marqusee labs at UC Berkeley - we determined using FCS data that individual enzymes are perturbed by self-generated catalytic heat (Riedel et al, Nature, 2014). Using the tools of inference, we found how distributions of enzyme diffusion coefficients shift in the presence of substrate revealing that enzymes performing highly exothermic reactions dissipate heat by transiently accelerating their center of mass following a catalytic reaction. Next, when molecules diffuse in the cell nucleus they often appear to diffuse anomalously. We analyze FCS data - in collaboration with Rich Day at the IU Med School - to propose a simple model for transcription factor binding-unbinding in the nucleus to show that it may give rise to apparent anomalous diffusion. Here inference methods extract entire binding affinity distributions for the diffusing transcription factors, allowing us to precisely characterize their interactions with different components of the nuclear environment. From this analysis, we draw key mechanistic insight that goes beyond what is possible by simply fitting data to ``anomalous diffusion'' models.

  15. Remote fluorescent penetrant system sheds new light on cracking

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    A remotely operated fluorescent penetrant inspection system developed in Sweden has successfully identified very small cracks -less than 2mm in length and less than 0.2mm in depth. The method, which is being patented, is applicable to all sizes of tubing, as well as other types of flat or curved surfaces. The system consists of a specially designed probe attached to a flexible hose. The probe is positioned by a remotely operated pusher-puller, which can be attached to any kind of robot. The pusher-puller is equipped with electrical motors and encoders for exact positioning at any given location. The hose is attached to a pump and valve unit remote from the item under test, located in the same area as the control equipment for the pusher-puller and the robot. Once the probe has been positioned in the area of interest, it is able to apply fluorescent penetrant test fluid remotely to the surface under test, using a system of inflatable seals. A fluorescent print is made on the probe head, which is then removed from the tube and another probe head fitted for testing of the next tube. Testing takes about 10 minutes per tube. To take measurements, a photograph of the probe head can be taken under ultraviolet light. Manual transfer of the fluorescent print under ultraviolet light to a transparent plastic sheet, temporarily wrapped around the probe head, is also done. The plastic sheet is then unfolded and copied in a normal photocopying machine, and a permanent record thus created. (author)

  16. Development of a novel fluorescent imaging probe for tumor hypoxia by use of a fusion protein with oxygen-dependent degradation domain of HIF-1α

    Science.gov (United States)

    Tanaka, Shotaro; Kizaka-Kondoh, Shinae; Harada, Hiroshi; Hiraoka, Masahiro

    2007-02-01

    More malignant tumors contain more hypoxic regions. In hypoxic tumor cells, expression of a series of hypoxiaresponsive genes related to malignant phenotype such as angiogenesis and metastasis are induced. Hypoxia-inducible factor-1 (HIF-1) is a master transcriptional activator of such genes, and thus imaging of hypoxic tumor cells where HIF-1 is active, is important in cancer therapy. We have been developing PTD-ODD fusion proteins, which contain protein transduction domain (PTD) and the VHL-mediated protein destruction motif in oxygen-dependent degradation (ODD) domain of HIF-1 alpha subunit (HIF-1α). Thus PTD-ODD fusion proteins can be delivered to any tissue in vivo through PTD function and specifically stabilized in hypoxic cells through ODD function. To investigate if PTD-ODD fusion protein can be applied to construct hypoxia-specific imaging probes, we first constructed a fluorescent probe because optical imaging enable us to evaluate a probe easily, quickly and economically in a small animal. We first construct a model fusion porein PTD-ODD-EGFP-Cy5.5 named POEC, which is PTD-ODD protein fused with EGFP for in vitro imaging and stabilization of fusion protein, and conjugated with a near-infrared dye Cy5.5. This probe is designed to be degraded in normoxic cells through the function of ODD domain and followed by quick clearance of free fluorescent dye. On the other hand, this prove is stabilized in hypoxic tumor cells and thus the dye is stayed in the cells. Between normoxic and hypoxic conditions, the difference in the clearance rate of the dye will reveals suited contrast for tumor-hypoxia imaging. The optical imaging probe has not been optimized yet but the results presented here exhibit a potential of PTD-ODD fusion protein as a hypoxia-specific imaging probe.

  17. Mercury speciation with fluorescent gold nanocluster as a probe.

    Science.gov (United States)

    Yang, Jian-Yu; Yang, Ting; Wang, Xiao-Yan; Chen, Ming-Li; Yu, Yong-Liang; Wang, Jian-Hua

    2018-05-11

    Fluorescent nanoparticles are widely used for sensing biologically significant species. However, it is rarely reported for the discrimination or speciation of metal species. In this work, we report for the first time the speciation of mercury (Hg 2+ ) and methylmercury (CH 3 Hg + ) by taking advantage of the fluorescence feature of folic acid-capped gold nanoclusters (FA-AuNCs). FA-Au NCs exhibit an average size of 2.08±0.15 nm and a maximum emission at λ ex /λ em = 280/440 nm with a quantum yield of 27.3%. It is interesting that Hg 2+ causes a significant quench on the fluorescence of FA-Au NCs, whereas CH 3 Hg + leads to a remarkable fluorescence enhancement. Based on this discriminative fluorescent response between Hg 2+ and CH 3 Hg + , a novel nanosensor for the speciation of CH 3 Hg + and Hg 2+ was developed, providing limits of detection (LOD) of 28 nM for Hg 2+ and 25 nM for CH 3 Hg + within 100-1000 nM. This sensing system is highly selective to mercury. Its practical applications were further demonstrated by the analysis of CH 3 Hg + and the speciation of mercury (CH 3 Hg + and Hg 2+ ) in environmental water and fish samples.

  18. Detection and enumeration of methanotrophs in acidic Sphagnum peat by 16S rRNA fluorescence in situ hybridization, including the use of newly developed oligonucleotide probes for Methylocella palustris.

    Science.gov (United States)

    Dedysh, S N; Derakshani, M; Liesack, W

    2001-10-01

    Two 16S rRNA-targeted oligonucleotide probes, Mcell-1026 and Mcell-181, were developed for specific detection of the acidophilic methanotroph Methylocella palustris using fluorescence in situ hybridization (FISH). The fluorescence signal of probe Mcell-181 was enhanced by its combined application with the oligonucleotide helper probe H158. Mcell-1026 and Mcell-181, as well as 16S rRNA oligonucleotide probes with reported group specificity for either type I methanotrophs (probes M-84 and M-705) or the Methylosinus/Methylocystis group of type II methanotrophs (probes MA-221 and M-450), were used in FISH to determine the abundance of distinct methanotroph groups in a Sphagnum peat sample of pH 4.2. M. palustris was enumerated at greater than 10(6) cells per g of peat (wet weight), while the detectable population size of type I methanotrophs was three orders of magnitude below the population level of M. palustris. The cell counts with probe MA-221 suggested that only 10(4) type II methanotrophs per g of peat (wet weight) were present, while the use of probe M-450 revealed more than 10(6) type II methanotroph cells per g of the same samples. This discrepancy was due to the fact that probe M-450 targets almost all currently known strains of Methylosinus and Methylocystis, whereas probe MA-221, originally described as group specific, does not detect a large proportion of Methylocystis strains. The total number of methanotrophic bacteria detected by FISH was 3.0 (+/-0.2) x 10(6) cells per g (wet weight) of peat. This was about 0.8% of the total bacterial cell number. Thus, our study clearly suggests that M. palustris and a defined population of Methylocystis spp. were the predominant methanotrophs detectable by FISH in an acidic Sphagnum peat bog.

  19. A unique dual recognition hairpin probe mediated fluorescence amplification method for sensitive detection of uracil-DNA glycosylase and endonuclease IV activities.

    Science.gov (United States)

    Wu, Yushu; Yan, Ping; Xu, Xiaowen; Jiang, Wei

    2016-03-07

    Uracil-DNA glycosylase (UDG) and endonuclease IV (Endo IV) play cooperative roles in uracil base-excision repair (UBER) and inactivity of either will interrupt the UBER to cause disease. Detection of UDG and Endo IV activities is crucial to evaluate the UBER process in fundamental research and diagnostic application. Here, a unique dual recognition hairpin probe mediated fluorescence amplification method was developed for sensitively and selectively detecting UDG and Endo IV activities. For detecting UDG activity, the uracil base in the probe was excised by the target enzyme to generate an apurinic/apyrimidinic (AP) site, achieving the UDG recognition. Then, the AP site was cleaved by a tool enzyme Endo IV, releasing a primer to trigger rolling circle amplification (RCA) reaction. Finally, the RCA reaction produced numerous repeated G-quadruplex sequences, which interacted with N-methyl-mesoporphyrin IX to generate an enhanced fluorescence signal. Alternatively, for detecting Endo IV activity, the uracil base in the probe was first converted into an AP site by a tool enzyme UDG. Next, the AP site was cleaved by the target enzyme, achieving the Endo IV recognition. The signal was then generated and amplified in the same way as those in the UDG activity assay. The detection limits were as low as 0.00017 U mL(-1) for UDG and 0.11 U mL(-1) for Endo IV, respectively. Moreover, UDG and Endo IV can be well distinguished from their analogs. This method is beneficial for properly evaluating the UBER process in function studies and disease prognoses.

  20. Fluorescence-Based Comparative Binding Studies of the Supramolecular Host Properties of PAMAM Dendrimers Using Anilinonaphthalene Sulfonates: Unusual Host-Dependent Fluorescence Titration Behavior

    Directory of Open Access Journals (Sweden)

    Natasa Stojanovic

    2010-04-01

    Full Text Available This work describes the fluorescence enhancement of the anilinonaphthalene sulfonate probes 1,8-ANS, 2,6-ANS, and 2,6-TNS via complexation with PAMAM dendrimer hosts of Generation 4, 5 and 6. The use of this set of three very closely related probes allows for comparative binding studies, with specific pairs of probes differing only in shape (1,8-ANS and 2,6-ANS, or in the presence of a methyl substituent (2,6-TNS vs. 2,6-ANS. The fluorescence of all three probes was significantly enhanced upon binding with PAMAM dendrimers, however in all cases except one, a very unusual spike was consistently observed in the host fluorescence titration plots (fluorescence enhancement vs. host concentration at low dendrimer concentration. This unprecedented fluorescence titration curve shape makes fitting the data to a simple model such as 1:1 or 2:1 host: guest complexation very difficult; thus only qualitative comparisons of the relative binding of the three guests could be made based on host titrations. In the case of G4 and G5 dendrimers, the order of binding strength was qualitatively determined to be 1,8-ANS < 2,6-ANS indicating that the more streamlined 2,6-substituted probes are a better match for the dendrimer cavity shape than the bulkier 1,8-substituted probe. This order of binding strength was also indicated by double fluorometric titration experiments, involving both host and guest titrations. Further double fluorometric titration experiments on 2,6-ANS in G4 dendrimer revealed a host concentration-dependent change in the nature of the host: guest complexation, with multiple guests complexed per host molecule at very low host concentrations, but less than one guest per host at higher concentrations.

  1. A Series of Fluorescent and Colorimetric Chemodosimeters for Selective Recognition of Cyanide Based on the FRET Mechanism.

    Science.gov (United States)

    Hua, Ying-Xi; Shao, Yongliang; Wang, Ya-Wen; Peng, Yu

    2017-06-16

    A series of fluorescence "turn-on" probes (PY, AN, NA, B1, and B2) have been developed and successfully applied to detect cyanide anions based on the Michael addition reaction and FRET mechanism. These probes demonstrated good selectivity, high sensitivity, and very fast recognition for CN - . In particular, the fluorescence response of probe NA finished within 3 s. Low limits of detection (down to 63 nM) are also obtained in these probes with remarkable fluorescence enhancement factors. In addition, fluorescence colors of these probes turned to blue, yellow, or orange upon sensing CN - . In UV-vis mode, all of them showed ratiometric response for CN - . 1 H NMR titration experiments and TDDFT calculations were taken to verify the mechanism of the specific reaction and fluorescence properties of the corresponding compounds. Moreover, silica gel plates with these probes were also fabricated and utilized to detect cyanide.

