WorldWideScience

Sample records for fluorescent bifunctional nanocomposites

  1. Synthesis and characterization of new bifunctional nanocomposites possessing upconversion and oxygen-sensing properties

    International Nuclear Information System (INIS)

    Liu Lina; Li Bin; Qin Ruifei; Zhao Haifeng; Ren Xinguang; Su Zhongmin

    2010-01-01

    A new type of bifunctional nanocomposites for biomedical applications, upconversion NaY F 4 :Y b 3+ , Tm 3+ nanoparticles coated with Ru(II) complex chemically doped SiO 2 , has been developed by combining the useful functions of upconversion and oxygen-sensing properties into one nanoparticle. NaY F 4 :Y b 3+ , Tm 3+ nanoparticles were successfully coated with an Ru(II) complex doped SiO 2 shell with a thickness of ∼ 30 nm, and the surface of the SiO 2 was functionalized with amines. The obtained nanocomposites exhibited bright blue upconversion emission, and the luminescent emission intensity of the Ru(II) complex in the nanocomposites was sensitive to oxygen. Compared with the simple mixture of Ru(II) complex and SiO 2 , the core-shell nanocomposites showed better linearity between emission intensity of Ru(II) complex and oxygen concentrations. These bifunctional nanocomposites may find applications in biochemical and biomedical fields, such as biolabels and optical oxygen sensors, which can measure the oxygen concentrations in biological fluids.

  2. Bifunctional bridging linker-assisted synthesis and characterization of TiO{sub 2}/Au nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Žunič, Vojka, E-mail: vojka.zunic@ijs.si, E-mail: vojka13@gmail.com; Kurtjak, Mario; Suvorov, Danilo [Jožef Stefan Institute, Advanced Materials Department (Slovenia)

    2016-11-15

    Using a simple organic bifunctional bridging linker, titanium dioxide (TiO{sub 2}) nanoparticles were coupled with the Au nanoparticles to form TiO{sub 2}/Au nanocomposites with a variety of Au loadings. This organic bifunctional linker, meso-2,3-dimercaptosuccinic acid, contains two types of functional groups: (i) the carboxyl group, which enables binding to the TiO{sub 2}, and (ii) the thiol group, which enables binding to the Au. In addition, the organic bifunctional linker acts as a stabilizing agent to prevent the agglomeration and growth of the Au particles, resulting in the formation of highly dispersed Au nanoparticles. To form the TiO{sub 2}/Au nanocomposites in a simple way, we deliberately applied a synthetic method that simultaneously ensures: (i) the capping of the Au nanoparticles and (ii) the binding of different amounts of Au to the TiO{sub 2}. The TiO{sub 2}/Au nanocomposites formed with this method show enhanced UV and Vis photocatalytic activities when compared to the pure TiO{sub 2} nanopowders.Graphical Abstract.

  3. Monodisperse Magneto-Fluorescent Bifunctional Nanoprobes for Bioapplications

    Science.gov (United States)

    Zhang, Hongwang; Huang, Heng; Pralle, Arnd; Zeng, Hao

    2013-03-01

    We present the work on the synthesis of dye-doped monodisperse Fe/SiO2 core/shell nanoparticles as bifunctional probes for bioapplications. Magnetic nanoparticles (NP) have been widely studied as nano-probes for bio-imaging, sensing as well as for cancer therapy. Among all the NPs, Fe NPs have been the focus because they have very high magnetization. However, Fe NPs are usually not stable in ambient due to the fast surface oxidation of the NPs. On the other hand, dye molecules have long been used as probes for bio-imaging. But they are sensitive to environmental conditions. It requires passivation for both so that they can be stable for applications. In this work, monodisperse Fe NPs with sizes ranging from 13-20 nm have been synthesized through the chemical thermal-decomposition in a solution. Silica shells were then coated on the Fe NPs by a two-phase oil-in-water method. Dye molecules were first bonded to a silica precursor and then encapsulated into the silica shell during the coating process. The silica shells protect both the Fe NPs and dye molecules, which makes them as robust probes. The dye doped Fe/SiO2 core/shell NPs remain both highly magnetic and highly fluorescent. The stable dye doped Fe/SiO2NPs have been used as a dual functional probe for both magnetic heating and local nanoscale temperature sending, and their performance will be reported. Research supported by NSF DMR 0547036, DMR1104994.

  4. Bifunctional fluorescent probes for detection of amyloid aggregates and reactive oxygen species.

    Science.gov (United States)

    Needham, Lisa-Maria; Weber, Judith; Fyfe, James W B; Kabia, Omaru M; Do, Dung T; Klimont, Ewa; Zhang, Yu; Rodrigues, Margarida; Dobson, Christopher M; Ghandi, Sonia; Bohndiek, Sarah E; Snaddon, Thomas N; Lee, Steven F

    2018-02-01

    Protein aggregation into amyloid deposits and oxidative stress are key features of many neurodegenerative disorders including Parkinson's and Alzheimer's disease. We report here the creation of four highly sensitive bifunctional fluorescent probes, capable of H 2 O 2 and/or amyloid aggregate detection. These bifunctional sensors use a benzothiazole core for amyloid localization and boronic ester oxidation to specifically detect H 2 O 2 . We characterized the optical properties of these probes using both bulk fluorescence measurements and single-aggregate fluorescence imaging, and quantify changes in their fluorescence properties upon addition of amyloid aggregates of α-synuclein and pathophysiological H 2 O 2 concentrations. Our results indicate these new probes will be useful to detect and monitor neurodegenerative disease.

  5. Bifunctional fluorescent probes for detection of amyloid aggregates and reactive oxygen species

    Science.gov (United States)

    Needham, Lisa-Maria; Weber, Judith; Fyfe, James W. B.; Kabia, Omaru M.; Do, Dung T.; Klimont, Ewa; Zhang, Yu; Rodrigues, Margarida; Dobson, Christopher M.; Ghandi, Sonia; Bohndiek, Sarah E.; Snaddon, Thomas N.; Lee, Steven F.

    2018-02-01

    Protein aggregation into amyloid deposits and oxidative stress are key features of many neurodegenerative disorders including Parkinson's and Alzheimer's disease. We report here the creation of four highly sensitive bifunctional fluorescent probes, capable of H2O2 and/or amyloid aggregate detection. These bifunctional sensors use a benzothiazole core for amyloid localization and boronic ester oxidation to specifically detect H2O2. We characterized the optical properties of these probes using both bulk fluorescence measurements and single-aggregate fluorescence imaging, and quantify changes in their fluorescence properties upon addition of amyloid aggregates of α-synuclein and pathophysiological H2O2 concentrations. Our results indicate these new probes will be useful to detect and monitor neurodegenerative disease.

  6. Multifunctional Magnetic-fluorescent Nanocomposites for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Rakovich Yury

    2008-01-01

    Full Text Available AbstractNanotechnology is a fast-growing area, involving the fabrication and use of nano-sized materials and devices. Various nanocomposite materials play a number of important roles in modern science and technology. Magnetic and fluorescent inorganic nanoparticles are of particular importance due to their broad range of potential applications. It is expected that the combination of magnetic and fluorescent properties in one nanocomposite would enable the engineering of unique multifunctional nanoscale devices, which could be manipulated using external magnetic fields. The aim of this review is to present an overview of bimodal “two-in-one” magnetic-fluorescent nanocomposite materials which combine both magnetic and fluorescent properties in one entity, in particular those with potential applications in biotechnology and nanomedicine. There is a great necessity for the development of these multifunctional nanocomposites, but there are some difficulties and challenges to overcome in their fabrication such as quenching of the fluorescent entity by the magnetic core. Fluorescent-magnetic nanocomposites include a variety of materials including silica-based, dye-functionalised magnetic nanoparticles and quantum dots-magnetic nanoparticle composites. The classification and main synthesis strategies, along with approaches for the fabrication of fluorescent-magnetic nanocomposites, are considered. The current and potential biomedical uses, including biological imaging, cell tracking, magnetic bioseparation, nanomedicine and bio- and chemo-sensoring, of magnetic-fluorescent nanocomposites are also discussed.

  7. Preparation and fluorescence properties of 6-carboxyfluorescein/hydrotalcite nanocomposites

    International Nuclear Information System (INIS)

    Li, Chunfang; Qi, Yanhai; Li, Qianru; Li, Dongxiang; Hou, Wanguo

    2014-01-01

    The nanocomposites of fluorescent dye/hydrotalcite-like compounds (HTlc) synthesized by intercalation and/or surface adsorption methods have exhibited specific photophysical and photochemical property. In this work, 6-carboxyfluorescein (6CF)/HTlc nanocomposites were synthesized by ammonia coprecipitation and reconstruction-induced surface adsorption methods, and they were characterized by powder X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Thermogravimetric differential thermal measurements (TG-DTA) and fluorescence spectra. The results demonstrate that the dye molecules are primarily adsorbed on HTlc surface. The fluorescence emission of 6CF/Mg–Al HTlc composites is related with 6CF dosage due to the self-quenching mechanism. The 6CF/Zn–Al HTlc nanocomposite reconstructed at high temperature have much strong luminescence than that reconstructed at room temperature and the 6CF/Mg–Al HTlc nanocomposites. -- Highlights: • Fluorescent 6-carboxyfluorescein/HTlc nanocomposites were synthesized. • Fluorescent dye molecules are primarily adsorbed on HTlc surface. • Nanocomposite luminescence is related with the cluster structure of fluorescent dyes

  8. Gadolinium and fluorescent bi-functionally labeling and in vitro MRI of rat bone marrow mesenchymal stem cells

    International Nuclear Information System (INIS)

    Shen Jun; Zhou Cuiping; Cheng Li'na; Duan Xiaohui; Liang Biling; Fu Yue; Bi Xiaobin; Liu Yu; Deng Yubin

    2008-01-01

    Objective: To determine the feasibility of magnetically labeling and tracking mesenchymal stem cells (MSCs) in vitro by using a gadolinium and fluorescent bi-functionally transfection agent of polyethylenimine. Methods: A gadolinium bifunctional transfection reagent complex was obtained after the linear polyethylenimine derivative (JetPEI-FluoR) was incubated with Gd-DTPA. Mesenchymal stem cells isolated from the bone marrows of SD rats were cultured and expanded. The mesenchymal stem cells were incubated with the bi-functional labeling agents. After labeling, the MSCs were examined with fluoroscope and electron microscope and the biological characters were detected including trypan blue exclusion test, MTT, and apoptosis detection. On a 1.5 T MR system, the labeled MSCs were examined with spin echo T 1 WI and T 2 WI and T 1 measurement with mixed sequence. After labeling, the cells were cultured and undergone routine passage. Prior MR examinations were repeated for each passage of labeled cells. All data was statistically prolessed with SPSS for Windows. Results: Of 5 x 10 5 MSCs incubated with the bi-functional agents, 4.25 x 10 5 MSCs were successfully labeled, the percentage of labeled MSCs was 85% fluoroscopically. The high density electron particles of gadolinium observed electron microscopically existed around cellular apparatuses, especially around Golgi apparatus. In trypan blue exclusion test, the exclusion rate of labeled MSCs with incubation duration of 3,6,12,24 h was (96.55±2.90)%, (94.17± 2.56)%, (97.16±3.12)% and (94.23±2.67)%, respectively. The corresponding exclusion rate of unlabeled MSCs was (95.86±2.67)%, (92.04±2.21)%, (93.38±3.64)% and (92.12±2.53)%, respectively. There was no statistical difference of trypan blue exclusion rate between labeled cells and control unlabeled cells within 24 hours of incubation (F=4.523, P>0.05). In the proliferation test, the optical absorption value of labeled MSC with 2.5, 5.0, 10.0, 20.0, 30.0 and 40

  9. Cell tracking with gadophrin-2: a bifunctional contrast agent for MR imaging, optical imaging, and fluorescence microscopy

    International Nuclear Information System (INIS)

    Daldrup-Link, Heike E.; Rudelius, Martina; Piontek, Guido; Schlegel, Juergen; Metz, Stephan; Settles, Marcus; Rummeny, Ernst J.; Pichler, Bernd; Heinzmann, Ulrich; Oostendorp, Robert A.J.

    2004-01-01

    The purpose of this study was to assess the feasibility of use of gadophrin-2 to trace intravenously injected human hematopoietic cells in athymic mice, employing magnetic resonance (MR) imaging, optical imaging (OI), and fluorescence microscopy. Mononuclear peripheral blood cells from GCSF-primed patients were labeled with gadophrin-2 (Schering AG, Berlin, Germany), a paramagnetic and fluorescent metalloporphyrin, using established transfection techniques with cationic liposomes. The labeled cells were evaluated in vitro with electron microscopy and inductively coupled plasma atomic emission spectrometry. Then, 1 x 10 6 -3 x 10 8 labeled cells were injected into 14 nude Balb/c mice and the in vivo cell distribution was evaluated with MR imaging and OI before and 4, 24, and 48 h after intravenous injection (p.i.). Five additional mice served as controls: three mice were untreated controls and two mice were investigated after injection of unlabeled cells. The contrast agent effect was determined quantitatively for MR imaging by calculating signal-to-noise-ratio (SNR) data. After completion of in vivo imaging studies, fluorescence microscopy of excised organs was performed. Intracellular cytoplasmatic uptake of gadophrin-2 was confirmed by electron microscopy. Spectrometry determined an uptake of 31.56 nmol Gd per 10 6 cells. After intravenous injection, the distribution of gadophrin-2 labeled cells in nude mice could be visualized by MR, OI, and fluorescence microscopy. At 4 h p.i., the transplanted cells mainly distributed to lung, liver, and spleen, and 24 h p.i. they also distributed to the bone marrow. Fluorescence microscopy confirmed the distribution of gadophrin-2 labeled cells to these target organs. Gadophrin-2 is suited as a bifunctional contrast agent for MR imaging, OI, and fluorescence microscopy and may be used to combine the advantages of each individual imaging modality for in vivo tracking of intravenously injected hematopoietic cells. (orig.)

  10. Fe2.25W0.75O4/reduced graphene oxide nanocomposites for novel bifunctional photocatalyst: One-pot synthesis, magnetically recyclable and enhanced photocatalytic property

    International Nuclear Information System (INIS)

    Guo, Jinxue; Jiang, Bin; Zhang, Xiao; Zhou, Xiaoyu; Hou, Wanguo

    2013-01-01

    Fe 2.25 W 0.75 O 4 /reduced graphene oxide (RGO) composites were prepared for application of novel bifunctional photocatalyst via simple one-pot hydrothermal method, employing graphene oxide (GO), Na 2 WO 4 , FeSO 4 and sodium dodecyl benzene sulfonate (SDBS) as the precursors. Transmission electron microscope (TEM) results indicate that the well-dispersed Fe 2.25 W 0.75 O 4 nanoparticles were deposited on the surface of RGO sheets homogeneously. Magnetic characterization reveals that Fe 2.25 W 0.75 O 4 and Fe 2.25 W 0.75 O 4 /RGO show ferromagnetic behaviors. So this novel bifunctional photocatalyst could achieve magnetic separation and collection with the aid of external magnet. The composites exhibit enhanced photocatalytic performance on degradation of methyl orange (MO) compared with pure Fe 2.25 W 0.75 O 4 under low-power ultraviolet light irradiation due to the introduction of RGO. Moreover, this hybrid catalyst possesses long-term excellent photocatalytic performance due to its good thermal stability. This bifunctional photocatalyst, which combines magnetic property and excellent photocatalytic activity, would be a perfect candidate in applications of catalytic elimination of environmental pollutants and other areas. - Graphical abstract: Magnetically recyclable Fe 2.25 W 0.75 O 4 /reduced graphene oxide nanocomposites with enhanced photocatalytic property Display Omitted - Highlights: ●Fe 2.25 W 0.75 O 4 growth, deposition and GO reduction occurred simultaneously. ●Composite possessed ferromagnetic and enhanced photocatalytic properties. ●Composite is utilized as a magnetically separable and high-efficient photocatalyst. ●Photocatalyst showed good photocatalytic and thermal stability during cyclic use

  11. Fusions between green fluorescent protein and beta-glucuronidase as sensitive and vital bifunctional reporters in plants.

    Science.gov (United States)

    Quaedvlieg, N E; Schlaman, H R; Admiraal, P C; Wijting, S E; Stougaard, J; Spaink, H P

    1998-11-01

    By fusing the genes encoding green fluorescent protein (GFP) and beta-glucuronidase (GUS) we have created a set of bifunctional reporter constructs which are optimized for use in transient and stable expression studies in plants. This approach makes it possible to combine the advantage of GUS, its high sensitivity in histochemical staining, with the advantages of GFP as a vital marker. The fusion proteins were functional in transient expression studies in tobacco using either DNA bombardment or potato virus X as a vector, and in stably transformed Arabidopsis thaliana and Lotus japonicus plants. The results show that high level of expression does not interfere with efficient stable transformation in A. thaliana and L. japonicus. Using confocal laser scanning microscopy we show that the fusion constructs are very suitable for promoter expression studies in all organs of living plants, including root nodules. The use of these reporter constructs in the model legume L. japonicus offers exciting new possibilities for the study of the root nodulation process.

  12. Magnetofluorescent nanocomposites and quantum dots used for optimal application in magnetic fluorescence-linked immunoassay.

    Science.gov (United States)

    Tsai, H Y; Li, S Y; Fuh, C Bor

    2018-03-01

    Magnetofluorescent nanocomposites with optimal magnetic and fluorescent properties were prepared and characterized by combining magnetic nanoparticles (iron oxide@polymethyl methacrylate) with fluorescent nanoparticles (rhodamine 6G@mSiO 2 ). Experimental parameters were optimized to produce nanocomposites with high magnetic susceptibility and fluorescence intensity. The detection of a model biomarker (alpha-fetoprotein) was used to demonstrate the feasibility of applying the magnetofluorescent nanocomposites combined with quantum dots and using magnetic fluorescence-linked immunoassay. The magnetofluorescent nanocomposites enable efficient mixing, fast re-concentration, and nanoparticle quantization for optimal reactions. Biofunctional quantum dots were used to confirm the alpha-fetoprotein (AFP) content in sandwich immunoassay after mixing and washing. The analysis time was only one third that required in ELISA. The detection limit was 0.2 pg mL -1 , and the linear range was 0.68 pg mL -1 -6.8 ng mL -1 . This detection limit is lower, and the linear range is wider than those of ELISA and other methods. The measurements made using the proposed method differed by less than 13% from those obtained using ELISA for four AFP concentrations (0.03, 0.15, 0.75, and 3.75 ng mL -1 ). The proposed method has a considerable potential for biomarker detection in various analytical and biomedical applications. Graphical abstract Magnetofluorescent nanocomposites combined with fluorescent quantum dots were used in magnetic fluorescence-linked immunoassay.

  13. Fluorescent Nanocomposite of Embedded Ceria Nanoparticles in Crosslinked PVA Electrospun Nanofibers

    Directory of Open Access Journals (Sweden)

    Nader Shehata

    2016-06-01

    Full Text Available This paper introduces a new fluorescent nanocomposite of electrospun biodegradable nanofibers embedded with optical nanoparticles. In detail, this work introduces the fluorescence properties of PVA nanofibers generated by the electrospinning technique with embedded cerium oxide (ceria nanoparticles. Under near-ultra violet excitation, the synthesized nanocomposite generates a visible fluorescent emission at 520 nm, varying its intensity peak according to the concentration of in situ embedded ceria nanoparticles. This is due to the fact that the embedded ceria nanoparticles have optical tri-valiant cerium ions, associated with formed oxygen vacancies, with a direct allowed bandgap around 3.5 eV. In addition, the impact of chemical crosslinking of the PVA on the fluorescence emission is studied in both cases of adding ceria nanoparticles in situ or of a post-synthesis addition via a spin-coating mechanism. Other optical and structural characteristics such as absorbance dispersion, direct bandgap, FTIR spectroscopy, and SEM analysis are presented. The synthesized optical nanocomposite could be helpful in different applications such as environmental monitoring and bioimaging.

  14. Efficient synthesis of tungsten oxide hydrate-based nanocomposites for applications in bifunctional electrochromic-energy storage devices

    Science.gov (United States)

    Chang, Xueting; Hu, Ruirui; Sun, Shibin; Lu, Tong; Liu, Tao; Lei, Yanhua; Dong, Lihua; Yin, Yansheng; Zhu, Yanqiu

    2018-05-01

    In this work, we realized the large-scale synthesis of WO3 · H2O nanoflakes (NFs), g-C3N4/WO3 · H2O nanocomposite (NC) and graphene (G)/WO3 · H2O NC via a sonochemical process with tungsten salt as the precursor, g-C3N4 or G sheets as the supports, and distilled water as the solvent. Both the g-C3N4/WO3 · H2O NC and G/WO3 · H2O NC exhibited much better electrochromic (EC) performance (higher coloration efficiencies and faster response times) than that of the WO3 · H2O NFs. Using the WO3 · H2O-based materials as electrode materials, EC batteries that integrate the energy storage and EC functions in one device have been assembled. The energy status of the EC batteries could be visually indicated by the reversible color variations. Compared with the plain WO3 · H2O-based EC batteries, the NC-based EC batteries possessed a lower color contrast between the charged and discharged conditions but much longer discharge durations. The EC batteries could be quickly charged in a few seconds by adding H2O2, and the charged batteries exhibited significantly-enhanced discharging durations in comparison with the initial ones. The g-C3N4/WO3 · H2O NC-EC batteries charged by a small amount of H2O2 could produce a long discharging duration up to 760 min.

  15. Bifunctional Agents for MRI, PET and Fluorescence Imaging and Study of Nanoparticles Formed from Water Oxidation Catalysts /

    OpenAIRE

    Abadjian, Marie-Caline Z.

    2014-01-01

    The work is divided into four parts : (1) MRI contrast agents are designed to enhance T₁ relaxivity by coupling them to dendrimers, the precise structure of which can be controlled through synthesis. Cyclen is used as a starting scaffold for the synthesis of bifunctional Gd-DOTA and Gd- DOTMA analogues. One unique side chain on the macrocycle contains an azide moiety that can be clicked to an alkyne- containing core, making a first-generation dendrimer with the potential to improve MRI effici...

  16. Synthesis and properties of fluorescent hybrid nanocomposites based on copolyacrylates with dansyl semicarbazide units

    International Nuclear Information System (INIS)

    Buruiana, Emil C.; Chibac, Andreea L.; Buruiana, Tinca; Musteata, Valentina

    2011-01-01

    Our study examined a series of hybrid composites containing copolyacrylate with semicarbazide-dansyl groups prepared by conventional radical polymerization of monomers in the organic montmorillonite modified with alkyl chains of variable length or using the sol-gel technique. The structure and the chemical composition of the copolymers N-methacryloyloxyethylcarbamoyl-5- (dimethylaminonaphtalene-1-sulfonohydrazine)-co-methyl metahacrylate (DnsSA-co-MMA) and N-methacryloyloxyethylcarbamoyl -5-(dimethylaminonaphtalene-1-sulfonohydrazine)-co-dodecylacrylamide (DnsSA-co-DA) as well as their nanocomposites (HC-P1, HC-P2, HC-P3, HC-P4) were confirmed by spectral analysis ( 1 H NMR, FTIR, UV/vis), thermal methods and atomic force microscopy. To quantify the effect of the inorganic component compared to pure photopolymers we evaluated the properties of hybrid composites, including dielectric characterization. Additionally, these materials have been tested in experiments of fluorescence quenching by acids (HCl, p-toluenesulfonic acid, 1-S-camphorsulfonic acid), metallic cation (Cu 2+ ) and nitrobenzene. The results suggest that such nanocomposites could find applications as fluorescence-based chemosensors in homogeneous organic solutions or thin films. - Highlights: → Dansylated hybrid composites were prepared by polymerization of monomers in organo-MMT or by sol-gel. → Quenching effects by acids, Cu 2+ and nitrobenzene in solution/film were evidenced. → A fluorescence dequenching was observed for the composite with silsesquixane units. → A reversible process occurs in the composite film exposed to nitrobenzene vapors.

  17. Selective detection of Mg2+ ions via enhanced fluorescence emission using Au–DNA nanocomposites

    Directory of Open Access Journals (Sweden)

    Tanushree Basu

    2017-04-01

    Full Text Available The biophysical properties of DNA-modified Au nanoparticles (AuNPs have attracted a great deal of research interest for various applications in biosensing. AuNPs have strong binding capability to the phosphate and sugar groups in DNA, rendering unique physicochemical properties for detection of metal ions. The formation of Au–DNA nanocomposites is evident from the observed changes in the optical absorption, plasmon band, zeta potential, DLS particle size distribution, as well as TEM and AFM surface morphology analysis. Circular dichroism studies also revealed that DNA-functionalized AuNP binding caused a conformational change in the DNA structure. Due to the size and shape dependent plasmonic interactions of AuNPs (33–78 nm with DNA, the resultant Au–DNA nanocomposites (NCs exhibit superior fluorescence emission due to chemical binding with Ca2+, Fe2+ and Mg2+ ions. A significant increase in fluorescence emission (λex = 260 nm of Au–DNA NCs was observed after selectively binding with Mg2+ ions (20–800 ppm in an aqueous solution where a minimum of 100 ppm Mg2+ ions was detected based on the linearity of concentration versus fluorescence intensity curve (λem = 400 nm. The effectiveness of Au–DNA nanocomposites was further verified by comparing the known concentration (50–120 ppm of Mg2+ ions in synthetic tap water and a real life sample of Gelusil (300–360 ppm Mg2+, a widely used antacid medicine. Therefore, this method could be a sensitive tool for the estimation of water hardness after careful preparation of a suitably designed Au–DNA nanostructure.

  18. New fluorescent polymeric nanocomposites synthesized by antimony dodecyl-mercaptide thermolysis in polymer

    Directory of Open Access Journals (Sweden)

    2009-04-01

    Full Text Available In this work, the formation of semiconductive Sb2S3 nanoparticles inside amorphous polystyrene has been achieved by thermal degradation of the corresponding antimony dodecyl-mercaptide, Sb(SC12H253. The thermolysis of the dodecyl-mercaptide precursor was studied as both pure phase and mercaptide solution in polystyrene. The thermal decomposition of the antimony mercaptide precursor at 350°C, under vacuum, showed the formation of a mixture of antimony trisulfide (stibnite, Sb2S3 and zero-valent antimony (Sb phase. X-ray Powder Diffraction (XRD and Rietveld analysis carried out on the obtained nanostructured powder confirmed the presence of Sb and Sb2S3 phases in 10.4 wt% and 89.6 wt% amount, respectively. The same pyrolysis reaction was carried out in the polymer and the resulting nanocomposite material was characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, UV-VIS spectroscopy, and fluorescence spectroscopy. The nanocomposite structural characterization indicated the presence of well-dispersed nanoclusters of antimony and stibnite (15–30 nm in size inside the amorphous polymeric phase. Optical measurements on the obtained nanocomposite films showed a strong emission at 432 nm upon excitation at 371 nm, probably related to the presence of Sb2S3 nanoclusters.

  19. Biocompatible fluorescence-enhanced ZrO2-CdTe quantum dot nanocomposite for in vitro cell imaging

    Science.gov (United States)

    Lu, Zhisong; Zhu, Zhihong; Zheng, Xinting; Qiao, Yan; Guo, Jun; Li, Chang Ming

    2011-04-01

    With advances of quantum dots (QDs) in bioimaging applications, various materials have been used to coat QDs to reduce their nanotoxicity; however, the coating could introduce new toxic sources and quench the fluorescence in bioimaging applications. In this work, ZrO2, an excellent ceramic material with low extinction coefficient and good biocompatibility, is utilized to coat CdTe QDs for the first time. Experimental results show that ZrO2-QD nanocomposites with the size of ~ 30 nm possess enhanced fluorescence emission, lower nanotoxicity and gradually increased fluorescence under 350 nm light illumination. After functionalization with folic acid, they were applied to label cultured HeLa cells effectively. Therefore, the ZrO2-QD nanocomposites could be promising biocompatible nanomaterials with strong fluorescence emission to replace or complement QDs in biomedical applications.

  20. Biocompatible fluorescence-enhanced ZrO2-CdTe quantum dot nanocomposite for in vitro cell imaging

    International Nuclear Information System (INIS)

    Lu Zhisong; Zhu Zhihong; Zheng Xinting; Qiao Yan; Li Changming; Guo Jun

    2011-01-01

    With advances of quantum dots (QDs) in bioimaging applications, various materials have been used to coat QDs to reduce their nanotoxicity; however, the coating could introduce new toxic sources and quench the fluorescence in bioimaging applications. In this work, ZrO 2 , an excellent ceramic material with low extinction coefficient and good biocompatibility, is utilized to coat CdTe QDs for the first time. Experimental results show that ZrO 2 -QD nanocomposites with the size of ∼ 30 nm possess enhanced fluorescence emission, lower nanotoxicity and gradually increased fluorescence under 350 nm light illumination. After functionalization with folic acid, they were applied to label cultured HeLa cells effectively. Therefore, the ZrO 2 -QD nanocomposites could be promising biocompatible nanomaterials with strong fluorescence emission to replace or complement QDs in biomedical applications.

  1. Biocompatible fluorescence-enhanced ZrO{sub 2}-CdTe quantum dot nanocomposite for in vitro cell imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lu Zhisong; Zhu Zhihong; Zheng Xinting; Qiao Yan; Li Changming [School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457 (Singapore); Guo Jun, E-mail: ecmli@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, 639798 (Singapore)

    2011-04-15

    With advances of quantum dots (QDs) in bioimaging applications, various materials have been used to coat QDs to reduce their nanotoxicity; however, the coating could introduce new toxic sources and quench the fluorescence in bioimaging applications. In this work, ZrO{sub 2}, an excellent ceramic material with low extinction coefficient and good biocompatibility, is utilized to coat CdTe QDs for the first time. Experimental results show that ZrO{sub 2}-QD nanocomposites with the size of {approx} 30 nm possess enhanced fluorescence emission, lower nanotoxicity and gradually increased fluorescence under 350 nm light illumination. After functionalization with folic acid, they were applied to label cultured HeLa cells effectively. Therefore, the ZrO{sub 2}-QD nanocomposites could be promising biocompatible nanomaterials with strong fluorescence emission to replace or complement QDs in biomedical applications.

  2. Amphibious fluorescent carbon dots: one-step green synthesis and application for light-emitting polymer nanocomposites.

    Science.gov (United States)

    Zhou, Li; He, Benzhao; Huang, Jiachang

    2013-09-21

    A facile and green approach for the synthesis of amphibious fluorescent carbon dots (CDs) from natural polysaccharide is reported. Light-emitting polymer nanocomposites with excellent optical performance can be easily prepared by incorporation of the amphibious CDs into the polymer matrix.

  3. Synthesis and properties of fluorescent hybrid nanocomposites based on copolyacrylates with dansyl semicarbazide units

    Energy Technology Data Exchange (ETDEWEB)

    Buruiana, Emil C., E-mail: emilbur@icmpp.r [' Petru Poni' Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi (Romania); Chibac, Andreea L.; Buruiana, Tinca; Musteata, Valentina [' Petru Poni' Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi (Romania)

    2011-07-15

    Our study examined a series of hybrid composites containing copolyacrylate with semicarbazide-dansyl groups prepared by conventional radical polymerization of monomers in the organic montmorillonite modified with alkyl chains of variable length or using the sol-gel technique. The structure and the chemical composition of the copolymers N-methacryloyloxyethylcarbamoyl-5- (dimethylaminonaphtalene-1-sulfonohydrazine)-co-methyl metahacrylate (DnsSA-co-MMA) and N-methacryloyloxyethylcarbamoyl -5-(dimethylaminonaphtalene-1-sulfonohydrazine)-co-dodecylacrylamide (DnsSA-co-DA) as well as their nanocomposites (HC-P1, HC-P2, HC-P3, HC-P4) were confirmed by spectral analysis ({sup 1}H NMR, FTIR, UV/vis), thermal methods and atomic force microscopy. To quantify the effect of the inorganic component compared to pure photopolymers we evaluated the properties of hybrid composites, including dielectric characterization. Additionally, these materials have been tested in experiments of fluorescence quenching by acids (HCl, p-toluenesulfonic acid, 1-S-camphorsulfonic acid), metallic cation (Cu{sup 2+}) and nitrobenzene. The results suggest that such nanocomposites could find applications as fluorescence-based chemosensors in homogeneous organic solutions or thin films. - Highlights: {yields} Dansylated hybrid composites were prepared by polymerization of monomers in organo-MMT or by sol-gel. {yields} Quenching effects by acids, Cu{sup 2+} and nitrobenzene in solution/film were evidenced. {yields} A fluorescence dequenching was observed for the composite with silsesquixane units. {yields} A reversible process occurs in the composite film exposed to nitrobenzene vapors.

  4. CA 19-9 Pancreatic Tumor Marker Fluorescence Immunosensing Detection via Immobilized Carbon Quantum Dots Conjugated Gold Nanocomposite.

    Science.gov (United States)

    Alarfaj, Nawal Ahmad; El-Tohamy, Maha Farouk; Oraby, Hesham Farouk

    2018-04-11

    The clinical detection of carbohydrate antigen 19-9 (CA 19-9), a tumor marker in biological samples, improves and facilitates the rapid screening and diagnosis of pancreatic cancer. A simple, low cost, fast, and green synthesis method to prepare a viable carbon quantum dots/gold (CQDs/Au) nanocomposite fluorescence immunosensing solution for the detection of CA 19-9 was reported. The present method is conducted by preparing glucose-derived CQDs using a microwave-assisted method. CQDs were employed as reducing and stabilizing agents for the preparation of a CQDs/Au nanocomposite. The immobilized anti-CA 19-9-labeled horseradish peroxidase enzyme (Ab-HRP) was anchored to the surface of a CQDs/Au nanocomposite by a peptide interaction between the carboxylic and amine active groups. The CA 19-9 antigen was trapped by another monoclonal antibody that was coated on the surface of microtiter wells. The formed sandwich capping antibody-antigen-antibody enzyme complex had tunable fluorescence properties that were detected under excitation and emission wavelengths of 420 and 530 nm. The increase in fluorescence intensities of the immunoassay sensing solution was proportional to the CA 19-9 antigen concentration in the linear range of 0.01-350 U mL -1 and had a lower detection limit of 0.007 U mL -1 . The proposed CQDs/Au nanocomposite immunoassay method provides a promising tool for detecting CA 19-9 in human serum.

  5. Magnetic and photoluminescence properties of Fe{sub 3}O{sub 4}-SiO{sub 2}-YP{sub 1-x}V{sub x}O{sub 4}:Dy{sup 3+} nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Shi Jianhui; Liu Deming; Tong Lizhu; Yang Xuwei [College of Chemistry, Jilin University, Changchun, 130012 (China); Yang Hua, E-mail: huayang86@sina.com [College of Chemistry, Jilin University, Changchun, 130012 (China)

    2011-10-20

    Highlights: > Bifunctional Fe{sub 3}O{sub 4}-SiO{sub 2}-YP{sub 0.1}V{sub 0.9}O{sub 4}:Dy{sup 3+} nanocomposite was fabricated by a sol-gel method. > The structure, luminescent and magnetic properties were characterized of the nanocomposites. > It is shown that the nanocomposite with a core-shell structure has excellent fluorescent and magnetic properties. > The effects of the magnetic field on the luminescence properties of nanocomposite were discussed. - Abstract: In this paper, we report on the bifunctional Fe{sub 3}O{sub 4}-SiO{sub 2}-YP{sub 0.1}V{sub 0.9}O{sub 4}:Dy{sup 3+} nanocomposites were prepared by the solvothermal method and sol-gel method. The structure, photoluminescence (PL) and magnetic properties of the nanocomposites were characterized by means of X-ray diffraction, scanning electron microscope, transmission electron microscope, PL excitation and emission spectra and vibration sample magnetometry. It is shown that Fe{sub 3}O{sub 4}-SiO{sub 2}-YP{sub 0.1}V{sub 0.9}O{sub 4}:Dy{sup 3+} nanocomposites with a core-shell structure present excellent fluorescent and magnetic properties. Additionally, the effects of the magnetic field on the luminescence properties of nanocomposites were discussed.

  6. Synthesis and characterization of a novel nitric oxide fluorescent probe CdS-PMMA nanocomposite via in-situ bulk polymerization.

    Science.gov (United States)

    Ding, Liyun; Li, Tao; Zhong, Yunming; Fan, Chao; Huang, Jun

    2014-02-01

    A novel nitric oxide (NO) fluorescent probe CdS-poly(methyl methacrylate) (PMMA) nanocomposites with different molar ratios of CdS quantum dots (QDs) to PMMA are developed successfully via in-situ bulk polymerization method. The optical properties of CdS/PMMA nanocomposites are studied by UV-Vis absorption spectra and fluorescence (FL) spectra in detail. It is demonstrated that the optical properties from such nanocomposite solution are tuned and stabilized by simply varying the concentration of CdS in the final product. X-ray diffraction (XRD) patterns of CdS-PMMA nanocomposite with higher loading of CdS show broad pattern for cubic CdS, which has narrow particle size distribution with less than 5 nm in PMMA observed by transmission electron microscopy (TEM). The surface morphological characterization of the CdS-PMMA nanocomposite has been done through atomic force microscopy (AFM). The thermo-gravimetric analyses (TGA) and differential scanning calorimetry (DSC) confirm the enhanced thermal stability of CdS-PMMA nanocomposites than PMMA. NO can coordinate with Cd(2+) as a ligand for transition metal complexes, which will cause a quenching effect on the fluorescence of CdS QDs. Therefore, a significant quenching effect on the fluorescence of the CdS-PMMA nanocomposite is observed in the presence of NO. The fluorescence responses are concentration-dependent and can be well described by the typical Stern-Volmer equation, and a linear calibration I0/I=1.0021+0.1944[NO] (R(2)=0.96052) is obtained in the range from 1.4×10(-5) to 9.3×10(-3) mol/L NO with a detection limit of 1.0×10(-6) mol/L (S/N=3). © 2013.

  7. Dual-Emitting Fluorescent Metal-Organic Framework Nanocomposites as a Broad-Range pH Sensor for Fluorescence Imaging.

    Science.gov (United States)

    Chen, Haiyong; Wang, Jing; Shan, Duoliang; Chen, Jing; Zhang, Shouting; Lu, Xiaoquan

    2018-05-15

    pH plays an important role in understanding physiological/pathologic processes, and abnormal pH is a symbol of many common diseases such as cancer, stroke, and Alzheimer's disease. In this work, an effective dual-emission fluorescent metal-organic framework nanocomposite probe (denoted as RB-PCN) has been constructed for sensitive and broad-range detection of pH. RB-PCN was prepared by encapsulating the DBI-PEG-NH 2 -functionalized Fe 3 O 4 into Zr-MOFs and then further reacting it with rhodamine B isothiocyanates (RBITC). In RB-PCN, RBITC is capable of sensing changes in pH in acidic solutions. Zr-MOFs not only enrich the target analyte but also exhibit a fluorescence response to pH changes in alkaline solutions. Based on the above structural and compositional features, RB-PCN could detect a wide range of pH changes. Importantly, such a nanoprobe could "see" the intracellular pH changes by fluorescence confocal imaging as well as "measure" the wider range of pH in actual samples by fluorescence spectroscopy. To the best of our knowledge, this is the first time a MOF-based dual-emitting fluorescent nanoprobe has been used for a wide range of pH detection.

  8. Fabrication of transferrin functionalized gold nanoclusters/graphene oxide nanocomposite for turn-on near-infrared fluorescent bioimaging of cancer cells and small animals.

    Science.gov (United States)

    Wang, Yong; Chen, Jia-Tong; Yan, Xiu-Ping

    2013-02-19

    Transferrin (Tf)-functionalized gold nanoclusters (Tf-AuNCs)/graphene oxide (GO) nanocomposite (Tf-AuNCs/GO) was fabricated as a turn-on near-infrared (NIR) fluorescent probe for bioimaging cancer cells and small animals. A one-step approach was developed to prepare Tf-AuNCs via a biomineralization process with Tf as the template. Tf acted not only as a stabilizer and a reducer but also as a functional ligand for targeting the transferrin receptor (TfR). The prepared Tf-AuNCs gave intense NIR fluorescence that can avoid interference from biological media such as tissue autofluorescence and scattering light. The assembly of Tf-AuNCs and GO gave the Tf-AuNCs/GO nanocomposite, a turn-on NIR fluorescent probe with negligible background fluorescence due to the super fluorescence quenching property of GO. The NIR fluorescence of the Tf-AuNCs/GO nanocomposite was effectively restored in the presence of TfR, due to the specific interaction between Tf and TfR and the competition of TfR with the GO for the Tf in Tf-AuNCs/GO composite. The developed turn-on NIR fluorescence probe offered excellent water solubility, stability, and biocompatibility, and exhibited high specificity to TfR with negligible cytotoxicity. The probe was successfully applied for turn-on fluorescent bioimaging of cancer cells and small animals.

  9. Synthesis and characterization of a novel nitric oxide fluorescent probe CdS-PMMA nanocomposite via in-situ bulk polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Liyun, E-mail: dlyw@whut.edu.cn; Li, Tao; Zhong, Yunming; Fan, Chao; Huang, Jun

    2014-02-01

    A novel nitric oxide (NO) fluorescent probe CdS-poly(methyl methacrylate) (PMMA) nanocomposites with different molar ratios of CdS quantum dots (QDs) to PMMA are developed successfully via in-situ bulk polymerization method. The optical properties of CdS/PMMA nanocomposites are studied by UV–Vis absorption spectra and fluorescence (FL) spectra in detail. It is demonstrated that the optical properties from such nanocomposite solution are tuned and stabilized by simply varying the concentration of CdS in the final product. X-ray diffraction (XRD) patterns of CdS-PMMA nanocomposite with higher loading of CdS show broad pattern for cubic CdS, which has narrow particle size distribution with less than 5 nm in PMMA observed by transmission electron microscopy (TEM). The surface morphological characterization of the CdS-PMMA nanocomposite has been done through atomic force microscopy (AFM). The thermo-gravimetric analyses (TGA) and differential scanning calorimetry (DSC) confirm the enhanced thermal stability of CdS-PMMA nanocomposites than PMMA. NO can coordinate with Cd{sup 2+} as a ligand for transition metal complexes, which will cause a quenching effect on the fluorescence of CdS QDs. Therefore, a significant quenching effect on the fluorescence of the CdS-PMMA nanocomposite is observed in the presence of NO. The fluorescence responses are concentration-dependent and can be well described by the typical Stern–Volmer equation, and a linear calibration I{sub 0}/I = 1.0021 + 0.1944[NO] (R{sup 2} = 0.96052) is obtained in the range from 1.4 × 10{sup −5} to 9.3 × 10{sup −3} mol/L NO with a detection limit of 1.0 × 10{sup −6} mol/L (S/N = 3). - Highlights: • CdS-PMMA nanocomposite was developed by in-situ bulk polymerization for NO detection. • The fluorescence quenching mechanism relies on the interaction between NO and Cd{sup 2+}. • The fluorescence response shows a good linear reproducibility with NO concentrations. • A linear calibration is

  10. Synthesis and characterization of a novel nitric oxide fluorescent probe CdS-PMMA nanocomposite via in-situ bulk polymerization

    International Nuclear Information System (INIS)

    Ding, Liyun; Li, Tao; Zhong, Yunming; Fan, Chao; Huang, Jun

    2014-01-01

    A novel nitric oxide (NO) fluorescent probe CdS-poly(methyl methacrylate) (PMMA) nanocomposites with different molar ratios of CdS quantum dots (QDs) to PMMA are developed successfully via in-situ bulk polymerization method. The optical properties of CdS/PMMA nanocomposites are studied by UV–Vis absorption spectra and fluorescence (FL) spectra in detail. It is demonstrated that the optical properties from such nanocomposite solution are tuned and stabilized by simply varying the concentration of CdS in the final product. X-ray diffraction (XRD) patterns of CdS-PMMA nanocomposite with higher loading of CdS show broad pattern for cubic CdS, which has narrow particle size distribution with less than 5 nm in PMMA observed by transmission electron microscopy (TEM). The surface morphological characterization of the CdS-PMMA nanocomposite has been done through atomic force microscopy (AFM). The thermo-gravimetric analyses (TGA) and differential scanning calorimetry (DSC) confirm the enhanced thermal stability of CdS-PMMA nanocomposites than PMMA. NO can coordinate with Cd 2+ as a ligand for transition metal complexes, which will cause a quenching effect on the fluorescence of CdS QDs. Therefore, a significant quenching effect on the fluorescence of the CdS-PMMA nanocomposite is observed in the presence of NO. The fluorescence responses are concentration-dependent and can be well described by the typical Stern–Volmer equation, and a linear calibration I 0 /I = 1.0021 + 0.1944[NO] (R 2 = 0.96052) is obtained in the range from 1.4 × 10 −5 to 9.3 × 10 −3 mol/L NO with a detection limit of 1.0 × 10 −6 mol/L (S/N = 3). - Highlights: • CdS-PMMA nanocomposite was developed by in-situ bulk polymerization for NO detection. • The fluorescence quenching mechanism relies on the interaction between NO and Cd 2+ . • The fluorescence response shows a good linear reproducibility with NO concentrations. • A linear calibration is obtained in the range from 1.4 × 10

  11. Synthesis and characterization of multifunctional silica core-shell nanocomposites with magnetic and fluorescent functionalities

    International Nuclear Information System (INIS)

    Ma Zhiya; Dosev, Dosi; Nichkova, Mikaela; Dumas, Randy K.; Gee, Shirley J.; Hammock, Bruce D.; Liu Kai; Kennedy, Ian M.

    2009-01-01

    Multifunctional core-shell nanocomposites with a magnetic core and a silica shell doped with lanthanide chelate have been prepared by a simple method. First, citric acid-modified magnetite nanoparticles were synthesized by a chemical coprecipitation method. Then the magnetite nanoparticles were coated with silica shells doped with terbium (Tb 3+ ) complex by a modified Stoeber method based on hydrolyzing and condensation of tetraethyl orthosilicate (TEOS) and a silane precursor. These multifunctional nanocomposites are potentially useful in a variety of biological areas such as bio-imaging, bio-labeling and bioassays because they can be simultaneously manipulated with an external magnetic field and exhibit unique phosphorescence properties.

  12. Fabrication of Au{sub nanoparticle}@mSiO{sub 2}@Y{sub 2}O{sub 3}:Eu nanocomposites with enhanced fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huiqin [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi' an, 710069 (China); College of Chemistry & Chemical Engineering, Baoji University of Arts & Sciences, Baoji, 721013 (China); Kang, Jianmiao [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi' an, 710069 (China); Yang, Jianhui, E-mail: jianhui@nwu.edu.cn [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi' an, 710069 (China); Wu, Biao, E-mail: wubiao@nwu.edu.cn [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi' an, 710069 (China)

    2016-07-15

    Herein, Au{sub nanoparticle}@mSiO{sub 2}@Y{sub 2}O{sub 3}:Eu nanocomposites are synthesized through layer-by-layer assembly technology. Au{sub nanoparticle}@mSiO{sub 2} core–shell nanospheres were prepared at first in the presence of CTAB in aqueous solution system by the modified one-pot method. A chemical precipitation method and a succeeding calcination process were adopted to the growth of Y{sub 2}O{sub 3}:Eu shells on the surfaces of Au{sub nanoparticle}@mSiO{sub 2} core–shell nanospheres. The structure, morphology and composition of the nanocomposites were confirmed by XRD, TEM and UV–vis absorption spectrum. The prepared Au{sub nanoparticle}@mSiO{sub 2}@Y{sub 2}O{sub 3}:Eu nanocomposites have showed the emission intensity enhances to 6.23 times at 30 nm thickness of the silica spacer between the core of Au nanoparticle and the shell of Y{sub 2}O{sub 3}:Eu. According to the observations of fluorescent lifetime and the modeling of local electric field, the metal-enhanced and quenched fluorescence is closely related with the enhancement of excitation and radiative decay rate and the quenching by NRET comes as a result of competition between the distance-dependent mechanisms. This kind of multifunctional inorganic material will be widely used in electronics, biology and medical drug loading, etc. - Highlights: • Fabrication of Au{sub nanoparticle}@mSiO{sub 2}@Y{sub 2}O{sub 3}:Eu nanocomposites with core-spacer-shell structure. • The controllable fluorescence is achieved by adjusting the spacer thickness of silica. • The fluorescence enhancement is 6.23-fold at an optimal spacer thickness about 30 nm. • The metal-enhanced fluorescence mechanism is proposed.

  13. Mn2+ anchored CdS polymer nanocomposites: An efficient alternative for Mn2+ doped CdS nanoparticles

    International Nuclear Information System (INIS)

    Saikia, Bhaskar Jyoti; Nath, Bikash Chandra; Borah, Chandramika; Dolui, Swapan Kumar

    2015-01-01

    A chelating bi-functional polymer brushes was prepared via atom transfer radical polymerization using grafting-from methodology. Mn 2+ -anchored CdS-polymer nanocomposites were synthesized using this graft copolymer by simple chelation method resulting in emission at about 620 nm which originates from the fluorescence of manganese ions embedded on the surface of CdS nanoparticles. This method provides an efficient straightforward substitute of Mn 2+ dopped CdS nanoparticles. Optical properties of the composites were investigated which indicates that simple Mn 2+ chelation and subsequent binding of CdS in a polymer matrix can have similar effect in the luminescence property as those synthesized via complex doping methods. Moreover this methodology can be applied for synthesis of any metal anchored nanocomposites proficiently and cost effectively in large-scale production. - Highlights: • A chelating bifunctional copolymer brush was synthesized via ATRP. • CdS nanoparticles and Mn 2+ were coupled with the bifunctional polymer. • Composites showed emission properties similar to Mn 2+ doped CdS nanoparticles. • Side chain length of the polymers also affect the emission properties of the composites.

  14. L-cysteine-capped core/shell/shell quantum dot-graphene oxide nanocomposite fluorescence probe for polycyclic aromatic hydrocarbon detection.

    Science.gov (United States)

    Adegoke, Oluwasesan; Forbes, Patricia B C

    2016-01-01

    Environmental pollutants, such as the polycyclic aromatic hydrocarbons (PAHs), become widely distributed in the environment after emission from a range of sources, and they have potential biological effects, including toxicity and carcinogenity. In this work, we have demonstrated the analytical potential of a covalently linked L-cysteine-capped CdSeTe/ZnSe/ZnS core/shell/shell quantum dot (QD)-graphene oxide (GO) nanocomposite fluorescence probe to detect PAH compounds in aqueous solution. Water-soluble L-cysteine-capped CdSeTe/ZnSe/ZnS QDs were synthesized for the first time and were covalently bonded to GO. The fluorescence of the QD-GO nanocomposite was enhanced relative to the unconjugated QDs. Various techniques including TEM, SEM, HRSEM, XRD, Raman, FT-IR, UV/vis and fluorescence spectrophotometry were employed to characterize both the QDs and the QD-GO nanocomposite. Four commonly found priority PAH analytes namely; phenanthrene (Phe), anthracene (Ant), pyrene (Py) and naphthalene (Naph), were tested and it was found that each of the PAH analytes enhanced the fluorescence of the QD-GO probe. Phe was selected for further studies as the PL enhancement was significantly greater for this PAH. A limit of detection (LOD) of 0.19 µg/L was obtained for Phe under optimum conditions, whilst the LOD of Ant, Py and Naph were estimated to be ~0.26 µg/L. The fluorescence detection mechanism is proposed. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Influence of Conducting Polymer as Filler and Matrix on the Spectral, Morphological and Fluorescent Properties of Sonochemically Intercalated poly(o-phenylenediamine)/Montmorillonite Nanocomposites.

    Science.gov (United States)

    Riaz, Ufana; Ashraf, Syed M; Verma, Anurakshee

    2016-01-01

    Nanocomposites consisting of spatially confined polymeric chains are of great interest due to their application in optoelectronic and photonics devices. Polymer layered silicate nanocomposites have attracted much attention in industry as well as academia owing to their remarkable physical and chemical properties as compared to conventional polymer nanocomposites. In present study, comparative investigation of the in-situ polymerization of poly(ophenylenediamine) intercalated montmorillonite has been done via two methods i.e using poly(o-phenylenediamine) as filler for MMT in one case and as matrix in the other. Intercalation and in-situ polymerization was confirmed by FT-IR, UV-Visible spectroscopy and XRD studies. TEM and optical microscopy studies confirmed the self-assembled morphology of nanocomposites while the fluorescence properties revealed that controlled emission could be achieved by confining poly(o-phenylenediamine) in MMT galleries. Intercalation and in-situ polymerization of o-phenylenediamine within MMT was successfully carried out using sonochemical technique. The growth of conducting polymers in the interlayer region of the clays has been shown to dramatically improve the properties of conducting polymers. Also, the loading of the polymer in the MMT has shown to influence the optical properties of the nanocomposite. IR spectra and XRD analysis confirmed the intercalation of POPD and its polymerization within the clay galleries. UV spectra revealed the doped state of POPD within clay galleries. Highest oscillator strength of 0.0137 was observed for POPD:MMT-1:0.25. Spherical self-assembled morphology was attained for POPD:MMT-1:0.25. XRD revealed major shift of 82.5 Å for the nanocomposite POPD:MMT-1:1, POPD:MMT-1:0.5 and MMT:POPD-1:0.25. Blue shift of 20 nm was noticed in the fluorescence spectra of POPD:MMT-1:0.25 and POPD:MMT-1:0.5 which was correlated to the intense interaction between NH of POPD with SiO of MMT. Highest quantum yield of 0

  16. Evidence for the molecular-scale origin of the suppression of physical ageing in confined polymer: fluorescence and dielectric spectroscopy studies of polymer-silica nanocomposites

    International Nuclear Information System (INIS)

    Priestley, Rodney D; Rittigstein, Perla; Broadbelt, Linda J; Fukao, Koji; Torkelson, John M

    2007-01-01

    Fluorescence spectroscopy was used to characterize the rate of physical ageing at room temperature in nanocomposites of silica (10-15 nm diameter) nanoparticles in poly(methyl methacrylate) (PMMA). The physical ageing rate was reduced by more than a factor of 20 in 0.4 vol% silica-PMMA nanocomposites relative to neat PMMA. The molecular-scale origin of this nearly complete arresting of physical ageing was investigated with dielectric spectroscopy. The strength of the β relaxation process was reduced by nearly 50% in the nanocomposite relative to neat PMMA. This reduced strength of the β process results from dipoles (ester groups) having hindered motions or being virtually immobile on the timescale being probed at a frequency of 100 Hz. This hindered mobility results from hydrogen bonding between PMMA ester side groups and hydroxyl units on the surface of the silica nanoparticles. In contrast, no reduction in physical ageing rate was observed upon addition of silica to polystyrene, which cannot form hydrogen bonds with the silica surfaces. Thus, the molecular origin of the suppressed physical ageing in silica-PMMA nanocomposites is the interfacial hydrogen bonding, which leads to a major reduction in the strength of the β process, i.e., the β process is largely responsible for the observed physical ageing

  17. Bifunctional behavior of Er3+ ions as the sintering additive and the fluorescent agent in Er3+ single doped γ-AlON transparent ceramics

    International Nuclear Information System (INIS)

    Wang, Ying; Xie, Xiumin; Qi, Jianqi; Wang, Shanshan; Wei, Nian; Lu, Zhongwen; Chen, Xingtao; Lu, Tiecheng

    2016-01-01

    We report on the sintering promoting and fluorescent activator roles of Er 3+ in AlON:Er 3+ transparent ceramics prepared by pressureless sintering with Er 2 O 3 and AlON powder. There shows that the transparency of samples varied with the content of Er 2 O 3 additive. The AlON:Er 3+ ceramics showed upconversion luminescence peaking at 546 nm, 662 nm and 840 nm under the 980 nm excitation due to transition of 4 S 3/2 / 2 H 11/2 → 4 I 15/2 , 4 F 9/2 → 4 I 15/2 and 4 S 3/2 / 2 H 11/2 → 4 I 13/2 of Er 3+ ions, respectively. The infrared spectra exhibited strong emission at 1534 nm corresponds to 4 I 13/2 → 4 I 15/2 transition. The mechanism of the IR and visible emission bands in AlON:Er 3+ ceramics are discussed, which suggest it should be attractive for lighting and display devices applications.

  18. Magnetically addressable fluorescent Fe3O4/ZnO nanocomposites: Structural, optical and magnetization studies

    Science.gov (United States)

    Roychowdhury, A.; Pati, S. P.; Mishra, A. K.; Kumar, S.; Das, D.

    2013-06-01

    Fe3O4/ZnO nanocomposites (NCs) are prepared by a wet chemical route. X-ray diffraction, transmission electron microscopy and Fourier transform infrared spectroscopy studies confirm the coexistence of Fe3O4 and ZnO phases in the NCs. The UV-vis absorption spectra show a red shift of the absorption peak with increase in Fe3O4 content indicating a modification of the band structure of ZnO in the NCs. Photoluminescence emission spectra of the NCs display strong excitonic emission in the UV region along with weak emission bands in the visible range caused by electronic transitions involving defect-related energy levels in the band gap of ZnO. Positron annihilation lifetimes indicate that cation vacancies in the ZnO structure are the strong traps for positrons and the overall defect concentration in the NCs decreases with increase in Fe3O4 content. Dc magnetization measurements reveal an anomalous temperature dependence of the coercivity of the NCs that is argued to be due to the anomalous variation of magnetocrystalline anisotropy at lower temperature. The irreversibility observed in the temperature dependent ZFC-FC magnetization points to the presence of a spin-glass phase in the NCs.

  19. Fluorescent polymeric nanocomposite films generated by surface-mediated photoinitiation of polymerization

    International Nuclear Information System (INIS)

    Avens, Heather J.; Chang, Erin L.; May, Allison M.; Berron, Brad J.; Seedorf, Gregory J.; Balasubramaniam, Vivek; Bowman, Christopher N.

    2011-01-01

    Incorporation of nanoparticles (NPs) into polymer films represents a valuable strategy for achieving a variety of desirable physical, optical, mechanical, and electrical attributes. Here, we describe and characterize the creation of highly fluorescent polymer films by entrapment of fluorescent NPs into polymer matrices through surface-mediated eosin photoinitiation reactions. Performing surface-mediated polymerizations with NPs combines the benefits of a covalently anchored film with the unique material properties afforded by NPs. The effects of monomer type, crosslinker content, NP size, and NP surface chemistry were investigated to determine their impact on the relative amount of NPs entrapped in the surface-bound films. The density of entrapped NPs was increased up to 6-fold by decreasing the NP diameter. Increasing the crosslinking agent concentration enabled a greater than 2-fold increase in the amount of NPs entrapped. Additionally, the monomer chemistry played a significant role as poly(ethylene glycol) diacrylate (PEGDA)-based monomer formulations entrapped a 10-fold higher density of carboxy-functionalized NPs than did acrylamide/bisacrylamide formulations, though the latter formulations ultimately immobilized more fluorophores by generating thicker films. In the context of a polymerization-based microarray biodetection platform, these findings enabled tailoring of the monomer and NP selection to yield a 200-fold improvement in sensitivity from 31 (±1) to 0.16 (±0.01) biotinylated target molecules per square micron. Similarly, in polymerization-based cell staining applications, appropriate monomer and NP selection enabled facile visualization of microscale, sub-cellular features. Careful consideration of monomer and NP selection is critical to achieve the desired properties in applications that employ surface-mediated polymerization to entrap NPs.

  20. Synthesis and characterization of bioresorbable calcium phosphosilicate nanocomposite particles for fluorescence imaging and biomedical applications

    Science.gov (United States)

    Morgan, Thomas T.

    Organically doped calcium phosphosilicate nanoparticles (CPSNPs) were developed and characterized, driven by the need for non-toxic vectors for drug delivery and fluorescence biological imaging applications. In particular, advancement in drug delivery for the chemotherapeutic treatment of cancers is required to increase drug efficacy and improve patient quality of life. Additionally, brighter and more photostable fluorophores are needed to meet demands for improved sensitivity and experimental diversity, which may lead to improvements in early detection of solid tumors and advancement in understanding of biological processes. A literature survey on the state of the field for nanoparticle based biological fluorescence imaging and drug delivery is presented in Chapter 1. Chapter 2 focuses on the characterization techniques used in this work. The development and optical characterization of 20-40 nm diameter, citrate functionalized Cy3 amidite doped calcium phosphosilicate nanoparticles (Cy3 CPSNPs) for in vitro fluorescence imaging is outlined in Chapters 3 and 4, respectively. In particular, sodium citrate was used to functionalize the surface and provide electrosteric dispersion of these particles. CPSNPs stabilized with sodium citrate routinely exhibited highly negative zeta potentials greater than -25 mV in magnitude. Furthermore, the fluorescence quantum yield of the encapsulated fluorophore was improved by more than 4.5-fold when compared to the unencapsulated dye. The bioimaging and drug delivery capability of CPSNPs was explored. Cy3 CPSNPs dissolved quickly in the acidic environment experienced during endocytosis, releasing the encapsulated fluorophore. This is consistent with solution phase experiments that show the particles are dissolved at pH 5. CPSNPs loaded with fluorescein and a hydrophobic growth inhibitor, ceramide C6, proved the ability to simultaneously image and delivery of the hydrophobic drug to cells in vitro. Chapter 5 examined the colloidal

  1. Core/shell fluorescent magnetic silica-coated composite nanoparticles for bioconjugation

    Science.gov (United States)

    He, Rong; You, Xiaogang; Shao, Jun; Gao, Feng; Pan, Bifeng; Cui, Daxiang

    2007-08-01

    A new class of highly fluorescent, photostable, and magnetic core/shell nanoparticles has been synthesized from a reverse microemulsion method. The obtained bifunctional nanocomposites were characterized by transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) spectrometry, photoluminescence (PL) spectrometry, and fluorescence microscopy in a magnetic field. To further improve their biocompatibility, the silica-coated nanoparticles were functionalized with amino groups. The fluorescent magnetic composite nanoparticles (FMCNPs) had a typical diameter of 50 ± 5 nm and a saturation magnetization of 3.21 emu g-1 at room temperature, and exhibited strong excitonic photoluminescence. Through activation with glutaraldehyde, the FMCNPs were successfully conjugated with goat anti-mouse immunoglobin G (GM IgG), and the bioactivity and binding specificity of the as-prepared FMCNPs-GM IgG were confirmed via immunofluorescence assays, commonly used in bioanalysis. So they are potentially useful for many applications in biolabelling, imaging, drug targeting, bioseparation and bioassays.

  2. Core/shell fluorescent magnetic silica-coated composite nanoparticles for bioconjugation

    International Nuclear Information System (INIS)

    He Rong; You Xiaogang; Shao Jun; Gao Feng; Pan Bifeng; Cui Daxiang

    2007-01-01

    A new class of highly fluorescent, photostable, and magnetic core/shell nanoparticles has been synthesized from a reverse microemulsion method. The obtained bifunctional nanocomposites were characterized by transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) spectrometry, photoluminescence (PL) spectrometry, and fluorescence microscopy in a magnetic field. To further improve their biocompatibility, the silica-coated nanoparticles were functionalized with amino groups. The fluorescent magnetic composite nanoparticles (FMCNPs) had a typical diameter of 50 ± 5 nm and a saturation magnetization of 3.21 emu g -1 at room temperature, and exhibited strong excitonic photoluminescence. Through activation with glutaraldehyde, the FMCNPs were successfully conjugated with goat anti-mouse immunoglobin G (GM IgG), and the bioactivity and binding specificity of the as-prepared FMCNPs-GM IgG were confirmed via immunofluorescence assays, commonly used in bioanalysis. So they are potentially useful for many applications in biolabelling, imaging, drug targeting, bioseparation and bioassays

  3. High fluorescence emission of carboxylic acid functionalized polystyrene/BaTiO{sub 3} nanocomposites and rare earth metal complexes: Preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Cao, X. T.; Showkat, A. M.; Wang, Z.; Lim, K. T., E-mail: ktlim@pknu.ac.kr [Department of Imaging System Engineering, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2015-03-30

    Noble fluorescence nanocomposite compound based on barium titanate nanoparticles (BTO), polystyrene (PSt), and terbium ion (Tb{sup 3+}) was synthesized by a combination of surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization, Friedel-Crafts alkylation reaction and coordinate chemistry. Initially, a modification of surface of BTO was conducted by an exchange process with S-benzyl S’-trimethoxysilylpropyltrithiocarbonate to create macro-initiator for polymerization of styrene. Subsequently, aryl carboxylic acid functionalized polystyrene grafted barium titanate (BTO-g-PSt-COOH) was generated by substitution reaction between 4-(Chloromethyl) benzoic acid and PSt chains. The coordination of the nanohybrids with Tb{sup 3+} ions afforded fluorescent Tb{sup 3+} tagged aryl carboxylic acid functionalized polystyrene grafted barium titanate (BTO-g-PSt-Tb{sup 3+}) complexes. Structure, morphology, and fluorescence properties of nanohybrid complexes were investigated by respective physical and spectral studies. FT-IR and SEM analyses confirmed the formation of BTO-g-PSt-Tb{sup 3+}nanohybrids. Furthermore, TGA profiles demonstrated the grafting of aryl carboxylic acid functionalized polystyrene on BTO surface. Optical properties of BTO-g-PSt-Tb{sup 3+} complexes were investigated by fluorescence spectroscopy.

  4. Bifunctional redox flow battery

    International Nuclear Information System (INIS)

    Wen, Y.H.; Cheng, J.; Xun, Y.; Ma, P.H.; Yang, Y.S.

    2008-01-01

    A new bifunctional redox flow battery (BRFB) system, V(III)/V(II)-L-cystine(O 2 ), was systematically investigated by using different separators. It is shown that during charge, water transfer is significantly restricted with increasing the concentration of HBr when the Nafion 115 cation exchange membrane is employed. The same result can be obtained when the gas diffusion layer (GDL) hot-pressed separator is used. The organic electro-synthesis is directly correlated with the crossover of vanadium. When employing the anion exchange membrane, the electro-synthesis efficiency is over 96% due to a minimal crossover of vanadium. When the GDL hot-pressed separator is applied, the crossover of vanadium and water transfer are noticeably prevented and the electro-synthesis efficiency of over 99% is obtained. Those impurities such as vanadium ions and bromine can be eliminated through the purification of organic electro-synthesized products. The purified product is identified to be L-cysteic acid by IR spectrum. The BRFB shows a favorable discharge performance at a current density of 20 mA cm -2 . Best discharge performance is achieved by using the GDL hot-pressed separator. The coulombic efficiency of 87% and energy efficiency of about 58% can be obtained. The cause of major energy losses is mainly associated with the cross-contamination of anodic and cathodic active electrolytes

  5. Selective production of oxygenates from CO2 hydrogenation over mesoporous silica supported Cu-Ga nanocomposite catalyst

    KAUST Repository

    Huang, Kuo-Wei; Hengne, Amol Mahalingappa; Bhatte, Kushal Deepak; Ould-Chikh, Samy; Saih, Youssef; Basset, Jean-Marie

    2017-01-01

    Carbon dioxide hydrogenation to oxygenates (methanol and dimethyl ether (DME)) was investigated over bifunctional supported copper catalysts promoted with gallium (Ga). Supported Cu-Ga nanocomposite catalysts were characterized by X-ray diffraction

  6. Preparation and characterization of bifunctional dendrimer modified Fe{sub 3}O{sub 4}/CdTe nanoparticles with both luminescent and superparamagnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiuling, E-mail: wxling_self@163.com [Department of Chemical and Biological Engineering, Suzhou University of Science and Technology, Suzhou 215009 (China); Gu, Yinjun; Dong, Shuling [Department of Chemical and Biological Engineering, Suzhou University of Science and Technology, Suzhou 215009 (China); Zhao, Qin [School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019 (China); Liu, Yongjian [Department of Chemical and Biological Engineering, Suzhou University of Science and Technology, Suzhou 215009 (China)

    2015-10-15

    Highlights: • The fluorescent superparamagnetic dendrimeric Fe{sub 3}O{sub 4}/CdTe nanoparticles are synthesized in this paper. • The synthesized nanocomposites maintain excellent magnetic properties. • The synthesized nanocomposites maintain highly luminescent markers with narrow emission bands. - Abstract: Magnetic nanoparticles Fe{sub 3}O{sub 4} were prepared by hydrothermal coprecipitation of ferric and ferrous ions using NaOH. The surface modification of Fe{sub 3}O{sub 4} nanoparticle by dendrimers has rendered the nanoparticle surface with enriched amine groups which facilitated the adsorption and conjugation of thioglycolic acid (TGA) modified CdTe quantum dots to form a stable hybrid nanostructure. Three generations (first generation: G0F, second generation: G1F, third generation: G3F) of bifunctional dendrimeric Fe{sub 3}O{sub 4}/CdTe nanoparticles were successfully prepared using this technique and characterized by microscopy. The optical and magnetic properties of the dendrimeric Fe{sub 3}O{sub 4}/CdTe nanoparticle were also investigated. The microscopic study reveals 3 different sizes for 3 generations, 16 nm (G0F), 31 nm (G1F) and 47 nm (G3F). Among three generations of nanoparticles, the G1F has the best optical property with a luminescent quantum yield of 25.6% and the G0F has the best magnetic property with a saturation magnetization of 19.3 emμ/g.

  7. Enhanced polymer light-emitting diode property using fluorescent conducting polymer-reduced graphene oxide nanocomposite as active emissive layer

    Science.gov (United States)

    Singh, Jyoti Prakash; Saha, Uttam; Jaiswal, Rimpa; Anand, Raghubir Singh; Srivastava, Anurag; Goswami, Thako Hari

    2014-11-01

    The present article reports the polymer light-emitting diode property of the nanocomposite comprising poly 9,9-dioctyl fluorene- alt-bithiophene and reduced graphene oxide used as an emissive layer. Two times repetition of Hummers oxidation and hydrazine hydrate reduction method produce reduced graphene oxide (term as rGO2) with more uniform distribution in size and thickness. In addition, this uniquely synthesized rGO2 induces favorable shift in balance of electron and hole recombination zone toward the center of emissive layer owing to increase in in-plane crystallite size and high localize aromatic confinement. Five times increase in maximum device efficiency (Cd/A) and three times increase in maximum brightness (Cd/m2) are achieved with the LED device using nanocomposite as emissive layer compared to neat polymer. Also, the fabricated device requires relatively low turn-on voltage (4 V) because of low energy barrier between PEDOT work function (-5.0 eV) and HOMO levels of bi-thiophene copolymer -5.67 eV) and nanocomposite (-5.66 eV).

  8. Single flexible nanofiber to achieve simultaneous photoluminescence-electrical conductivity bifunctionality.

    Science.gov (United States)

    Sheng, Shujuan; Ma, Qianli; Dong, Xiangting; Lv, Nan; Wang, Jinxian; Yu, Wensheng; Liu, Guixia

    2015-02-01

    In order to develop new-type multifunctional composite nanofibers, Eu(BA)3 phen/PANI/PVP bifunctional composite nanofibers with simultaneous photoluminescence and electrical conductivity have been successfully fabricated via electrospinning technology. Polyvinyl pyrrolidone (PVP) is used as a matrix to construct composite nanofibers containing different amounts of Eu(BA)3 phen and polyaniline (PANI). X-Ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), fluorescence spectroscopy and a Hall effect measurement system are used to characterize the morphology and properties of the composite nanofibers. The results indicate that the bifunctional composite nanofibers simultaneously possess excellent photoluminescence and electrical conductivity. Fluorescence emission peaks of Eu(3+) ions are observed in the Eu(BA)3 phen/PANI/PVP photoluminescence-electrical conductivity bifunctional composite nanofibers. The electrical conductivity reaches up to the order of 10(-3)  S/cm. The luminescent intensity and electrical conductivity of the composite nanofibers can be tuned by adjusting the amounts of Eu(BA)3 phen and PANI. The obtained photoluminescence-electrical conductivity bifunctional composite nanofibers are expected to possess many potential applications in areas such as microwave absorption, molecular electronics, biomedicine and future nanomechanics. More importantly, the design concept and construction technique are of universal significance to fabricate other bifunctional one-dimensional naonomaterials. Copyright © 2014 John Wiley & Sons, Ltd.

  9. Fluorescence and Magnetic Resonance Dual-Modality Imaging-Guided Photothermal and Photodynamic Dual-Therapy with Magnetic Porphyrin-Metal Organic Framework Nanocomposites

    Science.gov (United States)

    Zhang, Hui; Li, Yu-Hao; Chen, Yang; Wang, Man-Man; Wang, Xue-Sheng; Yin, Xue-Bo

    2017-03-01

    Phototherapy shows some unique advantages in clinical application, such as remote controllability, improved selectivity, and low bio-toxicity, than chemotherapy. In order to improve the safety and therapeutic efficacy, imaging-guided therapy seems particularly important because it integrates visible information to speculate the distribution and metabolism of the probe. Here we prepare biocompatible core-shell nanocomposites for dual-modality imaging-guided photothermal and photodynamic dual-therapy by the in situ growth of porphyrin-metal organic framework (PMOF) on Fe3O4@C core. Fe3O4@C core was used as T2-weighted magnetic resonance (MR) imaging and photothermal therapy (PTT) agent. The optical properties of porphyrin were well remained in PMOF, and PMOF was therefore selected for photodynamic therapy (PDT) and fluorescence imaging. Fluorescence and MR dual-modality imaging-guided PTT and PDT dual-therapy was confirmed with tumour-bearing mice as model. The high tumour accumulation of Fe3O4@C@PMOF and controllable light excitation at the tumour site achieved efficient cancer therapy, but low toxicity was observed to the normal tissues. The results demonstrated that Fe3O4@C@PMOF was a promising dual-imaging guided PTT and PDT dual-therapy platform for tumour diagnosis and treatment with low cytotoxicity and negligible in vivo toxicity.

  10. Fluorescent Quantification of DNA Based on Core-Shell Fe3O4@SiO2@Au Nanocomposites and Multiplex Ligation-Dependent Probe Amplification.

    Science.gov (United States)

    Fan, Jing; Yang, Haowen; Liu, Ming; Wu, Dan; Jiang, Hongrong; Zeng, Xin; Elingarami, Sauli; Ll, Zhiyang; Li, Song; Liu, Hongna; He, Nongyue

    2015-02-01

    In this research, a novel method for relative fluorescent quantification of DNA based on Fe3O4@SiO2@Au gold-coated magnetic nanocomposites (GMNPs) and multiplex ligation- dependent probe amplification (MLPA) has been developed. With the help of self-assembly, seed-mediated growth and chemical reduction method, core-shell Fe3O4@SiO2@Au GMNPs were synthesized. Through modified streptavidin on the GMNPs surface, we obtained a bead chip which can capture the biotinylated probes. Then we designed MLPA probes which were tagged with biotin or Cy3 and target DNA on the basis of human APP gene sequence. The products from the thermostable DNA ligase induced ligation reactions and PCR amplifications were incubated with SA-GMNPs. After washing, magnetic separation, spotting, the fluorescent scanning results showed our method can be used for the relative quantitative analysis of the target DNA in the concentration range of 03004~0.5 µM.

