WorldWideScience

Sample records for fluorescence subtraction imaging

  1. Comparison of iodine K-edge subtraction and fluorescence subtraction imaging in an animal system

    International Nuclear Information System (INIS)

    Zhang, H.; Zhu, Y.; Bewer, B.; Zhang, L.; Korbas, M.; Pickering, I.J.; George, G.N.; Gupta, M.; Chapman, D.

    2008-01-01

    K-Edge Subtraction (KES) utilizes the discontinuity in the X-ray absorption across the absorption edge of the selected contrast element and creates an image of the projected density of the contrast element from two images acquired just above and below the K-edge of the contrast element. KES has proved to be powerful in coronary angiography, micro-angiography, bronchography, and lymphatic imaging. X-ray fluorescence imaging is a successful technique for the detection of dilute quantities of elements in specimens. However, its application at high X-ray energies (e.g. at the iodine K-edge) is complicated by significant Compton background, which may enter the energy window set for the contrast material's fluorescent X-rays. Inspired by KES, Fluorescence Subtraction Imaging (FSI) is a technique for high-energy (>20 keV) fluorescence imaging using two different incident beam energies just above and below the absorption edge of a contrast element (e.g. iodine). The below-edge image can be assumed as a 'background' image, which includes Compton scatter and fluorescence from other elements. The above-edge image will contain nearly identical spectral content as the below-edge image but will contain the additional fluorescence of the contrast element. This imaging method is especially promising with thick objects with dilute contrast materials, significant Compton background, and/or competing fluorescence lines from other materials. A quality factor is developed to facilitate the comparison. The theoretical value of the quality factor sets the upper limit that an imaging method can achieve when the noise is Poisson limited. The measured value of this factor makes two or more imaging methods comparable. Using the Hard X-ray Micro-Analysis (HXMA) beamline at the Canadian Light Source (CLS), the techniques of FSI and KES were critically compared, with reference to radiation dose, image acquisition time, resolution, signal-to-noise ratios, and quality factor

  2. Fluorescence background subtraction technique for hybrid fluorescence molecular tomography/x-ray computed tomography imaging of a mouse model of early stage lung cancer.

    Science.gov (United States)

    Ale, Angelique; Ermolayev, Vladimir; Deliolanis, Nikolaos C; Ntziachristos, Vasilis

    2013-05-01

    The ability to visualize early stage lung cancer is important in the study of biomarkers and targeting agents that could lead to earlier diagnosis. The recent development of hybrid free-space 360-deg fluorescence molecular tomography (FMT) and x-ray computed tomography (XCT) imaging yields a superior optical imaging modality for three-dimensional small animal fluorescence imaging over stand-alone optical systems. Imaging accuracy was improved by using XCT information in the fluorescence reconstruction method. Despite this progress, the detection sensitivity of targeted fluorescence agents remains limited by nonspecific background accumulation of the fluorochrome employed, which complicates early detection of murine cancers. Therefore we examine whether x-ray CT information and bulk fluorescence detection can be combined to increase detection sensitivity. Correspondingly, we research the performance of a data-driven fluorescence background estimator employed for subtraction of background fluorescence from acquisition data. Using mice containing known fluorochromes ex vivo, we demonstrate the reduction of background signals from reconstructed images and sensitivity improvements. Finally, by applying the method to in vivo data from K-ras transgenic mice developing lung cancer, we find small tumors at an early stage compared with reconstructions performed using raw data. We conclude with the benefits of employing fluorescence subtraction in hybrid FMT-XCT for early detection studies.

  3. A comparison of subtracted images from dental subtraction programs

    International Nuclear Information System (INIS)

    Han, Won Jeong

    2002-01-01

    To compare the standard deviation of gray levels on digital subtracted images obtained by different dental subtraction programs. Paired periapical films were taken at the lower premolar and molar areas of the phantoms involving human mandible. The bite registration group used Rinn XCP equipment and bite registration material, based on polyvinyl siloxane, for standardization. The no bite registration group used only Rinn XCP equipment. The periapical film images were digitized at 1200 dpi resolution and 256 gray levels by a flat bed scanner with transparency unit. Dental digital subtraction programs used for this study were Subtractor (Biomedisys Co., Korea) and Emago (Oral Diagnostic Systems, The Netherlands). To measure the similarities between the subtracted images, the standard deviations of the gray levels were obtained using a histogram of subtracted images, which were then analyzed statistically. Subtracted images obtained by using the Emago program without manual selection of corresponding points showed the lowest standard deviation of gray levels (p<0.01). And the standard deviation of gray levels was lower in subtracted images in the group of a bite registration than in the group of no use of bite registration (p<0.01). Digital radiographic subtraction without manual selection of reference points was found to be a convenient and superior method.

  4. A Wide-Field Fluorescence Microscope Extension for Ultrafast Screening of One-Bead One-Compound Libraries Using a Spectral Image Subtraction Approach.

    Science.gov (United States)

    Heusermann, Wolf; Ludin, Beat; Pham, Nhan T; Auer, Manfred; Weidemann, Thomas; Hintersteiner, Martin

    2016-05-09

    The increasing involvement of academic institutions and biotech companies in drug discovery calls for cost-effective methods to identify new bioactive molecules. Affinity-based on-bead screening of combinatorial one-bead one-compound libraries combines a split-mix synthesis design with a simple protein binding assay operating directly at the bead matrix. However, one bottleneck for academic scale on-bead screening is the unavailability of a cheap, automated, and robust screening platform that still provides a quantitative signal related to the amount of target protein binding to individual beads for hit bead ranking. Wide-field fluorescence microscopy has long been considered unsuitable due to significant broad spectrum autofluorescence of the library beads in conjunction with low detection sensitivity. Herein, we demonstrate how such a standard microscope equipped with LED-based excitation and a modern CMOS camera can be successfully used for selecting hit beads. We show that the autofluorescence issue can be overcome by an optical image subtraction approach that yields excellent signal-to-noise ratios for the detection of bead-associated target proteins. A polymer capillary attached to a semiautomated bead-picking device allows the operator to efficiently isolate individual hit beads in less than 20 s. The system can be used for ultrafast screening of >200,000 bead-bound compounds in 1.5 h, thereby making high-throughput screening accessible to a wider group within the scientific community.

  5. X-ray image subtracting system

    International Nuclear Information System (INIS)

    Wesbey, W.H.; Keyes, G.S.; Georges, J.-P.J.

    1982-01-01

    An X-ray image subtracting system for making low contrast structures in the images more conspicuous is described. An X-ray source projects successive high and low energy X-ray beam pulses through a body and the resultant X-ray images are converted to optical images. Two image pick-up devices such as TV cameras that have synchronously operated shutters receive the alternate images and convert them to corresponding analog video signals. In some embodiments, the analog signals are converted to a matrix of digital pixel signals that are variously processed and subtracted and converted to signals for driving a TV monitor display and analog storage devices. In other embodiments the signals are processed and subtracted in analog form for display. The high and low energy pulses can follow each other immediately so good registration between subtracted images is obtainable even though the anatomy is in motion. The energy levels of the X-ray pulses are chosen to maximize the difference in attenuation between the anatomical structure which is to be subtracted out and that which remains. (author)

  6. Digital subtraction imaging in cardiac investigations

    International Nuclear Information System (INIS)

    Partridge, J.B.; Dickinson, D.F.

    1984-01-01

    The role of digital subtraction imaging (DSI) in the investigation of heart disease in patients of all ages, including neonates, was evaluated by the addition of a continuous fluoroscopy system to an existing, single-plane catheterisation laboratory. In some situations, DSI provided diagnostic images where conventional radiography could not and, in general, provided images of comparable quality to cineangiography. The total dose of contrast medium was usually less than that which would have been required for biplane cineangiography and the dose of radiation was always less. Digital subtraction imaging can make a significant contribution to the investigation of congenital heart disease and has some useful features in the study of acquired heart disease. (author)

  7. Subtracted versus non-subtracted digital imaging in peripheral angiography

    International Nuclear Information System (INIS)

    Fink, U.; Heywang, S.; Mayr, B.; Berger, H.

    1989-01-01

    Digital subtraction angiography (DSA) plays an important role in the management of vascular diseases of the lower extremities. A disadvantage is the lack of an automatically moving table top. We used a 1,024x1,024 matrix with a large-screen intensifier system and an automated 'stepping' facility. In 161 examinations of the arteries of the lower extremity digital peripheral arteriography was performed with and without the subtraction technique. We compared the influence of different iodine concentrations in DA and DSA. Peripheral DA proved to be equal to peripheral DSA in the region of the pelvis, thigh and knee, with no adequate contrasting being obtained merely in the region of the lower leg arteries in about 45%. It is necessary to use contrast medium at a concentration of 300 mg I/ml. The installation of an automated 'stepping' facility reduces the amount of contrast' medium needed and the exposure time. (orig.)

  8. Myocardial perfusion imaging by digital subtraction angiography

    International Nuclear Information System (INIS)

    Kadowaki, Hiroyuki; Ishikawa, Kinji; Ogai, Toshihiro; Katori, Ryo

    1986-01-01

    Several methods of digital subtraction angiography (DSA) were compared to determine which could better visualize regional myocardial perfusion using coronary angiography in seven patients with myocardial infarction, two with angina pectoris and five with normal coronary arteries. Satisfactory DSA was judged to be achieved if the shape of the heart on the mask film was identical to that on the live film and if both films were exactly superimposed. To obtain an identical mask film in the shape of each live film, both films were selected from the following three phases of the cardiac cycle; 1) at the R wave of the electrocardiogram, 2) 100 msec before the R wave, and 3) 200 msec before the R wave. The last two were superior for obtaining mask and live films which were similar in shape, because the cardiac motion in these phases was relatively small. Using these mask and live films, DSA was performed either with the continuous image mode (CI mode) or the time interval difference mode (TID mode). The overall perfusion of contrast medium through the artery to the vein was adequately visualized using the CI mode. Passage of contrast medium through the artery, capillary and vein was visualized at each phase using TID mode. Subtracted images were displayed and photographed, and the density of the contrast medium was adequate to display contour lines as in a relief map. Using this DSA, it was found that regional perfusion of the contrast medium was not always uniform in normal subjects, depending on the typography of the coronary artery. In all patients with anterior myocardial infarction, low perfusion was observed at the infarcted portion compared to the non-infarcted myocardium. In patients with inferior myocardial infarction, this low perfusion area was not observed because right coronary angiography was not subjected to DSA in this study. (J.P.N.)

  9. [Myocardial perfusion imaging by digital subtraction angiography].

    Science.gov (United States)

    Kadowaki, H; Ishikawa, K; Ogai, T; Katori, R

    1986-03-01

    Several methods of digital subtraction angiography (DSA) were compared to determine which could better visualize regional myocardial perfusion using coronary angiography in seven patients with myocardial infarction, two with angina pectoris and five with normal coronary arteries. Satisfactory DSA was judged to be achieved if the shape of the heart on the mask film was identical to that on the live film and if both films were exactly superimposed. To obtain an identical mask film in the shape of each live film, both films were selected from the following three phases of the cardiac cycle; at the R wave of the electrocardiogram, 100 msec before the R wave, and 200 msec before the R wave. The last two were superior for obtaining mask and live films which were similar in shape, because the cardiac motion in these phases was relatively small. Using these mask and live films, DSA was performed either with the continuous image mode (CI mode) or the time interval difference mode (TID mode). The overall perfusion of contrast medium through the artery to the vein was adequately visualized using the CI mode. Passage of contrast medium through the artery, capillary and vein was visualized at each phase using TID mode. Subtracted images were displayed and photographed, and the density of the contrast medium was adequate to display contour lines as in a relief map. Using this DSA, it was found that regional perfusion of the contrast medium was not always uniform in normal subjects, depending on the typography of the coronary artery.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Data analysis of x-ray fluorescence holography by subtracting normal component from inverse hologram

    International Nuclear Information System (INIS)

    Happo, Naohisa; Hayashi, Kouichi; Hosokawa, Shinya

    2010-01-01

    X-ray fluorescence holography (XFH) is a powerful technique for determining three-dimensional local atomic arrangements around a specific fluorescing element. However, the raw experimental hologram is predominantly a mixed hologram, i.e., a mixture of hologram generated in both normal and inverse modes, which produces unreliable atomic images. In this paper, we propose a practical subtraction method of the normal component from the inverse XFH data by a Fourier transform for the calculated hologram of a model ZnTe cluster. Many spots originating from the normal components could be properly removed using a mask function, and clear atomic images were reconstructed at adequate positions of the model cluster. This method was successfully applied to the analysis of experimental ZnTe single crystal XFH data. (author)

  11. A study of transverse image reconstruction with digital subtraction angiography

    International Nuclear Information System (INIS)

    Sakamoto, Kiyoshi; Kotoura, Noriko; Terasawa, Yuuji; Oda, Masahiko; Gotou, Hiroshi; Nasada, Toshiya; Tanooka, Masao

    1995-01-01

    For digital subtraction angiography (DSA) with C-type equipment, it is possible to radiate an X-ray during rotation and to collect data at different angular settings. We tried to reconstruct transverse image from data obtained by scanning DSA images at different angular settings. 88 projection data were obtained by rotating the object at 180deg during radiation. Reconstruction was made using the convolution method with pixel value distribution for each projection. Similarly, the image quality of the reconstructed images were compared with the unsubtracted and subtracted ones. In case a part object was outside the calculating region, artifacts were generally produced. However, the artifacts were reduced by subtracting the background from the image. In addition, the cupping phenomenon caused by beam hardening was relaxed and high-quality imaging could be achieved. This method will become even more effective, if we will use it with selective angiography in which the limited area is enhanced. (author)

  12. Subtraction and dynamic MR images of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Yoshitaka; Aoki, Manabu; Harada, Junta (Jikei Univ., Tokyo (Japan). School of Medicine)

    1993-04-01

    The purpose of this study was to evaluate the diagnostic effectiveness of subtraction and dynamic MR imaging in patients with breast masses. In 23 breast cancers and six fibroadenomas, spin echo T1 images were obtained at 0.2 Tesla before and every minute after intravenous injection of Gd-DTPA (0.1 or 0.2 mmol/kg). Subtraction images were obtained sequentially on the CRT monitor. All breast masses were enhanced after gadolinium and stood out as bright lesions on subtraction images. The tumor margin and its extension were more precisely evaluated on subtraction MR images than on conventional postcontrast MR images. Breast cancer showed a characteristic time-intensity curve with an early peak, in contrast to fibroadenoma, which showed a gradual increase in signal intensity. Subtraction MR imaging is a simple method for the evaluation of breast masses, and further, the time-intensity curve obtained by dynamic study is helpful in the differential diagnosis of lesions. (author).

  13. Appearance of the canine meninges in subtraction magnetic resonance images.

    Science.gov (United States)

    Lamb, Christopher R; Lam, Richard; Keenihan, Erin K; Frean, Stephen

    2014-01-01

    The canine meninges are not visible as discrete structures in noncontrast magnetic resonance (MR) images, and are incompletely visualized in T1-weighted, postgadolinium images, reportedly appearing as short, thin curvilinear segments with minimal enhancement. Subtraction imaging facilitates detection of enhancement of tissues, hence may increase the conspicuity of meninges. The aim of the present study was to describe qualitatively the appearance of canine meninges in subtraction MR images obtained using a dynamic technique. Images were reviewed of 10 consecutive dogs that had dynamic pre- and postgadolinium T1W imaging of the brain that was interpreted as normal, and had normal cerebrospinal fluid. Image-anatomic correlation was facilitated by dissection and histologic examination of two canine cadavers. Meningeal enhancement was relatively inconspicuous in postgadolinium T1-weighted images, but was clearly visible in subtraction images of all dogs. Enhancement was visible as faint, small-rounded foci compatible with vessels seen end on within the sulci, a series of larger rounded foci compatible with vessels of variable caliber on the dorsal aspect of the cerebral cortex, and a continuous thin zone of moderate enhancement around the brain. Superimposition of color-encoded subtraction images on pregadolinium T1- and T2-weighted images facilitated localization of the origin of enhancement, which appeared to be predominantly dural, with relatively few leptomeningeal structures visible. Dynamic subtraction MR imaging should be considered for inclusion in clinical brain MR protocols because of the possibility that its use may increase sensitivity for lesions affecting the meninges. © 2014 American College of Veterinary Radiology.

  14. Multispectral open-air intraoperative fluorescence imaging.

    Science.gov (United States)

    Behrooz, Ali; Waterman, Peter; Vasquez, Kristine O; Meganck, Jeff; Peterson, Jeffrey D; Faqir, Ilias; Kempner, Joshua

    2017-08-01

    Intraoperative fluorescence imaging informs decisions regarding surgical margins by detecting and localizing signals from fluorescent reporters, labeling targets such as malignant tissues. This guidance reduces the likelihood of undetected malignant tissue remaining after resection, eliminating the need for additional treatment or surgery. The primary challenges in performing open-air intraoperative fluorescence imaging come from the weak intensity of the fluorescence signal in the presence of strong surgical and ambient illumination, and the auto-fluorescence of non-target components, such as tissue, especially in the visible spectral window (400-650 nm). In this work, a multispectral open-air fluorescence imaging system is presented for translational image-guided intraoperative applications, which overcomes these challenges. The system is capable of imaging weak fluorescence signals with nanomolar sensitivity in the presence of surgical illumination. This is done using synchronized fluorescence excitation and image acquisition with real-time background subtraction. Additionally, the system uses a liquid crystal tunable filter for acquisition of multispectral images that are used to spectrally unmix target fluorescence from non-target auto-fluorescence. Results are validated by preclinical studies on murine models and translational canine oncology models.

  15. Multimodal fluorescence imaging spectroscopy

    NARCIS (Netherlands)

    Stopel, Martijn H W; Blum, Christian; Subramaniam, Vinod; Engelborghs, Yves; Visser, Anthonie J.W.G.

    2014-01-01

    Multimodal fluorescence imaging is a versatile method that has a wide application range from biological studies to materials science. Typical observables in multimodal fluorescence imaging are intensity, lifetime, excitation, and emission spectra which are recorded at chosen locations at the sample.

  16. A method for dynamic subtraction MR imaging of the liver

    Directory of Open Access Journals (Sweden)

    Setti Ernesto

    2006-06-01

    Full Text Available Abstract Background Subtraction of Dynamic Contrast-Enhanced 3D Magnetic Resonance (DCE-MR volumes can result in images that depict and accurately characterize a variety of liver lesions. However, the diagnostic utility of subtraction images depends on the extent of co-registration between non-enhanced and enhanced volumes. Movement of liver structures during acquisition must be corrected prior to subtraction. Currently available methods are computer intensive. We report a new method for the dynamic subtraction of MR liver images that does not require excessive computer time. Methods Nineteen consecutive patients (median age 45 years; range 37–67 were evaluated by VIBE T1-weighted sequences (TR 5.2 ms, TE 2.6 ms, flip angle 20°, slice thickness 1.5 mm acquired before and 45s after contrast injection. Acquisition parameters were optimized for best portal system enhancement. Pre and post-contrast liver volumes were realigned using our 3D registration method which combines: (a rigid 3D translation using maximization of normalized mutual information (NMI, and (b fast 2D non-rigid registration which employs a complex discrete wavelet transform algorithm to maximize pixel phase correlation and perform multiresolution analysis. Registration performance was assessed quantitatively by NMI. Results The new registration procedure was able to realign liver structures in all 19 patients. NMI increased by about 8% after rigid registration (native vs. rigid registration 0.073 ± 0.031 vs. 0.078 ± 0.031, n.s., paired t-test and by a further 23% (0.096 ± 0.035 vs. 0.078 ± 0.031, p t-test after non-rigid realignment. The overall average NMI increase was 31%. Conclusion This new method for realigning dynamic contrast-enhanced 3D MR volumes of liver leads to subtraction images that enhance diagnostic possibilities for liver lesions.

  17. Real-time digital x-ray subtraction imaging

    International Nuclear Information System (INIS)

    Mistretta, C.A.; Kruger, R.A.; Houk, T.L.

    1982-01-01

    A method of producing visible difference images derived from an x-ray image of an anatomical subject is described. X-rays are directed through the subject, and the image is converted into television fields comprising trains of analog video signals. The analog signals are converted into digital signals, which are then integrated over a predetermined time corresponding to several television fields. Difference video signals are produced by performing a subtraction between the ongoing video signals and the corresponding integrated signals, and are converted into visible television difference images representing changes in the x-ray image

  18. Iodine filter imaging system for subtraction angiography using synchrotron radiation

    Science.gov (United States)

    Umetani, K.; Ueda, K.; Takeda, T.; Itai, Y.; Akisada, M.; Nakajima, T.

    1993-11-01

    A new type of real-time imaging system was developed for transvenous coronary angiography. A combination of an iodine filter and a single energy broad-bandwidth X-ray produces two-energy images for the iodine K-edge subtraction technique. X-ray images are sequentially converted to visible images by an X-ray image intensifier. By synchronizing the timing of the movement of the iodine filter into and out of the X-ray beam, two output images of the image intensifier are focused side by side on the photoconductive layer of a camera tube by an oscillating mirror. Both images are read out by electron beam scanning of a 1050-scanning-line video camera within a camera frame time of 66.7 ms. One hundred ninety two pairs of iodine-filtered and non-iodine-filtered images are stored in the frame memory at a rate of 15 pairs/s. In vivo subtracted images of coronary arteries in dogs were obtained in the form of motion pictures.

  19. Subtraction imaging of the ECG gated cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Tanegashima, K.; Fukui, M.; Hyodo, H.

    1987-05-01

    The subtracting manipulation of contrast-enhanced gated cardiac CT (GCCT) images was experimentally studied with TCT 60A - 30 type (Toshiba) for clinical use, thereby reducing the amount of contrast medium (CM). Initially the optimum relationship between the concentration of CM and its injected velocity was determined using the model of resected canine hearts and in actual dogs. The emphasized good-subtracted images were obtained when the difference of CT values was approximately 40 H.U. between cardiac cavity and myocardium. Such condition was feasible in the use of 25 % Diatrizoic acid and its injected velocity of 0.02 ml/kg/sec. Finally the reduction of the amount of CM by 1/3 became possible in clinical settings. The method is applicable to multi-slice GCCT in various heart diseases.

  20. IMPROVED BACKGROUND SUBTRACTION FOR THE SLOAN DIGITAL SKY SURVEY IMAGES

    International Nuclear Information System (INIS)

    Blanton, Michael R.; Kazin, Eyal; Muna, Demitri; Weaver, Benjamin A.; Price-Whelan, Adrian

    2011-01-01

    We describe a procedure for background subtracting Sloan Digital Sky Survey (SDSS) imaging that improves the resulting detection and photometry of large galaxies on the sky. Within each SDSS drift scan run, we mask out detected sources and then fit a smooth function to the variation of the sky background. This procedure has been applied to all SDSS-III Data Release 8 images, and the results are available as part of that data set. We have tested the effect of our background subtraction on the photometry of large galaxies by inserting fake galaxies into the raw pixels, reanalyzing the data, and measuring them after background subtraction. Our technique results in no size-dependent bias in galaxy fluxes up to half-light radii r 50 ∼ 100 arcsec; in contrast, for galaxies of that size the standard SDSS photometric catalog underestimates fluxes by about 1.5 mag. Our results represent a substantial improvement over the standard SDSS catalog results and should form the basis of any analysis of nearby galaxies using the SDSS imaging data.

  1. Fluorescence Image Segmentation by using Digitally Reconstructed Fluorescence Images

    OpenAIRE

    Blumer, Clemens; Vivien, Cyprien; Oertner, Thomas G; Vetter, Thomas

    2011-01-01

    In biological experiments fluorescence imaging is used to image living and stimulated neurons. But the analysis of fluorescence images is a difficult task. It is not possible to conclude the shape of an object from fluorescence images alone. Therefore, it is not feasible to get good manual segmented nor ground truth data from fluorescence images. Supervised learning approaches are not possible without training data. To overcome this issues we propose to synthesize fluorescence images and call...

  2. Real-time digital x-ray subtraction imaging

    International Nuclear Information System (INIS)

    Mistretta, C.A.

    1982-01-01

    The invention provides a method of producing visible difference images derived from an X-ray image of an anatomical subject, comprising the steps of directing X-rays through the anatomical subject for producing an image, converting the image into television fields comprising trains of on-going video signals, digitally storing and integrating the on-going video signals over a time interval corresponding to several successive television fields and thereby producing stored and integrated video signals, recovering the video signals from storage and producing integrated video signals, producing video difference signals by performing a subtraction between the integrated video signals and the on-going video signals outside the time interval, and converting the difference signals into visible television difference images representing on-going changes in the X-ray image

  3. Fluorescence and Spectral Imaging

    Directory of Open Access Journals (Sweden)

    Ralph S. DaCosta

    2007-01-01

    Full Text Available Early identification of dysplasia remains a critical goal for diagnostic endoscopy since early discovery directly improves patient survival because it allows endoscopic or surgical intervention with disease localized without lymph node involvement. Clinical studies have successfully used tissue autofluorescence with conventional white light endoscopy and biopsy for detecting adenomatous colonic polyps, differentiating benign hyperplastic from adenomas with acceptable sensitivity and specificity. In Barrett's esophagus, the detection of dysplasia remains problematic because of background inflammation, whereas in the squamous esophagus, autofluorescence imaging appears to be more dependable. Point fluorescence spectroscopy, although playing a crucial role in the pioneering mechanistic development of fluorescence endoscopic imaging, does not seem to have a current function in endoscopy because of its nontargeted sampling and suboptimal sensitivity and specificity. Other point spectroscopic modalities, such as Raman spectroscopy and elastic light scattering, continue to be evaluated in clinical studies, but still suffer the significant disadvantages of being random and nonimaging. A recent addition to the fluorescence endoscopic imaging arsenal is the use of confocal fluorescence endomicroscopy, which provides real-time optical biopsy for the first time. To improve detection of dysplasia in the gastrointestinal tract, a new and exciting development has been the use of exogenous fluorescence contrast probes that specifically target a variety of disease-related cellular biomarkers using conventional fluorescent dyes and novel potent fluorescent nanocrystals (i.e., quantum dots. This is an area of great promise, but still in its infancy, and preclinical studies are currently under way.

  4. Comparative study between rib imaging of DR dual energy subtraction technology and chest imaging

    International Nuclear Information System (INIS)

    Yu Jianming; Lei Ziqiao; Kong Xiangchuang

    2006-01-01

    Objective: To investigate the application value of DR dual energy subtraction technology in rib lesions. Methods: 200 patients were performed with chest DR dual energy subtraction, comparing the rib imaging between DR of thorax and chest imaging using ROC analysis. Results: Among the total of 200 patients, there are 50 cases of rib calcification, 7 cases of rib destruction, 22 cases of rib fracture. The calcification, destruction and fracture were displayed respectively by ribs below diaphragm and rib markings. The analytic parameter of rib imaging of DR dual energy subtraction Az is 0.9367, while that of rib imaging of chest Az is 0.6830. Conclusion: DR dual energy subtraction technology is superior to chest imaging in the displaying of rib lesion and ribs below diaphragm. (authors)

  5. Real-time digital X-ray subtraction imaging

    International Nuclear Information System (INIS)

    Mistretta, C.A.; Kruger, R.A.; Houk, T.L.

    1979-01-01

    A diagnostic anatomical X-ray apparatus comprising a converter and a television camera for converting an X-ray image of a subject into a series of television fields of video signals is described in detail. A digital memory system stores and integrates the video signals over a time interval corresponding to a plurality of successive television fields. The integrated video signals are recovered from storage and fed to a digital or analogue subtractor, the resulting output being displayed on a television monitor. Thus the display represents on-going changes in the anatomical X-ray image. In a modification, successive groups of fields are stored and integrated in three memories, cyclically, and subtractions are performed between successive pieces of integrated signals to provide a display of successive alterations in the X-ray image. For investigations of the heart, the integrating interval should be of the order of one cardiac cycle. (author)

  6. Image noise reduction algorithm for digital subtraction angiography: clinical results.

    Science.gov (United States)

    Söderman, Michael; Holmin, Staffan; Andersson, Tommy; Palmgren, Charlotta; Babic, Draženko; Hoornaert, Bart

    2013-11-01

    To test the hypothesis that an image noise reduction algorithm designed for digital subtraction angiography (DSA) in interventional neuroradiology enables a reduction in the patient entrance dose by a factor of 4 while maintaining image quality. This clinical prospective study was approved by the local ethics committee, and all 20 adult patients provided informed consent. DSA was performed with the default reference DSA program, a quarter-dose DSA program with modified acquisition parameters (to reduce patient radiation dose exposure), and a real-time noise-reduction algorithm. Two consecutive biplane DSA data sets were acquired in each patient. The dose-area product (DAP) was calculated for each image and compared. A randomized, blinded, offline reading study was conducted to show noninferiority of the quarter-dose image sets. Overall, 40 samples per treatment group were necessary to acquire 80% power, which was calculated by using a one-sided α level of 2.5%. The mean DAP with the quarter-dose program was 25.3% ± 0.8 of that with the reference program. The median overall image quality scores with the reference program were 9, 13, and 12 for readers 1, 2, and 3, respectively. These scores increased slightly to 12, 15, and 12, respectively, with the quarter-dose program imaging chain. In DSA, a change in technique factors combined with a real-time noise-reduction algorithm will reduce the patient entrance dose by 75%, without a loss of image quality. RSNA, 2013

  7. The contribution of chemical shift imaging with digital subtracting images to the diagnosis of steatohepatitis

    International Nuclear Information System (INIS)

    Guo Xinghua; Wang Juanping; Zhang Chongjie; Zheng Guofang; Fan Ruiqiang; Zhu Sumei; Liu Qiwang

    2006-01-01

    Objective: To investigate the diagnosis value of chemical shift imaging with digital subtracting in steatohepatitis. Methods: The in-phase images were subtracted by the out-phase ones in 34 cases of steatohepatitis, and the CNR were measured on these subtracted images to estimate the steatosis of the liver. The relationship of CT grade of steatohepatitis and CNR from the subtracted images was analyzed to evaluate the relationship between CNR and the degree of hepatic steatosis. The sensitivity and specificity of the subtracting and eyeballing methods were compared with chi-square test. Results: On the subtracted images, the liver and spleen were seen nearly the same aspects as low signals, CNR=0.98±0.06, meanwhile the spongy vertebra and the subcutaneous or abdominal lipid were seen as obvious higher signals in 52 normal cases. On the 34 steatohepatitis, scattered high signals were seen in the liver, which made the signal of liver higher than that of spleen, CNR=3.25±0.91--14.35±6.10. There was positive correlation between CNR and CT grade in the 34 cases of steatohepatitis, r=0.893, P<0.01. The sensitivity and specificity of the subtracting method were 88.24% and 94. 23%, significantly higher than that of the eyeballing results, 32.35% and 80.77%, P<0.01 and P<0.05. Conclusion: Chemical shift imaging with digital subtracting is a sensitive, specific, objective method to diagnose steatohepatitis and it is of potential ability for quantitative diagnosis. (authors)

  8. Utility of noise addition image made by using water phantom and image addition and subtraction software

    International Nuclear Information System (INIS)

    Watanabe, Ryo; Aoki, Takahiro; Hayano, Mizuho; Ogawa, Masato; Mituzono, Hiroki; Watanabe, Yuka

    2010-01-01

    In optimizing exposures, it is very important to evaluate the impact of image noise on image quality. To realize this, there is a need to evaluate how much image noise will make the subject disease invisible. But generally it is very difficult to shoot images of different quality in a clinical examination. Thus, a method to create a noise addition image by adding the image noise to raw data has been reported. However, this approach requires a special system, so it is difficult to implement in many facilities. We have invented a method to easily create a noise addition image by using the water phantom and image add-subtract software that accompanies the device. To create a noise addition image, first we made a noise image by subtracting the water phantom with different standard deviation (SD). A noise addition image was then created by adding the noise image to the original image. By using this method, a simulation image with intergraded SD can be created from the original. Moreover, the noise frequency component of the created noise addition image is as same as the real image. Thus, the relationship of image quality to SD in the clinical image can be evaluated. Although this method is an easy method of LDSI creation on image data, a noise addition image can be easily created by using image addition and subtraction software and water phantom, and this can be implemented in many facilities. (author)

  9. Three dimensional mapping of strontium in bone by dual energy K-edge subtraction imaging

    International Nuclear Information System (INIS)

    Cooper, D M L; Chapman, L D; Carter, Y; Zhouping, W; Wu, Y; Panahifar, A; Duke, M J M; Doschak, M; Britz, H M; Bewer, B

    2012-01-01

    The bones of many terrestrial vertebrates, including humans, are continually altered through an internal process of turnover known as remodeling. This process plays a central role in bone adaptation and disease. The uptake of fluorescent tetracyclines within bone mineral is widely exploited as a means of tracking new tissue formation. While investigation of bone microarchitecture has undergone a dimensional shift from 2D to 3D in recent years, we lack a 3D equivalent to fluorescent labeling. In the current study we demonstrate the ability of synchrotron radiation dual energy K-edge subtraction (KES) imaging to map the 3D distribution of elemental strontium within rat vertebral samples. This approach has great potential for ex vivo analysis of preclinical models and human tissue samples. KES also represents a powerful tool for investigating the pharmokinetics of strontium-based drugs recently approved in many countries around the globe for the treatment of osteoporosis. (paper)

  10. A symmetrical subtraction combined with interpolated values for eliminating scattering from fluorescence EEM data

    Science.gov (United States)

    Xu, Jing; Liu, Xiaofei; Wang, Yutian

    2016-08-01

    Parallel factor analysis is a widely used method to extract qualitative and quantitative information of the analyte of interest from fluorescence emission-excitation matrix containing unknown components. Big amplitude of scattering will influence the results of parallel factor analysis. Many methods of eliminating scattering have been proposed. Each of these methods has its advantages and disadvantages. The combination of symmetrical subtraction and interpolated values has been discussed. The combination refers to both the combination of results and the combination of methods. Nine methods were used for comparison. The results show the combination of results can make a better concentration prediction for all the components.

  11. Multinuclide digital subtraction imaging in symptomatic prostnetic joints

    International Nuclear Information System (INIS)

    Chafetz, N.; Hattner, R.S.; Ruarke, W.C.; Helms, C.A.; Genant, H.K.; Murray, W.R.

    1985-01-01

    One hundred eleven patients with symptomatic prosthetic joints (86 hips, 23 knees, and two shoulders) were evaluated for prosthetic loosening and infection by combined technetium-99m-MDP/gallium-67 digital subtraction imaging. Clinical correlation was based on the assessment of loosening and bacterial cultures obtained at the time of surgery in 54 patients, joint aspiration cultures obtained in 37 patients, and long-term clinical follow-up for greater than 1.5 years in an additional 15 patients. Results revealed an 80-90% predictive value of a positive test for loosening, and a 95% predictive value of a negative test for infection. However, because of the low sensitivities and specificities observed, this approach to the evaluation of symptomatic prosthetic joints does not seem cost effective

  12. A new registration method with voxel-matching technique for temporal subtraction images

    Science.gov (United States)

    Itai, Yoshinori; Kim, Hyoungseop; Ishikawa, Seiji; Katsuragawa, Shigehiko; Doi, Kunio

    2008-03-01

    A temporal subtraction image, which is obtained by subtraction of a previous image from a current one, can be used for enhancing interval changes on medical images by removing most of normal structures. One of the important problems in temporal subtraction is that subtraction images commonly include artifacts created by slight differences in the size, shape, and/or location of anatomical structures. In this paper, we developed a new registration method with voxel-matching technique for substantially removing the subtraction artifacts on the temporal subtraction image obtained from multiple-detector computed tomography (MDCT). With this technique, the voxel value in a warped (or non-warped) previous image is replaced by a voxel value within a kernel, such as a small cube centered at a given location, which would be closest (identical or nearly equal) to the voxel value in the corresponding location in the current image. Our new method was examined on 16 clinical cases with MDCT images. Preliminary results indicated that interval changes on the subtraction images were enhanced considerably, with a substantial reduction of misregistration artifacts. The temporal subtraction images obtained by use of the voxel-matching technique would be very useful for radiologists in the detection of interval changes on MDCT images.

  13. Preliminary study of lateral cerebral angiography with reverse rotation in the digital image registration and subtraction

    International Nuclear Information System (INIS)

    Shen Zhenglin; Liu Dongyang; Shen Zhenghai; Li Shuping; Zhang Ziyan; Wu Yongjuan; Liu Peijun

    2012-01-01

    Objective: Investigate the value and feasibility of image registration with reverse rotation in lateral cerebral DSA. Methods: (1) Experimental study: the target images were subtracted directly, and subtracted again after reverse rotation. Software of registration and subtraction with reverse rotation edited by the author utilizing Visual Basic. The function of the automatic angle detection by the software were evaluated to see whether it detected the angle of line. The subtraction function of DSA by the software was evaluated. (2) Clinical retrospective study: the untreated mask and target images of 15 patients with motion along vertical axis during lateral cerebral DSA were uploaded to the software. The target images were processed with and without the software to get two sets of images. (3) Evaluation: four experienced radiologists read and compared the two sets of the images,and graded their findings. Results: (1) The automatic detection by the software suggested that the target images should be rotated counterclockwise 1.3°. The subtraction result of the software was satisfactory. (2) In the 15 sets of images, there were only three sets of images deemed optimal after traditional subtraction. After reverse rotation, artifacts were significantly reduced and the image sharper. There were ten cases with significant artifacts after traditional subtraction, and those images were sharper and showed more peripheral vessels after reverse rotation. The traditional subtraction images of two sets could not be interpreted,the reverse rotation registration images reached the diagnostic quality. (3) Subjective evaluation: there were more information and less noise and distortion in the registration images with reverse rotation than in the traditional subtraction. But the image resolution decreased slightly after reverse rotation registration. Conclusion: The registration of digital angiography with reverse rotation can improve the image quality in lateral cerebral DSA

  14. Fluorescent microthermographic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Barton, D.L.

    1993-09-01

    In the early days of microelectronics, design rules and feature sizes were large enough that sub-micron spatial resolution was not needed. Infrared or IR thermal techniques were available that calculated the object`s temperature from infrared emission. There is a fundamental spatial resolution limitation dependent on the wavelengths of light being used in the image formation process. As the integrated circuit feature sizes began to shrink toward the one micron level, the limitations imposed on IR thermal systems became more pronounced. Something else was needed to overcome this limitation. Liquid crystals have been used with great success, but they lack the temperature measurement capabilities of other techniques. The fluorescent microthermographic imaging technique (FMI) was developed to meet this need. This technique offers better than 0.01{degrees}C temperature resolution and is diffraction limited to 0.3 {mu}m spatial resolution. While the temperature resolution is comparable to that available on IR systems, the spatial resolution is much better. The FMI technique provides better spatial resolution by using a temperature dependent fluorescent film that emits light at 612 nm instead of the 1.5 {mu}m to 12 {mu}m range used by IR techniques. This tutorial starts with a review of blackbody radiation physics, the process by which all heated objects emit radiation to their surroundings, in order to understand the sources of information that are available to characterize an object`s surface temperature. The processes used in infrared thermal imaging are then detailed to point out the limitations of the technique but also to contrast it with the FMI process. The FMI technique is then described in detail, starting with the fluorescent film physics and ending with a series of examples of past applications of FMI.

  15. Incidence of ischemic lesions in diffusion-weighted imaging after transbrachial digital subtraction angiography

    International Nuclear Information System (INIS)

    Aschenbach, R.; Majeed, A.; Eger, C.; Basche, S.; Kerl, J.M.; Vogl, T.J.

    2008-01-01

    Purpose: to evaluate the frequency of ischemia after transbrachial digital subtraction angiography under ambulant conditions using diffusion-weighted imaging. Materials and methods: 200 patients were included in a prospective study design and received transbrachial digital subtraction angiography under ambulant conditions. Before and after digital subtraction angiography, diffusion-weighted imaging of the brain was performed. Results: in our study population no new lesions were found in diffusion-weighted imaging after digital subtraction angiography during the 3-hour window after angiography. One new lesion was found 3 days after angiography as a late onset complication. Therefore, the frequency of neurological complications is at the level of the confidence interval of 0 - 1.5%. Conclusion: the transbrachial approach under ambulant conditions is a safe method for digital subtraction angiography resulting in a low rate of ischemic lesions in diffusion-weighted imaging. (orig.)

  16. Improved Savitzky-Golay-method-based fluorescence subtraction algorithm for rapid recovery of Raman spectra.

    Science.gov (United States)

    Chen, Kun; Zhang, Hongyuan; Wei, Haoyun; Li, Yan

    2014-08-20

    In this paper, we propose an improved subtraction algorithm for rapid recovery of Raman spectra that can substantially reduce the computation time. This algorithm is based on an improved Savitzky-Golay (SG) iterative smoothing method, which involves two key novel approaches: (a) the use of the Gauss-Seidel method and (b) the introduction of a relaxation factor into the iterative procedure. By applying a novel successive relaxation (SG-SR) iterative method to the relaxation factor, additional improvement in the convergence speed over the standard Savitzky-Golay procedure is realized. The proposed improved algorithm (the RIA-SG-SR algorithm), which uses SG-SR-based iteration instead of Savitzky-Golay iteration, has been optimized and validated with a mathematically simulated Raman spectrum, as well as experimentally measured Raman spectra from non-biological and biological samples. The method results in a significant reduction in computing cost while yielding consistent rejection of fluorescence and noise for spectra with low signal-to-fluorescence ratios and varied baselines. In the simulation, RIA-SG-SR achieved 1 order of magnitude improvement in iteration number and 2 orders of magnitude improvement in computation time compared with the range-independent background-subtraction algorithm (RIA). Furthermore the computation time of the experimentally measured raw Raman spectrum processing from skin tissue decreased from 6.72 to 0.094 s. In general, the processing of the SG-SR method can be conducted within dozens of milliseconds, which can provide a real-time procedure in practical situations.

  17. A temporal subtraction method for thoracic CT images based on generalized gradient vector flow

    International Nuclear Information System (INIS)

    Miyake, Noriaki; Kim, H.; Maeda, Shinya; Itai, Yoshinori; Tan, J.K.; Ishikawa, Seiji; Katsuragawa, Shigehiko

    2010-01-01

    A temporal subtraction image, which is obtained by subtraction of a previous image from a current one, can be used for enhancing interval changes (such as formation of new lesions and changes in existing abnormalities) on medical images by removing most of the normal structures. If image registration is incorrect, not only the interval changes but also the normal structures would be appeared as some artifacts on the temporal subtraction image. In a temporal subtraction technique for 2-D X-ray image, the effectiveness is shown through a lot of clinical evaluation experiments, and practical use is advancing. Moreover, the MDCT (Multi-Detector row Computed Tomography) can easily introduced on medical field, the development of a temporal subtraction for thoracic CT Images is expected. In our study, a temporal subtraction technique for thoracic CT Images is developed. As the technique, the vector fields are described by use of GGVF (Generalized Gradient Vector Flow) from the previous and current CT images. Afterwards, VOI (Volume of Interest) are set up on the previous and current CT image pairs. The shift vectors are calculated by using nearest neighbor matching of the vector fields in these VOIs. The search kernel on previous CT image is set up from the obtained shift vector. The previous CT voxel which resemble standard the current voxel is detected by voxel value and vector of the GGVF in the kernel. And, the previous CT image is transformed to the same coordinate of standard voxel. Finally, temporal subtraction image is made by subtraction of a warping image from a current one. To verify the proposal method, the result of application to 7 cases and the effectiveness are described. (author)

  18. 3D temporal subtraction on multislice CT images using nonlinear warping technique

    Science.gov (United States)

    Ishida, Takayuki; Katsuragawa, Shigehiko; Kawashita, Ikuo; Kim, Hyounseop; Itai, Yoshinori; Awai, Kazuo; Li, Qiang; Doi, Kunio

    2007-03-01

    The detection of very subtle lesions and/or lesions overlapped with vessels on CT images is a time consuming and difficult task for radiologists. In this study, we have developed a 3D temporal subtraction method to enhance interval changes between previous and current multislice CT images based on a nonlinear image warping technique. Our method provides a subtraction CT image which is obtained by subtraction of a previous CT image from a current CT image. Reduction of misregistration artifacts is important in the temporal subtraction method. Therefore, our computerized method includes global and local image matching techniques for accurate registration of current and previous CT images. For global image matching, we selected the corresponding previous section image for each current section image by using 2D cross-correlation between a blurred low-resolution current CT image and a blurred previous CT image. For local image matching, we applied the 3D template matching technique with translation and rotation of volumes of interests (VOIs) which were selected in the current and the previous CT images. The local shift vector for each VOI pair was determined when the cross-correlation value became the maximum in the 3D template matching. The local shift vectors at all voxels were determined by interpolation of shift vectors of VOIs, and then the previous CT image was nonlinearly warped according to the shift vector for each voxel. Finally, the warped previous CT image was subtracted from the current CT image. The 3D temporal subtraction method was applied to 19 clinical cases. The normal background structures such as vessels, ribs, and heart were removed without large misregistration artifacts. Thus, interval changes due to lung diseases were clearly enhanced as white shadows on subtraction CT images.

  19. Fluorescence Imaging Reveals Surface Contamination

    Science.gov (United States)

    Schirato, Richard; Polichar, Raulf

    1992-01-01

    In technique to detect surface contamination, object inspected illuminated by ultraviolet light to make contaminants fluoresce; low-light-level video camera views fluorescence. Image-processing techniques quantify distribution of contaminants. If fluorescence of material expected to contaminate surface is not intense, tagged with low concentration of dye.

  20. Improvement of temporal and dynamic subtraction images on abdominal CT using 3D global image matching and nonlinear image warping techniques

    International Nuclear Information System (INIS)

    Okumura, E; Sanada, S; Suzuki, M; Takemura, A; Matsui, O

    2007-01-01

    Accurate registration of the corresponding non-enhanced and arterial-phase CT images is necessary to create temporal and dynamic subtraction images for the enhancement of subtle abnormalities. However, respiratory movement causes misregistration at the periphery of the liver. To reduce these misregistration errors, we developed a temporal and dynamic subtraction technique to enhance small HCC by 3D global matching and nonlinear image warping techniques. The study population consisted of 21 patients with HCC. Using the 3D global matching and nonlinear image warping technique, we registered current and previous arterial-phase CT images or current non-enhanced and arterial-phase CT images obtained in the same position. The temporal subtraction image was obtained by subtracting the previous arterial-phase CT image from the warped current arterial-phase CT image. The dynamic subtraction image was obtained by the subtraction of the current non-enhanced CT image from the warped current arterial-phase CT image. The percentage of fair or superior temporal subtraction images increased from 52.4% to 95.2% using the new technique, while on the dynamic subtraction images, the percentage increased from 66.6% to 95.2%. The new subtraction technique may facilitate the diagnosis of subtle HCC based on the superior ability of these subtraction images to show nodular and/or ring enhancement

  1. Value of blood-pool subtraction in cardiac indium-111-labeled platelet imaging

    Energy Technology Data Exchange (ETDEWEB)

    Machac, J.; Vallabhajosula, S.; Goldman, M.E.; Goldsmith, S.J.; Palestro, C.; Strashun, A.; Vaquer, R.; Phillips, R.A.; Fuster, V. (Mt. Sinai Medical Center, New York, NY (USA))

    1989-09-01

    Blood-pool subtraction has been proposed to enhance {sup 111}In-labeled platelet imaging of intracardiac thrombi. We tested the accuracy of labeled platelet imaging, with and without blood-pool subtraction, in ten subjects with cardiac thrombi of varying age, eight with endocarditis being treated with antimicrobial therapy and ten normal controls. Imaging was performed early after labeled platelet injection (24 hr or less) and late (48 hr or more). Blood-pool subtraction was carried out. All images were graded subjectively by four experienced, blinded readers. Detection accuracy was measured by the sensitivity at three fixed levels of specificity estimated from receiver operator characteristic curve analysis and tested by three-way analysis of variance. Detection accuracy was generally improved on delayed images. Blood-pool subtraction did not improve accuracy. Although blood-pool subtraction increased detection sensitivity, this was offset by decreased specificity. For this population studied, blood-pool subtraction did not improve subjective detection of abnormal platelet deposition by 111In platelet imaging.

  2. Value of blood-pool subtraction in cardiac indium-111-labeled platelet imaging

    International Nuclear Information System (INIS)

    Machac, J.; Vallabhajosula, S.; Goldman, M.E.; Goldsmith, S.J.; Palestro, C.; Strashun, A.; Vaquer, R.; Phillips, R.A.; Fuster, V.

    1989-01-01

    Blood-pool subtraction has been proposed to enhance 111 In-labeled platelet imaging of intracardiac thrombi. We tested the accuracy of labeled platelet imaging, with and without blood-pool subtraction, in ten subjects with cardiac thrombi of varying age, eight with endocarditis being treated with antimicrobial therapy and ten normal controls. Imaging was performed early after labeled platelet injection (24 hr or less) and late (48 hr or more). Blood-pool subtraction was carried out. All images were graded subjectively by four experienced, blinded readers. Detection accuracy was measured by the sensitivity at three fixed levels of specificity estimated from receiver operator characteristic curve analysis and tested by three-way analysis of variance. Detection accuracy was generally improved on delayed images. Blood-pool subtraction did not improve accuracy. Although blood-pool subtraction increased detection sensitivity, this was offset by decreased specificity. For this population studied, blood-pool subtraction did not improve subjective detection of abnormal platelet deposition by 111In platelet imaging

  3. Two-dimensional real-time imaging system for subtraction angiography using an iodine filter

    Science.gov (United States)

    Umetani, Keiji; Ueda, Ken; Takeda, Tohoru; Anno, Izumi; Itai, Yuji; Akisada, Masayoshi; Nakajima, Teiichi

    1992-01-01

    A new type of subtraction imaging system was developed using an iodine filter and a single-energy broad bandwidth monochromatized x ray. The x-ray images of coronary arteries made after intravenous injection of a contrast agent are enhanced by an energy-subtraction technique. Filter chopping of the x-ray beam switches energies rapidly, so that a nearly simultaneous pair of filtered and nonfiltered images can be made. By using a high-speed video camera, a pair of two 512 × 512 pixel images can be obtained within 9 ms. Three hundred eighty-four images (raw data) are stored in a 144-Mbyte frame memory. After phantom studies, in vivo subtracted images of coronary arteries in dogs were obtained at a rate of 15 images/s.

  4. Detection of pulmonary nodules on lung X-ray images. Studies on multi-resolutional filter and energy subtraction images

    International Nuclear Information System (INIS)

    Sawada, Akira; Sato, Yoshinobu; Kido, Shoji; Tamura, Shinichi

    1999-01-01

    The purpose of this work is to prove the effectiveness of an energy subtraction image for the detection of pulmonary nodules and the effectiveness of multi-resolutional filter on an energy subtraction image to detect pulmonary nodules. Also we study influential factors to the accuracy of detection of pulmonary nodules from viewpoints of types of images, types of digital filters and types of evaluation methods. As one type of images, we select an energy subtraction image, which removes bones such as ribs from the conventional X-ray image by utilizing the difference of X-ray absorption ratios at different energy between bones and soft tissue. Ribs and vessels are major causes of CAD errors in detection of pulmonary nodules and many researches have tried to solve this problem. So we select conventional X-ray images and energy subtraction X-ray images as types of images, and at the same time select ∇ 2 G (Laplacian of Guassian) filter, Min-DD (Minimum Directional Difference) filter and our multi-resolutional filter as types of digital filters. Also we select two evaluation methods and prove the effectiveness of an energy subtraction image, the effectiveness of Min-DD filter on a conventional X-ray image and the effectiveness of multi-resolutional filter on an energy subtraction image. (author)

  5. Digital image comparison by subtracting contextual transformations—percentile rank order differentiation

    Science.gov (United States)

    Wehde, M. E.

    1995-01-01

    The common method of digital image comparison by subtraction imposes various constraints on the image contents. Precise registration of images is required to assure proper evaluation of surface locations. The attribute being measured and the calibration and scaling of the sensor are also important to the validity and interpretability of the subtraction result. Influences of sensor gains and offsets complicate the subtraction process. The presence of any uniform systematic transformation component in one of two images to be compared distorts the subtraction results and requires analyst intervention to interpret or remove it. A new technique has been developed to overcome these constraints. Images to be compared are first transformed using the cumulative relative frequency as a transfer function. The transformed images represent the contextual relationship of each surface location with respect to all others within the image. The process of differentiating between the transformed images results in a percentile rank ordered difference. This process produces consistent terrain-change information even when the above requirements necessary for subtraction are relaxed. This technique may be valuable to an appropriately designed hierarchical terrain-monitoring methodology because it does not require human participation in the process.

  6. Assessing Photosynthesis by Fluorescence Imaging

    Science.gov (United States)

    Saura, Pedro; Quiles, Maria Jose

    2011-01-01

    This practical paper describes a novel fluorescence imaging experiment to study the three processes of photochemistry, fluorescence and thermal energy dissipation, which compete during the dissipation of excitation energy in photosynthesis. The technique represents a non-invasive tool for revealing and understanding the spatial heterogeneity in…

  7. Quantitative analysis of planar technetium-99m-sestamibi myocardial perfusion images using modified background subtraction

    International Nuclear Information System (INIS)

    Koster, K.; Wackers, F.J.; Mattera, J.A.; Fetterman, R.C.

    1990-01-01

    Standard interpolative background subtraction, as used for thallium-201 ( 201 Tl), may create artifacts when applied to planar technetium-99m-Sestamibi ( 99m Tc-Sestamibi) images, apparently because of the oversubtraction of relatively high extra-cardiac activity. A modified background subtraction algorithm was developed and compared to standard background subtraction in 16 patients who had both exercise-delayed 201 Tl and exercise-rest 99m Tc-Sestamibi imaging. Furthermore, a new normal data base was generated. Normal 99m Tc-Sestamibi distribution was slightly different compared to 201 Tl. Using standard background subtraction, mean defect reversibility was significantly underestimated by 99m Tc-Sestamibi compared to 201 Tl (2.8 +/- 4.9 versus -1.8 +/- 8.4, p less than 0.05). Using the modified background subtraction, mean defect reversibility on 201 Tl and 99m Tc-Sestamibi images was comparable (2.8 +/- 4.9 versus 1.7 +/- 5.2, p = NS). We conclude, that for quantification of 99m Tc-Sestamibi images a new normal data base, as well as a modification of the interpolative background subtraction method should be employed to obtain quantitative results comparable to those with 201 Tl

  8. Tumor scintigraphy by the method for subtracting the initial image with technetium-99m labeled antibody

    International Nuclear Information System (INIS)

    Karube, Yoshiharu; Katsuno, Kentaro; Ito, Sanae; Matsunaga, Kazuhisa; Takata, Jiro; Kuroki, Masahide; Murakami, Masaaki; Matsuoka, Yuji

    1999-01-01

    The method for subtracting the initial image from the localization image was evaluated for radioimmunoscintigraphy of tumors with technetium-99m (Tc-99m) labeled antibodies. Monoclonal antibodies were parental mouse and mouse-human chimeric antibodies to carcinoembryonic antigen (CEA), designated F11-39 and ChF11-39, respectively, both of which have been found to discriminate CEA in tumor tissues from the CEA-related antigens. After reduction of the intrinsic disulfide bonds, these antibodies were labeled with Tc-99m. In vivo studies were performed on athymic nude mice bearing the human CEA-producing gastric carcinoma xenografts. Though biodistribution results showed selective and progressive accumulation of Tc-99m labeled antibodies at the tumor site, high radioactivity in blood was inappropriate for scintigraphic visualization of the tumors within a few hours. We examined the subtraction of the initial Tc-99m image from the Tc-99m localization image after a few hours. Subtracted images of the same count reflected the in vivo behavior of the Tc-99m radioactivity. The subtracted scintigrams revealed excellent tumor images with no significant extrarenal background. Visualization of the tumor site was dependent on antigen-specific binding and nonspecific exudation. These results demonstrate that a method of subtraction of the initial image may serve as a potentially useful diagnostic method for an abnormal site for agents with a low pharmacokinetic value. (author)

  9. Bone images from dual-energy subtraction chest radiography in the detection of rib fractures.

    Science.gov (United States)

    Szucs-Farkas, Zsolt; Lautenschlager, Katrin; Flach, Patricia M; Ott, Daniel; Strautz, Tamara; Vock, Peter; Ruder, Thomas D

    2011-08-01

    To assess the sensitivity and image quality of chest radiography (CXR) with or without dual-energy subtracted (ES) bone images in the detection of rib fractures. In this retrospective study, 39 patients with 204 rib fractures and 24 subjects with no fractures were examined with a single exposure dual-energy subtraction digital radiography system. Three blinded readers first evaluated the non-subtracted posteroanterior and lateral chest radiographs alone, and 3 months later they evaluated the non-subtracted images together with the subtracted posteroanterior bone images. The locations of rib fractures were registered with confidence levels on a 3-grade scale. Image quality was rated on a 5-point scale. Marks by readers were compared with fracture localizations in CT as a standard of reference. The sensivity for fracture detection using both methods was very similar (34.3% with standard CXR and 33.5% with ES-CXR, p=0.92). At the patient level, both sensitivity (71.8%) and specificity (92.9%) with or without ES were identical. Diagnostic confidence was not significantly different (2.61 with CXR and 2.75 with ES-CXR, p=0.063). Image quality with ES was rated higher than that on standard CXR (4.08 vs. 3.74, prib fractures. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  10. Late iodine enhancement computed tomography with image subtraction for assessment of myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Tanabe, Yuki; Kido, Teruhito; Kurata, Akira; Kouchi, Takanori; Fukuyama, Naoki; Yokoi, Takahiro; Miyagawa, Masao; Mochizuki, Teruhito [Ehime University Graduate School of Medicine, Department of Radiology, Toon City, Ehime (Japan); Uetani, Teruyoshi [Department of Cardiology, Ehime University Graduate School of Medicine, Toon City, Ehime (Japan); Yamashita, Natsumi [National Hospital Organization Shikoku Cancer Center, Department of Clinical Biostatistics, Section of Cancer Prevention and Epidemiology, Clinical Research Center, Matsuyama City, Ehime (Japan)

    2018-03-15

    To evaluate the feasibility of image subtraction in late iodine enhancement CT (LIE-CT) for assessment of myocardial infarction (MI). A comprehensive cardiac CT protocol and late gadolinium enhancement MRI (LGE-MRI) was used to assess coronary artery disease in 27 patients. LIE-CT was performed after stress CT perfusion (CTP) and CT angiography. Subtraction LIE-CT was created by subtracting the mask volume of the left ventricle (LV) cavity from the original LIE-CT using CTP dataset. The %MI volume was quantified as the ratio of LIE to entire LV volume, and transmural extent (TME) of LIE was classified as 0%, 1-24%, 25-49%, 50-74% or 75-100%. These results were compared with LGE-MRI using the Spearman rank test, Bland-Altman method and chi-square test. One hundred twenty-five (29%) of 432 segments were positive on LGE-MRI. Correlation coefficients for original and subtraction LIE-CT to LGE-MRI were 0.79 and 0.85 for %MI volume. Concordances of the 5-point grading scale between original and subtraction LIE-CT with LGE-MRI were 75% and 84% for TME; concordance was significantly improved using the subtraction technique (p <0.05). Subtraction LIE-CT allowed more accurate assessment of MI extent than the original LIE-CT. (orig.)

