WorldWideScience

Sample records for fluorescent aptamers binding

  1. Fluorescence enhancement upon G-quadruplex folding: synthesis, structure, and biophysical characterization of a dansyl/cyclodextrin-tagged thrombin binding aptamer.

    Science.gov (United States)

    De Tito, Stefano; Morvan, François; Meyer, Albert; Vasseur, Jean-Jacques; Cummaro, Annunziata; Petraccone, Luigi; Pagano, Bruno; Novellino, Ettore; Randazzo, Antonio; Giancola, Concetta; Montesarchio, Daniela

    2013-11-20

    A novel fluorescent thrombin binding aptamer (TBA), conjugated with the environmentally sensitive dansyl probe at the 3'-end and a β-cyclodextrin residue at the 5'-end, has been efficiently synthesized exploiting Cu(I)-catalyzed azide-alkyne cycloaddition procedures. Its conformation and stability in solution have been studied by an integrated approach, combining in-depth NMR, CD, fluorescence, and DSC studies. ITC measurements have allowed us to analyze in detail its interaction with human thrombin. All the collected data show that this bis-conjugated aptamer fully retains its G-quadruplex formation ability and thrombin recognition properties, with the terminal appendages only marginally interfering with the conformational behavior of TBA. Folding of this modified aptamer into the chairlike, antiparallel G-quadruplex structure, promoted by K(+) and/or thrombin binding, typical of TBA, is associated with a net fluorescence enhancement, due to encapsulation of dansyl, attached at the 3'-end, into the apolar cavity of the β-cyclodextrin at the 5'-end. Overall, the structural characterization of this novel, bis-conjugated TBA fully demonstrates its potential as a diagnostic tool for thrombin recognition, also providing a useful basis for the design of suitable aptamer-based devices for theranostic applications, allowing simultaneously both detection and inhibition or modulation of the thrombin activity.

  2. Aptamer-assembled nanomaterials for fluorescent sensing and imaging

    Science.gov (United States)

    Lu, Danqing; He, Lei; Zhang, Ge; Lv, Aiping; Wang, Ruowen; Zhang, Xiaobing; Tan, Weihong

    2017-01-01

    Aptamers, which are selected in vitro by a technology known as the systematic evolution of ligands by exponential enrichment (SELEX), represent a crucial recognition element in molecular sensing. With advantages such as good biocompatibility, facile functionalization, and special optical and physical properties, various nanomaterials can protect aptamers from enzymatic degradation and nonspecific binding in living systems and thus provide a preeminent platform for biochemical applications. Coupling aptamers with various nanomaterials offers many opportunities for developing highly sensitive and selective sensing systems. Here, we focus on the recent applications of aptamer-assembled nanomaterials in fluorescent sensing and imaging. Different types of nanomaterials are examined along with their advantages and disadvantages. Finally, we look toward the future of aptamer-assembled nanomaterials.

  3. Facile conversion of ATP-binding RNA aptamer to quencher-free molecular aptamer beacon.

    Science.gov (United States)

    Park, Yoojin; Nim-Anussornkul, Duangrat; Vilaivan, Tirayut; Morii, Takashi; Kim, Byeang Hyean

    2018-01-15

    We have developed RNA-based quencher-free molecular aptamer beacons (RNA-based QF-MABs) for the detection of ATP, taking advantage of the conformational changes associated with ATP binding to the ATP-binding RNA aptamer. The RNA aptamer, with its well-defined structure, was readily converted to the fluorescence sensors by incorporating a fluorophore into the loop region of the hairpin structure. These RNA-based QF-MABs exhibited fluorescence signals in the presence of ATP relative to their low background signals in the absence of ATP. The fluorescence emission intensity increased upon formation of a RNA-based QF-MAB·ATP complex. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. DNA-Aptamers Binding Aminoglycoside Antibiotics

    Directory of Open Access Journals (Sweden)

    Nadia Nikolaus

    2014-02-01

    Full Text Available Aptamers are short, single stranded DNA or RNA oligonucleotides that are able to bind specifically and with high affinity to their non-nucleic acid target molecules. This binding reaction enables their application as biorecognition elements in biosensors and assays. As antibiotic residues pose a problem contributing to the emergence of antibiotic-resistant pathogens and thereby reducing the effectiveness of the drug to fight human infections, we selected aptamers targeted against the aminoglycoside antibiotic kanamycin A with the aim of constructing a robust and functional assay that can be used for water analysis. With this work we show that aptamers that were derived from a Capture-SELEX procedure targeting against kanamycin A also display binding to related aminoglycoside antibiotics. The binding patterns differ among all tested aptamers so that there are highly substance specific aptamers and more group specific aptamers binding to a different variety of aminoglycoside antibiotics. Also the region of the aminoglycoside antibiotics responsible for aptamer binding can be estimated. Affinities of the different aptamers for their target substance, kanamycin A, are measured with different approaches and are in the micromolar range. Finally, the proof of principle of an assay for detection of kanamycin A in a real water sample is given.

  5. Direct fluorescence anisotropy assay for cocaine using tetramethylrhodamine-labeled aptamer.

    Science.gov (United States)

    Liu, Yingxiong; Zhao, Qiang

    2017-06-01

    Development of simple, sensitive, and rapid method for cocaine detection is important in medicine and drug abuse monitoring. Taking advantage of fluorescence anisotropy and aptamer, this study reports a direct fluorescence anisotropy (FA) assay for cocaine by employing an aptamer probe with tetramethylrhodamine (TMR) labeled on a specific position. The binding of cocaine and the aptamer causes a structure change of the TMR-labeled aptamer, leading to changes of the interaction between labeled TMR and adjacent G bases in aptamer sequence, so FA of TMR varies with increasing of cocaine. After screening different labeling positions of the aptamer, including thymine (T) bases and terminals of the aptamer, we obtained a favorable aptamer probe with TMR labeled on the 25th base T in the sequence, which exhibited sensitive and significant FA-decreasing responses upon cocaine. Under optimized assay conditions, this TMR-labeled aptamer allowed for direct FA detection of cocaine as low as 5 μM. The maximum FA change reached about 0.086. This FA method also enabled the detection of cocaine spiked in diluted serum and urine samples, showing potential for applications. Graphical Abstract The binding of cocaine to the TMR-labeled aptamer causes conformation change and alteration of the intramolecular interaction between TMR and bases of aptamer, leading to variance of fluorescence anisotropy (FA) of TMR, so direct FA analyis of cocaine is achieved.

  6. Molecule-binding dependent assembly of split aptamer and γ-cyclodextrin: A sensitive excimer signaling approach for aptamer biosensors

    International Nuclear Information System (INIS)

    Jin, Fen; Lian, Yan; Li, Jishan; Zheng, Jing; Hu, Yaping; Liu, Jinhua; Huang, Jin; Yang, Ronghua

    2013-01-01

    Graphical abstract: Adenosine-binding aptamer was splitted into two fragments P2 and P3 which labeled pyrene molecules, mainly produce monomer signal. γ-CD cavity brings P2 and P3 in close proximity, allowing for weak excimer emission. In the presence of target, P2 and P3 are expected to bind ATP and form an aptamer/target complex, leads to large increase of the pyrene excimer fluorescence. -- Highlights: •We assembled split aptamer and γ-cyclodextrin fluorescence biosensors for ATP detection. •The biosensor increased quantum yield and emission lifetime of the excimer. •Time-resolved fluorescence is effective for ATP assay in complicated environment. -- Abstract: A highly sensitive and selective fluorescence aptamer biosensors for the determination of adenosine triphosphate (ATP) was developed. Binding of a target with splitting aptamers labeled with pyrene molecules form stable pyrene dimer in the γ-cyclodextrin (γ-CD) cavity, yielding a strong excimer emission. We have found that inclusion of pyrene dimer in γ-cyclodextrin cavity not only exhibits additive increases in quantum yield and emission lifetime of the excimer, but also facilitates target-induced fusion of the splitting aptamers to form the aptamer/target complex. As proof-of-principle, the approach was applied to fluorescence detection of adenosine triphosphate. With an anti-ATP aptamer, the approach exhibits excimer fluorescence response toward ATP with a maximum signal-to-background ratio of 32.1 and remarkably low detection limit of 80 nM ATP in buffer solution. Moreover, due to the additive fluorescence lifetime of excimer induced by γ-cyclodextrin, time-resolved measurements could be conveniently used to detect as low as 0.5 μM ATP in blood serum quantitatively

  7. Development of a Novel Fluorescence Assay Based on the Use of the Thrombin-Binding Aptamer for the Detection of O6-Alkylguanine-DNA Alkyltransferase Activity

    Directory of Open Access Journals (Sweden)

    Maria Tintoré

    2010-01-01

    Full Text Available Human O6-alkylguanine-DNA alkyltransferase (hAGT is a DNA repair protein that reverses the effects of alkylating agents by removing DNA adducts from the O6 position of guanine. Here, we developed a real-time fluorescence hAGT activity assay that is based on the detection of conformational changes of the thrombin-binding aptamer (TBA. The quadruplex structure of TBA is disrupted when a central guanine is replaced by an O6-methyl-guanine. The sequence also contains a fluorophore (fluorescein and a quencher (dabsyl attached to the opposite ends. In the unfolded structure, the fluorophore and the quencher are separated. When hAGT removes the methyl group from the central guanine of TBA, it folds back immediately into its quadruplex structure. Consequently, the fluorophore and the quencher come into close proximity, thereby resulting in decreased fluorescence intensity. Here, we developed a new method to quantify the hAGT without using radioactivity. This new fluorescence resonance energy transfer assay has been designed to detect the conformational change of TBA that is induced by the removal of the O6-methyl group.

  8. Novel Photochrome Aptamer Switch Assay (PHASA) for adaptive binding to aptamers.

    Science.gov (United States)

    Papper, Vladislav; Pokholenko, Oleksandr; Wu, Yuanyuan; Zhou, Yubin; Jianfeng, Ping; Steele, Terry W J; Marks, Robert S

    2014-11-01

    A novel Photochrome-Aptamer Switch Assay (PHASA) for the detection and quantification of small environmentally important molecules such as toxins, explosives, drugs and pollutants, which are difficult to detect using antibodies-based assays with high sensitivity and specificity, has been developed. The assay is based on the conjugation of a particular stilbene-analyte derivative to any aptamer of interest. A unique feature of the stilbene molecule is its reporting power via trans-cis photoisomerisation (from fluorescent trans-isomer to non-fluorescent cis-isomer) upon irradiation with the excitation light. The resulting fluorescence decay rate for the trans-isomer of the stilbene-analyte depends on viscosity and spatial freedom to rotate in the surrounding medium and can be used to indicate the presence of the analyte. Quantification of the assay is achieved by calibration of the fluorescence decay rate for the amount of the tested analyte. Two different formats of PHASA have been recently developed: direct conjugation and adaptive binding. New stilbene-maleimide derivatives used in the adaptive binding format have been prepared and characterised. They demonstrate effective binding to the model thiol compound and to the thiolated Malachite Green aptamer.

  9. Organic additives stabilize RNA aptamer binding of malachite green.

    Science.gov (United States)

    Zhou, Yubin; Chi, Hong; Wu, Yuanyuan; Marks, Robert S; Steele, Terry W J

    2016-11-01

    Aptamer-ligand binding has been utilized for biological applications due to its specific binding and synthetic nature. However, the applications will be limited if the binding or the ligand is unstable. Malachite green aptamer (MGA) and its labile ligand malachite green (MG) were found to have increasing apparent dissociation constants (Kd) as determined through the first order rate loss of emission intensity of the MGA-MG fluorescent complex. The fluorescent intensity loss was hypothesized to be from the hydrolysis of MG into malachite green carbinol base (MGOH). Random screening organic additives were found to reduce or retain the fluorescence emission and the calculated apparent Kd of MGA-MG binding. The protective effect became more apparent as the percentage of organic additives increased up to 10% v/v. The mechanism behind the organic additive protective effects was primarily from a ~5X increase in first order rate kinetics of MGOH→MG (kMGOH→MG), which significantly changed the equilibrium constant (Keq), favoring the generation of MG, versus MGOH without organic additives. A simple way has been developed to stabilize the apparent Kd of MGA-MG binding over 24h, which may be beneficial in stabilizing other triphenylmethane or carbocation ligand-aptamer interactions that are susceptible to SN1 hydrolysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Aptamer conjugated paclitaxel and magnetic fluid loaded fluorescently tagged PLGA nanoparticles for targeted cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Aravind, Athulya; Nair, Remya; Raveendran, Sreejith; Veeranarayanan, Srivani; Nagaoka, Yutaka; Fukuda, Takahiro; Hasumura, Takahashi; Morimoto, Hisao; Yoshida, Yasuhiko; Maekawa, Toru; Sakthi Kumar, D., E-mail: sakthi@toyo.jp

    2013-10-15

    Controlled and targeted drug delivery is an essential criterion in cancer therapy to reduce the side effects caused by non-specific drug release and toxicity. Targeted chemotherapy, sustained drug release and optical imaging have been achieved using a multifunctional nanocarrier constructed from poly (D, L-lactide-co-glycolide) nanoparticles (PLGA NPs), an anticancer drug paclitaxel (PTX), a fluorescent dye Nile red (NR), magnetic fluid (MF) and aptamers (Apt, AS1411, anti-nucleolin aptamer). The magnetic fluid and paclitaxel loaded fluorescently labeled PLGA NPs (MF-PTX-NR-PLGA NPs) were synthesized by a single-emulsion technique/solvent evaporation method using a chemical cross linker bis (sulfosuccinimidyl) suberate (BS3) to enable binding of aptamer on to the surface of the nanoparticles. Targeting aptamers were then introduced to the particles through the reaction with the cross linker to target the nucleolin receptors over expressed on the cancer cell surface. Specific binding and uptake of the aptamer conjugated magnetic fluid loaded fluorescently tagged PLGA NPs (Apt-MF-NR-PLGA NPs) to the target cancer cells induced by aptamers was observed using confocal microscopy. Cytotoxicity assay conducted in two cell lines (L929 and MCF-7) confirmed that targeted MCF-7 cancer cells were killed while control cells were unharmed. In addition, aptamer mediated delivery resulting in enhanced binding and uptake to the target cancer cells exhibited increased therapeutic effect of the drug. Moreover, these aptamer conjugated magnetic polymer vehicles apart from actively transporting drugs into specifically targeted tumor regions can also be used to induce hyperthermia or for facilitating magnetic guiding of particles to the tumor regions. - Highlights: • Aptamer escorted, theranostic biodegradable PLGA carriers were developed. • Can target cancer cells, control drug release, image and magnetically guide. • Highly specific to the targeted cancer cells thus delivering

  11. Labeling RNAs in Live Cells Using Malachite Green Aptamer Scaffolds as Fluorescent Probes.

    Science.gov (United States)

    Yerramilli, V Siddartha; Kim, Kyung Hyuk

    2018-03-16

    RNAs mediate many different processes that are central to cellular function. The ability to quantify or image RNAs in live cells is very useful in elucidating such functions of RNA. RNA aptamer-fluorogen systems have been increasingly used in labeling RNAs in live cells. Here, we use the malachite green aptamer (MGA), an RNA aptamer that can specifically bind to malachite green (MG) dye and induces it to emit far-red fluorescence signals. Previous studies on MGA showed a potential for the use of MGA for genetically tagging other RNA molecules in live cells. However, these studies also exhibited low fluorescence signals and high background noise. Here we constructed and tested RNA scaffolds containing multiple tandem repeats of MGA as a strategy to increase the brightness of the MGA aptamer-fluorogen system as well as to make the system fluoresce when tagging various RNA molecules, in live cells. We demonstrate that our MGA scaffolds can induce fluorescence signals by up to ∼20-fold compared to the basal level as a genetic tag for other RNA molecules. We also show that our scaffolds function reliably as genetically encoded fluorescent tags for mRNAs of fluorescent proteins and other RNA aptamers.

  12. An aptamer-based fluorescence bio-sensor for chiral recognition of arginine enantiomers.

    Science.gov (United States)

    Yuan, Haiyan; Huang, Yunmei; Yang, Jidong; Guo, Yuan; Zeng, Xiaoqing; Zhou, Shang; Cheng, Jiawei; Zhang, Yuhui

    2018-07-05

    In this study, a novel aptamer - based fluorescence bio-sensor (aptamer-AuNps) was developed for chiral recognition of arginine (Arg) enantiomers based on aptamer and gold nanoparticles (AuNps). Carboxyfluorescein (FAM) labeled aptamers (Apt) were absorbed on AuNps and their fluorescence intensity could be significantly quenched by AuNps based on fluorescence resonance energy transfer (FRET). Once d-Arg or l-Arg were added into the above solution, the aptamer specifically bind to Arg enantiomers and released from AuNps, so the fluorescence intensity of d-Arg system and l-Arg system were all enhanced. The affinity of Apt to l-Arg is tighter to d-Arg, so the enhanced fluorescence signals of l-Arg system was stronger than d-Arg system. What's more, the enhanced fluorescence were directly proportional to the concentration of d-Arg and l-Arg ranging from 0-300 nM and 0-400 nM with related coefficients of 0.9939 and 0.9952, respectively. Furthermore, the method was successfully applied to detection l-Arg in human urine samples with satisfactory results. Eventually, a simple "OR" logic gate with d-Arg &l-Arg as inputs and AuNps aggregation state as outputs was fabricated, which can help us understand the chiral recognition process deeply. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Serum inverts and improves the fluorescence response of an aptamer beacon to various vitamin D analytes.

    Science.gov (United States)

    Bruno, John G; Carrillo, Maria P; Phillips, Taylor; Edge, Allison

    2012-01-01

    A dominant aptamer loop structure from a library of nearly 100 candidate aptamer sequences developed against immobilized 25-hydroxyvitamin D(3) (calcidiol) was converted into a 5'-TYE 665 and 3'-Iowa black-labelled aptamer beacon. The aptamer beacon exhibited a mild 'lights on' reaction in buffer as a function of increasing concentrations of several vitamin D analogues and metabolites, with a limit of detection of approximately 200 ng/mL, and was not specific for any particular congener. In 10% or 50% human serum, the same aptamer beacon inverted its fluorescence behaviour to become a more intense 'lights off' reaction with an improved limit of detection in the range 4-16 ng/mL. We hypothesized that this drastic change in fluorescence behaviour was due to the presence of creatinine and urea in serum, which might destabilize the quenched beacon, causing an increase in fluorescence followed by decreasing fluorescence as a function of vitamin D concentrations that may bind and quench increasingly greater fractions of the denatured beacons. However, the results of several control experiments in the presence of physiological or greater concentrations of creatinine and urea, alone or combined in buffer, failed to produce the beacon fluorescence inversion. Other possible mechanistic hypotheses are also discussed. Copyright © 2011 John Wiley & Sons, Ltd.

  14. Small-Molecule Binding Aptamers: Selection Strategies, Characterization, and Applications

    Directory of Open Access Journals (Sweden)

    Annamaria eRuscito

    2016-05-01

    Full Text Available Aptamers are single-stranded, synthetic oligonucleotides that fold into 3-dimensional shapes capable of binding non-covalently with high affinity and specificity to a target molecule. They are generated via an in vitro process known as the Systematic Evolution of Ligands by EXponential enrichment, from which candidates are screened and characterized, and then applied in aptamer-based biosensors for target detection. Aptamers for small molecule targets such as toxins, antibiotics, molecular markers, drugs, and heavy metals will be the focus of this review. Their accurate detection is ultimately needed for the protection and wellbeing of humans and animals. However, issues such as the drastic difference in size of the aptamer and small molecule make it challenging to select, characterize, and apply aptamers for the detection of small molecules. Thus, recent (since 2012 notable advances in small molecule aptamers, which have overcome some of these challenges, are presented here, while defining challenges that still exist are discussed

  15. Aptamer-fluorescent silica nanoparticles bioconjugates based dual-color flow cytometry for specific detection of Staphylococcus aureus.

    Science.gov (United States)

    He, Xiaoxiao; Li, Yuhong; He, Dinggen; Wang, Kemin; Shangguan, Jingfang; Shi, Hui

    2014-07-01

    This paper describes a sensitive and specific determination strategy for Staphylococcus aureus (S. aureus) detection using aptamer recognition and fluorescent silica nanoparticles (FSiNPs) label based dual-color flow cytometry assay (Aptamer/FSiNPs-DCFCM). In the protocol, an aptamer, having high affinity to S. aureus, was first covalently immobilized onto chloropropyl functionalized FSiNPs through a click chemistry approach to generate aptamer-nanoparticles bioconjugates (Aptamer/FSiNPs). Next, S. aureus was incubated with Aptamer/FSiNPs, and then stained with SYBR Green I (a special staining material for the duplex DNA). Upon target binding and nucleic acid staining with SYBR Green I, the S. aureus was determined using two-color flow cytometry. The method took advantage of the specificity of aptamer, signal amplification of FSiNPs label and decreased false positives of two-color flow cytometry assay. It was demonstrated that these Aptamer/FSiNPs could efficiently recognize and fluorescently label target S. aureus. Through multiparameter determination with flow cytometry, this assay allowed for detection of as low as 1.5 x 10(2) and 7.6 x 10(2) cells mL(-1) S. aureus in buffer and spiked milk, respectively, with higher sensitivity than the Aptamer/FITC based flow cytometry.

  16. Aptamer-based turn-on fluorescent four-branched quaternary ammonium pyrazine probe for selective thrombin detection.

    Science.gov (United States)

    Yan, Shengyong; Huang, Rong; Zhou, Yangyang; Zhang, Ming; Deng, Minggang; Wang, Xiaolin; Weng, Xiaocheng; Zhou, Xiang

    2011-01-28

    In this thrombin detection system, the bright fluorescence of TASPI is almost eliminated by the DNA aptamer TBA (turn-off); however, in the presence of thrombin, it specifically binds to TBA by folding unrestricted TBA into an anti-parallel G-quadruplex structure and then releasing TASPI molecules, resulting in vivid and facile fluorescence recovery (turn-on).

  17. Optical Aptamer Probes of Fluorescent Imaging to Rapid Monitoring of Circulating Tumor Cell

    Directory of Open Access Journals (Sweden)

    Ji Yeon Hwang

    2016-11-01

    Full Text Available Fluorescence detecting of exogenous EpCAM (epithelial cell adhesion molecule or muc1 (mucin1 expression correlated to cancer metastasis using nanoparticles provides pivotal information on CTC (circulating tumor cell occurrence in a noninvasive tool. In this study, we study a new skill to detect extracellular EpCAM/muc1 using quantum dot-based aptamer beacon (QD-EpCAM/muc1 ALB (aptamer linker beacon. The QD-EpCAM/muc1 ALB was designed using QDs (quantum dots and probe. The EpCAM/muc1-targeting aptamer contains a Ep-CAM/muc1 binding sequence and BHQ1 (black hole quencher 1 or BHQ2 (black hole quencher2. In the absence of target EpCAM/muc1, the QD-EpCAM/muc1 ALB forms a partial duplex loop-like aptamer beacon and remained in quenched state because the BHQ1/2 quenches the fluorescence signal-on of the QD-EpCAM/muc1 ALB. The binding of EpCAM/muc1 of CTC to the EpCAM/muc1 binding aptamer sequence of the EpCAM/muc1-targeting oligonucleotide triggered the dissociation of the BHQ1/2 quencher and subsequent signal-on of a green/red fluorescence signal. Furthermore, acute inflammation was stimulated by trigger such as caerulein in vivo, which resulted in increased fluorescent signal of the cy5.5-EpCAM/muc1 ALB during cancer metastasis due to exogenous expression of EpCAM/muc1 in Panc02-implanted mouse model.

  18. Aptamers Binding to c-Met Inhibiting Tumor Cell Migration.

    Directory of Open Access Journals (Sweden)

    Birgit Piater

    Full Text Available The human receptor tyrosine kinase c-Met plays an important role in the control of critical cellular processes. Since c-Met is frequently over expressed or deregulated in human malignancies, blocking its activation is of special interest for therapy. In normal conditions, the c-Met receptor is activated by its bivalent ligand hepatocyte growth factor (HGF. Also bivalent antibodies can activate the receptor by cross linking, limiting therapeutic applications. We report the generation of the RNA aptamer CLN64 containing 2'-fluoro pyrimidine modifications by systematic evolution of ligands by exponential enrichment (SELEX. CLN64 and a previously described single-stranded DNA (ssDNA aptamer CLN3 exhibited high specificities and affinities to recombinant and cellular expressed c-Met. Both aptamers effectively inhibited HGF-dependent c-Met activation, signaling and cell migration. We showed that these aptamers did not induce c-Met activation, revealing an advantage over bivalent therapeutic molecules. Both aptamers were shown to bind overlapping epitopes but only CLN3 competed with HGF binding to cMet. In addition to their therapeutic and diagnostic potential, CLN3 and CLN64 aptamers exhibit valuable tools to further understand the structural and functional basis for c-Met activation or inhibition by synthetic ligands and their interplay with HGF binding.

  19. Optimizing Stem Length To Improve Ligand Selectivity in a Structure-Switching Cocaine-Binding Aptamer.

    Science.gov (United States)

    Neves, Miguel A D; Shoara, Aron A; Reinstein, Oren; Abbasi Borhani, Okty; Martin, Taylor R; Johnson, Philip E

    2017-10-27

    Understanding how aptamer structure and function are related is crucial in the design and development of aptamer-based biosensors. We have analyzed a series of cocaine-binding aptamers with different lengths of their stem 1 in order to understand the role that this stem plays in the ligand-induced structure-switching binding mechanism utilized in many of the sensor applications of this aptamer. In the cocaine-binding aptamer, the length of stem 1 controls whether the structure-switching binding mechanism for this aptamer occurs or not. We varied the length of stem 1 from being one to seven base pairs long and found that the structural transition from unfolded to folded in the unbound aptamer is when the aptamer elongates from 3 to 4 base pairs in stem 1. We then used this knowledge to achieve new binding selectivity of this aptamer for quinine over cocaine by using an aptamer with a stem 1 two base pairs long. This selectivity is achieved by means of the greater affinity quinine has for the aptamer compared with cocaine. Quinine provides enough free energy to both fold and bind the 2-base pair-long aptamer while cocaine does not. This tuning of binding selectivity of an aptamer by reducing its stability is likely a general mechanism that could be used to tune aptamer specificity for tighter binding ligands.

  20. In vivo fluorescence imaging of hepatocellular carcinoma using a novel GPC3-specific aptamer probe

    Science.gov (United States)

    Zhao, Menglong; Dong, Lili; Liu, Zhuang; Yang, Shuohui

    2018-01-01

    Background Glypican-3 (GPC3) is highly expressed in most of the hepatocellular carcinomas (HCCs), even in small HCCs. It may be used as a potential biomarker for early detection of HCC. The aptamer is a promising targeting agent with unique advantages over antibody. This study was to introduce a novel GPC3 specific aptamer (AP613-1), to verify its specific binding property in vitro, and to evaluate its targeting efficiency in vivo by performing near-infrared (NIR) fluorescence imaging on an HCC xenograft model. Methods AP613-1 was generated from the systematic evolution of ligands by exponential enrichment. Flow cytometry and aptamer-based immunofluorescence imaging were performed to verify the binding affinity of AP613-1 to GPC3 in vitro. NIR Fluorescence images of nude mice with unilateral (n=12) and bilateral (n=4) subcutaneous xenograft tumors were obtained. Correlation between the tumor fluorescence intensities in vivo and ex vivo was analyzed. Results AP613-1 could specifically bind to GPC3 in vitro. In vivo and ex vivo tumors, fluorescence intensities were in excellent correlation (Pfluorescence intensity is significantly higher in tumors given Alexa Fluor 750 (AF750) labeled AP613-1 than in those given AF750 labeled initial ssDNA library both in vivo (Pfluorescence intensities than A549 tumors both in vivo (P=0.016) and ex vivo (P=0.004). Conclusions AP613-1 displays a specific binding affinity to GPC3 positive HCC. Fluorescently labeled AP613-1 could be used as an imaging probe to subcutaneous HCC in xenograft models. PMID:29675356

  1. Protein-binding RNA aptamers affect molecular interactions distantly from their binding sites.

    Directory of Open Access Journals (Sweden)

    Daniel M Dupont

    Full Text Available Nucleic acid aptamer selection is a powerful strategy for the development of regulatory agents for molecular intervention. Accordingly, aptamers have proven their diligence in the intervention with serine protease activities, which play important roles in physiology and pathophysiology. Nonetheless, there are only a few studies on the molecular basis underlying aptamer-protease interactions and the associated mechanisms of inhibition. In the present study, we use site-directed mutagenesis to delineate the binding sites of two 2´-fluoropyrimidine RNA aptamers (upanap-12 and upanap-126 with therapeutic potential, both binding to the serine protease urokinase-type plasminogen activator (uPA. We determine the subsequent impact of aptamer binding on the well-established molecular interactions (plasmin, PAI-1, uPAR, and LRP-1A controlling uPA activities. One of the aptamers (upanap-126 binds to the area around the C-terminal α-helix in pro-uPA, while the other aptamer (upanap-12 binds to both the β-hairpin of the growth factor domain and the kringle domain of uPA. Based on the mapping studies, combined with data from small-angle X-ray scattering analysis, we construct a model for the upanap-12:pro-uPA complex. The results suggest and highlight that the size and shape of an aptamer as well as the domain organization of a multi-domain protein such as uPA, may provide the basis for extensive sterical interference with protein ligand interactions considered distant from the aptamer binding site.

  2. Breast cancer cells synchronous labeling and separation based on aptamer and fluorescence-magnetic silica nanoparticles

    Science.gov (United States)

    Wang, Qiu-Yue; Huang, Wei; Jiang, Xing-Lin; Kang, Yan-Jun

    2018-01-01

    In this work, an efficient method based on biotin-labeled aptamer and streptavidin-conjugated fluorescence-magnetic silica nanoprobes (FITC@Fe3O4@SiNPs-SA) has been established for human breast carcinoma MCF-7 cells synchronous labeling and separation. Carboxyl-modified fluorescence-magnetic silica nanoparticles (FITC@Fe3O4@SiNPs-COOH) were first synthesized using the Stöber method. Streptavidin (SA) was then conjugated to the surface of FITC@Fe3O4@SiNPs-COOH. The MCF-7 cell suspension was incubated with biotin-labeled MUC-1 aptamer. After centrifugation and washing, the cells were then treated with FITC@Fe3O4@SiNPs-SA. Afterwards, the mixtures were separated by a magnet. The cell-probe conjugates were then imaged using fluorescent microscopy. The results show that the MUC-1 aptamer could recognize and bind to the targeted cells with high affinity and specificity, indicating the prepared FITC@Fe3O4@SiNPs-SA with great photostability and superparamagnetism could be applied effectively in labeling and separation for MCF-7 cell in suspension synchronously. In addition, the feasibility of MCF-7 cells detection in peripheral blood was assessed. The results indicate that the method above is also applicable for cancer cells synchronous labeling and separation in complex biological system.

  3. Increased anticoagulant activity of thrombin-binding DNA aptamers by nanoscale organization on DNA nanostructures

    DEFF Research Database (Denmark)

    Rangnekar, Abhijit; Zhang, Alex M.; Shiyuan Li, Susan

    2012-01-01

    Control over thrombin activity is much desired to regulate blood clotting in surgical and therapeutic situations. Thrombin-binding RNA and DNA aptamers have been used to inhibit thrombin activity and thus the coagulation cascade. Soluble DNA aptamers, as well as two different aptamers tethered by...

  4. Screening and Initial Binding Assessment of Fumonisin B1 Aptamers

    Directory of Open Access Journals (Sweden)

    Maria C. DeRosa

    2010-11-01

    Full Text Available Fumonisins are mycotoxins produced by Fusarium verticillioides and F. proliferatum, fungi that are ubiquitous in corn (maize. Insect damage and some other environmental conditions result in the accumulation of fumonisins in corn-based products worldwide. Current methods of fumonisin detection rely on the use of immunoaffinity columns and high-performance liquid chromatography (HPLC. The use of aptamers offers a good alternative to the use of antibodies in fumonisin cleanup and detection due to lower costs and improved stability. Aptamers are single-stranded oligonucleotides that are selected using Systematic Evolution of Ligands by EXponential enrichment (SELEX for their ability to bind to targets with high affinity and specificity. Sequences obtained after 18 rounds of SELEX were screened for their ability to bind to fumonisin B1. Six unique sequences were obtained, each showing improved binding to fumonisin B1 compared to controls. Sequence FB1 39 binds to fumonisin with a dissociation constant of 100 ± 30 nM and shows potential for use in fumonisin biosensors and solid phase extraction columns.

  5. Modeling the microscopic electrical properties of thrombin binding aptamer (TBA) for label-free biosensors

    Science.gov (United States)

    Alfinito, Eleonora; Reggiani, Lino; Cataldo, Rosella; De Nunzio, Giorgio; Giotta, Livia; Guascito, Maria Rachele

    2017-02-01

    Aptamers are chemically produced oligonucleotides, able to bind a variety of targets such as drugs, proteins and pathogens with high sensitivity and selectivity. Therefore, aptamers are largely employed for producing label-free biosensors (aptasensors), with significant applications in diagnostics and drug delivery. In particular, the anti-thrombin aptamers are biomolecules of high interest for clinical use, because of their ability to recognize and bind the thrombin enzyme. Among them, the DNA 15-mer aptamer (TBA), has been widely explored around the possibility of using it in aptasensors. This paper proposes a microscopic model of the electrical properties of TBA and of the aptamer-thrombin complex, combining information from both structure and function, following the issues addressed in an emerging branch of electronics known as proteotronics. The theoretical results are compared and validated with measurements reported in the literature. Finally, the model suggests resistance measurements as a novel tool for testing aptamer-target affinity.

  6. Fluorescent assay for oxytetracycline based on a long-chain aptamer assembled onto reduced graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Huimin; Gao, Sheng; Liu, Meng; Chang, Yangyang; Fan, Xinfei; Quan, Xie [Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024 (China)

    2013-07-15

    We report on a fluorescent assay for oxytetracycline (OTC) using a fluorescein-labeled long-chain aptamer assembled onto reduced graphene oxide (rGO). The π-π stacking interaction between aptamer and rGO causes the fluorescence of the label to be almost completely quenched via energy transfer so that the system has very low background fluorescence. The addition of OTC leads to the formation of G-quadruplex OTC complexes and prevents the adsorption of labeled aptamer on the surface of rGO. As a result, fluorescence is restored, and this effect allows for a quantitative assay of OTC over the 0.1–2 μM concentration range and with a detection limit of 10 nM. This method is simple, rapid, selective and sensitive. It may be applied to other small molecule analytes by applying appropriate aptamers. (author)

  7. Fluorescent assay for oxytetracycline based on a long-chain aptamer assembled onto reduced graphene oxide

    International Nuclear Information System (INIS)

    Zhao, Huimin; Gao, Sheng; Liu, Meng; Chang, Yangyang; Fan, Xinfei; Quan, Xie

    2013-01-01

    We report on a fluorescent assay for oxytetracycline (OTC) using a fluorescein-labeled long-chain aptamer assembled onto reduced graphene oxide (rGO). The π-π stacking interaction between aptamer and rGO causes the fluorescence of the label to be almost completely quenched via energy transfer so that the system has very low background fluorescence. The addition of OTC leads to the formation of G-quadruplex OTC complexes and prevents the adsorption of labeled aptamer on the surface of rGO. As a result, fluorescence is restored, and this effect allows for a quantitative assay of OTC over the 0.1–2 μM concentration range and with a detection limit of 10 nM. This method is simple, rapid, selective and sensitive. It may be applied to other small molecule analytes by applying appropriate aptamers. (author)

  8. Selection of specific aptamer against enrofloxacin and fabrication of graphene oxide based label-free fluorescent assay.

    Science.gov (United States)

    Dolati, Somayeh; Ramezani, Mohammad; Nabavinia, Maryam Sadat; Soheili, Vahid; Abnous, Khalil; Taghdisi, Seyed Mohammad

    2018-05-15

    Specific ssDNA aptamers for the antibiotic enrofloxacin (ENR) were isolated from an enriched nucleotide library by SELEX (Systematic Evolution of Ligands by EXponential enrichment) method with high binding affinity. After seven rounds, five aptamers were selected and identified. Apt58 with highest affinity and sensitivity (K d  = 14.19 nM) was employed to develop a label-free fluorescent biosensing approach based on aptamer, graphene oxide (GO) and native fluorescence of ENR for determination of ENR residue in raw milk samples. Under optimized experimental conditions, the linear range was from 5 nM to 250 nM and LOD was calculated to be 3.7 nM, and the recovery rate was between 94.1% and 108.5%. The integration of aptamer and GO in this bioassay provides a promising way for rapid, sensitive and cost-effective detection of ENR in real samples like raw milk. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Label-free detection of kanamycin based on a G-quadruplex DNA aptamer-based fluorescent intercalator displacement assay

    Science.gov (United States)

    Xing, Yun-Peng; Liu, Chun; Zhou, Xiao-Hong; Shi, Han-Chang

    2015-01-01

    This work was the first to report that the kanamycin-binding DNA aptamer (5'-TGG GGG TTG AGG CTA AGC CGA-3') can form stable parallel G-quadruplex DNA (G4-DNA) structures by themselves and that this phenomenon can be verified by nondenaturing polyacrylamide gel electrophoresis and circular dichroism spectroscopy. Based on these findings, we developed a novel label-free strategy for kanamycin detection based on the G4-DNA aptamer-based fluorescent intercalator displacement assay with thiazole orange (TO) as the fluorescence probe. In the proposed strategy, TO became strongly fluorescent upon binding to kanamycin-binding G4-DNA. However, the addition of kanamycin caused the displacement of TO from the G4-DNA-TO conjugate, thereby resulting in decreased fluorescent signal, which was inversely related to the kanamycin concentration. The detection limit of the proposed assay decreased to 59 nM with a linear working range of 0.1 μM to 20 μM for kanamycin. The cross-reactivity against six other antibiotics was negligible compared with the response to kanamycin. A satisfactory recovery of kanamycin in milk samples ranged from 80.1% to 98.0%, confirming the potential of this bioassay in the measurement of kanamycin in various applications. Our results also served as a good reference for developing similar fluorescent G4-DNA-based bioassays in the future.

  10. Aptamer-Conjugated Calcium Phosphate Nanoparticles for Reducing Diabetes Risk via Retinol Binding Protein 4 Inhibition.

    Science.gov (United States)

    Torabi, Raheleh; Ghourchian, Hedayatollah; Amanlou, Massoud; Pasalar, Parvin

    2017-06-01

    Inhibition of the binding of retinol to its carrier, retinol binding protein 4, is a new strategy for treating type 2 diabetes; for this purpose, we have provided an aptamer-functionalized multishell calcium phosphate nanoparticle. First, calcium phosphate nanoparticles were synthesized and conjugated to the aptamer. The cytotoxicity of nanoparticles releases the process of aptamer from nanoparticles and their inhibition function of binding retinol to retinol binding protein 4. After synthesizing and characterizing the multishell calcium phosphate nanoparticles and observing the noncytotoxicity of conjugate, the optimum time (48 hours) and the pH (7.4) for releasing the aptamer from the nanoparticles was determined. The half-maximum inhibitory concentration (IC 50 ) value for inhibition of retinol binding to retinol binding protein 4 was 210 femtomolar (fmol). The results revealed that the aptamer could prevent connection between retinol and retinol binding protein 4 at a very low IC 50 value (210 fmol) compared to other reported inhibitors. It seems that this aptamer could be used as an efficient candidate not only for decreasing the insulin resistance in type 2 diabetes, but also for inhibiting the other retinol binding protein 4-related diseases. Copyright © 2017 Diabetes Canada. Published by Elsevier Inc. All rights reserved.

  11. A Conjugated Aptamer-Gold Nanoparticle Fluorescent Probe for Highly Sensitive Detection of rHuEPO-α

    Directory of Open Access Journals (Sweden)

    Zhaoyang Zhang

    2011-11-01

    Full Text Available We present here a novel conjugated aptamer-gold nanoparticle (Apt-AuNPs fluorescent probe and its application for specific detection of recombinant human erythropoietin-α (rHuEPO-α. In this nanobiosensor, 12 nm AuNPs function as both a nano-scaffold and a nano-quencher (fluorescent energy acceptor, on the surface of which the complementary sequences are linked (as cODN-AuNPs and pre-hybridized with carboxymethylfluorescein (FAM-labeled anti-rHuEPO-α aptamers. Upon target protein binding, the aptamers can be released from the AuNP surface and the fluorescence signal is restored. Key variables such as the length of linker, the hybridization site and length have been designed and optimized. Full performance evaluation including sensitivity, linear range and interference substances are also described. This nanobiosensor provides a promising approach for a simple and direct quantification of rHuEPO-α concentrations as low as 0.92 nM within a few hours.

  12. A label-free fluorescent adenosine triphosphate biosensor via overhanging aptamer-triggered enzyme protection and target recycling amplification.

    Science.gov (United States)

    Wang, Zhaoyin; Zhao, Jian; Dai, Zhihui

    2016-06-20

    Herein, a label-free fluorescent adenosine triphosphate (ATP) aptasensor is fabricated with a DNA hairpin and an overhanging aptamer. In the presence of ATP, the overhanging sequences of the aptamer may form preferred substrates of exo III, and thus trigger the enzyme-assisted amplification, which results in the release of G-rich sequences. Free G-rich sequences subsequently generate an enhanced flourescent signal by binding with thioflavin T. However, if ATP is absent, the overhanging sequence can induce steric hindrance and protect the DNA hairpin against the digestion of exo III, significantly reducing the noise of this biosensor. Accordingly, the signal-to-noise ratio of the sensing system is greatly improved, which ensures the desirable analytical performance of the proposed aptasensor both in pure samples and real samples.

  13. Construction of a Bivalent Thrombin Binding Aptamer and Its Antidote with Improved Properties

    Directory of Open Access Journals (Sweden)

    Quintin W. Hughes

    2017-10-01

    Full Text Available Aptamers are short synthetic DNA or RNA oligonucleotides that adopt secondary and tertiary conformations based on Watson–Crick base-pairing interactions and can be used to target a range of different molecules. Two aptamers, HD1 and HD22, that bind to exosites I and II of the human thrombin molecule, respectively, have been extensively studied due to their anticoagulant potentials. However, a fundamental issue preventing the clinical translation of many aptamers is degradation by nucleases and reduced pharmacokinetic properties requiring higher dosing regimens more often. In this study, we have chemically modified the design of previously described thrombin binding aptamers targeting exosites I, HD1, and exosite II, HD22. The individual aptamers were first modified with an inverted deoxythymidine nucleotide, and then constructed bivalent aptamers by connecting the HD1 and HD22 aptamers either through a triethylene glycol (TEG linkage or four consecutive deoxythymidines together with an inverted deoxythymidine nucleotide at the 3′-end. The anticoagulation potential, the reversal of coagulation with different antidote sequences, and the nuclease stability of the aptamers were then investigated. The results showed that a bivalent aptamer RNV220 containing an inverted deoxythymidine and a TEG linkage chemistry significantly enhanced the anticoagulation properties in blood plasma and nuclease stability compared to the existing aptamer designs. Furthermore, a bivalent antidote sequence RNV220AD efficiently reversed the anticoagulation effect of RNV220 in blood plasma. Based on our results, we believe that RNV220 could be developed as a potential anticoagulant therapeutic molecule.

  14. A near-infrared fluorescent bioassay for thrombin using aptamer-modified CuInS2 quantum dots

    International Nuclear Information System (INIS)

    Lin, Zihan; Hu, Tianyu; Liu, Ziping; Su, Xingguang; Pan, Dong

    2015-01-01

    We describe a near-infrared (NIR) fluorescent thrombin assay using a thrombin-binding aptamer (TBA) and Zn(II)-activated CuInS 2 quantum dots (Q-dots). The fluorescence of Zn(II)-activated Q-dots is quenched by the TBA via photoinduced electron transfer, but if thrombin is added, it will bind to TBA to form G-quadruplexes and the Q-dots are released. As a result, the fluorescence intensity of the system is restored. This effect was exploited to design an assay for thrombin whose calibration plot, under optimum conditions, is linear in the 0.034 to 102 nmol L −1 concentration range, with a 12 pmol L −1 detection limit. The method is fairly simple, fast, and due to its picomolar detection limits holds great potential in the diagnosis of diseases associated with coagulation abnormalities and certain kinds of cancer. (author)

  15. Site-selective conjugation of an anticoagulant aptamer to recombinant albumins and maintenance of neonatal Fc receptor binding

    DEFF Research Database (Denmark)

    Schmøkel, Julie; Voldum, Anders; Tsakiridou, Georgia

    2017-01-01

    -linked aptamer to that of aptamer alone was found using an anticoagulant activity assay measuring temporal levels of activated partial thrombin. Covalent albumin-aptamer conjugation, however, substantially compromized binding to hFcRn, to 10% affinity of that of non-conjugated WT, determined by biolayer......-life, predominately facilitated by engagement with the cellular recycling neonatal Fc receptor (FcRn), and ligand transport properties of albumin promote it as an attractive candidate to improve the pharmacokinetic profile of aptamers. This study investigates the effect of Cys34 site-selective covalent attachment...... of a factor IXa anticoagulant aptamer on aptamer functionality and human FcRn (hFcRn) engagement using recombinant human albumin (rHA) of either a wild type (WT) or an engineered human FcRn high binding variant (HB). Albumin-aptamer conjugates, connected covalently through a heterobifunctional succinimidyl 4...

  16. Target-induced structure switching of hairpin aptamers for label-free and sensitive fluorescent detection of ATP via exonuclease-catalyzed target recycling amplification.

    Science.gov (United States)

    Xu, Yunying; Xu, Jin; Xiang, Yun; Yuan, Ruo; Chai, Yaqin

    2014-01-15

    In this work, we described the development of a new label-free, simple and sensitive fluorescent ATP sensing platform based on exonuclease III (Exo III)-catalyzed target recycling (ECTR) amplification and SYBR Green I indicator. The hairpin aptamer probes underwent conformational structure switching and re-configuration in the presence of ATP, which led to catalytic cleavage of the re-configured aptamers by Exo III to release ATP and to initiate the ECTR process. Such ECTR process resulted in the digestion of a significant number of the hairpin aptamer probes, leading to much less intercalation of SYBR Green I to the hairpin stems and drastic suppression of the fluorescence emission for sensitive ATP detection down to the low nanomolar level. Due to the highly specific affinity bindings between aptamers and ATP, the developed method exhibited excellent selectivity toward ATP against other analogous molecules. Besides, our ATP sensing approach used un-modified aptamer probes and could be performed in a "mix-and-detect" fashion in homogenous solutions. All these distinct advantages of the developed method thus made it hold great potential for the development of simple and robust sensing strategies for the detection of other small molecules. © 2013 Elsevier B.V. All rights reserved.

  17. Thrombin-Binding Aptamer Quadruplex Formation: AFM and Voltammetric Characterization

    Directory of Open Access Journals (Sweden)

    Victor Constantin Diculescu

    2010-01-01

    Full Text Available The adsorption and the redox behaviour of thrombin-binding aptamer (TBA and extended TBA (eTBA were studied using atomic force microscopy and voltammetry at highly oriented pyrolytic graphite and glassy carbon. The different adsorption patterns and degree of surface coverage were correlated with the sequence base composition, presence/absence of K+, and voltammetric behaviour of TBA and eTBA. In the presence of K+, only a few single-stranded sequences present adsorption, while the majority of the molecules forms stable and rigid quadruplexes with no adsorption. Both TBA and eTBA are oxidized and the only anodic peak corresponds to guanine oxidation. Upon addition of K+ ions, TBA and eTBA fold into a quadruplex, causing the decrease of guanine oxidation peak and occurrence of a new peak at a higher potential due to the oxidation of G-quartets. The higher oxidation potential of G-quartets is due to the greater difficulty of electron transfer from the inside of the quadruplex to the electrode surface than electron transfer from the more flexible single strands.

  18. Peptide aptamer-assisted immobilization of green fluorescent protein for creating biomolecule-complexed carbon nanotube device

    Science.gov (United States)

    Nii, Daisuke; Nozawa, Yosuke; Miyachi, Mariko; Yamanoi, Yoshinori; Nishihara, Hiroshi; Tomo, Tatsuya; Shimada, Yuichiro

    2017-10-01

    Carbon nanotubes are a novel material for next-generation applications. In this study, we generated carbon nanotube and green fluorescent protein (GFP) conjugates using affinity binding peptides. The carbon nanotube-binding motif was introduced into the N-terminus of the GFP through molecular biology methods. Multiple GFPs were successfully aligned on a single-walled carbon nanotube via the molecular recognition function of the peptide aptamer, which was confirmed through transmission electron microscopy and optical analysis. Fluorescence spectral analysis results also suggested that the carbon nanotube-GFP complex was autonomously formed with orientation and without causing protein denaturation during immobilization. This simple process has a widespread potential for fabricating carbon nanotube-biomolecule hybrid devices.

  19. "DNA Origami Traffic Lights" with a Split Aptamer Sensor for a Bicolor Fluorescence Readout.

    Science.gov (United States)

    Walter, Heidi-Kristin; Bauer, Jens; Steinmeyer, Jeannine; Kuzuya, Akinori; Niemeyer, Christof M; Wagenknecht, Hans-Achim

    2017-04-12

    A split aptamer for adenosine triphosphate (ATP) was embedded as a recognition unit into two levers of a nanomechanical DNA origami construct by extension and modification of selected staple strands. An additional optical module in the stem of the split aptamer comprised two different cyanine-styryl dyes that underwent an energy transfer from green (donor) to red (acceptor) emission if two ATP molecules were bound as target molecule to the recognition module and thereby brought the dyes in close proximity. As a result, the ATP as a target triggered the DNA origami shape transition and yielded a fluorescence color change from green to red as readout. Conventional atomic force microscopy (AFM) images confirmed the topology change from the open form of the DNA origami in the absence of ATP into the closed form in the presence of the target molecule. The obtained closed/open ratios in the absence and presence of target molecules tracked well with the fluorescence color ratios and thereby validated the bicolor fluorescence readout. The correct positioning of the split aptamer as the functional unit farthest away from the fulcrum of the DNA origami was crucial for the aptasensing by fluorescence readout. The fluorescence color change allowed additionally to follow the topology change of the DNA origami aptasensor in real time in solution. The concepts of fluorescence energy transfer for bicolor readout in a split aptamer in solution, and AFM on surfaces, were successfully combined in a single DNA origami construct to obtain a bimodal readout. These results are important for future custom DNA devices for chemical-biological and bioanalytical purposes because they are not only working as simple aptamers but are also visible by AFM on the single-molecule level.

  20. Improved thrombin binding aptamer by incorporation of a single unlocked nucleic acid monomer

    DEFF Research Database (Denmark)

    Pasternak, Anna; Hernandez, Frank J; Rasmussen, Lars Melholt

    2011-01-01

    A 15-mer DNA aptamer (named TBA) adopts a G-quadruplex structure that strongly inhibits fibrin-clot formation by binding to thrombin. We have performed thermodynamic analysis, binding affinity and biological activity studies of TBA variants modified by unlocked nucleic acid (UNA) monomers. UNA...... that a UNA monomer is allowed in many positions of the aptamer without significantly changing the thrombin-binding properties. The biological effect of a selection of the modified aptamers was tested by a thrombin time assay and showed that most of the UNA-modified TBAs possess anticoagulant properties......, and that the construct with a UNA-U monomer in position 7 is a highly potent inhibitor of fibrin-clot formation....

  1. Target binding improves relaxivity in aptamer-gadolinium conjugates.

    Science.gov (United States)

    Bernard, Elyse D; Beking, Michael A; Rajamanickam, Karunanithi; Tsai, Eve C; Derosa, Maria C

    2012-12-01

    MRI contrast agents (CA) have been heavily used over the past several decades to enhance the diagnostic value of the obtained images. From a design perspective, two avenues to improve the efficacy of contrast agents are readily evident: optimization of magnetic properties of the CA, and optimization of the pharmacokinetics and distribution of the CA in the patient. Contrast agents consisting of DNA aptamer-gadolinium(III) conjugates provide a single system in which these factors can be addressed simultaneously. In this proof-of-concept study, the 15mer thrombin aptamer was conjugated to diethylenetriaminepentaacetic (DTPA) dianhydride to form a monoamide derivative of the linear open-chain chelate present in the commonly used contrast agent Magnevist(®). The stability of the conjugated DNA aptamer-DTPA-Gd(III) chelate in a transmetallation study using Zn(II) was found to be similar to that reported for DTPA-Gd(III). Relaxivity enhancements of 35 ± 4 and 20 ± 1 % were observed in the presence of thrombin compared to a control protein at fields of 9.4 and 1.5 T, respectively. The inclusion of spacers between the aptamer and the DTPA to eliminate possible steric effects was also investigated but not found to improve the relaxation enhancement achieved in comparison to the unaltered aptamer conjugate.

  2. Aptamer-mediated indirect quantum dot labeling and fluorescent imaging of target proteins in living cells

    International Nuclear Information System (INIS)

    Liu, Jianbo; Zhang, Pengfei; Yang, Xiaohai; Wang, Kemin; Guo, Qiuping; Huang, Jin; Li, Wei

    2014-01-01

    Protein labeling for dynamic living cell imaging plays a significant role in basic biological research, as well as in clinical diagnostics and therapeutics. We have developed a novel strategy in which the dynamic visualization of proteins within living cells is achieved by using aptamers as mediators for indirect protein labeling of quantum dots (QDs). With this strategy, the target protein angiogenin was successfully labeled with fluorescent QDs in a minor intactness model, which was mediated by the aptamer AL6-B. Subsequent living cell imaging analyses indicated that the QDs nanoprobes were selectively bound to human umbilical vein endothelial cells, gradually internalized into the cytoplasm, and mostly localized in the lysosome organelle, indicating that the labeled protein retained high activity. Compared with traditional direct protein labeling methods, the proposed aptamer-mediated strategy is simple, inexpensive, and provides a highly selective, stable, and intact labeling platform that has shown great promise for future biomedical labeling and intracellular protein dynamic analyses. (paper)

  3. In silico maturation of binding-specificity of DNA aptamers against Proteus mirabilis.

    Science.gov (United States)

    Savory, Nasa; Lednor, Danielle; Tsukakoshi, Kaori; Abe, Koichi; Yoshida, Wataru; Ferri, Stefano; Jones, Brian V; Ikebukuro, Kazunori

    2013-10-01

    Proteus mirabilis is a prominent cause of catheter-associated urinary tract infections (CAUTIs) among patients undergoing long-term bladder catheterization. There are currently no effective means of preventing P. mirabilis infections, and strategies for prophylaxis and rapid early diagnosis are urgently required. Aptamers offer significant potential for development of countermeasures against P. mirabilis CAUTI and are an ideal class of molecules for the development of diagnostics and therapeutics. Here we demonstrate the application of Cell-SELEX to identify DNA aptamers that show high affinity for P. mirabilis. While the aptamers identified displayed high affinity for P. mirabilis cells in dot blotting assays, they also bound to other uropathogenic bacteria. To improve aptamer specificity for P. mirabilis, an in silico maturation (ISM) approach was employed. Two cycles of ISM allowed the identification of an aptamer showing 36% higher specificity, evaluated as a ratio of binding signal for P. mirabilis to that for Escherichia coli (also a cause of CAUTI and the most common urinary tract pathogen). Aptamers that specifically recognize P. mirabilis would have diagnostic and therapeutic values and constitute useful tools for studying membrane-associated proteins in this organism. Copyright © 2013 Wiley Periodicals, Inc.

  4. An amplified graphene oxide-based fluorescence aptasensor based on target-triggered aptamer hairpin switch and strand-displacement polymerization recycling for bioassays.

    Science.gov (United States)

    Hu, Kun; Liu, Jinwen; Chen, Jia; Huang, Yong; Zhao, Shulin; Tian, Jianniao; Zhang, Guohai

    2013-04-15

    An amplified graphene oxide (GO) based fluorescence aptasensor based on target-triggered aptamer hairpin switch and strand-displacement polymerization recycling is developed for bioassays. The dye-labeled single-strand DNA (aptamer hairpin) was adsorbed on the surface of GO, which result in the fluorescence quenching of dye, and exhibiting minimal background fluorescence. Upon the target, primer and polymerase, the stem of the aptamer hairpin was opened, and binds with the primer to triggers the circular target strand-displacement polymerization reaction, which produces huge amounts of duplex helixes DNA and lead to strong fluorescence emission due to shielding of nucelobases within its double-helix structure. During the polymerization reaction, the primer was extended, and target was displaced. And the displaced target recognizes and hybridizes with another hairpin probe, triggering the next round of polymerization reaction, and the circle process induces fluorescence signal amplification for the detection of analyte. To test the feasibility of the aptasensor systems, interferon-gamma (IFN-γ) was employed as a model analyte. A detection limit as low as 1.5 fM is obtained based on the GO aptasensor with a linear range of three orders of magnitude. The present method was successfully applied for the detection of IFN-γ in human plasma. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Protein-binding RNA aptamers affect molecular interactions distantly from their binding sites

    DEFF Research Database (Denmark)

    Dupont, Daniel Miotto; Thuesen, Cathrine K; Bøtkjær, Kenneth A

    2015-01-01

    Nucleic acid aptamer selection is a powerful strategy for the development of regulatory agents for molecular intervention. Accordingly, aptamers have proven their diligence in the intervention with serine protease activities, which play important roles in physiology and pathophysiology. Nonetheless...

  6. Development of an Efficient G-Quadruplex-Stabilised Thrombin-Binding Aptamer Containing a Three-Carbon Spacer Molecule

    DEFF Research Database (Denmark)

    Aaldering, Lukas J.; Poongavanam, Vasanthanathan; Langkjær, Niels

    2017-01-01

    The thrombin-binding aptamer (TBA), which shows anticoagulant properties, is one of the most studied G-quadruplex-forming aptamers. In this study, we investigated the impact of different chemical modifications such as a three-carbon spacer (spacer-C3), unlocked nucleic acid (UNA) and 3′-amino-mod...

  7. Site-selective conjugation of an anticoagulant aptamer to recombinant albumins and maintenance of neonatal Fc receptor binding

    Science.gov (United States)

    Schmøkel, Julie; Voldum, Anders; Tsakiridou, Georgia; Kuhlmann, Matthias; Cameron, Jason; Sørensen, Esben S.; Wengel, Jesper; Howard, Kenneth A.

    2017-05-01

    Aptamers are an attractive molecular medicine that offers high target specificity. Nucleic acid-based aptamers, however, are prone to nuclease degradation and rapid renal excretion that require blood circulatory half-life extension enabling technologies. The long circulatory half-life, predominately facilitated by engagement with the cellular recycling neonatal Fc receptor (FcRn), and ligand transport properties of albumin promote it as an attractive candidate to improve the pharmacokinetic profile of aptamers. This study investigates the effect of Cys34 site-selective covalent attachment of a factor IXa anticoagulant aptamer on aptamer functionality and human FcRn (hFcRn) engagement using recombinant human albumin (rHA) of either a wild type (WT) or an engineered human FcRn high binding variant (HB). Albumin-aptamer conjugates, connected covalently through a heterobifunctional succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate linker, were successfully prepared and purified by high performance liquid chromatography as confirmed by gel electrophoresis band-shift analysis and matrix-assisted laser desorption/ionization time of flight. Minimal reduction (∼25%) in activity of WT-linked aptamer to that of aptamer alone was found using an anticoagulant activity assay measuring temporal levels of activated partial thrombin. Covalent albumin-aptamer conjugation, however, substantially compromized binding to hFcRn, to 10% affinity of that of non-conjugated WT, determined by biolayer interferometry. Binding could be rescued by aptamer conjugation to recombinant albumin engineered for higher FcRn affinity (HB) that exhibited an 8-fold affinity compared to WT alone. This work describes a novel albumin-based aptamer delivery system whose hFcRn binding can be increased using a HB engineered albumin.

  8. Aptamer-conjugated PEGylated quantum dots targeting epidermal growth factor receptor variant III for fluorescence imaging of glioma.

    Science.gov (United States)

    Tang, Jiaze; Huang, Ning; Zhang, Xiang; Zhou, Tao; Tan, Ying; Pi, Jiangli; Pi, Li; Cheng, Si; Zheng, Huzhi; Cheng, Yuan

    2017-01-01

    The extent of resection is a significant prognostic factor in glioma patients. However, the maximum safe resection level is difficult to determine due to the inherent infiltrative character of tumors. Recently, fluorescence-guided surgery has emerged as a new technique that allows safe resection of glioma. In this study, we constructed a new kind of quantum dot (QD)-labeled aptamer (QD-Apt) nanoprobe by conjugating aptamer 32 (A32) to the QDs surface, which can specially bind to the tumors. A32 is a single-stranded DNA capable of binding to the epidermal growth factor receptor variant III (EGFRvIII) specially distributed on the surface of glioma cells. To detect the expression of EGFRvIII in human brain tissues, 120 specimens, including 110 glioma tissues and 10 normal brain tissues, were examined by immunohistochemistry, and the results showed that the rate of positive expression of EGFRvIII in the glioma tissues was 41.82%, and 0.00% in normal brain tissues. Besides, the physiochemical properties of QD-Apt nanoparticles (NPs) were thoroughly characterized. Biocompatibility of the NPs was evaluated, and the results suggested that the QD-Apt was nontoxic in vivo and vitro. Furthermore, the use of the QD-Apt in labeling glioma cell lines and human brain glioma tissues, and target gliomas in situ was also investigated. We found that not only could QD-Apt specially bind to the U87-EGFRvIII glioma cells but also bind to human glioma tissues in vitro. Fluorescence imaging in vivo with orthotopic glioma model mice bearing U87-EGFRvIII showed that QD-Apt could penetrate the blood-brain barrier and then selectively accumulate in the tumors through binding to EGFRvIII, and consequently, generate a strong fluorescence, which contributed to the margins of gliomas that were visualized clearly, and thus, help the surgeons realize the maximum safe resection of glioma. In addition, QD-Apt can also be applied in preoperative diagnosis and postoperative examination of glioma

  9. Aptamer based fluorescent cocaine assay based on the use of graphene oxide and exonuclease III-assisted signal amplification

    International Nuclear Information System (INIS)

    Zhang, Yulin; Zhang, Guo-Jun; Sun, Zhongyue; Tang, Lina; Zhang, Hong

    2016-01-01

    The article reports an aptamer based assay for cocaine by employing graphene oxide and exonuclease III-assisted signal amplification. It is based on the following scheme and experimental steps: (1) Exo III can digest dsDNA with blunt or recessed 3-terminus, but it has limited activity to ssDNA or dsDNA with protruding 3-terminus; (2) GO can absorb the FAM-labeled ssDNA probe and quench the fluorescence of probe, while the affinity between FAM-labeled mononucleotide and GO is negligible; (3) Cocaine aptamer can be split into two flexible ssDNA pieces (Probe 1 and Probe 2) without significant perturbation of cocaine-binding abilities; (4) The triple complex consisting of Probe 1, Probe 2 and cocaine can be digested by Exo III with the similar efficiency as normal dsDNA. Cocaine aptamer is split into two flexible ssDNA pieces (Probe 2 and 3′-FAM-labeled Probe 1). Cocaine can mediate the cocaine aptamer fragments forming a triplex. The triple complex has unique characteristic with 3′-FAM-labeled blunt end at the Probe 1 and 3′-overhang end at Probe 2. If exonuclease III is added, it will catalyze the stepwise removal of fluorescein (FAM) labeled mononucleotides from the 3-hydroxy termini of the special triplex complex, resulting in liberation of cocaine. The cocaine released in this step can produce a new cleavage cycle, thereby leading to target recycling. Through such a cyclic bound-hydrolysis process, small amounts of cocaine can induce the cleavage of a large number of FAM-labeled probe 1. The cleaved FAM-labeled mononucleotides are not adsorbed on the surface of graphene oxide (GO), so a strong fluorescence signal enhancement is observed as the cocaine triggers enzymatic digestion. Under optimized conditions, the assay allows cocaine to be detected in the 1 to 500 nM concentration range with a detection limit of 0.1 nM. The method was applied to the determination of cocaine in spiked human plasma, with recoveries ranging from 92.0 to 111.8 % and RSD of <12

  10. G quadruplex-based FRET probes with the thrombin-binding aptamer (TBA) sequence designed for the efficient fluorometric detection of the potassium ion.

    Science.gov (United States)

    Nagatoishi, Satoru; Nojima, Takahiko; Galezowska, Elzbieta; Juskowiak, Bernard; Takenaka, Shigeori

    2006-11-01

    The dual-labeled oligonucleotide derivative, FAT-0, carrying 6- carboxyfluorescein (FAM) and 6-carboxytetramethylrhodamine (TAMRA) labels at the 5' and 3' termini of the thrombin-binding aptamer (TBA) sequence 5'-GGT TGG TGT GGT TGG-3', and its derivatives, FAT-n (n=3, 5, and 7) with a spacer at the 5'-end of a TBA sequence of T(m)A (m=2, 4, and 6) have been designed and synthesized. These fluorescent probes were developed for monitoring K(+) concentrations in living organisms. Circular dichroism, UV-visible absorption, and fluorescence studies revealed that all FAT-n probes could form intramolecular tetraplex structures after binding K(+). Fluorescence resonance energy transfer and quenching results are discussed taking into account dye-dye contact interactions. The relationship between the fluorescence behavior of the probes and the spacer length in FAT-n was studied in detail and is discussed.

  11. Thermodynamics of Ligand Binding to a Heterogeneous RNA Population in the Malachite Green Aptamer

    Science.gov (United States)

    Sokoloski, Joshua E.; Dombrowski, Sarah E.; Bevilacqua, Philip C.

    2011-01-01

    The malachite green aptamer binds two closely related ligands, malachite green (MG) and tetramethylrosamine (TMR), with near equal affinity. The MG ligand consists of three phenyl rings emanating from a central carbon, while TMR has two of the three rings connected by an ether linkage. The binding pockets for MG and TMR in the aptamer, known from high-resolution structure, differ only in the conformation of a few nucleotides. Herein, we applied isothermal titration calorimetry (ITC) to compare the thermodynamics for binding of MG and TMR to the aptamer. Binding heat capacities were obtained from ITC titrations over the temperature range of 15 to 60 °C. Two temperature regimes were found for MG binding: one from 15 to 45 °C where MG bound with a large negative heat capacity and an apparent stoichiometry (n) of ~0.4, and another from 50 to 60 °C where MG bound with positive heat capacity and n~1.1. The binding of TMR, on the other hand, revealed only one temperature regime for binding, with a more modest negative heat capacity and n~1.2. The large difference in heat capacity between the two ligands suggests that significantly more conformational rearrangement occurs upon the binding of MG than TMR, which is consistent with differences in solvent accessible surface area calculated for available ligand-bound structures. Lastly, we note that binding stoichiometry of MG was improved not only by raising the temperature, but also by lowering the concentration of Mg2+ or increasing the time between ITC injections. These studies suggest that binding of a dynamical ligand to a functional RNA requires the RNA itself to have significant dynamics. PMID:22192051

  12. A homogeneous and “off–on” fluorescence aptamer-based assay for chloramphenicol using vesicle quantum dot-gold colloid composite probes

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yang-Bao [State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Ren, Hong-Xia [Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); University of Chinese Academy of Sciences, Beijing 10049 (China); Gan, Ning, E-mail: ganning@nbu.edu.cn [State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Zhou, You [State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Cao, Yuting, E-mail: caoyuting@nbu.edu.cn [State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Li, Tianhua [State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Chen, Yinji [Faculty of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210000 (China)

    2016-07-27

    In this work, a novel homogeneous and signal “off–on” aptamer based fluorescence assay was successfully developed to detect chloramphenicol (CAP) residues in food based on the fluorescence resonance energy transfer (FRET). The vesicle nanotracer was prepared through labeling single stranded DNA binding protein (SSB) on limposome-CdSe/ZnS quantum dot (SSB/L-QD) complexes. It was worth mentioning that the signal tracer (SSB/L-QD) with vesicle shape, which was fabricated being encapsulated with a number of quantum dots and SSB. The nanotracer has excellent signal amplification effects. The vesicle composite probe was formed by combining aptamer labeled nano-gold (Au-Apt) and SSB/L-QD. Which based on SSB's specific affinity towards aptamer. This probe can't emit fluoresce which is in “off” state because the signal from SSB/L-QD as donor can be quenched by the Au-aptas acceptor. When CAP was added in the composite probe solution, the aptamer on the Au-Apt can be preferentially bounded with CAP then release from the composite probe, which can turn the “off” signal of SSB/L-QD tracer into “on” state. The assay indicates excellent linear response to CAP from 0.001 nM to 10 nM and detection limit down to 0.3 pM. The vesicle probes with size of 88 nm have strong signal amplification. Because a larger number of QDs can be labeled inside the double phosphorus lipid membrane. Besides, it was employed to detect CAP residues in the milk samples with results being agreed well with those from ELISA, verifying its accuracy and reliability. - Highlights: • Homogeneous and “off–on” fluorescence aptamer-based assay was developed to detect chloramphenicol (CAP) residues in food. • This probe was fabricated based on a vesicle QDs signal tracer (SSB/L-QD) combining with Au-Aptamer. • The detection mechanism was based on FRET with high specificity. • The results for CAP detection in the milk samples agreed well with those from ELISA, while

  13. Aptamer-conjugated PEGylated quantum dots targeting epidermal growth factor receptor variant III for fluorescence imaging of glioma

    Directory of Open Access Journals (Sweden)

    Tang J

    2017-05-01

    Full Text Available Jiaze Tang,1 Ning Huang,1 Xiang Zhang,1,2 Tao Zhou,3 Ying Tan,1,4 Jiangli Pi,5 Li Pi,1 Si Cheng,6 Huzhi Zheng,5 Yuan Cheng1 1Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, 2Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, 3Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, 4Institute of Life Sciences, Chongqing Medical University, 5Key Laboratory on Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, 6Department of Orthopaedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China Abstract: The extent of resection is a significant prognostic factor in glioma patients. However, the maximum safe resection level is difficult to determine due to the inherent infiltrative character of tumors. Recently, fluorescence-guided surgery has emerged as a new technique that allows safe resection of glioma. In this study, we constructed a new kind of quantum dot (QD-labeled aptamer (QD-Apt nanoprobe by conjugating aptamer 32 (A32 to the QDs surface, which can specially bind to the tumors. A32 is a single-stranded DNA capable of binding to the epidermal growth factor receptor variant III (EGFRvIII specially distributed on the surface of glioma cells. To detect the expression of EGFRvIII in human brain tissues, 120 specimens, including 110 glioma tissues and 10 normal brain tissues, were examined by immunohistochemistry, and the results showed that the rate of positive expression of EGFRvIII in the glioma tissues was 41.82%, and 0.00% in normal brain tissues. Besides, the physiochemical properties of QD-Apt nanoparticles (NPs were thoroughly characterized. Biocompatibility of the NPs was evaluated, and the results suggested that the QD-Apt was nontoxic in vivo and vitro. Furthermore, the use of the QD-Apt in labeling

  14. Generation of a pair of independently binding DNA aptamers in a single round of selection using proximity ligation.

    Science.gov (United States)

    Chumphukam, O; Le, T T; Piletsky, S; Cass, A E G

    2015-05-28

    The ability to rapidly generate a pair of aptamers that bind independently to a protein target would greatly extend their use as reagents for two site ('sandwich') assays. We describe here a method to achieve this through proximity ligation. Using lysozyme as a target we demonstrate that under optimal conditions such a pair of aptamers, with nanomolar affinities, can be generated in a single round.

  15. Cation Coordination Alters the Conformation of a Thrombin-Binding G-Quadruplex DNA Aptamer That Affects Inhibition of Thrombin.

    Science.gov (United States)

    Zavyalova, Elena; Tagiltsev, Grigory; Reshetnikov, Roman; Arutyunyan, Alexander; Kopylov, Alexey

    2016-10-01

    Thrombin-binding aptamers are promising anticoagulants. HD1 is a monomolecular antiparallel G-quadruplex with two G-quartets linked by three loops. Aptamer-thrombin interactions are mediated with two TT-loops that bind thrombin exosite I. Several cations were shown to be coordinated inside the G-quadruplex, including K + , Na + , NH 4 + , Ba 2+ , and Sr 2+ ; on the contrary, Mn 2+ was coordinated in the grooves, outside the G-quadruplex. K + or Na + coordination provides aptamer functional activity. The effect of other cations on aptamer functional activity has not yet been described, because of a lack of relevant tests. Interactions between aptamer HD1 and a series of cations were studied. A previously developed enzymatic method was applied to evaluate aptamer inhibitory activity. The structure-function correlation was studied using the characterization of G-quadruplex conformation by circular dichroism spectroscopy. K + coordination provided the well-known high inhibitory activity of the aptamer, whereas Na + coordination supported low activity. Although NH 4 + coordination yielded a typical antiparallel G-quadruplex, no inhibitory activity was shown; a similar effect was observed for Ba 2+ and Sr 2+ coordination. Mn 2+ coordination destabilized the G-quadruplex that drastically diminished aptamer inhibitory activity. Therefore, G-quadruplex existence per se is insufficient for aptamer inhibitory activity. To elicit the nature of these effects, we thoroughly analyzed nuclear magnetic resonance (NMR) and X-ray data on the structure of the HD1 G-quadruplex with various cations. The most reasonable explanation is that cation coordination changes the conformation of TT-loops, affecting thrombin binding and inhibition. HD1 counterparts, aptamers 31-TBA and NU172, behaved similarly with some distinctions. In 31-TBA, an additional duplex module stabilized antiparallel G-quadruplex conformation at high concentrations of divalent cations; whereas in NU172, a different

  16. Toehold-Mediated Displacement of an Adenosine-Binding Aptamer from a DNA Duplex by its Ligand.

    Science.gov (United States)

    Monserud, Jon H; Macri, Katherine M; Schwartz, Daniel K

    2016-10-24

    DNA is increasingly used to engineer dynamic nanoscale circuits, structures, and motors, many of which rely on DNA strand-displacement reactions. The use of functional DNA sequences (e.g., aptamers, which bind to a wide range of ligands) in these reactions would potentially confer responsiveness on such devices, and integrate DNA computation with highly varied molecular stimuli. By using high-throughput single-molecule FRET methods, we compared the kinetics of a putative aptamer-ligand and aptamer-complement strand-displacement reaction. We found that the ligands actively disrupted the DNA duplex in the presence of a DNA toehold in a similar manner to complementary DNA, with kinetic details specific to the aptamer structure, thus suggesting that the DNA strand-displacement concept can be extended to functional DNA-ligand systems. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Thermodynamic, Anticoagulant, and Antiproliferative Properties of Thrombin Binding Aptamer Containing Novel UNA Derivative

    DEFF Research Database (Denmark)

    Kotkowiak, Weronika; Lisowiec-Wachnicka, Jolanta; Grynda, Jakub

    2018-01-01

    Thrombin is a serine protease that plays a crucial role in hemostasis, fibrinolysis, cell proliferation, and migration. Thrombin binding aptamer (TBA) is able to inhibit the activity of thrombin molecule via binding to its exosite I. This 15-nt DNA oligonucleotide forms an intramolecular, antipar......Thrombin is a serine protease that plays a crucial role in hemostasis, fibrinolysis, cell proliferation, and migration. Thrombin binding aptamer (TBA) is able to inhibit the activity of thrombin molecule via binding to its exosite I. This 15-nt DNA oligonucleotide forms an intramolecular......, antiparallel G-quadruplex structure with a chair-like conformation. In this paper, we report on our investigations on the influence of certain modified nucleotide residues on thermodynamic stability, folding topology, and biological properties of TBA variants. In particular, the effect of single incorporation......-quadruplex thermodynamic and biological stability, and that the effect is strongly position dependent. Interestingly, TBA variants containing the modified nucleotide residues are characterized by unchanged folding topology. Thrombin time assay revealed that incorporation of certain UNA residues may improve G...