  11. A sensitive turn on fluorescent probe for detection of biothiols using MnO2@carbon dots nanocomposites

    Science.gov (United States)

    Garg, Dimple; Mehta, Akansha; Mishra, Amit; Basu, Soumen

    2018-03-01

    Presently, the combination of carbon quantum dots (CQDs) and metal oxide nanostructures in one frame are being considered for the sensing of purine compounds. In this work, a combined system of CQDs and MnO2 nanostructures was used for the detection of anticancer drugs, 6-Thioguanine (6-TG) and 6-Mercaptopurine (6-MP). The CQDs were synthesized through microwave synthesizer and the MnO2 nanostructures (nanoflowers and nanosheets) were synthesized using facile hydrothermal technique. The CQDs exhibited excellent fluorescence emission at 420 nm when excited at 320 nm wavelength. By combining CQDs and MnO2 nanostructures, quenching of fluorescence was observed which was attributed to fluorescence resonance energy transfer (FRET) mechanism, where CQDs act as electron donor and MnO2 act as acceptor. This fluorescence quenching behaviour disappeared on the addition of 6-TG and 6-MP due to the formation of Mn-S bond. The detection limit for 6-TG (0.015 μM) and 6-MP (0.014 μM) was achieved with the linear range of concentration (0-50 μM) using both MnO2 nanoflowers and nanosheets. Moreover, the as-prepared fluorescence-sensing technique was successfully employed for the detection of bio-thiol group in enapril drug. Thus a facile, cost-effective and benign chemistry approach for biomolecule detection was designed.

  12. Bifunctional Phosphorus Dendrimers and Their Properties.

    Science.gov (United States)

    Caminade, Anne-Marie; Majoral, Jean-Pierre

    2016-04-23

    Dendrimers are hyperbranched and monodisperse macromolecules, generally considered as a special class of polymers, but synthesized step-by-step. Most dendrimers have a uniform structure, with a single type of terminal function. However, it is often desirable to have at least two different functional groups. This review will discuss the case of bifunctional phosphorus-containing dendrimers, and the consequences for their properties. Besides the terminal functions, dendritic structures may have also a function at the core, or linked off-center to the core, or at the core of dendrons (dendritic wedges). Association of two dendrons having different terminal functions leads to Janus dendrimers (two faces). The internal structure can also possess functional groups on one layer, or linked to one layer, or on several layers. Finally, there are several ways to have two types of terminal functions, besides the case of Janus dendrimers: either each terminal function bears two functions sequentially, or two different functions are linked to each terminal branching point. Examples of each type of structure will be given in this review, as well as practical uses of such sophisticated structures in the fields of fluorescence, catalysis, nanomaterials and biology.

  13. The risk assessment of Gd_2O_3:Yb"3"+/Er"3"+ nanocomposites as dual-modal nanoprobes for magnetic and fluorescence imaging

    International Nuclear Information System (INIS)

    Huang, Long; Tian, Xiumei; Liu, Jun; Zheng, Cunjing; Xie, Fukang; Li, Li

    2017-01-01

    Our group has synthesized Gd_2O_3:Yb"3"+/Er"3"+ nanocomposites as magnetic/fluorescence imaging successfully in the previous study, which exhibit good uniformity and monodispersibility with a mean size of 7.4 nm. However, their systematic risk assessment remains unknown. In this article, the in vitro biocompatibility of the Gd_2O_3:Yb"3"+/Er"3"+ was assessed on the basis of cell viability and apoptosis. In vivo immunotoxicity was evaluated by monitoring the product of reactive oxygen species (ROS), clusters of differentiation (CD) markers, and superoxide dismutase (SOD) in Balb/c mice. No significant differences were found in cell viability, apoptosis, and immunotoxicity between our Gd_2O_3:Yb"3"+/Er"3"+ and gadodiamide which are used commonly in clinical. Few nanoprobes were localized in the phagosomes of the liver, heart, lung, spleen, kidney, brain, and tumor under the transmission electron microscopy (TEM) images. In addition, our products reveal good T_1-weighted contrast enhancement of xenografted murine tumor. Therefore, the above results may contribute to the effective application of Gd_2O_3:Yb"3"+/Er"3"+ as molecular imaging contrast agents and dual-modal nanoprobes for cancer detection.

  14. Thermomechanical Behavior of High Performance Epoxy/Organoclay Nanocomposites

    Directory of Open Access Journals (Sweden)

    Artur Soares Cavalcanti Leal

    2014-01-01

    Full Text Available Nanocomposites of epoxy resin containing bentonite clay were fabricated to evaluate the thermomechanical behavior during heating. The epoxy resin system studied was prepared using bifunctional diglycidyl ether of bisphenol A (DGEBA, crosslinking agent diaminodiphenylsulfone (DDS, and diethylenetriamine (DETA. The purified bentonite organoclay (APOC was used in all experiments. The formation of nanocomposite was confirmed by X-ray diffraction analysis. Specimens of the fabricated nanocomposites were characterized by dynamic mechanical analysis (DMA. According to the DMA results a significant increase in glass transition temperature and storage modulus was evidenced when 1 phr of clay is added to epoxy resin.

  15. Quantitative optical fluorescence microprobe measurements of stresses around indentations in Al2O3 and Al2O3/SiC nanocomposites: The influence of depth resolution and specimen translucency

    International Nuclear Information System (INIS)

    Guo Sheng; Todd, R.I.

    2011-01-01

    Residual stresses around 1 kg Vickers indentations in Al 2 O 3 and Al 2 O 3 /SiC nanocomposites were measured using high-resolution Cr 3+ fluorescence microscopy. Experiments and modelling showed that the use of non-confocal microscopes can lead to significant underestimation of the surface stress in Al 2 O 3 because of the sampling of subsurface regions where the stresses are lower. The nanocomposites were less sensitive to the depth resolution of the microscope because their strong absorption limited the depth from which fluorescent radiation was collected. The use of confocal microscope settings allowed accurate measurements to be made and the indentation stresses were found to be very similar in Al 2 O 3 and the Al 2 O 3 /SiC nanocomposites. The stresses measured were significantly different from the predictions of the Yoffe model for indentation stresses. This was because of indentation cracking, which is not accounted for in the model. Cracking was also considered to be important in determining the plastic zone size in ceramics, which is much smaller relative to the indentation size than in metals.

  16. Fabrication of Au_n_a_n_o_p_a_r_t_i_c_l_e@mSiO_2@Y_2O_3:Eu nanocomposites with enhanced fluorescence

    International Nuclear Information System (INIS)

    Li, Huiqin; Kang, Jianmiao; Yang, Jianhui; Wu, Biao

    2016-01-01

    Herein, Au_n_a_n_o_p_a_r_t_i_c_l_e@mSiO_2@Y_2O_3:Eu nanocomposites are synthesized through layer-by-layer assembly technology. Au_n_a_n_o_p_a_r_t_i_c_l_e@mSiO_2 core–shell nanospheres were prepared at first in the presence of CTAB in aqueous solution system by the modified one-pot method. A chemical precipitation method and a succeeding calcination process were adopted to the growth of Y_2O_3:Eu shells on the surfaces of Au_n_a_n_o_p_a_r_t_i_c_l_e@mSiO_2 core–shell nanospheres. The structure, morphology and composition of the nanocomposites were confirmed by XRD, TEM and UV–vis absorption spectrum. The prepared Au_n_a_n_o_p_a_r_t_i_c_l_e@mSiO_2@Y_2O_3:Eu nanocomposites have showed the emission intensity enhances to 6.23 times at 30 nm thickness of the silica spacer between the core of Au nanoparticle and the shell of Y_2O_3:Eu. According to the observations of fluorescent lifetime and the modeling of local electric field, the metal-enhanced and quenched fluorescence is closely related with the enhancement of excitation and radiative decay rate and the quenching by NRET comes as a result of competition between the distance-dependent mechanisms. This kind of multifunctional inorganic material will be widely used in electronics, biology and medical drug loading, etc. - Highlights: • Fabrication of Au_n_a_n_o_p_a_r_t_i_c_l_e@mSiO_2@Y_2O_3:Eu nanocomposites with core-spacer-shell structure. • The controllable fluorescence is achieved by adjusting the spacer thickness of silica. • The fluorescence enhancement is 6.23-fold at an optimal spacer thickness about 30 nm. • The metal-enhanced fluorescence mechanism is proposed.

  17. MnFe2O4/CdSe magneto-fluorescent nanocomposite for possible biomedical applications

    Science.gov (United States)

    Chandunika, R. K.; Vijayaraghavan, R.; Sahu, Niroj Kumar

    2018-04-01

    Acombined superparamagnetic and fluorescent MnFe2O4/CdSe multifunctional nanocompositehas been prepared by suitable surface functionalizationswith citric acid, polyethyleneimine(PEI) and thioglycolic acid (ThA).and the samples were characterized by XRD, FT-IR, TEM, Zeta Potential, VSM, UV-Vis and PL spectroscopy. MnFe2O4 crystalizes with average size of 38.6 nm whereas CdSe with average size of 2.03 nm. In composite, the CdSe quantum dots (QD) are homogeneously distributed in the matrix of porous MnFe2O4 nanoparticles. Thenanocomposites are well dispersed in aqueous solvent and possess significant magnetic and luminescence properties which may be utilised for magnetic resonance imaging and luminescence tagging of biomolecules.

  18. Synthesis and characterization of luminescence magnetic nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Kiplagat, Ayabei [DST/Mintek Nanotechnology Innovation Centre, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville (South Africa); Onani, Martin O., E-mail: monani@uwc.ac.za [DST/Mintek Nanotechnology Innovation Centre, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville (South Africa); Meyer, Mervin [DST/Mintek Nanotechnology Innovation Centre, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville (South Africa); Akenga, Teresa A. [Department of Chemistry, University of Eldoret, P.O. Box 1125, Eldoret (Kenya); Dejene, Francis B. [Department of Physics, University of the Free State, QwaQwa Campus, Private Bag X13, Phuthadithaba 9866 (South Africa)

    2016-01-01

    We report a new type of indium based quantum dots which were conjugated to the magnetic Fe{sub 2}O{sub 3} nanoparticles. They were characterized by photoluminescence (PL), high resolution transmission electron microscopy (HRTEM), superconducting quantum interference device (SQUID) and fourier transform infra-red (FTIR). The photoluminescence characteristics of the coupled and uncoupled indium based quantum dots were investigated to determine whether the fluorescing property could be retained in the bifunctional system. Generally, the PL intensity of the quantum dots was observed to reduce significantly and with huge red shift most probably due to quenching effects for the MNPs. The average size of the coupled nanoparticles were found to range between 4 and 5 nm for the quantum dots and range of 6–13 nm for the Fe{sub 2}O{sub 3} magnetic nanoparticles as revealed by both HRTEM and XRD. The highest magnetic saturation reached for both bare and functionalized magnetic nanoparticles was 68.58 emu/g. The FTIR data revealed that the postulated functional groups were actually present in both the bare and functionalized nanoparticles. For instance, Fe–O was observed at around 580 cm{sup −1}, O–H at 3432 cm{sup −1} and thiol group at 2929 cm{sup −1} for meso-2,3-dimercaptosuccinic acid capped Fe{sub 2}O{sub 3} magnetic nanoparticles. The energy dispersive spectroscopy (EDS) also confirmed that all the elements of the nanocomposite were actually present in the designed material.

  19. Development of a reduced-graphene-oxide based superparamagnetic nanocomposite for the removal of nickel (II) from an aqueous medium via a fluorescence sensor platform

    CSIR Research Space (South Africa)

    Nandi, D

    2015-09-01

    Full Text Available Reduced-graphene-oxide based superparamagnetic nanocomposite (GC) was fabricated and applied for the remediation of Ni(II) from an aqueous medium. The as-prepared GC was extensively characterized by Raman, TEM, AFM, SEM–EDX, SQUID, and BET analyses...

  20. Fat & fabulous: bifunctional lipids in the spotlight.

    Science.gov (United States)

    Haberkant, Per; Holthuis, Joost C M

    2014-08-01

    Understanding biological processes at the mechanistic level requires a systematic charting of the physical and functional links between all cellular components. While protein-protein and protein-nucleic acid networks have been subject to many global surveys, other critical cellular components such as membrane lipids have rarely been studied in large-scale interaction screens. Here, we review the development of photoactivatable and clickable lipid analogues-so-called bifunctional lipids-as novel chemical tools that enable a global profiling of lipid-protein interactions in biological membranes. Recent studies indicate that bifunctional lipids hold great promise in systematic efforts to dissect the elaborate crosstalk between proteins and lipids in live cells and organisms. This article is part of a Special Issue entitled Tools to study lipid functions. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Identifying and annotating human bifunctional RNAs reveals their versatile functions.

    Science.gov (United States)

    Chen, Geng; Yang, Juan; Chen, Jiwei; Song, Yunjie; Cao, Ruifang; Shi, Tieliu; Shi, Leming

    2016-10-01

    Bifunctional RNAs that possess both protein-coding and noncoding functional properties were less explored and poorly understood. Here we systematically explored the characteristics and functions of such human bifunctional RNAs by integrating tandem mass spectrometry and RNA-seq data. We first constructed a pipeline to identify and annotate bifunctional RNAs, leading to the characterization of 132 high-confidence bifunctional RNAs. Our analyses indicate that bifunctional RNAs may be involved in human embryonic development and can be functional in diverse tissues. Moreover, bifunctional RNAs could interact with multiple miRNAs and RNA-binding proteins to exert their corresponding roles. Bifunctional RNAs may also function as competing endogenous RNAs to regulate the expression of many genes by competing for common targeting miRNAs. Finally, somatic mutations of diverse carcinomas may generate harmful effect on corresponding bifunctional RNAs. Collectively, our study not only provides the pipeline for identifying and annotating bifunctional RNAs but also reveals their important gene-regulatory functions.

  2. Nanocarbon/oxide composite catalysts for bifunctional oxygen reduction and evolution in reversible alkaline fuel cells: A mini review

    Science.gov (United States)

    Chen, Mengjie; Wang, Lei; Yang, Haipeng; Zhao, Shuai; Xu, Hui; Wu, Gang

    2018-01-01

    A reversible fuel cell (RFC), which integrates a fuel cell with an electrolyzer, is similar to a rechargeable battery. This technology lies on high-performance bifunctional catalysts for the oxygen reduction reaction (ORR) in the fuel cell mode and the oxygen evolution reaction (OER) in the electrolyzer mode. Current catalysts are platinum group metals (PGM) such as Pt and Ir, which are expensive and scarce. Therefore, it is highly desirable to develop PGM-free catalysts for large-scale application of RFCs. In this mini review, we discussed the most promising nanocarbon/oxide composite catalysts for ORR/OER bifunctional catalysis in alkaline media, which is mainly based on our recent progress. Starting with the effectiveness of selected oxides and nanocarbons in terms of their activity and stability, we outlined synthetic methods and the resulting structures and morphologies of catalysts to provide a correlation between synthesis, structure, and property. A special emphasis is put on understanding of the possible synergistic effect between oxide and nanocarbon for enhanced performance. Finally, a few nanocomposite catalysts are discussed as typical examples to elucidate the rules of designing highly active and durable bifunctional catalysts for RFC applications.

  3. Controlled fabrication of luminescent and magnetic nanocomposites

    Science.gov (United States)

    Ma, Yingxin; Zhong, Yucheng; Fan, Jing; Huang, Weiren

    2018-03-01

    Luminescent and magnetic multifunctional nanocomposite is in high demand and widely used in many scales, such as drug delivery, bioseparation, chemical/biosensors, and so on. Although lots of strategies have been successfully developed for the demand of multifunctional nanocomposites, it is not easy to prepare multifunctional nanocomposites by using a simple method, and satisfy all kinds of demands simultaneously. In this work, via a facile and versatile method, luminescent nanocrystals and magnetic nanoparticles were successfully synthesized through self-assembly under vigorous stirring and ultrasonic treatment. These multifunctional nanocomposites are not only water stable but also find wide application such as magnetic separation and concentration with a series of moderate speed, multicolor fluorescence at different emission wavelength, high efficiency of the excitation and emission, and so on. By changing different kinds of luminescent nanocrystals and controlling the amount of luminescent and magnetic nanoparticles, a train of multifunctional nanocomposites was successfully fabricated via a versatile and robust method.

  4. Polymer Nanocomposites

    Indian Academy of Sciences (India)

    methods for the synthesis of polymer nanocomposites. In this article we .... ers, raw materials recovery, drug delivery and anticorrosion .... region giving rise to dose-packed absorption bands called an IR ... using quaternary ammonium salts.

  5. Bifunctional organocatalysts for the asymmetric synthesis of axially chiral benzamides

    Directory of Open Access Journals (Sweden)

    Ryota Miyaji

    2017-08-01

    Full Text Available Bifunctional organocatalysts bearing amino and urea functional groups in a chiral molecular skeleton were applied to the enantioselective synthesis of axially chiral benzamides via aromatic electrophilic bromination. The results demonstrate the versatility of bifunctional organocatalysts for the enantioselective construction of axially chiral compounds. Moderate to good enantioselectivities were afforded with a range of benzamide substrates. Mechanistic investigations were also carried out.

  6. Bifunctional avidin with covalently modifiable ligand binding site.

    Directory of Open Access Journals (Sweden)

    Jenni Leppiniemi

    Full Text Available The extensive use of avidin and streptavidin in life sciences originates from the extraordinary tight biotin-binding affinity of these tetrameric proteins. Numerous studies have been performed to modify the biotin-binding affinity of (streptavidin to improve the existing applications. Even so, (streptavidin greatly favours its natural ligand, biotin. Here we engineered the biotin-binding pocket of avidin with a single point mutation S16C and thus introduced a chemically active thiol group, which could be covalently coupled with thiol-reactive molecules. This approach was applied to the previously reported bivalent dual chain avidin by modifying one binding site while preserving the other one intact. Maleimide was then coupled to the modified binding site resulting in a decrease in biotin affinity. Furthermore, we showed that this thiol could be covalently coupled to other maleimide derivatives, for instance fluorescent labels, allowing intratetrameric FRET. The bifunctional avidins described here provide improved and novel tools for applications such as the biofunctionalization of surfaces.

  7. Astaxanthin diferulate as a bifunctional antioxidant

    DEFF Research Database (Denmark)

    Papa, T.B.R.; Pinho, V.D.; Nascimento, E.P. do

    2015-01-01

    Abstract Astaxanthin when esterified with ferulic acid is better singlet oxygen quencher with k2 = (1.58 ± 0.1) 10(10) L mol(- 1)s(- 1) in ethanol at 25°C compared with astaxanthin with k2 = (1.12 ± 0.01) 10(9) L mol(- 1)s(- 1). The ferulate moiety in the astaxanthin diester is a better radical....... The mutual enhancement of antioxidant activity for the newly synthetized astaxanthin diferulate becoming a bifunctional antioxidant is rationalized according to a two-dimensional classification plot for electron donation and electron acceptance capability....

  8. Synthesis of molecularly imprinted dye-silica nanocomposites with high selectivity and sensitivity: Fluorescent imprinted sensor for rapid and efficient detection of τ-fluvalinate in vodka.

    Science.gov (United States)

    Wang, Yunyun; Wang, Jixiang; Cheng, Rujia; Sun, Lin; Dai, Xiaohui; Yan, Yongsheng

    2018-04-01

    An imprinted fluorescent sensor was fabricated based on SiO 2 nanoparticles encapsulated with a molecularly imprinted polymer containing allyl fluorescein. High fluorine cypermethirin as template molecules, methyl methacrylate as functional monomer, and allyl fluorescein as optical materials synthesized a core-shell fluorescent molecular imprinted sensor, which showed a high and rapid sensitivity and selectivity for the detection of τ-fluvalinate. The sensor presented appreciable sensitivity with a limit of 13.251 nM, rapid detection that reached to equilibrium within 3 min, great linear relationship in the relevant concentration range from 0 to 150 nM, and excellent selectivity over structural analogues. In addition, the fluorescent sensor demonstrated desirable regeneration ability (eight cycling operations). The molecularly imprinted polymers ensured specificity, while the fluorescent dyes provided the stabile sensitivity. Finally, an effective application of the sensor was implemented by the detection of τ-fluvalinate in real samples from vodka. The molecularly imprinted fluorescent sensor showed a promising potential in environmental monitoring and food safety. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Bifunctional electrodes for unitised regenerative fuel cells

    International Nuclear Information System (INIS)

    Altmann, Sebastian; Kaz, Till; Friedrich, Kaspar Andreas

    2011-01-01

    Research highlights: → Different oxygen electrode configurations for the operation in a unitised reversible fuel cell were tested. → Polarisation curves and EIS measurements were recorded. → The mixture of catalysts performs best for the present stage of electrode development. → Potential improvements for the different compositions are discussed. - Abstract: The effects of different configurations and compositions of platinum and iridium oxide electrodes for the oxygen reaction of unitised regenerative fuel cells (URFC) are reported. Bifunctional oxygen electrodes are important for URFC development because favourable properties for the fuel cell and the electrolysis modes must be combined into a single electrode. The bifunctional electrodes were studied under different combinations of catalyst mixtures, multilayer arrangements and segmented configurations with single catalyst areas. Distinct electrochemical behaviour was observed for both modes and can be explained on the basis of impedance spectroscopy. The mixture of both catalysts performs best for the present stage of electrode development. Also, the multilayer electrodes yielded good results with the potential for optimisation. The influence of ionic and electronic resistances on the relative performance is demonstrated. However, penalties due to cross currents in the heterogeneous electrodes were identified and explained by comparing the performance curves with electrodes composed of a single catalyst. Potential improvements for the different compositions are discussed.

  10. The risk assessment of Gd{sub 2}O{sub 3}:Yb{sup 3+}/Er{sup 3+} nanocomposites as dual-modal nanoprobes for magnetic and fluorescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Long [Sun Yat-sen University, Department of Histology and Embryology, Zhongshan School of Medicine (China); Tian, Xiumei [Guangzhou Medical University, Department of Biomedical Engineering (China); Liu, Jun [Guangdong Ocean University, School of Electronics and Information Technology (China); Zheng, Cunjing; Xie, Fukang, E-mail: frankxie2000@yahoo.com [Sun Yat-sen University, Department of Histology and Embryology, Zhongshan School of Medicine (China); Li, Li, E-mail: li2@mail.sysu.edu.cn [Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Imaging Diagnosis and Interventional Center (China)

    2017-02-15

    Our group has synthesized Gd{sub 2}O{sub 3}:Yb{sup 3+}/Er{sup 3+} nanocomposites as magnetic/fluorescence imaging successfully in the previous study, which exhibit good uniformity and monodispersibility with a mean size of 7.4 nm. However, their systematic risk assessment remains unknown. In this article, the in vitro biocompatibility of the Gd{sub 2}O{sub 3}:Yb{sup 3+}/Er{sup 3+} was assessed on the basis of cell viability and apoptosis. In vivo immunotoxicity was evaluated by monitoring the product of reactive oxygen species (ROS), clusters of differentiation (CD) markers, and superoxide dismutase (SOD) in Balb/c mice. No significant differences were found in cell viability, apoptosis, and immunotoxicity between our Gd{sub 2}O{sub 3}:Yb{sup 3+}/Er{sup 3+} and gadodiamide which are used commonly in clinical. Few nanoprobes were localized in the phagosomes of the liver, heart, lung, spleen, kidney, brain, and tumor under the transmission electron microscopy (TEM) images. In addition, our products reveal good T{sub 1}-weighted contrast enhancement of xenografted murine tumor. Therefore, the above results may contribute to the effective application of Gd{sub 2}O{sub 3}:Yb{sup 3+}/Er{sup 3+} as molecular imaging contrast agents and dual-modal nanoprobes for cancer detection.

  11. Metal Nanocomposites

    DEFF Research Database (Denmark)

    Fischer, Søren Vang; Uthuppu, Basil; Jakobsen, Mogens Havsteen

    2014-01-01

    We have made SU-8 gold nanoparticle composites in two ways, ex situ and in situ, and found that in both methods nanoparticles embedded in the polymer retained their plasmonic properties. The in situ method has also been used to fabricate a silver nanocomposite which is electrically conductive. Th...

  12. clay nanocomposites

    Indian Academy of Sciences (India)

    The present work deals with the synthesis of specialty elastomer [fluoroelastomer and poly (styrene--ethylene-co-butylene--styrene (SEBS)]–clay nanocomposites and their structure–property relationship as elucidated from morphology studies by atomic force microscopy, transmission electron microscopy and X-ray ...

  13. A ditopic fluorescence sensor for saccharides and mercury based on a boronic-acid receptor and desulfurisation reaction.

    Science.gov (United States)

    Xing, Zhitao; Wang, Hui-Chen; Cheng, Yixiang; James, Tony D; Zhu, Chengjian

    2011-11-04

    Two boron-contained fluorescent sensors, 1 and 2, based on coumarin have been prepared. The fluorescence response of the two systems was investigated with addition of saccharide and mercury ions. Sensor 2 behaves as a bifunctional fluorescent switch with chemical inputs of D-fructose and mercury ions. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Two-Step Hydrothermal Synthesis of Bifunctional Hematite-Silver Heterodimer Nanoparticles for Potential Antibacterial and Anticancer Applications

    Science.gov (United States)

    Trang, Vu Thi; Tam, Le Thi; Phan, Vu Ngoc; Van Quy, Nguyen; Huy, Tran Quang; Le, Anh-Tuan

    2017-06-01

    In recent years, the development of composite nanostructures containing noble metal and magnetic nanocrystals has attracted much interest because they offer a promising avenue for multifunctional applications in nanomedicine and pharmacotherapy. In this work, we present a facile two-step hydrothermal approach for the synthesis of bifunctional heterodimer nanoparticles (HDNPs) composed of hematite nanocubes (α-Fe2O3 NCs) and silver nanoparticles (Ag-NPs). The formation and magnetic property of α-Fe2O3-Ag HDNPs was analyzed by transmission electron microscopy, x-ray diffraction and vibrating sample magnetometer. Interestingly, the hydrothermal-synthesized α-Fe2O3-Ag HDNPs were found to display significant antibacterial activity against three types of infectious bacteria. The cytotoxicity of α-Fe2O3-Ag nanocomposite against lung cancer A549 cell line was investigated and compared with that of pure α-Fe2O3 NCs and Ag-NPs. The obtained results reveal that the α-Fe2O3-Ag nanocomposite exhibited higher anticancer performance than that of pure Ag-NPs, whereas pure α-Fe2O3 NCs were not cytotoxic to the tested cells. The inhibitory concentration (IC50) of the α-Fe2O3-Ag nanocomposite was found at 20.94 μg/mL. With the aforementioned properties, α-Fe2O3-Ag HDNPs showed a high potential as a multifunctional material for advanced biomedicine and nanotherapy applications.

  15. Photoluminescence study on amino functionalized dysprosium oxide-zinc oxide composite bifunctional nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Aswathy; Praveen, G.L; Abha, K.; Lekha, G.M [Department of Chemistry, University of Kerala, Kariavattom, Kerala 695581 (India); George, Sony, E-mail: emailtosony@gmail.com [Department of Chemistry, University of Kerala, Kariavattom, Kerala 695581 (India)

    2012-08-15

    An organic dispersion of 9-15 nm size stable dysprosium oxide incorporated zinc oxide nanocomposites exhibiting luminescence in the visible region has been synthesised by a wet chemical precipitation technique at room temperature. Tetraethoxysilane TEOS [(C{sub 2}H{sub 5}O){sub 4}Si], (3-aminopropyl) trimethoxysilane (APTS) and a 1:1 mixture of TEOS-APTS have been used as capping agents to control the particle size as well as to achieve uniform dispersion of composite nanoparticles in methanol medium. X-ray diffractometer (XRD) analysis reveals the formation phase of amino-functionalised colloidal dysprosium oxide incorporated ZnO composite nanoparticles to be of zincite structure. The Transmission Electron Microscopy (TEM) images show that the particles are spheroids in shape, having average crystalline sizes ranging from 9 to 15 nm. The photoluminescence (PL) observed in these composites has been attributed to the presence of near band edge excitonic emission and existence of defect centres. The time correlated single photon counting studies of the composite nanoparticles exhibited three decay pathways. The enhanced PL emission intensity of solid state fluorescence spectra of samples is attributed to the absence of vibrational relaxation process. - Highlights: Black-Right-Pointing-Pointer Nano-composites are synthesised using a one step wet chemical precipitation method. Black-Right-Pointing-Pointer A significant fluorescence life time of 8.25 ns is obtained for the nano-composite. Black-Right-Pointing-Pointer Nano-composite particles exhibited pale yellow fluorescence rather than blue. Black-Right-Pointing-Pointer Vibrational cascade free enhanced fluorescence is obtained for the dry sample.

  16. Carbon in bifunctional air electrodes in alkaline solution

    International Nuclear Information System (INIS)

    Tryk, D.; Aldred, W.; Yeager, E.

    1983-01-01

    Bifunctional O 2 electrodes can be used both to reduce and to generate O 2 in rechargeable metal-air batteries and fuel cells. The factors controlling the O 2 reduction and generation reactions in gas-diffusional bifunctional O 2 electrodes are discussed. The resistance of such electrodes, as established from voltammetry curves, has been found to increase markedly during anodic polarization and to be dependent upon the electrode fabrication technique. Carbon blacks with more graphitic structure than Shawinigan black have been found to be more resistant to electro-oxidation. The further extension of cycle life of bifunctional electrodes using carbon is critically dependent on finding more oxidation-resistant carbons that at the same time have other surface properties meeting the requirements for catalyzed gas-diffusion electrodes

  17. Main regularities of radiolytic transformations of bifunctional organic compounds

    International Nuclear Information System (INIS)

    Petryaev, E.P.; Shadyro, O.I.

    1985-01-01

    General regularities of the radiolysis of bifunctional organic compounds (α-diols, ethers of α-diols, amino alcohols, hydroxy aldehydes and hydroxy asids) in aqueous solutions from the early stages of the process to formation of finite products are traced. It is pointed out that the most characteristic course of radiation-chemical, transformation of bifunctional compounds in agueous solutions in the fragmentation process with monomolecular decomposition of primary radicals of initial substrances and simultaneous scission of two vicinal in respect to radical centre bonds via five-membered cyclic transient state. The data obtained are of importance for molecular radiobiology

  18. Hypoxia targeted bifunctional suicide gene expression enhances radiotherapy in vitro and in vivo

    International Nuclear Information System (INIS)

    Sun, Xiaorong; Xing, Ligang; Deng, Xuelong; Hsiao, Hung Tsung; Manami, Akiko; Koutcher, Jason A.; Clifton Ling, C.; Li, Gloria C.

    2012-01-01

    Purpose: To investigate whether hypoxia targeted bifunctional suicide gene expression-cytosine deaminase (CD) and uracil phosphoribosyltransferase (UPRT) with 5-FC treatments can enhance radiotherapy. Materials and methods: Stable transfectants of R3327-AT cells were established which express a triple-fusion-gene: CD, UPRT and monomoric DsRed (mDsRed) controlled by a hypoxia inducible promoter. Hypoxia-induced expression/function of CDUPRTmDsRed was verified by western blot, flow cytometry, fluorescent microscopy, and cytotoxicity assay of 5-FU and 5-FC. Tumor-bearing mice were treated with 5-FC and local radiation. Tumor volume was monitored and compared with those treated with 5-FC or radiation alone. In addition, the CDUPRTmDsRed distribution in hypoxic regions of tumor sections was visualized with fluorescent microscopy. Results: Hypoxic induction of CDUPRTmDsRed protein correlated with increased sensitivity to 5-FC and 5-FU. Significant radiosensitization effects were detected after 5-FC treatments under hypoxic conditions. In the tumor xenografts, the distribution of CDUPRTmDsRed expression visualized with fluorescence microscopy was co-localized with the hypoxia marker pimonidazole positive staining cells. Furthermore, administration of 5-FC to mice in combination with local irradiation resulted in significant tumor regression, as in comparison with 5-FC or radiation treatments alone. Conclusions: Our data suggest that the hypoxia-inducible CDUPRT/5-FC gene therapy strategy has the ability to specifically target hypoxic cancer cells and significantly improve the tumor control in combination with radiotherapy.

  19. Bifunctional Rhodamine Probes of Myosin Regulatory Light Chain Orientation in Relaxed Skeletal Muscle Fibers

    Science.gov (United States)

    Brack, Andrew S.; Brandmeier, Birgit D.; Ferguson, Roisean E.; Criddle, Susan; Dale, Robert E.; Irving, Malcolm

    2004-01-01

    The orientation of the regulatory light chain (RLC) region of the myosin heads in relaxed skinned fibers from rabbit psoas muscle was investigated by polarized fluorescence from bifunctional rhodamine (BR) probes cross-linking pairs of cysteine residues introduced into the RLC. Pure 1:1 BR-RLC complexes were exchanged into single muscle fibers in EDTA rigor solution for 30 min at 30°C; ∼60% of the native RLC was removed and stoichiometrically replaced by BR-RLC, and >85% of the BR-RLC was located in the sarcomeric A-bands. The second- and fourth-rank order parameters of the orientation distributions of BR dipoles linking RLC cysteine pairs 100-108, 100-113, 108-113, and 104-115 were calculated from polarized fluorescence intensities, and used to determine the smoothest RLC orientation distribution—the maximum entropy distribution—consistent with the polarized fluorescence data. Maximum entropy distributions in relaxed muscle were relatively broad. At the peak of the distribution, the “lever” axis, linking Cys707 and Lys843 of the myosin heavy chain, was at 70–80° to the fiber axis, and the “hook” helix (Pro830–Lys843) was almost coplanar with the fiber and lever axes. The temperature and ionic strength of the relaxing solution had small but reproducible effects on the orientation of the RLC region. PMID:15041671

  20. Electrochromic nanocomposite films

    Science.gov (United States)

    Milliron, Delia; Llordes, Anna; Buonsanti, Raffaella; Garcia, Guillermo

    2018-04-10

    The present invention provides an electrochromic nanocomposite film. In an exemplary embodiment, the electrochromic nanocomposite film, includes (1) a solid matrix of oxide based material and (2) transparent conducting oxide (TCO) nanostructures embedded in the matrix. In a further embodiment, the electrochromic nanocomposite film farther includes a substrate upon which the matrix is deposited. The present invention also provides a method of preparing an electrochromic nanocomposite film.

  1. Crystallization of bi-functional ligand protein complexes.

    Science.gov (United States)

    Antoni, Claudia; Vera, Laura; Devel, Laurent; Catalani, Maria Pia; Czarny, Bertrand; Cassar-Lajeunesse, Evelyn; Nuti, Elisa; Rossello, Armando; Dive, Vincent; Stura, Enrico Adriano

    2013-06-01

    Homodimerization is important in signal transduction and can play a crucial role in many other biological systems. To obtaining structural information for the design of molecules able to control the signalization pathways, the proteins involved will have to be crystallized in complex with ligands that induce dimerization. Bi-functional drugs have been generated by linking two ligands together chemically and the relative crystallizability of complexes with mono-functional and bi-functional ligands has been evaluated. There are problems associated with crystallization with such ligands, but overall, the advantages appear to be greater than the drawbacks. The study involves two matrix metalloproteinases, MMP-12 and MMP-9. Using flexible and rigid linkers we show that it is possible to control the crystal packing and that by changing the ligand-enzyme stoichiometric ratio, one can toggle between having one bi-functional ligand binding to two enzymes and having the same ligand bound to each enzyme. The nature of linker and its point of attachment on the ligand can be varied to aid crystallization, and such variations can also provide valuable structural information about the interactions made by the linker with the protein. We report here the crystallization and structure determination of seven ligand-dimerized complexes. These results suggest that the use of bi-functional drugs can be extended beyond the realm of protein dimerization to include all drug design projects. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Environmentally Benign Bifunctional Solid Acid and Base Catalysts

    NARCIS (Netherlands)

    Elmekawy, A.; Shiju, N.R.; Rothenberg, G.; Brown, D.R.

    2014-01-01

    Solid bifunctional acid-​base catalysts were prepd. in two ways on an amorphous silica support: (1) by grafting mercaptopropyl units (followed by oxidn. to propylsulfonic acid) and aminopropyl groups to the silica surface (NH2-​SiO2-​SO3H)​, and (2) by grafting only aminopropyl groups and then

  3. Bifunctional xylanases and their potential use in biotechnology

    Digital Repository Service at National Institute of Oceanography (India)

    Khandeparker, R.; Numan, M.Th.

    . J Chromatography 919:389–394 33. Hong SY, Lee JS, Cho KM, Math RK, Kim YH, Hong SJ, Cho YU, Kim H, Yun HD (2006) Assembling a novel bifunctional cel- lulase–xylanase from Thermotoga maritima by end-to-end fusion. Biotechnol Lett 28:1857–1862 34...

  4. Single flexible nanofiber to simultaneously realize electricity-magnetism bifunctionality

    International Nuclear Information System (INIS)

    Yang, Ming; Sheng, Shujuan; Ma, Qianli; Lv, Nan; Yu, Wensheng; Wang, Jinxian; Dong, Xiangting; Liu, Guixia

    2016-01-01

    In order to develop new-typed multifunctional composite nanofibers, PANI/Fe 3 O 4 /PVP flexible bifunctional composite nanofibers with simultaneous electrical conduction and magnetism have been successfully fabricated via a facile electrospinning technology. Polyvinyl pyrrolidone (PVP) is used as a matrix to construct composite nanofibers containing different amounts of polyaniline (PANI) and Fe 3 O 4 nanoparticles (NPs). The bifunctional composite nanofibers simultaneously possess excellent electrical conductivity and magnetic properties. The electrical conductivity reaches up to the order of 10 -3 S·cm -1 . The electrical conductivity and saturation magnetization of the composite nanofibers can be respectively tuned by adding various amounts of PANI and Fe 3 O 4 NPs. The obtained electricity-magnetism bifunctional composite nanofibers are expected to possess many potential applications in areas such as electromagnetic interference shielding, special coating, microwave absorption, molecular electronics and future nanomechanics. More importantly, the design concept and construct technique are of universal significance to fabricate other bifunctional one-dimensional nanostructures. (author)

  5. Single flexible nanofiber to simultaneously realize electricity-magnetism bifunctionality

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ming; Sheng, Shujuan; Ma, Qianli; Lv, Nan; Yu, Wensheng; Wang, Jinxian; Dong, Xiangting; Liu, Guixia, E-mail: wenshengyu2009@sina.com, E-mail: dongxiangting888@163.com [Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun (China)

    2016-03-15

    In order to develop new-typed multifunctional composite nanofibers, PANI/Fe{sub 3}O{sub 4}/PVP flexible bifunctional composite nanofibers with simultaneous electrical conduction and magnetism have been successfully fabricated via a facile electrospinning technology. Polyvinyl pyrrolidone (PVP) is used as a matrix to construct composite nanofibers containing different amounts of polyaniline (PANI) and Fe{sub 3}O{sub 4} nanoparticles (NPs). The bifunctional composite nanofibers simultaneously possess excellent electrical conductivity and magnetic properties. The electrical conductivity reaches up to the order of 10{sup -3} S·cm{sup -1}. The electrical conductivity and saturation magnetization of the composite nanofibers can be respectively tuned by adding various amounts of PANI and Fe{sub 3}O{sub 4} NPs. The obtained electricity-magnetism bifunctional composite nanofibers are expected to possess many potential applications in areas such as electromagnetic interference shielding, special coating, microwave absorption, molecular electronics and future nanomechanics. More importantly, the design concept and construct technique are of universal significance to fabricate other bifunctional one-dimensional nanostructures. (author)

  6. Bifunctional Bisphosphonates for Delivering Biomolecules to Bone

    Science.gov (United States)

    2012-01-13

    formation could be analyzed after a few weeks. Scanning electron microscopy (SEM), FT-IR, X- ray Diffraction (XRD), and high-resolution X- ray computed...Bisphosphonates: Mode of action and pharmacology, Pediatrics 119 Suppl 2, S150-162. 36. Roelofs, A. J., Thompson, K., Gordon, S., and Rogers, M. J...E., Mahmood, A., Jones, A. G., Cantley, L. C., and Frangioni, J. V. (2001) In vivo near- infrared fluorescence imaging of osteoblastic activity

  7. AmpH, a bifunctional DD-endopeptidase and DD-carboxypeptidase of Escherichia coli.

    Science.gov (United States)

    González-Leiza, Silvia M; de Pedro, Miguel A; Ayala, Juan A

    2011-12-01

    In Escherichia coli, low-molecular-mass penicillin-binding proteins (LMM PBPs) are important for correct cell morphogenesis. These enzymes display DD-carboxypeptidase and/or dd-endopeptidase activities associated with maturation and remodeling of peptidoglycan (PG). AmpH has been classified as an AmpH-type class C LMM PBP, a group closely related to AmpC β-lactamases. AmpH has been associated with PG recycling, although its enzymatic activity remained uncharacterized until now. Construction and purification of His-tagged AmpH from E. coli permitted a detailed study of its enzymatic properties. The N-terminal export signal of AmpH is processed, but the protein remains membrane associated. The PBP nature of AmpH was demonstrated by its ability to bind the β-lactams Bocillin FL (a fluorescent penicillin) and cefmetazole. In vitro assays with AmpH and specific muropeptides demonstrated that AmpH is a bifunctional DD-endopeptidase and DD-carboxypeptidase. Indeed, the enzyme cleaved the cross-linked dimers tetrapentapeptide (D45) and tetratetrapeptide (D44) with efficiencies (k(cat)/K(m)) of 1,200 M(-1) s(-1) and 670 M(-1) s(-1), respectively, and removed the terminal D-alanine from muropeptides with a C-terminal D-Ala-D-Ala dipeptide. Both DD-peptidase activities were inhibited by 40 μM cefmetazole. AmpH also displayed a weak β-lactamase activity for nitrocefin of 1.4 × 10(-3) nmol/μg protein/min, 1/1,000 the rate obtained for AmpC under the same conditions. AmpH was also active on purified sacculi, exhibiting the bifunctional character that was seen with pure muropeptides. The wide substrate spectrum of the DD-peptidase activities associated with AmpH supports a role for this protein in PG remodeling or recycling.

  8. "Click" chemistry mildly stabilizes bifunctional gold nanoparticles for sensing and catalysis.

    Science.gov (United States)

    Li, Na; Zhao, Pengxiang; Liu, Na; Echeverria, María; Moya, Sergio; Salmon, Lionel; Ruiz, Jaime; Astruc, Didier

    2014-07-01

    A large family of bifunctional 1,2,3-triazole derivatives that contain both a polyethylene glycol (PEG) chain and another functional fragment (e.g., a polymer, dendron, alcohol, carboxylic acid, allyl, fluorescence dye, redox-robust metal complex, or a β-cyclodextrin unit) has been synthesized by facile "click" chemistry and mildly coordinated to nanogold particles, thus providing stable water-soluble gold nanoparticles (AuNPs) in the size range 3.0-11.2 nm with various properties and applications. In particular, the sensing properties of these AuNPs are illustrated through the detection of an analogue of a warfare agent (i.e., sulfur mustard) by means of a fluorescence "turn-on" assay, and the catalytic activity of the smallest triazole-AuNPs (core of 3.0 nm) is excellent for the reduction of 4-nitrophenol in water. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Multifunctional Polymer/Inorganic Nanocomposites

    National Research Council Canada - National Science Library

    Manias, E

    2003-01-01

    ... in multifunctional nanocomposite materials. Understanding the structure/property relations in polymer/clay nanocomposites is of great importance in designing materials with desired sets of properties...

  10. Designed graphene-peptide nanocomposites for biosensor applications: A review

    International Nuclear Information System (INIS)

    Wang, Li; Zhang, Yujie; Wu, Aiguo; Wei, Gang

    2017-01-01

    The modification of graphene with biomacromolecules like DNA, protein, peptide, and others extends the potential applications of graphene materials in various fields. The bound biomacromolecules could improve the biocompatibility and bio-recognition ability of graphene-based nanocomposites, therefore could greatly enhance their biosensing performances on both selectivity and sensitivity. In this review, we presented a comprehensive introduction and discussion on recent advance in the synthesis and biosensor applications of graphene-peptide nanocomposites. The biofunctionalization of graphene with specifically designed peptides, and the synthesis strategies of graphene-peptide (monomer, nanofibrils, and nanotubes) nanocomposites were demonstrated. On the other hand, the fabrication of graphene-peptide nanocomposite based biosensor architectures for electrochemical, fluorescent, electronic, and spectroscopic biosensing were further presented. This review includes nearly all the studies on the fabrication and applications of graphene-peptide based biosensors recently, which will promote the future developments of graphene-based biosensors in biomedical detection and environmental analysis. - Highlights: • A comprehensive review on the fabrication and application of graphene-peptide nanocomposites was presented. • The design of peptide sequences for biofunctionalization of various graphene materials was presented. • Multi-strategies on the fabrication of biosensors with graphene-peptide nanocomposites were discussed. • Designed graphene-peptide nanocomposites showed wide biosensor applications.

  11. The aminoindanol core as a key scaffold in bifunctional organocatalysts

    Directory of Open Access Journals (Sweden)

    Isaac G. Sonsona

    2016-03-01

    Full Text Available The 1,2-aminoindanol scaffold has been found to be very efficient, enhancing the enantioselectivity when present in organocatalysts. This may be explained by its ability to induce a bifunctional activation of the substrates involved in the reaction. Thus, it is easy to find hydrogen-bonding organocatalysts ((thioureas, squaramides, quinolinium thioamide, etc. in the literature containing this favored structural core. They have been successfully employed in reactions such as Friedel–Crafts alkylation, Michael addition, Diels–Alder and aza-Henry reactions. However, the 1,2-aminoindanol core incorporated into proline derivatives has been scarcely explored. Herein, the most representative and illustrative examples are compiled and this review will be mainly focused on the cases where the aminoindanol moiety confers bifunctionality to the organocatalysts.

  12. Bifunctional chelates of Rh-105 and Au-199 as potential radiotherapeutic agents

    International Nuclear Information System (INIS)

    Troutner, D.E.; Schlemper, E.O.

    1990-01-01

    Since last year we have: continued the synthesis of pentadentate bifunctional chelating agents based on diethylene triamine; studied the chelation Rh-105, Au-198 (as model for Au-199) and Tc-99m with these agents as well as chelation of Pd-109, Cu-67, In-111, and Co-57 with some of them; synthesized a new class of potential bifunctional chelating agents based on phenylene diamine; investigated the behavior of Au-198 as a model for Au-199; begun synthesis of bifunctional chelating agents based on terpyridly and similar ligands; and continued attempts to produce tetradentate bifunctional chelates based on diaminopropane. Each of these will be addressed in this report

  13. [Bifunctional chelates of Rh-105, Au-199, and other metallic radionuclides as potential radiotherapeutic agents

    International Nuclear Information System (INIS)

    1991-01-01

    Progress during this period is reported under the following headings: Diethylenetriamine based and related bifunctional chelating agents and their complexation with Rh-105, Au-198, Pd-109, cu-67, In-111, and Co-57; studies of Pd-109, Rh-105 and Tc-99m with bifunctional chelates based on phenylenediamine; establishment of an appropriate protein assay method for conjugated proteins; studies of new bifunctional Bi, Tri and tetradentate amine oxime ligands with Rh-105; IgG and antibody B72.3 conjugation studies by HPLC Techniques with bifunctional metal chelates; and progress on ligand systems for Au(III)

  14. [Bifunctional chelates of Rh-105, Au-199, and other metallic radionuclides as potential radiotherapeutic agents

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    Progress during this period is reported under the following headings: Diethylenetriamine based and related bifunctional chelating agents and their complexation with Rh-105, Au-198, Pd-109, cu-67, In-111, and Co-57; studies of Pd-109, Rh-105 and Tc-99m with bifunctional chelates based on phenylenediamine; establishment of an appropriate protein assay method for conjugated proteins; studies of new bifunctional Bi, Tri and tetradentate amine oxime ligands with Rh-105; IgG and antibody B72.3 conjugation studies by HPLC Techniques with bifunctional metal chelates; and progress on ligand systems for Au(III).

  15. (Bifunctional chelates of Rh-105, Au-199, and other metallic radionuclides as potential radiotherapeutic agents)

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    Progress during this period is reported under the following headings: Diethylenetriamine based and related bifunctional chelating agents and their complexation with Rh-105, Au-198, Pd-109, cu-67, In-111, and Co-57; studies of Pd-109, Rh-105 and Tc-99m with bifunctional chelates based on phenylenediamine; establishment of an appropriate protein assay method for conjugated proteins; studies of new bifunctional Bi, Tri and tetradentate amine oxime ligands with Rh-105; IgG and antibody B72.3 conjugation studies by HPLC Techniques with bifunctional metal chelates; and progress on ligand systems for Au(III).

  16. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons

    Science.gov (United States)

    Zecevic, Jovana; Vanbutsele, Gina; de Jong, Krijn P.; Martens, Johan A.

    2015-12-01

    The ability to control nanoscale features precisely is increasingly being exploited to develop and improve monofunctional catalysts. Striking effects might also be expected in the case of bifunctional catalysts, which are important in the hydrocracking of fossil and renewable hydrocarbon sources to provide high-quality diesel fuel. Such bifunctional hydrocracking catalysts contain metal sites and acid sites, and for more than 50 years the so-called intimacy criterion has dictated the maximum distance between the two types of site, beyond which catalytic activity decreases. A lack of synthesis and material-characterization methods with nanometre precision has long prevented in-depth exploration of the intimacy criterion, which has often been interpreted simply as ‘the closer the better’ for positioning metal and acid sites. Here we show for a bifunctional catalyst—comprising an intimate mixture of zeolite Y and alumina binder, and with platinum metal controllably deposited on either the zeolite or the binder—that closest proximity between metal and zeolite acid sites can be detrimental. Specifically, the selectivity when cracking large hydrocarbon feedstock molecules for high-quality diesel production is optimized with the catalyst that contains platinum on the binder, that is, with a nanoscale rather than closest intimacy of the metal and acid sites. Thus, cracking of the large and complex hydrocarbon molecules that are typically derived from alternative sources, such as gas-to-liquid technology, vegetable oil or algal oil, should benefit especially from bifunctional catalysts that avoid locating platinum on the zeolite (the traditionally assumed optimal location). More generally, we anticipate that the ability demonstrated here to spatially organize different active sites at the nanoscale will benefit the further development and optimization of the emerging generation of multifunctional catalysts.

  17. Magnetic nanocomposite sensor

    KAUST Repository

    Alfadhel, Ahmed

    2016-05-06

    A magnetic nanocomposite device is described herein for a wide range of sensing applications. The device utilizes the permanent magnetic behavior of the nanowires to allow operation without the application of an additional magnetic field to magnetize the nanowires, which simplifies miniaturization and integration into microsystems. In5 addition, the nanocomposite benefits from the high elasticity and easy patterning of the polymer-based material, leading to a corrosion-resistant, flexible material that can be used to realize extreme sensitivity. In combination with magnetic sensor elements patterned underneath the nanocomposite, the nanocomposite device realizes highly sensitive and power efficient flexible artificial cilia sensors for flow measurement or tactile sensing.

  18. Volumetric composition of nanocomposites

    DEFF Research Database (Denmark)

    Madsen, Bo; Lilholt, Hans; Mannila, Juha

    2015-01-01

    is presented, using cellulose/epoxy and aluminosilicate/polylactate nanocomposites as case materials. The buoyancy method is used for the accurate measurements of materials density. The accuracy of the method is determined to be high, allowing the measured nanocomposite densities to be reported with 5...... significant figures. The plotting of the measured nanocomposite density as a function of the nanofibre weight content is shown to be a first good approach of assessing the porosity content of the materials. The known gravimetric composition of the nanocomposites is converted into a volumetric composition...

  19. A quantum dot-spore nanocomposite pH sensor.

    Science.gov (United States)

    Zhang, Xingya; Li, Zheng; Zhou, Tao; Zhou, Qian; Zeng, Zhiming; Xu, Xiangdong; Hu, Yonggang

    2016-04-01

    A new quantum dot (QD)-based pH sensor design is investigated. The sensor is synthesized based on the self-assembly of green QDs onto treated spores to form QD@spore nanocomposites. The nanocomposites are characterized using laser scanning confocal microscopy, transmission electron microscope, and fluorescence spectroscopy, among others. Fluorescence measurements showed that these nanocomposites are sensitive to pH in a broad pH range of 5.0-10.0. The developed pH sensors have been satisfactorily applied for pH estimation of real samples and are comparable with those of the commercial assay method, indicating the potential practical application of the pH sensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Modification of bifunctional epoxy resin using CO{sub 2} fixation process and nanoclay

    Energy Technology Data Exchange (ETDEWEB)

    Khoshkish, Morteza; Bouhendi, Hosein, E-mail: H.boohendi@ippi.ac.ir; Vafayan, Mehdi

    2014-10-15

    A bifunctional epoxy resin was modified by using a CO{sub 2} fixation solution process in the presence of tetra n-butyl ammonium bromide (TBAB) as catalyst and the modified treated resin was treated by cloisite 30B as nano additive. The Unmodified epoxy resin (UME), CO{sub 2} fixated modified epoxy resin (CFME), and CFME/clay nano composite (CFMEN), were cured by diethylenetriamine (DETA). A cycloaliphatic compound as a reactive diluent was used to control the viscosity of high viscose CFME. The exfoliation of organoclay in UME and CFME was investigated by X-ray diffraction and activation energy was computed using the advanced integral isoconversional method. The activation energy dependency demonstrated that the mechanism of UME curing did not change in the presence of nanoclay. In contrast, the CO{sub 2} fixation results showed a significant change in the activation energy dependency. The Thermal stability parameters include the initial degradation temperature (IDT), the temperature at the maximum rate of weight loss (T{sub max}), and the decomposition activation energy (E{sub d}) were determined by thermal gravimetry analysis. Dynamic mechanical thermal analysis measurements showed that the presence of organoclay in CFME increases the T{sub g} of nano composite in contrast to UME. The fracture roughness of UME, CFME and CFNE were determined by scanning electron microscope. The exfoliated UME/1%clay nanocomposite was confirmed by TEM image. - Highlights: • A new epoxy resin was synthesized using CO{sub 2} fixation reaction. • The synthesized epoxy resin was modified by an organo nano-clay. • CO{sub 2} fixation noticeably changed the curing mechanism. • CO{sub 2} fixation reaction consumes CO{sub 2} which is a harmful greenhouse gas.

  1. Modification of bifunctional epoxy resin using CO2 fixation process and nanoclay

    International Nuclear Information System (INIS)

    Khoshkish, Morteza; Bouhendi, Hosein; Vafayan, Mehdi

    2014-01-01

    A bifunctional epoxy resin was modified by using a CO 2 fixation solution process in the presence of tetra n-butyl ammonium bromide (TBAB) as catalyst and the modified treated resin was treated by cloisite 30B as nano additive. The Unmodified epoxy resin (UME), CO 2 fixated modified epoxy resin (CFME), and CFME/clay nano composite (CFMEN), were cured by diethylenetriamine (DETA). A cycloaliphatic compound as a reactive diluent was used to control the viscosity of high viscose CFME. The exfoliation of organoclay in UME and CFME was investigated by X-ray diffraction and activation energy was computed using the advanced integral isoconversional method. The activation energy dependency demonstrated that the mechanism of UME curing did not change in the presence of nanoclay. In contrast, the CO 2 fixation results showed a significant change in the activation energy dependency. The Thermal stability parameters include the initial degradation temperature (IDT), the temperature at the maximum rate of weight loss (T max ), and the decomposition activation energy (E d ) were determined by thermal gravimetry analysis. Dynamic mechanical thermal analysis measurements showed that the presence of organoclay in CFME increases the T g of nano composite in contrast to UME. The fracture roughness of UME, CFME and CFNE were determined by scanning electron microscope. The exfoliated UME/1%clay nanocomposite was confirmed by TEM image. - Highlights: • A new epoxy resin was synthesized using CO 2 fixation reaction. • The synthesized epoxy resin was modified by an organo nano-clay. • CO 2 fixation noticeably changed the curing mechanism. • CO 2 fixation reaction consumes CO 2 which is a harmful greenhouse gas

  2. Toward Protein Structure In Situ: Comparison of Two Bifunctional Rhodamine Adducts of Troponin C

    Science.gov (United States)

    Julien, Olivier; Sun, Yin-Biao; Knowles, Andrea C.; Brandmeier, Birgit D.; Dale, Robert E.; Trentham, David R.; Corrie, John E. T.; Sykes, Brian D.; Irving, Malcolm

    2007-01-01

    As part of a program to develop methods for determining protein structure in situ, sTnC was labeled with a bifunctional rhodamine (BR or BSR), cross-linking residues 56 and 63 of its C-helix. NMR spectroscopy of the N-terminal domain of BSR-labeled sTnC in complex with Ca2+ and the troponin I switch peptide (residues 115–131) showed that BSR labeling does not significantly affect the secondary structure of the protein or its dynamics in solution. BR-labeling was previously shown to have no effect on the solution structure of this complex. Isometric force generation in isolated demembranated fibers from rabbit psoas muscle into which BR- or BSR-labeled sTnC had been exchanged showed reduced Ca2+-sensitivity, and this effect was larger with the BSR label. The orientation of rhodamine dipoles with respect to the fiber axis was determined by polarized fluorescence. The mean orientations of the BR and BSR dipoles were almost identical in relaxed muscle, suggesting that both probes accurately report the orientation of the C-helix to which they are attached. The BSR dipole had smaller orientational dispersion, consistent with less flexible linkers between the rhodamine dipole and cysteine-reactive groups. PMID:17483167

  3. Achieving bifunctional cloak via combination of passive and active schemes

    Science.gov (United States)

    Lan, Chuwen; Bi, Ke; Gao, Zehua; Li, Bo; Zhou, Ji

    2016-11-01

    In this study, a simple and delicate approach to realizing manipulation of multi-physics field simultaneously through combination of passive and active schemes is proposed. In the design, one physical field is manipulated with passive scheme while the other with active scheme. As a proof of this concept, a bifunctional device is designed and fabricated to behave as electric and thermal invisibility cloak simultaneously. It is found that the experimental results are consistent with the simulated ones well, confirming the feasibility of our method. Furthermore, the proposed method could also be extended to other multi-physics fields, which might lead to potential applications in thermal, electric, and acoustic areas.

  4. Ultrahard carbon nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Siegal, M. P. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Tallant, D. R. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Provencio, P. N. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Overmyer, D. L. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Simpson, R. L. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States); Martinez-Miranda, L. J. [Department of Materials and Nuclear Engineering, University of Maryland, College Park, Maryland 20742 (United States)

    2000-05-22

    Modest thermal annealing to 600 degree sign C of diamondlike amorphous-carbon (a-C) films grown at room temperature results in the formation of carbon nanocomposites with hardness similar to diamond. These nanocomposite films consist of nanometer-sized regions of high density a-C embedded in an a-C matrix with a reduced density of 5%-10%. We report on the evolution of density and bonding topologies as a function of annealing temperature. Despite a decrease in density, film hardness actually increases {approx}15% due to the development of the nanocomposite structure. (c) 2000 American Institute of Physics.

  5. Ultrahard carbon nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    SIEGAL,MICHAEL P.; TALLANT,DAVID R.; PROVENCIO,PAULA P.; OVERMYER,DONALD L.; SIMPSON,REGINA L.; MARTINEZ-MIRANDA,L.J.

    2000-01-27

    Modest thermal annealing to 600 C of diamondlike amorphous-carbon (a-C) films grown at room temperature results in the formation of carbon nanocomposites with hardness similar to diamond. These nanocomposite films consist of nanometer-sized regions of high density a-C embedded in an a-C matrix with a reduced density of 5--10%. The authors report on the evolution of density and bonding topologies as a function of annealing temperature. Despite a decrease in density, film hardness actually increases {approximately} 15% due to the development of the nanocomposite structure.

  6. Synthesis of carbon nanohorns/chitosan/quantum dots nanocomposite and its applications in cells labeling and in vivo imaging

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing; He, Zhe [Chemistry Department, Northeastern University, Shenyang 110819 (China); Guo, Changrun [College of Life Sciences, Jilin University, Changchun 130023 (China); Wang, Liping, E-mail: wanglp@jlu.edu.cn [College of Life Sciences, Jilin University, Changchun 130023 (China); Xu, Shukun, E-mail: xushukun46@126.com [Chemistry Department, Northeastern University, Shenyang 110819 (China)

    2014-01-15

    Due to the unique optical and chemical features of quantum dots and the special structural advantages of carbon nanohorns, it is highly desirable to synthesize nanohorns/quantum dots nanocompsite which can be applied in cell labeling and in vivo imaging. Here, we report a new method which uses chitosan as connector to synthesize nanohorns/chitosan/quantum dots fluorescent nanocomposite. Further more, the synthesized nanocomposite demonstrated strong red fluorescence and had been successfully used in Hela cells labeling and in vivo imaging of Caenorhabditis elegans (C. elegans). -- Highlights: Carbon nanohorn/chitosan/QDs nanocomposite was prepared by covalent linkage The nanocomposite was successfully used in the labeling of HeLa cells The nanocomposite was used for in vivo imaging with C. elegans as animal mode.

  7. Perspectives in the development of hybrid bifunctional antitumour agents.

    Science.gov (United States)

    Musso, Loana; Dallavalle, Sabrina; Zunino, Franco

    2015-08-15

    In spite of the development of a large number of novel target-specific antitumour agents, the single-agent therapy is in general not able to provide an effective durable control of the malignant process. The limited efficacy of the available agents (both conventional cytotoxic and novel target-specific) reflects not only the expression of defence mechanisms, but also the complexity of tumour cell alterations and the redundancy of survival pathways, thus resulting in tumour cell ability to survive under stress conditions. A well-established strategy to improve the efficacy of antitumour therapy is the rational design of drug combinations aimed at achieving synergistic effects and overcoming drug resistance. An alternative strategy could be the use of agents designed to inhibit simultaneously multiple cellular targets relevant to tumour growth/survival. Among these novel agents are hybrid bifunctional drugs, i.e. compounds resulting by conjugation of different drugs or containing the pharmocophores of different drugs. This strategy has been pursued using various conventional or target-specific agents (with DNA damaging agents and histone deacetylase inhibitors as the most exploited compounds). A critical overview of the most representative compounds is provided with emphasis on the HDAC inhibitor-based hybrid agents. In spite of some promising results, the actual pharmacological advantages of the hybrid agents remain to be defined. This commentary summarizes the recent advances in this field and highlights the pharmacological basis for a rational design of hybrid bifunctional agents. Copyright © 2015. Published by Elsevier Inc.

  8. A simple two-step method to fabricate highly transparent ITO/polymer nanocomposite films

    International Nuclear Information System (INIS)

    Liu, Haitao; Zeng, Xiaofei; Kong, Xiangrong; Bian, Shuguang; Chen, Jianfeng

    2012-01-01

    Highlights: ► A simple two-step method without further surface modification step was employed. ► ITO nanoparticles were easily to be uniformly dispersed in polymer matrix. ► ITO/polymer nanocomposite film had high transparency and UV/IR blocking properties. - Abstract: Transparent functional indium tin oxide (ITO)/polymer nanocomposite films were fabricated via a simple approach with two steps. Firstly, the functional monodisperse ITO nanoparticles were synthesized via a facile nonaqueous solvothermal method using bifunctional chemical agent (N-methyl-pyrrolidone, NMP) as the reaction solvent and surface modifier. Secondly, the ITO/acrylics polyurethane (PUA) nanocomposite films were fabricated by a simple sol-solution mixing method without any further surface modification step as often employed traditionally. Flower-like ITO nanoclusters with about 45 nm in diameter were mono-dispersed in ethyl acetate and each nanocluster was assembled by nearly spherical nanoparticles with primary size of 7–9 nm in diameter. The ITO nanoclusters exhibited an excellent dispersibility in polymer matrix of PUA, remaining their original size without any further agglomeration. When the loading content of ITO nanoclusters reached to 5 wt%, the transparent functional nanocomposite film featured a high transparency more than 85% in the visible light region (at 550 nm), meanwhile cutting off near-infrared radiation about 50% at 1500 nm and blocking UV ray about 45% at 350 nm. It could be potential for transparent functional coating materials applications.

  9. Sol-gel preparation of Ag-silica nanocomposite with high electrical conductivity

    Science.gov (United States)

    Ma, Zhijun; Jiang, Yuwei; Xiao, Huisi; Jiang, Bofan; Zhang, Hao; Peng, Mingying; Dong, Guoping; Yu, Xiang; Yang, Jian

    2018-04-01

    Sol-gel derived noble-metal-silica nanocomposites are very useful in many applications. Due to relatively low price, higher conductivity, and higher chemical stability of silver (Ag) compared with copper (Cu), Ag-silica has gained much more research interest. However, it remains a significant challenge to realize high loading of Ag content in sol-gel Ag-silica composite with high structural controllability and nanoparticles' dispersity. Different from previous works by using multifunctional silicon alkoxide to anchor metal ions, here we report the synthesis of Ag-silica nanocomposite with high loading of Ag nanoparticles by employing acetonitrile bi-functionally as solvent and metal ions stabilizer. The electrical conductivity of the Ag-silica nanocomposite reached higher than 6800 S/cm. In addition, the Ag-silica nanocomposite could simultaneously possess high electrical conductivity and positive conductivity-temperature coefficient by properly controlling the loading content of Ag. Such behavior is potentially advantageous for high-temperature devices (like phosphoric acid fuel cells) and inhibiting the thermal-induced increase of devices' internal resistance. The strategy proposed here is also compatible with block-copolymer directed self-assembly of mesoporous material, spin-coating of film and electrospinning of nanofiber, making it more charming in various practical applications.

  10. Tribology of Nanocomposites

    CERN Document Server

    2013-01-01

    This book provides recent information on nanocomposites tribology. Chapter 1 provides information on tribology of bulk polymer nanocomposites and nanocomposite coatings. Chapter 2 is dedicated to nano and micro PTFE for surface lubrication of carbon fabric reinforced polyethersulphone composites. Chapter 3 describes Tribology of MoS2 -based nanocomposites. Chapter 4 contains information on friction and wear of Al2O2 -based composites with dispersed and agglomerated nanoparticles. Finally, chapter 5 is dedicated to wear of multi-scale phase reinforced composites. It is a useful reference for academics, materials and physics researchers, materials, mechanical and manufacturing engineers, both as final undergraduate and postgraduate levels. It is a useful reference for academics, materials and physics researchers, materials, mechanical and manufacturing engineers, both as final undergraduate and postgraduate levels.

  11. Magnetic nanocomposite sensor

    KAUST Repository

    Alfadhel, Ahmed; Li, Bodong; Kosel, Jü rgen

    2016-01-01

    A magnetic nanocomposite device is described herein for a wide range of sensing applications. The device utilizes the permanent magnetic behavior of the nanowires to allow operation without the application of an additional magnetic field

  12. Nano-composite materials

    Science.gov (United States)

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

    2010-05-25

    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  13. Synthesis of copper polyacrylate nanocomposites by gamma irradiation

    International Nuclear Information System (INIS)

    Casalme, Loida Olores

    2005-04-01

    This research involves the synthesis of copper nanoparticles with controlled size by the application of gamma radiation with varying polyacrylic acid (PAA) and CuSO 4 concentration. An alternative and convenient method was done which employs Co 60 irradiation of solutions of copper salt and PAA with irradiation dose of 1.6, 3.6, 6.4, and 9.2 MRad. The effect of polymer and copper sulfate's initial concentrations as well as the effect of the presence of alcohol as radical scavenger and the presence of ethylenediaminetetraacetic acid as stabilizer were evaluated. Characterization of nanocomposite properties such as plasmon resonance band, fluorescence, and particle morphology and size were determined. Layer-by-layer assembly of Cu-PAA nanocomposites and polydiallyl dimethyl ammonium chloride (PDDA) was also constructed. Stability of the synthesized copper-PAA nanocomposites in terms of the disappearance of plasmon band with time was evaluated. (Author)

  14. Biomedical Applications of Gold Nanoparticles Functionalized Using Hetero-Bifunctional Poly(ethylene glycol) Spacer

    National Research Council Canada - National Science Library

    Fu, Wei; Shenoy, Dinesh; Li, Jane; Crasto, Curtis; Jones, Graham; Dimarzio, Charles; Sridhar, Srinivas; Amiji, Mansoor

    2005-01-01

    To increase the targeting potential, circulation time, and the flexibility of surface-attached biomedically-relevant ligands on gold nanoparticles, hetero-bifunctional poly(ethylene glycol) (PEG, MW 1,500...

  15. Bifunctional chelating agent for the design and development of site specific radiopharmaceuticals and biomolecule conjugation strategy

    Science.gov (United States)

    Katti, Kattesh V.; Prabhu, Kandikere R.; Gali, Hariprasad; Pillarsetty, Nagavara Kishore; Volkert, Wynn A.

    2003-10-21

    There is provided a method of labeling a biomolecule with a transition metal or radiometal in a site specific manner to produce a diagnostic or therapeutic pharmaceutical compound by synthesizing a P.sub.2 N.sub.2 -bifunctional chelating agent intermediate, complexing the intermediate with a radio metal or a transition metal, and covalently linking the resulting metal-complexed bifunctional chelating agent with a biomolecule in a site specific manner. Also provided is a method of synthesizing the --PR.sub.2 containing biomolecules by synthesizing a P.sub.2 N.sub.2 -bifunctional chelating agent intermediate, complexing the intermediate with a radiometal or a transition metal, and covalently linking the resulting radio metal-complexed bifunctional chelating agent with a biomolecule in a site specific manner. There is provided a therapeutic or diagnostic agent comprising a --PR.sub.2 containing biomolecule.

  16. Design and Testing of Bi-Functional, P-Loop-Targeted MDM2 Inhibitors

    National Research Council Canada - National Science Library

    Prives, Carol L; Stockwell, Brent R

    2007-01-01

    Our proposal is to design and evaluate a novel class of bifunctional MDM2 inhibitors, based on the discovery that nucleotides can bind to the P-loop of MDM2 and cause its relocalization to the nucleolus...

  17. Design and Testing of Bi-Functional, P-Loop-Targeted MDM2 Inhibitors

    National Research Council Canada - National Science Library

    Prives, Carol L

    2006-01-01

    This proposal is to design and evaluate a novel class of bifunctional MDM2 inhibitors, based on the discovery that nucleotides can bind to the P-loop of MDM2 and cause its relocalization to the nucleolus...

  18. Thermal Degradation of Nanocomposited PMMA/TiO2 Nanocomposites

    International Nuclear Information System (INIS)

    Hafizah, Nik Noor; Mamat, Mohamad Hafiz; Rusop, Mohamad; Said, Che Mohamad Som; Abidin, Mohd Hanafiah

    2013-01-01

    The polymer nanocomposite is a new choice to conventionally filled polymers. The lack of proper binding between the filler and the polymer can lead the decrease of the thermal and other properties of the nanocomposites. In this study, the nanocomposited PMMA/TiO 2 nanocomposites were prepared using sonication and solution casting method at different weight percent TiO 2 . The aims of adding TiO 2 in the PMMA is to study the effects of TiO 2 nanofiller on the thermal properties nanocomposites. FESEM results show the higher amounts of TiO 2 in PMMA increase the rough surface morphology of the samples. Further, the Raman results reveal that the TiO 2 nanofiller were successfully intercalated into the PMMA matrix. In addition, the thermal properties of nanocomposited PMMA/TiO 2 nanocomposites were increased with the addition of TiO 2 in the PMMA.

  19. Synergistic Interaction within Bifunctional Ruthenium Nanoparticle/SILP Catalysts for the Selective Hydrodeoxygenation of Phenols.

    Science.gov (United States)

    Luska, Kylie L; Migowski, Pedro; El Sayed, Sami; Leitner, Walter

    2015-12-21

    Ruthenium nanoparticles immobilized on acid-functionalized supported ionic liquid phases (Ru NPs@SILPs) act as efficient bifunctional catalysts in the hydrodeoxygenation of phenolic substrates under batch and continuous flow conditions. A synergistic interaction between the metal sites and acid groups within the bifunctional catalyst leads to enhanced catalytic activities for the overall transformation as compared to the individual steps catalyzed by the separate catalytic functionalities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Aqueous synthesis of ZnTe/dendrimer nanocomposites and their antimicrobial activity: implications in therapeutics

    Science.gov (United States)

    Ghosh, S.; Ghosh, D.; Bag, P. K.; Bhattacharya, S. C.; Saha, A.