  11. Clinical application of subtraction CT imaging for evaluation of pulmonary vascular permeability

    International Nuclear Information System (INIS)

    Kato, Shiro; Asai, Toshihiko; Yatagai, Shigeo; Oonuma, Noboru; Ohno, Kunihiko; Nakamoto, Takaaki; Iizuka, Masahiko

    1991-01-01

    In this clinical study, one normal subject, one patient with primary interstitial pneumonia, one patient with segmental pneumonia due to Staphylococcus aureus, one patient with post-operative esophageal carcinoma, and two patients with mitral stenosis were studied. Dynamic CT scan images under continuous injection of low osmotic contrast medium were analyzed in series, in an attempt to evaluate vascular permeability quantitatively. The following results were obtained. Subtraction CT scan image 10 minutes after the start of contrast medium injection in two patients with pneumonia, showed a reduction of pulmonary vascular permeability following therapy. Subtraction CT scan image of the patient with post-operative esophageal carcinoma treated with 25 Gy radiation showed a discrepancy between pulmonary vascular permeability and other findings. In hemodynamically stable patients with mitral stenosis, subtraction CT images demonstrated that pulmonary vascular permeability was not affected by pulmonary congestion, irrespective of its severity. (author)

  12. Procedures for imaging of hemodialysis fistulas with particular reference to digital subtraction angiography (DSA)

    International Nuclear Information System (INIS)

    Neufang, K.F.R.; Erasmi-Koerber, H.; Wimmer, G.; Koeln Univ.

    1983-01-01

    All angiographic procedures established for imaging of hemodialysis fistulas, such as direct venous angiography, intravenous subtraction angiography and arteriography by direct puncture of the brachial artery of by Seldinger's transfemoral technique, can also be effected with digital image processing. Depending on the angiographic technique, the use of digital subtraction angiography has several advantages: lower doses and concentrations of the contrast agent, lower risk of complications (thrombosis of the fistula, vasospasm) and freedom from pain. In addition, there is a marked reduction of examination time and film cost. (orig.)

  13. Bone images from dual-energy subtraction chest radiography in the detection of rib fractures

    Energy Technology Data Exchange (ETDEWEB)

    Szucs-Farkas, Zsolt, E-mail: zsolt.szuecs@insel.ch [Department of Diagnostic, Interventional and Pediatric Radiology, University Hospital Bern, Freiburgstrasse 4, Bern CH-3010 (Switzerland); Lautenschlager, Katrin, E-mail: katrin@students.unibe.ch [Department of Diagnostic, Interventional and Pediatric Radiology, University Hospital Bern, Freiburgstrasse 4, Bern CH-3010 (Switzerland); Flach, Patricia M., E-mail: patricia.flach@irm.unibe.ch [Institute of Forensic Medicine, University of Bern, Freiburgstrasse 4, Bern CH-3010 (Switzerland); Ott, Daniel, E-mail: daniel.ott@insel.ch [Department of Diagnostic, Interventional and Pediatric Radiology, University Hospital Bern, Freiburgstrasse 4, Bern CH-3010 (Switzerland); Strautz, Tamara, E-mail: tamara.strautz@insel.ch [Department of Diagnostic, Interventional and Pediatric Radiology, University Hospital Bern, Freiburgstrasse 4, Bern CH-3010 (Switzerland); Vock, Peter, E-mail: peter.vock@insel.ch [Department of Diagnostic, Interventional and Pediatric Radiology, University Hospital Bern, Freiburgstrasse 4, Bern CH-3010 (Switzerland); Ruder, Thomas D., E-mail: thomas.ruder@irm.unibe.ch [Institute of Forensic Medicine, University of Bern, Freiburgstrasse 4, Bern CH-3010 (Switzerland)

    2011-08-15

    Objective: To assess the sensitivity and image quality of chest radiography (CXR) with or without dual-energy subtracted (ES) bone images in the detection of rib fractures. Materials and methods: In this retrospective study, 39 patients with 204 rib fractures and 24 subjects with no fractures were examined with a single exposure dual-energy subtraction digital radiography system. Three blinded readers first evaluated the non-subtracted posteroanterior and lateral chest radiographs alone, and 3 months later they evaluated the non-subtracted images together with the subtracted posteroanterior bone images. The locations of rib fractures were registered with confidence levels on a 3-grade scale. Image quality was rated on a 5-point scale. Marks by readers were compared with fracture localizations in CT as a standard of reference. Results: The sensivity for fracture detection using both methods was very similar (34.3% with standard CXR and 33.5% with ES-CXR, p = 0.92). At the patient level, both sensitivity (71.8%) and specificity (92.9%) with or without ES were identical. Diagnostic confidence was not significantly different (2.61 with CXR and 2.75 with ES-CXR, p = 0.063). Image quality with ES was rated higher than that on standard CXR (4.08 vs. 3.74, p < 0.001). Conclusions: Despite a better image quality, adding ES bone images to standard radiographs of the chest does not provide better sensitivity or improved diagnostic confidence in the detection of rib fractures.

  14. Clinical utility of Gd-DTPA subtraction MR imaging for spinal bone metastasis

    International Nuclear Information System (INIS)

    Ando, Keiichi; Murakami, Masao; Kuroda, Yasumasa

    1993-01-01

    Based on reports that Gd-DTPA contributes to the detection of tumors, we used it in 31 cases (97 lesions) of spinal bone metastases. The result was that Gd-DTPA increased the intensity of tumors and the surrounding bone marrow to almost the same level in 53%. To show the metastases clearly, an existing subtraction command system was utilized. The technique included the pixel-by-pixel method, to obtain a Gd-DTPA T1-weighted image (T1WI) subtracted by the original T1WI. The detectability of the subtraction image was improved up to 96%, but was less than the original T1WI (99%). Because of the different imaging rationale between two methods, a means to assess the quality of diagnosis must be proposed. To check the normal background, the same kind of postprocessing was performed in 21 patients without malignancy. Gd-DTPA prefusion was highest in the paravertebral veins, moderate in muscles and epidural fat, and lowest in the spinal cord, intervertebral disk and bone cortex. Gd-DTPA enhanced subtraction MR imaging provides a new diagnostic tool to detect and to assess bone metastasis. (author)

  15. A Feature Subtraction Method for Image Based Kinship Verification under Uncontrolled Environments

    DEFF Research Database (Denmark)

    Duan, Xiaodong; Tan, Zheng-Hua

    2015-01-01

    The most fundamental problem of local feature based kinship verification methods is that a local feature can capture the variations of environmental conditions and the differences between two persons having a kin relation, which can significantly decrease the performance. To address this problem...... the feature distance between face image pairs with kinship and maximize the distance between non-kinship pairs. Based on the subtracted feature, the verification is realized through a simple Gaussian based distance comparison method. Experiments on two public databases show that the feature subtraction method...

  16. Evaluation of carotid vessel wall enhancement with image subtraction after gadobenate dimeglumine-enhanced MR angiography

    International Nuclear Information System (INIS)

    Sardanelli, Francesco; Di Leo, Giovanni; Aliprandi, Alberto; Flor, Nicola; Papini, Giacomo D.E.; Roccatagliata, Luca; Cotticelli, Biagio; Nano, Giovanni; Cornalba, Gianpaolo

    2009-01-01

    Objectives: This study was aimed at testing the value of image subtraction for evaluating carotid vessel wall enhancement in contrast-enhanced MR angiography (MRA). Materials and methods: IRB approval was obtained. The scans of 81 consecutive patients who underwent carotid MRA with 0.1 mmol/kg of gadobenate dimeglumine were reviewed. Axial carotid 3D T1-weighted fast low-angle shot sequence before and 3 min after contrast injection were acquired and subtracted (enhanced minus unenhanced). Vessel wall enhancement was assigned a four-point score using native or subtracted images from 0 (no enhancement) to 3 (strong enhancement). Stenosis degree was graded according to NASCET. Results: With native images, vessel wall enhancement was detected in 20/81 patients (25%) and in 20/161 carotids (12%), and scored 2.0 ± 0.6 (mean ± standard deviation); with subtracted images, in 21/81 (26%) and 22/161 (14%), and scored 2.5 ± 0.6, respectively (P < 0.001, Sign test). The overall stenosis degree distribution was: mild, 41/161 (25%); moderate, 77/161 (48%); severe, 43/161 (27%). Carotids with moderate stenosis showed vessel wall enhancement with a frequency (17/77, 22%) significantly higher than that observed in carotids with mild stenosis (1/41, 2%) (P = 0.005, Fisher exact test) and higher, even though with borderline significance (P = 0.078, Fisher exact test), than that observed in carotids with severe stenosis (4/43, 9%). Conclusion: Roughly a quarter of patients undergoing carotid MRA showed vessel wall enhancement. Image subtraction improved vessel wall enhancement conspicuity. Vessel wall enhancement seems to be an event relatively independent from the degree of stenosis. Further studies are warranted to define the relation between vessel wall enhancement and histopathology, inflammatory status, and instability.

  17. Multi Spectral Fluorescence Imager (MSFI)

    Science.gov (United States)

    Caron, Allison

    2016-01-01

    Genetic transformation with in vivo reporter genes for fluorescent proteins can be performed on a variety of organisms to address fundamental biological questions. Model organisms that may utilize an ISS imager include unicellular organisms (Saccharomyces cerevisiae), plants (Arabidopsis thaliana), and invertebrates (Caenorhabditis elegans). The multispectral fluorescence imager (MSFI) will have the capability to accommodate 10 cm x 10 cm Petri plates, various sized multi-well culture plates, and other custom culture containers. Features will include programmable temperature and light cycles, ethylene scrubbing (less than 25 ppb), CO2 control (between 400 ppm and ISS-ambient levels in units of 100 ppm) and sufficient airflow to prevent condensation that would interfere with imaging.

  18. Improvement in visibility of simulated lung nodules on computed radiography (CR) chest images by use of temporal subtraction technique

    International Nuclear Information System (INIS)

    Oda, Nobuhiro; Fujimoto, Keiji; Murakami, Seiichi; Katsuragawa, Shigehiko; Doi, Kunio; Nakata, Hajime

    1999-01-01

    A temporal subtraction image obtained by subtraction of a previous image from a current one can enhance interval change on chest images. In this study, we compared the visibility of simulated lung nodules on CR images with and without temporal subtraction. Chest phantom images without and with simulated nodules were obtained as previous and current images, respectively, by a CR system. Then, subtraction images were produced with an iterative image warping technique. Twelve simulated nodules were attached on various locations of the chest phantom. The diameter of nodules having a CT number of 47 ranged from 3 mm to 10 mm. Seven radiologists subjectively evaluated the visibility of simulated nodules on CR images with and without temporal subtraction using a three-point rating scale (0: invisible, +1: questionable, +2:visible). The minimum diameter of simulated nodules visible at a frequency greater than 50% was 4 mm on the CR images with temporal subtraction and 6 mm on those without. Our results indicated that the subtraction images clearly improved the visibility of simulated nodules. (author)

  19. The reduction of motion artifacts in digital subtraction angiography by geometrical image transformation

    International Nuclear Information System (INIS)

    Fitzpatrick, J.M.; Pickens, D.R.; Mandava, V.R.; Grefenstette, J.J.

    1988-01-01

    In the diagnosis of arteriosclerosis, radio-opaque dye is injected into the interior of the arteries to make them visible. Because of its increased contrast sensitivity, digital subtraction angiography has the potential for providing diagnostic images of arteries with reduced dye volumes. In the conventional technique, a mask image, acquired before the introduction of the dye, is subtracted from the contrast image, acquired after the dye is introduced, to produce a difference image in which only the dye in the arteries is visible. The usefulness of this technique has been severely limited by the image degradation caused by patient motion during image acquisition. This motion produces artifacts in the difference image that obscure the arteries. One technique for dealing with the problem is to reduce the degradation by means of image registration. The registration is carried out by means of a geometrical transformation of the mask image before subtraction so that it is in registration with the contrast image. This paper describes a technique for determining an optimal transformation. The authors employ a one-to-one elastic mapping and the Jacobian of that mapping to produce a geometrical image transformation. They choose a parameterized class of such mappings and use a heuristic search algorithm to optimize the parameters to minimize the severity of the motion artifacts. To increase the speed of the optimization process they use a statistical image comparison technique that provides a quick approximate evaluation of each image transformation. They present the experimental results of the application of their registration system to mask-contrast pairs, for images acquired from a specially designed phantom, and for clinical images

  20. Metal artifact reduction method using metal streaks image subtraction

    International Nuclear Information System (INIS)

    Pua, Rizza D.; Cho, Seung Ryong

    2014-01-01

    Many studies have been dedicated for metal artifact reduction (MAR); however, the methods are successful to varying degrees depending on situations. Sinogram in-painting, filtering, iterative method are some of the major categories of MAR. Each has its own merits and weaknesses. A combination of these methods or hybrid methods have also been developed to make use of the different benefits of two techniques and minimize the unfavorable results. Our method focuses on the in-paitning approach and a hybrid MAR described by Xia et al. Although in-painting scheme is an effective technique in reducing the primary metal artifacts, a major drawback is the reintroduction of new artifacts that can be caused by an inaccurate interpolation process. Furthermore, combining the segmented metal image to the corrected nonmetal image in the final step of a conventional inpainting approach causes an issue of incorrect metal pixel values. Our proposed method begins with a sinogram in-painting approach and ends with an image-based metal artifact reduction scheme. This work provides a simple, yet effective solution for reducing metal artifacts and acquiring the original metal pixel information. The proposed method demonstrated its effectiveness in a simulation setting. The proposed method showed image quality that is comparable to the standard MAR; however, quantitatively more accurate than the standard MAR

  1. Nonlinear ultrasonic imaging method for closed cracks using subtraction of responses at different external loads.

    Science.gov (United States)

    Ohara, Yoshikazu; Horinouchi, Satoshi; Hashimoto, Makoto; Shintaku, Yohei; Yamanaka, Kazushi

    2011-08-01

    To improve the selectivity of closed cracks for objects other than cracks in ultrasonic imaging, we propose an extension of a novel imaging method, namely, subharmonic phased array for crack evaluation (SPACE) as well as another approach using the subtraction of responses at different external loads. By applying external static or dynamic loads to closed cracks, the contact state in the cracks varies, resulting in an intensity change of responses at cracks. In contrast, objects other than cracks are independent of external load. Therefore, only cracks can be extracted by subtracting responses at different loads. In this study, we performed fundamental experiments on a closed fatigue crack formed in an aluminum alloy compact tension (CT) specimen using the proposed method. We examined the static load dependence of SPACE images and the dynamic load dependence of linear phased array (PA) images by simulating the external loads with a servohydraulic fatigue testing machine. By subtracting the images at different external loads, we show that this method is useful in extracting only the intensity change of responses related to closed cracks, while canceling the responses of objects other than cracks. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Mitigating fluorescence spectral overlap in wide-field endoscopic imaging

    Science.gov (United States)

    Hou, Vivian; Nelson, Leonard Y.; Seibel, Eric J.

    2013-01-01

    Abstract. The number of molecular species suitable for multispectral fluorescence imaging is limited due to the overlap of the emission spectra of indicator fluorophores, e.g., dyes and nanoparticles. To remove fluorophore emission cross-talk in wide-field multispectral fluorescence molecular imaging, we evaluate three different solutions: (1) image stitching, (2) concurrent imaging with cross-talk ratio subtraction algorithm, and (3) frame-sequential imaging. A phantom with fluorophore emission cross-talk is fabricated, and a 1.2-mm ultrathin scanning fiber endoscope (SFE) is used to test and compare these approaches. Results show that fluorophore emission cross-talk could be successfully avoided or significantly reduced. Near term, the concurrent imaging method of wide-field multispectral fluorescence SFE is viable for early stage cancer detection and localization in vivo. Furthermore, a means to enhance exogenous fluorescence target-to-background ratio by the reduction of tissue autofluorescence background is demonstrated. PMID:23966226

  3. Development of a quality assurance protocol for peripheral subtraction imaging applications

    International Nuclear Information System (INIS)

    Walsh, C.; Murphy, D.; O'Hare, N.

    2002-01-01

    Peripheral subtraction scanning is used to trace the blood vessels of upper and lower extremities. In some modern C-arm fluoroscopy systems this function is performed automatically. In this mode the system is programmed to advance and stop in a series of steps taking a mask image at each point. The system then repeats each step after the contrast agent has been injected, and produces a DSA image at each point. Current radiographic quality assurance protocols do not address this feature. This note reviews methods of measuring system vibration while images are being acquired in automated peripheral stepping. The effect on image quality pre- and post-image processing is assessed. Results show that peripheral stepping DSA does not provide the same degree of image quality as static DSA. In examining static test objects, the major cause of the reduction in image quality is misregistration due to vibration of the image intensifier during imaging. (author)

  4. Imaging of the ventricular septal wall and the portal vein by digital subtraction angiography

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Kyoichi; Harashima, Haruhiko; Yamada, Hiromi; Hiraishi, Takahisa; Mikami, Fumio [National Medical Center of Hospital, Tokyo (Japan)

    1983-06-01

    Digital subtraction angiography (DSA) was performed in 2 cases of hypertrophic cardiomyopathy and 2 cases of portal vein disorder. In hypertrophic cardiomyopathy, DSA with the infusion of isopaque 370 at the speed of 5 to 7 ml/sec produced the image of the ventricular septal wall, showing a small ejection fraction. Of portal vein disorders, DSA revealed the portal vein and was helpful in diagnosing tumoral thrombosis of the portal vein in a case of liver carcinoma and portal hypertension.

  5. Ability of subtraction and dynamic MR imaging to detect breast tumors. Comparison with ultrasonography and mammography

    International Nuclear Information System (INIS)

    Terao, Eri; Takeuchi, Hiroaki; Iwamura, Akira; Murakami, Yoshitaka; Harada, Junta; Tada, Shinpei

    1994-01-01

    We evaluated the ability of subtraction and dynamic MR imaging to accurately detect breast tumors. Sixty-five breast carcinomas and 24 fibroadenomas were examined by an SE pulse sequence using a 0.2 Tesla unit. Subtraction MR images were obtained every minute during dynamic study with Gd-DTPA. Almost all breast tumors were seen as very bright masses, and the margin of the mass was clearly demonstrated on subtraction MR images. Breast carcinomas and fibroadenomas showed characteristic time-intensity curves on dynamic study. Time-intensity curves of the early peak type and plateau type were seen in 97% of breast carcinomas, while the gradually increasing type was seen in 92% of fibroadenomas. The detectability of breast carcinoma was 98% by MRI, 98% by ultrasonography, and 87% by mammography. That of fibroadenoma was 95% by MRI, 91% by ultrasonography and 60% by mammography. Sensitivity and specificity for breast carcinoma were 98% and 92% for MRI and 97% and 71% for ultrasonography. For fibroadenoma, they were 96% and 98% for MRI and 89% and 92% for ultrasonography. (author)

  6. Ability of subtraction and dynamic MR imaging to detect breast tumors. Comparison with ultrasonography and mammography

    Energy Technology Data Exchange (ETDEWEB)

    Terao, Eri; Takeuchi, Hiroaki; Iwamura, Akira; Murakami, Yoshitaka; Harada, Junta; Tada, Shinpei (Jikei Univ., Tokyo (Japan). School of Medicine)

    1994-09-01

    We evaluated the ability of subtraction and dynamic MR imaging to accurately detect breast tumors. Sixty-five breast carcinomas and 24 fibroadenomas were examined by an SE pulse sequence using a 0.2 Tesla unit. Subtraction MR images were obtained every minute during dynamic study with Gd-DTPA. Almost all breast tumors were seen as very bright masses, and the margin of the mass was clearly demonstrated on subtraction MR images. Breast carcinomas and fibroadenomas showed characteristic time-intensity curves on dynamic study. Time-intensity curves of the early peak type and plateau type were seen in 97% of breast carcinomas, while the gradually increasing type was seen in 92% of fibroadenomas. The detectability of breast carcinoma was 98% by MRI, 98% by ultrasonography, and 87% by mammography. That of fibroadenoma was 95% by MRI, 91% by ultrasonography and 60% by mammography. Sensitivity and specificity for breast carcinoma were 98% and 92% for MRI and 97% and 71% for ultrasonography. For fibroadenoma, they were 96% and 98% for MRI and 89% and 92% for ultrasonography. (author).

  7. Comparison of the diagnostic accuracy of direct digital radiography system, filtered images, and subtraction radiography

    Directory of Open Access Journals (Sweden)

    Wilton Mitsunari Takeshita

    2013-01-01

    Full Text Available Background: To compare the diagnostic accuracy of three different imaging systems: Direct digital radiography system (DDR-CMOS, four types of filtered images, and a priori and a posteriori registration of digital subtraction radiography (DSR in the diagnosis of proximal defects. Materials and Methods: The teeth were arranged in pairs in 10 blocks of vinyl polysiloxane, and proximal defects were performed with drills of 0.25, 0.5, and 1 mm diameter. Kodak RVG 6100 sensor was used to capture the images. A posteriori DSR registrations were done with Regeemy 0.2.43 and subtraction with Image Tool 3.0. Filtered images were obtained with Kodak Dental Imaging 6.1 software. Images (n = 360 were evaluated by three raters, all experts in dental radiology. Results: Sensitivity and specificity of the area under the receiver operator characteristic (ROC curve (Az were higher for DSR images with all three drills (Az = 0.896, 0.979, and 1.000 for drills 0.25, 0.5, and 1 mm, respectively. The highest values were found for 1-mm drills and the lowest for 0.25-mm drills, with negative filter having the lowest values of all (Az = 0.631. Conclusion: The best method of diagnosis was by using a DSR. The negative filter obtained the worst results. Larger drills showed the highest sensitivity and specificity values of the area under the ROC curve.

  8. The parallel-sequential field subtraction technique for coherent nonlinear ultrasonic imaging

    Science.gov (United States)

    Cheng, Jingwei; Potter, Jack N.; Drinkwater, Bruce W.

    2018-06-01

    Nonlinear imaging techniques have recently emerged which have the potential to detect cracks at a much earlier stage than was previously possible and have sensitivity to partially closed defects. This study explores a coherent imaging technique based on the subtraction of two modes of focusing: parallel, in which the elements are fired together with a delay law and sequential, in which elements are fired independently. In the parallel focusing a high intensity ultrasonic beam is formed in the specimen at the focal point. However, in sequential focusing only low intensity signals from individual elements enter the sample and the full matrix of transmit-receive signals is recorded and post-processed to form an image. Under linear elastic assumptions, both parallel and sequential images are expected to be identical. Here we measure the difference between these images and use this to characterise the nonlinearity of small closed fatigue cracks. In particular we monitor the change in relative phase and amplitude at the fundamental frequencies for each focal point and use this nonlinear coherent imaging metric to form images of the spatial distribution of nonlinearity. The results suggest the subtracted image can suppress linear features (e.g. back wall or large scatters) effectively when instrumentation noise compensation in applied, thereby allowing damage to be detected at an early stage (c. 15% of fatigue life) and reliably quantified in later fatigue life.

  9. Computed tomography lung iodine contrast mapping by image registration and subtraction

    Science.gov (United States)

    Goatman, Keith; Plakas, Costas; Schuijf, Joanne; Beveridge, Erin; Prokop, Mathias

    2014-03-01

    Pulmonary embolism (PE) is a relatively common and potentially life threatening disease, affecting around 600,000 people annually in the United States alone. Prompt treatment using anticoagulants is effective and saves lives, but unnecessary treatment risks life threatening haemorrhage. The specificity of any diagnostic test for PE is therefore as important as its sensitivity. Computed tomography (CT) angiography is routinely used to diagnose PE. However, there are concerns it may over-report the condition. Additional information about the severity of an occlusion can be obtained from an iodine contrast map that represents tissue perfusion. Such maps tend to be derived from dual-energy CT acquisitions. However, they may also be calculated by subtracting pre- and post-contrast CT scans. Indeed, there are technical advantages to such a subtraction approach, including better contrast-to-noise ratio for the same radiation dose, and bone suppression. However, subtraction relies on accurate image registration. This paper presents a framework for the automatic alignment of pre- and post-contrast lung volumes prior to subtraction. The registration accuracy is evaluated for seven subjects for whom pre- and post-contrast helical CT scans were acquired using a Toshiba Aquilion ONE scanner. One hundred corresponding points were annotated on the pre- and post-contrast scans, distributed throughout the lung volume. Surface-to-surface error distances were also calculated from lung segmentations. Prior to registration the mean Euclidean landmark alignment error was 2.57mm (range 1.43-4.34 mm), and following registration the mean error was 0.54mm (range 0.44-0.64 mm). The mean surface error distance was 1.89mm before registration and 0.47mm after registration. There was a commensurate reduction in visual artefacts following registration. In conclusion, a framework for pre- and post-contrast lung registration has been developed that is sufficiently accurate for lung subtraction

  10. Fluorescence imaging spectrometer optical design

    Science.gov (United States)

    Taiti, A.; Coppo, P.; Battistelli, E.

    2015-09-01

    The optical design of the FLuORescence Imaging Spectrometer (FLORIS) studied for the Fluorescence Explorer (FLEX) mission is discussed. FLEX is a candidate for the ESA's 8th Earth Explorer opportunity mission. FLORIS is a pushbroom hyperspectral imager foreseen to be embarked on board of a medium size satellite, flying in tandem with Sentinel-3 in a Sun synchronous orbit at a height of about 815 km. FLORIS will observe the vegetation fluorescence and reflectance within a spectral range between 500 and 780 nm. Multi-frames acquisitions on matrix detectors during the satellite movement will allow the production of 2D Earth scene images in two different spectral channels, called HR and LR with spectral resolution of 0.3 and 2 nm respectively. A common fore optics is foreseen to enhance by design the spatial co-registration between the two spectral channels, which have the same ground spatial sampling (300 m) and swath (150 km). An overlapped spectral range between the two channels is also introduced to simplify the spectral coregistration. A compact opto-mechanical solution with all spherical and plane optical elements is proposed, and the most significant design rationales are described. The instrument optical architecture foresees a dual Babinet scrambler, a dioptric telescope and two grating spectrometers (HR and LR), each consisting of a modified Offner configuration. The developed design is robust, stable vs temperature, easy to align, showing very high optical quality along the whole field of view. The system gives also excellent correction for transverse chromatic aberration and distortions (keystone and smile).

  11. K-edge subtraction synchrotron X-ray imaging in bio-medical research.

    Science.gov (United States)

    Thomlinson, W; Elleaume, H; Porra, L; Suortti, P

    2018-05-01

    High contrast in X-ray medical imaging, while maintaining acceptable radiation dose levels to the patient, has long been a goal. One of the most promising methods is that of K-edge subtraction imaging. This technique, first advanced as long ago as 1953 by B. Jacobson, uses the large difference in the absorption coefficient of elements at energies above and below the K-edge. Two images, one taken above the edge and one below the edge, are subtracted leaving, ideally, only the image of the distribution of the target element. This paper reviews the development of the KES techniques and technology as applied to bio-medical imaging from the early low-power tube sources of X-rays to the latest high-power synchrotron sources. Applications to coronary angiography, functional lung imaging and bone growth are highlighted. A vision of possible imaging with new compact sources is presented. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  12. Fluorescence lifetime imaging of skin cancer

    Science.gov (United States)

    Patalay, Rakesh; Talbot, Clifford; Munro, Ian; Breunig, Hans Georg; König, Karsten; Alexandrov, Yuri; Warren, Sean; Neil, Mark A. A.; French, Paul M. W.; Chu, Anthony; Stamp, Gordon W.; Dunsby, Chris

    2011-03-01

    Fluorescence intensity imaging and fluorescence lifetime imaging microscopy (FLIM) using two photon microscopy (TPM) have been used to study tissue autofluorescence in ex vivo skin cancer samples. A commercially available system (DermaInspect®) was modified to collect fluorescence intensity and lifetimes in two spectral channels using time correlated single photon counting and depth-resolved steady state measurements of the fluorescence emission spectrum. Uniquely, image segmentation has been used to allow fluorescence lifetimes to be calculated for each cell. An analysis of lifetime values obtained from a range of pigmented and non-pigmented lesions will be presented.

  13. Digital subtraction in gadolinium-enhanced MR imaging of the brain: a method to reduce contrast dosage

    International Nuclear Information System (INIS)

    Chan, J.H.M.; Tsui, E.Y.K.; Chan, C.Y.; Lai, K.F.; Cheung, Y.K.; Wong, K.P.C.; Yuen, M.K.; Chau, L.F.; Fong, D.; Mok, C.K.

    2002-01-01

    The aim of the study was to investigate the feasibility of using digital subtraction in contrast-enhanced MR imaging of the brain to reduce the MR contrast dosage without jeopardizing patient care. Fifty-two patients with intracranial lesions, either intra-axial or extra-axial, detected by computerized tomography were selected for contrast-enhanced MR imaging with half-dose and full-dose of gadopentetate dimeglumine. The half-dose unsubtracted, full-dose unsubtracted, and half-dose subtracted MR images were visually assessed by counting the number of enhancing brain lesions in the images and quantitatively analyzed by computing their lesion contrast-to-background ratios (CBR). The visual conspicuity of the half-dose subtracted MR images was comparable to that of the full-dose unsubtracted MR images (p>0.05), whereas the CBR of the half-dose subtracted images was approximately two to three times higher than that of the full-dose unsubtracted images. The half-dose subtracted T1-weighted spin-echo images might be able to replace the conventional standard-dose T1-weighted spin-echo images in MR imaging of the brain. (orig.)

  14. Tomographic image via background subtraction using an x-ray projection image and a priori computed tomography

    International Nuclear Information System (INIS)

    Zhang Jin; Yi Byongyong; Lasio, Giovanni; Suntharalingam, Mohan; Yu, Cedric

    2009-01-01

    Kilovoltage x-ray projection images (kV images for brevity) are increasingly available in image guided radiotherapy (IGRT) for patient positioning. These images are two-dimensional (2D) projections of a three-dimensional (3D) object along the x-ray beam direction. Projecting a 3D object onto a plane may lead to ambiguities in the identification of anatomical structures and to poor contrast in kV images. Therefore, the use of kV images in IGRT is mainly limited to bony landmark alignments. This work proposes a novel subtraction technique that isolates a slice of interest (SOI) from a kV image with the assistance of a priori information from a previous CT scan. The method separates structural information within a preselected SOI by suppressing contributions to the unprocessed projection from out-of-SOI-plane structures. Up to a five-fold increase in the contrast-to-noise ratios (CNRs) was observed in selected regions of the isolated SOI, when compared to the original unprocessed kV image. The tomographic image via background subtraction (TIBS) technique aims to provide a quick snapshot of the slice of interest with greatly enhanced image contrast over conventional kV x-ray projections for fast and accurate image guidance of radiation therapy. With further refinements, TIBS could, in principle, provide real-time tumor localization using gantry-mounted x-ray imaging systems without the need for implanted markers.

  15. Evaluation of the utility of temporal subtraction images in successive whole-body bone scans: a prospective clinical study

    International Nuclear Information System (INIS)

    Shiraishi, J.; Appelbaum, D.; Pu, Y.; Engelmann, R.; Li Qiang; Doi, K.

    2007-01-01

    We have begun a prospective clinical study for evaluating the clinical utility of temporal subtraction images in successive whole-body bone scans. The computerized temporal subtraction technique has been developed in order to highlight interval changes of abnormal lesions due to skeletal metastases, primary bone tumors, osteomyelitis, and fractures. In our initial preliminary results of the prospective study which was started on November 22, 2006 in our hospital, radiologists reported some interval changes which were not recognized in the initial standard readings, but were obvious when temporal subtraction images were viewed. The usefulness of the temporal subtraction images will be investigated in terms of its clinical utility by the prospective clinical study. (orig.)

  16. Multispectral system for medical fluorescence imaging

    International Nuclear Information System (INIS)

    Andersson, P.S.; Montan, S.; Svanberg, S.

    1987-01-01

    The principles of a powerful multicolor imaging system for tissue fluorescence diagnostics are discussed. Four individually spectrally filtered images are formed on a matrix detector by means of a split-mirror arrangement. The four images are processed in a computer, pixel by pixel, by means of mathematical operations, leading to an optimized contrast image, which enhances a selected feature. The system is being developed primarily for medical fluorescence imaging, but has wide applications in fluorescence, reflectance, and transmission monitoring related to a wide range of industrial and environmental problems. The system operation is described for the case of linear imaging on a diode array detector. Laser-induced fluorescence is used for cancer tumor and arteriosclerotic plaque demarcation using the contrast enhancement capabilities of this imaging system. Further examples of applications include fluorescing minerals and flames

  17. Performance of a video-image-subtraction-based patient positioning system

    International Nuclear Information System (INIS)

    Milliken, Barrett D.; Rubin, Steven J.; Hamilton, Russell J.; Johnson, L. Scott; Chen, George T.Y.

    1997-01-01

    Purpose: We have developed and tested an interactive video system that utilizes image subtraction techniques to enable high precision patient repositioning using surface features. We report quantitative measurements of system performance characteristics. Methods and Materials: Video images can provide a high precision, low cost measure of patient position. Image subtraction techniques enable one to incorporate detailed information contained in the image of a carefully verified reference position into real-time images. We have developed a system using video cameras providing orthogonal images of the treatment setup. The images are acquired, processed and viewed using an inexpensive frame grabber and a PC. The subtraction images provide the interactive guidance needed to quickly and accurately place a patient in the same position for each treatment session. We describe the design and implementation of our system, and its quantitative performance, using images both to measure changes in position, and to achieve accurate setup reproducibility. Results: Under clinical conditions (60 cm field of view, 3.6 m object distance), the position of static, high contrast objects could be measured with a resolution of 0.04 mm (rms) in each of two dimensions. The two-dimensional position could be reproduced using the real-time image display with a resolution of 0.15 mm (rms). Two-dimensional measurement resolution of the head of a patient undergoing treatment for head and neck cancer was 0.1 mm (rms), using a lateral view, measuring the variation in position of the nose and the ear over the course of a single radiation treatment. Three-dimensional repositioning accuracy of the head of a healthy volunteer using orthogonal camera views was less than 0.7 mm (systematic error) with an rms variation of 1.2 mm. Setup adjustments based on the video images were typically performed within a few minutes. The higher precision achieved using the system to measure objects than to reposition

  18. Crowded Field Photometry and Moving Object Detection with Optimal Image Subtraction

    Science.gov (United States)

    Lee, Austin A. T.; Scheulen, F.; Sauro, C. M.; McMahon, C. T.; Berry, S. J.; Robinson, C. H.; Buie, M. W.; Little, P.

    2010-05-01

    High precision photometry and moving object detection are essential in the study of Pluto and the Kuiper Belt. In particular, the New Horizons mission would benefit from an accurate and fast method of performing image subtraction to locate faint Kuiper Belt Objects (KBO) among large data sets. The optimal image subtraction (OIS) algorithm was optimized for IDL to decrease execution time by a factor of about 140 from a previous implementation (Miller 2008, PASP, 120, 449). In addition, a powerful image transformation and interpolation routine was written to provide OIS with well-aligned input images using astrometric fit data. The first half of this project is complete including the code optimization and the alignment routine. The second half of the project is focused on using these tools to search a 5 x 10 degree search area to find KBOs for possible targets for the New Horizons mission. We will present examples of how these tools work and along with resulting Pluto photometry and KBO target lists. The optimized OIS and transformation routines are available in Marc Buie's IDL library at http://www.boulder.swri.edu/ buie/idl/ as ois.pro and dewarp.pro. This project was conducted for Harvey Mudd College's Clinic Program with financial support from the NASA Planetary Astronomy Program grant number NNX09AB43G.

  19. PCA-based approach for subtracting thermal background emission in high-contrast imaging data

    Science.gov (United States)

    Hunziker, S.; Quanz, S. P.; Amara, A.; Meyer, M. R.

    2018-03-01

    Aims.Ground-based observations at thermal infrared wavelengths suffer from large background radiation due to the sky, telescope and warm surfaces in the instrument. This significantly limits the sensitivity of ground-based observations at wavelengths longer than 3 μm. The main purpose of this work is to analyse this background emission in infrared high-contrast imaging data as illustrative of the problem, show how it can be modelled and subtracted and demonstrate that it can improve the detection of faint sources, such as exoplanets. Methods: We used principal component analysis (PCA) to model and subtract the thermal background emission in three archival high-contrast angular differential imaging datasets in the M' and L' filter. We used an M' dataset of β Pic to describe in detail how the algorithm works and explain how it can be applied. The results of the background subtraction are compared to the results from a conventional mean background subtraction scheme applied to the same dataset. Finally, both methods for background subtraction are compared by performing complete data reductions. We analysed the results from the M' dataset of HD 100546 only qualitatively. For the M' band dataset of β Pic and the L' band dataset of HD 169142, which was obtained with an angular groove phase mask vortex vector coronagraph, we also calculated and analysed the achieved signal-to-noise ratio (S/N). Results: We show that applying PCA is an effective way to remove spatially and temporarily varying thermal background emission down to close to the background limit. The procedure also proves to be very successful at reconstructing the background that is hidden behind the point spread function. In the complete data reductions, we find at least qualitative improvements for HD 100546 and HD 169142, however, we fail to find a significant increase in S/N of β Pic b. We discuss these findings and argue that in particular datasets with strongly varying observing conditions or

  20. Development of a fluorescent x-ray source for medical imaging

    Science.gov (United States)

    Toyofuku, F.; Tokumori, K.; Nishimura, K.; Saito, T.; Takeda, T.; Itai, Y.; Hyodo, K.; Ando, M.; Endo, M.; Naito, H.; Uyama, C.

    1995-02-01

    A fluorescent x-ray source for medical imaging, such as K-edge subtraction angiography and monochromatic x-ray CT, has been developed. Using a 6.5 GeV accumulation ring in Tsukuba, fluorescent x rays, which range from about 30 to 70 keV are generated by irradiating several target materials. Measurements have been made of output intensities and energy spectra for different target angles and extraction angles. The intensities of fluorescent x rays at a 30 mA beam current are on the order of 1-3×106 photons/mm2/s at 30 cm from the local spot where the incident beam is collimated to 1 mm2. A phantom which contains three different contrast media (iodine, barium, gadolinium) was used for the K-edge energy subtraction, and element selective CT images were obtained.

  1. Parametric Imaging Of Digital Subtraction Angiography Studies For Renal Transplant Evaluation

    Science.gov (United States)

    Gallagher, Joe H.; Meaney, Thomas F.; Flechner, Stuart M.; Novick, Andrew C.; Buonocore, Edward

    1981-11-01

    A noninvasive method for diagnosing acute tubular necrosis and rejection would be an important tool for the management of renal transplant patients. From a sequence of digital subtraction angiographic images acquired after an intravenous injection of radiographic contrast material, the parametric images of the maximum contrast, the time when the maximum contrast is reached, and two times the time at which one half of the maximum contrast is reached are computed. The parametric images of the time when the maximum is reached clearly distinguish normal from abnormal renal function. However, it is the parametric image of two times the time when one half of the maximum is reached which provides some assistance in differentiating acute tubular necrosis from rejection.

  2. Anatomic and functional imaging of congenital heart disease with digital subtraction angiography

    International Nuclear Information System (INIS)

    Buonocore, E.; Pavlicek, W.; Modic, M.T.; Meaney, T.F.; O'Donovan, P.B.; Grossman, L.B.; Moodie, D.S.; Yiannikas, J.

    1983-01-01

    Digital subtraction angiography (DSA) of the heart was performed in 54 patients for the evaluation of congenital heart diagnostic images and accurate physiologic shunt data that compared favorably with catheter angiography and nuclear medicine studies. Retrospective analysis of this series of patients indicated that DSA studies contributed sufficient informantion to shorten significantly or modify cardiac catheterization in 85% (79/93) of the defects that were identified. Interatrial septal defects were particularly well diagnosed, with identification occurring in 10 of 10 cases, wheseas intraventricular septal defects were identified in only 6 of 9 patients. Evaluation of postsurgical patients was accurate in 19 of 20 cases

  3. Fluorescence lifetime imaging using light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Gordon T; Munro, Ian; Poher, Vincent; French, Paul M W; Neil, Mark A A [Blackett Laboratory, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Elson, Daniel S [Institute of Biomedical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Hares, Jonathan D [Kentech Instruments Ltd, Unit 9, Hall Farm Workshops, South Moreton, Didcot, Oxfordshire, OX11 9AG (United Kingdom)], E-mail: gordon.kennedy@imperial.ac.uk

    2008-05-07

    We demonstrate flexible use of low cost, high-power light emitting diodes as illumination sources for fluorescence lifetime imaging (FLIM). Both time-domain and frequency-domain techniques have been implemented at wavelengths spanning the range 450-640 nm. Additionally, we demonstrate optically sectioned fluorescence lifetime imaging by combining structured illumination with frequency-domain FLIM.

  4. Imaging of the digital arteries: Digital subtraction angiography versus conventional angiography

    International Nuclear Information System (INIS)

    Menanteau, B.P.; Treutenaere, J.M.; Marcus, C.; Ladam, V.; Gausserand, F.

    1986-01-01

    The authors report their experience with the use of digital subtraction angiography (DSA) and conventional angiography of the hand. Of the 95 patients in the study group, 80 underwent conventional angiography and 15 underwent DSA. They analyzed the studies with regard to the type and amount of contrast agent used, the number of radiographs needed, and the diagnostic quality of the images. Conventional angiography often requires general anesthesia, magnification, and pharmaco-angiographic techniques to improve the image-based diagnosis. In comparison with conventional angiography, intraarterial DSA is characterized by improved contrast sensitivity and inferior spatial resolution. However, DSA provides images as acceptable as those of conventional angiography. Smaller catheters can be used, and the examination is performed under local anesthesia. The authors conclude that intraarterial DSA is now the technique of choice for examining patients with chronic ischemia of the hand

  5. Dynamic gadolinium-enhanced subtraction MR imaging - a simple technique for the early diagnosis of Legg-Calve-Perthes disease: preliminary results

    International Nuclear Information System (INIS)

    Sebag, G.; Ducou Le Pointe, H.; Klein, I.; Maiza, D.; Mazda, K.; Bensahel, H.; Hassan, M.

    1997-01-01

    To determine whether the simple technique of dynamic gadolinium-enhanced subtraction MR imaging, which is available on standard MR units, can detect ischemia of the femoral head in children with early Legg-Calve-Perthes disease (LCP). Bone perfusion of eight hips in four patients (mean age 7.5 years) was studied using dynamic gadolinium-enhanced substraction MR imaging at the onset of proven LCP (with initial negative plain films). Enhancement of subtracted images was compared with that on standard MR images and with bone scintigraphy findings. Subtraction MR imaging depicted ischemia as a widespread absence of enhancement and was in good agreement with bone scintigraphy. The subtraction technique improved the sensitivity and the specificity of MR imaging in two children. Furthermore, subtraction MR imaging allowed recognition of the pattern of early reperfusion. Our preliminary results indicate that dynamic gadolinium-enhanced subtraction MRI is a simple and promising means of early recognition of ischemia in LCP. (orig.)

  6. Clinical evaluation of bone-subtraction CT angiography (BSCTA) in head and neck imaging

    International Nuclear Information System (INIS)

    Lell, M.; Anders, K.; Bautz, W.; Klotz, E.; Ditt, H.; Tomandl, B.F.

    2006-01-01

    Fifty-one patients were examined with bone subtraction CT angiography (BSCTA). Data were acquired on 4-and 64-slice spiral CT systems. The post-processing method is based on fully automatic registration of non-enhanced and contrast-enhanced CT data and subsequent selective bone removal. Vascular structures and brain tissue are retained with the original CTA noise level. Image quality and delineation of the pathologic process were assessed and artifacts introduced by the bone removal process recorded. The bone subtraction algorithm worked successfully in all examinations. The processing time was 6 min on average. Image quality was rated excellent in 20 (39%), good in 26 (51%) and acceptable in 5 (10%) patients. Ophthalmic arteries were visible in 12 (24%) patients bilaterally, in 13 (25%) patients unilaterally and in 26 (51%) patients at least at the origin. BSCTA improved visualization of the infraclinoid ICA and the vertebral arteries. The depiction of stenosis of the extracranial ICA and supraclinoid aneurysms was not significantly improved. In patients with suspicion of sinus thrombosis, BSCTA and conventional CTA yielded similar results. To conclude, BSCTA improves the visualization of vessels with close contact to bone and can improve the diagnostic accuracy and therapy planning of infraclinoid aneurysms. (orig.)

  7. An energy-subtraction Compton scatter camera design for in vivo medical imaging of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Rohe, R.C.; Valentine, J.D.

    1996-01-01

    A Compton scatter camera (CSC) design is proposed for imaging radioisotopes used as biotracers. A clinical version may increase sensitivity by a factor of over 100, while maintaining or improving spatial resolution, as compared with existing Anger cameras that use lead collimators. This novel approach is based on using energy subtraction (ΔE = E 0 - E SC , where E 0 , ΔE, and E SC are the energy of the emitted gamma ray, the energy deposited by the initial Compton scatter, and the energy of the Compton scattered photon) to determine the amount of energy deposited in the primary system. The energy subtraction approach allows the requirement of high energy resolution to be placed on a secondary detector system instead of the primary detector system. Requiring primary system high energy resolution has significantly limited previous CSC designs for medical imaging applications. Furthermore, this approach is dependent on optimizing the camera design for data acquisition of gamma rays that undergo only one Compton scatter in a low-Z primary detector system followed by a total absorption of the Compton scattered photon in a high-Z secondary detector system. The proposed approach allows for a more compact primary detector system, a more simplified pulse processing interface, and a much less complicated detector cooling scheme as compared with previous CSC designs. Analytical calculations and Monte Carlo simulation results for some specific detector materials and geometries are presented

  8. Deep UV Native Fluorescence Imaging of Antarctic Cryptoendolithic Communities

    Science.gov (United States)

    Storrie-Lombardi, M. C.; Douglas, S.; Sun, H.; McDonald, G. D.; Bhartia, R.; Nealson, K. H.; Hug, W. F.

    2001-01-01

    An interdisciplinary team at the Jet Propulsion Laboratory Center for Life Detection has embarked on a project to provide in situ chemical and morphological characterization of Antarctic cryptoendolithic microbial communities. We present here in situ deep ultraviolet (UV) native fluorescence and environmental scanning electron microscopy images transiting 8.5 mm into a sandstone sample from the Antarctic Dry Valleys. The deep ultraviolet imaging system employs 224.3, 248.6, and 325 nm lasers to elicit differential fluorescence and resonance Raman responses from biomolecules and minerals. The 224.3 and 248.6 nm lasers elicit a fluorescence response from the aromatic amino and nucleic acids. Excitation at 325 nm may elicit activity from a variety of biomolecules, but is more likely to elicit mineral fluorescence. The resultant fluorescence images provide in situ chemical and morphological maps of microorganisms and the associated organic matrix. Visible broadband reflectance images provide orientation against the mineral background. Environmental scanning electron micrographs provided detailed morphological information. The technique has made possible the construction of detailed fluorescent maps extending from the surface of an Antarctic sandstone sample to a depth of 8.5 mm. The images detect no evidence of microbial life in the superficial 0.2 mm crustal layer. The black lichen component between 0.3 and 0.5 mm deep absorbs all wavelengths of both laser and broadband illumination. Filamentous deep ultraviolet native fluorescent activity dominates in the white layer between 0.6 mm and 5.0 mm from the surface. These filamentous forms are fungi that continue into the red (iron-rich) region of the sample extending from 5.0 to 8.5 mm. Using differential image subtraction techniques it is possible to identify fungal nuclei. The ultraviolet response is markedly attenuated in this region, apparently from the absorption of ultraviolet light by iron-rich particles coating

  9. A LabVIEW Platform for Preclinical Imaging Using Digital Subtraction Angiography and Micro-CT.

    Science.gov (United States)

    Badea, Cristian T; Hedlund, Laurence W; Johnson, G Allan

    2013-01-01

    CT and digital subtraction angiography (DSA) are ubiquitous in the clinic. Their preclinical equivalents are valuable imaging methods for studying disease models and treatment. We have developed a dual source/detector X-ray imaging system that we have used for both micro-CT and DSA studies in rodents. The control of such a complex imaging system requires substantial software development for which we use the graphical language LabVIEW (National Instruments, Austin, TX, USA). This paper focuses on a LabVIEW platform that we have developed to enable anatomical and functional imaging with micro-CT and DSA. Our LabVIEW applications integrate and control all the elements of our system including a dual source/detector X-ray system, a mechanical ventilator, a physiological monitor, and a power microinjector for the vascular delivery of X-ray contrast agents. Various applications allow cardiac- and respiratory-gated acquisitions for both DSA and micro-CT studies. Our results illustrate the application of DSA for cardiopulmonary studies and vascular imaging of the liver and coronary arteries. We also show how DSA can be used for functional imaging of the kidney. Finally, the power of 4D micro-CT imaging using both prospective and retrospective gating is shown for cardiac imaging.

  10. Cryo-imaging of fluorescently labeled single cells in a mouse

    Science.gov (United States)

    Steyer, Grant J.; Roy, Debashish; Salvado, Olivier; Stone, Meredith E.; Wilson, David L.

    2009-02-01

    We developed a cryo-imaging system to provide single-cell detection of fluorescently labeled cells in mouse, with particular applicability to stem cells and metastatic cancer. The Case cryoimaging system consists of a fluorescence microscope, robotic imaging positioner, customized cryostat, PC-based control system, and visualization/analysis software. The system alternates between sectioning (10-40 μm) and imaging, collecting color brightfield and fluorescent blockface image volumes >60GB. In mouse experiments, we imaged quantum-dot labeled stem cells, GFP-labeled cancer and stem cells, and cell-size fluorescent microspheres. To remove subsurface fluorescence, we used a simplified model of light-tissue interaction whereby the next image was scaled, blurred, and subtracted from the current image. We estimated scaling and blurring parameters by minimizing entropy of subtracted images. Tissue specific attenuation parameters were found [uT : heart (267 +/- 47.6 μm), liver (218 +/- 27.1 μm), brain (161 +/- 27.4 μm)] to be within the range of estimates in the literature. "Next image" processing removed subsurface fluorescence equally well across multiple tissues (brain, kidney, liver, adipose tissue, etc.), and analysis of 200 microsphere images in the brain gave 97+/-2% reduction of subsurface fluorescence. Fluorescent signals were determined to arise from single cells based upon geometric and integrated intensity measurements. Next image processing greatly improved axial resolution, enabled high quality 3D volume renderings, and improved enumeration of single cells with connected component analysis by up to 24%. Analysis of image volumes identified metastatic cancer sites, found homing of stem cells to injury sites, and showed microsphere distribution correlated with blood flow patterns. We developed and evaluated cryo-imaging to provide single-cell detection of fluorescently labeled cells in mouse. Our cryo-imaging system provides extreme (>60GB), micron

  11. Boronic acids for fluorescence imaging of carbohydrates.

    Science.gov (United States)

    Sun, Xiaolong; Zhai, Wenlei; Fossey, John S; James, Tony D

    2016-02-28

    "Fluorescence imaging" is a particularly exciting and rapidly developing area of research; the annual number of publications in the area has increased ten-fold over the last decade. The rapid increase of interest in fluorescence imaging will necessitate the development of an increasing number of molecular receptors and binding agents in order to meet the demand in this rapidly expanding area. Carbohydrate biomarkers are particularly important targets for fluorescence imaging given their pivotal role in numerous important biological events, including the development and progression of many diseases. Therefore, the development of new fluorescent receptors and binding agents for carbohydrates is and will be increasing in demand. This review highlights the development of fluorescence imaging agents based on boronic acids a particularly promising class of receptors given their strong and selective binding with carbohydrates in aqueous media.

  12. Aorta Fluorescence Imaging by Using Confocal Microscopy

    OpenAIRE

    Wang, Chun-Yang; Tsai, Jui-che; Chuang, Ching-Cheng; Hsieh, Yao-Sheng; Sun, Chia-Wei

    2011-01-01

    The activated leukocyte attacked the vascular endothelium and the associated increase in VEcadherin number was observed in experiments. The confocal microscopic system with a prism-based wavelength filter was used for multiwavelength fluorescence measurement. Multiwavelength fluorescence imaging based on the VEcadherin within the aorta segment of a rat was achieved. The confocal microscopic system capable of fluorescence detection of cardiovascular tissue is a useful tool for measuring the bi...

  13. Usefulness of computerized method for lung nodule detection on digital chest radiographs using similar subtraction images from different patients

    International Nuclear Information System (INIS)

    Aoki, Takatoshi; Oda, Nobuhiro; Yamashita, Yoshiko; Yamamoto, Keiji; Korogi, Yukunori

    2012-01-01

    Purpose: The purpose of this study is to evaluate the usefulness of a novel computerized method to select automatically the similar chest radiograph for image subtraction in the patients who have no previous chest radiographs and to assist the radiologists’ interpretation by presenting the “similar subtraction image” from different patients. Materials and methods: Institutional review board approval was obtained, and the requirement for informed patient consent was waived. A large database of approximately 15,000 normal chest radiographs was used for searching similar images of different patients. One hundred images of candidates were selected according to two clinical parameters and similarity of the lung field in the target image. We used the correlation value of chest region in the 100 images for searching the most similar image. The similar subtraction images were obtained by subtracting the similar image selected from the target image. Thirty cases with lung nodules and 30 cases without lung nodules were used for an observer performance test. Four attending radiologists and four radiology residents participated in this observer performance test. Results: The AUC for all radiologists increased significantly from 0.925 to 0.974 with the CAD (P = .004). When the computer output images were available, the average AUC for the residents was more improved (0.960 vs. 0.890) than for the attending radiologists (0.987 vs. 0.960). Conclusion: The novel computerized method for lung nodule detection using similar subtraction images from different patients would be useful to detect lung nodules on digital chest radiographs, especially for less experienced readers.

  14. Averaged subtracted polarization imaging for endoscopic diagnostics of surface microstructures on translucent mucosae

    Science.gov (United States)

    Kanamori, Katsuhiro

    2016-07-01

    An endoscopic image processing technique for enhancing the appearance of microstructures on translucent mucosae is described. This technique employs two pairs of co- and cross-polarization images under two different linearly polarized lights, from which the averaged subtracted polarization image (AVSPI) is calculated. Experiments were then conducted using an acrylic phantom and excised porcine stomach tissue using a manual experimental setup with ring-type lighting, two rotating polarizers, and a color camera; better results were achieved with the proposed method than with conventional color intensity image processing. An objective evaluation method that uses texture analysis was developed and used to evaluate the enhanced microstructure images. This paper introduces two types of online, rigid-type, polarimetric endoscopic implementations using a polarized ring-shaped LED and a polarimetric camera. The first type uses a beam-splitter-type color polarimetric camera, and the second uses a single-chip monochrome polarimetric camera. Microstructures on the mucosa surface were enhanced robustly with these online endoscopes regardless of the difference in the extinction ratio of each device. These results show that polarimetric endoscopy using AVSPI is both effective and practical for hardware implementation.

  15. Recent developments in multimodality fluorescence imaging probes

    Directory of Open Access Journals (Sweden)

    Jianhong Zhao

    2018-05-01

    Full Text Available Multimodality optical imaging probes have emerged as powerful tools that improve detection sensitivity and accuracy, important in disease diagnosis and treatment. In this review, we focus on recent developments of optical fluorescence imaging (OFI probe integration with other imaging modalities such as X-ray computed tomography (CT, magnetic resonance imaging (MRI, positron emission tomography (PET, single-photon emission computed tomography (SPECT, and photoacoustic imaging (PAI. The imaging technologies are briefly described in order to introduce the strengths and limitations of each techniques and the need for further multimodality optical imaging probe development. The emphasis of this account is placed on how design strategies are currently implemented to afford physicochemically and biologically compatible multimodality optical fluorescence imaging probes. We also present studies that overcame intrinsic disadvantages of each imaging technique by multimodality approach with improved detection sensitivity and accuracy. KEY WORDS: Optical imaging, Fluorescence, Multimodality, Near-infrared fluorescence, Nanoprobe, Computed tomography, Magnetic resonance imaging, Positron emission tomography, Single-photon emission computed tomography, Photoacoustic imaging

  16. Optimum allocation of imaging time and minimum detectable activity in dual isotope blood pool subtraction indium-111 platelet imaging

    International Nuclear Information System (INIS)

    Machac, J.; Horowitz, S.F.; Goldsmith, S.J.; Fuster, V.