  2. A fluorescent nanosensor based on graphene quantum dots-aptamer probe and graphene oxide platform for detection of lead (II) ion.

    Science.gov (United States)

    Qian, Zhao Sheng; Shan, Xiao Yue; Chai, Lu Jing; Chen, Jian Rong; Feng, Hui

    2015-06-15

    The sensitive detection of heavy metal ions in the organism and aquatic ecosystem using nanosensors based on environment friendly and biocompatible materials still remains a challenge. A fluorescent turn-on nanosensor for lead (II) detection based on biocompatible graphene quantum dots and graphene oxide by employment of Pb(2+)-induced G-quadruplex formation was reported. Graphene quantum dots with high quantum yield, good biocompatibility were prepared and served as the fluorophore of Pb(2+) probe. Fluorescence turn-off of graphene quantum dots is easily achieved through efficient photoinduced electron transfer between graphene quantum dots and graphene oxide, and subsequent fluorescence turn-on process is due to the formation of G-quadraplex aptamer-Pb(2+) complex triggered by the addition of Pb(2+). This nanosensor can distinguish Pb(2+) ion from other ions with high sensitivity and good reproducibility. The detection method based on this nanosensor possesses a fast response time of one minute, a broad linear span of up to 400.0 nM and ultralow detection limit of 0.6 nM. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. One-pot evaporation–condensation strategy for green synthesis of carbon nitride quantum dots: An efficient fluorescent probe for ion detection and bioimaging

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Ying; Zhang, Yumin [Center for Composite Materials, Harbin Institute of Technology, Harbin 150001 (China); Gao, Tangling [Institute of Petrochemistry, Heilongjiang Academy of Sciences, Harbin 150040 (China); Yao, Tai [Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150001 (China); Han, Jiecai [Center for Composite Materials, Harbin Institute of Technology, Harbin 150001 (China); Han, Zhengbin, E-mail: hanzhengbin@hit.edu.cn [School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001 (China); Zhang, Zhihua [Liaoning Key Materials Laboratory for Railway, School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028 (China); Wu, Qiong [School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001 (China); Song, Bo, E-mail: songbo@hit.edu.cn [Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150001 (China); Department of Physics, Harbin Institute of Technology, Harbin 150001 (China)

    2017-06-15

    Herein, highly blue graphitic carbon nitride quantum dots (g-CNQDs) were synthesized by one-step microwave-assisted evaporation–condensation strategy using bulk g-C{sub 3}N{sub 4} as the precursor within 5 min. In contrast with conventional chemical routes, the as-synthesized g-CNQDs exhibited a high crystalline quality, excellent fluorescence characteristics, and a narrow size distribution with an average diameter of 3.5 ± 0.5 nm. More importantly, by using a household microwave oven, this method has the advantages of wide accessibility, environmental friendliness, a high yield of ∼40%, and can be facilely synthesized in a large scale (scaled up to a gram scale). Notably, owing to the absence of any organic reagents, the blueas-prepared g-CNQDs show the excitation wavelength-independent photoluminescence (PL) behavior. Moreover, benefiting from the stable PL emission, good water solubility, and extraordinary biocompatibility with a high quantum yield of ∼17%, the fluorescent g-CNQDs can serve as a potential sensitive and selective probe for Fe{sup 3+} detection with a super low detection limit of 2 nM and an effective labeling agent for live-cell imaging. This work provides a unique opportunity to obtain g-CNQDs in large scale via a facile route, which may pave the way for the further design of g-CNQDs with other applications. - Highlights: • Green synthesis of g-CNQDs via one-step evaporation-condensation method. • The g-CNQDs have shown high crystalline quality and intrinsic fluorescence features. • The fluorescent g-CNQDs can serve as a sensitive and selective probe to detect Fe{sup 3+} ions with a low detection limit of 2 nM. • g-CNQDs can serve as an effective labeling agent for live-cell imaging with extraordinary biocompatibility.

  4. One-pot evaporation–condensation strategy for green synthesis of carbon nitride quantum dots: An efficient fluorescent probe for ion detection and bioimaging

    International Nuclear Information System (INIS)

    Yin, Ying; Zhang, Yumin; Gao, Tangling; Yao, Tai; Han, Jiecai; Han, Zhengbin; Zhang, Zhihua; Wu, Qiong; Song, Bo

    2017-01-01

    Herein, highly blue graphitic carbon nitride quantum dots (g-CNQDs) were synthesized by one-step microwave-assisted evaporation–condensation strategy using bulk g-C_3N_4 as the precursor within 5 min. In contrast with conventional chemical routes, the as-synthesized g-CNQDs exhibited a high crystalline quality, excellent fluorescence characteristics, and a narrow size distribution with an average diameter of 3.5 ± 0.5 nm. More importantly, by using a household microwave oven, this method has the advantages of wide accessibility, environmental friendliness, a high yield of ∼40%, and can be facilely synthesized in a large scale (scaled up to a gram scale). Notably, owing to the absence of any organic reagents, the blueas-prepared g-CNQDs show the excitation wavelength-independent photoluminescence (PL) behavior. Moreover, benefiting from the stable PL emission, good water solubility, and extraordinary biocompatibility with a high quantum yield of ∼17%, the fluorescent g-CNQDs can serve as a potential sensitive and selective probe for Fe"3"+ detection with a super low detection limit of 2 nM and an effective labeling agent for live-cell imaging. This work provides a unique opportunity to obtain g-CNQDs in large scale via a facile route, which may pave the way for the further design of g-CNQDs with other applications. - Highlights: • Green synthesis of g-CNQDs via one-step evaporation-condensation method. • The g-CNQDs have shown high crystalline quality and intrinsic fluorescence features. • The fluorescent g-CNQDs can serve as a sensitive and selective probe to detect Fe"3"+ ions with a low detection limit of 2 nM. • g-CNQDs can serve as an effective labeling agent for live-cell imaging with extraordinary biocompatibility.

  5. Structural and dynamical aspects of skin studied by multiphoton excitation fluorescence microscopy-based methods

    DEFF Research Database (Denmark)

    Bloksgaard, Maria; Brewer, Jonathan R.; Bagatolli, Luis

    2013-01-01

    ' parameters. Specifically, by applying these methods, spatially resolved maps of water dipolar relaxation (generalized polarization function using the 6-lauroyl-2-(N,N-dimethylamino)naphthale probe), activity of protons (fluorescence lifetime imaging using a proton sensitive fluorescence probe--2,7-bis-(2......-carboxyethyl)-5-(and-6)-carboxyfluorescein) and diffusion coefficients of distinct fluorescence probes (raster imaging correlation spectroscopy) can be obtained from different regions of the tissue. Comparative studies of different tissue strata, but also between equivalent regions of normal and abnormal......This mini-review reports on applications of particular multiphoton excitation microscopy-based methodologies employed in our laboratory to study skin. These approaches allow in-depth optical sectioning of the tissue, providing spatially resolved information on specific fluorescence probes...

  6. Bridging fluorescence microscopy and electron microscopy

    NARCIS (Netherlands)

    Giepmans, Ben N. G.

    Development of new fluorescent probes and fluorescence microscopes has led to new ways to study cell biology. With the emergence of specialized microscopy units at most universities and research centers, the use of these techniques is well within reach for a broad research community. A major

  7. Asymmetric rotor-like probes to polarized fluorescence study of the macroscopically oriented uniaxial media: Model parameters recognition

    International Nuclear Information System (INIS)

    Buczkowski, M.; Fisz, J.J.

    2008-01-01

    In this paper the possibility of the numerical data modelling in the case of angle- and time-resolved fluorescence spectroscopy is investigated. The asymmetric fluorescence probes are assumed to undergo the restricted rotational diffusion in a hosting medium. This process is described quantitatively by the diffusion tensor and the aligning potential. The evolution of the system is expressed in terms of the Smoluchowski equation with an appropriate time-developing operator. A matrix representation of this operator is calculated, then symmetrized and diagonalized. The resulting propagator is used to generate the synthetic noisy data set that imitates results of experimental measurements. The data set serves as a groundwork to the χ 2 optimization, performed by the genetic algorithm followed by the gradient search, in order to recover model parameters, which are diagonal elements of the diffusion tensor, aligning potential expansion coefficients and directions of the electronic dipole moments. This whole procedure properly identifies model parameters, showing that the outlined formalism should be taken in the account in the case of analysing real experimental data

  8. Proteomics Insights into the Biomass Hydrolysis Potentials of a Hypercellulolytic Fungus Penicillium funiculosum.

    Science.gov (United States)

    Ogunmolu, Funso Emmanuel; Kaur, Inderjeet; Gupta, Mayank; Bashir, Zeenat; Pasari, Nandita; Yazdani, Syed Shams

    2015-10-02

    The quest for cheaper and better enzymes needed for the efficient hydrolysis of lignocellulosic biomass has placed filamentous fungi in the limelight for bioprospecting research. In our search for efficient biomass degraders, we identified a strain of Penicillium funiculosum whose secretome demonstrates high saccharification capabilities. Our probe into the secretome of the fungus through qualitative and label-free quantitative mass spectrometry based proteomics studies revealed a high abundance of inducible CAZymes and several nonhydrolytic accessory proteins. The preferential association of these proteins and the attending differential biomass hydrolysis gives an insight into their interactions and clues about possible roles of novel hydrolytic and nonhydrolytic proteins in the synergistic deconstruction of lignocellulosic biomass. Our study thus provides the first comprehensive insight into the repertoire of proteins present in a high-performing secretome of a hypercellulolytic Penicillium funiculosum, their relative abundance in the secretome, and the interaction dynamics of the various protein groups in the secretome. The gleanings from the stoichiometry of these interactions hold a prospect as templates in the design of cost-effective synthetic cocktails for the optimal hydrolysis of biomass.

  9. Use of oligodeoxynucleotide signature probes for identification of physiological groups of methylotrophic bacteria

    International Nuclear Information System (INIS)

    Tsien, H.C.; Bratina, B.J.; Tsuji, K.; Hanson, R.S.

    1990-01-01

    Oligodeoxynucleotide sequences that uniquely complemented 16S rRNAs of each group of methylotrophs were synthesized and used as hybridization probes for the identification of methylotrophic bacteria possessing the serine and ribulose monophosphate (RuMP) pathways for formaldehyde fixation. The specificity of the probes was determined by hybridizing radiolabeled probes with slot-blotted RNAs of methylotrophs and other eubacteria followed by autoradiography. The washing temperature was determined experimentally to be 50 and 52 degrees C for 9-α (serine pathway) and 10-γ (RuMP pathway) probes, respectively. RNAs isolated from serine pathway methylotrophs bound to probe 9-α, and RNAs from RuMP pathway methylotrophs bound to probe 10-γ. Nonmethylotrophic eubacterial RNAs did not bind to either probe. The probes were also labeled with fluorescent dyes. Cells fixed to microscope slides were hybridized with these probes, washed, and examined in a fluorescence microscope equipped with appropriate filter sets. Cells of methylotrophic bacteria possessing the serine or RuMP pathway specifically bind probes designed for each group. Samples with a mixture of cells of type I and II methanotrophs were detected and differentiated with single probes or mixed probes labeled with different fluorescent dyes, which enabled the detection of both types of cells in the same microscopic field

  10. Microwave-assisted synthesis of highly luminescent N- and S-co-doped carbon dots as a ratiometric fluorescent probe for levofloxacin.