  18. In vitro Selection and Interaction Studies of a DNA Aptamer Targeting Protein A.

    Directory of Open Access Journals (Sweden)

    Regina Stoltenburg

    Full Text Available A new DNA aptamer targeting Protein A is presented. The aptamer was selected by use of the FluMag-SELEX procedure. The SELEX technology (Systematic Evolution of Ligands by EXponential enrichment is widely applied as an in vitro selection and amplification method to generate target-specific aptamers and exists in various modified variants. FluMag-SELEX is one of them and is characterized by the use of magnetic beads for target immobilization and fluorescently labeled oligonucleotides for monitoring the aptamer selection progress. Structural investigations and sequence truncation experiments of the selected aptamer for Protein A led to the conclusion, that a stem-loop structure at its 5'-end including the 5'-primer binding site is essential for aptamer-target binding. Extensive interaction analyses between aptamer and Protein A were performed by methods like surface plasmon resonance, MicroScale Thermophoresis and bead-based binding assays using fluorescence measurements. The binding of the aptamer to its target was thus investigated in assays with immobilization of one of the binding partners each, and with both binding partners in solution. Affinity constants were determined in the low micromolar to submicromolar range, increasing to the nanomolar range under the assumption of avidity. Protein A provides more than one binding site for the aptamer, which may overlap with the known binding sites for immunoglobulins. The aptamer binds specifically to both native and recombinant Protein A, but not to other immunoglobulin-binding proteins like Protein G and L. Cross specificity to other proteins was not found. The application of the aptamer is directed to Protein A detection or affinity purification. Moreover, whole cells of Staphylococcus aureus, presenting Protein A on the cell surface, could also be bound by the aptamer.

  19. In vitro Selection and Interaction Studies of a DNA Aptamer Targeting Protein A.

    Science.gov (United States)

    Stoltenburg, Regina; Schubert, Thomas; Strehlitz, Beate

    2015-01-01

    A new DNA aptamer targeting Protein A is presented. The aptamer was selected by use of the FluMag-SELEX procedure. The SELEX technology (Systematic Evolution of Ligands by EXponential enrichment) is widely applied as an in vitro selection and amplification method to generate target-specific aptamers and exists in various modified variants. FluMag-SELEX is one of them and is characterized by the use of magnetic beads for target immobilization and fluorescently labeled oligonucleotides for monitoring the aptamer selection progress. Structural investigations and sequence truncation experiments of the selected aptamer for Protein A led to the conclusion, that a stem-loop structure at its 5'-end including the 5'-primer binding site is essential for aptamer-target binding. Extensive interaction analyses between aptamer and Protein A were performed by methods like surface plasmon resonance, MicroScale Thermophoresis and bead-based binding assays using fluorescence measurements. The binding of the aptamer to its target was thus investigated in assays with immobilization of one of the binding partners each, and with both binding partners in solution. Affinity constants were determined in the low micromolar to submicromolar range, increasing to the nanomolar range under the assumption of avidity. Protein A provides more than one binding site for the aptamer, which may overlap with the known binding sites for immunoglobulins. The aptamer binds specifically to both native and recombinant Protein A, but not to other immunoglobulin-binding proteins like Protein G and L. Cross specificity to other proteins was not found. The application of the aptamer is directed to Protein A detection or affinity purification. Moreover, whole cells of Staphylococcus aureus, presenting Protein A on the cell surface, could also be bound by the aptamer.

  20. Unraveling Prion Protein Interactions with Aptamers and Other PrP-Binding Nucleic Acids.

    Science.gov (United States)

    Macedo, Bruno; Cordeiro, Yraima

    2017-05-17

    Transmissible spongiform encephalopathies (TSEs) are a group of neurodegenerative disorders that affect humans and other mammals. The etiologic agents common to these diseases are misfolded conformations of the prion protein (PrP). The molecular mechanisms that trigger the structural conversion of the normal cellular PrP (PrP C ) into the pathogenic conformer (PrP Sc ) are still poorly understood. It is proposed that a molecular cofactor would act as a catalyst, lowering the activation energy of the conversion process, therefore favoring the transition of PrP C to PrP Sc . Several in vitro studies have described physical interactions between PrP and different classes of molecules, which might play a role in either PrP physiology or pathology. Among these molecules, nucleic acids (NAs) are highlighted as potential PrP molecular partners. In this context, the SELEX (Systematic Evolution of Ligands by Exponential Enrichment) methodology has proven extremely valuable to investigate PrP-NA interactions, due to its ability to select small nucleic acids, also termed aptamers, that bind PrP with high affinity and specificity. Aptamers are single-stranded DNA or RNA oligonucleotides that can be folded into a wide range of structures (from harpins to G-quadruplexes). They are selected from a nucleic acid pool containing a large number (10 14 -10 16 ) of random sequences of the same size (~20-100 bases). Aptamers stand out because of their potential ability to bind with different affinities to distinct conformations of the same protein target. Therefore, the identification of high-affinity and selective PrP ligands may aid the development of new therapies and diagnostic tools for TSEs. This review will focus on the selection of aptamers targeted against either full-length or truncated forms of PrP, discussing the implications that result from interactions of PrP with NAs, and their potential advances in the studies of prions. We will also provide a critical evaluation

  1. Hierarchy and Assortativity as New Tools for Binding-Affinity Investigation: The Case of the TBA Aptamer-Ligand Complex.

    Science.gov (United States)

    Cataldo, Rosella; Alfinito, Eleonora; Reggiani, Lino

    2017-12-01

    Aptamers are single stranded DNA, RNA, or peptide sequences having the ability to bind several specific targets (proteins, molecules as well as ions). Therefore, aptamer production and selection for therapeutic and diagnostic applications is very challenging. Usually, they are generated in vitro, although computational approaches have been recently developed for the in silico production. Despite these efforts, the mechanism of aptamer-ligand formation is not completely clear, and producing high-affinity aptamers is still quite difficult. This paper aims to develop a computational model able to describe aptamer-ligand affinity. Topological tools, such as the conventional degree distribution, the rank-degree distribution (hierarchy), and the node assortativity are employed. In doing so, the macromolecules tertiary-structures are mapped into appropriate graphs. These graphs reproduce the main topological features of the macromolecules, by preserving the distances between amino acids (nucleotides). Calculations are applied to the thrombin binding aptamer (TBA), and the TBA-thrombin complex produced in the presence of Na + or K + . The topological analysis is able to detect several differences between complexes obtained in the presence of the two cations, as expected by previous investigations. These results support graph analysis as a novel computational tool for testing affinity. Otherwise, starting from the graphs, an electrical network can be obtained by using the specific electrical properties of amino acids and nucleobases. Therefore, a further analysis concerns with the electrical response, revealing that the resistance is sensitively affected by the presence of sodium or potassium, thus suggesting resistance as a useful physical parameter for testing binding affinity.

  2. Molecular simulations and Markov state modeling reveal the structural diversity and dynamics of a theophylline-binding RNA aptamer in its unbound state.

    Directory of Open Access Journals (Sweden)

    Becka M Warfield

    Full Text Available RNA aptamers are oligonucleotides that bind with high specificity and affinity to target ligands. In the absence of bound ligand, secondary structures of RNA aptamers are generally stable, but single-stranded and loop regions, including ligand binding sites, lack defined structures and exist as ensembles of conformations. For example, the well-characterized theophylline-binding aptamer forms a highly stable binding site when bound to theophylline, but the binding site is unstable and disordered when theophylline is absent. Experimental methods have not revealed at atomic resolution the conformations that the theophylline aptamer explores in its unbound state. Consequently, in the present study we applied 21 microseconds of molecular dynamics simulations to structurally characterize the ensemble of conformations that the aptamer adopts in the absence of theophylline. Moreover, we apply Markov state modeling to predict the kinetics of transitions between unbound conformational states. Our simulation results agree with experimental observations that the theophylline binding site is found in many distinct binding-incompetent states and show that these states lack a binding pocket that can accommodate theophylline. The binding-incompetent states interconvert with binding-competent states through structural rearrangement of the binding site on the nanosecond to microsecond timescale. Moreover, we have simulated the complete theophylline binding pathway. Our binding simulations supplement prior experimental observations of slow theophylline binding kinetics by showing that the binding site must undergo a large conformational rearrangement after the aptamer and theophylline form an initial complex, most notably, a major rearrangement of the C27 base from a buried to solvent-exposed orientation. Theophylline appears to bind by a combination of conformational selection and induced fit mechanisms. Finally, our modeling indicates that when Mg2+ ions are

  3. A saxitoxin-binding aptamer with higher affinity and inhibitory activity optimized by rational site-directed mutagenesis and truncation.

    Science.gov (United States)

    Zheng, X; Hu, B; Gao, S X; Liu, D J; Sun, M J; Jiao, B H; Wang, L H

    2015-07-01

    Saxitoxin (STX), a member of the family of paralytic shellfish poisoning toxins, poses toxicological and ecotoxicological risks. To develop an analytical recognition element for STX, a DNA aptamer (APT(STX1)) was previously discovered via an iterative process known as Systematic Evolution of Ligands by Exponential Enrichment (SELEX) by Handy et al. Our study focused on generating an improved aptamer based on APT(STX1) through rational site-directed mutation and truncation. In this study, we generated the aptamer, M-30f, with a 30-fold higher affinity for STX compared with APT(STX1). The Kd value for M-30f was 133 nM, which was calculated by Bio-Layer Interferometry. After optimization, we detected and compared the interaction of STX with aptamers (APT(STX1) or M-30f) through several techniques (ELISA, cell bioassay, and mouse bioassay). Both aptamers' STX-binding ability was demonstrated in all three methods. Moreover, M-30f performs better than its parent sequence with higher suppressive activity against STX. As a molecular recognition element, M-30f has good prospects for practical application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Electrochemical and circular dichroism spectroscopic evidence of two types of interaction between [Ru(NH3)(6)](3+) and an elongated thrombin binding aptamer G-quadruplex

    Czech Academy of Sciences Publication Activity Database

    De Rache, A.; Kejnovská, Iva; Buess-Herman, C.; Doneux, T.

    2015-01-01

    Roč. 179, OCT 2015 (2015), s. 84-92 ISSN 0013-4686 Institutional support: RVO:68081707 Keywords : Biosensors * Thrombin binding aptamer * Hexaammineruthenium Subject RIV: BO - Biophysics Impact factor: 4.803, year: 2015

  5. Development of an aptamer beacon for detection of interferon-gamma.

    Science.gov (United States)

    Tuleuova, Nazgul; Jones, Caroline N; Yan, Jun; Ramanculov, Erlan; Yokobayashi, Yohei; Revzin, Alexander

    2010-03-01

    Traditional antibody-based affinity sensing strategies employ multiple reagents and washing steps and are unsuitable for real-time detection of analyte binding. Aptamers, on the other hand, may be designed to monitor binding events directly, in real-time, without the need for secondary labels. The goal of the present study was to design an aptamer beacon for fluorescence resonance energy transfer (FRET)-based detection of interferon-gamma (IFN-gamma)--an important inflammatory cytokine. Variants of DNA aptamer modified with biotin moieties and spacers were immobilized on avidin-coated surfaces and characterized by surface plasmon resonance (SPR). The SPR studies showed that immobilization of aptamer via the 3' end resulted in the best binding IFN-gamma (K(d) = 3.44 nM). This optimal aptamer variant was then used to construct a beacon by hybridizing fluorophore-labeled aptamer with an antisense oligonucleotide strand carrying a quencher. SPR studies revealed that IFN-gamma binding with an aptamer beacon occurred within 15 min of analyte introduction--suggesting dynamic replacement of the quencher-complementary strand by IFN-gamma molecules. To further highlight biosensing applications, aptamer beacon molecules were immobilized inside microfluidic channels and challenged with varying concentration of analyte. Fluorescence microscopy revealed low fluorescence in the absence of analyte and high fluorescence after introduction of IFN-gamma. Importantly, unlike traditional antibody-based immunoassays, the signal was observed directly upon binding of analyte without the need for multiple washing steps. The surface immobilized aptamer beacon had a linear range from 5 to 100 nM and a lower limit of detection of 5 nM IFN-gamma. In conclusion, we designed a FRET-based aptamer beacon for monitoring of an inflammatory cytokine-IFN-gamma. In the future, this biosensing strategy will be employed to monitor dynamics of cytokine production by the immune cells.

  6. In vitro evaluation of radiolabeled aptamers for colon carcinoma diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Correa, C.R.; Ferreira, I.M; Santos, S.R.; Faria, L.S.; Andrade, A.S.R., E-mail: crisrcorrea@gmail.com, E-mail: antero@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Goes, A.M., E-mail: goes@icb.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Inst. de Ciencias Biologicas. Dept. de Imunologia e Bioquimica

    2013-07-01

    Cancer is a leading cause of death worldwide, representing a major public health problem worldwide. Colorectal cancers accounts around 8% of all deaths for cancer in 2008, is the fourth most lethal. Many colorectal cancer markers, such as carcinoembryonic antigen (CEA), A33, and CSA-p, have been studied as the therapeutic targets in preclinical or clinical settings. CEA is a complex intracellular glycoprotein produced by about 90% of colorectal cancers. Since its discovery in 1965, a very large number of studies have been carried out to determine the effectiveness of CEA as clinically useful tumor markers. Aptamers are short single-stranded nucleic acid oligomers (DNA or RNA) that can form specific and complex three-dimensional structures which can bind with high affinity to specific targets, they are functionally equivalent of antibodies. Aptamers have the advantage of being highly specific, relatively small size, and non-immunogenic. The aim of this study was develop anti-CEA aptamers for use as imaging agents. The aptamers are obtained through by SELEX (systematic evolution of ligands by exponential enrichment), in which aptamers are selected from a library of random sequences of synthetic DNA by repetitive binding of the oligonucleotides to target molecule. These aptamers were confirmed to have affinity and specific binding for T84 cell line (target cell), showed by fluorescence microscopic images. Individual aptamers sequences that bound T84 cells were {sup 32}P-radiolabeled and incubated at different concentrations on cell monolayers, to monitor the aptamers affinity binding. The selected aptamers can identify colon cancer cell line. This aptamers could be further developed for early disease detection as radiopharmaceuticals, as well as prognostic markers, of colorectal cancers. (author)

  7. In vitro evaluation of radiolabeled aptamers for colon carcinoma diagnosis

    International Nuclear Information System (INIS)

    Correa, C.R.; Ferreira, I.M; Santos, S.R.; Faria, L.S.; Andrade, A.S.R.; Goes, A.M.

    2013-01-01

    Cancer is a leading cause of death worldwide, representing a major public health problem worldwide. Colorectal cancers accounts around 8% of all deaths for cancer in 2008, is the fourth most lethal. Many colorectal cancer markers, such as carcinoembryonic antigen (CEA), A33, and CSA-p, have been studied as the therapeutic targets in preclinical or clinical settings. CEA is a complex intracellular glycoprotein produced by about 90% of colorectal cancers. Since its discovery in 1965, a very large number of studies have been carried out to determine the effectiveness of CEA as clinically useful tumor markers. Aptamers are short single-stranded nucleic acid oligomers (DNA or RNA) that can form specific and complex three-dimensional structures which can bind with high affinity to specific targets, they are functionally equivalent of antibodies. Aptamers have the advantage of being highly specific, relatively small size, and non-immunogenic. The aim of this study was develop anti-CEA aptamers for use as imaging agents. The aptamers are obtained through by SELEX (systematic evolution of ligands by exponential enrichment), in which aptamers are selected from a library of random sequences of synthetic DNA by repetitive binding of the oligonucleotides to target molecule. These aptamers were confirmed to have affinity and specific binding for T84 cell line (target cell), showed by fluorescence microscopic images. Individual aptamers sequences that bound T84 cells were 32 P-radiolabeled and incubated at different concentrations on cell monolayers, to monitor the aptamers affinity binding. The selected aptamers can identify colon cancer cell line. This aptamers could be further developed for early disease detection as radiopharmaceuticals, as well as prognostic markers, of colorectal cancers. (author)

  8. Detection of Thrombin Based on Fluorescence Energy Transfer between Semiconducting Polymer Dots and BHQ-Labelled Aptamers

    Directory of Open Access Journals (Sweden)

    Yizhang Liu

    2018-02-01

    Full Text Available Carboxyl-functionalized semiconducting polymer dots (Pdots were synthesized as an energy donor by the nanoprecipitation method. A black hole quenching dye (BHQ-labelled thrombin aptamers was used as the energy acceptor, and fluorescence resonance energy transfer between the aptamers and Pdots was used for fluorescence quenching of the Pdots. The addition of thrombin restored the fluorescence intensity. Under the optimized experimental conditions, the fluorescence of the system was restored to the maximum when the concentration of thrombin reached 130 nM, with a linear range of 0–50 nM (R2 = 0.990 and a detection limit of 0.33 nM. This sensor was less disturbed by impurities, showing good specificity and signal response to thrombin, with good application in actual samples. The detection of human serum showed good linearity in the range of 0–30 nM (R2 = 0.997, with a detection limit of 0.56 nM and a recovery rate of 96.2–104.1%, indicating that this fluorescence sensor can be used for the detection of thrombin content in human serum.

  9. Periostin-Binding DNA Aptamer Treatment Ameliorates Peritoneal Dialysis-Induced Peritoneal Fibrosis

    Directory of Open Access Journals (Sweden)

    Bo Young Nam

    2017-06-01

    Full Text Available Peritoneal fibrosis is a major complication in peritoneal dialysis (PD patients, which leads to dialysis discontinuation. Periostin, increased by transforming growth factor β1 (TGF-β1 stimulation, induces the expression of extracellular matrix (ECM genes. Aberrant periostin expression has been demonstrated to be associated with PD-related peritoneal fibrosis. Therefore, the effect of periostin inhibition by an aptamer-based inhibitor on peritoneal fibrosis was evaluated. In vitro, TGF-β1 treatment upregulated periostin, fibronectin, α-smooth muscle actin (α-SMA, and Snail expression and reduced E-cadherin expression in human peritoneal mesothelial cells (HPMCs. Periostin small interfering RNA (siRNA treatment ameliorated the TGF-β1-induced periostin, fibronectin, α-SMA, and Snail expression and restored E-cadherin expression in HPMCs. Similarly, the periostin-binding DNA aptamer (PA also attenuated fibronectin, α-SMA, and Snail upregulation and E-cadherin downregulation in TGF-β1-stimulated HPMCs. In mice treated with PD solution for 4 weeks, the expression of periostin, fibronectin, α-SMA, and Snail was significantly increased in the peritoneum, whereas E-cadherin expression was significantly decreased. The thickness of the submesothelial layer and the intensity of Masson’s trichrome staining in the PD group were significantly increased compared to the untreated group. These changes were significantly abrogated by the intraperitoneal administration of PA. These findings suggest that PA can be a potential therapeutic strategy for peritoneal fibrosis in PD patients.

  10. A Turn-on Fluorescence Sensor for Heparin Detection Based on a Release of Taiwan Cobra Cardiotoxin from a DNA Aptamer or Adenosine-Based Molecular Beacon.

    Science.gov (United States)

    Shi, Yi-Jun; Wang, Liang-Jun; Lee, Yuan-Chin; Huang, Chia-Hui; Hu, Wan-Ping; Chang, Long-Sen

    2018-02-19

    This study presents two sensitive fluorescent assays for sensing heparin on the basis of the electrostatic interaction between heparin and Naja naja atra cardiotoxin 3 (CTX3). Owing to CTX3-induced folded structure of an adenosine-based molecular beacon (MB) or a DNA aptamer against CTX3, a reduction in the fluorescent signal of the aptamer or MB 5'-end labeled with carboxyfluorescein (FAM) and 3'-end labeled with 4-([4-(dimethylamino)phenyl]azo)-benzoic acid (DABCYL) was observed upon the addition of CTX3. The presence of heparin and formation of the CTX3-heparin complex caused CTX3 detachment from the MB or aptamer, and restoration of FAM fluorescence of the 5'-FAM-and-3'-DABCYL-labeled MB and aptamer was subsequently noted. Moreover, the detection of heparin with these CTX3-aptamer and CTX3-MB sensors showed high sensitivity and selectivity toward heparin over chondroitin sulfate and hyaluronic acid regardless of the presence of plasma. The limit of detection for heparin in plasma was determined to be 16 ng/mL and 15 ng/mL, respectively, at a signal-to-noise ratio of 3. This study validates the practical utility of the CTX3-aptamer and CTX3-MB systems for determining the concentration of heparin in a biological matrix.

  11. Thermodynamic, Anticoagulant, and Antiproliferative Properties of Thrombin Binding Aptamer Containing Novel UNA Derivative

    Directory of Open Access Journals (Sweden)

    Weronika Kotkowiak

    2018-03-01

    Full Text Available Thrombin is a serine protease that plays a crucial role in hemostasis, fibrinolysis, cell proliferation, and migration. Thrombin binding aptamer (TBA is able to inhibit the activity of thrombin molecule via binding to its exosite I. This 15-nt DNA oligonucleotide forms an intramolecular, antiparallel G-quadruplex structure with a chair-like conformation. In this paper, we report on our investigations on the influence of certain modified nucleotide residues on thermodynamic stability, folding topology, and biological properties of TBA variants. In particular, the effect of single incorporation of a novel 4-thiouracil derivative of unlocked nucleic acid (UNA, as well as single incorporation of 4-thiouridine and all four canonical UNAs, was evaluated. The studies presented herein have shown that 4-thiouridine in RNA and UNA series, as well as all four canonical UNAs, can efficiently modulate G-quadruplex thermodynamic and biological stability, and that the effect is strongly position dependent. Interestingly, TBA variants containing the modified nucleotide residues are characterized by unchanged folding topology. Thrombin time assay revealed that incorporation of certain UNA residues may improve G-quadruplex anticoagulant properties. Noteworthy, some TBA variants, characterized by decreased ability to inhibit thrombin activity, possess significant antiproliferative properties reducing the viability of the HeLa cell line even by 95% at 10 μM concentration.

  12. Binding kinetics of aptamers to gp120 derived from HIV-1 subtype C

    CSIR Research Space (South Africa)

    Millroy, L

    2011-02-01

    Full Text Available aptamers with specific and strong affinity to the HIV-1 envelope glycoprotein gp120 and act as novel HIV-1 entry inhibitor drugs or as targeted drug delivery systems to HIV-1 infected cells. Prior to any downstream applications, novel gp120 aptamers need...

  13. Probing the Structure of DNA Aptamers with a Classic Heterocycle.

    Directory of Open Access Journals (Sweden)

    G. Reid Bishop

    2004-02-01

    Full Text Available DNA aptamers are synthetic, single-stranded DNA oligonucleotides selectedby SELEX methods for their binding with specific ligands. Here we present ethidiumbinding results for three related DNA aptamers (PDB code: 1OLD, 1DB6, and 2ARGthat bind L-argininamide (L-Arm. The ligand bound form of each aptamer's structurehas been reported and each are found to be composed primarily of two domainsconsisting of a stem helical region and a loop domain that forms a binding pocket for thecognate ligand. Previous thermodynamic experiments demonstrated that the DNAaptamer 1OLD undergoes a large conformational ordering upon binding to L-Arm. Herewe extend those linkage binding studies by examining the binding of the heterocyclicintercalator ethidium to each of the three aptamers by fluorescence and absorptionspectrophotometric titrations. Our results reveal that ethidium binds to each aptamer with∆Go's in the range of -8.7 to -9.4 kcal/mol. The stoichiometry of binding is 2:1 for eachaptamer and is quantitatively diminished in the presence of L-Arm as is the overallfluorescence intensity of ethidium. Together, these results demonstrate that a portion ofthe bound ethidium is excluded from the aptamer in the presence of a saturating amountof L-Arm. These results demonstrate the utility of ethidium and related compounds forthe probing of non-conventional DNA structures and reveal an interesting fundamentalthermodynamic linkage in DNA aptamers. Results are discussed in the context of thethermodynamic stability and structure of each of the aptamers examined.

  14. Screening of specific nucleic acid aptamers binding tumor markers in the serum of the lung cancer patients and identification of their activities.

    Science.gov (United States)

    Li, Kun; Xiu, Chen-Lin; Gao, Li-Ming; Liang, Hua-Gang; Xu, Shu-Feng; Shi, Ming; Li, Jian; Liu, Zhi-Wei

    2017-07-01

    Lung cancer is by far the leading cause of cancer death in the world. Despite the improvements in diagnostic methods, the status of early detection was not achieved. So, a new diagnostic method is needed. The aim of this study is to obtain the highly specific nucleic acid aptamers with strong affinity to tumor markers in the serum of the lung cancer patients for targeting the serum. Aptamers specifically binding to tumor markers in the serum of the lung cancer patients were screened from the random single-stranded DNA library with agarose beads as supports and the serum as a target by target-substituting subtractive SELEX technique and real-time quantitative polymerase chain reaction technique. Subsequently, the secondary single-stranded DNA library obtained by 10 rounds of screening was amplified to double-stranded DNA, followed by high-throughput genome sequence analysis to screen aptamers with specific affinity to tumor markers in the serum of the lung cancer patients. Finally, six aptamers obtained by 10 rounds of screening were identified with high specific affinity to tumor markers in the serum of the lung cancer patients. Compared with other five aptamers, the aptamer 43 was identified both with the highest specificity to bind target molecule and without any obvious affinity to non-specific proteins. The screened aptamers have relatively high specificity to combine tumor markers in the serum of the lung cancer patients, which provides breakthrough points for early diagnosis and treatment of lung cancer.

  15. Highly sensitive and selective detection of Pb2+ using a turn-on fluorescent aptamer DNA silver nanoclusters sensor.

    Science.gov (United States)

    Zhang, Baozhu; Wei, Chunying

    2018-05-15

    A novel turn-on fluorescent biosensor has been constructed using C-PS2.M-DNA-templated silver nanoclusters (Ag NCs) with an average diameter of about 1 nm. The proposed approach presents a low-toxic, simple, sensitive, and selective detection for Pb 2+ . The fluorescence intensity of C-PS2.M-DNA-Ag NCs enhances significantly in the presence of Pb 2+ , which is attributed to the special interaction between Pb 2+ and its aptamer DNA PS2.M. Pb 2+ induces the aptamer to form G-quadruplex and makes two darkish DNA/Ag NCs located at the 3' and 5' terminus close, resulting in the fluorescence light-up. Moreover, Pb 2+ can be detected as low as 3.0 nM within a good linear range from 5 to 50 nM (R = 0.9862). Furthermore, the application for detection of Pb 2+ in real water samples further demonstrates the reliability of the sensor. Thus, this sensor system shows a potential application for monitoring Pb 2+ in environmental samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Surface-enhanced Raman spectroscopy competitive binding biosensor development utilizing surface modification of silver nanocubes and a citrulline aptamer

    Science.gov (United States)

    Walton, Brian M.; Jackson, George W.; Deutz, Nicolaas; Cote, Gerard

    2017-07-01

    A point-of-care (PoC) device with the ability to detect biomarkers at low concentrations in bodily fluids would have an enormous potential for medical diagnostics outside the central laboratory. One method to monitor analytes at low concentrations is by using surface-enhanced Raman spectroscopy (SERS). In this preliminary study toward using SERS for PoC biosensing, the surface of colloidal silver (Ag) nanocubes has been modified to test the feasibility of a competitive binding SERS assay utilizing aptamers against citrulline. Specifically, Ag nanocubes were functionalized with mercaptobenzoic acid, as well as a heterobifunctional polyethylene glycol linker that forms an amide bond with the amino acid citrulline. After the functionalization, the nanocubes were characterized by zeta-potential, transmission electron microscopy images, ultraviolet/visible spectroscopy, and by SERS. The citrulline aptamers were developed and tested using backscattering interferometry. The data show that our surface modification method does work and that the functionalized nanoparticles can be detected using SERS down to a 24.5 picomolar level. Last, we used microscale thermophoresis to show that the aptamers bind to citrulline with at least a 50 times stronger affinity than other amino acids.

  17. Assignment methodology for larger RNA oligonucleotides: Application to an ATP-binding RNA aptamer

    International Nuclear Information System (INIS)

    Dieckmann, Thorsten; Feigon, Juli

    1997-01-01

    The use of uniform 13C, 15N labeling in the NMR spectroscopic study of RNA structures has greatly facilitated the assignment process in small RNA oligonucleotides. For ribose spinsystem assignments, exploitation of these labels has followed previously developed methods for the study of proteins. However, for sequential assignment of the exchangeable and nonexchangeable protons of the nucleotides, it has been necessary to develop a variety of new NMR experiments. Even these are of limited utility in the unambiguous assignment of larger RNAs due to the short carbon relaxation times and extensive spectral overlap for all nuclei.These problems can largely be overcome by the additional use of base-type selectively 13C, 15N-labeled RNA in combination with a judicious use of related RNAs with base substitutions. We report the application of this approach to a 36-nucleotide ATP-binding RNA aptamer in complex with AMP. Complete sequential 1H assignments, as well as the majority of 13C and 15N assignments, were obtained

  18. Unfolding mechanism of thrombin-binding aptamer revealed by molecular dynamics simulation and Markov State Model.

    Science.gov (United States)

    Zeng, Xiaojun; Zhang, Liyun; Xiao, Xiuchan; Jiang, Yuanyuan; Guo, Yanzhi; Yu, Xinyan; Pu, Xuemei; Li, Menglong

    2016-04-05

    Thrombin-binding aptamer (TBA) with the sequence 5'GGTTGGTGTGGTTGG3' could fold into G-quadruplex, which correlates with functionally important genomic regionsis. However, unfolding mechanism involved in the structural stability of G-quadruplex has not been satisfactorily elucidated on experiments so far. Herein, we studied the unfolding pathway of TBA by a combination of molecular dynamics simulation (MD) and Markov State Model (MSM). Our results revealed that the unfolding of TBA is not a simple two-state process but proceeds along multiple pathways with multistate intermediates. One high flux confirms some observations from NMR experiment. Another high flux exhibits a different and simpler unfolding pathway with less intermediates. Two important intermediate states were identified. One is similar to the G-triplex reported in the folding of G-quadruplex, but lack of H-bonding between guanines in the upper plane. More importantly, another intermediate state acting as a connector to link the folding region and the unfolding one, was the first time identified, which exhibits higher population and stability than the G-triplex-like intermediate. These results will provide valuable information for extending our understanding the folding landscape of G-quadruplex formation.

  19. [Cell-ELA-based determination of binding affinity of DNA aptamer against U87-EGFRvIII cell].

    Science.gov (United States)

    Tan, Yan; Liang, Huiyu; Wu, Xidong; Gao, Yubo; Zhang, Xingmei

    2013-05-01

    A15, a DNA aptamer with binding specificity for U87 glioma cells stably overexpressing the epidermal growth factor receptor variant III (U87-EGFRvIII), was generated by cell systematic evolution of ligands by exponential enrichment (cell-SELEX) using a random nucleotide library. Subsequently, we established a cell enzyme-linked assay (cell-ELA) to detect the affinity of A15 compared to an EGFR antibody. We used A15 as a detection probe and cultured U87-EGFRvIII cells as targets. Our data indicate that the equilibrium dissociation constants (K(d)) for A15 were below 100 nmol/L and had similar affinity compared to an EGFR antibody for U87-EGFRvIII. We demonstrated that the cell-ELA was a useful method to determine the equilibrium dissociation constants (K(d)) of aptamers generated by cell-SELEX.

  20. Fluorescence-Guided Probes of Aptamer-Targeted Gold Nanoparticles with Computed Tomography Imaging Accesses for in Vivo Tumor Resection.

    Science.gov (United States)

    Li, Cheng-Hung; Kuo, Tsung-Rong; Su, Hsin-Jan; Lai, Wei-Yun; Yang, Pan-Chyr; Chen, Jinn-Shiun; Wang, Di-Yan; Wu, Yi-Chun; Chen, Chia-Chun

    2015-10-28

    Recent development of molecular imaging probes for fluorescence-guided surgery has shown great progresses for determining tumor margin to execute the tissue resection. Here we synthesize the fluorescent gold nanoparticles conjugated with diatrizoic acid and nucleolin-targeted AS1411 aptamer. The nanoparticle conjugates exhibit high water-solubility, good biocompatibility, visible fluorescence and strong X-ray attenuation for computed tomography (CT) contrast enhancement. The fluorescent nanoparticle conjugates are applied as a molecular contrast agent to reveal the tumor location in CL1-5 tumor-bearing mice by CT imaging. Furthermore, the orange-red fluorescence emitting from the conjugates in the CL1-5 tumor can be easily visualized by the naked eyes. After the resection, the IVIS measurements show that the fluorescence signal of the nanoparticle conjugates in the tumor is greatly enhanced in comparison to that in the controlled experiment. Our work has shown potential application of functionalized nanoparticles as a dual-function imaging agent in clinical fluorescence-guided surgery.

  1. Radiolabelled aptamers for tumour imaging and therapy

    International Nuclear Information System (INIS)

    Perkins, A.C.; Missailidis, S.

    2005-01-01

    Full text: The growth in biotechnology has led to new techniques for the design, selection and production of ligands capable of molecular recognition. One promising approach is the production of specific receptor binding molecules based on specific nucleic acid sequences that are capable of recognising a wide array of target molecules. These oligonuclide ligands are known as aptamers. The technology that allows production of aptamer molecules is known as systematic evolution of ligands by exponential enrichment (SELEX). We have used combinatorial chemistry techniques coupled with polymerase chain reaction (PCR) to rapidly select aptamers from degenerate libraries that bind with high affinity and specificity to the protein core of the MUC1 antigen, a tumour marker previously extensively used in tumour imaging and therapy. MUC1 is widely expressed by normal glandular epithelial cells, however this expression is dramatically increased when the cells become malignant. This has been well documented for breast and ovarian cancer, as well as some lung, pancreatic and prostate cancers. Recently it has also been shown that MUC1 is a valuable marker for bladder and has been used for the imaging and targeted therapy of bladder cancer. The aptamer selection process was performed on affinity chromatography matrices. After ten rounds of selection and amplification, aptamers were cloned and sequenced. Post SELEX amino modifications have been used to confer nuclease resistance and coupling potential. The aptamers bound to MUC1 antigen with a Kd of 5nm and high specificity, demonstrated by fluorescent microscopy on MUC1-expressing tumour cells. Using peptide coupling reactions, we have successfully attached chelators for Tc-99m radiolabelling. Two of the constructs tested were based on mono-aptamer chelator complexes, one with commercially available MAG3 and one with a novel designed cyclen-based chelator. The other two constructs were based on the use of multi-aptamer complexes

  2. DNA aptamer beacon assay for C-telopeptide and handheld fluorometer to monitor bone resorption.

    Science.gov (United States)

    Bruno, John Gordon; Carrillo, Maria P; Phillips, Taylor; Hanson, Douglas; Bohmann, Jonathan A

    2011-09-01

    A novel DNA aptamer beacon is described for quantification of a 26-amino acid C-telopeptide (CTx) of human type I bone collagen. One aptamer sequence and its reverse complement dominated the aptamer pool (31.6% of sequenced clones). Secondary structures of these aptamers were examined for potential binding pockets. Three-dimensional computer models which analyzed docking topologies and binding energies were in agreement with empirical fluorescence experiments used to select one candidate loop for beacon assay development. All loop structures from the aptamer finalists were end-labeled with TYE 665 and Iowa Black quencher for comparison of beacon fluorescence levels as a function of CTx concentration. The optimal beacon, designated CTx 2R-2h yielded a low ng/ml limit of detection using a commercially available handheld fluorometer. The CTx aptamer beacon bound full-length 26-amino acid CTx peptide, but not a shorter 8-amino acid segment of CTx peptide which is a common target for commercial CTx ELISA kits. The prototype assay was shown to detect CTx peptide from human urine after creatinine and urea were removed by size-exclusion chromatography to prevent nonspecific denaturing of the aptamer beacon. This work demonstrates the potential of aptamer beacons to be utilized for rapid and sensitive bone health monitoring in a handheld or point-of-care format.

  3. Alkylation of phosphorothioated thrombin binding aptamers improves the selectivity of inhibition of tumor cell proliferation upon anticoagulation.

    Science.gov (United States)

    Yang, Xiantao; Zhu, Yuejie; Wang, Chao; Guan, Zhu; Zhang, Lihe; Yang, Zhenjun

    2017-07-01

    Recently, aptamers have been extensively researched for therapy and diagnostic applications. Thrombin-binding aptamer is a 15nt deoxyribonucleic acid screened by SELEX, it can specifically bind to thrombin and inhibit blood coagulation. Since it is also endowed with excellent antitumor activity, the intrinsic anticoagulation advantage converted to a main potential side effect for its further application in antiproliferative therapy. Site-specific alkylation was conducted through nucleophilic reaction of phosphorothioated TBAs using bromide reagents. Circular dichroism (CD) spectroscopy and surface plasmon resonance (SPR) measurements were used to evaluate anticoagulation activity, and a CCK-8 assay was used to determine cell proliferation activity. The CD spectra of the modified TBAs were weakened, and their affinity for thrombin was dramatically reduced, as reflected by the K D values. On the other hand, their inhibition of A549 cells was retained. Incorporation of different alkyls apparently disrupted the binding of TBA to thrombin while maintaining the antitumor activity. A new modification strategy was established for the use of TBA as a more selective antitumor agent. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A single-stranded DNA aptamer that selectively binds to Staphylococcus aureus enterotoxin B.

    Science.gov (United States)

    DeGrasse, Jeffrey A

    2012-01-01

    The bacterium Staphylococcus aureus is a common foodborne pathogen capable of secreting a cocktail of small, stable, and strain-specific, staphylococcal enterotoxins (SEs). Staphylococcal food poisoning (SFP) results when improperly handled food contaminated with SEs is consumed. Gastrointestinal symptoms of SFP include emesis, diarrhea and severe abdominal pain, which manifest within hours of ingesting contaminated food. Immuno-affinity based methods directly detect, identify, and quantify several SEs within a food or clinical sample. However, the success of these assays depends upon the availability of a monoclonal antibody, the development of which is non-trivial and costly. The current scope of the available immuno-affinity based methods is limited to the classical SEs and does not encompass all of the known or emergent SEs. In contrast to antibodies, aptamers are short nucleic acids that exhibit high affinity and specificity for their targets without the high-costs and ethical concerns of animal husbandry. Further, researchers may choose to freely distribute aptamers and develop assays without the proprietary issues that increase the per-sample cost of immuno-affinity assays. This study describes a novel aptamer, selected in vitro, with affinity to staphylococcal enterotoxin B (SEB) that may be used in lieu of antibodies in SE detection assays. The aptamer, designated APT(SEB1), successfully isolates SEB from a complex mixture of SEs with extremely high discrimination. This work sets the foundation for future aptamer and assay development towards the entire family of SEs. The rapid, robust, and low-cost identification and quantification of all of the SEs in S. aureus contaminated food is essential for food safety and epidemiological efforts. An in vitro generated library of SE aptamers could potentially allow for the comprehensive and cost-effective analysis of food samples that immuno-affinity assays currently cannot provide.

  5. A single-stranded DNA aptamer that selectively binds to Staphylococcus aureus enterotoxin B.

    Directory of Open Access Journals (Sweden)

    Jeffrey A DeGrasse

    Full Text Available The bacterium Staphylococcus aureus is a common foodborne pathogen capable of secreting a cocktail of small, stable, and strain-specific, staphylococcal enterotoxins (SEs. Staphylococcal food poisoning (SFP results when improperly handled food contaminated with SEs is consumed. Gastrointestinal symptoms of SFP include emesis, diarrhea and severe abdominal pain, which manifest within hours of ingesting contaminated food. Immuno-affinity based methods directly detect, identify, and quantify several SEs within a food or clinical sample. However, the success of these assays depends upon the availability of a monoclonal antibody, the development of which is non-trivial and costly. The current scope of the available immuno-affinity based methods is limited to the classical SEs and does not encompass all of the known or emergent SEs. In contrast to antibodies, aptamers are short nucleic acids that exhibit high affinity and specificity for their targets without the high-costs and ethical concerns of animal husbandry. Further, researchers may choose to freely distribute aptamers and develop assays without the proprietary issues that increase the per-sample cost of immuno-affinity assays. This study describes a novel aptamer, selected in vitro, with affinity to staphylococcal enterotoxin B (SEB that may be used in lieu of antibodies in SE detection assays. The aptamer, designated APT(SEB1, successfully isolates SEB from a complex mixture of SEs with extremely high discrimination. This work sets the foundation for future aptamer and assay development towards the entire family of SEs. The rapid, robust, and low-cost identification and quantification of all of the SEs in S. aureus contaminated food is essential for food safety and epidemiological efforts. An in vitro generated library of SE aptamers could potentially allow for the comprehensive and cost-effective analysis of food samples that immuno-affinity assays currently cannot provide.

  6. Comparison of whole-cell SELEX methods for the identification of Staphylococcus aureus-specific DNA aptamers.

    Science.gov (United States)

    Moon, Jihea; Kim, Giyoung; Park, Saet Byeol; Lim, Jongguk; Mo, Changyeun

    2015-04-15

    Whole-cell Systemic Evolution of Ligands by Exponential enrichment (SELEX) is the process by which aptamers specific to target cells are developed. Aptamers selected by whole-cell SELEX have high affinity and specificity for bacterial surface molecules and live bacterial targets. To identify DNA aptamers specific to Staphylococcus aureus, we applied our rapid whole-cell SELEX method to a single-stranded ssDNA library. To improve the specificity and selectivity of the aptamers, we designed, selected, and developed two categories of aptamers that were selected by two kinds of whole-cell SELEX, by mixing and combining FACS analysis and a counter-SELEX process. Using this approach, we have developed a biosensor system that employs a high affinity aptamer for detection of target bacteria. FAM-labeled aptamer sequences with high binding to S. aureus, as determined by fluorescence spectroscopic analysis, were identified, and aptamer A14, selected by the basic whole-cell SELEX using a once-off FACS analysis, and which had a high binding affinity and specificity, was chosen. The binding assay was evaluated using FACS analysis. Our study demonstrated the development of a set of whole-cell SELEX derived aptamers specific to S. aureus; this approach can be used in the identification of other bacteria.

  7. Comparison of Whole-Cell SELEX Methods for the Identification of Staphylococcus Aureus-Specific DNA Aptamers

    Directory of Open Access Journals (Sweden)

    Jihea Moon

    2015-04-01

    Full Text Available Whole-cell Systemic Evolution of Ligands by Exponential enrichment (SELEX is the process by which aptamers specific to target cells are developed. Aptamers selected by whole-cell SELEX have high affinity and specificity for bacterial surface molecules and live bacterial targets. To identify DNA aptamers specific to Staphylococcus aureus, we applied our rapid whole-cell SELEX method to a single-stranded ssDNA library. To improve the specificity and selectivity of the aptamers, we designed, selected, and developed two categories of aptamers that were selected by two kinds of whole-cell SELEX, by mixing and combining FACS analysis and a counter-SELEX process. Using this approach, we have developed a biosensor system that employs a high affinity aptamer for detection of target bacteria. FAM-labeled aptamer sequences with high binding to S. aureus, as determined by fluorescence spectroscopic analysis, were identified, and aptamer A14, selected by the basic whole-cell SELEX using a once-off FACS analysis, and which had a high binding affinity and specificity, was chosen. The binding assay was evaluated using FACS analysis. Our study demonstrated the development of a set of whole-cell SELEX derived aptamers specific to S. aureus; this approach can be used in the identification of other bacteria.

  8. Aptamer-functionalized nano-biosensors.

    Science.gov (United States)

    Chiu, Tai-Chia; Huang, Chih-Ching

    2009-01-01

    Nanomaterials have become one of the most interesting sensing materials because of their unique size- and shape-dependent optical properties, high surface energy and surface-to-volume ratio, and tunable surface properties. Aptamers are oligonucleotides that can bind their target ligands with high affinity. The use of nanomaterials that are bioconjugated with aptamers for selective and sensitive detection of analytes such as small molecules, metal ions, proteins, and cells has been demonstrated. This review focuses on recent progress in the development of biosensors by integrating functional aptamers with different types of nanomaterials, including quantum dots, magnetic nanoparticles (NPs), metallic NPs, and carbon nanotubes. Colorimetry, fluorescence, electrochemistry, surface plasmon resonance, surface-enhanced Raman scattering, and magnetic resonance imaging are common detection modes for a broad range of analytes with high sensitivity and selectivity when using aptamer bioconjugated nanomaterials (Apt-NMs). We highlight the important roles that the size and concentration of nanomaterials, the secondary structure and density of aptamers, and the multivalent interactions play in determining the specificity and sensitivity of the nanosensors towards analytes. Advantages and disadvantages of the Apt-NMs for bioapplications are focused.

  9. Aptamer-Functionalized Nano-Biosensors

    Directory of Open Access Journals (Sweden)

    Tai-Chia Chiu

    2009-12-01

    Full Text Available Nanomaterials have become one of the most interesting sensing materials because of their unique size- and shape-dependent optical properties, high surface energy and surface-to-volume ratio, and tunable surface properties. Aptamers are oligonucleotides that can bind their target ligands with high affinity. The use of nanomaterials that are bioconjugated with aptamers for selective and sensitive detection of analytes such as small molecules, metal ions, proteins, and cells has been demonstrated. This review focuses on recent progress in the development of biosensors by integrating functional aptamers with different types of nanomaterials, including quantum dots, magnetic nanoparticles (NPs, metallic NPs, and carbon nanotubes. Colorimetry, fluorescence, electrochemistry, surface plasmon resonance, surface-enhanced Raman scattering, and magnetic resonance imaging are common detection modes for a broad range of analytes with high sensitivity and selectivity when using aptamer bioconjugated nanomaterials (Apt-NMs. We highlight the important roles that the size and concentration of nanomaterials, the secondary structure and density of aptamers, and the multivalent interactions play in determining the specificity and sensitivity of the nanosensors towards analytes. Advantages and disadvantages of the Apt-NMs for bioapplications are focused.

  10. Selection of binding targets in parasites using phage-display and aptamer libraries in vivo and in vitro

    Directory of Open Access Journals (Sweden)

    Renata Rosito Tonelli

    2013-01-01

    Full Text Available Parasite infections are largely dependent on interactions between pathogen and different host cell populations to guarantee a successful infectious process. This is particularly true for obligatory intracellular parasites as Plasmodium, Toxoplasma, Leishmania, to name a few. Adhesion to and entry into the cell are essential steps requiring specific parasite and host cell molecules. The large amount of possible involved molecules poses additional difficulties for their identification by the classical biochemical approaches. In this respect, the search for alternative techniques should be pursued. Among them two powerful methodologies can be employed, both relying upon the construction of highly diverse combinatorial libraries of peptides or oligonucleotides that randomly bind with high affinity to targets on the cell surface and are selectively displaced by putative ligands. These are, respectively, the peptide-based phage display and the oligonucleotide-based aptamer techniques.The phage display technique has been extensively employed for the identification of novel ligands in vitro and in vivo in different areas such as cancer, vaccine development and epitope mapping. Particularly, phage display has been employed in the investigation of pathogen-host interactions. Although this methodology has been used for some parasites with encouraging results, in trypanosomatids its use is, as yet, scanty. RNA and DNA aptamers, developed by the SELEX process (Systematic Evolution of Ligands by Exponential Enrichment, were described over two decades ago and since then contributed to a large number of structured nucleic acids for diagnostic or therapeutic purposes or for the understanding of the cell biology. Similarly to the phage display technique scarce use of the SELEX process has been used in the probing of parasite-host interaction.In this review, an overall survey on the use of both phage display and aptamer technologies in different pathogenic

  11. Selection of binding targets in parasites using phage-display and aptamer libraries in vivo and in vitro.

    Science.gov (United States)

    Tonelli, R R; Colli, W; Alves, M J M

    2012-01-01

    Parasite infections are largely dependent on interactions between pathogen and different host cell populations to guarantee a successful infectious process. This is particularly true for obligatory intracellular parasites as Plasmodium, Toxoplasma, and Leishmania, to name a few. Adhesion to and entry into the cell are essential steps requiring specific parasite and host cell molecules. The large amount of possible involved molecules poses additional difficulties for their identification by the classical biochemical approaches. In this respect, the search for alternative techniques should be pursued. Among them two powerful methodologies can be employed, both relying upon the construction of highly diverse combinatorial libraries of peptides or oligonucleotides that randomly bind with high affinity to targets on the cell surface and are selectively displaced by putative ligands. These are, respectively, the peptide-based phage display and the oligonucleotide-based aptamer techniques. The phage display technique has been extensively employed for the identification of novel ligands in vitro and in vivo in different areas such as cancer, vaccine development, and epitope mapping. Particularly, phage display has been employed in the investigation of pathogen-host interactions. Although this methodology has been used for some parasites with encouraging results, in trypanosomatids its use is, as yet, scanty. RNA and DNA aptamers, developed by the SELEX process (Systematic Evolution of Ligands by Exponential Enrichment), were described over two decades ago and since then contributed to a large number of structured nucleic acids for diagnostic or therapeutic purposes or for the understanding of the cell biology. Similarly to the phage display technique scarce use of the SELEX process has been used in the probing of parasite-host interaction. In this review, an overall survey on the use of both phage display and aptamer technologies in different pathogenic organisms will be

  12. Massively Parallel Interrogation of Aptamer Sequence, Structure and Function

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, N O; Tok, J B; Tarasow, T M

    2008-02-08

    Optimization of high affinity reagents is a significant bottleneck in medicine and the life sciences. The ability to synthetically create thousands of permutations of a lead high-affinity reagent and survey the properties of individual permutations in parallel could potentially relieve this bottleneck. Aptamers are single stranded oligonucleotides affinity reagents isolated by in vitro selection processes and as a class have been shown to bind a wide variety of target molecules. Methodology/Principal Findings. High density DNA microarray technology was used to synthesize, in situ, arrays of approximately 3,900 aptamer sequence permutations in triplicate. These sequences were interrogated on-chip for their ability to bind the fluorescently-labeled cognate target, immunoglobulin E, resulting in the parallel execution of thousands of experiments. Fluorescence intensity at each array feature was well resolved and shown to be a function of the sequence present. The data demonstrated high intra- and interchip correlation between the same features as well as among the sequence triplicates within a single array. Consistent with aptamer mediated IgE binding, fluorescence intensity correlated strongly with specific aptamer sequences and the concentration of IgE applied to the array. The massively parallel sequence-function analyses provided by this approach confirmed the importance of a consensus sequence found in all 21 of the original IgE aptamer sequences and support a common stem:loop structure as being the secondary structure underlying IgE binding. The microarray application, data and results presented illustrate an efficient, high information content approach to optimizing aptamer function. It also provides a foundation from which to better understand and manipulate this important class of high affinity biomolecules.

  13. Massively parallel interrogation of aptamer sequence, structure and function.

    Directory of Open Access Journals (Sweden)

    Nicholas O Fischer

    Full Text Available BACKGROUND: Optimization of high affinity reagents is a significant bottleneck in medicine and the life sciences. The ability to synthetically create thousands of permutations of a lead high-affinity reagent and survey the properties of individual permutations in parallel could potentially relieve this bottleneck. Aptamers are single stranded oligonucleotides affinity reagents isolated by in vitro selection processes and as a class have been shown to bind a wide variety of target molecules. METHODOLOGY/PRINCIPAL FINDINGS: High density DNA microarray technology was used to synthesize, in situ, arrays of approximately 3,900 aptamer sequence permutations in triplicate. These sequences were interrogated on-chip for their ability to bind the fluorescently-labeled cognate target, immunoglobulin E, resulting in the parallel execution of thousands of experiments. Fluorescence intensity at each array feature was well resolved and shown to be a function of the sequence present. The data demonstrated high intra- and inter-chip correlation between the same features as well as among the sequence triplicates within a single array. Consistent with aptamer mediated IgE binding, fluorescence intensity correlated strongly with specific aptamer sequences and the concentration of IgE applied to the array. CONCLUSION AND SIGNIFICANCE: The massively parallel sequence-function analyses provided by this approach confirmed the importance of a consensus sequence found in all 21 of the original IgE aptamer sequences and support a common stem:loop structure as being the secondary structure underlying IgE binding. The microarray application, data and results presented illustrate an efficient, high information content approach to optimizing aptamer function. It also provides a foundation from which to better understand and manipulate this important class of high affinity biomolecules.

  14. Selection, Identification, and Binding Mechanism Studies of an ssDNA Aptamer Targeted to Different Stages of E. coli O157:H7.

    Science.gov (United States)

    Zou, Ying; Duan, Nuo; Wu, Shijia; Shen, Mofei; Wang, Zhouping

    2018-06-06

    Enterohemorrhagic Escherichia coli O157:H7 ( E. coli O157:H7) is known as an important food-borne pathogen related to public health. In this study, aptamers which could bind to different stages of E. coli O157:H7 (adjustment phase, log phase, and stationary phase) with high affinity and specificity were obtained by the whole cell-SELEX method through 14 selection rounds including three counter-selection rounds. Altogether, 32 sequences were obtained, and nine families were classified to select the optimal aptamer. To analyze affinity and specificity by flow cytometer, an ssDNA aptamer named Apt-5 was picked out as the optimal aptamer that recognizes different stages of E. coli O157:H7 specifically with the K d value of 9.04 ± 2.80 nM. In addition, in order to study the binding mechanism, target bacteria were treated by proteinase K and trypsin, indicating that the specific binding site is not protein on the cell membrane. Furthermore, when we treated E. coli O157:H7 with EDTA, the result showed that the binding site might be lipopolysaccharide (LPS) on the outer membrane of E. coli O157:H7.

  15. Thermodynamic and biological evaluation of a thrombin binding aptamer modified with several unlocked nucleic acid (UNA) monomers and a 2′-C-piperazino-UNA monomer

    DEFF Research Database (Denmark)

    Jensen, Troels B.; Henriksen, Jonas Rosager; Rasmussen, Bjarne E.

    2011-01-01

    Thrombin binding aptamer is a DNA 15-mer which forms a G-quadruplex structure and possess promising anticoagulant properties due to specific interactions with thrombin. Herein we present the influence of a single 2′-C-piperazino-UNA residue and UNA residues incorporated in several positions on th...

  16. From Ugly Duckling to Swan: Unexpected Identification from Cell-SELEX of an Anti-Annexin A2 Aptamer Targeting Tumors

    Science.gov (United States)

    Cibiel, Agnes; Nguyen Quang, Nam; Gombert, Karine; Thézé, Benoit; Garofalakis, Anikitos; Ducongé, Frédéric

    2014-01-01

    Background Cell-SELEX is now widely used for the selection of aptamers against cell surface biomarkers. However, despite negative selection steps using mock cells, this method sometimes results in aptamers against undesirable targets that are expressed both on mock and targeted cells. Studying these junk aptamers might be useful for further applications than those originally envisaged. Methodology/Principal Findings Cell-SELEX was performed to identify aptamers against CHO-K1 cells expressing human Endothelin type B receptor (ETBR). CHO-K1 cells were used for negative selection of aptamers. Several aptamers were identified but no one could discriminate between both cell lines. We decided to study one of these aptamers, named ACE4, and we identified that it binds to the Annexin A2, a protein overexpressed in many cancers. Radioactive binding assays and flow cytometry demonstrated that the aptamer was able to bind several cancer cell lines from different origins, particularly the MCF-7 cells. Fluorescence microscopy revealed it could be completely internalized in cells in 2 hours. Finally, the tumor targeting of the aptamer was evaluated in vivo in nude mice xenograft with MCF-7 cells using fluorescence diffuse optical tomography (fDOT) imaging. Three hours after intravenous injection, the aptamer demonstrated a significantly higher uptake in the tumor compared to a scramble sequence. Conclusions/Significance Although aptamers could be selected during cell-SELEX against other targets than those initially intended, they represent a potential source of ligands for basic research, diagnoses and therapy. Here, studying such aptamers, we identify one with high affinity for Annexin A2 that could be a promising tool for biomedical application. PMID:24489826

  17. Binding-Induced Fluorescence of Serotonin Transporter Ligands

    DEFF Research Database (Denmark)

    Wilson, James; Ladefoged, Lucy Kate; Babinchak, Michael

    2014-01-01

    The binding-induced fluorescence of 4-(4-(dimethylamino)-phenyl)-1-methylpyridinium (APP(+)) and two new serotonin transporter (SERT)-binding fluorescent analogues, 1-butyl-4-[4-(1-dimethylamino)phenyl]-pyridinium bromide (BPP(+)) and 1-methyl-4-[4-(1-piperidinyl)phenyl]-pyridinium (PPP(+)), has...

  18. FRET-Aptamer Assays for Bone Marker Assessment, C-Telopeptide, Creatinine, and Vitamin D

    Science.gov (United States)

    Bruno, John G.

    2013-01-01

    Astronauts lose 1.0 to 1.5% of their bone mass per month on long-duration spaceflights. NASA wishes to monitor the bone loss onboard spacecraft to develop nutritional and exercise countermeasures, and make adjustments during long space missions. On Earth, the same technology could be used to monitor osteoporosis and its therapy. Aptamers bind to targets against which they are developed, much like antibodies. However, aptamers do not require animal hosts or cell culture and are therefore easier, faster, and less expensive to produce. In addition, aptamers sometimes exhibit greater affinity and specificity vs. comparable antibodies. In this work, fluorescent dyes and quenchers were added to the aptamers to enable pushbutton, one-step, bind-and-detect fluorescence resonance energy transfer (FRET) assays or tests that can be freeze-dried, rehydrated with body fluids, and used to quantitate bone loss of vitamin D levels with a handheld fluorometer in the spacecraft environment. This work generated specific, rapid, one-step FRET assays for the bone loss marker C-telopeptide (CTx) when extracted from urine, creatinine from urine, and vitamin D congeners in diluted serum. The assays were quantified in nanograms/mL using a handheld fluorometer connected to a laptop computer to convert the raw fluorescence values into concentrations of each analyte according to linear standard curves. DNA aptamers were selected and amplified for several rounds against a 26- amino acid form of CTx, creatinine, and vitamin D. The commonalities between loop structures were studied, and several common loop structures were converted into aptamer beacons with a fluorophore and quencher on each end. In theory, when the aptamer beacon binds its cognate target (CTx bone peptide, creatinine, or vitamin D), it is forced open and no longer quenched, so it gives off fluorescent light (when excited) in proportion to the amount of target present in a sample. This proportional increase in fluorescence is

  19. RNA aptamers targeted for human αA-crystallin do not bind αB-crystallin, and spare the α-crystallin domain.

    Science.gov (United States)

    Mallik, Prabhat K; Shi, Hua; Pande, Jayanti

    2017-09-16

    The molecular chaperones, α-crystallins, belong to the small heat shock protein (sHSP) family and prevent the aggregation and insolubilization of client proteins. Studies in vivo have shown that the chaperone activity of the α-crystallins is raised or lowered in various disease states. Therefore, the development of tools to control chaperone activity may provide avenues for therapeutic intervention, as well as enable a molecular understanding of chaperone function. The major human lens α-crystallins, αA- (HAA) and αB- (HAB), share 57% sequence identity and show similar activity towards some clients, but differing activities towards others. Notably, both crystallins contain the "α-crystallin domain" (ACD, the primary client binding site), like all other members of the sHSP family. Here we show that RNA aptamers selected for HAA, in vitro, exhibit specific affinity to HAA but do not bind HAB. Significantly, these aptamers also exclude the ACD. This study thus demonstrates that RNA aptamers against sHSPs can be designed that show high affinity and specificity - yet exclude the primary client binding region - thereby facilitating the development of RNA aptamer-based therapeutic intervention strategies. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Identification of RNAIII-binding proteins in Staphylococcus aureus using tethered RNAs and streptavidin aptamers based pull-down assay.

    Science.gov (United States)

    Zhang, Xu; Zhu, Qing; Tian, Tian; Zhao, Changlong; Zang, Jianye; Xue, Ting; Sun, Baolin

    2015-05-15

    It has been widely recognized that small RNAs (sRNAs) play important roles in physiology and virulence control in bacteria. In Staphylococcus aureus, many sRNAs have been identified and some of them have been functionally studied. Since it is difficult to identify RNA-binding proteins (RBPs), very little has been known about the RBPs in S. aureus, especially those associated with sRNAs. Here we adopted a tRNA scaffold streptavidin aptamer based pull-down assay to identify RBPs in S. aureus. The tethered RNA was successfully captured by the streptavidin magnetic beads, and proteins binding to RNAIII were isolated and analyzed by mass spectrometry. We have identified 81 proteins, and expressed heterologously 9 of them in Escherichia coli. The binding ability of the recombinant proteins with RNAIII was further analyzed by electrophoresis mobility shift assay, and the result indicates that proteins CshA, RNase J2, Era, Hu, WalR, Pyk, and FtsZ can bind to RNAIII. This study suggests that some proteins can bind to RNA III in S. aureus, and may be involved in RNA III function. And tRSA based pull-down assay is an effective method to search for RBPs in bacteria, which should facilitate the identification and functional study of RBPs in diverse bacterial species.

  1. Ligand-regulated peptide aptamers.

    Science.gov (United States)

    Miller, Russell A

    2009-01-01

    The peptide aptamer approach employs high-throughput selection to identify members of a randomized peptide library displayed from a scaffold protein by virtue of their interaction with a target molecule. Extending this approach, we have developed a peptide aptamer scaffold protein that can impart small-molecule control over the aptamer-target interaction. This ligand-regulated peptide (LiRP) scaffold, consisting of the protein domains FKBP12, FRB, and GST, binds to the cell-permeable small-molecule rapamycin and the binding of this molecule can prevent the interaction of the randomizable linker region connecting FKBP12 with FRB. Here we present a detailed protocol for the creation of a peptide aptamer plasmid library, selection of peptide aptamers using the LiRP scaffold in a yeast two-hybrid system, and the screening of those peptide aptamers for a ligand-regulated interaction.

  2. Nucleic Acid Aptamers Against Proteases

    DEFF Research Database (Denmark)

    Dupont, D M; Andersen, L M; Bøtkjær, Kenneth Alrø

    2011-01-01

    , directed against blood coagulation factors, are in clinical trials as anticoagulant drugs. Several of the studies on protease-binding aptamers have been pioneering and trend-setting in the field. The work with protease-binding aptamers also demonstrates many interesting examples of non-standard selection......Proteases are potential or realized therapeutic targets in a wide variety of pathological conditions. Moreover, proteases are classical subjects for studies of enzymatic and regulatory mechanisms. We here review the literature on nucleic acid aptamers selected with proteases as targets. Designing...... small molecule protease inhibitors of sufficient specificity has proved a daunting task. Aptamers seem to represent a promising alternative. In our review, we concentrate on biochemical mechanisms of aptamer selection, proteinaptamer recognition, protease inhibition, and advantages of aptamers...

  3. A visual dual-aptamer logic gate for sensitive discrimination of prion diseases-associated isoform with reusable magnetic microparticles and fluorescence quantum dots.

    Science.gov (United States)

    Xiao, Sai Jin; Hu, Ping Ping; Chen, Li Qiang; Zhen, Shu Jun; Peng, Li; Li, Yuan Fang; Huang, Cheng Zhi

    2013-01-01

    Molecular logic gates, which have attracted increasing research interest and are crucial for the development of molecular-scale computers, simplify the results of measurements and detections, leaving the diagnosis of disease either "yes" or "no". Prion diseases are a group of fatal neurodegenerative disorders that happen in human and animals. The main problem with a diagnosis of prion diseases is how to sensitively and selectively discriminate and detection of the minute amount of PrP(Res) in biological samples. Our previous work had demonstrated that dual-aptamer strategy could achieve highly sensitive and selective discrimination and detection of prion protein (cellular prion protein, PrP(C), and the diseases associated isoform, PrP(Res)) in serum and brain. Inspired by the advantages of molecular logic gate, we further conceived a new concept for dual-aptamer logic gate that responds to two chemical input signals (PrP(C) or PrP(Res) and Gdn-HCl) and generates a change in fluorescence intensity as the output signal. It was found that PrP(Res) performs the "OR" logic operation while PrP(C) performs "XOR" logic operation when they get through the gate consisted of aptamer modified reusable magnetic microparticles (MMPs-Apt1) and quantum dots (QDs-Apt2). The dual-aptamer logic gate simplifies the discrimination results of PrP(Res), leaving the detection of PrP(Res) either "yes" or "no". The development of OR logic gate based on dual-aptamer strategy and two chemical input signals (PrP(Res) and Gdn-HCl) is an important step toward the design of prion diseases diagnosis and therapy systems.

  4. A visual dual-aptamer logic gate for sensitive discrimination of prion diseases-associated isoform with reusable magnetic microparticles and fluorescence quantum dots.

    Directory of Open Access Journals (Sweden)

    Sai Jin Xiao

    Full Text Available Molecular logic gates, which have attracted increasing research interest and are crucial for the development of molecular-scale computers, simplify the results of measurements and detections, leaving the diagnosis of disease either "yes" or "no". Prion diseases are a group of fatal neurodegenerative disorders that happen in human and animals. The main problem with a diagnosis of prion diseases is how to sensitively and selectively discriminate and detection of the minute amount of PrP(Res in biological samples. Our previous work had demonstrated that dual-aptamer strategy could achieve highly sensitive and selective discrimination and detection of prion protein (cellular prion protein, PrP(C, and the diseases associated isoform, PrP(Res in serum and brain. Inspired by the advantages of molecular logic gate, we further conceived a new concept for dual-aptamer logic gate that responds to two chemical input signals (PrP(C or PrP(Res and Gdn-HCl and generates a change in fluorescence intensity as the output signal. It was found that PrP(Res performs the "OR" logic operation while PrP(C performs "XOR" logic operation when they get through the gate consisted of aptamer modified reusable magnetic microparticles (MMPs-Apt1 and quantum dots (QDs-Apt2. The dual-aptamer logic gate simplifies the discrimination results of PrP(Res, leaving the detection of PrP(Res either "yes" or "no". The development of OR logic gate based on dual-aptamer strategy and two chemical input signals (PrP(Res and Gdn-HCl is an important step toward the design of prion diseases diagnosis and therapy systems.

  5. The "Janus face" of the thrombin binding aptamer: Investigating the anticoagulant and antiproliferative properties through straightforward chemical modifications.

    Science.gov (United States)

    Esposito, Veronica; Russo, Annapina; Amato, Teresa; Vellecco, Valentina; Bucci, Mariarosaria; Mayol, Luciano; Russo, Giulia; Virgilio, Antonella; Galeone, Aldo

    2018-02-01

    The thrombin binding aptamer (TBA) is endowed with both anticoagulant and antiproliferative activities. Its chemico-physical and/or biological properties can be tuned by the site-specific replacement of selected residues. Four oligodeoxynucleotides (ODNs) based on the TBA sequence (5'-GGTTGGTGTGGTTGG-3') and containing 2'-deoxyuridine (U) or 5-bromo-2'-deoxyuridine (B) residues at positions 4 or 13 have been investigated by NMR and CD techniques. Furthermore, their anticoagulant (PT assay) and antiproliferative properties (MTT assay) have been tested and compared with two further ODNs containing 5-hydroxymethyl-2'-deoxyuridine (H) residues in the same positions, previously investigated. The CD and NMR data suggest that all the investigated ODNs are able to form G-quadruplexes strictly resembling that of TBA. The introduction of B residues in positions 4 or 13 increases the melting temperature of the modified aptamers by 7 °C. The replacement of thymidines with U in the same positions results in an enhanced anticoagulant activity compared to TBA, also at low ODN concentration. Although all ODNs show antiproliferative properties, only TBA derivatives containing H in the positions 4 and 13 lose the anticoagulant activity and remarkably preserve the antiproliferative one. All ODNs have shown antiproliferative activities against two cancer cell lines but only those with U and B are endowed with anticoagulant activities similar or improved compared to TBA. The appropriate site-specific replacement of the residues in the TT loops of TBA with commercially available thymine analogues is a useful strategy either to improve the anticoagulant activity or to preserve the antiproliferative properties by quenching the anticoagulant ones. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Tissue-type plasminogen activator-binding RNA aptamers inhibiting low-density lipoprotein receptor family-mediated internalisation.

    Science.gov (United States)

    Bjerregaard, Nils; Bøtkjær, Kenneth A; Helsen, Nicky; Andreasen, Peter A; Dupont, Daniel M

    2015-07-01

    Recombinant tissue-type plasminogen activator (tPA, trade name Alteplase), currently the only drug approved by the US Food and Drug Administration and the European Medicines Agency for the treatment of cerebral ischaemic stroke, has been implicated in a number of adverse effects reportedly mediated by interactions with the low-density lipoprotein (LDL) family receptors, including neuronal cell death and an increased risk of cerebral haemorrhage. The tissue-type plasminogen activator is the principal initiator of thrombolysis in human physiology, an effect that is mediated directly via localised activation of the plasmin zymogen plasminogen at the surface of fibrin clots in the vascular lumen. Here, we sought to identify a ligand to tPA capable of inhibiting the relevant LDL family receptors without interfering with the fibrinolytic activity of tPA. Systematic evolution of ligands by exponential enrichment (SELEX) was employed to isolate tPA-binding RNA aptamers, which were characterised in biochemical assays of tPA association to low density lipoprotein receptor-related protein-1 (LRP-1, an LDL receptor family member); tPA-mediated in vitro and ex vivo clot lysis; and tPA-mediated plasminogen activation in the absence and presence of a stimulating soluble fibrin fragment. Two aptamers, K18 and K32, had minimal effects on clot lysis, but were able to efficiently inhibit tPA-LRP-1 association and LDL receptor family-mediated endocytosis in human vascular endothelial cells and astrocytes. These observations suggest that coadministration alongside tPA may be a viable strategy to improve the safety of thrombolytic treatment of cerebral ischaemic stroke by restricting tPA activity to the vascular lumen.

  7. A combination of positive dielectrophoresis driven on-line enrichment and aptamer-fluorescent silica nanoparticle label for rapid and sensitive detection of Staphylococcus aureus.

    Science.gov (United States)

    Shangguan, Jingfang; Li, Yuhong; He, Dinggeng; He, Xiaoxiao; Wang, Kemin; Zou, Zhen; Shi, Hui

    2015-07-07

    Staphylococcus aureus (S. aureus) is an important human pathogen that causes several diseases ranging from superficial skin infections to life-threatening diseases. Here, a method combining positive dielectrophoresis (pDEP) driven on-line enrichment and aptamer-fluorescent silica nanoparticle label has been developed for the rapid and sensitive detection of S. aureus in microfluidic channels. An aptamer, having high affinity to S. aureus, is used as the molecular recognition tool and immobilized onto chloropropyl functionalized fluorescent silica nanoparticles through a click chemistry approach to obtain S. aureus aptamer-nanoparticle bioconjugates (Apt(S.aureus)/FNPs). The pDEP driven on-line enrichment technology was used for accumulating the Apt(S.aureus)/FNP labeled S. aureus. After incubating with S. aureus, the mixture of Apt(S.aureus)/FNP labeled S. aureus and Apt(S.aureus)/FNPs was directly introduced into the pDEP-based microfluidic system. By applying an AC voltage in a pDEP frequency region, the Apt(S.aureus)/FNP labelled S. aureus moved to the electrodes and accumulated in the electrode gap, while the free Apt(S.aureus)/FNPs flowed away. The signal that came from the Apt(S.aureus)/FNP labelled S. aureus in the focused detection areas was then detected. Profiting from the specificity of aptamer, signal amplification of FNP label and pDEP on-line enrichment, this assay can detect as low as 93 and 270 cfu mL(-1)S. aureus in deionized water and spiked water samples, respectively, with higher sensitivities than our previously reported Apt(S.aureus)/FNP based flow cytometry. Moreover, without the need for separation and washing steps usually required for FNP label involved bioassays, the total assay time including sample pretreatment was within 2 h.

  8. Identification and application of ssDNA aptamers against H₃₇Rv in the detection of Mycobacterium tuberculosis.

    Science.gov (United States)

    Aimaiti, Rusitanmujiang; Qin, Lianhua; Cao, Ting; Yang, Hua; Wang, Jie; Lu, Junmei; Huang, Xiaochen; Hu, Zhongyi

    2015-11-01

    Microscopy of direct smear with the Ziehl-Neelsen stain is still broadly used in tuberculosis diagnosis. However, this method suffers from low specificity and is difficult to distinguish Mycobacterium tuberculosis (MTB) from nontuberculosis mycobacterial (NTM), since all mycobacterial species are positive in Ziehl-Neelsen stain. In this study, we utilized whole cell SELEX to obtain species-specific aptamers for increasing the specificity of MTB detection. Whole cell SELEX was performed in MTB reference strain H37Rv by two selection processes based on enzyme-linked plate or Eppendorf tube, respectively. To increase success rate of generating aptamers, the selection processes were systematically monitored to understand the dynamic evolution of aptamers against complex structure of target bacteria. Two preponderant groups and ten high-affinity aptamers were obtained by analyzing the dynamic evolution. Preponderant aptamer MA1 from group I showed relatively high binding affinity with apparent dissociation constant (KD value) of 12.02 nM. Sandwich ELISA assay revealed five aptamer combinations effectively bound MTB strains in preliminary evaluation, especially the combination based on aptamer MA2 (another preponderant aptamer from group II) and MA1. Further evaluated in many other strains, MA2/MA1 combination effectively identified MTB from NTM or other pathogenic bacteria, and displayed the high specificity and sensitivity. Binding analysis of aptamer MA1 or MA2 by fluorescence microscopy observation showed high binding reactivity with H37Rv, low apparent cross-reactivity with M. marinum, and no apparent cross-reactivity with Enterobacter cloacae. Taken together, this study provides attractive candidate species-specific aptamers to effectively capture or discriminate MTB strains.

  9. A versatile and highly sensitive homogeneous electrochemical strategy based on the split aptamer binding-induced DNA three-way junction and exonuclease III-assisted target recycling.

    Science.gov (United States)

    Hou, Ting; Li, Wei; Zhang, Lianfang; Li, Feng

    2015-08-21

    Herein, a highly sensitive and versatile homogeneous electrochemical biosensing strategy is proposed, based on the split aptamer-incorporated DNA three-way junction and the exonuclease (Exo) III-assisted target recycling. The aptamer of adenosine triphosphate (ATP, chosen as the model analyte) is split into two fragments and embedded in single-stranded DNA1 and DNA2, respectively. ATP specifically binds with the split aptamers, bringing DNA1 and DNA2 close to each other, thus inducing the DNA three-way junction formation through the partial hybridization among DNA1, DNA2 and the methylene blue-labelled MB-DNA. Subsequently, MB-DNA is specifically digested by Exo III, releasing a MB-labelled mononucleotide, as well as a DNA1-ATP-DNA2 complex, which acts as the recycled target and hybridizes with another intact MB-DNA to initiate the subsequent cycling cleavage process. As a result, large amounts of MB-labelled mononucleotides are released, generating a significantly amplified electrochemical signal toward the ATP assay. To the best of our knowledge, it is the first example to successfully incorporate split aptamers into DNA three-way junctions and to be adopted in a homogeneous electrochemical assay. In addition to high sensitivity, this strategy also exhibits the advantages of simplicity and convenience, because it is carried out in a homogeneous solution, and sophisticated electrode modification processes are avoided. By simply changing the sequences of the split aptamer fragments, this versatile strategy can be easily adopted to assay a large spectrum of targets. Due to its advantages of high sensitivity, excellent selectivity, versatility and simple operation, the as-proposed approach has great potential to be applied in biochemical research and clinical practices.

  10. A general excimer signaling approach for aptamer sensors.

    Science.gov (United States)

    Wu, Cuichen; Yan, Ling; Wang, Chunming; Lin, Haoxue; Wang, Chi; Chen, Xi; Yang, Chaoyong James

    2010-06-15

    Simple, fast and direct analysis or monitoring of significant molecules in complex biological samples is important for many biological study, clinical diagnosis and forensic investigations. Herein we highlight a general method to tailor aptamer sequence into functional subunits to design target-induced light-switching excimer sensors for rapid, sensitive and selective detection of important molecules in complex biological fluids. Our approach is to split one single strand aptamer into two pieces and each terminally labeled with a pyrene molecule while maintaining their binding affinity to target molecules. In the presence of target molecules, two aptamer fragments are induced to self-assemble to form aptamer-target complex and bring two pyrene molecules into a close proximity to form an excimer, resulting in fluorescent switching from approximately 400 nm to 485 nm. With an anti-cocaine sensor, as low as 1 microM of cocaine can be detected using steady-state fluorescence assays and more importantly low picomole level of target can be directly visualized with naked eyes. Because the excimer has a long fluorescence lifetime, time-resolved measurements were used to directly detect as low as 5 microM cocaine in urine samples quantitatively without any sample pretreatment. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Rapid detection of food pathogens using RNA aptamers-immobilized slide.