    2011-03-01

    The present strategy proposes a simple and single step aqueous route for synthesizing stable, fluorescent ZnTe/dendrimer nanocomposites with varying dendrimer terminal groups. In these hybrid materials, the fluorescence of the semiconductor combines with the biomimetic properties of the dendrimer making them suitable for various biomedical applications. The ZnTe nanocomposites thus obtained demonstrate bactericidal activity against enteropathogenic bacteria without having toxic effects on the human erythrocytes. The average size of the ZnTe nanoparticles within the dendrimer matrix was in the range of 2.9-6.0 nm, and they have a good degree of crystallinity with a hexagonal crystal phase. The antibacterial activities of the ZnTe/dendrimer nanocomposites (ZnTe DNCs) as well other semiconductor nanocomposites were evaluated against enteropathogenic bacteria including multi-drug resistant Vibrio cholerae serogroup O1 and enterotoxigenic Escherichia coli (ETEC). ZnTe DNCs had significant antibacterial activity against strains of V. cholerae and ETEC with minimum inhibitory concentrations ranging from 64 to 512 μg ml-1 and minimum bactericidal concentrations ranging from 128 to 1000 μg ml-1. Thus, the observed results suggest that these water-soluble active nanocomposites have potential for the treatment of enteric diseases like diarrhoea and cholera.The present strategy proposes a simple and single step aqueous route for synthesizing stable, fluorescent ZnTe/dendrimer nanocomposites with varying dendrimer terminal groups. In these hybrid materials, the fluorescence of the semiconductor combines with the biomimetic properties of the dendrimer making them suitable for various biomedical applications. The ZnTe nanocomposites thus obtained demonstrate bactericidal activity against enteropathogenic bacteria without having toxic effects on the human erythrocytes. The average size of the ZnTe nanoparticles within the dendrimer matrix was in the range of 2.9-6.0 nm, and they

  1. Combustion of environmentally altered molybdenum trioxide nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Kevin; Pantoya, Michelle L. [Mechanical Engineering Department, Texas Tech University, 2500 Broadway, Lubbock, TX 79409 (United States)

    2006-06-15

    Nanocomposite thermite mixtures are currently under development for many primer applications due to their high energy densities, high ignition sensitivity, and low release of toxins into the environment. However, variability and inconsistencies in combustion performance have not been sufficiently investigated. Environmental interactions with the reactants are thought to be a contributing factor to these variabilities. Combustion velocity experiments were conducted on aluminum (Al) and molybdenum trioxide (MoO{sub 3}) mixtures to investigate the role of environmental interactions such as light exposure and humidity. While the Al particles were maintained in an ambient, constant environment, the MoO{sub 3} particles were exposed to UV or fluorescent light, and highly humid environments. Results show that UV and fluorescent lighting over a period of days does not significantly contribute to performance deterioration. However, a humid environment severely decreases combustion performance if the oxidizer particles are not heat-treated. Heat treatment of the MoO{sub 3} greatly increases the material's ability to resist water absorption, yielding more repeatable combustion performance. This work further quantifies the role of the environment in the decrease of combustion performance of nanocomposites over time. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  2. Design and development of anisotropic inorganic/polystyrene nanocomposites by surface modification of zinc oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Han, Xiao [School of Materials Science and Engineering, Tongji University, Shanghai 200092 (China); Research Center for Translational Medicine, East Hospital, the Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092 (China); Huang, Shiming [Department of Physics, Tongji University, Shanghai 200092 (China); Wang, Yilong, E-mail: yilongwang@tongji.edu.cn [Research Center for Translational Medicine, East Hospital, the Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092 (China); Shi, Donglu, E-mail: shid@ucmail.uc.edu [Research Center for Translational Medicine, East Hospital, the Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092 (China); The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221 (United States)

    2016-07-01

    Anisotropic yolk/shell or Janus inorganic/polystyrene nanocomposites were prepared by combining miniemulsion polymerization and sol–gel reaction. The morphologies of the anisotropic composites were found to be greatly influenced by surface modification of zinc oxide (ZnO) nanoparticle seeds. Two different types of the oleic acid modified ZnO nanoparticles (OA-ZnO) were prepared by post-treatment of commercial ZnO powder and homemade OA-ZnO nanoparticles. The morphologies and properties of the nanocomposites were investigated by transmission electron microscope (TEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), and energy dispersive X-ray spectroscopy (EDX). It was found that both post-treated OA-ZnO and in-situ prepared OA-ZnO nanoparticles resulted in the yolk–shell and Janus structure nanocomposites, but with varied size and morphology. These nanocomposites showed stable and strong fluorescence by introducing quantum dots as the co-seeds. The fluorescent anisotropic nanocomposites were decorated separately with surface carboxyl and hydroxyl groups. These composites with unique anisotropic properties will have high potential in biomedical applications, particularly in bio-detection. - Graphical abstract: Design and development of anisotropic inorganic/polystyrene nanocomposites by surface modification of zinc oxide nanoparticles. - Highlights: • Non-magnetic anisotropic yolk/shell or Janus nanocomposites are prepared and characterized. • Different surface modification of zinc oxide (ZnO) nanoparticles results in varied morphology and size of the final product. • Fluorescent anisotropic nanocomposites embodying quantum dots are an ideal candidate for bio-detection applications.

  3. Fluorescence spectroscopy

    DEFF Research Database (Denmark)

    Bagatolli, Luis

    2016-01-01

    Fluorescence spectroscopy is a powerful experimental tool used by scientists from many disciplines. During the last decades there have been important developments on distinct fluorescence methods, particularly those related to the study of biological phenomena. This chapter discusses the foundati......Fluorescence spectroscopy is a powerful experimental tool used by scientists from many disciplines. During the last decades there have been important developments on distinct fluorescence methods, particularly those related to the study of biological phenomena. This chapter discusses...

  4. Synthesis and characterization of graphene quantum dots/cobalt ferrite nanocomposite

    Science.gov (United States)

    Ramachandran, Shilpa; Sathishkumar, M.; Kothurkar, Nikhil K.; Senthilkumar, R.

    2018-02-01

    A facile method has been developed for the synthesis of a graphene quantum dots/cobalt ferrite nanocomposite. Graphene quantum dots (GQDs) were synthesized by a simple bottom-up method using citric acid, followed by the co-precipitation of cobalt ferrite nanoparticles on the graphene quantum dots. The morphology, structural analysis, optical properties, magnetic properties were investigated using transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-vis absorption spectroscopy, fluorescence spectroscopy, vibrating sample magnetometry (VSM) measurements. The synthesized nanocomposite showed good fluorescence and superparamagnetic properties, which are important for biomedical applications.

  5. Conducting polyamine nanocomposites development

    International Nuclear Information System (INIS)

    Nascimento, R.C.; Maciel, T.C.G.L.; Guimaraes, M.J.O.C.; Garcia, M.E.F.

    2010-01-01

    Polymeric nanocomposites are hybrid materials formed by the combination of inorganic nanoparticles dispersed in a polymeric matrix with, at least, one dimension in the nanometer range. It was used as nanoparticles layered and tubular clay minerals, and its insertion and dispersion were conducted through the in situ polymerization technique. As the polymer matrix, it was utilized a polyamine, which, later, will be inserted in a polyacrylamide gel for the development of a compound that aggregates both main characteristics. The nanocomposites were prepared in different polymerization conditions (temperature, concentration and nanoparticle type) and characterized by XRD and FTIR. It was observed that regarding the polymerization conditions, the temperature had influence on the kind of material obtained and on the reaction speed; the type of nanoparticle affected its interaction with the polymer matrix, predominantly providing the formation of nanocomposites by the intercalation mechanism in the layered clay. (author)

  6. Synthesis of deuterium-labeled analogs of the lipid hydroperoxide-derived bifunctional electrophile 4-oxo-2(E)-nonenal

    OpenAIRE

    Arora, Jasbir S.; Oe, Tomoyuki; Blair, Ian A.

    2011-01-01

    Lipid hydroperoxides undergo homolytic decomposition into the bifunctional 4-hydroxy-2(E)-nonenal and 4-oxo-2(E)-nonenal (ONE). These bifunctional electrophiles are highly reactive and can readily modify intracellular molecules including glutathione (GSH), deoxyribonucleic acid (DNA) and proteins. Lipid hydroperoxide-derived bifunctional electrophiles are thought to contribute to the pathogenesis of a number of diseases. ONE is an α,β-unsaturated aldehyde that can react in multiple ways and w...

  7. Nanocomposites for Machining Tools

    Directory of Open Access Journals (Sweden)

    Daria Sidorenko

    2017-10-01

    Full Text Available Machining tools are used in many areas of production. To a considerable extent, the performance characteristics of the tools determine the quality and cost of obtained products. The main materials used for producing machining tools are steel, cemented carbides, ceramics and superhard materials. A promising way to improve the performance characteristics of these materials is to design new nanocomposites based on them. The application of micromechanical modeling during the elaboration of composite materials for machining tools can reduce the financial and time costs for development of new tools, with enhanced performance. This article reviews the main groups of nanocomposites for machining tools and their performance.

  8. Chitosan-based nanocomposites

    CSIR Research Space (South Africa)

    Kesavan Pillai, Sreejarani

    2012-08-01

    Full Text Available , and hygiene devices. They thus represent a strong and emerging answer for improved and eco-friendly materials. This chapter reviews the recent developments in the area of chitosan-based nanocomposites, with a special emphasis on clay-containing nanocomposites...-sized mineral fillers like silica, talc, and clay are added to reduce the cost and improve chitosan’s performance in some way. However, the mechanical properties such as elongation at break and tensile strength of these composites decrease with the incorporation...

  9. Mechanish of dTTP Inhibition of the Bifunctional dCTP Deaminase:dUTPase Encoded by Mycobacterium tuberculosis

    DEFF Research Database (Denmark)

    Helt, Signe Smedegaard; Thymark, Majbritt; Harris, Pernille

    2008-01-01

    Recombinant deoxycytidine triphosphate (dCTP) deaminase from Mycobacterium tuberculosis was produced in Escherichia coli and purified. The enzyme proved to be a bifunctional dCTP deaminase:deoxyuridine triphosphatase. As such, the M. tuberculosis enzyme is the second bifunctional enzyme to be cha......Recombinant deoxycytidine triphosphate (dCTP) deaminase from Mycobacterium tuberculosis was produced in Escherichia coli and purified. The enzyme proved to be a bifunctional dCTP deaminase:deoxyuridine triphosphatase. As such, the M. tuberculosis enzyme is the second bifunctional enzyme...

  10. Homogeneous and label-free detection of microRNAs using bifunctional strand displacement amplification-mediated hyperbranched rolling circle amplification.

    Science.gov (United States)

    Zhang, Li-rong; Zhu, Guichi; Zhang, Chun-yang

    2014-07-01

    MicroRNAs (miRNAs) are an emerging class of biomarkers and therapeutic targets for various diseases including cancers. Here, we develop a homogeneous and label-free method for sensitive detection of let-7a miRNA based on bifunctional strand displacement amplification (SDA)-mediated hyperbranched rolling circle amplification (HRCA). The binding of target miRNA with the linear template initiates the bifunctional SDA reaction, generating two different kinds of triggers which can hybridize with the linear template to initiate new rounds of SDA reaction for the production of more and more triggers. In the meantime, the released two different kinds of triggers can function as the first and the second primers, respectively, to initiate the HRCA reaction whose products can be simply monitored by a standard fluorometer with SYBR Green I as the fluorescent indicator. The proposed method exhibits high sensitivity with a detection limit of as low as 1.8 × 10(-13) M and a large dynamic range of 5 orders of magnitude from 0.1 pM to 10 nM, and it can even discriminate the single-base difference among the miRNA family members. Moreover, this method can be used to analyze the total RNA samples from the human lung tissues and might be further applied for sensitive detection of various proteins, small molecules, and metal ions in combination with specific aptamers.

  11. Greatly enhanced Raman scattering and upconversion luminescence of Au–NaYF{sub 4} nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Tao [State Key Laboratory on Integrated Optoelectronics,College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Institute of Photonics, Faculty of Science, Ningbo University, Ningbo 315211 (China); Li, Junpeng [Institute of Photonics, Faculty of Science, Ningbo University, Ningbo 315211 (China); Qin, Weiping, E-mail: wpqin@jlu.edu.cn [State Key Laboratory on Integrated Optoelectronics,College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Zhou, Jun, E-mail: zhoujun@nbu.edu.cn [Institute of Photonics, Faculty of Science, Ningbo University, Ningbo 315211 (China)

    2014-12-15

    Novel dual function Au–NaYF{sub 4} nanocomposites were prepared by a facile wet chemical method. Hexagonal NaYF{sub 4} nanocrystals (NCs) were first produced by a hydrothermal method. Then, these NaYF{sub 4} NCs were decorated with gold nanoparticles (NPs) to form hybrid nanostructures. In this dual mode probe, surface enhanced Raman scattering (SERS) and field enhanced fluorescence can be generated independently by using different excitation wavelengths. It was found that the attached gold NPs on the rough surfaces of NaYF{sub 4} NCs might generate high density localized electric fields, which could lead to both efficient Raman scattering signal and upconversion (UC) luminescence. The enhancement factors of SERS signals from Au–NaYF{sub 4} nanocomposites were investigated using 4-mercaptobenzoic acid. The mechanism of enhanced UC luminescence from the nanocomposites was also discussed based on the population and photoluminescence processes of doped trivalent lanthanide ions. These dual mode nanocomposites may find potential applications in biological detection, imaging, and sensing. - Highlights: • Novel dual function Au–NaYF{sub 4} nanocomposites were successfully fulfilled by a facial wet chemical method. • Field enhanced fluorescence and SERS can be generated independently by using different excitation wavelengths. • The EF value of this Au–NaYF{sub 4} substrate was as high as 8.17×10{sup 7}. • The largest ER of UC emissions from Gd{sup 3+} ion in Au–NaYF{sub 4} nanocomposites appeared to be 76.

  12. A novel thermal decomposition approach to synthesize hydroxyapatite-silver nanocomposites and their antibacterial action against GFP-expressing antibiotic resistant E. coli.

    Science.gov (United States)

    Sahni, Geetika; Gopinath, P; Jeevanandam, P

    2013-03-01

    A novel thermal decomposition approach to synthesize hydroxyapatite-silver (Hap-Ag) nanocomposites has been reported. The nanocomposites were characterized by X-ray diffraction, field emission scanning electron microscopy coupled with energy dispersive X-ray analysis, transmission electron microscopy and diffuse reflectance spectroscopy techniques. Antibacterial activity studies for the nanocomposites were explored using a new rapid access method employing recombinant green fluorescent protein (GFP) expressing antibiotic resistant Escherichia coli (E. coli). The antibacterial activity was studied by visual turbidity analysis, optical density analysis, fluorescence spectroscopy and microscopy. The mechanism of bactericidal action of the nanocomposites on E. coli was investigated using atomic force microscopy, and TEM analysis. Excellent bactericidal activity at low concentration of the nanocomposites was observed which may allow their use in the production of microbial contamination free prosthetics. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Near infrared fluorescent chlorophyll nanoscale liposomes for sentinel lymph node mapping

    Science.gov (United States)

    Fan, Lina; Wu, Qiang; Chu, Maoquan

    2012-01-01

    Background Sentinel lymph node (SLN) mapping using in vivo near infrared fluorescence imaging has attracted great attention during the past few years. Here we report on the early use of poorly water-soluble chlorophyll with near infrared fluorescence extracted from the leaf of Chimonanthus salicifolius, for mouse axillary SLN mapping. Methods and results To improve the water solubility and SLN targeting of the chlorophyll, we encapsulated the chlorophyll in nanoscale liposomes. The liposome-coated chlorophyll nanocomposites obtained were spherical in shape and had an average diameter of 21.7 ± 6.0 nm. The nanocomposites dispersed well in water, and in aqueous suspension they exhibited brighter near infrared fluorescence than chlorophyll alone. After incubation of the nanocomposites with normal liver cells (QSG-7701) and macrophage cells (Ana-1) for no more than 48 hours, there was no obvious reduction in cell viability. When the nanocomposites were injected intradermally into the paw of a mouse, the axillary SLN was found to be strongly fluorescent and was easily visualized in real time without a requirement for surgery. The intensity of the near infrared fluorescence emitted by the SLN was obviously brighter than that emitted by the SLN of another mouse that had been intradermally injected with chlorophyll alone. Conclusion Our data show that the liposome-coated chlorophyll nanocomposites could have great potential for clinical SLN mapping due to their lack of toxicity, bright near infrared fluorescence, and small diameter. PMID:22787402

  14. Structural, optical and photo thermal properties of Er3+:Y2O3 doped PMMA nanocomposite

    Science.gov (United States)

    Tabanli, Sevcan; Eryurek, Gonul

    2018-02-01

    Thermal decomposition technique was employed to synthesize of phosphors of yttria (Y2O3) doped with erbium (Er3+) ions. After the synthesized procedure, the nano-sized crystalline powders were annealed at 800oC for 24 h. Annealed powders were embedded in poly(methyl methacrylate) (PMMA) by free radical polymerization to fabricate nanocomposite polymer materials. The crystalline structure of the powder and doped PMMA nanocomposite samples were determined using X-ray diffraction technique. Scherrer's equation and the FW1/5/4/5M method were used to determine average crystalline size and grain size distributions, respectively. The spectroscopic properties of the powders and doped PMMA nanocomposites were studied by measuring the upconversion emission spectra under near-infrared laser excitation at room temperature. The laser-induced photo thermal behaviors of Er3+:Y2O3 nano-powders and doped PMMA nanocomposite were investigated using the fluorescence intensity ratio (FIR) technique.

  15. LIGNOCELLULOSE NANOCOMPOSITE CONTAINING COPPER SULFIDE

    OpenAIRE

    Sanchi Nenkova; Peter Velev; Mirela Dragnevska; Diyana Nikolova; Kiril Dimitrov

    2011-01-01

    Copper sulfide-containing lignocellulose nanocomposites with improved electroconductivity were obtained. Two methods for preparing the copper sulfide lignocellulose nanocomposites were developed. An optimization of the parameters for obtaining of the nanocomposites with respect to obtaining improved electroconductivity, economy, and lower quantities and concentration of copper and sulfur ions in waste waters was conducted. The mechanisms and schemes of delaying and subsequent connection of co...

  16. Polyolefin nanocomposites in situ polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Galland, Griselda Barrera; Fim, Fabiana de C.; Milani, Marceo A.; Silva, Silene P. da; Forest, Tadeu; Radaelli, Gislaine, E-mail: griselda.barrera@ufrgs.br [Universidade Federal do Rio Grande de Sul - UFRGS, Porto Alegre, RS (Brazil); Basso, Nara R.S. [Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil); Quijada, Raul [Universidad de Chile, Santiago (Chile)

    2011-07-01

    Polyethylene and polypropylene nanocomposites using grapheme nanosheets and treated chrysotile have been synthesized by in situ polymerization using metallocene catalysts. The fillers have been submitted to acid, thermal and/ou ultrasound treatments before to introduce them into the polymerization reactor. A complete characterization of the fillers has been done. The nanocomposites have been characterized by SEM, TEM, DRX and AFM. The thermal, mechanic -dynamic, mechanical and electrical properties of the nanocomposites are discussed. (author)

  17. Polyolefin nanocomposites in situ polymerization

    International Nuclear Information System (INIS)

    Galland, Griselda Barrera; Fim, Fabiana de C.; Milani, Marceo A.; Silva, Silene P. da; Forest, Tadeu; Radaelli, Gislaine; Basso, Nara R.S.; Quijada, Raul

    2011-01-01

    Polyethylene and polypropylene nanocomposites using grapheme nanosheets and treated chrysotile have been synthesized by in situ polymerization using metallocene catalysts. The fillers have been submitted to acid, thermal and/ou ultrasound treatments before to introduce them into the polymerization reactor. A complete characterization of the fillers has been done. The nanocomposites have been characterized by SEM, TEM, DRX and AFM. The thermal, mechanic -dynamic, mechanical and electrical properties of the nanocomposites are discussed. (author)

  18. Bioinspired Bifunctional Membrane for Efficient Clean Water Generation.

    Science.gov (United States)

    Liu, Yang; Lou, Jinwei; Ni, Mengtian; Song, Chengyi; Wu, Jianbo; Dasgupta, Neil P; Tao, Peng; Shang, Wen; Deng, Tao

    2016-01-13

    Solving the problems of water pollution and water shortage is an urgent need for the sustainable development of modern society. Different approaches, including distillation, filtration, and photocatalytic degradation, have been developed for the purification of contaminated water and the generation of clean water. In this study, we explored a new approach that uses solar light for both water purification and clean water generation. A bifunctional membrane consisting of a top layer of TiO2 nanoparticles (NPs), a middle layer of Au NPs, and a bottom layer of anodized aluminum oxide (AAO) was designed and fabricated through multiple filtration processes. Such a design enables both TiO2 NP-based photocatalytic function and Au NP-based solar-driven plasmonic evaporation. With the integration of these two functions into a single membrane, both the purification of contaminated water through photocatalytic degradation and the generation of clean water through evaporation were demonstrated using simulated solar illumination. Such a demonstration should also help open up a new strategy for maximizing solar energy conversion and utilization.

  19. Plutonium and americium extraction studies with bifunctional organophosphorus extractants

    International Nuclear Information System (INIS)

    Navratil, J.D.

    1985-01-01

    Neutral bifunctional organophosphorus extractants, such as octylphenyl-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) and dihexyl-N,N-diethylcarbamoylmethylphosphonate (CMP), are under study at the Rocky Flats Plant (RFP) to remove plutonium and americium from the 7M nitric acid waste. These compounds extract trivalent actinides from strong nitric acid, a property which distinguishes them from monofunctional organiphosphorus reagents. Furthermore, the reagents extract hydroytic plutonium (IV) polymer which is present in the acid waste stream. The compounds extract trivalent actinides with a 3:1 stoichiometry, whereas tetra- and hexavalent actinides extract with a stoichiometry of 2:1. Preliminary studies indicate that the extracted plutonium polymer complex contains one to two molecules of CMP per plutonium ion and the plutonium(IV) maintains a polymeric structure. Recent studies by Horwitz and co-workers conclude that the CMPO and CMP reagents behave as monodentate ligands. At RFP, three techniques are being tested for using CMP and CMPO to remove plutonium and americium from nitric acid waste streams. The different techniques are liquid-liquid extraction, extraction chromatography, and solid-supported liquid membranes. Recent tests of the last two techniques will be briefly described. In all the experiments, CMP was an 84% pure material from Bray Oil Co. and CMPO was 98% pure from M and T Chemicals

  20. A conserved regulatory mechanism in bifunctional biotin protein ligases.

    Science.gov (United States)

    Wang, Jingheng; Beckett, Dorothy

    2017-08-01

    Class II bifunctional biotin protein ligases (BirA), which catalyze post-translational biotinylation and repress transcription initiation, are broadly distributed in eubacteria and archaea. However, it is unclear if these proteins all share the same molecular mechanism of transcription regulation. In Escherichia coli the corepressor biotinoyl-5'-AMP (bio-5'-AMP), which is also the intermediate in biotin transfer, promotes operator binding and resulting transcription repression by enhancing BirA dimerization. Like E. coli BirA (EcBirA), Staphylococcus aureus, and Bacillus subtilis BirA (Sa and BsBirA) repress transcription in vivo in a biotin-dependent manner. In this work, sedimentation equilibrium measurements were performed to investigate the molecular basis of this biotin-responsive transcription regulation. The results reveal that, as observed for EcBirA, Sa, and BsBirA dimerization reactions are significantly enhanced by bio-5'-AMP binding. Thus, the molecular mechanism of the Biotin Regulatory System is conserved in the biotin repressors from these three organisms. © 2017 The Protein Society.

  1. Smart Nacre-inspired Nanocomposites.

    Science.gov (United States)

    Peng, Jingsong; Cheng, Qunfeng

    2018-03-15

    Nacre-inspired nanocomposites with excellent mechanical properties have achieved remarkable attention in the past decades. The high performance of nacre-inspired nanocomposites is a good basis for the further application of smart devices. Recently, some smart nanocomposites inspired by nacre have demonstrated good mechanical properties as well as effective and stable stimuli-responsive functions. In this Concept, we summarize the recent development of smart nacre-inspired nanocomposites, including 1D fibers, 2D films and 3D bulk nanocomposites, in response to temperature, moisture, light, strain, and so on. We show that diverse smart nanocomposites could be designed by combining various conventional fabrication methods of nacre-inspired nanocomposites with responsive building blocks and interface interactions. The nacre-inspired strategy is versatile for different kinds of smart nanocomposites in extensive applications, such as strain sensors, displays, artificial muscles, robotics, and so on, and may act as an effective roadmap for designing smart nanocomposites in the future. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Fluorescent S-layer fusion proteins

    International Nuclear Information System (INIS)

    Kainz, B.

    2010-01-01

    This work describes the construction and characterisation of fluorescent S-layer fusion proteins used as building blocks for the fabrication of nanostructured monomolecular biocoatings on silica particles with defined fluorescence properties. The S-layer protein SgsE of Geobacillus stearothermophilus NRS 2004/3a was fused with the pH-dependant cyan, green and yellow variant of the green fluorescent protein (GFP) and the red fluorescent protein mRFP1. These fluorescent S-layer fusion proteins, acting as scaffold and optical sensing element simultaneously, were able to reassemble in solution and on silica particles forming 2D nanostructures with p2 lattice symmetry (a=11 ±0.5 nm, b=14 ±0.4 nm, g=80 ±1 o ). The pH-dependant fluorescence behaviour was studied with fluorimetry, confocal microscopy and flow cytometry. These fluorescent S-layer fusion proteins can be used as pH-sensor. 50% of the fluorescence intensity decreases at their calculated pKa values (pH6 - pH5). The fluorescence intensity of the GFP variants vanished completely between pH4 and pH3 whereas the chromophore of the red protein mRFP1 was only slightly affected in acidic conditions. At the isoelectric point of the S-layer coated silica particles (pH4.6 ±0.2) an increase in particle aggregation was detected by flow cytometry. The cyan and yellow fluorescent proteins were chosen to create a bi-fluorescent S-layer tandem fusion protein with the possibility for resonance energy transfer (FRET). A transfer efficiency of 20% and a molecular distance between the donor (ECFP) and acceptor (YFP) chromophores of around 6.2 nm could be shown. This bi-fluorescent ECFP-SgsE-YFP tandem fusion protein was able to reassemble on solid surfaces. The remarkable combination of fluorescence and self-assembly and the design of bi-functional S-layer tandem fusion protein matrices makes them to a promising tool in nanobiotechnology. (author) [de

  3. In situ ZnO-PVA nanocomposite coated microfluidic chips for biosensing

    Science.gov (United States)

    Habouti, Salah; Kunstmann-Olsen, Casper; Hoyland, James D.; Rubahn, Horst-Günter; Es-Souni, Mohammed

    2014-05-01

    Microfluidic chips with integrated fluid and optical connectors have been generated via a simple PDMS master-mould technique. In situ coating using a Zinc oxide polyvinylalcohol based sol-gel method results in ultrathin nanocomposite layers on the fluid channels, which makes them strongly hydrophilic and minimizes auto contamination of the chips by injected fluorescent biomarkers.

  4. Heterogeneous Bimetallic Phosphide/Sulfide Nanocomposite for Efficient Solar-Energy-Driven Overall Water Splitting.

    Science.gov (United States)

    Xin, Yanmei; Kan, Xiang; Gan, Li-Yong; Zhang, Zhonghai

    2017-10-24

    Solar-driven overall water splitting is highly desirable for hydrogen generation with sustainable energy sources, which need efficient, earth-abundant, robust, and bifunctional electrocatalysts for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Herein, we propose a heterogeneous bimetallic phosphide/sulfide nanocomposite electrocatalyst of NiFeSP on nickel foam (NiFeSP/NF), which shows superior electrocatalytic activity of low overpotentials of 91 mV at -10 mA cm -2 for HER and of 240 mV at 50 mA cm -2 for OER in 1 M KOH solution. In addition, the NiFeSP/NF presents excellent overall water splitting performance with a cell voltage as low as 1.58 V at a current density of 10 mA cm -2 . Combining with a photovoltaic device of a Si solar cell or integrating into photoelectrochemical (PEC) systems, the bifunctional NiFeSP/NF electrocatalyst implements unassisted solar-driven water splitting with a solar-to-hydrogen conversion efficiency of ∼9.2% and significantly enhanced PEC performance, respectively.

  5. Synthesis, characterization and catalytic activity of acid-base bifunctional materials through protection of amino groups

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yanqiu [College of Chemistry, Jilin University, Changchun 130023 (China); College of Chemistry, Mudanjiang Normal University, Mudanjiang 157012 (China); Liu, Heng; Yu, Xiaofang [College of Chemistry, Jilin University, Changchun 130023 (China); Guan, Jingqi, E-mail: guanjq@jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130023 (China); Kan, Qiubin, E-mail: qkan@mail.jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130023 (China)

    2012-03-15

    Graphical abstract: Acid-base bifunctional mesoporous material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized under low acidic medium through protection of amino groups. Highlights: Black-Right-Pointing-Pointer The acid-base bifunctional material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized through protection of amino groups. Black-Right-Pointing-Pointer The obtained bifunctional material was tested for aldol condensation. Black-Right-Pointing-Pointer The SO{sub 3}H-SBA-15-NH{sub 2} catalyst containing amine and sulfonic acid groups exhibited excellent acid-basic properties. -- Abstract: Acid-base bifunctional mesoporous material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized under low acidic medium through protection of amino groups. X-ray diffraction (XRD), N{sub 2} adsorption-desorption, transmission electron micrographs (TEM), back titration, {sup 13}C magic-angle spinning (MAS) NMR and {sup 29}Si magic-angle spinning (MAS) NMR were employed to characterize the synthesized materials. The obtained bifunctional material was tested for aldol condensation reaction between acetone and 4-nitrobenzaldehyde. Compared with monofunctional catalysts of SO{sub 3}H-SBA-15 and SBA-15-NH{sub 2}, the bifunctional sample of SO{sub 3}H-SBA-15-NH{sub 2} containing amine and sulfonic acid groups exhibited excellent acid-basic properties, which make it possess high activity for the aldol condensation.

  6. (BS-Mn) nanocomposite

    African Journals Online (AJOL)

    Bamboo supported manganese (BS-Mn) nanocomposite was prepared in a single pot system via bottom-up approach using a chemical reduction method. Langmuir surface area, BET surface area, and Single pore surface area were 349.70 m2/g, 218.90 m2/g, and 213.50 m2/g, respectively. The pore size (24.34 Ȧ); pore ...

  7. ZnS-Graphene nanocomposite: Synthesis, characterization and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Pan Shugang [Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094 (China); Liu Xiaoheng, E-mail: xhliu@mail.njust.edu.cn [Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094 (China)

    2012-07-15

    A ZnS-Graphene nanocomposite was prepared by a facile one-step hydrothermal method using zinc nitrate hexahydrate, ethylenediamine and carbon disulfide as precursors, graphene oxide as a template. The composite was characterized by X-ray power diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, Fourier transform infrared, Raman spectra and fluorescence spectroscopy. The results show that graphene oxide was reduced to graphene in the hydrothermal reaction process. Simultaneously, the graphene sheets in the composite are exfoliated and decorated with ZnS nanoparticles. Furthermore, Raman and fluorescence properties of the composite were observed. ZnS-Graphene nanocomposite displays surface-enhanced Raman scattering activity for graphene oxide, and fluorescence enhancement property compared with pure ZnS sample. - Graphical abstract: Approach of reaction makes the reduction of grapheme oxide and the deposition of Zns on the grapheme sheets occur simultaneously and overcomes the aggregation of the grapheme sheets and Zns. Highlights: Black-Right-Pointing-Pointer Graphene oxide is reduced to graphene in the hydrothermal reaction process. Black-Right-Pointing-Pointer ZnS nanoparticles are attached onto the almost transparent graphene sheets. Black-Right-Pointing-Pointer ZnS-Graphene system shows surface-enhanced Raman scattering (SERS) activity. Black-Right-Pointing-Pointer ZnS-Graphene system displays relatively better fluorescence property than pure ZnS.

  8. Multilayer graphene rubber nanocomposites

    Science.gov (United States)

    Schartel, Bernhard; Frasca, Daniele; Schulze, Dietmar; Wachtendorf, Volker; Krafft, Bernd; Morys, Michael; Böhning, Martin; Rybak, Thomas

    2016-05-01

    Multilayer Graphene (MLG), a nanoparticle with a specific surface of BET = 250 m2/g and thus made of only approximately 10 graphene sheets, is proposed as a nanofiller for rubbers. When homogenously dispersed, it works at low loadings enabling the replacement of carbon black (CB), increase in efficiency, or reduction in filler concentration. Actually the appropriate preparation yielded nanocomposites in which just 3 phr are sufficient to significantly improve the rheological, curing and mechanical properties of different rubbers, as shown for Chlorine-Isobutylene-Isoprene Rubber (CIIR), Nitrile-Butadiene Rubber (NBR), Natural Rubber (NR), and Styrene-Butadiene Rubber (SBR). A mere 3 phr of MLG tripled the Young's modulus of CIIR, an effect equivalent to 20 phr of carbon black. Similar equivalents are observed for MLG/CB mixtures. MLG reduces gas permeability, increases thermal and electrical conductivities, and retards fire behavior. The later shown by the reduction in heat release rate in the cone calorimeter. The higher the nanofiller concentration is (3 phr, 5 phr, and 10 phr was investigated), the greater the improvement in the properties of the nanocomposites. Moreover, the MLG nanocomposites improve stability of mechanical properties against weathering. An increase in UV-absorption as well as a pronounced radical scavenging are proposed and were proved experimentally. To sum up, MLG is interesting as a multifunctional nanofiller and seems to be quite ready for rubber development.

  9. Multifunctional Polymer Nanocomposites

    Science.gov (United States)

    Galaska, Alexandra Maria; Song, Haixiang; Guo, Zhanhu

    With more awareness of energy conversion/storage and saving, different strategies have been developed to utilize the sustainable and renewable energy. Introducing nanoscale fillers can make inert polymer matrix possess unique properties to satisfy certain functions. For example, alumina nanoparticles have strengthened the weak thermosetting polymers. A combined mixture of carbon nanofibers and magnetite nanoparticles have made the inert epoxy sensitive for magnetic field for sensing applications. Introducing silica nanoparticles into conductive polymers such as polyaniline has enhanced the giant magnetoresistance behaviors. The introduced nanoparticles have made the transparent polymer have the electromagnetic interference (EMI) shielding function while reduce the density significantly. With the desired miniaturization, the materials combining different functionalities have become importantly interesting. In this talk, methodologies to prepare nanocomposites and their effects on the produced nanocomposites will be discussed. A variety of advanced polymer nanocomposites will be introduced. Unique properties including mechanical, electrical, magnetoresistance etc. and the applications for environmental remediation, energy storage/saving, fire retardancy, electromagnetic interference shielding, and electronic devices will be presented.

  10. Lead selenide quantum dot polymer nanocomposites

    Science.gov (United States)

    Waldron, Dennis L.; Preske, Amanda; Zawodny, Joseph M.; Krauss, Todd D.; Gupta, Mool C.

    2015-02-01

    Optical absorption and fluorescence properties of PbSe quantum dots (QDs) in an Angstrom Bond AB9093 epoxy polymer matrix to form a nanocomposite were investigated. To the authors’ knowledge, this is the first reported use of AB9093 as a QD matrix material and it was shown to out-perform the more common poly(methyl methacrylate) matrix in terms of preserving the optical properties of the QD, resulting in the first reported quantum yield (QY) for PbSe QDs in a polymer matrix, 26%. The 1-s first excitonic absorption peak of the QDs in a polymer matrix red shifted 65 nm in wavelength compared to QDs in a hexane solution, while the emission peak in the polymer matrix red shifted by 38 nm. The fluorescence QY dropped from 55% in hexane to 26% in the polymer matrix. A time resolved fluorescence study of the QDs showed single exponential lifetimes of 2.34 and 1.34 μs in toluene solution and the polymer matrix respectively.

  11. Reaction Current Phenomenon in Bifunctional Catalytic Metal-Semiconductor Nanostructures

    Science.gov (United States)

    Hashemian, Mohammad Amin

    Energy transfer processes accompany every elementary step of catalytic chemical processes on material surface including molecular adsorption and dissociation on atoms, interactions between intermediates, and desorption of reaction products from the catalyst surface. Therefore, detailed understanding of these processes on the molecular level is of great fundamental and practical interest in energy-related applications of nanomaterials. Two main mechanisms of energy transfer from adsorbed particles to a surface are known: (i) adiabatic via excitation of quantized lattice vibrations (phonons) and (ii) non-adiabatic via electronic excitations (electron/hole pairs). Electronic excitations play a key role in nanocatalysis, and it was recently shown that they can be efficiently detected and studied using Schottky-type catalytic nanostructures in the form of measureable electrical currents (chemicurrents) in an external electrical circuit. These nanostructures typically contain an electrically continuous nanocathode layers made of a catalytic metal deposited on a semiconductor substrate. The goal of this research is to study the direct observations of hot electron currents (chemicurrents) in catalytic Schottky structures, using a continuous mesh-like Pt nanofilm grown onto a mesoporous TiO2 substrate. Such devices showed qualitatively different and more diverse signal properties, compared to the earlier devices using smooth substrates, which could only be explained on the basis of bifunctionality. In particular, it was necessary to suggest that different stages of the reaction are occurring on both phases of the catalytic structure. Analysis of the signal behavior also led to discovery of a formerly unknown (very slow) mode of the oxyhydrogen reaction on the Pt/TiO2(por) system occurring at room temperature. This slow mode was producing surprisingly large stationary chemicurrents in the range 10--50 microA/cm2. Results of the chemicurrent measurements for the bifunctional

  12. Magnetic and luminescent properties of Fe/Fe{sub 3}O{sub 4}-Y{sub 2}O{sub 3}:Eu nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Wang Qin [College of Chemistry, Jilin University, Changchun 130012 (China); College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot (China); Yang Xuwei; Yu Lianxiang [College of Chemistry, Jilin University, Changchun 130012 (China); Yang Hua, E-mail: huayang86@sina.com [College of Chemistry, Jilin University, Changchun 130012 (China)

    2011-09-15

    Highlights: > We synthesize multifunctional Fe/Fe{sub 3}O{sub 4}-Y{sub 2}O{sub 3}:Eu nanocomposites. > The luminescent and magnetic properties of the nanocomposites are researched. > The nanocomposites showed both ferrimagnetic behavior and unique europium fluorescence properties with high emission intensity. > The spectra changes induced by the UV light irradiation and the magnetic field have been systematically studied and compared in detail. > And the hysteresis curve changes induced by the UV light irradiation have been discussed. - Abstract: Multifunctional nanocomposites with Fe/Fe{sub 3}O{sub 4} nanoparticles as the core and europium-doped yttrium oxide (Y{sub 2}O{sub 3}:Eu) as the shell (Fe/Fe{sub 3}O{sub 4}-Y{sub 2}O{sub 3}:Eu) have been obtained successfully employing a solvothermal method. The nanocomposites showed both ferrimagnetic behavior and unique europium fluorescence properties with high emission intensity. The spectra changes induced by the UV light irradiation and the magnetic field have been systematically studied and compared in detail. The relationship between fluorescence and magnetic properties of the multifunctional nanocomposites has been investigated in our manuscript. These multifunctional nanocomposites could be used in a number of biomedical applications, such as drug targeting, cell separation and bioimaging.

  13. Incorporation of Znq2 complexes into mesoporous silica and their transparent polymer luminescent nanocomposites

    International Nuclear Information System (INIS)

    Du Yaying; Fu Yuqin; Shi Yongli; Lue Xiaodan; Lue Changli; Su Zhongmin

    2009-01-01

    Znq 2 -functionalized colloidal mesoporous silicas (Znq 2 -CMS)/polymer transparent nanocomposites were prepared by in situ bulk polymerization. CMS nanoparticles or nanorods with hydroxyl-, mercapto- and sulfonic-functionalized interiors were obtained by different synthetic routes in the nanosize dimensions between 50 and 500 nm. The luminescent Znq 2 complex was successfully introduced in the pores of different mesoporous silicas by chemical adsorption as the driving force. The different internal circumstances of mesoporous silicas had an obvious effect on the luminescence and lifetime of Znq 2 complex. The transparent fluorescent nanocomposites were fabricated from different Znq 2 -CMS and suitable monomers. The Znq 2 -CMS were uniformly dispersed in the polymer matrix without evident aggregation. The photoluminescence properties of Znq 2 -CMS in the transparent matrix exhibited a dependence on the inner surrounding of CMS due to the interaction between Znq 2 -CMS and polymers. The maximum emission peak of the nanocomposites had a red-shift of 28 nm as compared to pure Znq 2 -CMS. - Graphical abstract: Znq 2 -functionalized colloidal mesoporous silicas (Znq 2 -CMS)/polymer transparent fluorescent nanocomposites were prepared by in situ bulk polymerization. The figure shows the synthetic scheme for the Znq 2 -CMS and their transparent bulk nanocomposites.

  14. Polymer encapsulated upconversion nanoparticle/iron oxide nanocomposites for multimodal imaging and magnetic targeted drug delivery.

    Science.gov (United States)

    Xu, Huan; Cheng, Liang; Wang, Chao; Ma, Xinxing; Li, Yonggang; Liu, Zhuang

    2011-12-01

    Multimodal imaging and imaging-guided therapies have become a new trend in the current development of cancer theranostics. In this work, we encapsulate hydrophobic upconversion nanoparticles (UCNPs) together with iron oxide nanoparticles (IONPs) by using an amphiphilic block copolymer, poly (styrene-block-allyl alcohol) (PS(16)-b-PAA(10)), via a microemulsion method, obtaining an UC-IO@Polymer multi-functional nanocomposite system. Fluorescent dye and anti-cancer drug molecules can be further loaded inside the UC-IO@Polymer nanocomposite for additional functionalities. Utilizing the Squaraine (SQ) dye loaded nanocomposite (UC-IO@Polymer-SQ), triple-modal upconversion luminescence (UCL)/down-conversion fluorescence (FL)/magnetic resonance (MR) imaging is demonstrated in vitro and in vivo, and also applied for in vivo cancer cell tracking in mice. On the other hand, a chemotherapy drug, doxorubicin, is also loaded into the nanocomposite, forming an UC-IO@Polymer-DOX complex, which enables novel imaging-guided and magnetic targeted drug delivery. Our work provides a method to fabricate a nanocomposite system with highly integrated functionalities for multimodal biomedical imaging and cancer therapy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Performance of nanocomposites for preservation of artistic stones

    International Nuclear Information System (INIS)

    Giancristofaro, Cristina; Pilloni, Luciano; Rinaldi, Antonio; Persia, Franca; D'Amato, Rosaria; Caneve, Luisa

    2013-01-01

    In this work, the effectiveness of nanocomposite surface treatments as protective systems for artistic stones was evaluated. Pyrolitic silica and titania nanoparticles were dispersed in a commercial silicon-based polymer and applied on marble and travertine samples. Artificial aging processes, both in climatic chamber and in solar box, were carried out to simulate real degradation processes in terms of photo-thermal effects and physical-chemical damage. The performances of the nanocomposites used as consolidant were evaluated comparatively by means of diverse diagnostic techniques, namely: scanning electron microscopy (SEM), laser induced fluorescence (LIF), ultrasonic technique, colorimetry, total immersion water absorption and contact angle. The results show that some properties of conservation materials can be improved by the presences of nanoparticles because they induce substantial changes of surface morphology of the coating layer and counter the physical damage observed during artificial weathering

  16. Performance of nanocomposites for preservation of artistic stones

    Energy Technology Data Exchange (ETDEWEB)

    Giancristofaro, Cristina; Pilloni, Luciano; Rinaldi, Antonio; Persia, Franca [ENEA-UTTMAT, CR Casaccia, v. Anguillarese 301,00123 Rome (Italy); D' Amato, Rosaria; Caneve, Luisa [ENEA-UTAPRAD, CR Frascati, v. Enrico Fermi 45, 00044 Frascati (Rome) (Italy)

    2014-06-19

    In this work, the effectiveness of nanocomposite surface treatments as protective systems for artistic stones was evaluated. Pyrolitic silica and titania nanoparticles were dispersed in a commercial silicon-based polymer and applied on marble and travertine samples. Artificial aging processes, both in climatic chamber and in solar box, were carried out to simulate real degradation processes in terms of photo-thermal effects and physical-chemical damage. The performances of the nanocomposites used as consolidant were evaluated comparatively by means of diverse diagnostic techniques, namely: scanning electron microscopy (SEM), laser induced fluorescence (LIF), ultrasonic technique, colorimetry, total immersion water absorption and contact angle. The results show that some properties of conservation materials can be improved by the presences of nanoparticles because they induce substantial changes of surface morphology of the coating layer and counter the physical damage observed during artificial weathering.

  17. Performance of nanocomposites for preservation of artistic stones

    Science.gov (United States)

    Giancristofaro, Cristina; D'Amato, Rosaria; Caneve, Luisa; Pilloni, Luciano; Rinaldi, Antonio; Persia, Franca

    2014-06-01

    In this work, the effectiveness of nanocomposite surface treatments as protective systems for artistic stones was evaluated. Pyrolitic silica and titania nanoparticles were dispersed in a commercial silicon-based polymer and applied on marble and travertine samples. Artificial aging processes, both in climatic chamber and in solar box, were carried out to simulate real degradation processes in terms of photo-thermal effects and physical-chemical damage. The performances of the nanocomposites used as consolidant were evaluated comparatively by means of diverse diagnostic techniques, namely: scanning electron microscopy (SEM), laser induced fluorescence (LIF), ultrasonic technique, colorimetry, total immersion water absorption and contact angle. The results show that some properties of conservation materials can be improved by the presences of nanoparticles because they induce substantial changes of surface morphology of the coating layer and counter the physical damage observed during artificial weathering.

  18. Poly methacrylic acid modified CDHA nanocomposites as potential pH responsive drug delivery vehicles.

    Science.gov (United States)

    Victor, Sunita Prem; Sharma, Chandra P

    2013-08-01

    The objective of this study was to prepare pH sensitive polymethacrylic acid-calcium deficient hydroxyapatite (CDHA) nanocomposites. The CDHA nanoparticles were prepared by coprecipitation method. The modification of CDHA by methacrylic acid (MA) was achieved by AIBN initiated free radical polymerization with sodium bisulphite as catalyst followed by emulsion technique. These nanocomposites with a half life of 8h consisted of high aspect ratio, needle like particles and exhibited an increase in swelling behaviour with pH. The in vivo potential of the nanocomposites was evaluated in vitro by the results of cell aggregation, protein adsorption, MTT assay and haemolytic activity. The invitro loading and release studies using albumin as a model drug indicate that the nanocomposites gave better loading when compared to the CDHA nanoparticles and altered the drug release rates. The nanocomposites also exhibited good uptake on C6 glioma cells as studied by fluorescence microscopy. The results obtained suggest that these nanocomposites have great potential for oral controlled protein delivery and can be extended further for intracellular drug delivery applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Asymmetric organocatalytic Michael addition of Meldrum's acid to nitroalkenes: probing the mechanism of bifunctional thiourea organocatalysts

    OpenAIRE

    Kataja, Antti O.; Koskinen, Ari M.P.

    2010-01-01

    The asymmetric Michael addition of Meldrum’s acid to nitroalkenes was studied using a novel type of Cinchona alkaloid-based bifunctional thiourea organocatalyst. The functionality of the thiourea catalysts was also probed by preparing and testing thiourea-N-methylated analogues of the well-known bis-(3,5-trifluoromethyl)phenyl-substituted catalyst. Peer reviewed

  20. Synthesis, characterization and use of ATRP bifunctional initiator with trichloromethyl end-groups

    Czech Academy of Sciences Publication Activity Database

    Toman, Luděk; Janata, Miroslav; Spěváček, Jiří; Masař, Bohumil; Vlček, Petr; Látalová, Petra

    2002-01-01

    Roč. 43, č. 2 (2002), s. 18-19 ISSN 0032-3934 R&D Projects: GA ČR GA203/01/0513 Institutional research plan: CEZ:AV0Z4050913 Keywords : bifunctional initiator * ATRP polymerization * trichloromethyl end-groups Subject RIV: CD - Macromolecular Chemistry

  1. Bi-functional glycosyltransferases catalyze both extension and termination of pectic galactan oligosaccharides

    DEFF Research Database (Denmark)

    Laursen, Tomas; Stonebloom, Solomon H; Pidatala, Venkataramana R

    2018-01-01

    . Transfer of Arap to galactan prevents further addition of galactose residues, resulting in a lower degree of polymerization. We show that this dual activity occurs both in vitro and in vivo. The herein described bi-functionality of AtGALS1 may suggest that plants can produce the incredible structural...

  2. High surface area carbon for bifunctional air electrodes applied in zinc-air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Arai, H [on leave from NTT Laboratories (Japan); Mueller, S; Haas, O [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Bifunctional air electrodes with high surface area carbon substrates showed low reduction overpotential, thus are promising for enhancing the energy efficiency and power capability of zinc-air batteries. The improved performance is attributed to lower overpotential due to diffusion of the reaction intermediate, namely the peroxide ion. (author) 1 fig., 2 refs.

  3. Direct catalytic transformation of carbohydrates into 5-ethoxymethylfurfural with acid–base bifunctional hybrid nanospheres

    DEFF Research Database (Denmark)

    Li, Hu; Khokarale, Santosh Govind; Kotni, Ramakrishna

    2014-01-01

    carbohydrates. A high EMF yield of 76.6%, 58.5%, 42.4%, and 36.5% could be achieved, when fructose, inulin, sorbose, and sucrose were used as starting materials, respectively. Although, the acid–base bifunctional nanocatalysts were inert for synthesis of EMF from glucose based carbohydrates, ethyl...

  4. D-bifunctional protein deficiency associated with drug resistant infantile spasms

    NARCIS (Netherlands)

    Buoni, Sabrina; Zannolli, Raffaella; Waterham, Hans; Wanders, Ronald; Fois, Alberto

    2007-01-01

    Peroxisomal disorders appear with a frequency of about 1:5000 in newborns. Peroxisomal D-bifunctional protein (D-BP), encoded by the HSD17B4 gene (gene ID: 3294; locus tag: HGNC:5213, chromosome 5q2; official symbol: HSD17B4; name: hydroxysteroid (17-beta) dehydrogenase; gene type: protein coding)

  5. Hydrodeoxygenation and coupling of aqueous phenolics over bifunctional zeolite-supported metal catalysts.

    Science.gov (United States)

    Hong, Do-Young; Miller, Stephen J; Agrawal, Pradeep K; Jones, Christopher W

    2010-02-21

    Pt supported on HY zeolite is successfully used as a bifunctional catalyst for phenol hydrodeoxygenation in a fixed-bed configuration at elevated hydrogen pressures, leading to hydrogenation-hydrogenolysis ring-coupling reactions producing hydrocarbons, some with enhanced molecular weight.

  6. Efficient hydrodeoxygenation of biomass-derived ketones over bifunctional Pt-polyoxometalate catalyst.

    Science.gov (United States)

    Alotaibi, Mshari A; Kozhevnikova, Elena F; Kozhevnikov, Ivan V

    2012-07-21

    Acidic heteropoly salt Cs(2.5)H(0.5)PW(12)O(40) doped with Pt nanoparticles is a highly active and selective catalyst for one-step hydrogenation of methyl isobutyl and diisobutyl ketones to the corresponding alkanes in the gas phase at 100 °C with 97-99% yield via metal-acid bifunctional catalysis.

  7. Liquid phase in situ hydrodeoxygenation of biomass-derived phenolic compounds to hydrocarbons over bifunctional catalysts

    Science.gov (United States)

    Junfeng Feng; Chung-yun Hse; Zhongzhi Yang; Kui Wang; Jianchun Jiang; Junming Xu

    2017-01-01

    The objective of this study was to find an effective method for converting renewable biomass-derived phenolic compounds into hydrocarbons bio-fuel via in situ catalytic hydrodeoxygenation. The in situ hydrodeoxygenation of biomass-derived phenolic compounds was carried out in methanol-water solvent over bifunctional catalysts of Raney Ni and HZSM-5 or H-Beta. In the in...

  8. Bifunctional Interface of Au and Cu for Improved CO2 Electroreduction.

    Science.gov (United States)

    Back, Seoin; Kim, Jun-Hyuk; Kim, Yong-Tae; Jung, Yousung

    2016-09-07

    Gold is known currently as the most active single-element electrocatalyst for CO2 electroreduction reaction to CO. In this work, we combine Au with a second metal element, Cu, to reduce the amount of precious metal content by increasing the surface-to-mass ratio and to achieve comparable activity to Au-based catalysts. In particular, we demonstrate that the introduction of a Au-Cu bifunctional "interface" is more beneficial than a simple and conventional homogeneous alloying of Au and Cu in stabilizing the key intermediate species, *COOH. The main advantages of the proposed metal-metal bifunctional interfacial catalyst over the bimetallic alloys include that (1) utilization of active materials is improved, and (2) intrinsic properties of metals are less affected in bifunctional catalysts than in alloys, which can then facilitate a rational bifunctional design. These results demonstrate for the first time the importance of metal-metal interfaces and morphology, rather than the simple mixing of the two metals homogeneously, for enhanced catalytic synergies.

  9. Bifunctional catalysts for the direct production of liquid fuels from syngas

    NARCIS (Netherlands)

    Sartipi, S.

    2014-01-01

    Design and development of catalyst formulations that maximize the direct production of liquid fuels by combining Fischer-Tropsch synthesis (FTS), hydrocarbon cracking, and isomerization into one single catalyst particle (bifunctional FTS catalyst) have been investigated in this thesis. To achieve

  10. Nanosheet Supported Single-Metal Atom Bifunctional Catalyst for Overall Water Splitting.

    Science.gov (United States)

    Ling, Chongyi; Shi, Li; Ouyang, Yixin; Zeng, Xiao Cheng; Wang, Jinlan

    2017-08-09

    Nanosheet supported single-atom catalysts (SACs) can make full use of metal atoms and yet entail high selectivity and activity, and bifunctional catalysts can enable higher performance while lowering the cost than two separate unifunctional catalysts. Supported single-atom bifunctional catalysts are therefore of great economic interest and scientific importance. Here, on the basis of first-principles computations, we report a design of the first single-atom bifunctional eletrocatalyst, namely, isolated nickel atom supported on β 12 boron monolayer (Ni 1 /β 12 -BM), to achieve overall water splitting. This nanosheet supported SAC exhibits remarkable electrocatalytic performance with the computed overpotential for oxygen/hydrogen evolution reaction being just 0.40/0.06 V. The ab initio molecular dynamics simulation shows that the SAC can survive up to 800 K elevated temperature, while enacting a high energy barrier of 1.68 eV to prevent isolated Ni atoms from clustering. A viable experimental route for the synthesis of Ni 1 /β 12 -BM SAC is demonstrated from computer simulation. The desired nanosheet supported single-atom bifunctional catalysts not only show great potential for achieving overall water splitting but also offer cost-effective opportunities for advancing clean energy technology.

  11. Boosting Bifunctional Oxygen Electrocatalysis with 3D Graphene Aerogel-Supported Ni/MnO Particles.

    Science.gov (United States)

    Fu, Gengtao; Yan, Xiaoxiao; Chen, Yifan; Xu, Lin; Sun, Dongmei; Lee, Jong-Min; Tang, Yawen

    2018-02-01

    Electrocatalysts for oxygen-reduction and oxygen-evolution reactions (ORR and OER) are crucial for metal-air batteries, where more costly Pt- and Ir/Ru-based materials are the benchmark catalysts for ORR and OER, respectively. Herein, for the first time Ni is combined with MnO species, and a 3D porous graphene aerogel-supported Ni/MnO (Ni-MnO/rGO aerogel) bifunctional catalyst is prepared via a facile and scalable hydrogel route. The synthetic strategy depends on the formation of a graphene oxide (GO) crosslinked poly(vinyl alcohol) hydrogel that allows for the efficient capture of highly active Ni/MnO particles after pyrolysis. Remarkably, the resulting Ni-MnO/rGO aerogels exhibit superior bifunctional catalytic performance for both ORR and OER in an alkaline electrolyte, which can compete with the previously reported bifunctional electrocatalysts. The MnO mainly contributes to the high activity for the ORR, while metallic Ni is responsible for the excellent OER activity. Moreover, such bifunctional catalyst can endow the homemade Zn-air battery with better power density, specific capacity, and cycling stability than mixed Pt/C + RuO 2 catalysts, demonstrating its potential feasibility in practical application of rechargeable metal-air batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Structure and potential applications of amido lanthanide complexes chelated by bifunctional b-diketiminate ligand

    Czech Academy of Sciences Publication Activity Database

    Olejník, R.; Padělková, Z.; Fridrichová, A.; Horáček, Michal; Merna, J.; Růžička, A.

    2014-01-01

    Roč. 759, JUN 2014 (2014), s. 1-10 ISSN 0022-328X R&D Projects: GA ČR GAP106/10/0924 Institutional support: RVO:61388955 Keywords : Bifunctional b-diketiminates * lanthanides * hydroamination Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.173, year: 2014

  13. Direct catalytic transformation of carbohydrates into 5-ethoxymethylfurfural with acid–base bifunctional hybrid nanospheres

    International Nuclear Information System (INIS)

    Li, Hu; Govind, Khokarale Santosh; Kotni, Ramakrishna; Shunmugavel, Saravanamurugan; Riisager, Anders; Yang, Song

    2014-01-01

    Graphical abstract: Catalytic conversion of carbohydrates into HMF and EMF in ethanol/DMSO with acid–base bifunctional hybrid nanospheres prepared from self-assembly of corresponding basic amino acids and HPA. - Highlights: • Acid–base bifunctional nanospheres were efficient for production of EMF from sugars. • Synthesis of EMF in a high yield of 76.6% was realized from fructose. • Fructose based biopolymers could also be converted into EMF with good yields. • Ethyl glucopyranoside was produced in good yields from glucose in ethanol. - Abstract: A series of acid–base bifunctional hybrid nanospheres prepared from the self-assembly of basic amino acids and phosphotungstic acid (HPA) with different molar ratios were employed as efficient and recyclable catalysts for synthesis of liquid biofuel 5-ethoxymethylfurfural (EMF) from various carbohydrates. A high EMF yield of 76.6%, 58.5%, 42.4%, and 36.5% could be achieved, when fructose, inulin, sorbose, and sucrose were used as starting materials, respectively. Although, the acid–base bifunctional nanocatalysts were inert for synthesis of EMF from glucose based carbohydrates, ethyl glucopyranoside in good yields could be obtained from glucose in ethanol. Moreover, the nanocatalyst functionalized with acid and basic sites was able to be reused several times with no significant loss in catalytic activity

  14. Comparison of bifunctional chelates for {sup 64}Cu antibody imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Cara L.; Crisp, Sarah; Bensimon, Corinne [MDS Nordion, Vancouver, BC (Canada); Yapp, Donald T.T.; Ng, Sylvia S.W. [British Columbia Cancer Agency Research Centre, Vancouver, BC (Canada); University of British Columba, The Faculty of Pharmaceutical Sciences, Vancouver, BC (Canada); Sutherland, Brent W. [British Columbia Cancer Agency Research Centre, Vancouver, BC (Canada); Gleave, Martin [Prostate Centre at Vancouver General Hospital, Vancouver, BC (Canada); Jurek, Paul; Kiefer, Garry E. [Macrocyclics Inc., Dallas, TX (United States)

    2010-11-15

    Improved bifunctional chelates (BFCs) are needed to facilitate efficient {sup 64}Cu radiolabeling of monoclonal antibodies (mAbs) under mild conditions and to yield stable, target-specific agents. The utility of two novel BFCs, 1-Oxa-4,7,10-triazacyclododecane-5-S-(4-isothiocyanatobenzyl)-4,7,10-triacetic acid (p-SCN-Bn-Oxo-DO3A) and 3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-4-S-(4-isothiocyanatobenzyl)-3,6,9-triacetic acid (p-SCN-Bn-PCTA), for mAb imaging with {sup 64}Cu were compared to the commonly used S-2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane-tetraacetic acid (p-SCN-Bn-DOTA). The BFCs were conjugated to trastuzumab, which targets the HER2/neu receptor. {sup 64}Cu radiolabeling of the conjugates was optimized. Receptor binding was analyzed using flow cytometry and radioassays. Finally, PET imaging and biodistribution studies were done in mice bearing either HER2/neu-positive or HER2/neu-negative tumors. {sup 64}Cu-Oxo-DO3A- and PCTA-trastuzumab were prepared at room temperature in >95% radiochemical yield (RCY) in <30 min, compared to only 88% RCY after 2 h for the preparation of {sup 64}Cu-DOTA-trastuzumab under the same conditions. Cell studies confirmed that the immunoreactivity of the mAb was retained for each of the bioconjugates. In vivo studies showed that {sup 64}Cu-Oxo-DO3A- and PCTA-trastuzumab had higher uptake than the {sup 64}Cu-DOTA-trastuzumab at 24 h in HER2/neu-positive tumors, resulting in higher tumor to background ratios and better tumor images. By 40 h all three of the {sup 64}Cu-BFC-trastuzumab conjugates allowed for clear visualization of the HER2/neu-positive tumors but not the negative control tumor. The antibody conjugates of PCTA and Oxo-DO3A were shown to have superior {sup 64}Cu radiolabeling efficiency and stability compared to the analogous DOTA conjugate. In addition, {sup 64}Cu-PCTA and Oxo-DO3A antibody conjugates may facilitate earlier imaging with greater target to background ratios than

  15. An introduction to polymer nanocomposites

    International Nuclear Information System (INIS)

    Armstrong, Gordon

    2015-01-01

    This review presents an overview of the formulation, characterization and range of applications for polymer nanocomposites. After explaining how material properties at the nanometre scale can vary compared to those observed at longer length scales, typical methods used to formulate and characterize nanocomposites at laboratory and industrial scale will be described. The range of mechanical, electrical and thermal properties obtainable from nanocomposite materials, with examples of current commercial applications, will be outlined. Formulation and characterization of nanoparticle, nanotube and graphene composites will be discussed by reference to nanoclay-based composites, as the latter are presently of most technological relevance. Three brief case studies are presented to demonstrate how structure/property relationships may be controlled in a variety of polymer nanocomposite systems to achieve required performance in a given application. The review will conclude by discussing potential obstacles to commercial uptake of polymer nanocomposites, such as inconsistent protocols to characterize nanocomposites, cost/performance balances, raw material availability, and emerging legislation, and will conclude by discussing the outlook for future development and commercial uptake of polymer nanocomposites. (review)

  16. Carboxymethyl chitosan based nanocomposites containing chemically bonded quantum dots and magnetic nanoparticles

    Science.gov (United States)

    Ding, Yongling; Yin, Hong; Chen, Rui; Bai, Ru; Chen, Chunying; Hao, Xiaojuan; Shen, Shirley; Sun, Kangning; Liu, Futian

    2018-03-01

    A biocompatible nanocomposite consisting of fluorescent quantum dots (QDs) and magnetic nanoparticles (MNPs) has been constructed via carboxymethyl chitosan (CMCS), resulting in magnetic-fluorescent nanoparticles (MFNPs). In these MFNPs, QDs and MNPs are successfully conjugated via covalent bonds onto the surface of CMCS. The composite retains favorable magnetic and fluorescent properties and shows a good colloidal stability in physiological environments. Folate (FA) as a specific targeting ligand was further incorporated into the nanocomposites to form a delivery vehicle with a targeting function. The therapeutic activity was achieved by loading chemotherapeutic drug doxorubicin (DOX) through electrostatic and hydrophobic interactions. The cumulative DOX release profile shows pH-sensitive. Both flow cytometry analysis and confocal laser scanning microscopic observation suggested that these nanocomposites were uptaken by cancer cells via FA receptor-mediated endocytosis pathway. In summary, the CMCS based nanocomposites developed in this work have a great potential for effective cancer-targeting and drug delivery, as well as in situ cellular imaging.

  17. Fe_3O_4/carbon nanocomposite: Investigation of capacitive & magnetic properties for supercapacitor applications

    International Nuclear Information System (INIS)

    Sinan, Neriman; Unur, Ece

    2016-01-01

    Fe_3O_4 nanoparticles with ∼10 nm diameters were synthesized by an extremely low-cost, scalable and relatively biocompatible chemical co-precipitation method. Magnetic measurements revealed that Fe_3O_4 nanoparticles have bifunctional superparamagnetic and ferromagnetic character with saturation magnetization (M_s) values of 64 and 71 emu g"−"1 at 298 K and 10 K, respectively. Pseudocapacitive Fe_3O_4 nanoparticles were then integrated into hazelnut shells - an abundant agricultural biomass - by an energy efficient hydrothermal carbonization method. Presence of magnesium oxide (MgO) ceramic template or its precursor in the hydrothermal reactor allowed simultaneous introduction of pores into the composite structure. Hierarchically micro-mesoporous Fe_3O_4/C nanocomposite possesses a high specific surface area of 344 m"2 g"−"1. Electrochemical properties of Fe_3O_4/C nanocomposite were investigated by cyclic voltammetry and galvanostatic charge-discharge measurements in a conventional three-electrode cell. The Fe_3O_4/C nanocomposite is able to operate in a large negative potential window in 1 M Na_2SO_4 aqueous electrolyte (−1.2–0 V vs. Ag/AgCl). Synergistic effect of the Fe_3O_4 and carbon leads to enhanced specific capacitance, rate capability and cyclability making Fe_3O_4/C nanocomposite a very promising negative electrode material for asymmetric supercapacitors. - Highlights: • Fe_3O_4 (magnetite) particles with ∼10 nm dia. were prepared by a facile chemical co-precipitation. • Fe_3O_4 nanospheres are superparamagnetic at 298K with high saturation magnetization of 64 emu g"−"1. • Porous Fe_3O_4/C nanocomposite was also prepared by a green HTC method combined with MgO templating. • Electrochemical properties of Fe_3O_4/C were studied in 1 M Na_2SO_4 (between −1.2 and 0 V vs. Ag/AgCl). • Nanocomposite electrode showed high energy density of 27.2 Wh kg"−"1 at 1 A g"−"1.

  18. Quantum dots and nanocomposites.

    Science.gov (United States)

    Mansur, Herman Sander

    2010-01-01

    Quantum dots (QDs), also known as semiconducting nanoparticles, are promising zero-dimensional advanced materials because of their nanoscale size and because they can be engineered to suit particular applications such as nonlinear optical devices (NLO), electro-optical devices, and computing applications. QDs can be joined to polymers in order to produce nanocomposites which can be considered a scientific revolution of the 21st century. One of the fastest moving and most exciting interfaces of nanotechnology is the use of QDs in medicine, cell and molecular biology. Recent advances in nanomaterials have produced a new class of markers and probes by conjugating semiconductor QDs with biomolecules that have affinities for binding with selected biological structures. The nanoscale of QDs ensures that they do not scatter light at visible or longer wavelengths, which is important in order to minimize optical losses in practical applications. Moreover, at this scale, quantum confinement and surface effects become very important and therefore manipulation of the dot diameter or modification of its surface allows the properties of the dot to be controlled. Quantum confinement affects the absorption and emission of photons from the dot. Thus, the absorption edge of a material can be tuned by control of the particle size. This paper reviews developments in the myriad of possibilities for the use of semiconductor QDs associated with molecules producing novel hybrid nanocomposite systems for nanomedicine and bioengineering applications.

  19. Preparation of MIL-53(Fe)-Reduced Graphene Oxide Nanocomposites by a Simple Self-Assembly Strategy for Increasing Interfacial Contact: Efficient Visible-Light Photocatalysts.

    Science.gov (United States)

    Liang, Ruowen; Shen, Lijuan; Jing, Fenfen; Qin, Na; Wu, Ling

    2015-05-13

    In this work, MIL-53(Fe)-reduced graphene oxide (M53-RGO) nanocomposites have been successfully fabricated by a facile and efficient electrostatic self-assembly strategy for improving the interfacial contact between RGO and the MIL-53(Fe). Compared with D-M53-RGO (direct synthesis of MIL-53(Fe)-reduced graphene oxide nanocomposites via one-pot solvothermal approach), M53-RGO nanocomposites exhibit improved photocatalytic activity compared with the D-M53-RGO under identical experimental conditions. After 80 min of visible light illumination (λ ≥ 420 nm), the reduction ratio of Cr(VI) is rapidly increased to 100%, which is also higher than that of reference sample (N-doped TiO2). More significantly, the M53-RGO nanocomposites are proven to perform as bifunctional photocatalysts with considerable activity in the mixed systems (Cr(VI)/dyes) under visible light, which made it a potential candidate for industrial wastewater treatment. Combining with photoelectrochemical analyses, it could be revealed that the introduction of RGO would minimize the recombination of photogenerated electron-hole pairs. Additionally, the effective interfacial contact between MIL-53(Fe) and RGO surface would further accelerate the transfer of photogenerated electrons, leading to the enhancement of photocatalytic activity of M53-RGO toward photocatalytic reactions. Finally, a possible photocatalytic reaction mechanism is also investigated in detail.

  20. Fluorescence microscopy.

    Science.gov (United States)

    Sanderson, Michael J; Smith, Ian; Parker, Ian; Bootman, Martin D

    2014-10-01

    Fluorescence microscopy is a major tool with which to monitor cell physiology. Although the concepts of fluorescence and its optical separation using filters remain similar, microscope design varies with the aim of increasing image contrast and spatial resolution. The basics of wide-field microscopy are outlined to emphasize the selection, advantages, and correct use of laser scanning confocal microscopy, two-photon microscopy, scanning disk confocal microscopy, total internal reflection, and super-resolution microscopy. In addition, the principles of how these microscopes form images are reviewed to appreciate their capabilities, limitations, and constraints for operation. © 2014 Cold Spring Harbor Laboratory Press.

  1. Magnetoelectric Nanocomposites for Flexible Electronics

    KAUST Repository

    Al-Nassar, Mohammed Y.

    2015-01-01

    inside anodic aluminum oxide membranes is discussed. Characterization of electrodeposited iron, nickel and highly magnetostrictive iron-gallium alloy NWs was done using XRD, electron and magnetic force microscopy. Second, different nanocomposite films

  2. Magnetoelectric Nanocomposites for Flexible Electronics

    KAUST Repository

    Al-Nassar, Mohammed Y.

    2015-09-01

    Flexibility, low cost, versatility, miniaturization and multi-functionality are key aspects driving research and innovation in many branches of the electronics industry. With many anticipated emerging applications, like wearable, transparent and biocompatible devices, interest among the research community in pursuit for novel multifunctional miniaturized materials have been amplified. In this context, multiferroic polymer-based nanocomposites, possessing both ferroelectricity and ferromagnetism, are highly appealing. Most importantly, these nanocomposites possess tunable ferroelectric and ferromagnetic properties based on the parameters of their constituent materials as well as the magnetoelectric effect, which is the coupling between electric and magnetic properties. This tunability and interaction is a fascinating fundamental research field promising tremendous potential applications in sensors, actuators, data storage and energy harvesting. This dissertation work is devoted to the investigation of a new class of multiferroic polymer-based flexible nanocomposites, which exhibits excellent ferromagnetism and ferroelectricity simultaneously at room temperature, with the goal of understanding and optimizing the origin of their magnetoelectric coupling. The nanocomposites consist of high aspect ratio ferromagnetic nanowires (NWs) embedded inside a ferroelectric co-polymer, poly(vinylindene fluoride-trifluoroethylene), P(VDF-TrFE) matrix. First, electrochemical deposition of ferromagnetic NWs inside anodic aluminum oxide membranes is discussed. Characterization of electrodeposited iron, nickel and highly magnetostrictive iron-gallium alloy NWs was done using XRD, electron and magnetic force microscopy. Second, different nanocomposite films have been fabricated by means of spin coating and drop casting techniques. The effect of incorporation of NWs inside the ferroelectric polymer on its electroactive phase is discussed. The remanent and saturation polarization as well

  3. Designing of an artificial light energy converter in the form of short-chain dyad when combined with core-shell gold/silver nanocomposites.

    Science.gov (United States)

    Dutta Pal, Gopa; Paul, Somnath; Bardhan, Munmun; De, Asish; Ganguly, Tapan

    2017-06-05

    UV-vis absorption, steady state and time resolved fluorescence and absorption spectroscopic investigations demonstrate that the short chain dyad MNTMA when combined with gold-silver core-shell (Au@Ag) nanocomposite , forms elongated conformers in the excited state whereas for the dyad - Ag (spherical) system the majority of dyads remains in a folded conformation. In the dyad-core-shell nanocomposite system, energy wasting charge recombination rate slows down primarily due to elongated conformation and thus it may be anticipated that this hybrid nanocomposite system may serve as a better light energy conversion device. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Magnetic Nanocomposite Cilia Sensors

    KAUST Repository

    Alfadhel, Ahmed

    2016-07-19

    Recent progress in the development of artificial skin concepts is a result of the increased demand for providing environment perception such as touch and flow sensing to robots, prosthetics and surgical tools. Tactile sensors are the essential components of artificial skins and attracted considerable attention that led to the development of different technologies for mimicking the complex sense of touch in humans. This dissertation work is devoted to the development of a bioinspired tactile sensing technology that imitates the extremely sensitive hair-like cilia receptors found in nature. The artificial cilia are fabricated from permanent magnetic, biocompatible and highly elastic nanocomposite material, and integrated on a giant magneto-impedance magnetic sensor to measure the stray field. A force that bends the cilia changes the stray field and is therefore detected with the magnetic sensor, providing high performance in terms of sensitivity, power consumption and versatility. The nanocomposite is made of Fe nanowires (NWs) incorporated into polydimethylsiloxane (PDMS). Fe NWs have a high remanent magnetization, due the shape anisotropy; thus, they are acting as permanent nano-magnets. This allows remote device operation and avoids the need for a magnetic field to magnetize the NWs, benefiting miniaturization and the possible range of applications. The magnetic properties of the nanocomposite can be easily tuned by modifying the NWs concentration or by aligning the NWs to define a magnetic anisotropy. Tactile sensors are realized on flexible and rigid substrates that can detect flow, vertical and shear forces statically and dynamically, with a high resolution and wide operating range. The advantage to operate the sensors in liquids and air has been utilized to measure flows in different fluids in a microfluidic channel. Various dynamic studies were conducted with the tactile sensor demonstrating the detection of moving objects or the texture of objects. Overall

  5. Magnetoelectric polymer nanocomposite for flexible electronics

    International Nuclear Information System (INIS)

    Alnassar, M.; Alfadhel, A.; Ivanov, Yu. P.; Kosel, J.

    2015-01-01

    This paper reports the fabrication and characterization of a new type of magnetoelectric polymer nanocomposite that exhibits excellent ferromagnetism and ferroelectricity simultaneously at room temperature. The multiferroic nanocomposite consists of high aspect ratio ferromagnetic iron nanowires embedded inside a ferroelectric co-polymer poly(vinylindene fluoride-trifluoroethylene), P(VDF-TrFE). The nanocomposite has been fabricated via a simple low temperature spin coating technique. Structural, ferromagnetic, ferroelectric, and magnetoelectric properties of the developed nanocomposite have been characterized. The nanocomposite films showed isotropic magnetic properties due to the random orientation of the iron nanowires inside the film. In addition, the embedded nanowires did not hinder the ferroelectric phase development of the nanocomposite. The developed nanocomposite showed a high magnetoelectric coupling response of 156 mV/cmOe measured at 3.1 kOe DC bias field. This value is among the highest reported magnetoelectric coupling in two phase particulate polymer nanocomposites

  6. Magnetoelectric polymer nanocomposite for flexible electronics

    KAUST Repository

    Al-Nassar, Mohammed Y.