    Science.gov (United States)

    Li, Huiyu; Xu, Yuan; Ding, Jie; Zhao, Li; Zhou, Tianyu; Ding, Hong; Chen, Yanhua; Ding, Lan

    2018-01-10

    Uniform N- and S-co-doped carbon dots (NSCDs) with fluorescence quantum yields of up to 64% were synthesized via a one-step microwave-assisted method. Ammonium citrate and L-cysteine act as precursors, and synthesis is completed in 2.5 min using a 750 W microwave oven to give a 62% yield. The NSCDs show bright blue fluorescence (with excitation/emission peaks at 353/426 nm) and have narrow size distribution. On exposure to levofloxacin (LEV), the emission maximum shifts to 499 nm. This effect was used to design ratiometric (2-wavelength) assays for LEV. The fluorometric method (based on measurement of the fluorescence intensity ratio at 499 and 426 nm) has a detection limit of 5.1 μg·L -1 (3σ/k) and a linear range that extends from 0.01 to 70 mg·L -1 . The method was applied to the determination of LEV in three kinds of spiked water samples and has recoveries in the range from 98.6 to 106.8%. The fluorescent probe described here is highly selective and sensitive. Graphical Abstract Highly luminescent N- and S-co-doped carbon dots were synthesized using AC (ammonium citrate) and Cys (L-cysteine) by microwave-assisted method, and were applied to the visual and ratiometric fluorescence determination of LEV (levofloxacin).

  11. Fluorescent probes for "off-on" highly sensitive detection of Hg²⁺ and L-cysteine based on nitrogen-doped carbon dots.

    Science.gov (United States)

    Zhang, Yi; Cui, Peipei; Zhang, Feng; Feng, Xiaoting; Wang, Yaling; Yang, Yongzhen; Liu, Xuguang

    2016-05-15

    Fluorescent nitrogen-doped carbon dots (NCDs) were synthesized by a facile, and low-cost one-step hydrothermal strategy using citric acid as carbon source and ammonia solution as nitrogen source for the first time. The obtained NCDs show stable blue fluorescence with a high quantum yield of 35.4%, along with the fluorescence lifetime of ca. 6.75 ns. Most importantly, Hg(2+) can completely quench the fluorescence of NCDs as a result of the formation of a non-fluorescent stable NCDs-Hg(2+) complex. Static fluorescence quenching towards Hg(2+) is proved by the Stern-Volmer equation, ultraviolet-visible absorption spectra, temperature dependent quenching and fluorescence lifetime measurements. Subsequently, the fluorescence of the NCDs-Hg(2+) system is completely recovered with the addition L-cysteine (L-Cys) owing to the dissociation of NCDs-Hg(2+) complex to form a more stable Hg(2+)-L-Cys complex by Hg(2+)-S bonding. Therefore, such NCDs can be used as an effective fluorescent "turn-off" probe for rapid, rather highly selective and sensitive detection of Hg(2+), with a limit of detection (LOD) as low as 1.48 nM and a linear detection range of 0-10 μM. Interestingly, NCDs-Hg(2+) system can be conveniently employed as a fluorescent "turn-on" sensor for highly selective and sensitive detection of L-Cys with a low LOD of 0.79 nM and a wide linear detection range of 0-50 μM. Further, the sensitivity of NCDs to Hg(2+) is preserved in tap water with a LOD of 1.65 nM and a linear detection range of 0-10 μM. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Preparation and preliminary characterization of crystallizing fluorescent derivatives of chicken egg white lysozyme

    Science.gov (United States)

    Sumida, John P.; Forsythe, Elizabeth L.; Pusey, Marc L.

    2001-11-01

    Fluorescence is one of the most versatile and powerful tools for the study of macromolecules. While most proteins are intrinsically fluorescent, working at crystallization concentrations require the use of covalently prepared derivatives added as tracers. This approach requires derivatives that do not markedly affect the crystal packing. We have prepared fluorescent derivatives of chicken egg white lysozyme with probes bound to one of two different sites on the protein molecule. Lucifer yellow and 5-(2-aminoethyl)aminonapthalene-1-sulfonic acid (EDANS) have been attached to the side chain carboxyl of Asp 101 using a carbodiimide coupling procedure. Asp 101 lies within the active site cleft, and it is believed that the probes are "buried" within that cleft. Lucifer yellow and EDANS probes with iodoacetamide reactive groups have been bound to His 15, located on the "back side" of the molecule relative to the active site. All the derivatives fluoresce in the solution and the crystalline states. Fluorescence characterization has focused on determination of binding effects on the probe quantum yield, lifetime, absorption and emission spectra, and quenching by added solutes. Quenching studies show that, as postulated, the Asp 101-bound probes are partially sheltered from the bulk solution by their location within the active site cleft. Probes bound to His 15 have quenching constants about equal to those for the free probes, indicating that this site is highly exposed to the bulk solution.

  13. Novel Fluorescent Microemulsion: Probing Properties, Investigating Mechanism, and Unveiling Potential Application.

    Science.gov (United States)

    Hou, Mengna; Dang, Leping; Liu, Tiankuo; Guo, Yun; Wang, Zhanzhong

    2017-08-09

    Nanoscale microemulsions have been utilized as delivery carriers for nutraceuticals and active biological drugs. Herein, we designed and synthesized a novel oil in water (O/W) fluorescent microemulsion based on isoamyl acetate, polyoxyethylene castor oil EL (CrEL), and water. The microemulsion emitted bright blue fluorescence, thus exhibiting its potential for active drug detection with label-free strategy. The microemulsion exhibited excitation-dependent emission and distinct red shift with longer excitation wavelengths. Lifetime and quantum yield of fluorescent microemulsion were 2.831 ns and 5.0%, respectively. An excellent fluorescent stability of the microemulsion was confirmed by altering pH, ionic strength, temperature, and time. Moreover, we proposed a probable mechanism of fluorochromic phenomenon, in connection with the aromatic ring structure of polyoxyethylene ether substituent in CrEL. Based on our findings, we concluded that this new fluorescent microemulsion is a promising drug carrier that can facilitate active drug detection with a label-free strategy. Although further research is required to understand the exact mechanism behind its fluorescence property, this work provided valuable guidance to develop new biosensors based on fluorescent microemulsion.

  14. Fluorescent biosensors enabled by graphene and graphene oxide.

    Science.gov (United States)

    Zhang, Huan; Zhang, Honglu; Aldalbahi, Ali; Zuo, Xiaolei; Fan, Chunhai; Mi, Xianqiang

    2017-03-15

    During the past few years, graphene and graphene oxide (GO) have attracted numerous attentions for the potential applications in various fields from energy technology, biosensing to biomedical diagnosis and therapy due to their various functionalization, high volume surface ratio, unique physical and electrical properties. Among which, graphene and graphene oxide based fluorescent biosensors enabled by their fluorescence-quenching properties have attracted great interests. The fluorescence of fluorophore or dye labeled on probes (such as molecular beacon, aptamer, DNAzymes and so on) was quenched after adsorbed on to the surface of graphene. While in the present of the targets, due to the strong interactions between probes and targets, the probes were detached from the surface of graphene, generating dramatic fluorescence, which could be used as signals for detection of the targets. This strategy was simple and economy, together with great programmable abilities of probes; we could realize detection of different kinds of species. In this review, we first briefly introduced the history of graphene and graphene oxide, and then summarized the fluorescent biosensors enabled by graphene and GO, with a detailed account of the design mechanism and comparison with other nanomaterials (e.g. carbon nanotubes and gold nanoparticles). Following that, different sensing platforms for detection of DNAs, ions, biomolecules and pathogens or cells as well as the cytotoxicity issue of graphene and GO based in vivo biosensing were further discussed. We hope that this review would do some help to researchers who are interested in graphene related biosening research work. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Using the fluorescence of DBO to study the aggregation of asphaltenes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zixin; Bohne, Cornelia [Department of Chemistry, University of Victoria (Canada)], email: xyang@uvic.ca

    2010-07-01

    Asphaltene, operationally defined as the fraction of bitumen that is insoluble in heptane but soluble in toluene, is the least characterized component of crude oil. It can aggregate at low concentrations, causing problems in the reservoir and during transport and processing. Fluorescence techniques have been employed to characterize asphaltenes, e.g. by adding external probes. DBO (2,3-diazabicyclo [2.2.2]oct-2-ene), a fluorescence probe molecule with a long fluorescence lifetime, was made sensitive to the presence of aliphatic C-H bonds. DBO was used as an external fluorescent probe to characterize the aggregation of Athabasca asphaltene. The lifetime of DBO was measured using single photon counting. Preliminary lifetime measurements show that AA-5 quenches the emission of DBO, leading to a shortening of the DBO lifetime. The abrupt decrease in lifetime may be related to the interaction of DBO with the AA-5 aggregate; further studies are being performed to test this hypothesis. In conclusion, DBO interacts with asphaltene components and has the potential for being used as a probe to study the asphaltene aggregation.

  16. Fluorescence imaging of reactive oxygen species by confocal laser scanning microscopy for track analysis of synchrotron X-ray photoelectric nanoradiator dose: X-ray pump-optical probe.

    Science.gov (United States)

    Jeon, Jae Kun; Han, Sung Mi; Kim, Jong Ki

    2016-09-01

    Bursts of emissions of low-energy electrons, including interatomic Coulomb decay electrons and Auger electrons (0-1000 eV), as well as X-ray fluorescence produced by irradiation of large-Z element nanoparticles by either X-ray photons or high-energy ion beams, is referred to as the nanoradiator effect. In therapeutic applications, this effect can damage pathological tissues that selectively take up the nanoparticles. Herein, a new nanoradiator dosimetry method is presented that uses probes for reactive oxygen species (ROS) incorporated into three-dimensional gels, on which macrophages containing iron oxide nanoparticles (IONs) are attached. This method, together with site-specific irradiation of the intracellular nanoparticles from a microbeam of polychromatic synchrotron X-rays (5-14 keV), measures the range and distribution of OH radicals produced by X-ray emission or superoxide anions ({\\rm{O}}_2^-) produced by low-energy electrons. The measurements are based on confocal laser scanning of the fluorescence of the hydroxyl radical probe 2-[6-(4'-amino)phenoxy-3H-xanthen-3-on-9-yl] benzoic acid (APF) or the superoxide probe hydroethidine-dihydroethidium (DHE) that was oxidized by each ROS, enabling tracking of the radiation dose emitted by the nanoradiator. In the range 70 µm below the irradiated cell, ^\\bullet{\\rm{OH}} radicals derived mostly from either incident X-ray or X-ray fluorescence of ION nanoradiators are distributed along the line of depth direction in ROS gel. In contrast, {\\rm{O}}_2^- derived from secondary electron or low-energy electron emission by ION nanoradiators are scattered over the ROS gel. ROS fluorescence due to the ION nanoradiators was observed continuously to a depth of 1.5 mm for both oxidized APF and oxidized DHE with relatively large intensity compared with the fluorescence caused by the ROS produced solely by incident primary X-rays, which was limited to a depth of 600 µm, suggesting dose enhancement as well as more

  17. [Molecular beacon based PNA-FISH method combined with fluorescence scanning for rapid detection of Listeria monocytogenes].

    Science.gov (United States)

    Wu, Shan; Zhang, Xiaofeng; Shuai, Jiangbing; Li, Ke; Yu, Huizhen; Jin, Chenchen

    2016-07-04

    To simplify the PNA-FISH (Peptide nucleic acid-fluorescence in situ hybridization) test, molecular beacon based PNA probe combined with fluorescence scanning detection technology was applied to replace the original microscope observation to detect Listeria monocytogenes The 5′ end and 3′ end of the L. monocytogenes specific PNA probes were labeled with the fluorescent group and the quenching group respectively, to form a molecular beacon based PNA probe. When PNA probe used for fluorescence scanning and N1 treatment as the control, the false positive rate was 11.4%, and the false negative rate was 0; when N2 treatment as the control, the false positive rate decreased to 4.3%, but the false negative rate rose to 18.6%. When beacon based PNA probe used for fluorescence scanning, taken N1 treatment as blank control, the false positive rate was 8.6%, and the false negative rate was 1.4%; taken N2 treatment as blank control, the false positive rate was 5.7%, and the false negative rate was 1.4%. Compared with PNA probe, molecular beacon based PNA probe can effectively reduce false positives and false negatives. The success rates of hybridization of the two PNA probes were 83.3% and 95.2% respectively; and the rates of the two beacon based PNA probes were 91.7% and 90.5% respectively, which indicated that labeling the both ends of the PNA probe dose not decrease the hybridization rate with the target bacteria. The combination of liquid phase PNA-FISH and fluorescence scanning method, can significantly improve the detection efficiency.