    1984-01-01

    Indium-111 labeled platelet imaging is a tool for detection of thrombus formation in vascular spaces. Dual isotope blood pool subtraction may help differentiate focal platelet accumulation from blood pool activity. This study used a computer model to calculate the minimum excess-to-blood pool platelet ratio (EX/BP) and the optimum dual isotope imaging times under varied conditions of lesion size. The model simulated usual human imaging doses of 500 μCi of In-111 platelets and 5mCi of Tc-99m labeled RBCs giving a reference cardiac blood pool region (100cc) of 10000 cpm for Tc-99m and 500 cpm for In-111. The total imaging time was fixed at 20 minutes, while the two isotope imaging times (TIn/TTc) were varied, as were the simulated lesion size (cc) and EX/BP. The relative error of the excess counts was calculated using propagation of error theory. At the critical level of detection, where the excess lesion counts equal 3 times the standard deviation, the optimum TIn/TTc and minimum Ex/BP were determined for each lesion size. For the smallest lesion size (0.1cc), the minimum detectable EX/BP ratio was 1.6, with the best TIn/TTC ratio of 18/2 minutes, and for large lesions, an EX/BP of 0.1, with a TIn/TTc of 16/4. This model provides an estimate of the sensitivity and optimizes imaging times in dual isotope subtraction platelet imaging. The model is adaptable to varying isotope doses, total imaging times and lesion size. This information will be helpful in future in- vivo imaging studies of intravascular thrombi in humans

  17. Comparisons of images simultaneously documented by digital subtraction coronary arteriography and cine coronary arteriography

    International Nuclear Information System (INIS)

    Kimura, Koji; Takamiya, Makoto; Yamamoto, Kazuo; Ohta, Mitsushige; Naito, Hiroaki

    1988-01-01

    Using an angiography apparatus capable of simultaneously processing digital subtraction angiograms and cine angiograms, the diagnostic capabilities of both methods for the coronary arteries (DSCAG and Cine-CAG) were compared. Twenty stenotic lesions of the coronary arteries of 11 patients were evaluated using both modalities. The severity of stenosis using DSCAG with a 512x512x8 bit matrix was semiautomatically measured on the cathode ray tube (CRT) based on enlarged images on the screen of a Vanguard cine projector which were of the same size as those of or 10 times larger than images of Cine-CAG. The negative and positive hard copies of DSCAG images were also compared with those of Cine-CAG. The correlation coefficients of the severity of stenosis by DSCAG and Cine-CAG were as follows: (1) the same size DSCAG images on CRT to Cine-CAG, 0.95, (2) 10 times enlarged DSCAG images on CRT to Cine-CAG, 0.96, and (3) the same size DSCAG images on negative and positive hard copies to Cine-CAG, 0.97. The semiautomatically measured values of 10 times enlarged DSCAG images on CRT and the manually measured values of the same size negative and positive DSCAG images in hard copy closely correlated with the values measured using Cine-CAG. When the liver was superimposed in the long-axis projection, the diagnostic capabilities of DSCAG and Cine-CAG were compared. The materials included 10 left coronary arteriograms and 11 right coronary arteriograms. Diagnostically, DSCAG was more useful than Cine-CAG in the long-axis projection. (author)

  18. Fluorescence optical imaging in anticancer drug delivery.

    Science.gov (United States)

    Etrych, Tomáš; Lucas, Henrike; Janoušková, Olga; Chytil, Petr; Mueller, Thomas; Mäder, Karsten

    2016-03-28

    In the past several decades, nanosized drug delivery systems with various targeting functions and controlled drug release capabilities inside targeted tissues or cells have been intensively studied. Understanding their pharmacokinetic properties is crucial for the successful transition of this research into clinical practice. Among others, fluorescence imaging has become one of the most commonly used imaging tools in pre-clinical research. The development of increasing numbers of suitable fluorescent dyes excitable in the visible to near-infrared wavelengths of the spectrum has significantly expanded the applicability of fluorescence imaging. This paper focuses on the potential applications and limitations of non-invasive imaging techniques in the field of drug delivery, especially in anticancer therapy. Fluorescent imaging at both the cellular and systemic levels is discussed in detail. Additionally, we explore the possibility for simultaneous treatment and imaging using theranostics and combinations of different imaging techniques, e.g., fluorescence imaging with computed tomography. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. [Quantitative image of bone mineral content--dual energy subtraction in a single exposure].

    Science.gov (United States)

    Katoh, T

    1990-09-25

    A dual energy subtraction system was constructed on an experimental basis for the quantitative image of bone mineral content. The system consists of a radiography system and an image processor. Two radiograms were taken with dual x-ray energy in a single exposure using an x-ray beam dichromized by a tin filter. In this system, a film cassette was used where a low speed film-screen system, a copper filter and a high speed film-screen system were layered on top of each other. The images were read by a microdensitometer and processed by a personal computer. The image processing included the corrections of the film characteristics and heterogeneity in the x-ray field, and the dual energy subtraction in which the effect of the high energy component of the dichromized beam on the tube side image was corrected. In order to determine the accuracy of the system, experiments using wedge phantoms made of mixtures of epoxy resin and bone mineral-equivalent materials in various fractions were performed for various tube potentials and film processing conditions. The results indicated that the relative precision of the system was within +/- 4% and that the propagation of the film noise was within +/- 11 mg/cm2 for the 0.2 mm pixels. The results also indicated that the system response was independent of the tube potential and the film processing condition. The bone mineral weight in each phalanx of the freshly dissected hand of a rhesus monkey was measured by this system and compared with the ash weight. The results showed an error of +/- 10%, slightly larger than that of phantom experiments, which is probably due to the effect of fat and the variation of focus-object distance. The air kerma in free air at the object was approximately 0.5 mGy for one exposure. The results indicate that this system is applicable to clinical use and provides useful information for evaluating a time-course of localized bone disease.

  20. Hyperspectral small animal fluorescence imaging: spectral selection imaging

    Science.gov (United States)

    Leavesley, Silas; Jiang, Yanan; Patsekin, Valery; Hall, Heidi; Vizard, Douglas; Robinson, J. Paul

    2008-02-01

    Molecular imaging is a rapidly growing area of research, fueled by needs in pharmaceutical drug-development for methods for high-throughput screening, pre-clinical and clinical screening for visualizing tumor growth and drug targeting, and a growing number of applications in the molecular biology fields. Small animal fluorescence imaging employs fluorescent probes to target molecular events in vivo, with a large number of molecular targeting probes readily available. The ease at which new targeting compounds can be developed, the short acquisition times, and the low cost (compared to microCT, MRI, or PET) makes fluorescence imaging attractive. However, small animal fluorescence imaging suffers from high optical scattering, absorption, and autofluorescence. Much of these problems can be overcome through multispectral imaging techniques, which collect images at different fluorescence emission wavelengths, followed by analysis, classification, and spectral deconvolution methods to isolate signals from fluorescence emission. We present an alternative to the current method, using hyperspectral excitation scanning (spectral selection imaging), a technique that allows excitation at any wavelength in the visible and near-infrared wavelength range. In many cases, excitation imaging may be more effective at identifying specific fluorescence signals because of the higher complexity of the fluorophore excitation spectrum. Because the excitation is filtered and not the emission, the resolution limit and image shift imposed by acousto-optic tunable filters have no effect on imager performance. We will discuss design of the imager, optimizing the imager for use in small animal fluorescence imaging, and application of spectral analysis and classification methods for identifying specific fluorescence signals.

  1. A computer-aided diagnosis system to detect pathologies in temporal subtraction images of chest radiographs

    Science.gov (United States)

    Looper, Jared; Harrison, Melanie; Armato, Samuel G.

    2016-03-01

    Radiologists often compare sequential radiographs to identify areas of pathologic change; however, this process is prone to error, as human anatomy can obscure the regions of change, causing the radiologists to overlook pathology. Temporal subtraction (TS) images can provide enhanced visualization of regions of change in sequential radiographs and allow radiologists to better detect areas of change in radiographs. Not all areas of change shown in TS images, however, are actual pathology. The purpose of this study was to create a computer-aided diagnostic (CAD) system that identifies which regions of change are caused by pathology and which are caused by misregistration of the radiographs used to create the TS image. The dataset used in this study contained 120 images with 74 pathologic regions on 54 images outlined by an experienced radiologist. High and low ("light" and "dark") gray-level candidate regions were extracted from the images using gray-level thresholding. Then, sampling techniques were used to address the class imbalance problem between "true" and "false" candidate regions. Next, the datasets of light candidate regions, dark candidate regions, and the combined set of light and dark candidate regions were used as training and testing data for classifiers by using five-fold cross validation. Of the classifiers tested (support vector machines, discriminant analyses, logistic regression, and k-nearest neighbors), the support vector machine on the combined candidates using synthetic minority oversampling technique (SMOTE) performed best with an area under the receiver operating characteristic curve value of 0.85, a sensitivity of 85%, and a specificity of 84%.

  2. Fluorescence imaging of soybean flavonol isolines

    Science.gov (United States)

    Kim, Moon S.; Lee, Edward H.; Mulchi, Charles L.; McMurtrey, James E., III; Chappelle, Emmett W.; Rowland, Randy A.

    1998-07-01

    Experiments were conducted to characterize the fluorescence emission of leaves from four soybean ('Harosoy') plants containing different concentrations of flavonols (kaempferol glycosides). The investigation utilized genetically mutated soybean flavonol isolines grown in a constant environment, thus limiting factors known to affect fluorescence emission characteristics other than different kaempferol glycosides concentrations. Flavonol isolines included OX922, OX941, OX942, OX944. The first two isolines contain kaempferol (K) glycosides; K3, K6, and K9, and the latter two did not have K3, K6, and K9. A fluorescence imaging system (FIS) was used to characterize steady state florescence images of the sample leaves measured at wavelengths centered at 450, 550, 680, and 740 nm with an excitation at 360 nm. Images taken with FIS greatly complement non-imaging fluorescence measurements by characterizing the spatial variation of fluorescence within leaves. We also acquired fluorescence emission spectra to characterize spectral features of the soybean flavonol isolines. The emission spectral shape of the fluorescence emission characteristics were not significantly different between the soybeans that contain kaempferol glycosides and the ones that do not contain kaempferol glycosides. Typical emission maxima of green vegetation in the blue, green, red, and far-red bands were noticed in all four soybean isolines. However, plants containing kaempferol glycosides, OX922 and OX941 had significantly lower intensities throughout the wavelength regions. These results imply that fluorescence emission intensities in the fluorescence emission bands studied are significantly affected by the presence and absence of kaempferol glycosides concentrations (UV radiation screening compounds). Pure kaempferol glycoside dissolved in solution show minimal fluorescence emission when excited with the absorption maximum radiation at 365 nm. However, a broad band emission can be seen in the green

  3. Analysis on imaging features of mammography in computer radiography and investigation on gray scale transform and energy subtraction

    International Nuclear Information System (INIS)

    Feng Shuli

    2003-01-01

    In this dissertation, a novel transform method based on human visual response features for gray scale mammographic imaging in computer radiography (CR) is presented. The parameters for imaging quality on CR imaging for mammography were investigated experimentally. In addition, methods for image energy subtraction and a novel method of image registration for mammography of CR imaging are presented. Because the images are viewed and investigated by humans, the method of displaying differences in gray scale images is more convenient if the gray scale differences are displayed in a manner commensurate with human visual response principles. Through transformation of image gray scale with this method, the contrast of the image will be enhanced and the capability for humans to extract the useful information from the image will be increased. Tumors and microcalcifications are displayed in a form for humans to view more simply after transforming the image. The method is theoretically and experimentally investigated. Through measurement of the parameters of a geometrically blurred image, MTF, DQE, and ROC on CR imaging, and also comparison with the imaging quality of screen-film systems, the results indicate that CR imaging qualities in DQE and ROC are better than those of screen-film systems. In geometric blur of the image and MTF, the differences in image quality between CR and the screen-film system are very small. The results suggest that the CR system can replace the screen-film system for mammography imaging. In addition, the results show that the optimal imaging energy for CR mammography is about 24 kV. This condition indicates that the imaging energy of the CR system is lower than that of the screen-film system and, therefore, the x-ray dose to the patient for mammography with the CR system is lower than that with the screen-film system. Based on the difference of penetrability of x ray with different wavelength, and the fact that the part of the x-ray beam will pass

  4. Laser-induced fluorescence imaging of bacteria

    Science.gov (United States)

    Hilton, Peter J.

    1998-12-01

    This paper outlines a method for optically detecting bacteria on various backgrounds, such as meat, by imaging their laser induced auto-fluorescence response. This method can potentially operate in real-time, which is many times faster than current bacterial detection methods, which require culturing of bacterial samples. This paper describes the imaging technique employed whereby a laser spot is scanned across an object while capturing, filtering, and digitizing the returned light. Preliminary results of the bacterial auto-fluorescence are reported and plans for future research are discussed. The results to date are encouraging with six of the eight bacterial strains investigated exhibiting auto-fluorescence when excited at 488 nm. Discrimination of these bacterial strains against red meat is shown and techniques for reducing background fluorescence discussed.

  5. Subtractive Leadership

    Science.gov (United States)

    Larwin, K. H.; Thomas, Eugene M.; Larwin, David A.

    2015-01-01

    This paper introduces a new term and concept to the leadership discourse: Subtractive Leadership. As an extension of the distributive leadership model, the notion of subtractive leadership refers to a leadership style that detracts from organizational culture and productivity. Subtractive leadership fails to embrace and balance the characteristics…

  6. Preoperative imaging in primary hyperparathyroidism. Role of thallium-technetium subtraction scintigraphy

    International Nuclear Information System (INIS)

    Foster, G.S.; Bekerman, C.; Blend, M.J.; Byrom, E.; Pinsky, S.M.

    1989-01-01

    Primary hyperparathyroidism, although often silent clinically, may lead to significant morbidity if it remains untreated. In more than 95% of all cases the cause is a parathyroid adenoma or glandular hyperplasia. Regression of disease follows successful surgical excision of the abnormal parathyroid gland. Recurrent or persistent hyperparathyroidism is most commonly caused by solitary adenomas, which may have an ectopic location. Preoperative localization of lesions may improve postoperative cure rates and decrease morbidity. Thallium T1 201 chloride-technetium Tc 99m pertechnetate subtraction scintigraphy was performed on 15 patients with primary hyperparathyroidism. The sensitivity and specificity for detection of abnormal glands were 90% and 95%, respectively. False-positive or false-negative results were minimize by strict adherence to a protocol and by the use of well-defined diagnostic criteria. Because of the superior sensitivity and specificity, this modality should be the primary imaging method of choice for preoperative evaluation of primary hyperparathyroidism. The relative role of other imaging modalities is also discussed. 31 references

  7. Submicron, soft x-ray fluorescence imaging

    International Nuclear Information System (INIS)

    La Fontaine, B.; MacDowell, A.A.; Tan, Z.; White, D.L.; Taylor, G.N.; Wood, O.R. II; Bjorkholm, J.E.; Tennant, D.M.; Hulbert, S.L.

    1995-01-01

    Submicron fluorescence imaging of soft x-ray aerial images, using a high resolution fluorescent crystal is reported. Features as small as 0.1 μm were observed using a commercially available single-crystal phosphor, STI-F10G (Star Tech Instruments Inc. P. O. Box 2536, Danbury, CT 06813-2536), excited with 139 A light. Its quantum efficiency was estimated to be 5--10 times that of sodium salicylate and to be constant over a broad spectral range from 30 to 400 A. A comparison with a terbium-activated yttrium orthosilicate fluorescent crystal is also presented. Several applications, such as the characterization of the aerial images produced by deep ultraviolet or extreme ultraviolet lithographic exposure tools, are envisaged

  8. Brain MR post-gadolinium contrast in multiple sclerosis: the role of magnetization transfer and image subtraction in detecting more enhancing lesions

    Energy Technology Data Exchange (ETDEWEB)

    Gavra, M.M.; Gouliamos, A.D.; Vlahos, L.J. [Department of Radiology, ' ' Aretaieion' ' Hospital,University of Athens Medical School, Athens (Greece); Voumvourakis, C.; Sfagos, C. [Department of Neurology, ' ' Eginiteion' ' Hospital, University of Athens Medical School, Athens (Greece)

    2004-03-01

    Our purpose was to evaluate the role of magnetization transfer and image subtraction in detecting more enhancing lesions in brain MR imaging of patients with multiple sclerosis (MS). Thirty-one MS patients underwent MR imaging of the brain with T1-weighted spin echo sequences without and with magnetization transfer (MT) using a 1.5 T imager. Both sequences were acquired before and after intravenous injection of a paramagnetic contrast agent. Subtraction images in T1-weighted sequences were obtained by subtracting the pre-contrast images from the post-contrast ones. A significant difference was found between the numbers of enhanced areas in post-gadolinium T1-weighted images without and with MT (p=0.020). The post-gadolinium T1-weighted images with MT allowed the detection of an increased (13) number of enhancing lesions compared with post-gadolinium T1-weighted images without MT. A significant difference was also found between the numbers of enhanced areas in post-gadolinium T1-weighted images without MT and subtraction images without MT (p=0.020). The subtraction images without MT allowed the detection of an increased (10) number of enhancing lesions compared with post-gadolinium T1-weighted images without MT. Magnetization transfer contrast and subtraction techniques appear to be the simplest and least time-consuming applications to improve the conspicuity and detection of contrast-enhancing lesions in patients with MS. (orig.)

  9. Brain MR post-gadolinium contrast in multiple sclerosis: the role of magnetization transfer and image subtraction in detecting more enhancing lesions

    International Nuclear Information System (INIS)

    Gavra, M.M.; Gouliamos, A.D.; Vlahos, L.J.; Voumvourakis, C.; Sfagos, C.

    2004-01-01

    Our purpose was to evaluate the role of magnetization transfer and image subtraction in detecting more enhancing lesions in brain MR imaging of patients with multiple sclerosis (MS). Thirty-one MS patients underwent MR imaging of the brain with T1-weighted spin echo sequences without and with magnetization transfer (MT) using a 1.5 T imager. Both sequences were acquired before and after intravenous injection of a paramagnetic contrast agent. Subtraction images in T1-weighted sequences were obtained by subtracting the pre-contrast images from the post-contrast ones. A significant difference was found between the numbers of enhanced areas in post-gadolinium T1-weighted images without and with MT (p=0.020). The post-gadolinium T1-weighted images with MT allowed the detection of an increased (13) number of enhancing lesions compared with post-gadolinium T1-weighted images without MT. A significant difference was also found between the numbers of enhanced areas in post-gadolinium T1-weighted images without MT and subtraction images without MT (p=0.020). The subtraction images without MT allowed the detection of an increased (10) number of enhancing lesions compared with post-gadolinium T1-weighted images without MT. Magnetization transfer contrast and subtraction techniques appear to be the simplest and least time-consuming applications to improve the conspicuity and detection of contrast-enhancing lesions in patients with MS. (orig.)

  10. Optical image encryption based on real-valued coding and subtracting with the help of QR code

    Science.gov (United States)

    Deng, Xiaopeng

    2015-08-01

    A novel optical image encryption based on real-valued coding and subtracting is proposed with the help of quick response (QR) code. In the encryption process, the original image to be encoded is firstly transformed into the corresponding QR code, and then the corresponding QR code is encoded into two phase-only masks (POMs) by using basic vector operations. Finally, the absolute values of the real or imaginary parts of the two POMs are chosen as the ciphertexts. In decryption process, the QR code can be approximately restored by recording the intensity of the subtraction between the ciphertexts, and hence the original image can be retrieved without any quality loss by scanning the restored QR code with a smartphone. Simulation results and actual smartphone collected results show that the method is feasible and has strong tolerance to noise, phase difference and ratio between intensities of the two decryption light beams.

  11. Comparison of 3D magnetic resonance imaging and digital subtraction angiography for intracranial artery stenosis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Eun; Jung, Seung Chai; Kim, Ho Sung; Choi, Choong-Gon; Kim, Sang Joon; Lee, Deok Hee [University of Ulsan College of Medicine, Department of Radiology and Research Institute of Radiology, Asan Medical Center, Seoul (Korea, Republic of); Lee, Sang Hun; Kwon, Sun U.; Kang, Dong-Wha; Kim, Jong S. [University of Ulsan College of Medicine, Department of Neurology, Ulsan (Korea, Republic of); Jeon, Ji Young [Gachon University, Department of Radiology, Gil Medical Center, Incheon (Korea, Republic of); Lee, Ji Ye [Soonchunhyang University Bucheon Hospital, Department of Radiology, Bucheon (Korea, Republic of); Kim, Seon-Ok [University of Ulsan College of Medicine, Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, Seoul (Korea, Republic of)

    2017-11-15

    To compare three-dimensional high-resolution magnetic resonance imaging (3D HR-MRI) and digital subtraction angiography (DSA) for diagnosing and evaluating stenosis in the entire circle of Willis. The study included 516 intracranial arteries from 43 patients with intracranial artery stenosis (ICAS) who underwent both 3D HR-MRI and DSA within 1 month. Two readers independently diagnosed atherosclerosis, dissection, moyamoya disease and vasculitis, rated their diagnostic confidence for each vessel and measured the luminal diameters. Reference standard was made from clinico-radiologic diagnosis. Diagnostic accuracy, diagnostic confidence, the degree of stenosis and luminal diameter were assessed and compared between both modalities. For atherosclerosis, 3D HR-MRI showed better diagnostic accuracy (P =.03-.003), sensitivity (P =.006-.01) and positive predictive value (P ≤.001-.006) compared to DSA. Overall, the readers were more confident of their diagnosis of ICAS when using 3D HR-MRI (reader 1, P ≤.001-.007; reader 2, P ≤.001-.015). 3D HR-MRI showed similar degree of stenosis (P >.05) and higher luminal diameter (P <.05) compared to DSA. 3D HR-MRI might be useful to evaluate atherosclerosis, with better diagnostic confidence and comparable stenosis measurement compared to DSA in the entire circle of Willis. (orig.)

  12. Fluorescein Derivatives in Intravital Fluorescence Imaging

    Directory of Open Access Journals (Sweden)

    Michael S. Roberts

    2013-08-01

    Full Text Available Intravital fluorescence microscopy enables the direct imaging of fluorophores in vivo and advanced techniques such as fluorescence lifetime imaging (FLIM enable the simultaneous detection of multiple fluorophores. Consequently, it is now possible to record distribution and metabolism of a chemical in vivo and to optimise the delivery of fluorophores in vivo. Recent clinical applications with fluorescein and other intravital fluorescent stains have occurred in neurosurgery, dermatology [including photodynamic therapy (PDT] and endomicroscopy. Potential uses have been identified in periodontal disease, skin graft and cancer surgery. Animal studies have demonstrated that diseased tissue can be specifically stained with fluorophore conjugates. This review focuses on the fluorescein derived fluorophores in common clinical use and provides examples of novel applications from studies in tissue samples.

  13. Spectral K-edge subtraction imaging of experimental non-radioactive barium uptake in bone.

    Science.gov (United States)

    Panahifar, Arash; Samadi, Nazanin; Swanston, Treena M; Chapman, L Dean; Cooper, David M L

    2016-12-01

    To evaluate the feasibility of using non-radioactive barium as a bone tracer for detection with synchrotron spectral K-edge subtraction (SKES) technique. Male rats of 1-month old (i.e., developing skeleton) and 8-month old (i.e., skeletally mature) were orally dosed with low dose of barium chloride (33mg/kg/day Ba 2+ ) for 4weeks. The fore and hind limbs were dissected for imaging in projection and computed tomography modes at 100μm and 52μm pixel sizes. The SKES method utilizes a single bent Laue monochromator to prepare a 550eV energy spectrum to encompass the K-edge of barium (37.441keV), for collecting both 'above' and 'below' the K-edge data sets in a single scan. The SKES has a very good focal size, thus limits the 'crossover' and motion artifacts. In juvenile rats, barium was mostly incorporated in the areas of high bone turnover such as at the growth plate and the trabecular surfaces, but also in the cortical bone as the animals were growing at the time of tracer administration. However, the adults incorporated approximately half the concentration and mainly in the areas where bone remodeling was predominant and occasionally in the periosteal and endosteal layers of the diaphyseal cortical bone. The presented methodology is simple to implement and provides both structural and functional information, after labeling with barium, on bone micro-architecture and thus has great potential for in vivo imaging of pre-clinical animal models of musculoskeletal diseases to better understand their mechanisms and to evaluate the efficacy of pharmaceuticals. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  14. In vivo optical imaging of amblyopia: Digital subtraction autofluorescence and split-spectrum amplitude-decorrelation angiography.

    Science.gov (United States)

    Guo, Lei; Tao, Jun; Xia, Fan; Yang, Zhi; Ma, Xiaoli; Hua, Rui

    2016-09-01

    Amblyopia is a visual impairment that is attributed to either abnormal binocular interactions or visual deprivation. The retina and choroids have been shown to be involved in the development of amblyopia. The purpose of this study was to investigate the retinal and choroidal microstructural abnormalities of amblyopia using digital subtraction autofluorescence and split-spectrum amplitude-decorrelation angiography (SSADA) approaches. This prospective study included 44 eyes of 22 patients with unilateral amblyopia. All patients who received indirect ophthalmoscopy, combined depth imaging spectral domain optical coherence tomography (OCT), SSADA-OCT, and macular blue light (BL-) and near-infrared (NIR-) autofluorescences underwent pupil dilation. The subfoveal choroidal thickness (SFCT) was measured. BL- and NIR-autofluorescences were determined for all patients and used to generate subtraction images with ImageJ software. The superficial, deep layers of the retina, and inner choroid layer were required for SSADA-OCT. For the normal eyes, a regularly increasing signal was observed in the central macula based on the subtraction images. In contrast, a decreased signal for the central patch or a reduced peak was detected in 16 of 22 amblyopic eyes (72.7%). The mean SFCT of the amblyopic eyes was greater than that of the fellow normal eyes (399.25 ± 4.944 µm vs. 280.58 ± 6.491 µm, respectively, P autofluorescence. The mechanistic relationship of a thicker choroid and choroidal capillary atrophy with amblyopia remains to be described. The digital subtraction image confirmed the changes in the microstructure of the amblyopic retina as a supplementary approach to detect the progression of amblyopia. Lasers Surg. Med. 48:660-667, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Fluorescence optical imaging in anticancer drug delivery

    Czech Academy of Sciences Publication Activity Database

    Etrych, Tomáš; Lucas, H.; Janoušková, Olga; Chytil, Petr; Mueller, T.; Mäder, K.

    2016-01-01

    Roč. 226, 28 March (2016), s. 168-181 ISSN 0168-3659 R&D Projects: GA ČR(CZ) GA15-02986S; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : fluorescence imaging * drug delivery * theranostics Subject RIV: CD - Macromolecular Chemistry Impact factor: 7.786, year: 2016

  16. Quantitative fluorescence microscopy and image deconvolution.

    Science.gov (United States)

    Swedlow, Jason R

    2013-01-01

    Quantitative imaging and image deconvolution have become standard techniques for the modern cell biologist because they can form the basis of an increasing number of assays for molecular function in a cellular context. There are two major types of deconvolution approaches--deblurring and restoration algorithms. Deblurring algorithms remove blur but treat a series of optical sections as individual two-dimensional entities and therefore sometimes mishandle blurred light. Restoration algorithms determine an object that, when convolved with the point-spread function of the microscope, could produce the image data. The advantages and disadvantages of these methods are discussed in this chapter. Image deconvolution in fluorescence microscopy has usually been applied to high-resolution imaging to improve contrast and thus detect small, dim objects that might otherwise be obscured. Their proper use demands some consideration of the imaging hardware, the acquisition process, fundamental aspects of photon detection, and image processing. This can prove daunting for some cell biologists, but the power of these techniques has been proven many times in the works cited in the chapter and elsewhere. Their usage is now well defined, so they can be incorporated into the capabilities of most laboratories. A major application of fluorescence microscopy is the quantitative measurement of the localization, dynamics, and interactions of cellular factors. The introduction of green fluorescent protein and its spectral variants has led to a significant increase in the use of fluorescence microscopy as a quantitative assay system. For quantitative imaging assays, it is critical to consider the nature of the image-acquisition system and to validate its response to known standards. Any image-processing algorithms used before quantitative analysis should preserve the relative signal levels in different parts of the image. A very common image-processing algorithm, image deconvolution, is used

  17. Fluorescence confocal endomicroscopy in biological imaging

    Science.gov (United States)

    Delaney, Peter; Thomas, Steven; Allen, John; McLaren, Wendy; Murr, Elise; Harris, Martin

    2007-02-01

    In vivo fluorescence microscopic imaging of biological systems in human disease states and animal models is possible with high optical resolution and mega pixel point-scanning performance using optimised off-the-shelf turn-key devices. There are however various trade-offs between tissue access and instrument performance when miniaturising in vivo microscopy systems. A miniature confocal scanning technology that was developed for clinical human endoscopy has been configured into a portable device for direct hand-held interrogation of living tissue in whole animal models (Optiscan FIVE-1 system). Scanning probes of 6.3mm diameter with a distal tip diameter of 5.0mm were constructed either in a 150mm length for accessible tissue, or a 300mm probe for laparoscopic interrogation of internal tissues in larger animal models. Both devices collect fluorescence confocal images (excitation 488 nm; emission >505 or >550 nm) comprised of 1024 x 1204 sampling points/image frame, with lateral resolution 0.7um; axial resolution 7um; FOV 475 x 475um. The operator can dynamically control imaging depth from the tissue surface to approx 250um in 4um steps via an internally integrated zaxis actuator. Further miniaturisation is achieved using an imaging contact probe based on scanning the proximal end of a high-density optical fibre bundle (~30,000 fibres) of small animal organs, albeit at lower resolution (30,000 sampling points/image). In rodent models, imaging was performed using various fluorescent staining protocols including fluorescently labelled receptor ligands, labelled antibodies, FITC-dextrans, vital dyes and labelled cells administered topically or intravenously. Abdominal organs of large animals were accessed laparoscopically and contrasted using i.v. fluorescein-sodium. Articular cartilage of sheep and pigs was fluorescently stained with calcein-AM or fluorescein. Surface and sub-surface cellular and sub-cellular details could be readily visualised in vivo at high

  18. Imaging efficacy of a targeted imaging agent for fluorescence endoscopy

    Science.gov (United States)

    Healey, A. J.; Bendiksen, R.; Attramadal, T.; Bjerke, R.; Waagene, S.; Hvoslef, A. M.; Johannesen, E.

    2008-02-01

    Colorectal cancer is a major cause of cancer death. A significant unmet clinical need exists in the area of screening for earlier and more accurate diagnosis and treatment. We have identified a fluorescence imaging agent targeted to an early stage molecular marker for colorectal cancer. The agent is administered intravenously and imaged in a far red imaging channel as an adjunct to white light endoscopy. There is experimental evidence of preclinical proof of mechanism for the agent. In order to assess potential clinical efficacy, imaging was performed with a prototype fluorescence endoscope system designed to produce clinically relevant images. A clinical laparoscope system was modified for fluorescence imaging. The system was optimised for sensitivity. Images were recorded at settings matching those expected with a clinical endoscope implementation (at video frame rate operation). The animal model was comprised of a HCT-15 xenograft tumour expressing the target at concentration levels expected in early stage colorectal cancer. Tumours were grown subcutaneously. The imaging agent was administered intravenously at a dose of 50nmol/kg body weight. The animals were killed 2 hours post administration and prepared for imaging. A 3-4mm diameter, 1.6mm thick slice of viable tumour was placed over the opened colon and imaged with the laparoscope system. A receiver operator characteristic analysis was applied to imaging results. An area under the curve of 0.98 and a sensitivity of 87% [73, 96] and specificity of 100% [93, 100] were obtained.

  19. Open source tools for fluorescent imaging.

    Science.gov (United States)

    Hamilton, Nicholas A

    2012-01-01

    As microscopy becomes increasingly automated and imaging expands in the spatial and time dimensions, quantitative analysis tools for fluorescent imaging are becoming critical to remove both bottlenecks in throughput as well as fully extract and exploit the information contained in the imaging. In recent years there has been a flurry of activity in the development of bio-image analysis tools and methods with the result that there are now many high-quality, well-documented, and well-supported open source bio-image analysis projects with large user bases that cover essentially every aspect from image capture to publication. These open source solutions are now providing a viable alternative to commercial solutions. More importantly, they are forming an interoperable and interconnected network of tools that allow data and analysis methods to be shared between many of the major projects. Just as researchers build on, transmit, and verify knowledge through publication, open source analysis methods and software are creating a foundation that can be built upon, transmitted, and verified. Here we describe many of the major projects, their capabilities, and features. We also give an overview of the current state of open source software for fluorescent microscopy analysis and the many reasons to use and develop open source methods. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Active mask segmentation of fluorescence microscope images.

    Science.gov (United States)

    Srinivasa, Gowri; Fickus, Matthew C; Guo, Yusong; Linstedt, Adam D; Kovacević, Jelena

    2009-08-01

    We propose a new active mask algorithm for the segmentation of fluorescence microscope images of punctate patterns. It combines the (a) flexibility offered by active-contour methods, (b) speed offered by multiresolution methods, (c) smoothing offered by multiscale methods, and (d) statistical modeling offered by region-growing methods into a fast and accurate segmentation tool. The framework moves from the idea of the "contour" to that of "inside and outside," or masks, allowing for easy multidimensional segmentation. It adapts to the topology of the image through the use of multiple masks. The algorithm is almost invariant under initialization, allowing for random initialization, and uses a few easily tunable parameters. Experiments show that the active mask algorithm matches the ground truth well and outperforms the algorithm widely used in fluorescence microscopy, seeded watershed, both qualitatively, as well as quantitatively.

  1. Active Mask Segmentation of Fluorescence Microscope Images

    OpenAIRE

    Srinivasa, Gowri; Fickus, Matthew C.; Guo, Yusong; Linstedt, Adam D.; Kovačević, Jelena

    2009-01-01

    We propose a new active mask algorithm for the segmentation of fluorescence microscope images of punctate patterns. It combines the (a) flexibility offered by active-contour methods, (b) speed offered by multiresolution methods, (c) smoothing offered by multiscale methods, and (d) statistical modeling offered by region-growing methods into a fast and accurate segmentation tool. The framework moves from the idea of the “contour” to that of “inside and outside”, or, masks, allowing for easy mul...

  2. Total Internal Reflection Fluorescence Microscopy Imaging-Guided Confocal Single-Molecule Fluorescence Spectroscopy

    OpenAIRE

    Zheng, Desheng; Kaldaras, Leonora; Lu, H. Peter

    2013-01-01

    We have developed an integrated spectroscopy system combining total internal reflection fluorescence microscopy imaging with confocal single-molecule fluorescence spectroscopy for two-dimensional interfaces. This spectroscopy approach is capable of both multiple molecules simultaneously sampling and in situ confocal fluorescence dynamics analyses of individual molecules of interest. We have demonstrated the calibration with fluorescent microspheres, and carried out single-molecule spectroscop...

  3. Dynamic subtraction magnetic resonance venography: a new real time imaging technique for the detection of dural sinus thrombosis

    International Nuclear Information System (INIS)

    Mandel, C.; Birchall, D.; Connolly, D.; English, P.

    2002-01-01

    Full text: Requests for imaging suspected dural sinus thrombosis are increasing. Conventional magnetic imaging (MRI) and magnetic resonance venography (MRV) are often used to detect venous sinus thrombosis, but these techniques are prone to technical problems. Catheter angiography is sometimes required as the final arbiter in the evaluation of the dural venous sinuses. Recent technical developments in MR scanning have allowed the development of dynamic subtraction MRA. This technique is beginning to be applied to the assessment of intracranial vascular malformations. We have recently applied the technique to the imaging of the dural venous sinuses, and describe our early experience with the technique. Imaging was performed on a Philips Intera 1.5T scanner with gradient strength 33 mT and slew rate 130 T/m/sec. T1-weighed fast field echo imaging was performed (flip angle 400, TR 1.5 msec) during bolus injection of gadolinium (5ml gadolinium followed by a 10 ml saline chaser) at 5-6 ml/sec using a MRI-compatible pump injector. Slice thickness depended on the plane of acquisition, but was between 100- 150 mm. Images were acquired in three orthogonal projections in each case, using 3 separate contrast injections. Mask images were obtained before the arrival of contrast, and subtracted reconstructed images were obtained in real time, providing a dynamic display of the intracranial circulation including the dural venous sinuses. Frame rate was 1 frame per 0.8 seconds. We will present dynamic MR angiographic images in a number of patients. Normal appearances and those seen in venous sinus thrombosis will be presented in the video display. Dynamic MR venography is a new technique for the imaging of dural venous sinuses. In our practice, it has proved a valuable adjunct for the imaging of patients with dural venous sinus thrombosis. Copyright (2002) Blackwell Science Pty Ltd

  4. Fluorescence based molecular in vivo imaging

    International Nuclear Information System (INIS)

    Ebert, Bernd

    2008-01-01

    Molecular imaging represents a modern research area that allows the in vivo study of molecular biological process kinetics using appropriate probes and visualization methods. This methodology may be defined- apart from the contrast media injection - as non-abrasive. In order to reach an in vivo molecular process imaging as accurate as possible the effects of the used probes on the biological should not be too large. The contrast media as important part of the molecular imaging can significantly contribute to the understanding of molecular processes and to the development of tailored diagnostics and therapy. Since more than 15 years PTB is developing optic imaging systems that may be used for fluorescence based visualization of tissue phantoms, small animal models and the localization of tumors and their predecessors, and for the early recognition of inflammatory processes in clinical trials. Cellular changes occur during many diseases, thus the molecular imaging might be of importance for the early diagnosis of chronic inflammatory diseases. Fluorescent dyes can be used as unspecific or also as specific contrast media, which allow enhanced detection sensitivity

  5. An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy

    International Nuclear Information System (INIS)

    Dunsby, C; Lanigan, P M P; McGinty, J; Elson, D S; Requejo-Isidro, J; Munro, I; Galletly, N; McCann, F; Treanor, B; Oenfelt, B; Davis, D M; Neil, M A A; French, P M W

    2004-01-01

    Fluorescence imaging is used widely in microscopy and macroscopic imaging applications for fields ranging from biomedicine to materials science. A critical component for any fluorescence imaging system is the excitation source. Traditionally, wide-field systems use filtered thermal or arc-generated white light sources, while point scanning confocal microscope systems require spatially coherent (point-like) laser sources. Unfortunately, the limited range of visible wavelengths available from conventional laser sources constrains the design and usefulness of fluorescent probes in confocal microscopy. A 'hands-off' laser-like source, electronically tunable across the visible spectrum, would be invaluable for fluorescence imaging and provide new opportunities, e.g. automated excitation fingerprinting and in situ measurement of excitation cross-sections. Yet more information can be obtained using fluorescence lifetime imaging (FLIM), which requires that the light source be pulsed or rapidly modulated. We show how a white light continuum, generated by injecting femtosecond optical radiation into a micro-structured optical fibre, coupled with a simple prism-based tunable filter arrangement, can fulfil all these roles as a continuously electronically tunable (435-1150 nm) visible ultrafast light source in confocal, wide-field and FLIM systems

  6. Fluorescence imaging to quantify crop residue cover

    Science.gov (United States)

    Daughtry, C. S. T.; Mcmurtrey, J. E., III; Chappelle, E. W.

    1994-01-01

    Crop residues, the portion of the crop left in the field after harvest, can be an important management factor in controlling soil erosion. Methods to quantify residue cover are needed that are rapid, accurate, and objective. Scenes with known amounts of crop residue were illuminated with long wave ultraviolet (UV) radiation and fluorescence images were recorded with an intensified video camera fitted with a 453 to 488 nm band pass filter. A light colored soil and a dark colored soil were used as background for the weathered soybean stems. Residue cover was determined by counting the proportion of the pixels in the image with fluorescence values greater than a threshold. Soil pixels had the lowest gray levels in the images. The values of the soybean residue pixels spanned nearly the full range of the 8-bit video data. Classification accuracies typically were within 3(absolute units) of measured cover values. Video imaging can provide an intuitive understanding of the fraction of the soil covered by residue.

  7. Fluorescence Imaging/Agents in Tumor Resection.

    Science.gov (United States)

    Stummer, Walter; Suero Molina, Eric

    2017-10-01

    Intraoperative fluorescence imaging allows real-time identification of diseased tissue during surgery without being influenced by brain shift and surgery interruption. 5-Aminolevulinic acid, useful for malignant gliomas and other tumors, is the most broadly explored compound approved for fluorescence-guided resection. Intravenous fluorescein sodium has recently received attention, highlighting tumor tissue based on extravasation at the blood-brain barrier (defective in many brain tumors). Fluorescein in perfused brain, unselective extravasation in brain perturbed by surgery, and propagation with edema are concerns. Fluorescein is not approved but targeted fluorochromes with affinity to brain tumor cells, in development, may offer future advantages. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Intra-Arterial MR Perfusion Imaging of Meningiomas: Comparison to Digital Subtraction Angiography and Intravenous MR Perfusion Imaging.

    Directory of Open Access Journals (Sweden)

    Mark A Lum

    Full Text Available To evaluate the ability of IA MR perfusion to characterize meningioma blood supply.Studies were performed in a suite comprised of an x-ray angiography unit and 1.5T MR scanner that permitted intraprocedural patient movement between the imaging modalities. Patients underwent intra-arterial (IA and intravenous (IV T2* dynamic susceptibility MR perfusion immediately prior to meningioma embolization. Regional tumor arterial supply was characterized by digital subtraction angiography and classified as external carotid artery (ECA dural, internal carotid artery (ICA dural, or pial. MR perfusion data regions of interest (ROIs were analyzed in regions with different vascular supply to extract peak height, full-width at half-maximum (FWHM, relative cerebral blood flow (rCBF, relative cerebral blood volume (rCBV, and mean transit time (MTT. Linear mixed modeling was used to identify perfusion curve parameter differences for each ROI for IA and IV MR imaging techniques. IA vs. IV perfusion parameters were also directly compared for each ROI using linear mixed modeling.18 ROIs were analyzed in 12 patients. Arterial supply was identified as ECA dural (n = 11, ICA dural (n = 4, or pial (n = 3. FWHM, rCBV, and rCBF showed statistically significant differences between ROIs for IA MR perfusion. Peak Height and FWHM showed statistically significant differences between ROIs for IV MR perfusion. RCBV and MTT were significantly lower for IA perfusion in the Dural ECA compared to IV perfusion. Relative CBF in IA MR was found to be significantly higher in the Dural ICA region and MTT significantly lower compared to IV perfusion.

  9. Three-dimensional image reconstruction using rotational digital subtraction technique: the initial experience of the clinical application

    International Nuclear Information System (INIS)

    Ouyang Zhongnan; Tang Jun; He Jianjun; Lu Xiaohe; Xun Yanping

    2002-01-01

    Objective: To evaluate the benefit of three-dimensional (3D) reconstruction images with rotational digital subtraction technique for the clinical applications. Methods: Conventional two-dimensional digital substraction angiography (2D DSA) was obtained on A-P and lateral view. Three-dimensional digital subtraction angiography (3D DSA) images were obtained by reconstruction of a rotational acquisition on a C-arm (LCV +, GE Medical Systems) spinning at 40 degrees per second. 53 cases of cerebral angiographies were performed (32 men and 21 women; the age ranged from 19 to 72 years, mean 46.3 years). Results: In this series of 53 cases of cerebral angiographies, 5 cases of arteriovenous malformation were all correctly diagnosed by 3D DSA and 2D DSA. Seven cases were misdiagnosed as intracranial aneurysms at conventional 2D DSA but confirmed to be kinking of the vessel by 3D DSA. 41 cases were confirmed to be intracranial aneurysms. Of the 41 cases, 5 cases were diagnosed as normal at 2D DSA but confirmed to be intracranial aneurysms at 3D DSA. The total consistency rate of 3D DSA and 2D DSA for the diagnosis of intracranial aneurysm is 77.4% (41/53). The consistent test shows that there was consistency between the two modalities (chi-square test, χ 2 = 5.267, P < 0.05). 29 cases were treated with endovascular coil embolization. Among them only 3 cases of the aneurysm's neck could be best visualized by 2D DSA but 29 cases by 3D DSA. Conclusion: 3D reconstruction images with rotational digital subtraction technique is a useful tool to study the vascular diseases using less contrast agent and a lower radiation dose and shortening the examination process. It is replenishment for conventional 2D DSA. This technique enables better diagnosis for intracranial vascular lesion and visualization of complex vascular relationships and structures. It is valuable for surgical planning and interventional procedure

  10. Multi-spectral endogenous fluorescence imaging for bacterial differentiation

    Science.gov (United States)

    Chernomyrdin, Nikita V.; Babayants, Margarita V.; Korotkov, Oleg V.; Kudrin, Konstantin G.; Rimskaya, Elena N.; Shikunova, Irina A.; Kurlov, Vladimir N.; Cherkasova, Olga P.; Komandin, Gennady A.; Reshetov, Igor V.; Zaytsev, Kirill I.

    2017-07-01

    In this paper, the multi-spectral endogenous fluorescence imaging was implemented for bacterial differentiation. The fluorescence imaging was performed using a digital camera equipped with a set of visual bandpass filters. Narrowband 365 nm ultraviolet radiation passed through a beam homogenizer was used to excite the sample fluorescence. In order to increase a signal-to-noise ratio and suppress a non-fluorescence background in images, the intensity of the UV excitation was modulated using a mechanical chopper. The principal components were introduced for differentiating the samples of bacteria based on the multi-spectral endogenous fluorescence images.

  11. Nonlinear Geometric Warping of the Mask Image: A New Method for Reducing Misregistration Artifacts in Digital Subtraction Angiography

    International Nuclear Information System (INIS)

    Hayashi, Nobushige; Sakai, Toyohiko; Kitagawa, Manabu; Inagaki, Rika; Sadato, Norihiro; Ishii, Yasushi; Nishimoto, Yasuhiro; Tanaka, Masato; Fukushima, Tetsuya; Komuro, Hiroyuki; Ogura, Hisakazu; Kobayashi, Hidenori; Kubota, Toshihiko

    1998-01-01

    Purpose: Misregistration artifact is the major cause of image degradation in digital subtraction angiography (DSA). The purpose of this study was to evaluate the efficacy of a newly developed nonlinear geometric warping method to reduce misregistration artifact in DSA. Methods: The processing of the images was carried out on a workstation with a fully automatic computerized program. After making differential images with a lapracian filter, 49 regions of interest (ROIs) were set in the image to be processed. Each ROI of the live image scanned the corresponding ROI of the mask image searching for the best position to match itself. Each pixel of the mask image was shifted individually following the data calculated from the shifts of the ROIs. Five radiologists compared the images produced by the conventional parallel shift technique and those processed with this new method in 16 series of cerebral DSA. Results: In 14 of 16 series (88%), more radiologists judged the images processed with the new method to be better in quality. Small arteries near the skull base and veins of low density were clearly visualized in the images processed by the new method. Conclusion: This newly proposed method could be a simple and practical way to automatically reduce misregistration artifacts in DSA

  12. Creating Panoramic Images for Bladder Fluorescence Endoscopy

    Directory of Open Access Journals (Sweden)

    A. Behrens

    2008-01-01

    Full Text Available The medical diagnostic analysis and therapy of urinary bladder cancer based on endoscopes are state of the art in urological medicine. Due to the limited field of view of endoscopes, the physician can examine only a small part of the whole operating field at once. This constraint makes visual control and navigation difficult, especially in hollow organs. A panoramic image, covering a larger field of view, can overcome this difficulty. Directly motivated by a physician we developed an image mosaicing algorithm for endoscopic bladder fluorescence video sequences. In this paper, we present an approach which is capable of stitching single endoscopic video images to a combined panoramic image. Based on SIFT features we estimate a 2-D homography for each image pair, using an affine model and an iterative model-fitting algorithm. We then apply the stitching process and perform a mutual linear interpolation. Our panoramic image results show a correct stitching and lead to a better overview and understanding of the operation field. 

  13. Suppression of high-density artefacts in x-ray CT images using temporal digital subtraction with application to cryotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Baissalov, R.; Sandison, G.A.; Rewcastle, J.C. [Department of Medical Physics, Tom Baker Cancer Center, Calgary, Canada, T2N 4N2 2 Department of Physics and Astronomy, University of Calgary, Calgary T2N 2N4 (Canada); Donnelly, B.J. [Department of Surgery, Tom Baker Cancer Center, Calgary, Canada, T2N 4N2 4 Department of Surgery, Foothills Hospital, Calgary T2N 2T7 (Canada); Saliken, J.C. [Department of Surgery, Tom Baker Cancer Center, Calgary T2N 4N2 (Canada); Department of Diagnostic Imaging, Foothills Hospital, Calgary T2N 2T7 (Canada); McKinnon, J.G. [Department of Surgery, Foothills Hospital, Calgary T2N 2T7 (Canada); Muldrew, K. [Department of Surgery, Faculty of Medicine, University of Calgary, Calgary T2N 2T7 (Canada)

    2000-05-01

    Image guidance in cryotherapy is usually performed using ultrasound. Although not currently in routine clinical use, x-ray CT imaging is an alternative means of guidance that can display the full 3D structure of the iceball, including frozen and unfrozen regions. However, the quality of x-ray CT images is compromised by the presence of high-density streak artefacts. To suppress these artefacts we applied temporal digital subtraction (TDS). This TDS method has the added advantage of improving the grey-scale contrast between frozen and unfrozen tissue in the CT images. Two sets of CT images were taken of a phantom material, cryoprobes and a urethral warmer (UW) before and during the cryoprobe freeze cycle. The high-density artefacts persisted in both image sets. TDS was performed on these two image sets using the corresponding mask image of unfrozen material and the same geometrical configuration of the cryoprobes and the UW. The resultant difference image had a significantly reduced artefact content. Thus TDS can be used to significantly suppress or eliminate high-density CT streak artefacts without reducing the metallic content of the cryoprobes. In vivo study needs to be conducted to establish the utility of this TDS procedure for CT assisted prostate or liver cryotherapy. Applying TDS in x-ray CT guided cryotherapy will facilitate estimation of the number and location of all frozen and unfrozen regions, potentially making cryotherapy safer and less operator dependent. (author)

  14. Suppression of high-density artefacts in x-ray CT images using temporal digital subtraction with application to cryotherapy

    International Nuclear Information System (INIS)

    Baissalov, R.; Sandison, G.A.; Rewcastle, J.C.; Donnelly, B.J.; Saliken, J.C.; McKinnon, J.G.; Muldrew, K.

    2000-01-01

    Image guidance in cryotherapy is usually performed using ultrasound. Although not currently in routine clinical use, x-ray CT imaging is an alternative means of guidance that can display the full 3D structure of the iceball, including frozen and unfrozen regions. However, the quality of x-ray CT images is compromised by the presence of high-density streak artefacts. To suppress these artefacts we applied temporal digital subtraction (TDS). This TDS method has the added advantage of improving the grey-scale contrast between frozen and unfrozen tissue in the CT images. Two sets of CT images were taken of a phantom material, cryoprobes and a urethral warmer (UW) before and during the cryoprobe freeze cycle. The high-density artefacts persisted in both image sets. TDS was performed on these two image sets using the corresponding mask image of unfrozen material and the same geometrical configuration of the cryoprobes and the UW. The resultant difference image had a significantly reduced artefact content. Thus TDS can be used to significantly suppress or eliminate high-density CT streak artefacts without reducing the metallic content of the cryoprobes. In vivo study needs to be conducted to establish the utility of this TDS procedure for CT assisted prostate or liver cryotherapy. Applying TDS in x-ray CT guided cryotherapy will facilitate estimation of the number and location of all frozen and unfrozen regions, potentially making cryotherapy safer and less operator dependent. (author)

  15. A framework for creating realistic synthetic fluorescence microscopy image sequences

    CSIR Research Space (South Africa)

    Mabaso, M

    2016-02-01

    Full Text Available Fluorescence microscopy imaging is an important tool in modern biological research, allowing insights into the processes of biological systems. Automated image analysis algorithms help in extracting information from these images. Validation...

  16. Visualisation of bony and vascular structures via digital subtraction images upon the amount of anatomic background

    International Nuclear Information System (INIS)

    Hinz, A.; Scholz, A.; Zwicker, C.

    1992-01-01

    We examined the loss of contrast leaving a part of the anatomic background in digital subtraction angiography by visual analysis and densitometry. We observed a greater loss of the quality at the representation of the bone below than above an amount of anatomic background of 60%. The loss of quality at the representation of the vessels decreases more above than below an anatomical background of 45%. We think that, depending on the clinical problem, an anatomical background between 15 and 30% should be left. (orig.) [de

  17. The value of subtraction MRI in detection of amyloid-related imaging abnormalities with oedema or effusion in Alzheimer's patients: An interobserver study.

    Science.gov (United States)

    Martens, Roland M; Bechten, Arianne; Ingala, Silvia; van Schijndel, Ronald A; Machado, Vania B; de Jong, Marcus C; Sanchez, Esther; Purcell, Derk; Arrighi, Michael H; Brashear, Robert H; Wattjes, Mike P; Barkhof, Frederik

    2018-03-01

    Immunotherapeutic treatments targeting amyloid-β plaques in Alzheimer's disease (AD) are associated with the presence of amyloid-related imaging abnormalities with oedema or effusion (ARIA-E), whose detection and classification is crucial to evaluate subjects enrolled in clinical trials. To investigate the applicability of subtraction MRI in the ARIA-E detection using an established ARIA-E-rating scale. We included 75 AD patients receiving bapineuzumab treatment, including 29 ARIA-E cases. Five neuroradiologists rated their brain MRI-scans with and without subtraction images. The accuracy of evaluating the presence of ARIA-E, intraclass correlation coefficient (ICC) and specific agreement was calculated. Subtraction resulted in higher sensitivity (0.966) and lower specificity (0.970) than native images (0.959, 0.991, respectively). Individual rater detection was excellent. ICC scores ranged from excellent to good, except for gyral swelling (moderate). Excellent negative and good positive specific agreement among all ARIA-E imaging features was reported in both groups. Combining sulcal hyperintensity and gyral swelling significantly increased positive agreement for subtraction images. Subtraction MRI has potential as a visual aid increasing the sensitivity of ARIA-E assessment. However, in order to improve its usefulness isotropic acquisition and enhanced training are required. The ARIA-E rating scale may benefit from combining sulcal hyperintensity and swelling. • Subtraction technique can improve detection amyloid-related imaging-abnormalities with edema/effusion in Alzheimer's patients. • The value of ARIA-E detection, classification and monitoring using subtraction was assessed. • Validation of an established ARIA-E rating scale, recommendations for improvement are reported. • Complementary statistical methods were employed to measure accuracy, inter-rater-reliability and specific agreement.

  18. Smartphone microendoscopy for high resolution fluorescence imaging

    Directory of Open Access Journals (Sweden)

    Xiangqian Hong

    2016-09-01

    Full Text Available High resolution optical endoscopes are increasingly used in diagnosis of various medical conditions of internal organs, such as the cervix and gastrointestinal (GI tracts, but they are too expensive for use in resource-poor settings. On the other hand, smartphones with high resolution cameras and Internet access have become more affordable, enabling them to diffuse into most rural areas and developing countries in the past decade. In this paper, we describe a smartphone microendoscope that can take fluorescence images with a spatial resolution of 3.1 μm. Images collected from ex vivo, in vitro and in vivo samples using the device are also presented. The compact and cost-effective smartphone microendoscope may be envisaged as a powerful tool for detecting pre-cancerous lesions of internal organs in low and middle-income countries (LMICs.

  19. M-BAND IMAGING OF THE HR 8799 PLANETARY SYSTEM USING AN INNOVATIVE LOCI-BASED BACKGROUND SUBTRACTION TECHNIQUE

    International Nuclear Information System (INIS)

    Galicher, Raphael; Marois, Christian; Macintosh, Bruce; Konopacky, Quinn; Barman, Travis

    2011-01-01

    Multi-wavelength observations/spectroscopy of exoplanetary atmospheres are the basis of the emerging exciting field of comparative exoplanetology. The HR 8799 planetary system is an ideal laboratory to study our current knowledge gap between massive field brown dwarfs and the cold 5 Gyr old solar system planets. The HR 8799 planets have so far been imaged at J- to L-band, with only upper limits available at M-band. We present here deep high-contrast Keck II adaptive optics M-band observations that show the imaging detection of three of the four currently known HR 8799 planets. Such detections were made possible due to the development of an innovative LOCI-based background subtraction scheme that is three times more efficient than a classical median background subtraction for Keck II AO data, representing a gain in telescope time of up to a factor of nine. These M-band detections extend the broadband photometric coverage out to ∼5 μm and provide access to the strong CO fundamental absorption band at 4.5 μm. The new M-band photometry shows that the HR 8799 planets are located near the L/T-type dwarf transition, similar to what was found by other studies. We also confirm that the best atmospheric fits are consistent with low surface gravity, dusty, and non-equilibrium CO/CH 4 chemistry models.

  20. Small lung cancers: improved detection by use of bone suppression imaging--comparison with dual-energy subtraction chest radiography.