    Science.gov (United States)

    Maeng, Jin-Soo; Kim, Namsoo; Kim, Chong-Tai; Han, Seung Ryul; Lee, Young Ju; Lee, Seong-Wook; Lee, Myung-Hyun; Cho, Yong-Jin

    2012-07-01

    The purpose of this study was to develop a simple and rapid detection system for foodborne bacteria, which consisted of an optical microscope and its slide chip with artificial antibodies, or RNA aptamers. From an RNA pool, three each RNA aptamers were built by the method of SELEX (systematic evolution of ligands by exponential enrichment) for components of cell wall, LPS (lipopolysaccharide) from E. coli O157:H7, teichoic acid from Staphylococcus aureus and a cell membrane protein of OmpC from Salmonella typhimurium, respectively. These aptamers were hybridized with thiol-conjugated 16 dT-linker molecules in order to be immobilized on silver surface which was, in advance, fabricated on glass slide, using a spin-coating method. To confirm that each aptamers retained its specific binding activities to their antigenic live bacteria, microscopic view of bound cells immobilized on silver film were observed. Furthermore, we observed the fluorescence-emitting bacteria-aptamer complex immobilized on silver film after adding RNA aptamers hybridized with fluorophore, FAM-conjugated 16 dT-linker molecules. As a result, the RNA aptamers-immobilized slide system developed in this study was a useful new tool to rapidly monitor individual food pathogens.

  12. Facile and Cost-Effective Detection of Saxitoxin Exploiting Aptamer Structural Switching

    Directory of Open Access Journals (Sweden)

    Karol Alfaro

    2015-01-01

    Full Text Available A simple method to detect saxitoxin (STX, one of the main components of the paralytic shellfish poison from red tide, has been developed. By using a next generation dye for double-stranded DNA we were able to differentiate fluorescence from STX-binding aptamers when exposed to different concentrations of STX, suggesting a change in aptamer folding upon target binding. The developed method is extremely rapid, only requiring small sample volumes, with quantitative results in the concentration range of 15 ng/mL to 3 μg/mL of STX, with a detection limit of 7.5 ng/mL.

  13. Glutamate Receptor Aptamers and ALS

    National Research Council Canada - National Science Library

    Niu, Li

    2008-01-01

    .... An aptamer is a single-stranded nucleic acid that directly inhibits a protein's function by folding into a specific tertiary structure that dictates high-affinity binding to the target protein...

  14. Use of a conformational switching aptamer for rapid and specific ex vivo identification of central nervous system lymphoma in a xenograft model.

    Directory of Open Access Journals (Sweden)

    Joseph F Georges

    Full Text Available Improved tools for providing specific intraoperative diagnoses could improve patient care. In neurosurgery, intraoperatively differentiating non-operative lesions such as CNS B-cell lymphoma from operative lesions can be challenging, often necessitating immunohistochemical (IHC procedures which require up to 24-48 hours. Here, we evaluate the feasibility of generating rapid ex vivo specific labeling using a novel lymphoma-specific fluorescent switchable aptamer. Our B-cell lymphoma-specific switchable aptamer produced only low-level fluorescence in its unbound conformation and generated an 8-fold increase in fluorescence once bound to its target on CD20-positive lymphoma cells. The aptamer demonstrated strong binding to B-cell lymphoma cells within 15 minutes of incubation as observed by flow cytometry. We applied the switchable aptamer to ex vivo xenograft tissue harboring B-cell lymphoma and astrocytoma, and within one hour specific visual identification of lymphoma was routinely possible. In this proof-of-concept study in human cell culture and orthotopic xenografts, we conclude that a fluorescent switchable aptamer can provide rapid and specific labeling of B-cell lymphoma, and that developing aptamer-based labeling approaches could simplify tissue staining and drastically reduce time to histopathological diagnoses compared with IHC-based methods. We propose that switchable aptamers could enhance expeditious, accurate intraoperative decision-making.

  15. Use of a conformational switching aptamer for rapid and specific ex vivo identification of central nervous system lymphoma in a xenograft model.

    Science.gov (United States)

    Georges, Joseph F; Liu, Xiaowei; Eschbacher, Jennifer; Nichols, Joshua; Mooney, Michael A; Joy, Anna; Spetzler, Robert F; Feuerstein, Burt G; Preul, Mark C; Anderson, Trent; Yan, Hao; Nakaji, Peter

    2015-01-01

    Improved tools for providing specific intraoperative diagnoses could improve patient care. In neurosurgery, intraoperatively differentiating non-operative lesions such as CNS B-cell lymphoma from operative lesions can be challenging, often necessitating immunohistochemical (IHC) procedures which require up to 24-48 hours. Here, we evaluate the feasibility of generating rapid ex vivo specific labeling using a novel lymphoma-specific fluorescent switchable aptamer. Our B-cell lymphoma-specific switchable aptamer produced only low-level fluorescence in its unbound conformation and generated an 8-fold increase in fluorescence once bound to its target on CD20-positive lymphoma cells. The aptamer demonstrated strong binding to B-cell lymphoma cells within 15 minutes of incubation as observed by flow cytometry. We applied the switchable aptamer to ex vivo xenograft tissue harboring B-cell lymphoma and astrocytoma, and within one hour specific visual identification of lymphoma was routinely possible. In this proof-of-concept study in human cell culture and orthotopic xenografts, we conclude that a fluorescent switchable aptamer can provide rapid and specific labeling of B-cell lymphoma, and that developing aptamer-based labeling approaches could simplify tissue staining and drastically reduce time to histopathological diagnoses compared with IHC-based methods. We propose that switchable aptamers could enhance expeditious, accurate intraoperative decision-making.

  16. Use of a conformational switching aptamer for rapid and specific ex vivo identification of central nervous system lymphoma in a xenograft model

    Science.gov (United States)

    Georges, Joseph F.; Liu, Xiaowei; Eschbacher, Jennifer; Nichols, Joshua; Mooney, Michael A.; Joy, Anna; Spetzler, Robert F.; Feuerstein, Burt G.; Anderson, Trent; Preul, Mark C.; Yan, Hao; Nakaji, Peter

    2018-02-01

    Improved tools for providing specific intraoperative diagnoses could improve patient care. In neurosurgery, intraoperatively differentiating non-operative lesions can be challenging, often necessitating immunohistochemical (IHC) procedures which require up to 24-48 hours. Here, we evaluate the feasibility of generating rapid ex vivo specific labeling using a novel lymphoma-specific fluorescent switchable aptamer. Our B-cell lymphoma-specific switchable aptamer produced only low-level fluorescence in its unbound conformation and generated an 8-fold increase in fluorescence once bound to its target on CD20-positive lymphoma cells. The aptamer demonstrated strong binding to B-cell lymphoma cells within 10 minutes of incubation. We applied the switchable aptamer to ex vivo xenograft tissue harboring B-cell lymphoma and astrocytoma, and within one hour specific visual identification of lymphoma was routinely possible. In this proof-of-concept study in human cell culture and orthotopic xenografts, we conclude that a fluorescent switchable aptamer can provide rapid and specific labeling of B-cell lymphoma, and that developing aptamer-based labeling approaches could simplify tissue staining and drastically reduce time to histopathological diagnoses compared with IHC-based methods. We propose that switchable aptamers could enhance expeditious, accurate intraoperative decision-making.

  17. RNA signal amplifier circuit with integrated fluorescence output.

    Science.gov (United States)

    Akter, Farhima; Yokobayashi, Yohei

    2015-05-15

    We designed an in vitro signal amplification circuit that takes a short RNA input that catalytically activates the Spinach RNA aptamer to produce a fluorescent output. The circuit consists of three RNA strands: an internally blocked Spinach aptamer, a fuel strand, and an input strand (catalyst), as well as the Spinach aptamer ligand 3,5-difluoro-4-hydroxylbenzylidene imidazolinone (DFHBI). The input strand initially displaces the internal inhibitory strand to activate the fluorescent aptamer while exposing a toehold to which the fuel strand can bind to further displace and recycle the input strand. Under a favorable condition, one input strand was able to activate up to five molecules of the internally blocked Spinach aptamer in 185 min at 30 °C. The simple RNA circuit reported here serves as a model for catalytic activation of arbitrary RNA effectors by chemical triggers.

  18. Aptamer-Based Technologies in Foodborne Pathogen Detection.

    Science.gov (United States)

    Teng, Jun; Yuan, Fang; Ye, Yingwang; Zheng, Lei; Yao, Li; Xue, Feng; Chen, Wei; Li, Baoguang

    2016-01-01

    Aptamers are single stranded DNA or RNA ligands, which can be selected by a method called systematic evolution of ligands by exponential enrichment (SELEX); and they can specifically recognize and bind to their targets. These unique characteristics of aptamers offer great potentials in applications such as pathogen detection and biomolecular screening. Pathogen detection is the critical means in detecting and identifying the problems related to public health and food safety; and only the rapid, sensitive and efficient detection technologies can enable the users to make the accurate assessments on the risks of infections (humans and animals) or contaminations (foods and other commodities) caused by various pathogens. This article reviews the development in the field of the aptamer-based approaches for pathogen detection, including whole-cell SELEX and Genomic SELEX. Nowadays, a variety of aptamer-based biosensors have been developed for pathogen detection. Thus, in this review, we also cover the development in aptamer-based biosensors including optical biosensors for multiple pathogen detection by multiple-labeling or label-free models such as fluorescence detection and surface plasmon resonance, electrochemical biosensors and lateral chromatography test strips, and their applications in pathogen detection and biomolecular screening. While notable progress has been made in the field in the last decade, challenges or drawbacks in their applications such as pathogen detection and biomolecular screening remain to be overcome.

  19. Aptamer-Based Technologies in Foodborne Pathogen Detection

    Directory of Open Access Journals (Sweden)

    Jun Teng

    2016-09-01

    Full Text Available Aptamers are single stranded DNA or RNA ligands, which can be selected by a method called systematic evolution of ligands by exponential enrichment (SELEX; and they can specifically recognize and bind to their targets. These unique characteristics of aptamers offer great potentials in applications such as pathogen detection and biomolecular screening. Pathogen detection is the first and critical means in detecting and identifying the problems related to public health and food safety; and only the rapid, sensitive and efficient detection technologies can enable the users to make to accurate assessments on the risk of infections (humans and animals or contaminations (foods and other commodities caused by various pathogens. This article reviews the developments in the field of the aptamer-based approaches for pathogen detection, including whole-cell SELEX and Genomic SELEX. Nowadays, a variety of aptamer-based biosensors have been developed for pathogen detection. Thus, in this review, we also cover the development of aptamer-based biosensors including optical biosensors for multiple pathogen detection in multiple-labeling or label-free models such as fluorescence detection and surface plasmon resonance, electrochemical biosensors, and lateral chromatography test strips, and their applications in the pathogen detection and biomolecular screening. While notable progress has been made in the field in the last decade, challenges or drawbacks in their applications such as pathogen detection and biomolecular screening, remain to be overcome.

  20. 3-D Image Analysis of Fluorescent Drug Binding

    Directory of Open Access Journals (Sweden)

    M. Raquel Miquel

    2005-01-01

    Full Text Available Fluorescent ligands provide the means of studying receptors in whole tissues using confocal laser scanning microscopy and have advantages over antibody- or non-fluorescence-based method. Confocal microscopy provides large volumes of images to be measured. Histogram analysis of 3-D image volumes is proposed as a method of graphically displaying large amounts of volumetric image data to be quickly analyzed and compared. The fluorescent ligand BODIPY FL-prazosin (QAPB was used in mouse aorta. Histogram analysis reports the amount of ligand-receptor binding under different conditions and the technique is sensitive enough to detect changes in receptor availability after antagonist incubation or genetic manipulations. QAPB binding was concentration dependent, causing concentration-related rightward shifts in the histogram. In the presence of 10 μM phenoxybenzamine (blocking agent, the QAPB (50 nM histogram overlaps the autofluorescence curve. The histogram obtained for the 1D knockout aorta lay to the left of that of control and 1B knockout aorta, indicating a reduction in 1D receptors. We have shown, for the first time, that it is possible to graphically display binding of a fluorescent drug to a biological tissue. Although our application is specific to adrenergic receptors, the general method could be applied to any volumetric, fluorescence-image-based assay.

  1. Fluorescence spectroscopic studies on binding of a flavonoid ...

    Indian Academy of Sciences (India)

    Unknown

    six principal binding sites have been identified for several important biomolecules.4 ... lized), tryptophan and quercetin from Sigma were used as received. .... +..... (6). Here Fo and F are the fluorescence intensity from the fluorophore, albumin, at 342 nm in the absence and the presence of different concentrations of ...

  2. Aptamer-functionalized magnetic nanoparticles for simultaneous fluorometric determination of oxytetracycline and kanamycin

    International Nuclear Information System (INIS)

    Liu, Changbin; Lu, Chunxia; Tang, Zonggui; Chen, Xia; Wang, Guohong; Sun, Fengxia

    2015-01-01

    This work describes a method for the simultaneous detection of oxytetracycline (OTC) and kanamycin (KMY) using aptamers acting as both recognition and separation elements, and complementary oligonucleotides labeled with a green emitting fluorophore (carboxyfluorescein, FAM) and a yellow emitting fluorophore (carboxy-X-rhodamine, ROX), respectively, as signal labels. An OTC aptamer and a KMY aptamer were immobilized on the surface of magnetic nanoparticles (MNPs) via avidin-biotin chemistry. The aptamers preferentially bind their respective targets and thereby cause the upconcentration of analytes. However, in their absence they bind fluorescently-tagged complementary oligonucleotide later added to the reaction system. This cause the NPs to become fluorescent, with emission peaks located at 520 and 608 nm, respectively. The effects of the concentration of avidin, aptamer, complementary oligonucleotide, incubation temperature and incubation time were optimized. Under the optimal conditions, linear relationships were obtained in the range of 1–50 ng∙mL −1 for OTC and KMY, with limits of detection of 0.85 ng∙mL −1 and 0.92 ng∙mL −1 , respectively. The method was applied to the analysis of pork, milk, and honey samples spiked with OTC and MKY. Recoveries ranged from 76.5 to 94.7 % and 77.8 to 93.1 %, respectively, and the relative standard deviation was <10.0 %. (author)

  3. A label-free aptamer-fluorophore assembly for rapid and specific detection of cocaine in biofluids.

    Science.gov (United States)

    Roncancio, Daniel; Yu, Haixiang; Xu, Xiaowen; Wu, Shuo; Liu, Ran; Debord, Joshua; Lou, Xinhui; Xiao, Yi

    2014-11-18

    We report a rapid and specific aptamer-based method for one-step cocaine detection with minimal reagent requirements. The feasibility of aptamer-based detection has been demonstrated with sensors that operate via target-induced conformational change mechanisms, but these have generally exhibited limited target sensitivity. We have discovered that the cocaine-binding aptamer MNS-4.1 can also bind the fluorescent molecule 2-amino-5,6,7-trimethyl-1,8-naphthyridine (ATMND) and thereby quench its fluorescence. We subsequently introduced sequence changes into MNS-4.1 to engineer a new cocaine-binding aptamer (38-GC) that exhibits higher affinity to both ligands, with reduced background signal and increased signal gain. Using this aptamer, we have developed a new sensor platform that relies on the cocaine-mediated displacement of ATMND from 38-GC as a result of competitive binding. We demonstrate that our sensor can detect cocaine within seconds at concentrations as low as 200 nM, which is 50-fold lower than existing assays based on target-induced conformational change. More importantly, our assay achieves successful cocaine detection in body fluids, with a limit of detection of 10.4, 18.4, and 36 μM in undiluted saliva, urine, and serum samples, respectively.

  4. Aptamers for Targeted Drug Delivery

    Directory of Open Access Journals (Sweden)

    Partha Ray

    2010-05-01

    Full Text Available Aptamers are a class of therapeutic oligonucleotides that form specific three-dimensional structures that are dictated by their sequences. They are typically generated by an iterative screening process of complex nucleic acid libraries employing a process termed Systemic Evolution of Ligands by Exponential Enrichment (SELEX. SELEX has traditionally been performed using purified proteins, and cell surface receptors may be challenging to purify in their properly folded and modified conformations. Therefore, relatively few aptamers have been generated that bind cell surface receptors. However, improvements in recombinant fusion protein technology have increased the availability of receptor extracellular domains as purified protein targets, and the development of cell-based selection techniques has allowed selection against surface proteins in their native configuration on the cell surface. With cell-based selection, a specific protein target is not always chosen, but selection is performed against a target cell type with the goal of letting the aptamer choose the target. Several studies have demonstrated that aptamers that bind cell surface receptors may have functions other than just blocking receptor-ligand interactions. All cell surface proteins cycle intracellularly to some extent, and many surface receptors are actively internalized in response to ligand binding. Therefore, aptamers that bind cell surface receptors have been exploited for the delivery of a variety of cargoes into cells. This review focuses on recent progress and current challenges in the field of aptamer-mediated delivery.

  5. Use of a Fluorescent Aptamer RNA as an Exonic Sequence to Analyze Self-Splicing Ability of a Group I Intron from Structured RNAs

    Directory of Open Access Journals (Sweden)

    Airi Furukawa

    2016-11-01

    Full Text Available Group I self-splicing intron constitutes an important class of functional RNA molecules that can promote chemical transformation. Although the fundamental mechanism of the auto-excision from its precursor RNA has been established, convenient assay systems for its splicing activity are still useful for a further understanding of its detailed mechanism and of its application. Because some host RNA sequences, to which group I introns inserted form stable three-dimensional (3D structures, the effects of the 3D structures of exonic elements on the splicing efficiency of group I introns are important but not a fully investigated issue. We developed an assay system for group I intron self-splicing by employing a fluorescent aptamer RNA (spinach RNA as a model exonic sequence inserted by the Tetrahymena group I intron. We investigated self-splicing of the intron from spinach RNA, serving as a model exonic sequence with a 3D structure.

  6. Selection and characterization of DNA aptamers

    NARCIS (Netherlands)

    Ruigrok, V.J.B.

    2013-01-01

    This thesis focusses on the selection and characterisation of DNA aptamers and the various aspects related to their selection from large pools of randomized oligonucleotides. Aptamers are affinity tools that can specifically recognize and bind predefined target molecules; this ability, however,

  7. Development of radiopharmaceuticals based on aptamers: selection and characterization of DNA aptamers for CEA

    International Nuclear Information System (INIS)

    Correa, C.R.; Andrade, A.S.R.; Augusto-Pinto, L.; Goes, A.M.

    2011-01-01

    Colorectal cancer is among the top four causes of cancer deaths worldwide. Carcinoembryonic antigen (CEA) is a complex intracellular glycoprotein produced by about 90% of colorectal cancers. CEA has been identified as an attractive target for cancer research because of its pattern of expression in the surface cell and its likely functional role in tumorigenesis. Research on the rapid selection of ligands based on the SELEX (systematic evolution of ligands by exponential enrichment) forms the basis for the development of high affinity and high specificity molecules, which can bind to surface determinants of tumour cells, like CEA. The oligonucleotides ligands generated in this technique are called aptamers. Aptamers can potentially find applications as therapeutic or diagnostic tools for many kind of diseases, like a tumor. Aptamers offer low immunogenicity, good tumour penetration, rapid uptake and fast systemic clearance, which favour their application as effective vehicles for radiotherapy. In addition aptamers can be labeled with different radioactive isotopes. The aim of this work was select aptamers binding to the CEA tumor marker. The aptamers are obtained through by SELEX, in which aptamers are selected from a library of random sequences of synthetic DNA by repetitive binding of the oligonucleotides to target molecule (CEA). Analyses of the secondary structure of the aptamers were determined using the m fold toll. Three aptamers were selected to binding assay with target cells. These aptamers were confirmed to have affinity and specific binding for T84 cell line (target cell), showed by confocal imaging. We are currently studying the potential efficacy of these aptamers as targeted radiopharmaceuticals, for use as imaging agents or therapeutic applications. The development of aptamers specific to CEA open new perspectives for colorectal cancer diagnosis and treatment. Acknowledgments: This investigation was supported by the Centro de Desenvolvimento da

  8. Development of radiopharmaceuticals based on aptamers: selection and characterization of DNA aptamers for CEA

    Energy Technology Data Exchange (ETDEWEB)

    Correa, C.R.; Andrade, A.S.R., E-mail: antero@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Augusto-Pinto, L. [BioAptus, Belo Horizonte, MG (Brazil); Goes, A.M., E-mail: goes@icb.ufmg.br [Departamento de Imunologia e Bioquimica. Instituto de Ciencias Biologicas. Universidade Federal de Minas Gerais. Belo Horizonte, MG (Brazil)

    2011-07-01

    Colorectal cancer is among the top four causes of cancer deaths worldwide. Carcinoembryonic antigen (CEA) is a complex intracellular glycoprotein produced by about 90% of colorectal cancers. CEA has been identified as an attractive target for cancer research because of its pattern of expression in the surface cell and its likely functional role in tumorigenesis. Research on the rapid selection of ligands based on the SELEX (systematic evolution of ligands by exponential enrichment) forms the basis for the development of high affinity and high specificity molecules, which can bind to surface determinants of tumour cells, like CEA. The oligonucleotides ligands generated in this technique are called aptamers. Aptamers can potentially find applications as therapeutic or diagnostic tools for many kind of diseases, like a tumor. Aptamers offer low immunogenicity, good tumour penetration, rapid uptake and fast systemic clearance, which favour their application as effective vehicles for radiotherapy. In addition aptamers can be labeled with different radioactive isotopes. The aim of this work was select aptamers binding to the CEA tumor marker. The aptamers are obtained through by SELEX, in which aptamers are selected from a library of random sequences of synthetic DNA by repetitive binding of the oligonucleotides to target molecule (CEA). Analyses of the secondary structure of the aptamers were determined using the m fold toll. Three aptamers were selected to binding assay with target cells. These aptamers were confirmed to have affinity and specific binding for T84 cell line (target cell), showed by confocal imaging. We are currently studying the potential efficacy of these aptamers as targeted radiopharmaceuticals, for use as imaging agents or therapeutic applications. The development of aptamers specific to CEA open new perspectives for colorectal cancer diagnosis and treatment. Acknowledgments: This investigation was supported by the Centro de Desenvolvimento da

  9. Aptamer entrapment in microfluidic channel using one-step sol-gel process, in view of the integration of a new selective extraction phase for lab-on-a-chip.

    Science.gov (United States)

    Perréard, Camille; d'Orlyé, Fanny; Griveau, Sophie; Liu, Baohong; Bedioui, Fethi; Varenne, Anne

    2017-10-01

    There is a great demand for integrating sample treatment into μTASs. In this context, we developed a new sol-gel phase for extraction of trace compounds in complex matrices. For this purpose, the incorporation of aptamers in silica-based gel within PDMS/glass microfluidic channels was performed for the first time by a one-step sol-gel process. The effective gel attachment onto microchannel walls and aptamer incorporation in the polymerized gel were evaluated using fluorescence microscopy. A good gel stability and aptamer incorporation inside the microchannel was demonstrated upon rinsing and over storage time. The ability of gel-encapsulated aptamers to interact with its specific target (either sulforhodamine B as model fluorescent target, or diclofenac, a pain killer drug) was assessed too. The binding capacity of entrapped aptamers was quantified (in the micromolar range) and the selectivity of the interaction was evidenced. Preservation of aptamers binding affinity to target molecules was therefore demonstrated. Dissociation constant of the aptamer-target complex and interaction selectivity were evaluated similar to those in bulk solution. This opens the way to new selective on-chip SPE techniques for sample pretreatment. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A fluorescent nanosensor based on graphene quantum dots-aptamer probe and graphene oxide platform for detection of lead (II) ion.

    Science.gov (United States)

    Qian, Zhao Sheng; Shan, Xiao Yue; Chai, Lu Jing; Chen, Jian Rong; Feng, Hui

    2015-06-15

    The sensitive detection of heavy metal ions in the organism and aquatic ecosystem using nanosensors based on environment friendly and biocompatible materials still remains a challenge. A fluorescent turn-on nanosensor for lead (II) detection based on biocompatible graphene quantum dots and graphene oxide by employment of Pb(2+)-induced G-quadruplex formation was reported. Graphene quantum dots with high quantum yield, good biocompatibility were prepared and served as the fluorophore of Pb(2+) probe. Fluorescence turn-off of graphene quantum dots is easily achieved through efficient photoinduced electron transfer between graphene quantum dots and graphene oxide, and subsequent fluorescence turn-on process is due to the formation of G-quadraplex aptamer-Pb(2+) complex triggered by the addition of Pb(2+). This nanosensor can distinguish Pb(2+) ion from other ions with high sensitivity and good reproducibility. The detection method based on this nanosensor possesses a fast response time of one minute, a broad linear span of up to 400.0 nM and ultralow detection limit of 0.6 nM. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Simultaneous tracking of drug molecules and carriers using aptamer-functionalized fluorescent superstable gold nanorod-carbon nanocapsules during thermo-chemotherapy

    Science.gov (United States)

    Wang, Xue-Wei; Gao, Wei; Fan, Huanhuan; Ding, Ding; Lai, Xiao-Fang; Zou, Yu-Xiu; Chen, Long; Chen, Zhuo; Tan, Weihong

    2016-04-01

    Controlling and monitoring the drug delivery process is critical to its intended therapeutic function. Many nanocarrier systems for drug delivery have been successfully developed. However, biocompatibility, stability, and simultaneously tracing drugs and nanocarriers present significant limitations. Herein, we have fabricated a multifunctional nanocomposite by coating the gold nanorod (AuNR) with a biocompatible, superstable and fluorescent carbon layer, obtaining the AuNR@carbon core-shell nanocapsule. In this system, the carbon shell, originally obtained in aqueous glucose solutions and, therefore, biocompatible in physiological environments, could be simply loaded with cell-specific aptamers and therapeutic molecules through π-π interactions, a useful tool for cancer-targeted cellular imaging and therapy. Moreover, such a stable and intrinsic fluorescence effect of the AuNR@carbon enabled simultaneous tracking of released therapeutic molecules and nanocarriers under thermo-chemotherapy. The AuNR@carbons had high surface areas and stable shells, as well as unique optical and photothermal properties, making them promising nanostructures for biomedical applications.Controlling and monitoring the drug delivery process is critical to its intended therapeutic function. Many nanocarrier systems for drug delivery have been successfully developed. However, biocompatibility, stability, and simultaneously tracing drugs and nanocarriers present significant limitations. Herein, we have fabricated a multifunctional nanocomposite by coating the gold nanorod (AuNR) with a biocompatible, superstable and fluorescent carbon layer, obtaining the AuNR@carbon core-shell nanocapsule. In this system, the carbon shell, originally obtained in aqueous glucose solutions and, therefore, biocompatible in physiological environments, could be simply loaded with cell-specific aptamers and therapeutic molecules through π-π interactions, a useful tool for cancer-targeted cellular imaging and

  12. Structure and Sequence Search on Aptamer-Protein Docking

    Science.gov (United States)

    Xiao, Jiajie; Bonin, Keith; Guthold, Martin; Salsbury, Freddie

    2015-03-01

    Interactions between proteins and deoxyribonucleic acid (DNA) play a significant role in the living systems, especially through gene regulation. However, short nucleic acids sequences (aptamers) with specific binding affinity to specific proteins exhibit clinical potential as therapeutics. Our capillary and gel electrophoresis selection experiments show that specific sequences of aptamers can be selected that bind specific proteins. Computationally, given the experimentally-determined structure and sequence of a thrombin-binding aptamer, we can successfully dock the aptamer onto thrombin in agreement with experimental structures of the complex. In order to further study the conformational flexibility of this thrombin-binding aptamer and to potentially develop a predictive computational model of aptamer-binding, we use GPU-enabled molecular dynamics simulations to both examine the conformational flexibility of the aptamer in the absence of binding to thrombin, and to determine our ability to fold an aptamer. This study should help further de-novo predictions of aptamer sequences by enabling the study of structural and sequence-dependent effects on aptamer-protein docking specificity.

  13. RNA aptamer probes as optical imaging agents for the detection of amyloid plaques.

    Directory of Open Access Journals (Sweden)

    Christian T Farrar

    Full Text Available Optical imaging using multiphoton microscopy and whole body near infrared imaging has become a routine part of biomedical research. However, optical imaging methods rely on the availability of either small molecule reporters or genetically encoded fluorescent proteins, which are challenging and time consuming to develop. While directly labeled antibodies can also be used as imaging agents, antibodies are species specific, can typically not be tagged with multiple fluorescent reporters without interfering with target binding, and are bioactive, almost always eliciting a biological response and thereby influencing the process that is being studied. We examined the possibility of developing highly specific and sensitive optical imaging agents using aptamer technology. We developed a fluorescently tagged anti-Aβ RNA aptamer, β55, which binds amyloid plaques in both ex vivo human Alzheimer's disease brain tissue and in vivo APP/PS1 transgenic mice. Diffuse β55 positive halos, attributed to oligomeric Aβ, were observed surrounding the methoxy-XO4 positive plaque cores. Dot blots of synthetic Aβ aggregates provide further evidence that β55 binds both fibrillar and non-fibrillar Aβ. The high binding affinity, the ease of probe development, and the ability to incorporate multiple and multimodal imaging reporters suggest that RNA aptamers may have complementary and perhaps advantageous properties compared to conventional optical imaging probes and reporters.

  14. Development of Aptamer Beacons for Antemortem Diagnosis of Chronic Wasting Disease

    National Research Council Canada - National Science Library

    Clinkenbeard, Kenneth D

    2005-01-01

    .... Once selected, the CWD aptamers will be configured as aptamer beacons that can act as molecular switches to turn "on" a novel and highly sensitive diagnostic technology termed amplifying fluorescing polymer...

  15. Development of Aptamer Beacons for Antemortem Diagnosis of Chronic Wasting Disease

    National Research Council Canada - National Science Library

    Clinkenbeard, Kenneth

    2004-01-01

    .... Once selected, the CWD aptamers will be configured as aptamer beacons that can act as molecular switches to turn on a novel and highly sensitive diagnostic technology termed amplifying fluorescing polymer. Objective...

  16. Mass amplifying probe for sensitive fluorescence anisotropy detection of small molecules in complex biological samples.

    Science.gov (United States)

    Cui, Liang; Zou, Yuan; Lin, Ninghang; Zhu, Zhi; Jenkins, Gareth; Yang, Chaoyong James

    2012-07-03

    Fluorescence anisotropy (FA) is a reliable and excellent choice for fluorescence sensing. One of the key factors influencing the FA value for any molecule is the molar mass of the molecule being measured. As a result, the FA method with functional nucleic acid aptamers has been limited to macromolecules such as proteins and is generally not applicable for the analysis of small molecules because their molecular masses are relatively too small to produce observable FA value changes. We report here a molecular mass amplifying strategy to construct anisotropy aptamer probes for small molecules. The probe is designed in such a way that only when a target molecule binds to the probe does it activate its binding ability to an anisotropy amplifier (a high molecular mass molecule such as protein), thus significantly increasing the molecular mass and FA value of the probe/target complex. Specifically, a mass amplifying probe (MAP) consists of a targeting aptamer domain against a target molecule and molecular mass amplifying aptamer domain for the amplifier protein. The probe is initially rendered inactive by a small blocking strand partially complementary to both target aptamer and amplifier protein aptamer so that the mass amplifying aptamer domain would not bind to the amplifier protein unless the probe has been activated by the target. In this way, we prepared two probes that constitute a target (ATP and cocaine respectively) aptamer, a thrombin (as the mass amplifier) aptamer, and a fluorophore. Both probes worked well against their corresponding small molecule targets, and the detection limits for ATP and cocaine were 0.5 μM and 0.8 μM, respectively. More importantly, because FA is less affected by environmental interferences, ATP in cell media and cocaine in urine were directly detected without any tedious sample pretreatment. Our results established that our molecular mass amplifying strategy can be used to design aptamer probes for rapid, sensitive, and selective

  17. The detection of platelet derived growth factor using decoupling of quencher-oligonucleotide from aptamer/quantum dot bioconjugates

    International Nuclear Information System (INIS)

    Kim, Gang-Il; Sung, Yun-Mo; Kim, Kyung-Woo; Oh, Min-Kyu

    2009-01-01

    High-sensitivity, high-specificity detection of platelet derived growth factor (PDGF)-BB was realized using the change in fluorescence resonance energy transfer (FRET) occurring between quantum dot (QD) donors and black hole quencher (BHQ) acceptors. CdSe/ZnS QD/mercaptoacetic acid (MAA)/PDGF aptamer bioconjugates were successfully synthesized using ligand exchange. Black hole quencher (BHQ)-bearing oligonucleotide molecules showing partial sequence matching to PDGF aptamer were attached to PDGF aptamers and photoluminescence (PL) quenching was obtained through FRET. By adding target PDGF-BB to the bioconjugates containing BHQs, PL recovery was detected due to detachment of BHQ-bearing oligonucleotide from the PDGF aptamer as a result of the difference in affinity to the PDGF aptamer. The detection limit of the sensor was ∼0.4 nM and the linearity was maintained up to 1.6 nM in the PL intensity versus concentration curve. Measurement of PL recovery was suggested as a strong tool for high-sensitivity detection of PDGF-BB. Epidermal growth factor (EGF), the negative control molecule, did not contribute to PL recovery due to lack of binding affinity to the PDGF aptamers, which demonstrates the selectivity of the biosensor.

  18. Nucleic acid aptamers: an emerging frontier in cancer therapy.

    Science.gov (United States)

    Zhu, Guizhi; Ye, Mao; Donovan, Michael J; Song, Erqun; Zhao, Zilong; Tan, Weihong

    2012-11-04

    The last two decades have witnessed the development and application of nucleic acid aptamers in a variety of fields, including target analysis, disease therapy, and molecular and cellular engineering. The efficient and widely applicable aptamer selection, reproducible chemical synthesis and modification, generally impressive target binding selectivity and affinity, relatively rapid tissue penetration, low immunogenicity, and rapid systemic clearance make aptamers ideal recognition elements for use as therapeutics or for in vivo delivery of therapeutics. In this feature article, we discuss the development and biomedical application of nucleic acid aptamers, with emphasis on cancer cell aptamer isolation, targeted cancer therapy, oncology biomarker identification and drug discovery.

  19. Using Aptamers for Cancer Biomarker Discovery

    Directory of Open Access Journals (Sweden)

    Yun Min Chang

    2013-01-01

    Full Text Available Aptamers are single-stranded synthetic DNA- or RNA-based oligonucleotides that fold into various shapes to bind to a specific target, which includes proteins, metals, and molecules. Aptamers have high affinity and high specificity that are comparable to that of antibodies. They are obtained using iterative method, called (Systematic Evolution of Ligands by Exponential Enrichment SELEX and cell-based SELEX (cell-SELEX. Aptamers can be paired with recent advances in nanotechnology, microarray, microfluidics, and other technologies for applications in clinical medicine. One particular area that aptamers can shed a light on is biomarker discovery. Biomarkers are important in diagnosis and treatment of cancer. In this paper, we will describe ways in which aptamers can be used to discover biomarkers for cancer diagnosis and therapeutics.

  20. Fluorescent Receptor Binding Assay for Detecting Ciguatoxins in Fish.

    Science.gov (United States)

    Hardison, D Ransom; Holland, William C; McCall, Jennifer R; Bourdelais, Andrea J; Baden, Daniel G; Darius, H Taiana; Chinain, Mireille; Tester, Patricia A; Shea, Damian; Quintana, Harold A Flores; Morris, James A; Litaker, R Wayne

    2016-01-01

    Ciguatera fish poisoning is an illness suffered by > 50,000 people yearly after consumption of fish containing ciguatoxins (CTXs). One of the current methodologies to detect ciguatoxins in fish is a radiolabeled receptor binding assay (RBA(R)). However, the license requirements and regulations pertaining to radioisotope utilization can limit the applicability of the RBA(R) in certain labs. A fluorescence based receptor binding assay (RBA(F)) was developed to provide an alternative method of screening fish samples for CTXs in facilities not certified to use radioisotopes. The new assay is based on competition binding between CTXs and fluorescently labeled brevetoxin-2 (BODIPY®-PbTx-2) for voltage-gated sodium channel receptors at site 5 instead of a radiolabeled brevetoxin. Responses were linear in fish tissues spiked from 0.1 to 1.0 ppb with Pacific ciguatoxin-3C (P-CTX-3C) with a detection limit of 0.075 ppb. Carribean ciguatoxins were confirmed in Caribbean fish by LC-MS/MS analysis of the regional biomarker (C-CTX-1). Fish (N = 61) of six different species were screened using the RBA(F). Results for corresponding samples analyzed using the neuroblastoma cell-based assay (CBA-N2a) correlated well (R2 = 0.71) with those of the RBA(F), given the low levels of CTX present in positive fish. Data analyses also showed the resulting toxicity levels of P-CTX-3C equivalents determined by CBA-N2a were consistently lower than the RBA(F) affinities expressed as % binding equivalents, indicating that a given amount of toxin bound to the site 5 receptors translates into corresponding lower cytotoxicity. Consequently, the RBA(F), which takes approximately two hours to perform, provides a generous estimate relative to the widely used CBA-N2a which requires 2.5 days to complete. Other RBA(F) advantages include the long-term (> 5 years) stability of the BODIPY®-PbTx-2 and having similar results as the commonly used RBA(R). The RBA(F) is cost-effective, allows high sample

  1. Fluorescent Receptor Binding Assay for Detecting Ciguatoxins in Fish.

    Directory of Open Access Journals (Sweden)

    D Ransom Hardison

    Full Text Available Ciguatera fish poisoning is an illness suffered by > 50,000 people yearly after consumption of fish containing ciguatoxins (CTXs. One of the current methodologies to detect ciguatoxins in fish is a radiolabeled receptor binding assay (RBA(R. However, the license requirements and regulations pertaining to radioisotope utilization can limit the applicability of the RBA(R in certain labs. A fluorescence based receptor binding assay (RBA(F was developed to provide an alternative method of screening fish samples for CTXs in facilities not certified to use radioisotopes. The new assay is based on competition binding between CTXs and fluorescently labeled brevetoxin-2 (BODIPY®-PbTx-2 for voltage-gated sodium channel receptors at site 5 instead of a radiolabeled brevetoxin. Responses were linear in fish tissues spiked from 0.1 to 1.0 ppb with Pacific ciguatoxin-3C (P-CTX-3C with a detection limit of 0.075 ppb. Carribean ciguatoxins were confirmed in Caribbean fish by LC-MS/MS analysis of the regional biomarker (C-CTX-1. Fish (N = 61 of six different species were screened using the RBA(F. Results for corresponding samples analyzed using the neuroblastoma cell-based assay (CBA-N2a correlated well (R2 = 0.71 with those of the RBA(F, given the low levels of CTX present in positive fish. Data analyses also showed the resulting toxicity levels of P-CTX-3C equivalents determined by CBA-N2a were consistently lower than the RBA(F affinities expressed as % binding equivalents, indicating that a given amount of toxin bound to the site 5 receptors translates into corresponding lower cytotoxicity. Consequently, the RBA(F, which takes approximately two hours to perform, provides a generous estimate relative to the widely used CBA-N2a which requires 2.5 days to complete. Other RBA(F advantages include the long-term (> 5 years stability of the BODIPY®-PbTx-2 and having similar results as the commonly used RBA(R. The RBA(F is cost-effective, allows high sample

  2. Development of a Biocompatible Layer-by-Layer Film System Using Aptamer Technology for Smart Material Applications

    Directory of Open Access Journals (Sweden)

    Amanda Foster

    2014-05-01

    Full Text Available Aptamers are short, single-stranded nucleic acids that fold into well-defined three dimensional (3D structures that allow for binding to a target molecule with affinities and specificities that can rival or in some cases exceed those of antibodies. The compatibility of aptamers with nanostructures such as thin films, in combination with their affinity, selectivity, and conformational changes upon target interaction, could set the foundation for the development of novel smart materials. In this study, the development of a biocompatible aptamer-polyelectrolyte film system was investigated using a layer-by-layer approach. Using fluorescence microscopy, we demonstrated the ability of the sulforhodamine B aptamer to bind its cognate target while sequestered in a chitosan-hyaluronan film matrix. Studies using Ultraviolet-visible (UV-Vis spectrophotometry also suggest that deposition conditions such as rinsing time and volume play a strong role in the internal film interactions and growth mechanisms of chitosan-hyaluronan films. The continued study and development of aptamer-functionalized thin films provides endless new opportunities for novel smart materials and has the potential to revolutionize the field of controlled release.

  3. Aptamer therapeutics: A review of current practice

    International Nuclear Information System (INIS)

    Perkins, A.C.; Missailidis, S.

    2007-01-01

    Full text: The development of nuclease resistant oligonucleotide agents known as aptamers, offers an alternative to antibodies as targeting, diagnostic and delivery agents. The production technique of specific receptor binding molecules based on defined nucleic acid sequences is known as systematic evolution of ligands by exponential enrichment (SELEX). Using this technique, aptamers can be produced rapidly and with high homogeneity. Furthermore, they are stable over long term storage at ambient room temperatures. A monomeric aptamer is small in size, with a molecular weight as low as 5 to 10 kDa. However, the aptamer molecule may be used as a building block for custom designed targeting agents, offering several advantages. Aptamers have been found to bind their targets with high specificity and with dissociation constants in the subnanomolar or picomolar range. The first pharmaceutical aptamer formulation, Macugen (pegaptanib sodium injection) was approved in the United States in December of 2004. This is an anti-VEGF aptamer formulation used for the treatment of Neovascular agerelated macular degeneration. Other possibilities in cardiovascular, neurodegenerative and tropical medicine are apparent. As tumour targeting agents, aptamers penetrate tissues readily, reach peak levels quickly and clear from the body rapidly, thus having properties of low toxicity and immunoreactivity. Work with radiolabelled aptamers is limited to pre-clinical studies, but the body of evidence is steadily growing and aptamers are emerging as valuable clinical products for diagnostic imaging and therapy. Peptide coupling reactions between amino and carboxylic groups offer the possibility of labelling the aptamers with a number of chelators that, coupled with appropriate radionuclides, would generate novel targeted radiopharmaceuticals for the diagnosis and therapy of disease. The unparalleled combinatorial chemical diversity, small size and modification ability of aptamers is expected to

  4. Recent progresses in biomedical applications of aptamer-functionalized systems.

    Science.gov (United States)

    Ding, Fei; Gao, Yangguang; He, Xianran

    2017-09-15

    Aptamers, known as "chemical antibodies" are screened via a combinational technology of systematic evolution of ligands by exponential enrichment (SELEX). Due to their specific targeting ability, high binding affinity, low immunogenicity and easy modification, aptamer-functionalized systems have been extensively applied in various fields and exhibit favorable results. However, there is still a long way for them to be commercialized, and few aptamer-functionalized systems have yet successfully entered clinical and industrial use. Thus, it is necessary to overview the recent research progresses of aptamer-functionalized systems for the researchers to improve or design novel and better aptamer-functionalized systems. In this review, we first introduce the recent progresses of aptamer-functionalized systems' applications in biosensing, targeted drug delivery, gene therapy and cancer cell imaging, followed by a discussion of the challenges faced with extensive applications of aptamer-functionalized systems and speculation of the future prospects of them. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Rapid Complexation of Aptamers by Their Specific Antidotes

    Directory of Open Access Journals (Sweden)

    Heidi Stoll

    2017-06-01

    Full Text Available Nucleic acid ligands, aptamers, harbor the unique characteristics of small molecules and antibodies. The specificity and high affinity of aptamers enable their binding to different targets, such as small molecules, proteins, or cells. Chemical modifications of aptamers allow increased bioavailability. A further great benefit of aptamers is the antidote (AD-mediated controllability of their effect. In this study, the AD-mediated complexation and neutralization of the thrombin binding aptamer NU172 and Toll-like receptor 9 (TLR9 binding R10-60 aptamer were determined. Thereby, the required time for the generation of aptamer/AD-complexes was analyzed at 37 °C in human serum using gel electrophoresis. Afterwards, the blocking of aptamers’ effects was analyzed by determining the activated clotting time (ACT in the case of the NU172 aptamer, or the expression of immune activation related genes IFN-1β, IL-6, CXCL-10, and IL-1β in the case of the R10-60 aptamer. Gel electrophoresis analyses demonstrated the rapid complexation of the NU172 and R10-60 aptamers by complementary AD binding after just 2 min of incubation in human serum. A rapid neutralization of anticoagulant activity of NU172 was also demonstrated in fresh human whole blood 5 min after addition of AD. Furthermore, the TLR9-mediated activation of PMDC05 cells was interrupted after the addition of the R10-60 AD. Using these two different aptamers, the rapid antagonizability of the aptamers was demonstrated in different environments; whole blood containing numerous proteins, cells, and different small molecules, serum, or cell culture media. Thus, nucleic acid ADs are promising molecules, which offer several possibilities for different in vivo applications, such as antagonizing aptamer-based drugs, immobilization, or delivery of oligonucleotides to defined locations.

  6. Inhibition of transforming growth factor-beta1-induced signaling and epithelial-to-mesenchymal transition by the Smad-binding peptide aptamer Trx-SARA.

    Science.gov (United States)

    Zhao, Bryan M; Hoffmann, F Michael

    2006-09-01

    Overexpression of the inhibitory Smad, Smad7, is used frequently to implicate the Smad pathway in cellular responses to transforming growth factor beta (TGF-beta) signaling; however, Smad7 regulates several other proteins, including Cdc42, p38MAPK, and beta-catenin. We report an alternative approach for more specifically disrupting Smad-dependent signaling using a peptide aptamer, Trx-SARA, which comprises a rigid scaffold, the Escherichia coli thioredoxin A protein (Trx), displaying a constrained 56-amino acid Smad-binding motif from the Smad anchor for receptor activation (SARA) protein. Trx-SARA bound specifically to Smad2 and Smad3 and inhibited both TGF-beta-induced reporter gene expression and epithelial-to-mesenchymal transition in NMuMG murine mammary epithelial cells. In contrast to Smad7, Trx-SARA had no effect on the Smad2 or 3 phosphorylation levels induced by TGF-beta1. Trx-SARA was primarily localized to the nucleus and perturbed the normal cytoplasmic localization of Smad2 and 3 to a nuclear localization in the absence of TGF-beta1, consistent with reduced Smad nuclear export. The key mode of action of Trx-SARA was to reduce the level of Smad2 and Smad3 in complex with Smad4 after TGF-beta1 stimulation, a mechanism of action consistent with the preferential binding of SARA to monomeric Smad protein and Trx-SARA-mediated disruption of active Smad complexes.

  7. Adaptive Evolution of Eel Fluorescent Proteins from Fatty Acid Binding Proteins Produces Bright Fluorescence in the Marine Environment.

    Directory of Open Access Journals (Sweden)

    David F Gruber

    Full Text Available We report the identification and characterization of two new members of a family of bilirubin-inducible fluorescent proteins (FPs from marine chlopsid eels and demonstrate a key region of the sequence that serves as an evolutionary switch from non-fluorescent to fluorescent fatty acid-binding proteins (FABPs. Using transcriptomic analysis of two species of brightly fluorescent Kaupichthys eels (Kaupichthys hyoproroides and Kaupichthys n. sp., two new FPs were identified, cloned and characterized (Chlopsid FP I and Chlopsid FP II. We then performed phylogenetic analysis on 210 FABPs, spanning 16 vertebrate orders, and including 163 vertebrate taxa. We show that the fluorescent FPs diverged as a protein family and are the sister group to brain FABPs. Our results indicate that the evolution of this family involved at least three gene duplication events. We show that fluorescent FABPs possess a unique, conserved tripeptide Gly-Pro-Pro sequence motif, which is not found in non-fluorescent fatty acid binding proteins. This motif arose from a duplication event of the FABP brain isoforms and was under strong purifying selection, leading to the classification of this new FP family. Residues adjacent to the motif are under strong positive selection, suggesting a further refinement of the eel protein's fluorescent properties. We present a phylogenetic reconstruction of this emerging FP family and describe additional fluorescent FABP members from groups of distantly related eels. The elucidation of this class of fish FPs with diverse properties provides new templates for the development of protein-based fluorescent tools. The evolutionary adaptation from fatty acid-binding proteins to fluorescent fatty acid-binding proteins raises intrigue as to the functional role of bright green fluorescence in this cryptic genus of reclusive eels that inhabit a blue, nearly monochromatic, marine environment.

  8. DNA-hosted copper nanoclusters/graphene oxide based fluorescent biosensor for protein kinase activity detection.

    Science.gov (United States)

    Wang, Mengke; Lin, Zihan; Liu, Qing; Jiang, Shan; Liu, Hua; Su, Xingguang

    2018-07-05

    A novel fluorescent biosensor for protein kinase activity (PKA) detection was designed by applying double-strands DNA-hosted copper nanoclusters (dsDNA-CuNCs) and graphene oxide (GO). One DNA strand of the dsDNA consisted of two domains, one domain can hybridize with another complementary DNA strand to stabilize the fluorescent CuNCs and another domain was adenosine 5'-triphosphate (ATP) aptamer. ATP aptamer of the dsDNA-CuNCs would be spontaneously absorbed onto the GO surface through π-π stacking interactions. Thus GO can efficiently quench the fluorescence (FL) of dsDNA-CuNCs through fluorescence resonance energy transfer (FRET). In the present of ATP, ATP specifically combined with ATP aptamer to form ATP-ATP aptamer binding complexes, which had much less affinity to GO, resulting in the fluorescence recovery of the system. Nevertheless, in the presence of PKA, ATP could be translated into ADP and ADP could not combine with ATP aptamer resulting in the fluorescence quenching of dsDNA-CuNCs again. According to the change of the fluorescence signal, PKA activity could be successfully monitored in the range of 0.1-5.0 U mL -1 with a detection limit (LOD) of 0.039 U mL -1 . Besides, the inhibitory effect of H-89 on PKA activity was studied. The sensor was performed for PKA activity detection in cell lysates with satisfactory results. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. In vitro selection of RNA aptamer specific to Salmonella typhimurium.

    Science.gov (United States)

    Han, Seung Ryul; Lee, Seong-Wook

    2013-06-28

    Salmonella is a major foodborne pathogen that causes a variety of human diseases. Development of ligands directly and specifically binding to the Salmonella will be crucial for the rapid detection of, and thus for efficient protection from, the virulent bacteria. In this study, we identified a RNA aptamer-based ligand that can specifically recognize Salmonella Typhimurium through SELEX technology. To this end, we isolated and characterized an RNase-resistant RNA aptamer that bound to the OmpC protein of Salmonella Typhimurium with high specificity and affinity (Kd ~ 20 nM). Of note, the selected aptamer was found to specifically bind to Salmonella Typhimurium, but neither to Gram-positive bacteria (Staphylococcus aureus) nor to other Gram-negative bacteria (Escherichia coli O157:H7). This was evinced by aptamer-immobilized ELISA and aptamer-linked precipitation experiments. This Salmonella species-specific aptamer could be useful as a diagnostic ligand against pathogen-caused foodborne sickness.

  10. Dual-Recognition Förster Resonance Energy Transfer Based Platform for One-Step Sensitive Detection of Pathogenic Bacteria Using Fluorescent Vancomycin-Gold Nanoclusters and Aptamer-Gold Nanoparticles.

    Science.gov (United States)

    Yu, Mengqun; Wang, Hong; Fu, Fei; Li, Linyao; Li, Jing; Li, Gan; Song, Yang; Swihart, Mark T; Song, Erqun

    2017-04-04

    The effective monitoring, identification, and quantification of pathogenic bacteria is essential for addressing serious public health issues. In this study, we present a universal and facile one-step strategy for sensitive and selective detection of pathogenic bacteria using a dual-molecular affinity-based Förster (fluorescence) resonance energy transfer (FRET) platform based on the recognition of bacterial cell walls by antibiotic and aptamer molecules, respectively. As a proof of concept, Vancomycin (Van) and a nucleic acid aptamer were employed in a model dual-recognition scheme for detecting Staphylococcus aureus (Staph. aureus). Within 30 min, by using Van-functionalized gold nanoclusters and aptamer-modified gold nanoparticles as the energy donor and acceptor, respectively, the FRET signal shows a linear variation with the concentration of Staph. aureus in the range from 20 to 10 8 cfu/mL with a detection limit of 10 cfu/mL. Other nontarget bacteria showed negative results, demonstrating the good specificity of the approach. When employed to assay Staph. aureus in real samples, the dual-recognition FRET strategy showed recoveries from 99.00% to the 109.75% with relative standard derivations (RSDs) less than 4%. This establishes a universal detection platform for sensitive, specific, and simple pathogenic bacteria detection, which could have great impact in the fields of food/public safety monitoring and infectious disease diagnosis.

  11. Identification of Salmonella Typhimurium-specific DNA aptamers developed using whole-cell SELEX and FACS analysis.

    Science.gov (United States)

    Moon, Jihea; Kim, Giyoung; Lee, Sangdae; Park, Saetbyeol

    2013-11-01

    Conventional methods for detection of infective organisms, such as Salmonella, are complicated and require multiple steps, and the need for rapid detection has increased. Biosensors show great potential for rapid detection of pathogens. In turn, aptamers have great potential for biosensor assay development, given their small size, ease of synthesis and labeling, lack of immunogenicity, a lower cost of production than antibodies, and high target specificity. In this study, ssDNA aptamers specific to Salmonella Typhimurium were obtained by a whole bacterium-based systematic evolution of ligands by exponential enrichment (SELEX) procedure and applied to probing S. Typhimurium. After 10 rounds of selection with S. Typhimurium as the target and Salmonella Enteritidis, Escherichia coli and Staphylococcus aureus as counter targets, the highly enriched oligonucleic acid pool was sorted using flow cytometry. In total, 12 aptamer candidates from different families were sequenced and grouped. Fluorescent analysis demonstrated that aptamer C4 had particularly high binding affinity and selectivity; this aptamer was then further characterized. © 2013 Elsevier B.V. All rights reserved.

  12. Function and dynamics of aptamers: A case study on the malachite green aptamer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tianjiao [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    Aptamers are short single-stranded nucleic acids that can bind to their targets with high specificity and high affinity. To study aptamer function and dynamics, the malachite green aptamer was chosen as a model. Malachite green (MG) bleaching, in which an OH- attacks the central carbon (C1) of MG, was inhibited in the presence of the malachite green aptamer (MGA). The inhibition of MG bleaching by MGA could be reversed by an antisense oligonucleotide (AS) complementary to the MGA binding pocket. Computational cavity analysis of the NMR structure of the MGA-MG complex predicted that the OH- is sterically excluded from the C1 of MG. The prediction was confirmed experimentally using variants of the MGA with changes in the MG binding pocket. This work shows that molecular reactivity can be reversibly regulated by an aptamer-AS pair based on steric hindrance. In addition to demonstrate that aptamers could control molecular reactivity, aptamer dynamics was studied with a strategy combining molecular dynamics (MD) simulation and experimental verification. MD simulation predicted that the MG binding pocket of the MGA is largely pre-organized and that binding of MG involves reorganization of the pocket and a simultaneous twisting of the MGA terminal stems around the pocket. MD simulation also provided a 3D-structure model of unoccupied MGA that has not yet been obtained by biophysical measurements. These predictions were consistent with biochemical and biophysical measurements of the MGA-MG interaction including RNase I footprinting, melting curves, thermodynamic and kinetic constants measurement. This work shows that MD simulation can be used to extend our understanding of the dynamics of aptamer-target interaction which is not evident from static 3D-structures. To conclude, I have developed a novel concept to control molecular reactivity by an aptamer based on steric protection and a strategy to study the dynamics of aptamer-target interaction by combining MD

  13. Cell-Specific Aptamers as Emerging Therapeutics

    Directory of Open Access Journals (Sweden)

    Cindy Meyer

    2011-01-01

    Full Text Available Aptamers are short nucleic acids that bind to defined targets with high affinity and specificity. The first aptamers have been selected about two decades ago by an in vitro process named SELEX (systematic evolution of ligands by exponential enrichment. Since then, numerous aptamers with specificities for a variety of targets from small molecules to proteins or even whole cells have been selected. Their applications range from biosensing and diagnostics to therapy and target-oriented drug delivery. More recently, selections using complex targets such as live cells have become feasible. This paper summarizes progress in cell-SELEX techniques and highlights recent developments, particularly in the field of medically relevant aptamers with a focus on therapeutic and drug-delivery applications.

  14. Assisted Interpretation of Laser-Induced Fluorescence Spectra of Egg-Based Binding Media Using Total Emission Fluorescence Spectroscopy

    International Nuclear Information System (INIS)

    Anglos, D.; Nevin, A.

    2006-01-01

    Laser-induced fluorescence (LIF) spectroscopy can provide nondestructive, qualitative analysis of protein-based binding media found in artworks. Fluorescence emissions from proteins in egg yolk and egg white are due to auto fluorescent aromatic amino acids as well as other native and age-related fluorophores, but the potential of fluorescence spectroscopy for the differentiation between binding media is dependent on the choice of a suitable excitation wavelength and limited by problems in interpretation. However, a better understanding of emission spectra associated with LIF can be achieved following comparisons with total emission fluorescence spectra where a series of consecutive emission spectra are recorded over a specific range. Results using nanosecond UV laser sources for LIF of egg-based binding media are presented which are rationalised following comparisons with total emission spectra. Specifically, fluorescence is assigned to tryptophan and oxidation products of amino acids; in the case of egg yolk, fatty-acid polymerisation and age-related degradation products account for the formation of fluorophores.

  15. DNA aptamer evolved by cell-SELEX for recognition of prostate cancer.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Wang

    Full Text Available Morbidity and mortality of prostate cancer (PCa have increased in recent years worldwide. Currently existing methods for diagnosis and treatment do not make the situation improve, especially for hormone refractory prostate cancer (HRPC. The lack of molecular probes for PCa hindered the early diagnosis of metastasis and accurate staging for PCa. In this work, we have developed a new aptamer probe Wy-5a against PCa cell line PC-3 by cell-SELEX technique. Wy-5a shows high specificity to the target cells with dissociation constants in the nanomolar range, and does not recognize other tested PCa cell lines and other tested tumor cell lines. The staining of clinical tissue sections with fluorescent dye labeled Wy-5a shows that sections from high risk group with metastasis exhibited stronger fluorescence and sections from Benign Prostatic Hyperplasia (BPH did not exhibit notable fluorescence, which suggests that aptamer Wy-5a may bind to protein related to the progression of PCa. The high affinity and specificity of Wy-5a makes this aptamer hold potential for application in diagnosis and target therapy of PCa.

  16. Aptamers as Both Drugs and Drug-Carriers

    Directory of Open Access Journals (Sweden)

    Md. Ashrafuzzaman

    2014-01-01

    Full Text Available Aptamers are short nucleic acid oligos. They may serve as both drugs and drug-carriers. Their use as diagnostic tools is also evident. They can be generated using various experimental, theoretical, and computational techniques. The systematic evolution of ligands by exponential enrichment which uses iterative screening of nucleic acid libraries is a popular experimental technique. Theory inspired methodology entropy-based seed-and-grow strategy that designs aptamer templates to bind specifically to targets is another one. Aptamers are predicted to be highly useful in producing general drugs and theranostic drugs occasionally for certain diseases like cancer, Alzheimer’s disease, and so on. They bind to various targets like lipids, nucleic acids, proteins, small organic compounds, and even entire organisms. Aptamers may also serve as drug-carriers or nanoparticles helping drugs to get released in specific target regions. Due to better target specific physical binding properties aptamers cause less off-target toxicity effects. Therefore, search for aptamer based drugs, drug-carriers, and even diagnostic tools is expanding fast. The biophysical properties in relation to the target specific binding phenomena of aptamers, energetics behind the aptamer transport of drugs, and the consequent biological implications will be discussed. This review will open up avenues leading to novel drug discovery and drug delivery.

  17. Label free luminescence strategy for sensitive detection of ATP using aptamer-Ru(II) complexes

    Energy Technology Data Exchange (ETDEWEB)

    Babu, Eththilu [Department of Physical Che mistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu (India); Muthu Mareeswaran, Paulpandian [Department of Physical Che mistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu (India); Department of Industrial Chemistry, Alagappa Univesity, Karaikudi 630003, Tamil Nadu (India); Ramdass, Arumugam [Department of Physical Che mistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu (India); Research Department of Chemistry, Aditanar College of Arts and Science, Tiruchendur 628216, Tamil Nadu (India); Ramesh, Pandian [UCIBIO-REQUIMTE, Departmento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica (Portugal); Rajagopal, Seenivasan, E-mail: rajagopalseenivasan@yahoo.com [Department of Physical Che mistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu (India)

    2016-07-15

    A simple and sensitive aptamer-based luminescence strategy for ATP detection is developed using Ru(II) complexes as probe molecule. It is based on the fact that Ru(II)-dppz complexes show the light switching behavior with DNA aptamers and found to show significant luminescence spectral change on the addition of ATP molecules. The binding efficiencies of aptamer with ATP, ADP and AMP are calculated and compared. The structural change of aptamer is also studied using circular dichroism (CD) spectral techniques. Moreover, the binding nature of aptamer with ATP, ADP and AMP is demonstrated by computational techniques. The proposed strategy was successfully applied to the detection of ATP.

  18. Label free luminescence strategy for sensitive detection of ATP using aptamer-Ru(II) complexes

    International Nuclear Information System (INIS)

    Babu, Eththilu; Muthu Mareeswaran, Paulpandian; Ramdass, Arumugam; Ramesh, Pandian; Rajagopal, Seenivasan

    2016-01-01

    A simple and sensitive aptamer-based luminescence strategy for ATP detection is developed using Ru(II) complexes as probe molecule. It is based on the fact that Ru(II)-dppz complexes show the light switching behavior with DNA aptamers and found to show significant luminescence spectral change on the addition of ATP molecules. The binding efficiencies of aptamer with ATP, ADP and AMP are calculated and compared. The structural change of aptamer is also studied using circular dichroism (CD) spectral techniques. Moreover, the binding nature of aptamer with ATP, ADP and AMP is demonstrated by computational techniques. The proposed strategy was successfully applied to the detection of ATP.

  19. Recent Progress in Aptamer-Based Functional Probes for Bioanalysis and Biomedicine.

    Science.gov (United States)

    Zhang, Huimin; Zhou, Leiji; Zhu, Zhi; Yang, Chaoyong

    2016-07-11

    Nucleic acid aptamers are short synthetic DNA or RNA sequences that can bind to a wide range of targets with high affinity and specificity. In recent years, aptamers have attracted increasing research interest due to their unique features of high binding affinity and specificity, small size, excellent chemical stability, easy chemical synthesis, facile modification, and minimal immunogenicity. These properties make aptamers ideal recognition ligands for bioanalysis, disease diagnosis, and cancer therapy. This review highlights the recent progress in aptamer selection and the latest applications of aptamer-based functional probes in the fields of bioanalysis and biomedicine. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A DNA sequence obtained by replacement of the dopamine RNA aptamer bases is not an aptamer.

    Science.gov (United States)

    Álvarez-Martos, Isabel; Ferapontova, Elena E

    2017-08-05

    A unique specificity of the aptamer-ligand biorecognition and binding facilitates bioanalysis and biosensor development, contributing to discrimination of structurally related molecules, such as dopamine and other catecholamine neurotransmitters. The aptamer sequence capable of specific binding of dopamine is a 57 nucleotides long RNA sequence reported in 1997 (Biochemistry, 1997, 36, 9726). Later, it was suggested that the DNA homologue of the RNA aptamer retains the specificity of dopamine binding (Biochem. Biophys. Res. Commun., 2009, 388, 732). Here, we show that the DNA sequence obtained by the replacement of the RNA aptamer bases for their DNA analogues is not able of specific biorecognition of dopamine, in contrast to the original RNA aptamer sequence. This DNA sequence binds dopamine and structurally related catecholamine neurotransmitters non-specifically, as any DNA sequence, and, thus, is not an aptamer and cannot be used neither for in vivo nor in situ analysis of dopamine in the presence of structurally related neurotransmitters. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Selection and identification of a DNA aptamer targeted to Vibrio parahemolyticus.

    Science.gov (United States)

    Duan, Nuo; Wu, Shijia; Chen, Xiujuan; Huang, Yukun; Wang, Zhouping

    2012-04-25

    A whole-bacterium systemic evolution of ligands by exponential enrichment (SELEX) method was applied to a combinatorial library of FAM-labeled single-stranded DNA molecules to identify DNA aptamers demonstrating specific binding to Vibrio parahemolyticus . FAM-labeled aptamer sequences with high binding affinity to V. parahemolyticus were identified by flow cytometric analysis. Aptamer A3P, which showed a particularly high binding affinity in preliminary studies, was chosen for further characterization. This aptamer displayed a dissociation constant (K(d)) of 16.88 ± 1.92 nM. Binding assays to assess the specificity of aptamer A3P showed a high binding affinity (76%) for V. parahemolyticus and a low apparent binding affinity (4%) for other bacteria. Whole-bacterium SELEX is a promising technique for the design of aptamer-based molecular probes for microbial pathogens that does not require the labor-intensive steps of isolating and purifying complex markers or targets.

  2. Imaging gene expression in real-time using aptamers

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Il Chung [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    Signal transduction pathways are usually activated by external stimuli and are transient. The downstream changes such as transcription of the activated genes are also transient. Real-time detection of promoter activity is useful for understanding changes in gene expression, especially during cell differentiation and in development. A simple and reliable method for viewing gene expression in real time is not yet available. Reporter proteins such as fluorescent proteins and luciferase allow for non-invasive detection of the products of gene expression in living cells. However, current reporter systems do not provide for real-time imaging of promoter activity in living cells. This is because of the long time period after transcription required for fluorescent protein synthesis and maturation. We have developed an RNA reporter system for imaging in real-time to detect changes in promoter activity as they occur. The RNA reporter uses strings of RNA aptamers that constitute IMAGEtags (Intracellular MultiAptamer GEnetic tags), which can be expressed from a promoter of choice. The tobramycin, neomycin and PDC RNA aptamers have been utilized for this system and expressed in yeast from the GAL1 promoter. The IMAGEtag RNA kinetics were quantified by RT-qPCR. In yeast precultured in raffinose containing media the GAL1 promoter responded faster than in yeast precultured in glucose containing media. IMAGEtag RNA has relatively short half-life (5.5 min) in yeast. For imaging, the yeast cells are incubated with their ligands that are labeled with fluorescent dyes. To increase signal to noise, ligands have been separately conjugated with the FRET (Förster resonance energy transfer) pairs, Cy3 and Cy5. With these constructs, the transcribed aptamers can be imaged after activation of the promoter by galactose. FRET was confirmed with three different approaches, which were sensitized emission, acceptor photobleaching and donor lifetime by FLIM (fluorescence lifetime imaging

  3. Imaging gene expression in real-time using aptamers

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ilchung [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    Signal transduction pathways are usually activated by external stimuli and are transient. The downstream changes such as transcription of the activated genes are also transient. Real-time detection of promoter activity is useful for understanding changes in gene expression, especially during cell differentiation and in development. A simple and reliable method for viewing gene expression in real time is not yet available. Reporter proteins such as fluorescent proteins and luciferase allow for non-invasive detection of the products of gene expression in living cells. However, current reporter systems do not provide for real-time imaging of promoter activity in living cells. This is because of the long time period after transcription required for fluorescent protein synthesis and maturation. We have developed an RNA reporter system for imaging in real-time to detect changes in promoter activity as they occur. The RNA reporter uses strings of RNA aptamers that constitute IMAGEtags (Intracellular MultiAptamer GEnetic tags), which can be expressed from a promoter of choice. The tobramycin, neomycin and PDC RNA aptamers have been utilized for this system and expressed in yeast from the GAL1 promoter. The IMAGEtag RNA kinetics were quantified by RT-qPCR. In yeast precultured in raffinose containing media the GAL1 promoter responded faster than in yeast precultured in glucose containing media. IMAGEtag RNA has relatively short half-life (5.5 min) in yeast. For imaging, the yeast cells are incubated with their ligands that are labeled with fluorescent dyes. To increase signal to noise, ligands have been separately conjugated with the FRET (Förster resonance energy transfer) pairs, Cy3 and Cy5. With these constructs, the transcribed aptamers can be imaged after activation of the promoter by galactose. FRET was confirmed with three different approaches, which were sensitized emission, acceptor photobleaching and donor lifetime by FLIM (fluorescence lifetime imaging

  4. Investigation of three flavonoids binding to bovine serum albumin using molecular fluorescence technique

    International Nuclear Information System (INIS)

    Bi Shuyun; Yan Lili; Pang Bo; Wang Yu

    2012-01-01

    The three flavonoids including naringenin, hesperetin and apigenin binding to bovine serum albumin (BSA) at pH 7.4 was studied by fluorescence quenching, synchronous fluorescence and UV-vis absorption spectroscopic techniques. The results obtained revealed that naringenin, hesperetin and apigenin strongly quenched the intrinsic fluorescence of BSA. The Stern-Volmer curves suggested that these quenching processes were all static quenching processes. At 291 K, the value and the order of the binding constant were K A n aringenin) =4.08x10 4 A(hesperetin) =5.40x10 4 ∼K A(apigenin) =5.32x10 4 L mol -1 . The main binding force between the flavonoid and BSA was hydrophobic and electrostatic force. According to the Foerster theory of non-radiation energy transfer, the binding distances (r 0 ) were obtained as 3.36, 3.47 and 3.30 nm for naringenin-BSA, hesperetin-BSA and apigenin-BSA, respectively. The effect of some common ions such as Fe 3+ , Cu 2+ , Mg 2+ , Mn 2+ , Zn 2+ and Ca 2+ on the binding was also studied in detail. The competition binding was also performed. The apparent binding constant (K' A ) obtained suggested that one flavonoid had an obvious effect on the binding of another flavonoid to protein when they coexisted in BSA solution. - Highlights: → Quenchings of BSA fluorescence by the flavonoids was all static quenchings. → Synchronous fluorescence was applied to study the structural change of BSA. → Binding constant, binding site and binding force were determined. → Competition binding experiments were performed. → One flavonoid had an obvious effect on the binding of another one to BSA.

  5. Development of an aptamer-based affinity purification method for vascular endothelial growth factor

    Directory of Open Access Journals (Sweden)

    Maren Lönne

    2015-12-01

    Full Text Available Since aptamers bind their targets with high affinity and specificity, they are promising alternative ligands in protein affinity purification. As aptamers are chemically synthesized oligonucleotides, they can be easily produced in large quantities regarding GMP conditions allowing their application in protein production for therapeutic purposes. Several advantages of aptamers compared to antibodies are described in general within this paper. Here, an aptamer directed against the human Vascular Endothelial Growth Factor (VEGF was used as affinity ligand for establishing a purification platform for VEGF in small scale. The aptamer was covalently immobilized on magnetic beads in a controlled orientation resulting in a functional active affinity matrix. Target binding was optimized by introduction of spacer molecules and variation of aptamer density. Further, salt-induced target elution was demonstrated as well as VEGF purification from a complex protein mixture proving the specificity of protein-aptamer binding.

  6. Aptamer Based Microsphere Biosensor for Thrombin Detection

    Directory of Open Access Journals (Sweden)

    Xudong Fan

    2006-08-01

    Full Text Available We have developed an optical microsphere resonator biosensor using aptamer asreceptor for the measurement of the important biomolecule thrombin. The sphere surface ismodified with anti-thrombin aptamer, which has excellent binding affinity and selectivityfor thrombin. Binding of the thrombin at the sphere surface is monitored by the spectralposition of the microsphere’s whispering gallery mode resonances. A detection limit on theorder of 1 NIH Unit/mL is demonstrated. Control experiments with non-aptameroligonucleotide and BSA are also carried out to confirm the specific binding betweenaptamer and thrombin. We expect that this demonstration will lead to the development ofhighly sensitive biomarker sensors based on aptamer with lower cost and higher throughputthan current technology.

  7. Rapid one-step selection method for generating nucleic acid aptamers: development of a DNA aptamer against α-bungarotoxin.

    Directory of Open Access Journals (Sweden)

    Lasse H Lauridsen

    Full Text Available BACKGROUND: Nucleic acids based therapeutic approaches have gained significant interest in recent years towards the development of therapeutics against many diseases. Recently, research on aptamers led to the marketing of Macugen®, an inhibitor of vascular endothelial growth factor (VEGF for the treatment of age related macular degeneration (AMD. Aptamer technology may prove useful as a therapeutic alternative against an array of human maladies. Considering the increased interest in aptamer technology globally that rival antibody mediated therapeutic approaches, a simplified selection, possibly in one-step, technique is required for developing aptamers in limited time period. PRINCIPAL FINDINGS: Herein, we present a simple one-step selection of DNA aptamers against α-bungarotoxin. A toxin immobilized glass coverslip was subjected to nucleic acid pool binding and extensive washing followed by PCR enrichment of the selected aptamers. One round of selection successfully identified a DNA aptamer sequence with a binding affinity of 7.58 µM. CONCLUSION: We have demonstrated a one-step method for rapid production of nucleic acid aptamers. Although the reported binding affinity is in the low micromolar range, we believe that this could be further improved by using larger targets, increasing the stringency of selection and also by combining a capillary electrophoresis separation prior to the one-step selection. Furthermore, the method presented here is a user-friendly, cheap and an easy way of deriving an aptamer unlike the time consuming conventional SELEX-based approach. The most important application of this method is that chemically-modified nucleic acid libraries can also be used for aptamer selection as it requires only one enzymatic step. This method could equally be suitable for developing RNA aptamers.

  8. Combined fluorescence and electrochemical investigation on the binding interaction between organic acid and human serum albumin

    Institute of Scientific and Technical Information of China (English)

    CHEN Yan-Min; GUO Liang-Hong

    2009-01-01

    Human serum albumin (HSA) is a plasma protein responsible for the binding and transport of fatty acids and a variety of exogenous chemicals such as drugs and environmental pollutants. Such binding plays a crucial role in determining the ADME (absorption, distribution, metabolism, and excretion) and bioavailability of the pollutants. We report investigation on the binding interaction between HSA and acetic acid (C2), octanoic acid (C8) and dodecanoic acid (C12) by the combination of site-specific fluorescent probe, tryptophan intrinsic fluorescence and tyrosine electrochemistry. Two fluorescent probes, dansylamide and dansyl-L-proline, were employed in the displacement measurement to study fatty acid interaction with the two drug-binding sites on HSA. Intrinsic fluorescence of tryptophan in HSA was monitored upon addition of the fatty acids into HSA. Electrocatalyzed response of the tyrosine residues in HSA by a redox mediator was used to investigate the binding interaction. Qualitatively, observations made by the three approaches are very similar. HSA did not show any change in either fluorescence or electrochemistry after mixing with C2, suggesting there is no significant interaction with the short-chain fatty acid. For C8, the measured signal dropped in a single-exponential fashion, indicative of independent and non-cooperative binding. The calculated association constant and binding ratio is 3.1×106 L/mol and 1 with drug binding Site I, 1.1×107 L/mol and 1 with Site II, and 7.0×104 L/mol and 4 with the tryptophan site. The measurement with C12 displayed multiple phases of fluorescence change, suggesting cooperativity and allosteric effect of C12 binding. These results correlate well with those obtained by the established methods, and validate the new approach as a viable tool to study the interactions of environmental pollutants with biological molecules.

  9. Dual-color upconversion fluorescence and aptamer-functionalized magnetic nanoparticles-based bioassay for the simultaneous detection of Salmonella Typhimurium and Staphylococcus aureus.