  18. Fluorescent carbon nanoparticle-based lateral flow biosensor for ultrasensitive detection of DNA.

    Science.gov (United States)

    Takalkar, Sunitha; Baryeh, Kwaku; Liu, Guodong

    2017-12-15

    We report a fluorescent carbon nanoparticle (FCN)-based lateral flow biosensor for ultrasensitive detection of DNA. Fluorescent carbon nanoparticle with a diameter of around 15nm was used as a tag to label a detection DNA probe, which was complementary with the part of target DNA. A capture DNA probe was immobilized on the test zone of the lateral flow biosensor. Sandwich-type hybridization reactions among the FCN-labeled DNA probe, target DNA and capture DNA probe were performed on the lateral flow biosensor. In the presence of target DNA, FCNs were captured on the test zone of the biosensor and the fluorescent intensity of the captured FCNs was measured with a portable fluorescent reader. After systematic optimizations of experimental parameters (the components of running buffers, the concentration of detection DNA probe used in the preparation of FCN-DNA conjugates, the amount of FCN-DNA dispensed on the conjugate pad and the dispensing cycles of the capture DNA probes on the test-zone), the biosensor could detect a minimum concentration of 0.4 fM DNA. This study provides a rapid and low-cost approach for DNA detection with high sensitivity, showing great promise for clinical application and biomedical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Spectroscopic investigation on interaction and sonodynamic damage of Riboflavin to DNA under ultrasonic irradiation by using Methylene Blue as fluorescent probe

    Science.gov (United States)

    Wang, Qi; Wu, Qiong; Wang, Jun; Chen, Dandan; Fan, Ping; Wang, Baoxin

    2014-01-01

    In this paper, the Riboflavin (RF) as a sonosensitizer and Methylene Blue (MB) as a fluorescent probe were used to study the interaction and sonodynamic damage to Deoxyribonucleic Acid (DNA) by fluorescence and UV-vis spectroscopy. The results showed that the RF could efficiently bind to DNA in aqueous solution and exchange with the MB through competing reaction. And then, under ultrasonic irradiation, the RF could obviously damage the DNA. In addition, the influencing factors such as ultrasonic irradiation time and RF concentration on the sonodynamic damage to DNA were also considered. The experimental results showed that the sonodynamic damage degree increase with the increase of ultrasonic irradiation time and RF concentration. Perhaps, this paper may offer some important subjects for broadening the application of RF in sonodynamic therapy (SDT) technologies for tumor treatment.

  20. Fluorescent Oligonucleotides Containing a 2-Ethynylfluorene-or 2-Ethynylfluorenone-labeled 2'-Deoxyguanosine Unit: Fluorescence Changes upon Duplex Formation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Ji; Hwang, Gil Tae [Kyungpook National University, Daegu (Korea, Republic of)

    2016-08-15

    Two new DNA probes bearing a fluorescent deoxyguanosine unit labeled with 2-ethynylfluorene (G{sup FL} )or 2-ethynylfluorenone (G{sup FO}) were synthesized and examined for their efficiency as quencher-free linear beacon probes. Oligodeoxynucleotides (ODNs) containing a G{sup FL} or G{sup FO} unit exhibit low thermal selectivity and few distinctive fluorescence changes upon duplex formation due to the syn conformation about the glycosidic bond. An exciplex emission was observed when the G{sup FL} unit of ODNs bearing adenine flanking bases was positioned opposite to the adenine nucleobases.

  1. Single-Labeled Oligonucleotides Showing Fluorescence Changes upon Hybridization with Target Nucleic Acids

    Directory of Open Access Journals (Sweden)

    Gil Tae Hwang

    2018-01-01

    Full Text Available Sequence-specific detection of nucleic acids has been intensively studied in the field of molecular diagnostics. In particular, the detection and analysis of single-nucleotide polymorphisms (SNPs is crucial for the identification of disease-causing genes and diagnosis of diseases. Sequence-specific hybridization probes, such as molecular beacons bearing the fluorophore and quencher at both ends of the stem, have been developed to enable DNA mutation detection. Interestingly, DNA mutations can be detected using fluorescently labeled oligonucleotide probes with only one fluorophore. This review summarizes recent research on single-labeled oligonucleotide probes that exhibit fluorescence changes after encountering target nucleic acids, such as guanine-quenching probes, cyanine-containing probes, probes containing a fluorophore-labeled base, and microenvironment-sensitive probes.

  2. Subcritical Water Hydrolysis of Peptides: Amino Acid Side-Chain Modifications

    Science.gov (United States)

    Powell, Thomas; Bowra, Steve; Cooper, Helen J.

    2017-09-01

    Previously we have shown that subcritical water may be used as an alternative to enzymatic digestion in the proteolysis of proteins for bottom-up proteomics. Subcritical water hydrolysis of proteins was shown to result in protein sequence coverages greater than or equal to that obtained following digestion with trypsin; however, the percentage of peptide spectral matches for the samples treated with trypsin were consistently greater than for those treated with subcritical water. This observation suggests that in addition to cleavage of the peptide bond, subcritical water treatment results in other hydrolysis products, possibly due to modifications of amino acid side chains. Here, a model peptide comprising all common amino acid residues (VQSIKCADFLHYMENPTWGR) and two further model peptides (VCFQYMDRGDR and VQSIKADFLHYENPTWGR) were treated with subcritical water with the aim of probing any induced amino acid side-chain modifications. The hydrolysis products were analyzed by direct infusion electrospray tandem mass spectrometry, either collision-induced dissociation or electron transfer dissociation, and liquid chromatography collision-induced dissociation tandem mass spectrometry. The results show preferential oxidation of cysteine to sulfinic and sulfonic acid, and oxidation of methionine. In the absence of cysteine and methionine, oxidation of tryptophan was observed. In addition, water loss from aspartic acid and C-terminal amidation were observed in harsher subcritical water conditions. [Figure not available: see fulltext.

  3. Laser-induced fluorescence in the detection of esophageal carcinoma

    Science.gov (United States)

    Wang, Kenneth K.; Gutta, Kumar; Laukka, Mark A.; Densmore, John

    1995-01-01

    Laser induced fluorescence (LIF) is a technique which can perform an 'optical biopsy' of gastrointestinal mucosa. LIF was performed in resected specimens using a pulsed N2-laser coupled fiberoptically to a probe. Fluorescence was measured using a 0.2 meter spectroscope with an intensified photodiode array. Measurements were made on fresh (esophagus, and adenocarcinoma. Each tissue section was examined using an optical probe consisting of a central fiber for delivering the excitation energy and a 6 fiber bundle surrounding the central fiber for detection of the fluorescence. An excitation wavelength of 337 nm was used which generated 3-ns pulses while fluorescence intensities were acquired from 300-800 nm. Spectra were obtained from each section in a standardized fashion and background spectra subtracted. Fluorescence readings were taken from 54 normal esophageal sections and 32 sections of adenocarcinoma. A fluorescence index obtained from the tumor sections was 0.68+/- 0.01 compared with 0.51+/- 0.01 for the normal sections (pesophagus with good accuracy.

  4. Fluorescent probes for detecting cholesterol-rich ordered membrane microdomains: entangled relationships between structural analogies in the membrane and functional homologies in the cell

    Directory of Open Access Journals (Sweden)

    Gérald Gaibelet

    2017-02-01

    Full Text Available This review addresses the question of fluorescent detection of ordered membrane (micro domains in living (cultured cells, with a “practical” point of view since the situation is much more complicated than for studying model membranes. We first briefly recall the bases of model membrane structural organization involving liquid-ordered and -disordered phases, and the main features of their counterparts in cell membranes that are the various microdomains. We then emphasize the utility of the fluorescent probes derived from cholesterol, and delineate the respective advantages, limitations and drawbacks of the existing ones. In particular, besides their intra-membrane behavior, their relevant characteristics should integrate their different cellular fates for membrane turn-over, trafficking and metabolism, in order to evaluate and improve their efficiency for in-situ probing membrane microdomains in the cell physiology context. Finally, at the present stage, it appears that Bdp-Chol and Pyr-met-Chol display well complementary properties, allowing to use them in combination to improve the reliability of the current experimental approaches. But the field is still open, and there remains much work to perform in this research area.

  5. A Chemical Probe that Labels Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Nao Hirata

    2014-03-01

    Full Text Available A small-molecule fluorescent probe specific for human pluripotent stem cells would serve as a useful tool for basic cell biology research and stem cell therapy. Screening of fluorescent chemical libraries with human induced pluripotent stem cells (iPSCs and subsequent evaluation of hit molecules identified a fluorescent compound (Kyoto probe 1 [KP-1] that selectively labels human pluripotent stem cells. Our analyses indicated that the selectivity results primarily from a distinct expression pattern of ABC transporters in human pluripotent stem cells and from the transporter selectivity of KP-1. Expression of ABCB1 (MDR1 and ABCG2 (BCRP, both of which cause the efflux of KP-1, is repressed in human pluripotent stem cells. Although KP-1, like other pluripotent markers, is not absolutely specific for pluripotent stem cells, the identified chemical probe may be used in conjunction with other reagents.

  6. Utilization of fluorescent probe association for simultaneous assessment of plasmatic, acrosomal, and mitochondrial membranes of rooster spermatozoa

    Directory of Open Access Journals (Sweden)

    ECC Celeghini

    2007-09-01

    Full Text Available This experiment was designed with the objective of developing a simple, practical, and high repeatability technique for the simultaneous evaluation of the integrity of the plasmatic and acrosomal membranes, as well as funcional mitochondria of domestic fowl spermatozoa using an association of fluorescent probes. Four ejaculates (motility > 80% and abnormal morphology < 10% from each of six Ross male broiler breeder (n=24 were diluted in TALP sperm medium (25x10(6 spermatozoa/mL and split into two aliquots, and one of these aliquots was flash frozen in liquid nitrogen and thawed to damage all cellular membranes. Three treatments were prepared from these aliquots, with the following ratios of Fresh semen:Flash frozen semen: 100:0 (T100, 50:50 (T50, and 0:100 (T0. A 150-µL aliquot of diluted semen was placed in a microcentrifuge tube with the addition of 2-µL PI, 2-µL MITO, and 50-µL FITC-PSA, and incubated at 38.5º C/8 min in the dark. An 8-µL sample was placed on a slide, coverslipped, and examined by epifluorescence microscopy. Each sample had 200 cells counted and classified based on the fluorescence emitted by each probe. By regression analysis, plasma membrane integrity, as detected by PI, was determined as: v=4.17+0.82X (R²=0.95. Acrosome integrity, as detected by FITC-PSA, generated the equation: v=4.19+0.84X (R²=0.96. Functional mitochondria was estimated by the equation v=3.20+0.83X (R²=0.96. This is an efficient technique to simultaneously evaluate plasmatic, acrosomal, and mitochondrial membranes in fowl sperm. It is suggested that its application in flow cytometry systems allows this methodology to be applied in large scale.

  7. Fluorescent zinc sensor with minimized proton-induced interferences: photophysical mechanism for fluorescence turn-on response and detection of endogenous free zinc ions.