    2015-03-06

    This paper reports the fabrication and characterization of a new type of magnetoelectric polymer nanocomposite that exhibits excellent ferromagnetism and ferroelectricity simultaneously at room temperature. The multiferroic nanocomposite consists of high aspect ratio ferromagnetic iron nanowires embedded inside a ferroelectric co-polymer poly(vinylindene fluoride-trifluoroethylene), P(VDF-TrFE). The nanocomposite has been fabricated via a simple low temperature spin coating technique. Structural, ferromagnetic, ferroelectric, and magnetoelectric properties of the developed nanocomposite have been characterized. The nanocomposite films showed isotropic magnetic properties due to the random orientation of the iron nanowires inside the film. In addition, the embedded nanowires did not hinder the ferroelectric phase development of the nanocomposite. The developed nanocomposite showed a high magnetoelectric coupling response of 156 mV/cmOe measured at 3.1 kOe DC bias field. This value is among the highest reported magnetoelectric coupling in two phase particulate polymer nanocomposites.

  7. Magnetoelectric polymer nanocomposite for flexible electronics

    KAUST Repository

    Al-Nassar, Mohammed Y.; Alfadhel, Ahmed; Ivanov, Yurii P.; Kosel, Jü rgen

    2015-01-01

    This paper reports the fabrication and characterization of a new type of magnetoelectric polymer nanocomposite that exhibits excellent ferromagnetism and ferroelectricity simultaneously at room temperature. The multiferroic nanocomposite consists of high aspect ratio ferromagnetic iron nanowires embedded inside a ferroelectric co-polymer poly(vinylindene fluoride-trifluoroethylene), P(VDF-TrFE). The nanocomposite has been fabricated via a simple low temperature spin coating technique. Structural, ferromagnetic, ferroelectric, and magnetoelectric properties of the developed nanocomposite have been characterized. The nanocomposite films showed isotropic magnetic properties due to the random orientation of the iron nanowires inside the film. In addition, the embedded nanowires did not hinder the ferroelectric phase development of the nanocomposite. The developed nanocomposite showed a high magnetoelectric coupling response of 156 mV/cmOe measured at 3.1 kOe DC bias field. This value is among the highest reported magnetoelectric coupling in two phase particulate polymer nanocomposites.

  8. CELLULOSIC NANOCOMPOSITES: A REVIEW

    Directory of Open Access Journals (Sweden)

    Martin A. Hubbe

    2008-08-01

    Full Text Available Because of their wide abundance, their renewable and environmentally benign nature, and their outstanding mechanical properties, a great deal of attention has been paid recently to cellulosic nanofibrillar structures as components in nanocomposites. A first major challenge has been to find efficient ways to liberate cellulosic fibrils from different source materials, including wood, agricultural residues, or bacterial cellulose. A second major challenge has involved the lack of compatibility of cellulosic surfaces with a variety of plastic materials. The water-swellable nature of cellulose, especially in its non-crystalline regions, also can be a concern in various composite materials. This review of recent work shows that considerable progress has been achieved in addressing these issues and that there is potential to use cellulosic nano-components in a wide range of high-tech applications.

  9. Graphene-aluminum nanocomposites

    International Nuclear Information System (INIS)

    Bartolucci, Stephen F.; Paras, Joseph; Rafiee, Mohammad A.; Rafiee, Javad; Lee, Sabrina; Kapoor, Deepak; Koratkar, Nikhil

    2011-01-01

    Highlights: → We investigated the mechanical properties of aluminum and aluminum nanocomposites. → Graphene composite had lower strength and hardness compared to nanotube reinforcement. → Processing causes aluminum carbide formation at graphene defects. → The carbides in between grains is a source of weakness and lowers tensile strength. - Abstract: Composites of graphene platelets and powdered aluminum were made using ball milling, hot isostatic pressing and extrusion. The mechanical properties and microstructure were studied using hardness and tensile tests, as well as electron microscopy, X-ray diffraction and differential scanning calorimetry. Compared to the pure aluminum and multi-walled carbon nanotube composites, the graphene-aluminum composite showed decreased strength and hardness. This is explained in the context of enhanced aluminum carbide formation with the graphene filler.

  10. Tethering metal ions to photocatalyst particulate surfaces by bifunctional molecular linkers for efficient hydrogen evolution

    KAUST Repository

    Yu, Weili

    2014-08-19

    A simple and versatile method for the preparation of photocatalyst particulates modified with effective cocatalysts is presented; the method involves the sequential soaking of photocatalyst particulates in solutions containing bifunctional organic linkers and metal ions. The modification of the particulate surfaces is a universal and reproducible method because the molecular linkers utilize strong covalent bonds, which in turn result in modified monolayer with a small but controlled quantity of metals. The photocatalysis results indicated that the CdS with likely photochemically reduced Pd and Ni, which were initially immobilized via ethanedithiol (EDT) as a linker, were highly efficient for photocatalytic hydrogen evolution from Na2S-Na2SO3-containing aqueous solutions. The method developed in this study opens a new synthesis route for the preparation of effective photocatalysts with various combinations of bifunctional linkers, metals, and photocatalyst particulate materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Sorption of Pu(IV) from nitric acid by bifunctional anion-exchange resins

    International Nuclear Information System (INIS)

    Bartsch, R.A.; Zhang, Z.Y.; Elshani, S.; Zhao, W.; Jarvinen, G.D.; Barr, M.E.; Marsh, S.F.; Chamberlin, R.M.

    1999-01-01

    Anion exchange is attractive for separating plutonium because the Pu(IV) nitrate complex is very strongly sorbed and few other metal ions form competing anionic nitrate complexes. The major disadvantage of this process has been the unusually slow rate at which the Pu(IV) nitrate complex is sorbed by the resin. The paper summarizes the concept of bifunctional anion-exchange resins, proposed mechanism for Pu(IV) sorption, synthesis of the alkylating agent, calculation of K d values from Pu(IV) sorption results, and conclusions from the study of Pu(IV) sorption from 7M nitric acid by macroporous anion-exchange resins including level of crosslinking, level of alkylation, length of spacer, and bifunctional vs. monofunctional anion-exchange resins

  12. Tethering metal ions to photocatalyst particulate surfaces by bifunctional molecular linkers for efficient hydrogen evolution

    KAUST Repository

    Yu, Weili; Isimjan, Tayirjan T.; Del Gobbo, Silvano; Anjum, Dalaver Hussain; Abdel-Azeim, Safwat; Cavallo, Luigi; Garcia Esparza, Angel T.; Domen, Kazunari; Xu, Wei; Takanabe, Kazuhiro

    2014-01-01

    A simple and versatile method for the preparation of photocatalyst particulates modified with effective cocatalysts is presented; the method involves the sequential soaking of photocatalyst particulates in solutions containing bifunctional organic linkers and metal ions. The modification of the particulate surfaces is a universal and reproducible method because the molecular linkers utilize strong covalent bonds, which in turn result in modified monolayer with a small but controlled quantity of metals. The photocatalysis results indicated that the CdS with likely photochemically reduced Pd and Ni, which were initially immobilized via ethanedithiol (EDT) as a linker, were highly efficient for photocatalytic hydrogen evolution from Na2S-Na2SO3-containing aqueous solutions. The method developed in this study opens a new synthesis route for the preparation of effective photocatalysts with various combinations of bifunctional linkers, metals, and photocatalyst particulate materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Loop Replacement Enhances the Ancestral Antibacterial Function of a Bifunctional Scorpion Toxin

    Directory of Open Access Journals (Sweden)

    Shangfei Zhang

    2018-06-01

    Full Text Available On the basis of the evolutionary relationship between scorpion toxins targeting K+ channels (KTxs and antibacterial defensins (Zhu S., Peigneur S., Gao B., Umetsu Y., Ohki S., Tytgat J. Experimental conversion of a defensin into a neurotoxin: Implications for origin of toxic function. Mol. Biol. Evol. 2014, 31, 546–559, we performed protein engineering experiments to modify a bifunctional KTx (i.e., weak inhibitory activities on both K+ channels and bacteria via substituting its carboxyl loop with the structurally equivalent loop of contemporary defensins. As expected, the engineered peptide (named MeuTXKα3-KFGGI remarkably improved the antibacterial activity, particularly on some Gram-positive bacteria, including several antibiotic-resistant opportunistic pathogens. Compared with the unmodified toxin, its antibacterial spectrum also enlarged. Our work provides a new method to enhance the antibacterial activity of bifunctional scorpion venom peptides, which might be useful in engineering other proteins with an ancestral activity.

  14. Chiral 2-Aminobenzimidazole as Bifunctional Catalyst in the Asymmetric Electrophilic Amination of Unprotected 3-Substituted Oxindoles

    Directory of Open Access Journals (Sweden)

    Llorenç Benavent

    2018-06-01

    Full Text Available The use of readily available chiral trans-cyclohexanediamine-benzimidazole derivatives as bifunctional organocatalysts in the asymmetric electrophilic amination of unprotected 3-substituted oxindoles is presented. Different organocatalysts were evaluated; the most successful one contained a dimethylamino moiety (5. With this catalyst under optimized conditions, different oxindoles containing a wide variety of substituents at the 3-position were aminated in good yields and with good to excellent enantioselectivities using di-tert-butylazodicarboxylate as the aminating agent. The procedure proved to be also efficient for the amination of 3-substituted benzofuranones, although with moderate results. A bifunctional role of the catalyst, acting as Brønsted base and hydrogen bond donor, is proposed according to the experimental results observed.

  15. 67Ga(NODASA): a new potential bifunctional radioligand for coupling to peptides

    International Nuclear Information System (INIS)

    Andre, J.P.; Maecke, H.R.; Zehnder, M.; Macko, L.; Kaspar, A.

    1998-01-01

    A new bifunctional chelator NODASA (1,4,7-triazacyclononane-1-succinic acid-4,7-diacetic acid) has been synthesised and its Ga(III) complex was crystallographically characterized by X-ray diffraction. The complex showed to be stable in serum and in acidic conditions and its stability constant was determined using a competition method with an auxiliary ligand. The conjugation of Ga(NODASA) to a model aminoacidamide proved the feasibility of a prelabelling approach. (author)

  16. Synthesis of acid-base bifunctional mesoporous materials by oxidation and thermolysis

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiaofang [College of Chemistry, Jilin University, Jiefang Road 2519, Changchun 130023 (China); Zou, Yongcun [State Key Laboratory of Inoranic Synthesis and Preparative Chemistryg, College of Chemistry, Jilin University, Changchun 130012 (China); Wu, Shujie; Liu, Heng [College of Chemistry, Jilin University, Jiefang Road 2519, Changchun 130023 (China); Guan, Jingqi, E-mail: guanjq@jlu.edu.cn [College of Chemistry, Jilin University, Jiefang Road 2519, Changchun 130023 (China); Kan, Qiubin, E-mail: qkan@jlu.edu.cn [College of Chemistry, Jilin University, Jiefang Road 2519, Changchun 130023 (China)

    2011-06-15

    Graphical abstract: A novel and efficient method has been developed for the synthesis of acid-base bifunctional catalyst. The obtained sample of SO{sub 3}H-MCM-41-NH{sub 2} containing amine and sulfonic acids exhibits excellent catalytic activity in aldol condensation reaction. Research highlights: {yields} Synthesize acid-base bifunctional mesoporous materials SO{sub 3}H-MCM-41-NH{sub 2}. {yields} Oxidation and then thermolysis to generate acidic site and basic site. {yields} Exhibit good catalytic performance in aldol condensation reaction between acetone and various aldehydes. -- Abstract: A novel and efficient method has been developed for the synthesis of acid-base bifunctional catalyst SO{sub 3}H-MCM-41-NH{sub 2}. This method was achieved by co-condensation of tetraethylorthosilicate (TEOS), 3-mercaptopropyltrimethoxysilane (MPTMS) and (3-triethoxysilylpropyl) carbamicacid-1-methylcyclohexylester (3TAME) in the presence of cetyltrimethylammonium bromide (CTAB), followed by oxidation and then thermolysis to generate acidic site and basic site. X-ray diffraction (XRD) and transmission electron micrographs (TEM) show that the resultant materials keep mesoporous structure. Thermogravimetric analysis (TGA), X-ray photoelectron spectra (XPS), back titration, solid-state {sup 13}C CP/MAS NMR and solid-state {sup 29}Si MAS NMR confirm that the organosiloxanes were condensed as a part of the silica framework. The bifunctional sample (SO{sub 3}H-MCM-41-NH{sub 2}) containing amine and sulfonic acids exhibits excellent acid-basic properties, which make it possess high activity in aldol condensation reaction between acetone and various aldehydes.

  17. Radiation Induced Crosslinking of Polyethylene in the Presence of Bifunctional Vinyl Monomers

    DEFF Research Database (Denmark)

    Joshi, M. S.; Singer, Klaus Albert Julius; Silverman, J.

    1977-01-01

    Several reports have been published showing that the radiation induced grafting of bifunctional vinyl monomers to low density polyethylene results in a product with an unusually high density of crosslinks. The same grafting reactions are shown to reduce the incipient gel dose by more than a factor...... of fifty. This paper is concerned with the apparent crosslinking produced by the radiation grafting of two monomers to polyethylene: acrylic acid and acrylonitrile....

  18. Synthesis, characterization and biocompatibility evaluation of hydroxyapatite - gelatin polyLactic acid ternary nanocomposite

    Directory of Open Access Journals (Sweden)

    Z. Nabipour

    2016-04-01

    Full Text Available Objective(s: The current study reports the production and biocompatibility evaluation of a ternary nanocomposite consisting of HA, PLA, and gelatin for biomedical application.Materials and Methods: Hydroxyapatite nanopowder (HA: Ca10(PO46(OH2 was produced by burning the bovine cortical bone within the temperature range of 350-450 oC followed by heating in an oven at 800. Synthesis of the ternary nanocomposite was carried out in two steps: synthesis of gelatin-hydroxyapatite binary nanocomposite and addition of poly lactic acid with different percentages to the resulting composition. The crystal structure was determined by X-ray diffraction (XRD, while major elements and impurities of hydroxyapatite were identified by elemental analysis of X-ray fluorescence (XRF. Functional groups were determined by Fourier transform infrared spectroscopy (FTIR. Morphology and size of the nanocomposites were evaluated using field emission scanning electron microscope (FE-SEM.Biocompatibility of nanocomposites was investigated by MTT assay. Results: XRD patterns verified the ideal crystal structure of the hydroxyapatite, which indicated an appropriate synthesis process and absence of disturbing phases. Results of FTIR analysis determined the polymers’ functional groups, specified formation of the polymers on the hydroxyapatite surface, and verified synthesis of nHA/PLA/Gel composite. FESEM images also indicated the homogeneous structure of the composite in the range of 50 nanometers. MTT assay results confirmed the biocompatibility of nanocomposite samples.Conclusion: This study suggested that the ternary nanocomposite of nHA/PLA/Gel can be a good candidate for biomedical application such as drug delivery systems, but for evaluation of its potential in hard tissue replacement, mechanical tests should be performed.

  19. Collagen/chitosan based two-compartment and bi-functional dermal scaffolds for skin regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng [Department of Plastic Surgery and Burns, Shenzhen Second People' s Hospital, Shenzhen 518035 (China); Wang, Mingbo [Key Laboratory of Biomedical Materials and Implants, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); She, Zhending [Key Laboratory of Biomedical Materials and Implants, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Shenzhen Lando Biomaterials Co., Ltd., Shenzhen 518057 (China); Fan, Kunwu; Xu, Cheng [Department of Plastic Surgery and Burns, Shenzhen Second People' s Hospital, Shenzhen 518035 (China); Chu, Bin; Chen, Changsheng [Key Laboratory of Biomedical Materials and Implants, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Shi, Shengjun, E-mail: shengjunshi@yahoo.com [The Burns Department of Zhujiang Hospital, Southern Medical University, Guangzhou 510280 (China); Tan, Rongwei, E-mail: tanrw@landobiom.com [Key Laboratory of Biomedical Materials and Implants, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Shenzhen Lando Biomaterials Co., Ltd., Shenzhen 518057 (China)

    2015-07-01

    Inspired from the sophisticated bilayer structures of natural dermis, here, we reported collagen/chitosan based two-compartment and bi-functional dermal scaffolds. Two functions refer to mediating rapid angiogenesis based on recombinant human vascular endothelial growth factor (rhVEGF) and antibacterial from gentamicin, which were encapsulated in PLGA microspheres. The gentamicin and rhVEGF encapsulated PLGA microspheres were further combined with collagen/chitosan mixtures in low (lower layer) and high (upper layer) concentrations, and molded to generate the two-compartment and bi-functional scaffolds. Based on morphology and pore structure analyses, it was found that the scaffold has a distinct double layered porous and connective structure with PLGA microspheres encapsulated. Statistical analysis indicated that the pores in the upper layer and in the lower layer have great variations in diameter, indicative of a two-compartment structure. The release profiles of gentamicin and rhVEGF exceeded 28 and 49 days, respectively. In vitro culture of mouse fibroblasts showed that the scaffold can facilitate cell adhesion and proliferation. Moreover, the scaffold can obviously inhibit proliferation of Staphylococcus aureus and Serratia marcescens, exhibiting its unique antibacterial effect. The two-compartment and bi-functional dermal scaffolds can be a promising candidate for skin regeneration. - Highlights: • The dermal scaffold is inspired from the bilayer structures of natural dermis. • The dermal scaffold has two-compartment structures. • The dermal scaffold containing VEGF and gentamicin encapsulated PLGA microspheres • The dermal scaffold can facilitate cell adhesion and proliferation.

  20. Collagen/chitosan based two-compartment and bi-functional dermal scaffolds for skin regeneration

    International Nuclear Information System (INIS)

    Wang, Feng; Wang, Mingbo; She, Zhending; Fan, Kunwu; Xu, Cheng; Chu, Bin; Chen, Changsheng; Shi, Shengjun; Tan, Rongwei

    2015-01-01

    Inspired from the sophisticated bilayer structures of natural dermis, here, we reported collagen/chitosan based two-compartment and bi-functional dermal scaffolds. Two functions refer to mediating rapid angiogenesis based on recombinant human vascular endothelial growth factor (rhVEGF) and antibacterial from gentamicin, which were encapsulated in PLGA microspheres. The gentamicin and rhVEGF encapsulated PLGA microspheres were further combined with collagen/chitosan mixtures in low (lower layer) and high (upper layer) concentrations, and molded to generate the two-compartment and bi-functional scaffolds. Based on morphology and pore structure analyses, it was found that the scaffold has a distinct double layered porous and connective structure with PLGA microspheres encapsulated. Statistical analysis indicated that the pores in the upper layer and in the lower layer have great variations in diameter, indicative of a two-compartment structure. The release profiles of gentamicin and rhVEGF exceeded 28 and 49 days, respectively. In vitro culture of mouse fibroblasts showed that the scaffold can facilitate cell adhesion and proliferation. Moreover, the scaffold can obviously inhibit proliferation of Staphylococcus aureus and Serratia marcescens, exhibiting its unique antibacterial effect. The two-compartment and bi-functional dermal scaffolds can be a promising candidate for skin regeneration. - Highlights: • The dermal scaffold is inspired from the bilayer structures of natural dermis. • The dermal scaffold has two-compartment structures. • The dermal scaffold containing VEGF and gentamicin encapsulated PLGA microspheres • The dermal scaffold can facilitate cell adhesion and proliferation

  1. Preparation and characterization of the nanoparticle and nanocomposite by gamma irradiation

    International Nuclear Information System (INIS)

    Lee, K.P.; Choi, S.H.

    2002-01-01

    Complete text of publication follows. Nanometer metal particle-organic polymer composites have attracted considerable interests in recent years. These composites not only combine the advantageous properties of metals and polymers but also exhibit many new characters that single-phase materials do not have. They have a wide range of applications including electromagnetic inferences shielding, heat conduction, discharge static electricity, conversion of mechanical to electrical signals, and like. In order to obtain nanocomposite, silver nanoparticle was prepared by γ-irradiation. The obtained Ag nanoparticle was characterized by UV, FT-IR, XRD, SEM, TEM, and etc. The ethylacetate-Ag nanocomposite was prepared by emulsion polymerization. The obtained nanocomposites were characterized by SEM, XRD, and thermal (TGA/DSC) analysis. Furthermore, the CdS nanocomposite was prepared using CdSO 4 and Na 2 SO 4 by γ-irradiation method. The ethylacetate-CdS nanocomposite was also prepared by emulsion polymerization, and characterized by SEM, XRD, and thermal (TGA/DSC) analysis. The application of such prepared metal particle-organic polymer composites in the field of anti-bacterial film, semiconductor film, and fluorescence film may be of interest

  2. The radioluminescence and optical behaviour of nanocomposites with CdSeS quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, İ.Ç., E-mail: ilkercetinkeskin@hotmail.com [Department of Physics, Faculty of Art and Science, Celal Bayar University, Manisa-Turkey (Turkey); Türemiş, M. [Department of Physics, Faculty of Art and Science, Celal Bayar University, Manisa-Turkey (Turkey); Katı, M.İ. [Experimental Science Applications and Research Center, Celal Bayar University, Manisa (Turkey); Kibar, R. [Department of Physics, Faculty of Art and Science, Celal Bayar University, Manisa-Turkey (Turkey); Şirin, K. [Department of Chemistry, Faculty of Art and Science, Celal Bayar University, Manisa-Turkey (Turkey); Çipiloğlu, M.A. [Department of Physics, Faculty of Art and Science, Celal Bayar University, Manisa-Turkey (Turkey); Kuş, M.; Büyükçelebi, S. [Advanced Technology Research and Application, Center Selcuk University, Konya (Turkey); Çetin, A. [Department of Physics, Faculty of Art and Science, Celal Bayar University, Manisa-Turkey (Turkey)

    2017-05-15

    In this work, highly luminescent alloyed CdSeS QDs are successfully synthesized by two phase route method by using oleic acid (OA) as a surfactant. OA capped CdSeS QDs prepared in two different synthesis duration were compared in terms of luminescence and optical properties. The nanocomposites blended with CdSeS QDs which have highly luminescent efficiency in different ratios by Low Density Polyethylene (LDPE) and these nanocomposites were mainly investigated radioluminescence (RL) and optical properties (UV/VIS absorption). Structural, morphological, thermal properties of the nanocrystal and nanocomposites were examined using; XRD, FT-IR, TEM, SEM, TG-DTA techniques. OA capped CdSeS and also nanocomposites were showed two RL spectrum peaks in green and red region at around 528 nm and 710 nm respectively. Also, it is seen that the radioluminescence intensity changes linearly with the particle size of the QDs and about 12% size change of quantum dot led to a threefold increase in RL intensity. The luminescence glow curves are in compliance with absorption and fluorescence spectra. The absorption bands showed a significant blue shift for the nanocomposites as compare to powder CdSeS. The optical band gap of the OA capped CdSeS calculated as 1.77 eV. It was observed that the optical band gap of LDPE was decreased by the adding ratio of CdSeS from 3.71 eV to 2.25 eV.

  3. The radioluminescence and optical behaviour of nanocomposites with CdSeS quantum dot

    International Nuclear Information System (INIS)

    Keskin, İ.Ç.; Türemiş, M.; Katı, M.İ.; Kibar, R.; Şirin, K.; Çipiloğlu, M.A.; Kuş, M.; Büyükçelebi, S.; Çetin, A.

    2017-01-01

    In this work, highly luminescent alloyed CdSeS QDs are successfully synthesized by two phase route method by using oleic acid (OA) as a surfactant. OA capped CdSeS QDs prepared in two different synthesis duration were compared in terms of luminescence and optical properties. The nanocomposites blended with CdSeS QDs which have highly luminescent efficiency in different ratios by Low Density Polyethylene (LDPE) and these nanocomposites were mainly investigated radioluminescence (RL) and optical properties (UV/VIS absorption). Structural, morphological, thermal properties of the nanocrystal and nanocomposites were examined using; XRD, FT-IR, TEM, SEM, TG-DTA techniques. OA capped CdSeS and also nanocomposites were showed two RL spectrum peaks in green and red region at around 528 nm and 710 nm respectively. Also, it is seen that the radioluminescence intensity changes linearly with the particle size of the QDs and about 12% size change of quantum dot led to a threefold increase in RL intensity. The luminescence glow curves are in compliance with absorption and fluorescence spectra. The absorption bands showed a significant blue shift for the nanocomposites as compare to powder CdSeS. The optical band gap of the OA capped CdSeS calculated as 1.77 eV. It was observed that the optical band gap of LDPE was decreased by the adding ratio of CdSeS from 3.71 eV to 2.25 eV.

  4. Preparation and properties of multifunctional Fe-C-Y2O3:Eu3+ nanocomposites

    International Nuclear Information System (INIS)

    Yang Jingxing; Yang Xuwei; Yang Hua

    2012-01-01

    Highlights: ► Multifunctional Fe/Fe 3 O 4 -Y 2 O 3 : Eu nanocomposites were prepared by a solvothermal method. ► Their structure, magnetic and luminescent properties were characterized by XRD, SEM, TEM, excitation and emission spectra and vibration sample magnetometry (VSM). ► It is shown that the nanocomposites exhibit high saturation magnetization and strong red emission under UV-light. - Abstract: Multifunctional Fe-C-Y 2 O 3 :Eu 3+ nanocomposites were prepared by the solvo thermal method, and their structure, magnetic and luminescent properties were characterized by X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and scanning electron microscope (SEM). Results show that the nanocomposites are spherical with a mean diameter of 700 nm and there are high special saturation magnetization (47.4 emu/g) and strong red emission under UV-light. Even dispersed in water solution, the nanocomposites also exhibit a strong red emission under ultraviolet light radiation, and it could be manipulated using an external magnet. Thus it looks promising for application in biomedicine field, especially in drug targeting and fluorescence label. And we also discussed the effect of the electron transfer process between the Fe magnetic core and Y 2 O 3 :Eu 3+ shell.

  5. Structural, optical and thermal properties of PVA/CdS nanocomposites synthesized by radiolytic method

    International Nuclear Information System (INIS)

    Kharazmi, Alireza; Saion, Elias; Faraji, Nastaran; Hussin, Roslina Mat; Yunus, W. Mahmood Mat

    2014-01-01

    Monodispersed spherical CdS nanoparticles stabilized in PVA solution were synthesized by the gamma radiolytic method and found the average particle size increased from 12 to 13 nm with the increment of dose from 10 to 40 kGy. The XRD results show that it has crystalline planes of cubic structure with crystal lattice parameter of 5.832 Å. The optical reflectance revealed a band-edge of CdS nanoparticles at about 475 nm and the reflectance wavelength red shifted with increasing dose due to increasing particle size. The thermal conductivity of CdS/PVA nanocomposites measured by the transient hot wire method that revealed a decrement of the thermal conductivity with an increase of dose caused by effect of radiation on crystallinity of the polymer structure. - Highlights: • CdS/PVA nanocomposite was synthesized by radiolytic method from 10 to 40 kGy doses. • The structure of nanocomposite and the effect of dose on structure were investigated by X-ray powder diffraction. • The morphology of nanoparticles and the effect of dose on nanoparticles were observed by transmission electron microscope. • The optical properties of nanocomposite and the effect of radiation were studied by UV–visible spectroscopy and fluorescence spectroscopy. • The thermal properties of nanocomposite and the effect of dose were investigated by the transient hot wire method

  6. Biopolymeric nanocomposites with enhanced interphases.

    Science.gov (United States)

    Yin, Yi; Hu, Kesong; Grant, Anise M; Zhang, Yuhong; Tsukruk, Vladimir V

    2015-10-06

    Ultrathin and robust nanocomposite membranes were fabricated by incorporating graphene oxide (GO) sheets into a silk fibroin (SF) matrix by a dynamic spin-assisted layer-by-layer assembly (dSA-LbL). We observed that in contrast to traditional SA-LbL reported earlier fast solution removal during dropping of solution on constantly spinning substrates resulted in largely unfolded biomacromolecules with enhanced surface interactions and suppressed nanofibril formation. The resulting laminated nanocomposites possess outstanding mechanical properties, significantly exceeding those previously reported for conventional LbL films with similar composition. The tensile modulus reached extremely high values of 170 GPa, which have never been reported for graphene oxide-based nanocomposites, the ultimate strength was close to 300 MPa, and the toughness was above 3.4 MJ m(-3). The failure modes observed for these membranes suggested the self-reinforcing mechanism of adjacent graphene oxide sheets with strong 2 nm thick silk interphase composed mostly from individual backbones. This interphase reinforcement leads to the effective load transfer between the graphene oxide components in reinforced laminated nanocomposite materials with excellent mechanical strength that surpasses those known today for conventional flexible laminated carbon nanocomposites from graphene oxide and biopolymer components.

  7. Recent Progress in Synthesis and Functionalization of Multimodal Fluorescent-Magnetic Nanoparticles for Biological Applications

    Directory of Open Access Journals (Sweden)

    Raquel Serrano García

    2018-01-01

    Full Text Available There is a great interest in the development of new nanomaterials for multimodal imaging applications in biology and medicine. Multimodal fluorescent-magnetic based nanomaterials deserve particular attention as they can be used as diagnostic and drug delivery tools, which could facilitate the diagnosis and treatment of cancer and many other diseases. This review focuses on the recent developments of magnetic-fluorescent nanocomposites and their biomedical applications. The recent advances in synthetic strategies and approaches for the preparation of fluorescent-magnetic nanocomposites are presented. The main biomedical uses of multimodal fluorescent-magnetic nanomaterials, including biological imaging, cancer therapy and drug delivery, are discussed, and prospects of this field are outlined.

  8. Experimental analysis of graphene nanocomposite on Kevlar

    Science.gov (United States)

    Manigandan, S.; Gunasekar, P.; Nithya, S.; Durga Revanth, G.; Anudeep, A. V. S. C.

    2017-08-01

    Graphene nanocomposite is a two dimensional structure which has intense role in material science. This paper investigates the topological property of the graphene nanocomposite doped in Kevlar fiber by direct mixing process. The Kevlar fiber by direct mixing process. The Kevlar fiber taken as the specimen which is fabricated by vacuum bag moulding process. Epoxy used as resin and HY951 as hardener. Three different specimens are fabricated based on the percentage of graphene nanocomposite 2%, 5%, 10% and 20% respectively. We witnessed the strength of the Kevlar fiber is increased when it is treated with nanocomposite. The percentage of the nanocomposite increase the strength of the fiber is increased. However as the nanocomposite beyond 5% the strength of fiber is dropped. In addition, we also seen the interfacial property of the fiber is dropped when the nanocomposite is added beyond threshold limit.

  9. Laser Deposition of Polymer Nanocomposite Thin Films and Hard Materials and Their Optical Characterization

    Science.gov (United States)

    2013-12-05

    visible light on instruments such as microscope tips and micro- surgical tools. Hard carbon known as diamond-like carbon films produced by pulsed laser ...visible (610 nm) LED source and a supplemental infra-red 980-nm laser diode (for the studies of the upconversion fluorescence). The basic package...5/2013 Final Performance Report 15 Sep 2012- 14 Sep 2013 LASER DEPOSITION OF POLYMER NANOCOMPOSITE THIN FILMS AND HARD MATERIALS AND THEIR OPTICAL

  10. Aerogel nanocomposite materials

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, A.J.; Ayers, M.; Cao, W. [Lawrence Berkeley Laboratory, CA (United States)] [and others

    1995-05-01

    Aerogels are porous, low density, nanostructured solids with many unusual properties including very low thermal conductivity, good transparency, high surface area, catalytic activity, and low sound velocity. This research is directed toward developing new nanocomposite aerogel materials for improved thermal insulation and several other applications. A major focus of the research has been to further increase the thermal resistance of silica aerogel by introducing infrared opacification agents into the aerogel to produce a superinsulating composite material. Opacified superinsulating aerogel permit a number of industrial applications for aerogel-based insulation. The primary benefits from this recently developed superinsulating composite aerogel insulation are: to extend the range of applications to higher temperatures, to provide a more compact insulation for space sensitive-applications, and to lower costs of aerogel by as much as 30%. Superinsulating aerogels can replace existing CFC-containing polyurethane in low temperature applications to reduce heat losses in piping, improve the thermal efficiency of refrigeration systems, and reduce energy losses in a variety of industrial applications. Enhanced aerogel insulation can also replace steam and process pipe insulation in higher temperature applications to substantially reduce energy losses and provide much more compact insulation.

  11. Stretchable piezoelectric nanocomposite generator.

    Science.gov (United States)

    Park, Kwi-Il; Jeong, Chang Kyu; Kim, Na Kyung; Lee, Keon Jae

    2016-01-01

    Piezoelectric energy conversion that generate electric energy from ambient mechanical and vibrational movements is promising energy harvesting technology because it can use more accessible energy resources than other renewable natural energy. In particular, flexible and stretchable piezoelectric energy harvesters which can harvest the tiny biomechanical motions inside human body into electricity properly facilitate not only the self-powered energy system for flexible and wearable electronics but also sensitive piezoelectric sensors for motion detectors and in vivo diagnosis kits. Since the piezoelectric ZnO nanowires (NWs)-based energy harvesters (nanogenerators) were proposed in 2006, many researchers have attempted the nanogenerator by using the various fabrication process such as nanowire growth, electrospinning, and transfer techniques with piezoelectric materials including polyvinylidene fluoride (PVDF) polymer and perovskite ceramics. In 2012, the composite-based nanogenerators were developed using simple, low-cost, and scalable methods to overcome the significant issues with previously-reported energy harvester, such as insufficient output performance and size limitation. This review paper provides a brief overview of flexible and stretchable piezoelectric nanocomposite generator for realizing the self-powered energy system with development history, power performance, and applications.

  12. Functional intercalated nanocomposites with chitosan-glutathione-glycylsarcosine and layered double hydroxides for topical ocular drug delivery.

    Science.gov (United States)

    Xu, Tingting; Xu, Xiaoyue; Gu, Yan; Fang, Lei; Cao, Feng

    2018-01-01

    To enhance ocular bioavailability, the traditional strategies have focused on prolonging precorneal retention and improving corneal permeability by nano-carriers with positive charge, thiolated polymer, absorption enhancer and so on. Glycylsarcosine (GS) as an active target ligand of the peptide tranpsporter-1 (PepT-1), could specific interact with the PepT-1 on the cornea and guide the nanoparticles to the treating site. The objective of the study was to explore the active targeting intercalated nanocomposites based on chitosan-glutathione-glycylsarcosine (CG-GS) and layered double hydroxides (LDH) as novel carriers for the treatment of mid-posterior diseases. CG-GS-LDH intercalated nanocomposites were prepared by the coprecipitation hydrothermal method. In vivo precorneal retention study, ex vivo fluorescence images, in vivo experiment for distribution and irritation were studied in rabbits. The cytotoxicity and cellular uptake were studied in human corneal epithelial primary cells (HCEpiC). CG-GS-LDH nanocomposites were prepared successfully and characterized by FTIR and XRD. Experiments with rabbits showed longer precorneal retention and higher distribution of fluorescence probe/model drug. In vitro cytological study, CG-GS-LDH nanocomposites exhibited enhanced cellular uptake compared to pure drug solution. Furthermore, the investigation of cellular uptake mechanisms demonstrated that both the active transport by PepT-1 and clathrin-mediated endocytosis were involved in the internalization of CG-GS-LDH intercalated nanocomposites. An ocular irritation study and a cytotoxicity test indicated that these nanocomposites produced no significant irritant effects. The active targeting intercalated nanocomposites could have great potential for topical ocular drug delivery due to the capacity for prolonging the retention on the ocular surface, enhancing the drug permeability through the cornea, and efficiently delivering the drug to the targeted site.

  13. Ocular Toxicity Profile of ST-162 and ST-168 as Novel Bifunctional MEK/PI3K Inhibitors.

    Science.gov (United States)

    Smith, Andrew; Pawar, Mercy; Van Dort, Marcian E; Galbán, Stefanie; Welton, Amanda R; Thurber, Greg M; Ross, Brian D; Besirli, Cagri G

    2018-04-30

    ST-162 and ST-168 are small-molecule bifunctional inhibitors of MEK and PI3K signaling pathways that are being developed as novel antitumor agents. Previous small-molecule and biologic MEK inhibitors demonstrated ocular toxicity events that were dose limiting in clinical studies. We evaluated in vitro and in vivo ocular toxicity profiles of ST-162 and ST-168. Photoreceptor cell line 661W and adult retinal pigment epithelium cell line ARPE-19 were treated with increasing concentrations of bifunctional inhibitors. Western blots, cell viability, and caspase activity assays were performed to evaluate MEK and PI3K inhibition and dose-dependent in vitro toxicity, and compared with monotherapy. In vivo toxicity profile was assessed by intravitreal injection of ST-162 and ST-168 in Dutch-Belted rabbits, followed by ocular examination and histological analysis of enucleated eyes. Retinal cell lines treated with ST-162 or ST-168 exhibited dose-dependent inhibition of MEK and PI3K signaling. Compared with inhibition by monotherapies and their combinations, bifunctional inhibitors demonstrated reduced cell death and caspase activity. In vivo, both bifunctional inhibitors exhibited a more favorable toxicity profile when compared with MEK inhibitor PD0325901. Novel MEK and PI3K bifunctional inhibitors ST-162 and ST-168 demonstrate favorable in vitro and in vivo ocular toxicity profiles, supporting their further development as potential therapeutic agents targeting multiple aggressive tumors.

  14. Preparation and characterization of alginate based-fluorescent magnetic nanoparticles for fluorescence/magnetic resonance multimodal imaging applications

    Science.gov (United States)

    Kwon, Yong-Su; Choi, Kee-Bong; Lim, Hyungjun; Lee, Sunghwi; Lee, Jae-Jong

    2018-06-01

    Simple and versatile methodologies have been reported that customize the surface of superparamagnetic iron oxide (SPIO) nanoparticles and impart additional fluorescence capabilities to these contrast agents. Herein, we present the rational design, synthesis, characterization, and biological applications of a new magnetic-based fluorescent probe. The dual modality imaging protocol was developed by labeling fluorophore with alginate natural polymers that have excellent biocompatibility and biodegradability, and using gelification method to form nanocomposites containing SPIO. The formation of alginate-based fluorescent magnetic (AFM) nanoparticles was observed in spherical and elliptical forms with a diameter of less than 500 nm by a transmission electron microscope (TEM). The fluorescent wavelength band in the range of 560 nm was also confirmed in the UV–visible spectrophotometer. In this study, we demonstrate that the multi-tasking design of AFM nanoparticles provides an ideal platform for building balanced dual-image probes of magnetic resonance imaging and optical imaging.

  15. Fe{sub 3}O{sub 4}/carbon nanocomposite: Investigation of capacitive & magnetic properties for supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Sinan, Neriman, E-mail: sinanneriman@gmail.com [Department of Advanced Technologies, Materials Science and Engineering Program, Bursa Technical University, Yildirim 16310, Bursa (Turkey); Unur, Ece, E-mail: eceunur@yahoo.com [Department of Energy Systems Engineering, Bursa Technical University, Yildirim 16310, Bursa (Turkey)

    2016-11-01

    Fe{sub 3}O{sub 4} nanoparticles with ∼10 nm diameters were synthesized by an extremely low-cost, scalable and relatively biocompatible chemical co-precipitation method. Magnetic measurements revealed that Fe{sub 3}O{sub 4} nanoparticles have bifunctional superparamagnetic and ferromagnetic character with saturation magnetization (M{sub s}) values of 64 and 71 emu g{sup −1} at 298 K and 10 K, respectively. Pseudocapacitive Fe{sub 3}O{sub 4} nanoparticles were then integrated into hazelnut shells - an abundant agricultural biomass - by an energy efficient hydrothermal carbonization method. Presence of magnesium oxide (MgO) ceramic template or its precursor in the hydrothermal reactor allowed simultaneous introduction of pores into the composite structure. Hierarchically micro-mesoporous Fe{sub 3}O{sub 4}/C nanocomposite possesses a high specific surface area of 344 m{sup 2} g{sup −1}. Electrochemical properties of Fe{sub 3}O{sub 4}/C nanocomposite were investigated by cyclic voltammetry and galvanostatic charge-discharge measurements in a conventional three-electrode cell. The Fe{sub 3}O{sub 4}/C nanocomposite is able to operate in a large negative potential window in 1 M Na{sub 2}SO{sub 4} aqueous electrolyte (−1.2–0 V vs. Ag/AgCl). Synergistic effect of the Fe{sub 3}O{sub 4} and carbon leads to enhanced specific capacitance, rate capability and cyclability making Fe{sub 3}O{sub 4}/C nanocomposite a very promising negative electrode material for asymmetric supercapacitors. - Highlights: • Fe{sub 3}O{sub 4} (magnetite) particles with ∼10 nm dia. were prepared by a facile chemical co-precipitation. • Fe{sub 3}O{sub 4} nanospheres are superparamagnetic at 298K with high saturation magnetization of 64 emu g{sup −1}. • Porous Fe{sub 3}O{sub 4}/C nanocomposite was also prepared by a green HTC method combined with MgO templating. • Electrochemical properties of Fe{sub 3}O{sub 4}/C were studied in 1 M Na{sub 2}SO{sub 4} (between −1.2 and 0 V vs. Ag

  16. Metal oxide/polyaniline nanocomposites

    Indian Academy of Sciences (India)

    Nanocomposites of iron oxide with conducting polymer in the form of powders of varying compositions have been studied to understand the effects of particle size, cluster size and magnetic inter-particle interactions. The sizes of the nanoparticles were estimated to be ∼ 10–20 nm from the X-ray diffraction (XRD) and the ...

  17. Nanocomposites with biodegradable polycaprolactone matrix

    Czech Academy of Sciences Publication Activity Database

    Janigová, I.; Lednický, František; Jochec-Mošková, D.; Chodák, I.

    2011-01-01

    Roč. 301, č. 1 (2011), s. 1-8 ISSN 1022-1360. [Eurofillers /8./. Alessandria, 21.06.2009-25.06.2009] Institutional research plan: CEZ:AV0Z40500505 Keywords : melt mixing * nanocomposite s * organoclay Subject RIV: CD - Macromolecular Chemistry

  18. Magnetic Nanocomposite Cilia Tactile Sensor

    KAUST Repository

    Alfadhel, Ahmed; Kosel, Jü rgen

    2015-01-01

    A multifunctional biomimetic nanocomposite tactile sensor is developed that can detect shear and vertical forces, feel texture, and measure flow with extremely low power consumption. The sensor's high performance is maintained within a wide operating range that can be easily adjusted. The concept works on rigid and flexible substrates and the sensors can be used in air or water without any modifications.

  19. Magnetic Nanocomposite Cilia Tactile Sensor

    KAUST Repository

    Alfadhel, Ahmed

    2015-10-21

    A multifunctional biomimetic nanocomposite tactile sensor is developed that can detect shear and vertical forces, feel texture, and measure flow with extremely low power consumption. The sensor\\'s high performance is maintained within a wide operating range that can be easily adjusted. The concept works on rigid and flexible substrates and the sensors can be used in air or water without any modifications.

  20. How Nano are Nanocomposites (Preprint)

    National Research Council Canada - National Science Library

    Schafer, Dale W; Justice, Ryan S

    2007-01-01

    ...s (single and multi-walled), and layered silicates. The conclusion is that large-scale disorder is ubiquitous in nanocomposites regardless of the level of dispersion, leading to substantial reduction of mechanical properties (modulus) compared to predictions based on idealized filler morphology.

  1. In situ synthesized heteropoly acid/polyaniline/graphene nanocomposites to simultaneously boost both double layer- and pseudo-capacitance for supercapacitors.

    Science.gov (United States)

    Cui, Zhiming; Guo, Chun Xian; Yuan, Weiyong; Li, Chang Ming

    2012-10-05

    It is challenging to simultaneously increase double layer- and pseudo-capacitance for supercapacitors. Phosphomolybdic acid/polyaniline/graphene nanocomposites (PMo(12)-PANI/GS) were prepared by using PMo(12) as a bifunctional reagent for not only well dispersing graphene for high electrochemical double layer capacitance but also in situ chemically polymerizing aniline for high pseudocapacitance, resulting in a specific capacitance of 587 F g(-1), which is ~1.5 and 6 times higher than that of PANI/GS (392 F g(-1)) and GS (103 F g(-1)), respectively. The nanocomposites also exhibit good reversibility and stability. Other kinds of heteropolyacids such as molybdovanadophosphoric acids (PMo(12-x)V(x), x = 1, 2 and 3) were also used to prepare PMo(12-x)V(x)-PANI/GS nanocomposites, also showing enhanced double layer- and pseudo-capacitance. This further proves the proposed concept to simultaneously boost both double layer- and pseudo-capacitance and demonstrates that it could be a universal approach to significantly improve the capacitance for supercapacitors.

  2. Synthesis and properties of unagglomerated nanocomposite particles for nanomedical applications

    Science.gov (United States)

    Rouse, Sarah M.

    2005-11-01

    Methods have been developed to prepare stable, unagglomerated active-medical-agent nanoparticles in a range of sizes, based on reverse-micelle microemulsion techniques. The process used to prepare monodisperse, spherical nanocomposite particles is based on methods originally outlined in detail by Adair et al. and Li et al. The "Molecular Dot" (MD) nanoparticles incorporate a variety of medically-active substances, such as organic fluorophores and therapeutic drugs, internally distributed in silica, titania, calcium phosphate, or calcium phospho-silicate matrices. The synthesis techniques have also been modified to produce nanoparticles containing combinations of fluorophores and medicinal agents, in order to monitor drug release and location. The specific biomedical application for the nanocomposite particles dictates the selection of core and shell-matrix materials. For example, the protective shell-matrices of the silica and titania MDs shield the active-medical agents from damage due to changes in pH, temperature, and other environmental effects. Conversely, the calcium phosphate and calcium phospho-silicate shell-matrix nanoparticles can potentially be engineered to dissolve in physiological environments. The method used to remove residual precursor materials while maintaining a well-dispersed assembly of nanoparticles is critical to the use of nanocolloids in medical applications. The dispersion approach is based on protection-dispersion theory tailored to accommodate the high surface areas and reactivity of sub-50 nm particles in aqueous or water/ethanol mixtures. Dispersion of the nanocomposite particles is further enhanced with the use of size-exclusion high performance liquid chromatography (HPLC) to simultaneously wash and disperse the nanocomposite particle suspensions. The state of dispersion of the nanosuspensions is evaluated using the average agglomeration number (AAN) approach in conjunction with other characterization techniques. The formulation of

  3. Adsorption and photocatalysis for methyl orange and Cd removal from wastewater using TiO2/sewage sludge-based activated carbon nanocomposites

    Science.gov (United States)

    Rashed, M. Nageeb; Eltaher, M. A.; Abdou, A. N. A.

    2017-12-01

    Nanocomposite TiO2/ASS (TiO2 nanoparticle coated sewage sludge-based activated carbon) was synthesized by the sol-gel method. The changes in surface properties of the TiO2/ASS nanocomposite were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray fluorescence. The prepared TiO2/ASS nanocomposite was applied for simultaneous removal of methyl orange dye (MO) and Cd2+ from bi-pollutant solution. The factors influencing photocatalysis (TiO2 : ASS ratios, initial pollutant concentrations, solution pH, nanocomposite dosage and UV irradiation time) were investigated. The results revealed that high removal efficiency of methyl orange dye (MO) and Cd2+ from bi-pollutant solution was achieved with TiO2/ASS at a ratio (1 : 2). The obtained results revealed that degradation of MO dye on the TiO2/ASS nanocomposite was facilitated by surface adsorption and photocatalytic processes. The coupled photocatalysis and adsorption shown by TiO2/ASS nanocomposite resulted in faster and higher degradation of MO as compared to MO removal by ASS adsorbent. The removal efficiency of MO by ASS adsorbent and TiO2/ASS (1 : 2) nanocomposite at optimum pH value 7 were 74.14 and 94.28%, respectively, while for Cd2+ it was more than 90%. The experimental results fitted well with the second-order kinetic reaction.

  4. Formation of Silver and Gold Dendrimer Nanocomposites

    International Nuclear Information System (INIS)

    Balogh, Lajos; Valluzzi, Regina; Laverdure, Kenneth S.; Gido, Samuel P.; Hagnauer, Gary L.; Tomalia, Donald A.

    1999-01-01

    Structural types of dendrimer nanocomposites have been studied and the respective formation mechanisms have been described, with illustration of nanocomposites formed from poly(amidoamine) PAMAM dendrimers and zerovalent metals, such as gold and silver. Structure of {(Au(0)) n- PAMAM} and {(Ag(0)) n- PAMAM} gold and silver dendrimer nanocomposites was found to be the function of the dendrimer structure and surface groups as well as the formation mechanism and the chemistry involved. Three different types of single nanocomposite architectures have been identified, such as internal ('I'), external ('E') and mixed ('M') type nanocomposites. Both the organic and inorganic phase could form nanosized pseudo-continuous phases while the other components are dispersed at the molecular or atomic level either in the interior or on the surface of the template/container. Single units of these nanocomposites may be used as building blocks in the synthesis of nanostructured materials

  5. Fluorescent magnetic hybrid nanoprobe for multimodal bioimaging

    Energy Technology Data Exchange (ETDEWEB)

    Koktysh, Dmitry [Department of Chemistry, Vanderbilt University, Station B 351822, Nashville, TN 37235 (United States); Bright, Vanessa; Pham, Wellington, E-mail: dmitry.koktysh@vanderbilt.edu, E-mail: wellington.pham@vanderbilt.edu [Institute of Imaging Science, Vanderbilt University, 1161 21st Avenue South AA, 1105 MCN, Nashville, TN 37232 (United States)

    2011-07-08

    A fluorescent magnetic hybrid imaging nanoprobe (HINP) was fabricated by the conjugation of superparamagnetic Fe{sub 3}O{sub 4} nanoparticles and visible light emitting ({approx}600 nm) fluorescent CdTe/CdS quantum dots (QDs). The assembly strategy used the covalent linking of the oxidized dextran shell of magnetic particles to the glutathione ligands of QDs. The synthesized HINP formed stable water-soluble colloidal dispersions. The structure and properties of the particles were characterized by transmission electron and atomic force microscopy, energy dispersive x-ray analysis and inductively coupled plasma optical emission spectroscopy, dynamic light scattering analysis, optical absorption and photoluminescence spectroscopy, and fluorescent imaging. The luminescence imaging region of the nanoprobe was extended to the near-infrared (NIR) ({approx}800 nm) by conjugation of the superparamagnetic nanoparticles with synthesized CdHgTe/CdS QDs. Cadmium, mercury based QDs in HINP can be easily replaced by novel water-soluble glutathione stabilized AgInS{sub 2}/ZnS QDs to present a new class of cadmium-free multimodal imaging agents. The observed NIR photoluminescence of fluorescent magnetic nanocomposites supports their use for bioimaging. The developed HINP provides dual-imaging channels for simultaneous optical and magnetic resonance imaging.

  6. Apoptosis inducing ability of silver decorated highly reduced graphene oxide nanocomposites in A549 lung cancer

    Directory of Open Access Journals (Sweden)

    Khan M

    2016-03-01

    Full Text Available Merajuddin Khan,1 Mujeeb Khan,1 Abdulhadi H Al-Marri,1 Abdulrahman Al-Warthan,1 Hamad Z Alkhathlan,1 Mohammed Rafiq H Siddiqui,1 Vadithe Lakshma Nayak,2 Ahmed Kamal,2 Syed F Adil1 1Department of Chemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia; 2Department of Medicinal Chemistry and Pharmacology, CSIR – Indian Institute of Chemical Technology, Hyderabad, India Abstract: Recently, graphene and graphene-based materials have been increasingly used for various biological applications due to their extraordinary physicochemical properties. Here, we demonstrate the anticancer properties and apoptosis-inducing ability of silver doped highly reduced graphene oxide nanocomposites synthesized by employing green approach. These nano­composites (PGE-HRG-Ag were synthesized by using Pulicaria glutinosa extract (PGE as a reducing agent and were evaluated for their anticancer properties against various human cancer cell lines with tamoxifen as the reference drug. A correlation between the amount of Ag nanoparticles on the surface of highly reduced graphene oxide (HRG and the anticancer activity of nanocomposite was observed, wherein an increase in the concentration of Ag nanoparticles on the surface of HRG led to the enhanced anticancer activity of the nanocomposite. The nanocomposite PGE-HRG-Ag-2 exhibited more potent cytotoxicity than standard drug in A549 cells, a human lung cancer cell line. A detailed investigation was undertaken and Fluorescence activated cell sorting (FACS analysis demonstrated that the nanocomposite PGE-HRG-Ag-2 showed G0/G1 phase cell cycle arrest and induced apoptosis in A549 cells. Studies such as, measurement of mitochondrial membrane potential, generation of reactive oxygen species (ROS and Annexin V-FITC staining assay suggested that this compound induced apoptosis in human lung cancer cells. Keywords: plant extract, graphene/silver nanocomposites, anticancer, apoptosis

  7. Selective production of oxygenates from CO2 hydrogenation over mesoporous silica supported Cu-Ga nanocomposite catalyst

    KAUST Repository

    Huang, Kuo-Wei

    2017-11-23

    Carbon dioxide hydrogenation to oxygenates (methanol and dimethyl ether (DME)) was investigated over bifunctional supported copper catalysts promoted with gallium (Ga). Supported Cu-Ga nanocomposite catalysts were characterized by X-ray diffraction, transmission electron microscopy with energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy and H2 temperature programmed reduction. In comparison with Cu-SBA-15 based catalysts, Ga promoted catalysts prepared by the urea deposition method (CuGa/SBA-15-UDP) was found active and selective for CO2 hydrogenation to oxygenates. The use of Ga as the promoter showed increased acidic sites as confirmed by the NH3-TPD, Pyridine-IR and 2,6-lutidine-IR studies. The favorable effect of Ga on CO2 conversion and selectivity to oxygenate may come from the strong interaction of Ga with silica, which is responsible for the enhanced metal surface area, formation of nanocomposite and metal dispersion. Notably, incorporation of Ga to Cu/SiO2 showed a several-fold higher rate for methanol formation (13.12 mol/gCu·sec) with a reasonable rate for the DME formation (2.15 mol/gCu·sec) as compared to those of Cu/SiO2 catalysts.

  8. Assembly, characterization, and photocatalytic activities of TiO2 nanotubes/CdS quantum dots nanocomposites

    International Nuclear Information System (INIS)

    Zhou Qiang; Fu Minglai; Yuan Baoling; Cui Haojie; Shi Jianwen

    2011-01-01

    The semiconductor quantum dots (QDs) can be very efficient to tune the response of photocatalyst of TiO 2 to visible light. In this study, CdS QDs formed in situ with about 8 nm have been successfully deposited onto the surfaces of TiO 2 nanotubes (TNTs) to form TNTs/CdS QDs nanocomposites by use of a simple bifunctional organic linker, thiolactic acid. The diffuse reflectance spectroscopy (DRS) spectra of as prepared samples showed that the absorption edge of the TNTs/CdS composite is extended to visible range, with absorption edge at 530 nm. The photocatalytic activity and stability of TNTs/CdS were also evaluated for the photodegradation of rhodamine B. The results showed that when TNTs/CdS QDs was used, photocatalytic degradation of RhB under visible light irradiation reached 91.6%, higher than 45.4 and 30.5% for P25 and TNTs, respectively. This study indicated that the TNTs/CdS QDs nanocomposites were superior catalysts for photodegradation under visible light irradiation compared with TNTs and P25 samples, which may find wide application as a powerful photocatalyst in environmental field.

  9. Method to produce catalytically active nanocomposite coatings

    Science.gov (United States)

    Erdemir, Ali; Eryilmaz, Osman Levent; Urgen, Mustafa; Kazmanli, Kursat

    2016-02-09

    A nanocomposite coating and method of making and using the coating. The nanocomposite coating is disposed on a base material, such as a metal or ceramic; and the nanocomposite consists essentially of a matrix of an alloy selected from the group of Cu, Ni, Pd, Pt and Re which are catalytically active for cracking of carbon bonds in oils and greases and a grain structure selected from the group of borides, carbides and nitrides.

  10. Epoxy polyurethane nanocomposites filled with fullerite

    International Nuclear Information System (INIS)

    Rozhnova, R.A.; Galatenko, N.A.; Lukashevich, S.A.; Shirokov, O.D.; Levenets', Je.G.

    2015-01-01

    New nanocomposite materials based on epoxy polyurethane (EPU) containing nanoscale fullerite in its composition are produced. The influence of small impurities of fullerite on physical and mechanical properties of the nanocomposites is established. The effect of a nanofiller and its concentration on the structure and properties of the composite and the ability to biodegradation in vitro is studied. The developed nanocomposites exhibit the biodegradability, and the presence of nanofillers in the EPU facilitates the course of the process

  11. Fracture behavior of polypropylene/clay nanocomposites.

    Science.gov (United States)

    Chen, Ling; Wang, Ke; Kotaki, Masaya; Hu, Charmaine; He, Chaobin

    2006-12-01

    Polypropylene (PP)/clay nanocomposites have been prepared via a reactive compounding approach with an epoxy based masterbatch. Compared with PP and common PP/organoclay nanocomposites, the PP/clay nanocomposites based on epoxy/clay masterbatch have higher impact strength. The phenomenon can be attributed to the epoxy phase dispersed uniformly in the PP matrix, which may act as impact energy absorber and helps to form a large damage zone, thus a higher impact strength value is achieved.

  12. Method to produce catalytically active nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Erdemir, Ali; Eryilmaz, Osman Levent; Urgen, Mustafa; Kazmanli, Kursat

    2017-12-19

    A nanocomposite coating and method of making and using the coating. The nanocomposite coating is disposed on a base material, such as a metal or ceramic; and the nanocomposite consists essentially of a matrix of an alloy selected from the group of Cu, Ni, Pd, Pt and Re which are catalytically active for cracking of carbon bonds in oils and greases and a grain structure selected from the group of borides, carbides and nitrides.

  13. Benzimidazolyl methyliminodiacetic acids: new bifunctional chelators of technetium for hepatobiliary scintigraphy

    International Nuclear Information System (INIS)

    Hunt, F.C.; Wilson, J.G.; Maddalena, D.J.

    1979-01-01

    Dimethyl- and chloro- substituted benzimidazolyl methyliminodiacetic acids have been synthesized and evaluated as new bifunctional chelators of /sup 99m/Tc. Stannous chelates of these compounds were prepared as freeze-dried kits and labeled with /sup 99m/Tc. The radiopharmaceuticals thus prepared were rapidly excreted by the hepatobiliary system of rats and rabbits with little urinary excretion. The chloro- compound had a higher biliary and lesser urinary excretion than the dimethyl- however both technetium complexes provided good scintigraphic images of the hepatobiliary system in animals. The compounds behaved similarly to the /sup 99m/Tc-lidocaine iminodiacetic acid [HIDA] complexes with respect to their biliary elimination

  14. Bifunctional groups grafted polyethersulfone magnetic beads for selective sequestration of plutonium

    International Nuclear Information System (INIS)

    Paul, Sumana; Aggarwal, S.K.; Pandey, A.K.

    2014-01-01

    The present study involves synthesis of polyethersulfone (PES) beads grafted with two different monomers viz. 2-hydroxyethylmethacrylate phosphoric acid ester (HEMP) and 2-acrylamido-2-methyl-1-propane sulphonic acid (AMPS) by photo-induced free radical polymerization method. The selection of bifunctional polymer was based on our previous studies, which indicated its efficacy for selective preconcentration of Pu from 3-4 mol L -1 HNO 3 . The HEMP-co-AMPS grafted PES beads were used for selective extraction of plutonium from dissolver solution

  15. A Proton-Switchable Bifunctional Ruthenium Complex That Catalyzes Nitrile Hydroboration.

    Science.gov (United States)

    Geri, Jacob B; Szymczak, Nathaniel K

    2015-10-14

    A new bifunctional pincer ligand framework bearing pendent proton-responsive hydroxyl groups was prepared and metalated with Ru(II) and subsequently isolated in four discrete protonation states. Stoichiometric reactions with H2 and HBPin showed facile E-H (E = H or BPin) activation across a Ru(II)-O bond, providing access to unusual Ru-H species with strong interactions with neighboring proton and boron atoms. These complexes were found to promote the catalytic hydroboration of ketones and nitriles under mild conditions, and the activity was highly dependent on the ligand's protonation state. Mechanistic experiments revealed a crucial role of the pendent hydroxyl groups for catalytic activity.

  16. Recent Advances in Dynamic Kinetic Resolution by Chiral Bifunctional (Thiourea- and Squaramide-Based Organocatalysts

    Directory of Open Access Journals (Sweden)

    Pan Li

    2016-10-01

    Full Text Available The organocatalysis-based dynamic kinetic resolution (DKR process has proved to be a powerful strategy for the construction of chiral compounds. In this feature review, we summarized recent progress on the DKR process, which was promoted by chiral bifunctional (thiourea and squaramide catalysis via hydrogen-bonding interactions between substrates and catalysts. A wide range of asymmetric reactions involving DKR, such as asymmetric alcoholysis of azlactones, asymmetric Michael–Michael cascade reaction, and enantioselective selenocyclization, are reviewed and demonstrate the efficiency of this strategy. The (thiourea and squaramide catalysts with dual activation would be efficient for more unmet challenges in dynamic kinetic resolution.

  17. Tunable catalytic properties of bi-functional mixed oxides in ethanol conversion to high value compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ramasamy, Karthikeyan K.; Gray, Michel J.; Job, Heather M.; Smith, Colin D.; Wang, Yong

    2016-04-10

    tA highly versatile ethanol conversion process to selectively generate high value compounds is pre-sented here. By changing the reaction temperature, ethanol can be selectively converted to >C2alcohols/oxygenates or phenolic compounds over hydrotalcite derived bi-functional MgO–Al2O3cata-lyst via complex cascade mechanism. Reaction temperature plays a role in whether aldol condensationor the acetone formation is the path taken in changing the product composition. This article containsthe catalytic activity comparison between the mono-functional and physical mixture counterpart to thehydrotalcite derived mixed oxides and the detailed discussion on the reaction mechanisms.

  18. Bifunctional electrode performance for zinc-air flow cells with pulse charging

    International Nuclear Information System (INIS)

    Pichler, Birgit; Weinberger, Stephan; Reščec, Lucas; Grimmer, Ilena; Gebetsroither, Florian; Bitschnau, Brigitte; Hacker, Viktor

    2017-01-01

    Highlights: •Manufacture of bi-catalyzed bifunctional air electrodes via scalable process. •Direct synthesis of NiCo 2 O 4 on carbon nanofibers or nickel powder support. •450 charge and discharge cycles over 1000 h at 50 mA cm −2 demonstrated. •Pulse charging with 150 mA cm −2 is successfully applied on air electrodes. •Charge and discharge ΔV of <0.8 V at 50 mA cm −2 when supplied with O 2. -- Abstract: Bifunctional air electrodes with tuned composition consisting of two precious metal-free oxide catalysts are manufactured for application in rechargeable zinc-air flow batteries and electrochemically tested via long-term pulse charge and discharge cycling experiments at 50 mA cm −2 (mean). NiCo 2 O 4 spinel, synthesized via direct impregnation on carbon nanofibers or nickel powder and characterized by energy dispersive X-ray spectroscopy and X-ray diffraction experiments, shows high activity toward oxygen evolution reaction with low charge potentials of < 2.0 V vs. Zn/Zn 2+ . La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3 perovskite exhibits bifunctional activity and outperforms the NiCo 2 O 4 spinel in long-term stability tenfold. By combining the catalysts in one bi-catalyzed bifunctional air electrode, stable performances of more than 1000 h and 450 cycles are achieved when supplied with oxygen and over 650 h and 300 cycles when supplied with synthetic air. In addition, the pulse charging method, which is beneficial for compact zinc deposition, is successfully tested on air electrodes during long-term operation. The oxygen evolution potentials during pulse, i.e. at tripled charge current density of 150 mA cm −2 , are only 0.06–0.08 V higher compared to constant charging current densities. Scanning electron microscopy confirms that mechanical degradation caused by bubble formation during oxygen evolution results in slowly decreasing discharge potentials.

  19. Oxidations of amines with molecular oxygen using bifunctional gold–titania catalysts

    DEFF Research Database (Denmark)

    Klitgaard, Søren Kegnæs; Egeblad, Kresten; Mentzel, Uffe Vie

    2008-01-01

    –titania catalysts can be employed to facilitate the oxidation of amines into amides with high selectivity. Furthermore, we report that pure titania is in fact itself a catalyst for the oxidation of amines with molecular oxygen under very mild conditions. We demonstrate that these new methodologies open up for two......Over the past decades it has become clear that supported gold nanoparticles are surprisingly active and selective catalysts for several green oxidation reactions of oxygen-containing hydrocarbons using molecular oxygen as the stoichiometric oxidant. We here report that bifunctional gold...

  20. Basic evaluation of 67Ga labeled digoxin derivative as a metal-labeled bifunctional radiopharmaceutical

    International Nuclear Information System (INIS)

    Fujibayashi, Yasuhisa; Konishi, Junji; Takemura, Yasutaka; Taniuchi, Hideyuki; Iijima, Naoko; Yokoyama, Akira.

    1993-01-01

    To develop metal-labeled digoxin radiopharmaceuticals with affinity with anti-digoxin antibody as well as Na + , K + -ATPase, a digoxin derivative conjugated with deferoxamine was synthesized. The derivative had a high binding affinity with 67 Ga at deferoxamine introduced to the terminal sugar ring of digoxin. The 67 Ga labeled digoxin derivative showed enough in vitro binding affinity and selectivity to anti-digoxin antibody as well as Na + , K + -ATPase. The 67 Ga labeled digoxin derivative is considered to be a potential metal-labeled bifunctional radiopharmaceutical for digoxin RIA as well as myocardial Na + , K + -ATPase imaging. (author)

  1. Neurodegeneration in D-bifunctional protein deficiency: diagnostic clues and natural history using serial magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Aneal [University of Calgary, Department of Medical Genetics and Pediatrics, Alberta Children' s Hospital, Calgary, AB (Canada); Wei, Xing-Chang [University of Calgary, Department of Radiology, Alberta Children' s Hospital, Calgary, AB (Canada); Snyder, Floyd F. [Alberta Children' s Hospital, Biochemical Genetics Laboratory, Calgary, AB (Canada); Mah, Jean K. [University of Calgary, Division of Neurology, Department of Pediatrics, Calgary, AB (Canada); Waterham, Hans; Wanders, Ronald J.A. [University of Amsterdam, Academic Medical Center, Lab Genetic Metabolic Diseases, Amsterdam (Netherlands)

    2010-12-15

    We report serial neurodegenerative changes on neuroimaging in a rare peroxisomal disease called D-bifunctional protein deficiency. The pattern of posterior to anterior demyelination with white matter disease resembles X-linked adrenoleukodystrophy. We feel this case is important to (1) highlight that D-bifunctional protein deficiency should be considered in cases where the neuroimaging resembles X-linked adrenoleukodystrophy, (2) to show different stages of progression to help identify this disease using neuroimaging in children, and (3) to show that neuroimaging suggesting a leukodystrophy can warrant peroxisomal beta-oxidation studies in skin fibroblasts even when plasma very long chain fatty acids are normal. (orig.)

  2. Synergistic extraction of Am(III) using HTTA and bi-functional (DHDECMP) and mono-functional (TBP) donors

    International Nuclear Information System (INIS)

    Pai, S.A.; Lohithakshan, K.V.; Mithapara, P.D.; Aggarwal, S.K.

    1999-01-01

    The equilibrium constant (log Ks) for the organic phase synergistic reaction for Am(III)-HTTA system with bi-functional neutral donor di-hexyl di-ethyl carbamoylmethyl phosphonate (DHDECMP) was found to be about two orders of magnitude higher than that of the mono-functional neutral donor (TBP) with comparable basicity values. This log Ks value along with a large positive entropy change with DHDECMP compared to that with TBP confirms that the neutral donors like DHDECMP behave as bi-functional, in sharp contrast to its mono-functional behaviour in Pu(VI). (author)

  3. nanocomposites chitosan /clay for electrochemical sensors

    International Nuclear Information System (INIS)

    Braga, Carla R. Costa; Melo, Frank M. Araujo de; Costa, Gilmara M. Silva; Silva, Suedina M. Lima

    2009-01-01

    This study was performed to obtain films of nanocomposites chitosan/bentonite and chitosan/montmorillonite intercalation by the technique of solution in the proportions of 5:1 and 10:1. The nanocomposites were characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD) and the nanocomposites Chitosan/montmorillonite also were characterized by thermogravimetric analysis (TG). The results indicated that the feasibility of obtaining films of nanocomposites exfoliate. Among the suggested applications for films developed in this study includes them use for electrochemical sensors. (author)

  4. Nanocomposite polymer electrolyte based on whisker or microfibrils polyoxyethylene nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Alloin, Fannie, E-mail: fannie.alloin@lepmi.grenoble-inp.f [LEPMI, Laboratoire d' Electrochimie et de Physicochimie des Materiaux et des Interfaces, Grenoble-INP-UJF-CNRS, UMR 5631, BP 75, 38041 Grenoble Cedex 9 (France); D' Aprea, Alessandra [Laboratoire de Rheologie, Grenoble-INP-UJF, UMR 5520, BP 53, 38041 Grenoble Cedex 9 (France); LEPMI, Laboratoire d' Electrochimie et de Physicochimie des Materiaux et des Interfaces, Grenoble-INP-UJF-CNRS, UMR 5631, BP 75, 38041 Grenoble Cedex 9 (France); Ecole Internationale du Papier, de la communication imprimee et des Biomateriaux, PAGORA- Grenoble-INP, BP 65, 38402 Saint Martin d' Heres Cedex (France); Kissi, Nadia El [Laboratoire de Rheologie, Grenoble-INP-UJF, UMR 5520, BP 53, 38041 Grenoble Cedex 9 (France); Dufresne, Alain [Ecole Internationale du Papier, de la communication imprimee et des Biomateriaux, PAGORA- Grenoble-INP, BP 65, 38402 Saint Martin d' Heres Cedex (France); Bossard, Frederic [Laboratoire de Rheologie, Grenoble-INP-UJF, UMR 5520, BP 53, 38041 Grenoble Cedex 9 (France)

    2010-07-15

    Nanocomposite polymer electrolytes composed of high molecular weight poly(oxyethylene) PEO as a matrix, LiTFSI as lithium salt and ramie, cotton and sisal whiskers with high aspect ratio and sisal microfibrils (MF), as reinforcing phase were prepared by casting-evaporation. The morphology of the composite electrolytes was investigated by scanning electron microscopy and their thermal behavior (characteristic temperatures, degradation temperature) were investigated by thermogravimetric analysis and differential scanning calorimetry. Nanocomposite electrolytes based on PEO reinforced by whiskers and MF sisal exhibited very high mechanical performance with a storage modulus of 160 MPa at high temperature. A weak decrease of the ionic conductivity was observed with the incorporation of 6 wt% of whiskers. The addition of microfibrils involved a larger decrease of the conductivity. This difference may be associated to the more restricted PEO mobility due to the addition of entangled nanofibers.

  5. Synthesis and bio-applications of targeted magnetic-fluorescent composite nanoparticles

    International Nuclear Information System (INIS)

    Xia, Hui; Tong, Ruijie; Song, Yanling; Xiong, Fang; Li, Jiman; Wang, Shichao; Fu, Huihui; Wen, Jirui; Li, Dongze; Zeng, Ye; Zhao, Zhiwei; Wu, Jiang

    2017-01-01

    Magnetic-fluorescent nanoparticles have a tremendous potential in biology. As the benefits of these materials gained recognition, increasing attention has been given to the conjugation of magnetic-fluorescent nanoparticles with targeting ligands. The magnetic and fluorescent properties of nanoparticles offer several functionalities, including imaging, separation, and visualization, while the presence of a targeting ligand allows for selective cell and tissue targeting. In this review, methods for the synthesis of targeted magnetic-fluorescent nanoparticles are explored, and recent applications of these nanocomposites to the detection and separation of biomolecules, fluorescent and magnetic resonance imaging, and cancer diagnosis and treatment will be summarized. As these materials are further optimized, targeted magnetic-fluorescent nanoparticles hold great promise for the diagnosis and treatment of some diseases.

  6. Synthesis and bio-applications of targeted magnetic-fluorescent composite nanoparticles

    Science.gov (United States)

    Xia, Hui; Tong, Ruijie; Song, Yanling; Xiong, Fang; Li, Jiman; Wang, Shichao; Fu, Huihui; Wen, Jirui; Li, Dongze; Zeng, Ye; Zhao, Zhiwei; Wu, Jiang

    2017-04-01

    Magnetic-fluorescent nanoparticles have a tremendous potential in biology. As the benefits of these materials gained recognition, increasing attention has been given to the conjugation of magnetic-fluorescent nanoparticles with targeting ligands. The magnetic and fluorescent properties of nanoparticles offer several functionalities, including imaging, separation, and visualization, while the presence of a targeting ligand allows for selective cell and tissue targeting. In this review, methods for the synthesis of targeted magnetic-fluorescent nanoparticles are explored, and recent applications of these nanocomposites to the detection and separation of biomolecules, fluorescent and magnetic resonance imaging, and cancer diagnosis and treatment will be summarized. As these materials are further optimized, targeted magnetic-fluorescent nanoparticles hold great promise for the diagnosis and treatment of some diseases.

  7. Synthesis and bio-applications of targeted magnetic-fluorescent composite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Hui; Tong, Ruijie [Sichuan University, West China Medical Center (China); Song, Yanling [Shenyang University of Chemical Technology, College of Pharmaceutical and Biological Engineering (China); Xiong, Fang [Sichuan University, West China College of Stomatology (China); Li, Jiman [Sichuan Cancer Hospital, Pathology Department (China); Wang, Shichao; Fu, Huihui; Wen, Jirui; Li, Dongze; Zeng, Ye; Zhao, Zhiwei, E-mail: zzw2002400@126.com; Wu, Jiang, E-mail: jw@scu.edu.cn [Sichuan University, West China Medical Center (China)

    2017-04-15

    Magnetic-fluorescent nanoparticles have a tremendous potential in biology. As the benefits of these materials gained recognition, increasing attention has been given to the conjugation of magnetic-fluorescent nanoparticles with targeting ligands. The magnetic and fluorescent properties of nanoparticles offer several functionalities, including imaging, separation, and visualization, while the presence of a targeting ligand allows for selective cell and tissue targeting. In this review, methods for the synthesis of targeted magnetic-fluorescent nanoparticles are explored, and recent applications of these nanocomposites to the detection and separation of biomolecules, fluorescent and magnetic resonance imaging, and cancer diagnosis and treatment will be summarized. As these materials are further optimized, targeted magnetic-fluorescent nanoparticles hold great promise for the diagnosis and treatment of some diseases.