    Science.gov (United States)

    Duan, Nuo; Wu, Shijia; Zhu, Changqing; Ma, Xiaoyuan; Wang, Zhouping; Yu, Ye; Jiang, Yuan

    2012-04-20

    A sensitive luminescent bioassay for the simultaneous detection of Salmonella Typhimurium and Staphylococcus aureus was developed using aptamer-conjugated magnetic nanoparticles (MNPs) for both recognition and concentration elements and using upconversion nanoparticles (UCNPs) as highly sensitive dual-color labels. The bioassay system was fabricated by immobilizing aptamer 1 and aptamer 2 onto the surface of MNPs, which were employed to capture and concentrate S. Typhimurium and S. aureus. NaY(0.78)F(4):Yb(0.2),Tm(0.02) UCNPs modified aptamer 1 and NaY(0.28)F(4):Yb(0.70),Er(0.02) UCNPs modified aptamer 2 further were bond onto the captured bacteria surface to form sandwich-type complexes. Under optimal conditions, the correlation between the concentration of S. Typhimurium and the luminescent signal was found to be linear within the range of 10(1)-10(5) cfu mL(-1) (R(2)=0.9964), and the signal was in the range of 10(1)-10(5) cfu mL(-1) (R(2)=0.9936) for S. aureus. The limits of detection of the developed method were found to be 5 and 8 cfu mL(-1) for S. Typhimurium and S. aureus, respectively. The ability of the bioassay to detect S. Typhimurium and S. aureus in real water samples was also investigated, and the results were compared to the experimental results from the plate-counting methods. Improved by the magnetic separation and concentration effect of MNPs, the high sensitivity of UCNPs, and the different emission lines of Yb/Er- and Yb/Tm-doped NaYF(4) UCNPs excited by a 980 nm laser, the present method performs with both high sensitivity and selectivity for the two different types of bacteria. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Method for detecting binding events using micro-X-ray fluorescence spectrometry

    Science.gov (United States)

    Warner, Benjamin P.; Havrilla, George J.; Mann, Grace

    2010-12-28

    Method for detecting binding events using micro-X-ray fluorescence spectrometry. Receptors are exposed to at least one potential binder and arrayed on a substrate support. Each member of the array is exposed to X-ray radiation. The magnitude of a detectable X-ray fluorescence signal for at least one element can be used to determine whether a binding event between a binder and a receptor has occurred, and can provide information related to the extent of binding between the binder and receptor.

  11. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity

    International Nuclear Information System (INIS)

    Wang, Deng-Liang; Song, Yan-Ling; Zhu, Zhi; Li, Xi-Lan; Zou, Yuan; Yang, Hai-Tao; Wang, Jiang-Jie; Yao, Pei-Sen; Pan, Ru-Jun; Yang, Chaoyong James; Kang, De-Zhi

    2014-01-01

    Highlights: • This is the first report of DNA aptamer against EGFR in vitro. • Aptamer can bind targets with high affinity and selectivity. • DNA aptamers are more stable, cheap and efficient than RNA aptamers. • Our selected DNA aptamer against EGFR has high affinity with K d 56 ± 7.3 nM. • Our selected DNA aptamer against EGFR has high selectivity. - Abstract: Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the ideal antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher’s attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with K d 56 ± 7.3 nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy

  12. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Deng-Liang [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Song, Yan-Ling; Zhu, Zhi; Li, Xi-Lan; Zou, Yuan [State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Yang, Hai-Tao; Wang, Jiang-Jie [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Yao, Pei-Sen [Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Pan, Ru-Jun [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Yang, Chaoyong James, E-mail: cyyang@xmu.edu.cn [State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Kang, De-Zhi, E-mail: kdzy99988@163.com [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China)

    2014-10-31

    Highlights: • This is the first report of DNA aptamer against EGFR in vitro. • Aptamer can bind targets with high affinity and selectivity. • DNA aptamers are more stable, cheap and efficient than RNA aptamers. • Our selected DNA aptamer against EGFR has high affinity with K{sub d} 56 ± 7.3 nM. • Our selected DNA aptamer against EGFR has high selectivity. - Abstract: Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the ideal antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher’s attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with K{sub d} 56 ± 7.3 nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy.

  13. G-quadruplex aptamer targeting Protein A and its capability to detect Staphylococcus aureus demonstrated by ELONA

    OpenAIRE

    Stoltenburg, Regina; Kraf?ikov?, Petra; V?glask?, Viktor; Strehlitz, Beate

    2016-01-01

    Aptamers for whole cell detection are selected mostly by the Cell-SELEX procedure. Alternatively, the use of specific cell surface epitopes as target during aptamer selections allows the development of aptamers with ability to bind whole cells. In this study, we integrated a formerly selected Protein A-binding aptamer PA#2/8 in an assay format called ELONA (Enzyme-Linked OligoNucleotide Assay) and evaluated the ability of the aptamer to recognise and bind to Staphylococcus aureus presenting P...

  14. Evaluating the binding efficiency of pheromone binding protein with its natural ligand using molecular docking and fluorescence analysis

    Science.gov (United States)

    Ilayaraja, Renganathan; Rajkumar, Ramalingam; Rajesh, Durairaj; Muralidharan, Arumugam Ramachandran; Padmanabhan, Parasuraman; Archunan, Govindaraju

    2014-06-01

    Chemosignals play a crucial role in social and sexual communication among inter- and intra-species. Chemical cues are bound with protein that is present in the pheromones irrespective of sex are commonly called as pheromone binding protein (PBP). In rats, the pheromone compounds are bound with low molecular lipocalin protein α2u-globulin (α2u). We reported farnesol is a natural endogenous ligand (compound) present in rat preputial gland as a bound volatile compound. In the present study, an attempt has been made through computational method to evaluating the binding efficiency of α2u with the natural ligand (farnesol) and standard fluorescent molecule (2-naphthol). The docking analysis revealed that the binding energy of farnesol and 2-naphthol was almost equal and likely to share some binding pocket of protein. Further, to extrapolate the results generated through computational approach, the α2u protein was purified and subjected to fluorescence titration and binding assay. The results showed that the farnesol is replaced by 2-naphthol with high hydrophobicity of TYR120 in binding sites of α2u providing an acceptable dissociation constant indicating the binding efficiency of α2u. The obtained results are in corroboration with the data made through computational approach.

  15. Binding of chemical warfare agent simulants as guests in a coordination cage: contributions to binding and a fluorescence-based response.

    Science.gov (United States)

    Taylor, Christopher G P; Piper, Jerico R; Ward, Michael D

    2016-05-07

    Cubic coordination cages act as competent hosts for several alkyl phosphonates used as chemical warfare agent simulants; a range of cage/guest structures have been determined, contributions to guest binding analysed, and a fluorescent response to guest binding demonstrated.

  16. Molecular recognition of live methicillin-resistant staphylococcus aureus cells using DNA aptamers.

    Science.gov (United States)

    Turek, Diane; Van Simaeys, Dimitri; Johnson, Judith; Ocsoy, Ismail; Tan, Weihong

    2013-01-01

    To generate DNA-aptamers binding to Methicillin-resistant Staphylococcus aureus (MRSA) . The Cell-Systematic Evolution of Ligands by Exponential Enrichment (SELEX) technology was used to run the selection against MRSA bacteria and develop target-specific aptamers. MRSA bacteria were targeted while Enterococcus faecalis bacteria were used for counter selection during that process. Binding assays to determine the right aptamer candidates as well as binding assays on clinical samples were performed through flow cytometry and analyzed using the FlowJo software. The characterization of the aptamers was done by determination of their K d values and determined by analysis of flow data at different aptamer concentration using SigmaPlot. Finally, the recognition of the complex Gold-nanoparticle-aptamer to the bacteria cells was observed using transmission electron microscopy (TEM). During the cell-SELEX selection process, 17 rounds were necessary to generate enrichment of the pool. While the selection was run using fixed cells, it was shown that the binding of the pools with live cells was giving similar results. After sequencing and analysis of the two last pools, four sequences were identified to be aptamer candidates. The characterization of those aptamers showed that based on their K d values, DTMRSA4 presented the best binding with a K d value of 94.61 ± 18.82 nmol/L. A total of ten clinical samples of MRSA , S. aureus and Enterococcus faecalis were obtained to test those aptamers and determine their binding on a panel of samples. DTMRSA1 and DTMRSA3 showed the best results regarding their specificity to MRSA , DTMRSA1 being the most specific of all. Finally, those aptamers were coupled with gold-nanoparticle and their binding to MRSA cells was visualized through TEM showing that adduction of nanoparticles on the aptamers did not change their binding property. A total of four aptamers that bind to MRSA were obtained with K d values ranking from 94 to 200 nmol/L.

  17. Colorimetric detection with aptamer-gold nanoparticle conjugates: effect of aptamer length on response

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, Jorge L. [Wright-Patterson Air Force Base, 711th Human Performance Wing, Human Effectiveness Directorate, Air Force Research Laboratory (United States); MacCuspie, Robert I. [National Institute of Standards and Technology, Ceramics Division (United States); Stone, Morley O.; Kelley-Loughnane, Nancy, E-mail: Nancy.Kelley-Loughnane@wpafb.af.mil [Wright-Patterson Air Force Base, 711th Human Performance Wing, Human Effectiveness Directorate, Air Force Research Laboratory (United States)

    2012-10-15

    A riboflavin binding aptamer (RBA) was used in combination with gold nanoparticles (AuNPs) to detect riboflavin in vitro. The RBA-AuNP conjugates (RBA-AuNPs) responded colorimetrically to the presence of riboflavin and this response could be followed by the naked eye. This system was used as a model to study how modifications on the aptamer sequence affect the RBA-AuNPs' stability and their response to their target. To mimic primers and other sequence modifications typically used in aptamer work, the RBA was extended by adding extra bases to its 5 Prime end. These extra bases were designed to avoid interactions with the RBA binding site. The response of these RBA-AuNPs was evaluated and compared. Dynamic light scattering and UV-aggregation kinetics studies showed that the length of the aptamer significantly affected the RBA-AuNPs' stability and, as a consequence, the magnitude of the detection response to riboflavin. The addition of thymine nucleotides instead of random tails to the RBA showed that the effects observed were not specific to the sequence used. This study shows that modifications of the aptamer sequence provide a means to improve the stability of aptamer-AuNPs conjugates and their sensing response.

  18. Aptamer and its applications in neurodegenerative diseases.

    Science.gov (United States)

    Qu, Jing; Yu, Shuqing; Zheng, Yuan; Zheng, Yan; Yang, Hui; Zhang, Jianliang

    2017-02-01

    Aptamers are small single-stranded DNA or RNA oligonucleotide fragments or small peptides, which can bind to targets by high affinity and specificity. Because aptamers are specific, non-immunogenic and non-toxic, they are ideal materials for clinical applications. Neurodegenerative disorders are ravaging the lives of patients. Even though the mechanism of these diseases is still elusive, they are mainly characterized by the accumulation of misfolded proteins in the central nervous system. So it is essential to develop potential measures to slow down or prevent the onset of these diseases. With the advancements of the technologies, aptamers have opened up new areas in this research field. Aptamers could bind with these related target proteins to interrupt their accumulation, subsequently blocking or preventing the process of neurodegenerative diseases. This review presents recent advances in the aptamer generation and its merits and limitations, with emphasis on its applications in neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, transmissible spongiform encephalopathy, Huntington's disease and multiple sclerosis.

  19. Comparative crystallization and preliminary X-ray diffraction studies of locked nucleic acid and RNA stems of a tenascin C-binding aptamer

    International Nuclear Information System (INIS)

    Förster, Charlotte; Brauer, Arnd B. E.; Brode, Svenja; Schmidt, Kathrin S.; Perbandt, Markus; Meyer, Arne; Rypniewski, Wojciech; Betzel, Christian; Kurreck, Jens; Fürste, Jens P.; Erdmann, Volker A.

    2006-01-01

    Locked nucleic acid (LNA) nucleotides are RNA analogues with a useful additional conformational constraint; the current investigation will provide the first crystallographic view of an all-LNA duplex. The pharmacokinetic properties of an aptamer against the tumour-marker protein tenascin-C have recently been successfully improved by the introduction of locked nucleic acids (LNAs) into the terminal stem of the aptamer. Since it is believed that this post-SELEX optimization is likely to provide a more general route to enhance the in vitro and in vivo stability of aptamers, elucidation of the structural basis of this improvement was embarked upon. Here, the crystallographic and X-ray diffraction data of the isolated aptamer stem encompassed in a six-base-pair duplex both with and without the LNA modification are presented. The obtained all-LNA crystals belong to space group P4 1 2 1 2 or P4 3 2 1 2, with unit-cell parameters a = b = 52.80, c = 62.83 Å; the all-RNA crystals belong to space group R32, with unit-cell parameters a = b = 45.21, c = 186.97 Å, γ = 120.00°

  20. Single-molecule analysis of lead(II)-binding aptamer conformational changes in an α-hemolysin nanopore, and sensitive detection of lead(II)

    International Nuclear Information System (INIS)

    Wang, Hai-Yan; Song, Ze-Yang; Zhang, Hui-Sheng; Chen, Si-Ping

    2016-01-01

    The α-hemolysin (αHL) nanopore is capable of analyzing DNA duplex and DNA aptamer as they can be electrophoretically driven into the vestibule from the cis entrance. The current study describes the competitive interaction induced by Pb 2+ that changes the secondary structure of DNA duplex in asymmetrical electrolyte solution. DNA duplex formed by the partial complementary DNA and DNA aptamer sequence produced unzipping blockages with the dwell unzipping time lasting 2.84 ± 0.7 ms. By cation-DNA interaction with Pb 2+ , the DNA duplex will unwind and then form Pb 2+ -stabilized-DNA aptamer, which will be captured and unfolded in vestibule. The pore conductance were reduced to 54 % and 94 % with mean dwell unfolding times of 165 ± 12 ms. The competitive behavior between Pb 2+ and single-strand DNA was further utilized to detect Pb 2+ in solution with a detection limit of 0.5 nM. This nanopore platform also provides a powerful tool for studying the cation-DNA interactions in DNA aptamer conformational changes. Thus, the results drawn from these studies provide insights into the applications of α-hemolysin nanopore as a molecular sieve to different DNA secondary structure in future application of nanopore analysis. (author)

  1. Neutralization of several adult and paediatric HIV-1 subtype C isolates using a shortened synthetic derivative of gp120 binding aptamer called UCLA1.

    CSIR Research Space (South Africa)

    Mufhandu, Hazel T

    2009-07-01

    Full Text Available This paper present a chemically synthesised derivative of the B40 parental aptamer, called UCLA1 (Cohen et al., 2008), was used for neutralization of endemic subtype C clinical isolates of HIV-1 from adult and paediatric patients and subtype B lab...

  2. A quantum dot-aptamer beacon using a DNA intercalating dye as the FRET reporter: application to label-free thrombin detection.

    Science.gov (United States)

    Chi, Chun-Wei; Lao, Yeh-Hsing; Li, Yi-Shan; Chen, Lin-Chi

    2011-03-15

    A new quantum dot (QD)-aptamer (apt) beacon that acts by folding-induced dissociation of a DNA intercalating dye, BOBO-3(B), is demonstrated with label-free thrombin detection. The beacon, denoted as QD-apt:B, is constructed by (1) coupling of a single-stranded thrombin aptamer to Qdot 565 via EDC/Sulfo-NHS chemistry and (2) staining the duplex regions of the aptamer on QD with excess BOBO-3 before thrombin binding. When mixing a thrombin sample with QD-apt:B, BOBO-3 is competed away from the beacon due to target-induced aptamer folding, which then causes a decrease in QD fluorescence resonance energy transfer (FRET)-mediated BOBO-3 emission and achieves thrombin quantitation. In this work, the effects of Mg(2+), coupling time, and aptamer type on the beacon's performances are investigated and discussed thoroughly with various methods, including transmission electron microscopy (TEM), dynamic light scattering (DLS), and two-color differential gel electrophoresis. Using the best aptamer beacon (HTQ37), we attain highly specific and wide-range detection (from nM to μM) of thrombin in buffer, and the beacon can sense nM-range thrombin in 15% diluted serum. Compared to the reported QD aptamer assays, our method is advantageous from the aspect of using a simple sensory unit design without losing the detection sensitivity. Therefore, we consider the QD-apt:B beacon a potential alternative to immuno-reagents and an effective tool to study nucleic acid folding on QD as well. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Highly sensitive detection for proteins using graphene oxide-aptamer based sensors.

    Science.gov (United States)

    Gao, Li; Li, Qin; Li, Raoqi; Yan, Lirong; Zhou, Yang; Chen, Keping; Shi, Haixia

    2015-07-07

    In recent years, the detection of proteins by using bare graphene oxide (GO) to quench the fluorescence of fluorescein-labeled aptamers has been reported. However, the proteins can be adsorbed on the surface of bare GO to prevent the sensitivity from further being improved. In order to solve this problem, polyethylene glycol (PEG)-protected GO was used to prevent the proteins using thrombin as an example from nonspecific binding. The detection limit was improved compared to bare GO under the optimized ratio of GO to PEG concentration. The results show that our method is a promising technique for the detection of proteins.

  4. Visualizing the dental biofilm matrix by means of fluorescence lectin-binding analysis

    DEFF Research Database (Denmark)

    Tawakoli, Pune Nina; Neu, Thomas R; Busck, Mette Marie

    2017-01-01

    lectins to visualize and quantify extracellular glycoconjugates in dental biofilms. Lectin binding was screened on pooled supragingival biofilm samples collected from 76 subjects using confocal microscopy. FLBA was then performed with 10 selected lectins on biofilms grown in situ for 48 h in the absence......The extracellular matrix is a poorly studied, yet important component of dental biofilms. Fluorescence lectin-binding analysis (FLBA) is a powerful tool to characterize glycoconjugates in the biofilm matrix. This study aimed to systematically investigate the ability of 75 fluorescently labeled......-biofilms: Aleuria aurantia (AAL), Calystega sepiem (Calsepa), Lycopersicon esculentum (LEA), Morniga-G (MNA-G) and Helix pomatia (HPA). No significant correlation between the binding of specific lectins and bacterial composition was found. Fluorescently labeled lectins enable the visualization of glycoconjugates...

  5. High Efficiency Acetylcholinesterase Immobilization on DNA Aptamer Modified Surfaces

    Directory of Open Access Journals (Sweden)

    Orada Chumphukam

    2014-04-01

    Full Text Available We report here the in vitro selection of DNA aptamers for electric eel acetylcholinesterase (AChE. One selected aptamer sequence (R15/19 has a high affinity towards the enzyme (Kd = 157 ± 42 pM. Characterization of the aptamer showed its binding is not affected by low ionic strength (~20 mM, however significant reduction in affinity occurred at high ionic strength (~1.2 M. In addition, this aptamer does not inhibit the catalytic activity of AChE that we exploit through immobilization of the DNA on a streptavidin-coated surface. Subsequent immobilization of AChE by the aptamer results in a 4-fold higher catalytic activity when compared to adsorption directly on to plastic.

  6. Determining the ice-binding planes of antifreeze proteins by fluorescence-based ice plane affinity.

    Science.gov (United States)

    Basu, Koli; Garnham, Christopher P; Nishimiya, Yoshiyuki; Tsuda, Sakae; Braslavsky, Ido; Davies, Peter

    2014-01-15

    Antifreeze proteins (AFPs) are expressed in a variety of cold-hardy organisms to prevent or slow internal ice growth. AFPs bind to specific planes of ice through their ice-binding surfaces. Fluorescence-based ice plane affinity (FIPA) analysis is a modified technique used to determine the ice planes to which the AFPs bind. FIPA is based on the original ice-etching method for determining AFP-bound ice-planes. It produces clearer images in a shortened experimental time. In FIPA analysis, AFPs are fluorescently labeled with a chimeric tag or a covalent dye then slowly incorporated into a macroscopic single ice crystal, which has been preformed into a hemisphere and oriented to determine the a- and c-axes. The AFP-bound ice hemisphere is imaged under UV light to visualize AFP-bound planes using filters to block out nonspecific light. Fluorescent labeling of the AFPs allows real-time monitoring of AFP adsorption into ice. The labels have been found not to influence the planes to which AFPs bind. FIPA analysis also introduces the option to bind more than one differently tagged AFP on the same single ice crystal to help differentiate their binding planes. These applications of FIPA are helping to advance our understanding of how AFPs bind to ice to halt its growth and why many AFP-producing organisms express multiple AFP isoforms.

  7. Fluorometric graphene oxide-based detection of Salmonella enteritis using a truncated DNA aptamer.

    Science.gov (United States)

    Chinnappan, Raja; AlAmer, Saleh; Eissa, Shimaa; Rahamn, Anas Abdel; Abu Salah, Khalid M; Zourob, Mohammed

    2017-12-18

    The work describes a fluorescence-based study for mapping the highest affinity truncated aptamer from the full length sequence and its integration in a graphene oxide platform for the detection of Salmonella enteriditis. To identify the best truncated sequence, molecular beacons and a displacement assay design are applied. In the fluorescence displacement assay, the truncated aptamer was hybridized with fluorescein and quencher-labeled complementary sequences to form a fluorescence/quencher pair. In the presence of S. enteritidis, the aptamer dissociates from the complementary labeled oligonucleotides and thus, the fluorescein/quencher pair becomes physically separated. This leads to an increase in fluorescence intensity. One of the truncated aptamers identified has a 2-fold lower dissociation constant (3.2 nM) compared to its full length aptamer (6.3 nM). The truncated aptamer selected in this process was used to develop a fluorometric graphene oxide (GO) based assay. If fluorescein-labeled aptamer is adsorbed on GO via π stacking interaction, fluorescence is quenched. However, in the presence of target (S. enteriditis), the labeled aptamers is released from surface to form a stable complex with the bacteria and fluorescence is restored, depending on the quantity of bacteria being present. The resulting assay has an unsurpassed detection limit of 25 cfu·mL -1 in the best case. The cross reactivity to Salmonella typhimurium, Staphylococcus aureus and Escherichia coli is negligible. The assay was applied to analyze doped milk samples for and gave good recovery. Thus, we believe that the truncated aptamer/graphene oxide platform is a potential tool for the detection of S. Enteritidis. Graphical abstract Fluorescently labelled aptamer against Salmonella enteritidis was adsorbed on the surface of graphene oxide by π-stacking interaction. This results in quenching of the fluorescence of the label. Addition of Salmonella enteritidis restores fluorescence, and this

  8. Rapid One-Step Selection Method for Generating Nucleic Acid Aptamers: Development of a DNA Aptamer against alpha-Bungarotoxin

    DEFF Research Database (Denmark)

    Lauridsen, Lasse Holm; Shamaileh, Hadi A.; Edwards, Stacey L.

    2012-01-01

    Background: Nucleic acids based therapeutic approaches have gained significant interest in recent years towards the development of therapeutics against many diseases. Recently, research on aptamers led to the marketing of Macugen (R), an inhibitor of vascular endothelial growth factor (VEGF......) for the treatment of age related macular degeneration (AMD). Aptamer technology may prove useful as a therapeutic alternative against an array of human maladies. Considering the increased interest in aptamer technology globally that rival antibody mediated therapeutic approaches, a simplified selection, possibly...... in one-step, technique is required for developing aptamers in limited time period. Principal Findings: Herein, we present a simple one-step selection of DNA aptamers against alpha-bungarotoxin. A toxin immobilized glass coverslip was subjected to nucleic acid pool binding and extensive washing followed...

  9. Thrombin–aptamer recognition: a revealed ambiguity

    OpenAIRE

    Russo Krauss, Irene; Merlino, Antonello; Giancola, Concetta; Randazzo, Antonio; Mazzarella, Lelio; Sica, Filomena

    2011-01-01

    Aptamers are structured oligonucleotides that recognize molecular targets and can function as direct protein inhibitors. The best-known example is the thrombin-binding aptamer, TBA, a single-stranded 15-mer DNA that inhibits the activity of thrombin, the key enzyme of coagulation cascade. TBA folds as a G-quadruplex structure, as proved by its NMR structure. The X-ray structure of the complex between TBA and human α-thrombin was solved at 2.9-Å resolution, but did not provide details of the a...

  10. Ex Vivo and In Vivo Imaging and Biodistribution of Aptamers Targeting the Human Matrix MetalloProtease-9 in Melanomas.

    Directory of Open Access Journals (Sweden)

    David Kryza

    Full Text Available The human Matrix MetalloProtease-9 (hMMP-9 is overexpressed in tumors where it promotes the release of cancer cells thus contributing to tumor metastasis. We raised aptamers against hMMP-9, which constitutes a validated marker of malignant tumors, in order to design probes for imaging tumors in human beings. A chemically modified RNA aptamer (F3B, fully resistant to nucleases was previously described. This compound was subsequently used for the preparation of F3B-Cy5, F3B-S-acetylmercaptoacetyltriglycine (MAG and F3B-DOTA. The binding properties of these derivatives were determined by surface plasmon resonance and electrophoretic mobility shift assay. Optical fluorescence imaging confirmed the binding to hMMP-9 in A375 melanoma bearing mice. Quantitative biodistribution studies were performed at 30 min, 1h and 2 h post injection of 99mTc-MAG-aptamer and 111In-DOTA-F3B. 99mTc radiolabeled aptamer specifically detected hMMP-9 in A375 melanoma tumors but accumulation in digestive tract was very high. Following i.v. injection of 111In-DOTA-F3B, high level of radioactivity was observed in kidneys and bladder but digestive tract uptake was very limited. Tumor uptake was significantly (student t test, p<0.05 higher for 111In-DOTA-F3B with 2.0%ID/g than for the 111In-DOTA-control oligonucleotide (0.7%ID/g with tumor to muscle ratio of 4.0. Such difference in tumor accumulation has been confirmed by ex vivo scintigraphic images performed at 1h post injection and by autoradiography, which revealed the overexpression of hMMP-9 in sections of human melanomas. These results demonstrate that F3B aptamer is of interest for detecting hMMP-9 in melanoma tumor.

  11. In vitro Selection and Interaction Studies of a DNA Aptamer Targeting Protein A

    OpenAIRE

    Stoltenburg, Regina; Schubert, Thomas; Strehlitz, Beate

    2015-01-01

    A new DNA aptamer targeting Protein A is presented. The aptamer was selected by use of the FluMag-SELEX procedure. The SELEX technology (Systematic Evolution of Ligands by EXponential enrichment) is widely applied as an in vitro selection and amplification method to generate target-specific aptamers and exists in various modified variants. FluMag-SELEX is one of them and is characterized by the use of magnetic beads for target immobilization and fluorescently labeled oligonucleotides for moni...

  12. Synthesis and characterization of novel 2, 2'-bipyrimidine fluorescent derivative for protein binding

    Directory of Open Access Journals (Sweden)

    Padalkar Vikas S

    2011-11-01

    Full Text Available Abstract Background Fluorescent dyes with biocompatible functional group and good fluorescence behavior are used as biosensor for monitoring different biological processes as well as detection of protein assay. All reported fluorophore used as sensors are having high selectivity and sensitivity but till there is more demand to synthesized new fluorophore which have improved fluorescence properties and good biocompatibility. Results Novel 4, 4'-(1, 1'-(5-(2-methoxyphenoxy-[2, 2'-bipyrimidine]-4, 6-diylbis(1H-pyrazol-3, 1-diyl dianiline fluorescent dye was synthesized by multistep synthesis from 2-phenylacetonitrile, 2-chloropyrimidine and 2-methoxyphenol. This dye has absorption at 379 nm with intense single emission at 497 nm having fairly good quantum yield (0.375 and Stokes shift. The intermediates and dye were characterized by FT-IR, 1H NMR, 13C NMR and Mass spectral analysis. The pyrazole bipyrimidine based fluorescent dye possessing two amino groups suitable for binding with protein is reported. Its utility as a biocompatible conjugate was explained by conjugation with bovine serum albumin. The method is based on direct fluorescence detection of fluorophore-labelled protein before and after conjugation. Purified fluorescent conjugate was subsequently analyzed by fluorimetry. The analysis showed that the tested conjugation reaction yielded fluorescent conjugates of the dye through carbodiimide chemistry. Conclusion In summery synthesized fluorophore pyrazole-bipyrimidine has very good interaction towards protein bovine serum albumin and it acts as good candidate for protein assay.

  13. Stabilization of structure in near-infrared fluorescent proteins by binding of biliverdin chromophore

    Science.gov (United States)

    Stepanenko, Olesya V.; Stepanenko, Olga V.; Bublikov, G. S.; Kuznetsova, I. M.; Verkhusha, V. V.; Turoverov, K. K.

    2017-07-01

    Near-infrared fluorescent proteins (NIR FPs) engineered from bacterial phytochromes and their mutants with different location of Cys residues, which able to bind a biliverdin chromophore, or without these Cys residues were studied using intrinsic tryptophan fluorescence, NIR fluorescence and circular dichroism. It was shown that a covalent binding of the biliverdin chromophore to a Cys residue via thioether group substantially stabilizes the spatial structure of NIR FPs. The stability of the protein structure and the chromophore association strength strongly depends on the location of Cys residues and decreases in the following order: a protein with Cys residues in both domains, a protein with Cys in PAS domains, and a protein with Cys in GAF domains. NIR FPs without Cys residues capable to covalently attach biliverdin have the lowest stability, comparable to NIR FP apoforms.

  14. APTAMER-BASED SERRS SENSOR FOR THROMBIN DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Cho, H; Baker, B R; Wachsmann-Hogiu, S; Pagba, C V; Laurence, T A; Lane, S M; Lee, L P; Tok, J B

    2008-07-02

    We describe an aptamer-based Surface Enhanced Resonance Raman Scattering (SERRS) sensor with high sensitivity, specificity, and stability for the detection of a coagulation protein, human a-thrombin. The sensor achieves high sensitivity and a limit of detection of 100 pM by monitoring the SERRS signal change upon the single step of thrombin binding to immobilized thrombin binding aptamer. The selectivity of the sensor is demonstrated by the specific discrimination of thrombin from other protein analytes. The specific recognition and binding of thrombin by the thrombin binding aptamer is essential to the mechanism of the aptamer-based sensor, as shown through measurements using negative control oligonucleotides. In addition, the sensor can detect 1 nM thrombin in the presence of complex biofluids, such as 10% fetal calf serum, demonstrating that the immobilized, 5{prime}-capped, 3{prime}-capped aptamer is sufficiently robust for clinical diagnostic applications. Furthermore, the proposed sensor may be implemented for multiplexed detection using different aptamer-Raman probe complexes.

  15. Amplified fluorescent aptasensor through catalytic recycling for highly sensitive detection of ochratoxin A.

    Science.gov (United States)

    Wei, Yin; Zhang, Ji; Wang, Xu; Duan, Yixiang

    2015-03-15

    This paper describes a novel approach utilizing nano-graphite-aptamer hybrid and DNase I for the amplified detection of ochratoxin A (OTA) for the first time. Nano-graphite can effectively quench the fluorescence of carboxyfluorescein (FAM) labeled OTA specific aptamer due to their strong π-π; stacking interactions; while upon OTA addition, it will bind with aptamer to fold into an OTA-aptamerG-quadruplex structure, which does not adsorb on the surface of nano-graphite and thus retains the dye fluorescence. Meanwhile, the G-quadruplex structure can be cleaved by DNase I, and in such case OTA is delivered from the complex. The released OTA then binds other FAM-labeled aptamers on the nano-graphite surface, and touches off another target recycling, resulting in the successive release of dye-labeled aptamers from the nano-graphite, which leads to significant amplification of the signal. Under the optimized conditions, the present amplified sensing system exhibits high sensitivity toward OTA with a limit of detection of 20nM (practical measurement), which is about 100-fold higher than that of traditional unamplified homogeneous assay. Our developed method also showed high selectivity against other interference molecules and can be applied for the detection of OTA in real red wine samples. The proposed assay is simple, cost-effective, and might open a door for the development of new assays for other biomolecules. This aptasensor is of great practical importance in food safety and could be widely extended to the detection of other toxins by replacing the sequence of the recognition aptamer. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Label-free aptamer biosensor for selective detection of thrombin

    Energy Technology Data Exchange (ETDEWEB)

    Na, Weidan; Liu, Xiaotong; Wang, Lei; Su, Xingguang, E-mail: suxg@jlu.edu.cn

    2015-10-29

    We fabricated a novel fluorescence biosensor for the selective detection of thrombin by using bovine serum albumin-capped CdS quantum dots (BSA-CdS QDs). Two kinds of designed DNA (DNA1 and DNA2) could bind to CdS QDs through the electrostatic interaction between DNA and Cd{sup 2+} on the surface of CdS QDs. The obtained DNA/BSA-CdS QDs kept stable in the solution with the fluorescence intensity obviously enhanced. Hairpin structure of DNA1contained two domains, one is the aptamer sequence of thrombin and the other is the complementary sequence of DNA2. When thrombin was added, it would bind to DNA1 and induce the hairpin structure of DNA1 changed into G-quadplex structure. Meanwhile, DNA2 would transfer from the surface of CdS QDs to DNA1 via hybridization, which resulted in the removal of DNA1 and DNA2 from the surface of CdS QDs, and led to the fluorescence intensity of CdS QDs reduced. Thus, the determination of thrombin could be achieved by monitoring the change of the fluorescence intensity of CdS QDs. The present method is simple and fast, and exhibits good selectivity for thrombin over other proteins. We have successfully detected thrombin in human serum samples with satisfactory results. - Highlights: • A novel strategy for the detection of thrombin was established based on BSA-CdS QDs. • DNA could serve as the co-ligands to stabilize CdS QDs and enhance the fluorescence intensity. • Thrombin could change the structure of DNA1 and quench the fluorescence of CdS QDs. • Thrombin in real sample was detected with satisfactory results.

  17. Aptamer-modified nanoparticles and their use in cancer diagnostics and treatment.

    Science.gov (United States)

    Reinemann, Christine; Strehlitz, Beate

    2014-01-06

    Aptamers are single-stranded deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) oligonucleotides, which are able to bind their target with high selectivity and affinity. Owing to their multiple talents, aptamers combined with nanoparticles are nanosystems well qualified for the development of new biomedical devices for analytical, imaging, drug delivery and many other medical applications. Because of their target affinity, aptamers can direct the transport of aptamer-nanoparticle conjugates. The binding of the aptamers to the target "anchors" the nanoparticle-aptamer conjugates at their site of action. In this way, nanoparticle-based bioimaging and smart drug delivery are enabled, especially by use of systematically developed aptamers for cancer-associated biomarkers. This review article gives a brief overview of recent relevant research into aptamers and trends in their use in cancer diagnostics and therapy. A concise description of aptamers, their development and functionalities relating to nanoparticle modification is given. The main part of the article is dedicated to current developments of aptamer-modified nanoparticles and their use in cancer diagnostics and treatment.

  18. DNA aptamer selection and aptamer-based fluorometric displacement assay for the hepatotoxin microcystin-RR

    International Nuclear Information System (INIS)

    Wu, Shijia; Li, Qi; Duan, Nuo; Wang, Zhouping; Ma, Haile

    2016-01-01

    Microcystin-RR (MC-RR) is a highly acute hepatotoxin produced by cyanobacteria. It is harmful to both humans and the environment. A novel aptamer was identified by the systemic evolution of ligands by exponential enrichment (SELEX) method as a recognition element for determination of MC-RR in aquatic products. The graphene oxide (GO) SELEX strategy was adopted to generate aptamers with high affinity and specificity. Of the 50 aptamer candidates tested, sequence RR-33 was found to display high affinity and selectivity, with a dissociation constant of 45.7 ± 6.8 nM. Aptamer RR-33 therefore was used as the recognition element in a fluorometric assay that proceeds as follows: (1) Biotinylated aptamer RR-33 is immobilized on the streptavidinylated wells of a microtiterplate, and carboxyfluorescein (FAM) labelled complementary DNA is then allowed to hybridize. (2) After removal of excess (unbound) cDNA, sample containing MC-RR is added and incubated at 37 °C for 2 h. (3) Displaced free cDNA is washed away and fluorescence intensity measured at excitation/emission wavelengths of 490/515 nm. The calibration plot is linear in the 0.20 to 2.5 ng·mL −1 concentration range, and the limit of detection is 80 pg·mL −1 . The results indicate that the GO-SELEX technology is appropriate for the screening of aptamers against small-molecule toxins. The detection scheme was applied to the determination of MC-RR in (spiked) water, mussel and fish and gave recoveries between 91 and 98 %. The method compares favorably to a known ELISA. Conceivably, this kind of assay is applicable to other toxins for which appropriate aptamers are available. (author)

  19. Aptamer-Gated Nanoparticles for Smart Drug Delivery

    Directory of Open Access Journals (Sweden)

    Huseyin Avni Oktem

    2011-08-01

    Full Text Available Aptamers are functional nucleic acid sequences which can bind specific targets. An artificial combinatorial methodology can identify aptamer sequences for any target molecule, from ions to whole cells. Drug delivery systems seek to increase efficacy and reduce side-effects by concentrating the therapeutic agents at specific disease sites in the body. This is generally achieved by specific targeting of inactivated drug molecules. Aptamers which can bind to various cancer cell types selectively and with high affinity have been exploited in a variety of drug delivery systems for therapeutic purposes. Recent progress in selection of cell-specific aptamers has provided new opportunities in targeted drug delivery. Especially functionalization of nanoparticles with such aptamers has drawn major attention in the biosensor and biomedical areas. Moreover, nucleic acids are recognized as an attractive building materials in nanomachines because of their unique molecular recognition properties and structural features. A active controlled delivery of drugs once targeted to a disease site is a major research challenge. Stimuli-responsive gating is one way of achieving controlled release of nanoparticle cargoes. Recent reports incorporate the structural properties of aptamers in controlled release systems of drug delivering nanoparticles. In this review, the strategies for using functional nucleic acids in creating smart drug delivery devices will be explained. The main focus will be on aptamer-incorporated nanoparticle systems for drug delivery purposes in order to assess the future potential of aptamers in the therapeutic area. Special emphasis will be given to the very recent progress in controlled drug release based on molecular gating achieved with aptamers.

  20. Fluorescence Spectral Properties of All4261 Binding with Phycocyanobilin in E.Coli

    Science.gov (United States)

    Ma, Q.; Zheng, X. J.; Zhou, Z.; Zhou, N.; Zhao, K. H.; Zhou, M.

    2014-07-01

    Cyanobacteriochromes (CBCRs) are chromophorylated proteins that acting as sensory photoreceptors in cyanobacteria. Based on the bioinformatics of All4261 in Nostoc sp. PCC7120, All4261 is a CBCR apoprotein composed of GAF domains in the N-terminal region. Via polymerase chain reaction with specific primers, All4261 was amplified with genome DNA of Nostoc sp. PCC7120 as template and then subcloned into the expression vector pET30(a+). To survey the fluorescence spectral properties, All4261 was coexpressed with the plasmid that catalyzes phycocyanobilin (PCB) biosynthesis, pACYC-ho1-pcyA, in E.coli BL21. Fluorescence emission spectra and excitation spectra showed that chromophorylated cells containing All4261-PCB had a fluorescence emission peak at 645 nm and a fluorescence excitation peak at 550 nm, but no reversible photoconversion. In order to identify the binding site of PCB in All4261, we obtained three variants All4261(C296L), All4261(C328A), and All4261(C339L), via sitedirected mutagenesis. The binding site was identified as C339 based on the lack of PCB binding of All4261(C339L).

  1. Capillary gel electrophoresis-coupled aptamer enzymatic cleavage protection strategy for the simultaneous detection of multiple small analytes.

    Science.gov (United States)

    Perrier, Sandrine; Zhu, Zhenyu; Fiore, Emmanuelle; Ravelet, Corinne; Guieu, Valérie; Peyrin, Eric

    2014-05-06

    This novel, multi small-analyte sensing strategy is the result of combining the target-induced aptamer enzymatic protection approach with the CGE-LIF (capillary gel electrophoresis with laser-induced fluorescence) technique. The implemented assay principle is based on an analysis of the phosphodiesterase I (PDE I)-mediated size variation of a fluorescein-labeled aptamer (FApt), the enzyme catalyzing the removal of nucleotides from DNA in the 3' to 5' direction. In the absence of the target, the unfolded aptamer was enzymatically cleaved into short DNA fragments. Upon target binding, the DNA substrate was partially protected against enzymatic hydrolysis. The amount of bound aptamer remaining after the exonuclease reaction was proportional to the concentration of the target. The CGE technique, which was used to determine the separation of FApt species from DNA digested products, permitted the quantification of adenosine (A), ochratoxin A (O), and tyrosinamide (T) under the same optimized enzymatic conditions. This assay strategy was subsequently applied to the simultaneous detection of A, O, and T in a single capillary under buffered conditions using corresponding FApt probes of different lengths (23, 36, and 49 nucleotides, respectively). Additionally, the detection of these three small molecules was successfully achieved in a complex medium (diluted, heat-treated human serum) showing a good recovery. It is worth noting that the multiplexed analysis was accomplished for targets with different charge states by using aptamers possessing various structural features. This sensing platform constitutes a rationalized and reliable approach with an expanded potential for a high-throughput determination of small analytes in a single capillary.

  2. Evaluation of Staphylococcus aureus DNA aptamer by enzyme-linked aptamer assay and isothermal titration calorimetry.

    Science.gov (United States)

    Bayraç, Ceren; Öktem, Hüseyin Avni

    2017-02-01

    To monitor the specificity of Staphylococcus aureus aptamer (SA-31) against its target cell, we used enzyme-linked aptamer assay. In the presence of target cell, horseradish peroxidase-conjugated streptavidin bound to biotin-labeled SA-31 showed specific binding to S  aureus among 3 different bacteria with limit of detection of 10 3 colony-forming unit per milliliter. The apparent K a was 1.39 μM -1  ± 0.3 μM -1 . The binding of SA-31 to membrane proteins extracted from cell surface was characterized using isothermal titration calorimetry, and the effect of changes in binding temperature and salt concentrations of binding buffer was evaluated based on thermodynamic parameters (K a , ΔH, and ΔG). Since binding of aptamer to its targets solely depends on its 3-dimensional structure under experimental conditions used in selection process, the change in temperature and ion concentration changed the affinity of SA-31 to its target on surface of bacteria. At 4°C, SA-31 did not show an affinity to its target with poor heat change upon injection of membrane fraction to aptamer solution. However, the apparent association constants of SA-31 slightly varied from K a  = 1.56 μM -1  ± 0.69 μM -1 at 25°C to K a  = 1.03 μM -1  ± 0.9 μM -1 at 37°C. At spontaneously occurring exothermic binding reactions, affinities of S aureus aptamer to its target were also 9.44 μM -1  ± 0.38 μM -1 at 50mM, 1.60 μM -1  ± 0.11 μM -1 at 137mM, and 3.28 μM -1  ± 0.46 μM -1 at 200 mM of salt concentration. In this study, it was demonstrated that enzyme-linked aptamer assay and isothermal titration calorimetry were useful tools for studying the fundamental binding mechanism between a DNA aptamer and its target on the outer surface of S aureus. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Aptamer selection and applications for breast cancer diagnostics and therapy

    Directory of Open Access Journals (Sweden)

    Mei Liu

    2017-11-01

    Full Text Available Abstract Aptamers are short non-coding, single-stranded oligonucleotides (RNA or DNA developed through Systematic Evolution of Ligands by Exponential enrichment (SELEX in vitro. Similar to antibodies, aptamers can bind to specific targets with high affinity, and are considered promising therapeutic agents as they have several advantages over antibodies, including high specificity, stability, and non-immunogenicity. Furthermore, aptamers can be produced at a low cost and easily modified, and are, therefore, called “chemical antibodies”. In the past years, a variety of aptamers specifically bound to both breast cancer biomarkers and cells had been selected. Besides, taking advantage of nanomaterials, there were a number of aptamer-nanomaterial conjugates been developed and widely investigated for diagnostics and targeted therapy of breast cancer. In this short review, we first present a systematical review of various aptamer selection methods. Then, various aptamer-based diagnostic and therapeutic strategies of breast cancer were provided. Finally, the current problems, challenges, and future perspectives in the field were thoroughly discussed.

  4. The use of oligonucleotide aptamers in cancer therapy

    Directory of Open Access Journals (Sweden)

    Adrian Odrzywolski

    2016-05-01

    Full Text Available Aptamers are a new class of molecules which originated in the 1990s. They are usually RNA or DNA oligonucleotides, the length of which ranges between 20 and 80 nt. They are produced using the SELEX method that allows one to obtain aptamers that bind to virtually any molecule of interest, providing a high specificity. Aptamers are an alternative to antibodies because on the one hand, their sensitivity is at a similar or sometimes even higher level, while on the other hand they do not show immunogenicity, and may be synthesized in vitro. To date, a broad range of different applications of aptamers has been described: as components of biosensors, or use in various laboratory techniques, such as microarrays or chromatography. One of the most important is the use of aptamers in medicine, especially in the fight against cancer. They can be used both for diagnosis and for the eradication of cancers – particularly through the delivery of drugs. Currently, most transport-related research is devoted to the delivery of chemotherapeutic drugs, such as doxorubicin. This was used in research on liver cancer cells, prostate, and acute lymphoblastic leukemia blast cells. Another possibility is to use aptamers to deliver siRNAs. In this way inhibition of the quality control process of the mRNA in tumor cells is possible. An aptamer complex with the drug allows for direct delivery of the active substance in a particular cell type, substantially eliminating the non-specific effect of the drug.

  5. Food sensing: selection and characterization of DNA aptamers to Alicyclobacillus spores for trapping and detection from orange juice.

    Science.gov (United States)

    Hünniger, Tim; Fischer, Christin; Wessels, Hauke; Hoffmann, Antonia; Paschke-Kratzin, Angelika; Haase, Ilka; Fischer, Markus

    2015-03-04

    The quality of the beverage industry's products has to be constantly monitored to fulfill consumers' high expectations. The thermo-acidophilic Gram-positive Alicyclobacillus spp. are not pathogenic, but their heat-resistant endospores can survive juice-processing conditions and have become a major economic concern for the fruit juice industry. Current detection methods rely on cultivation, isolation, and organism identification, which can take up to a week, resulting in economic loss. This work presents the selection and identification of DNA aptamers targeting Alicyclobacillus spores by spore-SELEX (systematic evolution of ligands by exponential enrichment) in orange-juice-simulating buffer. The selection process was verified by various techniques, including flow cytometric binding assays, radioactive binding assays, and agarose gel electrophoresis. The subsequent aptamer characterization included the determination of dissociations constants and selectivity by different techniques, such as surface plasmon resonance spectroscopy and fluorescence microscopy. In summary, 10 different aptamers with an affinity to Alicyclobacillus spp. have been developed, analyzed, and characterized in terms of affinity and specificity.

  6. The Single-Molecule Centroid Localization Algorithm Improves the Accuracy of Fluorescence Binding Assays.

    Science.gov (United States)

    Hua, Boyang; Wang, Yanbo; Park, Seongjin; Han, Kyu Young; Singh, Digvijay; Kim, Jin H; Cheng, Wei; Ha, Taekjip

    2018-03-13

    Here, we demonstrate that the use of the single-molecule centroid localization algorithm can improve the accuracy of fluorescence binding assays. Two major artifacts in this type of assay, i.e., nonspecific binding events and optically overlapping receptors, can be detected and corrected during analysis. The effectiveness of our method was confirmed by measuring two weak biomolecular interactions, the interaction between the B1 domain of streptococcal protein G and immunoglobulin G and the interaction between double-stranded DNA and the Cas9-RNA complex with limited sequence matches. This analysis routine requires little modification to common experimental protocols, making it readily applicable to existing data and future experiments.

  7. In Vivo Fluorescence Lifetime Imaging Monitors Binding of Specific Probes to Cancer Biomarkers

    Science.gov (United States)

    Ardeshirpour, Yasaman; Chernomordik, Victor; Zielinski, Rafal; Capala, Jacek; Griffiths, Gary; Vasalatiy, Olga; Smirnov, Aleksandr V.; Knutson, Jay R.; Lyakhov, Ilya; Achilefu, Samuel; Gandjbakhche, Amir; Hassan, Moinuddin

    2012-01-01

    One of the most important factors in choosing a treatment strategy for cancer is characterization of biomarkers in cancer cells. Particularly, recent advances in Monoclonal Antibodies (MAB) as primary-specific drugs targeting tumor receptors show that their efficacy depends strongly on characterization of tumor biomarkers. Assessment of their status in individual patients would facilitate selection of an optimal treatment strategy, and the continuous monitoring of those biomarkers and their binding process to the therapy would provide a means for early evaluation of the efficacy of therapeutic intervention. In this study we have demonstrated for the first time in live animals that the fluorescence lifetime can be used to detect the binding of targeted optical probes to the extracellular receptors on tumor cells in vivo. The rationale was that fluorescence lifetime of a specific probe is sensitive to local environment and/or affinity to other molecules. We attached Near-InfraRed (NIR) fluorescent probes to Human Epidermal Growth Factor 2 (HER2/neu)-specific Affibody molecules and used our time-resolved optical system to compare the fluorescence lifetime of the optical probes that were bound and unbound to tumor cells in live mice. Our results show that the fluorescence lifetime changes in our model system delineate HER2 receptor bound from the unbound probe in vivo. Thus, this method is useful as a specific marker of the receptor binding process, which can open a new paradigm in the “image and treat” concept, especially for early evaluation of the efficacy of the therapy. PMID:22384092

  8. In vivo fluorescence lifetime imaging monitors binding of specific probes to cancer biomarkers.

    Directory of Open Access Journals (Sweden)

    Yasaman Ardeshirpour

    Full Text Available One of the most important factors in choosing a treatment strategy for cancer is characterization of biomarkers in cancer cells. Particularly, recent advances in Monoclonal Antibodies (MAB as primary-specific drugs targeting tumor receptors show that their efficacy depends strongly on characterization of tumor biomarkers. Assessment of their status in individual patients would facilitate selection of an optimal treatment strategy, and the continuous monitoring of those biomarkers and their binding process to the therapy would provide a means for early evaluation of the efficacy of therapeutic intervention. In this study we have demonstrated for the first time in live animals that the fluorescence lifetime can be used to detect the binding of targeted optical probes to the extracellular receptors on tumor cells in vivo. The rationale was that fluorescence lifetime of a specific probe is sensitive to local environment and/or affinity to other molecules. We attached Near-InfraRed (NIR fluorescent probes to Human Epidermal Growth Factor 2 (HER2/neu-specific Affibody molecules and used our time-resolved optical system to compare the fluorescence lifetime of the optical probes that were bound and unbound to tumor cells in live mice. Our results show that the fluorescence lifetime changes in our model system delineate HER2 receptor bound from the unbound probe in vivo. Thus, this method is useful as a specific marker of the receptor binding process, which can open a new paradigm in the "image and treat" concept, especially for early evaluation of the efficacy of the therapy.

  9. Characterization of ligand binding to melanocortin 4 receptors using fluorescent peptides with improved kinetic properties.

    Science.gov (United States)

    Link, Reet; Veiksina, Santa; Rinken, Ago; Kopanchuk, Sergei

    2017-03-15

    Melanocortin 4 (MC 4 ) receptors are important drug targets as they regulate energy homeostasis, eating behaviour and sexual functions. The ligand binding process to these G protein-coupled receptors is subject to considerable complexity. Different steps in the complex dynamic regulation can be characterized by ligand binding kinetics. Optimization of these kinetic parameters in terms of on-rate and residence time can increase the rapid onset of drug action and reduce off-target effects. Fluorescence anisotropy (FA) is one of the homogeneous fluorescence-based assays that enable continuous online monitoring of ligand binding kinetics. FA has been implemented for the kinetic study of melanocortin MC 4 receptors expressed on budded baculoviruses. However, the slow dissociation of the fluorescently labelled peptide NDP-α-MSH does not enable reaching equilibrium nor enable more in-depth study of the binding mechanisms. To overcome this problem, two novel red-shifted fluorescent ligands were designed. These cyclized heptapeptide derivatives (UTBC101 and UTBC102) exhibited nanomolar affinity toward melanocortin MC 4 receptors but had relatively different kinetic properties. The dissociation half-lives of UTBC101 (τ 1/2 =160min) and UTBC102 (τ 1/2 =7min) were shorter compared to that what was previously reported for Cy3B-NDP-α-MSH (τ 1/2 =224min). The significantly shorter dissociation half-life of UTBC102 enables equilibrium in screening assays, whereas the higher affinity of UTBC101 helps to resolve a wider range of competitor potencies. These two ligands are suitable for further kinetic screening of novel melanocortin MC 4 receptor specific ligands and could complement each other in these studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Analysis of fluorescently labeled substance P analogs: binding, imaging and receptor activation

    Directory of Open Access Journals (Sweden)

    Simmons Mark A

    2001-06-01

    Full Text Available Abstract Background Substance P (SP is a peptide neurotransmitter found in central and peripheral nerves. SP is involved in the control of smooth muscle, inflammation and nociception. The amino acid sequence of SP is Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met-NH2. Five different forms of fluorescently labeled SP have recently been synthesized, in which Alexa 488, BODIPY Fl, fluorescein, Oregon Green 488 or tetramethylrhodamine has been covalently linked to SP at Lys3. Here, these novel analogs are characterized as to their ligand binding, receptor activation and fluorescence labeling properties. Results Competition binding studies, using radiolabeled [125I] SP, revealed that all of the labeled forms of SP, except for Alexa 488-SP, effectively competed with radiolabeled SP for binding at the rat SP receptor. With the exception of Alexa 488-SP, all of the SP analogs produced Ca++ elevations and fluorescence labeling of the SP receptor expressed in Chinese hamster ovary cells. In SP-responsive neurons, BODIPY Fl-SP and Oregon Green 488-SP were as effective as unlabeled SP in producing a reduction of the M-type K+ current. Fluorescein-SP produced variable results, while tetramethylrhodamine-SP was less potent and Alexa 488-SP was less effective on intact neurons. Conclusions The above results show that fluorescent labeling of SP altered the biological activity and the binding properties of the parent peptide. Oregon Green 488 and BODIPY FL-SP are the most useful fluorophores for labeling SP without affecting its biological activity. Given these results, these probes can now be utilized in further investigations of the mechanisms of SPR function, including receptor localization, internalization and recycling.

  11. Binding Assays Using Recombinant SH2 Domains: Far-Western, Pull-Down, and Fluorescence Polarization.

    Science.gov (United States)

    Machida, Kazuya; Liu, Bernard

    2017-01-01

    Recognition of phosphotyrosine-containing sequences by SH2 domains confers specificity in tyrosine kinase pathways. By assessing interactions between isolated SH2 domains and their binding proteins, it is possible to gain insight into otherwise inaccessible complex cellular systems. Far-Western, pull-down, and fluorescence polarization (FP) have been frequently used for characterization of phosphotyrosine signaling. Here, we outline standard protocols for these established assays using recombinant SH2 domain, emphasizing the importance of appropriate sample preparation and assay controls.

  12. Azadioxatriangulenium: a long fluorescence lifetime fluorophore for large biomolecule binding assay

    International Nuclear Information System (INIS)

    Sørensen, Thomas Just; Thyrhaug, Erling; Szabelski, Mariusz; Gryczynski, Ignacy; Gryczynski, Zygmunt; Luchowski, Rafal; Laursen, Bo W

    2013-01-01

    Of the many optical bioassays available, sensing by fluorescence anisotropy has great advantages as it provides a sensitive, instrumentally simple, ratiometric method of detection. However, it is hampered by a severe limitation, as the emission lifetime of the label needs to be comparable to the correlation lifetime (tumbling time) of the biomolecule which is labelled. For proteins of moderate size this is on the order of 20–200 ns, which due to practical issues currently limits the choice of labels to the dansyl-type dyes and certain aromatic dyes. These have the significant drawback of UV/blue absorption and emission as well as an often significant solvent sensitivity. Here, we report the synthesis and characterization of a new fluorescent label for high molecular weight biomolecule assay based on the azadioxatriangulenium motif. The NHS ester of the long fluorescence lifetime, red-emitting fluorophore: azadioxatriangulenium (ADOTA-NHS) was conjugated to anti-rabbit Immunoglobulin G (antiIgG). The long fluorescence lifetime was exploited to determine the correlation time of the high molecular weight antibody and its complex with rabbit Immunoglobulin G (IgG) with steady-state fluorescence anisotropy and time-resolved methods: solution phase immuno-assay was performed following either steady-state or time-resolved fluorescence anisotropy. By performing a variable temperature experiment it was determined that the binding of the ligand resulted in an increase in correlation time of more than 75%, and an increase in the steady-state anisotropy of 18%. The results show that the triangulenium class of dyes can be used in anisotropy assay to detect binding events involving biomolecules of far larger size than what is possible with most other red-emitting organic dyes. (paper)

  13. Azadioxatriangulenium: a long fluorescence lifetime fluorophore for large biomolecule binding assay

    Science.gov (United States)

    Just Sørensen, Thomas; Thyrhaug, Erling; Szabelski, Mariusz; Luchowski, Rafal; Gryczynski, Ignacy; Gryczynski, Zygmunt; Laursen, Bo W.

    2013-06-01

    Of the many optical bioassays available, sensing by fluorescence anisotropy has great advantages as it provides a sensitive, instrumentally simple, ratiometric method of detection. However, it is hampered by a severe limitation, as the emission lifetime of the label needs to be comparable to the correlation lifetime (tumbling time) of the biomolecule which is labelled. For proteins of moderate size this is on the order of 20-200 ns, which due to practical issues currently limits the choice of labels to the dansyl-type dyes and certain aromatic dyes. These have the significant drawback of UV/blue absorption and emission as well as an often significant solvent sensitivity. Here, we report the synthesis and characterization of a new fluorescent label for high molecular weight biomolecule assay based on the azadioxatriangulenium motif. The NHS ester of the long fluorescence lifetime, red-emitting fluorophore: azadioxatriangulenium (ADOTA-NHS) was conjugated to anti-rabbit Immunoglobulin G (antiIgG). The long fluorescence lifetime was exploited to determine the correlation time of the high molecular weight antibody and its complex with rabbit Immunoglobulin G (IgG) with steady-state fluorescence anisotropy and time-resolved methods: solution phase immuno-assay was performed following either steady-state or time-resolved fluorescence anisotropy. By performing a variable temperature experiment it was determined that the binding of the ligand resulted in an increase in correlation time of more than 75%, and an increase in the steady-state anisotropy of 18%. The results show that the triangulenium class of dyes can be used in anisotropy assay to detect binding events involving biomolecules of far larger size than what is possible with most other red-emitting organic dyes.

  14. Azadioxatriangulenium (ADOTA+): A long fluorescence lifetime fluorophore for large biomolecule binding assay

    Science.gov (United States)

    Sørensen, Thomas Just; Thyrhaug, Erling; Szabelski, Mariusz; Luchowski, Rafal; Gryczynski, Ignacy; Gryczynski, Zygmunt; Laursen, Bo W.

    2013-01-01

    Of the many optical bioassays available, sensing by fluorescence anisotropy have great advantages as it provides a sensitive, instrumentally simple, ratiometric method of detection. However, it is hampered by a severe limitation as the emission lifetime of the label needs to be comparable to the correlation lifetime (tumbling time) of the biomolecule which is labelled. For proteins of moderate size this is in the order of 20–200 ns, which due to practical issues currently limits the choice of labels to the dansyl-type dyes and certain aromatics dyes. These have the significant drawback of UV/blue absorption and emission as well as an often significant solvent sensitivity. Here, we report the synthesis and characterization of a new fluorescent label for high molecular weight biomolecules assay based on the azadioxatriangulenium motif. The NHS ester of the long fluorescence lifetime, red emitting fluorophore: azadioxatriangulenium (ADOTA-NHS) was conjugated to anti-rabbit Immunoglobulin G (antiIgG). The long fluorescence lifetime was exploited to determine the correlation time of the high molecular weight antibody and its complex with rabbit Immuniglobulin G (IgG) with steady-state fluorescence anisotropy and time-resolved methods: solution phase immuno-assay was performed following either steady-state or time-resolved fluorescence anisotropy. By performing a variable temperature experiment it was determined that the binding of the ligand resulted in an increase in correlation time by more than 75 %, and a change in the steady-state anisotropy increase of 18%. The results show that the triangulenium class of dyes can be used in anisotropy assay for detecting binding events involving biomolecules of far larger size than what is possible with the other red emitting organic dyes. PMID:24058730

  15. Current Status and Future Prospects for Aptamer-Based Mycotoxin Detection.

    Science.gov (United States)

    Ruscito, Annamaria; Smith, McKenzie; Goudreau, Daniel N; DeRosa, Maria C

    2016-07-01

    Aptamers are single-stranded oligonucleotides with the ability to bind tightly and selectively to a target analyte. High-affinity and specific aptamers for a variety of mycotoxins have been reported over the past decade. Increasingly, these molecular recognition elements are finding applications in biosensors and assays for the detection of mycotoxins in a variety of complex matrixes. This review article highlights the mycotoxin aptamers that are available for mycotoxin detection and the array of biosensing platforms into which they have been incorporated. Key advantages that aptamers have over analogous technology, and areas in which these advantages may be applied for the benefit of practical mycotoxin detection, are also discussed.

  16. Synchronous fluorescence based biosensor for albumin determination by cooperative binding of fluorescence probe in a supra-biomolecular host-protein assembly.

    Science.gov (United States)

    Patra, Digambara

    2010-01-15

    A synchronous fluorescence probe based biosensor for estimation of albumin with high sensitivity and selectivity was developed. Unlike conventional fluorescence emission or excitation spectral measurements, synchronous fluorescence measurement offered exclusively a new synchronous fluorescence peak in the shorter wavelength range upon binding of chrysene with protein making it an easy identification tool for albumin determination. The cooperative binding of a fluorescence probe, chrysene, in a supramolecular host-protein assembly during various albumin assessments was investigated. The presence of supramolecular host molecules such as beta-cyclodextrin, curucurbit[6]uril or curucurbit[7]uril have little influence on sensitivity or limit of detection during albumin determination but reduced dramatically interference from various coexisting metal ion quenchers/enhancers. Using the present method the limit of detection for BSA and gamma-Globulin was found to be 0.005 microM which is more sensitive than reported values. Copyright 2009 Elsevier B.V. All rights reserved.

  17. CD28 Aptamers as Powerful Immune Response Modulators

    Directory of Open Access Journals (Sweden)

    Fernando Pastor

    2013-01-01

    Full Text Available CD28 is one of the main costimulatory receptors responsible for the proper activation of T lymphocytes. We have isolated two aptamers that bind to the CD28 receptor. As a monomer, one of them interfered with the binding of CD28 to its ligand (B7, precluding the costimulatory signal, whereas the other one was inactive. However, dimerization of any of the anti-CD28 aptamers was sufficient to provide an artificial costimulatory signal. No antibody has featured a dual function (i.e., the ability to work as agonist and antagonist to date. Two different agonistic structures were engineered for each anti-CD28 aptamer. One showed remarkably improved costimulatory properties, surpassing the agonistic effect of an anti-CD28 antibody. Moreover, we showed in vivo that the CD28 agonistic aptamer is capable of enhancing the cellular immune response against a lymphoma idiotype and of prolonging survival of mice which receive the aptamer together with an idiotype vaccine. The CD28 aptamers described in this work could be used to modulate the immune response either blocking the interaction with B7 or enhancing vaccine-induced immune responses in cancer immunotherapy.

  18. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity.

    Science.gov (United States)

    Wang, Deng-Liang; Song, Yan-Ling; Zhu, Zhi; Li, Xi-Lan; Zou, Yuan; Yang, Hai-Tao; Wang, Jiang-Jie; Yao, Pei-Sen; Pan, Ru-Jun; Yang, Chaoyong James; Kang, De-Zhi

    2014-10-31

    Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the ideal antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher's attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with Kd 56±7.3nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Development of RNA aptamers as molecular probes for HER2+ breast cancer study using cell-SELEX

    Directory of Open Access Journals (Sweden)

    Seyedeh Alia Moosavian

    2015-06-01

    Full Text Available Objective(s: Development of molecules that specifically recognize cancer cells is one of the major areas in cancer research. Human epidermal growth factor receptor 2 (HER2 is specifically expressed on the surface of breast cancer cells. HER2 is associated with an aggressive phenotype and poor prognosis. In this study we aimed to isolate RNA aptamers that specifically bind to HER2 overexpressing TUBO cell line. Materials and Methods: Panel of aptamers was selected using cell-based systematic evolution of ligands by exponential enrichment (cell-SELEX. Results: Binding studies showed that selected aptamers can identify TUBO cell line with high affinity and selectivity. Our preliminary investigation of the target of aptamers suggested that aptamers bind with HER2 proteins on the surface of TUBO cells. Conclusion: We believe the selected aptamers could be useful ligands for targeted breast cancer therapy.

  20. Selective Aptamers for Detection of Estradiol and Ethynylestradiol in Natural Waters

    KAUST Repository

    Akki, Spurti U.; Werth, Charles J.; Silverman, Scott K.

    2015-01-01

    © 2015 American Chemical Society. We used in vitro selection to identify new DNA aptamers for two endocrine-disrupting compounds often found in treated and natural waters, 17β-estradiol (E2) and 17α-ethynylestradiol (EE). We used equilibrium filtration to determine aptamer sensitivity/selectivity and dimethyl sulfate (DMS) probing to explore aptamer binding sites. The new E2 aptamers are at least 74-fold more sensitive for E2 than is a previously reported DNA aptamer, with dissociation constants (Kd values) of 0.6 μM. Similarly, the EE aptamers are highly sensitive for EE, with Kd of 0.5-1.0 μM. Selectivity values indicate that the E2 aptamers bind E2 and a structural analogue, estrone (E1), equally well and are up to 74-fold selective over EE. One EE aptamer is 53-fold more selective for EE over E2 or E1, but the other binds EE, E2, and E1 with similar affinity. The new aptamers do not lose sensitivity or selectivity in natural water from a local lake, despite the presence of natural organic matter (∼4 mg/L TOC). DMS probing suggests that E2 binding occurs in relatively flexible single-stranded DNA regions, an important finding for rational redesign of aptamers and their incorporation into sensing platforms. This is the first report of aptamers with strong selectivity for E2 and E1 over EE, or with strong selectivity for EE over E2 and E1. Such selectivity is important for achieving the goal of creating practically useful DNA-based sensors that can distinguish structurally similar estrogenic compounds in natural waters.

  1. Selective Aptamers for Detection of Estradiol and Ethynylestradiol in Natural Waters

    KAUST Repository

    Akki, Spurti U.

    2015-08-18

    © 2015 American Chemical Society. We used in vitro selection to identify new DNA aptamers for two endocrine-disrupting compounds often found in treated and natural waters, 17β-estradiol (E2) and 17α-ethynylestradiol (EE). We used equilibrium filtration to determine aptamer sensitivity/selectivity and dimethyl sulfate (DMS) probing to explore aptamer binding sites. The new E2 aptamers are at least 74-fold more sensitive for E2 than is a previously reported DNA aptamer, with dissociation constants (Kd values) of 0.6 μM. Similarly, the EE aptamers are highly sensitive for EE, with Kd of 0.5-1.0 μM. Selectivity values indicate that the E2 aptamers bind E2 and a structural analogue, estrone (E1), equally well and are up to 74-fold selective over EE. One EE aptamer is 53-fold more selective for EE over E2 or E1, but the other binds EE, E2, and E1 with similar affinity. The new aptamers do not lose sensitivity or selectivity in natural water from a local lake, despite the presence of natural organic matter (∼4 mg/L TOC). DMS probing suggests that E2 binding occurs in relatively flexible single-stranded DNA regions, an important finding for rational redesign of aptamers and their incorporation into sensing platforms. This is the first report of aptamers with strong selectivity for E2 and E1 over EE, or with strong selectivity for EE over E2 and E1. Such selectivity is important for achieving the goal of creating practically useful DNA-based sensors that can distinguish structurally similar estrogenic compounds in natural waters.

  2. An improved radiolabelled RNA aptamer molecule for HER2 imaging in cancers.

    Science.gov (United States)

    Varmira, Kambiz; Hosseinimehr, Seyed Jalal; Noaparast, Zohreh; Abedi, Seyed Mohammad

    2014-02-01

    Human epidermal growth factor receptor 2 (HER2) expression has been shown to be increased in several types of human tumours. In this study, for the imaging of HER2-related tumours, a modified RNA aptamer with HER2-specific targeting was labelled with (99m)Tc, by using hydrazino nicotinamide (HYNIC) as the chelator in the presence of tricine or ethylenediamine-N,N'-diacetic acid (EDDA) as the co-ligand. Stability testing of the radiolabelled aptamers in the serum was performed through SDS-PAGE. The aptamer-radionuclide conjugate was evaluated for its cellular HER2-specific binding in ovarian cancer cells (SKOV-3), and its biodistribution properties were assessed in normal and SKOV-3 tumour-bearing mice. In the presence of either tricine or EDDA, the HYNIC-RNA aptamers were labelled with (99m)Tc at a high yield and radiochemical purity. Cellular experiments confirmed the specific binding of the RNA aptamer to the HER2 receptor. In the animal biodistribution study, uptake of the EDDA-co-liganded (99m)Tc-HYNIC-RNA aptamer by the liver and spleen was remarkably lower than that of the aptamer with tricine. Tumours also showed a higher accumulation of radioactivity with the EDDA-co-liganded aptamer complex. This study demonstrated EDDA to be better than tricine for use as a co-ligand with the RNA aptamer, which can be a potential tool for the molecular imaging of HER2-overexpressing cancers.

  3. Human serum albumin binding assay based on displacement of a non selective fluorescent inhibitor.

    Science.gov (United States)

    Thorarensen, Atli; Sarver, Ronald W; Tian, Fang; Ho, Andrea; Romero, Donna L; Marotti, Keith R

    2007-08-15

    In this paper, we describe a fluorescent antibacterial analog, 6, with utility as a competition probe to determine affinities of other antibacterial analogs for human serum albumin (HSA). Analog 6 bound to HSA with an affinity of 400+/-100 nM and the fluorescence was environmentally sensitive. With 370 nm excitation, environmental sensitivity was indicated by a quenching of the 530 nm emission when the probe bound to HSA. Displacement of dansylsarcosine from HSA by 6 indicated it competed with compounds that bound at site II (ibuprofen binding site) on HSA. Analog 6 also shifted the NMR peaks of an HSA bound oleic acid molecule that itself was affected by compounds that bound at site II. In addition to binding at site II, 6 interacted at site I (warfarin binding site) as indicated by displacement of dansylamide and the shifting of NMR peaks of an HSA bound oleic acid molecule affected by warfarin site binding. Additional evidence for multiple site interaction was discovered when a percentage of 6 could be displaced by either ibuprofen or phenylbutazone. A competition assay was established using 6 to determine relative affinities of other antibacterial inhibitors for HSA.

  4. Binding of Cu(II) ions to peptides studied by fluorescence spectroscopy and isothermal titration calorimetry

    Science.gov (United States)

    Makowska, Joanna; Żamojć, Krzysztof; Wyrzykowski, Dariusz; Uber, Dorota; Wierzbicka, Małgorzata; Wiczk, Wiesław; Chmurzyński, Lech

    2016-01-01

    Steady-state and time-resolved fluorescence quenching measurements supported by Isothermal Titration Calorimetry (ITC) were used to study the interactions of Cu2 + with four peptides. Two of them were taken from the N-terminal part of the FBP28 protein (formin binding protein) WW domain: Tyr-Lys-Thr-Ala-Asp-Gly-Lys-Thr-Tyr-NH2 (D9) and its mutant Tyr-Lys-Thr-Ala-Asn-Gly-Lys-Thr-Tyr-NH2 (D9_M) as well as two mutated peptides from the B3 domain of the immunoglobulin binding protein G derived from Streptococcus: Asp-Val-Ala-Thr-Tyr-Thr-NH2 (J1) and Glu-Val-Ala-Thr-Tyr-Thr-NH2 (J2). The measurements were carried out at 298.15 K in 20 mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer solution with a pH of 6. The fluorescence of all peptides was quenched by Cu2 + ions. The stoichiometry, conditional stability constants and thermodynamic parameters for the interactions of the Cu2 + ions with D9 and D9_M were determined from the calorimetric data. The values of the conditional stability constants were additionally determined from fluorescence quenching measurements and compared with those obtained from calorimetric studies. There was a good correlation between data obtained from the two techniques. On the other hand, the studies revealed that J1 and J2 do not exhibit an affinity towards metal ions. The obtained results prove that fluorescence quenching experiments may be successfully used in order to determine stability constants of complexes with fluorescent ligands. Finally, based on the obtained results, the coordinating properties of the peptides towards the Cu2 + ions are discussed.

  5. Binding of Cu(II) ions to peptides studied by fluorescence spectroscopy and isothermal titration calorimetry.

    Science.gov (United States)

    Makowska, Joanna; Żamojć, Krzysztof; Wyrzykowski, Dariusz; Uber, Dorota; Wierzbicka, Małgorzata; Wiczk, Wiesław; Chmurzyński, Lech

    2016-01-15

    Steady-state and time-resolved fluorescence quenching measurements supported by Isothermal Titration Calorimetry (ITC) were used to study the interactions of Cu(2+) with four peptides. Two of them were taken from the N-terminal part of the FBP28 protein (formin binding protein) WW domain: Tyr-Lys-Thr-Ala-Asp-Gly-Lys-Thr-Tyr-NH2 (D9) and its mutant Tyr-Lys-Thr-Ala-Asn-Gly-Lys-Thr-Tyr-NH2 (D9_M) as well as two mutated peptides from the B3 domain of the immunoglobulin binding protein G derived from Streptococcus: Asp-Val-Ala-Thr-Tyr-Thr-NH2 (J1) and Glu-Val-Ala-Thr-Tyr-Thr-NH2 (J2). The measurements were carried out at 298.15K in 20mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer solution with a pH of 6. The fluorescence of all peptides was quenched by Cu(2+) ions. The stoichiometry, conditional stability constants and thermodynamic parameters for the interactions of the Cu(2+) ions with D9 and D9_M were determined from the calorimetric data. The values of the conditional stability constants were additionally determined from fluorescence quenching measurements and compared with those obtained from calorimetric studies. There was a good correlation between data obtained from the two techniques. On the other hand, the studies revealed that J1 and J2 do not exhibit an affinity towards metal ions. The obtained results prove that fluorescence quenching experiments may be successfully used in order to determine stability constants of complexes with fluorescent ligands. Finally, based on the obtained results, the coordinating properties of the peptides towards the Cu(2+) ions are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. A G-quadruplex-containing RNA activates fluorescence in a GFP-like fluorophore

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hao; Suslov, Nikolai B.; Li, Nan-Sheng; Shelke, Sandip A.; Evans, Molly E.; Koldobskaya, Yelena; Rice, Phoebe A.; Piccirilli, Joseph A. [UC

    2014-08-21

    Spinach is an in vitro–selected RNA aptamer that binds a GFP-like ligand and activates its green fluorescence. Spinach is thus an RNA analog of GFP and has potentially widespread applications for in vivo labeling and imaging. We used antibody-assisted crystallography to determine the structures of Spinach both with and without bound fluorophore at 2.2-Å and 2.4-Å resolution, respectively. Spinach RNA has an elongated structure containing two helical domains separated by an internal bulge that folds into a G-quadruplex motif of unusual topology. The G-quadruplex motif and adjacent nucleotides comprise a partially preformed binding site for the fluorophore. The fluorophore binds in a planar conformation and makes extensive aromatic stacking and hydrogen bond interactions with the RNA. Our findings provide a foundation for structure-based engineering of new fluorophore-binding RNA aptamers.

  7. Fluorescence Enhancement of Fluorescent Unnatural Streptavidin by Binding of a Biotin Analogue with Spacer Tail and Its Application to Biotin Sensing

    Directory of Open Access Journals (Sweden)

    Xianwei Zhu

    2014-01-01

    Full Text Available We designed a novel molecular biosensing system for the detection of biotin, an important vitamin by the combination of fluorescent unnatural streptavidin with a commercialized biotin-(AC52-hydrazide. A fluorescent unnatural amino acid, BODIPY-FL-aminophenylalanine (BFLAF, was position-specifically incorporated into Trp120 of streptavidin by four-base codon method. Fluorescence of the Trp120BFLAF mutant streptavidin was enhanced by the addition of biotin-(AC52-hydrazide with the concentration dependent, whereas fluorescence enhancement was not observed at all by the addition of natural biotin. It was considered that the spacer tail of biotin-(AC52-hydrazide may disturb the fluorescence quenching of the Trp120BFLAF by Trp79 and Trp108 of the neighbor subunit. Therefore, biotin sensing was carried out by the competitive binding reaction of biotin-(AC52-hydrazide and natural biotin to the fluorescent mutant streptavidin. The fluorescence intensity decreased by increasing free biotin concentration. The result suggested that molecular biosensor for small ligand could be successfully designed by the pair of fluorescent mutant binding protein and ligand analogue.