    Science.gov (United States)

    Kwon, Ji Eon; Lee, Sumin; You, Youngmin; Baek, Kyung-Hwa; Ohkubo, Kei; Cho, Jaeheung; Fukuzumi, Shunichi; Shin, Injae; Park, Soo Young; Nam, Wonwoo

    2012-08-20

    A new fluorescent zinc sensor (HNBO-DPA) consisting of 2-(2'-hydroxy-3'-naphthyl)benzoxazole (HNBO) chromophore and a di(2-picolyl)amine (DPA) metal chelator has been prepared and examined for zinc bioimaging. The probe exhibits zinc-induced fluorescence turn-on without any spectral shifts. Its crystal structure reveals that HNBO-DPA binds a zinc ion in a pentacoordinative fashion through the DPA and HNBO moieties. Steady-state photophysical studies establish zinc-induced deprotonation of the HNBO group. Nanosecond and femtosecond laser flash photolysis and electrochemical measurements provide evidence for zinc-induced modulation of photoinduced electron transfer (PeT) from DPA to HNBO. Thus, the zinc-responsive fluorescence turn-on is attributed to suppression of PeT exerted by deprotonation of HNBO and occupation of the electron pair of DPA, a conclusion that is further supported by density functional theory and time-dependent density functional theory (DFT/TD-DFT) calculations. Under physiological conditions (pH 7.0), the probe displays a 44-fold fluorescence turn-on in response to zinc ions with a K(d) value of 12 pM. The fluorescent response of the probe to zinc ions is conserved over a broad pH range with its excellent selectivity for zinc ions among biologically relevant metal ions. In particular, its sensing ability is not altered by divalent transition metal ions such as Fe(II), Cu(II), Cd(II), and Hg(II). Cell experiments using HNBO-DPA show its suitability for monitoring intracellular zinc ions. We have also demonstrated applicability of the probe to visualize intact zinc ions released from cells that undergo apoptosis. More interestingly, zinc-rich pools in zebrafish embryos are traced with HNBO-DPA during early developmental stages. The results obtained from the in vitro and in vivo imaging studies demonstrate the practical usefulness of the probe to detect zinc ions.

  8. Progressing batch hydrolysis process

    Science.gov (United States)

    Wright, J.D.

    1985-01-10

    A progressive batch hydrolysis process is disclosed for producing sugar from a lignocellulosic feedstock. It comprises passing a stream of dilute acid serially through a plurality of percolation hydrolysis reactors charged with feed stock, at a flow rate, temperature and pressure sufficient to substantially convert all the cellulose component of the feed stock to glucose. The cooled dilute acid stream containing glucose, after exiting the last percolation hydrolysis reactor, serially fed through a plurality of pre-hydrolysis percolation reactors, charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the hemicellulose component of said feedstock to glucose. The dilute acid stream containing glucose is cooled after it exits the last prehydrolysis reactor.

  9. Polymeric amylase nanoparticles as a new semi-synthetic enzyme system for hydrolysis of starch

    International Nuclear Information System (INIS)

    Say, R.; Şenay, R. Hilal; Biçen, Özlem; Ersöz, Arzu; Şişman Yılmaz, Filiz; Akgöl, Sinan; Denizli, Adil

    2013-01-01

    α-Amylase (EC 3.2.1.1; α-D-1,4,glucan glucanohydrolase) catalyzes the hydrolysis of α-D-(1,4)-glucosidic linkages in starch, glycogen, and various malto-oligosaccharides, by releasing α-anomeric products. In this study, a novel method has been developed to prepare nanoprotein particles that carry α-amylase as a monomer by using a photosensitive microemulsion polymerization process. The nanostructured α-amylase with photosensitive features have been characterized by fluorescence spectroscopy, transmission electron microscopy (TEM) and Zeta Sizer. The fluorescence intensity of amylase nanoparticles was determined to be 658 a.u. at 610 nm and the average particle size of nanoamylase was found to be about 71.8 nm. Both free α-amylase and nanoparticles were used in the hydrolysis of starch under varying reaction conditions such as pH and temperature that affect enzyme activity and the results were compared to each other. K m values were 0.26 and 0.87 mM and V max values were 0.36 IU mg −1 and 22.32 IU mg −1 for nanoenzyme and free enzyme, respectively. Then, thermal stability, storage stability and reusability were investigated and according to the results, activity was preserved 60% at 60 °C; 20% at 70–80 °C temperature values and 80% after 105 days storage. Finally after 10 cycles, the activity was preserved 90% and this novel enzymatic polymeric amylase nanoparticle has showed considerable potential as reusable catalyst. - Highlights: ► Developing to prepare nanoprotein particles carrying α-amylase ► Characterization of nanostructured α-amylase ► Usability of α-amylase nanoparticles in hydrolysis of starch

  10. Polymeric amylase nanoparticles as a new semi-synthetic enzyme system for hydrolysis of starch

    Energy Technology Data Exchange (ETDEWEB)

    Say, R. [Anadolu University, Faculty of Science, Chemistry Department, Yunus Emre Campus, Eskişehir (Turkey); Şenay, R. Hilal [Ege University, Faculty of Science, Biochemistry Department, 35100 Bornova-Izmir (Turkey); Biçen, Özlem; Ersöz, Arzu; Şişman Yılmaz, Filiz [Anadolu University, Faculty of Science, Chemistry Department, Yunus Emre Campus, Eskişehir (Turkey); Akgöl, Sinan, E-mail: sinanakgol@yahoo.co.uk [Ege University, Faculty of Science, Biochemistry Department, 35100 Bornova-Izmir (Turkey); Denizli, Adil [Hacettepe University, Faculty of Science, Chemistry Department, 06532 Ankara (Turkey)

    2013-05-01

    α-Amylase (EC 3.2.1.1; α-D-1,4,glucan glucanohydrolase) catalyzes the hydrolysis of α-D-(1,4)-glucosidic linkages in starch, glycogen, and various malto-oligosaccharides, by releasing α-anomeric products. In this study, a novel method has been developed to prepare nanoprotein particles that carry α-amylase as a monomer by using a photosensitive microemulsion polymerization process. The nanostructured α-amylase with photosensitive features have been characterized by fluorescence spectroscopy, transmission electron microscopy (TEM) and Zeta Sizer. The fluorescence intensity of amylase nanoparticles was determined to be 658 a.u. at 610 nm and the average particle size of nanoamylase was found to be about 71.8 nm. Both free α-amylase and nanoparticles were used in the hydrolysis of starch under varying reaction conditions such as pH and temperature that affect enzyme activity and the results were compared to each other. K{sub m} values were 0.26 and 0.87 mM and V{sub max} values were 0.36 IU mg{sup −1} and 22.32 IU mg{sup −1} for nanoenzyme and free enzyme, respectively. Then, thermal stability, storage stability and reusability were investigated and according to the results, activity was preserved 60% at 60 °C; 20% at 70–80 °C temperature values and 80% after 105 days storage. Finally after 10 cycles, the activity was preserved 90% and this novel enzymatic polymeric amylase nanoparticle has showed considerable potential as reusable catalyst. - Highlights: ► Developing to prepare nanoprotein particles carrying α-amylase ► Characterization of nanostructured α-amylase ► Usability of α-amylase nanoparticles in hydrolysis of starch.

  11. A simple protocol for attenuating the auto-fluorescence of cyanobacteria for optimized fluorescence in situ hybridization (FISH) imaging.

    Science.gov (United States)

    Zeller, Perrine; Ploux, Olivier; Méjean, Annick

    2016-03-01

    Cyanobacteria contain pigments, which generate auto-fluorescence that interferes with fluorescence in situ hybridization (FISH) imaging of cyanobacteria. We describe simple chemical treatments using CuSO4 or H2O2 that significantly reduce the auto-fluorescence of Microcystis strains. These protocols were successfully applied in FISH experiments using 16S rRNA specific probes and filamentous cyanobacteria. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. An Optimized Set of Fluorescence In Situ Hybridization Probes for Detection of Pancreatobiliary Tract Cancer in Cytology Brush Samples.

    Science.gov (United States)

    Barr Fritcher, Emily G; Voss, Jesse S; Brankley, Shannon M; Campion, Michael B; Jenkins, Sarah M; Keeney, Matthew E; Henry, Michael R; Kerr, Sarah M; Chaiteerakij, Roongruedee; Pestova, Ekaterina V; Clayton, Amy C; Zhang, Jun; Roberts, Lewis R; Gores, Gregory J; Halling, Kevin C; Kipp, Benjamin R

    2015-12-01

    Pancreatobiliary cancer is detected by fluorescence in situ hybridization (FISH) of pancreatobiliary brush samples with UroVysion probes, originally designed to detect bladder cancer. We designed a set of new probes to detect pancreatobiliary cancer and compared its performance with that of UroVysion and routine cytology analysis. We tested a set of FISH probes on tumor tissues (cholangiocarcinoma or pancreatic carcinoma) and non-tumor tissues from 29 patients. We identified 4 probes that had high specificity for tumor vs non-tumor tissues; we called this set of probes pancreatobiliary FISH. We performed a retrospective analysis of brush samples from 272 patients who underwent endoscopic retrograde cholangiopancreatography for evaluation of malignancy at the Mayo Clinic; results were available from routine cytology and FISH with UroVysion probes. Archived residual specimens were retrieved and used to evaluate the pancreatobiliary FISH probes. Cutoff values for FISH with the pancreatobiliary probes were determined using 89 samples and validated in the remaining 183 samples. Clinical and pathologic evidence of malignancy in the pancreatobiliary tract within 2 years of brush sample collection was used as the standard; samples from patients without malignancies were used as negative controls. The validation cohort included 85 patients with malignancies (46.4%) and 114 patients with primary sclerosing cholangitis (62.3%). Samples containing cells above the cutoff for polysomy (copy number gain of ≥2 probes) were classified as positive in FISH with the UroVysion and pancreatobiliary probes. Multivariable logistic regression was used to estimate associations between clinical and pathology findings and results from FISH. The combination of FISH probes 1q21, 7p12, 8q24, and 9p21 identified cancer cells with 93% sensitivity and 100% specificity in pancreatobiliary tissue samples and were therefore included in the pancreatobiliary probe set. In the validation cohort of

  13. Characterization of the vitreous body of the human eye using a cyanine dye as a spectral and fluorescent probe

    Science.gov (United States)

    Panova, Ina G.; Tatikolov, Alexander S.

    2009-02-01

    We used one of cyanine dyes as a spectral and fluorescent probe in the study of the composition of the extracellular matrix of the human eye (its vitreous body). Owing to the unique ability of the dye to bind to collagens and human serum albumin, we revealed the simultaneous presence of both types of biomacromolecules in the vitreous body. The formation of the dye complex with human serum albumin leads to appearance of a long-wavelength absorption band (~612 nm) and a steep rise of fluorescence, whereas in the presence of collagens the dye forms J-aggregates with a longer-wavelength absorption band (640-660 nm) and moderate fluorescence. In this work we studied the composition of the human fetus vitreous body and its dynamics from 9 to 31 gestation weeks. On the basis of the data obtained by this method, we may assume that albumin, being a carrier protein, probably provides the vitreous body and surrounding tissues with necessary growth factors, hormones, lipids, vitamins, and some other biomolecules. The data show that the dye is promising not only for study of albumin functions in eye development, but also for characterization of some eye diseases and for analysis of other extracellular media.