  8. Bifunctional silica nanospheres with 3-aminopropyl and phenyl groups. Synthesis approach and prospects of their applications

    Science.gov (United States)

    Kotsyuda, Sofiya S.; Tomina, Veronika V.; Zub, Yuriy L.; Furtat, Iryna M.; Lebed, Anastasia P.; Vaclavikova, Miroslava; Melnyk, Inna V.

    2017-10-01

    Spherical silica particles with bifunctional (tbnd Si(CH2)3NH2/tbnd SiC6H5) surface layers were synthesized by the Stöber method using ternary alkoxysilanes systems. The influence of the synthesis conditions, such as temperature and stirring time on the process of nanoparticles formation was studied. The presence of introduced functional groups was confirmed by FTIR. The composition of the surface layers examined by elemental analysis and acid-base titration was shown to be independent from the synthesis temperature. However, the size of the obtained particles depends on the synthesis temperature and, according to photon cross-correlation spectroscopy, can be varied from 50 to 846 nm. The variation of electric charges of N-functional groups was disclosed in obtained nanospheres and attributed to different surface location of these groups and their surrounding with other groups. The sorption of Cu(II) ions by functionalized silicas depends on the concentration of amino groups, which correlates with the isoelectric point values (determined to vary from 8.26 to 9.21). Bifunctional nanoparticles adsorb 99.0 mg/g of methylene blue, compared with 48.0 mg/g by silica sample with only amino groups. The nanospheres, both with and without adsorbed Cu2+, demonstrate reasonable antibacterial activity against S. aureus ATCC 25923, depending on particle concentration in water suspension.

  9. Synthesis of novel bifunctional chelators and their use in preparing monoclonal antibody conjugates for tumor targeting

    International Nuclear Information System (INIS)

    Westerberg, D.A.; Carney, P.L.; Rogers, P.E.; Kline, S.J.; Johnson, D.K.

    1989-01-01

    Bifunctional derivatives of the chelating agents ethylenediaminetetraacetic acid and diethylenetriaminepentaacetic acid, in which a p-isothiocyanatobenzyl moiety is attached at the methylene carbon atom of one carboxymethyl arm, was synthesized by reductive alkylation of the relevant polyamine with (p-nitrophenyl)pyruvic acid followed by carboxymethylation, reduction of the nitro group, and reaction with thiophosgene. The resulting isothiocyanate derivatives reacted with monoclonal antibody B72.3 to give antibody-chelator conjugates containing 3 mol of chelator per mole of immunoglobulin, without significant loss of immunological activity. Such conjugates, labeled with the radioisotopic metal indium-111, selectively bound a human colorectal carcinoma implanted in nude mice when given intravenously. Uptake into normal tissues was comparable to or lower than that reported for analogous conjugates with known bifunctional chelators. It is concluded that substitution with a protein reactive group at this position in polyaminopolycarboxylate chelators does not alter the chelating properties of these molecules to a sufficient extent to adversely affect biodistribution and thus provides a general method for the synthesis of such chelators

  10. Nanosize effect of clay mineral nanoparticles on the drug diffusion processes in polyurethane nanocomposite hydrogels

    Science.gov (United States)

    Miotke, M.; Strankowska, J.; Kwela, J.; Strankowski, M.; Piszczyk, Ł.; Józefowicz, M.; Gazda, M.

    2017-09-01

    Studies of swelling and release of naproxen sodium (NAP) solution by polyurethane nanocomposite hydrogels containing Cloisite® 30B (organically modified montmorillonite (OMMT)) have been performed. Polyurethane nanocomposite hydrogels are hybrid, nontoxic biomaterials with unique swelling and release properties in comparison with unmodified hydrogels. These features enable to use nanocomposite hydrogels as a modern wound dressing. The presence of nanoparticles significantly improves the swelling. On the other hand, their presence hinders drug diffusion from polymer matrix and consequently causes delay of the drug release. The kinetics of swelling and release were carefully analyzed using the Korsmeyer-Peppas and the modified Hopfenberg models. The models were fitted to precise experimental data allowing accurate quantitative and qualitative analysis. We observed that 0.5% admixture of nanoparticles (Cloisite® 30B) is the best concentration for hydrogel swelling properties. The release process was studied using fluorescence excitation spectra of NAP. Furthermore, we studied swelling hysteresis; polymer chains have not been destroyed after the swelling and part of swelled solution with active substances which remained absorbed in the polymer matrix after the drying process. We have found that the amount of solution with NAP remained in the nanocomposite matrix is greater than in pure hydrogel, as a consequence of NAP-OMMT interactions (nanosize effect).

  11. Polymer-Layer Silicate Nanocomposites

    DEFF Research Database (Denmark)

    Potarniche, Catalina-Gabriela

    Nowadays, some of the material challenges arise from a performance point of view as well as from recycling and biodegradability. Concerning these aspects, the development of polymer layered silicate nanocomposites can provide possible solutions. This study investigates how to obtain polymer layered...... with a spectacular improvement up to 300 % in impact strength were obtained. In the second part of this study, layered silicate bio-nanomaterials were obtained starting from natural compounds and taking into consideration their biocompatibility properties. These new materials may be used for drug delivery systems...... and as biomaterials due to their high biocompatible properties, and because they have the advantage of being biodegradable. The intercalation process of natural compounds within silicate platelets was investigated. By uniform dispersing of binary nanohybrids in a collagen matrix, nanocomposites with intercalated...

  12. Targeted delivery of polyoxometalate nanocomposites.

    Science.gov (United States)

    Geisberger, Georg; Paulus, Susann; Gyenge, Emina Besic; Maake, Caroline; Patzke, Greta R

    2011-10-04

    Polyoxometalate/carboxymethyl chitosan nanocomposites with an average diameter of 130 nm are synthesized and labeled with fluorescein isothiocyanate (FITC) for a combined drug-carrier and cellular-monitoring approach. [Eu(β(2) -SiW(11) O(39) )(2) ](13-) /CMC nanospheres as a representative example do not display cytotoxicity for POM concentrations up to 2 mg mL(-1) . Cellular uptake of fluoresecently labelled {EuSiW(11) O(39) }/FITC-CMC nanoparticles is monitored with confocal laser scanning microscopy. Nanoparticle uptake occurs after incubation times of around 1 h and no cyctotoxic effects are observed upon prolonged treatment. The preferential location of the POM/CMC nanocomposites in the perinuclear region is furthermore verified with transmission electron microscopy investigations on unlabeled nanoparticles. Therefore, this approach is a promising dual strategy for the safe cellular transfer and monitoring of bioactive POMs. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Magnetic Nanocomposite Cilia Energy Harvester

    KAUST Repository

    Khan, Mohammed Asadullah

    2016-02-11

    An energy harvester capable of converting low frequency vibrations into electrical energy is presented. The operating principle, fabrication process and output characteristics at different frequencies are discussed. The harvester is realized by fabricating an array of polydimethylsiloxane (PDMS) - iron nanowire nanocomposite cilia on a planar coil array. Each coil element consists of 14 turns and occupies an area of 600 μm x 600μm. The cilia are arranged in a 12x5 array and each cilium is 250 μm wide and 2 mm long. The magnetic characteristics of the fabricated cilia indicate that the nanowires are well aligned inside of the nanocomposite, increasing the efficiency of energy harvesting. The energy harvester occupies an area of 66.96 mm2 and produces an output r.m.s voltage of 206.47μV, when excited by a 40 Hz vibration of 1 mm amplitude.

  14. Colloidal QDs-polymer nanocomposites

    Science.gov (United States)

    Gordillo, H.; Suárez, I.; Rodríguez-Cantó, P.; Abargues, R.; García-Calzada, R.; Chyrvony, V.; Albert, S.; Martínez-Pastor, J.

    2012-04-01

    Nanometer-size colloidal semiconductor nanocrystals, or Quantum Dots (NQD), are very prospective active centers because their light emission is highly efficient and temperature-independent. Nanocomposites based on the incorporation of QDs inside a polymer matrix are very promising materials for application in future photonic devices because they combine the properties of QDs with the technological feasibility of polymers. In the present work some basic applications of these new materials have been studied. Firstly, the fabrication of planar and linear waveguides based on the incorporation of CdS, CdSe and CdTe in PMMA and SU-8 are demonstrated. As a result, photoluminescence (PL) of the QDs are coupled to a waveguide mode, being it able to obtain multicolor waveguiding. Secondly, nanocomposite films have been evaluated as photon energy down-shifting converters to improve the efficiency of solar cells.

  15. Bitumen nanocomposites with improved performance

    KAUST Repository

    Kosma, Vasiliki

    2017-11-29

    Bitumen-clay nanocomposite binders with styrene-butadienestyrene triblock copolymer, SBS, and combinations of SBS and crumb rubber (CR) with different CR/SBS ratios have been synthesized and characterized. In addition to the binder, samples containing the binder and concrete sand (with a weight ratio 1:9) were prepared. The modified binders were studied in terms of filler dispersion, storage stability, mechanical performance and water susceptibility. We demonstrate that the samples containing nanoclays consistently outperform those based only on the polymer additives. We also find that nanocomposite samples based on a combination of SBS and CR are best, since in addition to other improvements they show excellent storage stability. Our work shows that substituting CR with SBS as a bitumen additive and combining it with inexpensive nanoclays leads to new materials with enhanced performance and improved stability for practical asphalt applications.

  16. Electrospun Borneol-PVP Nanocomposites

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Li

    2012-01-01

    Full Text Available The present work investigates the validity of electrospun borneol-polyvinylpyrrolidone (PVP nanocomposites in enhancing drug dissolution rates and improving drug physical stability. Based on hydrogen bonding interactions and via an electrospinning process, borneol and PVP can form stable nanofiber-based composites. FESEM observations demonstrate that composite nanofibers with uniform structure could be generated with a high content of borneol up to 33.3% (w/w. Borneol is well distributed in the PVP matrix molecularly to form the amorphous composites, as verified by DSC and XRD results. The composites can both enhance the dissolution profiles of borneol and increase its physical stability against sublimation for long-time storage by immobilization of borneol molecules with PVP. The incorporation of borneol in the PVP matrix weakens the tensile properties of nanofibers, and the mechanism is discussed. Electrospun nanocomposites can be alternative candidates for developing novel nano-drug delivery systems with high performance.

  17. Radiolytic Synthesis of Magnetic Nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Grdanovska, Slavica; Tissot, Chanel; Barkatt, Aaron; Al-Sheikhly, Mohamad [Nuclear Engineering Program – Department of Materials Science and Engineering, University of Maryland, College Park, MD (United States)

    2011-07-01

    Magnetic nanocomposites, in which magnetic nanoparticles are encapsulated in polymeric matrices, have important applications in medicine, electronics and mechanical devices. However, the development of processes leading to magnetic nanocomposites with desirable, predictable and reproducible properties has turned out to be a difficult challenge. To date, most studies have concentrated on a magnetic oxide, primarily magnetite (Fe{sub 3}O{sub 4}), as the encapsulated phase. However, the synthesis of batches of magnetite with homogeneous properties at reasonably low temperature is a delicate operation. Indeed, commercial lots of magnetite powder, despite having bulk Fe{sub 3}O{sub 4} stoichiometry, turn out to have large variations in structure and in magnetic properties. The difficulties in controlling the product are greatly magnified when the particle size is in the nanometer range.

  18. Iminodiacetic acid as bifunctional linker for dimerization of cyclic RGD peptides

    International Nuclear Information System (INIS)

    Xu, Dong; Zhao, Zuo-Quan; Chen, Shu-Ting; Yang, Yong; Fang, Wei; Liu, Shuang

    2017-01-01

    Introduction: In this study, I2P-RGD 2 was used as the example to illustrate a novel approach for dimerization of cyclic RGD peptides. The main objective of this study was to explore the impact of bifunctional linkers (glutamic acid vs. iminodiacetic acid) on tumor-targeting capability and excretion kinetics of the 99m Tc-labeled dimeric cyclic RGD peptides. Methods: HYNIC-I2P-RGD 2 was prepared by reacting I2P-RGD 2 with HYNIC-OSu in the presence of diisopropylethylamine, and was evaluated for its α v β 3 binding affinity against 125 I-echistatin bound to U87MG glioma cells. 99m Tc-I2P-RGD 2 was prepared with high specific activity (~185 GBq/μmol). The athymic nude mice bearing U87MG glioma xenografts were used to evaluate its biodistribution properties and image quality in comparison with those of 99m Tc-3P-RGD 2 . Results: The IC 50 value for HYNIC-I2P-RGD 2 was determined to be 39 ± 6 nM, which was very close to that (IC 50 = 33 ± 5 nM) of HYNIC-3P-RGD 2 . Replacing glutamic acid with iminodiacetic acid had little impact on α v β 3 binding affinity of cyclic RGD peptides. 99m Tc-I2P-RGD 2 and 99m Tc-3P-RGD 2 shared similar tumor uptake values over the 2 h period, and its α v β 3 -specificity was demonstrated by a blocking experiment. The uptake of 99m Tc-I2P-RGD 2 was significantly lower than 99m Tc-3P-RGD 2 in the liver and kidneys. The U87MG glioma tumors were visualized by SPECT with excellent contrast using both 99m Tc-I2P-RGD 2 and 99m Tc-3P-RGD 2 . Conclusion: Iminodiacetic acid is an excellent bifunctional linker for dimerization of cyclic RGD peptides. Bifunctional linkers have significant impact on the excretion kinetics of 99m Tc radiotracers. Because of its lower liver uptake and better tumor/liver ratios, 99m Tc-I2P-RGD 2 may have advantages over 99m Tc-3P-RGD 2 for diagnosis of tumors in chest region. -- Graphical abstract: This report presents novel approach for dimerization of cyclic RGD peptides using iminodiacetic acid as a

  19. Silicone nanocomposite coatings for fabrics

    Science.gov (United States)

    Eberts, Kenneth (Inventor); Lee, Stein S. (Inventor); Singhal, Amit (Inventor); Ou, Runqing (Inventor)

    2011-01-01

    A silicone based coating for fabrics utilizing dual nanocomposite fillers providing enhanced mechanical and thermal properties to the silicone base. The first filler includes nanoclusters of polydimethylsiloxane (PDMS) and a metal oxide and a second filler of exfoliated clay nanoparticles. The coating is particularly suitable for inflatable fabrics used in several space, military, and consumer applications, including airbags, parachutes, rafts, boat sails, and inflatable shelters.

  20. Graphene-Based Polymer Nanocomposites

    Science.gov (United States)

    2015-03-31

    polymerize in-situ around the fillers or even graft to them [71], thus it overcomes the problem of dramatically increased viscosity of the polymer...filler dispersion, increased polymer viscosity during processing and filler damage due to thermal degradation or strong shear forces [3, 82]. At...123, 124]. Figure 1.12 (a) SEM image of the fracture surface of GO/PVA nanocomposite film [85]. (b) TEM image of a clay reinforced Nylon-6

  1. Improved polymer nanocomposite dielectric breakdown performance through barium titanate to epoxy interface control

    Energy Technology Data Exchange (ETDEWEB)

    Siddabattuni, Sasidhar [Missouri University of Science and Technology (formerly the University of Missouri-Rolla), Chemistry Department, 400W. 11th Street, Rolla, MO 65409 (United States); Schuman, Thomas P., E-mail: tschuman@mst.edu [Missouri University of Science and Technology (formerly the University of Missouri-Rolla), Chemistry Department, 400W. 11th Street, Rolla, MO 65409 (United States); Dogan, Fatih [Missouri University of Science and Technology, Materials Science and Engineering Department, 1400N. Bishop Avenue, Rolla, MO 65409 (United States)

    2011-11-15

    Highlights: > A covalent filler-matrix interface improves the dielectric properties of a polymer-particle nanocomposite dielectric. > A covalent interface reduced the polymer free volume around the nanoparticles as assessed through T{sub g} measurements. > Composite T{sub g} was raised and breakdown strength improved for nanocomposites with a covalent polymer-particle interface. > A larger Maxwell-Wagner (MW) relaxation correlated with reduced breakdown strengths and energy storage densities. > The MW relaxation could be considered a dielectric defect regarding breakdown strength and energy storage density. - Abstract: A composite approach to dielectric design has the potential to provide improved permittivity as well as high breakdown strength and thus afford greater electrical energy storage density. Interfacial coupling is an effective approach to improve the polymer-particle composite dielectric film resistance to charge flow and dielectric breakdown. A bi-functional interfacial coupling agent added to the inorganic oxide particles' surface assists dispersion into the thermosetting epoxy polymer matrix and upon composite cure reacts covalently with the polymer matrix. The composite then retains the glass transition temperature of pure polymer, provides a reduced Maxwell-Wagner relaxation of the polymer-particle composite, and attains a reduced sensitivity to dielectric breakdown compared to particle epoxy composites that lack interfacial coupling between the composite filler and polymer matrix. Besides an improved permittivity, the breakdown strength and thus energy density of a covalent interface nanoparticle barium titanate in epoxy composite dielectric film, at a 5 vol.% particle concentration, was significantly improved compared to a pure polymer dielectric film. The interfacially bonded, dielectric composite film had a permittivity {approx}6.3 and at a 30 {mu}m thickness achieved a calculated energy density of 4.6 J/cm{sup 3}.

  2. Amine functionalized graphene oxide/CNT nanocomposite for ultrasensitive electrochemical detection of trinitrotoluene

    Energy Technology Data Exchange (ETDEWEB)

    Sablok, Kavita; Bhalla, Vijayender; Sharma, Priyanka; Kaushal, Roohi; Chaudhary, Shilpa [Institute of Microbial Technology (CSIR) Sector-39A, Chandigarh160036 (India); Suri, C. Raman, E-mail: raman@imtech.res.in [Institute of Microbial Technology (CSIR) Sector-39A, Chandigarh160036 (India)

    2013-03-15

    Highlights: ► Binding of electron-deficient trinitrotoluene to the electron rich amino groups to form JM complexes. ► rGO/CNT based platform for enhanced electrochemical detection. ► Functionalization and characterization of rGO/CNT with amine derivative. ► Ultrasenstitive and specific detection of TNT. -- Abstract: Binding of electron-deficient trinitrotoluene (TNT) to the electron rich amine groups on a substrate form specific charge-transfer Jackson–Meisenheimer (JM) complex. In the present work, we report formation of specific JM complex on amine functionalized reduced graphene oxide/carbon nanotubes- (a-rGO/CNT) nanocomposite leading to sensitive detection of TNT. The CNT were dispersed using graphene oxide that provides excellent dispersion by attaching to CNT through its hydrophobic domains and solubilizes through the available -OH and -COOH groups on screen printed electrode (SPE). The GO was reduced electrochemically to form reduced graphene that remarkably increases electrochemical properties owing to the intercalation of high aspect CNT on graphene flakes as shown by TEM micrograph. The surface amine functionalization of dropcasted and rGO/CNT was carried out using a bi-functional cross linker ethylenediamine. The extent of amine functionalization on modified electrodes was confirmed using energy dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS) and confocal microscopy. The FTIR and Raman spectra further suggested the formation of JM complex between amine functionalized electrodes and TNT leading to a shift in peak intensity together with peak broadening. The a-rGO/CNT nanocomposite prepared electrode surface leads to ultra-trace detection of TNT upto 0.01 ppb with good reproducibility (n = 3). The a-rGO/CNT sensing platform could be an alternate for sensitive detection of TNT explosive for various security and environmental applications.

  3. Improved polymer nanocomposite dielectric breakdown performance through barium titanate to epoxy interface control

    International Nuclear Information System (INIS)

    Siddabattuni, Sasidhar; Schuman, Thomas P.; Dogan, Fatih

    2011-01-01

    Highlights: → A covalent filler-matrix interface improves the dielectric properties of a polymer-particle nanocomposite dielectric. → A covalent interface reduced the polymer free volume around the nanoparticles as assessed through T g measurements. → Composite T g was raised and breakdown strength improved for nanocomposites with a covalent polymer-particle interface. → A larger Maxwell-Wagner (MW) relaxation correlated with reduced breakdown strengths and energy storage densities. → The MW relaxation could be considered a dielectric defect regarding breakdown strength and energy storage density. - Abstract: A composite approach to dielectric design has the potential to provide improved permittivity as well as high breakdown strength and thus afford greater electrical energy storage density. Interfacial coupling is an effective approach to improve the polymer-particle composite dielectric film resistance to charge flow and dielectric breakdown. A bi-functional interfacial coupling agent added to the inorganic oxide particles' surface assists dispersion into the thermosetting epoxy polymer matrix and upon composite cure reacts covalently with the polymer matrix. The composite then retains the glass transition temperature of pure polymer, provides a reduced Maxwell-Wagner relaxation of the polymer-particle composite, and attains a reduced sensitivity to dielectric breakdown compared to particle epoxy composites that lack interfacial coupling between the composite filler and polymer matrix. Besides an improved permittivity, the breakdown strength and thus energy density of a covalent interface nanoparticle barium titanate in epoxy composite dielectric film, at a 5 vol.% particle concentration, was significantly improved compared to a pure polymer dielectric film. The interfacially bonded, dielectric composite film had a permittivity ∼6.3 and at a 30 μm thickness achieved a calculated energy density of 4.6 J/cm 3 .

  4. Amine functionalized graphene oxide/CNT nanocomposite for ultrasensitive electrochemical detection of trinitrotoluene

    International Nuclear Information System (INIS)

    Sablok, Kavita; Bhalla, Vijayender; Sharma, Priyanka; Kaushal, Roohi; Chaudhary, Shilpa; Suri, C. Raman

    2013-01-01

    Highlights: ► Binding of electron-deficient trinitrotoluene to the electron rich amino groups to form JM complexes. ► rGO/CNT based platform for enhanced electrochemical detection. ► Functionalization and characterization of rGO/CNT with amine derivative. ► Ultrasenstitive and specific detection of TNT. -- Abstract: Binding of electron-deficient trinitrotoluene (TNT) to the electron rich amine groups on a substrate form specific charge-transfer Jackson–Meisenheimer (JM) complex. In the present work, we report formation of specific JM complex on amine functionalized reduced graphene oxide/carbon nanotubes- (a-rGO/CNT) nanocomposite leading to sensitive detection of TNT. The CNT were dispersed using graphene oxide that provides excellent dispersion by attaching to CNT through its hydrophobic domains and solubilizes through the available -OH and -COOH groups on screen printed electrode (SPE). The GO was reduced electrochemically to form reduced graphene that remarkably increases electrochemical properties owing to the intercalation of high aspect CNT on graphene flakes as shown by TEM micrograph. The surface amine functionalization of dropcasted and rGO/CNT was carried out using a bi-functional cross linker ethylenediamine. The extent of amine functionalization on modified electrodes was confirmed using energy dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS) and confocal microscopy. The FTIR and Raman spectra further suggested the formation of JM complex between amine functionalized electrodes and TNT leading to a shift in peak intensity together with peak broadening. The a-rGO/CNT nanocomposite prepared electrode surface leads to ultra-trace detection of TNT upto 0.01 ppb with good reproducibility (n = 3). The a-rGO/CNT sensing platform could be an alternate for sensitive detection of TNT explosive for various security and environmental applications

  5. CdS/ZnS nanocomposites: from mechanochemical synthesis to cytotoxicity issues

    International Nuclear Information System (INIS)

    Baláž, Peter; Baláž, Matej; Dutková, Erika; Zorkovská, Anna; Kováč, Jaroslav; Hronec, Pavol; Kováč, Jaroslav; Čaplovičová, Mária; Mojžiš, Ján; Mojžišová, Gabriela; Eliyas, Alexander; Kostova, Nina G.

    2016-01-01

    nm were prepared. • The presence of ZnS in the nanocomposite strongly reduces the dissolution of Cd. • The nanocomposites can be applied as targeted fluorescent labels.

  6. CdS/ZnS nanocomposites: from mechanochemical synthesis to cytotoxicity issues

    Energy Technology Data Exchange (ETDEWEB)

    Baláž, Peter; Baláž, Matej [Institute of Geotechnics, Slovak Academy of Sciences, 04001 Košice (Slovakia); Dutková, Erika, E-mail: dutkova@saske.sk [Institute of Geotechnics, Slovak Academy of Sciences, 04001 Košice (Slovakia); Zorkovská, Anna [Institute of Geotechnics, Slovak Academy of Sciences, 04001 Košice (Slovakia); Kováč, Jaroslav; Hronec, Pavol; Kováč, Jaroslav [Institute of Electronics and Photonics, Slovak University of Technology and International Laser Centre, 81219 Bratislava (Slovakia); Čaplovičová, Mária [STU Centre for Nanodiagnostics, Slovak University of Technology, Vazovova 5, 812 43 Bratislava (Slovakia); Mojžiš, Ján; Mojžišová, Gabriela [Faculty of Medicine, P. J. Šafárik University, 04011 Košice (Slovakia); Eliyas, Alexander; Kostova, Nina G. [Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)

    2016-01-01

    size 3–4 nm were prepared. • The presence of ZnS in the nanocomposite strongly reduces the dissolution of Cd. • The nanocomposites can be applied as targeted fluorescent labels.

  7. LIGNOCELLULOSE NANOCOMPOSITE CONTAINING COPPER SULFIDE

    Directory of Open Access Journals (Sweden)

    Sanchi Nenkova

    2011-04-01

    Full Text Available Copper sulfide-containing lignocellulose nanocomposites with improved electroconductivity were obtained. Two methods for preparing the copper sulfide lignocellulose nanocomposites were developed. An optimization of the parameters for obtaining of the nanocomposites with respect to obtaining improved electroconductivity, economy, and lower quantities and concentration of copper and sulfur ions in waste waters was conducted. The mechanisms and schemes of delaying and subsequent connection of copper sulfides in the lignocellulosic matrix were investigated. The modification with a system of 2 components: cupric sulfate pentahydrate (CuSO4. 5H2O and sodium thiosulfate pentahydrate (Na2S2O3.5H2O for wood fibers is preferred. Optimal parameters were established for the process: 40 % of the reduction system; hydromodule M=1:6; and ratio of cupric sulfate pentahydrate:sodium thiosulfate pentahydrate = 1:2. The coordinative connection of copper ions with oxygen atoms of cellulose OH groups and aromatic nucleus in lignin macromolecule was observed.

  8. Nanocomposites Based on Biodegradable Polymers

    Directory of Open Access Journals (Sweden)

    Ilaria Armentano

    2018-05-01

    Full Text Available In the present review paper, our main results on nanocomposites based on biodegradable polymers (on a time scale from 2010 to 2018 are reported. We mainly focused our attention on commercial biodegradable polymers, which we mixed with different nanofillers and/or additives with the final aim of developing new materials with tunable specific properties. A wide list of nanofillers have been considered according to their shape, properties, and functionalization routes, and the results have been discussed looking at their roles on the basis of different adopted processing routes (solvent-based or melt-mixing processes. Two main application fields of nanocomposite based on biodegradable polymers have been considered: the specific interaction with stem cells in the regenerative medicine applications or as antimicrobial materials and the active role of selected nanofillers in food packaging applications have been critically revised, with the main aim of providing an overview of the authors’ contribution to the state of the art in the field of biodegradable polymeric nanocomposites.

  9. Complexation and biodistribution study of 111In complexes of bifunctional phosphinic acid analogues of H4DOTA

    Czech Academy of Sciences Publication Activity Database

    Forsterová, Michaela; Zimová, Jana; Petrík, M.; Lázníček, M.; Lázníčková, A.; Hermann, P.; Melichar, František

    2007-01-01

    Roč. 2, č. 337 (2007), s. 34-34 ISSN 1619-7070 R&D Projects: GA AV ČR 1QS100480501 Institutional research plan: CEZ:AV0Z10480505 Keywords : bifunctional H4DOTA ligands * phosphinic acid analogues, * complexation of 111In Subject RIV: FR - Pharmacology ; Medidal Chemistry

  10. Catalysis engineering of bifunctional solids for the one-step synthesis of liquid fuels from syngas : A review

    NARCIS (Netherlands)

    Sartipi, S.; Makkee, M.; Kapteijn, F.; Gascon, J.

    2014-01-01

    The combination of acidic zeolites and Fischer–Tropsch synthesis (FTS) catalysts for one-step production of liquid fuels from syngas is critically reviewed. Bifunctional systems are classified by the proximity between FTS and acid functionalities on three levels: reactor, catalyst particle, and

  11. Nanocrystal-polymer nanocomposite electrochromic device

    Science.gov (United States)

    Milliron, Delia; Runnerstrom, Evan; Helms, Brett; Llordes, Anna; Buonsanti, Raffaella; Garcia, Guillermo

    2015-12-08

    Described is an electrochromic nanocomposite film comprising a solid matrix of an oxide based material, the solid matrix comprising a plurality of transparent conducting oxide (TCO) nanostructures dispersed in the solid matrix and a lithium salt dispersed in the solid matrix. Also described is a near infrared nanostructured electrochromic device having a functional layer comprising the electrochromic nanocomposite film.

  12. High-frequency magnetoimpedance in nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Yurasov, Alexey [Moscow State Institute of Radioengineering, Electronics and Automation (Technical University), Moscow 117454 (Russian Federation)]. E-mail: alexey_yurasov@mail.ru; Granovsky, Alexander [Faculty of Physics, Moscow State University, Leninskie Gory, Moscow 119992 (Russian Federation); Tarapov, Sergey [Institute of Radiophysics and Electronics, National Academy of Sciences of Ukraine, Kharkov 61085 (Ukraine); Clerc, Jean-Pierre [Ecole Polytechnique Universitaire de Marseille, Technopole de Chateau-Gombert, Marseille 13453 (France)

    2006-05-15

    The transmission of millimeter-range electromagnetic waves (30-50 GHz) through a magnetic nanocomposite thin film exhibiting tunnel magnetoresistance (TMR) is calculated. The relative change of transmission coefficient in an applied magnetic field due to the magnetorefractive effect is approximately linear with TMR and strongly depends on nanocomposite resistivity and film thickness. The obtained results are in a good agreement with experiment.

  13. High-frequency magnetoimpedance in nanocomposites

    International Nuclear Information System (INIS)

    Yurasov, Alexey; Granovsky, Alexander; Tarapov, Sergey; Clerc, Jean-Pierre

    2006-01-01

    The transmission of millimeter-range electromagnetic waves (30-50 GHz) through a magnetic nanocomposite thin film exhibiting tunnel magnetoresistance (TMR) is calculated. The relative change of transmission coefficient in an applied magnetic field due to the magnetorefractive effect is approximately linear with TMR and strongly depends on nanocomposite resistivity and film thickness. The obtained results are in a good agreement with experiment

  14. Highly Conductive Multifunctional Graphene Polycarbonate Nanocomposites

    Science.gov (United States)

    Yoonessi, Mitra; Gaier, James R.

    2010-01-01

    Graphene nanosheet bisphenol A polycarbonate nanocomposites (0.027 2.2 vol %) prepared by both emulsion mixing and solution blending methods, followed by compression molding at 287 C, exhibited dc electrical percolation threshold of approx.0.14 and approx.0.38 vol %, respectively. The conductivities of 2.2 vol % graphene nanocomposites were 0.512 and 0.226 S/cm for emulsion and solution mixing. The 1.1 and 2.2 vol % graphene nanocomposites exhibited frequency-independent behavior. Inherent conductivity, extremely high aspect ratio, and nanostructure directed assembly of the graphene using PC nanospheres are the main factors for excellent electrical properties of the nanocomposites. Dynamic tensile moduli of nanocomposites increased with increasing graphene in the nanocomposite. The glass transition temperatures were decreased with increasing graphene for the emulsion series. High-resolution electron microscopy (HR-TEM) and small-angle neutron scattering (SANS) showed isolated graphene with no connectivity path for insulating nanocomposites and connected nanoparticles for the conductive nanocomposites. A stacked disk model was used to obtain the average particle radius, average number of graphene layers per stack, and stack spacing by simulation of the experimental SANS data. Morphology studies indicated the presence of well-dispersed graphene and small graphene stacking with infusion of polycarbonate within the stacks.

  15. Biopolymer nanocomposite films reinforced with nanocellulose whiskers

    Science.gov (United States)

    Amit Saxena; Marcus Foston; Mohamad Kassaee; Thomas J. Elder; Arthur J. Ragauskas

    2011-01-01

    A xylan nanocomposite film with improved strength and barrier properties was prepared by a solution casting using nanocellulose whiskers as a reinforcing agent. The 13C cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance (NMR) analysis of the spectral data obtained for the NCW/xylan nanocomposite films indicated the signal intensity originating...

  16. Multiwalled Carbon Nanotube-titania Nanocomposites ...

    African Journals Online (AJOL)

    NICOLAAS

    Physical and chemical characterization of the mesoporous nanocomposites from ... On the other hand, nanocomposites from sol-gel synthetic method had larger surface areas, were more defective ... This highlights the great potential of typical nanomaterials in ... various options available, especially for a developing world.

  17. Nanocomposite of graphene and metal oxide materials

    Science.gov (United States)

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2012-09-04

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10C.

  18. Nanocomposite of graphene and metal oxide materials

    Science.gov (United States)

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2013-10-15

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.

  19. Parylene nanocomposites using modified magnetic nanoparticles

    International Nuclear Information System (INIS)

    Garcia, Ignacio; Luzuriaga, A. Ruiz de; Grande, H.; Jeandupeux, L.; Charmet, J.; Laux, E.; Keppner, H.; Mecerreyes, D.; Cabanero, German

    2010-01-01

    Parylene/Fe 3 O 4 nanocomposites were synthesized and characterized. The nanocomposites were obtained by chemical vapour deposition polymerization of Parylene onto functionalized Fe 3 O 4 nanoparticles. For this purpose, allyltrichlorosilane was used to modify the surface of 7 nm size Fe 3 O 4 nanoparticles obtained by the coprecipitation method. The magnetic nanoparticles and obtained nanocomposite were characterized with X-ray diffraction (XRD), infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA) and magnetic measurements (SQUID). The successful incorporation of different amounts of nanoparticles into Parylene was confirmed by FTIR and TGA. Interestingly, increments in saturation magnetization of the nanocomposites were observed ranging from 0 emu/g of neat Parylene to 16.94 emu/g in the case of nanocomposite films that contained 27.5 wt% of nanoparticles.

  20. Advances in rubber/halloysite nanotubes nanocomposites.

    Science.gov (United States)

    Jia, Zhixin; Guo, Baochun; Jia, Demin

    2014-02-01

    The research advances in rubber/halloysite nanotubes (rubber/HNTs) nanocomposites are reviewed. HNTs are environmentally-friendly natural nanomaterials, which could be used to prepare the rubber-based nanocomposites with high performance and low cost. Unmodified HNTs could be adopted to prepare the rubber/HNTs composites with improved mechanical properties, however, the rubber/HNTs nanocomposites with fine morphology and excellent properties were chiefly prepared with various modifiers by in situ mixing method. A series of rubber/HNTs nanocomposites containing several rubbers (SBR, NR, xSBR, NBR, PU) and different modifiers (ENR, RH, Si69, SA, MAA, ILs) have been investigated. The results showed that all the rubber/HNTs nanocomposites achieved strong interfacial interaction via interfacial covalent bonds, hydrogen bonds or multiple interactions, realized significantly improved dispersion of HNTs at nanoscale and exhibited excellent mechanical performances and other properties.

  1. Fabrication and properties of multiferroic nanocomposite films

    KAUST Repository

    Al-Nassar, Mohammed Y.; Ivanov, Yurii P.; Kosel, Jü rgen

    2015-01-01

    A new type of multiferroic polymer nanocomposite is presented, which exhibits excellent ferromagnetism and ferroelectricity simultaneously at room temperature. The multiferroic nanocomposite consists of a ferroelectric copolymer poly(vinylindene fluoride-trifluoroethylene) [P(VDF-TrFE)] and high aspect ratio ferromagnetic nickel (Ni) nanowires (NWs), which were grown inside anodic aluminum oxide membranes. The fabrication of nanocomposite films with Ni NWs embedded in P(VDF-TrFE) has been successfully carried out via a simple low-temperature spin-coating technique. Structural, ferromagnetic, and ferroelectric properties of the developed nanocomposite have been investigated. The remanent and saturation polarization as well as the coercive field of the ferroelectric phase are slightly affected by the incorporation of the NWs as well as the thickness of the films. While the former two decrease, the last increases by adding the NWs or increasing the thickness. The ferromagnetic properties of the nanocomposite films are found to be isotropic.

  2. Nanocomposite organomineral hybrid materials. Part 2

    Directory of Open Access Journals (Sweden)

    KUDRYAVTSEV Pavel Gennadievich

    2016-04-01

    Full Text Available The paper addresses the issues of alkoxide method of sol-gel synthesis and non-hydrolytic method of sol-gel synthesis and colloidal method of sol-gel synthesis. The authors also consider an alternative approach based on the use of soluble silicates as precursors in the sol-gel technology, of nanocomposites. It was shown that nanocomposites can be produced through aerogels. The paper also analyzes the mixing technologies of nanocomposites preparation. It has been demonstrated the possibility to change the types of nano-phase which is used for obtaining nanocomposites in different approaches. Various models of packaging spherical, fibrous and layered nanoparticles, introduced into the structure of the nanocomposite, in the preparation thereof were examined.

  3. Nanocomposite organomineral hybrid materials. Part I

    Directory of Open Access Journals (Sweden)

    KUDRYAVTSEV Pavel Gennadievich

    2016-02-01

    Full Text Available The paper addresses the issues of alkoxide method of sol-gel synthesis and non-hydrolytic method of sol-gel synthesis and colloidal method of sol-gel synthesis. The authors also consider an alternative approach based on the use of soluble silicates as precursors in the sol-gel technology, of nanocomposites. It was shown that nanocomposites can be produced through aerogels. The paper also analyzes the mixing technologies of nanocomposites preparation. It has been demonstrated the possibility to change the types of nano-phase which is used for obtaining nanocomposites in different approaches. Various models of packaging spherical, fibrous and layered nanoparticles, introduced into the structure of the nanocomposite, in the preparation thereof were examined.

  4. Nanocomposite organomineral hybrid materials. Part 3

    Directory of Open Access Journals (Sweden)

    KUDRYAVTSEV Pavel Gennadievich

    2016-06-01

    Full Text Available The paper addresses the issues of alkoxide method of sol-gel synthesis and non-hydrolytic method of sol-gel synthesis and colloidal method of sol-gel synthesis. The authors also consider an alternative approach based on the use of soluble silicates as precursors in the sol-gel technology, of nanocomposites. It was shown that nanocomposites can be produced through aerogels. The paper also analyzes the mixing technologies of nanocomposites preparation. It has been demonstrated the possibility to change the types of nano-phase which is used for obtaining nanocomposites in different approaches. Various models of packaging spherical, fibrous and layered nanoparticles, introduced into the structure of the nanocomposite, in the preparation thereof were examined.

  5. NANODIAMONDS FOR FLUORESCENT CELL AND SENSOR NANOTECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    V. I. Nazarenko

    2013-10-01

    Full Text Available This review addresses the analysis of properties and applications of fluorescent nanodiamonds. They are carbon nanostructures with atomic arrangement of a diamond and carry all its properties, including record — high density, rigidity and refraction index. They are of almost spherical shape, and their small size (~4–10 nm creates substantial surface area that can be used for absorption of different compounds including drugs. Their surface is formed by different chemical groups (hydroxyls, carboxyls, etc. exhibits also chemical reactivity that allows different types of modifications. This opens innumerable possibilities for constructing different functional nanomaterials. The technologies have been developed for making these nanodiamonds fluorescent. Particularly, these properties are achieved by radioactive treatment with the formation of N–V impurities. These particles absorb and emit light in convenient for observation visible range of spectrum. They do not photobleach, which is very attractive for fluorescent microscopy of the cell. And, finally, these nanoparticles do not display toxicity on the cellular or whole — body level, and because of their biocompatibility they can be used in vivo as contrast agents and drug carriers. It is expected that future biotechnological applications of these nanoparticles will be connected with the creation of nanocomposites that combine multiple useful functions.

  6. The structure of Haemophilus influenzae prephenate dehydrogenase suggests unique features of bifunctional TyrA enzymes

    International Nuclear Information System (INIS)

    Chiu, Hsiu-Ju; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L.; Carlton, Dennis; Clayton, Thomas; Das, Debanu; Deller, Marc C.; Duan, Lian; Feuerhelm, Julie; Grant, Joanna C.; Grzechnik, Anna; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Krishna, S. Sri; Kumar, Abhinav; Marciano, David; McMullan, Daniel; Miller, Mitchell D.; Morse, Andrew T.; Nigoghossian, Edward; Okach, Linda; Reyes, Ron; Tien, Henry J.; Trame, Christine B.; Bedem, Henry van den; Weekes, Dana; Xu, Qingping; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2010-01-01

    The crystal structure of the prephenate dehydrogenase component of the bifunctional H. influenzae TyrA reveals unique structural differences between bifunctional and monofunctional TyrA enzymes. Chorismate mutase/prephenate dehydrogenase from Haemophilus influenzae Rd KW20 is a bifunctional enzyme that catalyzes the rearrangement of chorismate to prephenate and the NAD(P) + -dependent oxidative decarboxylation of prephenate to 4-hydroxyphenylpyruvate in tyrosine biosynthesis. The crystal structure of the prephenate dehydrogenase component (HinfPDH) of the TyrA protein from H. influenzae Rd KW20 in complex with the inhibitor tyrosine and cofactor NAD + has been determined to 2.0 Å resolution. HinfPDH is a dimeric enzyme, with each monomer consisting of an N-terminal α/β dinucleotide-binding domain and a C-terminal α-helical dimerization domain. The structure reveals key active-site residues at the domain interface, including His200, Arg297 and Ser179 that are involved in catalysis and/or ligand binding and are highly conserved in TyrA proteins from all three kingdoms of life. Tyrosine is bound directly at the catalytic site, suggesting that it is a competitive inhibitor of HinfPDH. Comparisons with its structural homologues reveal important differences around the active site, including the absence of an α–β motif in HinfPDH that is present in other TyrA proteins, such as Synechocystis sp. arogenate dehydrogenase. Residues from this motif are involved in discrimination between NADP + and NAD + . The loop between β5 and β6 in the N-terminal domain is much shorter in HinfPDH and an extra helix is present at the C-terminus. Furthermore, HinfPDH adopts a more closed conformation compared with TyrA proteins that do not have tyrosine bound. This conformational change brings the substrate, cofactor and active-site residues into close proximity for catalysis. An ionic network consisting of Arg297 (a key residue for tyrosine binding), a water molecule, Asp206 (from

  7. Reviews in fluorescence 2010

    CERN Document Server

    Geddes, Chris D

    2011-01-01

    ""Reviews in Fluorescence 2010"", the seventh volume of the book serial from Springer, serves as a comprehensive collection of current trends and emerging hot topics in the field of fluorescence and closely related disciplines. It summarizes the year's progress in fluorescence and its applications, with authoritative analytical reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of fluorescence. ""Reviews in Fluorescence"" offers an essential reference material for any lab working in the fluoresc

  8. Principles of fluorescence techniques

    CERN Document Server

    2016-01-01

    Fluorescence techniques are being used and applied increasingly in academics and industry. The Principles of Fluorescence Techniques course will outline the basic concepts of fluorescence techniques and the successful utilization of the currently available commercial instrumentation. The course is designed for students who utilize fluorescence techniques and instrumentation and for researchers and industrial scientists who wish to deepen their knowledge of fluorescence applications. Key scientists in the field will deliver theoretical lectures. The lectures will be complemented by the direct utilization of steady-state and lifetime fluorescence instrumentation and confocal microscopy for FLIM and FRET applications provided by leading companies.

  9. Growth and optical characterization of colloidal CdTe nanoparticles capped by a bifunctional molecule

    Energy Technology Data Exchange (ETDEWEB)

    Abd El-sadek, M.S., E-mail: el_sadek_99@email.co [Nanomaterial Laboratory, Physics Department, Faculty of Science, South Valley University, Qena-83523 (Egypt); Crystal Growth Centre, Anna University Chennai, Chennai-600025 (India); Moorthy Babu, S. [Crystal Growth Centre, Anna University Chennai, Chennai-600025 (India)

    2010-08-15

    Thiol-capped CdTe nanoparticles were synthesized in aqueous solution by wet chemical route. CdTe nanoparticles with bifunctional molecule mercaptoacetic acid as a stabilizer were synthesized at pH{approx}11.2 and using potassium tellurite as tellurium source. The effect of refluxing time on the preparation of these samples was measured using UV-vis absorption and photoluminescence analysis. By increasing the refluxing time the UV-vis absorption and photoluminescence results show that the band edge emission is redshifted. The synthesized thiol-capped CdTe were characterized with FT-IR, TEM and TG-DTA. The particle size was calculated by the effective mass approximation (EMA). The role of precursors, their composition, pH and reaction procedure on the development of nanoparticles are analyzed.

  10. Boehmite-An Efficient and Recyclable Acid-Base Bifunctional Catalyst for Aldol Condensation Reaction.

    Science.gov (United States)

    Reshma, P C Rajan; Vikneshvaran, Sekar; Velmathi, Sivan

    2018-06-01

    In this work boehmite was used as an acid-base bifunctional catalyst for aldol condensation reactions of aromatic aldehydes and ketones. The catalyst was prepared by simple sol-gel method using Al(NO3)3·9H2O and NH4OH as precursors. The catalyst has been characterized by X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), Scanning Electron Microscopy (SEM), UV-visible spectroscopy (DRS), BET surface area analyses. Boehmite is successfully applied as catalyst for the condensation reaction between 4-nitrobenzaldehyde and acetone as a model substrate giving α, β-unsaturated ketones without any side product. The scope of the reaction is extended for various substituted aldehydes. A probable mechanism has been suggested to explain the cooperative behavior of the acidic and basic sites. The catalyst is environmentally friendly and easily recovered from the reaction mixture. Also the catalyst is reusable up to 3 catalytic cycles.

  11. Bi-functional biobased packing of the cassava starch, glycerol, licuri nanocellulose and red propolis.

    Directory of Open Access Journals (Sweden)

    Samantha Serra Costa

    Full Text Available The aim of this study was to characterize and determine the bi-functional efficacy of active packaging films produced with starch (4% and glycerol (1.0%, reinforced with cellulose nanocrystals (0-1% and activated with alcoholic extracts of red propolis (0.4 to 1.0%. The cellulose nanocrystals used in this study were extracted from licuri leaves. The films were characterized using moisture, water-activity analyses and water vapor-permeability tests and were tested regarding their total phenolic compounds and mechanical properties. The antimicrobial and antioxidant efficacy of the films were evaluated by monitoring the use of the active films for packaging cheese curds and butter, respectively. The cellulose nanocrystals increased the mechanical strength of the films and reduced the water permeability and water activity. The active film had an antimicrobial effect on coagulase-positive staphylococci in cheese curds and reduced the oxidation of butter during storage.

  12. Improving battery safety by early detection of internal shorting with a bifunctional separator

    Science.gov (United States)

    Wu, Hui; Zhuo, Denys; Kong, Desheng; Cui, Yi

    2014-10-01

    Lithium-based rechargeable batteries have been widely used in portable electronics and show great promise for emerging applications in transportation and wind-solar-grid energy storage, although their safety remains a practical concern. Failures in the form of fire and explosion can be initiated by internal short circuits associated with lithium dendrite formation during cycling. Here we report a new strategy for improving safety by designing a smart battery that allows internal battery health to be monitored in situ. Specifically, we achieve early detection of lithium dendrites inside batteries through a bifunctional separator, which offers a third sensing terminal in addition to the cathode and anode. The sensing terminal provides unique signals in the form of a pronounced voltage change, indicating imminent penetration of dendrites through the separator. This detection mechanism is highly sensitive, accurate and activated well in advance of shorting and can be applied to many types of batteries for improved safety.

  13. Basic evaluation of [sup 67]Ga labeled digoxin derivative as a metal-labeled bifunctional radiopharmaceutical

    Energy Technology Data Exchange (ETDEWEB)

    Fujibayashi, Yasuhisa; Konishi, Junji (Kyoto Univ. (Japan). Faculty of Medicine); Takemura, Yasutaka; Taniuchi, Hideyuki; Iijima, Naoko; Yokoyama, Akira

    1993-11-01

    To develop metal-labeled digoxin radiopharmaceuticals with affinity with anti-digoxin antibody as well as Na[sup +], K[sup +]-ATPase, a digoxin derivative conjugated with deferoxamine was synthesized. The derivative had a high binding affinity with [sup 67]Ga at deferoxamine introduced to the terminal sugar ring of digoxin. The [sup 67]Ga labeled digoxin derivative showed enough in vitro binding affinity and selectivity to anti-digoxin antibody as well as Na[sup +], K[sup +]-ATPase. The [sup 67]Ga labeled digoxin derivative is considered to be a potential metal-labeled bifunctional radiopharmaceutical for digoxin RIA as well as myocardial Na[sup +], K[sup +]-ATPase imaging. (author).

  14. First-Principles Study of Structure Property Relationships of Monolayer (Hydroxy)Oxide-Metal Bifunctional Electrocatalysts

    DEFF Research Database (Denmark)

    Zeng, Zhenhua; Kubal, Joseph; Greeley, Jeffrey Philip

    2015-01-01

    step towards accurate identification and prediction of a variety of oxide/electrode interfacial structure-properties relationships, but also provides the foundation for rational design and control of ‘targeted active phases’ at catalytic interfaces. The successful design of bifunctional......In the present study, on the basis of detailed density functional theory (DFT) calculations, and using Ni hydroxy(oxide) films on Pt(111) and Au(111) electrodes as model systems, we describe a detailed structural and electrocatalytic analysis of hydrogen evolution (HER) at three-phase boundaries...... under alkaline electrochemical conditions. We demonstrate that the structure and oxidation state of the films can be systematically tuned by changing the applied electrode potential and/or the nature of substrates. Structural features determined from the theoretical calculations provide a wealth...

  15. Polarization holograms in a bifunctional amorphous polymer exhibiting equal values of photoinduced linear and circular birefringences.

    Science.gov (United States)

    Provenzano, Clementina; Pagliusi, Pasquale; Cipparrone, Gabriella; Royes, Jorge; Piñol, Milagros; Oriol, Luis

    2014-10-09

    Light-controlled molecular alignment is a flexible and useful strategy introducing novelty in the fields of mechanics, self-organized structuring, mass transport, optics, and photonics and addressing the development of smart optical devices. Azobenzene-containing polymers are well-known photocontrollable materials with large and reversible photoinduced optical anisotropies. The vectorial holography applied to these materials enables peculiar optical devices whose properties strongly depend on the relative values of the photoinduced birefringences. Here is reported a polarization holographic recording based on the interference of two waves with orthogonal linear polarization on a bifunctional amorphous polymer that, exceptionally, exhibits equal values of linear and circular birefringence. The peculiar photoresponse of the material coupled with the holographic technique demonstrates an optical device capable of decomposing the light into a set of orthogonally polarized linear components. The holographic structures are theoretically described by the Jones matrices method and experimentally investigated.

  16. Development of tartaric esters as bifunctional additives of methanol-gasoline.

    Science.gov (United States)

    Zhang, Jie; Yang, Changchun; Tang, Ying; Zhou, Rui; Wang, Xiaoli; Xu, Lianghong

    2014-01-01

    Methanol has become an alternative fuel for gasoline, which is facing a rapidly rising world demand with a limited oil supply. Methanol-gasoline has been used in China, but phase stability and vapor lock still need to be resolved in methanol-gasoline applications. In this paper, a series of tartaric esters were synthesized and used as phase stabilizers and saturation vapor pressure depressors for methanol-gasoline. The results showed that the phase stabilities of tartaric esters for methanol-gasoline depend on the length of the alkoxy group. Several tartaric esters were found to be effective in various gasoline-methanol blends, and the tartaric esters display high capacity to depress the saturation vapor pressure of methanol-gasoline. According to the results, it can be concluded that the tartaric esters have great potential to be bifunctional gasoline-methanol additives.

  17. Novel 3-nitrotriazole-based amides and carbinols as bifunctional anti-Chagasic agents

    Science.gov (United States)

    Papadopoulou, Maria V.; Bloomer, William D.; Lepesheva, Galina I.; Rosenzweig, Howard S.; Kaiser, Marcel; Aguilera-Venegas, Benjamín; Wilkinson, Shane R.; Chatelain, Eric; Ioset, Jean-Robert

    2015-01-01

    3-Nitro-1H-1,2,4-triazole-based amides with a linear, rigid core and 3-nitrotriazole-based fluconazole analogs were synthesized as dual functioning antitrypanosomal agents. Such compounds are excellent substrates for type I nitroreductase (NTR) located in the mitochondrion of trypanosomatids and, at the same time, act as inhibitors of the sterol 14α-demethylase (T. cruzi CYP51) enzyme. Because combination treatments against parasites are often superior to monotherapy, we believe that this emerging class of bifunctional compounds may introduce a new generation of antitrypanosomal drugs. In the present work, the synthesis and in vitro and in vivo evaluation of such compounds is discussed. PMID:25580906

  18. On the molecular basis of D-bifunctional protein deficiency type III.

    Directory of Open Access Journals (Sweden)

    Maija L Mehtälä

    Full Text Available Molecular basis of D-bifunctional protein (D-BP deficiency was studied with wild type and five disease-causing variants of 3R-hydroxyacyl-CoA dehydrogenase fragment of the human MFE-2 (multifunctional enzyme type 2 protein. Complementation analysis in vivo in yeast and in vitro enzyme kinetic and stability determinants as well as in silico stability and structural fluctuation calculations were correlated with clinical data of known patients. Despite variations not affecting the catalytic residues, enzyme kinetic performance (K(m, V(max and k(cat of the recombinant protein variants were compromised to a varying extent and this can be judged as the direct molecular cause for D-BP deficiency. Protein stability plays an additional role in producing non-functionality of MFE-2 in case structural variations affect cofactor or substrate binding sites. Structure-function considerations of the variant proteins matched well with the available data of the patients.

  19. Antibacterial activity and mechanism of Ag-ZnO nanocomposite on S. aureus and GFP-expressing antibiotic resistant E. coli.

    Science.gov (United States)

    Matai, Ishita; Sachdev, Abhay; Dubey, Poornima; Kumar, S Uday; Bhushan, Bharat; Gopinath, P

    2014-03-01

    Emergence of multi-resistant organisms (MROs) leads to ineffective treatment with the currently available medications which pose a great threat to public health and food technology sectors. In this regard, there is an urgent need to strengthen the present therapies or to look over for other potential alternatives like use of "metal nanocomposites". Thus, the present study focuses on synthesis of silver-zinc oxide (Ag-ZnO) nanocomposites which will have a broad-spectrum antibacterial activity against Gram-positive and Gram-negative bacteria. Ag-ZnO nanocomposites of varied molar ratios were synthesized by simple microwave assisted reactions in the absence of surfactants. The crystalline behavior, composition and morphological analysis of the prepared powders were evaluated by X-ray diffraction, infrared spectroscopy, field emission scanning electron microscopy (FE-SEM) and atomic absorption spectrophotometry (AAS). Particle size measurements were carried out by transmission electron microscopy (TEM). Staphylococcus aureus and recombinant green fluorescent protein (GFP) expressing antibiotic resistant Escherichia coli were selected as Gram-positive and Gram-negative model systems respectively and the bactericidal activity of Ag-ZnO nanocomposite was studied. The minimum inhibitory concentration (MIC) and minimum killing concentration (MKC) of the nanocomposite against the model systems were determined by visual turbidity analysis and optical density analysis. Qualitative and quantitative assessments of its antibacterial effects were performed by fluorescent microscopy, fluorescent spectroscopy and Gram staining measurements. Changes in cellular morphology were examined by atomic force microscopy (AFM), FE-SEM and TEM. Finally, on the basis of the present investigation and previously published reports, a plausible antibacterial mechanism of Ag-ZnO nanocomposites was proposed. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Effective Optical Properties of Plasmonic Nanocomposites

    Directory of Open Access Journals (Sweden)

    Christoph Etrich

    2014-01-01

    Full Text Available Plasmonic nanocomposites find many applications, such as nanometric coatings in emerging fields, such as optotronics, photovoltaics or integrated optics. To make use of their ability to affect light propagation in an unprecedented manner, plasmonic nanocomposites should consist of densely packed metallic nanoparticles. This causes a major challenge for their theoretical description, since the reliable assignment of effective optical properties with established effective medium theories is no longer possible. Established theories, e.g., the Maxwell-Garnett formalism, are only applicable for strongly diluted nanocomposites. This effective description, however, is a prerequisite to consider plasmonic nanocomposites in the design of optical devices. Here, we mitigate this problem and use full wave optical simulations to assign effective properties to plasmonic nanocomposites with filling fractions close to the percolation threshold. We show that these effective properties can be used to properly predict the optical action of functional devices that contain nanocomposites in their design. With this contribution we pave the way to consider plasmonic nanocomposites comparably to ordinary materials in the design of optical elements.

  1. Defective DNA cross-link removal in Chinese hamster cell mutants hypersensitive to bifunctional alkylating agents

    International Nuclear Information System (INIS)

    Hoy, C.A.; Thompson, L.H.; Mooney, C.L.; Salazar, E.P.

    1985-01-01

    DNA repair-deficient mutants from five genetic complementation groups isolated previously from Chinese hamster cells were assayed for survival after exposure to the bifunctional alkylating agents mitomycin C or diepoxybutane. Groups 1, 3, and 5 exhibited 1.6- to 3-fold hypersensitivity compared to the wild-type cells, whereas Groups 2 and 4 exhibited extraordinary hypersensitivity. Mutants from Groups 1 and 2 were exposed to 22 other bifunctional alkylating agents in a rapid assay that compared cytotoxicity of the mutants to the wild-type parental strain, AA8. With all but two of the compounds, the Group 2 mutant (UV4) was 15- to 60-fold more sensitive than AA8 or the Group 1 mutant (UV5). UV4 showed only 6-fold hypersensitivity to quinacrine mustard. Alkaline elution measurements showed that this compound produced few DNA interstrand cross-links but numerous strand breaks. Therefore, the extreme hypersensitivity of mutants from Groups 2 and 4 appeared specific for compounds the main cytotoxic lesions of which were DNA cross-links. Mutant UV5 was only 1- to 4-fold hypersensitive to all the compounds. Although the initial number of cross-links was similar for the three cell lines, the efficiency of removal of cross-links was lowest in UV4 and intermediate in UV5. These results suggest that the different levels of sensitivity are specifically related to different efficiencies of DNA cross-link removal. The phenotype of hypersensitivity to both UV radiation and cross-link damage exhibited by the mutants in Groups 2 and 4 appears to differ from those of the known human DNA repair syndromes

  2. Arabidopsis RIBA Proteins: Two out of Three Isoforms Have Lost Their Bifunctional Activity in Riboflavin Biosynthesis

    Science.gov (United States)

    Hiltunen, Hanna-Maija; Illarionov, Boris; Hedtke, Boris; Fischer, Markus; Grimm, Bernhard

    2012-01-01

    Riboflavin serves as a precursor for flavocoenzymes (FMN and FAD) and is essential for all living organisms. The two committed enzymatic steps of riboflavin biosynthesis are performed in plants by bifunctional RIBA enzymes comprised of GTP cyclohydrolase II (GCHII) and 3,4-dihydroxy-2-butanone-4-phosphate synthase (DHBPS). Angiosperms share a small RIBA gene family consisting of three members. A reduction of AtRIBA1 expression in the Arabidopsis rfd1mutant and in RIBA1 antisense lines is not complemented by the simultaneously expressed isoforms AtRIBA2 and AtRIBA3. The intensity of the bleaching leaf phenotype of RIBA1 deficient plants correlates with the inactivation of AtRIBA1 expression, while no significant effects on the mRNA abundance of AtRIBA2 and AtRIBA3 were observed. We examined reasons why both isoforms fail to sufficiently compensate for a lack of RIBA1 expression. All three RIBA isoforms are shown to be translocated into chloroplasts as GFP fusion proteins. Interestingly, both AtRIBA2 and AtRIBA3 have amino acid exchanges in conserved peptides domains that have been found to be essential for the two enzymatic functions. In vitro activity assays of GCHII and DHBPS with all of the three purified recombinant AtRIBA proteins and complementation of E. coli ribA and ribB mutants lacking DHBPS and GCHII expression, respectively, confirmed the loss of bifunctionality for AtRIBA2 and AtRIBA3. Phylogenetic analyses imply that the monofunctional, bipartite RIBA3 proteins, which have lost DHBPS activity, evolved early in tracheophyte evolution. PMID:23203051

  3. Gently reduced graphene oxide incorporated into cobalt oxalate rods as bifunctional oxygen electrocatalyst

    International Nuclear Information System (INIS)

    Phihusut, Doungkamon; Ocon, Joey D.; Jeong, Beomgyun; Kim, Jin Won; Lee, Jae Kwang; Lee, Jaeyoung

    2014-01-01

    Graphical abstract: - Abstract: Water-oxygen electrochemistry is at the heart of key renewable energy technologies (fuel cells, electrolyzers, and metal-air batteries) due to the sluggish kinetics of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Although much effort has been devoted to the development of improved bifunctional electrocatalysts, an inexpensive, highly active oxygen electrocatalyst, however, remains to be a challenge. In this paper, we present a facile and robust method to create gently reduced graphene oxide incorporated into cobalt oxalate microstructures (CoC 2 O 4 /gRGO) and demonstrate its excellent and stable electrocatalytic activity in both OER and ORR, arising from the inherent properties of the components and their physicochemical interaction. Our synthesis technique also explores a single pot method to partially reduce graphene oxide and form CoC 2 O 4 structures while maintaining the solution processability of reduced graphene oxide. While the OER activity of CoC 2 O 4 /gRGO is exclusively due to CoC 2 O 4 , which transformed into OER-active Co species, the combination with gRGO significantly improves OER stability. On the other hand, CoC 2 O 4 /gRGO exhibits synergistic effect towards ORR, via a quasi-four-electron pathway, leading to a slightly higher ORR limiting current than Pt/C. Remarkably, gRGO offers dual functionality, contributing to ORR activity via the N-functional groups and also enhancing OER stability through the gRGO coating around CoC 2 O 4 structures. Our results suggest a new class of metal-carbon composite that has the potential to be alternative bifunctional catalysts for regenerative fuel cells and metal-air batteries

  4. Preparation of Ga-67 labeled monoclonal antibodies using deferoxamine as a bifunctional chelating agent

    International Nuclear Information System (INIS)

    Endo, K.; Furukawa, T.; Ohmomo, Y.

    1984-01-01

    Ga-67 labeled monoclonal IgG or F(ab')/sub 2/ fragments against α-fetoprotein and β-subunit of human choriogonadotropin (HCG), were prepared using Deferoxamine (DFO) as a bifunctional chelating agent. DFO, a well-known iron chelating agent, was conjugated with monoclonal antibodies (Ab) by a glutaraldehyde two step method and the effect of conjugation on the Ab activities was examined by RIA and Scatchard plot analysis. In both monoclonal Ab preparations, the conjugation reaction was favored as the pH increased. However, Ab-binding activities decreased as the molecular ratios of DFO to Ab increased. Preserved Ab activities were observed when Ab contained DFO per Ab molecule less than 2.1. At a ratio of over 3.3 DFO molecules per Ab, the maximal binding capacity rather than the affinity constant decreased. The inter-molecular cross linkage seemed to be responsible for the deactivation of binding activities. The obtained DFO-Ab conjugates, were then easily labeled with high efficiency and reproducibility and Ga-67 DFO-Ab complexes were highly stable both in vitro and in vivo. Thus, biodistribution of Ga-67 labeled F(ab')/sub 2/ fragments of monoclonal Ab to HCG β-subunit was attempted in nude mice transplanted with HCG-producing human teratocarcinoma. Tumor could be visualized, in spite of relatively high background imaging of liver, kidney and spleen. The use of DFO as a bifunctional chelating agent provided good evidence for its applicability to labeling monoclonal Ab with almost full retention of Ab activities. Further, availability of Ga-68 will make Ga-68 DFO-monoclonal Ab a very useful tool for positron tomography imaging of various tumors

  5. Reviews in fluorescence 2008

    CERN Document Server

    Geddes, Chris D

    2010-01-01

    This volume serves as a comprehensive collection of current trends and emerging hot topics in the field of fluorescence spectroscopy. It summarizes the year's progress in fluorescence and its applications as well as includes authoritative analytical reviews.

  6. Fluorescent optical position sensor

    Science.gov (United States)

    Weiss, Jonathan D.

    2005-11-15

    A fluorescent optical position sensor and method of operation. A small excitation source side-pumps a localized region of fluorescence at an unknown position along a fluorescent waveguide. As the fluorescent light travels down the waveguide, the intensity of fluorescent light decreases due to absorption. By measuring with one (or two) photodetectors the attenuated intensity of fluorescent light emitted from one (or both) ends of the waveguide, the position of the excitation source relative to the waveguide can be determined by comparing the measured light intensity to a calibrated response curve or mathematical model. Alternatively, excitation light can be pumped into an end of the waveguide, which generates an exponentially-decaying continuous source of fluorescent light along the length of the waveguide. The position of a photodetector oriented to view the side of the waveguide can be uniquely determined by measuring the intensity of the fluorescent light emitted radially at that location.

  7. Biomimetic magnetic nanocomposite for smart skins

    KAUST Repository

    Alfadhel, Ahmed; Kosel, Jü rgen

    2015-01-01

    We report a biomimetic tactile sensor consisting of magnetic nanocomposite artificial cilia and magnetic sensors. The nanocomposite is fashioned from polydimethylsiloxane and iron nanowires and exhibits a permanent magnetic behavior. This enables remote operation without an additional magnetic field to magnetize the nanowires, which simplifies device integration. Moreover, the highly elastic and easy patternable nanocomposite is corrosion resistant and thermally stable. The highly sensitive and power efficient tactile sensors can detect vertical and shear forces from interactions with objects. The sensors can operate in dry and wet environment with the ability to measure different properties such as the texture and the movement or stability of objects, with easily adjustable performance.

  8. Polymer/metal nanocomposites for biomedical applications.

    Science.gov (United States)

    Zare, Yasser; Shabani, Iman

    2016-03-01

    Polymer/metal nanocomposites consisting of polymer as matrix and metal nanoparticles as nanofiller commonly show several attractive advantages such as electrical, mechanical and optical characteristics. Accordingly, many scientific and industrial communities have focused on polymer/metal nanocomposites in order to develop some new products or substitute the available materials. In the current paper, characteristics and applications of polymer/metal nanocomposites for biomedical applications are extensively explained in several categories including strong and stable materials, conductive devices, sensors and biomedical products. Moreover, some perspective utilizations are suggested for future studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Biomimetic magnetic nanocomposite for smart skins

    KAUST Repository

    Alfadhel, Ahmed

    2015-11-01

    We report a biomimetic tactile sensor consisting of magnetic nanocomposite artificial cilia and magnetic sensors. The nanocomposite is fashioned from polydimethylsiloxane and iron nanowires and exhibits a permanent magnetic behavior. This enables remote operation without an additional magnetic field to magnetize the nanowires, which simplifies device integration. Moreover, the highly elastic and easy patternable nanocomposite is corrosion resistant and thermally stable. The highly sensitive and power efficient tactile sensors can detect vertical and shear forces from interactions with objects. The sensors can operate in dry and wet environment with the ability to measure different properties such as the texture and the movement or stability of objects, with easily adjustable performance.

  10. Safe biodegradable fluorescent particles

    Science.gov (United States)

    Martin, Sue I [Berkeley, CA; Fergenson, David P [Alamo, CA; Srivastava, Abneesh [Santa Clara, CA; Bogan, Michael J [Dublin, CA; Riot, Vincent J [Oakland, CA; Frank, Matthias [Oakland, CA

    2010-08-24

    A human-safe fluorescence particle that can be used for fluorescence detection instruments or act as a safe simulant for mimicking the fluorescence properties of microorganisms. The particle comprises a non-biological carrier and natural fluorophores encapsulated in the non-biological carrier. By doping biodegradable-polymer drug delivery microspheres with natural or synthetic fluorophores, the desired fluorescence can be attained or biological organisms can be simulated without the associated risks and logistical difficulties of live microorganisms.

  11. Optimization of fluorescent proteins

    NARCIS (Netherlands)

    Bindels, D.S.; Goedhart, J.; Hink, M.A.; van Weeren, L.; Joosen, L.; Gadella (jr.), T.W.J.; Engelborghs, Y.; Visser, A.J.W.G.

    2014-01-01

    Nowadays, fluorescent protein (FP) variants have been engineered to fluoresce in all different colors; to display photoswitchable, or photochromic, behavior; or to show yet other beneficial properties that enable or enhance a still growing set of new fluorescence spectroscopy and microcopy

  12. Proton Conductivity of Nafion/Ex-Situ Sulfonic Acid-Modified Stöber Silica Nanocomposite Membranes As a Function of Temperature, Silica Particles Size and Surface Modification

    Science.gov (United States)

    Muriithi, Beatrice; Loy, Douglas A.

    2016-01-01

    The introduction of sulfonic acid modified silica in Nafion nanocomposite membranes is a good method of improving the Nafion performance at high temperature and low relative humidity. Sulfonic acid-modified silica is bifunctional, with silica phase expected to offer an improvement in membranes hydration while sulfonic groups enhance proton conductivity. However, as discussed in this paper, this may not always be the case. Proton conductivity enhancement of Nafion nanocomposite membranes is very dependent on silica particle size, sometimes depending on experimental conditions, and by surface modification. In this study, Sulfonated Preconcentrated Nafion Stober Silica composites (SPNSS) were prepared by modification of Stober silica particles with mercaptopropyltriethoxysilane, dispersing the particles into a preconcentrated solution of Nafion, then casting the membranes. The mercapto groups were oxidized to sulfonic acids by heating the membranes in 10 wt % hydrogen peroxide for 1 h. At 80 °C and 100% relative humidity, a 20%–30% enhancement of proton conductivity was only observed when sulfonic acid modified particle less than 50 nm in diameter were used. At 120 °C, and 100% humidity, proton conductivity increased by 22%–42% with sulfonated particles with small particles showing the greatest enhancement. At 120 °C and 50% humidity, the sulfonated particles are less efficient at keeping the membranes hydrated, and the composites underperform Nafion and silica-Nafion nanocomposite membranes. PMID:26828525

  13. Synthesis and Characterization of Reduced Graphene Oxide/Rhodamine 101 (rGO-Rh101) Nanocomposites and Their Heterojunction Performance in rGO-Rh101/ p-Si Device Configuration

    Science.gov (United States)

    Batır, G. Güven; Arık, Mustafa; Caldıran, Zakir; Turut, Abdulmecit; Aydogan, Sakir

    2018-01-01

    Reduced graphene oxide (rGO)-rhodamine 101 (Rh101) nanocomposites with different ratios of rGO have been synthesized in aqueous medium by ultrasonic homogenization. The fluorescence of Rh101 as measured using a laser dye with high fluorescence quantum yield was substantially quenched with increasing amount of rGO in the nanocomposite. Formation of rGO-Rh101 nanocomposites was confirmed by x-ray diffraction analysis, scanning electron microscopy, ultraviolet-visible (UV-Vis) spectroscopy, and fluorescence microscopy. Furthermore, rGO-Rh101 nanocomposite/ p-Si heterojunctions were synthesized, all of which showed good rectifying behavior. The electrical characteristics of these devices were analyzed using current-voltage ( I- V) measurements to determine the ideality factor and barrier height. The experimental results confirmed the presence of lateral inhomogeneity in the effective barrier height of the rGO-Rh101 nanocomposite/ p-Si heterojunctions. In addition to I- V measurements, one device was analyzed in more detail using frequency-dependent capacitance-voltage measurements. All electrical measurements were carried out at room temperature and in the dark.

  14. Large-Strain Transparent Magnetoactive Polymer Nanocomposites

    Science.gov (United States)

    Meador, Michael A.

    2012-01-01

    A document discusses polymer nano - composite superparamagnetic actuators that were prepared by the addition of organically modified superparamagnetic nanoparticles to the polymer matrix. The nanocomposite films exhibited large deformations under a magnetostatic field with a low loading level of 0.1 wt% in a thermoplastic polyurethane elastomer (TPU) matrix. The maximum actuation deformation of the nanocomposite films increased exponentially with increasing nanoparticle concentration. The cyclic deformation actuation of a high-loading magnetic nanocomposite film was examined in a low magnetic field, and it exhibited excellent reproducibility and controllability. Low-loading TPU nanocomposite films (0.1-2 wt%) were transparent to semitransparent in the visible wavelength range, owing to good dispersion of the magnetic nanoparticles. Magnetoactuation phenomena were also demonstrated in a high-modulus, high-temperature polyimide resin with less mechanical deformation.

  15. Polymer Nanocomposite Membranes for Antifouling Nanofiltration.

    Science.gov (United States)

    Kamal, Tahseen; Ali, Nauman; Naseem, Abbas A; Khan, Sher B; Asiri, Abdullah M

    2016-01-01

    Fouling refers to the unwanted and undesirable attachment of biological macromolecules, inorganic, organic matter, and microorganisms on water contact surfaces. Fouling reduces the performance of devices involving these submerged surfaces and is considered the bottle-neck issue for various applications in the biomedical industry, food processing, and water treatment, especially in reverse osmosis (RO) desalination. Investigations have proven that nanocomposite membranes can exhibit enhanced antifouling performances and can be used for longer life times. The nanocomposite means addition of nanomaterials to main matrix at low loadings, exhibiting better properties compared to virgin matrix. In this review, a summarized description about related methods and their mechanisms for the fabrication of nanocomposite membranes with antifouling properties has been documented. Around 87 manuscripts including 10 patents were used to demonstrate the antifouling applications of of various nanocomposite membranes.

  16. Polymer nanotube nanocomposites: synthesis, properties, and applications

    National Research Council Canada - National Science Library

    Mittal, Vikas

    2010-01-01

    ... in these commercially important areas of polymer technology. It sums up recent advances in nanotube composite synthesis technology, provides basic introduction to polymer nanotubes nanocomposite technology for the readers new to this field, provides valuable...

  17. In situ SU-8 silver nanocomposites

    DEFF Research Database (Denmark)

    Fischer, Søren Vang; Uthuppu, Basil; Jakobsen, Mogens Havsteen

    2015-01-01

    Nanocomposite materials containing metal nanoparticles are of considerable interest in photonics and optoelectronics applications. However, device fabrication of such materials always encounters the challenge of incorporation of preformed nanoparticles into photoresist materials. As a solution to...