  8. Reduced Fluorescent Protein Switching Fatigue by Binding-Induced Emissive State Stabilization

    Directory of Open Access Journals (Sweden)

    Thijs Roebroek

    2017-09-01

    Full Text Available Reversibly switchable fluorescent proteins (RSFPs enable advanced fluorescence imaging, though the performance of this imaging crucially depends on the properties of the labels. We report on the use of an existing small binding peptide, named Enhancer, to modulate the spectroscopic properties of the recently developed rsGreen series of RSFPs. Fusion constructs of Enhancer with rsGreen1 and rsGreenF revealed an increased molecular brightness and pH stability, although expression in living E. coli or HeLa cells resulted in a decrease of the overall emission. Surprisingly, Enhancer binding also increased off-switching speed and resistance to switching fatigue. Further investigation suggested that the RSFPs can interconvert between fast- and slow-switching emissive states, with the overall protein population gradually converting to the slow-switching state through irradiation. The Enhancer modulates the spectroscopic properties of both states, but also preferentially stabilizes the fast-switching state, supporting the increased fatigue resistance. This work demonstrates how the photo-physical properties of RSFPs can be influenced by their binding to other small proteins, which opens up new horizons for applications that may require such modulation. Furthermore, we provide new insights into the photoswitching kinetics that should be of general consideration when developing new RSFPs with improved or different photochromic properties.

  9. The Non-Specific Binding of Fluorescent-Labeled MiRNAs on Cell Surface by Hydrophobic Interaction.

    Science.gov (United States)

    Lu, Ting; Lin, Zongwei; Ren, Jianwei; Yao, Peng; Wang, Xiaowei; Wang, Zhe; Zhang, Qunye

    2016-01-01

    MicroRNAs are small noncoding RNAs about 22 nt long that play key roles in almost all biological processes and diseases. The fluorescent labeling and lipofection are two common methods for changing the levels and locating the position of cellular miRNAs. Despite many studies about the mechanism of DNA/RNA lipofection, little is known about the characteristics, mechanisms and specificity of lipofection of fluorescent-labeled miRNAs. Therefore, miRNAs labeled with different fluorescent dyes were transfected into adherent and suspension cells using lipofection reagent. Then, the non-specific binding and its mechanism were investigated by flow cytometer and laser confocal microscopy. The results showed that miRNAs labeled with Cy5 (cyanine fluorescent dye) could firmly bind to the surface of adherent cells (Hela) and suspended cells (K562) even without lipofection reagent. The binding of miRNAs labeled with FAM (carboxyl fluorescein) to K562 cells was obvious, but it was not significant in Hela cells. After lipofectamine reagent was added, most of the fluorescently labeled miRNAs binding to the surface of Hela cells were transfected into intra-cell because of the high transfection efficiency, however, most of them were still binding to the surface of K562 cells. Moreover, the high-salt buffer which could destroy the electrostatic interactions did not affect the above-mentioned non-specific binding, but the organic solvent which could destroy the hydrophobic interactions eliminated it. These results implied that the fluorescent-labeled miRNAs could non-specifically bind to the cell surface by hydrophobic interaction. It would lead to significant errors in the estimation of transfection efficiency only according to the cellular fluorescence intensity. Therefore, other methods to evaluate the transfection efficiency and more appropriate fluorescent dyes should be used according to the cell types for the accuracy of results.

  10. The Non-Specific Binding of Fluorescent-Labeled MiRNAs on Cell Surface by Hydrophobic Interaction.

    Directory of Open Access Journals (Sweden)

    Ting Lu

    Full Text Available MicroRNAs are small noncoding RNAs about 22 nt long that play key roles in almost all biological processes and diseases. The fluorescent labeling and lipofection are two common methods for changing the levels and locating the position of cellular miRNAs. Despite many studies about the mechanism of DNA/RNA lipofection, little is known about the characteristics, mechanisms and specificity of lipofection of fluorescent-labeled miRNAs.Therefore, miRNAs labeled with different fluorescent dyes were transfected into adherent and suspension cells using lipofection reagent. Then, the non-specific binding and its mechanism were investigated by flow cytometer and laser confocal microscopy. The results showed that miRNAs labeled with Cy5 (cyanine fluorescent dye could firmly bind to the surface of adherent cells (Hela and suspended cells (K562 even without lipofection reagent. The binding of miRNAs labeled with FAM (carboxyl fluorescein to K562 cells was obvious, but it was not significant in Hela cells. After lipofectamine reagent was added, most of the fluorescently labeled miRNAs binding to the surface of Hela cells were transfected into intra-cell because of the high transfection efficiency, however, most of them were still binding to the surface of K562 cells. Moreover, the high-salt buffer which could destroy the electrostatic interactions did not affect the above-mentioned non-specific binding, but the organic solvent which could destroy the hydrophobic interactions eliminated it.These results implied that the fluorescent-labeled miRNAs could non-specifically bind to the cell surface by hydrophobic interaction. It would lead to significant errors in the estimation of transfection efficiency only according to the cellular fluorescence intensity. Therefore, other methods to evaluate the transfection efficiency and more appropriate fluorescent dyes should be used according to the cell types for the accuracy of results.

  11. MIPs and Aptamers for Recognition of Proteins in Biomimetic Sensing.

    Science.gov (United States)

    Menger, Marcus; Yarman, Aysu; Erdőssy, Júlia; Yildiz, Huseyin Bekir; Gyurcsányi, Róbert E; Scheller, Frieder W

    2016-07-18

    Biomimetic binders and catalysts have been generated in order to substitute the biological pendants in separation techniques and bioanalysis. The two major approaches use either "evolution in the test tube" of nucleotides for the preparation of aptamers or total chemical synthesis for molecularly imprinted polymers (MIPs). The reproducible production of aptamers is a clear advantage, whilst the preparation of MIPs typically leads to a population of polymers with different binding sites. The realization of binding sites in the total bulk of the MIPs results in a higher binding capacity, however, on the expense of the accessibility and exchange rate. Furthermore, the readout of the bound analyte is easier for aptamers since the integration of signal generating labels is well established. On the other hand, the overall negative charge of the nucleotides makes aptamers prone to non-specific adsorption of positively charged constituents of the sample and the "biological" degradation of non-modified aptamers and ionic strength-dependent changes of conformation may be challenging in some application.

  12. MIPs and Aptamers for Recognition of Proteins in Biomimetic Sensing

    Directory of Open Access Journals (Sweden)

    Marcus Menger

    2016-07-01

    Full Text Available Biomimetic binders and catalysts have been generated in order to substitute the biological pendants in separation techniques and bioanalysis. The two major approaches use either “evolution in the test tube” of nucleotides for the preparation of aptamers or total chemical synthesis for molecularly imprinted polymers (MIPs. The reproducible production of aptamers is a clear advantage, whilst the preparation of MIPs typically leads to a population of polymers with different binding sites. The realization of binding sites in the total bulk of the MIPs results in a higher binding capacity, however, on the expense of the accessibility and exchange rate. Furthermore, the readout of the bound analyte is easier for aptamers since the integration of signal generating labels is well established. On the other hand, the overall negative charge of the nucleotides makes aptamers prone to non-specific adsorption of positively charged constituents of the sample and the “biological” degradation of non-modified aptamers and ionic strength-dependent changes of conformation may be challenging in some application.

  13. G-quadruplex aptamer targeting Protein A and its capability to detect Staphylococcus aureus demonstrated by ELONA.

    Science.gov (United States)

    Stoltenburg, Regina; Krafčiková, Petra; Víglaský, Viktor; Strehlitz, Beate

    2016-09-21

    Aptamers for whole cell detection are selected mostly by the Cell-SELEX procedure. Alternatively, the use of specific cell surface epitopes as target during aptamer selections allows the development of aptamers with ability to bind whole cells. In this study, we integrated a formerly selected Protein A-binding aptamer PA#2/8 in an assay format called ELONA (Enzyme-Linked OligoNucleotide Assay) and evaluated the ability of the aptamer to recognise and bind to Staphylococcus aureus presenting Protein A on the cell surface. The full-length aptamer and one of its truncated variants could be demonstrated to specifically bind to Protein A-expressing intact cells of S. aureus, and thus have the potential to expand the portfolio of aptamers that can act as an analytical agent for the specific recognition and rapid detection of the bacterial pathogen. The functionality of the aptamer was found to be based on a very complex, but also highly variable structure. Two structural key elements were identified. The aptamer sequence contains several G-clusters allowing folding into a G-quadruplex structure with the potential of dimeric and multimeric assembly. An inverted repeat able to form an imperfect stem-loop at the 5'-end also contributes essentially to the aptameric function.

  14. Methods To Identify Aptamers against Cell Surface Biomarkers

    Directory of Open Access Journals (Sweden)

    Frédéric Ducongé

    2011-09-01

    Full Text Available Aptamers are nucleic acid-based ligands identified through a process of molecular evolution named SELEX (Systematic Evolution of Ligands by Exponential enrichment. During the last 10-15 years, numerous aptamers have been developed specifically against targets present on or associated with the surface of human cells or infectious pathogens such as viruses, bacteria, fungi or parasites. Several of the aptamers have been described as potent probes, rivalling antibodies, for use in flow cytometry or microscopy. Some have also been used as drugs by inhibiting or activating functions of their targets in a manner similar to neutralizing or agonistic antibodies. Additionally, it is straightforward to conjugate aptamers to other agents without losing their affinity and they have successfully been used in vitro and in vivo to deliver drugs, siRNA, nanoparticles or contrast agents to target cells. Hence, aptamers identified against cell surface biomarkers represent a promising class of ligands. This review presents the different strategies of SELEX that have been developed to identify aptamers for cell surface-associated proteins as well as some of the methods that are used to study their binding on living cells.

  15. A DNA aptamer recognising a malaria protein biomarker can function as part of a DNA origami assembly

    Science.gov (United States)

    Godonoga, Maia; Lin, Ting-Yu; Oshima, Azusa; Sumitomo, Koji; Tang, Marco S. L.; Cheung, Yee-Wai; Kinghorn, Andrew B.; Dirkzwager, Roderick M.; Zhou, Cunshan; Kuzuya, Akinori; Tanner, Julian A.; Heddle, Jonathan G.

    2016-01-01

    DNA aptamers have potential for disease diagnosis and as therapeutics, particularly when interfaced with programmable molecular technology. Here we have combined DNA aptamers specific for the malaria biomarker Plasmodium falciparum lactate dehydrogenase (PfLDH) with a DNA origami scaffold. Twelve aptamers that recognise PfLDH were integrated into a rectangular DNA origami and atomic force microscopy demonstrated that the incorporated aptamers preserve their ability to specifically bind target protein. Captured PfLDH retained enzymatic activity and protein-aptamer binding was observed dynamically using high-speed AFM. This work demonstrates the ability of DNA aptamers to recognise a malaria biomarker whilst being integrated within a supramolecular DNA scaffold, opening new possibilities for malaria diagnostic approaches based on DNA nanotechnology. PMID:26891622

  16. Investigation of binding behaviour of procainamide hydrochloride with human serum albumin using synchronous, 3D fluorescence and circular dichroism

    Directory of Open Access Journals (Sweden)

    Kirthi Byadagi

    2017-04-01

    Full Text Available Interaction of procainamide hydrochloride (PAH with human serum albumin (HSA is of great significance in understanding the pharmacokinetic and pharmacodynamic mechanisms of the drug. Multi-spectroscopic techniques were used to investigate the binding mode of PAH to HSA and results revealed the presence of static type of quenching mechanism. The number of binding sites, binding constants and thermodynamic parameters were calculated. The results showed a spontaneous binding of PAH to HSA and hydrophobic interactions played a major role. In addition, the distance between PAH and the Trp–214 was estimated employing the Förster's theory. Site marker competitive experiments indicated that the binding of PAH to HSA primarily took place in subdomain IIA (Sudlow's site I. The influence of interference of some common metal ions on the binding of PAH to HSA was studied. Synchronous fluorescence spectra (SFS, 3D fluorescence spectra and circular dichroism (CD results indicated the conformational changes in the structure of HSA.

  17. Binding of dicamba to soluble and bound extracellular polymeric substances (EPS) from aerobic activated sludge: a fluorescence quenching study.

    Science.gov (United States)

    Pan, Xiangliang; Liu, Jing; Zhang, Daoyong; Chen, Xi; Song, Wenjuan; Wu, Fengchang

    2010-05-15

    Binding of dicamba to soluble EPS (SEPS) and bound EPS (BEPS) from aerobic activated sludge was investigated using fluorescence spectroscopy. Two protein-like fluorescence peaks (peak A with Ex/Em=225 nm/342-344 nm and peak B with Ex/Em=275/340-344 nm) were identified in SEPS and BEPS. Humic-like fluorescence peak C (Ex/Em=270-275 nm/450-460 nm) was only found in BEPS. Fluorescence of the peaks A and B for SEPS and peak A for BEPS were markedly quenched by dicamba at all temperatures whereas fluorescence of peaks B and C for BEPS was quenched only at 298 K. A dynamic process dominated the fluorescence quenching of peak A of both SEPS and BEPS. Fluorescence quenching of peak B and C was governed a static process. The effective quenching constants (logK(a)) were 4.725-5.293 for protein-like fluorophores of SEPS and 4.23-5.190 for protein-like fluorophores of BEPS, respectively. LogK(a) for humic-like substances was 3.85. Generally, SEPS had greater binding capacity for dicamba than BEPS, and protein-like substances bound dicamba more strongly than humic-like substances. Binding of dicamba to SEPS and BEPS was spontaneous and exothermic. Electrostatic force and hydrophobic interaction forces play a crucial role in binding of dicamba to EPS. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Visualizing double-stranded RNA distribution and dynamics in living cells by dsRNA binding-dependent fluorescence complementation

    International Nuclear Information System (INIS)

    Cheng, Xiaofei; Deng, Ping; Cui, Hongguang; Wang, Aiming

    2015-01-01

    Double-stranded RNA (dsRNA) is an important type of RNA that plays essential roles in diverse cellular processes in eukaryotic organisms and a hallmark in infections by positive-sense RNA viruses. Currently, no in vivo technology has been developed for visualizing dsRNA in living cells. Here, we report a dsRNA binding-dependent fluorescence complementation (dRBFC) assay that can be used to efficiently monitor dsRNA distribution and dynamics in vivo. The system consists of two dsRNA-binding proteins, which are fused to the N- and C-terminal halves of the yellow fluorescent protein (YFP). Binding of the two fusion proteins to a common dsRNA brings the split YFP halves in close proximity, leading to the reconstitution of the fluorescence-competent structure and restoration of fluorescence. Using this technique, we were able to visualize the distribution and trafficking of the replicative RNA intermediates of positive-sense RNA viruses in living cells. - Highlights: • A live-cell imaging system was developed for visualizing dsRNA in vivo. • It uses dsRNA binding proteins fused with two halves of a fluorescent protein. • Binding to a common dsRNA enables the reporter to become fluorescent. • The system can efficiently monitor viral RNA replication in living cells.

  19. Visualizing double-stranded RNA distribution and dynamics in living cells by dsRNA binding-dependent fluorescence complementation

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Xiaofei [Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3 (Canada); College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036 (China); Deng, Ping; Cui, Hongguang [Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3 (Canada); Wang, Aiming, E-mail: aiming.wang@agr.gc.ca [Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3 (Canada)

    2015-11-15

    Double-stranded RNA (dsRNA) is an important type of RNA that plays essential roles in diverse cellular processes in eukaryotic organisms and a hallmark in infections by positive-sense RNA viruses. Currently, no in vivo technology has been developed for visualizing dsRNA in living cells. Here, we report a dsRNA binding-dependent fluorescence complementation (dRBFC) assay that can be used to efficiently monitor dsRNA distribution and dynamics in vivo. The system consists of two dsRNA-binding proteins, which are fused to the N- and C-terminal halves of the yellow fluorescent protein (YFP). Binding of the two fusion proteins to a common dsRNA brings the split YFP halves in close proximity, leading to the reconstitution of the fluorescence-competent structure and restoration of fluorescence. Using this technique, we were able to visualize the distribution and trafficking of the replicative RNA intermediates of positive-sense RNA viruses in living cells. - Highlights: • A live-cell imaging system was developed for visualizing dsRNA in vivo. • It uses dsRNA binding proteins fused with two halves of a fluorescent protein. • Binding to a common dsRNA enables the reporter to become fluorescent. • The system can efficiently monitor viral RNA replication in living cells.

  20. High-affinity RNA aptamers to C-reactive protein (CRP): newly developed pre-elution methods for aptamer selection

    International Nuclear Information System (INIS)

    Orito, N; Umekage, S; Sakai, E; Tanaka, T; Kikuchi, Y; Sato, K; Kawauchi, S; Tanaka, H

    2012-01-01

    We have developed a modified SELEX (systematic evolution of ligands by exponential enrichment) method to obtain RNA aptamers with high affinity to C-reactive protein (CRP). CRP is a clinical biomarker present in plasma, the level of which increases in response to infections and noninfectious inflammation. The CRP level is also an important prognostic indicator in patients with several syndromes. At present, CRP content in blood is measured immunochemically using antibodies. To develop a more sensitive method using RNA aptamers, we have attempted to obtain high-affinity RNA aptamers to CRP. We succeeded in obtaining an RNA aptamer with high affinity to CRP using a CRP-immobilized Sepharose column and pre-elution procedure. Pre-elution is a method that removes the weak binding portion from a selected RNA population by washing for a short time with buffer containing CRP. By surface plasmon-resonance (SPR) analysis, the affinity constant of this aptamer for CRP was calculated to be K D = 2.25x10 -9 (M). The secondary structure, contact sites with CRP protein, and application of this aptamer will be described.

  1. BINDING OF IONIC SURFACTANTS ON OPPOSITELY CHARGED POLYELECTROLYTES OBSERVED BY FLUORESCENCE METHODS

    Institute of Scientific and Technical Information of China (English)

    Zhen Tong; Chao-yang Wang; Bi-ye Ren; Xin-xing Liu; Fang Zeng

    2003-01-01

    Our recent studies concerning the binding of ionic surfactants on oppositely charged polyelectrolytes observed with fluorescence techniques are reviewed. The cationic surfactants cetyltrimethylammonium bromide (CTAB),dodecyltrimethylammonium chloride (DTAC), and nonionic surfactant octaethylene glycol monododecyl ether (C12E8) were allowed to bind on anionic poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS) and its pyrene and/or naphthalene labeled copolymers. The relative excimer emission intensity IE/IM of a cationic probe 1-pyrenemethylamine hydrochloride were chosen to monitor the binding process and the conformation change of surfactant-bound polyelectrolytes. The 1:1aggregation of polyelectrolyte-CTAB with respect to the charge was found as long as the CTAB concentration was slightly higher than its critical aggregation concentration (CAC). The intermolecular NRET indicated that the CTAB-bound polyelectrolytes aggregated together through the hydrophobic interaction between the CTAB tails. However, neither 1:1polyelectrolyte-DTAC aggregation nor intermolecular aggregation of DTAC-bound polyelectrolyte was observed owing to its weaker hydrophobicity of 12 carbon atoms in the tail, which is shorter than that of CTAB. As known from the fluorescence results, nonionic surfactant C12E8 did not bind on the anionic polyelectrolytes, but the presence of PAMPS promoted the micelle formation for C12E8 at the CAC slightly below its critical micelle concentration (CMC). The solid complex of dansyl labeled AMPS copolymer-surfactant exhibited a decrease in local polarity with increasing charge density of the polyelectrolyte or with alkane tail length of the surfactant. SAXS suggested a lamella structure for the AMPS copolymersurfactant solid complexes with a long period of 3.87 nm for CTAB and 3.04 nm for DTAC, respectively.

  2. Efficient and dynamic nuclear localization of green fluorescent protein via RNA binding

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Akira; Nakayama, Yusaku; Kinjo, Masataka, E-mail: kinjo@sci.hokudai.ac.jp

    2015-07-31

    Classical nuclear localization signal (NLS) sequences have been used for artificial localization of green fluorescent protein (GFP) in the nucleus as a positioning marker or for measurement of the nuclear-cytoplasmic shuttling rate in living cells. However, the detailed mechanism of nuclear retention of GFP-NLS remains unclear. Here, we show that a candidate mechanism for the strong nuclear retention of GFP-NLS is via the RNA-binding ability of the NLS sequence. GFP tagged with a classical NLS derived from Simian virus 40 (GFP-NLS{sup SV40}) localized not only in the nucleoplasm, but also to the nucleolus, the nuclear subdomain in which ribosome biogenesis takes place. GFP-NLS{sup SV40} in the nucleolus was mobile, and intriguingly, the diffusion coefficient, which indicates the speed of diffusing molecules, was 1.5-fold slower than in the nucleoplasm. Fluorescence correlation spectroscopy (FCS) analysis showed that GFP-NLS{sup SV40} formed oligomers via RNA binding, the estimated molecular weight of which was larger than the limit for passive nuclear export into the cytoplasm. These findings suggest that the nuclear localization of GFP-NLS{sup SV40} likely results from oligomerization mediated via RNA binding. The analytical technique used here can be applied for elucidating the details of other nuclear localization mechanisms, including those of several types of nuclear proteins. In addition, GFP-NLS{sup SV40} can be used as an excellent marker for studying both the nucleoplasm and nucleolus in living cells. - Highlights: • Nuclear localization signal-tagged GFP (GFP-NLS) showed clear nuclear localization. • The GFP-NLS dynamically localized not only in the nucleoplasm, but also to the nucleolus. • The nuclear localization of GFP-NLS results from transient oligomerization mediated via RNA binding. • Our NLS-tagging procedure is ideal for use in artificial sequestration of proteins in the nucleus.

  3. Efficient and dynamic nuclear localization of green fluorescent protein via RNA binding

    International Nuclear Information System (INIS)

    Kitamura, Akira; Nakayama, Yusaku; Kinjo, Masataka

    2015-01-01

    Classical nuclear localization signal (NLS) sequences have been used for artificial localization of green fluorescent protein (GFP) in the nucleus as a positioning marker or for measurement of the nuclear-cytoplasmic shuttling rate in living cells. However, the detailed mechanism of nuclear retention of GFP-NLS remains unclear. Here, we show that a candidate mechanism for the strong nuclear retention of GFP-NLS is via the RNA-binding ability of the NLS sequence. GFP tagged with a classical NLS derived from Simian virus 40 (GFP-NLS SV40 ) localized not only in the nucleoplasm, but also to the nucleolus, the nuclear subdomain in which ribosome biogenesis takes place. GFP-NLS SV40 in the nucleolus was mobile, and intriguingly, the diffusion coefficient, which indicates the speed of diffusing molecules, was 1.5-fold slower than in the nucleoplasm. Fluorescence correlation spectroscopy (FCS) analysis showed that GFP-NLS SV40 formed oligomers via RNA binding, the estimated molecular weight of which was larger than the limit for passive nuclear export into the cytoplasm. These findings suggest that the nuclear localization of GFP-NLS SV40 likely results from oligomerization mediated via RNA binding. The analytical technique used here can be applied for elucidating the details of other nuclear localization mechanisms, including those of several types of nuclear proteins. In addition, GFP-NLS SV40 can be used as an excellent marker for studying both the nucleoplasm and nucleolus in living cells. - Highlights: • Nuclear localization signal-tagged GFP (GFP-NLS) showed clear nuclear localization. • The GFP-NLS dynamically localized not only in the nucleoplasm, but also to the nucleolus. • The nuclear localization of GFP-NLS results from transient oligomerization mediated via RNA binding. • Our NLS-tagging procedure is ideal for use in artificial sequestration of proteins in the nucleus

  4. Biomimetic glass nanopores employing aptamer gates responsive to a small molecule†

    Science.gov (United States)

    Abelow, Alexis E.; Schepelina, Olga; White, Ryan J.; Vallée-Bélisle, Alexis

    2011-01-01

    We report the preparation of 20 and 65 nm radii glass nanopores whose surface is modified with DNA aptamers controlling the molecular transport through the nanopores in response to small molecule binding. PMID:20865192

  5. FRET-based binding assay between a fluorescent cAMP analogue and a cyclic nucleotide-binding domain tagged with a CFP.

    Science.gov (United States)

    Romero, Francisco; Santana-Calvo, Carmen; Sánchez-Guevara, Yoloxochitl; Nishigaki, Takuya

    2017-09-01

    The cyclic nucleotide-binding domain (CNBD) functions as a regulatory domain of many proteins involved in cyclic nucleotide signalling. We developed a straightforward and reliable binding assay based on intermolecular fluorescence resonance energy transfer (FRET) between an adenosine-3', 5'-cyclic monophosphate analogue labelled with fluorescein and a recombinant CNBD of human EPAC1 tagged with a cyan fluorescence protein (CFP). The high FRET efficiency of this method (~ 80%) allowed us to perform several types of binding experiments with nanomolar range of sample using conventional equipment. In addition, the CFP tag on the CNBD enabled us to perform a specific binding experiment using an unpurified protein. Considering these advantages, this technique is useful to study poorly characterized CNBDs. © 2017 Federation of European Biochemical Societies.

  6. Computational Selection of RNA Aptamer against Angiopoietin-2 and Experimental Evaluation

    Directory of Open Access Journals (Sweden)

    Wen-Pin Hu

    2015-01-01

    Full Text Available Angiogenesis plays a decisive role in the growth and spread of cancer and angiopoietin-2 (Ang2 is in the spotlight of studies for its unique role in modulating angiogenesis. The aim of this study was to introduce a computational simulation approach to screen aptamers with high binding ability for Ang2. We carried out computational simulations of aptamer-protein interactions by using ZDOCK and ZRANK functions in Discovery Studio 3.5 starting from the available information of aptamers generated through the systematic evolution of ligands by exponential enrichment (SELEX in the literature. From the best of three aptamers on the basis of ZRANK scores, 189 sequences with two-point mutations were created and simulated with Ang2. Then, we used a surface plasmon resonance (SPR biosensor to test 3 mutant sequences of high ZRANK scores along with a high and a low affinity binding sequence as reported in the literature. We found a selected RNA aptamer has a higher binding affinity and SPR response than a reported sequence with the highest affinity. This is the first study of in silico selection of aptamers against Ang2 by using the ZRANK scoring function, which should help to increase the efficiency of selecting aptamers with high target-binding ability.

  7. Minimal domain of bacterial phytochrome required for chromophore binding and fluorescence

    Science.gov (United States)

    Rumyantsev, Konstantin A.; Shcherbakova, Daria M.; Zakharova, Natalia I.; Emelyanov, Alexander V.; Turoverov, Konstantin K.; Verkhusha, Vladislav V.

    2015-12-01

    Fluorescent proteins (FP) are used to study various biological processes. Recently, a series of near-infrared (NIR) FPs based on bacterial phytochromes was developed. Finding ways to improve NIR FPs is becoming progressively important. By applying rational design and molecular evolution we have engineered R. palustris bacterial phytochrome into a single-domain NIR FP of 19.6 kDa, termed GAF-FP, which is 2-fold and 1.4-fold smaller than bacterial phytochrome-based NIR FPs and GFP-like proteins, respectively. Engineering of GAF-FP involved a substitution of 15% of its amino acids and a deletion of the knot structure. GAF-FP covalently binds two tetrapyrrole chromophores, biliverdin (BV) and phycocyanobilin (PCB). With the BV chromophore GAF-FP absorbs at 635 nm and fluoresces at 670 nm. With the PCB chromophore GAF-FP becomes blue-shifted and absorbs at 625 nm and fluoresces at 657 nm. The GAF-FP structure has a high tolerance to small peptide insertions. The small size of GAF-FP and its additional absorbance band in the violet range has allowed for designing a chimeric protein with Renilla luciferase. The chimera exhibits efficient non-radiative energy transfer from luciferase to GAF-FP, resulting in NIR bioluminescence. This study opens the way for engineering of small NIR FPs and NIR luciferases from bacterial phytochromes.

  8. Branched-chain Amino Acid Biosensing Using Fluorescent Modified Engineered Leucine/Isoleucine/Valine Binding Protein

    Directory of Open Access Journals (Sweden)

    Koji Sode

    2007-06-01

    Full Text Available A novel fluorescence sensing system for branched-chain amino acids (BCAAswas developed based on engineered leucine/isoleucine/valine-binding proteins (LIVBPsconjugated with environmentally sensitive fluorescence probes. LIVBP was cloned fromEscherichia coli and Gln149Cys, Gly227Cys, and Gln254Cys mutants were generated bygenetic engineering. The mutant LIVBPs were then modified with environmentallysensitive fluorophores. Based on the fluorescence intensity change observed upon thebinding of the ligands, the MIANS-conjugated Gln149Cys mutant (Gln149Cys-M showedthe highest and most sensitive response. The BCAAs Leu, Ile, and Val can each bemonitored at the sub-micromolar level using Gln149Cys-M. Measurements were alsocarried out on a mixture of BCAFAs and revealed that Gln149Cys-M-based measurementis not significantly affected by the change in the molar ratio of Leu, Ile and Val in thesample. Its high sensitivity and group-specific molecular recognition ability make the newsensing system ideally suited for the measurement of BCAAs and the determination of theFischer ratio, an indicator of hepatic disease involving metabolic dysfunction.

  9. Split green fluorescent protein as a modular binding partner for protein crystallization

    International Nuclear Information System (INIS)

    Nguyen, Hau B.; Hung, Li-Wei; Yeates, Todd O.; Terwilliger, Thomas C.; Waldo, Geoffrey S.

    2013-01-01

    A strategy using a new split green fluorescent protein (GFP) as a modular binding partner to form stable protein complexes with a target protein is presented. The modular split GFP may open the way to rapidly creating crystallization variants. A modular strategy for protein crystallization using split green fluorescent protein (GFP) as a crystallization partner is demonstrated. Insertion of a hairpin containing GFP β-strands 10 and 11 into a surface loop of a target protein provides two chain crossings between the target and the reconstituted GFP compared with the single connection afforded by terminal GFP fusions. This strategy was tested by inserting this hairpin into a loop of another fluorescent protein, sfCherry. The crystal structure of the sfCherry-GFP(10–11) hairpin in complex with GFP(1–9) was determined at a resolution of 2.6 Å. Analysis of the complex shows that the reconstituted GFP is attached to the target protein (sfCherry) in a structurally ordered way. This work opens the way to rapidly creating crystallization variants by reconstituting a target protein bearing the GFP(10–11) hairpin with a variety of GFP(1–9) mutants engineered for favorable crystallization

  10. Dynamic fluorescence spectroscopy on single tryptophan mutants of EIImtl in detergent micelles : Effects of substrate binding and phosphorylation on the fluorescence and anisotropy decay

    NARCIS (Netherlands)

    Swaving Dijkstra, Dolf; Broos, J.; Visser, Antonie J.W.G.; van Hoek, A.; Robillard, George

    1997-01-01

    The effects of substrate and substrate analogue binding and phosphorylation on the conformational dynamics of the mannitol permease of Escherichia coli were investigated, using time-resolved fluorescence spectroscopy on mutants containing five single tryptophans situated in the membrane-embedded C

  11. Surface biofunctionalization of β-TCP blocks using aptamer 74 for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Ardjomandi, N.; Huth, J. [Department of Oral and Maxillofacial Surgery, University Hospital Tübingen (Germany); Stamov, D.R. [JPK Instruments AG, Berlin (Germany); Henrich, A. [Department of Oral and Maxillofacial Surgery, University Hospital Tübingen (Germany); Klein, C. [Dental Practice Zahngesundheit Waiblingen, Waiblingen (Germany); Wendel, H.-P. [Department of Thoracic, Cardiac and Vascular Surgery, University Hospital, Tübingen (Germany); Reinert, S. [Department of Oral and Maxillofacial Surgery, University Hospital Tübingen (Germany); Alexander, D., E-mail: dorothea.alexander@med.uni-tuebingen.de [Department of Oral and Maxillofacial Surgery, University Hospital Tübingen (Germany)

    2016-10-01

    Successful bone regeneration following oral and maxillofacial surgeries depends on efficient functionalization strategies that allow the recruitment of osteogenic progenitor cells at the tissue/implant interface. We have previously identified aptamer 74, which exhibited a binding affinity for osteogenically induced jaw periosteal cells (JPCs). In the present study, this aptamer was used for the surface biofunctionalization of β-tricalcium phosphate (β-TCP) blocks. Atomic force microscopy (AFM) measurements showed increased binding activity of aptamer 74 towards osteogenically induced JPCs compared to untreated controls. The immobilization efficiency of aptamer 74 was analyzed using the QuantiFluor ssDNA assay for 2D surfaces and by amino acid analysis for 3D β-TCP constructs. Following the successful immobilization of aptamer 74 in 2D culture wells and on 3D constructs, in vitro assays showed no significant differences in cell proliferation compared to unmodified surfaces. Interestingly, JPC mineralization was significantly higher on the 2D surfaces and higher cell adhesion was detected on the 3D constructs with immobilized aptamer. Herein, we report an established, biocompatible β-TCP matrix with surface immobilization of aptamer 74, which enhances properties such as cell adhesion on 3D constructs and mineralization on 2D surfaces. Further studies need to be performed to improve the immobilization efficiency and to develop a suitable approach for JPC mineralization growing within 3D β-TCP constructs. - Highlights: • Covalent binding of aptamer 74 on PLGA-coated β-tricalcium phosphate constructs. • AFM analysis of rupture forces between aptamer 74 and jaw periosteal cells. • Analysis of jaw periosteal cell functions on aptamer coated β-TCP constructs.

  12. Surface biofunctionalization of β-TCP blocks using aptamer 74 for bone tissue engineering

    International Nuclear Information System (INIS)

    Ardjomandi, N.; Huth, J.; Stamov, D.R.; Henrich, A.; Klein, C.; Wendel, H.-P.; Reinert, S.; Alexander, D.

    2016-01-01

    Successful bone regeneration following oral and maxillofacial surgeries depends on efficient functionalization strategies that allow the recruitment of osteogenic progenitor cells at the tissue/implant interface. We have previously identified aptamer 74, which exhibited a binding affinity for osteogenically induced jaw periosteal cells (JPCs). In the present study, this aptamer was used for the surface biofunctionalization of β-tricalcium phosphate (β-TCP) blocks. Atomic force microscopy (AFM) measurements showed increased binding activity of aptamer 74 towards osteogenically induced JPCs compared to untreated controls. The immobilization efficiency of aptamer 74 was analyzed using the QuantiFluor ssDNA assay for 2D surfaces and by amino acid analysis for 3D β-TCP constructs. Following the successful immobilization of aptamer 74 in 2D culture wells and on 3D constructs, in vitro assays showed no significant differences in cell proliferation compared to unmodified surfaces. Interestingly, JPC mineralization was significantly higher on the 2D surfaces and higher cell adhesion was detected on the 3D constructs with immobilized aptamer. Herein, we report an established, biocompatible β-TCP matrix with surface immobilization of aptamer 74, which enhances properties such as cell adhesion on 3D constructs and mineralization on 2D surfaces. Further studies need to be performed to improve the immobilization efficiency and to develop a suitable approach for JPC mineralization growing within 3D β-TCP constructs. - Highlights: • Covalent binding of aptamer 74 on PLGA-coated β-tricalcium phosphate constructs. • AFM analysis of rupture forces between aptamer 74 and jaw periosteal cells. • Analysis of jaw periosteal cell functions on aptamer coated β-TCP constructs.

  13. Studying small molecule-aptamer interactions using MicroScale Thermophoresis (MST).

    Science.gov (United States)

    Entzian, Clemens; Schubert, Thomas

    2016-03-15

    Aptamers are potent and versatile binding molecules recognizing various classes of target molecules. Even challenging targets such as small molecules can be identified and bound by aptamers. Studying the interaction between aptamers and drugs, antibiotics or metabolites in detail is however difficult due to the lack of sophisticated analysis methods. Basic binding parameters of these small molecule-aptamer interactions such as binding affinity, stoichiometry and thermodynamics are elaborately to access using the state of the art technologies. The innovative MicroScale Thermophoresis (MST) is a novel, rapid and precise method to characterize these small molecule-aptamer interactions in solution at microliter scale. The technology is based on the movement of molecules through temperature gradients, a physical effect referred to as thermophoresis. The thermophoretic movement of a molecule depends - besides on its size - on charge and hydration shell. Upon the interaction of a small molecule and an aptamer, at least one of these parameters is altered, leading to a change in the movement behavior, which can be used to quantify molecular interactions independent of the size of the target molecule. The MST offers free choice of buffers, even measurements in complex bioliquids are possible. The dynamic affinity range covers the pM to mM range and is therefore perfectly suited to analyze small molecule-aptamer interactions. This section describes a protocol how quantitative binding parameters for aptamer-small molecule interactions can be obtained by MST. This is demonstrated by mapping down the binding site of the well-known ATP aptamer DH25.42 to a specific region at the adenine of the ATP molecule. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Refining the Results of a Classical SELEX Experiment by Expanding the Sequence Data Set of an Aptamer Pool Selected for Protein A

    OpenAIRE

    Regina Stoltenburg; Beate Strehlitz

    2018-01-01

    New, as yet undiscovered aptamers for Protein A were identified by applying next generation sequencing (NGS) to a previously selected aptamer pool. This pool was obtained in a classical SELEX (Systematic Evolution of Ligands by EXponential enrichment) experiment using the FluMag-SELEX procedure followed by cloning and Sanger sequencing. PA#2/8 was identified as the only Protein A-binding aptamer from the Sanger sequence pool, and was shown to be able to bind intact cells of Staphylococcus aur...

  15. Fluorescence-Based Comparative Binding Studies of the Supramolecular Host Properties of PAMAM Dendrimers Using Anilinonaphthalene Sulfonates: Unusual Host-Dependent Fluorescence Titration Behavior

    Directory of Open Access Journals (Sweden)

    Natasa Stojanovic

    2010-04-01

    Full Text Available This work describes the fluorescence enhancement of the anilinonaphthalene sulfonate probes 1,8-ANS, 2,6-ANS, and 2,6-TNS via complexation with PAMAM dendrimer hosts of Generation 4, 5 and 6. The use of this set of three very closely related probes allows for comparative binding studies, with specific pairs of probes differing only in shape (1,8-ANS and 2,6-ANS, or in the presence of a methyl substituent (2,6-TNS vs. 2,6-ANS. The fluorescence of all three probes was significantly enhanced upon binding with PAMAM dendrimers, however in all cases except one, a very unusual spike was consistently observed in the host fluorescence titration plots (fluorescence enhancement vs. host concentration at low dendrimer concentration. This unprecedented fluorescence titration curve shape makes fitting the data to a simple model such as 1:1 or 2:1 host: guest complexation very difficult; thus only qualitative comparisons of the relative binding of the three guests could be made based on host titrations. In the case of G4 and G5 dendrimers, the order of binding strength was qualitatively determined to be 1,8-ANS < 2,6-ANS indicating that the more streamlined 2,6-substituted probes are a better match for the dendrimer cavity shape than the bulkier 1,8-substituted probe. This order of binding strength was also indicated by double fluorometric titration experiments, involving both host and guest titrations. Further double fluorometric titration experiments on 2,6-ANS in G4 dendrimer revealed a host concentration-dependent change in the nature of the host: guest complexation, with multiple guests complexed per host molecule at very low host concentrations, but less than one guest per host at higher concentrations.

  16. A Soluble Fluorescent Binding Assay Reveals PIP2 Antagonism of TREK-1 Channels

    Directory of Open Access Journals (Sweden)

    Cerrone Cabanos

    2017-08-01

    Full Text Available Lipid regulation of ion channels by low-abundance signaling lipids phosphatidylinositol 4,5-bisphosphate (PIP2 and phosphatidic acid (PA has emerged as a central cellular mechanism for controlling ion channels and the excitability of nerves. A lack of robust assays suitable for facile detection of a lipid bound to a channel has hampered the probing of the lipid binding sites and measuring the pharmacology of putative lipid agonists for ion channels. Here, we show a fluorescent PIP2 competition assay for detergent-purified potassium channels, including TWIK-1-related K+-channel (TREK-1. Anionic lipids PA and phosphatidylglycerol (PG bind dose dependently (9.1 and 96 μM, respectively and agonize the channel. Our assay shows PIP2 binds with high affinity (0.87 μM but surprisingly can directly antagonize TREK-1 in liposomes. We propose a model for TREK-1 lipid regulation where PIP2 can compete with PA and PG agonism based on the affinity of the lipid for a site within the channel.

  17. Effect of structure variation of the aptamer-DNA duplex probe on the performance of displacement-based electrochemical aptamer sensors.

    Science.gov (United States)

    Pang, Jie; Zhang, Ziping; Jin, Haizhu

    2016-03-15

    Electrochemical aptamer-based (E-AB) sensors employing electrode-immobilized, redox-tagged aptamer probes have emerged as a promising platform for the sensitive and quick detection of target analytes ranging from small molecules to proteins. Signal generation in this class of sensor is linked to change in electron transfer efficiency upon binding-induced change in flexibility/conformation of the aptamer probe. Because of this signaling mechanism, signal gains of these sensors can be improved by employing a displacement-based recognition system, which links target binding with a large-scale flexibility/conformation shift from the aptamer-DNA duplex to the single-stranded DNA or the native aptamer. Despite the relatively large number of displacement-based E-AB sensor samples, little attention has been paid to the structure variation of the aptamer-DNA duplex probe. Here we detail the effects of complementary length and position of the aptamer-DNA duplex probe on the performance of a model displacement-based E-AB sensor for ATP. We find that, greater background suppression and signal gain are observed with longer complementary length of the aptamer-DNA duplex probe. However, sensor equilibration time slows monotonically with increasing complementary length; and with too many target binding sites in aptamer sequence being occupied by the complementary DNA, the aptamer-target binding does not occur and no signal gain observed. We also demonstrate that signal gain of the displacement-based E-AB sensor is strongly dependent on the complementary position of the aptamer-DNA duplex probe, with complementary position located at the electrode-attached or redox-tagged end of the duplex probe, larger background suppression and signal increase than that of the middle position are observed. These results highlight the importance of rational structure design of the aptamer-DNA duplex probe and provide new insights into the optimization of displacement-based E-AB sensors. Copyright

  18. Nucleic acid aptamer-guided cancer therapeutics and diagnostics: the next generation of cancer medicine.

    Science.gov (United States)

    Xiang, Dongxi; Shigdar, Sarah; Qiao, Greg; Wang, Tao; Kouzani, Abbas Z; Zhou, Shu-Feng; Kong, Lingxue; Li, Yong; Pu, Chunwen; Duan, Wei

    2015-01-01

    Conventional anticancer therapies, such as chemo- and/or radio-therapy are often unable to completely eradicate cancers due to abnormal tumor microenvironment, as well as increased drug/radiation resistance. More effective therapeutic strategies for overcoming these obstacles are urgently in demand. Aptamers, as chemical antibodies that bind to targets with high affinity and specificity, are a promising new and novel agent for both cancer diagnostic and therapeutic applications. Aptamer-based cancer cell targeting facilitates the development of active targeting in which aptamer-mediated drug delivery could provide promising anticancer outcomes. This review is to update the current progress of aptamer-based cancer diagnosis and aptamer-mediated active targeting for cancer therapy in vivo, exploring the potential of this novel form of targeted cancer therapy.

  19. Binding of several anti-tumor drugs to bovine serum albumin: Fluorescence study

    Energy Technology Data Exchange (ETDEWEB)

    Bi Shuyun [College of Chemistry, Changchun Normal University, Changchun 130032 (China)], E-mail: sy_bi@sina.com; Sun Yantao [College of Chemistry, Jilin University, Changchun 130023 (China); College of Chemistry, Jilin Normal University, Siping 136000 (China); Qiao Chunyu; Zhang Hanqi [College of Chemistry, Jilin University, Changchun 130023 (China); Liu Chunming [College of Chemistry, Changchun Normal University, Changchun 130032 (China)

    2009-05-15

    The interactions of mitomycin C (MMC), fluorouracil (FU), mercaptopurine (MP) and doxorubicin hydrochloride (DXR) with bovine serum albumin (BSA) were studied by spectroscopic method. Quenching of fluorescence of serum albumin by these drugs was found to be a static quenching process. The binding constants (K{sub A}) were 9.66x10{sup 3}, 2.08x10{sup 3}, 8.20x10{sup 2} and 7.50x10{sup 3} L mol{sup -1} for MMC-, FU-, MP- and DXR-BSA, respectively, at pH 7.4 Britton-Robinson buffer at 28 deg. C. The thermodynamic functions such as enthalpy change ({delta}H), entropy change ({delta}S) and Gibbs free-energy change ({delta}G) for the reactions were also calculated according to the thermodynamic equations. The main forces in the interactions of these drugs with BSA were evaluated. It was found that the interactions of MMC and FU with BSA were exothermic processes and those of MP and DXR with BSA were endothermic. In addition, the binding sites on BSA for the four drugs were probed by the changes of binding properties of these drugs with BSA in the presence of two important site markers such as ibuprofen and indomethacin. Based on the Foester theory of non-radiation energy transfer, the binding distances between the drugs and tryptophane were calculated and they were 3.00, 1.14, 2.85, and 2.79 nm for MMC, FU, MP and DXR, respectively.

  20. Identification of fluorescent compounds with non-specific binding property via high throughput live cell microscopy.

    Directory of Open Access Journals (Sweden)

    Sangeeta Nath

    Full Text Available INTRODUCTION: Compounds exhibiting low non-specific intracellular binding or non-stickiness are concomitant with rapid clearing and in high demand for live-cell imaging assays because they allow for intracellular receptor localization with a high signal/noise ratio. The non-stickiness property is particularly important for imaging intracellular receptors due to the equilibria involved. METHOD: Three mammalian cell lines with diverse genetic backgrounds were used to screen a combinatorial fluorescence library via high throughput live cell microscopy for potential ligands with high in- and out-flux properties. The binding properties of ligands identified from the first screen were subsequently validated on plant root hair. A correlative analysis was then performed between each ligand and its corresponding physiochemical and structural properties. RESULTS: The non-stickiness property of each ligand was quantified as a function of the temporal uptake and retention on a cell-by-cell basis. Our data shows that (i mammalian systems can serve as a pre-screening tool for complex plant species that are not amenable to high-throughput imaging; (ii retention and spatial localization of chemical compounds vary within and between each cell line; and (iii the structural similarities of compounds can infer their non-specific binding properties. CONCLUSION: We have validated a protocol for identifying chemical compounds with non-specific binding properties that is testable across diverse species. Further analysis reveals an overlap between the non-stickiness property and the structural similarity of compounds. The net result is a more robust screening assay for identifying desirable ligands that can be used to monitor intracellular localization. Several new applications of the screening protocol and results are also presented.

  1. SDS-binding assay based on tyrosine fluorescence as a tool to determine binding properties of human serum albumin in blood plasma

    Science.gov (United States)

    Zhdanova, Nadezda; Shirshin, Evgeny; Fadeev, Victor; Priezzhev, Alexander

    2016-04-01

    Among all plasma proteins human serum albumin (HSA) is the most studied one as it is the main transport protein and can bind a wide variety of ligands especially fatty acids (FAs). The concentration of FAs bound to HSA in human blood plasma differs by three times under abnormal conditions (fasting, physical exercises or in case of social important diseases). In the present study a surfactant sodium dodecyl sulfate (SDS) was used to simulate FAs binding to HSA. It was shown that the increase of Tyr fluorescence of human blood plasma due to SDS addition can be completely explained by HSA-SDS complex formation. Binding parameters of SDS-HSA complex (average number of sites and apparent constant of complex formation) were determined from titration curves based on tyrosine (Tyr) fluorescence.

  2. Engineering and exploitation of a fluorescent HIV-1 gp120 for live cell CD4 binding assays

    International Nuclear Information System (INIS)

    Costantini, Lindsey M.; Irvin, Susan C.; Kennedy, Steven C.; Guo, Feng; Goldstein, Harris; Herold, Betsy C.; Snapp, Erik L.

    2015-01-01

    The HIV-1 envelope glycoprotein, gp120, binds the host cell receptor, CD4, in the initial step of HIV viral entry and infection. This process is an appealing target for the development of inhibitory drugs and neutralizing antibodies. To study gp120 binding and intracellular trafficking, we engineered a fluorescent fusion of the humanized gp120 JRFL HIV-1 variant and GFP. Gp120-sfGFP is glycosylated with human sugars, robustly expressed, and secreted from cultured human cells. Protein dynamics, quality control, and trafficking can be visualized in live cells. The fusion protein can be readily modified with different gp120 variants or fluorescent proteins. Finally, secreted gp120-sfGFP enables a sensitive and easy binding assay that can quantitatively screen potential inhibitors of gp120-CD4 binding on live cells via fluorescence imaging or laser scanning cytometry. This adaptable research tool should aid in studies of gp120 cell biology and the development of novel anti-HIV drugs. - Highlights: • Development of fluorescent protein labeled HIV-1 envelope gp120. • Imaging of gp120 dynamics and trafficking in live cells. • Quantitative visual assay of antibody-mediated inhibition of gp120 binding to CD4 on live cells

  3. Engineering and exploitation of a fluorescent HIV-1 gp120 for live cell CD4 binding assays

    Energy Technology Data Exchange (ETDEWEB)

    Costantini, Lindsey M. [Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Irvin, Susan C. [Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Kennedy, Steven C. [Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Guo, Feng [Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Goldstein, Harris; Herold, Betsy C. [Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Snapp, Erik L., E-mail: erik-lee.snapp@einstein.yu.edu [Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States)

    2015-02-15

    The HIV-1 envelope glycoprotein, gp120, binds the host cell receptor, CD4, in the initial step of HIV viral entry and infection. This process is an appealing target for the development of inhibitory drugs and neutralizing antibodies. To study gp120 binding and intracellular trafficking, we engineered a fluorescent fusion of the humanized gp120 JRFL HIV-1 variant and GFP. Gp120-sfGFP is glycosylated with human sugars, robustly expressed, and secreted from cultured human cells. Protein dynamics, quality control, and trafficking can be visualized in live cells. The fusion protein can be readily modified with different gp120 variants or fluorescent proteins. Finally, secreted gp120-sfGFP enables a sensitive and easy binding assay that can quantitatively screen potential inhibitors of gp120-CD4 binding on live cells via fluorescence imaging or laser scanning cytometry. This adaptable research tool should aid in studies of gp120 cell biology and the development of novel anti-HIV drugs. - Highlights: • Development of fluorescent protein labeled HIV-1 envelope gp120. • Imaging of gp120 dynamics and trafficking in live cells. • Quantitative visual assay of antibody-mediated inhibition of gp120 binding to CD4 on live cells.

  4. Mutational definition of binding requirements of an hnRNP-like protein in Arabidopsis using fluorescence correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Leder, Verena [Molecular Cell Physiology, Faculty of Biology, Bielefeld University (Germany); Biomolecular Photonics, Faculty of Physics, Bielefeld University (Germany); Lummer, Martina [Molecular Cell Physiology, Faculty of Biology, Bielefeld University (Germany); Tegeler, Kathrin [Molecular Cell Physiology, Faculty of Biology, Bielefeld University (Germany); Biomolecular Photonics, Faculty of Physics, Bielefeld University (Germany); Humpert, Fabian [Biomolecular Photonics, Faculty of Physics, Bielefeld University (Germany); Lewinski, Martin [Molecular Cell Physiology, Faculty of Biology, Bielefeld University (Germany); Schüttpelz, Mark [Biomolecular Photonics, Faculty of Physics, Bielefeld University (Germany); Staiger, Dorothee, E-mail: dorothee.staiger@uni-bielefeld.de [Molecular Cell Physiology, Faculty of Biology, Bielefeld University (Germany)

    2014-10-10

    Highlights: • We use FCS to investigate binding site requirements for the hnRNP-like protein AtGRP7. • We identify three nucleotides critical for AtGRP7 binding to its own intron. • Mutation of the conserved R{sup 49} abolishes binding altogether. • The paralogue AtGRP8 binds to an overlapping motif with different sequence requirement. • The glycine-rich stretch of a plant hnRNP-like protein contributes to binding. - Abstract: Arabidopsis thaliana glycine-rich RNA binding protein 7 (AtGRP7) is part of a negative feedback loop through which it regulates alternative splicing and steady-state abundance of its pre-mRNA. Here we use fluorescence correlation spectroscopy to investigate the requirements for AtGRP7 binding to its intron using fluorescently-labelled synthetic oligonucleotides. By systematically introducing point mutations we identify three nucleotides that lead to an increased K{sub d} value when mutated and thus are critical for AtGRP7 binding. Simultaneous mutation of all three residues abrogates binding. The paralogue AtGRP8 binds to an overlapping motif but with a different sequence preference, in line with overlapping but not identical functions of this protein pair. Truncation of the glycine-rich domain reduces the binding affinity of AtGRP7, showing for the first time that the glycine-rich stretch of a plant hnRNP-like protein contributes to binding. Mutation of the conserved R{sup 49} that is crucial for AtGRP7 function in pathogen defence and splicing abolishes binding.

  5. Mutational definition of binding requirements of an hnRNP-like protein in Arabidopsis using fluorescence correlation spectroscopy

    International Nuclear Information System (INIS)

    Leder, Verena; Lummer, Martina; Tegeler, Kathrin; Humpert, Fabian; Lewinski, Martin; Schüttpelz, Mark; Staiger, Dorothee

    2014-01-01

    Highlights: • We use FCS to investigate binding site requirements for the hnRNP-like protein AtGRP7. • We identify three nucleotides critical for AtGRP7 binding to its own intron. • Mutation of the conserved R 49 abolishes binding altogether. • The paralogue AtGRP8 binds to an overlapping motif with different sequence requirement. • The glycine-rich stretch of a plant hnRNP-like protein contributes to binding. - Abstract: Arabidopsis thaliana glycine-rich RNA binding protein 7 (AtGRP7) is part of a negative feedback loop through which it regulates alternative splicing and steady-state abundance of its pre-mRNA. Here we use fluorescence correlation spectroscopy to investigate the requirements for AtGRP7 binding to its intron using fluorescently-labelled synthetic oligonucleotides. By systematically introducing point mutations we identify three nucleotides that lead to an increased K d value when mutated and thus are critical for AtGRP7 binding. Simultaneous mutation of all three residues abrogates binding. The paralogue AtGRP8 binds to an overlapping motif but with a different sequence preference, in line with overlapping but not identical functions of this protein pair. Truncation of the glycine-rich domain reduces the binding affinity of AtGRP7, showing for the first time that the glycine-rich stretch of a plant hnRNP-like protein contributes to binding. Mutation of the conserved R 49 that is crucial for AtGRP7 function in pathogen defence and splicing abolishes binding

  6. Interaction of fisetin with human serum albumin by fluorescence, circular dichroism spectroscopy and DFT calculations: binding parameters and conformational changes

    International Nuclear Information System (INIS)

    Matei, Iulia; Ionescu, Sorana; Hillebrand, Mihaela

    2011-01-01

    The interaction between fisetin, an antioxidant and neuroprotective flavonoid, and human serum albumin (HSA) is investigated by means of fluorescence (steady-state, synchronous, time-resolved) and circular dichroism (CD) spectroscopy. The formation of a 1:1 complex with a constant of about 10 5 M -1 was evidenced. Foerster's resonance energy transfer and competitive binding with site markers warfarin and ibuprofen were considered and discussed. Changes in the CD band of HSA indicate a decrease in the α-helix content upon binding. An induced CD signal for bound fisetin was observed and rationalized in terms of density functional theory calculations. - Highlights: → Fisetin-BSA system was studied by fluorescence spectroscopy. → Binding parameters, association constant and number of sites were estimated. → Binding site of fisetin was identified by competitive experiments. → Conformational changes in HSA and fisetin were evidenced by circular dichroism. → TDDFT calculated CD spectra supported the experimental data.

  7. Interaction of fisetin with human serum albumin by fluorescence, circular dichroism spectroscopy and DFT calculations: binding parameters and conformational changes

    Energy Technology Data Exchange (ETDEWEB)

    Matei, Iulia; Ionescu, Sorana [Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bd. Regina Elisabeta 4-12, 030018 Bucharest (Romania); Hillebrand, Mihaela, E-mail: mihh@gw-chimie.math.unibuc.ro [Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bd. Regina Elisabeta 4-12, 030018 Bucharest (Romania)

    2011-08-15

    The interaction between fisetin, an antioxidant and neuroprotective flavonoid, and human serum albumin (HSA) is investigated by means of fluorescence (steady-state, synchronous, time-resolved) and circular dichroism (CD) spectroscopy. The formation of a 1:1 complex with a constant of about 10{sup 5} M{sup -1} was evidenced. Foerster's resonance energy transfer and competitive binding with site markers warfarin and ibuprofen were considered and discussed. Changes in the CD band of HSA indicate a decrease in the {alpha}-helix content upon binding. An induced CD signal for bound fisetin was observed and rationalized in terms of density functional theory calculations. - Highlights: > Fisetin-BSA system was studied by fluorescence spectroscopy. > Binding parameters, association constant and number of sites were estimated. > Binding site of fisetin was identified by competitive experiments. > Conformational changes in HSA and fisetin were evidenced by circular dichroism. > TDDFT calculated CD spectra supported the experimental data.

  8. A fluorescent glycolipid-binding peptide probe traces cholesterol dependent microdomain-derived trafficking pathways.

    Directory of Open Access Journals (Sweden)

    Steffen Steinert

    . CONCLUSIONS/SIGNIFICANCE: The current work presents the characterization and trafficking behavior of a novel sphingolipid-binding fluorescent probe, the SBD peptide. We show that SBD binding to membranes is dependent on the presence of cholesterol, sphingomyelin, and complex glycolipids. In addition, SBD targeting through the endolysosomal pathway in neurons is highly sensitive to cholesterol perturbations, making it a potentially useful tool for the analysis of sphingolipid trafficking in disease models that involve changes in cholesterol metabolism and storage.

  9. Comparison of classifications of aptamers against Vibrio ...

    African Journals Online (AJOL)

    As a novel method to detect the pathogen Vibrio alginolyticus, 45 aptamers were previously selected and tested. In order to better understand the properties of these aptamers, it was essential to classify these aptamers based on appropriate criteria. The primary structure of 45 aptamers against V. alginolyticus was analyzed ...

  10. A fluorescence polarization binding assay to identify inhibitors of flavin-dependent monooxygenases.

    Science.gov (United States)

    Qi, Jun; Kizjakina, Karina; Robinson, Reeder; Tolani, Karishma; Sobrado, Pablo

    2012-06-01

    N-Hydroxylating monooxygenases (NMOs) are essential for pathogenesis in fungi and bacteria. NMOs catalyze the hydroxylation of sine and ornithine in the biosynthesis of hydroxamate-containing siderophores. Inhibition of kynurenine monooxygenase (KMO), which catalyzes the conversion of kynurenine to 3-hydroxykynurenine, alleviates neurodegenerative disorders such as Huntington's and Alzheimer's diseases and brain infections caused by the parasite Trypanosoma brucei. These enzymes are examples of flavin-dependent monooxygenases, which are validated drug targets. Here, we describe the development and optimization of a fluorescence polarization assay to identify potential inhibitors of flavin-dependent monooxygenases. Fluorescently labeled ADP molecules were synthesized and tested. An ADP-TAMRA chromophore bound to KMO with a K(d) value of 0.60 ± 0.05 μM and to the NMOs from Aspergillus fumigatus and Mycobacterium smegmatis with K(d) values of 2.1 ± 0.2 and 4.0 ± 0.2 μM, respectively. The assay was tested in competitive binding experiments with substrates and products of KMO and an NMO. Furthermore, we show that this assay can be used to identify inhibitors of NMOs. A Z' factor of 0.77 was calculated, and we show that the assay exhibits good tolerance to temperature, incubation time, and dimethyl sulfoxide concentration. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Fluorescence correlation spectroscopy to study antibody binding and stoichiometry of complexes

    Science.gov (United States)

    Swift, Kerry M.; Matayoshi, Edmund D.

    2008-02-01

    FCS (fluorescence correlation spectroscopy) was used to study the association at the single molecule level of tumor necrosis factor alpha (TNF-α) and two of its protein antagonists Humira (TM) (adalimumab), a fully humanized monoclonal antibody, and Enbrel (TM) (etanercept), a soluble form of the TNF receptor. Single molecule approaches potentially have the advantage not only of enhanced sensitivity, but also of observing at equilibrium the details that would otherwise be lost in classical ensemble experiments where heterogeneity is averaged. We prepared fluorescent conjugates of the protein drugs and their biological target, the trimeric soluble form of TNF-α. The bivalency of adalimumab and the trimeric nature of TNF-α potentially allow several forms of associative complexes that may differ in stoichiometry. Detailed knowledge of this reaction may be relevant to understanding adalimumab's pharmacological properties. Our FCS data showed that a single trimeric TNF-α can bind up to three adalimumab molecules. Under some conditions even larger complexes are formed, apparently the result of cross-linking of TNF-α trimers by adalimumab. In addition, distinct differences between Humira and Enbrel were observed in their association with TNF-α.

  12. Protein Detection with Aptamer Biosensors

    Directory of Open Access Journals (Sweden)

    Regina Stoltenburg

    2008-07-01

    Full Text Available Aptamers have been developed for different applications. Their use as new biological recognition elements in biosensors promises progress for fast and easy detection of proteins. This new generation of biosensor (aptasensors will be more stable and well adapted to the conditions of real samples because of the specific properties of aptamers.

  13. Aptamers in Diagnostics and Treatment of Viral Infections

    Directory of Open Access Journals (Sweden)

    Tomasz Wandtke

    2015-02-01

    Full Text Available Aptamers are in vitro selected DNA or RNA molecules that are capable of binding a wide range of nucleic and non-nucleic acid molecules with high affinity and specificity. They have been conducted through the process known as SELEX (Systematic Evolution of Ligands by Exponential Enrichment. It serves to reach specificity and considerable affinity to target molecules, including those of viral origin, both proteins and nucleic acids. Properties of aptamers allow detecting virus infected cells or viruses themselves and make them competitive to monoclonal antibodies. Specific aptamers can be used to interfere in each stage of the viral replication cycle and also inhibit its penetration into cells. Many current studies have reported possible application of aptamers as a treatment or diagnostic tool in viral infections, e.g., HIV (Human Immunodeficiency Virus, HBV (Hepatitis B Virus, HCV (Hepatitis C Virus, SARS (Severe Acute Respiratory Syndrome, H5N1 avian influenza and recently spread Ebola. This review presents current developments of using aptamers in the diagnostics and treatment of viral diseases.

  14. Aptamers as radiopharmaceuticals for nuclear imaging and therapy

    International Nuclear Information System (INIS)

    Gijs, Marlies; Aerts, An; Impens, Nathalie; Baatout, Sarah; Luxen, André

    2016-01-01

    Today, radiopharmaceuticals belong to the standard instrumentation of nuclear medicine, both in the context of diagnosis and therapy. The majority of radiopharmaceuticals consist of targeting biomolecules which are designed to interact with a disease-related molecular target. A plethora of targeting biomolecules of radiopharmaceuticals exists, including antibodies, antibody fragments, proteins, peptides and nucleic acids. Nucleic acids have some significant advantages relative to proteinaceous biomolecules in terms of size, production, modifications, possible targets and immunogenicity. In particular, aptamers (non-coding, synthetic, single-stranded DNA or RNA oligonucleotides) are of interest because they can bind a molecular target with high affinity and specificity. At present, few aptamers have been investigated preclinically for imaging and therapeutic applications. In this review, we describe the use of aptamers as targeting biomolecules of radiopharmaceuticals. We also discuss the chemical modifications which are needed to turn aptamers into valuable (radio-)pharmaceuticals, as well as the different radiolabeling strategies that can be used to radiolabel oligonucleotides and, in particular, aptamers.

  15. Development of a Sphingosylphosphorylcholine Detection System Using RNA Aptamers

    Directory of Open Access Journals (Sweden)

    Iwao Waga

    2010-08-01

    Full Text Available Sphingosylphosphorylcholine (SPC is a lysosphingolipid that exerts multiple functions, including acting as a spasmogen, as a mitogenic factor for various types of cells, and sometimes as an inflammatory mediator. Currently, liquid chromatography/tandem mass spectrometry (LC/MS/MS is used for the quantitation of SPC. However, because of the complicated procedures required it may not be cost effective, hampering its regular usage in a routine practical SPC monitoring. In this report, we have generated RNA aptamers that bind to SPC with high affinity using an in vitro selection procedure and developed an enzyme-linked aptamer assay system using the minimized SPC aptamer that can successfully distinguish SPC from the structurally related sphingosine 1-phosphate (S1P. This is the first case of the Systematic Evolution of Ligands by EXponential enrichment (SELEX process being performed with a lysosphingolipid. The SPC aptamers would be valuable tools for the development of aptamer-based medical diagnosis and for elucidating the biological role of SPC.

  16. Expression, crystallization and preliminary crystallographic analysis of RNA-binding protein Hfq (YmaH) from Bacillus subtilis in complex with an RNA aptamer

    International Nuclear Information System (INIS)

    Baba, Seiki; Someya, Tatsuhiko; Kawai, Gota; Nakamura, Kouji; Kumasaka, Takashi

    2010-01-01

    The RNA-binding protein Hfq from B. subtilis was crystallized using the hanging-drop vapour-diffusion method in two crystal forms that belonged to space groups I422 and F222; diffraction data were collected to 2.2 Å resolution from both forms. The Hfq protein is a hexameric RNA-binding protein which regulates gene expression by binding to RNA under the influence of diverse environmental stresses. Its ring structure binds various types of RNA, including mRNA and sRNA. RNA-bound structures of Hfq from Escherichia coli and Staphylococcus aureus have been revealed to have poly(A) RNA at the distal site and U-rich RNA at the proximal site, respectively. Here, crystals of a complex of the Bacillus subtilis Hfq protein with an A/G-repeat 7-mer RNA (Hfq–RNA) that were prepared using the hanging-drop vapour-diffusion technique are reported. The type 1 Hfq–RNA crystals belonged to space group I422, with unit-cell parameters a = b = 123.70, c = 119.13 Å, while the type 2 Hfq–RNA crystals belonged to space group F222, with unit-cell parameters a = 91.92, b = 92.50, c = 114.92 Å. Diffraction data were collected to a resolution of 2.20 Å from both crystal forms. The hexameric structure of the Hfq protein was clearly shown by self-rotation analysis

  17. Regulation of photosensitisation processes by an RNA aptamer

    Science.gov (United States)

    Thoa, Tran Thi Thanh; Minagawa, Noriko; Aigaki, Toshiro; Ito, Yoshihiro; Uzawa, Takanori

    2017-02-01

    One of the most powerful attributes of proteins is their ability to bind to and modulate the chemistry of cofactors and prosthetic groups. Here, we demonstrated the ability of an artificial nucleic acid (an aptamer) to similarly control the functionality of a non-biological element. Specifically, we selected an RNA aptamer that binds tris(bipyridine) ruthenium (II), Ru(bpy)32+, an inorganic complex that has attracted intense interest due to its photoredox chemistry, including its ability to split water by visible light. We found that a newly discovered aptamer strongly and enantioselectively binds Λ-Ru(bpy)32+ (Kd = 65 nM) and, in doing so, selectively suppresses deactivation via energy transfer, thereby elongating the lifetime of its photo-excited state by four-fold. The ability of the aptamer to enhance this important aspect of Ru(bpy)32+ chemistry illustrates a broader point concerning the potential power of combining in vitro-created biomolecules with non-biological reactants to perform enhanced chemical reactions.

  18. Preparation of fluorescent tocopherols for use in protein binding and localization with the alpha-tocopherol transfer protein.

    Science.gov (United States)

    Nava, Phillip; Cecchini, Matt; Chirico, Sara; Gordon, Heather; Morley, Samantha; Manor, Danny; Atkinson, Jeffrey

    2006-06-01

    Sixteen fluorescent analogues of the lipid-soluble antioxidant vitamin alpha-tocopherol were prepared incorporating fluorophores at the terminus of omega-functionalized 2-n-alkyl-substituted chromanols (1a-d and 4a-d) that match the methylation pattern of alpha-tocopherol, the most biologically active form of vitamin E. The fluorophores used include 9-anthroyloxy (AO), 7-nitrobenz-2-oxa-1,3-diazole (NBD), N-methyl anthranilamide (NMA), and dansyl (DAN). The compounds were designed to function as fluorescent reporter ligands for protein-binding and lipid transfer assays. The fluorophores were chosen to maximize the fluorescence changes observed upon moving from an aqueous environment (low fluorescence intensity) to an hydrophobic environment such as a protein's binding site (high fluorescence intensity). Compounds 9d (anthroyloxy) and 10d (nitrobenzoxadiazole), having a C9-carbon chain between the chromanol and the fluorophore, were shown to bind specifically and reversibly to recombinant human tocopherol transfer protein (alpha-TTP) with dissociation constants of approximately 280 and 60 nM, respectively, as compared to 25 nM for the natural ligand 2R,4'R,8'R-alpha-tocopherol. Thus, compounds have been prepared that allow the investigation of the rate of alpha-TTP-mediated inter-membrane transfer of alpha-tocopherol and to investigate the mechanism of alpha-TTP function at membranes of different composition.

  19. Development of a fraction collection approach in capillary electrophoresis SELEX for aptamer selection.

    Science.gov (United States)

    Luo, Zhaofeng; Zhou, Hongmin; Jiang, Hao; Ou, Huichao; Li, Xin; Zhang, Liyun

    2015-04-21

    Aptamers have attracted much attention due to their ability to bind to target molecules with high affinity and specificity. The development of an approach capable of efficiently generating aptamers through systematic evolution of ligands by exponential enrichment (SELEX) is particularly challenging. Herein, a fraction collection approach in capillary electrophoresis SELEX (FCE-SELEX) for the partition of a bound DNA-target complex is developed. By integrating fraction collection with a facile oil seal method for avoiding contamination while amplifying the bound DNA-target complex, in a single round of selection, a streptavidin-binding aptamer (SBA) has been generated. The affinity of aptamer SBA-36 for streptavidin (SA) is determined as 30.8 nM by surface plasmon resonance (SPR). Selectivity and biotin competition experiments demonstrate that the SBA-36 aptamer selected by FCE-SELEX is as efficient as those from other methods. Based on the ability of fraction collection in partition and collection of the aptamer-target complex from the original DNA library, FCE-SELEX can be a universal tool for the development of aptamers.

  20. Selection and Characterization of Single Stranded DNA Aptamers for the Hormone Abscisic Acid

    Science.gov (United States)

    Gonzalez, Victor M.; Millo, Enrico; Sturla, Laura; Vigliarolo, Tiziana; Bagnasco, Luca; Guida, Lucrezia; D'Arrigo, Cristina; De Flora, Antonio; Salis, Annalisa; Martin, Elena M.; Bellotti, Marta; Zocchi, Elena

    2013-01-01

    The hormone abscisic acid (ABA) is a small molecule involved in pivotal physiological functions in higher plants. Recently, ABA has been also identified as an endogenous hormone in mammals, regulating different cell functions including inflammatory processes, stem cell expansion, insulin release, and glucose uptake. Aptamers are short, single-stranded (ss) oligonucleotidesable to recognize target molecules with high affinity. The small size of the ABA molecule represented a challenge for aptamer development and the aim of this study was to develop specific anti-ABA DNA aptamers. Biotinylated abscisic acid (bio-ABA) was immobilized on streptavidin-coated magnetic beads. DNA aptamers against bio-ABA were selected with 7 iterative rounds of the systematic evolution of ligands by exponential enrichment method (SELEX), each round comprising incubation of the ABA-binding beads with the ssDNA sequences, DNA elution, electrophoresis, and polymerase chain reaction (PCR) amplification. The PCR product was cloned and sequenced. The binding affinity of several clones was determined using bio-ABA immobilized on streptavidin-coated plates. Aptamer 2 and aptamer 9 showed the highest binding affinity, with dissociation constants values of 0.98±0.14 μM and 0.80±0.07 μM, respectively. Aptamers 2 and 9 were also able to bind free, unmodified ABA and to discriminate between different ABA enantiomers and isomers. Our findings indicate that ssDNA aptamers can selectively bind ABA and could be used for the development of ABA quantitation assays. PMID:23971905

  1. Expression, crystallization and preliminary crystallographic analysis of RNA-binding protein Hfq (YmaH) from Bacillus subtilis in complex with an RNA aptamer.

    Science.gov (United States)

    Baba, Seiki; Someya, Tatsuhiko; Kawai, Gota; Nakamura, Kouji; Kumasaka, Takashi

    2010-05-01

    The Hfq protein is a hexameric RNA-binding protein which regulates gene expression by binding to RNA under the influence of diverse environmental stresses. Its ring structure binds various types of RNA, including mRNA and sRNA. RNA-bound structures of Hfq from Escherichia coli and Staphylococcus aureus have been revealed to have poly(A) RNA at the distal site and U-rich RNA at the proximal site, respectively. Here, crystals of a complex of the Bacillus subtilis Hfq protein with an A/G-repeat 7-mer RNA (Hfq-RNA) that were prepared using the hanging-drop vapour-diffusion technique are reported. The type 1 Hfq-RNA crystals belonged to space group I422, with unit-cell parameters a = b = 123.70, c = 119.13 A, while the type 2 Hfq-RNA crystals belonged to space group F222, with unit-cell parameters a = 91.92, b = 92.50, c = 114.92 A. Diffraction data were collected to a resolution of 2.20 A from both crystal forms. The hexameric structure of the Hfq protein was clearly shown by self-rotation analysis.

  2. In Vitro Selection and Characterization of DNA Aptamers to a Small Molecule Target.

    Science.gov (United States)

    Ruscito, Annamaria; McConnell, Erin M; Koudrina, Anna; Velu, Ranganathan; Mattice, Christopher; Hunt, Vernon; McKeague, Maureen; DeRosa, Maria C

    2017-12-14

    Aptamers, synthetic oligonucleotide-based molecular recognition probes, have found use in a wide array of biosensing technologies based on their tight and highly selective binding to a variety of molecular targets. However, the inherent challenges associated with the selection and characterization of aptamers for small molecule targets have resulted in their underrepresentation, despite the need for small molecule detection in fields such as medicine, the environment, and agriculture. This protocol describes the steps in the selection, sequencing, affinity characterization, and truncation of DNA aptamers that are specific for small molecule targets. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  3. Generating Aptamers by Cell-SELEX for Applications in Molecular Medicine

    Directory of Open Access Journals (Sweden)

    Huixia Liu

    2012-03-01

    Full Text Available Aptamers are single-stranded oligonucleotides of DNA or RNA that bind to target molecules with high affinity and specificity. Typically, aptamers are generated by an iterative selection process, called systematic evolution of ligands by exponential enrichment (SELEX. Recent advancements in SELEX technology have extended aptamer selection from comparatively simple mixtures of purified proteins to whole living cells, and now cell-based SELEX (or cell-SELEX can isolate aptamers that bind to specific target cells. Combined with nanotechnology, microchips, microfluidic devices, RNAi and other advanced technologies, cell-SELEX represents an integrated platform providing ultrasensitive and highly specific tools for clinical medicine. In this review, we describe the recent progress made in the application of cell-SELEX for diagnosis, therapy and biomarker discovery.

  4. Binding-dependent disorder-order transition in PKI alpha: a fluorescence anisotropy study.

    Science.gov (United States)

    Hauer, J A; Taylor, S S; Johnson, D A

    1999-05-25

    The conformational flexibility of peptidyl ligands may be an essential element of many peptide-macromolecular interactions. Consequently, the alpha-carbonyl backbone flexibility of the 8 kDa protein kinase inhibitor (PKI alpha) peptide of cAMP-dependent protein kinase (cAPK) free in solution and bound to cAPK was assessed by time-resolved fluorescence anisotropy. Specifically, three full-length, single-site PKI alpha mutants (V3C, S28C, and S59C) were prepared, and fluorescein iodoacetamide (FI) was selectively conjugated to the side chains of each substituted cysteine. The time-resolved anisotropy decay profiles of the labeled mutants were well fit to a model-free nonassociative biexponential equation. Free in solution, the three labeled proteins had very similar anisotropy decays arising primarily from local alpha-carbonyl backbone movements. Only a small fraction of the anisotropy decay was associated with slower, whole-body tumbling, confirming that PKI alpha is highly disordered at all three locations. Complexation of the mutants with the catalytic (C) subunit of cAPK decreased the rate of whole-body tumbling for all three mutants. The effects on the rapid decay processes, however, were dependent upon the site of conjugation. The anisotropy decay profiles of both FI-V3C- and FI-S28C-PKI alpha were associated with significantly reduced contributions from the fast decay processes, while that of FI-S59C-PKI alpha was largely unaffected by binding to the C-subunit. The results suggest that the cAPK-binding domain of PKI alpha extends from the its N-terminus to residues beyond Ser28 but does not include the segment around Ser59, which is still part of a highly flexible domain when bound to the C-subunit.