  14. Optimization of the enzyme system for hydrolysis of pretreated lignocellulose substrates; Optimering av enzymsystemet foer hydrolys av foerbehandlade lignocellulosa substrat

    Energy Technology Data Exchange (ETDEWEB)

    Tjerneld, Folke [Lund univ., (Sweden). Dept. of Biochemistry

    2000-06-01

    This project aims to clarify the reasons for the slow and incomplete enzymatic hydrolysis of certain lignocellulose substrates, particularly softwood e.g. spruce. Based on this knowledge we will optimize the enzyme system so that the yield of fermentable sugars is increased as well as the rate of hydrolysis. We will also study methods for recycling of the enzymes in the process by adsorption on fresh substrate. Progress in these areas will lead to improved process economy in an ethanol process. We collaborate with Chemical Engineering on hydrolysis of pretreated lignocellulose substrates and with Analytical Chemistry and Applied Microbiology on analysis of potential inhibitors. Within this main research direction the work at Biochemistry during this project period (since 970701) has been focused on the following areas: (1) Studies of the role of substrate properties in the enzymatic hydrolysis to clarify the reasons for the decrease in the rate of hydrolysis; (2) enzyme adsorption on lignin; (3) studies of recently identified low molecular weight endo glucanases which may be used for more effective penetration of small pores in pretreated substrates (this part is financed by the Nordic Energy Research Program). Central results during the period: In order to study the role of substrate properties for hydrolysis we have initiated investigations on steam pretreated substrates with several techniques. Measurements of pore sizes have been done with probe molecules of known molecular weights. Results show that probe molecules with diameters larger than 50 Aangstroem can more easily penetrate pretreated willow compared with spruce, which can be a part of the explanation for the better hydrolysability of hardwood substrates compared with softwood. We have started studies with electron microscopy of pretreated substrates at different degrees of enzymatic hydrolysis. With scanning electron microscopy (SEM) we can see significant differences in substrate structure in

  15. Quantitative fluorescence spectroscopy in turbid media using fluorescence differential path length spectroscopy

    NARCIS (Netherlands)

    Amelink, Arjen; Kruijt, Bastiaan; Robinson, Dominic J.; Sterenborg, Henricus J. C. M.

    2008-01-01

    We have developed a new technique, fluorescence differential path length spectroscopy (FDPS), that enables the quantitative investigation of fluorophores in turbid media. FDPS measurements are made with the same probe geometry as differential path length spectroscopy (DPS) measurements. Phantom

  16. Selective recognition of Pr3+ based on fluorescence enhancement sensor

    International Nuclear Information System (INIS)

    Ganjali, M.R.; Hosseini, M.; Ghafarloo, A.; Khoobi, M.; Faridbod, F.; Shafiee, A.; Norouzi, P.

    2013-01-01

    (E)-2-(1-(4-hydroxy-2-oxo-2H-chromen-3-yl)ethylidene) hydrazinecarbothioamide (L) has been used to detect trace amounts of praseodymium ion in acetonitrile–water solution (MeCN/H 2 O) by fluorescence spectroscopy. The fluorescent probe undergoes fluorescent emission intensity enhancement upon binding to Pr 3+ ions in MeCN/H 2 O (9/1:v/v) solution. The fluorescence enhancement of L is attributed to a 1:1 complex formation between L and Pr 3+ , which has been utilized as the basis for selective detection of Pr 3+ . The sensor can be applied to the quantification of praseodymium ion with a linear range of 1.6 × 10 −7 to 1.0 × 10 −5 M. The limit of detection was 8.3 × 10 −8 M. The sensor exhibits high selectivity toward praseodymium ions in comparison with common metal ions. The proposed fluorescent sensor was successfully used for determination of Pr 3+ in water samples. - Highlights: • A new fluorescent sensor is introduced as a selective probe for Pr 3+ detection. • Fluorescent intensity of the chemical probe enhances upon binding to Pr 3+ ion. • The sensor can be used for Pr 3+ determination in the range of 1.6 × 10 −7 –1.0 × 10 −5 M

  17. New Concepts of Fluorescent Probes for Specific Detection of DNA Sequences: Bis-Modified Oligonucleotides in Excimer and Exciplex Detection

    Directory of Open Access Journals (Sweden)

    Gbaj A

    2009-01-01

    Full Text Available The detection of single base mismatches in DNA is important for diagnostics, treatment of genetic diseases, and identification of single nucleotide polymorphisms. Highly sensitive, specific assays are needed to investigate genetic samples from patients. The use of a simple fluorescent nucleoside analogue in detection of DNA sequence and point mutations by hybridisation in solution is described in this study. The 5’-bispyrene and 3’-naphthalene oligonucleotide probes form an exciplex on hybridisation to target in water and the 5’-bispyrene oligonucleotide alone is an adequate probe to determine concentration of target present. It was also indicated that this system has a potential to identify mismatches and insertions. The aim of this work was to investigate experimental structures and conditions that permit strong exciplex emission for nucleic acid detectors, and show how such exciplexes can register the presence of mismatches as required in SNP analysis. This study revealed that the hybridisation of 5'-bispyrenyl fluorophore to a DNA target results in formation of a fluorescent probe with high signal intensity change and specificity for detecting a complementary target in a homogeneous system. Detection of SNP mutations using this split-probe system is a highly specific, simple, and accessible method to meet the rigorous requirements of pharmacogenomic studies. Thus, it is possible for the system to act as SNP detectors and it shows promise for future applications in genetic testing.

  18. Curcumin as fluorescent probe for directly monitoring in vitro uptake of curcumin combined paclitaxel loaded PLA-TPGS nanoparticles

    Science.gov (United States)

    Nguyen, Hoai Nam; Thu Ha, Phuong; Sao Nguyen, Anh; Nguyen, Dac Tu; Doan Do, Hai; Nguyen Thi, Quy; Nhung Hoang Thi, My

    2016-06-01

    Theranostics, which is the combination of both therapeutic and diagnostic capacities in one dose, is a promising tool for both clinical application and research. Although there are many chromophores available for optical imaging, their applications are limited due to the photobleaching property or intrinsic toxicity. Curcumin, a natural compound extracted from the rhizome of curcuma longa, is well known thanks to its bio-pharmaceutical activities and strong fluorescence as biocompatible probe for bio-imaging. In this study, we aimed to fabricate a system with dual functions: diagnostic and therapeutic, based on poly(lactide)-tocopheryl polyethylene glycol succinate (PLA-TPGS) micelles co-loaded curcumin (Cur) and paclitaxel (PTX). Two kinds of curcumin nanoparticle (NP) were fabricated and characterized by Fourier transform infrared spectroscopy, field emission scanning electron microscopy and dynamic light scattering methods. The cellular uptake and fluorescent activities of curcumin in these systems were also tested by bioassay studies, and were compared with paclitaxe-oregon. The results showed that (Cur + PTX)-PLA-TPGS NPs is a potential system for cancer theranostics.

  19. Curcumin as fluorescent probe for directly monitoring in vitro uptake of curcumin combined paclitaxel loaded PLA-TPGS nanoparticles

    International Nuclear Information System (INIS)

    Nguyen, Hoai Nam; Ha, Phuong Thu; Do, Hai Doan; Nguyen, Anh Sao; Nguyen, Dac Tu; Thi, Quy Nguyen; Thi, My Nhung Hoang

    2016-01-01

    Theranostics, which is the combination of both therapeutic and diagnostic capacities in one dose, is a promising tool for both clinical application and research. Although there are many chromophores available for optical imaging, their applications are limited due to the photobleaching property or intrinsic toxicity. Curcumin, a natural compound extracted from the rhizome of curcuma longa, is well known thanks to its bio-pharmaceutical activities and strong fluorescence as biocompatible probe for bio-imaging. In this study, we aimed to fabricate a system with dual functions: diagnostic and therapeutic, based on poly(lactide)-tocopheryl polyethylene glycol succinate (PLA-TPGS) micelles co-loaded curcumin (Cur) and paclitaxel (PTX). Two kinds of curcumin nanoparticle (NP) were fabricated and characterized by Fourier transform infrared spectroscopy, field emission scanning electron microscopy and dynamic light scattering methods. The cellular uptake and fluorescent activities of curcumin in these systems were also tested by bioassay studies, and were compared with paclitaxe-oregon. The results showed that (Cur + PTX)-PLA-TPGS NPs is a potential system for cancer theranostics. (paper)

  20. An organic dye with very large Stokes-shift and broad tunability of fluorescence: Potential two-photon probe for bioimaging and ultra-sensitive solid-state gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    He, Tingchao; Tian, Xiaoqing; Lin, Xiaodong, E-mail: linxd@szu.edu.cn, E-mail: hdsun@ntu.edu.sg [College of Physics Science and Technology, Shenzhen University, Shenzhen 518060 (China); Wang, Yue; Zhao, Xin; Sun, Handong, E-mail: linxd@szu.edu.cn, E-mail: hdsun@ntu.edu.sg [Division of Physics and Applied Physics, and Centre for Disruptive Photonic Technologies (CDPT), School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore); Gao, Yang; Grimsdale, Andrew C. [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2016-01-04

    Light-emitting nonlinear optical molecules, especially those with large Stokes shifts and broad tunability of their emission wavelength, have attracted considerable attention for various applications including biomedical imaging and fluorescent sensors. However, most fluorescent chromophores have only limited potential for such applications due to small Stokes shifts, narrow tunability of fluorescence emissions, and small optical nonlinearity in highly polar solvents. In this work, we demonstrate that a two-photon absorbing stilbene chromophore exhibits a large two-photon absorption action cross-section (ηδ = 320 GM) in dimethylsulfoxide (DMSO) and shows broad fluorescence tunability (125 nm) by manipulating the polarity of the surrounding medium. Importantly, a very large Stokes shift of up to 227 nm is achieved in DMSO. Thanks to these features, this chromophore can be utilized as a two-photon probe for bioimaging applications and in an ultrasensitive solid-state gas detector.

  1. Semiconductor quantum dots as fluorescent probes for in vitro and in vivo bio-molecular and cellular imaging

    Directory of Open Access Journals (Sweden)

    Sarwat B. Rizvi

    2010-08-01

    Full Text Available Over the years, biological imaging has seen many advances, allowing scientists to unfold many of the mysteries surrounding biological processes. The ideal imaging resolution would be in nanometres, as most biological processes occur at this scale. Nanotechnology has made this possible with functionalised nanoparticles that can bind to specific targets and trace processes at the cellular and molecular level. Quantum dots (QDs or semiconductor nanocrystals are luminescent particles that have the potential to be the next generation fluorophores. This paper is an overview of the basics of QDs and their role as fluorescent probes for various biological imaging applications. Their potential clinical applications and the limitations that need to be overcome have also been discussed.

  2. Electronically tuned sulfonamide-based probes with ultra-sensitivity for Ga"3"+ or Al"3"+ detection in aqueous solution

    International Nuclear Information System (INIS)

    Kumar, Ashwani; Chae, Pil Seok

    2017-01-01

    Three electronically tuned fluorescent probes (1–3) were synthesized by conjugating a fluorescent unit to N,N-bis-(hydroxyethyl)ethylenediamine. Probe 1 bearing an electron-deficient naphthalenedimide unit did not give a fluorescence response to the presence of various metal ions including monovalent metal ions (Na"+, K"+, and Ag"+), divalent metal ions (Ca"2"+, Cd"2"+, Co"2"+, Ni"2"+, Cu"2"+, Hg"2"+, Pb"2"+, and Zn"2"+) and trivalent metal ions (Al"3"+, Ga"3"+, Fe"3"+, and Cr"3"+) in an aqueous solution. By contrast, probes 2 and 3 possessing 1,8-naphthalimide and pyrene fluorophores, respectively, exhibited selective fluorescent “OFF-ON” behaviors as a result of Ga"3"+/Al"3"+ binding among the diverse metal ions, suggesting the importance of fluorophore electronic character with regard to metal ion sensing. The ethylenediamine analog of probe 3, corresponding to probe 4, was unable to yield a significant change in fluorescence intensity in the presence of any metal ions tested here, revealing the essential role of two hydroxyl groups for metal ion binding. A high association constant of K_a = 2.99 × 10"5 M"−"1 was obtained for probe 3 with Ga"3"+, with a limit of detection (LOD) of 10 nM. This LOD is the lowest value known for Ga"3"+ detection using chemical sensors. Along with an increase in aggregate sizes, PET suppression of probes upon metal ion binding was the primary contributor to the enhancement in fluorescence emission necessary for the sensitive detection of the target ions. The probe-metal ion complexes were fully characterized via TEM, FE-SEM, "1H NMR, fluorescence spectroscopy techniques and DFT calculations. - Highlights: • Three electronically tuned sulfonamide-based probes (probes 1, 2, and 3) were developed for metal ion-sensing. • Probes 2 and 3 exhibited AIE behavior with increasing water-content. • Probes 2 and 3 displayed a selective fluorescence “OFF-ON“ behavior for Ga"3"+ detection with the LOD of 10 nM. • PET