  18. Cellulose nanocrystals reinforced foamed nitrile rubber nanocomposites.

    Science.gov (United States)

    Chen, Yukun; Zhang, Yuanbing; Xu, Chuanhui; Cao, Xiaodong

    2015-10-05

    Research on foamed nitrile rubber (NBR)/cellulose nanocrystals (CNs) nanocomposites is rarely found in the literatures. In this paper, CNs suspension and NBR latex was mixed to prepared the foamed NBR/CNs nanocomposites. We found that the CNs mainly located in the cell walls, effectively reinforcing the foamed NBR. The strong interaction between the CNs and NBR matrix restricted the mobility of NBR chains surrounding the CNs, hence increasing the crosslink density of the NBR matrix. CNs exhibited excellent reinforcement on the foamed NBR: a remarkable increase nearly 76% in the tensile strength of the foamed nanocomposites was achieved with a load of only 15 phr CNs. Enhanced mechanical properties make the foamed NBR/CNs nanocomposites a promising damping material for industrial applications with a potential to reduce the petroleum consumption. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Dielectric properties of nanosilica filled epoxy nanocomposites

    Indian Academy of Sciences (India)

    M G Veena

    Polymer nanocomposites are the 21st century engineering materials with wide range of ... the electronic industry for dielectric materials in electrical insulation ..... be ascribed to the interface barriers and chain entangle- ments towards the ...

  20. Fatigue-free PZT-based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, H J; Sando, M [Nat. Ind. Res. Inst., Nagoya (Japan); Tajima, K [Synergy Ceramics Lab., Fine Ceramics Research Association, Nagoya (Japan); Niihara, K [ISIR, Osaka Univ., Mihogaoka, Ibaraki (Japan)

    1999-03-01

    The goal of this study is to fabricate fatigue-free piezoelectrics-based nanocomposites. Lead zirconate titanate (PZT) and metallic platinum (Pt) were selected as a matrix and secondary phase dispersoid. Fine Pt particles were homogeneously dispersed in the PZT matrix. Fatigue properties of the unpoled PZT-based nanocomposite under electrical cyclic loading were investigated. The electrical-field-induced crack growth was monitored by an optical microscope, and it depended on the number of cycles the sample was subjected to. Resistance to fatigue was significantly enhanced in the nanocomposite. The excellent fatigue behavior of the PZT/Pt nanocomposites may result from the grain boundary strenghtening due to the interaction between the matrix and Pt particles. (orig.) 8 refs.

  1. Polymer and ceramic nanocomposites for aerospace applications

    Science.gov (United States)

    Rathod, Vivek T.; Kumar, Jayanth S.; Jain, Anjana

    2017-11-01

    This paper reviews the potential of polymer and ceramic matrix composites for aerospace/space vehicle applications. Special, unique and multifunctional properties arising due to the dispersion of nanoparticles in ceramic and metal matrix are briefly discussed followed by a classification of resulting aerospace applications. The paper presents polymer matrix composites comprising majority of aerospace applications in structures, coating, tribology, structural health monitoring, electromagnetic shielding and shape memory applications. The capabilities of the ceramic matrix nanocomposites to providing the electromagnetic shielding for aircrafts and better tribological properties to suit space environments are discussed. Structural health monitoring capability of ceramic matrix nanocomposite is also discussed. The properties of resulting nanocomposite material with its disadvantages like cost and processing difficulties are discussed. The paper concludes after the discussion of the possible future perspectives and challenges in implementation and further development of polymer and ceramic nanocomposite materials.

  2. Graphene oxide nanocomposites and their electrorheology

    International Nuclear Information System (INIS)

    Zhang, Wen Ling; Liu, Ying Dan; Choi, Hyoung Jin

    2013-01-01

    Graphical abstract: - Highlights: • GO-based PANI, NCOPA and PS nanocomposites are prepared. • The nanocomposites are adopted as novel electrorheological (ER) candidates. • Their critical ER characteristics and dielectric performance are analyzed. • Typical ER behavior widens applications of GO-based nanocomposites. - Abstract: Graphene oxide (GO), a novel one-atom carbon system, has become one of the most interesting materials recently due to its unique physical and chemical properties in addition to graphene. This article briefly reviews a recent progress of the fabrication of GO-based polyaniline, ionic N-substituted copolyaniline and polystyrene nanocomposites. The critical electrorheological characteristics such as flow response and yield stress from rheological measurement, relaxation time and achievable polarizability from dielectric analysis are also analyzed

  3. Multiwalled Carbon Nanotube-titania Nanocomposites ...

    African Journals Online (AJOL)

    Physical and chemical characterization of the mesoporous nanocomposites from the two synthetic methods were investigated using Raman spectroscopy, thermogravimetric analysis, Fourier transformation infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, high-resolution transmission ...

  4. Titanium Nanocomposite: Lightweight Multifunction Structural Material

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to research and develop lightweight metal matrix nanocomposites (MMnC) using a Titanium (Ti) metal matrix. Ti MMnC will crosscut the advancement of both...

  5. Electrical conduction of a XLPE nanocomposite

    Science.gov (United States)

    Park, Yong-Jun; Sim, Jae-Yong; Lim, Kee-Joe; Nam, Jin-Ho; Park, Wan-Gi

    2014-07-01

    The resistivity, breakdown strength, and formation of space charges are very important factors for insulation design of HVDC cable. It is known that a nano-sized metal-oxide inorganic filler reduces the formation of space charges in the polymer nanocomposite. Electrical conduction of cross-linked polyethylene(XLPE) nanocomposite insulating material is investigated in this paper. The conduction currents of two kinds of XLPE nanocomposites and XLPE without nano-filler were measured at temperature of 303 ~ 363 K under the applied electric fields of 10 ~ 50 kV/mm. The current of the nanocomposite specimen is smaller than that of XLPE specimen without nano-filler. The conduction mechanism may be explained in terms of Schottky emission and multi-core model.

  6. Polymer nanocomposites: polymer and particle dynamics

    KAUST Repository

    Kim, Daniel; Srivastava, Samanvaya; Narayanan, Suresh; Archer, Lynden A.

    2012-01-01

    Polymer nanocomposites containing nanoparticles smaller than the random coil size of their host polymer chains are known to exhibit unique properties, such as lower viscosity and glass transition temperature relative to the neat polymer melt. It has

  7. Polymer matrix nanocomposites for automotive structural components

    Science.gov (United States)

    Naskar, Amit K.; Keum, Jong K.; Boeman, Raymond G.

    2016-12-01

    Over the past several decades, the automotive industry has expended significant effort to develop lightweight parts from new easy-to-process polymeric nanocomposites. These materials have been particularly attractive because they can increase fuel efficiency and reduce greenhouse gas emissions. However, attempts to reinforce soft matrices by nanoscale reinforcing agents at commercially deployable scales have been only sporadically successful to date. This situation is due primarily to the lack of fundamental understanding of how multiscale interfacial interactions and the resultant structures affect the properties of polymer nanocomposites. In this Perspective, we critically evaluate the state of the art in the field and propose a possible path that may help to overcome these barriers. Only once we achieve a deeper understanding of the structure-properties relationship of polymer matrix nanocomposites will we be able to develop novel structural nanocomposites with enhanced mechanical properties for automotive applications.

  8. Polymer nanotube nanocomposites: synthesis, properties, and applications

    National Research Council Canada - National Science Library

    Mittal, Vikas

    2010-01-01

    ... insights for the use of technologies for polymer nanocomposites for commercial application, and features chapters from the most experienced researches in the field"-- "The purpose of this edited book...

  9. Dynamics of tropomyosin in muscle fibers as monitored by saturation transfer EPR of bi-functional probe.

    Directory of Open Access Journals (Sweden)

    Roni F Rayes

    Full Text Available The dynamics of four regions of tropomyosin was assessed using saturation transfer electron paramagnetic resonance in the muscle fiber. In order to fully immobilize the spin probe on the surface of tropomyosin, a bi-functional spin label was attached to i,i+4 positions via cysteine mutagenesis. The dynamics of bi-functionally labeled tropomyosin mutants decreased by three orders of magnitude when reconstituted into "ghost muscle fibers". The rates of motion varied along the length of tropomyosin with the C-terminus position 268/272 being one order of magnitude slower then N-terminal domain or the center of the molecule. Introduction of troponin decreases the dynamics of all four sites in the muscle fiber, but there was no significant effect upon addition of calcium or myosin subfragment-1.

  10. Hydrophilic cobalt sulfide nanosheets as a bifunctional catalyst for oxygen and hydrogen evolution in electrolysis of alkaline aqueous solution.

    Science.gov (United States)

    Zhu, Mingchao; Zhang, Zhongyi; Zhang, Hu; Zhang, Hui; Zhang, Xiaodong; Zhang, Lixue; Wang, Shicai

    2018-01-01

    Hydrophilic medium and precursors were used to synthesize a hydrophilic electro-catalyst for overall water splitting. The cobalt sulfide (Co 3 S 4 ) catalyst exhibits a layered nanosheet structure with a hydrophilic surface, which can facilitate the diffusion of aqueous substrates into the electrode pores and towards the active sites. The Co 3 S 4 catalyst shows excellent bifunctional catalytic activity for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline solution. The assembled water electrolyzer based on Co 3 S 4 exhibits better performance and stability than that of Pt/C-RuO 2 catalyst. Thereforce the hydrophilic Co 3 S 4 is a highly promising bifunctional catalyst for the overall water splitting reaction. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Functionalization of nanoparticle titanium dioxide with different bifunctional organic molecules and trimers of transition compounds for obtaining new materials

    International Nuclear Information System (INIS)

    Rivera Martinez, Maria Cinthya

    2012-01-01

    Functionalization of titanium dioxide in nanoporous anatase phase is investigated for obtaining new nanomaterials. Functionalizations were performed using two heating methods: the conventional of refluxing heating method and microwave irradiation with bifunctional organic molecules is used to study how to anchor molecules and the change in the wettability of the material. Besides, reactions with organic molecules were performed as the derived from nanoproxene. The growth layer by layer is performed using the bifunctional molecules previous for the immobilization of cobalt trimers. Functionalized molecules were characterized by infrared spectroscopy, X-ray diffraction, contact angle, scanning electron microscopy, x-ray elemental analysis, plasma atomic emission spectroscopy coupled inductively, x-ray photoelectron spectroscopy and thermogravimetric analysis. This type of functionalizations on nanoporous titanium dioxide could potentially improve optical sensitivity and activity of this nanomaterial in the visible region. (author) [es

  12. Rational design of micro-RNA-like bifunctional siRNAs targeting HIV and the HIV coreceptor CCR5.

    Science.gov (United States)

    Ehsani, Ali; Saetrom, Pål; Zhang, Jane; Alluin, Jessica; Li, Haitang; Snøve, Ola; Aagaard, Lars; Rossi, John J

    2010-04-01

    Small-interfering RNAs (siRNAs) and micro-RNAs (miRNAs) are distinguished by their modes of action. SiRNAs serve as guides for sequence-specific cleavage of complementary mRNAs and the targets can be in coding or noncoding regions of the target transcripts. MiRNAs inhibit translation via partially complementary base-pairing to 3' untranslated regions (UTRs) and are generally ineffective when targeting coding regions of a transcript. In this study, we deliberately designed siRNAs that simultaneously direct cleavage and translational suppression of HIV RNAs, or cleavage of the mRNA encoding the HIV coreceptor CCR5 and suppression of translation of HIV. These bifunctional siRNAs trigger inhibition of HIV infection and replication in cell culture. The design principles have wide applications throughout the genome, as about 90% of genes harbor sites that make the design of bifunctional siRNAs possible.

  13. Post-modified acid-base bifunctional MIL-101(Cr) for one-pot deacetalization-Knoevenagel reaction

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Manman [Tianjin University, School of Science (China); Yan, Xilong; Li, Yang; Chen, Ligong, E-mail: lgchen@tju.edu.cn [Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) (China)

    2017-04-15

    A novel and convenient approach for the construction of the bifunctional MIL-101 material bearing sulfonic acid and amino groups was established via the post-synthetic modification. This material possesses high BET surface area (1446 m{sup 2}/g) and large pore volume (0.77 cm{sup 3}/g). Significantly, this material could serve as a bifunctional heterogeneous catalyst and was initially employed for one-pot deacetalization-Knoevenagel reaction, exhibiting excellent catalytic performance (yield 99.74%). More importantly, it can be easily recovered and reused at least three times. Finally, our proposed catalytic mechanism indicated that amino and the sulfonic acid groups played a synergistic effect on this one-pot deacetalization-Knoevenagel reaction.

  14. Crystallization and preliminary X-ray analysis of a bifunctional catalase-phenol oxidase from Scytalidium thermophilum

    International Nuclear Information System (INIS)

    Sutay Kocabas, Didem; Pearson, Arwen R.; Phillips, Simon E. V.; Bakir, Ufuk; Ogel, Zumrut B.; McPherson, Michael J.; Trinh, Chi H.

    2009-01-01

    The bifunctional enzyme catalase-phenol oxidase from S. thermophilum was crystallized by the hanging-drop vapour-diffusion method in space group P2 1 and diffraction data were collected to 2.8 Å resolution. Catalase-phenol oxidase from Scytalidium thermophilum is a bifunctional enzyme: its major activity is the catalase-mediated decomposition of hydrogen peroxide, but it also catalyzes phenol oxidation. To understand the structural basis of this dual functionality, the enzyme, which has been shown to be a tetramer in solution, has been purified by anion-exchange and gel-filtration chromatography and has been crystallized using the hanging-drop vapour-diffusion technique. Streak-seeding was used to obtain larger crystals suitable for X-ray analysis. Diffraction data were collected to 2.8 Å resolution at the Daresbury Synchrotron Radiation Source. The crystals belonged to space group P2 1 and contained one tetramer per asymmetric unit

  15. Self-organization of Au–CdSe hybrid nanoflowers at different length scales via bi-functional diamine linkers

    Energy Technology Data Exchange (ETDEWEB)

    AbouZeid, Khaled Mohamed [Virginia Commonwealth University, Department of Chemistry (United States); Mohamed, Mona Bakr [Cairo University, National Institute of Laser Enhanced Science (NILES) (Egypt); El-Shall, M. Samy, E-mail: mselshal@vcu.edu [Virginia Commonwealth University, Department of Chemistry (United States)

    2016-01-15

    This work introduces a series of molecular bridging bi-functional linkers to produce laterally self-assembled nanostructures of the Au–CdSe nanoflowers on different length scales ranging from 10 nm to 100 microns. Assembly of Au nanocrystals within amorphous CdSe rods is found in the early stages of the growth of the Au–CdSe nanoflowers. The Au–CdSe nanoflowers are formed through a one-pot low temperature (150 °C) process where CdSe clusters are adsorbed on the surface of the Au cores, and they then start to form multiple arms and branches resulting in flower-shaped hybrid nanostructures. More complex assembly at a micron length scale can be achieved by means of bi-functional capping agents with appropriate alkyl chain lengths, such as 1,12-diaminododecane.

  16. Purification, crystallization and preliminary X-ray crystallographic analysis of rice bifunctional α-amylase/subtilisin inhibitor from Oryza sativa

    International Nuclear Information System (INIS)

    Lin, Yi-Hung; Peng, Wen-Yan; Huang, Yen-Chieh; Guan, Hong-Hsiang; Hsieh, Ying-Cheng; Liu, Ming-Yih; Chang, Tschining; Chen, Chun-Jung

    2006-01-01

    The crystallization of rice α-amylase/subtilisin bifunctional inhibitor is reported. Rice bifunctional α-amylase/subtilisin inhibitor (RASI) can inhibit both α-amylase from larvae of the red flour beetle (Tribolium castaneum) and subtilisin from Bacillus subtilis. The synthesis of RASI is up-regulated during the late milky stage in developing seeds. The 8.9 kDa molecular-weight RASI from rice has been crystallized using the hanging-drop vapour-diffusion method. According to 1.81 Å resolution X-ray diffraction data from rice RASI crystals, the crystal belongs to space group P2 1 2 1 2, with unit-cell parameters a = 79.99, b = 62.95, c = 66.70 Å. Preliminary analysis indicates two RASI molecules in an asymmetric unit with a solvent content of 44%

  17. Simultaneous Oxidation and Sequestration of As(III) from Water by Using Redox Polymer-Based Fe(III) Oxide Nanocomposite.

    Science.gov (United States)

    Zhang, Xiaolin; Wu, Mengfei; Dong, Hao; Li, Hongchao; Pan, Bingcai

    2017-06-06

    Water decontamination from As(III) is an urgent but still challenging task. Herein, we fabricated a bifunctional nanocomposite HFO@PS-Cl for highly efficient removal of As(III), with active chlorine covalently binding spherical polystyrene host for in situ oxidation of As(III) to As(V), and Fe(III) hydroxide (HFO) nanoparticles (NPs) embedded inside for specific As(V) removal. HFO@PS-Cl could work effectively in a wide pH range (5-9), and other substances like sulfate, chloride, bicarbonate, silicate, and humic acid exert insignificant effect on As(III) removal. As(III) sequestration is realized via two pathways, that is, oxidation to As(V) by the active chlorine followed by specific As(V) adsorption onto HFO NPs, and As(III) adsorption onto HFO NPs followed by oxidation to As(V). The exhausted HFO@PS-Cl could be refreshed for cyclic runs with insignificant capacity loss by the combined regeneration strategy, that is, alkaline solution to rinse the adsorbed As(V) and NaClO solution to renew the host oxidation capability. In addition, fixed-bed experiments demonstrated that the HFO@PS-Cl column could generate >1760 bed volume (BV) effluent from a synthetic As(III)-containing groundwater to meet the drinking water standard (nanocomposites, HFO@PS-N and HFO@D201 could only generate 450 and 600 BV effluents under otherwise identical conditions.

  18. Conducting polymer nanocomposite-based supercapacitors

    OpenAIRE

    Liew, Soon Yee; Walsh, Darren A.; Chen, George Z.

    2016-01-01

    The use of nanocomposites of electronically-conducting polymers for supercapacitors has increased significantly over the past years, due to their high capacitances and abilities to withstand many charge-discharge cycles. We have recently been investigating the use of nanocomposites of electronically-conducting polymers containing conducting and non-conducting nanomaterials such as carbon nanotubes and cellulose nanocrystals, for use in supercapacitors. In this contribution, we provide a summa...

  19. Construction of Bifunctional Co/H-ZSM-5 Catalysts for the Hydrodeoxygenation of Stearic Acid to Diesel-range Alkanes.

    Science.gov (United States)

    Wu, Guangjun; Zhang, Nan; Dai, Weili; Guan, Naijia; Li, Landong

    2018-04-27

    Bifunctional Co/H-ZSM-5 zeolites were prepared by surface organometallic chemistry grafting route, namely by the stoichiometric reaction between cobaltocene and the Brønsted acid sites in zeolites, and applied to the model reaction of stearic acid catalytic hydrodeoxygenation. Cobalt species existed in the form of isolated Co2+ ions at exchange positions after grafting, transformed to CoO species on the surface of zeolite and stabilized inside zeolite channels upon calcination in air, and finally reduced to metallic cobalt species of homogeneous clusters of ca. 1.5 nm by hydrogen. During this process, the Brønsted acid sites of H-ZSM-5 zeolites could be preserved with acid strength slightly reduced. The as-prepared bifunctional catalyst exhibited a ~16 times higher activity in stearic acid hydrodeoxygenation (2.11 gSAgcat-1h-1) than the reference catalyst (0.13 gSAgcat-1h-1) prepared by solid-state ion exchange, and a high C18/C17 ratio of ~24 was achieved as well. The remarkable hydrodeoxygenation performance of bifunctional Co/H-ZSM-5 could be explained from the effective synergy between the uniformed metallic cobalt clusters and the Brønsted acid sites in H-ZSM-5 zeolite. The simplified reaction network and kinetics of stearic acid hydrodeoxygenation catalyzed by the as-prepared bifunctional Co/H-ZSM-5 zeolites were also investigated. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. ZIF-67 incorporated with carbon derived from pomelo peels: A highly efficient bifunctional catalyst for oxygen reduction/evolution reactions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hao; Yin, Feng-Xiang; Chen, Biao-Hua; He, Xiao-Bo; Lv, Peng-Liang; Ye, Cai-Yun; Liu, Di-Jia

    2017-05-01

    Developing carbon catalyst materials using natural, abundant and renewable resources as precursors plays an increasingly important role in clean energy generation and environmental protection. In this work, N-doped pomelo-peel-derived carbon (NPC) materials were prepared using a widely available food waste-pomelo peels and melamine. The synthetic NPC exhibits well-defined porosities and a highly doped-N content (e.g. 6.38 at% for NPC-2), therefore affords excellent oxygen reduction reaction (ORR) catalytic activities in alkaline electrolytes. NPC was further integrated with ZIF-67 to form ZIF-67@NPC hybrids through solvothermal reactions. The hybrid catalysts show substantially enhanced ORR catalytic activities comparable to that of commercial 20 wa Pt/C. Furthermore, the catalysts also exhibit excellent oxygen evolution reaction (OER) catalytic activities. Among all prepared ZIF-67@NPC hybrids, the optimal composition with ZIF-67 to NPC ratio of 2:1 exhibits the best ORR and OER bifunctional catalytic performance and the smallest Delta E (E-OER@10 mA cm(-2)-E-ORR@-1 mA cm(-2)) value of 0.79 V. The catalyst also demonstrated desirable 4-electron transfer pathways and superior catalytic stabilities. The Co-N-4 in ZIF-67, electrochemical active surface area, and the strong interactions between ZIF-67 and NPC are attributed as the main contributors to the bifunctional catalytic activities. These factors act synergistically, resulting in substantially enhanced bifunctional catalytic activities and stabilities; consequently, this hybrid catalyst is among the best of the reported bifunctional electrocatalysts and is promising for use in metal-air batteries and fuel cells. (C) 2016 Elsevier B.V. All rights reserved.

  1. L-Threonine-derived novel bifunctional phosphine-sulfonamide catalyst-promoted enantioselective aza-morita-Baylis-Hillman reaction

    KAUST Repository

    Zhong, Fangrui

    2011-03-18

    A series of novel bifunctional phosphine-sulfonamide organic catalysts were designed and readily prepared from natural amino acids, and they were utilized to promote enantioselective aza-Morita-Baylis-Hillman (MBH) reactions. l-Threonine-derived phosphine-sulfonamide 9b was found to be the most efficient catalyst, affording the desired aza-MBH adducts in high yields and with excellent enantioselectivities. © 2011 American Chemical Society.

  2. Catalysis engineering of bifunctional solids for the one-step synthesis of liquid fuels from syngas: A review

    OpenAIRE

    Sartipi, S.; Makkee, M.; Kapteijn, F.; Gascon, J.

    2014-01-01

    The combination of acidic zeolites and Fischer–Tropsch synthesis (FTS) catalysts for one-step production of liquid fuels from syngas is critically reviewed. Bifunctional systems are classified by the proximity between FTS and acid functionalities on three levels: reactor, catalyst particle, and active phase. A thorough analysis of the published literature on this topic reveals that efficiency in the production of liquid fuels correlates well with the proximity of FTS and acid sites. Moreover,...

  3. A stimuli-responsive smart lanthanide nanocomposite for multidimensional optical recording and encryption

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiang; Xie, Yujie; Zhang, Hao-Li; Chen, Hao; Cai, Huijuan; Liu, Weisheng; Tang, Yu [State Key Lab. of Applied Organic Chemistry, Key Lab. of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou Univ. (China); Song, Bo [State Key Lab. of Fine Chemicals, School of Chemistry, Dalian Univ. of Technology, Dalian (China)

    2017-03-01

    A stimuli-responsive lanthanide-based smart nanocomposite has been fabricated by supramolecular assembly and applied as an active material in multidimensional memory materials. Conjugation of the lanthanide complexes with carbon dots provides a stimuli response that is based on the modulation of the energy level of the ligand and affords microsecond-to-nanosecond fluorescence lifetimes, giving rise to intriguing memory performance in the spatial and temporal dimension. The present study points to a new direction for the future development of multidimensional memory materials based on inorganic-organic hybrid nanosystems. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Electrodeposited nano-scale islands of ruthenium oxide as a bifunctional electrocatalyst for simultaneous catalytic oxidation of hydrazine and hydroxylamine

    Energy Technology Data Exchange (ETDEWEB)

    Zare, Hamid R., E-mail: hrzare@yazduni.ac.ir [Department of Chemistry, Yazd University, P.O. Box 89195-741, Yazd (Iran, Islamic Republic of); Nanotechnology Research Center, Yazd University, P.O. Box 89195-741, Yazd (Iran, Islamic Republic of); Hashemi, S. Hossein; Benvidi, Ali [Department of Chemistry, Yazd University, P.O. Box 89195-741, Yazd (Iran, Islamic Republic of)

    2010-06-04

    For the first time, an electrodeposited nano-scale islands of ruthenium oxide (ruthenium oxide nanoparticles), as an excellent bifunctional electrocatalyst, was successfully used for hydrazine and hydroxylamine electrocatalytic oxidation. The results show that, at the present bifunctional modified electrode, two different redox couples of ruthenium oxides serve as electrocatalysts for simultaneous electrocatalytic oxidation of hydrazine and hydroxylamine. At the modified electrode surface, the peaks of differential pulse voltammetry (DPV) for hydrazine and hydroxylamine oxidation were clearly separated from each other when they co-exited in solution. Thus, it was possible to simultaneously determine hydrazine and hydroxylamine in the samples at a ruthenium oxide nanoparticles modified glassy carbon electrode (RuON-GCE). Linear calibration curves were obtained for 2.0-268.3 {mu}M and 268.3-417.3 {mu}M of hydrazine and for 4.0-33.8 {mu}M and 33.8-78.3 {mu}M of hydroxylamine at the modified electrode surface using an amperometric method. The amperometric method also exhibited the detection limits of 0.15 {mu}M and 0.45 {mu}M for hydrazine and hydroxylamine respectively. RuON-GCE was satisfactorily used for determination of spiked hydrazine in two water samples. Moreover, the studied bifunctional modified electrode exhibited high sensitivity, good repeatability, wide linear range and long-term stability.

  5. Synthesis of deuterium-labeled analogs of the lipid hydroperoxide-derived bifunctional electrophile 4-oxo-2(E)-nonenal.

    Science.gov (United States)

    Arora, Jasbir S; Oe, Tomoyuki; Blair, Ian A

    2011-05-15

    Lipid hydroperoxides undergo homolytic decomposition into the bifunctional 4-hydroxy-2( E )-nonenal and 4-oxo-2( E )-nonenal (ONE). These bifunctional electrophiles are highly reactive and can readily modify intracellular molecules including glutathione (GSH), deoxyribonucleic acid (DNA) and proteins. Lipid hydroperoxide-derived bifunctional electrophiles are thought to contribute to the pathogenesis of a number of diseases. ONE is an α , β -unsaturated aldehyde that can react in multiple ways and with glutathione, proteins and DNA. Heavy isotope-labeled analogs of ONE are not readily available for conducting mechanistic studies or for use as internal standards in mass spectrometry (MS)-based assays. An efficient onestep cost-effective method has been developed for the preparation of C-9 deuterium-labeled ONE. In addition, a method for specific deuterium labeling of ONE at C-2, C-3 or both C-2 and C-3 has been developed. This latter method involved the selective reduction of an intermediate alkyne either by lithium aluminum hydride or lithium aluminum deuteride and quenching with water or deuterium oxide. The availability of these heavy isotope analogs will be useful as internal standards for quantitative studies employing MS and for conducting mechanistic studies of complex interactions between ONE and DNA bases as well as between ONE and proximal amino acid residues in peptides and proteins.

  6. A fundamental trade-off in covalent switching and its circumvention by enzyme bifunctionality in glucose homeostasis.

    Science.gov (United States)

    Dasgupta, Tathagata; Croll, David H; Owen, Jeremy A; Vander Heiden, Matthew G; Locasale, Jason W; Alon, Uri; Cantley, Lewis C; Gunawardena, Jeremy

    2014-05-09

    Covalent modification provides a mechanism for modulating molecular state and regulating physiology. A cycle of competing enzymes that add and remove a single modification can act as a molecular switch between "on" and "off" and has been widely studied as a core motif in systems biology. Here, we exploit the recently developed "linear framework" for time scale separation to determine the general principles of such switches. These methods are not limited to Michaelis-Menten assumptions, and our conclusions hold for enzymes whose mechanisms may be arbitrarily complicated. We show that switching efficiency improves with increasing irreversibility of the enzymes and that the on/off transition occurs when the ratio of enzyme levels reaches a value that depends only on the rate constants. Fluctuations in enzyme levels, which habitually occur due to cellular heterogeneity, can cause flipping back and forth between on and off, leading to incoherent mosaic behavior in tissues, that worsens as switching becomes sharper. This trade-off can be circumvented if enzyme levels are correlated. In particular, if the competing catalytic domains are on the same protein but do not influence each other, the resulting bifunctional enzyme can switch sharply while remaining coherent. In the mammalian liver, the switch between glycolysis and gluconeogenesis is regulated by the bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2). We suggest that bifunctionality of PFK-2/FBPase-2 complements the metabolic zonation of the liver by ensuring coherent switching in response to insulin and glucagon.

  7. Functional copolymer/organo-MMT nanoarchitectures. VI. Synthesis and characterization of novel nanocomposites by interlamellar controlled/living radical copolymerization via preintercalated RAFT-agent/organoclay complexes.

    Science.gov (United States)

    Rzayev, Zakir M O; Söylemez, A Ernur

    2011-04-01

    We have developed a new approach for the synthesis of polymer nanocomposites using a bifunctional reversible addition-fragmentation chain transfer (RAFT) agent, two types of organo-montmorillonites, such as a non-reactive dimethyldodecyl ammonium (DMDA)-MMT and a reactive octadecylamine (ODA)-MMT organoclays, and a radical initiator. The method includes the following stages: (1) synthesis of RAFT intercalated O-MMTs by a physical or chemical interaction of the RAFT agent having two pendant carboxylic groups [S,S-bis(alpha,alpha'-dimethyl-alpha"-acetic acid)trithiocarbonate] with surface alkyl amines of O-MMT containing tertiary ammonium cation or primary amine groups through strong H-bonding and complexing/amidization reactions, respectively, and (2) utilization of these well-dispersed and intercalated RAFT ... O-MMT complexes and their amide derivatives as new modified RAFT agents in radical-initiated interlamellar controlled/living copolymerization of itaconic acid (IA)-n-butylmethacrylate (BMA) monomer pair. The structure and compositions of the synthesized RAFT ... O-MMT complexes and functional copolymer/O-MMT hybrids were confirmed by FTIR, XRD, thermal (DSC-TGA), SEM and TEM morphology analyses. It was demonstrated that the degree of interaction/exfoliation, morphology and thermal behavior of nanocomposites significantly depended on the type of organoclay and in situ interaction, as well as on the content of flexible butyl-ester linkages as a internal plasticizer. The results of the comparative analysis of the nanocomposites structure-composition-property relations show that the functional copolymer-organoclay hybrids prepared with reactive RAFT ... ODA-MMT complex and containing a combination of partially intercalated and predominantly exfoliated nano-structures exhibit relatively higher thermal stability and fine dispersed morphology. These effects were explained by in situ interfacial chemical reactions through amidization of RAFT with surface alkyl amine

  8. Synthesis of polyanthranilic acid–Au nanocomposites by emulsion ...

    Indian Academy of Sciences (India)

    Administrator

    PANA–Au nanocomposites are characterized by SEM, equipped with EDS, TGA, FT–IR, XRD and electrochemical techniques. XRD of ... Polyanthranilic acid; nanocomposite; in situ polymerization; emulsion polymerization; nano- particles. 1.

  9. Handbook of polymer nanocomposites processing, performance and application

    CERN Document Server

    Mohanty, Amar; Misra, Manjusri; Kar, Kamal K; Pandey, Jitendra; Rana, Sravendra; Takagi, Hitoshi; Nakagaito, Antonio; Kim, Hyun-Joong

    Volume A forms one volume of a Handbook about Polymer Nanocomposites. In some 20 chapters the preparation, architecture, characterisation, properties and application of polymer nanocomposites are discussed by experts in their respective fields.

  10. Characterization of PAN/ATO nanocomposites prepared by solution ...

    Indian Academy of Sciences (India)

    Wintec

    Institute of Materials and Chemical Engineering, Zhongyuan University of Technology, ... The storage modulus of the nanocomposites increased with increasing content of ATO, ... Thermal stability of the nanocomposites was found remarka-.

  11. Plasma deposition of nanocomposite thin films : process concept and realisation

    NARCIS (Netherlands)

    Alcott, G.R.

    2004-01-01

    Recent developments in materials technology, fuelled by the growing hype surrounding nanotechnology, have given rise to a new breed of materials known as nanocomposites. Nanocomposite materials (a subgroup of hybrid materials) are formed from standard polymers impregnated with nanometre sized

  12. Unique morphology of dispersed clay particles in a polymer nanocomposite

    CSIR Research Space (South Africa)

    Malwela, T

    2011-02-01

    Full Text Available This communication reports a unique morphology of dispersed clay particles in a polymer nanocomposite. A nanocomposite of poly[butylene succinate)-co-adipate] (PBSA) with 3 wt% of organically modified montmorillonite was prepared by melt...

  13. White light-emitting nanocomposites based on an oxadiazole–carbazole copolymer (POC) and InP/ZnS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Annalisa, E-mail: annalisa.bruno@enea.it; Borriello, Carmela, E-mail: carmela.borriello@enea.it; Di Luccio, Tiziana, E-mail: tiziana.diluccio@enea.it; Nenna, Giuseppe [Centro Ricerche Portici, ENEA, UTTP NANO (Italy); Sessa, Lucia [University of Salerno, Department of Pharmacy (Italy); Concilio, Simona [University of Salerno, Department of Industrial Engineering (Italy); Haque, Saif A. [Imperial College London, Chemistry Department (United Kingdom); Minarini, Carla [Centro Ricerche Portici, ENEA, UTTP NANO (Italy)

    2013-11-15

    In this work, we studied energetic and optical proprieties of a polyester-containing oxadiazole and carbazole units that we will indicate as POC. This polymer is characterized by high photoluminescence activity in the blue region of the visible spectrum, making it suitable for the development of efficient white-emitting organic light emission devices. Moreover, POC polymer has been combined with two red emitters InP/ZnS quantum dots (QDs) to obtain nanocomposites with wide emission spectra. The two types of QDs have different absorption wavelengths: 570 nm [InP/ZnS(570)] and 627 nm [InP/ZnS(627)] and were inserted in the polymer at different concentrations. The optical properties of the nanocomposites have been investigated and compared to the ones of the pure polymer. Both spectral and time resolved fluorescence measurements show an efficient energy transfer from the polymer to QDs, resulting in white-emitting nanocomposites.

  14. White light-emitting nanocomposites based on an oxadiazole-carbazole copolymer (POC) and InP/ZnS quantum dots

    Science.gov (United States)

    Bruno, Annalisa; Borriello, Carmela; Di Luccio, Tiziana; Nenna, Giuseppe; Sessa, Lucia; Concilio, Simona; Haque, Saif A.; Minarini, Carla

    2013-11-01

    In this work, we studied energetic and optical proprieties of a polyester-containing oxadiazole and carbazole units that we will indicate as POC. This polymer is characterized by high photoluminescence activity in the blue region of the visible spectrum, making it suitable for the development of efficient white-emitting organic light emission devices. Moreover, POC polymer has been combined with two red emitters InP/ZnS quantum dots (QDs) to obtain nanocomposites with wide emission spectra. The two types of QDs have different absorption wavelengths: 570 nm [InP/ZnS(570)] and 627 nm [InP/ZnS(627)] and were inserted in the polymer at different concentrations. The optical properties of the nanocomposites have been investigated and compared to the ones of the pure polymer. Both spectral and time resolved fluorescence measurements show an efficient energy transfer from the polymer to QDs, resulting in white-emitting nanocomposites.

  15. Rapid microwave processing of epoxy nanocomposites using carbon nanotubes

    OpenAIRE

    Luhyna, Nataliia; Inam, Fawad; Winnington, Ian

    2013-01-01

    Microwave processing is one of the rapid processing techniques for manufacturing nanocomposites. There is very little work focussing on the addition of CNTs for shortening the curing time of epoxy nanocomposites. Using microwave energy, the effect of CNT addition on the curing of epoxy nanocomposites was researched in this work. Differential scanning calorimetry (DSC) was used to determine the degree of cure for epoxy and nanocomposite samples. CNT addition significantly reduced the duration ...

  16. Nanocomposites: The End of Compromise

    Science.gov (United States)

    van Damme, H.

    Increase the Young's modulus of a glassy resin by a factor of ten without making it heavier, for a new ski design, for example? Triple the rupture strength of an elastomer? Improve the thermal behaviour of an object made from a thermoplastic polymer by 100 degrees, to make a car dashboard, for example, or a part for the engine? Double the fire resistance time for the sheath around an electricity cable? Reduce the oxygen permeability of a film by a factor of ten, to make long conservation food packaging? All these things have been made possible by incorporating a few percent of inorganic nanoparticles in a polymer matrix. Figures 14.1 and 14.2 illustrate two such nanocomposites: the first was obtained by incorporating lamellar clay particles, and the second by incorporating fibrous nanoparticles, in fact, carbon nanotubes.

  17. Graphite nanoreinforcements in polymer nanocomposites

    Science.gov (United States)

    Fukushima, Hiroyuki

    Nanocomposites composed of polymer matrices with clay reinforcements of less than 100 nm in size, are being considered for applications such as interior and exterior accessories for automobiles, structural components for portable electronic devices, and films for food packaging. While most nanocomposite research has focused on exfoliated clay platelets, the same nanoreinforcement concept can be applied to another layered material, graphite, to produce nanoplatelets and nanocomposites. Graphite is the stiffest material found in nature (Young's Modulus = 1060 GPa), having a modulus several times that of clay, but also with excellent electrical and thermal conductivity. The key to utilizing graphite as a platelet nanoreinforcement is in the ability to exfoliate this material. Also, if the appropriate surface treatment can be found for graphite, its exfoliation and dispersion in a polymer matrix will result in a composite with not only excellent mechanical properties but electrical properties as well, opening up many new structural applications as well as non-structural ones where electromagnetic shielding and high thermal conductivity are requirements. In this research, a new process to fabricate exfoliated nano-scale graphite platelets was established (Patent pending). The size of the resulted graphite platelets was less than 1 um in diameter and 10 nm in thickness, and the surface area of the material was around 100 m2/g. The reduction of size showed positive effect on mechanical properties of composites because of the increased edge area and more functional groups attached with it. Also various surface treatment techniques were applied to the graphite nanoplatelets to improve the surface condition. As a result, acrylamide grafting treatment was found to enhance the dispersion and adhesion of graphite flakes in epoxy matrices. The resulted composites showed better mechanical properties than those with commercially available carbon fibers, vapor grown carbon fibers

  18. High performance polyethylene nanocomposite fibers

    Directory of Open Access Journals (Sweden)

    A. Dorigato

    2012-12-01

    Full Text Available A high density polyethylene (HDPE matrix was melt compounded with 2 vol% of dimethyldichlorosilane treated fumed silica nanoparticles. Nanocomposite fibers were prepared by melt spinning through a co-rotating twin screw extruder and drawing at 125°C in air. Thermo-mechanical and morphological properties of the resulting fibers were then investigated. The introduction of nanosilica improved the drawability of the fibers, allowing the achievement of higher draw ratios with respect to the neat matrix. The elastic modulus and creep stability of the fibers were remarkably improved upon nanofiller addition, with a retention of the pristine tensile properties at break. Transmission electronic microscope (TEM images evidenced that the original morphology of the silica aggregates was disrupted by the applied drawing.

  19. Shape-morphing nanocomposite origami.

    Science.gov (United States)

    Andres, Christine M; Zhu, Jian; Shyu, Terry; Flynn, Connor; Kotov, Nicholas A

    2014-05-20

    Nature provides a vast array of solid materials that repeatedly and reversibly transform in shape in response to environmental variations. This property is essential, for example, for new energy-saving technologies, efficient collection of solar radiation, and thermal management. Here we report a similar shape-morphing mechanism using differential swelling of hydrophilic polyelectrolyte multilayer inkjets deposited on an LBL carbon nanotube (CNT) composite. The out-of-plane deflection can be precisely controlled, as predicted by theoretical analysis. We also demonstrate a controlled and stimuli-responsive twisting motion on a spiral-shaped LBL nanocomposite. By mimicking the motions achieved in nature, this method offers new opportunities for the design and fabrication of functional stimuli-responsive shape-morphing nanoscale and microscale structures for a variety of applications.

  20. Characterization of Hybrid Epoxy Nanocomposites

    Science.gov (United States)

    Simcha, Shelly; Dotan, Ana; Kenig, Samuel; Dodiuk, Hanna

    2012-01-01

    This study focused on the effect of Multi Wall Carbon Nanotubes (MWCNT) content and its surface treatment on thermo-mechanical properties of epoxy nanocomposites. MWCNTs were surface treated and incorporated into two epoxy systems. MWCNT's surface treatments were based on: (a) Titania coating obtained by sol-gel process and (b) a nonionic surfactant. Thermo-mechanical properties improvement was obtained following incorporation of treated MWCNT. It was noticed that small amounts of titania coated MWCNT (0.05 wt %) led to an increase in the glass transition temperature and stiffness. The best performance was achieved adding 0.3 wt % titania coated MWCNT where an increase of 10 °C in the glass transition temperature and 30% in storage modulus were obtained. PMID:28348313

  1. The Mycobacterium tuberculosis Rv2540c DNA sequence encodes a bifunctional chorismate synthase

    Directory of Open Access Journals (Sweden)

    Santos Diógenes S

    2008-04-01

    Full Text Available Abstract Background The emergence of multi- and extensively-drug resistant Mycobacterium tuberculosis strains has created an urgent need for new agents to treat tuberculosis (TB. The enzymes of shikimate pathway are attractive targets to the development of antitubercular agents because it is essential for M. tuberculosis and is absent from humans. Chorismate synthase (CS is the seventh enzyme of this route and catalyzes the NADH- and FMN-dependent synthesis of chorismate, a precursor of aromatic amino acids, naphthoquinones, menaquinones, and mycobactins. Although the M. tuberculosis Rv2540c (aroF sequence has been annotated to encode a chorismate synthase, there has been no report on its correct assignment and functional characterization of its protein product. Results In the present work, we describe DNA amplification of aroF-encoded CS from M. tuberculosis (MtCS, molecular cloning, protein expression, and purification to homogeneity. N-terminal amino acid sequencing, mass spectrometry and gel filtration chromatography were employed to determine identity, subunit molecular weight and oligomeric state in solution of homogeneous recombinant MtCS. The bifunctionality of MtCS was determined by measurements of both chorismate synthase and NADH:FMN oxidoreductase activities. The flavin reductase activity was characterized, showing the existence of a complex between FMNox and MtCS. FMNox and NADH equilibrium binding was measured. Primary deuterium, solvent and multiple kinetic isotope effects are described and suggest distinct steps for hydride and proton transfers, with the former being more rate-limiting. Conclusion This is the first report showing that a bacterial CS is bifunctional. Primary deuterium kinetic isotope effects show that C4-proS hydrogen is being transferred during the reduction of FMNox by NADH and that hydride transfer contributes significantly to the rate-limiting step of FMN reduction reaction. Solvent kinetic isotope effects and

  2. Novel fluorescent carbonic nanomaterials for sensing and imaging

    International Nuclear Information System (INIS)

    Demchenko, Alexander P; Dekaliuk, Mariia O

    2013-01-01

    Small brightly fluorescent carbon nanoparticles have emerged as a new class of materials important for sensing and imaging applications. We analyze comparatively the properties of nanodiamonds, graphene and graphene oxide ‘dots’, of modified carbon nanotubes and of diverse carbon nanoparticles known as ‘C-dots’ obtained by different methods. The mechanisms of their light absorption and luminescence emission are still unresolved and the arguments are presented for their common origin. Regarding present and potential applications, we provide critical comparison with the other types of fluorescence reporters, such as organic dyes and semiconductor quantum dots. Their most prospective applications in sensing (based on the changes of intensity, FRET and lifetime) and in imaging technologies on the level of living cells and whole bodies are overviewed. The possibilities for design on their basis of multifunctional nanocomposites on a broader scale of theranostics are outlined. (topical review)

  3. Preparation of BiVO4-Graphene Nanocomposites and Their Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Xuan Xu

    2014-01-01

    Full Text Available We prepared BiVO4-graphene nanocomposites by using a facile single-step method and characterized the material by x-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy, ultraviolet-visible diffuse-reflection spectroscopy, and three-dimensional fluorescence spectroscopy. The results show that graphene oxide in the catalyst was thoroughly reduced. The BiVO4 is densely dispersed on the graphene sheets, which facilitates the transport of electrons photogenerated in BiVO4, thereby leading to an efficient separation of photogenerated carriers in the coupled graphene-nanocomposite system. For degradation of rhodamine B dye under visible-light irradiation, the photocatalytic activity of the synthesized nanocomposites was over ∼20% faster than for pure BiVO4 catalyst. To study the contribution of electrons and holes in the degradation reaction, silver nitrate and potassium sodium tartrate were added to the BiVO4-graphene photocatalytic reaction system as electron-trapping agent and hole-trapping agent, respectively. The results show that holes play the main role in the degradation of rhodamine B.

  4. Cardiomyocyte behavior on biodegradable polyurethane/gold nanocomposite scaffolds under electrical stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Ganji, Yasaman [Faculty of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran (Iran, Islamic Republic of); Institute for Materials Science, Dept. Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, D-24143 Kiel (Germany); Li, Qian [Institute for Materials Science, Dept. Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, D-24143 Kiel (Germany); Quabius, Elgar Susanne [Dept. of Otorhinolaryngology, Head and Neck Surgery, University of Kiel, Arnold-Heller-Str. 3, Building 27, D-24105 Kiel (Germany); Institute of Immunology, University of Kiel, Arnold-Heller-Str. 3, Building 17, D-24105 Kiel (Germany); Böttner, Martina [Department of Anatomy, University of Kiel, Otto-Hahn-Platz 8, 24118 Kiel (Germany); Selhuber-Unkel, Christine, E-mail: cse@tf.uni-kiel.de [Institute for Materials Science, Dept. Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, D-24143 Kiel (Germany); Kasra, Mehran [Faculty of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran (Iran, Islamic Republic of)

    2016-02-01

    Following a myocardial infarction (MI), cardiomyocytes are replaced by scar tissue, which decreases ventricular contractile function. Tissue engineering is a promising approach to regenerate such damaged cardiomyocyte tissue. Engineered cardiac patches can be fabricated by seeding a high density of cardiac cells onto a synthetic or natural porous polymer. In this study, nanocomposite scaffolds made of gold nanotubes/nanowires incorporated into biodegradable castor oil-based polyurethane were employed to make micro-porous scaffolds. H9C2 cardiomyocyte cells were cultured on the scaffolds for one day, and electrical stimulation was applied to improve cell communication and interaction in neighboring pores. Cells on scaffolds were examined by fluorescence microscopy and scanning electron microscopy, revealing that the combination of scaffold design and electrical stimulation significantly increased cell confluency of H9C2 cells on the scaffolds. Furthermore, we showed that the gene expression levels of Nkx2.5, atrial natriuretic peptide (ANF) and natriuretic peptide precursor B (NPPB), which are functional genes of the myocardium, were up-regulated by the incorporation of gold nanotubes/nanowires into the polyurethane scaffolds, in particular after electrical stimulation. - Highlights: • Biodegradable polyurethane/gold nanocomposites for cardiomyocyte adhesion are proposed. • The nanocomposite scaffolds are porous and electrical stimulation enhances cell adhesion. • Expression levels of functional myocardium genes were upregulated after electrical stimulation.

  5. Preparation of RHA-silica/graphene oxide nanocomposite for removal of nickel ions from water

    Science.gov (United States)

    Tien, Tran Thi Thuy; Tu, Tran Hoang; Thao, Huynh Nguyen Phuong; Hieu, Nguyen Huu

    2017-09-01

    In this study, silica was synthesized from rice husk ash (RHA-SiO2) by precipitation method. Graphene oxide (GO) was prepared by modified Hummers method. RHA-SiO2/GO nanocomposite was fabricated by in-situ one-step method using 3-Aminopropyltriethoxysilane (APS) as a coupling agent. The nanocomposite was characterized by using X-ray Fluorescence, X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, and Brunauer-Emmett-Teller (BET) specific surface area. The adsorption of RHA-SiO2/GO for Ni2+ ions from water was investigated and compared with the precursors. Ultraviolet-visible (UV-Vis) spectroscopy was used to quantify the amount of the initial and the residual Ni2+ concentration. The maximum adsorption capacity of the nanocomposite for Ni2+ calculated from Langmuir isotherm model, which was 256.4 mg/g. In addition, the adsorption data were well-fitted to the pseudo-second-order kinetic equation. Accordingly, this study demonstrated that RHA-SiO2/GO could be used as a highly efficient adsorbent for removal Ni2+ ions from aqueous solution.

  6. A smart multifunctional nanocomposite for intracellular targeted drug delivery and self-release

    International Nuclear Information System (INIS)

    Wang Chan; Tao Shengyang; Hu Tao; Yang Jingbang; Meng Changgong; Lv Piping; Wei Wei

    2011-01-01

    A multifunctional 'all-in-one' nanocomposite is fabricated using a colloid, template and surface-modification method. This material encompasses magnetic induced target delivery, cell uptake promotion and controlled drug release in one system. The nanocomposite is characterized by scanning electron microscopy, transmission electron microscopy, x-ray diffraction, N 2 adsorption and vibrating sample magnetometry. The prepared material has a diameter of 350-400 nm, a high surface area of 420.29 m 2 g -1 , a pore size of 1.91 nm and a saturation magnetization of 32 emu g -1 . Doxorubicin (DOX) is loaded in mesopores and acid-sensitive blockers are introduced onto the orifices of the mesopores by a Schiff base linker to implement pH-dependent self-release. Folate was also introduced to improve DOX targeted delivery and endocytosis. The linkers remained intact to block pores with ferrocene valves and inhibit the diffusion of DOX at neutral pH. However, in lysosomes of cancer cells, which have a weak acidic pH, hydrolysis of the Schiff base group removes the nanovalves and allows the trapped DOX to be released. These processes are demonstrated by UV-visible absorption spectra, confocal fluorescence microscopy images and methyl thiazolyl tetrazolium assays in vitro, which suggest that the smart nanocomposite successfully integrates targeted drug delivery with internal stimulus induced self-release and is a potentially useful material for nanobiomedicine.

  7. Comparative study of modified polypropylene nanocomposites under environment and accelerated ageing conditions

    International Nuclear Information System (INIS)

    Komatsu, Luiz Gustavo Hiroki

    2016-01-01

    The understanding of degradation mechanism action on the polymer nanocomposites in face of weathering (UV light, heat, acid rain, among others), is the key for development of new additives and new applications. In this work the nanocomposite synthesis was carried in molten state, using twin-screw extruder. The polymer matrix was the HMS-PP (high melt polypropylene) synthesized by gamma irradiation and the nanometric inorganic component was the montmorillonite clay. For better compatibilization between the matrix and clay, it were used maleic anhydride as coupling agent. For environment and in oven accelerated aging assays, the dumbbell samples were prepared under hot pressing. The characterization of clay addition effects and aging effects on the nanocomposites, required the use of techniques of Differential Scanning Calorimetry (DSC), Thermogravimetry (TGA), Fourier Transformed Infrared Spectroscopy (FT-IR), Xray Fluorescence (WDXRF), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and mechanical properties. Samples with 0.1; 1; 3; 5; 10 % of clay were tested. The sample with 5% of clay showed better stability on the environmental assay and accelerated aging in oven assay. On the other hand, the sample with higher percent of clay (10%), was more degraded under on environmental aging than under accelerated aging in stove. In this case, became more resistant until 56 days of assay. On the studied concentrations (less than ≤ 3%) of clay, it can be seen an equilibrium between barrier effect and metallic ions action accelerating the degradative process. (author)

  8. A smart multifunctional nanocomposite for intracellular targeted drug delivery and self-release

    Science.gov (United States)

    Wang, Chan; Lv, Piping; Wei, Wei; Tao, Shengyang; Hu, Tao; Yang, Jingbang; Meng, Changgong

    2011-10-01

    A multifunctional 'all-in-one' nanocomposite is fabricated using a colloid, template and surface-modification method. This material encompasses magnetic induced target delivery, cell uptake promotion and controlled drug release in one system. The nanocomposite is characterized by scanning electron microscopy, transmission electron microscopy, x-ray diffraction, N2 adsorption and vibrating sample magnetometry. The prepared material has a diameter of 350-400 nm, a high surface area of 420.29 m2 g - 1, a pore size of 1.91 nm and a saturation magnetization of 32 emu g - 1. Doxorubicin (DOX) is loaded in mesopores and acid-sensitive blockers are introduced onto the orifices of the mesopores by a Schiff base linker to implement pH-dependent self-release. Folate was also introduced to improve DOX targeted delivery and endocytosis. The linkers remained intact to block pores with ferrocene valves and inhibit the diffusion of DOX at neutral pH. However, in lysosomes of cancer cells, which have a weak acidic pH, hydrolysis of the Schiff base group removes the nanovalves and allows the trapped DOX to be released. These processes are demonstrated by UV-visible absorption spectra, confocal fluorescence microscopy images and methyl thiazolyl tetrazolium assays in vitro, which suggest that the smart nanocomposite successfully integrates targeted drug delivery with internal stimulus induced self-release and is a potentially useful material for nanobiomedicine.

  9. A smart multifunctional nanocomposite for intracellular targeted drug delivery and self-release

    Energy Technology Data Exchange (ETDEWEB)

    Wang Chan; Tao Shengyang; Hu Tao; Yang Jingbang; Meng Changgong [School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning (China); Lv Piping; Wei Wei, E-mail: taosy@dlut.edu.cn [National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing (China)

    2011-10-14

    A multifunctional 'all-in-one' nanocomposite is fabricated using a colloid, template and surface-modification method. This material encompasses magnetic induced target delivery, cell uptake promotion and controlled drug release in one system. The nanocomposite is characterized by scanning electron microscopy, transmission electron microscopy, x-ray diffraction, N{sub 2} adsorption and vibrating sample magnetometry. The prepared material has a diameter of 350-400 nm, a high surface area of 420.29 m{sup 2} g{sup -1}, a pore size of 1.91 nm and a saturation magnetization of 32 emu g{sup -1}. Doxorubicin (DOX) is loaded in mesopores and acid-sensitive blockers are introduced onto the orifices of the mesopores by a Schiff base linker to implement pH-dependent self-release. Folate was also introduced to improve DOX targeted delivery and endocytosis. The linkers remained intact to block pores with ferrocene valves and inhibit the diffusion of DOX at neutral pH. However, in lysosomes of cancer cells, which have a weak acidic pH, hydrolysis of the Schiff base group removes the nanovalves and allows the trapped DOX to be released. These processes are demonstrated by UV-visible absorption spectra, confocal fluorescence microscopy images and methyl thiazolyl tetrazolium assays in vitro, which suggest that the smart nanocomposite successfully integrates targeted drug delivery with internal stimulus induced self-release and is a potentially useful material for nanobiomedicine.

  10. The synthesis and characterization of biotin-silver-dendrimer nanocomposites as novel bioselective labels

    Energy Technology Data Exchange (ETDEWEB)

    Maly, J; Lampova, H; Semeradtova, A; Stofik, M [Faculty of Science, University of J E Purkynje, 40096 Usti nad Labem (Czech Republic); Kovacik, L, E-mail: malyjalga@seznam.c [Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague (Czech Republic)

    2009-09-23

    This paper presents a synthesis of a novel nanoparticle label with selective biorecognition properties based on a biotinylated silver-dendrimer nanocomposite (AgDNC). Two types of labels, a biotin-AgDNC (bio-AgDNC) and a biotinylated AgDNC with a poly(ethylene)glycol spacer (bio-PEG-AgDNC), were synthesized from a generation 7 (G7) hydroxyl-terminated ethylenediamine-core-type (2-carbon core) PAMAM dendrimer (DDM) by an N,N'-dicyclohexylcarbodiimide (DDC) biotin coupling and a NaBH{sub 4} silver reduction method. Synthesized conjugates were characterized by several analytical methods, such as UV-vis, FTIR, AFM, TEM, ELISA, HABA assay and SPR. The results show that stable biotinylated nanocomposites can be formed either with internalized silver nanoparticles (AgNPs) in a DMM polymer backbone ('type I') or as externally protected ('type E'), depending on the molar ratio of the silver/DMM conjugate and type of conjugate. Furthermore, the selective biorecognition function of the biotin is not affected by the AgNPs' synthesis step, which allows a potential application of silver nanocomposite conjugates as biospecific labels in various bioanalytical assays, or potentially as fluorescence cell biomarkers. An exploitation of the presented label in the development of electrochemical immunosensors is anticipated.

  11. Nanotechnology : emerging applications of cellulose-based green magnetic nanocomposites

    Science.gov (United States)

    Tao Wang; Zhiyong Cai; Lei Liu; Ilker S. Bayer; Abhijit Biswas

    2010-01-01

    In recent years, a new type of nanocomposite – cellulose based hybrid nanocomposites, which adopts cellulose nanofibers as matrices, has been intensively developed. Among these materials, hybrid nanocomposites consisting of cellulosic fibers and magnetic nanoparticles have recently attracted much attention due to their potential novel applications in biomedicine,...

  12. Evaporation-induced self-assembly of quantum dots-based concentric rings on polymer-based nanocomposite films.

    Science.gov (United States)

    Zhang, Shaofu; Luan, Weiling; Zhong, Qixin; Yin, Shaofeng; Yang, Fuqian

    2016-10-12

    The "ball-on-film" template is used to construct concentric rings on the surface of PMMA-QDs (polymethyl methacrylate - quantum dots) nanocomposite films via the evaporation of pure chloroform droplets, which are confined by a steel ball. The concentric rings consist of QDs, as revealed by the fluorescence images of the concentric rings. The photoluminescence intensity of the concentric rings increases with the increase of the distance to the ball center, suggesting that the amount of QDs accumulated around the contact line at individual stick state increases with the increase of the distance to the ball center. Both the wavelength and cross-sectional area (width) of the concentric rings increase approximately linearly with increasing distance to the ball center, independent of the ball size, the film thickness and the QDs concentration. For the PMMA-QDs nanocomposite films prepared from the same QDs concentration in chloroform, the thicker the PMMA-QDs nanocomposite film, the larger the wavelength for the same distance to the ball center. The effect of confinement of two steel balls on the surface patterns over the PMMA-QDs nanocomposite films is studied via a template of "two spheres on film". Symmetric surface patterns are formed. There exist two types of featureless zone between the two balls, depending on the distance between the two balls: one is the inner featureless zone and the other is the outer featureless zone. The size of both featureless zones increases with the increase of the ball distance.

  13. Characterization and in vitro biological evaluation of mineral/osteogenic growth peptide nanocomposites synthesized biomimetically on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Cen; Kong, Xiangdong [Bio-X Center, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Zhang, Sheng-Min [Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Lee, In-Seop, E-mail: inseop@yonsei.ac.kr [Bio-X Center, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Institute of Natural Sciences, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2015-04-15

    Graphical abstract: - Highlights: • Mineral/OGP nanocomposite layers were synthesized biomimetically on Ti substrates. • Incorporated OGP affected the morphology and ultimate structure of mineral. • Incorporated OGP improved the MSCs adhesion, proliferation, and ALP activity. - Abstract: Nanocomposite layers of mineral/osteogenic growth peptide (OGP) were synthesized on calcium phosphate coated titanium substrates by immersing in calcium-phosphate buffer solution containing OGP. Peptide incorporated mineral was characterized by determining quantity loaded, effects on mineral morphology and structure. Also, the biological activity was investigated by cell adhesion, proliferation assay, and measurement of alkaline phosphatase (ALP) activity. X-ray photoelectron spectroscopy (XPS) and micro-bicinchoninic acid (BCA) assay revealed that OGP was successfully incorporated with mineral and the amount was increased with immersion time. Incorporated OGP changed the mineral morphology from sharp plate-like shape to more rounded one, and the octacalcium phosphate structure of the mineral was gradually transformed into apatite. With confocal microscopy to examine the incorporation of fluorescently labeled peptide, OGP was evenly distributed throughout mineral layers. Mineral/OGP nanocomposites promoted cell adhesion and proliferation, and also increased ALP activity of mesenchymal stem cells (MSCs). Results presented here indicated that the mineral/OGP nanocomposites formed on titanium substrates had the potential for applications in dental implants.

  14. Characterization and in vitro biological evaluation of mineral/osteogenic growth peptide nanocomposites synthesized biomimetically on titanium

    International Nuclear Information System (INIS)

    Chen, Cen; Kong, Xiangdong; Zhang, Sheng-Min; Lee, In-Seop

    2015-01-01

    Graphical abstract: - Highlights: • Mineral/OGP nanocomposite layers were synthesized biomimetically on Ti substrates. • Incorporated OGP affected the morphology and ultimate structure of mineral. • Incorporated OGP improved the MSCs adhesion, proliferation, and ALP activity. - Abstract: Nanocomposite layers of mineral/osteogenic growth peptide (OGP) were synthesized on calcium phosphate coated titanium substrates by immersing in calcium-phosphate buffer solution containing OGP. Peptide incorporated mineral was characterized by determining quantity loaded, effects on mineral morphology and structure. Also, the biological activity was investigated by cell adhesion, proliferation assay, and measurement of alkaline phosphatase (ALP) activity. X-ray photoelectron spectroscopy (XPS) and micro-bicinchoninic acid (BCA) assay revealed that OGP was successfully incorporated with mineral and the amount was increased with immersion time. Incorporated OGP changed the mineral morphology from sharp plate-like shape to more rounded one, and the octacalcium phosphate structure of the mineral was gradually transformed into apatite. With confocal microscopy to examine the incorporation of fluorescently labeled peptide, OGP was evenly distributed throughout mineral layers. Mineral/OGP nanocomposites promoted cell adhesion and proliferation, and also increased ALP activity of mesenchymal stem cells (MSCs). Results presented here indicated that the mineral/OGP nanocomposites formed on titanium substrates had the potential for applications in dental implants

  15. Cellulose acetate nanocomposite with nanocellulose obtained from bagasse of sugarcane

    International Nuclear Information System (INIS)

    Santos, Frirllei Cardozo dos

    2016-01-01

    This study presents a methodology for the extraction of nanocellulose of sugarcane bagasse for use in nanocomposites with cellulose acetate (CA). The bagasse sugarcane was treated with sodium hydroxide (NaOH) and sodium hypochlorite (NaClO) to remove lignin, hemicellulose, pectin and impurities. For removal of the amorphous region of cellulose microfibrils obtained from alkali treatments were submitted to acid hydrolysis with sulfuric acid under different temperature conditions. The nanocellulose obtained through acid hydrolysis heated at 45 ° C was used for the formulation of nanocomposites by smaller dimensions presented. The films were formulated at different concentrations (1, 2, 4 and 6 wt%) by the casting technique at room temperature. Each alkaline treatment was accompanied by spectrophotometry by infrared and fluorescence analysis to confirm the removal of the amorphous fraction, micrographs carried out by Scanning Electron Microscope (SEM) to display the fiber defibration. The efficiency of acid hydrolysis was confirmed by micrographs obtained by transmission electron microscope (TEM). The crystallinity index (CI) of the nanocrystals was determined by X-ray Diffraction (XRD). The surface of the obtained films were characterized by SEM and AFM microscopy of. The results showed that the sugarcane bagasse is an excellent source for nanocellulose extraction, the amorphous fraction of the fiber can be removed with the suggested alkaline treatments, and hydrolysis with H_2SO_4 was efficient both in the removal of amorphous cellulose as in reducing cellulose nanoscale with a length around 250 nm and a diameter of about 10 nm. The use of heated nanocellulose obtained through hydrolysis was selected after analysis of XRD, it was confirmed that this material had higher when compared to IC hydrolysis at room temperature. The nanocomposites showed high rigidity and brittleness with high crystallinity when compared to the pure polymer film was observed by AFM and SEM

  16. Polypyrrole-silver Nanocomposite: Synthesis and Characterization

    Directory of Open Access Journals (Sweden)

    D. M. Nerkar

    2016-07-01

    Full Text Available Polypyrrole-Silver (PPy-Ag nanocomposite has been successfully synthesized by the chemical oxidative polymerization of pyrrole with iron (III chloride as an oxidant, in the presence of a colloidal suspension of silver nanoparticles. Turkevich method (Citrate reduction method was used for the synthesis of silver nanoparticles (Ag NPs. The silver nanoparticles were characterized by UV-Visible spectroscopy which showed an absorption band at 423 nm confirming the formation of nanoparticles. PPy-Ag nanocomposite was characterized by Transmission Electron Microscopy (TEM, Scanning Electron Microscopy (SEM, Fourier Transform Infrared Spectroscopy (FTIR and X-ray diffraction (XRD techniques for morphological and structural confirmations. TEM and SEM images revealed that the silver nanoparticles were well dispersed in the PPy matrix. XRD pattern showed that PPy is amorphous but the presence of the peaks at 2q values of 38.24°, 44.57°, 64.51° and 78.45° corresponding to a cubic phase of silver, revealed the incorporation of silver nanoparticles in the PPy matrix. A possible formation mechanism of PPy-Ag nanocomposite was also proposed. The electrical conductivity of PPy-Ag nanocomposite was studied using two probe method. The electrical conductivity of the PPy-Ag nanocomposite prepared was found to be 4.657´10- 2 S/cm, whereas that of pure PPy was found to be 9.85´10-3 S/cm at room temperature (303 K. The value of activation energy (Ea for pure PPy was 0.045 eV while it decreased to 0.034 eV for PPy-Ag nanocomposite. The synthesized nanocomposite powder can be utilized as a potential material for fabrication of gas sensors operating at room temperature.

  17. Atomic-fluorescence spectrophotometry

    International Nuclear Information System (INIS)

    Bakhturova, N.F.; Yudelevich, I.G.

    1975-01-01

    Atomic-fluorescence spectrophotometry, a comparatively new method for the analysis of trace quantities, has developed rapidly in the past ten years. Theoretical and experimental studies by many workers have shown that atomic-fluorescence spectrophotometry (AFS) is capable of achieving a better limit than atomic absorption for a large number of elements. The present review examines briefly the principles of atomic-fluorescence spectrophotometry and the types of fluorescent transition. The excitation sources, flame and nonflame atomizers, used in AFS are described. The limits of detection achieved up to the present, using flame and nonflame methods of atomization are given

  18. Fluorescence of irradiated hydrocarbons

    International Nuclear Information System (INIS)

    Gulis, I.G.; Evdokimenko, V.M.; Lapkovskij, M.P.; Petrov, P.T.; Gulis, I.M.; Markevich, S.V.

    1977-01-01

    A visible fluorescence has been found out in γ-irradiated aqueous of carbohydrates. Two bands have been distinguished in fluorescence spectra of the irradiated solution of dextran: a short-wave band lambdasub(max)=140 nm (where lambda is a wave length) at lambdasub(β)=380 nm and a long-wave band with lambdasub(max)=540 nm at lambdasub(β)=430 nm. A similar form of the spectrum has been obtained for irradiated solutions of starch, amylopectin, lowmolecular glucose. It has been concluded that a macromolecule of polysaccharides includes fluorescent centres. A relation between fluorescence and α-oxiketon groups formed under irradiation has been pointed out

  19. Enhanced photoluminescence in transparent thin films of polyaniline–zinc oxide nanocomposite prepared from oleic acid modified zinc oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sajimol Augustine, M., E-mail: sajimollazar@gmail.com [Department of Physics, St. Teresa' s College, Kochi-11, Kerala (India); Jeeju, P.P.; Varma, S.J.; Francis Xavier, P.A. [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Kochi-22, Kerala (India); Jayalekshmi, S., E-mail: lakshminathcusat@gmail.com [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Kochi-22, Kerala (India)

    2014-07-01

    Oleic acid capped zinc oxide (ZnO) nanoparticles have been synthesized by a wet chemical route. The chemical oxidative method is employed to synthesize polyaniline (PANI) and PANI/ZnO nanocomposites doped with four different dopants such as orthophosphoric acid (H{sub 3}PO{sub 4}), hydrochloric acid (HCl), naphthalene-2-sulphonic acid and camphor sulphonic acid (CSA). The samples have been structurally characterized by X-ray diffraction (XRD), field emission scanning electron microscopy and Fourier transform infrared (FT-IR) spectroscopic techniques. A comparison of the photoluminescence (PL) emission intensity of PANI and PANI/ZnO nanocomposites is attempted. The enhanced PL intensity in PANI/ZnO nanocomposites is caused by the presence of nanostructured and highly fluorescent ZnO in the composites. It has been observed that, among the composites, the H{sub 3}PO{sub 4} doped PANI/ZnO nanocomposite is found to exhibit the highest PL intensity because of the higher extent of (pi) conjugation and the more orderly arrangement of the benzenoid and quinonoid units. In the present work, transparent thin films of PANI and PANI/ZnO nanocomposite for which PL intensity is found to be maximum, have been prepared after re-doping with CSA by the spin-coating technique. The XRD pattern of the PANI/ZnO film shows exceptionally good crystallanity compared to that of pure PANI, which suggests that the addition of ZnO nanocrystals helps in enhancing the crystallanity of the PANI/ZnO nanocomposite. There is a significant increase in the PL emission intensity of the PANI/ZnO nanocomposite film making it suitable for the fabrication of optoelectronic devices. - Highlights: • Oleic acid capped zinc oxide nanoparticles are synthesized by wet chemical method. • Polyaniline/zinc oxide nanocomposites are prepared by in-situ polymerization. • Polyaniline and polyaniline/zinc oxide thin films are deposited using spin-coating. • Enhanced photoluminescence is observed in polyaniline

  20. BACTERICIDE IMPACT OF POLYMER-STABILIZED MULTI-FUNCTIONAL NANO-COMPOSITES

    Directory of Open Access Journals (Sweden)

    Graskova I.A.

    2012-08-01

    Full Text Available Synthesis on the basis of natural matrices in order to acquire products with the desired properties is one of the promising trends of modern science. Using polysaccharides as a matrix allowed to generate derivatives with diverse structures and new properties. Growing interest towards anti-microbe effect of selenium-containing nano-composites is induced by the phenomenon of antibiotic-resistance of contemporary pathogenic microorganisms.Clavibacter genus bacteria are the most significant and widely spread among gram-positive bacteria. Bacteria cells are static pleimorphous rods, normally singular, sometimes coupled or joined in short chains, strict anaerobes in need of certain growth factors, non-sporogenous. Clavibacter michiganensis subsp. sepedonicus cause potato ring rot. At the tuber slice the damage is shaped as a ring; growing bacteria are accumulated in the conducting vessels causing their occlusion and therefore gradual withering of leaves and stem. This disease is distributed at all the continents including Australia. Harvest loss through ring rot damage may reach 10-45%.Our work was aimed at the study of complex interaction between microbe cultivar and selenium-based nanocomposites. Bacterial strain Аs1405 was acquired from the All-Russia collection of microorganisms, IMBP RAS. This genus is not included in the classification of pathogenic microorganisms by pathogenic groups of Sanitary-Epidemiological Rules SP 1.3.2322-08. The present study was focused on characteristics of the acquired strain.Fluorescent and electronic-scanning microscope was used to acquire photographs of bacterial cells. Pathogen was identified by PCR-analysis, which confirmed the presence of DNA of desired size. The extracted DNA was sequenced with the sequenced sequence added to Gen Bank under the number HQ394204. Cellulolytic and phytotoxic activity of this strain was determined.Chemistry Institute named A.E. Favorsky provided water-soluble nano-composites

  1. A hybrid molecularly imprinted polymer coated quantum dot nanocomposite optosensor for highly sensitive and selective determination of salbutamol in animal feeds and meat samples.

    Science.gov (United States)

    Raksawong, Phannika; Chullasat, Kochaporn; Nurerk, Piyaluk; Kanatharana, Proespichaya; Davis, Frank; Bunkoed, Opas

    2017-08-01

    A hybrid molecularly imprinted polymer (MIP)-coated quantum dot (QD) nanocomposite was synthesized and applied as a fluorescence probe for the highly sensitive and selective determination of salbutamol. The hybrid MIP-coated QD nanocomposite was synthesized via a copolymerization process in the presence of thioglycolic acid capped CdTe QDs with salbutamol as a template, 3-aminopropyltriethoxysilane as the functional monomer, and tetraethyl orthosilicate as a cross-linker. The optimum molar ratio of template, monomer, and cross-linker was 1:6:20. The fluorescence intensity of the hybrid MIP-coated QDs was efficiently quenched after salbutamol rebound to the recognition sites, as a result of charge transfer from QDs to salbutamol. The synthesized hybrid MIP-coated QD nanocomposite showed high sensitivity and good selectivity toward salbutamol. Under the optimal recognition conditions, the fluorescence intensity was quenched linearly with increasing concentration of salbutamol in the range from 0.10 to 25.0 μg L -1 , with a detection limit of 0.034 μg L -1 . The hybrid optosensor developed was successfully applied in the determination of salbutamol in animal feeds and meat samples. Satisfactory recoveries were obtained in the range from 85% to 98%, with a standard deviation of less than 8%. Furthermore, the accuracy of the hybrid MIP-coated QD nanocomposite was investigated by comparison with a conventional high-performance liquid chromatography method, with the results obtained with two methods agreeing well with each other. The advantages of this sensing method are simplicity, rapidity, cost-effectiveness, high sensitivity, and good selectivity. Graphical Abstract The synthesis of hybrid MIP-coated QDs nanocomposite.

  2. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst

    Science.gov (United States)

    Gao, Peng; Li, Shenggang; Bu, Xianni; Dang, Shanshan; Liu, Ziyu; Wang, Hui; Zhong, Liangshu; Qiu, Minghuang; Yang, Chengguang; Cai, Jun; Wei, Wei; Sun, Yuhan

    2017-10-01

    Although considerable progress has been made in carbon dioxide (CO2) hydrogenation to various C1 chemicals, it is still a great challenge to synthesize value-added products with two or more carbons, such as gasoline, directly from CO2 because of the extreme inertness of CO2 and a high C-C coupling barrier. Here we present a bifunctional catalyst composed of reducible indium oxides (In2O3) and zeolites that yields a high selectivity to gasoline-range hydrocarbons (78.6%) with a very low methane selectivity (1%). The oxygen vacancies on the In2O3 surfaces activate CO2 and hydrogen to form methanol, and C-C coupling subsequently occurs inside zeolite pores to produce gasoline-range hydrocarbons with a high octane number. The proximity of these two components plays a crucial role in suppressing the undesired reverse water gas shift reaction and giving a high selectivity for gasoline-range hydrocarbons. Moreover, the pellet catalyst exhibits a much better performance during an industry-relevant test, which suggests promising prospects for industrial applications.