  5. Duplex Identification of Staphylococcus aureus by Aptamer and Gold Nanoparticles.

    Science.gov (United States)

    Chang, Tianjun; Wang, Libo; Zhao, Kexu; Ge, Yu; He, Meng; Li, Gang

    2016-06-01

    Staphylococcus aureus is the top common pathogen causing infections and food poisoning. Identification of S. aureus is crucial for the disease diagnosis and regulation of food hygiene. Herein, we report an aptamer-AuNPs based method for duplex identification of S. aureus. Using AuNPs as an indicator, SA23, an aptamer against S. aureus, can well identify its target from Escherichia coli, Listeria monocytogenes and Pseudomonas aeruginosa. Furthermore, we find citrate-coated AuNPs can strongly bind to S. aureus, but not bind to Salmonella enterica and Proteus mirabilis, which leads to different color changes in salt solution. This colorimetric response is capable of distinguishing S. aureus from S. enteritidis and P. mirabilis. Thus, using the aptasensor and AuNPs together, S. aureus can be accurately identified from the common pathogens. This duplex identification system is a promising platform for simple visual identification of S. aureus. Additionally, in the aptasensing process, bacteria are incubated with aptamers and then be removed before the aptamers adding to AuNPs, which may avoid the interactions between bacteria and AuNPs. This strategy can be potentially applied in principle to detect other cells by AuNPs-based aptasensors.

  6. Comparison of a PreQ1 Riboswitch Aptamer in Metabolite-bound and Free States with Implications for Gene Regulation*

    OpenAIRE

    Jenkins, Jermaine L.; Krucinska, Jolanta; McCarty, Reid M.; Bandarian, Vahe; Wedekind, Joseph E.

    2011-01-01

    Riboswitches are RNA regulatory elements that govern gene expression by recognition of small molecule ligands via a high affinity aptamer domain. Molecular recognition can lead to active or attenuated gene expression states by controlling accessibility to mRNA signals necessary for transcription or translation. Key areas of inquiry focus on how an aptamer attains specificity for its effector, the extent to which the aptamer folds prior to encountering its ligand, and how ligand binding alters...

  7. Quantization of bovine serum albumin by fluorescence enhancement effects and corresponding binding of macrocyclic host-protein assembly.

    Science.gov (United States)

    Bardhan, Munmun; Misra, Tapas; Ganguly, Tapan

    2012-01-05

    The present paper reports the investigations on the spectroscopic behavior of the binary complexes of the dye aurintricarboxylic acid (ATA) with protein bovine serum albumin (BSA) and 18-crown 6 (CW) (ATA·BSA, ATA·CW) and the ternary complex ATA·CW·BSA by using UV-vis steady state and time resolved fluorescence spectroscopy. The primary aim of the work is to determine the protein (BSA) quantization by fluorescence enhancement method and investigate the 'enhancer' activity of crown ether (CW) on it to increase the resolution. Steady state and time resolved fluorescence measurements demonstrated how fluorescence intensity of ATA could be used for the determination of the protein BSA in aqueous solution. The binding of dye (probe/fluorescent medicinal molecule) with protein and the denaturing effect in the polar environment of acetonitrile of the dye protein complex act as drug binding as well as drug release activity. Apart from its basic research point of view, the present study also possesses significant importance and applications in the field of medicinal chemistry. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Near-infrared fluorescence glucose sensing based on glucose/galactose-binding protein coupled to 651-Blue Oxazine

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Faaizah; Pickup, John C., E-mail: john.pickup@kcl.ac.uk

    2013-08-30

    Highlights: •We showed that the NIR fluorophore, 651-Blue Oxazine, is solvatochromic (polarity sensitive). •Blue Oxazine was covalently attached to mutants of glucose/galactose-binding protein (GBP). •Fluorescence intensity of GBP-Blue Oxazine increased with addition of glucose. •Fluorescence from bead-immobilised GBP-Blue Oxazine was detectable through skin in vitro. •This shows proof-of-concept for non-invasive glucose sensing using GBP-Blue Oxazine. -- Abstract: Near-infrared (NIR) fluorescent dyes that are environmentally sensitive or solvatochromic are useful tools for protein labelling in in vivo biosensor applications such as glucose monitoring in diabetes since their spectral properties are mostly independent of tissue autofluorescence and light scattering, and they offer potential for non-invasive analyte sensing. We showed that the fluorophore 651-Blue Oxazine is polarity-sensitive, with a marked reduction in NIR fluorescence on increasing solvent polarity. Mutants of glucose/galactose-binding protein (GBP) used as the glucose receptor were site-specifically and covalently labelled with Blue Oxazine using click chemistry. Mutants H152C/A213R and H152C/A213R/L238S showed fluorescence increases of 15% and 21% on addition of saturating glucose concentrations and binding constants of 6 and 25 mM respectively. Fluorescence responses to glucose were preserved when GBP-Blue Oxazine was immobilised to agarose beads, and the beads were excited by NIR light through a mouse skin preparation studied in vitro. We conclude GBP-Blue Oxazine shows proof-of-concept as a non-invasive continuous glucose sensing system.

  9. Screening and Identification of ssDNA Aptamer for Human GP73

    Directory of Open Access Journals (Sweden)

    Jingchun Du

    2015-01-01

    Full Text Available As one tumor marker of HCC, Golgi Protein 73 (GP73 is given more promise in the early diagnosis of HCC, and aptamers have been developed to compete with antibodies as biorecognition probes in different detection system. In this study, we utilized GP73 to screen specific ssDNA aptamers by SELEX technique. First, GP73 proteins were expressed and purified by prokaryotic expression system and Nickle ion affinity chromatography, respectively. At the same time, the immunogenicity of purified GP73 was confirmed by Western blotting. The enriched ssDNA library with high binding capacity for GP73 was obtained after ten rounds of SELEX. Then, thirty ssDNA aptamers were sequenced, in which two ssDNA aptamers with identical DNA sequence were confirmed, based on the alignment results, and designated as A10-2. Furthermore, the specific antibody could block the binding of A10-2 to GP73, and the specific binding of A10-2 to GP73 was also supported by the observation that several tumor cell lines exhibited variable expression level of GP73. Significantly, the identified aptamer A10-2 could distinguish normal and cancerous liver tissues. So, our results indicate that the aptamer A10-2 might be developed into one molecular probe to detect HCC from normal liver specimens.

  10. Highly Stable Aptamers Selected from a 2′-Fully Modified fGmH RNA Library for Targeting Biomaterials

    Science.gov (United States)

    Friedman, Adam D.; Kim, Dongwook; Liu, Rihe

    2014-01-01

    When developed as targeting ligands for the in vivo delivery of biomaterials to biological systems, RNA aptamers immediately face numerous obstacles, in particular nuclease degradation and post-selection 2′ modification. This study aims to develop a novel class of highly stable, 2′-fully modified RNA aptamers that are ideal for the targeted delivery of biomaterials. We demonstrated the facile transcription of a fGmH (2′-F-dG, 2′-OMe-dA/dC/dU) RNA library with unexpected hydrophobicity, the direct selection of aptamers from a fGmH RNA library that bind Staphylococcus aureus Protein A (SpA) as a model target, and the superior nuclease and serum stability of these aptamers compared to 2′-partially modified RNA variants. Characterizations of fGmH RNA aptamers binding to purified SpA and to endogenous SpA present on the surface of S. aureus cells demonstrate fGmH RNA aptamer selectivity and stability. Significantly, fGmH RNA aptamers were able to functionalize, stabilize, and further deliver aggregation-prone silver nanoparticles (AgNPs) to S. aureus with SpA-dependent antimicrobial effects. This study describes a novel aptamer class with considerable potential to improve the in vivo applicability of nucleic acid-based affinity molecules to biomaterials. PMID:25443790

  11. Highly stable aptamers selected from a 2'-fully modified fGmH RNA library for targeting biomaterials.

    Science.gov (United States)

    Friedman, Adam D; Kim, Dongwook; Liu, Rihe

    2015-01-01

    When developed as targeting ligands for the in vivo delivery of biomaterials to biological systems, RNA aptamers immediately face numerous obstacles, in particular nuclease degradation and post-selection 2' modification. This study aims to develop a novel class of highly stable, 2'-fully modified RNA aptamers that are ideal for the targeted delivery of biomaterials. We demonstrated the facile transcription of a fGmH (2'-F-dG, 2'-OMe-dA/dC/dU) RNA library with unexpected hydrophobicity, the direct selection of aptamers from a fGmH RNA library that bind Staphylococcus aureus Protein A (SpA) as a model target, and the superior nuclease and serum stability of these aptamers compared to 2'-partially modified RNA variants. Characterizations of fGmH RNA aptamers binding to purified SpA and to endogenous SpA present on the surface of S. aureus cells demonstrate fGmH RNA aptamer selectivity and stability. Significantly, fGmH RNA aptamers were able to functionalize, stabilize, and specifically deliver aggregation-prone silver nanoparticles (AgNPs) to S. aureus with SpA-dependent antimicrobial effects. This study describes a novel aptamer class with considerable potential to improve the in vivo applicability of nucleic acid-based affinity molecules to biomaterials.

  12. Charomers-Interleukin-6 Receptor Specific Aptamers for Cellular Internalization and Targeted Drug Delivery.

    Science.gov (United States)

    Hahn, Ulrich

    2017-12-06

    Interleukin-6 (IL-6) is a key player in inflammation and the main factor for the induction of acute phase protein biosynthesis. Further to its central role in many aspects of the immune system, IL-6 regulates a variety of homeostatic processes. To interfere with IL-6 dependent diseases, such as various autoimmune diseases or certain cancers like multiple myeloma or hepatocellular carcinoma associated with chronic inflammation, it might be a sensible strategy to target human IL-6 receptor (hIL-6R) presenting cells with aptamers. We therefore have selected and characterized different DNA and RNA aptamers specifically binding IL-6R. These IL-6R aptamers, however, do not interfere with the IL-6 signaling pathway but are internalized with the receptor and thus can serve as vehicles for the delivery of different cargo molecules like therapeutics. We succeeded in the construction of a chlorin e6 derivatized aptamer to be delivered for targeted photodynamic therapy (PDT). Furthermore, we were able to synthesize an aptamer intrinsically comprising the cytostatic 5-Fluoro-2'-deoxy-uridine for targeted chemotherapy. The α6β4 integrin specific DNA aptamer IDA, also selected in our laboratory is internalized, too. All these aptamers can serve as vehicles for targeted drug delivery into cells. We call them charomers-in memory of Charon, the ferryman in Greek mythology, who ferried the deceased into the underworld.

  13. Charomers—Interleukin-6 Receptor Specific Aptamers for Cellular Internalization and Targeted Drug Delivery

    Science.gov (United States)

    2017-01-01

    Interleukin-6 (IL-6) is a key player in inflammation and the main factor for the induction of acute phase protein biosynthesis. Further to its central role in many aspects of the immune system, IL-6 regulates a variety of homeostatic processes. To interfere with IL-6 dependent diseases, such as various autoimmune diseases or certain cancers like multiple myeloma or hepatocellular carcinoma associated with chronic inflammation, it might be a sensible strategy to target human IL-6 receptor (hIL-6R) presenting cells with aptamers. We therefore have selected and characterized different DNA and RNA aptamers specifically binding IL-6R. These IL-6R aptamers, however, do not interfere with the IL-6 signaling pathway but are internalized with the receptor and thus can serve as vehicles for the delivery of different cargo molecules like therapeutics. We succeeded in the construction of a chlorin e6 derivatized aptamer to be delivered for targeted photodynamic therapy (PDT). Furthermore, we were able to synthesize an aptamer intrinsically comprising the cytostatic 5-Fluoro-2′-deoxy-uridine for targeted chemotherapy. The α6β4 integrin specific DNA aptamer IDA, also selected in our laboratory is internalized, too. All these aptamers can serve as vehicles for targeted drug delivery into cells. We call them charomers—in memory of Charon, the ferryman in Greek mythology, who ferried the deceased into the underworld. PMID:29211023

  14. A Review of Therapeutic Aptamer Conjugates with Emphasis on New Approaches

    Directory of Open Access Journals (Sweden)

    John G. Bruno

    2013-03-01

    Full Text Available The potential to emulate or enhance antibodies with nucleic acid aptamers while lowering costs has prompted development of new aptamer-protein, siRNA, drug, and nanoparticle conjugates. Specific focal points of this review discuss DNA aptamers covalently bound at their 3' ends to various proteins for enhanced stability and greater pharmacokinetic lifetimes in vivo. The proteins can include Fc tails of IgG for opsonization, and the first component of complement (C1q to trigger complement-mediated lysis of antibiotic-resistant Gram negative bacteria, cancer cells and possibly some parasites during vulnerable stages. In addition, the 3' protein adduct may be a biotoxin, enzyme, or may simply be human serum albumin (HSA or a drug known to bind HSA, thereby retarding kidney and other organ clearance and inhibiting serum exonucleases. In this review, the author summarizes existing therapeutic aptamer conjugate categories and describes his patented concept for PCR-based amplification of double-stranded aptamers followed by covalent attachment of proteins or other agents to the chemically vulnerable overhanging 3' adenine added by Taq polymerase. PCR amplification of aptamers could dramatically lower the current $2,000/gram cost of parallel chemical oligonucleotide synthesis, thereby enabling mass production of aptamer-3'-protein or drug conjugates to better compete against expensive humanized monoclonal antibodies.

  15. Charomers—Interleukin-6 Receptor Specific Aptamers for Cellular Internalization and Targeted Drug Delivery

    Directory of Open Access Journals (Sweden)

    Ulrich Hahn

    2017-12-01

    Full Text Available Interleukin-6 (IL-6 is a key player in inflammation and the main factor for the induction of acute phase protein biosynthesis. Further to its central role in many aspects of the immune system, IL-6 regulates a variety of homeostatic processes. To interfere with IL-6 dependent diseases, such as various autoimmune diseases or certain cancers like multiple myeloma or hepatocellular carcinoma associated with chronic inflammation, it might be a sensible strategy to target human IL-6 receptor (hIL-6R presenting cells with aptamers. We therefore have selected and characterized different DNA and RNA aptamers specifically binding IL-6R. These IL-6R aptamers, however, do not interfere with the IL-6 signaling pathway but are internalized with the receptor and thus can serve as vehicles for the delivery of different cargo molecules like therapeutics. We succeeded in the construction of a chlorin e6 derivatized aptamer to be delivered for targeted photodynamic therapy (PDT. Furthermore, we were able to synthesize an aptamer intrinsically comprising the cytostatic 5-Fluoro-2′-deoxy-uridine for targeted chemotherapy. The α6β4 integrin specific DNA aptamer IDA, also selected in our laboratory is internalized, too. All these aptamers can serve as vehicles for targeted drug delivery into cells. We call them charomers—in memory of Charon, the ferryman in Greek mythology, who ferried the deceased into the underworld.

  16. Specific capture and detection of Staphylococcus aureus with high-affinity modified aptamers to cell surface components.

    Science.gov (United States)

    Baumstummler, A; Lehmann, D; Janjic, N; Ochsner, U A

    2014-10-01

    Slow off-rate modified aptamer (SOMAmer) reagents were generated to several Staphylococcus aureus cell surface-associated proteins via SELEX with multiple modified DNA libraries using purified recombinant or native proteins. High-affinity binding agents with sub-nanomolar Kd 's were obtained for staphylococcal protein A (SpA), clumping factors (ClfA, ClfB), fibronectin-binding proteins (FnbA, FnbB) and iron-regulated surface determinants (Isd). Further screening revealed several SOMAmers that specifically bound to Staph. aureus cells from all strains that were tested, but not to other staphylococci or other bacteria. SpA and ClfA SOMAmers proved useful for the selective capture and enrichment of Staph. aureus cells, as shown by culture and PCR, leading to improved limits of detection and efficient removal of PCR inhibitors. Detection of Staph. aureus cells was enhanced by several orders of magnitude when the bacterial cell surface was coated with SOMAmers followed by qPCR of the SOMAmers. Furthermore, fluorescence-labelled SpA SOMAmers demonstrated their utility as direct detection agents in flow cytometry. Significance and impact of the study: Monitoring for microbial contamination of food, water, nonsterile products or the environment is typically based on culture, PCR or antibodies. Aptamers that bind with high specificity and affinity to well-conserved cell surface epitopes represent a promising novel type of reagents to detect bacterial cells without the need for culture or cell lysis, including for the capture and enrichment of bacteria present at low cell densities and for the direct detection via qPCR or fluorescent staining. © 2014 Soma Logic, Inc. published by John Wiley & Sons Ltd On behalf of the society for Applied Microbiology.

  17. Aptamer-Mediated Polymeric Vehicles for Enhanced Cell-Targeted Drug Delivery.

    Science.gov (United States)

    Tan, Kei X; Danquah, Michael K; Sidhu, Amandeep; Yon, Lau Sie; Ongkudon, Clarence M

    2018-02-08

    The search for smart delivery systems for enhanced pre-clinical and clinical pharmaceutical delivery and cell targeting continues to be a major biomedical research endeavor owing to differences in the physicochemical characteristics and physiological effects of drug molecules, and this affects the delivery mechanisms to elicit maximum therapeutic effects. Targeted drug delivery is a smart evolution essential to address major challenges associated with conventional drug delivery systems. These challenges mostly result in poor pharmacokinetics due to the inability of the active pharmaceutical ingredients to specifically act on malignant cells thus, causing poor therapeutic index and toxicity to surrounding normal cells. Aptamers are oligonucleotides with engineered affinities to bind specifically to their cognate targets. Aptamers have gained significant interests as effective targeting elements for enhanced therapeutic delivery as they can be generated to specifically bind to wide range of targets including proteins, peptides, ions, cells and tissues. Notwithstanding, effective delivery of aptamers as therapeutic vehicles is challenged by cell membrane electrostatic repulsion, endonuclease degradation, low pH cleavage, and binding conformation stability. The application of molecularly engineered biodegradable and biocompatible polymeric particles with tunable features such as surface area and chemistry, particulate size distribution and toxicity creates opportunities to develop smart aptamer-mediated delivery systems for controlled drug release. This article discusses opportunities for particulate aptamer-drug formulations to advance current drug delivery modalities by navigating active ingredients through cellular and biomolecular traffic to target sites for sustained and controlled release at effective therapeutic dosages while minimizing systemic cytotoxic effects. A proposal for a novel drug-polymer-aptamer-polymer (DPAP) design of aptamer-drug formulation with

  18. Pitfalls of DNA Quantification Using DNA-Binding Fluorescent Dyes and Suggested Solutions.

    Science.gov (United States)

    Nakayama, Yuki; Yamaguchi, Hiromi; Einaga, Naoki; Esumi, Mariko

    2016-01-01

    The Qubit fluorometer is a DNA quantification device based on the fluorescence intensity of fluorescent dye binding to double-stranded DNA (dsDNA). Qubit is generally considered useful for checking DNA quality before next-generation sequencing because it measures intact dsDNA. To examine the most accurate and suitable methods for quantifying DNA for quality assessment, we compared three quantification methods: NanoDrop, which measures UV absorbance; Qubit; and quantitative PCR (qPCR), which measures the abundance of a target gene. For the comparison, we used three types of DNA: 1) DNA extracted from fresh frozen liver tissues (Frozen-DNA); 2) DNA extracted from formalin-fixed, paraffin-embedded liver tissues comparable to those used for Frozen-DNA (FFPE-DNA); and 3) DNA extracted from the remaining fractions after RNA extraction with Trizol reagent (Trizol-DNA). These DNAs were serially diluted with distilled water and measured using three quantification methods. For Frozen-DNA, the Qubit values were not proportional to the dilution ratio, in contrast with the NanoDrop and qPCR values. This non-proportional decrease in Qubit values was dependent on a lower salt concentration, and over 1 mM NaCl in the DNA solution was required for the Qubit measurement. For FFPE-DNA, the Qubit values were proportional to the dilution ratio and were lower than the NanoDrop values. However, electrophoresis revealed that qPCR reflected the degree of DNA fragmentation more accurately than Qubit. Thus, qPCR is superior to Qubit for checking the quality of FFPE-DNA. For Trizol-DNA, the Qubit values were proportional to the dilution ratio and were consistently lower than the NanoDrop values, similar to FFPE-DNA. However, the qPCR values were higher than the NanoDrop values. Electrophoresis with SYBR Green I and single-stranded DNA (ssDNA) quantification demonstrated that Trizol-DNA consisted mostly of non-fragmented ssDNA. Therefore, Qubit is not always the most accurate method for

  19. Nucleic Acid Aptamers as Novel Class of Therapeutics to Mitigate Alzheimer's Disease Pathology

    DEFF Research Database (Denmark)

    K. Tannenberg, Rudi; Al. Shamaileh, Hadi; Lauridsen, Lasse Holm

    2013-01-01

    Deposition of amyloid-beta (A beta) peptides in the brain is a central event in the pathogenesis of Alzheimer's disease (AD), which makes A beta peptides a crucial target for therapeutic intervention. Significant efforts have been made towards the development of ligands that bind to A beta peptides...... with a goal of early detection of amyloid aggregation and the neutralization of A toxicity. Short single-stranded oligonucleotide aptamers bind with high affinity and specificity to their targets. Aptamers that specifically bind to A beta monomers, specifically the 40 and 42 amino acid species (A beta(1...

  20. Application of quantitative structure-activity relationship to the determination of binding constant based on fluorescence quenching

    Energy Technology Data Exchange (ETDEWEB)

    Wen Yingying [Department of Applied Chemistry, Yantai University, Yantai 264005 (China); Liu Huitao, E-mail: liuht-ytu@163.co [Department of Applied Chemistry, Yantai University, Yantai 264005 (China); Luan Feng; Gao Yuan [Department of Applied Chemistry, Yantai University, Yantai 264005 (China)

    2011-01-15

    Quantitative structure-activity relationship (QSAR) model was used to predict and explain binding constant (log K) determined by fluorescence quenching. This method allowed us to predict binding constants of a variety of compounds with human serum albumin (HSA) based on their structures alone. Stepwise multiple linear regression (MLR) and nonlinear radial basis function neural network (RBFNN) were performed to build the models. The statistical parameters provided by the MLR model (R{sup 2}=0.8521, RMS=0.2678) indicated satisfactory stability and predictive ability while the RBFNN predictive ability is somewhat superior (R{sup 2}=0.9245, RMS=0.1736). The proposed models were used to predict the binding constants of two bioactive components in traditional Chinese medicines (isoimperatorin and chrysophanol) whose experimental results were obtained in our laboratory and the predicted results were in good agreement with the experimental results. This QSAR approach can contribute to a better understanding of structural factors of the compounds responsible for drug-protein interactions, and can be useful in predicting the binding constants of other compounds. - Research Highlights: QSAR models for binding constants of some compounds to HSA were developed. The models provide a simple and straightforward way to predict binding constant. QSAR can give some insight into structural features related to binding behavior.

  1. Binding analysis for interaction of diacetylcurcumin with β-casein nanoparticles by using fluorescence spectroscopy and molecular docking calculations

    Science.gov (United States)

    Mehranfar, Fahimeh; Bordbar, Abdol-Khalegh; Fani, Najme; Keyhanfar, Mehrnaz

    2013-11-01

    The interaction of diacetylcurcumin (DAC), as a novel synthetic derivative of curcumin, with bovine β-casein (an abundant milk protein that is highly amphiphilic and self assembles into stable micellar nanoparticles in aqueous solution) was investigated using fluorescence quenching experiments, Forster energy transfer measurements and molecular docking calculations. The fluorescence quenching measurements revealed the presence of a single binding site on β-casein for DAC with the binding constant value equals to (4.40 ± 0.03) × 104 M-1. Forster energy transfer measurements suggested that the distance between bound DAC and Trp143 residue is higher than the respective critical distance, hence, the static quenching is more likely responsible for fluorescence quenching other than the mechanism of non-radiative energy transfer. Our results from molecular docking calculations indicated that binding of DAC to β-casein predominantly occurred through hydrophobic contacts in the hydrophobic core of protein. Additionally, in vitro investigation of the cytotoxicity of free DAC and DAC-β-casein complex in human breast cancer cell line MCF7 revealed the higher cytotoxic effect of DAC-β-casein complex.

  2. Structural basis for IL-1α recognition by a modified DNA aptamer that specifically inhibits IL-1α signaling

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Xiaoming; Gelinas, Amy D.; von Carlowitz, Ira; Janjic, Nebojsa; Pyle, Anna Marie (Yale); (SomaLogic)

    2017-10-09

    IL-1α is an essential cytokine that contributes to inflammatory responses and is implicated in various forms of pathogenesis and cancer. Here we report a naphthyl modified DNA aptamer that specifically binds IL-1α and inhibits its signaling pathway. By solving the crystal structure of the IL-1α/aptamer, we provide a high-resolution structure of this critical cytokine and we reveal its functional interaction interface with high-affinity ligands. The non-helical aptamer, which represents a highly compact nucleic acid structure, contains a wealth of new conformational features, including an unknown form of G-quadruplex. The IL-1α/aptamer interface is composed of unusual polar and hydrophobic elements, along with an elaborate hydrogen bonding network that is mediated by sodium ion. IL-1α uses the same interface to interact with both the aptamer and its cognate receptor IL-1RI, thereby suggesting a novel route to immunomodulatory therapeutics.

  3. Asymmetric PCR for good quality ssDNA generation towards DNA aptamer production

    Directory of Open Access Journals (Sweden)

    Junji Tominaga4

    2012-04-01

    Full Text Available Aptamers are ssDNA or RNA that binds to wide variety of target molecules with high affinity and specificity producedby systematic evolution of ligands by exponential enrichment (SELEX. Compared to RNA aptamer, DNA aptamer is muchmore stable, favourable to be used in many applications. The most critical step in DNA SELEX experiment is the conversion ofdsDNA to ssDNA. The purpose of this study was to develop an economic and efficient approach of generating ssDNA byusing asymmetric PCR. Our results showed that primer ratio (sense primer:antisense primer of 20:1 and sense primer amountof 10 to 100 pmol, up to 20 PCR cycles using 20 ng of initial template, in combination with polyacrylamide gel electrophoresis,were the optimal conditions for generating good quality and quantity of ssDNA. The generation of ssDNA via this approachcan greatly enhance the success rate of DNA aptamer generation.

  4. Selection of LNA-containing DNA aptamers against recombinant human CD73

    DEFF Research Database (Denmark)

    Elle, Ida C; Karlsen, Kasper K; Terp, Mikkel G

    2015-01-01

    tested by surface plasmon resonance. Truncated variants of these aptamers and variants where the LNA nucleotides were substituted for the DNA equivalent also exhibited affinity for the recombinant CD73 in the low nanomolar range. In enzyme inhibition assays with recombinant CD73 the aptamer sequences......LNA-containing DNA aptamers against CD73 (human ecto-5'-nucleotidase), a protein frequently overexpressed in solid tumours, were isolated by SELEX. A pre-defined stem-loop library, containing LNA in the forward primer region, was enriched with CD73 binding sequences through six rounds of SELEX...... with recombinant his-tagged CD73 immobilised on anti-his plates. Enriched pools isolated from rounds one, three and six were subjected to next-generation sequencing and analysed for enrichment using custom bioinformatics software. The software identified aptamer sequences via the primers and then performed several...

  5. Aptamer-mediated colorimetric method for rapid and sensitive detection of chloramphenicol in food.

    Science.gov (United States)

    Yan, Chao; Zhang, Jing; Yao, Li; Xue, Feng; Lu, Jianfeng; Li, Baoguang; Chen, Wei

    2018-09-15

    We report an aptamer-mediated colorimetric method for sensitive detection of chloramphenicol (CAP). The aptamer of CAP is immobilized by the hybridization with pre-immobilized capture probe in the microtiter plate. The horseradish peroxidase (HRP) is covalently attached to the aptamer by the biotin-streptavidin system for signal production. CAP will preferably bind with aptamer due to the high binding affinity, which attributes to the release of aptamer and HRP and thus, affects the optical signal intensity. Quantitative determination of CAP is successfully achieved in the wide range from 0.001 to 1000 ng/mL with detection limit of 0.0031 ng/mL, which is more sensitive than traditional immunoassays. This method is further validated by measuring the recovery of CAP spiked in two different food matrices (honey and fish). The aptamer-mediated colorimetric method can be a useful protocol for rapid and sensitive screening of CAP, and may be used as an alternative means for traditional immunoassays. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Aptamer from whole-bacterium SELEX as new therapeutic reagent against virulent Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Chen, Fan; Zhou, Jing; Luo, Fengling; Mohammed, Al-Bayati; Zhang, Xiao-Lian

    2007-01-01

    Worldwide, tuberculosis (TB) remains the most frequent and important infectious disease causing morbidity and death. One-third of the world's population is infected with Mycobacterium tuberculosis (MTB), the etiologic agent of TB. Because of the global health problems of TB, the development of potent new anti-TB drugs without cross-resistance with known antimycobacterial agents is urgently needed. In this study, we have applied a Systematic Evolution of Ligands by Exponential Enrichment (SELEX) process to identify a single aptamer (NK2) that binds to virulent strain M. tuberculosis (H37Rv) with high affinity and specificity. We have found that this aptamer improves CD4 + T cells to produce IFN-γ after binding to H37Rv. The different component between H37Rv and BCG was identified as some membrane protein. Moreover, the survival rates of mice challenged with i.v. H37Rv have been prolonged after treatment with single injection of aptamer NK2. The bacterial numbers were significantly lower in the spleen of mice treated with aptamer NK2. The histopathological examination of lung biopsy specimens showed lesser pulmonary alveolar fusion and swelling in the presence of the aptamer. These results suggest that aptamer NK2 has inhibitory effects on M. tuberculosis and can be used as antimycobacterial agent

  7. Inhibition of BACE1 Activity by a DNA Aptamer in an Alzheimer's Disease Cell Model.

    Directory of Open Access Journals (Sweden)

    Huiyu Liang

    Full Text Available An initial step in amyloid-β (Aβ production includes amyloid precursor protein (APP cleavage via β-Site amyloid precursor protein cleaving enzyme 1 (BACE1. Increased levels of brain Aβ have been implicated in the pathogenesis of Alzheimer's disease (AD. Thus, β-secretase represents a primary target for inhibitor drug development in AD. In this study, aptamers were obtained from combinatorial oligonucleotide libraries using a technology referred to as systematic evolution of ligands by exponential enrichment (SELEX. A purified human BACE1 extracellular domain was used as a target to conduct an in vitro selection process using SELEX. Two DNA aptamers were capable of binding to BACE1 with high affinity and good specificity, with Kd values in the nanomolar range. We subsequently confirmed that one aptamer, A1, exhibited a distinct inhibitory effect on BACE1 activity in an AD cell model. We detected the effects of M17-APPsw cells that stably expressed Swedish mutant APP after aptamer A1 treatment. Aβ40 and Aβ42 concentrations secreted by M17-APPsw cells decreased intracellularly and in culture media. Furthermore, Western blot analysis indicated that sAPPβ expression significantly decreased in the A1 treated versus control groups. These findings support the preliminary feasibility of an aptamer evolved from a SELEX strategy to function as a potential BACE1 inhibitor. To our knowledge, this is the first study to acquire a DNA aptamer that exhibited binding specificity to BACE1 and inhibited its activity.

  8. Aptamer-based viability impedimetric sensor for bacteria.

    Science.gov (United States)

    Labib, Mahmoud; Zamay, Anna S; Kolovskaya, Olga S; Reshetneva, Irina T; Zamay, Galina S; Kibbee, Richard J; Sattar, Syed A; Zamay, Tatiana N; Berezovski, Maxim V

    2012-11-06

    The development of an aptamer-based viability impedimetric sensor for bacteria (AptaVISens-B) is presented. Highly specific DNA aptamers to live Salmonella typhimurium were selected via the cell-systematic evolution of ligands by exponential enrichment (SELEX) technique. Twelve rounds of selection were performed; each comprises a positive selection step against viable S. typhimurium and a negative selection step against heat killed S. typhimurium and a mixture of related pathogens, including Salmonella enteritidis, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Citrobacter freundii to ensure the species specificity of the selected aptamers. The DNA sequence showing the highest binding affinity to the bacteria was further integrated into an impedimetric sensor via self-assembly onto a gold nanoparticle-modified screen-printed carbon electrode (GNP-SPCE). Remarkably, this aptasensor is highly selective and can successfully detect S. typhimurium down to 600 CFU mL(-1) (equivalent to 18 live cells in 30 μL of assay volume) and distinguish it from other Salmonella species, including S. enteritidis and S. choleraesuis. This report is envisaged to open a new venue for the aptamer-based viability sensing of a variety of microorganisms, particularly viable but nonculturable (VBNC) bacteria, using a rapid, economic, and label-free electrochemical platform.

  9. Aptamer-based impedimetric sensor for bacterial typing.

    Science.gov (United States)

    Labib, Mahmoud; Zamay, Anna S; Kolovskaya, Olga S; Reshetneva, Irina T; Zamay, Galina S; Kibbee, Richard J; Sattar, Syed A; Zamay, Tatiana N; Berezovski, Maxim V

    2012-10-02

    The development of an aptamer-based impedimetric sensor for typing of bacteria (AIST-B) is presented. Highly specific DNA aptamers to Salmonella enteritidis were selected via Cell-SELEX technique. Twelve rounds of selection were performed; each comprises a positive selection step against S. enteritidis and a negative selection step against a mixture of related pathogens, including Salmonella typhimurium, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Citrobacter freundii, to ensure the species-specificity of the selected aptamers. After sequencing of the pool showing the highest binding affinity to S. enteritidis, a DNA sequence of high affinity to the bacteria was integrated into an impedimetric sensor via self-assembly onto a gold nanoparticles-modified screen-printed carbon electrode (GNPs-SPCE). Remarkably, this aptasensor is highly selective and can successfully detect S. enteritidis down to 600 CFU mL(-1) (equivalent to 18 CFU in 30 μL assay volume) in 10 min and distinguish it from other Salmonella species, including S. typhimurium and S. choleraesuis. This report is envisaged to open a new venue for the aptamer-based typing of a variety of microorganisms using a rapid, economic, and label-free electrochemical platform.

  10. Synthesis and characterization of time-resolved fluorescence probes for evaluation of competitive binding to melanocortin receptors.

    Science.gov (United States)

    Alleti, Ramesh; Vagner, Josef; Dehigaspitiya, Dilani Chathurika; Moberg, Valerie E; Elshan, N G R D; Tafreshi, Narges K; Brabez, Nabila; Weber, Craig S; Lynch, Ronald M; Hruby, Victor J; Gillies, Robert J; Morse, David L; Mash, Eugene A

    2013-09-01

    Probes for use in time-resolved fluorescence competitive binding assays at melanocortin receptors based on the parental ligands MSH(4), MSH(7), and NDP-α-MSH were prepared by solid phase synthesis methods, purified, and characterized. The saturation binding of these probes was studied using HEK-293 cells engineered to overexpress the human melanocortin 4 receptor (hMC4R) as well as the human cholecystokinin 2 receptor (hCCK2R). The ratios of non-specific binding to total binding approached unity at high concentrations for each probe. At low probe concentrations, receptor-mediated binding and uptake was discernable, and so probe concentrations were kept as low as possible in determining Kd values. The Eu-DTPA-PEGO-MSH(4) probe exhibited low specific binding relative to non-specific binding, even at low nanomolar concentrations, and was deemed unsuitable for use in competition binding assays. The Eu-DTPA-PEGO probes based on MSH(7) and NDP-α-MSH exhibited Kd values of 27±3.9nM and 4.2±0.48nM, respectively, for binding with hMC4R. These probes were employed in competitive binding assays to characterize the interactions of hMC4R with monovalent and divalent MSH(4), MSH(7), and NDP-α-MSH constructs derived from squalene. Results from assays with both probes reflected only statistical enhancements, suggesting improper ligand spacing on the squalene scaffold for the divalent constructs. The Ki values from competitive binding assays that employed the MSH(7)-based probe were generally lower than the Ki values obtained when the probe based on NDP-α-MSH was employed, which is consistent with the greater potency of the latter probe. The probe based on MSH(7) was also competed with monovalent, divalent, and trivalent MSH(4) constructs that previously demonstrated multivalent binding in competitive binding assays against a variant of the probe based on NDP-α-MSH. Results from these assays confirm multivalent binding, but suggest a more modest increase in avidity for these

  11. Label-free aptamer-based sensor for specific detection of malathion residues by surface-enhanced Raman scattering

    Science.gov (United States)

    Nie, Yonghui; Teng, Yuanjie; Li, Pan; Liu, Wenhan; Shi, Qianwei; Zhang, Yuchao

    2018-02-01

    A novel label-free aptamer surface-enhanced Raman scattering (SERS) sensor for trace malathion residue detection was proposed. In this process, the binding of malathion molecule with aptamer is identified directly. The silver nanoparticles modified with positively charged spermine served as enhancing and capture reagents for the negatively charged aptamer. Then, the silver nanoparticles modified by aptamer were used to specifically capture the malathion. The SERS background spectra of spermine, aptamer, and malathion were recorded and distinguished with the spectrum of malathion-aptamer. To enhance the characteristic peak signal of malathion captured by the aptamer, the aggregate reagents (NaCl, KCl, MgCl2) were compared and selected. The selectivity of this method was verified in the mixed-pesticide standard solution, which included malathion, phosmet, chlorpyrifos-methyl, and fethion. Results show that malathion can be specifically identified when the mixed-pesticide interferences existed. The standard curve was established, presenting a good linear range of 5 × 10- 7 to 1 × 10- 5 mol·L- 1. The spiked experiments for tap water show good recoveries from 87.4% to 110.5% with a relative standard deviation of less than 4.22%. Therefore, the proposed label-free aptamer SERS sensor is convenient, specifically detects trace malathion residues, and can be applied for qualitative and quantitative analysis of other pesticides.

  12. Integrated microfluidic system for rapid screening of CRP aptamers utilizing systematic evolution of ligands by exponential enrichment (SELEX).

    Science.gov (United States)

    Huang, Chao-June; Lin, Hsin-I; Shiesh, Shu-Chu; Lee, Gwo-Bin

    2010-03-15

    The systematic evolution of ligands by exponential enrichment (SELEX) is an experimental procedure that allows screening of given molecular targets by desired binding affinities from an initial random pool of oligonucleotides and oligomers. The final products of SELEX are usually referred as aptamers, which are recognized as promising molecules for a variety of biomedical applications. However, SELEX is an iterative process requiring multiple rounds of extraction and amplification that demands significant time and labor. Therefore, this study presents a novel, automatic, miniature SELEX platform. As a demonstration, the rapid screening of C-reactive protein (CRP) aptamers was performed. By utilizing microfluidic technologies and magnetic beads conjugated with CRP, aptamers with a high affinity to CRP were extracted from a random single-strand deoxyribonucleic acid (ssDNA) pool. These aptamers were further amplified by an on-chip polymerase chain reaction (PCR) process. After five consecutive extraction and amplification cycles, a specific aptamer with the highest affinity was screened automatically. The screened aptamers were used as a recognition molecule for the detection of CRP. The developed microsystem demonstrated fast screening of CRP aptamers and can be used as a powerful tool to select analyte-specific aptamers for biomedical applications. (c) 2009 Elsevier B.V. All rights reserved.

  13. Development of a paper-based vertical flow SERS assay for citrulline detection using aptamer-conjugated gold nanoparticles

    Science.gov (United States)

    Locke, Andrea; Deutz, Nicolaas; Coté, Gerard

    2018-02-01

    Research toward development of point-of-care (POC) technologies is emerging as a means for diagnosis and monitoring of patients outside the hospital. These POC devices typically utilize assays capable of detecting low level biomarkers indicative of specific diseases. L-citrulline, an α-amino acid produced in the intestinal mucosa cells, is one such biomarker typically found circulating within the plasma at physiological concentrations of 40 μM. Researchers have found that intestinal enterocyte malfunction causes its level to be significantly lowered, establishing it as a potential diagnostic biomarker for gut function. Our research group has proposed the development of a surface enhanced Raman spectroscopy (SERS) based assay, using vertical flow paper fluidics, for citrulline detection. The assay consists of a fluorescently active, Raman reporter labeled aptamer conjugated on gold nanoparticles. The aptamer changes its confirmation on binding to its target, which in turn changes the distance between the Raman active molecule and the nanoparticle surface. These particles were embedded within a portable chip consisting of cellulose-based paper. After the chips were loaded with different concentrations of free L-citrulline in phosphate buffer, time was given for the assay to interact with the sample. A handheld Raman spectrometer (638 nm; Ocean Optics) was used to measure the SERS intensity. Results showed decrease in intensity with increasing concentration of L-citrulline (0-50μM).

  14. Aptamer based vanillin sensor using an ion-sensitive field-effect transistor.

    Science.gov (United States)

    Kuznetsov, Alexander; Komarova, Natalia; Andrianova, Maria; Grudtsov, Vitaliy; Kuznetsov, Evgeniy

    2017-12-02

    An aptamer for vanillin was obtained and then used for the development of an aptasensor based on an ion-sensitive field-effect transistor (ISFET). This aptamer (a single-stranded DNA;ssDNA) was selected using the Capture-SELEX protocol, which suites well for selection of aptamers to small molecules. Among six aptamer candidates, the aptamer Van_74 with the highest affinity for vanillin was chosen (elution of 35% of the aptamer from a solid support in the presence of 2 mM of vanillin). Van_74 was characterized using nondenaturating PAGE of washouts from magnetic beads. It is shown that Van_74 binds to vanillin with an dissociation constant of >7.8 μM (determined by nondenaturating PAGE) and it was specific to vanillin in comparison with interferents: benzaldehyde, guaiacol, furaneol, ethyl guaiacol and ethyl vanillin. Also it was shown that change of buffer composition greatly affected the binding ability of Van_74. For biosensor fabrication aptamer was immobilised on the Ta 2 O 5 -sensitive surface of the ISFET via "click-chemistry". Detection scheme implied dehybridisation of the ssDNA probe from the aptamer and release in the solution during the addition of vanillin. As a result, the surface potential increase upon vanillin binding with the aptamer was detected by the transistor. The biosensor had a detection limit of 1.55 × 10 -7  M and a dynamic range from 1.55 × 10 -7  M to 1 × 10 -6  M. Effective constant K d,eff for vanillin binding on biosensor surface was calculated to be (9 ± 3) × 10 -7  M. This allows selective detection of vanillin in the mixture of interferents and in samples of coffee extract. Graphical abstract A biosensor for vanillin was developed on the basis of an aptamer that was obtained via Capture-SELEX and by using an ISFET. This biosensor can be used for vanillin detection in presence of interferents and in real sample using an approach of ssDNA probe dehybridization.

  15. A chemometric analysis of ligand-induced changes in intrinsic fluorescence of folate binding protein indicates a link between altered conformational structure and physico-chemical characteristics

    DEFF Research Database (Denmark)

    Bruun, Susanne W; Holm, Jan; Hansen, Steen Ingemann

    2009-01-01

    Ligand binding alters the conformational structure and physico-chemical characteristics of bovine folate binding protein (FBP). For the purpose of achieving further information we analyzed ligand (folate and methotrexate)-induced changes in the fluorescence landscape of FBP. Fluorescence excitation...... of folate accords fairly well with the disappearance of strongly hydrophobic tryptophan residues from the solvent-exposed surface of FBP. The PARAFAC has thus proven useful to establish a hitherto unexplained link between parallel changes in conformational structure and physico-chemical characteristics...... of FBP induced by folate binding. Parameters for ligand binding derived from PARAFAC analysis of the fluorescence data were qualitatively and quantitatively similar to those obtained from binding of radiofolate to FBP. Herein, methotrexate exhibited a higher affinity for FBP than in competition...

  16. Fabrication of endothelial progenitor cell capture surface via DNA aptamer modifying dopamine/polyethyleneimine copolymer film

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xin; Deng, Jinchuan; Yuan, Shuheng; Wang, Juan; Luo, Rifang; Chen, Si [Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031 (China); School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Wang, Jin, E-mail: jinxxwang@263.net [Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031 (China); Huang, Nan [Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031 (China); School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)

    2016-11-15

    Highlights: • The dopamine/PEI film with controlled amine density was successfully prepared. • The DNA aptamer was assembled onto the film via electrostatic incorporation. • The A@DPfilmscanspecificallyandeffectivelycaptureEPCs. • The A@DP film can support the survival of ECs, control the hyperplasia of SMCs. • The dynamic/co-culture models are useful for studying cells competitive adhesion. - Abstract: Endothelial progenitor cells (EPCs) are mainly located in bone marrow and circulate, and play a crucial role in repairmen of injury endothelium. One of the most promising strategies of stents designs were considered to make in-situ endothelialization in vivo via EPC-capture biomolecules on a vascular graft to capture EPCs directly from circulatory blood. In this work, an EPC specific aptamer with a 34 bases single strand DNA sequence was conjugated onto the stent surface via dopamine/polyethyleneimine copolymer film as a platform and linker. The assembled density of DNA aptamer could be regulated by controlling dopamine percentage in this copolymer film. X-ray photoelectron spectroscopy (XPS), water contact angle (WCA) and fluorescence test confirmed the successful immobilization of DNA aptamer. To confirm its biofunctionality and cytocompatibility, the capturing cells ability of the aptamer modified surface and the effects on the growth behavior of human umbilical vein endothelial cells (HUVECs), smooth muscle cells (SMCs) were investigated. The aptamer functionalized sample revealed a good EPC-capture ability, and had a cellular friendly feature for both EPC and EC growth, while not stimulated the hyperplasia of SMCs. And, the co-culture experiment of three types of cells confirmed the specificity capturing of EPCs to aptamer modified surface, rather than ECs and SMCs. These data suggested that this aptamer functionalized surface may have a large potentiality for the application of vascular grafts with targeted endothelialization.

  17. Fabrication of endothelial progenitor cell capture surface via DNA aptamer modifying dopamine/polyethyleneimine copolymer film

    International Nuclear Information System (INIS)

    Li, Xin; Deng, Jinchuan; Yuan, Shuheng; Wang, Juan; Luo, Rifang; Chen, Si; Wang, Jin; Huang, Nan

    2016-01-01

    Highlights: • The dopamine/PEI film with controlled amine density was successfully prepared. • The DNA aptamer was assembled onto the film via electrostatic incorporation. • The A@DPfilmscanspecificallyandeffectivelycaptureEPCs. • The A@DP film can support the survival of ECs, control the hyperplasia of SMCs. • The dynamic/co-culture models are useful for studying cells competitive adhesion. - Abstract: Endothelial progenitor cells (EPCs) are mainly located in bone marrow and circulate, and play a crucial role in repairmen of injury endothelium. One of the most promising strategies of stents designs were considered to make in-situ endothelialization in vivo via EPC-capture biomolecules on a vascular graft to capture EPCs directly from circulatory blood. In this work, an EPC specific aptamer with a 34 bases single strand DNA sequence was conjugated onto the stent surface via dopamine/polyethyleneimine copolymer film as a platform and linker. The assembled density of DNA aptamer could be regulated by controlling dopamine percentage in this copolymer film. X-ray photoelectron spectroscopy (XPS), water contact angle (WCA) and fluorescence test confirmed the successful immobilization of DNA aptamer. To confirm its biofunctionality and cytocompatibility, the capturing cells ability of the aptamer modified surface and the effects on the growth behavior of human umbilical vein endothelial cells (HUVECs), smooth muscle cells (SMCs) were investigated. The aptamer functionalized sample revealed a good EPC-capture ability, and had a cellular friendly feature for both EPC and EC growth, while not stimulated the hyperplasia of SMCs. And, the co-culture experiment of three types of cells confirmed the specificity capturing of EPCs to aptamer modified surface, rather than ECs and SMCs. These data suggested that this aptamer functionalized surface may have a large potentiality for the application of vascular grafts with targeted endothelialization.

  18. Aptamer-based multiplexed proteomic technology for biomarker discovery.

    Science.gov (United States)

    Gold, Larry; Ayers, Deborah; Bertino, Jennifer; Bock, Christopher; Bock, Ashley; Brody, Edward N; Carter, Jeff; Dalby, Andrew B; Eaton, Bruce E; Fitzwater, Tim; Flather, Dylan; Forbes, Ashley; Foreman, Trudi; Fowler, Cate; Gawande, Bharat; Goss, Meredith; Gunn, Magda; Gupta, Shashi; Halladay, Dennis; Heil, Jim; Heilig, Joe; Hicke, Brian; Husar, Gregory; Janjic, Nebojsa; Jarvis, Thale; Jennings, Susan; Katilius, Evaldas; Keeney, Tracy R; Kim, Nancy; Koch, Tad H; Kraemer, Stephan; Kroiss, Luke; Le, Ngan; Levine, Daniel; Lindsey, Wes; Lollo, Bridget; Mayfield, Wes; Mehan, Mike; Mehler, Robert; Nelson, Sally K; Nelson, Michele; Nieuwlandt, Dan; Nikrad, Malti; Ochsner, Urs; Ostroff, Rachel M; Otis, Matt; Parker, Thomas; Pietrasiewicz, Steve; Resnicow, Daniel I; Rohloff, John; Sanders, Glenn; Sattin, Sarah; Schneider, Daniel; Singer, Britta; Stanton, Martin; Sterkel, Alana; Stewart, Alex; Stratford, Suzanne; Vaught, Jonathan D; Vrkljan, Mike; Walker, Jeffrey J; Watrobka, Mike; Waugh, Sheela; Weiss, Allison; Wilcox, Sheri K; Wolfson, Alexey; Wolk, Steven K; Zhang, Chi; Zichi, Dom

    2010-12-07

    The interrogation of proteomes ("proteomics") in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology and medicine. We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 µL of serum or plasma). Our current assay measures 813 proteins with low limits of detection (1 pM median), 7 logs of overall dynamic range (~100 fM-1 µM), and 5% median coefficient of variation. This technology is enabled by a new generation of aptamers that contain chemically modified nucleotides, which greatly expand the physicochemical diversity of the large randomized nucleic acid libraries from which the aptamers are selected. Proteins in complex matrices such as plasma are measured with a process that transforms a signature of protein concentrations into a corresponding signature of DNA aptamer concentrations, which is quantified on a DNA microarray. Our assay takes advantage of the dual nature of aptamers as both folded protein-binding entities with defined shapes and unique nucleotide sequences recognizable by specific hybridization probes. To demonstrate the utility of our proteomics biomarker discovery technology, we applied it to a clinical study of chronic kidney disease (CKD). We identified two well known CKD biomarkers as well as an additional 58 potential CKD biomarkers. These results demonstrate the potential utility of our technology to rapidly discover unique protein signatures characteristic of various disease states. We describe a versatile and powerful tool that allows large-scale comparison of proteome profiles among discrete populations. This unbiased and highly multiplexed search engine will enable the discovery of novel biomarkers in a manner that is unencumbered by our incomplete knowledge of biology, thereby helping to advance the next generation of evidence-based medicine.

  19. Aptamer-based multiplexed proteomic technology for biomarker discovery.

    Directory of Open Access Journals (Sweden)

    Larry Gold

    2010-12-01

    Full Text Available The interrogation of proteomes ("proteomics" in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology and medicine.We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 µL of serum or plasma. Our current assay measures 813 proteins with low limits of detection (1 pM median, 7 logs of overall dynamic range (~100 fM-1 µM, and 5% median coefficient of variation. This technology is enabled by a new generation of aptamers that contain chemically modified nucleotides, which greatly expand the physicochemical diversity of the large randomized nucleic acid libraries from which the aptamers are selected. Proteins in complex matrices such as plasma are measured with a process that transforms a signature of protein concentrations into a corresponding signature of DNA aptamer concentrations, which is quantified on a DNA microarray. Our assay takes advantage of the dual nature of aptamers as both folded protein-binding entities with defined shapes and unique nucleotide sequences recognizable by specific hybridization probes. To demonstrate the utility of our proteomics biomarker discovery technology, we applied it to a clinical study of chronic kidney disease (CKD. We identified two well known CKD biomarkers as well as an additional 58 potential CKD biomarkers. These results demonstrate the potential utility of our technology to rapidly discover unique protein signatures characteristic of various disease states.We describe a versatile and powerful tool that allows large-scale comparison of proteome profiles among discrete populations. This unbiased and highly multiplexed search engine will enable the discovery of novel biomarkers in a manner that is unencumbered by our incomplete knowledge of biology, thereby helping to advance the next generation of evidence-based medicine.

  20. Actuation of chitosan-aptamer nanobrush borders for pathogen sensing.

    Science.gov (United States)

    Hills, Katherine D; Oliveira, Daniela A; Cavallaro, Nicholas D; Gomes, Carmen L; McLamore, Eric S

    2018-03-26

    We demonstrate a sensing mechanism for rapid detection of Listeria monocytogenes in food samples using the actuation of chitosan-aptamer nanobrush borders. The bio-inspired soft material and sensing strategy mimic natural symbiotic systems, where low levels of bacteria are selectively captured from complex matrices. To engineer this biomimetic system, we first develop reduced graphene oxide/nanoplatinum (rGO-nPt) electrodes, and characterize the fundamental electrochemical behavior in the presence and absence of chitosan nanobrushes during actuation (pH-stimulated osmotic swelling). We then characterize the electrochemical behavior of the nanobrush when receptors (antibodies or DNA aptamers) are conjugated to the surface. Finally, we test various techniques to determine the most efficient capture strategy based on nanobrush actuation, and then apply the biosensors in a food product. Maximum cell capture occurs when aptamers conjugated to the nanobrush bind cells in the extended conformation (pH 6). The aptamer-nanobrush hybrid material was more efficient than the antibody-nanobrush material, which was likely due to the relatively high adsorption capacity for aptamers. The biomimetic material was used to develop a rapid test (17 min) for selectively detecting L. monocytogenes at concentrations ranging from 9 to 107 CFU mL-1 with no pre-concentration, and in the presence of other Gram-positive cells (Listeria innocua and Staphylococcus aureus). Use of this bio-inspired material is among the most efficient for L. monocytogenes sensing to date, and does not require sample pretreatment, making nanobrush borders a promising new material for rapid pathogen detection in food.

  1. Insights into cellulase-lignin non-specific binding revealed by computational redesign of the surface of green fluorescent protein.

    Science.gov (United States)

    Haarmeyer, Carolyn N; Smith, Matthew D; Chundawat, Shishir P S; Sammond, Deanne; Whitehead, Timothy A

    2017-04-01

    Biological-mediated conversion of pretreated lignocellulosic biomass to biofuels and biochemicals is a promising avenue toward energy sustainability. However, a critical impediment to the commercialization of cellulosic biofuel production is the high cost of cellulase enzymes needed to deconstruct biomass into fermentable sugars. One major factor driving cost is cellulase adsorption and inactivation in the presence of lignin, yet we currently have a poor understanding of the protein structure-function relationships driving this adsorption. In this work, we have systematically investigated the role of protein surface potential on lignin adsorption using a model monomeric fluorescent protein. We have designed and experimentally characterized 16 model protein variants spanning the physiological range of net charge (-24 to +16 total charges) and total charge density (0.28-0.40 charges per sequence length) typical for natural proteins. Protein designs were expressed, purified, and subjected to in silico and in vitro biophysical measurements to evaluate the relationship between protein surface potential and lignin adsorption properties. The designs were comparable to model fluorescent protein in terms of thermostability and heterologous expression yield, although the majority of the designs unexpectedly formed homodimers. Protein adsorption to lignin was studied at two different temperatures using Quartz Crystal Microbalance with Dissipation Monitoring and a subtractive mass balance assay. We found a weak correlation between protein net charge and protein-binding capacity to lignin. No other single characteristic, including apparent melting temperature and 2nd virial coefficient, showed correlation with lignin binding. Analysis of an unrelated cellulase dataset with mutations localized to a family I carbohydrate-binding module showed a similar correlation between net charge and lignin binding capacity. Overall, our study provides strategies to identify highly active, low

  2. Highly-sensitive aptasensor based on fluorescence resonance energy transfer between l-cysteine capped ZnS quantum dots and graphene oxide sheets for the determination of edifenphos fungicide.

    Science.gov (United States)

    Arvand, Majid; Mirroshandel, Aazam A

    2017-10-15

    With the advantages of excellent optical properties and biocompatibility, single-strand DNA-functionalized quantum dots have been widely applied in biosensing and bioimaging. A new aptasensor with easy operation, high sensitivity, and high selectivity was developed by immobilizing the aptamer on water soluble l-cysteine capped ZnS quantum dots (QDs). Graphene oxide (GO) sheets are mixed with the aptamer-QDs. Consequently, the aptamer-conjugated QDs bind to the GO sheets to form a GO/aptamer-QDs ensemble. This aptasensor enables the energy transfer based on a fluorescence resonance energy transfer (FRET) from the QDs to the GO sheets, quenching the fluorescence of QDs. The GO/aptamer-QDs ensemble assay acts as a "turn-on'' fluorescent sensor for edifenphos (EDI) detection. When GO was replaced by EDI, the fluorescence of QDs was restored and its intensity was proportional to the EDI concentration. This GO-based aptasensor under the optimum conditions exhibited excellent analytical performance for EDI determination, ranging from 5×10 -4 to 6×10 -3 mg L -1 with the detection limit of 1.3×10 -4 mgL -1 . Furthermore, the designed aptasensor exhibited excellent selectivity toward EDI compared to other pesticides and herbicides with similar structures such as diazinon, heptachlor, endrin, dieldrin, butachlor and chlordane. Good reproducibility and precision (RSD =3.9%, n =10) of the assay indicates the high potential of the aptasensor for quantitative trace analysis of EDI. Moreover, the results demonstrate the applicability of the aptasensor for monitoring EDI fungicide in spiked real samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Detection of Cryptosporidium parvum Oocysts on Fresh Produce Using DNA Aptamers.

    Directory of Open Access Journals (Sweden)

    Asma Iqbal

    Full Text Available There are currently no standard methods for the detection of Cryptosporidium spp., or other protozoan parasites, in foods, and existing methods are often inadequate, with low and variable recovery efficiencies. Food testing is difficult due to the low concentrations of parasites, the difficulty in eluting parasites from some foods, the lack of enrichment methods, and the presence of PCR inhibitors. The main objectives of the present study were to obtain DNA aptamers binding to the oocyst wall of C. parvum, and to use the aptamers to detect the presence of this parasite in foods. DNA aptamers were selected against C. parvum oocysts using SELEX (Systematic Evolution of Ligands by EXponential enrichment. Ten rounds of selection led to the discovery of 14 aptamer clones with high affinities for C. parvum oocysts. For detecting parasite-bound aptamers, a simple electrochemical sensor was employed, which used a gold nanoparticle-modified screen-printed carbon electrode. This aptasensor was fabricated by self-assembling a hybrid of a thiolated ssDNA primer and the anti- C. parvum aptamer. Square wave voltammetry was employed to quantitate C. parvum in the range of 150 to 800 oocysts, with a detection limit of approximately 100 oocysts. The high sensitivity and specificity of the developed aptasensor suggests that this novel method is very promising for the detection and identification of C. parvum oocysts on spiked fresh fruits, as compared to conventional methods such as microscopy and PCR.

  4. Combinatorial selection of aptamers: new radioligands for in vivo molecular imaging

    International Nuclear Information System (INIS)

    Pestourie, C.

    2005-10-01

    Aptamers are oligonucleotide structures selected for their capacity to bind to a desired target. The first part of this work focuses on the selection of aptamers directed against the oncogenic form of the tyrosine kinase receptor Ret (RetC634Y). We compared different selection protocols: i) selection against the purified RetC634Y recombinant protein, ii) selection against whole living cells which express RetC634Y and iii) a crossover selection alternating between cells and recombinant protein. One aptamer, D4, was found to be able to inhibit Ret and to reverse the cell phenotype induced by the activation of the receptor. Then, we developed the in vivo use of the selected aptamers. Finally, we used the whole living cells selection protocol to develop aptamers against HLA-G. This protein is characterised by its function in immuno tolerance. Taken together, these studies should pave the way for the in vivo use of aptamers as new therapeutic and diagnostic agents for in vivo PET imaging. (author)

  5. DNA aptamers as a novel approach to neutralize Staphylococcus aureus α-toxin.

    Science.gov (United States)

    Vivekananda, Jeevalatha; Salgado, Christi; Millenbaugh, Nancy J

    2014-02-14

    Staphylococcus aureus is a versatile pathogen capable of causing a broad spectrum of diseases ranging from superficial skin infections to life threatening conditions such as endocarditis, septicemia, pneumonia and toxic shock syndrome. In vitro and in vivo studies identified an exotoxin, α-toxin, as a major cause of S. aureus toxicity. Because S. aureus has rapidly evolved resistance to a number of antibiotics, including methicillin, it is important to identify new therapeutic strategies, other than antibiotics, for inhibiting the harmful effects of this pathogen. Aptamers are single-stranded DNA or RNA oligonucleotides with three-dimensional folded conformations that bind with high affinity and selectivity to targets and modulate their biological functions. The goal of this study was to isolate DNA aptamers that specifically inhibit the cytotoxic activity of α-toxin. After 10 rounds of Systematic Evolution of Ligands by EXponential Enrichment (SELEX), 49 potential anti-α-toxin aptamers were identified. In vitro neutralization assays demonstrated that 4 of these 49 aptamers, AT-27, AT-33, AT-36, and AT-49, significantly inhibited α-toxin-mediated cell death in Jurkat T cells. Furthermore, RT-PCR analysis revealed that α-toxin increased the transcription of the inflammatory cytokines TNF-α and IL-17 and that anti-α-toxin aptamers AT-33 and AT-36 inhibited the upregulation of these genes. Collectively, the data suggest the feasibility of generating functionally effective aptamers against α-toxin for treatment of S. aureus infections. Published by Elsevier Inc.

  6. Building an aptamer/graphene oxide FRET biosensor for one-step detection of bisphenol A.

    Science.gov (United States)

    Zhu, Yingyue; Cai, Yilin; Xu, Liguang; Zheng, Lixue; Wang, Limei; Qi, Bin; Xu, Chuanlai

    2015-04-15

    Bisphenol A (BPA) is an important industrial chemical for polycarbonate (PC) and epoxy resins in paper and plastic industries. In our work, a kind of new method for detection of BPA was designed based on graphene oxide and anti-BPA aptamer. The graphene oxide can specifically adsorb and quench the fluorescence of fluorescently modified ssDNA probes. Meanwhile, the BPA can combine with anti-BPA optamer and switch its configuration to prevent the aptamer from adsorbing on the surface of graphene oxide (GO). Under different concentrations of BPA, based on the target-induced conformational change of anti-BPA aptamer and the interactions between the fluorescently modified anti-BPA aptamer (FAM-ssDNA) and GO, the experimental results show that the intensity of the fluorescence signal was changed. A low limit of detection of 0.05 ng/mL was obtained in the range 0.1-10 ng/mL. In addition, the specificity was outstanding among analogues of BPA. The recovery rate in actual water samples spiked with BPA can be 96.0% to 104.5%. The developed method was successfully used to determine BPA in actual water samples.

  7. Isolation of a new ssDNA aptamer against staphylococcal enterotoxin B based on CNBr-activated sepharose-4B affinity chromatography.

    Science.gov (United States)

    Hedayati Ch, Mojtaba; Amani, Jafar; Sedighian, Hamid; Amin, Mohsen; Salimian, Jafar; Halabian, Raheleh; Imani Fooladi, Abbas Ali

    2016-09-01

    Staphylococcus aureus are potent human pathogens possessing arsenal of virulence factors. Staphylococcal food poisoning (SFP) and respiratory infections mediated by staphylococcal enterotoxin B (SEB) are common clinical manifestations. Many diagnostic techniques are based on serological detection and quantification of SEB in different food and clinical samples. Aptamers are known as new therapeutic and detection tools which are available in different ssDNA, dsDNA and protein structures. In this study, we used a new set of ssDNA aptamers against SEB. The methods used included preparation of a dsDNA library using standard SEB protein as the target analyte, affinity chromatography matrix in microfuge tubes, SELEX procedures to isolate specific ssDNA-aptamer as an affinity ligand, aptamer purification using ethanol precipitation method, affinity binding assay using ELISA, aptamer cloning and specificity test. Among 12 readable sequences, three of them were selected as the most appropriate aptamer because of their affinity and specificity to SEB. This study presents a new set of ssDNA aptamer with favorable selectivity to SEB through 12 rounds of SELEX. Selected aptamers were used to detect SEB in infected serum samples. Results showed that SEB c1 aptamer (2 µg SEB/100 nM aptamer) had favorable specificity to SEB (kd  = 2.3 × 10(-11) ). In conclusion, aptamers can be considered as useful tools for detecting and evaluating SEB. The results showed that affinity chromatography was an affordable assay with acceptable accuracy to isolate sensitive and selective novel aptamers. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. A Cancer Cell-Activatable Aptamer-Reporter System for One-Step Assay of Circulating Tumor Cells

    Directory of Open Access Journals (Sweden)

    Zihua Zeng

    2014-01-01

    Full Text Available The current antibody-mediated numeration assays of circulating tumor cells (CTCs require multiple steps and are time-consuming. To overcome these technical limitations, a cancer cell-activatable aptamer-reporter was formulated by conjugating a biomarker-specific aptamer sequence with paired fluorochrome-quencher molecules. In contrast to the antibody probes, the intact aptamer-reporter was optically silent in the absence of cells of interest. However, when used in an assay, the aptamer selectively targeted cancer cells through interaction with a specific surface biomarker, which triggered internalization of the aptamer-reporter and, subsequently, into cell lysosomes. Rapid lysosomal degradation of the aptamer-reporter resulted in separation of the paired fluorochrome-quencher molecules. The released fluorochrome emitted bright fluorescent signals exclusively within the targeted cancer cells, with no background noise in the assay. Thus, the assays could be completed in a single step within minutes. By using this one-step assay, CTCs in whole blood and marrow aspirate samples of patients with lymphoma tumors were selectively highlighted and rapidly detected with no off-target signals from background blood cells. The development of the cancer cell-activatable aptamer-reporter system allows for the possibility of a simple and robust point-of-care test for CTC detection, which is currently unavailable.

  9. A smart magnetic resonance imaging contrast agent responsive to adenosine based on a DNA aptamer-conjugated gadolinium complex.

    Science.gov (United States)

    Xu, Weichen; Lu, Yi

    2011-05-07

    We report a general strategy for developing a smart MRI contrast agent for the sensing of small molecules such as adenosine based on a DNA aptamer that is conjugated to a Gd compound and a protein streptavidin. The binding of adenosine to its aptamer results in the dissociation of the Gd compound from the large protein, leading to decreases in the rotational correlation time and thus change of MRI contrast. © The Royal Society of Chemistry 2011

  10. Identification of corticotropin-releasing factor (CRF) target cells and effects of dexamethasone on binding in anterior pituitary using a fluorescent analog of CRF

    DEFF Research Database (Denmark)

    Schwartz, J; Billestrup, Nils; Perrin, M

    1986-01-01

    A fluorescein-conjugated bioactive analog of corticotropin-releasing factor (CRF) was synthesized and used to label cells that have high affinity CRF-binding sites. Of cultured bovine anterior pituitary cells, 6.1 +/- 0.6% were visible by fluorescence microscopy after incubation with the analog......-binding sites and suggest that binding of CRF to anterior pituitary cells is altered by glucocorticoids....

  11. Comparative study of the fatty acid binding process of a new FABP from Cherax quadricarinatus by fluorescence intensity, lifetime and anisotropy.

    Directory of Open Access Journals (Sweden)

    Jiayao Li

    Full Text Available Fatty acid-binding proteins (FABPs are small cytosolic proteins, largely distributed in invertebrates and vertebrates, which accomplish uptake and intracellular transport of hydrophobic ligands such as fatty acids. Although long chain fatty acids play multiple crucial roles in cellular functions (structural, energy metabolism, regulation of gene expression, the precise functions of FABPs, especially those of invertebrate species, remain elusive. Here, we have identified and characterized a novel FABP family member, Cq-FABP, from the hepatopancreas of red claw crayfish Cherax quadricarinatus. We report the characterization of fatty acid-binding affinity of Cq-FABP by four different competitive fluorescence-based assays. In the two first approaches, the fluorescent probe 8-Anilino-1-naphthalenesulfonate (ANS, a binder of internal cavities of protein, was used either by directly monitoring its fluorescence emission or by monitoring the fluorescence resonance energy transfer occurring between the single tryptophan residue of Cq-FABP and ANS. The third and the fourth approaches were based on the measurement of the fluorescence emission intensity of the naturally fluorescent cis-parinaric acid probe or the steady-state fluorescence anisotropy measurements of a fluorescently labeled fatty acid (BODIPY-C16, respectively. The four methodologies displayed consistent equilibrium constants for a given fatty acid but were not equivalent in terms of analysis. Indeed, the two first methods were complicated by the existence of non specific binding modes of ANS while BODIPY-C16 and cis-parinaric acid specifically targeted the fatty acid binding site. We found a relationship between the affinity and the length of the carbon chain, with the highest affinity obtained for the shortest fatty acid, suggesting that steric effects primarily influence the interaction of fatty acids in the binding cavity of Cq-FABP. Moreover, our results show that the binding affinities

  12. A novel aptamer functionalized CuInS2 quantum dots probe for daunorubicin sensing and near infrared imaging of prostate cancer cells

    International Nuclear Information System (INIS)

    Lin, Zihan; Ma, Qiang; Fei, Xiaofang; Zhang, Hao; Su, Xingguang

    2014-01-01

    Graphical abstract: - Highlights: • The daunorubicin (DNR)-loaded MUC1 aptamer-NIR CuInS 2 QDs conjugates were developed. • DNR can intercalate into the double-stranded CG sequence of the MUC1 (CGA) 7 –QDs. The aptamer-QDs can sense DNR by the change of photoluminescence intensity of QDs. • The probe can image and sense the delivery of DNR to targeted prostate tumor cell. - Abstract: In this paper, a novel daunorubicin (DNR)-loaded MUC1 aptamer-near infrared (NIR) CuInS 2 quantum dot (DNR–MUC1–QDs) conjugates were developed, which can be used as a targeted cancer imaging and sensing system. After the NIR CuInS 2 QDs conjugated with the MUC1 aptamer–(CGA) 7 , DNR can intercalate into the double-stranded CG sequence of the MUC1–QDs. The incorporation of multiple CG sequences within the stem of the aptamers may further increase the loading efficiency of DNR on these conjugates. DNR–MUC1–QDs can be used to target prostate cancer cells. We evaluated the capacity of MUC1–CuInS 2 QDs for delivering DNR to cancer cells in vitro, and its binding affinity to MUC1-positive and MUC1-negative cells. This novel aptamer functionalized QDs bio-nano-system can not only deliver DNR to the targeted prostate cancer cells, but also can sense DNR by the change of photoluminescence intensity of CuInS 2 QDs, which concurrently images the cancer cells. The quenched fluorescence intensity of MUC1–QDs was proportional to the concentration of DNR in the concentration ranges of 33–88 nmol L −1 . The detection limit (LOD) for DNR was 19 nmol L −1 . We demonstrate the specificity and sensitivity of this DNR–MUC1–QDs probe as a cancer cell imaging, therapy and sensing system in vitro

  13. Nucleic Acid Aptamers Against Biotoxins: A New Paradigm Toward the Treatment and Diagnostic Approach

    DEFF Research Database (Denmark)

    Lauridsen, Lasse Holm; Veedu, Rakesh N.

    2012-01-01

    Nucleic acid aptamers are short single-stranded DNA or RNA oligonucleotides that can bind to their targets with very high affinity and specificity, and are generally selected by a process referred to as systematic evolution of ligands by exponential enrichment. Conventional antibody-based therape......Nucleic acid aptamers are short single-stranded DNA or RNA oligonucleotides that can bind to their targets with very high affinity and specificity, and are generally selected by a process referred to as systematic evolution of ligands by exponential enrichment. Conventional antibody......-based therapeutic and diagnostic approach currently employed against biotoxins pose major limitations such as the requirement of a live animal for the in vivo enrichment of the antibody species, decreased stability, high production cost, and side effects. Aptamer technology is a viable alternative that can be used...

  14. RNA aptamer-based electrochemical biosensor for selective and label-free analysis of dopamine

    DEFF Research Database (Denmark)

    Farjami, Elahe; Campos, Rui; Nielsen, Jesper Sejrup

    2013-01-01

    , including dopamine precursors and metabolites and other neurotransmitters (NT). Here we report an electrochemical RNA aptamer-based biosensor for analysis of dopamine in the presence of other NT. The biosensor exploits a specific binding of dopamine by the RNA aptamer, immobilized at a cysteamine......, norepinephrine, 3,4-dihydroxy-phenylalanine (l-DOPA), 3,4-dihydroxyphenylacetic acid (DOPAC), methyldopamine, and tyramine, which gave negligible signals under conditions of experiments (electroanalysis at 0.185 V vs Ag/AgCl). The interference from ascorbic and uric acids was eliminated by application...... as a general strategy not to restrict the conformational freedom and binding properties of surface-bound aptamers and, thus, be applicable for the development of other aptasensors...

  15. Ultra-sensitive detection of kanamycin for food safety using a reduced graphene oxide-based fluorescent aptasensor

    Science.gov (United States)

    Ha, Na-Reum; Jung, In-Pil; La, Im-Joung; Jung, Ho-Sup; Yoon, Moon-Young

    2017-01-01

    Overuse of antibiotics has caused serious problems, such as appearance of super bacteria, whose accumulation in the human body through the food chain is a concern. Kanamycin is a common antibiotic used to treat diverse infections; however, residual kanamycin can cause many side effects in humans. Thus, development of an ultra-sensitive, precise, and simple detection system for residual kanamycin in food products is urgently needed for food safety. In this study, we identified kanamycin-binding aptamers via a new screening method, and truncated variants were analyzed for optimization of the minimal sequence required for target binding. We found various aptamers with high binding affinity from 34.7 to 669 nanomolar Kdapp values with good specificity against kanamycin. Furthermore, we developed a reduced graphene oxide (RGO)-based fluorescent aptasensor for kanamycin detection. In this system, kanamycin was detected at a concentration as low as 1 pM (582.6 fg/mL). In addition, this method could detect kanamycin accurately in kanamycin-spiked blood serum and milk samples. Consequently, this simple, rapid, and sensitive kanamycin detection system with newly structural and functional analysis aptamer exhibits outstanding detection compared to previous methods and provides a new possibility for point of care testing and food safety.

  16. [Effects of Aptamer-siRNA Nucleic Acid Compound on Growth and Apoptosis in Myeloid Leukemia Cell Line K562].

    Science.gov (United States)

    Ping, Juan; Shen, Zhi-Hui; Wang, Bao-Quan; Zhao, Na; Li, Rui; Li, Mian; Pang, Xiao-Bin; Chen, Chuan-Bo

    2015-04-01

    To explore the effects of aptamer-siRNA nucleic acid compound on growth and apoptosis in myeloid leukemia cell line K562. the changes of cellular morphology and structure were observed by using fluorescence microscope, laser confocal microscope, JEM-4000EX transmission electron microscopy; MTT assay were performed to evaluate the sensibility of K562 cells to aptamer-siRNA compound, the apoptosis was detected by DNA gel electro-phoresis. The remarkably changes of morphology and structure of K562 cells treated with 200 µmol/L aptamer-siRNA were observed under fluorescence microscopy and electromicroscopy. As compared with control, the aptamer-siRNA compound showed more inhibitory effect on K562 cells and there was significant difference (Pcompound for K562 cells was 150 µmol/L. According to agarose gel electrophoresis observation, when the aptamer-siRNA compound showed effect on K562 cells, the typical DNA lader could be observed. The aptamer-siRNA compound can significantly induce K562 cell apoptosis, and provide reference for gene therapy of patients with chronic myelocytic lenkemia.

  17. Fluorescently labaled collagen binding proteins allow specific visualization of collagen in tissues and live cell culture

    NARCIS (Netherlands)

    Krahn, K.B.N.; Bouten, C.V.C.; Tuijl, van S.; Zandvoort, van M.; Merkx, M.