    Science.gov (United States)

    Li, Feng; Engelmann, Roger; Pesce, Lorenzo L; Doi, Kunio; Metz, Charles E; Macmahon, Heber

    2011-12-01

    To determine whether use of bone suppression (BS) imaging, used together with a standard radiograph, could improve radiologists' performance for detection of small lung cancers compared with use of standard chest radiographs alone and whether BS imaging would provide accuracy equivalent to that of dual-energy subtraction (DES) radiography. Institutional review board approval was obtained. The requirement for informed consent was waived. The study was HIPAA compliant. Standard and DES chest radiographs of 50 patients with 55 confirmed primary nodular cancers (mean diameter, 20 mm) as well as 30 patients without cancers were included in the observer study. A new BS imaging processing system that can suppress the conspicuity of bones was applied to the standard radiographs to create corresponding BS images. Ten observers, including six experienced radiologists and four radiology residents, indicated their confidence levels regarding the presence or absence of a lung cancer for each lung, first by using a standard image, then a BS image, and finally DES soft-tissue and bone images. Receiver operating characteristic (ROC) analysis was used to evaluate observer performance. The average area under the ROC curve (AUC) for all observers was significantly improved from 0.807 to 0.867 with BS imaging and to 0.916 with DES (both P chest radiographs. Further improvements can be achieved by use of DES radiography but with the requirement for special equipment and a potential small increase in radiation dose. © RSNA, 2011.

  1. The value of subtraction MRI in detection of amyloid-related imaging abnormalities with oedema or effusion in Alzheimer's patients. An interobserver study

    Energy Technology Data Exchange (ETDEWEB)

    Martens, Roland M.; Bechten, Arianne; Ingala, Silvia; Schijndel, Ronald A. van; Machado, Vania B.; Jong, Marcus C. de; Sanchez, Esther; Wattjes, Mike P. [VU University Medical Center, Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam (Netherlands); Purcell, Derk [California Pacific Medical Center, Department of Radiology, San Francisco, CA (United States); BioClinica Inc, Newark, CA (United States); Arrighi, Michael H.; Brashear, Robert H. [Janssen Alzheimer Immunotherapy Research and Development, LLC, South San Francisco, CA (United States); Barkhof, Frederik [VU University Medical Center, Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam (Netherlands); University College London, Institutes of Neurology and Healthcare Engineering, London (United Kingdom)

    2018-03-15

    Immunotherapeutic treatments targeting amyloid-β plaques in Alzheimer's disease (AD) are associated with the presence of amyloid-related imaging abnormalities with oedema or effusion (ARIA-E), whose detection and classification is crucial to evaluate subjects enrolled in clinical trials. To investigate the applicability of subtraction MRI in the ARIA-E detection using an established ARIA-E-rating scale. We included 75 AD patients receiving bapineuzumab treatment, including 29 ARIA-E cases. Five neuroradiologists rated their brain MRI-scans with and without subtraction images. The accuracy of evaluating the presence of ARIA-E, intraclass correlation coefficient (ICC) and specific agreement was calculated. Subtraction resulted in higher sensitivity (0.966) and lower specificity (0.970) than native images (0.959, 0.991, respectively). Individual rater detection was excellent. ICC scores ranged from excellent to good, except for gyral swelling (moderate). Excellent negative and good positive specific agreement among all ARIA-E imaging features was reported in both groups. Combining sulcal hyperintensity and gyral swelling significantly increased positive agreement for subtraction images. Subtraction MRI has potential as a visual aid increasing the sensitivity of ARIA-E assessment. However, in order to improve its usefulness isotropic acquisition and enhanced training are required. The ARIA-E rating scale may benefit from combining sulcal hyperintensity and swelling. (orig.)

  2. The value of subtraction MRI in detection of amyloid-related imaging abnormalities with oedema or effusion in Alzheimer's patients. An interobserver study

    International Nuclear Information System (INIS)

    Martens, Roland M.; Bechten, Arianne; Ingala, Silvia; Schijndel, Ronald A. van; Machado, Vania B.; Jong, Marcus C. de; Sanchez, Esther; Wattjes, Mike P.; Purcell, Derk; Arrighi, Michael H.; Brashear, Robert H.; Barkhof, Frederik

    2018-01-01

    Immunotherapeutic treatments targeting amyloid-β plaques in Alzheimer's disease (AD) are associated with the presence of amyloid-related imaging abnormalities with oedema or effusion (ARIA-E), whose detection and classification is crucial to evaluate subjects enrolled in clinical trials. To investigate the applicability of subtraction MRI in the ARIA-E detection using an established ARIA-E-rating scale. We included 75 AD patients receiving bapineuzumab treatment, including 29 ARIA-E cases. Five neuroradiologists rated their brain MRI-scans with and without subtraction images. The accuracy of evaluating the presence of ARIA-E, intraclass correlation coefficient (ICC) and specific agreement was calculated. Subtraction resulted in higher sensitivity (0.966) and lower specificity (0.970) than native images (0.959, 0.991, respectively). Individual rater detection was excellent. ICC scores ranged from excellent to good, except for gyral swelling (moderate). Excellent negative and good positive specific agreement among all ARIA-E imaging features was reported in both groups. Combining sulcal hyperintensity and gyral swelling significantly increased positive agreement for subtraction images. Subtraction MRI has potential as a visual aid increasing the sensitivity of ARIA-E assessment. However, in order to improve its usefulness isotropic acquisition and enhanced training are required. The ARIA-E rating scale may benefit from combining sulcal hyperintensity and swelling. (orig.)

  3. Self-masking noise subtraction (SMNS) in digital X-ray tomosynthesis for the improvement of tomographic image quality

    International Nuclear Information System (INIS)

    Oh, J.E.; Cho, H.S.; Choi, S.I.; Park, Y.O.; Lee, M.S.; Cho, H.M.; Yang, Y.J.; Je, U.K.; Woo, T.H.; Lee, H.K.

    2011-01-01

    In this paper, we proposed a simple and effective reconstruction algorithm, the so-called self-masking noise subtraction (SMNS), in digital X-ray tomosynthesis to reduce the tomographic blur that is inherent in the conventional tomosynthesis based upon the shift-and-add (SAA) method. Using the SAA and the SMNS algorithms, we investigated the influence of tomographic parameters such as tomographic angle (θ) and angle step (Δθ) on the image quality, measuring the signal-difference-to-noise ratio (SDNR). Our simulation results show that the proposed algorithm seems to be efficient in reducing the tomographic blur and, thus, improving image sharpness. We expect the simulation results to be useful for the optimal design of a digital X-ray tomosynthesis system for our ongoing application of nondestructive testing (NDT).

  4. Dual-detection confocal fluorescence microscopy: fluorescence axial imaging without axial scanning.

    Science.gov (United States)

    Lee, Dong-Ryoung; Kim, Young-Duk; Gweon, Dae-Gab; Yoo, Hongki

    2013-07-29

    We propose a new method for high-speed, three-dimensional (3-D) fluorescence imaging, which we refer to as dual-detection confocal fluorescence microscopy (DDCFM). In contrast to conventional beam-scanning confocal fluorescence microscopy, where the focal spot must be scanned either optically or mechanically over a sample volume to reconstruct a 3-D image, DDCFM can obtain the depth of a fluorescent emitter without depth scanning. DDCFM comprises two photodetectors, each with a pinhole of different size, in the confocal detection system. Axial information on fluorescent emitters can be measured by the axial response curve through the ratio of intensity signals. DDCFM can rapidly acquire a 3-D fluorescent image from a single two-dimensional scan with less phototoxicity and photobleaching than confocal fluorescence microscopy because no mechanical depth scans are needed. We demonstrated the feasibility of the proposed method by phantom studies.

  5. A Monte Carlo simulation study of an improved K-edge log-subtraction X-ray imaging using a photon counting CdTe detector

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngjin, E-mail: radioyoungj@gmail.com [Department of Radiological Science, Eulji University, 553, Sanseong-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do (Korea, Republic of); Lee, Amy Candy [Department of Mathematics and Statistics, McGill University (Canada); Kim, Hee-Joung [Department of Radiological Science and Radiation Convergence Engineering, Yonsei University (Korea, Republic of)

    2016-09-11

    Recently, significant effort has been spent on the development of photons counting detector (PCD) based on a CdTe for applications in X-ray imaging system. The motivation of developing PCDs is higher image quality. Especially, the K-edge subtraction (KES) imaging technique using a PCD is able to improve image quality and useful for increasing the contrast resolution of a target material by utilizing contrast agent. Based on above-mentioned technique, we presented an idea for an improved K-edge log-subtraction (KELS) imaging technique. The KELS imaging technique based on the PCDs can be realized by using different subtraction energy width of the energy window. In this study, the effects of the KELS imaging technique and subtraction energy width of the energy window was investigated with respect to the contrast, standard deviation, and CNR with a Monte Carlo simulation. We simulated the PCD X-ray imaging system based on a CdTe and polymethylmethacrylate (PMMA) phantom which consists of the various iodine contrast agents. To acquired KELS images, images of the phantom using above and below the iodine contrast agent K-edge absorption energy (33.2 keV) have been acquired at different energy range. According to the results, the contrast and standard deviation were decreased, when subtraction energy width of the energy window is increased. Also, the CNR using a KELS imaging technique is higher than that of the images acquired by using whole energy range. Especially, the maximum differences of CNR between whole energy range and KELS images using a 1, 2, and 3 mm diameter iodine contrast agent were acquired 11.33, 8.73, and 8.29 times, respectively. Additionally, the optimum subtraction energy width of the energy window can be acquired at 5, 4, and 3 keV for the 1, 2, and 3 mm diameter iodine contrast agent, respectively. In conclusion, we successfully established an improved KELS imaging technique and optimized subtraction energy width of the energy window, and based on

  6. A background subtraction routine for enhancing energy-filtered plasmon images of MgAl2O4 implanted with Al+ and Mg+ ions

    International Nuclear Information System (INIS)

    Evans, N.D.; Kenik, E.A.; Bentley, J.; Zinkle, S.J.

    1995-01-01

    MgAl 2 O 4 , a candidate fusion reactor material, was irradiated with Al + or Mg + ions; electron energy-loss spectra and energy-filtered plasmon images showed that metallic Al colloids are present in the ion-irradiated regions. This paper shows the subtraction of the spinel plasmon component in images using 15-eV-loss electrons in some detail

  7. Identification of hand motion using background subtraction method and extraction of image binary with backpropagation neural network on skeleton model

    Science.gov (United States)

    Fauziah; Wibowo, E. P.; Madenda, S.; Hustinawati

    2018-03-01

    Capturing and recording motion in human is mostly done with the aim for sports, health, animation films, criminality, and robotic applications. In this study combined background subtraction and back propagation neural network. This purpose to produce, find similarity movement. The acquisition process using 8 MP resolution camera MP4 format, duration 48 seconds, 30frame/rate. video extracted produced 1444 pieces and results hand motion identification process. Phase of image processing performed is segmentation process, feature extraction, identification. Segmentation using bakground subtraction, extracted feature basically used to distinguish between one object to another object. Feature extraction performed by using motion based morfology analysis based on 7 invariant moment producing four different classes motion: no object, hand down, hand-to-side and hands-up. Identification process used to recognize of hand movement using seven inputs. Testing and training with a variety of parameters tested, it appears that architecture provides the highest accuracy in one hundred hidden neural network. The architecture is used propagate the input value of the system implementation process into the user interface. The result of the identification of the type of the human movement has been clone to produce the highest acuracy of 98.5447%. The training process is done to get the best results.

  8. Dynamic fluorescence imaging with molecular agents for cancer detection

    Science.gov (United States)

    Kwon, Sun Kuk

    Non-invasive dynamic optical imaging of small animals requires the development of a novel fluorescence imaging modality. Herein, fluorescence imaging is demonstrated with sub-second camera integration times using agents specifically targeted to disease markers, enabling rapid detection of cancerous regions. The continuous-wave fluorescence imaging acquires data with an intensified or an electron-multiplying charge-coupled device. The work presented in this dissertation (i) assessed dose-dependent uptake using dynamic fluorescence imaging and pharmacokinetic (PK) models, (ii) evaluated disease marker availability in two different xenograft tumors, (iii) compared the impact of autofluorescence in fluorescence imaging of near-infrared (NIR) vs. red light excitable fluorescent contrast agents, (iv) demonstrated dual-wavelength fluorescence imaging of angiogenic vessels and lymphatics associated with a xenograft tumor model, and (v) examined dynamic multi-wavelength, whole-body fluorescence imaging with two different fluorescent contrast agents. PK analysis showed that the uptake of Cy5.5-c(KRGDf) in xenograft tumor regions linearly increased with doses of Cy5.5-c(KRGDf) up to 1.5 nmol/mouse. Above 1.5 nmol/mouse, the uptake did not increase with doses, suggesting receptor saturation. Target to background ratio (TBR) and PK analysis for two different tumor cell lines showed that while Kaposi's sarcoma (KS1767) exhibited early and rapid uptake of Cy5.5-c(KRGDf), human melanoma tumors (M21) had non-significant TBR differences and early uptake rates similar to the contralateral normal tissue regions. The differences may be due to different compartment location of the target. A comparison of fluorescence imaging with NIR vs. red light excitable fluorescent dyes demonstrates that NIR dyes are associated with less background signal, enabling rapid tumor detection. In contrast, animals injected with red light excitable fluorescent dyes showed high autofluorescence. Dual

  9. Physician evaluation and acceptance of remote transmission of CT, digital subtraction angiography, and US annotated images

    International Nuclear Information System (INIS)

    Haskin, M.E.; Robbins, C.; Kohn, M.; Laffey, P.A.; Haskin, P.H.; Teplick, J.G.; Teplick, S.K.; Peyster, R.G.

    1986-01-01

    The authors have found annotated images an effective way of communicating the results of imaging studies to referring physicians. Of particular value is the collation of representative images from several modalities. Previously, hard copy of this collation was sent to the referring physician as an integrated imaging report. Recently they developed a computer-based station that transmits annotated images to remote personal computer (PC) terminals via a telephone modem which requires 30 seconds to send each image. This annotated image report can be quickly accessed by the referring physician at the remote PC terminal The prototype system, utility, diagnostic fidelity, and potential of this remote system are described

  10. Multimodal quantitative phase and fluorescence imaging of cell apoptosis

    Science.gov (United States)

    Fu, Xinye; Zuo, Chao; Yan, Hao

    2017-06-01

    Fluorescence microscopy, utilizing fluorescence labeling, has the capability to observe intercellular changes which transmitted and reflected light microscopy techniques cannot resolve. However, the parts without fluorescence labeling are not imaged. Hence, the processes simultaneously happen in these parts cannot be revealed. Meanwhile, fluorescence imaging is 2D imaging where information in the depth is missing. Therefore the information in labeling parts is also not complete. On the other hand, quantitative phase imaging is capable to image cells in 3D in real time through phase calculation. However, its resolution is limited by the optical diffraction and cannot observe intercellular changes below 200 nanometers. In this work, fluorescence imaging and quantitative phase imaging are combined to build a multimodal imaging system. Such system has the capability to simultaneously observe the detailed intercellular phenomenon and 3D cell morphology. In this study the proposed multimodal imaging system is used to observe the cell behavior in the cell apoptosis. The aim is to highlight the limitations of fluorescence microscopy and to point out the advantages of multimodal quantitative phase and fluorescence imaging. The proposed multimodal quantitative phase imaging could be further applied in cell related biomedical research, such as tumor.

  11. Fluorescence image excited by a scanning UV-LED light

    Science.gov (United States)

    Tsai, Hsin-Yi; Chen, Yi-Ju; Huang, Kuo-Cheng

    2013-03-01

    An optical scanning system using UV-LED light to induced fluorescence technology can enhance a fluorescence image significantly in a short period. It has several advantages such as lower power consumption, no scattering effect in skins, and multilayer images can be obtained to analyze skin disease. From the experiment results, the light intensity increases with increase spot size and decrease scanning speed, but the image resolution is oppositely. Moreover, the system could be widely used in clinical diagnosis and photodynamic therapy for skin disease because even the irradiated time of fluorescence substance is short but it will provide accurately positioning of fluorescence object.

  12. Video-rate optical flow corrected intraoperative functional fluorescence imaging

    NARCIS (Netherlands)

    Koch, Maximilian; Glatz, Juergen; Ermolayev, Vladimir; de Vries, Elisabeth G. E.; van Dam, Gooitzen M.; Englmeier, Karl-Hans; Ntziachristos, Vasilis

    Intraoperative fluorescence molecular imaging based on targeted fluorescence agents is an emerging approach to improve surgical and endoscopic imaging and guidance. Short exposure times per frame and implementation at video rates are necessary to provide continuous feedback to the physician and

  13. 5-ALA induced fluorescent image analysis of actinic keratosis

    Science.gov (United States)

    Cho, Yong-Jin; Bae, Youngwoo; Choi, Eung-Ho; Jung, Byungjo

    2010-02-01

    In this study, we quantitatively analyzed 5-ALA induced fluorescent images of actinic keratosis using digital fluorescent color and hyperspectral imaging modalities. UV-A was utilized to induce fluorescent images and actinic keratosis (AK) lesions were demarcated from surrounding the normal region with different methods. Eight subjects with AK lesion were participated in this study. In the hyperspectral imaging modality, spectral analysis method was utilized for hyperspectral cube image and AK lesions were demarcated from the normal region. Before image acquisition, we designated biopsy position for histopathology of AK lesion and surrounding normal region. Erythema index (E.I.) values on both regions were calculated from the spectral cube data. Image analysis of subjects resulted in two different groups: the first group with the higher fluorescence signal and E.I. on AK lesion than the normal region; the second group with lower fluorescence signal and without big difference in E.I. between two regions. In fluorescent color image analysis of facial AK, E.I. images were calculated on both normal and AK lesions and compared with the results of hyperspectral imaging modality. The results might indicate that the different intensity of fluorescence and E.I. among the subjects with AK might be interpreted as different phases of morphological and metabolic changes of AK lesions.

  14. Evaluation of the Accuracy of the Dark Frame Subtraction Method in CCD Image Processing

    National Research Council Canada - National Science Library

    Levesque, Martin P; Lelievre, Mario

    2007-01-01

    .... This method is frequently used for removing the image background gradient (a thermal artefact) in CCD images. This report demonstrates that this method may not be suitable for the detection of objects with very low signal-to-noise ratio...

  15. Fluorescence Imaging Study of Impinging Underexpanded Jets

    Science.gov (United States)

    Inman, Jennifer A.; Danehy, Paul M.; Nowak, Robert J.; Alderfer, David W.

    2008-01-01

    An experiment was designed to create a simplified simulation of the flow through a hole in the surface of a hypersonic aerospace vehicle and the subsequent impingement of the flow on internal structures. In addition to planar laser-induced fluorescence (PLIF) flow visualization, pressure measurements were recorded on the surface of an impingement target. The PLIF images themselves provide quantitative spatial information about structure of the impinging jets. The images also help in the interpretation of impingement surface pressure profiles by highlighting the flow structures corresponding to distinctive features of these pressure profiles. The shape of the pressure distribution along the impingement surface was found to be double-peaked in cases with a sufficiently high jet-exit-to-ambient pressure ratio so as to have a Mach disk, as well as in cases where a flow feature called a recirculation bubble formed at the impingement surface. The formation of a recirculation bubble was in turn found to depend very sensitively upon the jet-exit-to-ambient pressure ratio. The pressure measured at the surface was typically less than half the nozzle plenum pressure at low jet pressure ratios and decreased with increasing jet pressure ratios. Angled impingement cases showed that impingement at a 60deg angle resulted in up to a factor of three increase in maximum pressure at the plate compared to normal incidence.

  16. Effects of Depilation-Induced Skin Pigmentation and Diet-Induced Fluorescence on In Vivo Fluorescence Imaging

    OpenAIRE

    Kwon, Sunkuk; Sevick-Muraca, Eva M.

    2017-01-01

    Near-infrared fluorescence imaging (NIRFI) and far-red fluorescence imaging (FRFI) were used to investigate effects of depilation-induced skin pigmentation and diet-induced background fluorescence on fluorescent signal amplitude and lymphatic contraction frequency in C57BL6 mice. Far-red fluorescent signal amplitude, but not frequency, was affected by diet-induced fluorescence, which was removed by feeding the mice an alfalfa-free diet, and skin pigmentation further impacted the amplitude mea...

  17. Dual PET and Near-Infrared Fluorescence Imaging Probes as Tools for Imaging in Oncology

    Science.gov (United States)

    An, Fei-Fei; Chan, Mark; Kommidi, Harikrishna; Ting, Richard

    2016-01-01

    OBJECTIVE The purpose of this article is to summarize advances in PET fluorescence resolution, agent design, and preclinical imaging that make a growing case for clinical PET fluorescence imaging. CONCLUSION Existing SPECT, PET, fluorescence, and MRI contrast imaging techniques are already deeply integrated into the management of cancer, from initial diagnosis to the observation and management of metastases. Combined positron-emitting fluorescent contrast agents can convey new or substantial benefits that improve on these proven clinical contrast agents. PMID:27223168

  18. Use of images of ictal-inter-ictal SPECT subtraction superimposed on MRI in pharmaco-resistant partial epilepsies in infants

    International Nuclear Information System (INIS)

    Vera, P.; Kaminska, A.; Cieuta, C.; Mangin, F.; Frouin, V.; Dulac, O.; Chiron, C.

    1997-01-01

    To study the significance of ictal SPECT in the pre-surgical examination of infant epilepsies we have explored 16 infants aged 3 months to 18 years presenting partial pharmaco-resistant epilepsy. All of them have had an ictal SPECT under EEG - video recording than, two days after, an inter-ictal SPECT coupled to a 3D cerebral MRI. The perfusion tracer, the 99m Tc - ECD, was injected in average at 15 seconds after the outset of crisis. The image processing implied a matching of the two SPECT examinations by a 3D rigid superposition method, a normalization and than a inter-ictal-ictal image subtraction. Finally, the subtraction was matched and superimposed on the MRI. The SPECT subtraction image showed one or several centres of ictal hyper-output in 15 patients, while the separated visual ictal and inter-ictal images were contributory in 8 cases only. The 16. infant presented very short crises (<10 sec). In the cases when the outset point of crises could be established clinically (12 cases) and/or on EEG (8 cases) a hyper-output of concordant localization was recorded. In 5 infants who have had an electrocorticography, a concordance was obtained in all the cases except in an infant having very short crises the subtraction image did not show hyper-output. These preliminary results show that the ictal - inter-ictal SPECT subtraction images, adjusted on MRI, appears to be reliable in detecting the outset point of crises in infants and at the same time useful in guiding the positioning of intra-cranial electrodes prior to surgery intervention

  19. Multispectral fluorescence imaging techniques for nondestructive food safety inspection

    Science.gov (United States)

    Kim, Moon S.; Lefcourt, Alan M.; Chen, Yud-Ren

    2004-03-01

    The use of spectral sensing has gained acceptance as a rapid means for nondestructive inspection of postharvest food produce. Current technologies generally use color or a single wavelength camera technology. The applicability and sensitivity of these techniques can be expanded through the use of multiple wavelengths. Reflectance in the Vis/NIR is the prevalent spectral technique. Fluorescence, compared to reflectance, is regarded as a more sensitive technique due to its dynamic responses to subtle changes in biological entities. Our laboratory has been exploring fluorescence as a potential means for detection of quality and wholesomeness of food products. Applications of fluorescence sensing require an understanding of the spectral characteristics emanating from constituents and potential contaminants. A number of factors affecting fluorescence emission characteristics are discussed. Because of relatively low fluorescence quantum yield from biological samples, a system with a powerful pulse light source such as a laser coupled with a gated detection device is used to harvest fluorescence, in the presence of ambient light. Several fluorescence sensor platforms developed in our laboratory, including hyperspectral imaging, and laser-induced fluorescence (LIF) and steady-state fluorescence imaging systems with multispectral capabilities are presented. We demonstrate the potential uses of recently developed fluorescence imaging platforms in food safety inspection of apples contaminated with animal feces.

  20. Development of ultrasound-assisted fluorescence imaging of indocyanine green.

    Science.gov (United States)

    Morikawa, Hiroyasu; Toyota, Shin; Wada, Kenji; Uchida-Kobayashi, Sawako; Kawada, Norifumi; Horinaka, Hiromichi

    2017-01-01

    Indocyanine green (ICG) accumulation in hepatocellular carcinoma means tumors can be located by fluorescence. However, because of light scattering, it is difficult to detect ICG fluorescence from outside the body. We propose a new fluorescence imaging method that detects changes in the intensity of ICG fluorescence by ultrasound-induced temperature changes. ICG fluorescence intensity decreases as the temperature rises. Therefore, it should theoretically be possible to detect tissue distribution of ICG using ultrasound to heat tissue, moving the point of ultrasound transmission, and monitoring changes in fluorescence intensity. A new probe was adapted for clinical application. It consisted of excitation light from a laser, fluorescence sensing through a light pipe, and heating by ultrasound. We applied the probe to bovine liver to image the accumulation of ICG. ICG emits fluorescence (820 nm) upon light irradiation (783 nm). With a rise in temperature, the fluorescence intensity of ICG decreased by 0.85 %/°C. The distribution of fluorescent ICG was detected using an ultrasonic warming method in a new integrated probe. Modulating fluorescence by changing the temperature using ultrasound can determine where ICG accumulates at a depth, highlighting its potential as a means to locate hepatocellular carcinoma.

  1. Refractive index sensing of green fluorescent proteins in living cells using fluorescence lifetime imaging microscopy

    NARCIS (Netherlands)

    van Manen, Henk-Jan; Verkuijlen, Paul; Wittendorp, Paul; Subramaniam, Vinod; van den Berg, Timo K; Roos, Dirk; Otto, Cees

    2008-01-01

    We show that fluorescence lifetime imaging microscopy (FLIM) of green fluorescent protein (GFP) molecules in cells can be used to report on the local refractive index of intracellular GFP. We expressed GFP fusion constructs of Rac2 and gp91(phox), which are both subunits of the phagocyte NADPH

  2. Combined dynamic contrast-enhancement and serial 3D-subtraction analysis in magnetic resonance imaging of osteoid osteomas

    Energy Technology Data Exchange (ETDEWEB)

    Kalle, T. von; Winkler, P. [Klinikum Stuttgart Olgahospital, Department of Paediatric Radiology, Stuttgart (Germany); Langendoerfer, M.; Fernandez, F.F. [Klinikum Stuttgart Olgahospital, Department of Paediatric Orthopaedics, Stuttgart (Germany)

    2009-10-15

    The purpose of this study was to retrospectively correlate the results of dynamic contrast-enhanced magnetic resonance imaging (MRI) with histological and clinical diagnoses in patients with osteoid osteomas. Fifty-four patients with the MR diagnosis of osteoid osteoma were studied. MRI (1.5 Tesla) consisted of thin-section STIR sequences, dynamic 3D T1 gradient echo sequences during application of contrast material, and high-resolution postcontrast T1 spin echo sequences with fat saturation (maximum voxel size 0.6 x 0.6 x 3.0 mm). Evaluation was focused on serial image subtraction during the early phase after contrast injection and on time-intensity curves. The surrounding edema was helpful in finding the nidus in each lesion. In 49 of 54 patients (90.7%), the diagnosis of osteoid osteoma was certain or highly probable (sensitivity 1.0, positive predictive value 0.91). A total of 38 of 54 osteoid osteomas were histologically proven. Five MRI diagnoses were regarded as false positives. A similar proportion has been reported for computed tomography. Tailored high-resolution MR examinations with dynamic contrast enhancement can reliably diagnose osteoid osteomas and exactly localize the nidus without radiation exposure. We propose a stepwise approach with STIR sequences, dynamic contrast-enhanced scanning, and high-resolution postcontrast T1 spin echo sequences with fat saturation. (orig.)

  3. Combined dynamic contrast-enhancement and serial 3D-subtraction analysis in magnetic resonance imaging of osteoid osteomas

    International Nuclear Information System (INIS)

    Kalle, T. von; Winkler, P.; Langendoerfer, M.; Fernandez, F.F.

    2009-01-01

    The purpose of this study was to retrospectively correlate the results of dynamic contrast-enhanced magnetic resonance imaging (MRI) with histological and clinical diagnoses in patients with osteoid osteomas. Fifty-four patients with the MR diagnosis of osteoid osteoma were studied. MRI (1.5 Tesla) consisted of thin-section STIR sequences, dynamic 3D T1 gradient echo sequences during application of contrast material, and high-resolution postcontrast T1 spin echo sequences with fat saturation (maximum voxel size 0.6 x 0.6 x 3.0 mm). Evaluation was focused on serial image subtraction during the early phase after contrast injection and on time-intensity curves. The surrounding edema was helpful in finding the nidus in each lesion. In 49 of 54 patients (90.7%), the diagnosis of osteoid osteoma was certain or highly probable (sensitivity 1.0, positive predictive value 0.91). A total of 38 of 54 osteoid osteomas were histologically proven. Five MRI diagnoses were regarded as false positives. A similar proportion has been reported for computed tomography. Tailored high-resolution MR examinations with dynamic contrast enhancement can reliably diagnose osteoid osteomas and exactly localize the nidus without radiation exposure. We propose a stepwise approach with STIR sequences, dynamic contrast-enhanced scanning, and high-resolution postcontrast T1 spin echo sequences with fat saturation. (orig.)

  4. Quantification of tumor fluorescence during intraoperative optical cancer imaging.

    Science.gov (United States)

    Judy, Ryan P; Keating, Jane J; DeJesus, Elizabeth M; Jiang, Jack X; Okusanya, Olugbenga T; Nie, Shuming; Holt, David E; Arlauckas, Sean P; Low, Phillip S; Delikatny, E James; Singhal, Sunil

    2015-11-13

    Intraoperative optical cancer imaging is an emerging technology in which surgeons employ fluorophores to visualize tumors, identify tumor-positive margins and lymph nodes containing metastases. This study compares instrumentation to measure tumor fluorescence. Three imaging systems (Spectropen, Glomax, Flocam) measured and quantified fluorescent signal-to-background ratios (SBR) in vitro, murine xenografts, tissue phantoms and clinically. Evaluation criteria included the detection of small changes in fluorescence, sensitivity of signal detection at increasing depths and practicality of use. In vitro, spectroscopy was superior in detecting incremental differences in fluorescence than luminescence and digital imaging (Ln[SBR] = 6.8 ± 0.6, 2.4 ± 0.3, 2.6 ± 0.1, p = 0.0001). In fluorescent tumor cells, digital imaging measured higher SBRs than luminescence (6.1 ± 0.2 vs. 4.3 ± 0.4, p = 0.001). Spectroscopy was more sensitive than luminometry and digital imaging in identifying murine tumor fluorescence (SBR = 41.7 ± 11.5, 5.1 ± 1.8, 4.1 ± 0.9, p = 0.0001), and more sensitive than digital imaging at detecting fluorescence at increasing depths (SBR = 7.0 ± 3.4 vs. 2.4 ± 0.5, p = 0.03). Lastly, digital imaging was the most practical and least time-consuming. All methods detected incremental differences in fluorescence. Spectroscopy was the most sensitive for small changes in fluorescence. Digital imaging was the most practical considering its wide field of view, background noise filtering capability, and sensitivity to increasing depth.

  5. Fluorescent imaging of cancerous tissues for targeted surgery

    Science.gov (United States)

    Bu, Lihong; Shen, Baozhong; Cheng, Zhen

    2014-01-01

    To maximize tumor excision and minimize collateral damage is the primary goal of cancer surgery. Emerging molecular imaging techniques have to “image-guided surgery” developing into “molecular imaging-guided surgery”, which is termed “targeted surgery” in this review. Consequently, the precision of surgery can be advanced from tissue-scale to molecule-scale, enabling “targeted surgery” to be a component of “targeted therapy”. Evidence from numerous experimental and clinical studies has demonstrated significant benefits of fluorescent imaging in targeted surgery with preoperative molecular diagnostic screening. Fluorescent imaging can help to improve intraoperative staging and enable more radical cytoreduction, detect obscure tumor lesions in special organs, highlight tumor margins, better map lymph node metastases, and identify important normal structures intraoperatively. Though limited tissue penetration of fluorescent imaging and tumor heterogeneity are two major hurdles for current targeted surgery, multimodality imaging and multiplex imaging may provide potential solutions to overcome these issues, respectively. Moreover, though many fluorescent imaging techniques and probes have been investigated, targeted surgery remains at a proof-of-principle stage. The impact of fluorescent imaging on cancer surgery will likely be realized through persistent interdisciplinary amalgamation of research in diverse fields. PMID:25064553

  6. Detection of rheumatoid arthritis in humans by fluorescence imaging

    Science.gov (United States)

    Ebert, Bernd; Dziekan, Thomas; Weissbach, Carmen; Mahler, Marianne; Schirner, Michael; Berliner, Birgitt; Bauer, Daniel; Voigt, Jan; Berliner, Michael; Bahner, Malte L.; Macdonald, Rainer

    2010-02-01

    The blood pool agent indo-cyanine green (ICG) has been investigated in a prospective clinical study for detection of rheumatoid arthritis using fluorescence imaging. Temporal behavior as well as spatial distribution of fluorescence intensity are suited to differentiate healthy and inflamed finger joints after i.v. injection of an ICG bolus.

  7. Recent development of fluorescent imaging for specific detection of tumors

    International Nuclear Information System (INIS)

    Nakata, Eiji; Morii, Takashi; Uto, Yoshihiro; Hori, Hitoshi

    2011-01-01

    Increasing recent studies on fluorescent imaging for specific detection of tumors are described here on strategies of molecular targeting, metabolic specificity and hypoxic circumstance. There is described an instance of a conjugate of antibody and pH-activable fluorescent ligand, which specifically binds to the tumor cells, is internalized in the cellular lysozomes where their pH is low, and then is activated to become fluorescent only in viable tumor cells. For the case of metabolic specificity, excessive loading of the precursor (5-aminolevulinic acid) of protoporphyrin IX (ppIX), due to their low activity to convert ppIX to heme B, results in making tumors observable in red as ppIX emits fluorescence (red, 585 nm) when excited by blue ray of 410 nm. Similarly, imaging with indocyanine green which is accumulated in hepatoma cells is reported in success in detection of small lesion and metastasis when the dye is administered during operation. Reductive reactions exceed in tumor hypoxic conditions, of which feature is usable for imaging. Conjugates of nitroimidazole and fluorescent dye are reported to successfully image tumors by nitro reduction. Authors' UTX-12 is a non-fluorescent nitroaromatic derivative of pH-sensitive fluorescent dye seminaphtharhodafluor (SNARF), and is designed for the nitro group, the hypoxia-responding sensor, to be reduced in tumor hypoxic conditions and then for the aromatic moiety to be cleaved to release free SNARF. Use of hypoxia-inducible factor-1 (HIF-1) for imaging has been also reported in many. As above, studies on fluorescent imaging for specific detection of tumors are mostly at fundamental step but its future is conceivably promising along with advances in other technology like fluorescent endoscopy and multimodal imaging. (author)

  8. High speed fluorescence imaging with compressed ultrafast photography

    Science.gov (United States)

    Thompson, J. V.; Mason, J. D.; Beier, H. T.; Bixler, J. N.

    2017-02-01

    Fluorescent lifetime imaging is an optical technique that facilitates imaging molecular interactions and cellular functions. Because the excited lifetime of a fluorophore is sensitive to its local microenvironment,1, 2 measurement of fluorescent lifetimes can be used to accurately detect regional changes in temperature, pH, and ion concentration. However, typical state of the art fluorescent lifetime methods are severely limited when it comes to acquisition time (on the order of seconds to minutes) and video rate imaging. Here we show that compressed ultrafast photography (CUP) can be used in conjunction with fluorescent lifetime imaging to overcome these acquisition rate limitations. Frame rates up to one hundred billion frames per second have been demonstrated with compressed ultrafast photography using a streak camera.3 These rates are achieved by encoding time in the spatial direction with a pseudo-random binary pattern. The time domain information is then reconstructed using a compressed sensing algorithm, resulting in a cube of data (x,y,t) for each readout image. Thus, application of compressed ultrafast photography will allow us to acquire an entire fluorescent lifetime image with a single laser pulse. Using a streak camera with a high-speed CMOS camera, acquisition rates of 100 frames per second can be achieved, which will significantly enhance our ability to quantitatively measure complex biological events with high spatial and temporal resolution. In particular, we will demonstrate the ability of this technique to do single-shot fluorescent lifetime imaging of cells and microspheres.

  9. Variability-based active galactic nucleus selection using image subtraction in the SDSS and LSST era

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yumi; Gibson, Robert R.; Becker, Andrew C.; Ivezić, Željko; Connolly, Andrew J.; Ruan, John J.; Anderson, Scott F. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); MacLeod, Chelsea L., E-mail: ymchoi@astro.washington.edu [Physics Department, U.S. Naval Academy, 572 Holloway Road, Annapolis, MD 21402 (United States)

    2014-02-10

    With upcoming all-sky surveys such as LSST poised to generate a deep digital movie of the optical sky, variability-based active galactic nucleus (AGN) selection will enable the construction of highly complete catalogs with minimum contamination. In this study, we generate g-band difference images and construct light curves (LCs) for QSO/AGN candidates listed in Sloan Digital Sky Survey Stripe 82 public catalogs compiled from different methods, including spectroscopy, optical colors, variability, and X-ray detection. Image differencing excels at identifying variable sources embedded in complex or blended emission regions such as Type II AGNs and other low-luminosity AGNs that may be omitted from traditional photometric or spectroscopic catalogs. To separate QSOs/AGNs from other sources using our difference image LCs, we explore several LC statistics and parameterize optical variability by the characteristic damping timescale (τ) and variability amplitude. By virtue of distinguishable variability parameters of AGNs, we are able to select them with high completeness of 93.4% and efficiency (i.e., purity) of 71.3%. Based on optical variability, we also select highly variable blazar candidates, whose infrared colors are consistent with known blazars. One-third of them are also radio detected. With the X-ray selected AGN candidates, we probe the optical variability of X-ray detected optically extended sources using their difference image LCs for the first time. A combination of optical variability and X-ray detection enables us to select various types of host-dominated AGNs. Contrary to the AGN unification model prediction, two Type II AGN candidates (out of six) show detectable variability on long-term timescales like typical Type I AGNs. This study will provide a baseline for future optical variability studies of extended sources.

  10. Phenotyping of Arabidopsis Drought Stress Response Using Kinetic Chlorophyll Fluorescence and Multicolor Fluorescence Imaging

    Directory of Open Access Journals (Sweden)

    Jieni Yao

    2018-05-01

    Full Text Available Plant responses to drought stress are complex due to various mechanisms of drought avoidance and tolerance to maintain growth. Traditional plant phenotyping methods are labor-intensive, time-consuming, and subjective. Plant phenotyping by integrating kinetic chlorophyll fluorescence with multicolor fluorescence imaging can acquire plant morphological, physiological, and pathological traits related to photosynthesis as well as its secondary metabolites, which will provide a new means to promote the progress of breeding for drought tolerant accessions and gain economic benefit for global agriculture production. Combination of kinetic chlorophyll fluorescence and multicolor fluorescence imaging proved to be efficient for the early detection of drought stress responses in the Arabidopsis ecotype Col-0 and one of its most affected mutants called reduced hyperosmolality-induced [Ca2+]i increase 1. Kinetic chlorophyll fluorescence curves were useful for understanding the drought tolerance mechanism of Arabidopsis. Conventional fluorescence parameters provided qualitative information related to drought stress responses in different genotypes, and the corresponding images showed spatial heterogeneities of drought stress responses within the leaf and the canopy levels. Fluorescence parameters selected by sequential forward selection presented high correlations with physiological traits but not morphological traits. The optimal fluorescence traits combined with the support vector machine resulted in good classification accuracies of 93.3 and 99.1% for classifying the control plants from the drought-stressed ones with 3 and 7 days treatments, respectively. The results demonstrated that the combination of kinetic chlorophyll fluorescence and multicolor fluorescence imaging with the machine learning technique was capable of providing comprehensive information of drought stress effects on the photosynthesis and the secondary metabolisms. It is a promising

  11. An automatic fuzzy-based multi-temporal brain digital subtraction angiography image fusion algorithm using curvelet transform and content selection strategy.

    Science.gov (United States)

    Momeni, Saba; Pourghassem, Hossein

    2014-08-01

    Recently image fusion has prominent role in medical image processing and is useful to diagnose and treat many diseases. Digital subtraction angiography is one of the most applicable imaging to diagnose brain vascular diseases and radiosurgery of brain. This paper proposes an automatic fuzzy-based multi-temporal fusion algorithm for 2-D digital subtraction angiography images. In this algorithm, for blood vessel map extraction, the valuable frames of brain angiography video are automatically determined to form the digital subtraction angiography images based on a novel definition of vessel dispersion generated by injected contrast material. Our proposed fusion scheme contains different fusion methods for high and low frequency contents based on the coefficient characteristic of wrapping second generation of curvelet transform and a novel content selection strategy. Our proposed content selection strategy is defined based on sample correlation of the curvelet transform coefficients. In our proposed fuzzy-based fusion scheme, the selection of curvelet coefficients are optimized by applying weighted averaging and maximum selection rules for the high frequency coefficients. For low frequency coefficients, the maximum selection rule based on local energy criterion is applied to better visual perception. Our proposed fusion algorithm is evaluated on a perfect brain angiography image dataset consisting of one hundred 2-D internal carotid rotational angiography videos. The obtained results demonstrate the effectiveness and efficiency of our proposed fusion algorithm in comparison with common and basic fusion algorithms.

  12. FY08 Annual Report for Nuclear Resonance Fluorescence Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Glen A.; Caggiano, Joseph A.

    2009-01-06

    FY08 annual report for project the "Nuclear Resonance Fluorescence Imaging" project. Reviews accomplishments of last 3 years, including U-235 signature search, comparison of different photon sources, and examination of NRF measurements using monochromatic photon source.

  13. BlobFinder, a tool for fluorescence microscopy image cytometry

    OpenAIRE

    Allalou, Amin; Wählby, Carolina

    2009-01-01

    Images can be acquired at high rates with modern fluorescence microscopy hardware, giving rise to a demand for high-speed analysis of image data. Digital image cytometry, i.e., automated measurements and extraction of quantitative data from images of cells, provides valuable information for many types of biomedical analysis. There exists a number of different image analysis software packages that can be programmed to perform a wide array of useful measurements. However, the multi-application ...

  14. Classifying apples by the means of fluorescence imaging

    OpenAIRE

    Codrea, Marius C.; Nevalainen, Olli S.; Tyystjärvi, Esa; VAN DE VEN, Martin; VALCKE, Roland

    2004-01-01

    Classification of harvested apples when predicting their storage potential is an important task. This paper describes how chlorophyll a fluorescence images taken in blue light through a red filter, can be used to classify apples. In such an image, fluorescence appears as a relatively homogenous area broken by a number of small nonfluorescing spots, corresponding to normal corky tissue patches, lenticells, and to damaged areas that lower the quality of the apple. The damaged regions appear mor...

  15. Performance evaluation of spot detection algorithms in fluorescence microscopy images

    CSIR Research Space (South Africa)

    Mabaso, M

    2012-10-01

    Full Text Available triggered the development of a highly sophisticated imaging tool known as fluorescence microscopy. This is used to visualise and study intracellular processes. The use of fluorescence microscopy and a specific staining method make biological molecules... was first used in astronomical applications [2] to detect isotropic objects, and was then introduced to biological applications [3]. Olivio-Marin[3] approached the problem of feature extraction based on undecimated wavelet representation of the image...

  16. Image processing for drift compensation in fluorescence microscopy

    DEFF Research Database (Denmark)

    Petersen, Steffen; Thiagarajan, Viruthachalam; Coutinho, Isabel

    2013-01-01

    Fluorescence microscopy is characterized by low background noise, thus a fluorescent object appears as an area of high signal/noise. Thermal gradients may result in apparent motion of the object, leading to a blurred image. Here, we have developed an image processing methodology that may remove....../reduce blur significantly for any type of microscopy. A total of ~100 images were acquired with a pixel size of 30 nm. The acquisition time for each image was approximately 1second. We can quantity the drift in X and Y using the sub pixel accuracy computed centroid location of an image object in each frame....... We can measure drifts down to approximately 10 nm in size and a drift-compensated image can therefore be reconstructed on a grid of the same size using the “Shift and Add” approach leading to an image of identical size asthe individual image. We have also reconstructed the image using a 3 fold larger...

  17. Contrast-enhanced MR angiography vs intra-arterial digital subtraction angiography for carotid imaging: activity-based cost analysis

    International Nuclear Information System (INIS)

    U-King-Im, Jean Marie; Cross, Justin J.; Higgins, Nicholas J.; Graves, Martin J.; Antoun, Nagui M.; Gillard, Jonathan H.; Hollingworth, William; Trivedi, Rikin A.; Kirkpatrick, Peter J.

    2004-01-01

    The aim of this study was to compare the costs of performing contrast-enhanced MR angiography (CE MRA) with intra-arterial digital subtraction angiography (DSA) for the evaluation of carotid atherosclerotic disease. Activity-based cost analysis was used to identify the costs of performing each procedure. The variable direct costs of performing CE MRA and DSA were determined in 20 patients by using detailed time and motion studies. All personnel directly involved in the cases were tracked to the nearest minute and all consumable items used were recorded. Moreover, procedure times were prospectively recorded for an additional 80 patients who underwent both DSA and CE MRA. The variable direct costs of bed usage in the angiography day-case unit, all direct fixed costs as well as indirect costs were assessed from hospital and departmental accounting records. Total costs for each procedure were calculated and compared using Wilcoxon signed-rank sum test. Mean aggregate costs were and euro;721 for DSA and and euro;306 for CE MRA, resulting in potential savings of and euro;415 per patient (p<0.0001). On average, a DSA procedure thus cost approximately 2.4 (95% confidence intervals: 2.2-2.6) times more than CE MRA to our medical institution. Sensitivity analyses confirmed the robustness of our conclusions across wide ranges of plausible values for various parameters. Assuming equal diagnostic performance, institutions may have substantial cost savings if CE MRA is used instead of DSA for carotid imaging. (orig.)

  18. Contrast-enhanced MR angiography vs intra-arterial digital subtraction angiography for carotid imaging: activity-based cost analysis

    Energy Technology Data Exchange (ETDEWEB)

    U-King-Im, Jean Marie; Cross, Justin J.; Higgins, Nicholas J.; Graves, Martin J.; Antoun, Nagui M.; Gillard, Jonathan H. [University Department of Radiology, Addenbrooke' s Hospital, CB2 2QQ, Cambridge (United Kingdom); Hollingworth, William [Department of Radiology, University of Washington, WA 98103, Seattle (United States); Trivedi, Rikin A. [University Department of Radiology, Addenbrooke' s Hospital, CB2 2QQ, Cambridge (United Kingdom); Academic Department of Neurosurgery, Addenbrooke' s Hospital, CB2 2QQ, Cambridge (United Kingdom); Kirkpatrick, Peter J. [Academic Department of Neurosurgery, Addenbrooke' s Hospital, CB2 2QQ, Cambridge (United Kingdom)

    2004-04-01

    The aim of this study was to compare the costs of performing contrast-enhanced MR angiography (CE MRA) with intra-arterial digital subtraction angiography (DSA) for the evaluation of carotid atherosclerotic disease. Activity-based cost analysis was used to identify the costs of performing each procedure. The variable direct costs of performing CE MRA and DSA were determined in 20 patients by using detailed time and motion studies. All personnel directly involved in the cases were tracked to the nearest minute and all consumable items used were recorded. Moreover, procedure times were prospectively recorded for an additional 80 patients who underwent both DSA and CE MRA. The variable direct costs of bed usage in the angiography day-case unit, all direct fixed costs as well as indirect costs were assessed from hospital and departmental accounting records. Total costs for each procedure were calculated and compared using Wilcoxon signed-rank sum test. Mean aggregate costs were and euro;721 for DSA and and euro;306 for CE MRA, resulting in potential savings of and euro;415 per patient (p<0.0001). On average, a DSA procedure thus cost approximately 2.4 (95% confidence intervals: 2.2-2.6) times more than CE MRA to our medical institution. Sensitivity analyses confirmed the robustness of our conclusions across wide ranges of plausible values for various parameters. Assuming equal diagnostic performance, institutions may have substantial cost savings if CE MRA is used instead of DSA for carotid imaging. (orig.)

  19. Integrated ultrasonic particle positioning and low excitation light fluorescence imaging

    International Nuclear Information System (INIS)

    Bernassau, A. L.; Al-Rawhani, M.; Beeley, J.; Cumming, D. R. S.

    2013-01-01

    A compact hybrid system has been developed to position and detect fluorescent micro-particles by combining a Single Photon Avalanche Diode (SPAD) imager with an acoustic manipulator. The detector comprises a SPAD array, light-emitting diode (LED), lenses, and optical filters. The acoustic device is formed of multiple transducers surrounding an octagonal cavity. By stimulating pairs of transducers simultaneously, an acoustic landscape is created causing fluorescent micro-particles to agglomerate into lines. The fluorescent pattern is excited by a low power LED and detected by the SPAD imager. Our technique combines particle manipulation and visualization in a compact, low power, portable setup

  20. Digital subtraction angiography

    International Nuclear Information System (INIS)

    Neuwirth, J. Jr.; Bohutova, J.

    1987-01-01

    The quality of radiodiagnostic methods to a great extent depends on the quality of the resulting image. The basic technical principles are summed up of the different parts of digital subtraction angiography apparatus and of methods of improving the image. The instrument is based on a videochain consisting of an X-ray tube, an intensifier of the radiographic image, optical parts, a video camera, an analog-to-digital converter and a computer. The main advantage of the digitally processed image is the possibility of optimizing the image into a form which will contain the biggest amount of diagnostically valuable information. Described are the mathematical operations for improving the digital image: spatial filtration, pixel shift, time filtration, image integration, time interval differentation and matched filtering. (M.D.). 8 refs., 3 figs

  1. Ion beam induced fluorescence imaging in biological systems

    International Nuclear Information System (INIS)

    Bettiol, Andrew A.; Mi, Zhaohong; Vanga, Sudheer Kumar; Chen, Ce-belle; Tao, Ye; Watt, Frank

    2015-01-01

    Imaging fluorescence generated by MeV ions in biological systems such as cells and tissue sections requires a high resolution beam (<100 nm), a sensitive detection system and a fluorescent probe that has a high quantum efficiency and low bleaching rate. For cutting edge applications in bioimaging, the fluorescence imaging technique needs to break the optical diffraction limit allowing for sub-cellular structure to be visualized, leading to a better understanding of cellular function. In a nuclear microprobe this resolution requirement can be readily achieved utilizing low beam current techniques such as Scanning Transmission Ion Microscopy (STIM). In recent times, we have been able to extend this capability to fluorescence imaging through the development of a new high efficiency fluorescence detection system, and through the use of new novel fluorescent probes that are resistant to ion beam damage (bleaching). In this paper we demonstrate ion beam induced fluorescence imaging in several biological samples, highlighting the advantages and challenges associated with using this technique

  2. Chlorophyll Fluorescence Imaging Uncovers Photosynthetic Fingerprint of Citrus Huanglongbing

    Directory of Open Access Journals (Sweden)

    Haiyan Cen

    2017-08-01

    Full Text Available Huanglongbing (HLB is one of the most destructive diseases of citrus, which has posed a serious threat to the global citrus production. This research was aimed to explore the use of chlorophyll fluorescence imaging combined with feature selection to characterize and detect the HLB disease. Chlorophyll fluorescence images of citrus leaf samples were measured by an in-house chlorophyll fluorescence imaging system. The commonly used chlorophyll fluorescence parameters provided the first screening of HLB disease. To further explore the photosynthetic fingerprint of HLB infected leaves, three feature selection methods combined with the supervised classifiers were employed to identify the unique fluorescence signature of HLB and perform the three-class classification (i.e., healthy, HLB infected, and nutrient deficient leaves. Unlike the commonly used fluorescence parameters, this novel data-driven approach by using the combination of the mean fluorescence parameters and image features gave the best classification performance with the accuracy of 97%, and presented a better interpretation for the spatial heterogeneity of photochemical and non-photochemical components in HLB infected citrus leaves. These results imply the potential of the proposed approach for the citrus HLB disease diagnosis, and also provide a valuable insight for the photosynthetic response to the HLB disease.

  3. A study on a portable fluorescence imaging system

    Science.gov (United States)

    Chang, Han-Chao; Wu, Wen-Hong; Chang, Chun-Li; Huang, Kuo-Cheng; Chang, Chung-Hsing; Chiu, Shang-Chen

    2011-09-01

    The fluorescent reaction is that an organism or dye, excited by UV light (200-405 nm), emits a specific frequency of light; the light is usually a visible or near infrared light (405-900 nm). During the UV light irradiation, the photosensitive agent will be induced to start the photochemical reaction. In addition, the fluorescence image can be used for fluorescence diagnosis and then photodynamic therapy can be given to dental diseases and skin cancer, which has become a useful tool to provide scientific evidence in many biomedical researches. However, most of the methods on acquiring fluorescence biology traces are still stay in primitive stage, catching by naked eyes and researcher's subjective judgment. This article presents a portable camera to obtain the fluorescence image and to make up a deficit from observer competence and subjective judgment. Furthermore, the portable camera offers the 375nm UV-LED exciting light source for user to record fluorescence image and makes the recorded image become persuasive scientific evidence. In addition, when the raising the rate between signal and noise, the signal processing module will not only amplify the fluorescence signal up to 70 %, but also decrease the noise significantly from environmental light on bill and nude mouse testing.

  4. Wide-field fluorescent microscopy and fluorescent imaging flow cytometry on a cell-phone.

    Science.gov (United States)

    Zhu, Hongying; Ozcan, Aydogan

    2013-04-11

    Fluorescent microscopy and flow cytometry are widely used tools in biomedical research and clinical diagnosis. However these devices are in general relatively bulky and costly, making them less effective in the resource limited settings. To potentially address these limitations, we have recently demonstrated the integration of wide-field fluorescent microscopy and imaging flow cytometry tools on cell-phones using compact, light-weight, and cost-effective opto-fluidic attachments. In our flow cytometry design, fluorescently labeled cells are flushed through a microfluidic channel that is positioned above the existing cell-phone camera unit. Battery powered light-emitting diodes (LEDs) are butt-coupled to the side of this microfluidic chip, which effectively acts as a multi-mode slab waveguide, where the excitation light is guided to uniformly excite the fluorescent targets. The cell-phone camera records a time lapse movie of the fluorescent cells flowing through the microfluidic channel, where the digital frames of this movie are processed to count the number of the labeled cells within the target solution of interest. Using a similar opto-fluidic design, we can also image these fluorescently labeled cells in static mode by e.g. sandwiching the fluorescent particles between two glass slides and capturing their fluorescent images using the cell-phone camera, which can achieve a spatial resolution of e.g. - 10 μm over a very large field-of-view of - 81 mm(2). This cell-phone based fluorescent imaging flow cytometry and microscopy platform might be useful especially in resource limited settings, for e.g. counting of CD4+ T cells toward monitoring of HIV+ patients or for detection of water-borne parasites in drinking water.

  5. Fluorescence molecular tomography in the presence of background fluorescence

    International Nuclear Information System (INIS)

    Soubret, Antoine; Ntziachristos, Vasilis

    2006-01-01

    Fluorescence molecular tomography is an emerging imaging technique that resolves the bio-distribution of engineered fluorescent probes developed for in vivo reporting of specific cellular and sub-cellular targets. The method can detect fluorochromes in picomole amounts or less, imaged through entire animals, but the detection sensitivity and imaging performance drop in the presence of background, non-specific fluorescence. In this study, we carried out a theoretical and an experimental investigation on the effect of background fluorescence on the measured signal and on the tomographic reconstruction. We further examined the performance of three subtraction methods based on physical models of photon propagation, using experimental data on phantoms and small animals. We show that the data pre-processing with subtraction schemes can improve image quality and quantification when non-specific background florescence is present

  6. Photobleaching correction in fluorescence microscopy images

    International Nuclear Information System (INIS)

    Vicente, Nathalie B; Diaz Zamboni, Javier E; Adur, Javier F; Paravani, Enrique V; Casco, Victor H

    2007-01-01

    Fluorophores are used to detect molecular expression by highly specific antigen-antibody reactions in fluorescence microscopy techniques. A portion of the fluorophore emits fluorescence when irradiated with electromagnetic waves of particular wavelengths, enabling its detection. Photobleaching irreversibly destroys fluorophores stimulated by radiation within the excitation spectrum, thus eliminating potentially useful information. Since this process may not be completely prevented, techniques have been developed to slow it down or to correct resulting alterations (mainly, the decrease in fluorescent signal). In the present work, the correction by photobleaching curve was studied using E-cadherin (a cell-cell adhesion molecule) expression in Bufo arenarum embryos. Significant improvements were observed when applying this simple, inexpensive and fast technique

  7. Fluorescence lifetime imaging of oxygen in dental biofilm

    Science.gov (United States)

    Gerritsen, Hans C.; de Grauw, Cees J.

    2000-12-01

    Dental biofilm consists of micro-colonies of bacteria embedded in a matrix of polysaccharides and salivary proteins. pH and oxygen concentration are of great importance in dental biofilm. Both can be measured using fluorescence techniques. The imaging of dental biofilm is complicated by the thickness of the biofilms that can be up to several hundred micrometers thick. Here, we employed a combination of two-photon excitation microscopy with fluorescence lifetime imaging to quantify the oxygen concentration in dental biofilm. Collisional quenching of fluorescent probes by molecular oxygen leads to a reduction of the fluorescence lifetime of the probe. We employed this mechanism to measure the oxygen concentration distribution in dental biofilm by means of fluorescence lifetime imaging. Here, TRIS Ruthenium chloride hydrate was used as an oxygen probe. A calibration procedure on buffers was use to measure the lifetime response of this Ruthenium probe. The results are in agreement with the Stern-Volmer equation. A linear relation was found between the ratio of the unquenched and the quenched lifetime and the oxygen concentration. The biofilm fluorescence lifetime imaging results show a strong oxygen gradient at the buffer - biofilm interface and the average oxygen concentration in the biofilm amounted to 50 μM.