  3. Bifunctional Anti-Non-Amyloid Component α-Synuclein Nanobodies Are Protective In Situ.

    Directory of Open Access Journals (Sweden)

    David C Butler

    Full Text Available Misfolding, abnormal accumulation, and secretion of α-Synuclein (α-Syn are closely associated with synucleinopathies, including Parkinson's disease (PD. VH14 is a human single domain intrabody selected against the non-amyloid component (NAC hydrophobic interaction region of α-Syn, which is critical for initial aggregation. Using neuronal cell lines, we show that as a bifunctional nanobody fused to a proteasome targeting signal, VH14PEST can counteract heterologous proteostatic effects of mutant α-Syn on mutant huntingtin Exon1 and protect against α-Syn toxicity using propidium iodide or Annexin V readouts. We compared this anti-NAC candidate to NbSyn87, which binds to the C-terminus of α-Syn. NbSyn87PEST degrades α-Syn as well or better than VH14PEST. However, while both candidates reduced toxicity, VH14PEST appears more effective in both proteostatic stress and toxicity assays. These results show that the approach of reducing intracellular monomeric targets with novel antibody engineering technology should allow in vivo modulation of proteostatic pathologies.

  4. Colorimetric and luminescent bifunctional iridium(III) complexes for the sensitive recognition of cyanide ions

    Science.gov (United States)

    Chen, Xiudan; Wang, Huili; Li, Jing; Hu, Wenqin; Li, Mei-Jin

    2017-02-01

    Two new cyclometalated iridium(III) complexes [(ppy)2Irppz]Cl (1) and [(ppy)2Irbppz]Cl (2) (where ppy = 2-phenylpyridine, ppz = 4,7-phenanthrolino-5,6:5,6-pyrazine, bppz = 2.3-di-2-pyridylpyrazine), were designed and synthesized. The structure of [(ppy)2Irppz]Cl was determined by single crystal X-ray diffraction. Their photophysical properties were also studied. This kind of complexes could coordinate with Cu2 +, the photoluminescence (PL) of the complex was quenched, and the color changed from orange-red to green. The forming M-Cu (M: complexes 1 and 2) ensemble could be further utilized as a colorimetric and emission ;turn-on; bifunctional detection for CN-, especially for complex 1-Cu2 + showed a high sensitivity toward CN- with a limit of diction is 97 nM. Importantly, this kind of iridium(III) complexes shows a unique recognition of cyanide ions over other anions which makes it an eligible sensing probe for cyanide ions.

  5. A self-cleaning Li-S battery enabled by a bifunctional redox mediator

    Science.gov (United States)

    Ren, Y. X.; Zhao, T. S.; Liu, M.; Zeng, Y. K.; Jiang, H. R.

    2017-09-01

    The polysulfide shuttle effect and lithium dendrite growth in lithium-sulfur (Li-S) batteries can repeatedly breach the anodic solid electrolyte interphase (SEI) over cycling. As a result, irreversible short-chain sulfide side products (Li2Sx, x = 1, 2) keep depositing on the Li anode, leading to the active material loss, increasing the Li+ transport resistance, and thereby reducing the cycle life. In this work, indium iodide (InI3) is investigated as a bifunctional electrolyte additive for Li-S batteries to protect the Li anode and decompose the side products spontaneously. On the one hand, Indium (In) is electrodeposited onto the Li anode prior to Li plating during the initial charging process, forming a chemically and mechanically stable SEI to prevent the Li anode from reacting with soluble polysulfide species to form Li2Sx (x = 1, 2) side products. On the other hand, by adequately overcharging the battery, the triiodide/iodide redox mediator is capable of chemically transforming side products deposited on the Li anode and separator into soluble polysulfides, which can be recycled by the cathode. It is shown that the battery with the InI3 additive exhibits a prolonged cycle life, and is capable of retrieving its capacity by a facile overcharging process.

  6. Bifunctional separator as a polysulfide mediator for highly stable Li-S batteries

    KAUST Repository

    Abbas, Syed Ali

    2016-05-24

    The shuttling process involving lithium polysulfides is one of the major factors responsible for the degradation in capacity of lithium–sulfur batteries (LSBs). Herein, we demonstrate a novel and simple strategy—using a bifunctional separator, prepared by spraying poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) on pristine separator—to obtain long-cycle LSBs. The negatively charged SO3– groups present in PSS act as an electrostatic shield for soluble lithium polysulfides through mutual coulombic repulsion, whereas PEDOT provides chemical interactions with insoluble polysulfides (Li2S, Li2S2). The dual shielding effect can provide an efficient protection from the shuttling phenomenon by confining lithium polysulfides to the cathode side of the battery. Moreover, coating with PEDOT:PSS transforms the surface of the separator from hydrophobic to hydrophilic, thereby improving the electrochemical performance. We observed an ultralow decay of 0.0364% per cycle when we ran the battery for 1000 cycles at 0.25 C—far superior to that of the pristine separator and one of the lowest recorded values reported at a low current density. We examined the versatility of our separator by preparing a flexible battery that functioned well under various stress conditions; it displayed flawless performance. Accordingly, this economical and simple strategy appears to be an ideal platform for commercialization of LSBs.

  7. The Design of New HIV-IN Tethered Bifunctional Inhibitors using Multiple Microdomain Targeted Docking.

    Science.gov (United States)

    Ciubotaru, Mihai; Musat, Mihaela Georgiana; Surleac, Marius; Ionita, Elena; Petrescu, Andrei Jose; Abele, Edgars; Abele, Ramona

    2018-04-05

    Currently used antiretroviral HIV therapy drugs exclusively target critical groups in the enzymes essential for the viral life cycle. Increased mutagenesis of their genes, changes these viral enzymes which once mutated can evade therapeutic targeting, effects which confer drug resistance. To circumvent this, our review addresses a strategy to design and derive HIV-Integrase (HIV-IN) inhibitors which simultaneously target two IN functional domains, rendering it inactive even if the enzyme accumulates many mutations. First we review the enzymatic role of IN to insert the copied viral DNA into a chromosome of the host T lymphocyte, highlighting its main functional and structural features to be subjected to inhibitory action. From a functional and structural perspective we present all classes of HIV-IN inhibitors with their most representative candidates. For each chosen compound we also explain its mechanism of IN inhibition. We use the recently resolved cryo EM IN tetramer intasome DNA complex [1] onto which we dock various reference IN inhibitory chemical scaffolds such as to target adjacent functional IN domains. Pairing compounds with complementary activity, which dock in the vicinity of a IN structural microdomain, we design bifunctional new drugs which may not only be more resilient to IN mutations but also may be more potent inhibitors than their original counterparts. In the end of our review we propose synthesis pathways to link such paired compounds with enhanced synergistic IN inhibitory effects. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. A bifunctional electrolyte additive for separator wetting and dendrite suppression in lithium metal batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Hao; Xie, Yong; Xiang, Hongfa; Shi, Pengcheng; Liang, Xin; Xu, Wu

    2018-04-01

    Reformulation of electrolyte systems and improvement of separator wettability are vital to electrochemical performances of rechargeable lithium (Li) metal batteries, especially for suppressing Li dendrites. In this work we report a bifunctional electrolyte additive that improves separator wettability and suppresses Li dendrite growth in LMBs. A triblock polyether (Pluronic P123) was introduced as an additive into a commonly used carbonate-based electrolyte. It was found that addition of 0.2~1% (by weight) P123 into the electrolyte could effectively enhance the wettability of polyethylene separator. More importantly, the adsorption of P123 on Li metal surface can act as an artificial solid electrolyte interphase layer and contribute to suppress the growth of Li dendrites. A smooth and dendritic-free morphology can be achieved in the electrolyte with 0.2% P123. The Li||Li symmetric cells with the 0.2% P123 containing electrolyte exhibit a relatively stable cycling stability at high current densities of 1.0 and 3.0 mA cm-2.

  9. Highly stable acyclic bifunctional chelator for {sup 64}Cu PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Abada, S.; Lecointre, A.; Christine, C.; Charbonniere, L. [CNRS/UDS, EPCM, Strasbourg (France). Lab. d' Ingenierie Appliquee a l' Analyse; Dechamps-Olivier, I. [Univ. de Reims Champagne Ardenne, Reims (France). Group Chimie de Coordination; Platas-Iglesias, C. [Univ. da Coruna (Spain). Dept. de Quimica Fundamental; Elhabiri, M. [CNRS/UDS, EPCM, Strasbourg (France). Lab. de Physico-Chimie Bioinorganique

    2011-07-01

    Ligand L{sup 1}, based on a pyridine scaffold, functionalized by two bis(methane phosphonate)aminomethyl groups, was shown to display a very high affinity towards Cu(II) (log K{sub CuL}=22.7) and selectivity over Ni(II), Co(II), Zn(II) and Ga(III) ({delta} log K{sub ML}>4) as shown by the values of the stability constants obtained from potentiometric measurements. Insights into the coordination mode of the ligand around Cu(II) cation were obtained by UV-Vis absorption and EPR spectroscopies as well as density functional theory (DFT) calculations (B3LYP model) performed in aqueous solution. The results point to a pentacoordination pattern of the metal ion in the fully deprotonated [CuL{sup 1}]{sup 6-} species. Considering the beneficial thermodynamic parameters of this ligand, kinetic experiments were run to follow the formation of the copper(II) complexes, indicating a very rapid formation of the complex, appropriate for {sup 64}Cu complexation. As L{sup 1} represents a particularly interesting target within the frame of {sup 64}Cu PET imaging, a synthetic protocol was developed to introduce a labeling function on the pyridyl moiety of L{sup 1}, thereby affording L{sup 2}, a potential bifunctional chelator (BFC) for PET imaging.

  10. Bifunctional separator as a polysulfide mediator for highly stable Li-S batteries

    KAUST Repository

    Abbas, Syed Ali; Ibrahem, Mohammed Aziz; Hu, Lung-hao; Lin, Chia-Nan; Fang, Jason; Boopathi, Karunakara Moorthy; Wang, Pen-Cheng; Li, Lain-Jong; Chu, Chih Wei

    2016-01-01

    The shuttling process involving lithium polysulfides is one of the major factors responsible for the degradation in capacity of lithium–sulfur batteries (LSBs). Herein, we demonstrate a novel and simple strategy—using a bifunctional separator, prepared by spraying poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) on pristine separator—to obtain long-cycle LSBs. The negatively charged SO3– groups present in PSS act as an electrostatic shield for soluble lithium polysulfides through mutual coulombic repulsion, whereas PEDOT provides chemical interactions with insoluble polysulfides (Li2S, Li2S2). The dual shielding effect can provide an efficient protection from the shuttling phenomenon by confining lithium polysulfides to the cathode side of the battery. Moreover, coating with PEDOT:PSS transforms the surface of the separator from hydrophobic to hydrophilic, thereby improving the electrochemical performance. We observed an ultralow decay of 0.0364% per cycle when we ran the battery for 1000 cycles at 0.25 C—far superior to that of the pristine separator and one of the lowest recorded values reported at a low current density. We examined the versatility of our separator by preparing a flexible battery that functioned well under various stress conditions; it displayed flawless performance. Accordingly, this economical and simple strategy appears to be an ideal platform for commercialization of LSBs.

  11. Solution Structure of a Novel C2-Symmetrical Bifunctional Bicyclic Inhibitor Based on SFTI-1

    International Nuclear Information System (INIS)

    Jaulent, Agnes M.; Brauer, Arnd B. E.; Matthews, Stephen J.; Leatherbarrow, Robin J.

    2005-01-01

    A novel bifunctional bicyclic inhibitor has been created that combines features both from the Bowman-Birk inhibitor (BBI) proteins, which have two distinct inhibitory sites, and from sunflower trypsin inhibitor-1 (SFTI-1), which has a compact bicyclic structure. The inhibitor was designed by fusing together a pair of reactive loops based on a sequence derived from SFTI-1 to create a backbone-cyclized disulfide-bridged 16-mer peptide. This peptide has two symmetrically spaced trypsin binding sites. Its synthesis and biological activity have been reported in a previous communication [Jaulent and Leatherbarrow, 2004, PEDS 17, 681]. In the present study we have examined the three-dimensional structure of the molecule. We find that the new inhibitor, which has a symmetrical 8-mer half-cystine CTKSIPP'I' motif repeated through a C 2 symmetry axis also shows a complete symmetry in its three-dimensional structure. Each of the two loops adopts the expected canonical conformation common to all BBIs as well as SFTI-1. We also find that the inhibitor displays a strong and unique structural identity, with a notable lack of minor conformational isomers that characterise most reactive site loop mimics examined to date as well as SFTI-1. This suggests that the presence of the additional cyclic loop acts to restrict conformational mobility and that the deliberate introduction of cyclic symmetry may offer a general route to locking the conformation of β-hairpin structures

  12. Flexible control of cellular encapsulation, permeability, and release in a droplet-templated bifunctional copolymer scaffold.

    Science.gov (United States)

    Chen, Qiushui; Chen, Dong; Wu, Jing; Lin, Jin-Ming

    2016-11-01

    Designing cell-compatible, bio-degradable, and stimuli-responsive hydrogels is very important for biomedical applications in cellular delivery and micro-scale tissue engineering. Here, we report achieving flexible control of cellular microencapsulation, permeability, and release by rationally designing a diblock copolymer, alginate-conjugated poly(N-isopropylacrylamide) (Alg-co-PNiPAM). We use the microfluidic technique to fabricate the bifunctional copolymers into thousands of mono-disperse droplet-templated hydrogel microparticles for controlled encapsulation and triggered release of mammalian cells. In particular, the grafting PNiPAM groups in the synthetic cell-laden microgels produce lots of nano-aggregates into hydrogel networks at elevated temperature, thereafter enhancing the permeability of microparticle scaffolds. Importantly, the hydrogel scaffolds are readily fabricated via on-chip quick gelation by triggered release of Ca 2+ from the Ca-EDTA complex; it is also quite exciting that very mild release of microencapsulated cells is achieved via controlled degradation of hydrogel scaffolds through a simple strategy of competitive affinity of Ca 2+ from the Ca-Alginate complex. This finding suggests that we are able to control cellular encapsulation and release through ion-induced gelation and degradation of the hydrogel scaffolds. Subsequently, we demonstrate a high viability of microencapsulated cells in the microgel scaffolds.

  13. Designing calcium phosphate-based bifunctional nanocapsules with bone-targeting properties

    Energy Technology Data Exchange (ETDEWEB)

    Khung, Yit-Lung; Bastari, Kelsen; Cho, Xing Ling; Yee, Wu Aik; Loo, Say Chye Joachim, E-mail: joachimloo@ntu.edu.sg [Nanyang Technological University, School of Materials Science and Engineering (Singapore)

    2012-06-15

    Using sodium dodecyl sulphate micelles as template, hollow-cored calcium phosphate nanocapsules were produced. The surfaces of the nanocapsule were subsequently silanised by a polyethylene glycol (PEG)-based silane with an N-hydroxysuccinimide ester end groups which permits for further attachment with bisphosphonates (BP). Characterisations of these nanocapsules were investigated using Field Emission Scanning Electron Microscopy (FESEM), Transmission Electron Microscopy, Fourier Transform Infra-Red Spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Dynamic Light Scattering. To further validate the bone-targeting potential, dentine discs were incubated with these functionalised nanocapsules. FESEM analysis showed that these surface-modified nanocapsules would bind strongly to dentine surfaces compared to non-functionalised nanocapsules. We envisage that respective components would give this construct a bifunctional attribute, whereby (1) the shell of the calcium phosphate nanocapsule would serve as biocompatible coating aiding in gradual osteoconduction, while (2) surface BP moieties, acting as targeting ligands, would provide the bone-targeting potential of these calcium phosphate nanocapsules.

  14. Designing calcium phosphate-based bifunctional nanocapsules with bone-targeting properties

    International Nuclear Information System (INIS)

    Khung, Yit-Lung; Bastari, Kelsen; Cho, Xing Ling; Yee, Wu Aik; Loo, Say Chye Joachim

    2012-01-01

    Using sodium dodecyl sulphate micelles as template, hollow-cored calcium phosphate nanocapsules were produced. The surfaces of the nanocapsule were subsequently silanised by a polyethylene glycol (PEG)-based silane with an N-hydroxysuccinimide ester end groups which permits for further attachment with bisphosphonates (BP). Characterisations of these nanocapsules were investigated using Field Emission Scanning Electron Microscopy (FESEM), Transmission Electron Microscopy, Fourier Transform Infra-Red Spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Dynamic Light Scattering. To further validate the bone-targeting potential, dentine discs were incubated with these functionalised nanocapsules. FESEM analysis showed that these surface-modified nanocapsules would bind strongly to dentine surfaces compared to non-functionalised nanocapsules. We envisage that respective components would give this construct a bifunctional attribute, whereby (1) the shell of the calcium phosphate nanocapsule would serve as biocompatible coating aiding in gradual osteoconduction, while (2) surface BP moieties, acting as targeting ligands, would provide the bone-targeting potential of these calcium phosphate nanocapsules.

  15. Adsorption and photocatalysis for methyl orange and Cd removal from wastewater using TiO2/sewage sludge-based activated carbon nanocomposites.

    Science.gov (United States)

    Rashed, M Nageeb; Eltaher, M A; Abdou, A N A

    2017-12-01

    Nanocomposite TiO 2 /ASS (TiO 2 nanoparticle coated sewage sludge-based activated carbon) was synthesized by the sol-gel method. The changes in surface properties of the TiO 2 /ASS nanocomposite were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray fluorescence. The prepared TiO 2 /ASS nanocomposite was applied for simultaneous removal of methyl orange dye (MO) and Cd 2+ from bi-pollutant solution. The factors influencing photocatalysis (TiO 2  : ASS ratios, initial pollutant concentrations, solution pH, nanocomposite dosage and UV irradiation time) were investigated. The results revealed that high removal efficiency of methyl orange dye (MO) and Cd 2+ from bi-pollutant solution was achieved with TiO 2 /ASS at a ratio (1 : 2). The obtained results revealed that degradation of MO dye on the TiO 2 /ASS nanocomposite was facilitated by surface adsorption and photocatalytic processes. The coupled photocatalysis and adsorption shown by TiO 2 /ASS nanocomposite resulted in faster and higher degradation of MO as compared to MO removal by ASS adsorbent. The removal efficiency of MO by ASS adsorbent and TiO 2 /ASS (1 : 2) nanocomposite at optimum pH value 7 were 74.14 and 94.28%, respectively, while for Cd 2+ it was more than 90%. The experimental results fitted well with the second-order kinetic reaction.

  16. CdSe@ZnS nanocomposites prepared by a mechanochemical route: No release of Cd{sup 2+} ions and negligible in vitro cytotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Baláž, Peter, E-mail: balaz@saske.sk [Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04353 Košice (Slovakia); Sayagués, Maria Jesús, E-mail: mjsayagues@icmse.csic.es [Institute of Materials Science of Sevilla CSIC, Américo Vespucio 49, 41092 Sevilla (Spain); Baláž, Matej, E-mail: balazm@saske.sk [Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04353 Košice (Slovakia); Zorkovská, Anna, E-mail: zorkovska@saske.sk [Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04353 Košice (Slovakia); Hronec, Pavol, E-mail: hronec.pavol@gmail.com [Slovak University of Technology, Faculty of Electrical Engineering and Information Technology, Iľkovičova 3, 81219 Bratislava (Slovakia); Kováč, Jaroslav, E-mail: jaroslav_kovac@stuba.sk [Slovak University of Technology, Faculty of Electrical Engineering and Information Technology, Iľkovičova 3, 81219 Bratislava (Slovakia); Kováč, Jaroslav, E-mail: jaroslav.kovac@stuba.sk [Slovak University of Technology, Faculty of Electrical Engineering and Information Technology, Iľkovičova 3, 81219 Bratislava (Slovakia); Dutková, Erika, E-mail: dutkova@saske.sk [Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04353 Košice (Slovakia); Mojžišová, Gabriela, E-mail: gabriela.mojzisova@upjs.sk [P. J. Šafárik University, Faculty of Medicine, Trieda SNP 1, 04011 Košice (Slovakia); and others

    2014-01-01

    Graphical abstract: - Highlights: • CdSe@ZnS nanocomposites were produced by milling. • Negligible cadmium leakage was observed. • No toxicity against living cells was documented. • The material is suitable for biological imaging. - Abstract: CdSe@ZnS nanocomposites have been prepared by a two-step solid state mechanochemical synthesis. CdSe prepared from Cd and Se elements in the first step was mixed with zinc acetate and sodium sulphide in the second step of milling to prepare a CdSe@ZnS nanocomposite. In the third step, the obtained nanocomposite was coated with L-cysteine to prepare a biocompatible system. The crystallite size of the new type of nanocomposite was 20–35 nm for cubic CdSe and 3–8 nm for hexagonal ZnS as calculated from XRD, TEM and SEM data. The synthesised samples show good crystallinity and have been tested for dissolution and cytotoxicity. The dissolution of cadmium from CdSe@ZnS was less than 0.05 μg mL{sup −1}, whereas a value of 0.8 μg mL{sup −1} was measured for CdSe alone. The binding of ZnS with CdSe in the nanocomposite practically eliminated the release of cadmium into solution. As a consequence, a very low cytotoxic activity has been evidenced for CdSe@ZnS. The nanocomposites coated with L-cysteine have a great potential as fluorescent labels in biomedical engineering.

  17. Solvent extraction of uranium(VI), plutonium(VI) and americium(III) with HTTA/HPMBP using mono- and bi-functional neutral donors. Synergism and thermodynamics

    International Nuclear Information System (INIS)

    Pai, S.A.; Lohithakshan, K.V.; Mithapara, P.D.; Aggarwal, S.K.

    2000-01-01

    Synergistic extraction of hexavalent uranium and plutonium as well as trivalent americium was studied in HNO 3 with thenoyl, trifluoro-acetone (HTTA)/1-phenyl, 3-methyl, 4-benzoyl pyrazolone-5 (HPMBP) in combination with neutral donors viz. DPSO, TBP, TOPO (mono-functional) and DBDECMP, DHDECMP, CMPO (bi-functional) with wide basicity range using benzene as diluent. A linear correlation was observed when the equilibrium constant log Ks for the organic phase synergistic reaction of both U(VI) and Pu(VI) with either of the chelating agents HTTA or HPMBP was plotted vs. the basicity (log Kh) of the donor (both mono- and bi-functional) indicating bi-functional donors also behave as mono-functional. This was supported by the thermodynamic data (ΔG 0 , ΔH 0 , ΔS 0 ) obtained for these systems. The organic phase adduct formation reactions were identified for the above systems from the thermodynamic data. In the Am(III) HTTA system log K s values of bi-functional donors were found to be very high and deviate from the linear plot (log K s vs. log K h ) obtained for mono-functional donors, indicating that they function as bi-functional for the Am(III)/HTTA) system studied. This was supported by high +ve ΔS 0 values obtained for this system. (author)

  18. Systematic comparison of model polymer nanocomposite mechanics.

    Science.gov (United States)

    Xiao, Senbo; Peter, Christine; Kremer, Kurt

    2016-09-13

    Polymer nanocomposites render a range of outstanding materials from natural products such as silk, sea shells and bones, to synthesized nanoclay or carbon nanotube reinforced polymer systems. In contrast to the fast expanding interest in this type of material, the fundamental mechanisms of their mixing, phase behavior and reinforcement, especially for higher nanoparticle content as relevant for bio-inorganic composites, are still not fully understood. Although polymer nanocomposites exhibit diverse morphologies, qualitatively their mechanical properties are believed to be governed by a few parameters, namely their internal polymer network topology, nanoparticle volume fraction, particle surface properties and so on. Relating material mechanics to such elementary parameters is the purpose of this work. By taking a coarse-grained molecular modeling approach, we study an range of different polymer nanocomposites. We vary polymer nanoparticle connectivity, surface geometry and volume fraction to systematically study rheological/mechanical properties. Our models cover different materials, and reproduce key characteristics of real nanocomposites, such as phase separation, mechanical reinforcement. The results shed light on establishing elementary structure, property and function relationship of polymer nanocomposites.

  19. Nanoscratching of nylon 66-based ternary nanocomposites

    International Nuclear Information System (INIS)

    Dasari, Aravind; Yu Zhongzhen; Mai Yiuwing

    2007-01-01

    The nanoscratch behavior of nylon 66/SEBS-g-MA/clay ternary nanocomposites produced by different blending protocols with contrasting microstructures is studied by using atomic force and transmission electron microscopy. A standard diamond Berkovich indenter is used for scratching and a low load of 1 mN, along with a low sliding velocity of 1 μm s -1 , are employed for this purpose. It is shown that in order to resist penetration it is more important to have exfoliated clay in the continuous nylon matrix during nanoscratching than to have the clay in the dispersed soft rubber domains. The results obtained also explain the preferred usage of ternary nanocomposites compared to binary nanocomposites, particularly nylon 66/exfoliated clay nanocomposites. This research extends current basic knowledge and provides new insights on the nature of nanoscale processes that occur during nanoscratching of polymer nanocomposites. Critical questions are raised on the relationships between the penetration depth and material deformation and damage left behind the moving indenter

  20. Cellulose nanofibrils (CNF) filled boron nitride (BN) nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Sulaiman, Hanisah Syed; Hua, Chia Chin; Zakaria, Sarani [School of Applied Physic, Faculty of Science and Technology, Universiti Kebangsaan Malaysia.43600 Bangi, Selangor (Malaysia)

    2015-09-25

    In this study, nanocomposite using cellulose nanofibrils filled with different percentage of boron nitride (CNF-BN) were prepared. The objective of this research is to study the effect of different percentage of BN to the thermal conductivity of the nanocomposite produced. The CNF-BN nanocomposite were characterization by FT-IR, SEM and thermal conductivity. The FT-IR analysis of the CNF-BN nanocomposite shows all the characteristic peaks of cellulose and BN present in all samples. The dispersion of BN in CNF were seen through SEM analysis. The effect of different loading percentage of BN to the thermal conductivity of the nanocomposite were also investigated.

  1. Non-typical fluorescence studies of excited and ground state proton and hydrogen transfer

    KAUST Repository

    Gil, Michał; Kijak, Michał; Piwonski, Hubert Marek; Herbich, Jerzy; Waluk, Jacek

    2017-01-01

    Fluorescence studies of tautomerization have been carried out for various systems that exhibit single and double proton or hydrogen translocation in various environments, such as liquid and solid condensed phases, ultracold supersonic jets, and finally, polymer matrices with single emitters.We focus on less explored areas of application of fluorescence for tautomerization studies, using porphycene, a porphyrin isomer, as an example. Fluorescence anisotropy techniques allow investigations of self-exchange reactions, where the reactant and product are formally identical. Excitation with polarized light makes it possible to monitor tautomerization in single molecules and to detect their three-dimensional orientation. Analysis of fluorescence from single vibronic levels of jet-isolated porphycene not only demonstrates coherent tunneling of two internal protons, but also indicates that the process is vibrational mode-specific. Next, we present bifunctional proton donoracceptor systems, molecules that are able, depending on the environment, to undergo excited state single intramolecular or double intermolecular proton transfer. For molecules that have donor and acceptor groups located in separate moieties linked by a single bond, excited state tautomerization can be coupled to mutual twisting of the two subunits.

  2. Non-typical fluorescence studies of excited and ground state proton and hydrogen transfer

    KAUST Repository

    Gil, Michał

    2017-02-03

    Fluorescence studies of tautomerization have been carried out for various systems that exhibit single and double proton or hydrogen translocation in various environments, such as liquid and solid condensed phases, ultracold supersonic jets, and finally, polymer matrices with single emitters.We focus on less explored areas of application of fluorescence for tautomerization studies, using porphycene, a porphyrin isomer, as an example. Fluorescence anisotropy techniques allow investigations of self-exchange reactions, where the reactant and product are formally identical. Excitation with polarized light makes it possible to monitor tautomerization in single molecules and to detect their three-dimensional orientation. Analysis of fluorescence from single vibronic levels of jet-isolated porphycene not only demonstrates coherent tunneling of two internal protons, but also indicates that the process is vibrational mode-specific. Next, we present bifunctional proton donoracceptor systems, molecules that are able, depending on the environment, to undergo excited state single intramolecular or double intermolecular proton transfer. For molecules that have donor and acceptor groups located in separate moieties linked by a single bond, excited state tautomerization can be coupled to mutual twisting of the two subunits.

  3. Green synthesis, characterization, and anticancer activity of hyaluronan/zinc oxide nanocomposites

    Directory of Open Access Journals (Sweden)

    Namvar F

    2016-07-01

    were treated with HA/ZnO nanocomposite. At 72 hours of treatment, the half maximal inhibitory concentration (IC50 value via the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay was 10.8±0.3 µg/mL, 15.4±1.2 µg/mL, 12.1±0.9 µg/mL, and 6.25±0.5 µg/mL for the PANC-1, CaOV-3, COLO-205, and HL-60 cells, respectively, showing that the composite is most toxic to the HL-60 cells. On the other hand, HA/ZnO nanocomposite treatment for 72 hours did not cause toxicity to the normal human lung fibroblast (MRC-5 cell line. Using fluorescent dyes and flow cytometry analysis, HA/ZnO nanocomposite caused G2/M cell cycle arrest and stimulated apoptosis-related increase in caspase-3 and -7 activities of the HL-60 cells. Thus, the study shows that the HA/ZnO nanocomposite produced through green synthesis has great potential to be developed into an efficacious therapeutic agent for cancers. Keywords: green synthesis, hyaluronan, zinc oxide nanocomposite, anticancer activity

  4. Membranes and Fluorescence microscopy

    DEFF Research Database (Denmark)

    Bagatolli, Luis

    2009-01-01

    Fluorescence spectroscopy-based techniques using conventional fluorimeters have been extensively applied since the late 1960s to study different aspects of membrane-related phenomena, i.e., mainly relating to lipid-lipid and lipid-protein (peptide) interactions. Even though fluorescence...

  5. Multimodal fluorescence imaging spectroscopy

    NARCIS (Netherlands)

    Stopel, Martijn H W; Blum, Christian; Subramaniam, Vinod; Engelborghs, Yves; Visser, Anthonie J.W.G.

    2014-01-01

    Multimodal fluorescence imaging is a versatile method that has a wide application range from biological studies to materials science. Typical observables in multimodal fluorescence imaging are intensity, lifetime, excitation, and emission spectra which are recorded at chosen locations at the sample.

  6. Novel Nanocomposite Materials for Advanced Li-Ion Rechargeable Batteries

    Directory of Open Access Journals (Sweden)

    Chuan Cai

    2009-09-01

    Full Text Available Nanostructured materials lie at the heart of fundamental advances in efficient energy storage and/or conversion, in which surface processes and transport kinetics play determining roles. Nanocomposite materials will have a further enhancement in properties compared to their constituent phases. This Review describes some recent developments of nanocomposite materials for high-performance Li-ion rechargeable batteries, including carbon-oxide nanocomposites, polymer-oxide nanocomposites, metal-oxide nanocomposites, and silicon-based nanocomposites, etc. The major goal of this Review is to highlight some new progress in using these nanocomposite materials as electrodes to develop Li-ion rechargeable batteries with high energy density, high rate capability, and excellent cycling stability.

  7. Tangible nanocomposites with diverse properties for heart valve application

    Science.gov (United States)

    Vignesh Vellayappan, Muthu; Balaji, Arunpandian; Priyadarshini Subramanian, Aruna; Aruna John, Agnes; Jaganathan, Saravana Kumar; Murugesan, Selvakumar; Mohandas, Hemanth; Supriyanto, Eko; Yusof, Mustafa

    2015-06-01

    Cardiovascular disease claims millions of lives every year throughout the world. Biomaterials are used widely for the treatment of this fatal disease. With the advent of nanotechnology, the use of nanocomposites has become almost inevitable in the field of biomaterials. The versatile properties of nanocomposites, such as improved durability and biocompatibility, make them an ideal choice for various biomedical applications. Among the various nanocomposites, polyhedral oligomeric silsesquioxane-poly(carbonate-urea)urethane, bacterial cellulose with polyvinyl alcohol, carbon nanotubes, graphene oxide and nano-hydroxyapatite nanocomposites have gained popularity as putative choices for biomaterials in cardiovascular applications owing to their superior properties. In this review, various studies performed utilizing these nanocomposites for improving the mechanical strength, anti-calcification potential and hemocompatibility of heart valves are reviewed and summarized. The primary motive of this work is to shed light on the emerging nanocomposites for heart valve applications. Furthermore, we aim to promote the prospects of these nanocomposites in the campaign against cardiovascular diseases.

  8. Nanocomposites with High Thermoelectric Figures of Merit

    Science.gov (United States)

    Chen, Gang (Inventor); Dresselhaus, Mildred (Inventor); Ren, Zhifeng (Inventor)

    2015-01-01

    The present invention is generally directed to nanocomposite thermoelectric materials that exhibit enhanced thermoelectric properties. The nanocomposite materials include two or more components, with at least one of the components forming nano-sized structures within the composite material. The components are chosen such that thermal conductivity of the composite is decreased without substantially diminishing the composite's electrical conductivity. Suitable component materials exhibit similar electronic band structures. For example, a band-edge gap between at least one of a conduction band or a valence band of one component material and a corresponding band of the other component material at interfaces between the components can be less than about 5k(sub B)T, wherein k(sub B) is the Boltzman constant and T is an average temperature of said nanocomposite composition.

  9. Au Based Nanocomposites Towards Plasmonic Applications

    Science.gov (United States)

    Panniello, A.; Curri, M. L.; Placido, T.; Reboud, V.; Kehagias, N.; Sotomayor Torres, C. M.; Mecerreyes, D.; Agostiano, A.; Striccoli, M.

    2010-06-01

    Incorporation of nano-sized metals in polymers can transfer their unique features to the host matrix, providing nanocomposite materials with improved optical, electric, magnetic and mechanical properties. In this work, colloidal Au nanorods have been incorporated into PMMA based random co-polymer, properly functionalized with amino groups and the optical and morphological properties of the resulting nanocomposite have been investigated by spectroscopic and AFM measurements. Au nanorods have demonstrated to preserve the plasmon absorption and to retain morphological features upon the incorporation, thus making the final metal modified polymer composite exploitable for the fabrication of plasmonic devices. The prepared nanocomposites have been then patterned by Nano Imprint Lithography technique in order to demonstrate the viability of the materials towards optical applications.

  10. Nanocomposite Coatings: Preparation, Characterization, Properties, and Applications

    Directory of Open Access Journals (Sweden)

    Phuong Nguyen-Tri

    2018-01-01

    Full Text Available Incorporation of nanofillers into the organic coatings might enhance their barrier performance, by decreasing the porosity and zigzagging the diffusion path for deleterious species. Thus, the coatings containing nanofillers are expected to have significant barrier properties for corrosion protection and reduce the trend for the coating to blister or delaminate. On the other hand, high hardness could be obtained for metallic coatings by producing the hard nanocrystalline phases within a metallic matrix. This article presents a review on recent development of nanocomposite coatings, providing an overview of nanocomposite coatings in various aspects dealing with the classification, preparative method, the nanocomposite coating properties, and characterization methods. It covers potential applications in areas such as the anticorrosion, antiwear, superhydrophobic area, self-cleaning, antifouling/antibacterial area, and electronics. Finally, conclusion and future trends will be also reported.

  11. Microstructural evolution of alumina-zirconia nanocomposites

    International Nuclear Information System (INIS)

    Ojaimi, C.L.; Chinelatto, A.S.A.; Chinelatto, A.L.; Pallone, E.M.J.A.

    2012-01-01

    Ceramic materials have limited use due to their brittleness. The inclusion of nanosized particles in a ceramic matrix, which are called nanocomposites, and ceramic processing control by controlling the grain size and densification can aid in obtaining ceramic products of greater strength and toughness. Studies showed that the zirconia nano inclusions in the matrix of alumina favors an increase in mechanical properties by inhibiting the grain growth of the matrix and not by the mechanism of the transformation toughening phase of zirconia. In this work, the microstructural evolution of alumina nanocomposites containing 15% by volume of nanometric zirconia was studied. From the results it was possible to understand the sintering process of these nanocomposites. (author)

  12. Epoxy Nanocomposites filled with Carbon Nanoparticles.

    Science.gov (United States)

    Martin-Gallego, M; Yuste-Sanchez, V; Sanchez-Hidalgo, R; Verdejo, R; Lopez-Manchado, M A

    2018-01-10

    Over the past decades, the development of high performance lightweight polymer nanocomposites and, in particular, of epoxy nanocomposites has become one the greatest challenges in material science. The ultimate goal of epoxy nanocomposites is to extrapolate the exceptional intrinsic properties of the nanoparticles to the bulk matrix. However, in spite of the efforts, this objective is still to be attained at commercially attractive scales. Key aspects to achieve this are ultimately the full understanding of network structure, the dispersion degree of the nanoparticles, the interfacial adhesion at the phase boundaries and the control of the localization and orientation of the nanoparticles in the epoxy system. In this Personal Account, we critically discuss the state of the art and evaluate the strategies to overcome these barriers. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Nanoparticle intercalation-induced interlayer-gap-opened graphene–polyaniline nanocomposite for enhanced supercapacitive performances

    Energy Technology Data Exchange (ETDEWEB)

    Im, Sungjin; Park, Young Ran [Graphene Research Institute & Department of Chemistry, Sejong University, Seoul 05006 (Korea, Republic of); Park, Sanghyuk [Graphene Research Institute & Department of Chemistry, Sejong University, Seoul 05006 (Korea, Republic of); Department of Energy and Mineral Resources Engineering, Sejong University, Seoul 05006 (Korea, Republic of); Kim, Hyeong Jin [Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006 (Korea, Republic of); Doh, Ji Hoon [Graphene Research Institute & Department of Chemistry, Sejong University, Seoul 05006 (Korea, Republic of); Division of Electron Microscopy Research, Korea Basic Science Institute (KBSI), Daejeon 34133 (Korea, Republic of); Kwon, Kyungjung [Department of Energy and Mineral Resources Engineering, Sejong University, Seoul 05006 (Korea, Republic of); Hong, Won G. [Division of Electron Microscopy Research, Korea Basic Science Institute (KBSI), Daejeon 34133 (Korea, Republic of); Kim, Byungnam [Radiation Equipment Research Division, Korea Atomic Energy Research Institute, Daejeon 34057 (Korea, Republic of); Yang, Woo Seok [Electronic Material and Device Research Center, Korea Electronics Technology Institute, Seongnam, Gyeonggi-do 13509 (Korea, Republic of); Kim, TaeYoung [Department of Bionanotechnology, Gachon University, Seongnam, Gyeonggi-do 13120 (Korea, Republic of); Hong, Young Joon, E-mail: yjhong@sejong.ac.kr [Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006 (Korea, Republic of)

    2017-08-01

    Highlights: • High energy–power supercapacitor electrode is demonstrated using EDLC–PC hybridized rGO–PANi nanocomposite. • A method for perpetuated intercalation of nanoparticles into interlayer gap of rGO is developed. • The intercalaction (i) exfoliates rGO layers, (ii) prevents self-agglomeration, and (iii) enlarges specific surface area of rGO for high power performance. • Electric resistance is substantially reduced by forming more rGO–PANi links via grafting of PANi to well-opened rGO edges. - Abstract: This study demonstrates a method for improving supercapacitive performance of two-dimensional nanosheet-based composite electrode. As a hybridized electrostatic double layer capacitor–electrochemical pseudocapacitor (EDLC–PC) electrode, we synthesized reduced graphene oxide–polyaniline nanofibers (rGO–PANi NFs) composite electrode. For the enhanced supercapacitive performances, insulator silver chloride nanoparticles (AgCl NPs) were intercalated into the interlayer gap of rGO. The AgCl NP intercalation (i) exfoliated rGO layers and (ii) prevented rGO-self-agglomeration that makes it difficult to utilize the high surface-to-volume ratio of ideal mono- (or few-) atomic-thick rGO layers. As a result, (iii) the specific capacitance was improved in accordance with the enlarged specific surface area of rGO. Furthermore, (iv) the well-developed rGO edges, which were opened by the AgCl intercalation, enabled formation of more bonds between PANi and rGO by selective grafting of PANi to the rGO edges. Hence, the bonds of PANi–rGO, as conducting paths, substantially reduced the total electrical resistance. Enhanced specific capacitance, ion diffusion efficiency, and reduced electrical resistance indicated the bi-functional roles of AgCl NP insertion for high performance hybridized EDLC–PC electrodes.

  14. Metal-Organic-Framework-Derived Hybrid Carbon Nanocages as a Bifunctional Electrocatalyst for Oxygen Reduction and Evolution.

    Science.gov (United States)

    Liu, Shaohong; Wang, Zhiyu; Zhou, Si; Yu, Fengjiao; Yu, Mengzhou; Chiang, Chang-Yang; Zhou, Wuzong; Zhao, Jijun; Qiu, Jieshan

    2017-08-01

    The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are cornerstone reactions for many renewable energy technologies. Developing cheap yet durable substitutes of precious-metal catalysts, especially the bifunctional electrocatalysts with high activity for both ORR and OER reactions and their streamlined coupling process, are highly desirable to reduce the processing cost and complexity of renewable energy systems. Here, a facile strategy is reported for synthesizing double-shelled hybrid nanocages with outer shells of Co-N-doped graphitic carbon (Co-NGC) and inner shells of N-doped microporous carbon (NC) by templating against core-shell metal-organic frameworks. The double-shelled NC@Co-NGC nanocages well integrate the high activity of Co-NGC shells into the robust NC hollow framework with enhanced diffusion kinetics, exhibiting superior electrocatalytic properties to Pt and RuO 2 as a bifunctional electrocatalyst for ORR and OER, and hold a promise as efficient air electrode catalysts in Zn-air batteries. First-principles calculations reveal that the high catalytic activities of Co-NGC shells are due to the synergistic electron transfer and redistribution between the Co nanoparticles, the graphitic carbon, and the doped N species. Strong yet favorable adsorption of an OOH* intermediate on the high density of uncoordinated hollow-site C atoms with respect to the Co lattice in the Co-NGC structure is a vital rate-determining step to achieve excellent bifunctional electrocatalytic activity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Bifunctional Au@TiO_2 core–shell nanoparticle films for clean water generation by photocatalysis and solar evaporation

    International Nuclear Information System (INIS)

    Huang, Jian; He, Yurong; Wang, Li; Huang, Yimin; Jiang, Baocheng

    2017-01-01

    Highlights: • Au@TiO_2 core-shell nanoparticles were prepared in this study. • Bifunctional films for photocatalysis and solar evaporation were designed. • The evaporation and photodegradation with core-shell structures were investigated. - Abstract: With water scarcity becoming an increasingly critical issue for modern society, solar seawater desalination represents a promising approach to mitigating water shortage. In addition, solar seawater desalination shows great potential for mitigating the energy crisis due to its high photo-thermal conversion efficiency. However, the increasing contamination of seawater makes it difficult to generate clean water through simple desalination processes. In this work, clean water is generated by a newly designed bifunctional Au@TiO_2 core-shell nanoparticle film with a high photo-thermal conversion efficiency that is capable of photocatalysis and solar evaporation for seawater desalination. Bifunctional films of Au@TiO_2 core-shell nanoparticles with good stability were prepared. It was found that the formation of the core-shell structures played a key role in promoting the photo-thermal conversion efficiency and the evaporation of seawater, while the photocatalytic function demonstrated herein could contribute to the purification of polluted seawater. Furthermore, the film structure can serve to concentrate the NPs for the photo-reaction, as well as heat for water evaporation, improving both the photo-reaction efficiency and photo-thermal conversion efficiency. This efficient approach to solar seawater desalination, which combines evaporation with the photodegradation of pollutants, could help to address the dual issues of water scarcity and water pollution.

  16. Functionalized Nanolipobubbles Embedded Within a Nanocomposite Hydrogel: a Molecular Bio-imaging and Biomechanical Analysis of the System.

    Science.gov (United States)

    Mufamadi, Maluta S; Choonara, Yahya E; Kumar, Pradeep; du Toit, Lisa C; Modi, Girish; Naidoo, Dinesh; Iyuke, Sunny E; Pillay, Viness

    2017-04-01

    The purpose of this study was to explore the use of molecular bio-imaging systems and biomechanical dynamics to elucidate the fate of a nanocomposite hydrogel system prepared by merging FITC-labeled nanolipobubbles within a cross-linked hydrogel network. The nanocomposite hydrogel system was characterized by size distribution analysis and zeta potential as well as shears thinning behavior, elastic modulus (G'), viscous loss moduli (G"), TEM, and FTIR. In addition, molecular bio-imaging via Vevo ultrasound and Cell-viZio techniques evaluated the stability and distribution of the nanolipobubbles within the cross-linked hydrogel. FITC-labeled and functionalized nanolipobubbles had particle sizes between 135 and 158 nm (PdI = 0.129 and 0.190) and a zeta potential of -34 mV. TEM and ultrasound imaging revealed the uniformity and dimensional stability of the functionalized nanolipobubbles pre- and post-embedment into the cross-linked hydrogel. Biomechanical characterization of the hydrogel by shear thinning behavior was governed by the polymer concentration and the cross-linker, glutaraldehyde. Ultrasound analysis and Cell-viZio bio-imaging were highly suitable to visualize the fluorescent image-guided nanolipobubbles and their morphology post-embedment into the hydrogel to form the NanoComposite system. Since the nanocomposite is intended for targeted treatment of neurodegenerative disorders, the distribution of the functionalized nanolipobubbles into PC12 neuronal cells was also ascertained via confocal microscopy. Results demonstrated effective release and localization of the nanolipobubbles within PC12 neuronal cells. The molecular structure of the synthetic surface peptide remained intact for an extended period to ensure potency for targeted delivery from the hydrogel ex vivo. These findings provide further insight into the properties of nanocomposite hydrogels for specialized drug delivery.

  17. Fluorescence and Spectral Imaging

    Directory of Open Access Journals (Sweden)

    Ralph S. DaCosta

    2007-01-01

    Full Text Available Early identification of dysplasia remains a critical goal for diagnostic endoscopy since early discovery directly improves patient survival because it allows endoscopic or surgical intervention with disease localized without lymph node involvement. Clinical studies have successfully used tissue autofluorescence with conventional white light endoscopy and biopsy for detecting adenomatous colonic polyps, differentiating benign hyperplastic from adenomas with acceptable sensitivity and specificity. In Barrett's esophagus, the detection of dysplasia remains problematic because of background inflammation, whereas in the squamous esophagus, autofluorescence imaging appears to be more dependable. Point fluorescence spectroscopy, although playing a crucial role in the pioneering mechanistic development of fluorescence endoscopic imaging, does not seem to have a current function in endoscopy because of its nontargeted sampling and suboptimal sensitivity and specificity. Other point spectroscopic modalities, such as Raman spectroscopy and elastic light scattering, continue to be evaluated in clinical studies, but still suffer the significant disadvantages of being random and nonimaging. A recent addition to the fluorescence endoscopic imaging arsenal is the use of confocal fluorescence endomicroscopy, which provides real-time optical biopsy for the first time. To improve detection of dysplasia in the gastrointestinal tract, a new and exciting development has been the use of exogenous fluorescence contrast probes that specifically target a variety of disease-related cellular biomarkers using conventional fluorescent dyes and novel potent fluorescent nanocrystals (i.e., quantum dots. This is an area of great promise, but still in its infancy, and preclinical studies are currently under way.

  18. The sunburn cell in hairless mouse epidermis: quantitative studies with UV-A radiation and mono- and bifunctional psoralens

    International Nuclear Information System (INIS)

    Young, A.R.; Magnus, I.A.

    1982-01-01

    The production of the sunburn cell by UV-A radiation and topical psoralens in hairless mouse epidermis has been studied. It has been shown that the appearance of this cell is dependent on the dose of both UV-A radiation and of the psoralen. The time-course with 8-methoxypsoralen has peak sunburn cell numbers at 28 hr postirradiation. A comparison of 2 bifunctional (8-methoxypsoralen and 5-methoxypsoralen) and 2 monofunctional (angelicin and 3-carbethoxypsoralen) psoralens showed the former are more potent. This suggests that DNA crosslink lesions may play a rle in sunburn cell production

  19. Enantioselective Alkylation of 2-Oxindoles Catalyzed by a Bifunctional Phase-Transfer Catalyst: Synthesis of (-)-Debromoflustramine B.

    Science.gov (United States)

    Craig, Ryan; Sorrentino, Emiliano; Connon, Stephen J

    2018-03-26

    A new bifunctional phase-transfer catalyst that employs hydrogen bonding as a control element was developed to promote efficient enantioselective S N 2 reactions for the construction all-carbon quaternary stereocenters in high yield and excellent enantioselectivity (up to 97 % ee) utilizing the alkylation of a malleable oxindole substrate. The utility of the methodology was demonstrated through a concise and highly enantioselective synthesis of (-)-debromoflustramine B. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Ascorbic acid as a bifunctional hydrogen bond donor for the synthesis of cyclic carbonates from CO2 under ambient conditions

    KAUST Repository

    Arayachukiat, Sunatda

    2017-07-14

    Readily available ascorbic acid was discovered as an environmentally benign hydrogen bond donor (HBD) for the synthe-sis of cyclic organic carbonates from CO2 and epoxides in the presence of nucleophilic co-catalysts. The ascorbic acid/TBAI (TBAI: tetrabutylammonium iodide) binary system could be applied for the cycloaddition of CO2 to various epoxides under ambient or mild conditions. DFT calculations and catalysis experiments revealed an intriguing bifunctional mechanism in the step of CO2 insertion involving different hydroxyl moieties (enediol, ethyldiol) of the ascorbic acid scaffold.

  1. Ascorbic acid as a bifunctional hydrogen bond donor for the synthesis of cyclic carbonates from CO2 under ambient conditions

    KAUST Repository

    Arayachukiat, Sunatda; Kongtes, Chutima; Barthel, Alexander; Vummaleti, Sai V. C.; Poater, Albert; Wannakao, Sippakorn; Cavallo, Luigi; D'Elia, Valerio

    2017-01-01

    Readily available ascorbic acid was discovered as an environmentally benign hydrogen bond donor (HBD) for the synthe-sis of cyclic organic carbonates from CO2 and epoxides in the presence of nucleophilic co-catalysts. The ascorbic acid/TBAI (TBAI: tetrabutylammonium iodide) binary system could be applied for the cycloaddition of CO2 to various epoxides under ambient or mild conditions. DFT calculations and catalysis experiments revealed an intriguing bifunctional mechanism in the step of CO2 insertion involving different hydroxyl moieties (enediol, ethyldiol) of the ascorbic acid scaffold.

  2. NAD-Dependent DNA-Binding Activity of the Bifunctional NadR Regulator of Salmonella typhimurium

    OpenAIRE

    Penfound, Thomas; Foster, John W.

    1999-01-01

    NadR is a 45-kDa bifunctional regulator protein. In vivo genetic studies indicate that NadR represses three genes involved in the biosynthesis of NAD. It also participates with an integral membrane protein (PnuC) in the import of nicotinamide mononucleotide, an NAD precursor. NadR was overexpressed and purified as a His-tagged fusion in order to study its DNA-binding properties. The protein bound to DNA fragments containing NAD box consensus sequences. NAD proved to be the relevant in vivo co...

  3. Recent Advances in Dynamic Kinetic Resolution by Chiral Bifunctional (Thio)urea- and Squaramide-Based Organocatalysts.

    Science.gov (United States)

    Li, Pan; Hu, Xinquan; Dong, Xiu-Qin; Zhang, Xumu

    2016-10-14

    The organocatalysis-based dynamic kinetic resolution (DKR) process has proved to be a powerful strategy for the construction of chiral compounds. In this feature review, we summarized recent progress on the DKR process, which was promoted by chiral bifunctional (thio)urea and squaramide catalysis via hydrogen-bonding interactions between substrates and catalysts. A wide range of asymmetric reactions involving DKR, such as asymmetric alcoholysis of azlactones, asymmetric Michael-Michael cascade reaction, and enantioselective selenocyclization, are reviewed and demonstrate the efficiency of this strategy. The (thio)urea and squaramide catalysts with dual activation would be efficient for more unmet challenges in dynamic kinetic resolution.

  4. Novel bifunctional anthracycline and nitrosourea chemotherapy for human bladder cancer: analysis in a preclinical survival model.

    Science.gov (United States)

    Glaves, D; Murray, M K; Raghavan, D

    1996-08-01

    A hybrid drug [N-2-chloroethylnitrosoureidodaunorubicin (AD312)] that combines structural and functional features of both anthracyclines and nitrosoureas was evaluated in a preclinical survival model of human bladder cancer. To measure the therapeutic activity of AD312, UCRU-BL13 transitional cell carcinoma cells were grown as xenografts in nude mice, and tumor growth rates were compared after i.v. administration of the drug at three dose levels. AD312 treatment at 45 and 60 mg/kg achieved 7-10-fold inhibition of tumor growth and increased host survival by 156 and 249%, respectively. Doses of 60 mg/kg showed optimal therapeutic efficacy, with sustained tumor growth inhibition, an over 2-fold increase in life span, and 40% of mice tumor free ("cured") at 120 days. Tumors were unresponsive to maximum tolerated doses of doxorubicin, a standard anthracycline used as a single agent and in combination therapies for bladder cancer. 1,3-Bis-[2-chloroethyl]-1-nitrosourea was used as a control for the apparently enhanced response of human tumors in murine hosts to nitrosoureas. 1, 3-Bis-[2-chloroethyl]-1-nitrosourea administered in three injections of 20 mg/kg did not cure mice but temporarily inhibited tumor growth by 70% and prolonged survival by 55%; its activity in this model suggests that it may be included in the repertoire of alkylating agents currently used for treatment of bladder cancers. AD312 showed increased antitumor activity with less toxicity than doxorubicin, and its bifunctional properties provide the opportunity for simultaneous treatment of individual cancer cells with two cytotoxic modalities as well as treatment of heterogeneous populations typical of bladder cancers. This novel cytotoxic drug cured doxorubicin-refractory disease and should be investigated for the clinical management of bladder cancer.

  5. Bifunctional Molybdenum Polyoxometalates for the Combined Hydrodeoxygenation and Alkylation of Lignin-Derived Model Phenolics.

    Science.gov (United States)

    Anderson, Eric; Crisci, Anthony; Murugappan, Karthick; Román-Leshkov, Yuriy

    2017-05-22

    Reductive catalytic fractionation of biomass has recently emerged as a powerful lignin extraction and depolymerization method to produce monomeric aromatic oxygenates in high yields. Here, bifunctional molybdenum-based polyoxometalates supported on titania (POM/TiO 2 ) are shown to promote tandem hydrodeoxygenation (HDO) and alkylation reactions, converting lignin-derived oxygenated aromatics into alkylated benzenes and alkylated phenols in high yields. In particular, anisole and 4-propylguaiacol were used as model compounds for this gas-phase study using a packed-bed flow reactor. For anisole, 30 % selectivity for alkylated aromatic compounds (54 % C-alkylation of the methoxy groups by methyl balance) with an overall 72 % selectivity for HDO at 82 % anisole conversion was observed over H 3 PMo 12 O 40 /TiO 2 at 7 h on stream. Under similar conditions, 4-propylguaiacol was mainly converted into 4-propylphenol and alkylated 4-propylphenols with a selectivity to alkylated 4-propylphenols of 42 % (77 % C-alkylation) with a total HDO selectivity to 4-propylbenzene and alkylated 4-propylbenzenes of 4 % at 92 % conversion (7 h on stream). Higher catalyst loadings pushed the 4-propylguaiacol conversion to 100 % and resulted in a higher selectivity to propylbenzene of 41 %, alkylated aromatics of 21 % and alkylated phenols of 17 % (51 % C-alkylation). The reactivity studies coupled with catalyst characterization revealed that Lewis acid sites act synergistically with neighboring Brønsted acid sites to simultaneously promote alkylation and hydrodeoxygenation activity. A reaction mechanism is proposed involving activation of the ether bond on a Lewis acid site, followed by methyl transfer and C-alkylation. Mo-based POMs represent a versatile catalytic platform to simultaneously upgrade lignin-derived oxygenated aromatics into alkylated arenes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Spectrophotometric method for determination of bifunctional macrocyclic ligands in macrocyclic ligand-protein conjugates

    International Nuclear Information System (INIS)

    Dadachova, E.; Chappell, L.L.; Brechbiel, M.W.

    1999-01-01

    A simple spectrophotometric assay for determination of bifunctional polyazacarboxylate-macrocyclic ligands of different sizes that are conjugated to proteins has been developed for: 12-membered macrocycle DOTA (2-[4-nitrobenzyl]-1, 4, 7, 10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid) and analogs, the 15-membered PEPA macrocycle (2-[4-nitrobenzyl]-1,4,7,10,13-pentaazacyclopentadecane-N,N',N'',N''',N'''' -pentaacetic acid), and the large 18-membered macrocycle HEHA (1,4,7,10,13,16-hexaazacyclooctadecane-N,N',N'',N''',N''''-hexaacetic acid). The method is based on titration of the blue-colored 1:1 Pb(II)-Arsenazo III (AAIII) complex with the polyazacarboxylate macrocyclic ligand in the concentration range of 0-2.5 μM, wherein color change occurring upon transchelation of the Pb(II) from the AAIII to the polyazamacrocyclic ligand is monitored at 656 nm. The assay is performed at ambient temperature within 20 min without any interfering interaction between the protein and Pb(II)-AA(III) complex. Thus, this method also provides a ligand-to-protein ratio (L/P ratio) that reflects the effective number of ligands per protein molecule available to radiolabeling. The method is not suitable for 14-membered TETA macrocycle (2-[4-nitrobenzyl]-1, 4, 8, 11-tetraazacyclotetradecane N,N',N'',N'''-tetraacetic acid) because of low stability constant of Pb(II)-TETA complex. The method is rapid, simple and may be customized for other polyazacarboxylate macrocyclic ligands

  7. Enhancing Cooperativity in Bifunctional Acid–Pd Catalysts with Carboxylic Acid-Functionalized Organic Monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Coan, Patrick D. [Department of Chemical and Biological Engineering, University of Colorado—Boulder, Boulder, Colorado 80309, United States; Ellis, Lucas D. [Department of Chemical and Biological Engineering, University of Colorado—Boulder, Boulder, Colorado 80309, United States; Griffin, Michael B. [National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States; Schwartz, Daniel K. [Department of Chemical and Biological Engineering, University of Colorado—Boulder, Boulder, Colorado 80309, United States; Medlin, J. Will [Department of Chemical and Biological Engineering, University of Colorado—Boulder, Boulder, Colorado 80309, United States

    2018-03-01

    Cooperative catalysts containing a combination of noble metal hydrogenation sites and Bronsted acid sites are critical for many reactions, including the deoxygenation (DO) of biomass-derived oxygenates in the upgrading of pyrolysis oil. One route toward the design of cooperative catalysts is to tether two different catalytically active functions so that they are in close proximity while avoiding undesirable interactions that can block active sites. Here, we deposited carboxylic acid (CA)-functionalized organophosphonate monolayers onto Al2O3-supported Pd nanoparticle catalysts to prepare bifunctional catalysts containing both Bronsted acid and metal sites. Modification with phosphonic acids (PAs) improved activity and selectivity for gas-phase DO reactions, but the degree of improvement was highly sensitive to both the presence and positioning of the CA group, suggesting a significant contribution from both the PA and CA sites. Short spacer lengths of 1-2 methylene groups between the phosphonate head and CA tail were found to yield the best DO rates and selectivities, whereas longer chains performed similarly to self-assembled monolayers having alkyl tails. Results from a combination of density functional theory and Fourier transform infrared spectroscopy suggested that the enhanced catalyst performance on the optimally positioned CAs was due to the generation of strong acid sites on the Al2O3 support adjacent to the metal. Furthermore, the high activity of these sites was found to result from a hydrogen-bonded cyclic structure involving cooperativity between the phosphonate head group and CA tail function. More broadly, these results indicate that functional groups tethered to supports via organic ligands can influence catalytic chemistry on metal nanoparticles.

  8. Facile preparation of Ag-Cu bifunctional electrocatalysts for zinc-air batteries

    International Nuclear Information System (INIS)

    Jin, Yachao; Chen, Fuyi

    2015-01-01

    Highlights: • Ag-Cu dendrites are observed for the first time to exhibit high catalytic activity for oxygen reduction reaction. • Ag-Cu dendrites are directly synthesized through galvanic displacement on the current collector layer made of Ni foams. • A bifunctional air cathode is fabricated using Ag-Cu dendrites as a carbon-free, binder-free catalyst layer. • Both the primary and rechargeable zinc–air batteries fabricated by Ag-Cu catalysts exhibit excellent performance. - ABSTRACT: An inexpensive, facile galvanic displacement reaction for the direct growth of silver–copper (Ag-Cu) catalysts on nickel foams is developed for the first time. The resulting Ag-Cu catalysts exhibit dendritic morphologies. Ag and Cu atoms are in their metallic state while the presence of CuO and Cu 2 O are limited on the surface of catalyst. The catalysts demonstrate high catalytic activity for oxygen reduction reaction (ORR) in alkaline solution, as evaluated by both linear scanning voltammetry and rotating disk electrode polarization measurements. The ORR catalysed by Ag-Cu catalyst in alkaline solution proceeds through a four-electron pathway. An air cathode is fabricated using Ag-Cu catalyst as a carbon-free, binder-free catalyst layer. Using this Ag-Cu catalyst based air cathode, both the primary and rechargeable zinc-air batteries show excellent battery performance. The specific capacity of the primary zinc-air battery is 572 mAh g −1 . Especially, the rechargeable zinc-air battery shows high round-trip efficiency, appealing stability at a long charge-discharge cycle period

  9. Fluorescent discharge lamp

    Science.gov (United States)

    Mukai, E.; Otsuka, H.; Nomi, K.; Honmo, I.

    1982-01-01

    A rapidly illuminating fluorescent lamp 1,200 mm long and 32.5 mm in diameter with an interior conducting strip which is compatible with conventional fixtures and ballasts is described. The fluorescent lamp is composed of a linear glass tube, electrodes sealed at both ends, mercury and raregas sealed in the glass tube, a fluorescent substance clad on the inner walls of the glass tube, and a clad conducting strip extending the entire length of the glass tube in the axial direction on the inner surface of the tube.

  10. Highly thermostable fluorescent proteins

    Science.gov (United States)

    Bradbury, Andrew M [Santa Fe, NM; Waldo, Geoffrey S [Santa Fe, NM; Kiss, Csaba [Los Alamos, NM

    2011-03-22

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  11. Ethylene-Octene Copolymers/Organoclay Nanocomposites: Preparation and Properties

    Directory of Open Access Journals (Sweden)

    Alice Tesarikova

    2016-01-01

    Full Text Available Two ethylene-octene copolymers with 17 and 45 wt.% of octene (EOC-17 and EOC-45 were compared in nanocomposites with Cloisite 93A. EOC-45 nanocomposites have a higher elongation at break. Dynamical mechanical analysis (DMA showed a decrease of tan⁡δ with frequency for EOC-17 nanocomposites, but decrease is followed by an increase for EOC-45 nanocomposites; DMA showed also increased modulus for all nanocomposites compared to pure copolymers over a wide temperature range. Barrier properties were improved about 100% by addition of organoclay; they were better for EOC-17 nanocomposites due to higher crystallinity. X-ray diffraction (XRD together with transmission electron microscopy (TEM showed some intercalation for EOC-17 but much better dispersion for EOC-45 nanocomposites. Differential scanning calorimetry (DSC showed increased crystallization temperature Tc for EOC-17 nanocomposite (aggregates acted as nucleation agents but decrease Tc for EOC-45 nanocomposite together with greatly influenced melting peak. Accelerated UV aging showed smaller C=O peak for EOC-45 nanocomposites.

  12. Development of a Calcium Phosphate Nanocomposite for Fast Fluorogenic Detection of Bacteria

    Directory of Open Access Journals (Sweden)

    Claudio R. Martínez

    2014-09-01

    Full Text Available Current procedures for the detection and identification of bacterial infections are laborious, time-consuming, and require a high workload and well-equipped laboratories. Therefore the work presented herein developed a simple, fast, and low cost method for bacterial detection based on hydroxyapatite nanoparticles with a nutritive mixture and the fluorogenic substrate. Calcium phosphate ceramic nanoparticles were characterized and integrated with a nutritive mixture for the early detection of bacteria by visual as well as fluorescence spectroscopy techniques. The composite was obtained by combining calcium phosphate nanoparticles (Ca:P ratio, 1.33:1 with a nutritive mixture of protein hydrolysates and carbon sources, which promote fast bacterial multiplication, and the fluorogenic substrate 4-methylumbellipheryl-β-d-glucuronide (MUG. The composite had an average particle size of 173.2 nm and did not show antibacterial activity against Gram-negative or Gram-positive bacteria. After an Escherichia coli suspension was in contact with the composite for 60–90 min, fluorescence detected under UV light or by fluorescence spectrophotometer indicated the presence of bacteria. Intense fluorescence was observed after incubation for a maximum of 90 min. Thus, this calcium phosphate nanocomposite system may be useful as a model for the development of other nanoparticle composites for detection of early bacterial adhesion.

  13. Reviews in fluorescence 2007

    CERN Document Server

    Lakowicz, Joseph R; Geddes, Chris D

    2009-01-01

    This fourth volume in the Springer series summarizes the year's progress in fluorescence, with authoritative analytical reviews specialized enough for professional researchers, yet also appealing to a wider audience of scientists in related fields.

  14. Introduction to fluorescence

    CERN Document Server

    Jameson, David M

    2014-01-01

    "An essential contribution to educating scientists in the principles of fluorescence. It will also be an important addition to the libraries of practitioners applying the principles of molecular fluorescence."-Ken Jacobson, Kenan Distinguished Professor of Cell Biology and Physiology, University of North Carolina at Chapel Hill"An exquisite compendium of fluorescence and its applications in biochemistry enriched by a very exciting historical perspective. This book will become a standard text for graduate students and other scientists."-Drs. Zygmunt (Karol) Gryczynski and Ignacy Gryczynski, University of North Texas Health Science Center"… truly a masterwork, combining clarity, precision, and good humor. The reader, novice or expert, will be pleased with the text and will not stop reading. It is a formidable account of the fluorescence field, which has impacted the life sciences so considerably in the last 60 years."-Jerson L. Silva, M.D., Ph.D., Professor and Director, National Institute of Science and Tech...

  15. Bi-functional properties of Fe3O4@YPO4:Eu hybrid nanoparticles: hyperthermia application.

    Science.gov (United States)

    Prasad, A I; Parchur, A K; Juluri, R R; Jadhav, N; Pandey, B N; Ningthoujam, R S; Vatsa, R K

    2013-04-14

    Magnetic nanoparticles based hyperthermia therapy is a possible low cost and effective technique for killing cancer tissues in the human body. Fe3O4 and Fe3O4@YPO4:5Eu hybrid magnetic nanoparticles are prepared by co-precipitation method and their average particle sizes are found to be ∼10 and 25 nm, respectively. The particles are spherical, non-agglomerated and highly dispersible in water. The crystallinity of as-prepared YPO4:5Eu sample is more than Fe3O4@YPO4:5Eu hybrid magnetic nanoparticles. The chemical bonds interaction between Fe3O4 and YPO4:5Eu is confirmed through FeO-P. The magnetization of hybrid nanocomposite shows magnetization Ms = 11.1 emu g(-1) with zero coercivity (measured at 2 × 10(-4) Oe) at room temperature indicating superparamagnetic behaviour. They attain hyperthermia temperature (~42 °C) under AC magnetic field showing characteristic induction heating of the prepared nanohybrid and they will be potential material for biological application. Samples produce the red emission peaks at 618 nm and 695 nm, which are in range of biological window. The quantum yield of YPO4:5Eu sample is found to be 12%. Eu(3+) present on surface and core could be distinguished from luminescence decay study. Very high specific absorption rate up to 100 W g(-1) could be achieved. The intracellular uptake of nanocomposites is found in mouse fibrosarcoma (Wehi 164) tumor cells by Prussian blue staining.

  16. Fluorescence (Multiwave) Confocal Microscopy.

    Science.gov (United States)

    Welzel, J; Kästle, Raphaela; Sattler, Elke C

    2016-10-01

    In addition to reflectance confocal microscopy, multiwave confocal microscopes with different laser wavelengths in combination with exogenous fluorophores allow fluorescence mode confocal microscopy in vivo and ex vivo. Fluorescence mode confocal microscopy improves the contrast between the epithelium and the surrounding soft tissue and allows the depiction of certain structures, like epithelial tumors, nerves, and glands. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. A novel piezoresistive polymer nanocomposite MEMS accelerometer

    International Nuclear Information System (INIS)

    Seena, V; Hari, K; Prajakta, S; Ramgopal Rao, V; Pratap, Rudra

    2017-01-01

    A novel polymer MEMS (micro electro mechanical systems) accelerometer with photo-patternable polymer nanocomposite as a piezoresistor is presented in this work. Polymer MEMS Accelerometer with beam thicknesses of 3.3 µ m and embedded nanocomposite piezoresistive layer having a gauge factor of 90 were fabricated. The photosensitive nanocomposite samples were prepared and characterized for analyzing the mechanical and electrical properties and thereby ensuring proper process parameters for incorporating the piezoresistive layer into the polymer MEMS accelerometer. The microfabrication process flow and unit processes followed are extremely low cost with process temperatures below 100 °C. This also opens up a new possibility for easy integration of such polymer MEMS with CMOS (complementary metal oxide semiconductor) devices and circuits. The fabricated devices were characterized using laser Doppler vibrometer (LDV) and the devices exhibited a resonant frequency of 10.8 kHz and a response sensitivity of 280 nm g −1 at resonance. The main focus of this paper is on the SU-8/CB nanocomposite piezoresistive MEMS accelerometer technology development which covers the material and the fabrication aspects of these devices. CoventorWare FEA analysis performed using the extracted material properties from the experimental characterization which are in close agreement to performance parameters of the fabricated devices is also discussed. The simulated piezoresistive polymer MEMS devices showed an acceleration sensitivity of 126 nm g −1 and 82 ppm of Δ R / R per 1 g of acceleration. (paper)

  18. Bioinspired Nanocomposite Hydrogels with Highly Ordered Structures.

    Science.gov (United States)

    Zhao, Ziguang; Fang, Ruochen; Rong, Qinfeng; Liu, Mingjie

    2017-12-01

    In the human body, many soft tissues with hierarchically ordered composite structures, such as cartilage, skeletal muscle, the corneas, and blood vessels, exhibit highly anisotropic mechanical strength and functionality to adapt to complex environments. In artificial soft materials, hydrogels are analogous to these biological soft tissues due to their "soft and wet" properties, their biocompatibility, and their elastic performance. However, conventional hydrogel materials with unordered homogeneous structures inevitably lack high mechanical properties and anisotropic functional performances; thus, their further application is limited. Inspired by biological soft tissues with well-ordered structures, researchers have increasingly investigated highly ordered nanocomposite hydrogels as functional biological engineering soft materials with unique mechanical, optical, and biological properties. These hydrogels incorporate long-range ordered nanocomposite structures within hydrogel network matrixes. Here, the critical design criteria and the state-of-the-art fabrication strategies of nanocomposite hydrogels with highly ordered structures are systemically reviewed. Then, recent progress in applications in the fields of soft actuators, tissue engineering, and sensors is highlighted. The future development and prospective application of highly ordered nanocomposite hydrogels are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Probing polymer nanocomposite morphology by small angle ...

    Indian Academy of Sciences (India)

    Polyamide nanocomposite films were prepared from nanometer-sized silica particles having particle radius of gyration (g) of about 66 Å and trimesoyl chloride--phenylene diamine-based polyamides having macromolecular units of about 100-140 Å. The nanoscale morphology of the samples was characterized using ...

  20. Polymer nanocomposites for lithium battery applications

    Science.gov (United States)

    Sandi-Tapia, Giselle; Gregar, Kathleen Carrado

    2006-07-18

    A single ion-conducting nanocomposite of a substantially amorphous polyethylene ether and a negatively charged synthetic smectite clay useful as an electrolyte. Excess SiO2 improves conductivity and when combined with synthetic hectorite forms superior membranes for batteries. A method of making membranes is also disclosed.

  1. Development of nanocomposites based on potato starch

    International Nuclear Information System (INIS)

    Brito, Luciana Macedo; Tavares, Maria Ines Bruno

    2013-01-01

    Nanocomposites of potato starch were prepared by the solution intercalation method with the addition of organically modified montmorillonite clay (Viscogel B and unmodified sodic clay (NT25) as well as modified and unmodified silica (R972 and A200, respectively), using water as the solvent. The nanocomposites were characterized by conventional techniques of X-ray diffraction and thermogravimetric analysis. They were also characterized using the non-conventional low-field nuclear magnetic resonance, which is an effective alternative technique for characterizing nanocomposites. This technique allows one to investigate dispersion of nanofillers by the degree of intercalation and/or exfoliation, in addition to determine the distribution of nanoparticles in the polymer matrix and modifications of the molecular mobility of these fillers. The nanostructured materials obtained with the clays presented good dispersion and formation of mixed nanomaterials, with different degrees of intercalation and exfoliation. The mobility of the material decreased upon adding silica in the starch matrix, which applied to both types of silica. From the TGA technique, a slight increase in thermal stability of the nanocomposite was noted in relation to the starch matrix. (author)

  2. Poly(.epsilon.-caprolactone)-clay nanocomposites

    Czech Academy of Sciences Publication Activity Database

    Sedničková, M.; Jochec-Mošková, D.; Janigová, I.; Kronek, J.; Jankovič, L.; Šlouf, Miroslav; Chodák, I.