    2006-01-01

    Visualization of the formation and orientation of collagen fibers in tissue engineering experiments is crucial for understanding the factors that determine the mechanical properties of tissues. In this study, collagen-specific fluorescent probes were developed using a new approach that takes

  18. Graphene oxide and DNA aptamer based sub-nanomolar potassium detecting optical nanosensor

    Science.gov (United States)

    Datta, Debopam; Sarkar, Ketaki; Mukherjee, Souvik; Meshik, Xenia; Stroscio, Michael A.; Dutta, Mitra

    2017-08-01

    Quantum-dot (QD) based nanosensors are frequently used by researchers to detect small molecules, ions and different biomolecules. In this article, we present a sensor complex/system comprised of deoxyribonucleic acid (DNA) aptamer, gold nanoparticle and semiconductor QD, attached to a graphene oxide (GO) flake for detection of potassium. As reported herein, it is demonstrated that QD-aptamer-quencher nanosensor functions even when tethered to GO, opening the way to future applications where sensing can be accomplished simultaneously with other previously demonstrated applications of GO such as serving as a nanocarrier for drug delivery. Herein, it is demonstrated that the DNA based thrombin binding aptamer used in this study undergoes the conformational change needed for sensing even when the nanosensor complex is anchored to the GO. Analysis with the Hill equation indicates the interaction between aptamer and potassium follows sigmoidal Hill kinetics. It is found that the quenching efficiency of the optical sensor is linear with the logarithm of concentration from 1 pM to 100 nM and decreases for higher concentration due to unavailability of aptamer binding sites. Such a simple and sensitive optical aptasensor with minimum detection capability of 1.96 pM for potassium ion can also be employed in-vitro detection of different physiological ions, pathogens and disease detection methods.

  19. Selection and characterization of single stranded DNA aptamers recognizing fumonisin B1

    International Nuclear Information System (INIS)

    Chen, Xiujuan; Huang, Yukun; Duan, Nuo; Wu, Shijia; Xia, Yu; Ma, Xiaoyuan; Ding, Zhansheng; Wang, Zhouping; Zhu, Changqing; Jiang, Yuan

    2014-01-01

    We present an improved method for the selection of single-stranded DNA aptamers that can recognize fumonisin B 1 (FB 1 ). FB 1 is a carcinogenic mycotoxin mainly found in corn and corn-based food products worldwide, posing a global threat to feed and food safety. Selection was based on the mag-SELEX (magnetic bead systematic evolution of ligands by exponential enrichment) technology modified by adopting free analogs of targets rather than immobilized targets for counter selections. Firstly, aptamer candidates for FB 1 were selected from an 80 nt random DNA library after 13 rounds of selection. Next, binding assays were performed for affinity evaluation, and circular dichroism spectroscopy was used to investigate their conformation. A high-affinity aptamer designated as F10 (with a dissociation constant of 62 ± 5 nM) was identified and tested for its specificity by competitive binding assays. The results demonstrate that this improved mag-SELEX technology facilitates aptamer screening because it avoids the tedious immobilization of counter-selection molecules on magnetic beads. The aptamers obtained by this technique open new possibilities for the detection of FB 1 via aptasensors. (author)

  20. Selection and characterization of single stranded DNA aptamers recognizing fumonisin B{sub 1}

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiujuan; Huang, Yukun; Duan, Nuo; Wu, Shijia; Xia, Yu; Ma, Xiaoyuan; Ding, Zhansheng; Wang, Zhouping [State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 (China); Zhu, Changqing; Jiang, Yuan [Animal, Plant and Food Inspection Centre, Jiangsu Entry-Exit Inspection and Quarantine Bureau, Nanjing, 210001 (China)

    2014-08-01

    We present an improved method for the selection of single-stranded DNA aptamers that can recognize fumonisin B{sub 1} (FB{sub 1}). FB{sub 1} is a carcinogenic mycotoxin mainly found in corn and corn-based food products worldwide, posing a global threat to feed and food safety. Selection was based on the mag-SELEX (magnetic bead systematic evolution of ligands by exponential enrichment) technology modified by adopting free analogs of targets rather than immobilized targets for counter selections. Firstly, aptamer candidates for FB{sub 1} were selected from an 80 nt random DNA library after 13 rounds of selection. Next, binding assays were performed for affinity evaluation, and circular dichroism spectroscopy was used to investigate their conformation. A high-affinity aptamer designated as F10 (with a dissociation constant of 62 ± 5 nM) was identified and tested for its specificity by competitive binding assays. The results demonstrate that this improved mag-SELEX technology facilitates aptamer screening because it avoids the tedious immobilization of counter-selection molecules on magnetic beads. The aptamers obtained by this technique open new possibilities for the detection of FB{sub 1} via aptasensors. (author)

  1. Colorimetric detection with aptamer–gold nanoparticle conjugates: effect of aptamer length on response

    International Nuclear Information System (INIS)

    Chávez, Jorge L.; MacCuspie, Robert I.; Stone, Morley O.; Kelley-Loughnane, Nancy

    2012-01-01

    A riboflavin binding aptamer (RBA) was used in combination with gold nanoparticles (AuNPs) to detect riboflavin in vitro. The RBA–AuNP conjugates (RBA–AuNPs) responded colorimetrically to the presence of riboflavin and this response could be followed by the naked eye. This system was used as a model to study how modifications on the aptamer sequence affect the RBA–AuNPs’ stability and their response to their target. To mimic primers and other sequence modifications typically used in aptamer work, the RBA was extended by adding extra bases to its 5′ end. These extra bases were designed to avoid interactions with the RBA binding site. The response of these RBA–AuNPs was evaluated and compared. Dynamic light scattering and UV-aggregation kinetics studies showed that the length of the aptamer significantly affected the RBA–AuNPs’ stability and, as a consequence, the magnitude of the detection response to riboflavin. The addition of thymine nucleotides instead of random tails to the RBA showed that the effects observed were not specific to the sequence used. This study shows that modifications of the aptamer sequence provide a means to improve the stability of aptamer–AuNPs conjugates and their sensing response.

  2. Capture and detection of Staphylococcus aureus with dual labeled aptamers to cell surface components.

    Science.gov (United States)

    Ramlal, Shylaja; Mondal, Bhairab; Lavu, Padma Sudharani; N, Bhavanashri; Kingston, Joseph

    2018-01-16

    In the present study, a high throughput whole cell SELEX method has been applied successfully in selecting specific aptamers against whole cells of Staphylococcus aureus, a potent food poisoning bacterium. A total ten rounds of SELEX and three rounds of intermittent counter SELEX, was performed to obtain specific aptamers. Obtained oligonucleotide pool were cloned, sequenced and then grouped into different families based on their primary sequence homology and secondary structure similarity. FITC labeled sequences from different families were selected for further characterization via flow cytometry analysis. The dissociation constant (K d ) values of specific and higher binders ranged from 34 to 128nM. Binding assays to assess the selectivity of aptamer RAB10, RAB 20, RAB 28 and RAB 35 demonstrated high affinity against S. aureus and low binding affinity for other bacteria. To demonstrate the potential use of the aptamer a sensitive dual labeled sandwich detection system was developed using aptamer RAB10 and RAB 35 with a detection limit of 10 2 CFU/mL. Furthermore detection from mixed cell population and spiked sample emphasized the robustness as well as applicability of the developed method. Altogether, the established assay could be a reliable detection tool for the routine investigation of Staphylococcus aureus in samples from food and clinical sources. Copyright © 2017. Published by Elsevier B.V.

  3. Binding-Induced Fluorescence of Serotonin Transporter Ligands: A Spectroscopic and Structural Study of 4-(4-(Dimethylamino)phenyl)-1-methylpyridinium (APP+) and APP+ Analogues

    Science.gov (United States)

    2014-01-01

    The binding-induced fluorescence of 4-(4-(dimethylamino)-phenyl)-1-methylpyridinium (APP+) and two new serotonin transporter (SERT)-binding fluorescent analogues, 1-butyl-4-[4-(1-dimethylamino)phenyl]-pyridinium bromide (BPP+) and 1-methyl-4-[4-(1-piperidinyl)phenyl]-pyridinium (PPP+), has been investigated. Optical spectroscopy reveals that these probes are highly sensitive to their chemical microenvironment, responding to variations in polarity with changes in transition energies and responding to changes in viscosity or rotational freedom with emission enhancements. Molecular docking calculations reveal that the probes are able to access the nonpolar and conformationally restrictive binding pocket of SERT. As a result, the probes exhibit previously not identified binding-induced turn-on emission that is spectroscopically distinct from dyes that have accumulated intracellularly. Thus, binding and transport dynamics of SERT ligands can be resolved both spatially and spectroscopically. PMID:24460204

  4. Photoconversion and fluorescence properties of a red/green-type cyanobacteriochrome AM1_C0023g2 that binds not only phycocyanobilin but also biliverdin.

    Directory of Open Access Journals (Sweden)

    Keiji eFushimi

    2016-04-01

    Full Text Available Cyanobacteriochromes (CBCRs are distantly related to the red/far-red responsive phytochromes. Red/green-type CBCRs are widely distributed among various cyanobacteria. The red/green-type CBCRs covalently bind phycocyanobilin (PCB and show red/green reversible photoconversion. Recent studies revealed that some red/green-type CBCRs from chlorophyll d-bearing cyanobacterium Acaryochloris marina covalently bind not only PCB but also biliverdin (BV. The BV-binding CBCRs show far-red/orange reversible photoconversion. Here, we identified another CBCR (AM1_C0023g2 from A. marina that also covalently binds not only PCB but also BV with high binding efficiencies, although BV chromophore is unstable in the presence of urea. Replacement of Ser334 with Gly resulted in significant improvement in the yield of the BV-binding holoprotein, thereby ensuring that the mutant protein is a fine platform for future development of optogenetic switches. We also succeeded in detecting near-infrared fluorescence from mammalian cells harboring PCB-binding AM1_C0023g2 whose fluorescence quantum yield is 3.0%. Here the PCB-binding holoprotein is shown as a platform for future development of fluorescent probes.

  5. Selection of aptamers for use as radiopharmaceuticals in bacterial infection diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Ieda Mendes; Faria, Ligia Santana de; Correa, Cristiane Rodrigues; Andrade, Antero Silva Ribeiro de, E-mail: imendesf@yahoo.com.br, E-mail: antero@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    The difficulty in early detection of specific foci in the bacterial infection caused by bacteria has raised the need to search for new techniques for this purpose, since these foci require prolonged treatment with antibiotics and in some cases even drainage or, if applicable, removal of prostheses or grafts. Detection of bacterial infections by scintigraphy has the advantage that an image of the whole body could be obtained. This study aims to obtain aptamers specific bacteria for future use as radiopharmaceutical. The SELEX (Systematic Evolution of Ligands by Exponential Enrichment) methodology can generate oligonucleotides (aptamers) that are able to bind with high affinity and specificity to a specific target, from small molecules to complex proteins, by using rounds of enrichment and amplification. Aptamers can be labeled with different radionucleotides such as {sup 99m}Tc, {sup 18}F and {sup 32}P. In this study aptamers anti-peptidoglycan, the main component of the outer cell wall of bacteria, were obtained through SELEX. The SELEX started with a pool of ssDNA that had 10{sup 15}different sequences (library), each oligo has two fixed regions merging a portion of 25 random nucleotides. Initially, the library of ssDNA was incubated with peptidoglycan, for 1h at 37 dec C with stirring. Subsequently, amplification of oligonucleotides that were able to bind to peptidoglycan was performed by PCR (Polymerase Chain Reaction). The amplified oligonucleotides were again incubated with peptidoglycan, amplified and purified. At the end of 15 rounds of selection the oligonucleotides were cloned using TOPO plasmid and Escherichia coli strain Top10F'. The plasmid DNA from 40 colonies were extracted and quantified. The plasmids were sequenced using the sequencing MegaBase, and two different aptamers sequences were obtained from all clones. The aptamers obtained were synthesized and subsequently labeled with {sup 32}P in the 5' end. The labeled aptamers were incubated

  6. Selection of aptamers for use as radiopharmaceuticals in bacterial infection diagnosis

    International Nuclear Information System (INIS)

    Ferreira, Ieda Mendes; Faria, Ligia Santana de; Correa, Cristiane Rodrigues; Andrade, Antero Silva Ribeiro de

    2013-01-01

    The difficulty in early detection of specific foci in the bacterial infection caused by bacteria has raised the need to search for new techniques for this purpose, since these foci require prolonged treatment with antibiotics and in some cases even drainage or, if applicable, removal of prostheses or grafts. Detection of bacterial infections by scintigraphy has the advantage that an image of the whole body could be obtained. This study aims to obtain aptamers specific bacteria for future use as radiopharmaceutical. The SELEX (Systematic Evolution of Ligands by Exponential Enrichment) methodology can generate oligonucleotides (aptamers) that are able to bind with high affinity and specificity to a specific target, from small molecules to complex proteins, by using rounds of enrichment and amplification. Aptamers can be labeled with different radionucleotides such as 99m Tc, 18 F and 32 P. In this study aptamers anti-peptidoglycan, the main component of the outer cell wall of bacteria, were obtained through SELEX. The SELEX started with a pool of ssDNA that had 10 15 different sequences (library), each oligo has two fixed regions merging a portion of 25 random nucleotides. Initially, the library of ssDNA was incubated with peptidoglycan, for 1h at 37 dec C with stirring. Subsequently, amplification of oligonucleotides that were able to bind to peptidoglycan was performed by PCR (Polymerase Chain Reaction). The amplified oligonucleotides were again incubated with peptidoglycan, amplified and purified. At the end of 15 rounds of selection the oligonucleotides were cloned using TOPO plasmid and Escherichia coli strain Top10F'. The plasmid DNA from 40 colonies were extracted and quantified. The plasmids were sequenced using the sequencing MegaBase, and two different aptamers sequences were obtained from all clones. The aptamers obtained were synthesized and subsequently labeled with 32 P in the 5' end. The labeled aptamers were incubated with 10 7 Staphylococcus aureus

  7. Toehold strand displacement-driven assembly of G-quadruplex DNA for enzyme-free and non-label sensitive fluorescent detection of thrombin.

    Science.gov (United States)

    Xu, Yunying; Zhou, Wenjiao; Zhou, Ming; Xiang, Yun; Yuan, Ruo; Chai, Yaqin

    2015-02-15

    Based on a new signal amplification strategy by the toehold strand displacement-driven cyclic assembly of G-quadruplex DNA, the development of an enzyme-free and non-label aptamer sensing approach for sensitive fluorescent detection of thrombin is described. The target thrombin associates with the corresponding aptamer of the partial dsDNA probes and liberates single stranded initiation sequences, which trigger the toehold strand displacement assembly of two G-quadruplex containing hairpin DNAs. This toehold strand displacement reaction leads to the cyclic reuse of the initiation sequences and the production of DNA assemblies with numerous G-quadruplex structures. The fluorescent dye, N-Methyl mesoporphyrin IX, binds to these G-quadruplex structures and generates significantly amplified fluorescent signals to achieve highly sensitive detection of thrombin down to 5 pM. Besides, this method shows high selectivity towards the target thrombin against other control proteins. The developed thrombin sensing method herein avoids the modification of the probes and the involvement of any enzyme or nanomaterial labels for signal amplification. With the successful demonstration for thrombin detection, our approach can be easily adopted to monitor other target molecules in a simple, low-cost, sensitive and selective way by choosing appropriate aptamer/ligand pairs. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Aptamer-Phage Reporters for Ultrasensitive Lateral Flow Assays.

    Science.gov (United States)

    Adhikari, Meena; Strych, Ulrich; Kim, Jinsu; Goux, Heather; Dhamane, Sagar; Poongavanam, Mohan-Vivekanandan; Hagström, Anna E V; Kourentzi, Katerina; Conrad, Jacinta C; Willson, Richard C

    2015-12-01

    We introduce the modification of bacteriophage particles with aptamers for use as bioanalytical reporters, and demonstrate the use of these particles in ultrasensitive lateral flow assays. M13 phage displaying an in vivo biotinylatable peptide (AviTag) genetically fused to the phage tail protein pIII were used as reporter particle scaffolds, with biotinylated aptamers attached via avidin-biotin linkages, and horseradish peroxidase (HRP) reporter enzymes covalently attached to the pVIII coat protein. These modified viral nanoparticles were used in immunochromatographic sandwich assays for the direct detection of IgE and of the penicillin-binding protein from Staphylococcus aureus (PBP2a). We also developed an additional lateral flow assay for IgE, in which the analyte is sandwiched between immobilized anti-IgE antibodies and aptamer-bearing reporter phage modified with HRP. The limit of detection of this LFA was 0.13 ng/mL IgE, ∼100 times lower than those of previously reported IgE assays.

  9. Photochemical Microscale Electrophoresis Allows Fast Quantification of Biomolecule Binding.

    Science.gov (United States)

    Möller, Friederike M; Kieß, Michael; Braun, Dieter

    2016-04-27

    Intricate spatiotemporal patterns emerge when chemical reactions couple to physical transport. We induce electrophoretic transport by a confined photochemical reaction and use it to infer the binding strength of a second, biomolecular binding reaction under physiological conditions. To this end, we use the photoactive compound 2-nitrobenzaldehyde, which releases a proton upon 375 nm irradiation. The charged photoproducts locally perturb electroneutrality due to differential diffusion, giving rise to an electric potential Φ in the 100 μV range on the micrometer scale. Electrophoresis of biomolecules in this field is counterbalanced by back-diffusion within seconds. The biomolecule concentration is measured by fluorescence and settles proportionally to exp(-μ/D Φ). Typically, binding alters either the diffusion coefficient D or the electrophoretic mobility μ. Hence, the local biomolecule fluorescence directly reflects the binding state. A fit to the law of mass action reveals the dissociation constant of the binding reaction. We apply this approach to quantify the binding of the aptamer TBA15 to its protein target human-α-thrombin and to probe the hybridization of DNA. Dissociation constants in the nanomolar regime were determined and match both results in literature and in control experiments using microscale thermophoresis. As our approach is all-optical, isothermal and requires only nanoliter volumes at nanomolar concentrations, it will allow for the fast screening of biomolecule binding in low volume multiwell formats.

  10. A simple highly sensitive and selective aptamer-based colorimetric sensor for environmental toxins microcystin-LR in water samples.

    Science.gov (United States)

    Li, Xiuyan; Cheng, Ruojie; Shi, Huijie; Tang, Bo; Xiao, Hanshuang; Zhao, Guohua

    2016-03-05

    A simple and highly sensitive aptamer-based colorimetric sensor was developed for selective detection of Microcystin-LR (MC-LR). The aptamer (ABA) was employed as recognition element which could bind MC-LR with high-affinity, while gold nanoparticles (AuNPs) worked as sensing materials whose plasma resonance absorption peaks red shifted upon binding of the targets at a high concentration of sodium chloride. With the addition of MC-LR, the random coil aptamer adsorbed on Au NPs altered into regulated structure to form MC-LR-aptamer complexes and broke away from the surface of Au NPs, leading to the aggregation of AuNPs, and the color converted from red to blue due to the interparticle plasmon coupling. Results showed that our aptamer-based colorimetric sensor exhibited rapid and sensitive detection performance for MC-LR with linear range from 0.5 nM to 7.5 μM and the detection limit reached 0.37 nM. Meanwhile, the pollutants usually coexisting with MC-LR in pollutant water samples had not demonstrated disturbance for detecting of MC-LR. The mechanism was also proposed suggesting that high affinity interaction between aptamer and MC-LR significantly enhanced the sensitivity and selectivity for MC-LR detection. Besides, the established method was utilized in analyzing real water samples and splendid sensitivity and selectivity were obtained as well. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. A new aptamer/graphene interdigitated gold electrode piezoelectric sensor for rapid and specific detection of Staphylococcus aureus.

    Science.gov (United States)

    Lian, Yan; He, Fengjiao; Wang, Huan; Tong, Feifei

    2015-03-15

    A novel aptamer/graphene interdigitated gold electrode piezoelectric sensor was developed for the rapid and specific detection of Staphylococcus aureus (S. aureus) by employing S. aureus aptamer as a biological recognition element. 4-Mercaptobenzene-diazonium tetrafluoroborate (MBDT) salt was used as a molecular cross-linking agent to chemically bind graphene to interdigital gold electrodes (IDE) that are connected to a series electrode piezoelectric quartz crystal (SPQC). S. aureus aptamers were assembly immobilized onto graphene via the π-π stacking of DNA bases. Due to the specific binding between S. aureus and aptamer, when S. aureus is present, the DNA bases interacted with the aptamer, thereby dropping the aptamer from the surface of the graphene. The electric parameters of the electrode surface was changed and resulted in the change of oscillator frequency of the SPQC. This detection was completed within 60min. The constructed sensor demonstrated a linear relationship between resonance frequency shifts with bacterial concentrations ranging from 4.1×10(1)-4.1×10(5)cfu/mL with a detection limit of 41cfu/mL. The developed strategy can detect S. aureus rapidly and specifically for clinical diagnosis and food testing. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Targeted therapy of hepatocellular carcinoma with aptamer-functionalized biodegradable nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Weigum, Shannon, E-mail: sweigum@txstate.edu [Texas State University, Department of Biology (United States); McIvor, Elizabeth; Munoz, Christopher; Feng, Richard [Texas State University, Department of Chemistry and Biochemistry (United States); Cantu, Travis [Texas State University, Materials Science, Engineering, and Commercialization Program (United States); Walsh, Kyle [Texas State University, Department of Chemistry and Biochemistry (United States); Betancourt, Tania, E-mail: tania.betancourt@txstate.edu [Texas State University, Materials Science, Engineering, and Commercialization Program (United States)

    2016-11-15

    Hepatocellular carcinoma (HCC) is the most common form of liver cancer, occurring primarily in regions where viral hepatitis infections are common. Unfortunately, most HCC cases remain undiagnosed until late stages of the disease when patient outcome is poor, typically limiting survival from a few months to a year after initial diagnosis. In order to better care for HCC patients, new target-specific approaches are needed to improve early detection and therapeutic intervention. In this work, polymeric nanoparticles functionalized with a HCC-specific aptamer were examined as potential targeted drug delivery vehicles. Specifically, doxorubicin-loaded nanoparticles were prepared via nanoprecipitation of blends of poly(lactic-co-glycolic acid)-b-poly(ethylene glycol). These particles were further functionalized with the HCC-specific TLS11a aptamer. The in vitro interaction and therapeutic efficacy of the aptamer and aptamer-functionalized nanoparticles were characterized in a hepatoma cell line. Nanoparticles were found to be spherical in shape, roughly 100–125 nm in diameter, with a low polydispersity (≤0.2) and slightly negative surface potential. Doxorubicin was encapsulated within the particles at ~40 % efficiency. Drug release was found to occur through anomalous transport influenced by diffusion and polymer relaxation, releasing ~50 % doxorubicin in the first 10 h and full release occurring within 36 h. Confocal microscopy confirmed binding and attachment of aptamer-targeted nanoparticles to the cell surface of cultured HCC cells. Efficacy studies demonstrated a significant improvement in doxorubicin delivery and cell-killing capacity using the aptamer-functionalized, drug-loaded nanoparticles versus controls further supporting use of aptamer nanoparticles as a targeted drug delivery system for HCC tumors.

  13. Selection of aptamers for Candida albicans by cell-SELEX

    International Nuclear Information System (INIS)

    Miranda, Alessandra Nunes Duarte

    2017-01-01

    The growing concern with invasive fungal infections, responsible for an alarming mortality rate of immunosuppressed patients and in Intensive Care Units, evidences the need for a fast and specific method for the Candida albicans detection, since this species is identified as one of the main causes of septicemia. Commonly, it is a challenge for clinicians to determine the primary infection foci, the dissemination degree, or whether the site of a particular surgery is involved. Although scintigraphic imaging represents a promising tool for infectious foci detection, it still lacks a methodology for C. albicans diagnosis due to the absence of specific radiotracers for this microorganism. Aptamers are molecules that have almost ideal properties for use as diagnostic radiopharmaceuticals, such as high specificity for their molecular targets, lack of immunogenicity and toxicity, high tissue penetration and rapid blood clearance. Aptamers can also be labeled with different radionuclides. This work aims to obtain aptamers for specific binding to C. albicans cells for future application as a radiopharmaceutical. It was used a variation of the SELEX (Systematic Evolution of Ligands by EXponential Enrichment) technique, termed cell-SELEX, in which cells are the targets for selection. A selection protocol was standardized using a random library of single-stranded oligonucleotides, each containing two fixed regions flanking a sequence of 40 random nucleotides. This library was incubated with C. albicans cells in the presence of competitors. Then, the binding sequences were separated by centrifugation, resuspended and amplified by PCR. The amplification was confirmed by agarose gel electrophoresis. After that, the ligands were purified to obtain a new pool of ssDNA, from which a new incubation was carried out. The selection parameters were gradually modified in order to increase stringency. This cycle was repeated 12 times to allow the selection of sequences with the maximum

  14. Design, synthesis and evaluation of a new fluorescent probe for measuring polymyxin-lipopolysaccharide binding interactions

    Science.gov (United States)

    Soon, Rachel L.; Velkov, Tony; Chiu, Francis; Thompson, Philip E.; Kancharla, Rashmi; Roberts, Kade; Larson, Ian; Nation, Roger L.; Li, Jian

    2011-01-01

    Fluorescence assays employing semi-synthetic or commercial dansyl-polymyxin B, have been widely employed to assess the affinity of polycations, including polymyxins, for bacterial cells and lipopolysaccharide (LPS). The five primary γ-amines on diaminobutyric-acid residues of polymyxin B are potentially derivatized with dansyl-cholride. Mass spectrometric analysis of the commercial product revealed a complex mixture of di- or tetra- dansyl-substituted polymyxin B. We synthesized a mono-substituted fluorescent derivative, dansyl[Lys]1polymyxinB3. The affinity of polymyxin for purified Gram-negative LPS, and whole bacterial cells was investigated. The affinity of dansyl[Lys]1polymyxinB3 for LPS was comparable to polymyxin B and colistin, and considerably greater (kd dansyl[Lys]1polymyxinB3 to LPS, attributed to electrostatic interactions. The hydrophobic dansyl moiety imparted a greater entropic contribution to the dansyl[Lys]1polymyxinB3-LPS reaction. Molecular modeling revealed a loss of electrostatic contact within the dansyl[Lys]1polymyxinB3-LPS complex due to steric hindrance from the dansyl[Lys]1 fluorophore; this corresponded with diminished antibacterial activity (MIC ≥ 16 μg/mL). Dansyl[Lys]1polymyxinB3 may prove useful as a screening tool for drug development. PMID:21050838

  15. Fluorogenic RNA Mango aptamers for imaging small non-coding RNAs in mammalian cells.

    Science.gov (United States)

    Autour, Alexis; C Y Jeng, Sunny; D Cawte, Adam; Abdolahzadeh, Amir; Galli, Angela; Panchapakesan, Shanker S S; Rueda, David; Ryckelynck, Michael; Unrau, Peter J

    2018-02-13

    Despite having many key roles in cellular biology, directly imaging biologically important RNAs has been hindered by a lack of fluorescent tools equivalent to the fluorescent proteins available to study cellular proteins. Ideal RNA labelling systems must preserve biological function, have photophysical properties similar to existing fluorescent proteins, and be compatible with established live and fixed cell protein labelling strategies. Here, we report a microfluidics-based selection of three new high-affinity RNA Mango fluorogenic aptamers. Two of these are as bright or brighter than enhanced GFP when bound to TO1-Biotin. Furthermore, we show that the new Mangos can accurately image the subcellular localization of three small non-coding RNAs (5S, U6, and a box C/D scaRNA) in fixed and live mammalian cells. These new aptamers have many potential applications to study RNA function and dynamics both in vitro and in mammalian cells.

  16. Solution structure of a DNA mimicking motif of an RNA aptamer against transcription factor AML1 Runt domain.

    Science.gov (United States)

    Nomura, Yusuke; Tanaka, Yoichiro; Fukunaga, Jun-ichi; Fujiwara, Kazuya; Chiba, Manabu; Iibuchi, Hiroaki; Tanaka, Taku; Nakamura, Yoshikazu; Kawai, Gota; Kozu, Tomoko; Sakamoto, Taiichi

    2013-12-01

    AML1/RUNX1 is an essential transcription factor involved in the differentiation of hematopoietic cells. AML1 binds to the Runt-binding double-stranded DNA element (RDE) of target genes through its N-terminal Runt domain. In a previous study, we obtained RNA aptamers against the AML1 Runt domain by systematic evolution of ligands by exponential enrichment and revealed that RNA aptamers exhibit higher affinity for the Runt domain than that for RDE and possess the 5'-GCGMGNN-3' and 5'-N'N'CCAC-3' conserved motif (M: A or C; N and N' form Watson-Crick base pairs) that is important for Runt domain binding. In this study, to understand the structural basis of recognition of the Runt domain by the aptamer motif, the solution structure of a 22-mer RNA was determined using nuclear magnetic resonance. The motif contains the AH(+)-C mismatch and base triple and adopts an unusual backbone structure. Structural analysis of the aptamer motif indicated that the aptamer binds to the Runt domain by mimicking the RDE sequence and structure. Our data should enhance the understanding of the structural basis of DNA mimicry by RNA molecules.

  17. Structural insights into the osteopontin-aptamer complex y molecular dynamics simulations

    Science.gov (United States)

    La Penna, Giovanni; Chelli, Riccardo

    2018-01-01

    Osteopontin is an intrinsically disordered protein involved in tissue remodeling. As a biomarker for pathological hypertrophy and fibrosis, the protein is targeted by an RNA aptamer. In this work, we model the interactions between osteopontin and its aptamer, including mono- (Na+) and divalent (Mg2+) cations. The molecular dynamics simulations suggest that the presence of divalent cations forces the N-terminus of osteopontin to bind the shell of divalent cations adsorbed over the surface of its RNA aptamer, the latter exposing a high negative charge density. The osteopontin plasticity as a function of the local concentration of Mg is discussed in the frame of the proposed strategies for osteopontin targeting as biomarker and in theranostic.

  18. Sensitivity and Selectivity on Aptamer-Based Assay: The Determination of Tetracycline Residue in Bovine Milk

    Directory of Open Access Journals (Sweden)

    Sohee Jeong

    2012-01-01

    Full Text Available A competitive enzyme-linked aptamer assay (ELAA to detect tetracycline in milk was performed by using two different aptamers individually; one is 76 mer-DNA aptamer and the other is 57 mer-RNA aptamer. The best optimum condition was obtained without monovalent ion, Na+ and also by adding no Mg2+ ion in the assay buffer, along with RT incubation. The optimized ELAA showed a good sensitivity (LOD of 2.10 × 10−8 M with a wide dynamic range (3.16 × 10−8 M ~ 3.16 × 10−4 M. In addition, the average R.S.D. across all data points of the curve was less than 2.5% with good recoveries (~101.8% from the milk media. Thus, this method provides a good tool to monitor tetracycline in milk from MRLs’ point of view. However, this ELAA method was not superior to the ELISA method in terms of specificity. This paper describes that it does not always give better sensitivity and specificity in assays even though aptamers have several advantages over antibodies and have been known to be good binders for binding assays.

  19. Aptamer-Modified Magnetic Beads in Biosensing

    Science.gov (United States)

    Scheper, Thomas; Walter, Johanna-Gabriela

    2018-01-01

    Magnetic beads (MBs) are versatile tools for the purification, detection, and quantitative analysis of analytes from complex matrices. The superparamagnetic property of magnetic beads qualifies them for various analytical applications. To provide specificity, MBs can be decorated with ligands like aptamers, antibodies and peptides. In this context, aptamers are emerging as particular promising ligands due to a number of advantages. Most importantly, the chemical synthesis of aptamers enables straightforward and controlled chemical modification with linker molecules and dyes. Moreover, aptamers facilitate novel sensing strategies based on their oligonucleotide nature that cannot be realized with conventional peptide-based ligands. Due to these benefits, the combination of aptamers and MBs was already used in various analytical applications which are summarized in this article. PMID:29601533

  20. Aptamer-based technology for food analysis.

    Science.gov (United States)

    Liu, Xiaofei; Zhang, Xuewu

    2015-01-01

    Aptamers are short and functional single-stranded oligonucleotide sequences selected from systematic evolution of ligands by exponential enrichment (SELEX) process, which have the capacity to recognize various classes of target molecules with high affinity and specificity. Various analytical aptamers acquired by SELEX are widely used in many research fields, such as medicine, biology, and chemistry. However, the application of this innovative and emerging technology to food safety is just in infant stage. Food safety plays a very important role in our daily lives because varieties of poisonous and harmful substances in food affect human health. Aptamer technique is promising, which can overcome many disadvantages of existing detection methods in food safety, such as long detection time, low sensitivity, difficult, and expensive antibody preparation. This review provides an overview of various aptamer screening technologies and summarizes the recent applications of aptamers in food safety, and future prospects are also discussed.

  1. Selection of aptamers specific for glycated hemoglobin and total hemoglobin using on-chip SELEX.

    Science.gov (United States)

    Lin, Hsin-I; Wu, Ching-Chu; Yang, Ching-Hsuan; Chang, Ko-Wei; Lee, Gwo-Bin; Shiesh, Shu-Chu

    2015-01-21

    Blood glycated hemoglobin (HbA1c) levels reflecting average glucose concentrations over the past three months are fundamental for the diagnosis, monitoring, and risk assessment of diabetes. It has been hypothesized that aptamers, which are single-stranded DNAs or RNAs that demonstrate high affinity to a large variety of molecules ranging from small drugs, metabolites, or proteins, could be used for the measurement of HbA1c. Aptamers are selected through an in vitro process called systematic evolution of ligands by exponential enrichment (SELEX), and they can be chemically synthesized with high reproducibility at relatively low costs. This study therefore aimed to select HbA1c- and hemoglobin (Hb)-specific single-stranded DNA aptamers using an on-chip SELEX protocol. A microfluidic SELEX chip was developed to continuously and automatically carry out multiple rounds of SELEX to screen specific aptamers for HbA1c and Hb. HbA1c and Hb were first coated onto magnetic beads. Following several rounds of selection and enrichment with a randomized 40-mer DNA library, specific oligonucleotides were selected. The binding specificity and affinity were assessed by competitive and binding assays. Using the developed microfluidic system, the incubation and partitioning times were greatly decreased, and the entire process was shortened dramatically. Both HbA1c- and Hb-specific aptamers selected by the microfluidic system showed high specificity and affinity (dissociation constant, Kd = 7.6 ± 3.0 nM and 7.3 ± 2.2 nM for HbA1c and Hb, respectively). With further refinements in the assay, these aptamers may replace the conventional antibodies for in vitro diagnostics applications in the near future.

  2. Thick tissue diffusion model with binding to optimize topical staining in fluorescence breast cancer margin imaging

    Science.gov (United States)

    Xu, Xiaochun; Kang, Soyoung; Navarro-Comes, Eric; Wang, Yu; Liu, Jonathan T. C.; Tichauer, Kenneth M.

    2018-03-01

    Intraoperative tumor/surgical margin assessment is required to achieve higher tumor resection rate in breast-conserving surgery. Though current histology provides incomparable accuracy in margin assessment, thin tissue sectioning and the limited field of view of microscopy makes histology too time-consuming for intraoperative applications. If thick tissue, wide-field imaging can provide an acceptable assessment of tumor cells at the surface of resected tissues, an intraoperative protocol can be developed to guide the surgery and provide immediate feedback for surgeons. Topical staining of margins with cancer-targeted molecular imaging agents has the potential to provide the sensitivity needed to see microscopic cancer on a wide-field image; however, diffusion and nonspecific retention of imaging agents in thick tissue can significantly diminish tumor contrast with conventional methods. Here, we present a mathematical model to accurately simulate nonspecific retention, binding, and diffusion of imaging agents in thick tissue topical staining to guide and optimize future thick tissue staining and imaging protocol. In order to verify the accuracy and applicability of the model, diffusion profiles of cancer targeted and untargeted (control) nanoparticles at different staining times in A431 tumor xenografts were acquired for model comparison and tuning. The initial findings suggest the existence of nonspecific retention in the tissue, especially at the tissue surface. The simulator can be used to compare the effect of nonspecific retention, receptor binding and diffusion under various conditions (tissue type, imaging agent) and provides optimal staining and imaging protocols for targeted and control imaging agent.

  3. Structural differences in the two agonist binding sites of the Torpedo nicotinic acetylcholine receptor revealed by time-resolved fluorescence spectroscopy

    DEFF Research Database (Denmark)

    Martinez, K. L.; Corringer, P. J.; Edelstein, S. J.

    2000-01-01

    The nicotinic acetylcholine receptor (nAChR) from Torpedo marmorata carries two nonequivalent agonist binding sites at the αδ and αγ subunit interfaces. These sites have been characterized by time-resolved fluorescence with the partial nicotinic agonist dansyl-C6-choline (Dnscho). When bound...

  4. Development and utilization of a fluorescence-based receptor-binding assay for the site 5 voltage-sensitive sodium channel ligands brevetoxin and ciguatoxin.

    Science.gov (United States)

    McCall, Jennifer R; Jacocks, Henry M; Niven, Susan C; Poli, Mark A; Baden, Daniel G; Bourdelais, Andrea J

    2014-01-01

    Brevetoxins are a family of ladder-frame polyether toxins produced during blooms of the marine dinoflagellate Karenia brevis. Consumption of fish exposed to K. brevis blooms can lead to the development of neurotoxic shellfish poisoning. The toxic effects of brevetoxins are due to activation of voltage-sensitive sodium channels (VSSCs) in cell membranes. Binding of toxins has historically been measured using a radioligand competition assay that is fraught with difficulty. In this study, we developed a novel fluorescence-based binding assay for the brevetoxin receptor. Several fluorophores were conjugated to polyether brevetoxin-2 and used as the labeled ligand. Brevetoxin analogs were able to compete for binding with the fluorescent ligands. This assay was qualified against the standard radioligand receptor assay for the brevetoxin receptor. Furthermore, the fluorescence-based assay was used to determine relative concentrations of toxins in raw extracts of K. brevis culture, and to determine ciguatoxin affinity to site 5 of VSSCs. The fluorescence-based assay was quicker, safer, and far less expensive. As such, this assay can be used to replace the current radioligand assay and will be a vital tool for future experiments examining the binding affinity of various ligands for site 5 on sodium channels.

  5. Structure of the human-heart fatty-acid-binding protein 3 in complex with the fluorescent probe 1-anilinonaphthalene-8-sulphonic acid

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Mika; Sugiyama, Shigeru, E-mail: sugiyama@chem.eng.osaka-u.ac.jp [Lipid Active Structure Project, 1-1 Machikaneyama-cho, Toyonaka 560-0043 (Japan); Osaka University, 1-1 Machikaneyama-cho, Toyonaka 560-0043 (Japan); Ishida, Hanako; Niiyama, Mayumi [Lipid Active Structure Project, 1-1 Machikaneyama-cho, Toyonaka 560-0043 (Japan); Osaka University, 2-1 Yamadaoka, Suita 565-0871 (Japan); Matsuoka, Daisuke; Hara, Toshiaki [Lipid Active Structure Project, 1-1 Machikaneyama-cho, Toyonaka 560-0043 (Japan); Osaka University, 1-1 Machikaneyama-cho, Toyonaka 560-0043 (Japan); Mizohata, Eiichi [Osaka University, 2-1 Yamadaoka, Suita 565-0871 (Japan); Murakami, Satoshi [Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Kanagaw 226-8501 (Japan); Inoue, Tsuyoshi [Osaka University, 2-1 Yamadaoka, Suita 565-0871 (Japan); Matsuoka, Shigeru; Murata, Michio [Lipid Active Structure Project, 1-1 Machikaneyama-cho, Toyonaka 560-0043 (Japan); Osaka University, 1-1 Machikaneyama-cho, Toyonaka 560-0043 (Japan)

    2013-11-01

    The crystal structure of human-heart-type fatty-acid-binding protein in complex with anilinonaphthalene-8-sulfonate was solved at 2.15 Å resolution revealing the detailed binding mechanism of the fluorescent probe 1-anilinonaphthalene-8-sulfonate. Heart-type fatty-acid-binding protein (FABP3), which is a cytosolic protein abundantly found in cardiomyocytes, plays a role in trafficking fatty acids throughout cellular compartments by reversibly binding intracellular fatty acids with relatively high affinity. The fluorescent probe 1-anilinonaphthalene-8-sulfonate (ANS) is extensively utilized for examining the interaction of ligands with fatty-acid-binding proteins. The X-ray structure of FABP3 was determined in the presence of ANS and revealed the detailed ANS-binding mechanism. Furthermore, four water molecules were clearly identified in the binding cavity. Through these water molecules, the bound ANS molecule forms indirect hydrogen-bond interactions with FABP3. The adipocyte-type fatty-acid-binding protein (FABP4) exhibits 67% sequence identity with FABP3 and its crystal structure is almost the same as that of FABP3. However, FABP4 can bind with a higher affinity to ANS than FABP3. To understand the difference in their ligand specificities, a structural comparison was performed between FABP3–ANS and FABP4–ANS complexes. The result revealed that the orientation of ANS binding to FABP3 is completely opposite to that of ANS binding to FABP4, and the substitution of valine in FABP4 to leucine in FABP3 may result in greater steric hindrance between the side-chain of Leu115 and the aniline ring of ANS.

  6. Structure of the human-heart fatty-acid-binding protein 3 in complex with the fluorescent probe 1-anilinonaphthalene-8-sulphonic acid

    International Nuclear Information System (INIS)

    Hirose, Mika; Sugiyama, Shigeru; Ishida, Hanako; Niiyama, Mayumi; Matsuoka, Daisuke; Hara, Toshiaki; Mizohata, Eiichi; Murakami, Satoshi; Inoue, Tsuyoshi; Matsuoka, Shigeru; Murata, Michio

    2013-01-01

    The crystal structure of human-heart-type fatty-acid-binding protein in complex with anilinonaphthalene-8-sulfonate was solved at 2.15 Å resolution revealing the detailed binding mechanism of the fluorescent probe 1-anilinonaphthalene-8-sulfonate. Heart-type fatty-acid-binding protein (FABP3), which is a cytosolic protein abundantly found in cardiomyocytes, plays a role in trafficking fatty acids throughout cellular compartments by reversibly binding intracellular fatty acids with relatively high affinity. The fluorescent probe 1-anilinonaphthalene-8-sulfonate (ANS) is extensively utilized for examining the interaction of ligands with fatty-acid-binding proteins. The X-ray structure of FABP3 was determined in the presence of ANS and revealed the detailed ANS-binding mechanism. Furthermore, four water molecules were clearly identified in the binding cavity. Through these water molecules, the bound ANS molecule forms indirect hydrogen-bond interactions with FABP3. The adipocyte-type fatty-acid-binding protein (FABP4) exhibits 67% sequence identity with FABP3 and its crystal structure is almost the same as that of FABP3. However, FABP4 can bind with a higher affinity to ANS than FABP3. To understand the difference in their ligand specificities, a structural comparison was performed between FABP3–ANS and FABP4–ANS complexes. The result revealed that the orientation of ANS binding to FABP3 is completely opposite to that of ANS binding to FABP4, and the substitution of valine in FABP4 to leucine in FABP3 may result in greater steric hindrance between the side-chain of Leu115 and the aniline ring of ANS

  7. Development of aptamers for use as radiopharmaceuticals in the bacterial infection identification

    International Nuclear Information System (INIS)

    Ferreira, Ieda Mendes

    2013-01-01

    The difficulty in early detection of specific foci caused by bacteria in the bacterial infection has raised the need to search for new techniques for this purpose, since these foci require prolonged treatment with antibiotics and in some cases even drainage or, if applicable, removal of prostheses or grafts. Detection of bacterial infections by scintigraphy had the advantage that a whole body image could be obtained, since specific tracers were available. This study aims to obtain aptamers specific for bacteria identification for future use as radiopharmaceutical. The SELEX (Systematic Evolution of Ligands by Exponential Enrichment) methodology can generate oligonucleotides (aptamers) that are able to bind with high affinity and specificity to a specific target, from small molecules to complex proteins, by using rounds of enrichment and amplification. Aptamers can be labeled with different radionucleotides such as 99 mTc, 18 F and 32 P. In this study, aptamers anti-peptidoglycan, the main component of the bacterial outer cell wall, were obtained through SELEX. Whole cells of Staphylococcus aureus were also used to perform the SELEX to cells (cell-SELEX). The selection of aptamers was performed by two different procedures (A and B). The A process has been accomplished by 15 SELEX rounds in which the separation of the oligonucleotides bound to the peptidoglycan of unbound ones was performed by filtration. In the B process 15 SELEX rounds were performed using the centrifugation for this separation, followed by 5 rounds cell-SELEX. The SELEX started with a pool of ssDNA (single stranded DNA). For A process, initially a library of ssDNA was incubated with peptidoglycan and the amplification of oligonucleotides that were able to bind to peptidoglycan was performed by PCR (Polymerase Chain Reation). The amplified oligonucleotides were again incubated with peptidoglycan, amplified and purified. At the end of 15 selection rounds the selected oligonucleotides were cloned

  8. A label-free and high sensitive aptamer biosensor based on hyperbranched polyester microspheres for thrombin detection

    International Nuclear Information System (INIS)

    Sun, Chong; Han, Qiaorong; Wang, Daoying; Xu, Weimin; Wang, Weijuan; Zhao, Wenbo; Zhou, Min

    2014-01-01

    Highlights: • A label-free thrombin aptamer biosensor applied in whole blood has been developed. • The aptamer biosensor showed a wide detection range and a low detection limit. • The antibiofouling idea utilized for biosensor is significant for diagnostics. - Abstract: In this paper, we have synthesized hyperbranched polyester microspheres with carboxylic acid functional groups (HBPE-CA) and developed a label-free electrochemical aptamer biosensor using thrombin-binding aptamer (TBA) as receptor for the measurement of thrombin in whole blood. The indium tin oxide (ITO) electrode surface modified with HBPE-CA microspheres was grafted with TBA, which has excellent binding affinity and selectivity for thrombin. Binding of the thrombin at the modified ITO electrode surface greatly restrained access of electrons for a redox probe of [Fe(CN) 6 ] 3−/4− . Moreover, the aptamer biosensor could be used for detection of thrombin in whole blood, a wide detection range (10 fM–100 nM) and a detection limit on the order of 0.90 fM were demonstrated. Control experiments were also carried out by using bull serum albumin (BSA) and lysozyme in the absence of thrombin. The good stability and repeatability of this aptamer biosensor were also proved. We expect that this demonstration will lead to the development of highly sensitive label-free sensors based on aptamer with lower cost than current technology. The integration of the technologies, which include anticoagulant, sensor and nanoscience, will bring significant input to high-performance biosensors relevant to diagnostics and therapy of interest for human health

  9. A label-free and high sensitive aptamer biosensor based on hyperbranched polyester microspheres for thrombin detection

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Chong [Jiangsu Key Laboratory of Biofunctional Materials, Biomedical Functional Materials Collaborative Innovation Center, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014 (China); Han, Qiaorong [Jiangsu Key Laboratory of Biofunctional Materials, Biomedical Functional Materials Collaborative Innovation Center, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); Wang, Daoying; Xu, Weimin [Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014 (China); Wang, Weijuan [Jiangsu Key Laboratory of Biofunctional Materials, Biomedical Functional Materials Collaborative Innovation Center, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); Zhao, Wenbo, E-mail: zhaowenbo@njnu.edu.cn [Jiangsu Key Laboratory of Biofunctional Materials, Biomedical Functional Materials Collaborative Innovation Center, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); Zhou, Min, E-mail: zhouminnju@126.com [Department of Vascular Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008 (China)

    2014-11-19

    Highlights: • A label-free thrombin aptamer biosensor applied in whole blood has been developed. • The aptamer biosensor showed a wide detection range and a low detection limit. • The antibiofouling idea utilized for biosensor is significant for diagnostics. - Abstract: In this paper, we have synthesized hyperbranched polyester microspheres with carboxylic acid functional groups (HBPE-CA) and developed a label-free electrochemical aptamer biosensor using thrombin-binding aptamer (TBA) as receptor for the measurement of thrombin in whole blood. The indium tin oxide (ITO) electrode surface modified with HBPE-CA microspheres was grafted with TBA, which has excellent binding affinity and selectivity for thrombin. Binding of the thrombin at the modified ITO electrode surface greatly restrained access of electrons for a redox probe of [Fe(CN){sub 6}]{sup 3−/4−}. Moreover, the aptamer biosensor could be used for detection of thrombin in whole blood, a wide detection range (10 fM–100 nM) and a detection limit on the order of 0.90 fM were demonstrated. Control experiments were also carried out by using bull serum albumin (BSA) and lysozyme in the absence of thrombin. The good stability and repeatability of this aptamer biosensor were also proved. We expect that this demonstration will lead to the development of highly sensitive label-free sensors based on aptamer with lower cost than current technology. The integration of the technologies, which include anticoagulant, sensor and nanoscience, will bring significant input to high-performance biosensors relevant to diagnostics and therapy of interest for human health.

  10. Diagnosis of prostate cancer using anti-PSMA aptamer A10-3.2-oriented lipid nanobubbles

    Directory of Open Access Journals (Sweden)

    Fan X

    2016-08-01

    Full Text Available Xiaozhou Fan,1 Yanli Guo,1 Luofu Wang,2 Xingyu Xiong,1 Lianhua Zhu,1 Kejing Fang1 1Department of Ultrasound, Southwest Hospital, Third Military Medical University, Chongqing, People’s Republic of China; 2Department of Urology, Daping Hospital, Institute of Surgery Research, Third Military Medical University, Chongqing, People’s Republic of China Abstract: In this study, the lipid targeted nanobubble carrying the A10-3.2 aptamer against prostate specific membrane antigen was fabricated, and its effect in the ultrasound imaging of prostate cancer was investigated. Materials including 2-dipalmitoyl-sn-glycero-3-phosphocholine, 1,2-dipalmitoyl-sn-glycero-3-phosphatidic acid, 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine, 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol, carboxyl-modified 1,2-distearoyl-sn-glycero-3-phosphoethanolamine, and polyethyleneglycol-2000 were for mechanical oscillation, and nanobubbles were obtained through the centrifugal flotation method. After mice were injected with nanobubbles, abdominal color Doppler blood flow imaging significantly improved. Through left ventricular perfusion with normal saline to empty the circulating nanobubbles, nanobubbles still existed in tumor tissue sections, which demonstrated that nanobubbles could enter tissue spaces via the permeability and retention effect. Fluorinated A10-3.2 aptamers obtained by chemical synthesis had good specificity for PSMA-positive cells, and were linked with carboxyl-modified 1,2-distearoyl-sn-glycero-3-phosphoethanolamine lipid molecules from the outer shell of nanobubbles via amide reaction to construct targeted nanobubbles. Gel electrophoresis and immunofluorescence confirmed that targeted nanobubbles were fabricated successfully. Next, targeted nanobubbles could bind with PSMA-positive cells (C4-2 cells, while not with PSMA-negative cells (PC-3 cells, using in vitro binding experiments and flow cytometry at the cellular level. Finally, C4-2 and PC-3

  11. Simultaneous fluorescence light-up and selective multicolor nucleobase recognition based on sequence-dependent strong binding of berberine to DNA abasic site.

    Science.gov (United States)

    Wu, Fei; Shao, Yong; Ma, Kun; Cui, Qinghua; Liu, Guiying; Xu, Shujuan

    2012-04-28

    Label-free DNA nucleobase recognition by fluorescent small molecules has received much attention due to its simplicity in mutation identification and drug screening. However, sequence-dependent fluorescence light-up nucleobase recognition and multicolor emission with individual emission energy for individual nucleobases have been seldom realized. Herein, an abasic site (AP site) in a DNA duplex was employed as a binding field for berberine, one of isoquinoline alkaloids. Unlike weak binding of berberine to the fully matched DNAs without the AP site, strong binding of berberine to the AP site occurs and the berberine's fluorescence light-up behaviors are highly dependent on the target nucleobases opposite the AP site in which the targets thymine and cytosine produce dual emission bands, while the targets guanine and adenine only give a single emission band. Furthermore, more intense emissions are observed for the target pyrimidines than purines. The flanking bases of the AP site also produce some modifications of the berberine's emission behavior. The binding selectivity of berberine at the AP site is also confirmed by measurements of fluorescence resonance energy transfer, excited-state lifetime, DNA melting and fluorescence quenching by ferrocyanide and sodium chloride. It is expected that the target pyrimidines cause berberine to be stacked well within DNA base pairs near the AP site, which results in a strong resonance coupling of the electronic transitions to the particular vibration mode to produce the dual emissions. The fluorescent signal-on and emission energy-modulated sensing for nucleobases based on this fluorophore is substantially advantageous over the previously used fluorophores. We expect that this approach will be developed as a practical device for differentiating pyrimidines from purines by positioning an AP site toward a target that is available for readout by this alkaloid probe. This journal is © The Royal Society of Chemistry 2012

  12. The Effect of Aptamer Concetration towards Reduced Graphene Oxide-Field Effect Transistor Surface Channel for Biosensor Application

    Science.gov (United States)

    Syafiq Zainol Abidin, Azrul; Rahim, Ruslinda Abdul; Huan, Chow Yong; Maidin, Nur Nasyifa Mohd; Atiqah Ahmad, Nurul; Hashwan, Saeed S. Ba; Faudzi, Fatin Nabilah Mohd; Hong, Voon Chun

    2018-03-01

    Aptamer are artificially produce bioreceptor that has been developed to bind with various target biomolecules such as ion, cells, protein and small molecules. In this research, an aptamer concentration of 0.5 nM, 1 nM, 5 nM, 10 nM, and 50 nM were immobilized on reduced graphene oxide (rGO) integrated with field effect transistor (FET) respectively to study the effect of aptamer concentration toward rGO surface for stable biosensing platform. The 0.5 nM concentration of aptamer shows the highest current result of 84.3 µA at 1 V applied through the source and drain. After immobilized with aminated aptamer, the conductivity shows significant reduction due to the formation of amide bond on rGO surface between aminated aptamer and carboxyl group on rGO. The electrical performance of FET integrated with rGO shows stable electrical performance suitable to be used in the biosensing application.

  13. Binding of a fluorescence reporter and a ligand to an odorant-binding protein of the yellow fever mosquito, Aedes aegypti [v2; ref status: indexed, http://f1000r.es/4yp

    Directory of Open Access Journals (Sweden)

    Gabriel M. Leal

    2015-01-01

    Full Text Available Odorant-binding proteins (OBPs, also named pheromone-binding proteins when the odorant is a pheromone, are essential for insect olfaction. They solubilize odorants that reach the port of entry of the olfactory system, the pore tubules in antennae and other olfactory appendages. Then, OBPs transport these hydrophobic compounds through an aqueous sensillar lymph to receptors embedded on dendritic membranes of olfactory receptor neurons. Structures of OBPs from mosquito species have shed new light on the mechanism of transport, although there is considerable debate on how they deliver odorant to receptors. An OBP from the southern house mosquito, Culex quinquefasciatus, binds the hydrophobic moiety of a mosquito oviposition pheromone (MOP on the edge of its binding cavity. Likewise, it has been demonstrated that the orthologous protein from the malaria mosquito binds the insect repellent DEET on a similar edge of its binding pocket. A high school research project was aimed at testing whether the orthologous protein from the yellow fever mosquito, AaegOBP1, binds DEET and other insect repellents, and MOP was used as a positive control. Binding assays using the fluorescence reporter N-phenyl-1-naphtylamine (NPN were inconclusive. However, titration of NPN fluorescence emission in AaegOBP1 solution with MOP led to unexpected and intriguing results. Quenching was observed in the initial phase of titration, but addition of higher doses of MOP led to a stepwise increase in fluorescence emission coupled with a blue shift, which can be explained at least in part by formation of MOP micelles to house stray NPN molecules.

  14. Serum protein profiling using an aptamer array predicts clinical outcomes of stage IIA colon cancer: A leave-one-out crossvalidation

    Science.gov (United States)

    Huh, Jung Wook; Kim, Sung Chun; Sohn, Insuk; Jung, Sin-Ho; Kim, Hee Cheol

    2016-01-01

    Background In this study, we established and validated a model for predicting prognosis of stage IIA colon cancer patients based on expression profiles of aptamers in serum. Methods Bloods samples were collected from 227 consecutive patients with pathologic T3N0M0 (stage IIA) colon cancer. We incubated 1,149 serum molecule-binding aptamer pools of clinical significance with serum from patients to obtain aptamers bound to serum molecules, which were then amplified and marked. Oligonucleotide arrays were constructed with the base sequences of the 1,149 aptamers, and the marked products identified above were reacted with one another to produce profiles of the aptamers bound to serum molecules. These profiles were organized into low- and high-risk groups of colon cancer patients based on clinical information for the serum samples. Cox proportional hazards model and leave-one-out cross-validation (LOOCV) were used to evaluate predictive performance. Results During a median follow-up period of 5 years, 29 of the 227 patients (11.9%) experienced recurrence. There were 212 patients (93.4%) in the low-risk group and 15 patients (6.6%) in the high-risk group in our aptamer prognosis model. Postoperative recurrence significantly correlated with age and aptamer risk stratification (p = 0.046 and p = 0.001, respectively). In multivariate analysis, aptamer risk stratification (p recurrence. Disease-free survival curves calculated according to aptamer risk level predicted through a LOOCV procedure and age showed significant differences (p < 0.001 from permutations). Conclusion Aptamer risk stratification can be a valuable prognostic factor in stage II colon cancer patients. PMID:26908450

  15. Structure-function relations in oxaloacetate decarboxylase complex. Fluorescence and infrared approaches to monitor oxomalonate and Na(+ binding effect.

    Directory of Open Access Journals (Sweden)

    Thierry Granjon

    Full Text Available BACKGROUND: Oxaloacetate decarboxylase (OAD is a member of the Na(+ transport decarboxylase enzyme family found exclusively in anaerobic bacteria. OAD of Vibrio cholerae catalyses a key step in citrate fermentation, converting the chemical energy of the decarboxylation reaction into an electrochemical gradient of Na(+ ions across the membrane, which drives endergonic membrane reactions such as ATP synthesis, transport and motility. OAD is a membrane-bound enzyme composed of alpha, beta and gamma subunits. The alpha subunit contains the carboxyltransferase catalytic site. METHODOLOGY/PRINCIPAL FINDINGS: In this report, spectroscopic techniques were used to probe oxomalonate (a competitive inhibitor of OAD with respect to oxaloacetate and Na(+ effects on the enzyme tryptophan environment and on the secondary structure of the OAD complex, as well as the importance of each subunit in the catalytic mechanism. An intrinsic fluorescence approach, Red Edge Excitation Shift (REES, indicated that solvent molecule mobility in the vicinity of OAD tryptophans was more restricted in the presence of oxomalonate. It also demonstrated that, although the structure of OAD is sensitive to the presence of NaCl, oxomalonate was able to bind to the enzyme even in the absence of Na(+. REES changes due to oxomalonate binding were also observed with the alphagamma and alpha subunits. Infrared spectra showed that OAD, alphagamma and alpha subunits have a main component band centered between 1655 and 1650 cm(-1 characteristic of a high content of alpha helix structures. Addition of oxomalonate induced a shift of the amide-I band of OAD toward higher wavenumbers, interpreted as a slight decrease of beta sheet structures and a concomitant increase of alpha helix structures. Oxomalonate binding to alphagamma and alpha subunits also provoked secondary structure variations, but these effects were negligible compared to OAD complex. CONCLUSION: Oxomalonate binding affects the

  16. Fluorescence spectrometric studies on the binding of puerarin to human serum albumin using warfarin, ibuprofen and digitoxin as site markers with the aid of chemometrics

    International Nuclear Information System (INIS)

    Zhang Guowen; Zhao Nan; Wang Lin

    2011-01-01

    The interaction of puerarin with human serum albumin (HSA) in pH 7.4 Tris-HCl buffer has been investigated by fluorescence, Fourier transform infrared (FT-IR) and circular dichroism (CD) spectroscopy. The results revealed the presence of static type of quenching mechanism in the binding of puerarin to HSA. The association constants (K a ) between puerarin and HSA were obtained according to Modified Stern-Volmer equation. The calculated thermodynamic parameters indicated that the binding of puerarin to HSA was driven mainly by hydrophobic interaction. The competitive experiments of site markers suggested that the binding site of puerarin to HSA was located in the region of subdomain IIA (sudlow site I). Further, a chemometrics approach, parallel factor analysis (PARAFAC), was applied to resolve the measured three-way synchronous fluorescence spectra data of the competitive interaction between puerarin and warfarin with HSA. The concentration information for the three reaction components, warfarin, puerarin and puerarin-HSA, in the system at equilibrium was obtained simultaneously. The PARAFAC analysis indicated that puerarin in the puerarin-HSA complex was displaced by warfarin, which confirmed the binding site of puerarin to HSA was located in site I. Moreover, the results of CD and FT-IR spectra demonstrated that the secondary structure of HSA was changed in the presence of puerarin. - Highlights: → Puerarin can quench the fluorescence of human serum albumin (HSA). → The HSA fluorescence is quenched by puerarin through a static quenching mechanism. → The binding of puerarin to HSA is driven mainly by hydrophobic interaction. → The parallel factor analysis confirms that puerarin is located in site I of HSA. → The binding of puerarin to HSA induces changes in the secondary structure of HSA.

  17. Solid-phase single molecule biosensing using dual-color colocalization of fluorescent quantum dot nanoprobes

    Science.gov (United States)

    Liu, Jianbo; Yang, Xiaohai; Wang, Kemin; Wang, Qing; Liu, Wei; Wang, Dong

    2013-10-01

    The development of solid-phase surface-based single molecule imaging technology has attracted significant interest during the past decades. Here we demonstrate a sandwich hybridization method for highly sensitive detection of a single thrombin protein at a solid-phase surface based on the use of dual-color colocalization of fluorescent quantum dot (QD) nanoprobes. Green QD560-modified thrombin binding aptamer I (QD560-TBA I) were deposited on a positive poly(l-lysine) assembled layer, followed by bovine serum albumin blocking. It allowed the thrombin protein to mediate the binding of the easily detectable red QD650-modified thrombin binding aptamer II (QD650-TBA II) to the QD560-TBA I substrate. Thus, the presence of the target thrombin can be determined based on fluorescent colocalization measurements of the nanoassemblies, without target amplification or probe separation. The detection limit of this assay reached 0.8 pM. This fluorescent colocalization assay has enabled single molecule recognition in a separation-free detection format, and can serve as a sensitive biosensing platform that greatly suppresses the nonspecific adsorption false-positive signal. This method can be extended to other areas such as multiplexed immunoassay, single cell analysis, and real time biomolecule interaction studies.The development of solid-phase surface-based single molecule imaging technology has attracted significant interest during the past decades. Here we demonstrate a sandwich hybridization method for highly sensitive detection of a single thrombin protein at a solid-phase surface based on the use of dual-color colocalization of fluorescent quantum dot (QD) nanoprobes. Green QD560-modified thrombin binding aptamer I (QD560-TBA I) were deposited on a positive poly(l-lysine) assembled layer, followed by bovine serum albumin blocking. It allowed the thrombin protein to mediate the binding of the easily detectable red QD650-modified thrombin binding aptamer II (QD650-TBA II) to

  18. Aptamer-Assisted Detection of the Altered Expression of Estrogen Receptor Alpha in Human Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Rajesh Ahirwar

    Full Text Available An increase in the expression of estrogen receptors (ER and the expanded population of ER-positive cells are two common phenotypes of breast cancer. Detection of the aberrantly expressed ERα in breast cancer is carried out using ERα-antibodies and radiolabelled ligands to make decisions about cancer treatment and targeted therapy. Capitalizing on the beneficial advantages of aptamer over the conventional antibody or radiolabelled ligand, we have identified a DNA aptamer that selectively binds and facilitates the detection of ERα in human breast cancer tissue sections. The aptamer is identified using the high throughput sequencing assisted SELEX screening. Biophysical characterization confirms the binding and formation of a thermodynamically stable complex between the identified DNA aptamer (ERaptD4 and ERα (Ka = 1.55±0.298×108 M(-1; ΔH = 4.32×104±801.1 cal/mol; ΔS = -108 cal/mol/deg. Interestingly, the specificity measurements suggest that the ERaptD4 internalizes into ERα-positive breast cancer cells in a target-selective manner and localizes specifically in the nuclear region. To harness these characteristics of ERaptD4 for detection of ERα expression in breast cancer samples, we performed the aptamer-assisted histochemical analysis of ERα in tissue samples from breast cancer patients. The results were validated by performing the immunohistochemistry on same samples with an ERα-antibody. We found that the two methods agree strongly in assay output (kappa value = 0.930, p-value <0.05 for strong ERα positive and the ERα negative samples; kappa value = 0.823, p-value <0.05 for the weak/moderate ER+ve samples, n = 20. Further, the aptamer stain the ERα-positive cells in breast tissues without cross-reacting to ERα-deficient fibroblasts, adipocytes, or the inflammatory cells. Our results demonstrate a significant consistency in the aptamer-assisted detection of ERα in strong ERα positive, moderate ERα positive and ERα negative

  19. Aptamer Selection Express: A Novel Method for Rapid Single-Step Selection and Sensing of Aptamers

    National Research Council Canada - National Science Library

    Fan, Maomian; Roper, Shelly; Andrews, Carrie; Allman, Amity; Bruno, John; Kiel, Jonathan

    2008-01-01

    ...). This process has been used to select aptamers against different types of targets (Bacillus anthracis spores, Bacillus thuringiensis spores, MS-2 bacteriophage, ovalbumin, and botulinum neurotoxin...

  20. A novel fluorescent biosensor for Adenosine Triphosphate detection based on the polydopamine nanospheres integrating with enzymatic recycling amplification.

    Science.gov (United States)

    Ji, Xiaoting; Yi, Bingqing; Xu, Yujuan; Zhao, Yanan; Zhong, Hua; Ding, Caifeng

    2017-07-01

    Based on the protective performance of polydopamine nanospheres (PDANSs) for DNA against nuclease digestion and the specific recognition characteristic of aptamer, we have developed an enzymatic recycling signal amplification method for highly sensitive and selective detection of adenosine triphosphate (ATP). Fluorescence measurements were carried out to verify the DNA polymerase and exonuclease III (Exo III) assisted target recycling process and fluorescence signal amplification. In the absence of the ATP, initially, the signal DNA-PDANSs complex was in the "off" state due to the efficient fluorescence quenching of 6-carboxyfluorescein (FAM) adjacent to the surface of PDANSs. Due to the binding of the aptamer by ATP, it trigger DNA polymerase and Exo III assisted target recycling process by the product of release, the complex would change into the "on" state as a result of the dissociation of the FAM from the surface of PDANSs, thus providing greatly enhanced fluorescence emission intensity. The method allows quantitative detection of ATP in the range of 20-600nM with a detection limit of 8.32nM. This biosensor requires no complex operations, and is a new high efficiency method for ATP detection. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Design Strategies for Aptamer-Based Biosensors

    Science.gov (United States)

    Han, Kun; Liang, Zhiqiang; Zhou, Nandi

    2010-01-01

    Aptamers have been widely used as recognition elements for biosensor construction, especially in the detection of proteins or small molecule targets, and regarded as promising alternatives for antibodies in bioassay areas. In this review, we present an overview of reported design strategies for the fabrication of biosensors and classify them into four basic modes: target-induced structure switching mode, sandwich or sandwich-like mode, target-induced dissociation/displacement mode and competitive replacement mode. In view of the unprecedented advantages brought about by aptamers and smart design strategies, aptamer-based biosensors are expected to be one of the most promising devices in bioassay related applications. PMID:22399891

  2. Enzyme-linked, aptamer-based, competitive biolayer interferometry biosensor for palytoxin.

    Science.gov (United States)

    Gao, Shunxiang; Zheng, Xin; Hu, Bo; Sun, Mingjuan; Wu, Jihong; Jiao, Binghua; Wang, Lianghua

    2017-03-15

    In this study, we coupled biolayer interferometry (BLI) with competitive binding assay through an enzyme-linked aptamer and developed a real-time, ultra-sensitive, rapid quantitative method for detection of the marine biotoxin palytoxin. Horseradish peroxidase-labeled aptamers were used as biorecognition receptors to competitively bind with palytoxin, which was immobilized on the biosensor surface. The palytoxin: horseradish peroxidase-aptamer complex was then submerged in a 3,3'-diaminobenzidine solution, which resulted in formation of a precipitated polymeric product directly on the biosensor surface and a large change in the optical thickness of the biosensor layer. This change could obviously shift the interference pattern and generate a response profile on the BLI biosensor. The biosensor showed a broad linear range for palytoxin (200-700pg/mL) with a low detection limit (0.04pg/mL). Moreover, the biosensor was applied to the detection of palytoxin in spiked extracts and showed a high degree of selectivity for palytoxin, good reproducibility, and stability. This enzyme-linked, aptamer-based, competitive BLI biosensor offers a promising method for rapid and sensitive detection of palytoxin and other analytes. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Generation of Internal-Image Functional Aptamers of Okadaic Acid via Magnetic-Bead SELEX

    Directory of Open Access Journals (Sweden)

    Chao Lin

    2015-12-01

    Full Text Available Okadaic acid (OA is produced by Dinophysis and Prorocentrum dinoflagellates and primarily accumulates in bivalves, and this toxin has harmful effects on consumers and operators. In this work, we first report the use of aptamers as novel non-toxic probes capable of binding to a monoclonal antibody against OA (OA-mAb. Aptamers that mimic the OA toxin with high affinity and selectivity were generated by the magnetic bead-assisted systematic evolution of ligands by exponential enrichment (SELEX strategy. After 12 selection rounds, cloning, sequencing and enzyme-linked immunosorbent assay (ELISA analysis, four candidate aptamers (O24, O31, O39, O40 were selected that showed high affinity and specificity for OA-mAb. The affinity constants of O24, O31, O39 and O40 were 8.3 × 108 M−1, 1.47 × 109 M−1, 1.23 × 109 M−1 and 1.05 × 109 M−1, respectively. Indirect competitive ELISA was employed to determine the internal-image function of the aptamers. The results reveal that O31 has a similar competitive function as free OA toxin, whereas the other three aptamers did not bear the necessary internal-image function. Based on the derivation of the curvilinear equation for OA/O31, the equation that defined the relationship between the OA toxin content and O31 was Y = 2.185X − 1.78. The IC50 of O31 was 3.39 ng·mL−1, which was close to the value predicted by the OA ELISA (IC50 = 4.4 ng·mL−1; the IC10 was 0.33 ng·mL−1. The above data provides strong evidence that internal-image functional aptamers could be applicable as novel probes in a non-toxic assay.

  4. An aptamer-based biosensor for colorimetric detection of Escherichia coli O157:H7.

    Directory of Open Access Journals (Sweden)

    Wenhe Wu

    Full Text Available BACKGROUND: An aptamer based biosensor (aptasensor was developed and evaluated for rapid colorimetric detection of Escherichia coli (E. coli O157:H7. METHODOLOGY/PRINCIPAL FINDINGS: The aptasensor was assembled by modifying the truncated lipopolysaccharides (LPS-binding aptamer on the surface of nanoscale polydiacetylene (PDA vesicle using peptide bonding between the carboxyl group of the vesicle and the amine group of the aptamer. Molecular recognition between E. coli O157:H7 and aptamer at the interface of the vesicle lead to blue-red transition of PDA which was readily visible to the naked eyes and could be quantified by colorimetric responses (CR. Confocal laser scanning microscope (CLSM and transmission electron microscopy (TEM was used to confirm the specific interactions between the truncated aptamer and E. coli O157:H7. The aptasensor could detect cellular concentrations in a range of 10(4~ 10(8 colony-forming units (CFU/ml within 2 hours and its specificity was 100% for detection of E. coli O157:H7. Compared with the standard culture method, the correspondent rate was 98.5% for the detection of E. coli O157:H7 on 203 clinical fecal specimens with our aptasensor. CONCLUSIONS: The new aptasensor represents a significant advancement in detection capabilities based on the combination of nucleic acid aptamer with PDA vesicle, and offers a specific and convenient screening method for the detection of pathogenic bacteria. This technic could also be applied in areas from clinical analysis to biological terrorism defense, especially in low-resource settings.

  5. Nanoscale orientation and lateral organization of chimeric metal-binding green fluorescent protein on lipid membrane determined by epifluorescence and atomic force microscopy

    International Nuclear Information System (INIS)

    Prachayasittikul, Virapong; Isarankura Na Ayudhya, Chartchalerm; Tantimongcolwat, Tanawut; Galla, Hans-Joachim

    2005-01-01

    Epifluorescence microscopy as well as atomic force microscopy was successfully applied to explore the orientation and lateral organization of a group of chimeric green fluorescent proteins (GFPs) on lipid membrane. Incorporation of the chimeric GFP carrying Cd-binding region (His6CdBP4GFP) to the fluid phase of DPPC monolayer resulted in a strong fluorescence intensity at the air-water interface. Meanwhile, non-specific adsorption of the GFP having hexahistidine (His6GFP) led to the perturbation of the protein structure in which very low fluorescence was observed. Specific binding of both of the chimeric GFPs to immobilized zinc ions underneath the metal-chelating lipid membrane was revealed. This specific binding could be reversibly controlled by addition of metal ions or metal chelator. Binding of the chimeric GFPs to the metal-chelating lipid membrane was proven to be the end-on orientation while the side-on adsorption was contrarily noted in the absence of metal ions. Increase of lateral mobility owing to the fluidization effect on the chelating lipid membrane subsequently facilitated crystal formation. All these findings have opened up a potential approach for a specific orientation of immobilization of protein at the membrane interface. This could have accounted for a better opportunity of sensor development

  6. Probing Temperature- and pH-Dependent Binding between Quantum Dots and Bovine Serum Albumin by Fluorescence Correlation Spectroscopy

    Directory of Open Access Journals (Sweden)

    Zonghua Wang

    2017-04-01

    Full Text Available Luminescent quantum dots (QDs with unique optical properties have potential applications in bio-imaging. The interaction between QDs and bio-molecules is important to the biological effect of QDs in vivo. In this paper, we have employed fluorescence correlation spectroscopy (FCS to probe the temperature- and pH-dependent interactions between CdSe QDs with carboxyl (QDs-COOH and bovine serum albumin (BSA in buffer solutions. The results have shown that microscopic dissociation constant K′D is in the range of (1.5 ± 0.2 × 10−5 to (8.6 ± 0.1 × 10−7 M, the Hill coefficient n is from 0.4 to 2.3, and the protein corona thickness is from 3.0 to 9.4 nm. Variable-temperature measurements have shown both negative values of ∆H and ∆S for BSA adsorption on QDs-COOH, while pH has a profound effect on the adsorption. Additional, FCS measurement QDs-COOH and proteins in whole mice serum and plasma samples has also been conducted. Finally, simulation results have shown four favored QD binding sites in BSA.

  7. Investigation of β-lactam antibacterial drugs, β-lactamases, and penicillin-binding proteins with fluorescence polarization and anisotropy: a review

    Science.gov (United States)

    Shapiro, Adam B.

    2016-06-01

    This review covers the uses of fluorescence polarization and anisotropy for the investigation of bacterial penicillin binding proteins (PBPs), which are the targets of β-lactam antibacterial drugs (penicillins, cephalosporins, carbapenems, and monobactams), and of the β-lactamase enzymes that destroy these drugs and help to render bacterial pathogens resistant to them. Fluorescence polarization and anisotropy-based methods for quantitation of β-lactam drugs are also reviewed. A particular emphasis is on methods for quantitative measurement of the interactions of β-lactams and other inhibitors with PBPs and β-lactamases.

  8. Recent Advances in Aptamers Targeting Immune System.

    Science.gov (United States)

    Hu, Piao-Ping

    2017-02-01

    The immune system plays important role in protecting the organism by recognizing non-self molecules from pathogen such as bacteria, parasitic worms, and viruses. When the balance of the host defense system is disturbed, immunodeficiency, autoimmunity, and inflammation occur. Nucleic acid aptamers are short single-stranded DNA (ssDNA) or RNA ligands that interact with complementary molecules with high specificity and affinity. Aptamers that target the molecules involved in immune system to modulate their function have great potential to be explored as new diagnostic and therapeutic agents for immune disorders. This review summarizes recent advances in the development of aptamers targeting immune system. The selection of aptamers with superior chemical and biological characteristics will facilitate their application in the diagnosis and treatment of immune disorders.

  9. Early kinetic intermediate in the folding of acyl-CoA binding protein detected by fluorescence labeling and ultrarapid mixing

    DEFF Research Database (Denmark)

    Teilum, Kaare; Maki, Kosuke; Kragelund, Birthe B

    2002-01-01

    showed a major increase in tryptophan-dansyl fluorescence energy transfer, indicating formation of a partially collapsed ensemble of states on the 100-micros time scale. A subsequent decrease in dansyl fluorescence is attributed to intramolecular quenching of donor fluorescence on formation of the native...