  3. Serum albumin binding sites properties in donors and in schizophrenia patients: the study of fluorescence decay of the probe K-35 using S-60 synchrotron pulse excitation

    Energy Technology Data Exchange (ETDEWEB)

    Gryzunov, Y.A. E-mail: grysunov@sci.lebedev.ru; Syrejshchikova, T.I.; Komarova, M.N.; Misionzhnik, E.Yu.; Uzbekov, M.G.; Molodetskich, A.V.; Dobretsov, G.E.; Yakimenko, M.N

    2000-06-21

    The properties of serum albumin obtained from donors and from paranoid schizophrenia patients were studied with the fluorescent probe K-35 (N-carboxyphenylimide of dimethylaminonaphthalic acid) and time-resolved fluorescence spectroscopy on the SR beam station of the S-60 synchrotron of the Lebedev Physical Institute. The mean fluorescence quantum yield of K-35 in patients serum was decreased significantly by 25-60% comparing with donors. The analysis of pre-exponential factors of fluorescence decay using 'amplitude standard' method has shown that in patient sera the fraction of K-35 molecules bound with albumin and inaccessible to fluorescence quenchers ('bright' K-35 molecules with {tau}{sub 1}=8.0{+-}0.4 ns) is 1.2-3 times less than in the donor sera. The fraction of K-35 molecules with partly quenched fluorescence ({tau}{sub 2}=1.44{+-}0.22 ns) was significantly increased in schizophrenia patients. The results obtained suggest that the properties of binding region in serum albumin molecules of acute paranoid schizophrenia patients change significantly.

  4. Serum albumin binding sites properties in donors and in schizophrenia patients: the study of fluorescence decay of the probe K-35 using S-60 synchrotron pulse excitation

    International Nuclear Information System (INIS)

    Gryzunov, Y.A.; Syrejshchikova, T.I.; Komarova, M.N.; Misionzhnik, E.Yu.; Uzbekov, M.G.; Molodetskich, A.V.; Dobretsov, G.E.; Yakimenko, M.N.

    2000-01-01

    The properties of serum albumin obtained from donors and from paranoid schizophrenia patients were studied with the fluorescent probe K-35 (N-carboxyphenylimide of dimethylaminonaphthalic acid) and time-resolved fluorescence spectroscopy on the SR beam station of the S-60 synchrotron of the Lebedev Physical Institute. The mean fluorescence quantum yield of K-35 in patients serum was decreased significantly by 25-60% comparing with donors. The analysis of pre-exponential factors of fluorescence decay using 'amplitude standard' method has shown that in patient sera the fraction of K-35 molecules bound with albumin and inaccessible to fluorescence quenchers ('bright' K-35 molecules with τ 1 =8.0±0.4 ns) is 1.2-3 times less than in the donor sera. The fraction of K-35 molecules with partly quenched fluorescence (τ 2 =1.44±0.22 ns) was significantly increased in schizophrenia patients. The results obtained suggest that the properties of binding region in serum albumin molecules of acute paranoid schizophrenia patients change significantly

  5. Serum albumin binding sites properties in donors and in schizophrenia patients: the study of fluorescence decay of the probe K-35 using S-60 synchrotron pulse excitation

    Science.gov (United States)

    Gryzunov, Yu. A.; Syrejshchikova, T. I.; Komarova, M. N.; Misionzhnik, E. Yu; Uzbekov, M. G.; Molodetskich, A. V.; Dobretsov, G. E.; Yakimenko, M. N.

    2000-06-01

    The properties of serum albumin obtained from donors and from paranoid schizophrenia patients were studied with the fluorescent probe K-35 (N-carboxyphenylimide of dimethylaminonaphthalic acid) and time-resolved fluorescence spectroscopy on the SR beam station of the S-60 synchrotron of the Lebedev Physical Institute. The mean fluorescence quantum yield of K-35 in patients serum was decreased significantly by 25-60% comparing with donors. The analysis of pre-exponential factors of fluorescence decay using "amplitude standard" method has shown that in patient sera the fraction of K-35 molecules bound with albumin and inaccessible to fluorescence quenchers ("bright" K-35 molecules with τ1=8.0±0.4 ns) is 1.2-3 times less than in the donor sera. The fraction of K-35 molecules with partly quenched fluorescence ( τ2=1.44±0.22 ns) was significantly increased in schizophrenia patients. The results obtained suggest that the properties of binding region in serum albumin molecules of acute paranoid schizophrenia patients change significantly.

  6. Time-resolved fluorescence sensing of pesticides chlorpyrifos, crotoxyphos and endosulfan by the luminescent Eu(III)-8-allyl-3-carboxycoumarin probe

    Science.gov (United States)

    Azab, Hassan A.; Khairy, Gasser M.; Kamel, Rasha M.

    2015-09-01

    This work describes the application of time resolved fluorescence in microtiter plates for investigating the interactions of europium-allyl-3-carboxycoumarin with pesticides chlorpyrifos, endosulfan and crotoxyphos. Stern-Volmer studies at different temperatures for chlorpyrifos and crotoxyphos shows dynamic and static quenching mechanisms respectively. Direct methods for the determination of the pesticides under investigation have been developed using the luminescence variations of the probe in solution. The detection limits are 6.53, 0.004, 3.72 μmol/L for chlorpyrifos, endosulfan, and crotoxyphos, respectively. The binding constants and thermodynamic parameters of the pesticides with probe were evaluated. A thermodynamic analysis showed that the reaction is spontaneous with negative ΔG. Effect of some relevant interferents on the detection of pesticides has been investigated. The new method was applied to the determination of the pesticides in different types of water samples (tap, mineral, and waste water).

  7. Hydrolysis of protein and model dipeptide substrated by attached and nonattached marine Pseudomonas sp. strain NCIMB 2021

    International Nuclear Information System (INIS)

    Griffith, P.C.; Fletcher, M.

    1991-01-01

    Rates of substrate hydrolysis by nonattached bacteria and by bacteria attached to particles derived from marine diatom frustules were estimated by using two substrates, a dipeptide analog and a protein. Adsorption of the two substrates onto the particles was also evaluated. Methyl-coumarinyl-amide-leucine (MCA-leucine) was used to estimate hydrolysis of dipeptides by measuring an increase in fluorescence as MCA-leucine was hydrolyzed to leucine and the fluorochrome methylcoumarin. To examine hydrolysis of a larger molecule, was prepared a radiolabeled protein by 14 C-methylation of bovine serum albumin. The rate of protein hydrolysis in samples of particle-attached or nonattached bacteria was estimated by precipitating all nonhydrolyzed protein with cold trichloroacetic acid and then determining the trichloroacetic acid-soluble radiolabeled material, which represented methyl- 14 C-peptides and -amino acids. About 25% of the MCA-leucine adsorbed to the particles. MCA-leucine was hydrolyzed faster by nonattached than attached bacteria, which was probably related to its tendency to remain dissolved in the liquid phase. In contrast, almost 100% of the labeled protein adsorbed to the particles. Accordingly, protein was much less available to nonattached bacteria but was rapidly hydrolyzed by attached bacteria

  8. Development and characterization of multi-sensory fluence rate probes

    International Nuclear Information System (INIS)

    Pomerleau-Dalcourt, Natalie; Lilge, Lothar

    2006-01-01

    Multi-sensory fluence rate probes (MSPs) yield several simultaneous measurements of photodynamic therapy (PDT) treatment light fluence from a single interstitial probe. Fluorescent sensors are embedded at desired positions along the axis of the optical fibre. A single fluorescence emission spectrum is obtained and decomposed using a partial least squares (PLS)-based analysis to yield the fluence at each sensor's location. The responsivity, linearity and possible photodegradation of each fluorophore chosen for the MSPs were evaluated using single-sensor probes. The performance of two- and three-sensor MSPs was evaluated experimentally. Individual fluorescence spectra collected from each sensor on the MSP were used to construct the training set necessary for the PLS-based analysis. The MSPs' responsivity, spatial resolution and accuracy were evaluated relative to a single scattering-tip detector. Three-fluorophore MSPs permitted three simultaneous measurements of the fluence rate gradient in a tissue-like phantom, with an average accuracy of 6.7%. No appreciable photodegradation or cross-talk was observed

  9. Molecular imaging needles: dual-modality optical coherence tomography and fluorescence imaging of labeled antibodies deep in tissue

    Science.gov (United States)

    Scolaro, Loretta; Lorenser, Dirk; Madore, Wendy-Julie; Kirk, Rodney W.; Kramer, Anne S.; Yeoh, George C.; Godbout, Nicolas; Sampson, David D.; Boudoux, Caroline; McLaughlin, Robert A.

    2015-01-01

    Molecular imaging using optical techniques provides insight into disease at the cellular level. In this paper, we report on a novel dual-modality probe capable of performing molecular imaging by combining simultaneous three-dimensional optical coherence tomography (OCT) and two-dimensional fluorescence imaging in a hypodermic needle. The probe, referred to as a molecular imaging (MI) needle, may be inserted tens of millimeters into tissue. The MI needle utilizes double-clad fiber to carry both imaging modalities, and is interfaced to a 1310-nm OCT system and a fluorescence imaging subsystem using an asymmetrical double-clad fiber coupler customized to achieve high fluorescence collection efficiency. We present, to the best of our knowledge, the first dual-modality OCT and fluorescence needle probe with sufficient sensitivity to image fluorescently labeled antibodies. Such probes enable high-resolution molecular imaging deep within tissue. PMID:26137379

  10. A fluorescent probe based on nitrogen doped graphene quantum dots for turn off sensing of explosive and detrimental water pollutant, TNP in aqueous medium

    Science.gov (United States)

    Kaur, Manjot; Mehta, Surinder K.; Kansal, Sushil Kumar

    2017-06-01

    This paper reports the carbonization assisted green approach for the fabrication of nitrogen doped graphene quantum dots (N-GQDs). The obtained N-GQDs displayed good water dispersibility and stability in the wide pH range. The as synthesized N-GQDs were used as a fluorescent probe for the sensing of explosive 2,4,6-trinitrophenol (TNP) in aqueous medium based on fluorescence resonance energy transfer (FRET), molecular interactions and charge transfer mechanism. The quenching efficiency was found to be linear in proportion to the TNP concentration within the range of 0-16 μM with detection limit (LOD) of 0.92 μM. The presented method was successfully applied to the sensing of TNP in tap and lake water samples with satisfactory results. Thus, N-GQDs were used as a selective, sensitive and turn off fluorescent sensor for the detection of perilous water contaminant i.e. TNP.

  11. Label-Free Platform for MicroRNA Detection Based on the Fluorescence Quenching of Positively Charged Gold Nanoparticles to Silver Nanoclusters.

    Science.gov (United States)

    Miao, Xiangmin; Cheng, Zhiyuan; Ma, Haiyan; Li, Zongbing; Xue, Ning; Wang, Po

    2018-01-16

    A novel strategy was developed for microRNA-155 (miRNA-155) detection based on the fluorescence quenching of positively charged gold nanoparticles [(+)AuNPs] to Ag nanoclusters (AgNCs). In the designed system, DNA-stabilized Ag nanoclusters (DNA/AgNCs) were introduced as fluorescent probes, and DNA-RNA heteroduplexes were formed upon the addition of target miRNA-155. Meanwhile, the (+)AuNPs could be electrostatically adsorbed on the negatively charged single-stranded DNA (ssDNA) or DNA-RNA heteroduplexes to quench the fluorescence signal. In the presence of duplex-specific nuclease (DSN), DNA-RNA heteroduplexes became a substrate for the enzymatic hydrolysis of the DNA strand to yield a fluorescence signal due to the diffusion of AgNCs away from (+)AuNPs. Under the optimal conditions, (+)AuNPs displayed very high quenching efficiency to AgNCs, which paved the way for ultrasensitive detection with a low detection limit of 33.4 fM. In particular, the present strategy demonstrated excellent specificity and selectivity toward the detection of target miRNA against control miRNAs, including mutated miRNA-155, miRNA-21, miRNA-141, let-7a, and miRNA-182. Moreover, the practical application value of the system was confirmed by the evaluation of the expression levels of miRNA-155 in clinical serum samples with satisfactory results, suggesting that the proposed sensing platform is promising for applications in disease diagnosis as well as the fundamental research of biochemistry.