  8. Intravital Fluorescence Excitation in Whole-Animal Optical Imaging.

    Science.gov (United States)

    Nooshabadi, Fatemeh; Yang, Hee-Jeong; Bixler, Joel N; Kong, Ying; Cirillo, Jeffrey D; Maitland, Kristen C

    2016-01-01

    Whole-animal fluorescence imaging with recombinant or fluorescently-tagged pathogens or cells enables real-time analysis of disease progression and treatment response in live animals. Tissue absorption limits penetration of fluorescence excitation light, particularly in the visible wavelength range, resulting in reduced sensitivity to deep targets. Here, we demonstrate the use of an optical fiber bundle to deliver light into the mouse lung to excite fluorescent bacteria, circumventing tissue absorption of excitation light in whole-animal imaging. We present the use of this technology to improve detection of recombinant reporter strains of tdTomato-expressing Mycobacterium bovis BCG (Bacillus Calmette Guerin) bacteria in the mouse lung. A microendoscope was integrated into a whole-animal fluorescence imager to enable intravital excitation in the mouse lung with whole-animal detection. Using this technique, the threshold of detection was measured as 103 colony forming units (CFU) during pulmonary infection. In comparison, the threshold of detection for whole-animal fluorescence imaging using standard epi-illumination was greater than 106 CFU.

  9. Thermally activated delayed fluorescence of fluorescein derivative for time-resolved and confocal fluorescence imaging.

    Science.gov (United States)

    Xiong, Xiaoqing; Song, Fengling; Wang, Jingyun; Zhang, Yukang; Xue, Yingying; Sun, Liangliang; Jiang, Na; Gao, Pan; Tian, Lu; Peng, Xiaojun

    2014-07-09

    Compared with fluorescence imaging utilizing fluorophores whose lifetimes are in the order of nanoseconds, time-resolved fluorescence microscopy has more advantages in monitoring target fluorescence. In this work, compound DCF-MPYM, which is based on a fluorescein derivative, showed long-lived luminescence (22.11 μs in deaerated ethanol) and was used in time-resolved fluorescence imaging in living cells. Both nanosecond time-resolved transient difference absorption spectra and time-correlated single-photon counting (TCSPC) were employed to explain the long lifetime of the compound, which is rare in pure organic fluorophores without rare earth metals and heavy atoms. A mechanism of thermally activated delayed fluorescence (TADF) that considers the long wavelength fluorescence, large Stokes shift, and long-lived triplet state of DCF-MPYM was proposed. The energy gap (ΔEST) of DCF-MPYM between the singlet and triplet state was determined to be 28.36 meV by the decay rate of DF as a function of temperature. The ΔE(ST) was small enough to allow efficient intersystem crossing (ISC) and reverse ISC, leading to efficient TADF at room temperature. The straightforward synthesis of DCF-MPYM and wide availability of its starting materials contribute to the excellent potential of the compound to replace luminescent lanthanide complexes in future time-resolved imaging technologies.

  10. Small-Animal Imaging Using Diffuse Fluorescence Tomography.

    Science.gov (United States)

    Davis, Scott C; Tichauer, Kenneth M

    2016-01-01

    Diffuse fluorescence tomography (DFT) has been developed to image the spatial distribution of fluorescence-tagged tracers in living tissue. This capability facilitates the recovery of any number of functional parameters, including enzymatic activity, receptor density, blood flow, and gene expression. However, deploying DFT effectively is complex and often requires years of know-how, especially for newer mutlimodal systems that combine DFT with conventional imaging systems. In this chapter, we step through the process of using MRI-DFT imaging of a receptor-targeted tracer in small animals.

  11. In vivo cellular imaging using fluorescent proteins - Methods and Protocols

    Directory of Open Access Journals (Sweden)

    M. Monti

    2012-12-01

    Full Text Available The discovery and genetic engineering of fluorescent proteins has revolutionized cell biology. What was previously invisible to the cell often can be made visible with the use of fluorescent proteins. With this words, Robert M. Hoffman introduces In vivo Cellular Imaging Using Fluorescent proteins, the eighteen chapters book dedicated to the description of how fluorescence proteins have changed the way to analyze cellular processes in vivo. Modern researches aim to study new and less invasive methods able to follow the behavior of different cell types in different biological contexts: for example, how cancer cells migrate or how they respond to different therapies. Also, in vivo systems can help researchers to better understand animal embryonic development so as how fluorescence proteins may be used to monitor different processes in living organisms at the molecular and cellular level.

  12. Problems of fluorescent imaging and its solution using nanofluorophores. Part I: Advantages of fluorescent nanoparticles over conventional organic fluorophores

    International Nuclear Information System (INIS)

    Zhelev, Z.; Hadjidekov, G.; Zlateva, G.; Spasov, L.; Bakalova, R.

    2011-01-01

    The application of fluorescence in deep-tissue imaging is rapidly expanding in fast several years. The progress in fluorescent molecular probes and fluorescent imaging techniques gives an opportunity to detect single cells and even molecules in live organisms. The highly sensitive and high-speed fluorescent molecular sensors and detection devices allow the application of fluorescence in functional imaging. With development of novel bright fluorophores based on nano-technologies and fluorescence scanners with high spatial and temporal resolution, the fluorescent imaging has a potential to become an alternative of the other non-invasive imaging techniques as magnetic resonance imaging, positron-emission tomography, X-ray, computing tomography. This review outlines the current status and future trends of fluorescent nanoparticles - quantum dots (QDs), as a new generation of fluorophores in experimental and pre-clinical fluorescent imaging diagnostic. Part 1 focuses on the advantages of quantum dots over conventional organic fluorophores and defines the major requirements to the 'perfect' fluorophore for fluorescent deep-tissue imaging diagnostic. The analysis is based on the limitations of fluorescent imaging in vivo and overcome by using quantum dots

  13. Segmentation and classification of cell cycle phases in fluorescence imaging.

    Science.gov (United States)

    Ersoy, Ilker; Bunyak, Filiz; Chagin, Vadim; Cardoso, M Christina; Palaniappan, Kannappan

    2009-01-01

    Current chemical biology methods for studying spatiotemporal correlation between biochemical networks and cell cycle phase progression in live-cells typically use fluorescence-based imaging of fusion proteins. Stable cell lines expressing fluorescently tagged protein GFP-PCNA produce rich, dynamically varying sub-cellular foci patterns characterizing the cell cycle phases, including the progress during the S-phase. Variable fluorescence patterns, drastic changes in SNR, shape and position changes and abundance of touching cells require sophisticated algorithms for reliable automatic segmentation and cell cycle classification. We extend the recently proposed graph partitioning active contours (GPAC) for fluorescence-based nucleus segmentation using regional density functions and dramatically improve its efficiency, making it scalable for high content microscopy imaging. We utilize surface shape properties of GFP-PCNA intensity field to obtain descriptors of foci patterns and perform automated cell cycle phase classification, and give quantitative performance by comparing our results to manually labeled data.

  14. Radiation dose and image quality of X-ray volume imaging systems: cone-beam computed tomography, digital subtraction angiography and digital fluoroscopy.

    Science.gov (United States)

    Paul, Jijo; Jacobi, Volkmar; Farhang, Mohammad; Bazrafshan, Babak; Vogl, Thomas J; Mbalisike, Emmanuel C

    2013-06-01

    Radiation dose and image quality estimation of three X-ray volume imaging (XVI) systems. A total of 126 patients were examined using three XVI systems (groups 1-3) and their data were retrospectively analysed from 2007 to 2012. Each group consisted of 42 patients and each patient was examined using cone-beam computed tomography (CBCT), digital subtraction angiography (DSA) and digital fluoroscopy (DF). Dose parameters such as dose-area product (DAP), skin entry dose (SED) and image quality parameters such as Hounsfield unit (HU), noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were estimated and compared using appropriate statistical tests. Mean DAP and SED were lower in recent XVI than its previous counterparts in CBCT, DSA and DF. HU of all measured locations was non-significant between the groups except the hepatic artery. Noise showed significant difference among groups (P < 0.05). Regarding CNR and SNR, the recent XVI showed a higher and significant difference compared to its previous versions. Qualitatively, CBCT showed significance between versions unlike the DSA and DF which showed non-significance. A reduction of radiation dose was obtained for the recent-generation XVI system in CBCT, DSA and DF. Image noise was significantly lower; SNR and CNR were higher than in previous versions. The technological advancements and the reduction in the number of frames led to a significant dose reduction and improved image quality with the recent-generation XVI system. • X-ray volume imaging (XVI) systems are increasingly used for interventional radiological procedures. • More modern XVI systems use lower radiation doses compared with earlier counterparts. • Furthermore more modern XVI systems provide higher image quality. • Technological advances reduce radiation dose and improve image quality.

  15. Particle Image Velocimetry Applications of Fluorescent Dye-Doped Particles

    OpenAIRE

    Petrosky, Brian Joseph

    2015-01-01

    Laser flare can often be a major issue in particle image velocimetry (PIV) involving solid boundaries in a flow or a gas-liquid interface. The use of fluorescent light from dye-doped particles has been demonstrated in water applications, but reproducing the technique in an airflow is more difficult due to particle size constraints and safety concerns. The following thesis is formatted in a hybrid manuscript style, including a full paper presenting the applications of fluorescent Kiton R...

  16. A portable fluorescence microscopic imaging system for cholecystectomy

    Science.gov (United States)

    Ye, Jian; Yang, Chaoyu; Gan, Qi; Ma, Rong; Zhang, Zeshu; Chang, Shufang; Shao, Pengfei; Zhang, Shiwu; Liu, Chenhai; Xu, Ronald

    2016-03-01

    In this paper we proposed a portable fluorescence microscopic imaging system to prevent iatrogenic biliary injuries from occurring during cholecystectomy due to misidentification of the cystic structures. The system consisted of a light source module, a CMOS camera, a Raspberry Pi computer and a 5 inch HDMI LCD. Specifically, the light source module was composed of 690 nm and 850 nm LEDs, allowing the CMOS camera to simultaneously acquire both fluorescence and background images. The system was controlled by Raspberry Pi using Python programming with the OpenCV library under Linux. We chose Indocyanine green(ICG) as a fluorescent contrast agent and then tested fluorescence intensities of the ICG aqueous solution at different concentration levels by our fluorescence microscopic system compared with the commercial Xenogen IVIS system. The spatial resolution of the proposed fluorescence microscopic imaging system was measured by a 1951 USAF resolution target and the dynamic response was evaluated quantitatively with an automatic displacement platform. Finally, we verified the technical feasibility of the proposed system in mouse models of bile duct, performing both correct and incorrect gallbladder resection. Our experiments showed that the proposed system can provide clear visualization of the confluence between the cystic duct and common bile duct or common hepatic duct, suggesting that this is a potential method for guiding cholecystectomy. The proposed portable system only cost a total of $300, potentially promoting its use in resource-limited settings.

  17. Enhanced speed in fluorescence imaging using beat frequency multiplexing

    Science.gov (United States)

    Mikami, Hideharu; Kobayashi, Hirofumi; Wang, Yisen; Hamad, Syed; Ozeki, Yasuyuki; Goda, Keisuke

    2016-03-01

    Fluorescence imaging using radiofrequency-tagged emission (FIRE) is an emerging technique that enables higher imaging speed (namely, temporal resolution) in fluorescence microscopy compared to conventional fluorescence imaging techniques such as confocal microscopy and wide-field microscopy. It works based on the principle that it uses multiple intensity-modulated fields in an interferometric setup as excitation fields and applies frequency-division multiplexing to fluorescence signals. Unfortunately, despite its high potential, FIRE has limited imaging speed due to two practical limitations: signal bandwidth and signal detection efficiency. The signal bandwidth is limited by that of an acousto-optic deflector (AOD) employed in the setup, which is typically 100-200 MHz for the spectral range of fluorescence excitation (400-600 nm). The signal detection efficiency is limited by poor spatial mode-matching between two interfering fields to produce a modulated excitation field. Here we present a method to overcome these limitations and thus to achieve higher imaging speed than the prior version of FIRE. Our method achieves an increase in signal bandwidth by a factor of two and nearly optimal mode matching, which enables the imaging speed limited by the lifetime of the target fluorophore rather than the imaging system itself. The higher bandwidth and better signal detection efficiency work synergistically because higher bandwidth requires higher signal levels to avoid the contribution of shot noise and amplifier noise to the fluorescence signal. Due to its unprecedentedly high-speed performance, our method has a wide variety of applications in cancer detection, drug discovery, and regenerative medicine.

  18. Three-dimensional ultrashort echo time MRI and Short T2 images generated from subtraction for determination of tumor burden in lung cancer: Preclinical investigation in transgenic mice.

    Science.gov (United States)

    Müller, Andreas; Jagoda, Philippe; Fries, Peter; Gräber, Stefan; Bals, Robert; Buecker, Arno; Jungnickel, Christopher; Beisswenger, Christoph

    2018-02-01

    To investigate the potential of 3D ultrashort echo time MRI and short T 2 images generated by subtraction for determination of total tumor burden in lung cancer. As an animal model of spontaneously developing non-small cell lung cancer, the K-rasLA1 transgenic mouse was used. Three-dimensional MR imaging was performed with radial k-space acquisition and echo times of 20 µs and 1 ms. For investigation of the short T 2 component in the recorded signal, subtraction images were generated from these data sets and used for consensus identification of tumors. Next, manual segmentation was performed on all MR images by two independent investigators. MRI data were compared with the results from histologic investigations and among the investigators. Tumor number and total tumor burden from imaging experiments correlated strongly with the results of histologic investigations. Intra- and interuser comparison showed highest correlations between the individual measurements for ultra-short TE MRI. Three-dimensional MRI protocols facilitate accurate tumor identification in mice harboring lung tumors. Ultrashort TE MRI is the superior imaging strategy when investigating lung tumors of miscellaneous size with 3D MR imaging strategies. Magn Reson Med 79:1052-1060, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  19. Three Dimensional Fluorescence Microscopy Image Synthesis and Segmentation

    OpenAIRE

    Fu, Chichen; Lee, Soonam; Ho, David Joon; Han, Shuo; Salama, Paul; Dunn, Kenneth W.; Delp, Edward J.

    2018-01-01

    Advances in fluorescence microscopy enable acquisition of 3D image volumes with better image quality and deeper penetration into tissue. Segmentation is a required step to characterize and analyze biological structures in the images and recent 3D segmentation using deep learning has achieved promising results. One issue is that deep learning techniques require a large set of groundtruth data which is impractical to annotate manually for large 3D microscopy volumes. This paper describes a 3D d...

  20. Community detection for fluorescent lifetime microscopy image segmentation

    Science.gov (United States)

    Hu, Dandan; Sarder, Pinaki; Ronhovde, Peter; Achilefu, Samuel; Nussinov, Zohar

    2014-03-01

    Multiresolution community detection (CD) method has been suggested in a recent work as an efficient method for performing unsupervised segmentation of fluorescence lifetime (FLT) images of live cell images containing fluorescent molecular probes.1 In the current paper, we further explore this method in FLT images of ex vivo tissue slices. The image processing problem is framed as identifying clusters with respective average FLTs against a background or "solvent" in FLT imaging microscopy (FLIM) images derived using NIR fluorescent dyes. We have identified significant multiresolution structures using replica correlations in these images, where such correlations are manifested by information theoretic overlaps of the independent solutions ("replicas") attained using the multiresolution CD method from different starting points. In this paper, our method is found to be more efficient than a current state-of-the-art image segmentation method based on mixture of Gaussian distributions. It offers more than 1:25 times diversity based on Shannon index than the latter method, in selecting clusters with distinct average FLTs in NIR FLIM images.

  1. APPLICATION OF MODULATED CHLOROPHYLL FLUORESCENCE AND MODULATED CHLOROPHYLL FLUORESCENCE IMAGING IN STUDYING ENVIRONMENTAL STRESSES EFFECT

    Directory of Open Access Journals (Sweden)

    L. Guidi

    2016-03-01

    Full Text Available Chlorophyll (Chl a fluorescence is a widely used tool to monitor the photosynthetic process in plants subjected to environmental stresses.this review reports the theoretical bases of Chl fluorescence, and the significance of the most important Chl fluorescence parameters. it also reportshow these parameters can be utilised to estimate changes in photosystem ii (PSII photochemistry, linear electron flux and energy dissipationmechanisms. the relation between actual PSII photochemistry and CO2 assimilation is discussed, as is the role of photochemical andnon-photochemical quenching in inducing changes in PSII activity. the application of Chl fluorescence imaging to study heterogeneity on leaflamina is also considered. this review summarises only some of the results obtained by this methodology to study the effects of differentenvironmental stresses, namely water and nutrients availability, pollutants, temperature and salinity.

  2. Led induced chlorophyll fluorescence transient imager for measurements of health and stress status of whole plants

    NARCIS (Netherlands)

    Jalink, H.; Schoor, van der R.

    2011-01-01

    We have developed LED (light emitting diode) induced fluorescence transient imaging instrumentation to image the plant health/stress status by calculation of two images: Fv/Fm (variable fluorescence over saturation level of fluorescence) and the time response, tTR, of the fluorescence time curve.

  3. Snapshot imaging Fraunhofer line discriminator for detection of plant fluorescence

    Science.gov (United States)

    Gupta Roy, S.; Kudenov, M. W.

    2015-05-01

    Non-invasive quantification of plant health is traditionally accomplished using reflectance based metrics, such as the normalized difference vegetative index (NDVI). However, measuring plant fluorescence (both active and passive) to determine photochemistry of plants has gained importance. Due to better cost efficiency, lower power requirements, and simpler scanning synchronization, detecting passive fluorescence is preferred over active fluorescence. In this paper, we propose a high speed imaging approach for measuring passive plant fluorescence, within the hydrogen alpha Fraunhofer line at ~656 nm, using a Snapshot Imaging Fraunhofer Line Discriminator (SIFOLD). For the first time, the advantage of snapshot imaging for high throughput Fraunhofer Line Discrimination (FLD) is cultivated by our system, which is based on a multiple-image Fourier transform spectrometer and a spatial heterodyne interferometer (SHI). The SHI is a Sagnac interferometer, which is dispersion compensated using blazed diffraction gratings. We present data and techniques for calibrating the SIFOLD to any particular wavelength. This technique can be applied to quantify plant fluorescence at low cost and reduced complexity of data collection.

  4. 3-D Image Analysis of Fluorescent Drug Binding

    Directory of Open Access Journals (Sweden)

    M. Raquel Miquel

    2005-01-01

    Full Text Available Fluorescent ligands provide the means of studying receptors in whole tissues using confocal laser scanning microscopy and have advantages over antibody- or non-fluorescence-based method. Confocal microscopy provides large volumes of images to be measured. Histogram analysis of 3-D image volumes is proposed as a method of graphically displaying large amounts of volumetric image data to be quickly analyzed and compared. The fluorescent ligand BODIPY FL-prazosin (QAPB was used in mouse aorta. Histogram analysis reports the amount of ligand-receptor binding under different conditions and the technique is sensitive enough to detect changes in receptor availability after antagonist incubation or genetic manipulations. QAPB binding was concentration dependent, causing concentration-related rightward shifts in the histogram. In the presence of 10 μM phenoxybenzamine (blocking agent, the QAPB (50 nM histogram overlaps the autofluorescence curve. The histogram obtained for the 1D knockout aorta lay to the left of that of control and 1B knockout aorta, indicating a reduction in 1D receptors. We have shown, for the first time, that it is possible to graphically display binding of a fluorescent drug to a biological tissue. Although our application is specific to adrenergic receptors, the general method could be applied to any volumetric, fluorescence-image-based assay.

  5. Fluorescence Imaging of Fast Retrograde Axonal Transport in Living Animals

    Directory of Open Access Journals (Sweden)

    Dawid Schellingerhout

    2009-11-01

    Full Text Available Our purpose was to enable an in vivo imaging technology that can assess the anatomy and function of peripheral nerve tissue (neurography. To do this, we designed and tested a fluorescently labeled molecular probe based on the nontoxic C fragment of tetanus toxin (TTc. TTc was purified, labeled, and subjected to immunoassays and cell uptake assays. The compound was then injected into C57BL/6 mice (N = 60 for in vivo imaging and histologic studies. Image analysis and immunohistochemistry were performed. We found that TTc could be labeled with fluorescent moieties without loss of immunoreactivity or biologic potency in cell uptake assays. In vivo fluorescent imaging experiments demonstrated uptake and retrograde transport of the compound along the course of the sciatic nerve and in the spinal cord. Ex vivo imaging and immunohistochemical studies confirmed the presence of TTc in the sciatic nerve and spinal cord, whereas control animals injected with human serum albumin did not exhibit these features. We have demonstrated neurography with a fluorescently labeled molecular imaging contrast agent based on the TTc.

  6. Material decomposition through weighted imaged subtraction in dual-energy spectral mammography with an energy-resolved photon-counting detector using Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Ji Soo; Kang, Soon Cheol; Lee, Seung Wan [Konyang University, Daejeon (Korea, Republic of)

    2017-09-15

    Mammography is commonly used for screening early breast cancer. However, mammographic images, which depend on the physical properties of breast components, are limited to provide information about whether a lesion is malignant or benign. Although a dual-energy subtraction technique decomposes a certain material from a mixture, it increases radiation dose and degrades the accuracy of material decomposition. In this study, we simulated a breast phantom using attenuation characteristics, and we proposed a technique to enable the accurate material decomposition by applying weighting factors for the dual-energy mammography based on a photon-counting detector using a Monte Carlo simulation tool. We also evaluated the contrast and noise of simulated breast images for validating the proposed technique. As a result, the contrast for a malignant tumor in the dual-energy weighted subtraction technique was 0.98 and 1.06 times similar than those in the general mammography and dual-energy subtraction techniques, respectively. However the contrast between malignant and benign tumors dramatically increased 13.54 times due to the low contrast of a benign tumor. Therefore, the proposed technique can increase the material decomposition accuracy for malignant tumor and improve the diagnostic accuracy of mammography.

  7. Fast globally optimal segmentation of cells in fluorescence microscopy images.

    Science.gov (United States)

    Bergeest, Jan-Philip; Rohr, Karl

    2011-01-01

    Accurate and efficient segmentation of cells in fluorescence microscopy images is of central importance for the quantification of protein expression in high-throughput screening applications. We propose a new approach for segmenting cell nuclei which is based on active contours and convex energy functionals. Compared to previous work, our approach determines the global solution. Thus, the approach does not suffer from local minima and the segmentation result does not depend on the initialization. We also suggest a numeric approach for efficiently computing the solution. The performance of our approach has been evaluated using fluorescence microscopy images of different cell types. We have also performed a quantitative comparison with previous segmentation approaches.

  8. Mesh adaptation technique for Fourier-domain fluorescence lifetime imaging

    International Nuclear Information System (INIS)

    Soloviev, Vadim Y.

    2006-01-01

    A novel adaptive mesh technique in the Fourier domain is introduced for problems in fluorescence lifetime imaging. A dynamical adaptation of the three-dimensional scheme based on the finite volume formulation reduces computational time and balances the ill-posed nature of the inverse problem. Light propagation in the medium is modeled by the telegraph equation, while the lifetime reconstruction algorithm is derived from the Fredholm integral equation of the first kind. Stability and computational efficiency of the method are demonstrated by image reconstruction of two spherical fluorescent objects embedded in a tissue phantom

  9. Non-invasive In Vivo Fluorescence Optical Imaging of Inflammatory MMP Activity Using an Activatable Fluorescent Imaging Agent.

    Science.gov (United States)

    Schwenck, Johannes; Maier, Florian C; Kneilling, Manfred; Wiehr, Stefan; Fuchs, Kerstin

    2017-05-08

    This paper describes a non-invasive method for imaging matrix metalloproteinases (MMP)-activity by an activatable fluorescent probe, via in vivo fluorescence optical imaging (OI), in two different mouse models of inflammation: a rheumatoid arthritis (RA) and a contact hypersensitivity reaction (CHR) model. Light with a wavelength in the near infrared (NIR) window (650 - 950 nm) allows a deeper tissue penetration and minimal signal absorption compared to wavelengths below 650 nm. The major advantages using fluorescence OI is that it is cheap, fast and easy to implement in different animal models. Activatable fluorescent probes are optically silent in their inactivated states, but become highly fluorescent when activated by a protease. Activated MMPs lead to tissue destruction and play an important role for disease progression in delayed-type hypersensitivity reactions (DTHRs) such as RA and CHR. Furthermore, MMPs are the key proteases for cartilage and bone degradation and are induced by macrophages, fibroblasts and chondrocytes in response to pro-inflammatory cytokines. Here we use a probe that is activated by the key MMPs like MMP-2, -3, -9 and -13 and describe an imaging protocol for near infrared fluorescence OI of MMP activity in RA and control mice 6 days after disease induction as well as in mice with acute (1x challenge) and chronic (5x challenge) CHR on the right ear compared to healthy ears.

  10. Whole mount nuclear fluorescent imaging: convenient documentation of embryo morphology.

    Science.gov (United States)

    Sandell, Lisa L; Kurosaka, Hiroshi; Trainor, Paul A

    2012-11-01

    Here, we describe a relatively inexpensive and easy method to produce high quality images that reveal fine topological details of vertebrate embryonic structures. The method relies on nuclear staining of whole mount embryos in combination with confocal microscopy or conventional wide field fluorescent microscopy. In cases where confocal microscopy is used in combination with whole mount nuclear staining, the resulting embryo images can rival the clarity and resolution of images produced by scanning electron microscopy (SEM). The fluorescent nuclear staining may be performed with a variety of cell permeable nuclear dyes, enabling the technique to be performed with multiple standard microscope/illumination or confocal/laser systems. The method may be used to document morphology of embryos of a variety of organisms, as well as individual organs and tissues. Nuclear stain imaging imposes minimal impact on embryonic specimens, enabling imaged specimens to be utilized for additional assays. Copyright © 2012 Wiley Periodicals, Inc.

  11. Intraarterial digital subtraction angiography

    International Nuclear Information System (INIS)

    Davis, P.C.

    1987-01-01

    Digital subtraction angiography (DSA) refers to a radiographic technique of amplifying low levels of contrast from intravascular iodine into an acceptable image of vascular anatomy. Initial enthusiasm suggested that DSA using intravenous injections (IV-DSA) would eliminate most conventional film-screen angiographic studies. It was soon apparent, however, that IV-DSA examinations were often compromised in those patients who most needed a less invasive study. Indeed, only a 70 to 85 percent accuracy rate was achieved with IV-DSA, primarily due to motion artifact, poor cardiac output, overlap of pertinent vessels, and inability to resolve smaller vessels

  12. Real-time out-of-plane artifact subtraction tomosynthesis imaging using prior CT for scanning beam digital x-ray system

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Meng, E-mail: mengwu@stanford.edu [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States)

    2014-11-01

    Purpose: The scanning beam digital x-ray system (SBDX) is an inverse geometry fluoroscopic system with high dose efficiency and the ability to perform continuous real-time tomosynthesis in multiple planes. This system could be used for image guidance during lung nodule biopsy. However, the reconstructed images suffer from strong out-of-plane artifact due to the small tomographic angle of the system. Methods: The authors propose an out-of-plane artifact subtraction tomosynthesis (OPAST) algorithm that utilizes a prior CT volume to augment the run-time image processing. A blur-and-add (BAA) analytical model, derived from the project-to-backproject physical model, permits the generation of tomosynthesis images that are a good approximation to the shift-and-add (SAA) reconstructed image. A computationally practical algorithm is proposed to simulate images and out-of-plane artifacts from patient-specific prior CT volumes using the BAA model. A 3D image registration algorithm to align the simulated and reconstructed images is described. The accuracy of the BAA analytical model and the OPAST algorithm was evaluated using three lung cancer patients’ CT data. The OPAST and image registration algorithms were also tested with added nonrigid respiratory motions. Results: Image similarity measurements, including the correlation coefficient, mean squared error, and structural similarity index, indicated that the BAA model is very accurate in simulating the SAA images from the prior CT for the SBDX system. The shift-variant effect of the BAA model can be ignored when the shifts between SBDX images and CT volumes are within ±10 mm in the x and y directions. The nodule visibility and depth resolution are improved by subtracting simulated artifacts from the reconstructions. The image registration and OPAST are robust in the presence of added respiratory motions. The dominant artifacts in the subtraction images are caused by the mismatches between the real object and the prior CT

  13. Enhanced 3D fluorescence live cell imaging on nanoplasmonic substrate

    International Nuclear Information System (INIS)

    Gartia, Manas Ranjan; Hsiao, Austin; Logan Liu, G; Sivaguru, Mayandi; Chen Yi

    2011-01-01

    We have created a randomly distributed nanocone substrate on silicon coated with silver for surface-plasmon-enhanced fluorescence detection and 3D cell imaging. Optical characterization of the nanocone substrate showed it can support several plasmonic modes (in the 300-800 nm wavelength range) that can be coupled to a fluorophore on the surface of the substrate, which gives rise to the enhanced fluorescence. Spectral analysis suggests that a nanocone substrate can create more excitons and shorter lifetime in the model fluorophore Rhodamine 6G (R6G) due to plasmon resonance energy transfer from the nanocone substrate to the nearby fluorophore. We observed three-dimensional fluorescence enhancement on our substrate shown from the confocal fluorescence imaging of chinese hamster ovary (CHO) cells grown on the substrate. The fluorescence intensity from the fluorophores bound on the cell membrane was amplified more than 100-fold as compared to that on a glass substrate. We believe that strong scattering within the nanostructured area coupled with random scattering inside the cell resulted in the observed three-dimensional enhancement in fluorescence with higher photostability on the substrate surface.

  14. Enhanced 3D fluorescence live cell imaging on nanoplasmonic substrate

    Energy Technology Data Exchange (ETDEWEB)

    Gartia, Manas Ranjan [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois, Urbana, IL 61801 (United States); Hsiao, Austin; Logan Liu, G [Department of Bioengineering, University of Illinois, Urbana, IL 61801 (United States); Sivaguru, Mayandi [Institute for Genomic Biology, University of Illinois, Urbana, IL 61801 (United States); Chen Yi, E-mail: loganliu@illinois.edu [Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801 (United States)

    2011-09-07

    We have created a randomly distributed nanocone substrate on silicon coated with silver for surface-plasmon-enhanced fluorescence detection and 3D cell imaging. Optical characterization of the nanocone substrate showed it can support several plasmonic modes (in the 300-800 nm wavelength range) that can be coupled to a fluorophore on the surface of the substrate, which gives rise to the enhanced fluorescence. Spectral analysis suggests that a nanocone substrate can create more excitons and shorter lifetime in the model fluorophore Rhodamine 6G (R6G) due to plasmon resonance energy transfer from the nanocone substrate to the nearby fluorophore. We observed three-dimensional fluorescence enhancement on our substrate shown from the confocal fluorescence imaging of chinese hamster ovary (CHO) cells grown on the substrate. The fluorescence intensity from the fluorophores bound on the cell membrane was amplified more than 100-fold as compared to that on a glass substrate. We believe that strong scattering within the nanostructured area coupled with random scattering inside the cell resulted in the observed three-dimensional enhancement in fluorescence with higher photostability on the substrate surface.

  15. Refractive index sensing using Fluorescence Lifetime Imaging (FLIM)

    International Nuclear Information System (INIS)

    Jones, Carolyn; Suhling, Klaus

    2006-01-01

    The fluorescence lifetime is a function of the refractive index of the fluorophore's environment, for example in the case of the biologically important green fluorescent protein (GFP). In order to address the question whether this effect can be exploited to image the local environment of specific proteins in cell biology, we need to determine the distance over which the fluorophore's lifetime is sensitive to the refractive index. To this end, we employ Fluorescence Lifetime Imaging (FLIM) of fluorescein in NaOH buffer at an interface. This approach allows us to map the fluorescence lifetime as a function of distance from a buffer/air and buffer/oil interface. Preliminary data show that the fluorescence lifetime of fluorescein increases near a buffer/air interface and decreases near a buffer/oil interface. The range over which this fluorescence lifetime change occurs is found to be of the order several μm which is consistent with a theoretical model based on the full width at half maximum of the emission spectrum proposed by Toptygin

  16. Digital subtraction angiography (DSA)

    International Nuclear Information System (INIS)

    Ludwig, J.W.; Eikelboom, B.C.; Van Schaik, C.C.; Taams, A.J.; Teeuwen, C.

    1985-01-01

    Besides the non-invasive techniques, angiography remains essential. The disadvantages of angiography are the complexity of the procedure and the possibility of complications. Digital subtraction angiography (DSA) is a considerable improvement in the examination of vessels. In DSA, subtraction combined with enhancement of the signals allows the use of intravenous injection to obtain good images of the arteries. However, when the contrast material is supplied intravenously, a rather large amount of contrast material is necessary to obtain images of good quality. Quantities of 30-40 cc of contrast material are required. The advantage of the intravenous injection of contrast material rather than the use of a catheter to deliver the contrast material in loco is that it is almost non-invasive thus circumventing the complications caused by catheter manipulation in the arterial system. This makes it possible to apply this method on an out-patient basis. DSA can also be applied with intra-arterial selective injection of the contrast material. In this case, the strong enhancement with DSA allows the use of a small quantity of contrast material while still obtaining images of the vessels with good contrast definition

  17. AUTOMATED CELL SEGMENTATION WITH 3D FLUORESCENCE MICROSCOPY IMAGES.

    Science.gov (United States)

    Kong, Jun; Wang, Fusheng; Teodoro, George; Liang, Yanhui; Zhu, Yangyang; Tucker-Burden, Carol; Brat, Daniel J

    2015-04-01

    A large number of cell-oriented cancer investigations require an effective and reliable cell segmentation method on three dimensional (3D) fluorescence microscopic images for quantitative analysis of cell biological properties. In this paper, we present a fully automated cell segmentation method that can detect cells from 3D fluorescence microscopic images. Enlightened by fluorescence imaging techniques, we regulated the image gradient field by gradient vector flow (GVF) with interpolated and smoothed data volume, and grouped voxels based on gradient modes identified by tracking GVF field. Adaptive thresholding was then applied to voxels associated with the same gradient mode where voxel intensities were enhanced by a multiscale cell filter. We applied the method to a large volume of 3D fluorescence imaging data of human brain tumor cells with (1) small cell false detection and missing rates for individual cells; and (2) trivial over and under segmentation incidences for clustered cells. Additionally, the concordance of cell morphometry structure between automated and manual segmentation was encouraging. These results suggest a promising 3D cell segmentation method applicable to cancer studies.

  18. Analysis of hyperspectral fluorescence images for poultry skin tumor inspection

    Science.gov (United States)

    Kong, Seong G.; Chen, Yud-Ren; Kim, Intaek; Kim, Moon S.

    2004-02-01

    We present a hyperspectral fluorescence imaging system with a fuzzy inference scheme for detecting skin tumors on poultry carcasses. Hyperspectral images reveal spatial and spectral information useful for finding pathological lesions or contaminants on agricultural products. Skin tumors are not obvious because the visual signature appears as a shape distortion rather than a discoloration. Fluorescence imaging allows the visualization of poultry skin tumors more easily than reflectance. The hyperspectral image samples obtained for this poultry tumor inspection contain 65 spectral bands of fluorescence in the visible region of the spectrum at wavelengths ranging from 425 to 711 nm. The large amount of hyperspectral image data is compressed by use of a discrete wavelet transform in the spatial domain. Principal-component analysis provides an effective compressed representation of the spectral signal of each pixel in the spectral domain. A small number of significant features are extracted from two major spectral peaks of relative fluorescence intensity that have been identified as meaningful spectral bands for detecting tumors. A fuzzy inference scheme that uses a small number of fuzzy rules and Gaussian membership functions successfully detects skin tumors on poultry carcasses. Spatial-filtering techniques are used to significantly reduce false positives.

  19. Optofluidic fluorescent imaging cytometry on a cell phone.

    Science.gov (United States)

    Zhu, Hongying; Mavandadi, Sam; Coskun, Ahmet F; Yaglidere, Oguzhan; Ozcan, Aydogan

    2011-09-01

    Fluorescent microscopy and flow cytometry are widely used tools in biomedical sciences. Cost-effective translation of these technologies to remote and resource-limited environments could create new opportunities especially for telemedicine applications. Toward this direction, here we demonstrate the integration of imaging cytometry and fluorescent microscopy on a cell phone using a compact, lightweight, and cost-effective optofluidic attachment. In this cell-phone-based optofluidic imaging cytometry platform, fluorescently labeled particles or cells of interest are continuously delivered to our imaging volume through a disposable microfluidic channel that is positioned above the existing camera unit of the cell phone. The same microfluidic device also acts as a multilayered optofluidic waveguide and efficiently guides our excitation light, which is butt-coupled from the side facets of our microfluidic channel using inexpensive light-emitting diodes. Since the excitation of the sample volume occurs through guided waves that propagate perpendicular to the detection path, our cell-phone camera can record fluorescent movies of the specimens as they are flowing through the microchannel. The digital frames of these fluorescent movies are then rapidly processed to quantify the count and the density of the labeled particles/cells within the target solution of interest. We tested the performance of our cell-phone-based imaging cytometer by measuring the density of white blood cells in human blood samples, which provided a decent match to a commercially available hematology analyzer. We further characterized the imaging quality of the same platform to demonstrate a spatial resolution of ~2 μm. This cell-phone-enabled optofluidic imaging flow cytometer could especially be useful for rapid and sensitive imaging of bodily fluids for conducting various cell counts (e.g., toward monitoring of HIV+ patients) or rare cell analysis as well as for screening of water quality in

  20. Self-masking subtraction tomosynthesis

    International Nuclear Information System (INIS)

    Chakraborty, D.P.; Yester, M.V.; Barnes, G.T.; Lakshminarayanan, A.V.

    1984-01-01

    The authors tested the image quality and dose savings of self-masking subtraction tomosynthesis (SST), which combines digital tomosynthesis with subtraction of a blurred self-mask. High-quality images of the inner ear of a head phantom were obtained at moderate dose savings. Although they were taken with linear motion, they did not exhibit the streaking due to off-fulcrum objects that is characteristic of conventional linear tomography. SST could reduce patient dose by a factor of at least 12 in examinations of the inner ear, and the mechanical aspects can be implemented with moderate modifications of existing instrumentation

  1. Thermally activated delayed fluorescence organic dots for two-photon fluorescence lifetime imaging

    Science.gov (United States)

    He, Tingchao; Ren, Can; Li, Zhuohua; Xiao, Shuyu; Li, Junzi; Lin, Xiaodong; Ye, Chuanxiang; Zhang, Junmin; Guo, Lihong; Hu, Wenbo; Chen, Rui

    2018-05-01

    Autofluorescence is a major challenge in complex tissue imaging when molecules present in the biological tissue compete with the fluorophore. This issue may be resolved by designing organic molecules with long fluorescence lifetimes. The present work reports the two-photon absorption (TPA) properties of a thermally activated delayed fluorescence (TADF) molecule with carbazole as the electron donor and dicyanobenzene as the electron acceptor (i.e., 4CzIPN). The results indicate that 4CzIPN exhibits a moderate TPA cross-section (˜9 × 10-50 cm4 s photon-1), high fluorescence quantum yield, and a long fluorescence lifetime (˜1.47 μs). 4CzIPN was compactly encapsulated into an amphiphilic copolymer via nanoprecipitation to achieve water-soluble organic dots. Interestingly, 4CzIPN organic dots have been utilized in applications involving two-photon fluorescence lifetime imaging (FLIM). Our work aptly demonstrates that TADF molecules are promising candidates of nonlinear optical probes for developing next-generation multiphoton FLIM applications.

  2. Two-photon fluorescence and fluorescence imaging of two styryl heterocyclic dyes combined with DNA.

    Science.gov (United States)

    Gao, Chao; Liu, Shu-yao; Zhang, Xian; Liu, Ying-kai; Qiao, Cong-de; Liu, Zhao-e

    2016-03-05

    Two new styryl heterocyclic two-photon (TP) materials, 4-[4-(N-methyl)styrene]-imidazo [4,5-f][1,10] phenanthroline-benzene iodated salt (probe-1) and 4,4-[4-(N-methyl)styrene]-benzene iodated salt (probe-2) were successfully synthesized and studied as potential fluorescent probes of DNA detection. The linear and nonlinear photophysical properties of two compounds in different solvents were investigated. The absorption, one- and two-photon fluorescent spectra of the free dye and dye-DNA complex were also examined to evaluate their photophysical properties. The binding constants of dye-DNA were obtained according to Scatchard equation with good values. The results showed that two probes could be used as fluorescent DNA probes by two-photon excitation, and TP fluorescent properties of probe-1 are superior to that of probe-2. The fluorescent method date indicated that the mechanisms of dye-DNA complex interaction may be groove binding for probe-1 and electrostatic interaction for probe-2, respectively. The MTT assay experiments showed two probes are low toxicity. Moreover, the TP fluorescence imaging of DNA detection in living cells at 800 nm indicated that the ability to locate in cell nuclei of probe-1 is better than that of probe-2. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Image recovery from defocused 2D fluorescent images in multimodal digital holographic microscopy.

    Science.gov (United States)

    Quan, Xiangyu; Matoba, Osamu; Awatsuji, Yasuhiro

    2017-05-01

    A technique of three-dimensional (3D) intensity retrieval from defocused, two-dimensional (2D) fluorescent images in the multimodal digital holographic microscopy (DHM) is proposed. In the multimodal DHM, 3D phase and 2D fluorescence distributions are obtained simultaneously by an integrated system of an off-axis DHM and a conventional epifluorescence microscopy, respectively. This gives us more information of the target; however, defocused fluorescent images are observed due to the short depth of field. In this Letter, we propose a method to recover the defocused images based on the phase compensation and backpropagation from the defocused plane to the focused plane using the distance information that is obtained from a 3D phase distribution. By applying Zernike polynomial phase correction, we brought back the fluorescence intensity to the focused imaging planes. The experimental demonstration using fluorescent beads is presented, and the expected applications are suggested.

  4. Detecting crop population growth using chlorophyll fluorescence imaging.

    Science.gov (United States)

    Wang, Heng; Qian, Xiangjie; Zhang, Lan; Xu, Sailong; Li, Haifeng; Xia, Xiaojian; Dai, Liankui; Xu, Liang; Yu, Jingquan; Liu, Xu

    2017-12-10

    For both field and greenhouse crops, it is challenging to evaluate their growth information on a large area over a long time. In this work, we developed a chlorophyll fluorescence imaging-based system for crop population growth information detection. Modular design was used to make the system provide high-intensity uniform illumination. This system can perform modulated chlorophyll fluorescence induction kinetics measurement and chlorophyll fluorescence parameter imaging over a large area of up to 45  cm×34  cm. The system can provide different lighting intensity by modulating the duty cycle of its control signal. Results of continuous monitoring of cucumbers in nitrogen deficiency show the system can reduce the judge error of crop physiological status and improve monitoring efficiency. Meanwhile, the system is promising in high throughput application scenarios.

  5. Fluorescent Pluronic nanodots for in vivo two-photon imaging

    International Nuclear Information System (INIS)

    Maurin, Mathieu; Vurth, Laeticia; Vial, Jean-Claude; Baldeck, Patrice; Stephan, Olivier; Marder, Seth R; Sanden, Boudewijn Van der

    2009-01-01

    We report the synthesis of new nanosized fluorescent probes based on bio-compatible polyethylene-polypropylene glycol (Pluronic) materials. In aqueous solution, mini-emulsification of Pluronic with a high fluorescent di-stryl benzene-modified derivative, exhibiting a two-photon absorption cross section as high as 2500 Goeppert-Mayer units at 800 nm, leads to nanoparticles exhibiting a hydrodynamic radius below 100 nm. We have demonstrated that these new probes with luminescence located in the spectral region of interest for bio-imaging (the yellow part of the visible spectrum) allow deep (500 μm) bio-imaging of the mice brain vasculature. The dose injected during our experiments is ten times lower when compared to the classical commercial rhodamine-B isothicyanate-Dextran system but gives similar results to homogeneous blood plasma staining. The mean fluorescent signal intensity stayed constant during more than 1 h.

  6. A low-cost method for visible fluorescence imaging.

    Science.gov (United States)

    Tarver, Crissy L; Pusey, Marc

    2017-12-01

    A wide variety of crystallization solutions are screened to establish conditions that promote the growth of a diffraction-quality crystal. Screening these conditions requires the assessment of many crystallization plates for the presence of crystals. Automated systems for screening and imaging are very expensive. A simple approach to imaging trace fluorescently labeled protein crystals in crystallization plates has been devised, and can be implemented at a cost as low as $50. The proteins β-lactoglobulin B, trypsin and purified concanavalin A (ConA) were trace fluorescently labeled using three different fluorescent probes: Cascade Yellow (CY), Carboxyrhodamine 6G (CR) and Pacific Blue (PB). A crystallization screening plate was set up using β-lactoglobulin B labeled with CR, trypsin labeled with CY, ConA labeled with each probe, and a mixture consisting of 50% PB-labeled ConA and 50% CR-labeled ConA. The wells of these plates were imaged using a commercially available macro-imaging lens attachment for smart devices that have a camera. Several types of macro lens attachments were tested with smartphones and tablets. Images with the highest quality were obtained with an iPhone 6S and an AUKEY Ora 10× macro lens. Depending upon the fluorescent probe employed and its Stokes shift, a light-emitting diode or a laser diode was used for excitation. An emission filter was used for the imaging of protein crystals labeled with CR and crystals with two-color fluorescence. This approach can also be used with microscopy systems commonly used to observe crystallization plates.

  7. Optimization of microsatellite DNA Gelred fluorescence imaging ...

    African Journals Online (AJOL)

    user1

    2012-10-11

    Oct 11, 2012 ... In order to explore the best microsatellite DNA Gelred imaging technology, this ... analysis and character identification breeding practice, because it is ... detection methods are agarose gel electrophoresis (AGE) with ethidium ... method (PG). Gelred 10000X stock reagent was diluted in the 1.5% agarose gel.

  8. Fluorescence lifetime imaging microscopy using near-infrared contrast agents.

    Science.gov (United States)

    Nothdurft, R; Sarder, P; Bloch, S; Culver, J; Achilefu, S

    2012-08-01

    Although single-photon fluorescence lifetime imaging microscopy (FLIM) is widely used to image molecular processes using a wide range of excitation wavelengths, the captured emission of this technique is confined to the visible spectrum. Here, we explore the feasibility of utilizing near-infrared (NIR) fluorescent molecular probes with emission >700 nm for FLIM of live cells. The confocal microscope is equipped with a 785 nm laser diode, a red-enhanced photomultiplier tube, and a time-correlated single photon counting card. We demonstrate that our system reports the lifetime distributions of NIR fluorescent dyes, cypate and DTTCI, in cells. In cells labelled separately or jointly with these dyes, NIR FLIM successfully distinguishes their lifetimes, providing a method to sort different cell populations. In addition, lifetime distributions of cells co-incubated with these dyes allow estimate of the dyes' relative concentrations in complex cellular microenvironments. With the heightened interest in fluorescence lifetime-based small animal imaging using NIR fluorophores, this technique further serves as a bridge between in vitro spectroscopic characterization of new fluorophore lifetimes and in vivo tissue imaging. © 2012 The Author Journal of Microscopy © 2012 Royal Microscopical Society.

  9. A Review of Indocyanine Green Fluorescent Imaging in Surgery

    Directory of Open Access Journals (Sweden)

    Jarmo T. Alander

    2012-01-01

    Full Text Available The purpose of this paper is to give an overview of the recent surgical intraoperational applications of indocyanine green fluorescence imaging methods, the basics of the technology, and instrumentation used. Well over 200 papers describing this technique in clinical setting are reviewed. In addition to the surgical applications, other recent medical applications of ICG are briefly examined.

  10. Miniaturized side-viewing imaging probe for fluorescence lifetime imaging (FLIM): validation with fluorescence dyes, tissue structural proteins and tissue specimens

    OpenAIRE

    Elson, DS; Jo, JA; Marcu, L

    2007-01-01

    We report a side viewing fibre-based endoscope that is compatible with intravascular imaging and fluorescence lifetime imaging microscopy (FLIM). The instrument has been validated through testing with fluorescent dyes and collagen and elastin powders using the Laguerre expansion deconvolution technique to calculate the fluorescence lifetimes. The instrument has also been tested on freshly excised unstained animal vascular tissues.

  11. Multiphoton fluorescence lifetime imaging of chemotherapy distribution in solid tumors

    Science.gov (United States)

    Carlson, Marjorie; Watson, Adrienne L.; Anderson, Leah; Largaespada, David A.; Provenzano, Paolo P.

    2017-11-01

    Doxorubicin is a commonly used chemotherapeutic employed to treat multiple human cancers, including numerous sarcomas and carcinomas. Furthermore, doxorubicin possesses strong fluorescent properties that make it an ideal reagent for modeling drug delivery by examining its distribution in cells and tissues. However, while doxorubicin fluorescence and lifetime have been imaged in live tissue, its behavior in archival samples that frequently result from drug and treatment studies in human and animal patients, and murine models of human cancer, has to date been largely unexplored. Here, we demonstrate imaging of doxorubicin intensity and lifetimes in archival formalin-fixed paraffin-embedded sections from mouse models of human cancer with multiphoton excitation and multiphoton fluorescence lifetime imaging microscopy (FLIM). Multiphoton excitation imaging reveals robust doxorubicin emission in tissue sections and captures spatial heterogeneity in cells and tissues. However, quantifying the amount of doxorubicin signal in distinct cell compartments, particularly the nucleus, often remains challenging due to strong signals in multiple compartments. The addition of FLIM analysis to display the spatial distribution of excited state lifetimes clearly distinguishes between signals in distinct compartments such as the cell nuclei versus cytoplasm and allows for quantification of doxorubicin signal in each compartment. Furthermore, we observed a shift in lifetime values in the nuclei of transformed cells versus nontransformed cells, suggesting a possible diagnostic role for doxorubicin lifetime imaging to distinguish normal versus transformed cells. Thus, data here demonstrate that multiphoton FLIM is a highly sensitive platform for imaging doxorubicin distribution in normal and diseased archival tissues.

  12. Multifunctional nanoparticles for MR and fluorescence imaging =

    Science.gov (United States)

    Pinho, Sonia Luzia Claro de

    In the past few years a new generation of multifunctional nanoparticles (NPs) has been proposed for biomedical applications, whose structure is more complex than the structure of their predecessor monofunctional counterparts. The development of these novel NPs aims at enabling or improving the performance in imaging, diagnosis and therapeutic applications. The structure of such NPs comprises several components exhibiting various functionalities that enable the nanoparticles to perform multiple tasks simultaneously, such as active targeting of certain cells or compartmentalization, imaging and delivery of active drugs. This thesis presents two types of bimodal bio-imaging probes and describes their physical and chemical properties, namely their texture, structure, and 1H dynamics and relaxometry, in order to evaluate their potential as MRI contrast agents. The photoluminescence properties of these probes are studied, aiming at assessing their interest as optical contrast agents. These materials combine the properties of the trivalent lanthanide (Ln3+) complexes and nanoparticles, offering an excellent solution for bimodal imaging. The designed T1- type contrast agent are SiO2 APS/DTPA:Gd:Ln or SiO2 APS/PMN:Gd:Ln (Ln= Eu or Tb) systems, bearing the active magnetic center (Gd3+) and the optically-active ions (Eu3+ and Tb3+) on the surface of silica NPs. Concerning the relaxometry properties, moderate r1 increases and significant r2 increases are observed in the NPs presence, especially at high magnetic fields, due to susceptibility effects on r2. The Eu3+ ions reside in a single low-symmetry site, and the photoluminescence emission is not influenced by the simultaneous presence of Gd3+ and Eu3+. The presence of Tb3+, rather than Eu3+ ion, further increases r1 but decreases r2. The uptake of these NPs by living cells is fast and results in an intensity increase in the T1-weighted MRI images. The optical features of the NPs in cellular pellets are also studied and

  13. qF-SSOP: real-time optical property corrected fluorescence imaging

    Science.gov (United States)

    Valdes, Pablo A.; Angelo, Joseph P.; Choi, Hak Soo; Gioux, Sylvain

    2017-01-01

    Fluorescence imaging is well suited to provide image guidance during resections in oncologic and vascular surgery. However, the distorting effects of tissue optical properties on the emitted fluorescence are poorly compensated for on even the most advanced fluorescence image guidance systems, leading to subjective and inaccurate estimates of tissue fluorophore concentrations. Here we present a novel fluorescence imaging technique that performs real-time (i.e., video rate) optical property corrected fluorescence imaging. We perform full field of view simultaneous imaging of tissue optical properties using Single Snapshot of Optical Properties (SSOP) and fluorescence detection. The estimated optical properties are used to correct the emitted fluorescence with a quantitative fluorescence model to provide quantitative fluorescence-Single Snapshot of Optical Properties (qF-SSOP) images with less than 5% error. The technique is rigorous, fast, and quantitative, enabling ease of integration into the surgical workflow with the potential to improve molecular guidance intraoperatively. PMID:28856038

  14. Fluorescence imaging of glutamate release in neurons

    International Nuclear Information System (INIS)

    Wang, Ziqiang; Yeung, Edward S.

    1999-01-01

    A noninvasive detection scheme based on glutamate dehydrogenase (GDH) enzymatic assay combined with microscopy was developed to measure the glutamate release in cultured cells from the central nervous system (CNS). The enzyme reaction is very specific and sensitive. The detection limit with charge-coupled device (CCD) imaging is down to μM levels of glutamate with reasonable response time (∼30 s). The standard glutamate test shows a linear response over 3 orders of magnitude, from μM to 0.1 mM range. The in vitro monitoring of glutamate release from cultured neuron cells demonstrated excellent spatial and temporal resolution. (c) 1999 Society for Applied Spectroscopy

  15. Fluorescent supramolecular micelles for imaging-guided cancer therapy

    Science.gov (United States)

    Sun, Mengmeng; Yin, Wenyan; Dong, Xinghua; Yang, Wantai; Zhao, Yuliang; Yin, Meizhen

    2016-02-01

    A novel smart fluorescent drug delivery system composed of a perylene diimide (PDI) core and block copolymer poly(d,l-lactide)-b-poly(ethyl ethylene phosphate) is developed and named as PDI-star-(PLA-b-PEEP)8. The biodegradable PDI-star-(PLA-b-PEEP)8 is a unimolecular micelle and can self-assemble into supramolecular micelles, called as fluorescent supramolecular micelles (FSMs), in aqueous media. An insoluble drug camptothecin (CPT) can be effectively loaded into the FSMs and exhibits pH-responsive release. Moreover, the FSMs with good biocompatibility can also be employed as a remarkable fluorescent probe for cell labelling because the maximum emission of PDI is beneficial for bio-imaging. The flow cytometry and confocal laser scanning microscopy analysis demonstrate that the micelles are easily endocytosed by cancer cells. In vitro and in vivo tumor growth-inhibitory studies reveal a better therapeutic effect of FSMs after CPT encapsulation when compared with the free CPT drug. The multifunctional FSM nanomedicine platform as a nanovehicle has great potential for fluorescence imaging-guided cancer therapy.A novel smart fluorescent drug delivery system composed of a perylene diimide (PDI) core and block copolymer poly(d,l-lactide)-b-poly(ethyl ethylene phosphate) is developed and named as PDI-star-(PLA-b-PEEP)8. The biodegradable PDI-star-(PLA-b-PEEP)8 is a unimolecular micelle and can self-assemble into supramolecular micelles, called as fluorescent supramolecular micelles (FSMs), in aqueous media. An insoluble drug camptothecin (CPT) can be effectively loaded into the FSMs and exhibits pH-responsive release. Moreover, the FSMs with good biocompatibility can also be employed as a remarkable fluorescent probe for cell labelling because the maximum emission of PDI is beneficial for bio-imaging. The flow cytometry and confocal laser scanning microscopy analysis demonstrate that the micelles are easily endocytosed by cancer cells. In vitro and in vivo tumor growth

  16. Image-guided cancer surgery using near-infrared fluorescence

    Science.gov (United States)

    Vahrmeijer, Alexander L.; Hutteman, Merlijn; van der Vorst, Joost R.; van de Velde, C.J.H.; Frangioni, John V.

    2013-01-01

    Paradigm shifts in surgery arise when surgeons are empowered to perform surgery faster, better, and/or less expensively. Optical imaging that exploits invisible near-infrared fluorescent light has the potential to improve cancer surgery outcomes while minimizing anesthesia time and lowering healthcare costs. Because of this, the last few years have witnessed an explosion of proof-of-concept clinical trials in the field. In this review, we introduce the concept of near-infrared fluorescence imaging for cancer surgery, review the clinical trial literature to date, outline the key issues pertaining to imaging system and contrast agent optimization, discuss limitations and leverage, and provide a framework for making the technology available for the routine care of cancer patients in the near future. PMID:23881033

  17. Portable Fluorescence Imaging System for Hypersonic Flow Facilities

    Science.gov (United States)

    Wilkes, J. A.; Alderfer, D. W.; Jones, S. B.; Danehy, P. M.