    2017-01-01

    Roč. 13, č. 1 (2017), s. 111-112 ISSN 1336-7242. [Zjazd chemikov /69./. 11.09.2017-15.09.2017, Horný Smokovec] Institutional support: RVO:61389013 Keywords : nanocomposites * montmorillonite Subject RIV: CD - Macromolecular Chemistry

  3. A new luminescent montmorillonite/borane nanocomposite

    Czech Academy of Sciences Publication Activity Database

    Kolská, Z.; Matoušek, J.; Čapková, P.; Braborec, Jakub; Benkocká, M.; Černá, H.; Londesborough, Michael Geoffrey Stephen

    2015-01-01

    Roč. 118, DEC (2015), s. 295-300 ISSN 0169-1317 Institutional support: RVO:61388980 Keywords : Luminophore * Montmorillonite/borane nanocomposite * X-ray photoelectron spectroscopy * X-ray diffraction * UV–Vis spectra Subject RIV: CA - Inorganic Chemistry Impact factor: 2.586, year: 2015

  4. clay nanocomposite by solution intercalation technique

    Indian Academy of Sciences (India)

    Polymer–clay nanocomposites of commercial polystyrene (PS) and clay laponite were prepared via solution intercalation technique. Laponite was modified suitably with the well known cationic surfactant cetyltrimethyl ammonium bromide by ion-exchange reaction to render laponite miscible with hydrophobic PS.

  5. Biodegradation behaviors of cellulose nanocrystals -PVA nanocomposites

    Directory of Open Access Journals (Sweden)

    Mahdi Rohani

    2014-11-01

    Full Text Available In this research, biodegradation behaviors of cellulose nanocrystals-poly vinyl alcohol nanocomposites were investigated. Nanocomposite films with different filler loading levels (3, 6, 9 and 12% by wt were developed by solvent casting method. The effect of cellulose nanocrystals on the biodegradation behaviors of nanocomposite films was studied. Water absorption and water solubility tests were performed by immersing specimens into distilled water. The characteristic parameter of diffusion coefficient and maximum moisture content were determined from the obtained water absorption curves. The water absorption behavior of the nanocomposites was found to follow a Fickian behavior. The maximum water absorption and diffusion coefficients were decreased by increasing the cellulose nanocrystals contents, however the water solubility decrease. The biodegradability of the films was investigated by immersing specimens into cellulase enzymatic solution as well as by burial in soil. The results showed that adding cellulose nanocrystals increase the weight loss of specimens in enzymatic solution but decrease it in soil media. The limited biodegradability of specimens in soil media attributed to development of strong interactions with solid substrates that inhibit the accessibility of functional groups. Specimens with the low degree of hydrolysis underwent extensive biodegradation in both enzymatic and soil media, whilst specimens with the high degree of hydrolysis showed recalcitrance to biodegradation under those conditions.

  6. PCL/MWCNT Nanocomposites as Nanosensors

    Science.gov (United States)

    Grozdanov, Anita; Buzarovska, Alexandra; Avella, Maurizio; Errico, Maria E.; Gentile, Gennaro

    Due to the unique electronic, metallic and structural properties of carbon nanotubes (CNTs) as compared to other materials, researchers focused on utilizing these characteristics for engineering applications such as actuators, hydrogen storage materials, chemical sensors and nanoelectronic devices. Many papers have been published utilizing CNTs as the sensing material in pressure, flow, thermal, gas, optical, mass, strain, stress, chemical and biological sensors. Amongst many of their superior electro-mechanical properties, the piezoresistive effect in CNTs is attractive for designing strain sensors. When CNTs are subjected to a mechanical strain, a change in their chirality leads to modulation of the conductance. In this paper, a novel carbon nanotube/biopolymer nanocomposite was used to develop a piezoresistive strain nano bio-sensor. A biocompatible polymer matrix has been used to provide good interfacial bonding between the carbon nanotubes. Multi-walled carbon nanotubes (MWCNT, diameter d = 30-50 nm, purity >95%) have been used for the preparation of polycaprolactone (PCL)-based nanocomposites (PCL/MWCNT). The nanocomposites were prepared by mixing the MWCNTs and PCL in a tetrahydrofuran solution for 24 h. Characterization of the PCL/MWCNTs nanocomposite films was performed by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier-transform infrared (FTIR) and scanning electron microscopy (SEM), as well as by mechanical and electrical measurements.

  7. Cycloolefin copolymer/fumed silica nanocomposites

    Czech Academy of Sciences Publication Activity Database

    Dorigato, A.; Pegoretti, A.; Fambri, L.; Šlouf, Miroslav; Kolařík, Jan

    2011-01-01

    Roč. 119, č. 6 (2011), s. 3393-3402 ISSN 0021-8995 R&D Projects: GA ČR GA106/09/1348 Institutional research plan: CEZ:AV0Z40500505 Keywords : creep * nanocomposites * polyolefins Subject RIV: JI - Composite Materials Impact factor: 1.289, year: 2011

  8. Nanocomposites in food packaging – A review

    Science.gov (United States)

    A nanocomposite is a multiphase material derived from the combination of two or more components, including a matrix (continuous phase) and a discontinuous nano-dimensional phase with at least one nano-sized dimension (i.e. less than 100 nm). The main types of nanostructures are presented in this ch...

  9. octamethyl-polyhedral oligomeric silsesquioxanes nanocomposites ...

    Indian Academy of Sciences (India)

    In this study, biodegradable poly(p-dioxanone) (PPDO)/octamethyl-polyhedral oligomeric silsesquioxanes (ome-POSS) nanocomposites were fabricated by the simple solution casting method with various ome-POSS loadings. Scanning electron microscopic observations indicate that ome-POSS is well dispersed in the ...

  10. In situ SU-8 silver nanocomposites

    Directory of Open Access Journals (Sweden)

    Søren V. Fischer

    2015-07-01

    Full Text Available Nanocomposite materials containing metal nanoparticles are of considerable interest in photonics and optoelectronics applications. However, device fabrication of such materials always encounters the challenge of incorporation of preformed nanoparticles into photoresist materials. As a solution to this problem, an easy new method of fabricating silver nanocomposites by an in situ reduction of precursors within the epoxy-based photoresist SU-8 has been developed. AgNO3 dissolved in acetonitrile and mixed with the epoxy-based photoresist SU-8 forms silver nanoparticles primarily during the pre- and post-exposure soft bake steps at 95 °C. A further high-temperature treatment at 300 °C resulted in the formation of densely homogeneously distributed silver nanoparticles in the photoresist matrix. No particle growth or agglomeration of nanoparticles is observed at this point. The reported new in situ silver nanocomposite materials can be spin coated as homogeneous thin films and structured by using UV lithography. A resolution of 5 µm is achieved in the lithographic process. The UV exposure time is found to be independent of the nanoparticle concentration. The fabricated silver nanocomposites exhibit high plasmonic responses suitable for the development of new optoelectronic and optical sensing devices.

  11. Cyclic olefin copolymer-silica nanocomposites foams

    Czech Academy of Sciences Publication Activity Database

    Pegoretti, A.; Dorigato, A.; Biani, A.; Šlouf, Miroslav

    2016-01-01

    Roč. 51, č. 8 (2016), s. 3907-3916 ISSN 0022-2461 R&D Projects: GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : cyclic olefin copolymer * nanocomposites * silica Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.599, year: 2016

  12. Magnetic graphene based nanocomposite for uranium scavenging

    Energy Technology Data Exchange (ETDEWEB)

    El-Maghrabi, Heba H. [Egyptian Petroleum Research Institute, 11727, Cairo (Egypt); Abdelmaged, Shaimaa M. [Nuclear Materials Authority, 6530 P.O. Box Maadi, Cairo (Egypt); Nada, Amr A. [Egyptian Petroleum Research Institute, 11727, Cairo (Egypt); Zahran, Fouad, E-mail: f.zahran@quim.ucm.es [Faculty of Science, Helwan University, 11795, Cairo (Egypt); El-Wahab, Saad Abd; Yahea, Dena [Faculty of Science, Ain shams University, Cairo (Egypt); Hussein, G.M.; Atrees, M.S. [Nuclear Materials Authority, 6530 P.O. Box Maadi, Cairo (Egypt)

    2017-01-15

    Graphical abstract: Graphical representation of U{sup 6+} adsorption on Magnetic Ferberite-Graphene Nanocomposite. - Highlights: • Synthesis of new magnetic wolframite bimetallic nanostructure on graphene. • A promising adsorption capacity of 455 mg/g was recorded for FG-20 within 60 min at room temperature. • The uranium removal was followed pseudo-second order kinetics and Langmuir isotherm. - Abstract: Magnetic graphene based ferberite nanocomposite was tailored by simple, green, low cost and industrial effective method. The microstructure and morphology of the designed nanomaterials were examined via XRD, Raman, FTIR, TEM, EDX and VSM. The prepared nanocomposites were introduced as a novel adsorbent for uranium ions scavenging from aqueous solution. Different operating conditions of time, pH, initial uranium concentration, adsorbent amount and temperature were investigated. The experimental data shows a promising adsorption capacity. In particular, a maximum value of 455 mg/g was obtained within 60 min at room temperature with adsorption efficiency of 90.5%. The kinetics and isotherms adsorption data were fitted with the pseudo-second order model and Langmuir equation, respectively. Finally, the designed nanocomposites were found to have a great degree of sustainability (above 5 times of profiteering) with a complete maintenance of their parental morphology and adsorption capacity.

  13. Development of multifunctional fluoroelastomers based on nanocomposites

    International Nuclear Information System (INIS)

    Zen, Heloisa Augusto

    2015-01-01

    The fluoropolymers are known for their great mechanical properties, high thermal stability and resistance to aggressive chemical environment, and because of those properties they are widely used in industries, such as automobile, petroleum, chemistry, manufacturing, among others. To improve the thermal properties and gases barrier of the polymeric matrix, the incorporation of nanoparticle is used, this process permits the polymer to maintain their own characteristics and acquire new properties of nanoparticle. Because of those properties, the structural and morphological modification of fluoropolymers are very hard to be obtained through traditional techniques, in order to surmount this difficulty, the ionizing radiation is a well-known and effective method to modify fluoropolymers structures. In this thesis a nanocomposite polymeric based on fluoroelastomer (FKM) was developed and incorporated with four different configurations of nanoparticles: clay Cloisite 15A, POSS 1159, POSS 1160 and POSS 1163. After the nanocomposites films were obtained, a radiation induced grafting process was carried out, followed by sulfonation in order to obtain a ionic exchanged membrane. The effect of nanoparticle incorporation and the ionizing radiation onto films were characterized by X-ray diffraction, thermal and mechanical analysis, scanning electron microscopy and swelling; and the membranes were evaluated by degree of grafting, ionic exchange capacity and swelling. After the films were characterized, the crosslinking effect was observed to be predominant for the nanocomposites irradiated before the vulcanization, whereas the degradation was the predominant effect in the nanocomposites irradiated after vulcanization. (author)

  14. Fluorescence Image Segmentation by using Digitally Reconstructed Fluorescence Images

    OpenAIRE

    Blumer, Clemens; Vivien, Cyprien; Oertner, Thomas G; Vetter, Thomas

    2011-01-01

    In biological experiments fluorescence imaging is used to image living and stimulated neurons. But the analysis of fluorescence images is a difficult task. It is not possible to conclude the shape of an object from fluorescence images alone. Therefore, it is not feasible to get good manual segmented nor ground truth data from fluorescence images. Supervised learning approaches are not possible without training data. To overcome this issues we propose to synthesize fluorescence images and call...

  15. Synthesis and Characterization of Bifunctional Organic-Glasses Based on Diphenylhydrazone and Barbituric Acid Derivative for Photorefractive Application

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ki Hong [KIST, Seoul (Korea, Republic of); Lee, Sang Ho; Choi, Chil Sung; Kim, Nak Joong [Hanyang University, Seoul (Korea, Republic of); Choi, Dong Hoon [Kyunghee University, Youngin (Korea, Republic of)

    2003-12-15

    A series of amorphous molecules that possess both photoconductive and electro-optic properties was synthesized in order to investigate photorefractive properties of bifunctional organic-glasses. Diethylaminobenzaldehyde- diphenylhydrazone was covalently attached to 5-(4-diethylamino-benzylidene)-1,3-dimethylpyrimidine- 2,4,6-trione through a flexible alkyl chain (3, 4, 5, 6 and 10 carbons) containing two ether linkages. The longer linkage not only lowered the glass transition temperature (Tg) of the molecules, but also allowed faster orientation of the chromophore. To examine the photorefractive properties, a 50 μm-thick film was prepared from the mixture of a bifunctional molecule, butyl benzyl phthalate, and C{sup 60}. The photoconductivity of this composite was as high as 8.01 x 10{sup -12} S/cm at 60 V/μm, and the maximum diffraction efficiency (ηmax) of 50 μm-thick film was about 5% at 80 V/μm.

  16. Preparation of highly hydrophobic cotton fabrics by modification with bifunctional silsesquioxanes in the sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Przybylak, Marcin, E-mail: marcin.przybylak@ppnt.poznan.pl [Poznań Science and Technology Park, Adam Mickiewicz University Foundation, Rubież 46, 61-612 Poznań (Poland); Maciejewski, Hieronim, E-mail: maciejm@amu.edu.pl [Poznań Science and Technology Park, Adam Mickiewicz University Foundation, Rubież 46, 61-612 Poznań (Poland); Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań (Poland); Dutkiewicz, Agnieszka, E-mail: agdut@interia.pl [Poznań Science and Technology Park, Adam Mickiewicz University Foundation, Rubież 46, 61-612 Poznań (Poland)

    2016-11-30

    Highlights: • Fabric hydrophobization process using bifunctional silsesquioxanes was studied. • Superhydrophobic fabric was produced using fluorofunctional silsesquioxanes. • Surface of modified fabrics was analyzed using different techniques. - Abstract: The surface modification of cotton fabrics was carried out using two types of bifunctional fluorinated silsesquioxanes with different ratios of functional groups. The modification was performed either by one- or two-step process. Two methods, the sol-gel and the dip coating method were used in different configurations. The heat treatment and the washing process were applied after modification. The wettability of cotton fabric was evaluated by measuring water contact angles (WCA). Changes in the surface morphology were examined by scanning electron microscopy (SEM, SEM-LFD) and atomic force microscopy (AFM). Moreover, the modified fabrics were subjected to analysis of elemental composition of the applied coatings using SEM-EDS techniques. Highly hydrophobic textiles were obtained in all cases studied and one of the modifications resulted in imparting superhydrophobic properties. Most of impregnated textiles remained hydrophobic even after multiple washing process which shows that the studied modification is durable.

  17. A novel bifunctional Ni-doped TiO2 inverse opal with enhanced SERS performance and excellent photocatalytic activity

    Science.gov (United States)

    Li, Xuehong; Wu, Yun; Shen, Yuhua; Sun, Yan; Yang, Ying; Xie, Anjian

    2018-01-01

    Three-dimensional inverse opal photonic microarray (IOPM) structure exhibits good qualities in structural regularity and interconnectivity, such as high specific surface area, large pore volume, uniform pore size, and ordered periodic construction. Here, a novel nickel-doped titanium dioxide IOPM (Ni-TiO2 IOPM) was fabricated for the first time as a bifunctional material for the applications of surface-enhanced Raman scattering (SERS) substrate and photocatalyst. The Ni doping could change the defect concentration of the substrate to enhance the SERS effect, and could increase the light absorption of the substrate in visible region. The synergistic effect of Ni doping and the periodically ordered porous structure enhanced both SERS sensitivity and photocatalytic activity. As a SERS substrate, the Ni-TiO2 IOPM exhibited highly sensitive detection capability for 4-mercaptobenzoic acid (4-MBA) at a concentration as low as 1 × 10-11 M. Under simulated sunlight, about 95% of the methylene blue (MB) was degraded within 90 min when Ni-TiO2 IOPM was used as the photocatalytst. The Ni-TiO2 IOPM prepared in this work may be a promising bifunctional SERS substrate candidate for organic sewage detection and environment protection. In addition, the fabrication strategy can be extended to synthesize other nanomaterials with orderly and porous structure.

  18. Bifunctional cis-Abienol Synthase from Abies balsamea Discovered by Transcriptome Sequencing and Its Implications for Diterpenoid Fragrance Production*

    Science.gov (United States)

    Zerbe, Philipp; Chiang, Angela; Yuen, Macaire; Hamberger, Björn; Hamberger, Britta; Draper, Jason A.; Britton, Robert; Bohlmann, Jörg

    2012-01-01

    The labdanoid diterpene alcohol cis-abienol is a major component of the aromatic oleoresin of balsam fir (Abies balsamea) and serves as a valuable bioproduct material for the fragrance industry. Using high-throughput 454 transcriptome sequencing and metabolite profiling of balsam fir bark tissue, we identified candidate diterpene synthase sequences for full-length cDNA cloning and functional characterization. We discovered a bifunctional class I/II cis-abienol synthase (AbCAS), along with the paralogous levopimaradiene/abietadiene synthase and isopimaradiene synthase, all of which are members of the gymnosperm-specific TPS-d subfamily. The AbCAS-catalyzed formation of cis-abienol proceeds via cyclization and hydroxylation at carbon C-8 of a postulated carbocation intermediate in the class II active site, followed by cleavage of the diphosphate group and termination of the reaction sequence without further cyclization in the class I active site. This reaction mechanism is distinct from that of synthases of the isopimaradiene- or levopimaradiene/abietadiene synthase type, which employ deprotonation reactions in the class II active site and secondary cyclizations in the class I active site, leading to tricyclic diterpenes. Comparative homology modeling suggested the active site residues Asp-348, Leu-617, Phe-696, and Gly-723 as potentially important for the specificity of AbCAS. As a class I/II bifunctional enzyme, AbCAS is a promising target for metabolic engineering of cis-abienol production. PMID:22337889

  19. Enhancement in performance of polycarbazole-graphene nanocomposite Schottky diode

    International Nuclear Information System (INIS)

    Pandey, Rajiv K.; Singh, Arun Kumar; Prakash, Rajiv

    2013-01-01

    We report formation of polycarbazole (PCz)–graphene nanocomposite over indium tin oxide (ITO) coated glass substrate using electrochemical technique for fabrication of high performance Schottky diodes. The synthesized nanocomposite is characterized before fabrication of devices for confirmation of uniform distribution of graphene nanosheets in the polymer matrix. Pure PCz and PCz-graphene nanocomposites based Schottky diodes are fabricated of configuration Al/PCz/ITO and Al/PCz-graphene nanocomposite/ITO, respectively. The current density–voltage (J-V) characteristics and diode performance parameters (such as the ideality factor, barrier height, and reverse saturation current density) are compared under ambient condition. Al/PCz-graphene nanocomposite/ITO device exhibits better ideality factor in comparison to the device formed using pure PCz. It is also observed that the Al/PCz-graphene nanocomposite/ITO device shows large forward current density and low turn on voltage in comparison to Al/PCz/ITO device

  20. Graphene oxide - Polyvinyl alcohol nanocomposite based electrode material for supercapacitors

    Science.gov (United States)

    Pawar, Pranav Bhagwan; Shukla, Shobha; Saxena, Sumit

    2016-07-01

    Supercapacitors are high capacitive energy storage devices and find applications where rapid bursts of power are required. Thus materials offering high specific capacitance are of fundamental interest in development of these electrochemical devices. Graphene oxide based nanocomposites are mechanically robust and have interesting electronic properties. These form potential electrode materials efficient for charge storage in supercapacitors. In this perspective, we investigate low cost graphene oxide based nanocomposites as electrode material for supercapacitor. Nanocomposites of graphene oxide and polyvinyl alcohol were synthesized in solution phase by integrating graphene oxide as filler in polyvinyl alcohol matrix. Structural and optical characterizations suggest the formation of graphene oxide and polyvinyl alcohol nanocomposites. These nanocomposites were found to have high specific capacitance, were cyclable, ecofriendly and economical. Our studies suggest that nanocomposites prepared by adding 0.5% wt/wt of graphene oxide in polyvinyl alcohol can be used an efficient electrode material for supercapacitors.

  1. Magnetite/CdTe magnetic-fluorescent composite nanosystem for magnetic separation and bio-imaging

    International Nuclear Information System (INIS)

    Kale, Anup; Yadav, Prasad; Gholap, Haribhau; Jog, J P; Ogale, Satishchandra; Kale, Sonia; Shastry, Padma; Pasricha, Renu; Lefez, Benoit; Hannoyer, Beatrice

    2011-01-01

    A new synthesis protocol is described to obtain a CdTe decorated magnetite bifunctional nanosystem via dodecylamine (DDA) as cross linker. High resolution transmission electron microscopy (HRTEM), energy-dispersive x-ray spectroscopy (EDAX), vibrating sample magnetometry (VSM), Fourier transform infrared spectroscopy (FTIR), diffuse reflectance spectroscopy (DRS) and fluorescence microscopy are used to characterize the constitution, size, composition and physical properties of these superparamagnetic-fluorescent nanoparticles. These CdTe decorated magnetite nanoparticles were then functionalized with anti-epidermal growth factor receptor (EGFR) antibody to specifically target cells expressing this receptor. The EGFR is a transmembrane glycoprotein and is expressed on tumor cells from different tissue origins including human leukemic cell line Molt-4 cells. The magnetite-CdTe composite nanosystem is shown to perform excellently for specific selection, magnetic separation and fluorescent detection of EGFR positive Molt-4 cells from a mixed population. Flow cytometry and confocal laser scanning microscopy results show that this composite nanosystem has great potential in antibody functionalized magnetic separation and imaging of cells using cell surface receptor antibody.

  2. Robust Control of PEP Formation Rate in the Carbon Fixation Pathway of C4 Plants by a Bi-functional Enzyme

    Directory of Open Access Journals (Sweden)

    Hart Yuval

    2011-10-01

    Full Text Available Abstract Background C4 plants such as corn and sugarcane assimilate atmospheric CO2 into biomass by means of the C4 carbon fixation pathway. We asked how PEP formation rate, a key step in the carbon fixation pathway, might work at a precise rate, regulated by light, despite fluctuations in substrate and enzyme levels constituting and regulating this process. Results We present a putative mechanism for robustness in C4 carbon fixation, involving a key enzyme in the pathway, pyruvate orthophosphate dikinase (PPDK, which is regulated by a bifunctional enzyme, Regulatory Protein (RP. The robust mechanism is based on avidity of the bifunctional enzyme RP to its multimeric substrate PPDK, and on a product-inhibition feedback loop that couples the system output to the activity of the bifunctional regulator. The model provides an explanation for several unusual biochemical characteristics of the system and predicts that the system's output, phosphoenolpyruvate (PEP formation rate, is insensitive to fluctuations in enzyme levels (PPDK and RP, substrate levels (ATP and pyruvate and the catalytic rate of PPDK, while remaining sensitive to the system's input (light levels. Conclusions The presented PPDK mechanism is a new way to achieve robustness using product inhibition as a feedback loop on a bifunctional regulatory enzyme. This mechanism exhibits robustness to protein and metabolite levels as well as to catalytic rate changes. At the same time, the output of the system remains tuned to input levels.

  3. Effects of thiourea and ammonium bicarbonate on the formation and stability of bifunctional cisplatin-DNA adducts : consequences for the accurate quantification of adducts in (cellular) DNA

    NARCIS (Netherlands)

    Fichtinger-Schepman, A.M.J.; Dijk-Knijnenburg, H.C.M. van; Dijt, F.J.; Velde-Visser, S.D. van der; Berends, F.; Baan, R.A.

    1995-01-01

    Cisplatin reacts with DNA by forming mainly bifunctional adducts via reactive monofunctional intermediates. When freshly platinated DNA was postincubated with thiourea (10 mM, at 23 or 37°C) for periods of up to 24 h, followed by determination of mono- and diadducts, a rapid initial decrease was

  4. Insights Into the Bifunctional Aphidicolan-16-ß-ol Synthase Through Rapid Biomolecular Modeling Approaches.

    Science.gov (United States)

    Hirte, Max; Meese, Nicolas; Mertz, Michael; Fuchs, Monika; Brück, Thomas B

    2018-01-01

    Diterpene synthases catalyze complex, multi-step C-C coupling reactions thereby converting the universal, aliphatic precursor geranylgeranyl diphosphate into diverse olefinic macrocylces that form the basis for the structural diversity of the diterpene natural product family. Since catalytically relevant crystal structures of diterpene synthases are scarce, homology based biomolecular modeling techniques offer an alternative route to study the enzyme's reaction mechanism. However, precise identification of catalytically relevant amino acids is challenging since these models require careful preparation and refinement techniques prior to substrate docking studies. Targeted amino acid substitutions in this protein class can initiate premature quenching of the carbocation centered reaction cascade. The structural characterization of those alternative cyclization products allows for elucidation of the cyclization reaction cascade and provides a new source for complex macrocyclic synthons. In this study, new insights into structure and function of the fungal, bifunctional Aphidicolan-16-ß-ol synthase were achieved using a simplified biomolecular modeling strategy. The applied refinement methodologies could rapidly generate a reliable protein-ligand complex, which provides for an accurate in silico identification of catalytically relevant amino acids. Guided by our modeling data, ACS mutations lead to the identification of the catalytically relevant ACS amino acid network I626, T657, Y658, A786, F789, and Y923. Moreover, the ACS amino acid substitutions Y658L and D661A resulted in a premature termination of the cyclization reaction cascade en-route from syn-copalyl diphosphate to Aphidicolan-16-ß-ol. Both ACS mutants generated the diterpene macrocycle syn-copalol and a minor, non-hydroxylated labdane related diterpene, respectively. Our biomolecular modeling and mutational studies suggest that the ACS substrate cyclization occurs in a spatially restricted location of

  5. Insights Into the Bifunctional Aphidicolan-16-ß-ol Synthase Through Rapid Biomolecular Modeling Approaches

    Directory of Open Access Journals (Sweden)

    Max Hirte

    2018-04-01

    Full Text Available Diterpene synthases catalyze complex, multi-step C-C coupling reactions thereby converting the universal, aliphatic precursor geranylgeranyl diphosphate into diverse olefinic macrocylces that form the basis for the structural diversity of the diterpene natural product family. Since catalytically relevant crystal structures of diterpene synthases are scarce, homology based biomolecular modeling techniques offer an alternative route to study the enzyme's reaction mechanism. However, precise identification of catalytically relevant amino acids is challenging since these models require careful preparation and refinement techniques prior to substrate docking studies. Targeted amino acid substitutions in this protein class can initiate premature quenching of the carbocation centered reaction cascade. The structural characterization of those alternative cyclization products allows for elucidation of the cyclization reaction cascade and provides a new source for complex macrocyclic synthons. In this study, new insights into structure and function of the fungal, bifunctional Aphidicolan-16-ß-ol synthase were achieved using a simplified biomolecular modeling strategy. The applied refinement methodologies could rapidly generate a reliable protein-ligand complex, which provides for an accurate in silico identification of catalytically relevant amino acids. Guided by our modeling data, ACS mutations lead to the identification of the catalytically relevant ACS amino acid network I626, T657, Y658, A786, F789, and Y923. Moreover, the ACS amino acid substitutions Y658L and D661A resulted in a premature termination of the cyclization reaction cascade en-route from syn-copalyl diphosphate to Aphidicolan-16-ß-ol. Both ACS mutants generated the diterpene macrocycle syn-copalol and a minor, non-hydroxylated labdane related diterpene, respectively. Our biomolecular modeling and mutational studies suggest that the ACS substrate cyclization occurs in a spatially

  6. Insights into the bifunctional Aphidicolan-16-ß-ol synthase through rapid biomolecular modelling approaches

    Science.gov (United States)

    Hirte, Max; Meese, Nicolas; Mertz, Michael; Fuchs, Monika; Brück, Thomas B.

    2018-04-01

    Diterpene synthases catalyze complex, multi-step C-C coupling reactions thereby converting the universal, aliphatic precursor geranylgeranyl diphosphate into diverse olefinic macrocylces that form the basis for the structural diversity of the diterpene natural product family. Since catalytically relevant crystal structures of diterpene synthases are scarce, homology based biomolecular modelling techniques offer an alternative route to study the enzyme’s reaction mechanism. However, precise identification of catalytically relevant amino acids is challenging since these models require careful preparation and refinement techniques prior to substrate docking studies. Targeted amino acid substitutions in this protein class can initiate premature quenching of the carbocation centered reaction cascade. The structural characterization of those alternative cyclization products allows for elucidation of the cyclization reaction cascade and provides a new source for complex macrocyclic synthons. In this study, new insights into structure and function of the fungal, bifunctional Aphidicolan-16-ß-ol synthase were achieved using a simplified biomolecular modelling strategy. The applied refinement methodologies could rapidly generate a reliable protein-ligand complex, which provides for an accurate in silico identification of catalytically relevant amino acids. Guided by our modelling data, ACS mutations lead to the identification of the catalytically relevant ACS amino acid network I626, T657, Y658, A786, F789 and Y923. Moreover, the ACS amino acid substitutions Y658L and D661A resulted in a premature termination of the cyclization reaction cascade en-route from syn-copalyl diphosphate to Aphidicolan-16-ß-ol. Both ACS mutants generated the diterpene macrocycle syn-copalol and a minor, non-hydroxylated labdane related diterpene, respectively. Our biomolecular modelling and mutational studies suggest that the ACS substrate cyclization occurs in a spatially restricted location

  7. Parameter design and experimental study of a bifunctional isolator for optical payload protection and stabilization

    Science.gov (United States)

    Wang, Guang-yuan; Guan, Xin; Cao, Dong-jing; Tang, Shao-fan; Chen, Xiang; Liang, Lu; Zheng, Gang-tie

    2017-11-01

    With the raise of resolution, optical payloads are becoming increasingly sensitive to satellite jitter. An approach where the entire spacecraft is pointed with great accuracy requires sophisticated and expensive bus design. In an effort to lower the overall cost of space missions that require highly stable line-of-sight pointing, a method of separating the bus and the payload with low frequency isolators is proposed. This isolation system can block the transmission of disturbance and allow relatively large bus motion. However, if the isolator is linear then there is a trade-off between isolation and static deflection as the launch and the on-orbit stage have difference requirements on the isolation frequency. Otherwise, an extra locking system should be appended to protect the payload before getting into orbit, as the STABLE isolation system[1] and the MIM isolation system[2] did. To overcome this limitation, an alternative approach is to design a nonlinear isolator with high-static stiffness during launch and low dynamic stiffness on orbit. Several specially designed nonlinear isolators have achieved low dynamic stiffness with large static load capacity. Virgin[3] considered a structure made from a highly deformed elastic element to achieve a softening spring. Platus[4] exploited the buckling of beams under axial load in a specific configuration to achieve a negative stiffness in combination with a positive stiffness, and hence low-dynamic stiffness. Others have achieved the same by connecting linear springs with positive stiffness in parallel with elements of negative stiffness[5] [7]. In the present study, a bifunctional isolator has been developed for optical payloads. The isolator have good performance both during launch and on orbit because of its specially designed nonlinear stiffness and damping. The isolator works in a linear part with low stiffness and small damping ratio under the micro-vibration and microgravity on orbit. The transmissibility

  8. Novel toughened polylactic acid nanocomposite: Mechanical, thermal and morphological properties

    International Nuclear Information System (INIS)

    Balakrishnan, Harintharavimal; Hassan, Azman; Wahit, Mat Uzir; Yussuf, A.A.; Razak, Shamsul Bahri Abdul

    2010-01-01

    The objective of the study is to develop a novel toughened polylactic acid (PLA) nanocomposite. The effects of linear low density polyethylene (LLDPE) and organophilic modified montmorillonite (MMT) on mechanical, thermal and morphological properties of PLA were investigated. LLDPE toughened PLA nanocomposites consisting of PLA/LLDPE blends, of composition 100/0 and 90/10 with MMT content of 2 phr and 4 phr were prepared. The Young's and flexural modulus improved with increasing content of MMT indicating that MMT is effective in increasing stiffness of LLDPE toughened PLA nanocomposite even at low content. LLDPE improved the impact strength of PLA nanocomposites with a sacrifice of tensile and flexural strength. The tensile and flexural strength also decreased with increasing content of MMT in PLA/LLDPE nanocomposites. The impact strength and elongation at break of LLDPE toughened PLA nanocomposites also declined steadily with increasing loadings of MMT. The crystallization temperature and glass transition temperature dropped gradually while the thermal stability of PLA improved with addition of MMT in PLA/LLDPE nanocomposites. The storage modulus of PLA/LLDPE nanocomposites below glass transition temperature increased with increasing content of MMT. X-ray diffraction and transmission electron microscope studies revealed that an intercalated LLDPE toughened PLA nanocomposite was successfully prepared at 2 phr MMT content.

  9. Nanocomposites chitosan/montmorillonite for drug delivery system

    International Nuclear Information System (INIS)

    Braga, Carla R. Costa; Barbosa, Rossemberg C.; Lima, Rosemary S. Cunha; Fook, Marcus V. Lia; Silva, Suedina M. Lima

    2009-01-01

    In drugs delivery system the incorporation of an inorganic nanophase in polymer matrix, i.e. production of an inorganic-organic nanocomposite is an attractive alternative to obtain a constant release rate for a prolonged time. This study was performed to obtain films of nanocomposites Chitosan/montmorillonite intercalation by the technique of solution in the proportions of 1:1, 5:1 and 10:1. The nanocomposites were characterized by infrared spectroscopy, X-ray diffraction and thermogravimetric analysis. The results indicated that the feasibility of obtaining films of nanocomposites exfoliate. Among the suggested applications for films developed in this study includes them use for drugs delivery system. (author)

  10. Development of polymer nanocomposites with regional bentonite clay

    International Nuclear Information System (INIS)

    Araujo, Edcleide M.; Leite, Amanda M.D.; Paz, Rene A. da; Medeiros, Keila M. de; Melo, Tomas J.A.; Barbosa, Josiane D.V.; Barbosa, Renata

    2011-01-01

    nanocomposites with regional bentonite clay were prepared by melt intercalation technique. The clays were studied without modification and modified with four quaternary ammonium salts. It was evidenced by X-ray diffraction that salts were incorporated into the clay structure thus confirming its organophilization. The nanocomposites were evaluated by means of thermal mechanic and flammability tests where presented properties significantly improved their pure polymers. The process of biodegradation of obtained bio nanocomposites was accelerated by the presence of clay. The produced membranes from nanocomposites have potential in the oil-water separation. (author)

  11. Diamond like carbon nanocomposites with embedded metallic nanoparticles

    Science.gov (United States)

    Tamulevičius, Sigitas; Meškinis, Šarūnas; Tamulevičius, Tomas; Rubahn, Horst-Günter

    2018-02-01

    In this work we present an overview on structure formation, optical and electrical properties of diamond like carbon (DLC) based metal nanocomposites deposited by reactive magnetron sputtering and treated by plasma and laser ablation methods. The influence of deposition mode and other technological conditions on the properties of the nanosized filler, matrix components and composition were studied systematically in relation to the final properties of the nanocomposites. Applications of the nanocomposites in the development of novel biosensors combining resonance response of wave guiding structures in DLC based nanocomposites as well as plasmonic effects are also presented.

  12. Multifunctional Nanocomposites for Breast Cancer Imaging and Therapy

    National Research Council Canada - National Science Library

    Gayen, Swapan K; Balogh-Nair, Valeria

    2008-01-01

    The objective of the research was to explore the feasibility of concomitant detection and of breast cancer through the development of multifunctional nanocomposites that will enable early detection...

  13. Nine New Fluorescent Probes

    Science.gov (United States)

    Lin, Tsung-I.; Jovanovic, Misa V.; Dowben, Robert M.

    1989-06-01

    Absorption and fluorescence spectroscopic studies are reported here for nine new fluorescent probes recently synthesized in our laboratories: four pyrene derivatives with substituents of (i) 1,3-diacetoxy-6,8-dichlorosulfonyl, (ii) 1,3-dihydroxy-6,8-disodiumsulfonate, (iii) 1,3-disodiumsulfonate, and (iv) l-ethoxy-3,6,8-trisodiumsulfonate groups, and five [7-julolidino] coumarin derivatives with substituents of (v) 3-carboxylate-4-methyl, (vi) 3- methylcarboxylate, (vii) 3-acetate-4-methyl, (viii) 3-propionate-4-methyl, and (ix) 3-sulfonate-4-methyl groups. Pyrene compounds i and ii and coumarin compounds v and vi exhibit interesting absorbance and fluorescence properties: their absorption maxima are red shifted compared to the parent compound to the blue-green region, and the band width broadens considerably. All four blue-absorbing dyes fluoresce intensely in the green region, and the two pyrene compounds emit at such long wavelengths without formation of excimers. The fluorescence properties of these compounds are quite environment-sensitive: considerable spectral shifts and fluorescence intensity changes have been observed in the pH range from 3 to 10 and in a wide variety of polar and hydrophobic solvents with vastly different dielectric constants. The high extinction and fluorescence quantum yield of these probes make them ideal fluorescent labeling reagents for proteins, antibodies, nucleic acids, and cellular organelles. The pH and hydrophobicity-dependent fluorescence changes can be utilized as optical pH and/or hydrophobicity indicators for mapping environmental difference in various cellular components in a single cell. Since all nine probes absorb in the UV, but emit at different wavelengths in the visible, these two groups of compounds offer an advantage of utilizing a single monochromatic light source (e.g., a nitrogen laser) to achieve multi-wavelength detection for flow cytometry application. As a first step to explore potential application in

  14. Photonic structures based on hybrid nanocomposites

    Science.gov (United States)

    Husaini, Saima

    In this thesis, photonic structures embedded with two types of nanomaterials, (i) quantum dots and (ii) metal nanoparticles are studied. Both of these exhibit optical and electronic properties different from their bulk counterpart due to their nanoscale physical structure. By integrating these nanomaterials into photonic structures, in which the electromagnetic field can be confined and controlled via modification of geometry and composition, we can enhance their linear and nonlinear optical properties to realize functional photonic structures. Before embedding quantum dots into photonic structures, we study the effect of various host matrices and fabrication techniques on the optical properties of the colloidal quantum dots. The two host matrices of interest are SU8 and PMMA. It is shown that the emission properties of the quantum dots are significantly altered in these host matrices (especially SU8) and this is attributed to a high rate of nonradiative quenching of the dots. Furthermore, the effects of fabrication techniques on the optical properties of quantum dots are also investigated. Finally a microdisk resonator embedded with quantum dots is fabricated using soft lithography and luminescence from the quantum dots in the disk is observed. We investigate the absorption and effective index properties of silver nanocomposite films. It is shown that by varying the fill factor of the metal nanoparticles and fabrication parameters such as heating time, we can manipulate the optical properties of the metal nanocomposite. Optimizing these parameters, a silver nanocomposite film with a 7% fill factor is prepared. A one-dimensional photonic crystal consisting of alternating layers of the silver nanocomposite and a polymer (Polymethyl methacrylate) is fabricated using spin coating and its linear and nonlinear optical properties are investigated. Using reflectivity measurements we demonstrate that the one-dimensional silver-nanocomposite-dielectric photonic crystal

  15. Preparation of fluorescent polyaniline nanoparticles in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Kleber G. B. [Universidade Federal de Pernambuco, Departamento de Engenharia Mecanica (Brazil); Melo, Etelino F. de [Universidade Federal de Pernambuco, Departamento de Quimica Fundamental (Brazil); Andrade, Cesar A. S. [Universidade Federal de Pernambuco, Departamento de Bioquimica (Brazil); Melo, Celso P. de, E-mail: celso@df.ufpe.br [Universidade Federal de Pernambuco, Departamento de Fisica (Brazil)

    2013-01-15

    We report the synthesis of stable polyaniline nanoparticles (PANI{sub N}Ps) based on the chemical oxidative polymerization of aniline in aqueous solutions of surfactants. Surfactants of three different types-cationic (dodecyltrimethylammonium bromide-DTAB), anionic (sodium dodecyl sulfate-SDS), and non-ionic (Triton X-405-TX-405)-were used. The resulting PANI{sub N}Ps{sub s}urfactant samples were characterized through UV-Vis, fluorescence and Fourier transform infrared spectroscopies, and scanning electronic microscopy (SEM). We have verified that the color of the PANI{sub N}Ps{sub s}urfactant dispersions is affected by a change in the pH of the solution. The PANI-NPs{sub s}urfactant colloidal suspensions in aqueous solution present a surprising high fluorescence quantum yield value (ranging from 1.9 Multiplication-Sign 10{sup -3} to 6.9 Multiplication-Sign 10{sup -3}) that can be controlled as a function of the pH, a fact that we associate to the corresponding protonation degree of the PANI polymeric chains. We suggest that these fluorescent nanocomposites can find important technological applications in different areas such as organic light emitting devices, biosensors, and pigments for coatings.

  16. Preparation of fluorescent polyaniline nanoparticles in aqueous solutions

    International Nuclear Information System (INIS)

    Alves, Kleber G. B.; Melo, Etelino F. de; Andrade, César A. S.; Melo, Celso P. de

    2013-01-01

    We report the synthesis of stable polyaniline nanoparticles (PANI N Ps) based on the chemical oxidative polymerization of aniline in aqueous solutions of surfactants. Surfactants of three different types—cationic (dodecyltrimethylammonium bromide—DTAB), anionic (sodium dodecyl sulfate—SDS), and non-ionic (Triton X-405–TX-405)—were used. The resulting PANI N Ps s urfactant samples were characterized through UV–Vis, fluorescence and Fourier transform infrared spectroscopies, and scanning electronic microscopy (SEM). We have verified that the color of the PANI N Ps s urfactant dispersions is affected by a change in the pH of the solution. The PANI-NPs s urfactant colloidal suspensions in aqueous solution present a surprising high fluorescence quantum yield value (ranging from 1.9 × 10 −3 to 6.9 × 10 −3 ) that can be controlled as a function of the pH, a fact that we associate to the corresponding protonation degree of the PANI polymeric chains. We suggest that these fluorescent nanocomposites can find important technological applications in different areas such as organic light emitting devices, biosensors, and pigments for coatings.

  17. Nanosecond fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Leskovar, B.

    1985-03-01

    This article is a summary of a short course lecture given in conjunction with the 1984 Nuclear Science Symposium. Measuring systems for nanosecond fluorescence spectroscopy using single-photon counting techniques are presented. These involve systems based on relaxation-type spark gap light pulser and synchronously pumped mode-locked dye lasers. Furthermore, typical characteristics and optimization of operating conditions of the critical components responsible for the system time resolution are discussed. A short comparison of the most important deconvolution methods for numerical analysis of experimental data is given particularly with respect to the signal-to-noise ratio of the fluorescence signal. 22 refs., 8 figs

  18. Fluorescence uranium determination

    International Nuclear Information System (INIS)

    Fernandez Cellini, R.; Crus Castillo, F. de la; Barrera Pinero, R.

    1960-01-01

    An equipment for analysis of uranium by fluorescence was developed in order to determine it at such a low concentration that it can not be determined by the most sensible analytical methods. this new fluorimeter was adapted to measure the fluorescence emitted by the phosphorus sodium fluoride-sodium carbonate-potasium carbonate-uranyl, being excited by ultraviolet light of 3,650 A the intensity of the light emitted was measure with a photomultiplicator RCA 5819 and the adequate electronic equipment. (Author) 19 refs

  19. Characterization and in vitro biological evaluation of mineral/osteogenic growth peptide nanocomposites synthesized biomimetically on titanium

    Science.gov (United States)

    Chen, Cen; Kong, Xiangdong; Zhang, Sheng-Min; Lee, In-Seop

    2015-04-01

    Nanocomposite layers of mineral/osteogenic growth peptide (OGP) were synthesized on calcium phosphate coated titanium substrates by immersing in calcium-phosphate buffer solution containing OGP. Peptide incorporated mineral was characterized by determining quantity loaded, effects on mineral morphology and structure. Also, the biological activity was investigated by cell adhesion, proliferation assay, and measurement of alkaline phosphatase (ALP) activity. X-ray photoelectron spectroscopy (XPS) and micro-bicinchoninic acid (BCA) assay revealed that OGP was successfully incorporated with mineral and the amount was increased with immersion time. Incorporated OGP changed the mineral morphology from sharp plate-like shape to more rounded one, and the octacalcium phosphate structure of the mineral was gradually transformed into apatite. With confocal microscopy to examine the incorporation of fluorescently labeled peptide, OGP was evenly distributed throughout mineral layers. Mineral/OGP nanocomposites promoted cell adhesion and proliferation, and also increased ALP activity of mesenchymal stem cells (MSCs). Results presented here indicated that the mineral/OGP nanocomposites formed on titanium substrates had the potential for applications in dental implants.

  20. Acid/base bifunctional carbonaceous nanomaterial with large surface area: Preparation, characterization, and adsorption properties for cationic and anionic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kai; Ma, Chun–Fang; Ling, Yuan; Li, Meng [Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Gao, Qiang, E-mail: gaoqiang@cug.edu.cn [Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Engineering Research Center of Nano-Geo Materials of Ministry of Education, China University of Geosciences, Wuhan 430074 (China); Luo, Wen–Jun, E-mail: heartnohome@yahoo.com.cn [Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China)

    2015-07-15

    Nanostructured carbonaceous materials are extremely important in the nano field, yet developing simple, mild, and “green” methods that can make such materials possess large surface area and rich functional groups on their surfaces still remains a considerable challenge. Herein, a one-pot and environment-friendly method, i.e., thermal treatment (180 °C; 18 h) of water mixed with glucose and chitosan (CTS), has been proposed. The resultant carbonaceous nanomaterials were characterized by field emitting scanning electron microscope, N{sub 2} adsorption/desorption, Fourier transform infrared spectroscope, X-ray photoelectron spectroscopy, and zeta-potential analysis. It was found that, in contrast to the conventional hydrothermally carbonized product from pure glucose, with low surface area (9.3 m{sup 2} g{sup −1}) and pore volume (0.016 cm{sup 3} g{sup −1}), the CTS-added carbonaceous products showed satisfactory textural parameters (surface area and pore volume up to 254 m{sup 2} g{sup −1} and 0.701 cm{sup 3} g{sup −1}, respectively). Moreover, it was also interestingly found that these CTS-added carbonaceous products possessed both acidic (–COOH) and basic (–NH{sub 2}) groups on their surfaces. Taking the advantages of large surface area and –COOH/–NH{sub 2} bifunctional surface, the carbonaceous nanomaterials exhibited excellent performance for adsorptions of cationic compound (i.e., methylene blue) at pH 10 and anionic compound (i.e., acid red 18) at pH 2, respectively. This work not only provides a simple and green route to prepare acid/base bifunctional carbonaceous nanomaterials with large surface area but also well demonstrates their potential for application in adsorption. - Highlights: • A simple and green method was proposed to prepare carbon nanomaterials. • The carbon product showed acid/base bifunctional surface with large surface area. • The carbon material could efficiently adsorb both cationic and anionic compounds.

  1. Facile synthesis of flower like FePt@ZnO core–shell structure and its bifunctional properties

    Energy Technology Data Exchange (ETDEWEB)

    Majeed, Jerina [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Jayakumar, O.D., E-mail: ddjaya@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Mandal, B.P. [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Salunke, H.G. [Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Naik, R. [Department of Physics, Wayne State University, Detroit, MI 48202 (United States); Tyagi, A.K., E-mail: aktyagi@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2014-06-01

    Graphical abstract: Flower shaped FePt and ZnO coated FePt with core–shell nanostructures are synthesized by a facile solvothermal procedure. Shell thickness of ZnO over FePt core was tuned by varying FePt concentration with respect to ZnO. Hybrid structure with lower FePt concentration exhibited bifunctionality such as near room temperature ferromagnetism and photoluminescence. Pristine FePt crystallize in the fct (L1{sub 0}) phase whereas it converts into fcc phase in presence of ZnO. - Highlights: • FePt@ZnO hybrid core–shell particles, with unique flower shape morphology have been prepared by solvothermal method. • Phase transition of fct-FePt to fcc-FePt has been found in presence of ZnO nanoparticles. • Plausible mechanism for growth of flowershaped nanoparticle is in accordance with energy minimization principle. • The core shell structure (FePt@ZnO) exhibits bi-functional properties. - Abstract: Flower shaped FePt and ZnO coated FePt (FePt@ZnO) core–shell nanostructures are synthesized by a facile solvothermal procedure. Two different compositions (molar ratio) of FePt and ZnO (FePt:ZnO = 1:3 and FePt:ZnO = 1:6) core–shells with different thicknesses of ZnO shells were synthesized. Hybrid FePt@ZnO core–shell flower structure with lower FePt concentration (FePt:ZnO = 1:6) exhibited bifunctionality including near room temperature ferromagnetism and photoluminescence at ambient conditions. X-ray diffraction patterns of pristine FePt showed partially ordered face centred tetragonal (fct) L1{sub 0} phase whereas ZnO coated FePt (FePt@ZnO) nanostructures showed hexagonal ZnO and disordered phase of FePt with fcc structure. The phase transition of fct FePt to fcc phase occurring in presence of ZnO is further confirmed by transmission electron microscopy and magnetic measurement studies. The formation of the nanoflowers was possibly due to growth along the [0 1 1] or [0 0 1] direction, keeping the core nearly spherical in accordance with the

  2. Development of bifunctional microencapsulated phase change materials with crystalline titanium dioxide shell for latent-heat storage and photocatalytic effectiveness

    International Nuclear Information System (INIS)

    Chai, Luxiao; Wang, Xiaodong; Wu, Dezhen

    2015-01-01

    Highlights: • We designed and synthesized a sort of bifunctional PCMs-based microcapsules. • These microcapsules have an n-eicosane core and a crystalline TiO 2 shell. • Such a crystalline TiO 2 shell exhibited a good photocatalytic activity. • The microcapsules showed good performance in energy storage and sterilization. - Abstract: A sort of novel bifunctional microencapsulated phase change material (PCM) was designed by encapsulating n-eicosane into a crystalline titanium dioxide (TiO 2 ) shell and, then, was successfully synthesized through in-situ polycondensation in the sol–gel process using tetrabutyl titanate as a titania precursor. The resultant microcapsule samples were characterized by Fourier-transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy to determine their chemical compositions and structures. Furthermore, the crystallinity of the TiO 2 shell was verified by powder X-ray diffraction patterns. It was confirmed that the fluorinions could induce the phase transition from the amorphous TiO 2 to the brookite-form crystals during the sol–gel process, thus resulting in a crystalline TiO 2 shell for the microencapsulated n-eicosane. The scanning and transmission electron microscopy investigations indicated that all of the resultant microcapsules presented a perfect spherical shape with a uniform particle size of 1.5–2 μm, and they also exhibited a well-defined core–shell structure as well as a smooth and compact shell. The crystalline TiO 2 shell made the resultant microcapsules a photocatalytic activity, and therefore, these microcapsules demonstrated a good photocatalytic effect for the chemical degradation and an antimicrobial function for some of the Gram-negative bacteria. Most of all, all of the microencapsulated n-eicosane samples indicated good phase-change performance and high thermal reliability for latent-heat storage and release, and moreover, they achieved a high

  3. Development of nanocomposites polyamide66/ bentonite clay membranes obtained by solution for water-oil separation

    International Nuclear Information System (INIS)

    Medeiros, Keila Machado de

    2010-01-01

    Microporous membranes were obtained from nanocomposites polyamide66 and regional bentonite clay, through the technique of immersion precipitation. The nanocomposites were obtained by solution with a pre-established reaction time. The clay was treated with quaternary ammonium salt (Cetremide®) in order to make it organophilic. Untreated and treated clay were characterized by X-ray fluorescence (XRF) spectroscopy, Fourier transform infrared (FTIR), X-ray diffraction (XRD) and thermogravimetry (TG), which confirmed the insertion of the Cetremide® salt in the layers of clay and their thermal stability. While the membranes were characterized by XRD, TG, differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and flow measurements. The results of XRD, TG and DSC confirmed the thermal stability and morphological structure with intercalated/partially exfoliated lamellae of clay in the polymer matrix. By SEM, it was revealed an asymmetric morphology consisting of a skin layer and a porous sublayer. The higher clay content in the membrane give the lower film thickness. This influencing directly the flow measurements of the membranes produced from the nanocomposites. In general, the initial flow with distilled water through the membranes decrease and stabilise after 60 min, this due to a compression or swelling occurred in the membranes. In tests of water-oil separation it was found that the relationship J/J0 tends to be greater when using emulsions with lower concentration. The water-oil separation tests at concentrations of 300 and 500 ppm for all membranes showed a significant reduction in oil concentration in the permeate, thus showing that these membranes have potential for this application. (author)

  4. Synthesis, thermal properties and applications of polymer-clay nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Meneghetti, Paulo [Chemical Engineering Department, Case Western Reserve University, 10900 Euclid Ave. Cleveland, OH 44106 (United States); Qutubuddin, Syed [Chemical Engineering Department, Case Western Reserve University, 10900 Euclid Ave. Cleveland, OH 44106 (United States)]. E-mail: sxq@case.edu

    2006-03-15

    Polymer-clay nanocomposites constitute a new class of materials in which the polymer matrix is reinforced by uniformly dispersed inorganic particles (usually 10 wt.% or less) having at least one dimension in the nanometer scale. Nanocomposites exhibit improved properties when compared to pure polymer or conventional composites, such as enhanced mechanical and thermal properties, reduced gas permeability, and improved chemical stability. In this work, the synthesis of poly(methyl methacrylate) (PMMA)/clay nanocomposites is described via two methods: in situ and emulsion polymerization. The in situ technique follows a two-step process: ion-exchange of the clay to make it hydrophobic, and polymerization after dispersing the functionalized clay in the monomer. The emulsion technique combines the two steps of the in situ method into one by conducting ion-exchange and polymerization in an aqueous medium in the same reactor. The clay (montmorillonite, MMT) is functionalized with a zwitterionic surfactant, octadecyl-dimethyl betaine (C18DMB). Partially exfoliated nanocomposite, observed by transmission electron microscopy (TEM), was obtained by emulsion polymerization with 10 wt.% clay. Glass transition temperature (T {sub g}) of this nanocomposite was 18 deg. C higher than pure PMMA. With the same clay content, in situ polymerization produced intercalated nanocomposite with T {sub g} 10 deg. C lower than the emulsion nanocomposite. The storage modulus of partially exfoliated nanocomposite was superior to the intercalated structure and to the pure polymer. Using nanocomposite technology, novel PMMA nanocomposite gel electrolytes were synthesized exhibiting improved ionic conductivity and stable lithium interfacial resistance. Nanocomposites can also be used for gas storage and packaging applications as demonstrated by high barrier polymer-clay films.

  5. Synthesis, thermal properties and applications of polymer-clay nanocomposites

    International Nuclear Information System (INIS)

    Meneghetti, Paulo; Qutubuddin, Syed

    2006-01-01

    Polymer-clay nanocomposites constitute a new class of materials in which the polymer matrix is reinforced by uniformly dispersed inorganic particles (usually 10 wt.% or less) having at least one dimension in the nanometer scale. Nanocomposites exhibit improved properties when compared to pure polymer or conventional composites, such as enhanced mechanical and thermal properties, reduced gas permeability, and improved chemical stability. In this work, the synthesis of poly(methyl methacrylate) (PMMA)/clay nanocomposites is described via two methods: in situ and emulsion polymerization. The in situ technique follows a two-step process: ion-exchange of the clay to make it hydrophobic, and polymerization after dispersing the functionalized clay in the monomer. The emulsion technique combines the two steps of the in situ method into one by conducting ion-exchange and polymerization in an aqueous medium in the same reactor. The clay (montmorillonite, MMT) is functionalized with a zwitterionic surfactant, octadecyl-dimethyl betaine (C18DMB). Partially exfoliated nanocomposite, observed by transmission electron microscopy (TEM), was obtained by emulsion polymerization with 10 wt.% clay. Glass transition temperature (T g ) of this nanocomposite was 18 deg. C higher than pure PMMA. With the same clay content, in situ polymerization produced intercalated nanocomposite with T g 10 deg. C lower than the emulsion nanocomposite. The storage modulus of partially exfoliated nanocomposite was superior to the intercalated structure and to the pure polymer. Using nanocomposite technology, novel PMMA nanocomposite gel electrolytes were synthesized exhibiting improved ionic conductivity and stable lithium interfacial resistance. Nanocomposites can also be used for gas storage and packaging applications as demonstrated by high barrier polymer-clay films

  6. Construction of iron-polymer-graphene nanocomposites with low nonspecific adsorption and strong quenching ability for competitive immunofluorescent detection of biomarkers in GM crops.

    Science.gov (United States)

    Yin, Kaifei; Liu, Anran; Shangguan, Li; Mi, Li; Liu, Xu; Liu, Yuanjian; Zhao, Yuewu; Li, Ying; Wei, Wei; Zhang, Yuanjian; Liu, Songqin

    2017-04-15

    We developed a new immunofluorescent biosensor by utilizing a novel nanobody (Nb) and iron-polymer-graphene nanocomposites for sensitive detection of 5-enolpyruvylshikimate-3-phosphate synthase from Agrobacdterium tumefaciens strain CP4 (CP4-EPSPS), which considered as biomarkers of genetically modified (GM) crops. Specifically, we prepared iron doped polyacrylic hydrazide modified reduced graphene nanocomposites (Fe@RGO/PAH) by in-situ polymerization approach and subsequent a one-pot reaction with hydrazine. The resulting Fe@RGO/PAH nanocomposites displayed low nonspecific adsorption to analytes (11% quenching caused by nonspecific adsorption) due to electrostatic, energetic and steric effect of the nanocomposites. After Nb immobilizing, the as-prepared Fe@RGO/PAH/Nbs showed good selectivity and high quenching ability (92% quenching) in the presence of antigen (Ag) and polyethylene glycol (PEG) modified CdTe QDs (Ag/QDs@PEG), which is a nearly 4 fold than that of the unmodified GO in same condition. The high quenching ability of Fe@RGO/PAH/Nbs can be used for detection of CP4-EPSPS based on competitive immunoassay with a linearly proportional concentration range of 5-100ng/mL and a detection limit of 0.34ng/mL. The good stability, reproducibility and specificity of the resulting immunofluorescent biosensor are demonstrated and might open a new window for investigation of fluorescent sensing with numerous multifunctional graphene based materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The rates of charge separation and energy destructive charge recombination processes within an organic dyad in presence of metal-semiconductor core shell nanocomposites.

    Science.gov (United States)

    Mandal, Gopa; Bhattacharya, Sudeshna; Das, Subrata; Ganguly, Tapan

    2012-01-01

    Steady state and time resolved spectroscopic measurements were made at the ambient temperature on an organic dyad, 1-(4-Chloro-phenyl)-3-(4-methoxy-naphthalen-1-yl)-propenone (MNCA), where the donor 1-methoxynaphthalene (1 MNT) is connected with the acceptor p-chloroacetophenone (PCA) by an unsaturated olefinic bond, in presence of Ag@TiO2 nanoparticles. Time resolved fluorescence and absorption measurements reveal that the rate parameters associated with charge separation, k(CS), within the dyad increases whereas charge recombination rate k(CR) reduces significantly when the surrounding medium is changed from only chloroform to mixture of chloroform and Ag@TiO2 (noble metal-semiconductor) nanocomposites. The observed results indicate that the dyad being combined with core-shell nanocomposites may form organic-inorganic nanocomposite system useful for developing light energy conversion devices. Use of metal-semiconductor nanoparticles may provide thus new ways to modulate charge recombination processes in light energy conversion devices. From comparison with the results obtained in our earlier investigations with only TiO2 nanoparticles, it is inferred that much improved version of light energy conversion device, where charge-separated species could be protected for longer period of time of the order of millisecond, could be designed by using metal-semiconductor core-shell nanocomposites rather than semiconductor nanoparticles only.

  8. Intermediate Ce{sup 3+} defect level induced photoluminescence and third-order nonlinear optical effects in TiO{sub 2}-CeO{sub 2} nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Divya, S.; Nampoori, V.P.N.; Radhakrishnan, P.; Mujeeb, A. [Cochin University of Science and Technology, International School of Photonics, Cochin, Kerala (India)

    2014-02-15

    We report on the linear and nonlinear optical studies of TiO{sub 2}-CeO{sub 2} nanocomposites. It was found that the band gap of the nanocomposite can be tuned by varying Ce/Ti content. Nonlinear absorption characteristics of these samples were studied by employing open aperture Z-scan technique using an Nd:YAG laser (532 nm, 7 ns, 10 Hz). It has been observed that as the CeO{sub 2} amount increases, band gap of the nanocomposites decreases and the reason proposed for the change in band gap is the smudging of localised states of Ce{sup 3+} into the forbidden energy gap, thus acting as the intermediate state. Fluorescence studies confirmed the above argument. Nonlinear investigation revealed that with increase in the CeO{sub 2} amount, the two-photon absorption coefficient increased due to the modification of TiO{sub 2} dipole symmetry. Suitable candidature of the nanocomposites for the fabrication of nonlinear optical devices was proved by determining the optical limiting threshold. (orig.)

  9. Characterization of SWNT based Polystyrene Nanocomposites

    Science.gov (United States)

    Mitchell, Cynthia; Bahr, Jeffrey; Tour, James; Arepalli, Sivaram; Krishnamoorti, Ramanan

    2003-03-01

    Polystyrene nanocomposites with functionalized single walled carbon nanotubes (SWNTs), prepared by the in-situ generation and addition of organic diazonium compounds, were characterized using a range of structural and dynamic methods. These were contrasted to the properties of polystyrene composites prepared with unfunctionalized SWNTs at the same loadings. The functionalized nanocomposites demonstrated a percolated SWNT network structure at concentrations of 1 vol SWNT based composites at similar loadings of SWNT exhibited behavior comparable to that of the unfilled polymer. This formation of the SWNT network structure is because of the improved compatibility between the SWNTs and the polymer matrix due to the functionalization. Further structural evidence for the compatibility of the modified SWNTs and the polymer matrix will be discussed in the presentation.

  10. Investigation on Curcumin nanocomposite for wound dressing.

    Science.gov (United States)

    Venkatasubbu, G Devanand; Anusuya, T

    2017-05-01

    Curcuma longa (turmeric) has a long history of use in medicine as a treatment for inflammatory conditions. The primary active constituent of turmeric and the one responsible for its vibrant yellow color is curcumin. Curcumin is used for treatment of wound and inflammation. It had antimicrobial and antioxidant property. It has low intrinsic toxicity and magnificent properties like with comparatively lesser side-effects. Cotton cloth is one of the most successful wound dressings which utilize the intrinsic properties of cotton fibers. Modern wound dressings, however, require other properties such as antibacterial and moisture maintaining capabilities. In this study, conventional cotton cloth was coated with Curcumin composite for achieving modern wound dressing properties. Curcumin nanocomposite is characterized. The results show that coated cotton cloth with Curcumin nanocomposite has increased drying time (74%) and water absorbency (50%). Furthermore, they show antibacterial efficiency against bacterial species present in wounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Progress of Nanocomposite Membranes for Water Treatment

    Directory of Open Access Journals (Sweden)

    Claudia Ursino

    2018-04-01

    Full Text Available The use of membrane-based technologies has been applied for water treatment applications; however, the limitations of conventional polymeric membranes have led to the addition of inorganic fillers to enhance their performance. In recent years, nanocomposite membranes have greatly attracted the attention of scientists for water treatment applications such as wastewater treatment, water purification, removal of microorganisms, chemical compounds, heavy metals, etc. The incorporation of different nanofillers, such as carbon nanotubes, zinc oxide, graphene oxide, silver and copper nanoparticles, titanium dioxide, 2D materials, and some other novel nano-scale materials into polymeric membranes have provided great advances, e.g., enhancing on hydrophilicity, suppressing the accumulation of pollutants and foulants, enhancing rejection efficiencies and improving mechanical properties and thermal stabilities. Thereby, the aim of this work is to provide up-to-date information related to those novel nanocomposite membranes and their contribution for water treatment applications.

  12. Metal-polymer nanocomposites for functional applications

    Energy Technology Data Exchange (ETDEWEB)

    Faupel, Franz; Zaporojtchenko, Vladimir; Strunskus, Thomas [Christian-Albrechts-Universitaet zu Kiel (Germany). Institut fuer Materialwissenschaft - Materialverbunde; Elbahri, Mady [Christian-Albrechts-Universitaet zu Kiel (Germany). Institut fuer Materialwissenschaft - Nanochemistry and Engineering

    2010-12-15

    Nanocomposites combine favorable features of the constituents on the nanoscale to obtain new functionalities. The present paper is concerned with the preparation of polymer-based nanocomposites consisting of metal nanoparticles in a polymer matrix and the resulting functional properties. Emphasis is placed on vapor phase deposition which inter alia allows the incorporation of alloy clusters with well defined composition and tailored filling factor profiles. Examples discussed here include optical composites with tuned particle surface plasmon resonances for plasmonic applications, magnetic high frequency materials with cut-off frequencies well above 1 GHz, sensors that are based on the dramatic change in the electronic properties near the percolation threshold, and antibacterial coatings which benefit from the large effective surface of nanoparticles and the increased chemical potential which both strongly enhance ion release. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Progress of Nanocomposite Membranes for Water Treatment.

    Science.gov (United States)

    Ursino, Claudia; Castro-Muñoz, Roberto; Drioli, Enrico; Gzara, Lassaad; Albeirutty, Mohammad H; Figoli, Alberto

    2018-04-03

    The use of membrane-based technologies has been applied for water treatment applications; however, the limitations of conventional polymeric membranes have led to the addition of inorganic fillers to enhance their performance. In recent years, nanocomposite membranes have greatly attracted the attention of scientists for water treatment applications such as wastewater treatment, water purification, removal of microorganisms, chemical compounds, heavy metals, etc. The incorporation of different nanofillers, such as carbon nanotubes, zinc oxide, graphene oxide, silver and copper nanoparticles, titanium dioxide, 2D materials, and some other novel nano-scale materials into polymeric membranes have provided great advances, e.g., enhancing on hydrophilicity, suppressing the accumulation of pollutants and foulants, enhancing rejection efficiencies and improving mechanical properties and thermal stabilities. Thereby, the aim of this work is to provide up-to-date information related to those novel nanocomposite membranes and their contribution for water treatment applications.

  14. Electrochemical performance of graphene-polyethylenedioxythiophene nanocomposites

    International Nuclear Information System (INIS)

    Chen, Yan; Xu, Jianhua; Mao, Yunwu; Yang, Yajie; Yang, Wenyao; Li, Shibin

    2013-01-01

    Highlights: • A facile vapor-phase polymerization method is used to deposit PEDOT on graphene. • The graphene-PEDOT composite films exhibit better capacitive retention capability. • This simple technique has been developed to produce highly ordered thin films. -- Abstract: We propose a facile vapor-phase polymerization (VPP) method used to deposit graphene (G)-polyethylene dioxythiophene (PEDOT) nanocomposite film for electrode materials of electrochemical capacitor. This type of conductive polymer nanocomposite improves the performance of electrochemical capacitor. The specific discharge capacitance of G-PEDOT film is higher than that of pure PEDOT electrode. The G-PEDOT electrode also exhibits better capacitive retention capability after 1000 charge–discharge cycles

  15. Potential of Starch Nanocomposites for Biomedical Applications

    Science.gov (United States)

    Zakaria, N. H.; Muhammad, N.; Abdullah, M. M. A. B.

    2017-06-01

    In recent years, the development of biodegradable materials from renewable sources based on polymeric biomaterials have grown rapidly due to increase environmental concerns and the shortage of petroleum sources. In this regard, naturally renewable polymers such as starch has shown great potential as environmental friendly materials. Besides, the unique properties of starch such as biodegradable and non-toxic, biocompatible and solubility make them useful for a various biomedical applications. Regardless of their unique properties, starch materials are known to have limitations in term of poor processability, low mechanical properties, poor long term stability and high water sensitivity. In order to overcome these limitations, the incorporation of nano size fillers into starch materials (nanocomposites) has been introduced. This review aims to give an overview about structure and characteristics of starch, modification of starch by nanocomposites and their potential for biomedical applications.

  16. Characterization of organobentonite used for polymer nanocomposites

    International Nuclear Information System (INIS)

    Lee, J.Y.; Lee, H.K.

    2004-01-01

    Montmorillonite-rich clay was fractionated from bentonite mined from Kampo area in Korea, and it was treated with many cationic organo-surfactant. The chemical and physical characteristics of them are investigated, and epoxy nanocomposites were also studied. To calculate the exchanged content of organo-surfactant, thermogravimetric was carried out and interlayer distance was measured by wide-angle X-ray diffractometer. The interlayer distance for MMT-III, HDA-M, ODA-M, CTMA-M, and ODTMA-M were 1.21, 1.53, 1.57, 2.04, and 2.07 nm. All organobentonites were delaminated in the epoxy matrix forming the epoxy/organobentonite nanocomposites with various contents. Tensile strength and Young's modulus were modified by loading the organobentonite

  17. Mullins' effect in polymer/clay nanocomposites

    DEFF Research Database (Denmark)

    Drozdov, Aleksey; Christiansen, Jesper de Claville; Klitkou, Rasmus

    2012-01-01

    of memory of deformation history: when two samples are subjected to loading programs that differ along the first n ¡ 1 cycles and coincide afterwards, their stress– strain diagrams coincide starting from the nth cycle. Constitutive equations are developed in cyclic viscoelasticity and viscoplasticity...... of nanocomposites, and adjustable parameters in the stress–strain relations are found by fitting the experimental data. Ability of the model to predict the fading memory phenomenon is confirmed by numerical simulation.......Abstract. Experimental data are reported on polypropylene/clay nanocomposites in uniaxial cyclic tensile tests at room temperature (oscillations between maximum strains and the zero minimum stress with maximum strains increasing monotonically with number of cycles). Observations reveal fading...

  18. Development of a Bifunctional Andrographolide-Based Chemical Probe for Pharmacological Study.

    Science.gov (United States)

    Hsu, Ya-Hsin; Hsu, Yu-Ling; Liu, Sheng-Hung; Liao, Hsin-Chia; Lee, Po-Xuan; Lin, Chao-Hsiung; Lo, Lee-Chiang; Fu, Shu-Ling

    2016-01-01

    Andrographolide (ANDRO) is a lactone diterpenoid compound present in the medicinal plant Andrographis paniculata which is clinically applied for multiple human diseases in Asia and Europe. The pharmacological activities of andrographolide have been widely demonstrated, including anti-inflammation, anti-cancer and hepatoprotection. However, the pharmacological mechanism of andrographolide remains unclear. Therefore, further characterization on the kinetics and molecular targets of andrographolide is essential. In this study, we described the synthesis and characterization of a novel fluorescent andrographolide derivative (ANDRO-NBD). ANDRO-NBD exhibited a comparable anti-cancer spectrum to andrographolide: ANDRO-NBD was cytotoxic to various types of cancer cells and suppressed the migration activity of melanoma cells; ANDRO-NBD treatment induced the cleavage of heat shock protein 90 (Hsp90) and the downregulation of its client oncoproteins, v-Src and Bcr-abl. Notably, ANDRO-NBD showed superior inhibitory effects to andrographolide in all anticancer assays we have performed. In addition, ANDRO-NBD was further used as a fluorescent probe to investigate the uptake kinetics, cellular distribution and molecular targets of andrographolide. Our data revealed that ANDRO-NBD entered cells rapidly and its fluorescent signal could be detected in nucleus, cytoplasm, mitochondria, and lysosome. Moreover, we demonstrated that ANDRO-NBD was covalently bound to several putative target proteins of andrographolide, including NF-κB and hnRNPK. In summary, we developed a fluorescent andrographolide probe with comparable bioactivity to andrographolide, which serves as a powerful tool to explore the pharmacological mechanism of andrographolide.

  19. Development of a Bifunctional Andrographolide-Based Chemical Probe for Pharmacological Study.

    Directory of Open Access Journals (Sweden)

    Ya-Hsin Hsu

    Full Text Available Andrographolide (ANDRO is a lactone diterpenoid compound present in the medicinal plant Andrographis paniculata which is clinically applied for multiple human diseases in Asia and Europe. The pharmacological activities of andrographolide have been widely demonstrated, including anti-inflammation, anti-cancer and hepatoprotection. However, the pharmacological mechanism of andrographolide remains unclear. Therefore, further characterization on the kinetics and molecular targets of andrographolide is essential. In this study, we described the synthesis and characterization of a novel fluorescent andrographolide derivative (ANDRO-NBD. ANDRO-NBD exhibited a comparable anti-cancer spectrum to andrographolide: ANDRO-NBD was cytotoxic to various types of cancer cells and suppressed the migration activity of melanoma cells; ANDRO-NBD treatment induced the cleavage of heat shock protein 90 (Hsp90 and the downregulation of its client oncoproteins, v-Src and Bcr-abl. Notably, ANDRO-NBD showed superior inhibitory effects to andrographolide in all anticancer assays we have performed. In addition, ANDRO-NBD was further used as a fluorescent probe to investigate the uptake kinetics, cellular distribution and molecular targets of andrographolide. Our data revealed that ANDRO-NBD entered cells rapidly and its fluorescent signal could be detected in nucleus, cytoplasm, mitochondria, and lysosome. Moreover, we demonstrated that ANDRO-NBD was covalently bound to several putative target proteins of andrographolide, including NF-κB and hnRNPK. In summary, we developed a fluorescent andrographolide probe with comparable bioactivity to andrographolide, which serves as a powerful tool to explore the pharmacological mechanism of andrographolide.

  20. Preparation of nanocrystals and nanocomposites of nanocrystal-conjugated polymer, and their photophysical properties in confined geometries

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jun [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    Semiconductors nanocrystals (NCs), also called quantum dots (QDs), have attracted tremendous interest over the past decade in the fields of physics, chemistry, and engineering. Due to the quantum-confined nature of QDs, the variation of particle size provides continuous and predictable changes in fluorescence emission. On the other hand, conjugated polymers (CPs) have been extensively studied for two decades due to their semiconductor-like optical and electronic properties. The electron and energy transfer between NCs and CPs occur in solar cells and light emitting diodes (LEDs), respectively. Placing CPs in direct contact with a NC (i.e., preparing NC-CP nanocomposites) carries advantage over cases where NC aggregation dominates. Such NC-CP nanocomposites possess a well-defined interface that significantly promotes the charge or energy transfer between these two components. However, very few studies have centered on such direct integration. We prepared NCs and NC-CP nanocomposites based on heck coupling and investigated the energy and charge transfer between semiconductor NCs (i.e., CdSe QDs), CPs (i.e., poly(3-hexyl thiophene) (P3HT)) in the nanocomposites in confined geometries. Two novel strategies were used to confine NC and/or NC-CP nanocomposites: (a) directly immobilizing nanohybrids, QDs and nanorods in nanoscopic porous alumina membrane (PAM) , and (b) confining the QDs and CPs in sphere-on-flat geometry to induce self-assembly. While investigating the confinement effect, gradient concentric ring patterns of high regularity form spontaneously simply by allowing a droplet of solution containing either conjugated polymer or semiconductor nanocrystal in a consecutive stick-slip mothion in a confined geometry. Such constrained evaporation can be utilized as a simple, cheap, and robust strategy for self-assembling various materials with easily tailored optical and electronic properties into spatially ordered, two-dimensional patterns. These self