  12. Synthesis and characterization of a novel nitric oxide fluorescent probe CdS-PMMA nanocomposite via in-situ bulk polymerization.

    Science.gov (United States)

    Ding, Liyun; Li, Tao; Zhong, Yunming; Fan, Chao; Huang, Jun

    2014-02-01

    A novel nitric oxide (NO) fluorescent probe CdS-poly(methyl methacrylate) (PMMA) nanocomposites with different molar ratios of CdS quantum dots (QDs) to PMMA are developed successfully via in-situ bulk polymerization method. The optical properties of CdS/PMMA nanocomposites are studied by UV-Vis absorption spectra and fluorescence (FL) spectra in detail. It is demonstrated that the optical properties from such nanocomposite solution are tuned and stabilized by simply varying the concentration of CdS in the final product. X-ray diffraction (XRD) patterns of CdS-PMMA nanocomposite with higher loading of CdS show broad pattern for cubic CdS, which has narrow particle size distribution with less than 5 nm in PMMA observed by transmission electron microscopy (TEM). The surface morphological characterization of the CdS-PMMA nanocomposite has been done through atomic force microscopy (AFM). The thermo-gravimetric analyses (TGA) and differential scanning calorimetry (DSC) confirm the enhanced thermal stability of CdS-PMMA nanocomposites than PMMA. NO can coordinate with Cd(2+) as a ligand for transition metal complexes, which will cause a quenching effect on the fluorescence of CdS QDs. Therefore, a significant quenching effect on the fluorescence of the CdS-PMMA nanocomposite is observed in the presence of NO. The fluorescence responses are concentration-dependent and can be well described by the typical Stern-Volmer equation, and a linear calibration I0/I=1.0021+0.1944[NO] (R(2)=0.96052) is obtained in the range from 1.4×10(-5) to 9.3×10(-3) mol/L NO with a detection limit of 1.0×10(-6) mol/L (S/N=3). © 2013.

  13. A fluorescent glycolipid-binding peptide probe traces cholesterol dependent microdomain-derived trafficking pathways.

    Directory of Open Access Journals (Sweden)

    Steffen Steinert

    . CONCLUSIONS/SIGNIFICANCE: The current work presents the characterization and trafficking behavior of a novel sphingolipid-binding fluorescent probe, the SBD peptide. We show that SBD binding to membranes is dependent on the presence of cholesterol, sphingomyelin, and complex glycolipids. In addition, SBD targeting through the endolysosomal pathway in neurons is highly sensitive to cholesterol perturbations, making it a potentially useful tool for the analysis of sphingolipid trafficking in disease models that involve changes in cholesterol metabolism and storage.

  14. Differential detection of type II methanotrophic bacteria in acidic peatlands using newly developed 16S rRNA-targeted fluorescent oligonucleotide probes.

    Science.gov (United States)

    Dedysh, Svetlana N; Dunfield, Peter F; Derakshani, Manigee; Stubner, Stephan; Heyer, Jürgen; Liesack, Werner

    2003-04-01

    Abstract Based on an extensive 16S rRNA sequence database for type II methanotrophic bacteria, a set of 16S rRNA-targeted oligonucleotide probes was developed for differential detection of specific phylogenetic groups of these bacteria by fluorescence in situ hybridisation (FISH). This set of oligonucleotides included a genus-specific probe for Methylocystis (Mcyst-1432) and three species-specific probes for Methylosinus sporium (Msins-647), Methylosinus trichosporium (Msint-1268) and the recently described acidophilic methanotroph Methylocapsa acidiphila (Mcaps-1032). These novel probes were applied to further characterise the type II methanotroph community that was detected in an acidic Sphagnum peat from West Siberia in a previous study (Dedysh et al. (2001) Appl. Environ. Microbiol. 67, 4850-4857). The largest detectable population of indigenous methanotrophs simultaneously hybridised with a group-specific probe targeting all currently known Methylosinus/Methylocystis spp. (M-450), with a genus-specific probe for Methylocystis spp. (Mcyst-1432), and with an additional probe (Mcyst-1261) that had been designed to target a defined phylogenetic subgroup of Methylocystis spp. The same subgroup of Methylocystis was also detected in acidic peat sampled from Sphagnum-dominated wetland in northern Germany. The population size of this peat-inhabiting Methylocystis subgroup was 2.0+/-0.1x10(6) cells g(-1) (wet weight) of peat from Siberia and 5.5+/-0.5x10(6) cells g(-1) of peat from northern Germany. This represented 60 and 95%, respectively, of the total number of methanotroph cells detected by FISH in these two wetland sites. Other major methanotroph populations were M. acidiphila and Methylocella palustris. Type I methanotrophs accounted for not more than 1% of total methanotroph cells. Neither M. trichosporium nor M. sporium were detected in acidic Sphagnum peat.

  15. Probing the electronic structure of M-graphene oxide (M = Ni, Co, NiCo) catalysts for hydrolytic dehydrogenation of ammonia borane

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Binhua; Liu, Jinyin; Zhou, Litao [Soochow University-Western University Centre for Synchrotron Radiation Research, Institute of Functional Nano and Soft Material (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123 (China); Long, Dan, E-mail: legend_long@aliyun.com [Department of Radiology, Zhejiang Cancer Hospital, Hangzhou 310022 (China); Feng, Kun; Sun, Xuhui [Soochow University-Western University Centre for Synchrotron Radiation Research, Institute of Functional Nano and Soft Material (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123 (China); Zhong, Jun, E-mail: jzhong@suda.edu.cn [Soochow University-Western University Centre for Synchrotron Radiation Research, Institute of Functional Nano and Soft Material (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123 (China)

    2016-01-30

    Graphical abstract: An interaction between metal and graphene oxide was probed to enhance the hydrolysis efficiency of ammonia borane. - Highlights: • Various metal elements (M = Ni, Co, NiCo) were dispersed on graphene oxide (GO) for the hydrolysis of ammonia borane (AB). • The electronic structure of the hybrids has been probed by scanning transmission X-ray microscopy (STXM). • An interfacial interaction between metal and GO was observed which could be related to the hydrolysis performance. • The results provide new insight into the enhanced performance of the M-GO hybrids. - Abstract: Various metal elements (M = Ni, Co, NiCo) were dispersed on graphene oxide (GO) to form the M-GO hybrids by a facile way. The hybrids showed good catalytic activities in the hydrolytic dehydrogenation of ammonia borane (AB, NH{sub 3}BH{sub 3}), which were significantly enhanced when compared to the metal nanoparticles or GO alone. The electronic structure of the hybrids has been probed by scanning transmission X-ray microscopy (STXM). The distribution of metal elements was clearly imaged with identical electronic structure. Moreover, an interfacial interaction between metal and GO was observed with the peak intensity proportional to the catalytic performance in the hydrolysis of AB. The results provide new insight into the enhanced performance of the M-GO hybrids and may help for the design of advanced catalysts.

  16. Instrumentation and Fluorescent Chemistries Used in qPCR

    DEFF Research Database (Denmark)

    Josefsen, Mathilde Hartmann; Löfström, Charlotta; Hansen, Trine

    2012-01-01

    will be discussed from a user perspective leading to an instrument selection guide. Differences between fluorescent DNA binding dyes and target-specific fluorescently labeled primers or probes for detection of amplicon accumulation will be discussed, along with the properties and applications of the most frequently...

  17. A novel turn-on fluorescent strategy for sensing ascorbic acid using graphene quantum dots as fluorescent probe.

    Science.gov (United States)

    Liu, Hua; Na, Weidan; Liu, Ziping; Chen, Xueqian; Su, Xingguang

    2017-06-15

    In this paper, a facile and rapid fluorescence turn-on assay for fluorescent detection of ascorbic acid (AA) was developed by using the orange emission graphene quantum dots (GQDs). In the presence of horse radish peroxidase (HRP) and hydrogen peroxide (H 2 O 2 ), catechol can be oxidized by hydroxyl radicals and converted to o-benzoquinone, which can significantly quench the fluorescence of GQDs. However, when AA present in the system, it can consume part of H 2 O 2 and hydroxyl radicals to inhibit the generation of o-benzoquinone, resulting in fluorescence recovery. Under the optimized experimental conditions, the fluorescence intensity was linearly correlated with the concentration of H 2 O 2 in the range of 3.33-500µM with a detection limit of 1.2µM. The linear detection for AA was in the range from 1.11 to 300µM with a detection limit of 0.32µM. The proposed method was applied to the determination of AA in human serum samples with satisfactory results. Copyright © 2017. Published by Elsevier B.V.

  18. Creating infinite contrast in fluorescence microscopy by using lanthanide centered emission

    DEFF Research Database (Denmark)

    R. Carro-Temboury, Miguel; Arppe, Riikka Matleena; Hempel, Casper

    2017-01-01

    The popularity of fluorescence microscopy arises from the inherent mode of action, where the fluorescence emission from probes is used to visualize selected features on a presumed dark background. However, the background is rarely truly dark, and image processing and analysis is needed to enhance...... the fluorescent signal that is ascribed to the selected feature. The image acquisition is facilitated by using considerable illumination, bright probes at a relatively high concentration in order to make the fluorescent signal significantly more intense than the background signal. Here, we present two methods......, while method II resolves the fluorescent signal by subtracting a background calculated via the gradient. Both methods improve signal-to-background ratio significantly and we suggest that spectral imaging of lanthanide-centered emission can be used as a tool to obtain absolute contrast in bioimaging....

  19. Probing structural changes of self assembled i-motif DNA

    KAUST Repository

    Lee, Iljoon; Patil, Sachin; Fhayli, Karim; Alsaiari, Shahad K.; Khashab, Niveen M.

    2015-01-01

    We report an i-motif structural probing system based on Thioflavin T (ThT) as a fluorescent sensor. This probe can discriminate the structural changes of RET and Rb i-motif sequences according to pH change. This journal is

  20. Carbon nanotubes as in vivo bacterial probes.

    Science.gov (United States)

    Bardhan, Neelkanth M; Ghosh, Debadyuti; Belcher, Angela M

    2014-09-17

    With the rise in antibiotic-resistant infections, non-invasive sensing of infectious diseases is increasingly important. Optical imaging, although safer and simpler, is less developed than other modalities such as radioimaging, due to low availability of target-specific molecular probes. Here we report carbon nanotubes (SWNTs) as bacterial probes for fluorescence imaging of pathogenic infections. We demonstrate that SWNTs functionalized using M13 bacteriophage (M13-SWNT) can distinguish between F'-positive and F'-negative bacterial strains. Moreover, through one-step modification, we attach an anti-bacterial antibody on M13-SWNT, making it easily tunable for sensing specific F'-negative bacteria. We illustrate detection of Staphylococcus aureus intramuscular infections, with ~3.4 × enhancement in fluorescence intensity over background. SWNT imaging presents lower signal spread ~0.08 × and higher signal amplification ~1.4 × , compared with conventional dyes. We show the probe offers greater ~5.7 × enhancement in imaging of S. aureus infective endocarditis. These biologically functionalized, aqueous-dispersed, actively targeted, modularly tunable SWNT probes offer new avenues for exploration of deeply buried infections.