    2003-01-01

    A portable fluorescence imaging system has been developed for use in NASA Langley s hypersonic wind tunnels. The system has been applied to a small-scale free jet flow. Two-dimensional images were taken of the flow out of a nozzle into a low-pressure test section using the portable planar laser-induced fluorescence system. Images were taken from the center of the jet at various test section pressures, showing the formation of a barrel shock at low pressures, transitioning to a turbulent jet at high pressures. A spanwise scan through the jet at constant pressure reveals the three-dimensional structure of the flow. Future capabilities of the system for making measurements in large-scale hypersonic wind tunnel facilities are discussed.

  18. The enhanced cyan fluorescent protein: a sensitive pH sensor for fluorescence lifetime imaging.

    Science.gov (United States)

    Poëa-Guyon, Sandrine; Pasquier, Hélène; Mérola, Fabienne; Morel, Nicolas; Erard, Marie

    2013-05-01

    pH is an important parameter that affects many functions of live cells, from protein structure or function to several crucial steps of their metabolism. Genetically encoded pH sensors based on pH-sensitive fluorescent proteins have been developed and used to monitor the pH of intracellular compartments. The quantitative analysis of pH variations can be performed either by ratiometric or fluorescence lifetime detection. However, most available genetically encoded pH sensors are based on green and yellow fluorescent proteins and are not compatible with multicolor approaches. Taking advantage of the strong pH sensitivity of enhanced cyan fluorescent protein (ECFP), we demonstrate here its suitability as a sensitive pH sensor using fluorescence lifetime imaging. The intracellular ECFP lifetime undergoes large changes (32 %) in the pH 5 to pH 7 range, which allows accurate pH measurements to better than 0.2 pH units. By fusion of ECFP with the granular chromogranin A, we successfully measured the pH in secretory granules of PC12 cells, and we performed a kinetic analysis of intragranular pH variations in living cells exposed to ammonium chloride.

  19. Fast automatic quantitative cell replication with fluorescent live cell imaging

    Directory of Open Access Journals (Sweden)

    Wang Ching-Wei

    2012-01-01

    Full Text Available Abstract Background live cell imaging is a useful tool to monitor cellular activities in living systems. It is often necessary in cancer research or experimental research to quantify the dividing capabilities of cells or the cell proliferation level when investigating manipulations of the cells or their environment. Manual quantification of fluorescence microscopic image is difficult because human is neither sensitive to fine differences in color intensity nor effective to count and average fluorescence level among cells. However, auto-quantification is not a straightforward problem to solve. As the sampling location of the microscopy changes, the amount of cells in individual microscopic images varies, which makes simple measurement methods such as the sum of stain intensity values or the total number of positive stain within each image inapplicable. Thus, automated quantification with robust cell segmentation techniques is required. Results An automated quantification system with robust cell segmentation technique are presented. The experimental results in application to monitor cellular replication activities show that the quantitative score is promising to represent the cell replication level, and scores for images from different cell replication groups are demonstrated to be statistically significantly different using ANOVA, LSD and Tukey HSD tests (p-value Conclusion A robust automated quantification method of live cell imaging is built to measure the cell replication level, providing a robust quantitative analysis system in fluorescent live cell imaging. In addition, the presented unsupervised entropy based cell segmentation for live cell images is demonstrated to be also applicable for nuclear segmentation of IHC tissue images.

  20. Clinical results of fluorescence lifetime imaging in ophthalmology

    Science.gov (United States)

    Schweitzer, D.; Quick, S.; Klemm, M.; Hammer, M.; Jentsch, S.; Dawczynski, J.; Becker, W.

    2009-07-01

    A laser scanner ophthalmoscope was developed for in vivo fluorescence lifetime measurements at the human retina. Measurements were performed in 30 degree fundus images. The fundus was excited by pulses of 75 ps (FWHM). The dynamic fluorescence was detected in two spectral channels K1(490-560nm), K2(560-700 nm) by time-correlated single photon counting. The decay of fluorescence was three-exponentially. Local and global alterations in lifetimes were found between healthy subjects and patients suffering from age-related macular degeneration, diabetic retinopathy, and vessel occlusion. The lifetimes T1, T2, and T3 in both channels are changed to longer values in AMD and diabetic retinopathy in comparison with healthy subjects. The lifetime T2 in K1 is most sensitive to metabolic alterations in branch arterial vessel occlusion.

  1. Imaging Live Drosophila Brain with Two-Photon Fluorescence Microscopy

    Science.gov (United States)

    Ahmed, Syeed Ehsan

    Two-photon fluorescence microscopy is an imaging technique which delivers distinct benefits for in vivo cellular and molecular imaging. Cyclic adenosine monophosphate (cAMP), a second messenger molecule, is responsible for triggering many physiological changes in neural system. However, the mechanism by which this molecule regulates responses in neuron cells is not yet clearly understood. When cAMP binds to a target protein, it changes the structure of that protein. Therefore, studying this molecular structure change with fluorescence resonance energy transfer (FRET) imaging can shed light on the cAMP functioning mechanism. FRET is a non-radiative dipole-dipole coupling which is sensitive to small distance change in nanometer scale. In this study we have investigated the effect of dopamine in cAMP dynamics in vivo. In our study two-photon fluorescence microscope was used for imaging mushroom bodies inside live Drosophila melanogaster brain and we developed a method for studying the change in cyclic AMP level.

  2. Fluorescence-enhanced gadolinium-doped zinc oxide quantum dots for magnetic resonance and fluorescence imaging.

    Science.gov (United States)

    Liu, Yanlan; Ai, Kelong; Yuan, Qinghai; Lu, Lehui

    2011-02-01

    We report here the development of Gd-doped ZnO quantum dots (QDs) as dual modal fluorescence and magnetic resonance imaging nanoprobes. They are fabricated in a simple, versatile and environmentally friendly method, not only decreasing the difficulty and complexity, but also avoiding the increase of particle's size brought about by silica coating procedure in the synthesis of nanoprobes reported previously. These nanoprobes, with exceptionally small size and enhanced fluorescence resulting from the Gd doping, can label successfully the HeLa cells in short time and present no evidence of toxicity or adverse affect on cell growth even at the concentration up to 1 mm. These results show that such nanoprobes have low toxicity, especially in comparison with the traditional PEGylated CdSe/ZnS or CdSe/CdS QDs. In MRI studies, they exert strong positive contrast effect with a large longitudinal relaxivity (r(1)) of water proton of 16 mm(-1) s(-1). Their capability of imaging HeLa cells with MRI implies that they have great potential as MRI contrast agents. Combining the high sensitivity of fluorescence imaging with high spatial resolution of MRI, We expect that the as-prepared Gd-doped Zno QDs can provide a better reliability of the collected data and find promising applications in biological, medical and other fields. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Colorectal cancer detection by hyperspectral imaging using fluorescence excitation scanning

    Science.gov (United States)

    Leavesley, Silas J.; Deal, Joshua; Hill, Shante; Martin, Will A.; Lall, Malvika; Lopez, Carmen; Rider, Paul F.; Rich, Thomas C.; Boudreaux, Carole W.

    2018-02-01

    Hyperspectral imaging technologies have shown great promise for biomedical applications. These techniques have been especially useful for detection of molecular events and characterization of cell, tissue, and biomaterial composition. Unfortunately, hyperspectral imaging technologies have been slow to translate to clinical devices - likely due to increased cost and complexity of the technology as well as long acquisition times often required to sample a spectral image. We have demonstrated that hyperspectral imaging approaches which scan the fluorescence excitation spectrum can provide increased signal strength and faster imaging, compared to traditional emission-scanning approaches. We have also demonstrated that excitation-scanning approaches may be able to detect spectral differences between colonic adenomas and adenocarcinomas and normal mucosa in flash-frozen tissues. Here, we report feasibility results from using excitation-scanning hyperspectral imaging to screen pairs of fresh tumoral and nontumoral colorectal tissues. Tissues were imaged using a novel hyperspectral imaging fluorescence excitation scanning microscope, sampling a wavelength range of 360-550 nm, at 5 nm increments. Image data were corrected to achieve a NIST-traceable flat spectral response. Image data were then analyzed using a range of supervised and unsupervised classification approaches within ENVI software (Harris Geospatial Solutions). Supervised classification resulted in >99% accuracy for single-patient image data, but only 64% accuracy for multi-patient classification (n=9 to date), with the drop in accuracy due to increased false-positive detection rates. Hence, initial data indicate that this approach may be a viable detection approach, but that larger patient sample sizes need to be evaluated and the effects of inter-patient variability studied.

  4. Study on excitation and fluorescence spectrums of Japanese citruses to construct machine vision systems for acquiring fluorescent images

    Science.gov (United States)

    Momin, Md. Abdul; Kondo, Naoshi; Kuramoto, Makoto; Ogawa, Yuichi; Shigi, Tomoo

    2011-06-01

    Research was conducted to acquire knowledge of the ultraviolet and visible spectrums from 300 -800 nm of some common varieties of Japanese citrus, to investigate the best wave-lengths for fluorescence excitation and the resulting fluorescence wave-lengths and to provide a scientific background for the best quality fluorescent imaging technique for detecting surface defects of citrus. A Hitachi U-4000 PC-based microprocessor controlled spectrophotometer was used to measure the absorption spectrum and a Hitachi F-4500 spectrophotometer was used for the fluorescence and excitation spectrums. We analyzed the spectrums and the selected varieties of citrus were categorized into four groups of known fluorescence level, namely strong, medium, weak and no fluorescence.The level of fluorescence of each variety was also examined by using machine vision system. We found that around 340-380 nm LEDs or UV lamps are appropriate as lighting devices for acquiring the best quality fluorescent image of the citrus varieties to examine their fluorescence intensity. Therefore an image acquisition device was constructed with three different lighting panels with UV LED at peak 365 nm, Blacklight blue lamps (BLB) peak at 350 nm and UV-B lamps at peak 306 nm. The results from fluorescent images also revealed that the findings of the measured spectrums worked properly and can be used for practical applications such as for detecting rotten, injured or damaged parts of a wide variety of citrus.

  5. Fluorescence resonance energy transfer imaging of CFP/YFP labeled NDH in cyanobacterium cell

    International Nuclear Information System (INIS)

    Ji Dongmei; Lv Wei; Huang Zhengxi; Xia Andong; Xu Min; Ma Weimin; Mi Hualing; Ogawa Teruo

    2007-01-01

    The laser confocal scanning microscopy combined with time-correlated single photon counting imaging technique to obtain fluorescence intensity and fluorescence lifetime images for fluorescence resonance energy transfer measurement is reported. Both the fluorescence lifetime imaging microscopy (FLIM) and intensity images show inhomogeneous cyan fluorescent protein and yellow fluorescent protein (CFP /YFP) expression or inhomogeneous energy transfer between CFP and YFP over whole cell. The results presented in this work show that FLIM could be a potential method to reveal the structure-function behavior of NAD(P)H dehydrogenase complexes in living cell

  6. Novel fluorescent carbonic nanomaterials for sensing and imaging

    International Nuclear Information System (INIS)

    Demchenko, Alexander P; Dekaliuk, Mariia O

    2013-01-01

    Small brightly fluorescent carbon nanoparticles have emerged as a new class of materials important for sensing and imaging applications. We analyze comparatively the properties of nanodiamonds, graphene and graphene oxide ‘dots’, of modified carbon nanotubes and of diverse carbon nanoparticles known as ‘C-dots’ obtained by different methods. The mechanisms of their light absorption and luminescence emission are still unresolved and the arguments are presented for their common origin. Regarding present and potential applications, we provide critical comparison with the other types of fluorescence reporters, such as organic dyes and semiconductor quantum dots. Their most prospective applications in sensing (based on the changes of intensity, FRET and lifetime) and in imaging technologies on the level of living cells and whole bodies are overviewed. The possibilities for design on their basis of multifunctional nanocomposites on a broader scale of theranostics are outlined. (topical review)

  7. Fluorescence decay time imaging using an imaging photon detector with a radio frequency photon correlation system

    Science.gov (United States)

    Morgan, Christopher G.; Mitchell, A. C.; Murray, J. G.

    1990-05-01

    An imaging photon detector has been modified to incorporate fast timing electronics coupled to a custom built photon correlator interfaced to a RISC computer. Using excitation with intensity- muodulated light, fluorescence images can be readily obtained where contrast is determined by the decay time of emission, rather than by intensity. This technology is readily extended to multifrequency phase/demodulation fluorescence imaging or to differential polarised phase fluorometry. The potential use of the correlator for confocal imaging with a laser scanner is also briefly discussed.

  8. High-contrast fluorescence imaging based on the polarization dependence of the fluorescence enhancement using an optical interference mirror slide.

    Science.gov (United States)

    Yasuda, Mitsuru; Akimoto, Takuo

    2015-01-01

    High-contrast fluorescence imaging using an optical interference mirror (OIM) slide that enhances the fluorescence from a fluorophore located on top of the OIM surface is reported. To enhance the fluorescence and reduce the background light of the OIM, transverse-electric-polarized excitation light was used as incident light, and the transverse-magnetic-polarized fluorescence signal was detected. As a result, an approximate 100-fold improvement in the signal-to-noise ratio was achieved through a 13-fold enhancement of the fluorescence signal and an 8-fold reduction of the background light.

  9. The comparison of Tc99m-pertechnetate/mibi subtraction and double phase Tc99m-mibi techniques in parathyroid imaging

    International Nuclear Information System (INIS)

    Bilkay, Ue.; Erinc, R.; Karapolat, I.; Kumanlioglu, K.

    2001-01-01

    Experienced parathyroid surgeons can localize nearly %90-95 of the abnormal parathyroid glands with total thyroid bed exploration. For this reason, for the first surgical exploration preoperative imaging of the gland could be considered unnecessary. However, localization of the abnormal parathyroid tissue preoperatively could be beneficial in ectopic adenomas which consists %20 of all adenomas and also in shortening surgical procedure in single adenomas with the use of unilateral exploration. Re-exploration after an unsuccessful surgery is the most widely accepted indication for parathyroid imaging. Today, although Tc99m-MIBI is the accepted radionuclide with the advantages of giving better image quality with lower radiation dose over Tl-201, for imaging hyper functioning parathyroid tissue, there is no consensus on the ideal imaging protocol. Single-tracer double-phase imaging (STDP) and dual-tracer subtraction technique (Tc99m-pertechnetate/Tc99m-MIBI) (DTST) are proposed protocols using Tc99m-MIBI. The aim of this ongoing study is; to compare STDP imaging with DTST and to compare sensitivity of pinhole and high resolution parallel hole images in STDP protocol

  10. sup(99m)Tc particle perfusion/sup(99m)Tc aerosol ventilation imaging using a subtraction technique in suspected pulmonary embolism

    International Nuclear Information System (INIS)

    Poeyhoenen, L.; Turjanmaa, V.; Virjo, A.

    1985-01-01

    It is generally acknowledged that ventilation-perfusion mismatch is diagnostic of pulmonary embolism. Lung ventilation imaging with radioactive gases is a good method for the detection of pulmonary embolism, but it is not in widespread use because of the limited availability of sup(81m)Kr gas and the poor physical properties of 133 Xe. Aerosols have been proposed, instead of gases for use in lung ventilation imaging. As perfusion and ventilation distributions may change very rapidly, the two imaging procedures should be done in rapid succession. The cheapest way to perform the combined perfusion-ventilation (Q/V) imaging is to use sup(99m)Tc-labelled macroaggregates and aerosols. In our method the perfusion imaging was done first, immediately followed by the ventilation imaging with sup(99m)Tc-labelled aerosols. A computer program was used to subtract the contribution of the perfusion from the combined Q/V image so that the pure ventilation image alone was obtained. The method was tested in 41 patients with suspected pulmonary embolism. (orig.)

  11. Refractive Index Sensing of Green Fluorescent Proteins in Living Cells Using Fluorescence Lifetime Imaging Microscopy

    Science.gov (United States)

    van Manen, Henk-Jan; Verkuijlen, Paul; Wittendorp, Paul; Subramaniam, Vinod; van den Berg, Timo K.; Roos, Dirk; Otto, Cees

    2008-01-01

    We show that fluorescence lifetime imaging microscopy (FLIM) of green fluorescent protein (GFP) molecules in cells can be used to report on the local refractive index of intracellular GFP. We expressed GFP fusion constructs of Rac2 and gp91phox, which are both subunits of the phagocyte NADPH oxidase enzyme, in human myeloid PLB-985 cells and showed by high-resolution confocal fluorescence microscopy that GFP-Rac2 and GFP-gp91phox are targeted to the cytosol and to membranes, respectively. Frequency-domain FLIM experiments on these PLB-985 cells resulted in average fluorescence lifetimes of 2.70 ns for cytosolic GFP-Rac2 and 2.31 ns for membrane-bound GFP-gp91phox. By comparing these lifetimes with a calibration curve obtained by measuring GFP lifetimes in PBS/glycerol mixtures of known refractive index, we found that the local refractive indices of cytosolic GFP-Rac2 and membrane-targeted GFP-gp91phox are ∼1.38 and ∼1.46, respectively, which is in good correspondence with reported values for the cytosol and plasma membrane measured by other techniques. The ability to measure the local refractive index of proteins in living cells by FLIM may be important in revealing intracellular spatial heterogeneities within organelles such as the plasma and phagosomal membrane. PMID:18223002

  12. Modulated electron-multiplied fluorescence lifetime imaging microscope: all-solid-state camera for fluorescence lifetime imaging.

    Science.gov (United States)

    Zhao, Qiaole; Schelen, Ben; Schouten, Raymond; van den Oever, Rein; Leenen, René; van Kuijk, Harry; Peters, Inge; Polderdijk, Frank; Bosiers, Jan; Raspe, Marcel; Jalink, Kees; Geert Sander de Jong, Jan; van Geest, Bert; Stoop, Karel; Young, Ian Ted

    2012-12-01

    We have built an all-solid-state camera that is directly modulated at the pixel level for frequency-domain fluorescence lifetime imaging microscopy (FLIM) measurements. This novel camera eliminates the need for an image intensifier through the use of an application-specific charge coupled device design in a frequency-domain FLIM system. The first stage of evaluation for the camera has been carried out. Camera characteristics such as noise distribution, dark current influence, camera gain, sampling density, sensitivity, linearity of photometric response, and optical transfer function have been studied through experiments. We are able to do lifetime measurement using our modulated, electron-multiplied fluorescence lifetime imaging microscope (MEM-FLIM) camera for various objects, e.g., fluorescein solution, fixed green fluorescent protein (GFP) cells, and GFP-actin stained live cells. A detailed comparison of a conventional microchannel plate (MCP)-based FLIM system and the MEM-FLIM system is presented. The MEM-FLIM camera shows higher resolution and a better image quality. The MEM-FLIM camera provides a new opportunity for performing frequency-domain FLIM.

  13. [Development of a Fluorescence Probe for Live Cell Imaging].

    Science.gov (United States)

    Shibata, Aya

    2017-01-01

     Probes that detect specific biological materials are indispensable tools for deepening our understanding of various cellular phenomena. In live cell imaging, the probe must emit fluorescence only when a specific substance is detected. In this paper, we introduce a new probe we developed for live cell imaging. Glutathione S-transferase (GST) activity is higher in tumor cells than in normal cells and is involved in the development of resistance to various anticancer drugs. We previously reported the development of a general strategy for the synthesis of probes for detection of GST enzymes, including fluorogenic, bioluminogenic, and 19 F-NMR probes. Arylsulfonyl groups were used as caging groups during probe design. The fluorogenic probes were successfully used to quantitate very low levels of GST activity in cell extracts and were also successfully applied to the imaging of microsomal MGST1 activity in living cells. The bioluminogenic and 19 F-NMR probes were able to detect GST activity in Escherichia coli cells. Oligonucleotide-templated reactions are powerful tools for nucleic acid sensing. This strategy exploits the target strand as a template for two functionalized probes and provides a simple molecular mechanism for multiple turnover reactions. We developed a nucleophilic aromatic substitution reaction-triggered fluorescent probe. The probe completed its reaction within 30 s of initiation and amplified the fluorescence signal from 0.5 pM target oligonucleotide by 1500 fold under isothermal conditions. Additionally, we applied the oligonucleotide-templated reaction for molecular releasing and peptide detection.

  14. In Vivo Dual Fluorescence Imaging to Detect Joint Destruction.

    Science.gov (United States)

    Cho, Hongsik; Bhatti, Fazal-Ur-Rehman; Lee, Sangmin; Brand, David D; Yi, Ae-Kyung; Hasty, Karen A

    2016-10-01

    Diagnosis of cartilage damage in early stages of arthritis is vital to impede the progression of disease. In this regard, considerable progress has been made in near-infrared fluorescence (NIRF) optical imaging technique. Arthritis can develop due to various mechanisms but one of the main contributors is the production of matrix metalloproteinases (MMPs), enzymes that can degrade components of the extracellular matrix. Especially, MMP-1 and MMP-13 have main roles in rheumatoid arthritis and osteoarthritis because they enhance collagen degradation in the process of arthritis. We present here a novel NIRF imaging strategy that can be used to determine the activity of MMPs and cartilage damage simultaneously by detection of exposed type II collagen in cartilage tissue. In this study, retro-orbital injection of mixed fluorescent dyes, MMPSense 750 FAST (MMP750) dye and Alexa Fluor 680 conjugated monoclonal mouse antibody immune-reactive to type II collagen, was administered in the arthritic mice. Both dyes were detected with different intensity according to degree of joint destruction in the animal. Thus, our dual fluorescence imaging method can be used to detect cartilage damage as well as MMP activity simultaneously in early stage arthritis. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  15. Efficient processing of fluorescence images using directional multiscale representations.

    Science.gov (United States)

    Labate, D; Laezza, F; Negi, P; Ozcan, B; Papadakis, M

    2014-01-01

    Recent advances in high-resolution fluorescence microscopy have enabled the systematic study of morphological changes in large populations of cells induced by chemical and genetic perturbations, facilitating the discovery of signaling pathways underlying diseases and the development of new pharmacological treatments. In these studies, though, due to the complexity of the data, quantification and analysis of morphological features are for the vast majority handled manually, slowing significantly data processing and limiting often the information gained to a descriptive level. Thus, there is an urgent need for developing highly efficient automated analysis and processing tools for fluorescent images. In this paper, we present the application of a method based on the shearlet representation for confocal image analysis of neurons. The shearlet representation is a newly emerged method designed to combine multiscale data analysis with superior directional sensitivity, making this approach particularly effective for the representation of objects defined over a wide range of scales and with highly anisotropic features. Here, we apply the shearlet representation to problems of soma detection of neurons in culture and extraction of geometrical features of neuronal processes in brain tissue, and propose it as a new framework for large-scale fluorescent image analysis of biomedical data.

  16. Digital subtraction angiography

    International Nuclear Information System (INIS)

    Gmelin, E.; Arlart, I.P.

    1987-01-01

    The introduction explains the technical and physical fundamentals of digital radiography, the principles of digital subtraction, and the various filtering methods. The authors then define the requirements to be met by a DSA equipment in terms of technical components and operational performance. A very extensive chapter deals with the indications supporting intravenous or intraarterial DSA and compares the two methods, showing advantages and drawbacks with respect to practical results. Another chapter discusses the applications of DSA for cardiological diagnostics, as e.g. imaging of the coronary arteries or arterial bypasses, and explains the densitometric and planimetric evaluation of the coronary functional processes. The book also discusses less customary applications of DSA such as the sialography or dacryocystography, as well as angiologic examinations in children. The limits of the DSA methods are discussed in the last chapter, together with aspects such as the radiation exposure of the patient, and cost-benefit analyses, and potential future improvements. With 204 figs., 44 tabs [de

  17. Non-invasive imaging of skin cancer with fluorescence lifetime imaging using two photon tomography

    Science.gov (United States)

    Patalay, Rakesh; Talbot, Clifford; Alexandrov, Yuriy; Munro, Ian; Breunig, Hans Georg; König, Karsten; Warren, Sean; Neil, Mark A. A.; French, Paul M. W.; Chu, Anthony; Stamp, Gordon W.; Dunsby, Christopher

    2011-07-01

    Multispectral fluorescence lifetime imaging (FLIM) using two photon microscopy as a non-invasive technique for the diagnosis of skin lesions is described. Skin contains fluorophores including elastin, keratin, collagen, FAD and NADH. This endogenous contrast allows tissue to be imaged without the addition of exogenous agents and allows the in vivo state of cells and tissues to be studied. A modified DermaInspect® multiphoton tomography system was used to excite autofluorescence at 760 nm in vivo and on freshly excised ex vivo tissue. This instrument simultaneously acquires fluorescence lifetime images in four spectral channels between 360-655 nm using time-correlated single photon counting and can also provide hyperspectral images. The multispectral fluorescence lifetime images were spatially segmented and binned to determine lifetimes for each cell by fitting to a double exponential lifetime model. A comparative analysis between the cellular lifetimes from different diagnoses demonstrates significant diagnostic potential.

  18. Direct comparison of soft x-ray images of organelles with optical fluorescence images

    International Nuclear Information System (INIS)

    Ishino, Masahiko; Kado, Masataka; Kishimoto, Maki; Nishikino, Masaharu; Ohba, Toshiyuki; Kaihori, Takeshi; Kawachi, Tetsuya; Tamotsu, Satoshi; Yasuda, Keiko; Mikata, Yuji; Shinohara, Kunio

    2011-01-01

    Soft x-ray microscopes operating in the water window region are capable of imaging living hydrated cells. Up to now, we have been able to take some soft x-ray images of living cells by the use of a contact x-ray microscope system with laser produced plasma soft x-ray source. Since the soft x-ray images are different from the optical images obtained with an ordinary microscope, it is very important to identify what is seen in the x-ray images. Hence, we have demonstrated the direct comparison between the images of organelles obtained with a fluorescence microscope and those with a soft x-ray microscope. Comparing the soft x-ray images to the fluorescence images, the fine structures of the organelles could be identified and observed. (author)

  19. Compact instrument for fluorescence image-guided surgery

    Science.gov (United States)

    Wang, Xinghua; Bhaumik, Srabani; Li, Qing; Staudinger, V. Paul; Yazdanfar, Siavash

    2010-03-01

    Fluorescence image-guided surgery (FIGS) is an emerging technique in oncology, neurology, and cardiology. To adapt intraoperative imaging for various surgical applications, increasingly flexible and compact FIGS instruments are necessary. We present a compact, portable FIGS system and demonstrate its use in cardiovascular mapping in a preclinical model of myocardial ischemia. Our system uses fiber optic delivery of laser diode excitation, custom optics with high collection efficiency, and compact consumer-grade cameras as a low-cost and compact alternative to open surgical FIGS systems. Dramatic size and weight reduction increases flexibility and access, and allows for handheld use or unobtrusive positioning over the surgical field.

  20. Particle Image Velocimetry Applications Using Fluorescent Dye-Doped Particles

    Science.gov (United States)

    Petrosky, Brian J.; Maisto, Pietro; Lowe, K. Todd; Andre, Matthieu A.; Bardet, Philippe M.; Tiemsin, Patsy I.; Wohl, Christopher J.; Danehy, Paul M.

    2015-01-01

    Polystyrene latex sphere particles are widely used to seed flows for velocimetry techniques such as Particle Image Velocimetry (PIV) and Laser Doppler Velocimetry (LDV). These particles may be doped with fluorescent dyes such that signals spectrally shifted from the incident laser wavelength may be detected via Laser Induced Fluorescence (LIF). An attractive application of the LIF signal is achieving velocimetry in the presence of strong interference from laser scatter, opening up new research possibilities very near solid surfaces or at liquid/gas interfaces. Additionally, LIF signals can be used to tag different fluid streams to study mixing. While fluorescence-based PIV has been performed by many researchers for particles dispersed in water flows, the current work is among the first in applying the technique to micron-scale particles dispersed in a gas. A key requirement for such an application is addressing potential health hazards from fluorescent dyes; successful doping of Kiton Red 620 (KR620) has enabled the use of this relatively safe dye for fluorescence PIV for the first time. In this paper, basic applications proving the concept of PIV using the LIF signal from KR620-doped particles are exhibited for a free jet and a twophase flow apparatus. Results indicate that while the fluorescence PIV techniques are roughly 2 orders of magnitude weaker than Mie scattering, they provide a viable method for obtaining data in flow regions previously inaccessible via standard PIV. These techniques have the potential to also complement Mie scattering signals, for example in multi-stream and/or multi-phase experiments.

  1. Development of Fluorescence Imaging Lidar for Boat-Based Coral Observation

    Directory of Open Access Journals (Sweden)

    Sasano Masahiko

    2016-01-01

    Full Text Available A fluorescence imaging lidar system installed in a boat-towable buoy has been developed for the observation of reef-building corals. Long-range fluorescent images of the sea bed can be recorded in the daytime with this system. The viability of corals is clear in these fluorescent images because of the innate fluorescent proteins. In this study, the specifications and performance of the system are shown.

  2. Dual-emissive quantum dots for multispectral intraoperative fluorescence imaging.

    Science.gov (United States)

    Chin, Patrick T K; Buckle, Tessa; Aguirre de Miguel, Arantxa; Meskers, Stefan C J; Janssen, René A J; van Leeuwen, Fijs W B

    2010-09-01

    Fluorescence molecular imaging is rapidly increasing its popularity in image guided surgery applications. To help develop its full surgical potential it remains a challenge to generate dual-emissive imaging agents that allow for combined visible assessment and sensitive camera based imaging. To this end, we now describe multispectral InP/ZnS quantum dots (QDs) that exhibit a bright visible green/yellow exciton emission combined with a long-lived far red defect emission. The intensity of the latter emission was enhanced by X-ray irradiation and allows for: 1) inverted QD density dependent defect emission intensity, showing improved efficacies at lower QD densities, and 2) detection without direct illumination and interference from autofluorescence. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. Fluorescence Imaging Study of Transition in Underexpanded Free Jets

    Science.gov (United States)

    Wilkes, Jennifer A.; Danehy, Paul M.; Nowak, Robert J.

    2005-01-01

    Planar laser-induced fluorescence (PLIF) is demonstrated to be a valuable tool for studying the onset of transition to turbulence. For this study, we have used PLIF of nitric oxide (NO) to image underexpanded axisymmetric free jets issuing into a low-pressure chamber through a smooth converging nozzle with a sonic orifice. Flows were studied over a range of Reynolds numbers and nozzle-exit-to-ambient pressure ratios with the aim of empirically determining criteria governing the onset of turbulence. We have developed an image processing technique, involving calculation of the standard deviation of the intensity in PLIF images, in order to aid in the identification of turbulence. We have used the resulting images to identify laminar, transitional and turbulent flow regimes. Jet scaling parameters were used to define a rescaled Reynolds number that incorporates the influence of a varying pressure ratio. An empirical correlation was found between transition length and this rescaled Reynolds number for highly underexpanded jets.

  4. Pathological diagnosis of bladder cancer by image analysis of hypericin induced fluorescence cystoscopic images

    Science.gov (United States)

    Kah, James C. Y.; Olivo, Malini C.; Lau, Weber K. O.; Sheppard, Colin J. R.

    2005-08-01

    Photodynamic diagnosis of bladder carcinoma based on hypericin fluorescence cystoscopy has shown to have a higher degree of sensitivity for the detection of flat bladder carcinoma compared to white light cystoscopy. The potential of the photosensitizer hypericin-induced fluorescence in performing non-invasive optical biopsy to grade bladder cancer in vivo using fluorescence cystoscopic image analysis without surgical resection for tissue biopsy is investigated in this study. The correlation between tissue fluorescence and histopathology of diseased tissue was explored and a diagnostic algorithm based on fluorescence image analysis was developed to classify the bladder cancer without surgical resection for tissue biopsy. Preliminary results suggest a correlation between tissue fluorescence and bladder cancer grade. By combining both the red-to-blue and red-to-green intensity ratios into a 2D scatter plot yields an average sensitivity and specificity of around 70% and 85% respectively for pathological cancer grading of the three different grades of bladder cancer. Therefore, the diagnostic algorithm based on colorimetric intensity ratio analysis of hypericin fluorescence cystoscopic images developed in this preliminary study shows promising potential to optically diagnose and grade bladder cancer in vivo.

  5. A simple protocol for attenuating the auto-fluorescence of cyanobacteria for optimized fluorescence in situ hybridization (FISH) imaging.

    Science.gov (United States)

    Zeller, Perrine; Ploux, Olivier; Méjean, Annick

    2016-03-01

    Cyanobacteria contain pigments, which generate auto-fluorescence that interferes with fluorescence in situ hybridization (FISH) imaging of cyanobacteria. We describe simple chemical treatments using CuSO4 or H2O2 that significantly reduce the auto-fluorescence of Microcystis strains. These protocols were successfully applied in FISH experiments using 16S rRNA specific probes and filamentous cyanobacteria. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. RNA Imaging with Multiplexed Error Robust Fluorescence in situ Hybridization

    Science.gov (United States)

    Moffitt, Jeffrey R.; Zhuang, Xiaowei

    2016-01-01

    Quantitative measurements of both the copy number and spatial distribution of large fractions of the transcriptome in single-cells could revolutionize our understanding of a variety of cellular and tissue behaviors in both healthy and diseased states. Single-molecule Fluorescence In Situ Hybridization (smFISH)—an approach where individual RNAs are labeled with fluorescent probes and imaged in their native cellular and tissue context—provides both the copy number and spatial context of RNAs but has been limited in the number of RNA species that can be measured simultaneously. Here we describe Multiplexed Error Robust Fluorescence In Situ Hybridization (MERFISH), a massively parallelized form of smFISH that can image and identify hundreds to thousands of different RNA species simultaneously with high accuracy in individual cells in their native spatial context. We provide detailed protocols on all aspects of MERFISH, including probe design, data collection, and data analysis to allow interested laboratories to perform MERFISH measurements themselves. PMID:27241748

  7. A portable microscopy system for fluorescence, polarized, and brightfield imaging

    Science.gov (United States)

    Gordon, Paul; Wattinger, Rolla; Lewis, Cody; Venancio, Vinicius Paula; Mertens-Talcott, Susanne U.; Coté, Gerard

    2018-02-01

    The use of mobile phones to conduct diagnostic microscopy at the point-of-care presents intriguing possibilities for the advancement of high-quality medical care in remote settings. However, it is challenging to create a single device that can adapt to the ever-varying camera technologies in phones or that can image with the customization that multiple modalities require for applications such as malaria diagnosis. A portable multi-modal microscope system is presented that utilizes a Raspberry Pi to collect and transmit data wirelessly to a myriad of electronic devices for image analysis. The microscopy system is capable of providing to the user correlated brightfield, polarized, and fluorescent images of samples fixed on traditional microscopy slides. The multimodal diagnostic capabilities of the microscope were assessed by measuring parasitemia of Plasmodium falciparum-infected thin blood smears. The device is capable of detecting fluorescently-labeled DNA using FITC excitation (490 nm) and emission (525 nm), the birefringent P. falciparum byproduct hemozoin, and detecting brightfield absorption with a resolution of 0.78 micrometers (element 9-3 of a 1951 Air Force Target). This microscopy system is a novel portable imaging tool that may be a viable candidate for field implementation if challenges of system durability, cost considerations, and full automation can be overcome.

  8. Ultrafast superresolution fluorescence imaging with spinning disk confocal microscope optics.

    Science.gov (United States)

    Hayashi, Shinichi; Okada, Yasushi

    2015-05-01

    Most current superresolution (SR) microscope techniques surpass the diffraction limit at the expense of temporal resolution, compromising their applications to live-cell imaging. Here we describe a new SR fluorescence microscope based on confocal microscope optics, which we name the spinning disk superresolution microscope (SDSRM). Theoretically, the SDSRM is equivalent to a structured illumination microscope (SIM) and achieves a spatial resolution of 120 nm, double that of the diffraction limit of wide-field fluorescence microscopy. However, the SDSRM is 10 times faster than a conventional SIM because SR signals are recovered by optical demodulation through the stripe pattern of the disk. Therefore a single SR image requires only a single averaged image through the rotating disk. On the basis of this theory, we modified a commercial spinning disk confocal microscope. The improved resolution around 120 nm was confirmed with biological samples. The rapid dynamics of micro-tubules, mitochondria, lysosomes, and endosomes were observed with temporal resolutions of 30-100 frames/s. Because our method requires only small optical modifications, it will enable an easy upgrade from an existing spinning disk confocal to a SR microscope for live-cell imaging. © 2015 Hayashi and Okada. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  9. Selective Detection of Neurotransmitters by Fluorescence and Chemiluminescence Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ziqiang Wang; Edward S. Yeung

    2001-08-06

    In recent years, luminescence imaging has been widely employed in neurochemical analysis. It has a number of advantages for the study of neuronal and other biological cells: (1) a particular molecular species or cellular constituent can be selectively visualized in the presence of a large excess of other species in a heterogeneous environment; (2) low concentration detection limits can be achieved because of the inherent sensitivity associated with fluorescence and chemiluminescence; (3) low excitation intensities can be used so that long-term observation can be realized while the viability of the specimen is preserved; and (4) excellent spatial resolution can be obtained with the light microscope so subcellular compartments can be identified. With good sensitivity, temporal and spatial resolution, the flux of ions and molecules and the distribution and dynamics of intracellular species can be measured in real time with specific luminescence probes, substrates, or with native fluorescence. A noninvasive detection scheme based on glutamate dehydrogenase (GDH) enzymatic assay combined with microscopy was developed to measure the glutamate release in cultured cells from the central nervous system (CNS). The enzyme reaction is very specific and sensitive. The detection limit with CCD imaging is down to {micro}M levels of glutamate with reasonable response time. They also found that chemiluminescence associated with the ATP-dependent reaction between luciferase and luciferin can be used to image ATP at levels down to 10 nM in the millisecond time scale. Similar imaging experiments should be feasible in a broad spectrum of biological systems.

  10. Imaging atoms from resonance fluorescence spectrum beyond the diffraction limit

    Science.gov (United States)

    Liao, Zeyang; Al-Amri, Mohammad; Zubairy, M. Suhail

    2014-03-01

    We calculate the resonance fluorescence spectrum of a linear chain of two-level atoms driven by a gradient coherent laser field. The result shows that we can determine the positions of atoms from the spectrum even when the atoms locate within subwavelength range and the dipole-dipole interaction is significant. This far-field resonance fluorescence localization microscopy method does not require point-by-point scanning and it may be more time-efficient. We also give a possible scheme to extract the position information in an extended region without requiring more peak power of laser. We also briefly discuss how to do a 2D imaging based on our scheme. This work is supported by grants from the King Abdulaziz City for Science and Technology (KACST) and the Qatar National Research Fund (QNRF) under the NPRP project.

  11. Multispectral fluorescence imaging technique for discrimination of cucumber (Cucumis Sativus) seed viability

    Science.gov (United States)

    In this study, we developed a nondestructive method for discriminating viable cucumber (Cucumis sativus) seeds based on hyperspectral fluorescence imaging. The fluorescence spectra of cucumber seeds in the 420–700 nm range were extracted from hyperspectral fluorescence images obtained using 365 nm u...

  12. Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging

    International Nuclear Information System (INIS)

    Ntziachristos, Vasilis; Bremer, Christoph; Weissleder, Ralph

    2003-01-01

    A recent development in biomedical imaging is the non-invasive mapping of molecular events in intact tissues using fluorescence. Underpinning to this development is the discovery of bio-compatible, specific fluorescent probes and proteins and the development of highly sensitive imaging technologies for in vivo fluorescent detection. Of particular interest are fluorochromes that emit in the near infrared (NIR), a spectral window, whereas hemoglobin and water absorb minimally so as to allow photons to penetrate for several centimetres in tissue. In this review article we concentrate on optical imaging technologies used for non-invasive imaging of the distribution of such probes. We illuminate the advantages and limitations of simple photographic methods and turn our attention to fluorescence-mediated molecular tomography (FMT), a technique that can three-dimensionally image gene expression by resolving fluorescence activation in deep tissues. We describe theoretical specifics, and we provide insight into its in vivo capacity and the sensitivity achieved. Finally, we discuss its clinical feasibility. (orig.)

  13. In situ Analysis of Coral Recruits Using Fluorescence Imaging

    Directory of Open Access Journals (Sweden)

    Adi Zweifler

    2017-09-01

    Full Text Available Recruitment is a fundamental process that influences coral population dynamics as well as reef community structure. To date, coral recruitment success rates are poorly quantified because survey methods are labor-intensive and require manual interpretation. Thus, they are prone to human errors and have low repeatability—a gap we aim to bridge in this research. Since both corals and their symbiotic algae contain fluorescent pigments (chlorophyll and fluorescent proteins, we used the non-invasive Fluorescence Imaging System (FluorIS and developed a methodology to acquire daytime fluorescent photographs and identify coral recruits in them. We tested our method by monitoring 20 random quadrats at two sites in the Gulf of Aqaba, Israel. The quadrats were surveyed once a month for 8 months in order to track the settlement, mortality and survival rates of new coral recruits. We demonstrate daytime imaging using our method and identification of coral recruits as small as 1 mm in diameter, in a 20 × 20 cm quadrat. Our results show that this photographic method reduces surveyor errors and improves precision. The surveys revealed that on average, there are ~2 new coral recruit settlements (<2 cm for a quadrat (40 cm2 per month and that 83% of them survive the first month. Our study suggests a relative stability in the Gulf of Aqaba coral population during the survey period. The ability to survey recruits during the day using low-cost, easy-to-use photographic equipment has the potential to contribute significantly to the standardization of coral reef monitoring and management tools, at a time when the world's coral reefs are declining due to local and global stressors.

  14. Mechanical Damage Detection of Indonesia Local Citrus Based on Fluorescence Imaging

    Science.gov (United States)

    Siregar, T. H.; Ahmad, U.; Sutrisno; Maddu, A.

    2018-05-01

    Citrus experienced physical damage in peel will produce essential oils that contain polymethoxylated flavone. Polymethoxylated flavone is fluorescence substance; thus can be detected by fluorescence imaging. This study aims to study the fluorescence spectra characteristic and to determine the damage region in citrus peel based on fluorescence image. Pulung citrus from Batu district, East Java, as a famous citrus production area in Indonesia, was used in the experiment. It was observed that the image processing could detect the mechanical damage region. Fluorescence imaging can be used to classify the citrus into two categories, sound and defect citruses.

  15. A Fast Global Fitting Algorithm for Fluorescence Lifetime Imaging Microscopy Based on Image Segmentation

    OpenAIRE

    Pelet, S.; Previte, M.J.R.; Laiho, L.H.; So, P.T. C.

    2004-01-01

    Global fitting algorithms have been shown to improve effectively the accuracy and precision of the analysis of fluorescence lifetime imaging microscopy data. Global analysis performs better than unconstrained data fitting when prior information exists, such as the spatial invariance of the lifetimes of individual fluorescent species. The highly coupled nature of global analysis often results in a significantly slower convergence of the data fitting algorithm as compared with unconstrained ana...

  16. Laser scanning endoscope via an imaging fiber bundle for fluorescence imaging

    Science.gov (United States)

    Yeboah, Lorenz D.; Nestler, Dirk; Steiner, Rudolf W.

    1994-12-01

    Based on a laser scanning endoscope via an imaging fiber bundle, a new approach for a tumor diagnostic system has been developed to assist physicians in the diagnosis before the actual PDT is carried out. Laser induced, spatially resolved fluorescence images of diseased tissue can be compared with images received by video endoscopy using a white light source. The set- up is required to produce a better contrast between infected and healthy tissue and might serve as a constructive diagnostic help for surgeons. The fundamental idea is to scan a low-power laser beam on an imaging fiber bundle and to achieve a spatially resolved projection on the tissue surface. A sufficiently high laser intensity from the diode laser is concentrated on each single spot of the tissue exciting fluorescence when a dye has previously been accumulated. Subsequently, video image of the tissue is recorded and stored. With an image processing unit, video and fluorescence images are overlaid producing a picture of the fluorescence intensity in the environment of the observed tissue.

  17. Quantum dots versus organic fluorophores in fluorescent deep-tissue imaging--merits and demerits.

    Science.gov (United States)

    Bakalova, Rumiana; Zhelev, Zhivko; Gadjeva, Veselina

    2008-12-01

    The use of fluorescence in deep-tissue imaging is rapidly expanding in last several years. The progress in fluorescent molecular probes and fluorescent imaging techniques gives an opportunity to detect single cells and even molecular targets in live organisms. The highly sensitive and high-speed fluorescent molecular sensors and detection devices allow the application of fluorescence in functional imaging. With the development of novel bright fluorophores based on nanotechnologies and 3D fluorescence scanners with high spatial and temporal resolution, the fluorescent imaging has a potential to become an alternative of the other non-invasive imaging techniques as magnetic resonance imaging, positron-emission tomography, X-ray, computing tomography. The fluorescent imaging has also a potential to give a real map of human anatomy and physiology. The current review outlines the advantages of fluorescent nanoparticles over conventional organic dyes in deep-tissue imaging in vivo and defines the major requirements to the "perfect fluorophore". The analysis proceeds from the basic principles of fluorescence and major characteristics of fluorophores, light-tissue interactions, and major limitations of fluorescent deep-tissue imaging. The article is addressed to a broad readership - from specialists in this field to university students.

  18. Self-interference fluorescence microscopy with three-phase detection for depth-resolved confocal epi-fluorescence imaging.

    Science.gov (United States)

    Braaf, Boy; de Boer, Johannes F

    2017-03-20

    Three-dimensional confocal fluorescence imaging of in vivo tissues is challenging due to sample motion and limited imaging speeds. In this paper a novel method is therefore presented for scanning confocal epi-fluorescence microscopy with instantaneous depth-sensing based on self-interference fluorescence microscopy (SIFM). A tabletop epi-fluorescence SIFM setup was constructed with an annular phase plate in the emission path to create a spectral self-interference signal that is phase-dependent on the axial position of a fluorescent sample. A Mach-Zehnder interferometer based on a 3 × 3 fiber-coupler was developed for a sensitive phase analysis of the SIFM signal with three photon-counter detectors instead of a spectrometer. The Mach-Zehnder interferometer created three intensity signals that alternately oscillated as a function of the SIFM spectral phase and therefore encoded directly for the axial sample position. Controlled axial translation of fluorescent microsphere layers showed a linear dependence of the SIFM spectral phase with sample depth over axial image ranges of 500 µm and 80 µm (3.9 × Rayleigh range) for 4 × and 10 × microscope objectives respectively. In addition, SIFM was in good agreement with optical coherence tomography depth measurements on a sample with indocyanine green dye filled capillaries placed at multiple depths. High-resolution SIFM imaging applications are demonstrated for fluorescence angiography on a dye-filled capillary blood vessel phantom and for autofluorescence imaging on an ex vivo fly eye.

  19. Preparation and characterization of alginate based-fluorescent magnetic nanoparticles for fluorescence/magnetic resonance multimodal imaging applications

    Science.gov (United States)

    Kwon, Yong-Su; Choi, Kee-Bong; Lim, Hyungjun; Lee, Sunghwi; Lee, Jae-Jong

    2018-06-01

    Simple and versatile methodologies have been reported that customize the surface of superparamagnetic iron oxide (SPIO) nanoparticles and impart additional fluorescence capabilities to these contrast agents. Herein, we present the rational design, synthesis, characterization, and biological applications of a new magnetic-based fluorescent probe. The dual modality imaging protocol was developed by labeling fluorophore with alginate natural polymers that have excellent biocompatibility and biodegradability, and using gelification method to form nanocomposites containing SPIO. The formation of alginate-based fluorescent magnetic (AFM) nanoparticles was observed in spherical and elliptical forms with a diameter of less than 500 nm by a transmission electron microscope (TEM). The fluorescent wavelength band in the range of 560 nm was also confirmed in the UV–visible spectrophotometer. In this study, we demonstrate that the multi-tasking design of AFM nanoparticles provides an ideal platform for building balanced dual-image probes of magnetic resonance imaging and optical imaging.

  20. A CMOS In-Pixel CTIA High Sensitivity Fluorescence Imager.

    Science.gov (United States)

    Murari, Kartikeya; Etienne-Cummings, Ralph; Thakor, Nitish; Cauwenberghs, Gert

    2011-10-01

    Traditionally, charge coupled device (CCD) based image sensors have held sway over the field of biomedical imaging. Complementary metal oxide semiconductor (CMOS) based imagers so far lack sensitivity leading to poor low-light imaging. Certain applications including our work on animal-mountable systems for imaging in awake and unrestrained rodents require the high sensitivity and image quality of CCDs and the low power consumption, flexibility and compactness of CMOS imagers. We present a 132×124 high sensitivity imager array with a 20.1 μm pixel pitch fabricated in a standard 0.5 μ CMOS process. The chip incorporates n-well/p-sub photodiodes, capacitive transimpedance amplifier (CTIA) based in-pixel amplification, pixel scanners and delta differencing circuits. The 5-transistor all-nMOS pixel interfaces with peripheral pMOS transistors for column-parallel CTIA. At 70 fps, the array has a minimum detectable signal of 4 nW/cm(2) at a wavelength of 450 nm while consuming 718 μA from a 3.3 V supply. Peak signal to noise ratio (SNR) was 44 dB at an incident intensity of 1 μW/cm(2). Implementing 4×4 binning allowed the frame rate to be increased to 675 fps. Alternately, sensitivity could be increased to detect about 0.8 nW/cm(2) while maintaining 70 fps. The chip was used to image single cell fluorescence at 28 fps with an average SNR of 32 dB. For comparison, a cooled CCD camera imaged the same cell at 20 fps with an average SNR of 33.2 dB under the same illumination while consuming over a watt.

  1. Microbial biofilm detection on food contact surfaces by macro-scale fluorescence imaging

    Science.gov (United States)

    Hyperspectral fluorescence imaging methods were utilized to evaluate the potential of multispectral fluorescence methods for detection of pathogenic biofilm formations on four types of food contact surface materials: stainless steel, high density polyethylene (HDPE) commonly used for cutting boards,...

  2. Tests of variable-band multilayers designed for investigating optimal signal-to-noise vs artifact signal ratios in Dual-Energy Digital Subtraction Angiography (DDSA) imaging systems

    International Nuclear Information System (INIS)

    Boyers, D.; Ho, A.; Li, Q.; Piestrup, M.; Rice, M.; Tatchyn, R.

    1993-08-01

    In recent work, various design techniques were applied to investigate the feasibility of controlling the bandwidth and bandshape profiles of tungsten/boron-carbon (W/B 4 C) and tungsten/silicon (W/Si) multilayers for optimizing their performance in synchrotron radiation based angiographical imaging systems at 33 keV. Varied parameters included alternative spacing geometries, material thickness ratios, and numbers of layer pairs. Planar optics with nominal design reflectivities of 30%--94% and bandwidths ranging from 0.6%--10% were designed at the Stanford Radiation Laboratory, fabricated by the Ovonic Synthetic Materials Company, and characterized on Beam Line 4-3 at the Stanford Synchrotron Radiation Laboratory, in this paper we report selected results of these tests and review the possible use of the multilayers for determining optimal signal to noise vs. artifact signal ratios in practical Dual-Energy Digital Subtraction Angiography systems

  3. Cyanine-based probe\\tag-peptide pair fluorescence protein imaging and fluorescence protein imaging methods

    Science.gov (United States)

    Mayer-Cumblidge, M. Uljana; Cao, Haishi

    2013-01-15

    A molecular probe comprises two arsenic atoms and at least one cyanine based moiety. A method of producing a molecular probe includes providing a molecule having a first formula, treating the molecule with HgOAc, and subsequently transmetallizing with AsCl.sub.3. The As is liganded to ethanedithiol to produce a probe having a second formula. A method of labeling a peptide includes providing a peptide comprising a tag sequence and contacting the peptide with a biarsenical molecular probe. A complex is formed comprising the tag sequence and the molecular probe. A method of studying a peptide includes providing a mixture containing a peptide comprising a peptide tag sequence, adding a biarsenical probe to the mixture, and monitoring the fluorescence of the mixture.

  4. Improved fluorescent X-ray image intensifying screen

    International Nuclear Information System (INIS)

    Landeghem, W.K. van; Suys, A.R.

    1981-01-01

    An X-ray image intensifying screen is described, which includes at least one fluorescent layer comprising phosphor particles dispersed in a binder and on top of such layer a protective layer containing a crosslinked polymer mass obtained by an acid-catalyzed reaction of a polymer or mixture of polymers containing reactive hydrogen atoms and a cross-linking agent, the cross-linking agent being an organic compound containing a plurality of etherified N-methylol groups. Examples are given of appropriate polymers and cross-linking agents. (author)

  5. SIMA: Python software for analysis of dynamic fluorescence imaging data

    Directory of Open Access Journals (Sweden)

    Patrick eKaifosh

    2014-09-01

    Full Text Available Fluorescence imaging is a powerful method for monitoring dynamic signals in the nervous system. However, analysis of dynamic fluorescence imaging data remains burdensome, in part due to the shortage of available software tools. To address this need, we have developed SIMA, an open source Python package that facilitates common analysis tasks related to fluorescence imaging. Functionality of this package includes correction of motion artifacts occurring during in vivo imaging with laser-scanning microscopy, segmentation of imaged fields into regions of interest (ROIs, and extraction of signals from the segmented ROIs. We have also developed a graphical user interface (GUI for manual editing of the automatically segmented ROIs and automated registration of ROIs across multiple imaging datasets. This software has been designed with flexibility in mind to allow for future extension with different analysis methods and potential integration with other packages. Software, documentation, and source code for the SIMA package and ROI Buddy GUI are freely available at http://www.losonczylab.org/sima/.

  6. Fluorenyl benzothiadiazole and benzoselenadiazole near-IR fluorescent probes for two-photon fluorescence imaging (Conference Presentation)

    Science.gov (United States)

    Belfield, Kevin D.; Yao, Sheng; Kim, Bosung; Yue, Xiling

    2016-03-01

    Imaging biological samples with two-photon fluorescence (2PF) microscopy has the unique advantage of resulting high contrast 3D resolution subcellular image that can reach up to several millimeters depth. 2PF probes that absorb and emit at near IR region need to be developed. Two-photon excitation (2PE) wavelengths are less concerned as 2PE uses wavelengths doubles the absorption wavelength of the probe, which means 2PE wavelengths for probes even with absorption at visible wavelength will fall into NIR region. Therefore, probes that fluoresce at near IR region with high quantum yields are needed. A series of dyes based on 5-thienyl-2, 1, 3-benzothiadiazole and 5-thienyl-2, 1, 3-benzoselenadiazole core were synthesized as near infrared two-photon fluorophores. Fluorescence maxima wavelengths as long as 714 nm and fluorescence quantum yields as high as 0.67 were achieved. The fluorescence quantum yields of the dyes were nearly constant, regardless of solvents polarity. These diazoles exhibited large Stokes shift (GM), and high two-photon fluorescence figure of merit (FM , 1.04×10-2 GM). Cells incubated on a 3D scaffold with one of the new probes (encapsulated in Pluronic micelles) exhibited bright fluorescence, enabling 3D two-photon fluorescence imaging to a depth of 100 µm.

  7. Fluorescence-Doped Particles for Simultaneous Temperature and Velocity Imaging

    Science.gov (United States)

    Danehy, Paul M.; Tiemsin, Pacita I.; Wohl, Chrostopher J.; Verkamp, Max; Lowe, T.; Maisto, P.; Byun, G.; Simpson, R.

    2012-01-01

    Polystyrene latex microspheres (PSLs) have been used for particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) measurements for several decades. With advances in laser technologies, instrumentation, and data processing, the capability to collect more information about fluid flow beyond velocity is possible using new seed materials. To provide additional measurement capability, PSLs were synthesized with temperature-sensitive fluorescent dyes incorporated within the particle. These multifunctional PSLs would have the greatest impact if they could be used in large scale facilities with minimal modification to the facilities or the existing instrumentation. Consequently, several potential dyes were identified that were amenable to existing laser systems currently utilized in wind tunnels at NASA Langley Research Center as well as other wind and fluid (water) tunnels. PSLs incorporated with Rhodamine B, dichlorofluorescein (DCF, also known as fluorescein 548 or fluorescein 27) and other dyes were synthesized and characterized for morphology and spectral properties. The resulting particles were demonstrated to exhibit fluorescent emission, which would enable determination of both fluid velocity and temperature. They also would allow near-wall velocity measurements whereas laser scatter from surfaces currently prevents near-wall measurements using undoped seed materials. Preliminary results in a wind tunnel facility located at Virginia Polytechnic Institute and State University (Virginia Tech) have verified fluorescent signal detection and temperature sensitivity of fluorophore-doped PSLs.

  8. Modelling of microcracks image treated with fluorescent dye

    Science.gov (United States)

    Glebov, Victor; Lashmanov, Oleg U.