  10. Serum albumin binding sites properties in donors and in schizophrenia patients: the study of fluorescence decay of the probe K-35 using S-60 synchrotron pulse excitation

    Energy Technology Data Exchange (ETDEWEB)

    Gryzunov, Y.A. E-mail: grysunov@sci.lebedev.ru; Syrejshchikova, T.I.; Komarova, M.N.; Misionzhnik, E.Yu.; Uzbekov, M.G.; Molodetskich, A.V.; Dobretsov, G.E.; Yakimenko, M.N

    2000-06-21

    The properties of serum albumin obtained from donors and from paranoid schizophrenia patients were studied with the fluorescent probe K-35 (N-carboxyphenylimide of dimethylaminonaphthalic acid) and time-resolved fluorescence spectroscopy on the SR beam station of the S-60 synchrotron of the Lebedev Physical Institute. The mean fluorescence quantum yield of K-35 in patients serum was decreased significantly by 25-60% comparing with donors. The analysis of pre-exponential factors of fluorescence decay using 'amplitude standard' method has shown that in patient sera the fraction of K-35 molecules bound with albumin and inaccessible to fluorescence quenchers ('bright' K-35 molecules with {tau}{sub 1}=8.0{+-}0.4 ns) is 1.2-3 times less than in the donor sera. The fraction of K-35 molecules with partly quenched fluorescence ({tau}{sub 2}=1.44{+-}0.22 ns) was significantly increased in schizophrenia patients. The results obtained suggest that the properties of binding region in serum albumin molecules of acute paranoid schizophrenia patients change significantly.

  11. Serum albumin binding sites properties in donors and in schizophrenia patients: the study of fluorescence decay of the probe K-35 using S-60 synchrotron pulse excitation

    International Nuclear Information System (INIS)

    Gryzunov, Y.A.; Syrejshchikova, T.I.; Komarova, M.N.; Misionzhnik, E.Yu.; Uzbekov, M.G.; Molodetskich, A.V.; Dobretsov, G.E.; Yakimenko, M.N.

    2000-01-01

    The properties of serum albumin obtained from donors and from paranoid schizophrenia patients were studied with the fluorescent probe K-35 (N-carboxyphenylimide of dimethylaminonaphthalic acid) and time-resolved fluorescence spectroscopy on the SR beam station of the S-60 synchrotron of the Lebedev Physical Institute. The mean fluorescence quantum yield of K-35 in patients serum was decreased significantly by 25-60% comparing with donors. The analysis of pre-exponential factors of fluorescence decay using 'amplitude standard' method has shown that in patient sera the fraction of K-35 molecules bound with albumin and inaccessible to fluorescence quenchers ('bright' K-35 molecules with τ 1 =8.0±0.4 ns) is 1.2-3 times less than in the donor sera. The fraction of K-35 molecules with partly quenched fluorescence (τ 2 =1.44±0.22 ns) was significantly increased in schizophrenia patients. The results obtained suggest that the properties of binding region in serum albumin molecules of acute paranoid schizophrenia patients change significantly

  12. Serum albumin binding sites properties in donors and in schizophrenia patients: the study of fluorescence decay of the probe K-35 using S-60 synchrotron pulse excitation

    Science.gov (United States)

    Gryzunov, Yu. A.; Syrejshchikova, T. I.; Komarova, M. N.; Misionzhnik, E. Yu; Uzbekov, M. G.; Molodetskich, A. V.; Dobretsov, G. E.; Yakimenko, M. N.

    2000-06-01

    The properties of serum albumin obtained from donors and from paranoid schizophrenia patients were studied with the fluorescent probe K-35 (N-carboxyphenylimide of dimethylaminonaphthalic acid) and time-resolved fluorescence spectroscopy on the SR beam station of the S-60 synchrotron of the Lebedev Physical Institute. The mean fluorescence quantum yield of K-35 in patients serum was decreased significantly by 25-60% comparing with donors. The analysis of pre-exponential factors of fluorescence decay using "amplitude standard" method has shown that in patient sera the fraction of K-35 molecules bound with albumin and inaccessible to fluorescence quenchers ("bright" K-35 molecules with τ1=8.0±0.4 ns) is 1.2-3 times less than in the donor sera. The fraction of K-35 molecules with partly quenched fluorescence ( τ2=1.44±0.22 ns) was significantly increased in schizophrenia patients. The results obtained suggest that the properties of binding region in serum albumin molecules of acute paranoid schizophrenia patients change significantly.

  13. Nanomechanical microcantilever operated in vibration modes with use of RNA aptamer as receptor molecules for label-free detection of HCV helicase.

    Science.gov (United States)

    Hwang, Kyo Seon; Lee, Sang-Myung; Eom, Kilho; Lee, Jeong Hoon; Lee, Yoon-Sik; Park, Jung Ho; Yoon, Dae Sung; Kim, Tae Song

    2007-11-30

    We report the nanomechanical microcantilevers operated in vibration modes (oscillation) with use of RNA aptamers as receptor molecules for label-free detection of hepatitis C virus (HCV) helicase. The nanomechanical detection principle is that the ligand-receptor binding on the microcantilever surface induces the dynamic response change of microcantilevers. We implemented the label-free detection of HCV helicase in the low concentration as much as 100 pg/ml from measuring the dynamic response change of microcantilevers. Moreover, from the recent studies showing that the ligand-receptor binding generates the surface stress on the microcantilever, we estimate the surface stress, on the oscillating microcantilevers, induced by ligand-receptor binding, i.e. binding between HCV helicase and RNA aptamer. In this article, it is suggested that the oscillating microcantilevers with use of RNA aptamers as receptor molecules may enable one to implement the sensitive label-free detection of very small amount of small-scale proteins.

  14. From selection hits to clinical leads: progress in aptamer discovery

    Directory of Open Access Journals (Sweden)

    Keith E Maier

    2016-01-01

    Full Text Available Aptamers were discovered more than 25 years ago, yet only one has been approved by the US Food and Drug Administration to date. With some noteworthy advances in their chemical design and the enzymes we use to make them, aptamers and aptamer-based therapeutics have seen a resurgence in interest. New aptamer drugs are being approved for clinical evaluation, and it is certain that we will see increasingly more aptamers and aptamer-like drugs in the future. In this review, we will discuss the production of aptamers with an emphasis on the advances and modifications that enabled early aptamers to succeed in clinical trials as well as those that are likely to be important for future generations of these drugs.

  15. Coupled aggregation of mitochondrial single-strand DNA-binding protein tagged with Eos fluorescent protein visualizes synchronized activity of mitochondrial nucleoids

    Czech Academy of Sciences Publication Activity Database

    Olejár, Tomáš; Pajuelo-Reguera, David; Alán, Lukáš; Dlasková, Andrea; Ježek, Petr

    2015-01-01

    Roč. 12, č. 4 (2015), s. 5185-5190 ISSN 1791-2997 R&D Projects: GA ČR(CZ) GAP302/10/0346; GA MŠk(CZ) EE2.3.30.0025 Institutional support: RVO:67985823 Keywords : mitochondrial nucleoid * single-stranded DNA-binding protein * photoconvertible fluorescent protein Eos Subject RIV: EA - Cell Biology Impact factor: 1.559, year: 2015

  16. Peptide aptamers: The versatile role of specific protein function inhibitors in plant biotechnology.

    Science.gov (United States)

    Colombo, Monica; Mizzotti, Chiara; Masiero, Simona; Kater, Martin M; Pesaresi, Paolo

    2015-11-01

    In recent years, peptide aptamers have emerged as novel molecular tools that have attracted the attention of researchers in various fields of basic and applied science, ranging from medicine to analytical chemistry. These artificial short peptides are able to specifically bind, track, and inhibit a given target molecule with high affinity, even molecules with poor immunogenicity or high toxicity, and represent a remarkable alternative to antibodies in many different applications. Their use is on the rise, driven mainly by the medical and pharmaceutical sector. Here we discuss the enormous potential of peptide aptamers in both basic and applied aspects of plant biotechnology and food safety. The different peptide aptamer selection methods available both in vivo and in vitro are introduced, and the most important possible applications in plant biotechnology are illustrated. In particular, we discuss the generation of broad-based virus resistance in crops, "reverse genetics" and aptasensors in bioassays for detecting contaminations in food and feed. Furthermore, we suggest an alternative to the transfer of peptide aptamers into plant cells via genetic transformation, based on the use of cell-penetrating peptides that overcome the limits imposed by both crop transformation and Genetically Modified Organism commercialization. © 2015 Institute of Botany, Chinese Academy of Sciences.

  17. Specific detection of oxytetracycline using DNA aptamer-immobilized interdigitated array electrode chip

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Seok; Niazi, Javed H [School of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-701 (Korea, Republic of); Gu, Man Bock [School of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-701 (Korea, Republic of)], E-mail: mbgu@korea.ac.kr

    2009-02-23

    An electrochemical sensing system for oxytetracycline (OTC) detection was developed using ssDNA aptamer immobilized on gold interdigitated array (IDA) electrode chip. A highly specific ssDNA aptamer that bind to OTC with high affinity was employed to discriminate other tetracyclines (TCs), such as doxycycline (DOX) and tetracycline (TET). The immobilized thiol-modified aptamer on gold electrode chip served as a biorecognition element for the target molecules and the electrochemical signals generated from interactions between the aptamers and the target molecules was evaluated by cyclic voltammetry (CV) and square wave voltammetry (SWV). The current decrease due to the interference of bound OTC, DOX or TET was analyzed with the electron flow produced by a redox reaction between ferro- and ferricyanide. The specificity of developed EC-biosensor for OTC was highly distinguishable from the structurally similar antibiotics (DOX and TET). The dynamic range was determined to be 1-100 nM of OTC concentration in semi-logarithmic coordinates.

  18. Specific detection of oxytetracycline using DNA aptamer-immobilized interdigitated array electrode chip

    International Nuclear Information System (INIS)

    Kim, Yeon Seok; Niazi, Javed H.; Gu, Man Bock

    2009-01-01

    An electrochemical sensing system for oxytetracycline (OTC) detection was developed using ssDNA aptamer immobilized on gold interdigitated array (IDA) electrode chip. A highly specific ssDNA aptamer that bind to OTC with high affinity was employed to discriminate other tetracyclines (TCs), such as doxycycline (DOX) and tetracycline (TET). The immobilized thiol-modified aptamer on gold electrode chip served as a biorecognition element for the target molecules and the electrochemical signals generated from interactions between the aptamers and the target molecules was evaluated by cyclic voltammetry (CV) and square wave voltammetry (SWV). The current decrease due to the interference of bound OTC, DOX or TET was analyzed with the electron flow produced by a redox reaction between ferro- and ferricyanide. The specificity of developed EC-biosensor for OTC was highly distinguishable from the structurally similar antibiotics (DOX and TET). The dynamic range was determined to be 1-100 nM of OTC concentration in semi-logarithmic coordinates

  19. Novel MUC1 aptamer selectively delivers cytotoxic agent to cancer cells in vitro.

    Directory of Open Access Journals (Sweden)

    Yan Hu

    Full Text Available Chemotherapy is a primary treatment for cancer, but its efficacy is often limited by the adverse effects of cytotoxic agents. Targeted drug delivery may reduce the non-specific toxicity of chemotherapy by selectively directing anticancer drugs to tumor cells. MUC1 protein is an attractive target for tumor-specific drug delivery owning to its overexpression in most adenocarcinomas. In this study, a novel MUC1 aptamer is exploited as the targeting ligand for carrying doxorubicin (Dox to cancer cells. We developed an 86-base DNA aptamer (MA3 that bound to a peptide epitope of MUC1 with a K(d of 38.3 nM and minimal cross reactivity to albumin. Using A549 lung cancer and MCF-7 breast cancer cells as MUC1-expressing models, MA3 was found to preferentially bind to MUC1-positive but not MUC1-negative cells. An aptamer-doxorubicin complex (Apt-Dox was formulated by intercalating doxorubicin into the DNA structure of MA3. Apt-Dox was found capable of carrying doxorubicin into MUC1-positive tumor cells, while significantly reducing the drug intake by MUC1-negative cells. Moreover, Apt-Dox retained the efficacy of doxorubicin against MUC1-positive tumor cells, but lowered the toxicity to MUC1-negative cells (P<0.01. The results suggest that the MUC1 aptamer may have potential utility as a targeting ligand for selective delivery of cytotoxic agent to MUC1-expressing tumors.

  20. A dual-color flow cytometry protocol for the simultaneous detection of Vibrio parahaemolyticus and Salmonella typhimurium using aptamer conjugated quantum dots as labels

    International Nuclear Information System (INIS)

    Duan, Nuo; Wu, Shijia; Yu, Ye; Ma, Xiaoyuan; Xia, Yu; Chen, Xiujuan; Huang, Yukun; Wang, Zhouping

    2013-01-01

    Graphical abstract: -- Highlights: •Two bacteria were simultaneously detected using QD-apt as labels by flow cytometry. •QD-apt were used for recognition and fluorescence detection of two bacteria. •The method was applied successfully for bacteria detection in real samples. -- Abstract: A sensitive, specific method for the collection and detection of pathogenic bacteria was demonstrated using quantum dots (QDs) as a fluorescence marker coupled with aptamers as the molecular recognition element by flow cytometry. The aptamer sequences were selected using a bacterium-based SELEX strategy in our laboratory for Vibrio parahaemolyticus and Salmonella typhimurium that, when applied in this method, allows for the specific recognition of the bacteria from complex mixtures including shrimp samples. Aptamer-modified QDs (QD-apt) were employed to selectively capture and simultaneously detect the target bacteria with high sensitivity using the fluorescence of the labeled QDs. The signal intensity is amplified due to the high photostability of QDs nanoparticles, resulting in improved sensitivity over methods using individual dye-labeled probes. This proposed method is promising for the sensitive detection of other pathogenic bacteria in food stuff if suitable aptamers are chosen. The method may also provide another potential platform for the application of aptamer-conjugated QDs in flow cytometry

  1. A dual-color flow cytometry protocol for the simultaneous detection of Vibrio parahaemolyticus and Salmonella typhimurium using aptamer conjugated quantum dots as labels

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Nuo; Wu, Shijia [State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122 (China); Yu, Ye [Zhangjiagang Entry-Exit Inspection and Quarantine Bureau, Zhangjiangang 215600 (China); Ma, Xiaoyuan; Xia, Yu; Chen, Xiujuan; Huang, Yukun [State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122 (China); Wang, Zhouping, E-mail: wangzp@jiangnan.edu.cn [State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122 (China)

    2013-12-04

    Graphical abstract: -- Highlights: •Two bacteria were simultaneously detected using QD-apt as labels by flow cytometry. •QD-apt were used for recognition and fluorescence detection of two bacteria. •The method was applied successfully for bacteria detection in real samples. -- Abstract: A sensitive, specific method for the collection and detection of pathogenic bacteria was demonstrated using quantum dots (QDs) as a fluorescence marker coupled with aptamers as the molecular recognition element by flow cytometry. The aptamer sequences were selected using a bacterium-based SELEX strategy in our laboratory for Vibrio parahaemolyticus and Salmonella typhimurium that, when applied in this method, allows for the specific recognition of the bacteria from complex mixtures including shrimp samples. Aptamer-modified QDs (QD-apt) were employed to selectively capture and simultaneously detect the target bacteria with high sensitivity using the fluorescence of the labeled QDs. The signal intensity is amplified due to the high photostability of QDs nanoparticles, resulting in improved sensitivity over methods using individual dye-labeled probes. This proposed method is promising for the sensitive detection of other pathogenic bacteria in food stuff if suitable aptamers are chosen. The method may also provide another potential platform for the application of aptamer-conjugated QDs in flow cytometry.

  2. Oligonucleotide Aptamers: New Tools for Targeted Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Hongguang Sun

    2014-01-01

    Full Text Available Aptamers are a class of small nucleic acid ligands that are composed of RNA or single-stranded DNA oligonucleotides and have high specificity and affinity for their targets. Similar to antibodies, aptamers interact with their targets by recognizing a specific three-dimensional structure and are thus termed “chemical antibodies.” In contrast to protein antibodies, aptamers offer unique chemical and biological characteristics based on their oligonucleotide properties. Hence, they are more suitable for the development of novel clinical applications. Aptamer technology has been widely investigated in various biomedical fields for biomarker discovery, in vitro diagnosis, in vivo imaging, and targeted therapy. This review will discuss the potential applications of aptamer technology as a new tool for targeted cancer therapy with emphasis on the development of aptamers that are able to specifically target cell surface biomarkers. Additionally, we will describe several approaches for the use of aptamers in targeted therapeutics, including aptamer-drug conjugation, aptamer-nanoparticle conjugation, aptamer-mediated targeted gene therapy, aptamer-mediated immunotherapy, and aptamer-mediated biotherapy.

  3. Novel HER2 Aptamer Selectively Delivers Cytotoxic Drug to HER2-positive Breast Cancer Cells in Vitro

    Directory of Open Access Journals (Sweden)

    Liu Zhe

    2012-07-01

    Full Text Available Abstract Background Aptamer-based tumor targeted drug delivery system is a promising approach that may increase the efficacy of chemotherapy and reduce the related toxicity. HER2 protein is an attractive target for tumor-specific drug delivery because of its overexpression in multiple malignancies, including breast, gastric, ovarian, and lung cancers. Methods In this paper, we developed a new HER2 aptamer (HB5 by using systematic evolution of ligands by exponential enrichment technology (SELEX and exploited its role as a targeting ligand for delivering doxorubicin (Dox to breast cancer cells in vitro. Results The selected aptamer was an 86-nucleotide DNA molecule that bound to an epitope peptide of HER2 with a Kd of 18.9 nM. The aptamer also bound to the extracellular domain (ECD of HER2 protein with a Kdof 316 nM, and had minimal cross reactivity to albumin or trypsin. In addition, the aptamer was found to preferentially bind to HER2-positive but not HER2-negative breast cancer cells. An aptamer-doxorubicin complex (Apt-Dox was formulated by intercalating Dox into the DNA structure of HB5. The Apt-Dox complex could selectively deliver Dox to HER2-positive breast cancer cells while reducing the drug intake by HER2-negative cells in vitro. Moreover, Apt-Dox retained the cytotoxicity of Dox against HER2-positive breast cancer cells, but reduced the cytotoxicity to HER2-negative cells. Conclusions The results suggest that the selected HER2 aptamer may have application potentials in targeted therapy against HER2-positive breast cancer cells.

  4. Selection of a Novel Aptamer Against Vitronectin Using Capillary Electrophoresis and Next Generation Sequencing

    Directory of Open Access Journals (Sweden)

    Christopher H Stuart

    2016-01-01

    Full Text Available Breast cancer (BC results in ≃40,000 deaths each year in the United States and even among survivors treatment of the disease may have devastating consequences, including increased risk for heart disease and cognitive impairment resulting from the toxic effects of chemotherapy. Aptamer-mediated drug delivery can contribute to improved treatment outcomes through the selective delivery of chemotherapy to BC cells, provided suitable cancer-specific antigens can be identified. We report here the use of capillary electrophoresis in conjunction with next generation sequencing to develop the first vitronectin (VN binding aptamer (VBA-01; Kd 405 nmol/l, the first aptamer to vitronectin (VN; Kd = 405 nmol/l, a protein that plays an important role in wound healing and that is present at elevated levels in BC tissue and in the blood of BC patients relative to the corresponding nonmalignant tissues. We used VBA-01 to develop DVBA-01, a dimeric aptamer complex, and conjugated doxorubicin (Dox to DVBA-01 (7:1 ratio using pH-sensitive, covalent linkages. Dox conjugation enhanced the thermal stability of the complex (60.2 versus 46.5°C and did not decrease affinity for the VN target. The resulting DVBA-01-Dox complex displayed increased cytotoxicity to MDA-MB-231 BC cells that were cultured on plasticware coated with VN (1.8 × 10−6mol/l relative to uncoated plates (2.4 × 10−6 mol/l, or plates coated with the related protein fibronectin (2.1 × 10−6 mol/l. The VBA-01 aptamer was evaluated for binding to human BC tissue using immunohistochemistry and displayed tissue specific binding and apparent association with BC cells. In contrast, a monoclonal antibody that preferentially binds to multimeric VN primarily stained extracellular matrix and vessel walls of BC tissue. Our results indicate a strong potential for using VN-targeting aptamers to improve drug delivery to treat BC.

  5. Single-stranded DNA aptamer targeting and neutralization of anti-D alloantibody: a potential therapeutic strategy for haemolytic diseases caused by Rhesus alloantibody.

    Science.gov (United States)

    Zhang, Yinze; Wu, Fan; Wang, Manni; Zhuang, Naibao; Zhou, Huayou; Xu, Hua

    2018-02-01

    Rhesus (Rh) D antigen is the most important antigen in the Rh blood group system because of its strong immunogenicity. When RhD-negative individuals are exposed to RhD-positive blood, they may produce anti-D alloantibody, potentially resulting in delayed haemolytic transfusion reactions and Rh haemolytic disease of the foetus and newborn, which are difficult to treat. Inhibition of the binding of anti-D antibody with RhD antigens on the surface of red blood cells may effectively prevent immune haemolytic diseases. In this study, single-stranded (ss) DNA aptamers, specifically binding to anti-D antibodies, were selected via systematic evolution of ligands by exponential enrichment (SELEX) technology. After 14 rounds of selection, the purified ssDNA was sequenced using a Personal Genome Machine system. Haemagglutination inhibition assays were performed to screen aptamers for biological activity in terms of blocking antigen-antibody reactions: the affinity and specificity of the aptamers were also determined. In addition to high specificity, the aptamers which were selected showed high affinity for anti-D antibodies with dissociation constant (K d ) values ranging from 51.46±14.90 to 543.30±92.59 nM. By the combined use of specific ssDNA aptamer 7 and auxiliary ssDNA aptamer 2, anti-D could be effectively neutralised at low concentrations of the aptamers. Our results demonstrate that ssDNA aptamers may be a novel, promising strategy for the treatment of delayed haemolytic transfusion reactions and Rh haemolytic disease of the foetus and newborn.

  6. Specificity and kinetics of alpha-synuclein binding to model membranes determined with fluorescent excited state intramolecular proton transfer (ESIPT) probe.

    Science.gov (United States)

    Shvadchak, Volodymyr V; Falomir-Lockhart, Lisandro J; Yushchenko, Dmytro A; Jovin, Thomas M

    2011-04-15

    Parkinson disease is characterized cytopathologically by the deposition in the midbrain of aggregates composed primarily of the presynaptic neuronal protein α-synuclein (AS). Neurotoxicity is currently attributed to oligomeric microaggregates subjected to oxidative modification and promoting mitochondrial and proteasomal dysfunction. Unphysiological binding to membranes of these and other organelles is presumably involved. In this study, we performed a systematic determination of the influence of charge, phase, curvature, defects, and lipid unsaturation on AS binding to model membranes using a new sensitive solvatochromic fluorescent probe. The interaction of AS with vesicular membranes is fast and reversible. The protein dissociates from neutral membranes upon thermal transition to the liquid disordered phase and transfers to vesicles with higher affinity. The binding of AS to neutral and negatively charged membranes occurs by apparently different mechanisms. Interaction with neutral bilayers requires the presence of membrane defects; binding increases with membrane curvature and rigidity and decreases in the presence of cholesterol. The association with negatively charged membranes is much stronger and much less sensitive to membrane curvature, phase, and cholesterol content. The presence of unsaturated lipids increases binding in all cases. These findings provide insight into the relation between membrane physical properties and AS binding affinity and dynamics that presumably define protein localization in vivo and, thereby, the role of AS in the physiopathology of Parkinson disease.

  7. Using a Specific RNA-Protein Interaction To Quench the Fluorescent RNA Spinach.

    Science.gov (United States)

    Roszyk, Laura; Kollenda, Sebastian; Hennig, Sven

    2017-12-15

    RNAs are involved in interaction networks with other biomolecules and are crucial for proper cell function. Yet their biochemical analysis remains challenging. For Förster Resonance Energy Transfer (FRET), a common tool to study such interaction networks, two interacting molecules have to be fluorescently labeled. "Spinach" is a genetically encodable RNA aptamer that starts to fluoresce upon binding of an organic molecule. Therefore, it is a biological fluorophore tag for RNAs. However, spinach has never been used in a FRET assembly before. Here, we describe how spinach is quenched when close to acceptors. We used RNA-DNA hybridization to bring quenchers or red organic dyes in close proximity to spinach. Furthermore, we investigate RNA-protein interactions quantitatively on the example of Pseudomonas aeruginosa phage coat protein 7 (PP7) and its interacting pp7-RNA. We utilize spinach quenching as a fully genetically encodable system even under lysate conditions. Therefore, this work represents a direct method to analyze RNA-protein interactions by quenching the spinach aptamer.

  8. Aptamer-Mediated Codelivery of Doxorubicin and NF-κB Decoy Enhances Chemosensitivity of Pancreatic Tumor Cells

    Directory of Open Access Journals (Sweden)

    David Porciani

    2015-01-01

    Full Text Available Aptamers able to bind efficiently cell-surface receptors differentially expressed in tumor and in healthy cells are emerging as powerful tools to perform targeted anticancer therapy. Here, we present a novel oligonucleotide chimera, composed by an RNA aptamer and a DNA decoy. Our assembly is able to (i target tumor cells via an antitransferrin receptor RNA aptamer and (ii perform selective codelivery of a chemotherapeutic drug (Doxorubicin and of an inhibitor of a cell-survival factor, the nuclear factor κB decoy oligonucleotide. Both payloads are released under conditions found in endolysosomal compartments (low pH and reductive environment. Targeting and cytotoxicity of the oligonucleotidic chimera were assessed by confocal microscopy, cell viability, and Western blot analysis. These data indicated that the nuclear factor κB decoy does inhibit nuclear factor κB activity and ultimately leads to an increased therapeutic efficacy of Doxorubicin selectively in tumor cells.

  9. Visual detection and microplate assay for Staphylococcus aureus based on aptamer recognition coupled to tyramine signal amplification

    International Nuclear Information System (INIS)

    Yuan, Jinglei; Li, Can; Ma, Xiaoyuan; Xia, Yu; Chen, Jie; Wang, Zhouping; Yu, Ye

    2014-01-01

    We have developed a specific method for the visual detection of Staphylococcus aureus based on aptamer recognition coupled to tyramine signal amplification technology. A biotinylated aptamer specific for S. aureus was immobilized on the surface of the wells of a microplate via biotin-avidin binding. Then, the target bacteria (S. aureus), the biotinylated-aptamer-streptavidin-HRP conjugates, biotinylated tyramine, hydrogen peroxide and streptavidin-HRP were successively placed in the wells of the microplate. After adding TMB reagent and stop solution, the intensity of the yellow reaction product can be visually inspected or measured with a plate reader. Under optimized conditions, there is a linear relationship between absorbance at 450 nm and the concentration of S. aureus in the 10 to 107 cfu mL −1 concentration range (with an R 2 of 0.9976). The limit of detection is 8 cfu mL −1 . (author)

  10. Colorimetric method for determination of bisphenol A based on aptamer-mediated aggregation of positively charged gold nanoparticles

    International Nuclear Information System (INIS)

    Xu, Jingyue; Li, Ying; Bie, Jiaxin; Guo, Jiajia; Luo, Yeli; Shen, Fei; Sun, Chunyan; Jiang, Wei

    2015-01-01

    A sensitive, specific and rapid colorimetric aptasensor for the determination of the plasticizer bisphenol A (BPA) was developed. It is based on the use of gold nanoparticles (AuNPs) that are positively charged due to the modification with cysteamine which is cationic at near-neutral pH values. If aptamers are added to such AuNPs, aggregation occurs due to electrostatic interactions between the negatively-charged aptamers and the positively-charged AuNPs. This results in a color change of the AuNPs from red to blue. If a sample containing BPA is added to the anti-BPA aptamers, the anti-BPA aptamers undergo folding via an induced-fit binding mechanism. This is accompanied by a conformational change, which prevents the aptamer-induced aggregation and color change of AuNPs. The effect was exploited to design a colorimetric assay for BPA. Under optimum conditions, the absorbance ratio of A 527 /A 680 is linearly proportional to the BPA concentration in the range from 35 to 140 ng∙mL −1 , with a detection limit of 0.11 ng∙mL −1 . The method has been successfully applied to the determination of BPA in spiked tap water and gave recoveries between 91 and 106 %. Data were in full accordance with results obtained from HPLC. This assay is selective, easily performed, and in our perception represents a promising alternative to existing methods for rapid quantification of BPA. (author)

  11. Binding of fluorescently labeled cholera toxin subunit B to glycolipids in the human submandibular gland and inhibition of binding by periodate oxidation and by galactose

    DEFF Research Database (Denmark)

    Kirkeby, S

    2016-01-01

    FITC-labeled cholera toxin subunit B (CTB) stained the surfaces of cells of mucous acini in the submandibular gland. CTB, also called choleragenoid, binds to the GM1 glycolipid in the cell membrane. The binding in most acini was inhibited by periodic acid oxidation of the sections, while some acini...... to the internal galactose residue linked to GalNAc, as in the GM1 glycolipid. Inhibition of the GM1 receptor binding to cholera toxin has potential for protection of humans against cholera. Galactose and agents that modify sialic acid inhibit the accessibility of the toxin to the GM1 carbohydrate receptor. Human...

  12. Automated Enrichment of Sulfanilamide in Milk Matrices by Utilization of Aptamer-Linked Magnetic Particles.

    Science.gov (United States)

    Fischer, Christin; Kallinich, Constanze; Klockmann, Sven; Schrader, Jil; Fischer, Markus

    2016-12-07

    The present work demonstrates the first automated enrichment approach for antibiotics in milk using specific DNA aptamers. First, aptamers toward the antibiotic sulfanilamide were selected and characterized regarding their dissociation constants and specificity toward relevant antibiotics via fluorescence assay and LC-MS/MS detection. The performed enrichment was automated using the KingFisherDuo and compared to a manual approach. Verifying the functionality, trapping was realized in different milk matrices: (i) 0.3% fat milk, (ii) 1.5% fat milk, (iii) 3.5% fat milk, and (iv) 0.3% fat cocoa milk drink. Enrichment factors up to 8-fold could be achieved. Furthermore, it could be shown that novel implementation of a magnetic separator increases the reproducibility and reduces the hands-on time from approximately half a day to 30 min.

  13. Development of an aptamer-based concentration method for the detection of Trypanosoma cruzi in blood.

    Directory of Open Access Journals (Sweden)

    Rana Nagarkatti

    Full Text Available Trypanosoma cruzi, a blood-borne parasite, is the etiological agent of Chagas disease. T. cruzi trypomastigotes, the infectious life cycle stage, can be detected in blood of infected individuals using PCR-based methods. However, soon after a natural infection, or during the chronic phase of Chagas disease, the number of parasites in blood may be very low and thus difficult to detect by PCR. To facilitate PCR-based detection methods, a parasite concentration approach was explored. A whole cell SELEX strategy was utilized to develop serum stable RNA aptamers that bind to live T. cruzi trypomastigotes. These aptamers bound to the parasite with high affinities (8-25 nM range. The highest affinity aptamer, Apt68, also demonstrated high specificity as it did not interact with the insect stage epimastigotes of T. cruzi nor with other related trypanosomatid parasites, L. donovani and T. brucei, suggesting that the target of Apt68 was expressed only on T. cruzi trypomastigotes. Biotinylated Apt68, immobilized on a solid phase, was able to capture live parasites. These captured parasites were visible microscopically, as large motile aggregates, formed when the aptamer coated paramagnetic beads bound to the surface of the trypomastigotes. Additionally, Apt68 was also able to capture and aggregate trypomastigotes from several isolates of the two major genotypes of the parasite. Using a magnet, these parasite-bead aggregates could be purified from parasite-spiked whole blood samples, even at concentrations as low as 5 parasites in 15 ml of whole blood, as detected by a real-time PCR assay. Our results show that aptamers can be used as pathogen specific ligands to capture and facilitate PCR-based detection of T. cruzi in blood.

  14. Aptamer nanomedicine for cancer therapeutics: barriers and potential for translation.

    Science.gov (United States)

    Lao, Yeh-Hsing; Phua, Kyle K L; Leong, Kam W

    2015-03-24

    Aptamer nanomedicine, including therapeutic aptamers and aptamer nanocomplexes, is beginning to fulfill its potential in both clinical trials and preclinical studies. Especially in oncology, aptamer nanomedicine may perform better than conventional or antibody-based chemotherapeutics due to specificity compared to the former and stability compared to the latter. Many proof-of-concept studies on applying aptamers to drug delivery, gene therapy, and cancer imaging have shown promising efficacy and impressive safety in vivo toward translation. Yet, there remains ample room for improvement and critical barriers to be addressed. In this review, we will first introduce the recent progress in clinical trials of aptamer nanomedicine, followed by a discussion of the barriers at the design and in vivo application stages. We will then highlight recent advances and engineering strategies proposed to tackle these barriers. Aptamer cancer nanomedicine has the potential to address one of the most important healthcare issues of the society.

  15. Refining the Results of a Classical SELEX Experiment by Expanding the Sequence Data Set of an Aptamer Pool Selected for Protein A

    Directory of Open Access Journals (Sweden)

    Regina Stoltenburg

    2018-02-01

    Full Text Available New, as yet undiscovered aptamers for Protein A were identified by applying next generation sequencing (NGS to a previously selected aptamer pool. This pool was obtained in a classical SELEX (Systematic Evolution of Ligands by EXponential enrichment experiment using the FluMag-SELEX procedure followed by cloning and Sanger sequencing. PA#2/8 was identified as the only Protein A-binding aptamer from the Sanger sequence pool, and was shown to be able to bind intact cells of Staphylococcus aureus. In this study, we show the extension of the SELEX results by re-sequencing of the same aptamer pool using a medium throughput NGS approach and data analysis. Both data pools were compared. They confirm the selection of a highly complex and heterogeneous oligonucleotide pool and show consistently a high content of orphans as well as a similar relative frequency of certain sequence groups. But in contrast to the Sanger data pool, the NGS pool was clearly dominated by one sequence group containing the known Protein A-binding aptamer PA#2/8 as the most frequent sequence in this group. In addition, we found two new sequence groups in the NGS pool represented by PA-C10 and PA-C8, respectively, which also have high specificity for Protein A. Comparative affinity studies reveal differences between the aptamers and confirm that PA#2/8 remains the most potent sequence within the selected aptamer pool reaching affinities in the low nanomolar range of KD = 20 ± 1 nM.

  16. Refining the Results of a Classical SELEX Experiment by Expanding the Sequence Data Set of an Aptamer Pool Selected for Protein A.

    Science.gov (United States)

    Stoltenburg, Regina; Strehlitz, Beate

    2018-02-24

    New, as yet undiscovered aptamers for Protein A were identified by applying next generation sequencing (NGS) to a previously selected aptamer pool. This pool was obtained in a classical SELEX (Systematic Evolution of Ligands by EXponential enrichment) experiment using the FluMag-SELEX procedure followed by cloning and Sanger sequencing. PA#2/8 was identified as the only Protein A-binding aptamer from the Sanger sequence pool, and was shown to be able to bind intact cells of Staphylococcus aureus . In this study, we show the extension of the SELEX results by re-sequencing of the same aptamer pool using a medium throughput NGS approach and data analysis. Both data pools were compared. They confirm the selection of a highly complex and heterogeneous oligonucleotide pool and show consistently a high content of orphans as well as a similar relative frequency of certain sequence groups. But in contrast to the Sanger data pool, the NGS pool was clearly dominated by one sequence group containing the known Protein A-binding aptamer PA#2/8 as the most frequent sequence in this group. In addition, we found two new sequence groups in the NGS pool represented by PA-C10 and PA-C8, respectively, which also have high specificity for Protein A. Comparative affinity studies reveal differences between the aptamers and confirm that PA#2/8 remains the most potent sequence within the selected aptamer pool reaching affinities in the low nanomolar range of K D = 20 ± 1 nM.

  17. Development of aptamers against unpurified proteins.

    Science.gov (United States)

    Goto, Shinichi; Tsukakoshi, Kaori; Ikebukuro, Kazunori

    2017-12-01

    SELEX (Systematic Evolution of Ligands by EXponential enrichment) has been widely used for the generation of aptamers against target proteins. However, its requirement for pure target proteins remains a major problem in aptamer selection, as procedures for protein purification from crude bio-samples are not only complicated but also time and labor consuming. This is because native proteins can be found in a large number of diverse forms because of posttranslational modifications and their complicated molecular conformations. Moreover, several proteins are difficult to purify owing to their chemical fragility and/or rarity in native samples. An alternative route is the use of recombinant proteins for aptamer selection, because they are homogenous and easily purified. However, aptamers generated against recombinant proteins produced in prokaryotic cells may not interact with the same proteins expressed in eukaryotic cells because of posttranslational modifications. Moreover, to date recombinant proteins have been constructed for only a fraction of proteins expressed in the human body. Therefore, the demand for advanced SELEX methods not relying on complicated purification processes from native samples or recombinant proteins is growing. This review article describes several such techniques that allow researchers to directly develop an aptamer from various unpurified samples, such as whole cells, tissues, serum, and cell lysates. The key advantages of advanced SELEX are that it does not require a purification process from a crude bio-sample, maintains the functional states of target proteins, and facilitates the development of aptamers against unidentified and uncharacterized proteins in unpurified biological samples. © 2017 Wiley Periodicals, Inc.

  18. Duplex/quadruplex oligonucleotides: Role of the duplex domain in the stabilization of a new generation of highly effective anti-thrombin aptamers.

    Science.gov (United States)

    Russo Krauss, Irene; Napolitano, Valeria; Petraccone, Luigi; Troisi, Romualdo; Spiridonova, Vera; Mattia, Carlo Andrea; Sica, Filomena

    2018-02-01

    Recently, mixed duplex/quadruplex oligonucleotides have attracted great interest for use as biomedical aptamers. In the case of anti-thrombin aptamers, the addition of duplex-forming sequences to a G-quadruplex module identical or very similar to the best-known G-quadruplex of the Thrombin Binding Aptamer (HD1) results in new or improved biological properties, such as higher activity or different recognition properties with respect to HD1. Remarkably, this bimodular fold was hypothesized, based on its sequence, for the only anti-thrombin aptamer in advanced clinical trial, NU172. Whereas cation modulation of G-quadruplex conformation and stability is well characterized, only few data from similar analysis on duplex/quadruplex oligonucleotides exist. Here we have performed a characterization of structure and stability of four different duplex/quadruplex anti-thrombin aptamers, including NU172, in the presence of different cations and in physiological-mimicking conditions in comparison to HD1, by means of spectroscopic techniques (UV and circular dichroism) and differential scanning calorimetry. Our data show a strong reciprocal influence of each domain on the stability of the other and in particular suggest a stabilizing effect of the duplex region in the presence of solutions mimicking the physiological conditions, strengthening the idea that bimodular aptamers present better therapeutic potentialities than those containing a single G-quadruplex domain. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Development of a Novel Green Fluorescent Protein-Based Binding Assay to Study the Association of Plakins with Intermediate Filament Proteins.

    Science.gov (United States)

    Favre, Bertrand; Begré, Nadja; Bouameur, Jamal-Eddine; Borradori, Luca

    2016-01-01

    Protein-protein interactions are fundamental for most biological processes, such as the formation of cellular structures and enzymatic complexes or in signaling pathways. The identification and characterization of protein-protein interactions are therefore essential for understanding the mechanisms and regulation of biological systems. The organization and dynamics of the cytoskeleton, as well as its anchorage to specific sites in the plasma membrane and organelles, are regulated by the plakins. These structurally related proteins anchor different cytoskeletal networks to each other and/or to other cellular structures. The association of several plakins with intermediate filaments (IFs) is critical for maintenance of the cytoarchitecture. Pathogenic mutations in the genes encoding different plakins can lead to dramatic manifestations, occurring principally in the skin, striated muscle, and/or nervous system, due to cytoskeletal disorganization resulting in abnormal cell fragility. Nevertheless, it is still unclear how plakins bind to IFs, although some general rules are slowly emerging. We here describe in detail a recently developed protein-protein fluorescence binding assay, based on the production of recombinant proteins tagged with green fluorescent protein (GFP) and their use as fluid-phase fluorescent ligands on immobilized IF proteins. Using this method, we have been able to assess the ability of C-terminal regions of GFP-tagged plakin proteins to bind to distinct IF proteins and IF domains. This simple and sensitive technique, which is expected to facilitate further studies in this area, can also be potentially employed for any kind of protein-protein interaction studies. © 2016 Elsevier Inc. All rights reserved.

  20. An Aptamer Bio-barCode (ABC) assay using SPR, RNase H, and probes with RNA and gold-nanorods for anti-cancer drug screening.

    Science.gov (United States)

    Loo, Jacky Fong-Chuen; Yang, Chengbin; Tsang, Hing Lun; Lau, Pui Man; Yong, Ken-Tye; Ho, Ho Pui; Kong, Siu Kai

    2017-10-07

    With modifications to an ultra-sensitive bio-barcode (BBC) assay, we have developed a next generation aptamer-based bio-barcode (ABC) assay to detect cytochrome-c (Cyto-c), a cell death marker released from cancer cells, for anti-cancer drug screening. An aptamer is a short single-stranded DNA selected from a synthetic DNA library that is capable of binding to its target with high affinity and specificity based on its unique DNA sequence and 3D structure after folding. Similar to the BBC assay, Cyto-c is captured by a micro-magnetic particle (MMP) coated with capturing antibodies (Ab) and an aptamer specifically against Cyto-c to form sandwich structures ([MMP-Ab]-[Cyto-c]-[Aptamer]). After washing and melting, our aptamers, acting as a DNA bio-barcode, are released from the sandwiches and hybridized with the probes specially designed for RNase H for surface plasmon resonance (SPR) sensing. In an aptamer-probe duplex, RNase H digests the RNA in the probe and releases the intact aptamer for another round of hybridization and digestion. With signal enhancement effects from gold-nanorods (Au-NRs) on probes for SPR sensing, the detection limit was found to be 1 nM for the aptamer and 80 pM for Cyto-c. Without the time-consuming DNA amplification steps by PCR, the detection process of this new ABC assay can be completed within three hours. As a proof-of-concept, phenylarsine oxide was found to be a potent agent to kill liver cancer cells with multi-drug resistance at the nano-molar level. This approach thus provides a fast, sensitive and robust tool for anti-cancer drug screening.

  1. Competitive horseradish peroxidase-linked aptamer assay for sensitive detection of Aflatoxin B1.

    Science.gov (United States)

    Sun, Linlin; Zhao, Qiang

    2018-03-01

    Aflatoxin B1 (AFB1) is one of highly toxic mycotoxins and a known human carcinogen. The frequent contamination of AFB1 in food products and large health risk of AFB1 have raised global concerns. Sensitive detection of AFB1 is of vital importance and highly demanded. Herein, we reported a competitive horseradish peroxidase (HRP)-linked aptamer assay for AFB1, combining the advantages of aptamer for affinity binding and enzyme label for signal amplification. In this assay, free AFB1 in solution competed with a covalent conjugate of bovine serum albumin-AFB1 (BSA-AFB1) coated on the wells of microplate in binding to the HRP-labeled aptamer probe. HRP attached on BSA-AFB1 in the wells catalyzed the conversion of substrates into products, allowing the final detection of AFB1 through measurement of the generated products. When TMB (3,3',5,5'-tetramethylbenzidine dihydrochloride) was used as substrate, absorbance analysis of the product of enzyme reaction enabled the detection of AFB1 at 0.2nM. We further lowered the detection limit of AFB1 to 0.01nM through chemiluminescence analysis by using chemiluminescence substrate of HRP. This assay enabled the detection of AFB1 in complex sample matrix, such as diluted white wine and maize flour. This assay provides a simple, sensitive and rapid method for AFB1 determination. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Electrochemical aptasensor for highly sensitive determination of cocaine using a supramolecular aptamer and rolling circle amplification

    International Nuclear Information System (INIS)

    Shen, Bo; Yan, Yurong; Tang, Renkuan; Li, Yongguo; Li, Jianbo; Cheng, Wei; Ju, Huangxian; Ding, Shijia

    2015-01-01

    We report on a novel strategy for the electrochemical detection of cocaine. It is based on the use of a supramolecular aptamer, rolling circle amplification (RCA), and multiplex binding of a biotin-strepavidin system. The aptamer fragments were assembled to a supramolecular aptamer which, in the presence of cocaine, conjugates to streptavidin for anchoring of biotinylated circular DNA. This initiates RCA and enables sensitive electrochemical-enzymatic readout. A significant signal amplification was obtained by using streptavidin linked to alkaline phosphatase that binds to the remaining biotinylated detection probes and catalyzes the hydrolysis of the synthetic enzyme substrate α-naphthylphosphate. This dual amplification strategy tremendously increases the detection limit of the aptasensor. Under optimal conditions and using differential pulse voltammetry, cocaine can be detected in the concentration range between 2 and 500 nM with a detection limit as low as 1.3 nM (at S/N = 3). The method is specific and acceptably reproducible. It was successfully applied to the detection of cocaine in (spiked) urine samples. The data were in good agreement with those obtained by the GC-MS reference method. (author)

  3. Localization of Bacillus thuringiensis Cry1A toxin-binding molecules in gypsy moth larval gut sections using fluorescence microscopy

    Science.gov (United States)

    Algimantas P. Valaitis

    2011-01-01

    The microbial insecticide Bacillus thuringiensis (Bt) produces Cry toxins, proteins that bind to the brush border membranes of gut epithelial cells of insects that ingest it, disrupting the integrity of the membranes, and leading to cell lysis and insect death. In gypsy moth, Lymantria dispar, two toxin-binding molecules for the...

  4. An RNA aptamer specific to Hsp70-ATP conformation inhibits its ATPase activity independent of Hsp40.

    Science.gov (United States)

    Thirunavukarasu, Deepak; Shi, Hua

    2015-04-01

    The highly conserved and ubiquitous molecular chaperone heat shock protein 70 (Hsp70) plays a critical role in protein homeostasis (proteostasis). Controlled by its ATPase activity, Hsp70 cycles between two conformations, Hsp70-ATP and Hsp70-ADP, to bind and release its substrate. Chemical tools with distinct modes of action, especially those capable of modulating the ATPase activity of Hsp70, are being actively sought after in the mechanistic dissection of this system. Here, we report a conformation-specific RNA aptamer that binds only to Hsp70-ATP but not to Hsp70-ADP. We have refined this aptamer and demonstrated its inhibitory effect on Hsp70's ATPase activity. We have also shown that this inhibitory effect on Hsp70 is independent of its interaction with the Hsp40 co-chaperone. As Hsp70 is increasingly being recognized as a drug target in a number of age related diseases such as neurodegenerative, protein misfolding diseases and cancer, this aptamer is potentially useful in therapeutic applications. Moreover, this work also demonstrates the feasibility of using aptamers to target ATPase activity as a general therapeutic strategy.

  5. Prospects in the use of aptamers for characterizing the structure and stability of bioactive proteins and peptides in food.

    Science.gov (United States)

    Agyei, Dominic; Acquah, Caleb; Tan, Kei Xian; Hii, Hieng Kok; Rajendran, Subin R C K; Udenigwe, Chibuike C; Danquah, Michael K

    2018-01-01

    Food-derived bioactive proteins and peptides have gained acceptance among researchers, food manufacturers and consumers as health-enhancing functional food components that also serve as natural alternatives for disease prevention and/or management. Bioactivity in food proteins and peptides is determined by their conformations and binding characteristics, which in turn depend on their primary and secondary structures. To maintain their bioactivities, the molecular integrity of bioactive peptides must remain intact, and this warrants the study of peptide form and structure, ideally with robust, highly specific and sensitive techniques. Short single-stranded nucleic acids (i.e. aptamers) are known to have high affinity for cognate targets such as proteins and peptides. Aptamers can be produced cost-effectively and chemically derivatized to increase their stability and shelf life. Their improved binding characteristics and minimal modification of the target molecular signature suggests their suitability for real-time detection of conformational changes in both proteins and peptides. This review discusses the developmental progress of systematic evolution of ligands by exponential enrichment (SELEX), an iterative technology for generating cost-effective aptamers with low dissociation constants (K d ) for monitoring the form and structure of bioactive proteins and peptides. The review also presents case studies of this technique in monitoring the structural stability of bioactive peptide formulations to encourage applications in functional foods. The challenges and potential of aptamers in this research field are also discussed. Graphical abstract Advancing bioactive proteins and peptide functionality via aptameric ligands.

  6. NeutrAvidin Functionalization of CdSe/CdS Quantum Nanorods and Quantification of Biotin Binding Sites using Biotin-4-Fluorescein Fluorescence Quenching.

    Science.gov (United States)

    Lippert, Lisa G; Hallock, Jeffrey T; Dadosh, Tali; Diroll, Benjamin T; Murray, Christopher B; Goldman, Yale E

    2016-03-16

    We developed methods to solubilize, coat, and functionalize with NeutrAvidin elongated semiconductor nanocrystals (quantum nanorods, QRs) for use in single molecule polarized fluorescence microscopy. Three different ligands were compared with regard to efficacy for attaching NeutrAvidin using the "zero-length cross-linker" 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC). Biotin-4-fluorescene (B4F), a fluorophore that is quenched when bound to avidin proteins, was used to quantify biotin binding activity of the NeutrAvidin coated QRs and biotin binding activity of commercially available streptavidin coated quantum dots (QDs). All three coating methods produced QRs with NeutrAvidin coating density comparable to the streptavidin coating density of the commercially available quantum dots (QDs) in the B4F assay. One type of QD available from the supplier (ITK QDs) exhibited ∼5-fold higher streptavidin surface density compared to our QRs, whereas the other type of QD (PEG QDs) had 5-fold lower density. The number of streptavidins per QD increased from ∼7 streptavidin tetramers for the smallest QDs emitting fluorescence at 525 nm (QD525) to ∼20 tetramers for larger, longer wavelength QDs (QD655, QD705, and QD800). QRs coated with NeutrAvidin using mercaptoundecanoicacid (MUA) and QDs coated with streptavidin bound to biotinylated cytoplasmic dynein in single molecule TIRF microscopy assays, whereas Poly(maleic anhydride-alt-1-ocatdecene) (PMAOD) or glutathione (GSH) QRs did not bind cytoplasmic dynein. The coating methods require optimization of conditions and concentrations to balance between substantial NeutrAvidin binding vs tendency of QRs to aggregate and degrade over time.

  7. Nucleic Acid Aptamers as Novel Class of Therapeutics to Mitigate Alzheimer's Disease Pathology

    DEFF Research Database (Denmark)

    K. Tannenberg, Rudi; Al. Shamaileh, Hadi; Lauridsen, Lasse Holm

    2013-01-01

    Deposition of amyloid-beta (A beta) peptides in the brain is a central event in the pathogenesis of Alzheimer's disease (AD), which makes A beta peptides a crucial target for therapeutic intervention. Significant efforts have been made towards the development of ligands that bind to A beta peptid......-40) and A beta(1-42)), fibrils and plaques have a great potential for diagnostic applications and the treatment of AD. Herein, we review the aptamers that bind to the various forms of A beta peptides for use in diagnosis and to inhibit plaque formation....

  8. Binding of Coumarin 334 with β-Cyclodextrin and with C-Hexylpyrogallol[4]arene: Opposite Fluorescence Behavior

    Directory of Open Access Journals (Sweden)

    Chandrasekaran Sowrirajan

    2013-01-01

    Full Text Available We report here the structure of the host-guest complexes of Coumarin 334 (C334 with β-cyclodextrin (β-CD and with C-hexylpyrogallol[4]arene (C-HPA and the effect of acidity on the neutral-cation equilibrium of C334 in water and in the presence of the host molecules. The structures of the host-guest complexes are proposed on the basis of the change of fluorescence on the addition of β-CD or C-HPA to C334 and by 2D ROESY spectroscopy. Opposite fluorescence behaviors, that is, quenching of fluorescence in β-CD and enhancement of fluorescence in C-HPA are observed. Time-resolved fluorescence analysis is done for the complexation, and biexponential decay pattern is observed. The possible strong inclusion complexation with C-HPA is explained. The ground and the excited state pKa values for the protonation equilibrium of C334 in water and the difficulty of protonation in the presence of the host molecules are discussed.

  9. Fluorescence life-time imaging and steady state polarization for examining binding of fluorophores to gold nanoparticles.

    Science.gov (United States)

    Schwartz, Shmulik; Fixler, Dror; Popovtzer, Rachela; Shefi, Orit

    2015-11-01

    Nanocomposites as multifunctional agents are capable of combing imaging and cell biology technologies. The conventional methods used for validation of the conjugation process of nanoparticles (NPs) to fluorescent molecules such as spectroscopy analysis and surface potential measurements, are not sufficient. In this paper we present a new and highly sensitive procedure that uses the combination of (1) fluorescence spectrum, (2) fluorescence lifetime, and (3) steady state fluorescence polarization measurements. We characterize and analyze gold NPs with Lucifer yellow (LY) surface coating as a model. We demonstrate the ability to differentiate between LY-GNP (the conjugated complex) and a mixture of coated NP and free dyes. We suggest the approach for neuroscience applications where LY is used for detecting and labeling cells, studying morphology and intracellular communications. Histograms of Fluorescence lifetime imaging (FLIM) of free LY dye (Left) in comparison to the conjugated dye to gold nanoparticles, LY-GNP (Middle) enable the differentiation between LY-GNP (the conjugated complex) and a mixture of coated NP and free dyes (Right). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Comparison of classifications of aptamers against Vibrio ...

    African Journals Online (AJOL)

    ELO

    2012-01-05

    Jan 5, 2012 ... research on selection of aptamers against pathogens. MATERIALS AND .... actually stem from the variations in the middle sequences, it is essential to ... loops that are connected by double strand DNA, so the two loops are in ...

  11. Diagnosis of active TB using aptamers

    CSIR Research Space (South Africa)

    Khati, M

    2013-08-01

    Full Text Available of the disease. We have shown in a proof-of-concept case-controlled study that the aptamer-based diagnostic tool was able to accurately detect all cases of active TB from sputum samples of patients, including smear-negative culture positive and samples from...

  12. A real-time control system of gene expression using ligand-bound nucleic acid aptamer for metabolic engineering.

    Science.gov (United States)

    Wang, Jing; Cui, Xun; Yang, Le; Zhang, Zhe; Lv, Liping; Wang, Haoyuan; Zhao, Zhenmin; Guan, Ningzi; Dong, Lichun; Chen, Rachel

    2017-07-01

    Artificial control of bio-functions through regulating gene expression is one of the most important and attractive technologies to build novel living systems that are useful in the areas of chemical synthesis, nanotechnology, pharmacology, cell biology. Here, we present a novel real-time control system of gene regulation that includes an enhancement element by introducing duplex DNA aptamers upstream promoter and a repression element by introducing a RNA aptamer upstream ribosome binding site. With the presence of ligands corresponding to the DNA aptamers, the expression of the target gene can be potentially enhanced at the transcriptional level by strengthening the recognition capability of RNAP to the recognition region and speeding up the separation efficiency of the unwinding region due to the induced DNA bubble around the thrombin-bound aptamers; while with the presence of RNA aptamer ligand, the gene expression can be repressed at the translational level by weakening the recognition capability of ribosome to RBS due to the shielding of RBS by the formed aptamer-ligand complex upstream RBS. The effectiveness and potential utility of the developed gene regulation system were demonstrated by regulating the expression of ecaA gene in the cell-free systems. The realistic metabolic engineering application of the system has also tested by regulating the expression of mgtC gene and thrombin cDNA in Escherichia coli JD1021 for controlling metabolic flux and improving thrombin production, verifying that the real-time control system of gene regulation is able to realize the dynamic regulation of gene expression with potential applications in bacterial physiology studies and metabolic engineering. Copyright © 2017. Published by Elsevier Inc.

  13. Aptamer Recognition Induced Target-Bridged Strategy for Proteins Detection Based on Magnetic Chitosan and Silver/Chitosan Nanoparticles Using Surface-Enhanced Raman Spectroscopy.

    Science.gov (United States)

    He, Jincan; Li, Gongke; Hu, Yuling

    2015-11-03

    Poor selectivity and biocompability remain problems in applying surface-enhanced Raman spectroscopy (SERS) for direct detection of proteins due to similar spectra of most proteins and overlapping Raman bands in complex mixtures. To solve these problems, an aptamer recognition induced target-bridged strategy based on magnetic chitosan (MCS) and silver/chitosan nanoparticles (Ag@CS NPs) using SERS was developed for detection of protein benefiting from specific affinity of aptamers and biocompatibility of chitosan (CS). In this process, one aptamer (or antibody) modified MCS worked as capture probes through the affinity binding site of protein. The other aptamer modified Raman report molecules encapsulated Ag@CS NPs were used as SERS sensing probes based on the other binding site of protein. The sandwich complexes of aptamer (antibody)/protein/aptamer were separated easily with a magnet from biological samples, and the concentration of protein was indirectly reflected by the intensity variation of SERS signal of Raman report molecules. To explore the universality of the strategy, three different kinds of proteins including thrombin, platelet derived growth factor BB (PDGF BB) and immunoglobulin E (lgE) were investigated. The major advantages of this aptamer recognition induced target-bridged strategy are convenient operation with a magnet, stable signal expressing resulting from preventing loss of report molecules with the help of CS shell, and the avoidance of slow diffusion-limited kinetics problems occurring on a solid substrate. To demonstrate the feasibility of the proposed strategy, the method was applied to detection of PDGF BB in clinical samples. The limit of detection (LOD) of PDGF BB was estimated to be 3.2 pg/mL. The results obtained from human serum of healthy persons and cancer patients using the proposed strategy showed good agreement with that of the ELISA method but with wider linear range, more convenient operation, and lower cost. The proposed

  14. Microimaging of Bacillus thuringiensis Toxin-binding proteins in gypsy moth larval gut using confocal fluorescence microscopy

    Science.gov (United States)

    Daniel J. Krofcheck; Algimantas P. Valaitis

    2010-01-01

    After ingestion by susceptible insect larvae, Bacillus thuringiensis (Bt) insecticidal proteins bind to the brush border membranes of gut epithelial cells and disrupt the integrity of the plasma membrane by forming...

  15. Bitistatin-functionalized fluorescent nanodiamond particles specifically bind to purified human platelet integrin receptor αIIbβ3 and activated platelets

    Directory of Open Access Journals (Sweden)

    Marcinkiewicz C

    2017-05-01

    Full Text Available Cezary Marcinkiewicz,1,2 Jonathan A Gerstenhaber,1 Mark Sternberg,2 Peter I Lelkes,1 Giora Feuerstein1,2 1Department of Bioengineering, College of Engineering, Temple University, Philadelphia, 2Debina Diagnostic, Inc., Newton Square, PA, USA Abstract: Thromboembolic events (TEE underwrite key causes of death in developed countries. While advanced imaging technologies such as computed tomography scans serve to diagnose blood clots during acute cardiovascular events, no such technology is available in routine primary care for TEE risk assessment. Here, we describe an imaging platform technology based on bioengineered fluorescent nanodiamond particles (F-NDPs functionalized with bitistatin (Bit, a disintegrin that specifically binds to the αIIbβ3 integrin, platelet fibrinogen receptor (PFR on activated platelets. Covalent linkage of purified Bit to F-NDP was concentration-dependent and saturable, as validated by enzyme-linked immunosorbent assay using specific anti-Bit antibodies. F-NDP–Bit interacted with purified PFR, either in immobilized or soluble form. Lotrafiban, a nonpeptide, αIIbβ3 receptor antagonist, specifically blocked F-NDP–Bit–PFR complex formation. Moreover, F-NDP–Bit specifically binds to activated platelets incorporated into a clot generated by thrombin-activated rat platelet-rich plasma (PRP. Our results suggest that engineered F-NDP–Bit particles could serve as noninvasive, “real-time” optical diagnostics for clots present in blood vessels. Keywords: carbon nanoparticles, blood clots, imaging, platelet fibrinogen receptor, fluorescence, disintegrin, thromboembolic complications, thrombosis

  16. Detection of Copper (II) and Cadmium (II) binding to dissolved organic matter from macrophyte decomposition by fluorescence excitation-emission matrix spectra combined with parallel factor analysis

    International Nuclear Information System (INIS)

    Yuan, Dong-hai; Guo, Xu-jing; Wen, Li; He, Lian-sheng; Wang, Jing-gang; Li, Jun-qi

    2015-01-01

    Fluorescence excitation-emission matrix (EEM) spectra coupled with parallel factor analysis (PARAFAC) was used to characterize dissolved organic matter (DOM) derived from macrophyte decomposition, and to study its complexation with Cu (II) and Cd (II). Both the protein-like and the humic-like components showed a marked quenching effect by Cu (II). Negligible quenching effects were found for Cd (II) by components 1, 5 and 6. The stability constants and the fraction of the binding fluorophores for humic-like components and Cu (II) can be influenced by macrophyte decomposition of various weight gradients in aquatic plants. Macrophyte decomposition within the scope of the appropriate aquatic phytomass can maximize the stability constant of DOM-metal complexes. A large amount of organic matter was introduced into the aquatic environment by macrophyte decomposition, suggesting that the potential risk of DOM as a carrier of heavy metal contamination in macrophytic lakes should not be ignored. - Highlights: • Macrophyte decomposition increases fluorescent DOM components in the upper sediment. • Protein-like components are quenched or enhanced by adding Cu (II) and Cd (II). • Macrophyte decomposition DOM can impact the affinity of Cu (II) and Cd (II). • The log K M and f values showed a marked change due to macrophyte decomposition. • Macrophyte decomposition can maximize the stability constant of DOM-Cu (II) complexes. - Macrophyte decomposition DOM can influence on the binding affinity of metal ions in macrophytic lakes

  17. Crystallization and preliminary X-ray diffraction studies of an RNA aptamer in complex with the human IgG Fc fragment

    International Nuclear Information System (INIS)

    Sugiyama, Shigeru; Nomura, Yusuke; Sakamoto, Taiichi; Kitatani, Tomoya; Kobayashi, Asako; Miyakawa, Shin; Takahashi, Yoshinori; Adachi, Hiroaki; Takano, Kazufumi; Murakami, Satoshi; Inoue, Tsuyoshi; Mori, Yusuke; Nakamura, Yoshikazu; Matsumura, Hiroyoshi

    2008-01-01

    An RNA aptamer in complex with the human IgG Fc fragment have been crystallized. The stirring technique with a rotary shaker was used to improve the crystals and to ensure that they were of high quality and single, resulting in crystals that diffracted to 2.2 Å resolution. Aptamers, which are folded DNA or RNA molecules, bind to target molecules with high affinity and specificity. An RNA aptamer specific for the Fc fragment of human immunoglobulin G (IgG) has recently been identified and it has been demonstrated that an optimized 24-nucleotide RNA aptamer binds to the Fc fragment of human IgG and not to other species. In order to clarify the structural basis of the high specificity of the RNA aptamer, it was crystallized in complex with the Fc fragment of human IgG1. Preliminary X-ray diffraction studies revealed that the crystals belonged to the orthorhombic space group P2 1 2 1 2, with unit-cell parameters a = 83.7, b = 107.2, c = 79.0 Å. A data set has been collected to 2.2 Å resolution

  18. Development of a carbazole-based fluorescence probe for G-quadruplex DNA: The importance of side-group effect on binding specificity

    Science.gov (United States)

    Wang, Ming-Qi; Ren, Gui-Ying; Zhao, Shuang; Lian, Guang-Chang; Chen, Ting-Ting; Ci, Yang; Li, Hong-Yao

    2018-06-01

    G-quadruplex DNAs are highly prevalent in the human genome and involved in many important biological processes. However, many aspects of their biological mechanism and significance still need to be elucidated. Therefore, the development of fluorescent probes for G-quadruplex detection is important for the basic research. We report here on the development of small molecular dyes designed on the basis of carbazole scaffold by introducing styrene-like substituents at its 9-position, for the purpose of G-quadruplex recognition. Results revealed that the side group on the carbazole scaffold was very important for their ability to selectively recognize G-quadruplex DNA structures. 1a with the pyridine side group displayed excellent fluorescence signal turn-on property for the specific discrimination of G-quadruplex DNAs against other nucleic acids. The characteristics of 1a were further investigated with UV-vis spectrophotometry, fluorescence, circular dichroism, FID assay and molecular docking to validate the selectivity, sensitivity and detailed binding mode toward G-quadruplex DNAs.

  19. The cmc-value of a bolalipid with two phosphocholine headgroups and a C24 alkyl chain: Unusual binding properties of fluorescence probes to bolalipid aggregates.

    Science.gov (United States)

    Kordts, Martin; Kerth, Andreas; Drescher, Simon; Ott, Maria; Blume, Alfred

    2017-09-01

    Bolalipids with a long alkyl chain and two phosphocholine polar groups self-assemble in water into two different types of aggregate structures, namely helical nanofibers at low temperature and two types of micellar aggregates at higher temperature. We tried to determine the critical aggregation concentration (cac) or critical micellar concentration (cmc) of the bolalipid tetracosane-1,24-bis(phosphocholine) (PC-C24-PC) by using different fluorescent probes. The use of pyrene or pyrene derivatives as fluorophores failed, whereas the probes 1,8-ANS and particularly bis-ANS gave consistent results. The structure of the bolalipid aggregates obviously hinders partitioning or binding of pyrene derivatives into the micellar interior, whereas 1,8-ANS and bis-ANS can bind to the surface of the aggregate structures. The observed large increase in fluorescence intensity of bis-ANS indicates that binding to the hydrophobic surface of the aggregates leads to a reduction of the dye mobility. However, binding of bis-ANS is relatively weak, so that the determination of a cac/cmc-value is difficult. Simulations of the intensity curves for PC-C24-PC lead to estimates of the cac/cmc-value of 0.3-1.0×10 -6 M, depending on the structure of the aggregates. Single molecule fluorescence correlation spectroscopy was used to determine the mobility of bis-ANS as a function of concentration of PC-C24-PC. The dye diffusion time and the molecular brightness are lower at low bolalipid concentration, when only free dye is present, and increase at higher concentration when bis-ANS is bound to the aggregates. The experimental cac/cmc-values are higher than those estimated, using an incremental method for the change in Gibbs free energy for micellization with n-alkyl-phosphocholines with only one polar group as a comparison. Apparently, for PC-C24-PC in micellar or fibrous aggregates, more CH 2 groups are exposed to water than in a conventional micelle of an n-alkyl-phosphocholine. Copyright

  20. Distinction between infection and inflammation by a {sup 99m}Tc-labeled anti (1→3) – β - D - glucans aptamer

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, Camila M.S.; Ferreira, Ieda M.; Andrade, S.R., E-mail: cmslacerda@gmail.com.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Barros, Andre L.B.; Fernandes, Simone O.A.; Cardoso, Valbert N., E-mail: valbertcardoso@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Faculdade de Farmacia. Departamento de Analises Clinicas e Toxicologicas

    2015-07-01

    The difficulty in the early diagnosis of infectious foci, whether caused by fungus or bacteria has raised the need to research new methods for this purpose. The distinction between inflammation and infection as well as the pathogen identification in cases of infection are of great relevance to decision-making in therapy and follow-up treatments. The aim of this study was to evaluate the anti (1→3) – β - D - glucans aptamer Seq6, labeled with {sup 99m}Tc , to distinguish between infection and inflammation. Firstly, in vitro studies were carried out by labeling the aptamer with {sup 32}P to evaluate its binding capacity for (1→3) – β - D - glucans (main fungal cell wall polysaccharide), peptidoglycan (polysaccharide of bacterial cell wall) and also for Candida albicans and Staphylococcus aureus cells. The aptamers were labeled with {sup 99m}Tc by the direct labeling method. The stability of the {sup 99m}Tc -labeled aptamer was evaluated in saline, plasma, and cysteine excess. The biodistribution studies were approved by the Ethics Committee for Animal Experimentation of the Federal University of Minas Gerais (CETEA/UFMG), protocol. 143/2013. The aptamer labeled with {sup 99m}Tc was intravenously administered in three groups (n=6) of male Swiss mice (weight: 25-30g): infected with S. aureus or C. albicans, or with experimental inflammation induced by zymosan. The {sup 32}P aptamer showed high binding affinity for beta-glucan and peptidoglycan. Binding to C. albicans and S. aureus cells also occurred. The radiolabel yield for the aptamer labeling with {sup 99m}Tc was higher than 90%. Stability tests in saline, plasma and excess of cysteine provided satisfactory results, since no significant variation in the radiolabel yield percentage was verified up to 24 hours, even increasing the cysteine concentration. In the biodistribution studies was analyzed the radiolabeled aptamer uptake by the animal infected thigh relative to the uninfected one. The animals

  1. Distinction between infection and inflammation by a 99mTc-labeled anti (1→3) – β - D - glucans aptamer

    International Nuclear Information System (INIS)

    Lacerda, Camila M.S.; Ferreira, Ieda M.; Andrade, S.R.; Barros, Andre L.B.; Fernandes, Simone O.A.; Cardoso, Valbert N.

    2015-01-01

    The difficulty in the early diagnosis of infectious foci, whether caused by fungus or bacteria has raised the need to research new methods for this purpose. The distinction between inflammation and infection as well as the pathogen identification in cases of infection are of great relevance to decision-making in therapy and follow-up treatments. The aim of this study was to evaluate the anti (1→3) – β - D - glucans aptamer Seq6, labeled with 99m Tc , to distinguish between infection and inflammation. Firstly, in vitro studies were carried out by labeling the aptamer with 32 P to evaluate its binding capacity for (1→3) – β - D - glucans (main fungal cell wall polysaccharide), peptidoglycan (polysaccharide of bacterial cell wall) and also for Candida albicans and Staphylococcus aureus cells. The aptamers were labeled with 99m Tc by the direct labeling method. The stability of the 99m Tc -labeled aptamer was evaluated in saline, plasma, and cysteine excess. The biodistribution studies were approved by the Ethics Committee for Animal Experimentation of the Federal University of Minas Gerais (CETEA/UFMG), protocol. 143/2013. The aptamer labeled with 99m Tc was intravenously administered in three groups (n=6) of male Swiss mice (weight: 25-30g): infected with S. aureus or C. albicans, or with experimental inflammation induced by zymosan. The 32 P aptamer showed high binding affinity for beta-glucan and peptidoglycan. Binding to C. albicans and S. aureus cells also occurred. The radiolabel yield for the aptamer labeling with 99m Tc was higher than 90%. Stability tests in saline, plasma and excess of cysteine provided satisfactory results, since no significant variation in the radiolabel yield percentage was verified up to 24 hours, even increasing the cysteine concentration. In the biodistribution studies was analyzed the radiolabeled aptamer uptake by the animal infected thigh relative to the uninfected one. The animals infected with C. albicans presented a

  2. Interaction analysis of chimeric metal-binding green fluorescent protein and artificial solid-supported lipid membrane by quartz crystal microbalance and atomic force microscopy

    International Nuclear Information System (INIS)

    Prachayasittikul, Virapong; Na Ayudhya, Chartchalerm Isarankura; Hilterhaus, Lutz; Hinz, Andreas; Tantimongcolwat, Tanawut; Galla, Hans-Joachim

    2005-01-01

    Non-specific adsorption and specific interaction between a chimeric green fluorescent protein (GFP) carrying metal-binding region and the immobilized zinc ions on artificial solid-supported lipid membranes was investigated using the quartz crystal microbalance technique and the atomic force microscopy (AFM). Supported lipid bilayer, composed of octanethiol and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1,2-dioleoyl-sn-glycero-3-[N- (5-amino-1-carboxypentyl iminodiacetic acid)succinyl] (NTA-DOGS)-Zn 2+ , was formed on the gold electrode of quartz resonator (5 MHz). Binding of the chimeric GFP to zinc ions resulted in a rapid decrease of resonance frequency. Reversibility of the process was demonstrated via the removal of metal ions by EDTA. Nanoscale structural orientation of the chimeric GFP on the membrane was imaged by AFM. Association constant of the specific binding to metal ions was 2- to 3-fold higher than that of the non-specific adsorption, which was caused by the fluidization effect of the metal-chelating lipid molecules as well as the steric hindrance effect. This infers a possibility for a further development of biofunctionalized membrane. However, maximization is needed in order to attain closer advancement to a membrane-based sensor device

  3. Comparison of a preQ1 riboswitch aptamer in metabolite-bound and free states with implications for gene regulation.

    Science.gov (United States)

    Jenkins, Jermaine L; Krucinska, Jolanta; McCarty, Reid M; Bandarian, Vahe; Wedekind, Joseph E

    2011-07-15

    Riboswitches are RNA regulatory elements that govern gene expression by recognition of small molecule ligands via a high affinity aptamer domain. Molecular recognition can lead to active or attenuated gene expression states by controlling accessibility to mRNA signals necessary for transcription or translation. Key areas of inquiry focus on how an aptamer attains specificity for its effector, the extent to which the aptamer folds prior to encountering its ligand, and how ligand binding alters expression signal accessibility. Here we present crystal structures of the preQ(1) riboswitch from Thermoanaerobacter tengcongensis in the preQ(1)-bound and free states. Although the mode of preQ(1) recognition is similar to that observed for preQ(0), surface plasmon resonance revealed an apparent K(D) of 2.1 ± 0.3 nm for preQ(1) but a value of 35.1 ± 6.1 nm for preQ(0). This difference can be accounted for by interactions between the preQ(1) methylamine and base G5 of the aptamer. To explore conformational states in the absence of metabolite, the free-state aptamer structure was determined. A14 from the ceiling of the ligand pocket shifts into the preQ(1)-binding site, resulting in "closed" access to the metabolite while simultaneously increasing exposure of the ribosome-binding site. Solution scattering data suggest that the free-state aptamer is compact, but the "closed" free-state crystal structure is inadequate to describe the solution scattering data. These observations are distinct from transcriptional preQ(1) riboswitches of the same class that exhibit strictly ligand-dependent folding. Implications for gene regulation are discussed.

  4. STAT3 Gene Silencing by Aptamer-siRNA Chimera as Selective Therapeutic for Glioblastoma

    Directory of Open Access Journals (Sweden)

    Carla Lucia Esposito

    2018-03-01

    Full Text Available Glioblastoma (GBM is the most frequent and aggressive primary brain tumor in adults, and despite advances in neuro-oncology, the prognosis for patients remains dismal. The signal transducer and activator of transcription-3 (STAT3 has been reported as a key regulator of the highly aggressive mesenchymal GBM subtype, and its direct silencing (by RNAi oligonucleotides has revealed a great potential as an anti-cancer therapy. However, clinical use of oligonucleotide-based therapies is dependent on safer ways for tissue-specific targeting and increased membrane penetration. The objective of this study is to explore the use of nucleic acid aptamers as carriers to specifically drive a STAT3 siRNA to GBM cells in a receptor-dependent manner. Using an aptamer that binds to and antagonizes the oncogenic receptor tyrosine kinase PDGFRβ (Gint4.T, here we describe the design of a novel aptamer-siRNA chimera (Gint4.T-STAT3 to target STAT3. We demonstrate the efficient delivery and silencing of STAT3 in PDGFRβ+ GBM cells. Importantly, the conjugate reduces cell viability and migration in vitro and inhibits tumor growth and angiogenesis in vivo in a subcutaneous xenograft mouse model. Our data reveals Gint4.T-STAT3 conjugate as a novel molecule with great translational potential for GBM therapy.

  5. Capture, isolation and release of cancer cells with aptamer-functionalized glass bead array.

    Science.gov (United States)

    Wan, Yuan; Liu, Yaling; Allen, Peter B; Asghar, Waseem; Mahmood, M Arif Iftakher; Tan, Jifu; Duhon, Holli; Kim, Young-tae; Ellington, Andrew D; Iqbal, Samir M

    2012-11-21

    Early detection and isolation of circulating tumor cells (CTC) can enable better prognosis for cancer patients. A Hele-Shaw device with aptamer functionalized glass beads is designed, modeled, and fabricated to efficiently isolate cancer cells from a cellular mixture. The glass beads are functionalized with anti-epidermal growth factor receptor (EGFR) aptamer and sit in ordered array of pits in polydimethylsiloxane (PDMS) channel. A PDMS encapsulation is then used to cover the channel and to flow through cell solution. The beads capture cancer cells from flowing solution depicting high selectivity. The cell-bound glass beads are then re-s