    2015-06-01

    The main reasons of catastrophes and accidents are high level of wear of equipment and violation of the production technology. The methods of nondestructive testing are designed to find out defects timely and to prevent break down of aggregates. These methods allow determining compliance of object parameters with technical requirements without destroying it. This work will discuss dye penetrant inspection or liquid penetrant inspection (DPI or LPI) methods and computer model of microcracks image treated with fluorescent dye. Usually cracks on image look like broken extended lines with small width (about 1 to 10 pixels) and ragged edges. The used method of inspection allows to detect microcracks with depth about 10 or more micrometers. During the work the mathematical model of image of randomly located microcracks treated with fluorescent dye was created in MATLAB environment. Background noises and distortions introduced by the optical systems are considered in the model. The factors that have influence on the image are listed below: 1. Background noise. Background noise is caused by the bright light from external sources and it reduces contrast on the objects edges. 2. Noises on the image sensor. Digital noise manifests itself in the form of randomly located points that are differing in their brightness and color. 3. Distortions caused by aberrations of optical system. After passing through the real optical system the homocentricity of the bundle of rays is violated or homocentricity remains but rays intersect at the point that doesn't coincide with the point of the ideal image. The stronger the influence of the above-listed factors, the worse the image quality and therefore the analysis of the image for control of the item finds difficulty. The mathematical model is created using the following algorithm: at the beginning the number of cracks that will be modeled is entered from keyboard. Then the point with random position is choosing on the matrix whose size is

  9. Fluorescence imaging as a diagnostic of M-band x-ray drive condition in hohlraum with fluorescent Si targets

    International Nuclear Information System (INIS)

    Li, Qi; Hu, Zhimin; Yao, Li; Huang, Chengwu; Yuan, Zheng; Zhao, Yang; Xiong, Gang; Qing, Bo; Lv, Min; Zhu, Tuo; Deng, Bo; Li, Jin; Wei, Minxi; Zhan, Xiayu; Li, Jun; Yang, Yimeng; Su, Chunxiao; Yang, Guohong; Zhang, Jiyan; Li, Sanwei

    2017-01-01

    Fluorescence imaging of surrogate Si-doped CH targets has been used to provide a measurement for drive condition of high-energy x-ray (i.e. M-band x-ray) drive symmetry upon the capsule in hohlraum on Shenguang-II laser facility. A series of experiments dedicated to the study of photo-pumping and fluorescence effect in Si-plasma are presented. To investigate the feasibility of fluorescence imaging in Si-plasma, an silicon plasma in Si-foil target is pre-formed at ground state by the soft x-ray from a half-hohlraum, which is then photo-pumped by the K-shell lines from a spatially distinct laser-produced Si-plasma. The resonant Si photon pump is used to improve the fluorescence signal and cause visible image in the Si-foil. Preliminary fluorescence imaging of Si-ball target is performed in both Si-doped and pure Au hohlraum. The usual capsule at the center of the hohlraum is replaced with a solid Si-doped CH-ball (Si-ball). Since the fluorescence is proportional to the photon pump upon the Si-plasma, high-energy x-ray drive symmetry is equal to the fluorescence distribution of the Si-ball. (paper)

  10. TU-CD-207-03: Time Evolution of Texture Parameters of Subtracted Images Obtained by Contrast-Enhanced Digital Mammography (CEDM)

    Energy Technology Data Exchange (ETDEWEB)

    Mateos, M-J; Brandan, M-E [Instituto de Fisica, Universidad Nacional Autonom de Mexico, Mexico, Distrito Federal (Mexico); Gastelum, A; Marquez, J [Centro de Ciencias Aplicadas y Desarrollo Tecnologico Universidad Nacional Autonoma de Mexico, Mexico, Distrito Federal (Mexico)

    2015-06-15

    Purpose: To evaluate the time evolution of texture parameters, based on the gray level co-occurrence matrix (GLCM), in subtracted images of 17 patients (10 malignant and 7 benign) subjected to contrast-enhanced digital mammography (CEDM). The goal is to determine the sensitivity of texture to iodine uptake at the lesion, and its correlation (or lack of) with mean-pixel-value (MPV). Methods: Acquisition of clinical images followed a single-energy CEDM protocol using Rh/Rh/48 kV plus external 0.5 cm Al from a Senographe DS unit. Prior to the iodine-based contrast medium (CM) administration a mask image was acquired; four CM images were obtained 1, 2, 3, and 5 minutes after CM injection. Temporal series were obtained by logarithmic subtraction of registered CM minus mask images.Regions of interest (ROI) for the lesion were drawn by a radiologist and the texture was analyzed. GLCM was evaluated at a 3 pixel distance, 0° angle, and 64 gray-levels. Pixels identified as registration errors were excluded from the computation. 17 texture parameters were chosen, classified according to similarity into 7 groups, and analyzed. Results: In all cases the texture parameters within a group have similar dynamic behavior. Two texture groups (associated to cluster and sum mean) show a strong correlation with MPV; their average correlation coefficient (ACC) is r{sup 2}=0.90. Other two groups (contrast, homogeneity) remain constant with time, that is, a low-sensitivity to CM uptake. Three groups (regularity, lacunarity and diagonal moment) are sensitive to CM uptake but less correlated with MPV; their ACC is r{sup 2}=0.78. Conclusion: This analysis has shown that, at least groups associated to regularity, lacunarity and diagonal moment offer dynamical information additional to the mean pixel value due to the presence of CM at the lesion. The next step will be the analysis in terms of the lesion pathology. Authors thank PAPIIT-IN105813 for support. Consejo Nacional de Ciencia Y

  11. Molecular imaging needles: dual-modality optical coherence tomography and fluorescence imaging of labeled antibodies deep in tissue

    Science.gov (United States)

    Scolaro, Loretta; Lorenser, Dirk; Madore, Wendy-Julie; Kirk, Rodney W.; Kramer, Anne S.; Yeoh, George C.; Godbout, Nicolas; Sampson, David D.; Boudoux, Caroline; McLaughlin, Robert A.

    2015-01-01

    Molecular imaging using optical techniques provides insight into disease at the cellular level. In this paper, we report on a novel dual-modality probe capable of performing molecular imaging by combining simultaneous three-dimensional optical coherence tomography (OCT) and two-dimensional fluorescence imaging in a hypodermic needle. The probe, referred to as a molecular imaging (MI) needle, may be inserted tens of millimeters into tissue. The MI needle utilizes double-clad fiber to carry both imaging modalities, and is interfaced to a 1310-nm OCT system and a fluorescence imaging subsystem using an asymmetrical double-clad fiber coupler customized to achieve high fluorescence collection efficiency. We present, to the best of our knowledge, the first dual-modality OCT and fluorescence needle probe with sufficient sensitivity to image fluorescently labeled antibodies. Such probes enable high-resolution molecular imaging deep within tissue. PMID:26137379

  12. IRDye78 Conjugates for Near-Infrared Fluorescence Imaging

    Directory of Open Access Journals (Sweden)

    Atif Zaheer

    2002-10-01

    Full Text Available The detection of human malignancies by near-infrared (NIR fluorescence will require the conjugation of cancer-specific ligands to NIR fluorophores that have optimal photoproperties and pharmacokinetics. IRDye78, a tetra-sulfonated heptamethine indocyanine NIR fluorophore, meets most of the criteria for an in vivo imaging agent, and is available as an N-hydroxysuccinimide ester for conjugation to low-molecular-weight ligands. However, IRDye78 has a high charge-to-mass ratio, complicating purification of conjugates. It also has a potentially labile linkage between fluorophore and ligand. We have developed an ion-pairing purification strategy for IRDye78 that can be performed with a standard C18 column under neutral conditions, thus preserving the stability of fluorophore, ligand, and conjugate. By employing parallel evaporative light scatter and absorbance detectors, all reactants and products are identified, and conjugate purity is maximized. We describe reversible and irreversible conversions of IRDye78 that can occur during sample purification, and describe methods for preserving conjugate stability. Using seven ligands, spanning several classes of small molecules and peptides (neutral, charged, and/or hydrophobic, we illustrate the robustness of these methods, and confirm that IRDye78 conjugates so purified retain bioactivity and permit NIR fluorescence imaging of specific targets.

  13. Left-right subtraction of brain CT

    International Nuclear Information System (INIS)

    Ishiguchi, Tsuneo; Sakuma, Sadayuki

    1986-01-01

    A new image-processing method to obtain a left-right subtraction image of CT was designed for the automated detection of abnormalities in brain CT. An original CT image was divided in two by a centerline. Then the right half of the image was subtracted from the left half by calculating the absorption value of the pixels on the symmetrical positions against the centerline. The mean and the standard deviation of the absorption value of the pixels in the subtraction image were used as parameters for analysis, and the detectability of abnormal CT findings was evaluated in 100 cases - 50 cases each with normal and abnormal CT. The presence of abnormalities could be diagnosed with a sensitivity of 86 %, a specificity of 90 %, and an overall accuracy of 88 % when the borderline of these parameters between normal and abnormal CT was set at the mean + 2SD in the normal group. As a further analysis, the CT image was subdivided into several areas from a functional or anatomical viewpoint, such as cerebral vascular territories, and the left-right subtraction image of each area was obtained. The possibilities of diagnosing the location of an abnormality and of detecting smaller lesions with this method were shown. Left-right subtraction was considered to be a useful method for the detection of asymmetric abnormalities in the automated diagnosis of brain CT. (author)

  14. Ns-scaled time-gated fluorescence lifetime imaging for forensic document examination

    Science.gov (United States)

    Zhong, Xin; Wang, Xinwei; Zhou, Yan

    2018-01-01

    A method of ns-scaled time-gated fluorescence lifetime imaging (TFLI) is proposed to distinguish different fluorescent substances in forensic document examination. Compared with Video Spectral Comparator (VSC) which can examine fluorescence intensity images only, TFLI can detect questioned documents like falsification or alteration. TFLI system can enhance weak signal by accumulation method. The two fluorescence intensity images of the interval delay time tg are acquired by ICCD and fitted into fluorescence lifetime image. The lifetimes of fluorescence substances are represented by different colors, which make it easy to detect the fluorescent substances and the sequence of handwritings. It proves that TFLI is a powerful tool for forensic document examination. Furthermore, the advantages of TFLI system are ns-scaled precision preservation and powerful capture capability.

  15. Temporal subtraction of dual-energy chest radiographs

    International Nuclear Information System (INIS)

    Armato, Samuel G. III; Doshi, Devang J.; Engelmann, Roger; Caligiuri, Philip; MacMahon, Heber

    2006-01-01

    Temporal subtraction and dual-energy imaging are two enhanced radiography techniques that are receiving increased attention in chest radiography. Temporal subtraction is an image processing technique that facilitates the visualization of pathologic change across serial chest radiographic images acquired from the same patient; dual-energy imaging exploits the differential relative attenuation of x-ray photons exhibited by soft-tissue and bony structures at different x-ray energies to generate a pair of images that accentuate those structures. Although temporal subtraction images provide a powerful mechanism for enhancing visualization of subtle change, misregistration artifacts in these images can mimic or obscure abnormalities. The purpose of this study was to evaluate whether dual-energy imaging could improve the quality of temporal subtraction images. Temporal subtraction images were generated from 100 pairs of temporally sequential standard radiographic chest images and from the corresponding 100 pairs of dual-energy, soft-tissue radiographic images. The registration accuracy demonstrated in the resulting temporal subtraction images was evaluated subjectively by two radiologists. The registration accuracy of the soft-tissue-based temporal subtraction images was rated superior to that of the conventional temporal subtraction images. Registration accuracy also was evaluated objectively through an automated method, which achieved an area-under-the-ROC-curve value of 0.92 in the distinction between temporal subtraction images that demonstrated clinically acceptable and clinically unacceptable registration accuracy. By combining dual-energy soft-tissue images with temporal subtraction, misregistration artifacts can be reduced and superior image quality can be obtained

  16. Automatic dipole subtraction

    International Nuclear Information System (INIS)

    Hasegawa, K.

    2008-01-01

    The Catani-Seymour dipole subtraction is a general procedure to treat infrared divergences in real emission processes at next-to-leading order in QCD. We automatized the procedure in a computer code. The code is useful especially for the processes with many parton legs. In this talk, we first explain the algorithm of the dipole subtraction and the whole structure of our code. After that we show the results for some processes where the infrared divergences of real emission processes are subtracted. (author)

  17. Hyperspectral fluorescence imaging coupled with multivariate image analysis techniques for contaminant screening of leafy greens

    Science.gov (United States)

    Everard, Colm D.; Kim, Moon S.; Lee, Hoyoung

    2014-05-01

    The production of contaminant free fresh fruit and vegetables is needed to reduce foodborne illnesses and related costs. Leafy greens grown in the field can be susceptible to fecal matter contamination from uncontrolled livestock and wild animals entering the field. Pathogenic bacteria can be transferred via fecal matter and several outbreaks of E.coli O157:H7 have been associated with the consumption of leafy greens. This study examines the use of hyperspectral fluorescence imaging coupled with multivariate image analysis to detect fecal contamination on Spinach leaves (Spinacia oleracea). Hyperspectral fluorescence images from 464 to 800 nm were captured; ultraviolet excitation was supplied by two LED-based line light sources at 370 nm. Key wavelengths and algorithms useful for a contaminant screening optical imaging device were identified and developed, respectively. A non-invasive screening device has the potential to reduce the harmful consequences of foodborne illnesses.

  18. Intraoperative near-infrared fluorescent imaging during robotic operations.

    Science.gov (United States)

    Macedo, Antonio Luiz de Vasconcellos; Schraibman, Vladimir

    2016-01-01

    The intraoperative identification of certain anatomical structures because they are small or visually occult may be challenging. The development of minimally invasive surgery brought additional difficulties to identify these structures due to the lack of complete tactile sensitivity. A number of different forms of intraoperative mapping have been tried. Recently, the near-infrared fluorescence imaging technology with indocyanine green has been added to robotic platforms. In addition, this technology has been tested in several types of operations, and has advantages such as safety, low cost and good results. Disadvantages are linked to contrast distribution in certain clinical scenarios. The intraoperative near-infrared fluorescent imaging is new and promising addition to robotic surgery. Several reports show the utility of this technology in several different procedures. The ideal dose, time and site for dye injection are not well defined. No high quality evidence-based comparative studies and long-term follow-up outcomes have been published so far. Initial results, however, are good and safe. RESUMO A identificação intraoperatória de certas estruturas anatômicas, por seu tamanho ou por elas serem ocultas à visão, pode ser desafiadora. O desenvolvimento da cirurgia minimamente invasiva trouxe dificuldades adicionais, pela falta da sensibilidade tátil completa. Diversas formas de detecção intraoperatória destas estruturas têm sido tentadas. Recentemente, a tecnologia de fluorescência infravermelha com verde de indocianina foi associada às plataformas robóticas. Além disso, essa tecnologia tem sido testada em uma variedade de cirurgias, e suas vantagens parecem estar ligadas a baixo custo, segurança e bons resultados. As desvantagens estão associadas à má distribuição do contraste em determinados cenários. A imagem intraoperatória por fluorescência infravermelha é uma nova e promissora adição à cirurgia robótica. Diversas séries mostram

  19. Comparison of segmentation algorithms for fluorescence microscopy images of cells.

    Science.gov (United States)

    Dima, Alden A; Elliott, John T; Filliben, James J; Halter, Michael; Peskin, Adele; Bernal, Javier; Kociolek, Marcin; Brady, Mary C; Tang, Hai C; Plant, Anne L

    2011-07-01

    The analysis of fluorescence microscopy of cells often requires the determination of cell edges. This is typically done using segmentation techniques that separate the cell objects in an image from the surrounding background. This study compares segmentation results from nine different segmentation techniques applied to two different cell lines and five different sets of imaging conditions. Significant variability in the results of segmentation was observed that was due solely to differences in imaging conditions or applications of different algorithms. We quantified and compared the results with a novel bivariate similarity index metric that evaluates the degree of underestimating or overestimating a cell object. The results show that commonly used threshold-based segmentation techniques are less accurate than k-means clustering with multiple clusters. Segmentation accuracy varies with imaging conditions that determine the sharpness of cell edges and with geometric features of a cell. Based on this observation, we propose a method that quantifies cell edge character to provide an estimate of how accurately an algorithm will perform. The results of this study will assist the development of criteria for evaluating interlaboratory comparability. Published 2011 Wiley-Liss, Inc.

  20. Fluorescence Imaging of the Cytoskeleton in Plant Roots.

    Science.gov (United States)

    Dyachok, Julia; Paez-Garcia, Ana; Yoo, Cheol-Min; Palanichelvam, Karuppaiah; Blancaflor, Elison B

    2016-01-01

    During the past two decades the use of live cytoskeletal probes has increased dramatically due to the introduction of the green fluorescent protein. However, to make full use of these live cell reporters it is necessary to implement simple methods to maintain plant specimens in optimal growing conditions during imaging. To image the cytoskeleton in living Arabidopsis roots, we rely on a system involving coverslips coated with nutrient supplemented agar where the seeds are directly germinated. This coverslip system can be conveniently transferred to the stage of a confocal microscope with minimal disturbance to the growth of the seedling. For roots with a larger diameter such as Medicago truncatula, seeds are first germinated in moist paper, grown vertically in between plastic trays, and roots mounted on glass slides for confocal imaging. Parallel with our live cell imaging approaches, we routinely process fixed plant material via indirect immunofluorescence. For these methods we typically use non-embedded vibratome-sectioned and whole mount permeabilized root tissue. The clearly defined developmental regions of the root provide us with an elegant system to further understand the cytoskeletal basis of plant development.

  1. Digital subtraction angiography system evaluation with phantoms

    International Nuclear Information System (INIS)

    Wenstrup, R.S.; Sweeney, K.P.; Scholz, F.J.

    1985-01-01

    Advances in digital subtraction angiography imaging demonstrate the need for critical evaluation of the performance of digital subtraction equipment. The design of a phantom set for noninvasive assessment of the imaging quality of digital subtraction equipment is described; components include a remotely controlled transport system and individual patterns to evaluate the contrast and detail properties of the image intensifier, low-contrast sensitivity and resolution of the system, geometric distortion of image, linearity, mechanical and electronic stability of equipment, and effects of bone and bowel gas on iodine perception. The performance of an add-on digital radiographic system is presented, along with radiation exposure levels at the image intensifier for a range of radiographic techniques

  2. Non-enhanced magnetic resonance imaging of unruptured intracranial aneurysms at 7 Tesla: Comparison with digital subtraction angiography

    Energy Technology Data Exchange (ETDEWEB)

    Wrede, Karsten H.; Chen, Bixia [University Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); University Hospital Essen, Department of Neurosurgery, Essen (Germany); Matsushige, Toshinori [University Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); University Hospital Essen, Department of Neurosurgery, Essen (Germany); Hiroshima University, Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima (Japan); Goericke, Sophia L.; Umutlu, Lale; Forsting, Michael [University Hospital Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Quick, Harald H. [University Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); University Hospital Essen, High Field and Hybrid MR Imaging, Essen (Germany); Ladd, Mark E. [University Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); University Hospital Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); German Cancer Research Center (DKFZ), Division of Medical Physics in Radiology (E020), Heidelberg (Germany); Johst, Soeren [University Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); Sure, Ulrich [University Hospital Essen, Department of Neurosurgery, Essen (Germany); Schlamann, Marc [University Hospital Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); University Hospital Giessen, Department of Neuroradiology, Giessen (Germany)

    2017-01-15

    To prospectively evaluate non-contrast-enhanced 7-Tesla (T) MRA for delineation of unruptured intracranial aneurysms (UIAs) in comparison with DSA. Forty patients with single or multiple UIAs were enrolled in this IRB-approved trial. Sequences acquired at 7 T were TOF MRA and non-contrast-enhanced MPRAGE. All patients additionally underwent 3D rotational DSA. Two neuroradiologists individually analysed the following aneurysm and image features on a five-point scale in 2D and 3D image reconstructions: delineation of parent vessel, dome and neck; overall image quality; presence of artefacts. Interobserver accordance was assessed by the kappa coefficient. A total of 64 UIAs were detected in DSA and in all 2D and 3D MRA image reconstructions. Ratings showed comparable results for DSA and 7-T MRA when considering all image reconstructions. Highest ratings for individual image reconstructions were given for 2D MPRAGE and 3D TOF MRA. Interobserver accordance was almost perfect for the majority of ratings. This study demonstrates excellent delineation of UIAs using 7-T MRA within a clinical setting comparable to the gold standard, DSA. The combination of 7-T non-enhanced MPRAGE and TOF MRA for assessment of untreated UIAs is a promising clinical application of ultra-high-field MRA. (orig.)

  3. FLEX: an imaging spectrometer for measurement of vegetation fluorescence

    Science.gov (United States)

    Smorenburg, Kees; Visser, Huib; Court, Andrew; Stoll, Marc Ph.

    2017-11-01

    Detection of vegetation fluorescence gives information about plant functioning, stress and vitality. During the past decades several ground based laser fluorosensors have been developed to investigate these processes and to demonstrate the value of this technique. FLEX (= FLuorescense EXplorer) is a space mission to measure the fluorescence of vegetation on earth over large areas from space. Such a mission would greatly improve the understanding and enhance the capability to quantify e.g. the role of terrestrial vegetation in global carbon sequestration. Because the fluorescence signal, which is excited by solar irradiation is low with respect to the reflected sunlight the signal from a satellite is proposed to be measured in the solar Fraunhofer lines, where the reflection signal is much reduced. The heart of FLEX is a high resolution imaging spectrometer with 2 channels: channel 1 around the Fraunhofer lines at ‡ = 397 nm, ‡= 423 nm and/or ‡ = 434 nm and channel 2 around the Fraunhofer line at ‡ = 656 nm. The required spectral resolution will depend on the linewidth (0.02-0.3 nm). A first definition of the field of view is 8.4 degrees, leading from an 800 km satellite altitude to a swath of about 120 km. For detection a 1024x1024 pixel frame transfer CCD detector is proposed, with a pixel dimension of 13 x 13 ‡ mm2. The maximum footprint is about 500x500m2. The optical configuration contains a scan mirror for solar calibration, for pointing the FOV in swath direction and for freezing the observed ground scene up to a few seconds to increase the signal to noise performance. At this moment the concept of FLEX is elaborated in a feasibility study. Both the scientific and instrument requirements are updated and the concept is studied in detail. Besides a development plan for FLEX is made. In this paper the idea and the headlines of FLEX are described.

  4. The value of magnetic resonance imaging for the detection of the bleeding source in non-traumatic intracerebral haemorrhages: a comparison with conventional digital subtraction angiography

    Energy Technology Data Exchange (ETDEWEB)

    Lummel, Nina; Lutz, Juergen; Brueckmann, Hartmut; Linn, Jennifer [University of Munich, Department of Neuroradiology, Munich (Germany)

    2012-07-15

    Conventional digital subtraction angiography (DSA) is currently regarded as the gold standard in detecting underlying vascular pathologies in patients with intracerebral haemorrhages (ICH). However, the use of magnetic resonance imaging (MRI) in the diagnostic workup of ICHs has considerably increased in recent years. Our aim was to evaluate the diagnostic accuracy and yield of MRI for the detection of the underlying aetiology in ICH patients. Sixty-seven consecutive patients with an acute ICH who underwent MRI (including magnetic resonance angiography (MRA) and DSA during their diagnostic workup) were included in the study. Magnetic resonance images were retrospectively analysed by two independent neuroradiologists to determine the localisation and cause of the ICH. DSA was used as a reference standard. In seven patients (10.4%), a DSA-positive vascular aetiology was present (one aneurysm, four arteriovenous malformations, one dural arteriovenous fistula and one vasculitis). All of these cases were correctly diagnosed by both readers on MRI. In addition, MRI revealed the following probable bleeding causes in 39 of the 60 DSA-negative patients: cerebral amyloid angiopathy (17), cavernoma (9), arterial hypertension (8), haemorrhagic transformation of an ischaemic infarction (3) and malignant brain tumour with secondary ICH (2). Performing MRI with MRA proved to be an accurate diagnostic tool in detecting vascular malformations in patients with ICH. In addition, MRI provided valuable information regarding DSA-negative ICH causes, and thus had a high diagnostic yield in ICH patients. (orig.)

  5. Effect of Donepezil on Wernicke Aphasia After Bilateral Middle Cerebral Artery Infarction: Subtraction Analysis of Brain F-18 Fluorodeoxyglucose Positron Emission Tomographic Images.

    Science.gov (United States)

    Yoon, Seo Yeon; Kim, Je-Kyung; An, Young-Sil; Kim, Yong Wook

    2015-01-01

    Aphasia is one of the most common neurologic deficits occurring after stroke. Although the speech-language therapy is a mainstream option for poststroke aphasia, pharmacotherapy is recently being tried to modulate different neurotransmitter systems. However, the efficacy of those treatments is still controversial. We present a case of a 53-year-old female patient with Wernicke aphasia, after the old infarction in the territory of left middle cerebral artery for 8 years and the recent infarction in the right middle cerebral artery for 4 months. On the initial evaluation, the Aphasia Quotient in Korean version of the Western Aphasia Battery was 25.6 of 100. Baseline brain F-18 fluorodeoxyglucose positron emission tomographic images demonstrated a decreased cerebral metabolism in the left temporoparietal area and right temporal lobe. Donepezil hydrochloride, a reversible acetylcholinesterase inhibitor, was orally administered 5 mg/d for 6 weeks after the initial evaluation and was increased to 10 mg/d for the following 6 weeks. After the donepezil treatment, the patient showed improvement in language function, scoring 51.0 of 100 on Aphasia Quotient. A subtraction analysis of the brain F-18 fluorodeoxyglucose positron emission tomographic images after donepezil medication demonstrated increased uptake in both middle temporal gyri, extended to the occipital area and the left cerebellum. Thus, we suggest that donepezil can be an effective therapeutic choice for the treatment of Wernicke aphasia.

  6. Multimodal optical coherence tomography and fluorescence lifetime imaging with interleaved excitation sources for simultaneous endogenous and exogenous fluorescence.

    Science.gov (United States)

    Shrestha, Sebina; Serafino, Michael J; Rico-Jimenez, Jesus; Park, Jesung; Chen, Xi; Zhaorigetu, Siqin; Walton, Brian L; Jo, Javier A; Applegate, Brian E

    2016-09-01

    Multimodal imaging probes a variety of tissue properties in a single image acquisition by merging complimentary imaging technologies. Exploiting synergies amongst the data, algorithms can be developed that lead to better tissue characterization than could be accomplished by the constituent imaging modalities taken alone. The combination of optical coherence tomography (OCT) with fluorescence lifetime imaging microscopy (FLIM) provides access to detailed tissue morphology and local biochemistry. The optical system described here merges 1310 nm swept-source OCT with time-domain FLIM having excitation at 355 and 532 nm. The pulses from 355 and 532 nm lasers have been interleaved to enable simultaneous acquisition of endogenous and exogenous fluorescence signals, respectively. The multimodal imaging system was validated using tissue phantoms. Nonspecific tagging with Alexa Flour 532 in a Watanbe rabbit aorta and active tagging of the LOX-1 receptor in human coronary artery, demonstrate the capacity of the system for simultaneous acquisition of OCT, endogenous FLIM, and exogenous FLIM in tissues.

  7. Inspection of fecal contamination on strawberries using fluorescence imaging

    Science.gov (United States)

    Chuang, Yung-Kun; Yang, Chun-Chieh; Kim, Moon S.; Delwiche, Stephen R.; Lo, Y. Martin; Chen, Suming; Chan, Diane E.

    2013-05-01

    Fecal contamination of produce is a food safety issue associated with pathogens such as Escherichia coli that can easily pollute agricultural products via animal and human fecal matters. Outbreaks of foodborne illnesses associated with consuming raw fruits and vegetables have occurred more frequently in recent years in the United States. Among fruits, strawberry is one high-potential vector of fecal contamination and foodborne illnesses since the fruit is often consumed raw and with minimal processing. In the present study, line-scan LED-induced fluorescence imaging techniques were applied for inspection of fecal material on strawberries, and the spectral characteristics and specific wavebands of strawberries were determined by detection algorithms. The results would improve the safety and quality of produce consumed by the public.

  8. Aptamer-assembled nanomaterials for fluorescent sensing and imaging

    Science.gov (United States)

    Lu, Danqing; He, Lei; Zhang, Ge; Lv, Aiping; Wang, Ruowen; Zhang, Xiaobing; Tan, Weihong

    2017-01-01

    Aptamers, which are selected in vitro by a technology known as the systematic evolution of ligands by exponential enrichment (SELEX), represent a crucial recognition element in molecular sensing. With advantages such as good biocompatibility, facile functionalization, and special optical and physical properties, various nanomaterials can protect aptamers from enzymatic degradation and nonspecific binding in living systems and thus provide a preeminent platform for biochemical applications. Coupling aptamers with various nanomaterials offers many opportunities for developing highly sensitive and selective sensing systems. Here, we focus on the recent applications of aptamer-assembled nanomaterials in fluorescent sensing and imaging. Different types of nanomaterials are examined along with their advantages and disadvantages. Finally, we look toward the future of aptamer-assembled nanomaterials.

  9. A widefield fluorescence microscope with a linear image sensor for image cytometry of biospecimens: Considerations for image quality optimization

    Energy Technology Data Exchange (ETDEWEB)

    Hutcheson, Joshua A.; Majid, Aneeka A.; Powless, Amy J.; Muldoon, Timothy J., E-mail: tmuldoon@uark.edu [Department of Biomedical Engineering, University of Arkansas, 120 Engineering Hall, Fayetteville, Arkansas 72701 (United States)

    2015-09-15

    Linear image sensors have been widely used in numerous research and industry applications to provide continuous imaging of moving objects. Here, we present a widefield fluorescence microscope with a linear image sensor used to image translating objects for image cytometry. First, a calibration curve was characterized for a custom microfluidic chamber over a span of volumetric pump rates. Image data were also acquired using 15 μm fluorescent polystyrene spheres on a slide with a motorized translation stage in order to match linear translation speed with line exposure periods to preserve the image aspect ratio. Aspect ratios were then calculated after imaging to ensure quality control of image data. Fluorescent beads were imaged in suspension flowing through the microfluidics chamber being pumped by a mechanical syringe pump at 16 μl min{sup −1} with a line exposure period of 150 μs. The line period was selected to acquire images of fluorescent beads with a 40 dB signal-to-background ratio. A motorized translation stage was then used to transport conventional glass slides of stained cellular biospecimens. Whole blood collected from healthy volunteers was stained with 0.02% (w/v) proflavine hemisulfate was imaged to highlight leukocyte morphology with a 1.56 mm × 1.28 mm field of view (1540 ms total acquisition time). Oral squamous cells were also collected from healthy volunteers and stained with 0.01% (w/v) proflavine hemisulfate to demonstrate quantifiable subcellular features and an average nuclear to cytoplasmic ratio of 0.03 (n = 75), with a resolution of 0.31 μm pixels{sup −1}.

  10. A fast global fitting algorithm for fluorescence lifetime imaging microscopy based on image segmentation.

    Science.gov (United States)

    Pelet, S; Previte, M J R; Laiho, L H; So, P T C

    2004-10-01

    Global fitting algorithms have been shown to improve effectively the accuracy and precision of the analysis of fluorescence lifetime imaging microscopy data. Global analysis performs better than unconstrained data fitting when prior information exists, such as the spatial invariance of the lifetimes of individual fluorescent species. The highly coupled nature of global analysis often results in a significantly slower convergence of the data fitting algorithm as compared with unconstrained analysis. Convergence speed can be greatly accelerated by providing appropriate initial guesses. Realizing that the image morphology often correlates with fluorophore distribution, a global fitting algorithm has been developed to assign initial guesses throughout an image based on a segmentation analysis. This algorithm was tested on both simulated data sets and time-domain lifetime measurements. We have successfully measured fluorophore distribution in fibroblasts stained with Hoechst and calcein. This method further allows second harmonic generation from collagen and elastin autofluorescence to be differentiated in fluorescence lifetime imaging microscopy images of ex vivo human skin. On our experimental measurement, this algorithm increased convergence speed by over two orders of magnitude and achieved significantly better fits. Copyright 2004 Biophysical Society

  11. Time-Domain Fluorescence Lifetime Imaging Techniques Suitable for Solid-State Imaging Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Robert K. Henderson

    2012-05-01

    Full Text Available We have successfully demonstrated video-rate CMOS single-photon avalanche diode (SPAD-based cameras for fluorescence lifetime imaging microscopy (FLIM by applying innovative FLIM algorithms. We also review and compare several time-domain techniques and solid-state FLIM systems, and adapt the proposed algorithms for massive CMOS SPAD-based arrays and hardware implementations. The theoretical error equations are derived and their performances are demonstrated on the data obtained from 0.13 μm CMOS SPAD arrays and the multiple-decay data obtained from scanning PMT systems. In vivo two photon fluorescence lifetime imaging data of FITC-albumin labeled vasculature of a P22 rat carcinosarcoma (BD9 rat window chamber are used to test how different algorithms perform on bi-decay data. The proposed techniques are capable of producing lifetime images with enough contrast.

  12. Microbubble embedded with upconversion nanoparticles as a bimodal contrast agent for fluorescence and ultrasound imaging

    International Nuclear Information System (INIS)

    Jin, Birui; Lin, Min; You, Minli; Xu, Feng; Lu, Tianjian; Zong, Yujin; Wan, Mingxi; Duan, Zhenfeng

    2015-01-01

    Bimodal imaging offers additional imaging signal thus finds wide spread application in clinical diagnostic imaging. Fluorescence/ultrasound bimodal imaging contrast agent using fluorescent dyes or quantum dots for fluorescence signal has emerged as a promising method, which however requires visible light or UV irradiation resulting in photobleaching, photoblinking, auto-fluorescence and limited tissue penetration depth. To surmount these problems, we developed a novel bimodal contrast agent using layer-by-layer assembly of upconversion nanoparticles onto the surface of microbubbles. The resulting microbubbles with average size of 2 μm provide enhanced ultrasound echo for ultrasound imaging and upconversion emission upon near infrared irradiation for fluorescence imaging. The developed bimodal contrast agent holds great potential to be applied in ultrasound target technique for targeted diseases diagnostics and therapy. (paper)

  13. Digital subtraction angiography in ischemic cerebrovascular accidents

    Energy Technology Data Exchange (ETDEWEB)

    Manelfe, C.; Bonafe, A.; Ducos de Lahitte, M.; Rascol, A.; Prere, J.; Guiraud, B.; Marc-Vergnes, J.P. (Hopital Purpan, 31 - Toulouse (France))

    1983-12-29

    Recent advances in computer and radiological technology have permitted reassessment of intravenous angiography in the evaluation of cerebrovascular disorders. Although digital subtraction angiography is a relatively new technique, it has rapidly gained a widespread acceptance. It has extended the use of angiography to outpatients and to people in whom conventional angiography is contraindicated. This reliable, safe, and relatively noninvasive technique offers the user two benefits: real-time subtraction and enhanced image quality. The system allows angiographic evaluation of the extracranial and intracranial vessels by means of intravenous injection of contrast material. Extracranial studies clearly demonstrate stenoses and occlusions of the major cervicocephalic arteries. Intracranial studies usually detect major cerebrovascular occlusions and provide insight into the collateral flow patterns. Intravenous digital subtraction angiography permits accurate assessment of cervicocephalic vessels after surgical repair. Although intravenous digital subtraction angiography obviates the need for conventional angiography in many cases, movements from the patients, or superimposition of vascular structures can substantially degrade the quality of the images. Digital subtraction angiography with intra-arterial injection of contrast medium will be contemplated in patients with poor intravenous digital subtraction angiography studies prior to surgery.

  14. Digital subtraction angiography in ischemic cerebrovascular accidents

    International Nuclear Information System (INIS)

    Manelfe, C.; Bonafe, A.; Ducos de Lahitte, M.; Rascol, A.; Prere, J.; Guiraud, B.; Marc-Vergnes, J.P.

    1983-01-01

    Recent advances in computer and radiological technology have permitted reassessment of intravenous angiography in the evaluation of cerebrovascular disorders. Although digital subtraction angiography is a relatively new technique, it has rapidly gained a widespread acceptance. It has extended the use of angiography to outpatients and to people in whom conventional angiography is contraindicated. This reliable, safe, and relatively noninvasive technique offers the user two benefits: real-time subtraction and enhanced image quality. The system allows angiographic evaluation of the extracranial and intracranial vessels by means of intravenous injection of contrast material. Extracranial studies clearly demonstrate stenoses and occlusions of the major cervicocephalic arteries. Intracranial studies usually detect major cerebrovascular occlusions and provide insight into the collateral flow patterns. Intravenous digital subtraction angiography permits accurate assessment of cervicocephalic vessels after surgical repair. Although intravenous digital subtraction angiography obviates the need for conventional angiography in many cases, movements from the patients, or superimposition of vascular structures can substantially degrade the quality of the images. Digital subtraction angiography with intra-arterial injection of contrast medium will be contemplated in patients with poor intravenous digital subtraction angiography studies prior to surgery [fr

  15. COMPARISON OF BACKGROUND SUBTRACTION, SOBEL, ADAPTIVE MOTION DETECTION, FRAME DIFFERENCES, AND ACCUMULATIVE DIFFERENCES IMAGES ON MOTION DETECTION

    Directory of Open Access Journals (Sweden)

    Dara Incam Ramadhan

    2018-02-01

    Full Text Available Nowadays, digital image processing is not only used to recognize motionless objects, but also used to recognize motions objects on video. One use of moving object recognition on video is to detect motion, which implementation can be used on security cameras. Various methods used to detect motion have been developed so that in this research compared some motion detection methods, namely Background Substraction, Adaptive Motion Detection, Sobel, Frame Differences and Accumulative Differences Images (ADI. Each method has a different level of accuracy. In the background substraction method, the result obtained 86.1% accuracy in the room and 88.3% outdoors. In the sobel method the result of motion detection depends on the lighting conditions of the room being supervised. When the room is in bright condition, the accuracy of the system decreases and when the room is dark, the accuracy of the system increases with an accuracy of 80%. In the adaptive motion detection method, motion can be detected with a condition in camera visibility there is no object that is easy to move. In the frame difference method, testing on RBG image using average computation with threshold of 35 gives the best value. In the ADI method, the result of accuracy in motion detection reached 95.12%.

  16. Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects.

    Science.gov (United States)

    Dysli, Chantal; Quellec, Gwénolé; Abegg, Mathias; Menke, Marcel N; Wolf-Schnurrbusch, Ute; Kowal, Jens; Blatz, Johannes; La Schiazza, Olivier; Leichtle, Alexander B; Wolf, Sebastian; Zinkernagel, Martin S

    2014-04-03

    Fundus autofluorescence (FAF) cannot only be characterized by the intensity or the emission spectrum, but also by its lifetime. As the lifetime of a fluorescent molecule is sensitive to its local microenvironment, this technique may provide more information than fundus autofluorescence imaging. We report here the characteristics and repeatability of FAF lifetime measurements of the human macula using a new fluorescence lifetime imaging ophthalmoscope (FLIO). A total of 31 healthy phakic subjects were included in this study with an age range from 22 to 61 years. For image acquisition, a fluorescence lifetime ophthalmoscope based on a Heidelberg Engineering Spectralis system was used. Fluorescence lifetime maps of the retina were recorded in a short- (498-560 nm) and a long- (560-720 nm) spectral channel. For quantification of fluorescence lifetimes a standard ETDRS grid was used. Mean fluorescence lifetimes were shortest in the fovea, with 208 picoseconds for the short-spectral channel and 239 picoseconds for the long-spectral channel, respectively. Fluorescence lifetimes increased from the central area to the outer ring of the ETDRS grid. The test-retest reliability of FLIO was very high for all ETDRS areas (Spearman's ρ = 0.80 for the short- and 0.97 for the long-spectral channel, P macula in healthy subjects. By using a custom-built software, we were able to quantify fluorescence lifetimes within the ETDRS grid. Establishing a clinically accessible standard against which to measure FAF lifetimes within the retina is a prerequisite for future studies in retinal disease.

  17. Fluorescence Lifetime Imaging in Stargardt Disease: Potential Marker for Disease Progression

    OpenAIRE

    Dysli Chantal; Wolf Sebastian; Hatz Katja; Zinkernagel Martin

    2016-01-01

    PURPOSE The purpose of this study was to describe autofluorescence lifetime characteristics in Stargardt disease (STGD) using fluorescence lifetime imaging ophthalmoscopy (FLIO) and to investigate potential prognostic markers for disease activity and progression. METHODS Fluorescence lifetime data of 16 patients with STGD (mean age, 40 years; range, 22-56 years) and 15 age-matched controls were acquired using a fluorescence lifetime imaging ophthalmoscope based on a Heidelberg Eng...

  18. Video-rate confocal microscopy for single-molecule imaging in live cells and superresolution fluorescence imaging.

    Science.gov (United States)

    Lee, Jinwoo; Miyanaga, Yukihiro; Ueda, Masahiro; Hohng, Sungchul

    2012-10-17

    There is no confocal microscope optimized for single-molecule imaging in live cells and superresolution fluorescence imaging. By combining the swiftness of the line-scanning method and the high sensitivity of wide-field detection, we have developed a, to our knowledge, novel confocal fluorescence microscope with a good optical-sectioning capability (1.0 μm), fast frame rates (fluorescence detection efficiency. Full compatibility of the microscope with conventional cell-imaging techniques allowed us to do single-molecule imaging with a great ease at arbitrary depths of live cells. With the new microscope, we monitored diffusion motion of fluorescently labeled cAMP receptors of Dictyostelium discoideum at both the basal and apical surfaces and obtained superresolution fluorescence images of microtubules of COS-7 cells at depths in the range 0-85 μm from the surface of a coverglass. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Accurate study of FosPeg® distribution in a mouse model using fluorescence imaging technique and fluorescence white monte carlo simulations

    DEFF Research Database (Denmark)

    Xie, Haiyan; Liu, Haichun; Svenmarker, Pontus

    2010-01-01

    Fluorescence imaging is used for quantitative in vivo assessment of drug concentration. Light attenuation in tissue is compensated for through Monte-Carlo simulations. The intrinsic fluorescence intensity, directly proportional to the drug concentration, could be obtained....

  20. Detection of fecal residue on poultry carcasses by laser induced fluorescence imaging techniques

    Science.gov (United States)

    The potential use of laser-induced fluorescence imaging techniques was investigated for the detection of diluted fecal matters from various parts of the digestive tract, including colon, ceca, small intestine, and duodenum, on poultry carcasses. One of the challenges for using fluorescence imaging f...

  1. Combined Raman and continuous-wave-excited two-photon fluorescence cell imaging

    NARCIS (Netherlands)

    Uzunbajakava, N.; Otto, Cornelis

    2003-01-01

    We demonstrate a confocal optical microscope that combines cw two-photon-excited fluorescence microscopy with confocal Raman microscopy. With this microscope fast image acquisition with fluorescence imaging can be used to select areas of interest for subsequent chemical analysis with spontaneous

  2. Fluorescence imaging in the upper gastrointestinal tract for the detection of dysplasic changes

    Science.gov (United States)

    Sukowski, Uwe; Ebert, Bernd; Ortner, Marianne; Mueller, Karsten; Voderholzer, W.; Weber-Eibel, J.; Dietel, M.; Lochs, Herbert; Rinneberg, Herbert H.

    2001-10-01

    During endoscopy of the esophagus fluorescence images were recorded at a delay of 20 ns after pulsed laser excitation simultaneously with conventional reflected white light images. To label malignant cells (dysplasia, tumor) 5-aminolaevulinic acid was applied prior to fluorescence guided bi-opsy. In this way pre-malignant and malignant lesions were detected not seen previously during routine endoscopy.

  3. In vivo multiphoton tomography and fluorescence lifetime imaging of human brain tumor tissue.

    Science.gov (United States)

    Kantelhardt, Sven R; Kalasauskas, Darius; König, Karsten; Kim, Ella; Weinigel, Martin; Uchugonova, Aisada; Giese, Alf

    2016-05-01

    High resolution multiphoton tomography and fluorescence lifetime imaging differentiates glioma from adjacent brain in native tissue samples ex vivo. Presently, multiphoton tomography is applied in clinical dermatology and experimentally. We here present the first application of multiphoton and fluorescence lifetime imaging for in vivo imaging on humans during a neurosurgical procedure. We used a MPTflex™ Multiphoton Laser Tomograph (JenLab, Germany). We examined cultured glioma cells in an orthotopic mouse tumor model and native human tissue samples. Finally the multiphoton tomograph was applied to provide optical biopsies during resection of a clinical case of glioblastoma. All tissues imaged by multiphoton tomography were sampled and processed for conventional histopathology. The multiphoton tomograph allowed fluorescence intensity- and fluorescence lifetime imaging with submicron spatial resolution and 200 picosecond temporal resolution. Morphological fluorescence intensity imaging and fluorescence lifetime imaging of tumor-bearing mouse brains and native human tissue samples clearly differentiated tumor and adjacent brain tissue. Intraoperative imaging was found to be technically feasible. Intraoperative image quality was comparable to ex vivo examinations. To our knowledge we here present the first intraoperative application of high resolution multiphoton tomography and fluorescence lifetime imaging of human brain tumors in situ. It allowed in vivo identification and determination of cell density of tumor tissue on a cellular and subcellular level within seconds. The technology shows the potential of rapid intraoperative identification of native glioma tissue without need for tissue processing or staining.

  4. Segmentation of fluorescence microscopy cell images using unsupervised mining.

    Science.gov (United States)

    Du, Xian; Dua, Sumeet

    2010-05-28

    The accurate measurement of cell and nuclei contours are critical for the sensitive and specific detection of changes in normal cells in several medical informatics disciplines. Within microscopy, this task is facilitated using fluorescence cell stains, and segmentation is often the first step in such approaches. Due to the complex nature of cell issues and problems inherent to microscopy, unsupervised mining approaches of clustering can be incorporated in the segmentation of cells. In this study, we have developed and evaluated the performance of multiple unsupervised data mining techniques in cell image segmentation. We adapt four distinctive, yet complementary, methods for unsupervised learning, including those based on k-means clustering, EM, Otsu's threshold, and GMAC. Validation measures are defined, and the performance of the techniques is evaluated both quantitatively and qualitatively using synthetic and recently published real data. Experimental results demonstrate that k-means, Otsu's threshold, and GMAC perform similarly, and have more precise segmentation results than EM. We report that EM has higher recall values and lower precision results from under-segmentation due to its Gaussian model assumption. We also demonstrate that these methods need spatial information to segment complex real cell images with a high degree of efficacy, as expected in many medical informatics applications.

  5. A Theoretical and Experimental Study of the Subtraction of Two Scintigraphic Images - As Applied to Visualization of the Pancreas; Etude Theorique et Experimentale de la Soustraction de Deux Images Scintigraphiques

    Energy Technology Data Exchange (ETDEWEB)

    Desgrez, A.; Razafindramamba, V.; Saint-Laurent, J. de; Kellershohn, C. [CEA, Service Hospitalier Frederic Joliot, Orsay (France)

    1969-05-15

    Some scintigraphic studies are limited because the tissue being depicted is not selective with respect to the radioactive product available. For example, the radioactivity of the circulating blood interferes with mercury scanning of bucco-pharyngeal tumours. Scintigraphy of the pancreas is likewise impeded by localization of selenomethionine in the liver. Similarly, certain types of liver incorporation impair the visualization of insufficiency in the right kidney. One solution to this problem is to use two different labelled compounds to produce two images and then subtract one from the other so as to separate out the tissue to be depicted. The paper deals with the various problems involved in such subtraction. For example, exact spatial coincidence ofthedata to be subtracted can be ensured only by simultaneous recording of the two images; aconsecutive recording, even if it is fast, may be detrimental. The operation often consists in a double technique: suppression of the unwanted tissue by subtraction and amplification of the contrast between the tissue under investigation and residual background noise. These two operations, subtraction and amplification, relate to variable magnitudes; the resolution of the final image is thus a function of certain statistical parameters, which are also discussed. In studies carried out on the pancreas, attention is paid to the respective advantages and conditions of spectrometric separation of the various products which can be used for subtraction; the value of labelled rose bengal, which can also be used for eliminating certain intestinal loops, is stressed. A description is given of two types of apparatus which can be used in making the subtraction. The first and cheaper device involves storing the data obtained on four-track magnetic tape; the second and more rapid method utilizes the memory of a 4096-channel analyser. With both of these devices it is possible to make several subtractions during a single examination and the

  6. An image analysis system for near-infrared (NIR) fluorescence lymph imaging

    Science.gov (United States)

    Zhang, Jingdan; Zhou, Shaohua Kevin; Xiang, Xiaoyan; Rasmussen, John C.; Sevick-Muraca, Eva M.

    2011-03-01

    Quantitative analysis of lymphatic function is crucial for understanding the lymphatic system and diagnosing the associated diseases. Recently, a near-infrared (NIR) fluorescence imaging system is developed for real-time imaging lymphatic propulsion by intradermal injection of microdose of a NIR fluorophore distal to the lymphatics of interest. However, the previous analysis software3, 4 is underdeveloped, requiring extensive time and effort to analyze a NIR image sequence. In this paper, we develop a number of image processing techniques to automate the data analysis workflow, including an object tracking algorithm to stabilize the subject and remove the motion artifacts, an image representation named flow map to characterize lymphatic flow more reliably, and an automatic algorithm to compute lymph velocity and frequency of propulsion. By integrating all these techniques to a system, the analysis workflow significantly reduces the amount of required user interaction and improves the reliability of the measurement.

  7. Fluorescence guided lymph node biopsy in large animals using direct image projection device

    Science.gov (United States)

    Ringhausen, Elizabeth; Wang, Tylon; Pitts, Jonathan; Akers, Walter J.

    2016-03-01

    The use of fluorescence imaging for aiding oncologic surgery is a fast growing field in biomedical imaging, revolutionizing open and minimally invasive surgery practices. We have designed, constructed, and tested a system for fluorescence image acquisition and direct display on the surgical field for fluorescence guided surgery. The system uses a near-infrared sensitive CMOS camera for image acquisition, a near-infra LED light source for excitation, and DLP digital projector for projection of fluorescence image data onto the operating field in real time. Instrument control was implemented in Matlab for image capture, processing of acquired data and alignment of image parameters with the projected pattern. Accuracy of alignment was evaluated statistically to demonstrate sensitivity to small objects and alignment throughout the imaging field. After verification of accurate alignment, feasibility for clinical application was demonstrated in large animal models of sentinel lymph node biopsy. Indocyanine green was injected subcutaneously in Yorkshire pigs at various locations to model sentinel lymph node biopsy in gynecologic cancers, head and neck cancer, and melanoma. Fluorescence was detected by the camera system during operations and projected onto the imaging field, accurately identifying tissues containing the fluorescent tracer at up to 15 frames per second. Fluorescence information was projected as binary green regions after thresholding and denoising raw intensity data. Promising results with this initial clinical scale prototype provided encouraging results for the feasibility of optical projection of acquired luminescence during open oncologic surgeries.

  8. Multimodality Imaging Probe for Positron Emission Tomography and Fluorescence Imaging Studies

    Directory of Open Access Journals (Sweden)

    Suresh K. Pandey

    2014-05-01

    Full Text Available Our goal is to develop multimodality imaging agents for use in cell tracking studies by positron emission tomography (PET and optical imaging (OI. For this purpose, bovine serum albumin (BSA was complexed with biotin (histologic studies, 5(6- carboxyfluorescein, succinimidyl ester (FAM SE (OI studies, and diethylenetriamine pentaacetic acid (DTPA for chelating gallium 68 (PET studies. For synthesis of BSA-biotin-FAM-DTPA, BSA was coupled to (+-biotin N-hydroxysuccinimide ester (biotin-NHSI. BSA- biotin was treated with DTPA-anhydride and biotin-BSA-DTPA was reacted with FAM. The biotin-BSA-DTPA-FAM was reacted with gallium chloride 3 to 5 mCi eluted from the generator using 0.1 N HCl and was passed through basic resin (AG 11 A8 and 150 mCi (100 μL, pH 7–8 was incubated with 0.1 mg of FAM conjugate (100 μL at room temperature for 15 minutes to give 66Ga-BSA-biotin-DTPA-FAM. A shaved C57 black mouse was injected with FAM conjugate (50 μL at one flank and FAM-68Ga (50 μL, 30 mCi at the other. Immediately after injection, the mouse was placed in a fluorescence imaging system (Kodak In-Vivo F, Bruker Biospin Co., Woodbridge, CT and imaged (Λex: 465 nm, Λem: 535 nm, time: 8 seconds, Xenon Light Source, Kodak. The same mouse was then placed under an Inveon microPET scanner (Siemens Medical Solutions, Knoxville, TN injected (intravenously with 25 μCi of 18F and after a half-hour (to allow sufficient bone uptake was imaged for 30 minutes. Molecular weight determined using matrix-associated laser desorption ionization (MALDI for the BSA sample was 66,485 Da and for biotin-BSA was 67,116 Da, indicating two biotin moieties per BSA molecule; for biotin-BSA-DTPA was 81,584 Da, indicating an average of 30 DTPA moieties per BSA molecule; and for FAM conjugate was 82,383 Da, indicating an average of 1.7 fluorescent moieties per BSA molecule. Fluorescence imaging clearly showed localization of FAM conjugate and FAM-68Ga at respective flanks of the mouse

  9. Compact whole-body fluorescent imaging of nude mice bearing EGFP expressing tumor

    Science.gov (United States)

    Chen, Yanping; Xiong, Tao; Chu, Jun; Yu, Li; Zeng, Shaoqun; Luo, Qingming

    2005-01-01

    Issue of tumor has been a hotspot of current medicine. It is important for tumor research to detect tumors bearing in animal models easily, fast, repetitively and noninvasivly. Many researchers have paid their increasing interests on the detecting. Some contrast agents, such as green fluorescent protein (GFP) and Discosoma red fluorescent protein (Dsred) were applied to enhance image quality. Three main kinds of imaging scheme were adopted to visualize fluorescent protein expressing tumors in vivo. These schemes based on fluorescence stereo microscope, cooled charge-coupled-device (CCD) or camera as imaging set, and laser or mercury lamp as excitation light source. Fluorescence stereo microscope, laser and cooled CCD are expensive to many institutes. The authors set up an inexpensive compact whole-body fluorescent imaging tool, which consisted of a Kodak digital camera (model DC290), fluorescence filters(B and G2;HB Optical, Shenyang, Liaoning, P.R. China) and a mercury 50-W lamp power supply (U-LH50HG;Olympus Optical, Japan) as excitation light source. The EGFP was excited directly by mercury lamp with D455/70 nm band-pass filter and fluorescence was recorded by digital camera with 520nm long-pass filter. By this easy operation tool, the authors imaged, in real time, fluorescent tumors growing in live mice. The imaging system is external and noninvasive. For half a year our experiments suggested the imaging scheme was feasible. Whole-body fluorescence optical imaging for fluorescent expressing tumors in nude mouse is an ideal tool for antitumor, antimetastatic, and antiangiogenesis drug screening.

  10. Tomosynthesis applied to digital subtraction angiography

    International Nuclear Information System (INIS)

    Kruger, R.A.; Sedaghati, M.; Roy, D.G.; Liu, P.; Nelson, J.A.; Kubal, W.; Del Rio, P.

    1984-01-01

    This extension of the author's previous work on tomographic digital subtraction angiography (DSA) describes the theory of tomosynthetic DSA image reconstruction techniques. In addition to developing the resolution limits resulting from x-ray exposure length and image intensifier field curvature, the authors describe one method of image formation and show tomosynthetic DSA images of animal and human anatomy. Methods for improving the present technique are discussed

  11. Fluorescent screens and image processing for the APS linac test stand

    International Nuclear Information System (INIS)

    Berg, W.; Ko, K.

    1992-01-01

    A fluorescent screen was used to monitor relative beam position and spot size of a 56-MeV electron beam in the linac test stand. A chromium doped alumina ceramic screen inserted into the beam was monitored by a video camera. The resulting image was captured using a frame grabber and stored into memory. Reconstruction and analysis of the stored image was performed using PV-WAVE. This paper will discuss the hardware and software implementation of the fluorescent screen and imaging system. Proposed improvements for the APS linac fluorescent screens and image

  12. Laser-induced fluorescence imaging of subsurface tissue structures with a volume holographic spatial-spectral imaging system.

    Science.gov (United States)

    Luo, Yuan; Gelsinger-Austin, Paul J; Watson, Jonathan M; Barbastathis, George; Barton, Jennifer K; Kostuk, Raymond K

    2008-09-15

    A three-dimensional imaging system incorporating multiplexed holographic gratings to visualize fluorescence tissue structures is presented. Holographic gratings formed in volume recording materials such as a phenanthrenquinone poly(methyl methacrylate) photopolymer have narrowband angular and spectral transmittance filtering properties that enable obtaining spatial-spectral information within an object. We demonstrate this imaging system's ability to obtain multiple depth-resolved fluorescence images simultaneously.

  13. Microdose fluorescence imaging of ABY-029 on an operating microscope adapted by custom illumination and imaging modules

    OpenAIRE

    Elliott, Jonathan T.; Dsouza, Alisha V.; Marra, Kayla; Pogue, Brian W.; Roberts, David W.; Paulsen, Keith D.

    2016-01-01

    Fluorescence guided surgery has the potential to positively impact surgical oncology; current operating microscopes and stand-alone imaging systems are too insensitive or too cumbersome to maximally take advantage of new tumor-specific agents developed through the microdose pathway. To this end, a custom-built illumination and imaging module enabling picomolar-sensitive near-infrared fluorescence imaging on a commercial operating microscope is described. The limits of detection and system spe...

  14. Preparation and Characterization of Highly Fluorescent, Glutathione-coated Near Infrared Quantum Dots for in Vivo Fluorescence Imaging

    Directory of Open Access Journals (Sweden)

    Yoshichika Yoshioka

    2008-10-01

    Full Text Available Fluorescent probes that emit in the near-infrared (NIR, 700-1,300 nm region are suitable as optical contrast agents for in vivo fluorescence imaging because of low scattering and absorption of the NIR light in tissues. Recently, NIR quantum dots (QDs have become a new class of fluorescent materials that can be used for in vivo imaging. Compared with traditional organic fluorescent dyes, QDs have several unique advantages such as size- and composition-tunable emission, high brightness, narrow emission bands, large Stokes shifts, and high resistance to photobleaching. In this paper, we report a facile method for the preparation of highly fluorescent, water-soluble glutathione (GSH-coated NIR QDs for in vivo imaging. GSH-coated NIR QDs (GSH-QDs were prepared by surface modification of hydrophobic CdSeTe/CdS (core/shell QDs. The hydrophobic surface of the CdSeTe/CdS QDs was exchanged with GSH in tetrahydrofuran-water. The resulting GSH-QDs were monodisperse particles and stable in PBS (phosphate buffered saline, pH = 7.4. The GSH-QDs (800 nm emission were highly fluorescent in aqueous solutions (quantum yield = 22% in PBS buffer, and their hydrodynamic diameter was less than 10 nm, which is comparable to the size of proteins. The cellular uptake and viability for the GSH-QDs were examined using HeLa and HEK 293 cells. When the cells were incubated with aqueous solutions of the GSH-QDs (10 nM, the QDs were taken into the cells and distributed in the perinuclear region of both cells. After 12 hrs incubation of 4 nM of GSH-QDs, the viabilities of HeLa and HEK 293 cells were ca. 80 and 50%, respectively. As a biomedical utility of the GSH-QDs, in vivo NIRfluorescence imaging of a lymph node in a mouse is presented.

  15. Visualization of subcapsular hepatic malignancy by indocyanine-green fluorescence imaging during laparoscopic hepatectomy.

    Science.gov (United States)

    Kudo, Hiroki; Ishizawa, Takeaki; Tani, Keigo; Harada, Nobuhiro; Ichida, Akihiko; Shimizu, Atsushi; Kaneko, Junichi; Aoki, Taku; Sakamoto, Yoshihiro; Sugawara, Yasuhiko; Hasegawa, Kiyoshi; Kokudo, Norihiro

    2014-08-01

    Although laparoscopic hepatectomy has increasingly been used to treat cancers in the liver, the accuracy of intraoperative diagnosis may be inferior to that of open surgery because the ability to visualize and palpate the liver surface during laparoscopy is relatively limited. Fluorescence imaging has the potential to provide a simple compensatory diagnostic tool for identification of cancers in the liver during laparoscopic hepatectomy. In 17 patients who were to undergo laparoscopic hepatectomy, 0.5 mg/kg body weight of indocyanine green (ICG) was administered intravenously within the 2 weeks prior to surgery. Intraoperatively, a laparoscopic fluorescence imaging system obtained fluorescence images of its surfaces during mobilization of the liver. In all, 16 hepatocellular carcinomas (HCCs) and 16 liver metastases (LMs) were resected. Of these, laparoscopic ICG fluorescence imaging identified 12 HCCs (75%) and 11 LMs (69%) on the liver surfaces distributed over Couinaud's segments 1-8, including the 17 tumors that had not been identified by visual inspections of normal color images. The 23 tumors that were identified by fluorescence imaging were located closer to the liver surfaces than another nine tumors that were not identified by fluorescence imaging (median [range] depth 1 [0-5] vs. 11 [8-30] mm; p fluorescence imaging enables real-time identification of subcapsular liver cancers, thus facilitating estimation of the required extent of hepatic mobilization and determination of the location of an appropriate hepatic transection line.

  16. Near-Infrared Squaraine Dye Encapsulated Micelles for in Vivo Fluorescence and Photoacoustic Bimodal Imaging.

    Science.gov (United States)

    Sreejith, Sivaramapanicker; Joseph, James; Lin, Manjing; Menon, Nishanth Venugopal; Borah, Parijat; Ng, Hao Jun; Loong, Yun Xian; Kang, Yuejun; Yu, Sidney Wing-Kwong; Zhao, Yanli

    2015-06-23

    Combined near-infrared (NIR) fluorescence and photoacoustic imaging techniques present promising capabilities for noninvasive visualization of biological structures. Development of bimodal noninvasive optical imaging approaches by combining NIR fluorescence and photoacoustic tomography demands suitable NIR-active exogenous contrast agents. If the aggregation and photobleaching are prevented, squaraine dyes are ideal candidates for fluorescence and photoacoustic imaging. Herein, we report rational selection, preparation, and micelle encapsulation of an NIR-absorbing squaraine dye (D1) for in vivo fluorescence and photoacoustic bimodal imaging. D1 was encapsulated inside micelles constructed from a biocompatible nonionic surfactant (Pluoronic F-127) to obtain D1-encapsulated micelles (D1(micelle)) in aqueous conditions. The micelle encapsulation retains both the photophysical features and chemical stability of D1. D1(micelle) exhibits high photostability and low cytotoxicity in biological conditions. Unique properties of D1(micelle) in the NIR window of 800-900 nm enable the development of a squaraine-based exogenous contrast agent for fluorescence and photoacoustic bimodal imaging above 820 nm. In vivo imaging using D1(micelle), as demonstrated by fluorescence and photoacoustic tomography experiments in live mice, shows contrast-enhanced deep tissue imaging capability. The usage of D1(micelle) proven by preclinical experiments in rodents reveals its excellent applicability for NIR fluorescence and photoacoustic bimodal imaging.

  17. Fully time-resolved near-field scanning optical microscopy fluorescence imaging

    International Nuclear Information System (INIS)

    Kwak, Eun-Soo; Vanden Bout, David A.

    2003-01-01

    Time-correlated single photon counting has been coupled with near-field scanning optical microscopy (NSOM) to record complete fluorescence lifetime decays at each pixel in an NSOM image. The resulting three-dimensional data sets can be binned in the time dimension to create images of photons at particular time delays or images of the fluorescence lifetime. Alternatively, regions of interest identified in the topography and fluorescence images can be used to bin the data in the spatial dimensions resulting in high signal to noise fluorescence decays of particular regions of the sample. The technique has been demonstrated on films of poly(vinylalcohol), doped with the fluorescent dye, cascade blue (CB). The CB segregates into small circular regions of high concentration within the films during the drying process. The lifetime imaging shows that the spots have slightly faster excited state decays due to quenching of the luminescence as a result of the higher concentration. The technique is also used to image the fluorescence lifetime of an annealed film of poly(dihexylfluorene). The samples show high contrast in the total intensity fluorescence image, but the lifetime image reveals the sample to be extremely uniform

  18. Whole-slide imaging is a robust alternative to traditional fluorescent microscopy for fluorescence in situ hybridization imaging using break-apart DNA probes.

    Science.gov (United States)

    Laurent, Camille; Guérin, Maxime; Frenois, François-Xavier; Thuries, Valérie; Jalabert, Laurence; Brousset, Pierre; Valmary-Degano, Séverine

    2013-08-01

    Fluorescence in situ hybridization is an indispensable technique used in routine pathology and for theranostic purposes. Because fluorescence in situ hybridization techniques require sophisticated microscopic workstations and long procedures of image acquisition with sometimes subjective and poorly reproducible results, we decided to test a whole-slide imaging system as an alternative approach. In this study, we used the latest generation of Pannoramic 250 Flash digital microscopes (P250 Flash digital microscopes; 3DHISTECH, Budapest, Hungary) to digitize fluorescence in situ hybridization slides of diffuse large B cells lymphoma cases for detecting MYC rearrangement. The P250 Flash digital microscope was found to be precise with better definition of split signals in cells containing MYC rearrangement with fewer truncated signals as compared to traditional fluorescence microscopy. This digital technique is easier thanks to the preview function, which allows almost immediate identification of the tumor area, and the panning and zooming functionalities as well as a shorter acquisition time. Moreover, fluorescence in situ hybridization analyses using the digital technique appeared to be more reproducible between pathologists. Finally, the digital technique also allowed prolonged conservation of photos. In conclusion, whole-slide imaging technologies represent rapid, robust, and highly sensitive methods for interpreting fluorescence in situ hybridization slides with break-apart probes. In addition, these techniques offer an easier way to interpret the signals and allow definitive storage of the images for pathology expert networks or e-learning databases. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Spirally-patterned pinhole arrays for long-term fluorescence cell imaging.

    Science.gov (United States)

    Koo, Bon Ung; Kang, YooNa; Moon, SangJun; Lee, Won Gu

    2015-11-07

    Fluorescence cell imaging using a fluorescence microscope is an extensively used technique to examine the cell nucleus, internal structures, and other cellular molecules with fluorescence response time and intensity. However, it is difficult to perform high resolution cell imaging for a long period of time with this technique due to necrosis and apoptosis depending on the type and subcellular location of the damage caused by phototoxicity. A large number of studies have been performed to resolve this problem, but researchers have struggled to meet the challenge between cellular viability and image resolution. In this study, we employ a specially designed disc to reduce cell damage by controlling total fluorescence exposure time without deterioration of the image resolution. This approach has many advantages such as, the apparatus is simple, cost-effective, and easily integrated into the optical pathway through a conventional fluorescence microscope.

  20. Smart optical probes for near-infrared fluorescence imaging of Alzheimer's disease pathology

    International Nuclear Information System (INIS)

    Raymond, Scott B.; Bacskai, Brian J.; Skoch, Jesse; Hills, Ivory D.; Swager, Timothy M.; Nesterov, Evgueni E.

    2008-01-01

    Near-infrared fluorescent probes for amyloid-beta (Aβ) are an exciting option for molecular imaging in Alzheimer's disease research and may translate to clinical diagnostics. However, Aβ-targeted optical probes often suffer from poor specificity and slow clearance from the brain. We are designing smart optical probes that emit characteristic fluorescence signal only when bound to Aβ. We synthesized a family of dyes and tested Aβ-binding sensitivity with fluorescence spectroscopy and tissue-staining. Select compounds exhibited Aβ-dependent changes in fluorescence quantum yield, lifetime, and emission spectra that may be imaged microscopically or in vivo using new lifetime and spectral fluorescence imaging techniques. Smart optical probes that turn on when bound to Aβ will improve amyloid detection and may enable quantitative molecular imaging in vivo. (orig.)

  1. Mechanistic background and clinical applications of indocyanine green fluorescence imaging of hepatocellular carcinoma.

    Science.gov (United States)

    Ishizawa, Takeaki; Masuda, Koichi; Urano, Yasuteru; Kawaguchi, Yoshikuni; Satou, Shouichi; Kaneko, Junichi; Hasegawa, Kiyoshi; Shibahara, Junji; Fukayama, Masashi; Tsuji, Shingo; Midorikawa, Yutaka; Aburatani, Hiroyuki; Kokudo, Norihiro

    2014-02-01

    Although clinical applications of intraoperative fluorescence imaging of liver cancer using indocyanine green (ICG) have begun, the mechanistic background of ICG accumulation in the cancerous tissues remains unclear. In 170 patients with hepatocellular carcinoma cells (HCC), the liver surfaces and resected specimens were intraoperatively examined by using a near-infrared fluorescence imaging system after preoperative administration of ICG (0.5 mg/kg i.v.). Microscopic examinations, gene expression profile analysis, and immunohistochemical staining were performed for HCCs, which showed ICG fluorescence in the cancerous tissues (cancerous-type fluorescence), and HCCs showed fluorescence only in the surrounding non-cancerous liver parenchyma (rim-type fluorescence). ICG fluorescence imaging enabled identification of 273 of 276 (99%) HCCs in the resected specimens. HCCs showed that cancerous-type fluorescence was associated with higher cancer cell differentiation as compared with rim-type HCCs (P Fluorescence microscopy identified the presence of ICG in the canalicular side of the cancer cell cytoplasm, and pseudoglands of the HCCs showed a cancerous-type fluorescence pattern. The ratio of the gene and protein expression levels in the cancerous to non-cancerous tissues for Na(+)/taurocholate cotransporting polypeptide (NTCP) and organic anion-transporting polypeptide 8 (OATP8), which are associated with portal uptake of ICG by hepatocytes that tended to be higher in the HCCs that showed cancerous-type fluorescence than in those that showed rim-type fluorescence. Preserved portal uptake of ICG in differentiated HCC cells by NTCP and OATP8 with concomitant biliary excretion disorders causes accumulation of ICG in the cancerous tissues after preoperative intravenous administration. This enables highly sensitive identification of HCC by intraoperative ICG fluorescence imaging.

  2. An image fiber based fluorescent probe with associated signal processing scheme for biomedical diagnostics

    International Nuclear Information System (INIS)

    Vaishakh, M; Murukeshan, V M; Seah, L K

    2008-01-01

    A dual-modality image fiber based fluorescent probe that can be used for depth sensitive imaging and suppression of fluorescent emissions with nanosecond lifetime difference is proposed and illustrated in this paper. The system can give high optical sectioning and employs an algorithm for obtaining phase sensitive images. The system can find main application in in vivo biomedical diagnostics for detecting biochemical changes for distinguishing malignant tissue from healthy tissue

  3. X-ray imaging with monochromatic synchrotron radiation. Fluorescent and phase-contrast method

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Tohoru; Itai, Yuji [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine

    2002-05-01

    To obtain the high sensitive x-ray images of biomedical object, new x-ray imaging techniques using fluorescent x-ray and phase-contrast x-ray are being developed in Japan. Fluorescent x-ray CT can detect very small amounts of specific elements in the order of ppm at one pixel, whereas phase-contrast x-ray imaging with interferometer can detect minute differences of biological object. Here, our recent experimental results are presented. (author)

  4. Optical imaging of non-fluorescent nanoparticle probes in live cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gufeng; Stender, Anthony S.; Sun, Wei; and Fang, Ning

    2009-12-17

    Precise imaging of cellular and subcellular structures and dynamic processes in live cells is crucial for fundamental research in life sciences and in medical applications. Non-fluorescent nanoparticles are an important type of optical probe used in live-cell imaging due to their photostability, large optical cross-sections, and low toxicity. Here, we provide an overview of recent developments in the optical imaging of non-fluorescent nanoparticle probes in live cells.

  5. Multiplexed phase-space imaging for 3D fluorescence microscopy.

    Science.gov (United States)

    Liu, Hsiou-Yuan; Zhong, Jingshan; Waller, Laura

    2017-06-26

    Optical phase-space functions describe spatial and angular information simultaneously; examples of optical phase-space functions include light fields in ray optics and Wigner functions in wave optics. Measurement of phase-space enables digital refocusing, aberration removal and 3D reconstruction. High-resolution capture of 4D phase-space datasets is, however, challenging. Previous scanning approaches are slow, light inefficient and do not achieve diffraction-limited resolution. Here, we propose a multiplexed method that solves these problems. We use a spatial light modulator (SLM) in the pupil plane of a microscope in order to sequentially pattern multiplexed coded apertures while capturing images in real space. Then, we reconstruct the 3D fluorescence distribution of our sample by solving an inverse problem via regularized least squares with a proximal accelerated gradient descent solver. We experimentally reconstruct a 101 Megavoxel 3D volume (1010×510×500µm with NA 0.4), demonstrating improved acquisition time, light throughput and resolution compared to scanning aperture methods. Our flexible patterning scheme further allows sparsity in the sample to be exploited for reduced data capture.

  6. Submicron hard X-ray fluorescence imaging of synthetic elements.

    Science.gov (United States)

    Jensen, Mark P; Aryal, Baikuntha P; Gorman-Lewis, Drew; Paunesku, Tatjana; Lai, Barry; Vogt, Stefan; Woloschak, Gayle E

    2012-04-13

    Synchrotron-based X-ray fluorescence microscopy (XFM) using hard X-rays focused into sub-micron spots is a powerful technique for elemental quantification and mapping, as well as microspectroscopic measurements such as μ-XANES (X-ray absorption near edge structure). We have used XFM to image and simultaneously quantify the transuranic element plutonium at the L(3) or L(2)-edge as well as Th and lighter biologically essential elements in individual rat pheochromocytoma (PC12) cells after exposure to the long-lived plutonium isotope (242)Pu. Elemental maps demonstrate that plutonium localizes principally in the cytoplasm of the cells and avoids the cell nucleus, which is marked by the highest concentrations of phosphorus and zinc, under the conditions of our experiments. The minimum detection limit under typical acquisition conditions with an incident X-ray energy of 18 keV for an average 202 μm(2) cell is 1.4 fg Pu or 2.9×10(-20) moles Pu μm(-2), which is similar to the detection limit of K-edge XFM of transition metals at 10 keV. Copper electron microscopy grids were used to avoid interference from gold X-ray emissions, but traces of strontium present in naturally occurring calcium can still interfere with plutonium detection using its L(α) X-ray emission. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Cerebral bone subtraction CT angiography using 80 kVp and sinogram-affirmed iterative reconstruction: contrast medium and radiation dose reduction with improvement of image quality

    Energy Technology Data Exchange (ETDEWEB)

    Nagayama, Yasunori [Kumamoto City Hospital, Department of Radiology, Kumamoto (Japan); Kumamoto University, Department of Diagnostic Radiology, Chuo-ku, Kumamoto (Japan); Nakaura, Takeshi; Oda, Seitaro; Kidoh, Masafumi; Utsunomiya, Daisuke; Yamashita, Yasuyuki [Kumamoto University, Department of Diagnostic Radiology, Chuo-ku, Kumamoto (Japan); Tsuji, Akinori; Urata, Joji; Furusawa, Mitsuhiro; Yuki, Hideaki; Hirarta, Kenichiro [Kumamoto City Hospital, Department of Radiology, Kumamoto (Japan)

    2017-02-15

    The purpose of this study was to evaluate the feasibility of a contrast medium (CM), radiation dose reduction protocol for cerebral bone-subtraction CT angiography (BSCTA) using 80-kVp and sinogram-affirmed iterative reconstruction (SAFIRE). Seventy-five patients who had undergone BSCTA under the 120- (n = 37) or the 80-kVp protocol (n = 38) were included. CM was 370 mgI/kg for the 120-kVp and 296 mgI/kg for the 80-kVp protocol; the 120- and the 80-kVp images were reconstructed with filtered back-projection (FBP) and SAFIRE, respectively. We compared effective dose (ED), CT attenuation, image noise, and contrast-to-noise ratio (CNR) of two protocols. We also scored arterial contrast, sharpness, depiction of small arteries, visibility near skull base/clip, and overall image quality on a four-point scale. ED was 62% lower at 80- than 120-kVp (0.59 ± 0.06 vs 1.56 ± 0.13 mSv, p < 0.01). CT attenuation of the internal carotid artery (ICA) and middle cerebral artery (MCA) was significantly higher on 80- than 120-kVp (ICA: 557.4 ± 105.7 vs 370.0 ± 59.3 Hounsfield units (HU), p < 0.01; MCA: 551.9 ± 107.9 vs 364.6 ± 62.2 HU, p < 0.01). The CNR was also significantly higher on 80- than 120-kVp (ICA: 46.2 ± 10.2 vs 36.9 ± 7.6, p < 0.01; MCA: 45.7 ± 10.0 vs 35.7 ± 9.0, p < 0.01). Visibility near skull base and clip was not significantly different (p = 0.45). The other subjective scores were higher with the 80- than the 120-kVp protocol (p < 0.05). The 80-kVp acquisition with SAFIRE yields better image quality for BSCTA and substantial reduction in the radiation and CM dose compared to the 120-kVp with FBP protocol. (orig.)

  8. X-ray fluorescence method for trace analysis and imaging

    International Nuclear Information System (INIS)

    Hayakawa, Shinjiro

    2000-01-01

    X-ray fluorescence analysis has a long history as conventional bulk elemental analysis with medium sensitivity. However, with the use of synchrotron radiation x-ray fluorescence method has become a unique analytical technique which can provide tace elemental information with the spatial resolution. To obtain quantitative information of trace elemental distribution by using the x-ray fluorescence method, theoretical description of x-ray fluorescence yield is described. Moreover, methods and instruments for trace characterization with a scanning x-ray microprobe are described. (author)

  9. Deep-tissue reporter-gene imaging with fluorescence and optoacoustic tomography: a performance overview.

    Science.gov (United States)

    Deliolanis, Nikolaos C; Ale, Angelique; Morscher, Stefan; Burton, Neal C; Schaefer, Karin; Radrich, Karin; Razansky, Daniel; Ntziachristos, Vasilis

    2014-10-01

    A primary enabling feature of near-infrared fluorescent proteins (FPs) and fluorescent probes is the ability to visualize deeper in tissues than in the visible. The purpose of this work is to find which is the optimal visualization method that can exploit the advantages of this novel class of FPs in full-scale pre-clinical molecular imaging studies. Nude mice were stereotactically implanted with near-infrared FP expressing glioma cells to from brain tumors. The feasibility and performance metrics of FPs were compared between planar epi-illumination and trans-illumination fluorescence imaging, as well as to hybrid Fluorescence Molecular Tomography (FMT) system combined with X-ray CT and Multispectral Optoacoustic (or Photoacoustic) Tomography (MSOT). It is shown that deep-seated glioma brain tumors are possible to visualize both with fluorescence and optoacoustic imaging. Fluorescence imaging is straightforward and has good sensitivity; however, it lacks resolution. FMT-XCT can provide an improved rough resolution of ∼1 mm in deep tissue, while MSOT achieves 0.1 mm resolution in deep tissue and has comparable sensitivity. We show imaging capacity that can shift the visualization paradigm in biological discovery. The results are relevant not only to reporter gene imaging, but stand as cross-platform comparison for all methods imaging near infrared fluorescent contrast agents.

  10. Site-specific confocal fluorescence imaging of biological microstructures in a turbid medium

    International Nuclear Information System (INIS)

    Saloma, Caesar; Palmes-Saloma, Cynthia; Kondoh, Hisato

    1998-01-01

    Normally transparent biological structures in a turbid medium are imaged using a laser confocal microscope and multiwavelength site-specific fluorescence labelling. The spatial filtering capability of the detector pinhole in the confocal microscope limits the number of scattered fluorescent photons that reach the photodetector. Simultaneous application of different fluorescent markers on the same sample site minimizes photobleaching by reducing the excitation time for each marker. A high-contrast grey-level image is also produced by summing confocal images of the same site taken at different fluorescence wavelengths. Monte Carlo simulations are performed to obtain the quantitative behaviour of confocal fluorescence imaging in turbid media. Confocal images of the following samples were also obtained: (i) 15 μm diameter fluorescent spheres placed 1.16 mm deep beneath an aqueous suspension of 0.0823 μm diameter polystyrene latex spheres, and (ii) hindbrain of a whole-mount mouse embryo (age 10 days) that was stained to fluoresce at 515 nm and 580 nm peak wavelengths. Expression of RNA transcripts of a gene within the embryo hindbrain was detected by a fluorescence-based whole-mount in situ hybridization procedure that we recently tested. (author)

  11. Temporal subtraction in chest radiography: Automated assessment of registration accuracy

    International Nuclear Information System (INIS)

    Armato, Samuel G. III; Doshi, Devang J.; Engelmann, Roger; Croteau, Charles L.; MacMahon, Heber

    2006-01-01

    Radiologists routinely compare multiple chest radiographs acquired from the same patient over time to more completely understand changes in anatomy and pathology. While such comparisons are achieved conventionally through a side-by-side display of images, image registration techniques have been developed to combine information from two separate radiographic images through construction of a 'temporal subtraction image'. Although temporal subtraction images provide a powerful mechanism for the enhanced visualization of subtle change, errors in the clinical evaluation of these images may arise from misregistration artifacts that can mimic or obscure pathologic change. We have developed a computerized method for the automated assessment of registration accuracy as demonstrated in temporal subtraction images created from radiographic chest image pairs. The registration accuracy of 150 temporal subtraction images constructed from the computed radiography images of 72 patients was rated manually using a five-point scale ranging from '5-excellent' to '1-poor'; ratings of 3, 4, or 5 reflected clinically acceptable subtraction images, and ratings of 1 or 2 reflected clinically unacceptable images. Gray-level histogram-based features and texture measures are computed at multiple spatial scales within a 'lung mask' region that encompasses both lungs in the temporal subtraction images. A subset of these features is merged through a linear discriminant classifier. With a leave-one-out-by-patient training/testing paradigm, the automated method attained an A z value of 0.92 in distinguishing between temporal subtraction images that demonstrated clinically acceptable and clinically unacceptable registration accuracy. A second linear discriminant classifier yielded an A z value of 0.82 based on a feature subset selected from an independent database of digitized film images. These methods are expected to advance the clinical utility of temporal subtraction images for chest

  12. Virtual Hematoxylin and Eosin Transillumination Microscopy Using Epi-Fluorescence Imaging.

    Science.gov (United States)

    Giacomelli, Michael G; Husvogt, Lennart; Vardeh, Hilde; Faulkner-Jones, Beverly E; Hornegger, Joachim; Connolly, James L; Fujimoto, James G

    2016-01-01

    We derive a physically realistic model for the generation of virtual transillumination, white light microscopy images using epi-fluorescence measurements from thick, unsectioned tissue. We demonstrate this technique by generating virtual transillumination H&E images of unsectioned human breast tissue from epi-fluorescence multiphoton microscopy data. The virtual transillumination algorithm is shown to enable improved contrast and color accuracy compared with previous color mapping methods. Finally, we present an open source implementation of the algorithm in OpenGL, enabling real-time GPU-based generation of virtual transillumination microscopy images using conventional fluorescence microscopy systems.

  13. Virtual Hematoxylin and Eosin Transillumination Microscopy Using Epi-Fluorescence Imaging.

    Directory of Open Access Journals (Sweden)

    Michael G Giacomelli

    Full Text Available We derive a physically realistic model for the generation of virtual transillumination, white light microscopy images using epi-fluorescence measurements from thick, unsectioned tissue. We demonstrate this technique by generating virtual transillumination H&E images of unsectioned human breast tissue from epi-fluorescence multiphoton microscopy data. The virtual transillumination algorithm is shown to enable improved contrast and color accuracy compared with previous color mapping methods. Finally, we present an open source implementation of the algorithm in OpenGL, enabling real-time GPU-based generation of virtual transillumination microscopy images using conventional fluorescence microscopy systems.

  14. Bladder cancer diagnosis with fluorescence-image-guided optical coherence tomography

    Science.gov (United States)

    Wang, Z. G.; Durand, D. B.; Adler, H.; Pan, Y. T.

    2006-02-01

    A fluorescence-image-guided OCT (FIG-OCT) system is described, and its ability to enhance the sensitivity and specificity is examined in an animal bladder cancer model. Total 97 specimens were examined by fluorescence imaging, OCT and histological microscopy. The sensitivity and specificity of FIG-OCT is 100% and 93% respectively, compared to 79% and 53% for fluorescence imaging, while the OCT examination time has been dramatically decreased by 3~4 times. In combination of endoscopic OCT, FIG-OCT is a promising technique for effective early bladder cancer diagnosis.

  15. A NEW CEPHEID DISTANCE TO THE GIANT SPIRAL M101 BASED ON IMAGE SUBTRACTION OF HUBBLE SPACE TELESCOPE/ADVANCED CAMERA FOR SURVEYS OBSERVATIONS

    International Nuclear Information System (INIS)

    Shappee, Benjamin J.; Stanek, K. Z.

    2011-01-01

    We accurately determine a new Cepheid distance to M101 (NGC 5457) using archival Hubble Space Telescope (HST)/Advanced Camera for Surveys V and I time series photometry of two fields within the galaxy. We make a slight modification to the ISIS image subtraction package to obtain optimal differential light curves from HST data. We discovered 827 Cepheids with periods between 3 and 80 days, the largest extragalactic sample of Cepheids observed with HST by a factor of two. With this large Cepheid sample, we find that the relative distance of M101 from the Large Magellanic Cloud is Δμ LMC = 10.63 ± 0.04 (random) ± 0.06 (systematic) mag. If we use the geometrically determined maser distance to NGC 4258 as our distance anchor, the distance modulus of M101 is μ 0 = 29.04 ± 0.05 (random) ± 0.18 (systematic) mag or D = 6.4 ± 0.2 (random) ± 0.5 (systematic) Mpc. The uncertainty is dominated by the maser distance estimate (±0.15 mag), which should improve over the next few years. We determine a steep metallicity dependence, γ, for our Cepheid sample through two methods, yielding γ = -0.80 ± 0.21 (random) ± 0.06 (systematic) mag dex -1 and γ = -0.72 +0.22 -0.25 (random) ± 0.06 (systematic) mag dex -1 . We see marginal evidence for variations in the Wesenheit period-luminosity relation slope as a function of deprojected galactocentric radius. We also use the tip of the red giant branch method to independently determine the distance modulus to M101 of μ 0 = 29.05 ± 0.06 (random) ± 0.12 (systematic) mag.

  16. Evaluation of chemical fluorescent dyes as a protein conjugation partner for live cell imaging.

    Directory of Open Access Journals (Sweden)

    Yoko Hayashi-Takanaka

    Full Text Available To optimize live cell fluorescence imaging, the choice of fluorescent substrate is a critical factor. Although genetically encoded fluorescent proteins have been used widely, chemical fluorescent dyes are still useful when conjugated to proteins or ligands. However, little information is available for the suitability of different fluorescent dyes for live imaging. We here systematically analyzed the property of a number of commercial fluorescent dyes when conjugated with antigen-binding (Fab fragments directed against specific histone modifications, in particular, phosphorylated H3S28 (H3S28ph and acetylated H3K9 (H3K9ac. These Fab fragments were conjugated with a fluorescent dye and loaded into living HeLa cells. H3S28ph-specific Fab fragments were expected to be enriched in condensed chromosomes, as H3S28 is phosphorylated during mitosis. However, the degree of Fab fragment enrichment on mitotic chromosomes varied depending on the conjugated dye. In general, green fluorescent dyes showed higher enrichment, compared to red and far-red fluorescent dyes, even when dye:protein conjugation ratios were similar. These differences are partly explained by an altered affinity of Fab fragment after dye-conjugation; some dyes have less effect on the affinity, while others can affect it more. Moreover, red and far-red fluorescent dyes tended to form aggregates in the cytoplasm. Similar results were observed when H3K9ac-specific Fab fragments were used, suggesting that the properties of each dye affect different Fab fragments similarly. According to our analysis, conjugation with green fluorescent dyes, like Alexa Fluor 488 and Dylight 488, has the least effect on Fab affinity and is the best for live cell imaging, although these dyes are less photostable than red fluorescent dyes. When multicolor imaging is required, we recommend the following dye combinations for optimal results: Alexa Fluor 488 (green, Cy3 (red, and Cy5 or CF640 (far-red.

  17. Use of a Novel Rover-mounted Fluorescence Imager and Fluorescent Probes to Detect Biological Material in the Atacama Desert in Daylight

    Science.gov (United States)

    Weinstein, S.; Pane, D.; Warren-Rhodes, K.; Cockell, C.; Ernst, L. A.; Minkley, E.; Fisher, G.; Emani, S.; Wettergreen, D. S.; Wagner, M.

    2005-01-01

    We have developed an imaging system, the Fluorescence Imager (FI), for detecting fluorescence signals from sparse microorganisms and biofilms during autonomous rover exploration. The fluorescence signals arise both from naturally occurring chromophores, such as chlorophyll of cyanobacteria and lichens, and from fluorescent probes applied to soil and rocks. Daylight imaging has been accomplished by a novel use of a high-powered flashlamp synchronized to a CCD camera. The fluorescent probes are cell permanent stains that have extremely low intrinsic fluorescence (quantum yields less than 0.01) and a large fluorescence enhancement (quantum yields greater than 0.4) when bound to the target. Each probe specifically targets either carbohydrates, proteins, nucleic acids or membrane lipids, the four classes of macromolecules found in terrestrial life. The intent of the probes is to interrogate the environment for surface and endolithic life forms.

  18. Image navigation as a means to expand the boundaries of fluorescence-guided surgery.

    Science.gov (United States)

    Brouwer, Oscar R; Buckle, Tessa; Bunschoten, Anton; Kuil, Joeri; Vahrmeijer, Alexander L; Wendler, Thomas; Valdés-Olmos, Renato A; van der Poel, Henk G; van Leeuwen, Fijs W B

    2012-05-21

    Hybrid tracers that are both radioactive and fluorescent help extend the use of fluorescence-guided surgery to deeper structures. Such hybrid tracers facilitate preoperative surgical planning using (3D) scintigraphic images and enable synchronous intraoperative radio- and fluorescence guidance. Nevertheless, we previously found that improved orientation during laparoscopic surgery remains desirable. Here we illustrate how intraoperative navigation based on optical tracking of a fluorescence endoscope may help further improve the accuracy of hybrid surgical guidance. After feeding SPECT/CT images with an optical fiducial as a reference target to the navigation system, optical tracking could be used to position the tip of the fluorescence endoscope relative to the preoperative 3D imaging data. This hybrid navigation approach allowed us to accurately identify marker seeds in a phantom setup. The multispectral nature of the fluorescence endoscope enabled stepwise visualization of the two clinically approved fluorescent dyes, fluorescein and indocyanine green. In addition, the approach was used to navigate toward the prostate in a patient undergoing robot-assisted prostatectomy. Navigation of the tracked fluorescence endoscope toward the target identified on SPECT/CT resulted in real-time gradual visualization of the fluorescent signal in the prostate, thus providing an intraoperative confirmation of the navigation accuracy.

  19. Evaluation of sacroiliitis: contrast-enhanced MRI with subtraction technique

    Energy Technology Data Exchange (ETDEWEB)

    Algin, Oktay; Gokalp, Gokhan; Baran, Bulent; Ocakoglu, Gokhan; Yazici, Zeynep [Uludag University, Medical Faculty, Department of Radiology, Gorukle, Bursa (Turkey)

    2009-10-15

    The purpose of the study was to investigate the diagnostic value of contrast-enhanced MRI using the subtraction technique in the detection of active sacroiliitis. Magnetic resonance imaging was performed in 8 asymptomatic volunteers and 50 patients with clinically suspected active sacroiliitis. On precontrast MR images, T1-weighted spin-echo images with and without fat saturation (T1WFS and T1W), STIR and 3D-FLASH images with fat saturation were obtained in the semicoronal plane using a 1.5 Tesla imager. Postcontrast MRI was performed using the same T1WFS sequence as before contrast injection for all volunteers and patients. Postcontrast images were subtracted from fat-suppressed precontrast images. Enhancement within the joint space and bone marrow was considered to demonstrate active sacroiliitis. In 50 patients (100 sacroiliac joints [SIJs]), 40 (76 SIJs) were considered to have active sacroiliitis based on MR images. Bone marrow edema was present in 33 patients (62 SIJs) on STIR images. Routine MRI allowed identification of contrast enhancement in SIJs on postcontrast T1WFS images in 31 patients (49 SIJs). Contrast enhancement was observed in 40 patients (76 SIJs) who were examined by MRI using the subtraction technique. Contrast enhancement was significantly more conspicuous on subtraction images than on non-subtracted postcontrast T1WFS images (Mann-Whitney U test, p<0.001). Contrast-enhanced MRI with subtraction technique may be useful for early detection of active sacroiliitis. (orig.)

  20. Time-Resolved Fluorescence Spectroscopy and Fluorescence Lifetime Imaging Microscopy for Characterization of Dendritic Polymer Nanoparticles and Applications in Nanomedicine

    Directory of Open Access Journals (Sweden)

    Alexander Boreham

    2016-12-01

    Full Text Available The emerging field of nanomedicine provides new approaches for the diagnosis and treatment of diseases, for symptom relief and for monitoring of disease progression. One route of realizing this approach is through carefully constructed nanoparticles. Due to the small size inherent to the nanoparticles a proper characterization is not trivial. This review highlights the application of time-resolved fluorescence spectroscopy and fluorescence lifetime imaging microscopy (FLIM for the analysis of nanoparticles, covering aspects ranging from molecular properties to particle detection in tissue samples. The latter technique is particularly important as FLIM allows for distinguishing of target molecules from the autofluorescent background and, due to the environmental sensitivity of the fluorescence lifetime, also offers insights into the local environment of the nanoparticle or its interactions with other biomolecules. Thus, these techniques offer highly suitable tools in the fields of particle development, such as organic chemistry, and in the fields of particle application, such as in experimental dermatology or pharmaceutical research.

  1. Time-Resolved Fluorescence Spectroscopy and Fluorescence Lifetime Imaging Microscopy for Characterization of Dendritic Polymer Nanoparticles and Applications in Nanomedicine.

    Science.gov (United States)

    Boreham, Alexander; Brodwolf, Robert; Walker, Karolina; Haag, Rainer; Alexiev, Ulrike

    2016-12-24

    The emerging field of nanomedicine provides new approaches for the diagnosis and treatment of diseases, for symptom relief and for monitoring of disease progression. One route of realizing this approach is through carefully constructed nanoparticles. Due to the small size inherent to the nanoparticles a proper characterization is not trivial. This review highlights the application of time-resolved fluorescence spectroscopy and fluorescence lifetime imaging microscopy (FLIM) for the analysis of nanoparticles, covering aspects ranging from molecular properties to particle detection in tissue samples. The latter technique is particularly important as FLIM allows for distinguishing of target molecules from the autofluorescent background and, due to the environmental sensitivity of the fluorescence lifetime, also offers insights into the local environment of the nanoparticle or its interactions with other biomolecules. Thus, these techniques offer highly suitable tools in the fields of particle development, such as organic chemistry, and in the fields of particle application, such as in experimental dermatology or pharmaceutical research.

  2. Dual-Modal Nanoprobes for Imaging of Mesenchymal Stem Cell Transplant by MRI and Fluorescence Imaging

    International Nuclear Information System (INIS)

    Sung, Chang Kyu; Hong, Kyung Ah; Lin, Shun Mei

    2009-01-01

    To determine the feasibility of labeling human mesenchymal stem cells (hMSCs) with bifunctional nanoparticles and assessing their potential as imaging probes in the monitoring of hMSC transplantation. The T1 and T2 relaxivities of the nanoparticles (MNP SiO 2 [RITC]-PEG) were measured at 1.5T and 3T magnetic resonance scanner. Using hMSCs and the nanoparticles, labeling efficiency, toxicity, and proliferation were assessed. Confocal laser scanning microscopy and transmission electron microscopy were used to specify the intracellular localization of the endocytosed iron nanoparticles. We also observed in vitro and in vivo visualization of the labeled hMSCs with a 3T MR scanner and optical imaging. MNP SiO 2 (RITC)-PEG showed both superparamagnetic and fluorescent properties. The r 1 and r 2 relaxivity values of the MNP SiO 2 (RITC)-PEG were 0.33 and 398 mM -1 s -1 at 1.5T, respectively, and 0.29 and 453 mM -1 s -1 at 3T, respectively. The effective internalization of MNP SiO 2 (RITC)-PEG into hMSCs was observed by confocal laser scanning fluorescence microscopy. The transmission electron microscopy images showed that MNP SiO 2 (RITC)-PEG was internalized into the cells and mainly resided in the cytoplasm. The viability and proliferation of MNP SiO 2 (RITC)-PEG-labeled hMSCs were not significantly different from the control cells. MNP SiO 2 (RITC)-PEG-labeled hMSCs were observed in vitro and in vivo with optical and MR imaging. MNP SiO 2 (RITC)-PEG can be a useful contrast agent for stem cell imaging, which is suitable for a bimodal detection by MRI and optical imaging

  3. Hoechst tagging: a modular strategy to design synthetic fluorescent probes for live-cell nucleus imaging.

    Science.gov (United States)

    Nakamura, Akinobu; Takigawa, Kazumasa; Kurishita, Yasutaka; Kuwata, Keiko; Ishida, Manabu; Shimoda, Yasushi; Hamachi, Itaru; Tsukiji, Shinya

    2014-06-11

    We report a general strategy to create small-molecule fluorescent probes for the nucleus in living cells. Our strategy is based on the attachment of the DNA-binding Hoechst compound to a fluorophore of interest. Using this approach, simple fluorescein, BODIPY, and rhodamine dyes were readily converted to novel turn-on fluorescent nucleus-imaging probes.

  4. Application of fluorescence spectroscopy and imaging in the detection of a photosensitizer in photodynamic therapy

    Science.gov (United States)

    Zang, Lixin; Zhao, Huimin; Zhang, Zhiguo; Cao, Wenwu

    2017-02-01

    Photodynamic therapy (PDT) is currently an advanced optical technology in medical applications. However, the application of PDT is limited by the detection of photosensitizers. This work focuses on the application of fluorescence spectroscopy and imaging in the detection of an effective photosenzitizer, hematoporphyrin monomethyl ether (HMME). Optical properties of HMME were measured and analyzed based on its absorption and fluorescence spectra. The production mechanism of its fluorescence emission was analyzed. The detection device for HMME based on fluorescence spectroscopy was designed. Ratiometric method was applied to eliminate the influence of intensity change of excitation sources, fluctuates of excitation sources and photo detectors, and background emissions. The detection limit of this device is 6 μg/L, and it was successfully applied to the diagnosis of the metabolism of HMME in the esophageal cancer cells. To overcome the limitation of the point measurement using fluorescence spectroscopy, a two-dimensional (2D) fluorescence imaging system was established. The algorithm of the 2D fluorescence imaging system is deduced according to the fluorescence ratiometric method using bandpass filters. The method of multiple pixel point addition (MPPA) was used to eliminate fluctuates of signals. Using the method of MPPA, SNR was improved by about 30 times. The detection limit of this imaging system is 1.9 μg/L. Our systems can be used in the detection of porphyrins to improve the PDT effect.

  5. Multispectral fluorescence imaging for detection of bovine feces on Romaine lettuce and baby spinach leaves

    Science.gov (United States)

    Hyperspectral fluorescence imaging with ultraviolet-A excitation was used to evaluate the feasibility of two-waveband fluorescence algorithms for the detection of bovine fecal contaminants on the abaxial and adaxial surfaces of Romaine lettuce and baby spinach leaves. Correlation analysis was used t...

  6. Multispectral fluorescence image algorithms for detection of frass on mature tomatoes

    Science.gov (United States)

    A multispectral algorithm derived from hyperspectral line-scan fluorescence imaging under violet LED excitation was developed for the detection of frass contamination on mature tomatoes. The algorithm utilized the fluorescence intensities at five wavebands, 515 nm, 640 nm, 664 nm, 690 nm, and 724 nm...

  7. Sensitive and selective tumor imaging with novel and highly activatable fluorescence probes

    International Nuclear Information System (INIS)

    Urano, Yasuteru

    2008-01-01

    Selective and sensitive tumor imaging in vivo is one of the most requested methodologies in medical sciences. Although several imaging modalities have been developed including positron emission tomography (PET) and magnetic resonance (MR) imaging for the detection of tumors, none of these modalities can activate the signals upon being accumulated or uptaken to tumor sites. Among these modalities, only optical fluorescence imaging has a marked advantage, that is, their signals can be dramatically increased upon detecting some biological features. In this short review, I will introduce some recent strategies for activatable optical fluorescence imaging of tumors, and discuss their advantages over other modalities. (author)

  8. Development of Shimadzu digital subtraction system

    International Nuclear Information System (INIS)

    Nishioka, Hiroyuki; Shibata, Koichi; Shimizu, Yasumitsu; Shibata, Kenji; Wani, Hidenobu

    1985-01-01

    Shimadzu has recently developed a digital subtraction system. It can perform intra-arterial digital subtraction angiography (DSA) using low concentration of contrast medium, or can visualize arteries with intravenuous injection. It can extremely reduce patient's pain in angiography. Image quality of DSA has been much improved by the development of high quality image amplifiers, improvement of signal-to-noise ratio of the x-ray television unit and the development of digital disk recorders. The peak-hold subtraction method that is now under clinical study presents images of blood vessels as the trace of the flow of contrast medium. The maximum-hold memory where the maximum value of the brightness in some period is stored for every picture element is subtracted from the minimum-hold memory where the minimum value is stored, and thus images of blood vessels can be obtained. Hardware of this method is rather simple and it is expected that the amount of contrast medium may be reduced or x-ray dose of the patient may be decreased. (author)

  9. Facilitating in vivo tumor localization by principal component analysis based on dynamic fluorescence molecular imaging

    Science.gov (United States)

    Gao, Yang; Chen, Maomao; Wu, Junyu; Zhou, Yuan; Cai, Chuangjian; Wang, Daliang; Luo, Jianwen

    2017-09-01

    Fluorescence molecular imaging has been used to target tumors in mice with xenograft tumors. However, tumor imaging is largely distorted by the aggregation of fluorescent probes in the liver. A principal component analysis (PCA)-based strategy was applied on the in vivo dynamic fluorescence imaging results of three mice with xenograft tumors to facilitate tumor imaging, with the help of a tumor-specific fluorescent probe. Tumor-relevant features were extracted from the original images by PCA and represented by the principal component (PC) maps. The second principal component (PC2) map represented the tumor-related features, and the first principal component (PC1) map retained the original pharmacokinetic profiles, especially of the liver. The distribution patterns of the PC2 map of the tumor-bearing mice were in good agreement with the actual tumor location. The tumor-to-liver ratio and contrast-to-noise ratio were significantly higher on the PC2 map than on the original images, thus distinguishing the tumor from its nearby fluorescence noise of liver. The results suggest that the PC2 map could serve as a bioimaging marker to facilitate in vivo tumor localization, and dynamic fluorescence molecular imaging with PCA could be a valuable tool for future studies of in vivo tumor metabolism and progression.

  10. X-ray fluorescence imaging with polycapillary X-ray optics

    International Nuclear Information System (INIS)

    Yonehara, Tasuku; Yamaguchi, Makoto; Tsuji, Kouichi

    2010-01-01

    X-ray fluorescence spectrometry imaging is a powerful tool to provide information about the chemical composition and elemental distribution of a specimen. X-ray fluorescence spectrometry images were conventionally obtained by using a μ-X-ray fluorescence spectrometry spectrometer, which requires scanning a sample. Faster X-ray fluorescence spectrometry imaging would be achieved by eliminating the process of sample scanning. Thus, we developed an X-ray fluorescence spectrometry imaging instrument without sample scanning by using polycapillary X-ray optics, which had energy filter characteristics caused by the energy dependence of the total reflection phenomenon. In the present paper, we show that two independent straight polycapillary X-ray optics could be used as an energy filter of X-rays for X-ray fluorescence. Only low energy X-rays were detected when the angle between the two optical axes was increased slightly. Energy-selective X-ray fluorescence spectrometry images with projection mode were taken by using an X-ray CCD camera equipped with two polycapillary optics. It was shown that Fe Kα (6.40 keV) and Cu Kα (8.04 keV) could be discriminated for Fe and Cu foils.

  11. Single-atom-resolved fluorescence imaging of an atomic Mott insulator

    DEFF Research Database (Denmark)

    Sherson, Jacob; Weitenberg, Christof; Andres, Manuel

    2010-01-01

    in situ images of a quantum fluid in which each underlying quantum particle is detected. Here we report fluorescence imaging of strongly interacting bosonic Mott insulators in an optical lattice with single-atom and single-site resolution. From our images, we fully reconstruct the atom distribution...

  12. Early detection of tumor masses by in vivo hematoporphyrin-mediated fluorescence imaging

    International Nuclear Information System (INIS)

    Autiero, Maddalena; Celentano, Luigi; Cozzolino, Rosanna; Laccetti, Paolo; Marotta, Marcello; Mettivier, Giovanni; Cristina Montesi, Maria; Quarto, Maria; Riccio, Patrizia; Roberti, Giuseppe; Russo, Paolo

    2007-01-01

    We investigated the capability of fluorescence reflectance imaging (FRI) for the early detection of surface tumors in mice. We used a hematoporphyrin (HP) compound (HP dichlorohydrate) as a red fluorescent marker and a low noise, high sensitivity, digital CCD camera for fluorescence imaging. In this preliminary study, highly malignant anaplastic human thyroid carcinoma cells were implanted subcutaneously in one mouse and their growth was monitored daily for 5 days by FRI. The selective HP uptake by the tumor tissues was successfully observed: we observed the fluorescence of tumor only 3 days after cancer cells injection, i.e. when the tumor mass was neither visible (to the naked eye) or palpable. These measurements indicate that FRI is a suitable technique to detect minute subcutaneous tumor masses. This FRI system will be coupled to a radionuclide imaging system based on a CdTe detector for in vivo multimodal imaging in mice

  13. U-SPECT-BioFluo : An integrated radionuclide, bioluminescence, and fluorescence imaging platform

    NARCIS (Netherlands)

    Van Oosterom, M.N.; Kreuger, R.; Buckle, T.; Mahn, W.A.; Bunschoten, A.; Josephson, L.; Van Leeuwen, F.W.B.; Beekman, F.J.

    2014-01-01

    Background: In vivo bioluminescence, fluorescence, and single-photon emission computed tomography (SPECT) imaging provide complementary information about biological processes. However, to date these signatures are evaluated separately on individual preclinical systems. In this paper, we introduce a

  14. An instrument for small-animal imaging using time-resolved diffuse and fluorescence optical methods

    International Nuclear Information System (INIS)

    Montcel, Bruno; Poulet, Patrick

    2006-01-01

    We describe time-resolved optical methods that use diffuse near-infrared photons to image the optical properties of tissues and their inner fluorescent probe distribution. The assembled scanner uses picosecond laser diodes at 4 wavelengths, an 8-anode photo-multiplier tube and time-correlated single photon counting. Optical absorption and reduced scattering images as well as fluorescence emission images are computed from temporal profiles of diffuse photons. This method should improve the spatial resolution and the quantification of fluorescence signals. We used the diffusion approximation of the radiation transport equation and the finite element method to solve the forward problem. The inverse problem is solved with an optimization algorithm such as ART or conjugate gradient. The scanner and its performances are presented, together with absorption, scattering and fluorescent images obtained with it

  15. QUANTITATIVE IMAGING AND STATISTICAL ANALYSIS OF FLUORESCENCE IN SITU HYBRIDIZATION (FISH) OF AUREOBASIDIUM PULLULANS. (R823845)

    Science.gov (United States)

    AbstractImage and multifactorial statistical analyses were used to evaluate the intensity of fluorescence signal from cells of three strains of A. pullulans and one strain of Rhodosporidium toruloides, as an outgroup, hybridized with either a universal o...

  16. In Vivo Deep Tissue Fluorescence and Magnetic Imaging Employing Hybrid Nanostructures.

    Science.gov (United States)

    Ortgies, Dirk H; de la Cueva, Leonor; Del Rosal, Blanca; Sanz-Rodríguez, Francisco; Fernández, Nuria; Iglesias-de la Cruz, M Carmen; Salas, Gorka; Cabrera, David; Teran, Francisco J; Jaque, Daniel; Martín Rodríguez, Emma

    2016-01-20

    Breakthroughs in nanotechnology have made it possible to integrate different nanoparticles in one single hybrid nanostructure (HNS), constituting multifunctional nanosized sensors, carriers, and probes with great potential in the life sciences. In addition, such nanostructures could also offer therapeutic capabilities to achieve a wider variety of multifunctionalities. In this work, the encapsulation of both magnetic and infrared emitting nanoparticles into a polymeric matrix leads to a magnetic-fluorescent HNS with multimodal magnetic-fluorescent imaging abilities. The magnetic-fluorescent HNS are capable of simultaneous magnetic resonance imaging and deep tissue infrared fluorescence imaging, overcoming the tissue penetration limits of classical visible-light based optical imaging as reported here in living mice. Additionally, their applicability for magnetic heating in potential hyperthermia treatments is assessed.

  17. Application of indocyanine green-fluorescence imaging to full-thickness cholecystectomy.

    Science.gov (United States)

    Morita, Kiyomi; Ishizawa, Takeaki; Tani, Keigo; Harada, Nobuhiro; Shimizu, Atsushi; Yamamoto, Satoshi; Takemura, Nobuyuki; Kaneko, Junichi; Aoki, Taku; Sakamoto, Yoshihiro; Sugawara, Yasuhiko; Hasegawa, Kiyoshi; Kokudo, Norihiro

    2014-05-01

    Fluorescence imaging using indocyanine green (ICG) has recently been applied to laparoscopic surgery to identify cancerous tissues, lymph nodes, and vascular anatomy. Here we report the application of ICG-fluorescence imaging to visualize the boundary between the liver and subserosal tissues of the gallbladder during laparoscopic full-thickness cholecystectomy. A patient with a potentially malignant gallbladder lesion was administered 2.5-mg intravenous ICG just before laparoscopic full-thickness cholecystectomy. Intraoperative fluorescence imaging enabled the real-time delineation of both extrahepatic bile duct anatomy and hepatic parenchyma throughout the procedure, which resulted in complete removal of subserosal tissues between liver and gallbladder. Safe and feasible ICG-fluorescence imaging can be widely applied to laparoscopic hepatobiliary surgery by utilizing a biliary excretion property of ICG. © 2014 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and Wiley Publishing Asia Pty Ltd.

  18. DETECTION OF BACTERIAL BIOFILM ON STAINLESS STEEL BY HYPERSPECTRAL FLUORESCENCE IMAGING

    Science.gov (United States)

    In this study, hyperspectral fluorescence imaging techniques were investigated for detection of microbial biofilm on stainless steel plates typically used to manufacture food processing equipment. Stainless steel coupons were immersed in bacterium cultures consisting of nonpathogenic E. coli, Pseudo...

  19. Multiphoton Laser Microscopy and Fluorescence Lifetime Imaging for the Evaluation of the Skin

    Directory of Open Access Journals (Sweden)

    Stefania Seidenari

    2012-01-01

    Full Text Available Multiphoton laser microscopy is a new, non-invasive technique providing access to the skin at a cellular and subcellular level, which is based both on autofluorescence and fluorescence lifetime imaging. Whereas the former considers fluorescence intensity emitted by epidermal and dermal fluorophores and by the extra-cellular matrix, fluorescence lifetime imaging (FLIM, is generated by the fluorescence decay rate. This innovative technique can be applied to the study of living skin, cell cultures and ex vivo samples. Although still limited to the clinical research field, the development of multiphoton laser microscopy is thought to become suitable for a practical application in the next few years: in this paper, we performed an accurate review of the studies published so far, considering the possible fields of application of this imaging method and providing high quality images acquired in the Department of Dermatology of the University of Modena.

  20. B-Spline potential function for maximum a-posteriori image reconstruction in fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Shilpa Dilipkumar

    2015-03-01

    Full Text Available An iterative image reconstruction technique employing B-Spline potential function in a Bayesian framework is proposed for fluorescence microscopy images. B-splines are piecewise polynomials with smooth transition, compact support and are the shortest polynomial splines. Incorporation of the B-spline potential function in the maximum-a-posteriori reconstruction technique resulted in improved contrast, enhanced resolution and substantial background reduction. The proposed technique is validated on simulated data as well as on the images acquired from fluorescence microscopes (widefield, confocal laser scanning fluorescence and super-resolution 4Pi microscopy. A comparative study of the proposed technique with the state-of-art maximum likelihood (ML and maximum-a-posteriori (MAP with quadratic potential function shows its superiority over the others. B-Spline MAP technique can find applications in several imaging modalities of fluorescence microscopy like selective plane illumination microscopy, localization microscopy and STED.

  1. Hybrid system for in vivo real-time planar fluorescence and volumetric optoacoustic imaging

    Science.gov (United States)

    Chen, Zhenyue; Deán-Ben, Xosé Luís.; Gottschalk, Sven; Razansky, Daniel

    2018-02-01

    Fluorescence imaging is widely employed in all fields of cell and molecular biology due to its high sensitivity, high contrast and ease of implementation. However, the low spatial resolution and lack of depth information, especially in strongly-scattering samples, restrict its applicability for deep-tissue imaging applications. On the other hand, optoacoustic imaging is known to deliver a unique set of capabilities such as high spatial and temporal resolution in three dimensions, deep penetration and spectrally-enriched imaging contrast. Since fluorescent substances can generate contrast in both modalities, simultaneous fluorescence and optoacoustic readings can provide new capabilities for functional and molecular imaging of living organisms. Optoacoustic images can further serve as valuable anatomical references based on endogenous hemoglobin contrast. Herein, we propose a hybrid system for in vivo real-time planar fluorescence and volumetric optoacoustic tomography, both operating in reflection mode, which synergistically combines the advantages of stand-alone systems. Validation of the spatial resolution and sensitivity of the system were first carried out in tissue mimicking phantoms while in vivo imaging was further demonstrated by tracking perfusion of an optical contrast agent in a mouse brain in the hybrid imaging mode. Experimental results show that the proposed system effectively exploits the contrast mechanisms of both imaging modalities, making it especially useful for accurate monitoring of fluorescence-based signal dynamics in highly scattering samples.

  2. Exercise intravenous digital subtraction angiography

    International Nuclear Information System (INIS)

    Yiannikas, J.

    1986-01-01

    Attempts to use exercise ventriculography have been made, not only to give diagnostic and perhaps even prognostic information in patients with coronary artery disease, but also in patients with valvular heart disease both before and after surgical intervention. Clearly an accurate method of assessing ventricular function under conditions of stress in various cardiac diseases would provide important information that would help in patient management. Exercise ventriculography using gated blood pool equilibrium technetium studies are widely used, but are limited by spatial resolution and by the foreshortening affects of visualizing the left ventricular chamber in the left anterior oblique view. First pass radionuclide studies have the added advantage of being able to visualize the ventricular chamber in the anterior or even the right anterior oblique view, but are even more limited by their spatial resolution problems. Several investigations have shown that digital subtraction angiography produces left ventricular images with a spatial resolution almost identical to that of conventional contrast ventriculography, but without the inherent problems of cardiac arrhythmias, which often limit the assessment of left ventricular function. Because of its ability to accurately delineate wall motion abnormalities, the technique may provide an adequate assessment of global and regional left ventricular function after exercise. Digital subtraction angiography may identify ischemic wall motion abnormalities produced by exercise in patients who already had significant permanent left ventricular damage from myocardial infarction

  3. Fabrication of fluorescent silica nanoparticles with aggregation-induced emission luminogens for cell imaging.

    Science.gov (United States)

    Chen, Sijie; Lam, Jacky W Y; Tang, Ben Zhong

    2013-01-01

    Fluorescence-based techniques have found wide applications in life science. Among various luminogenic materials, fluorescent nanoparticles have attracted much attention due to their fabulous emission properties and potential applications as sensors. Here, we describe the fabrication of fluorescent silica nanoparticles (FSNPs) containing aggregation-induced emission (AIE) luminogens. By employing surfactant-free sol-gel reaction, FSNPs with uniform size and high surface charge and colloidal stability are generated. The FSNPs emit strong light upon photoexcitation, due to the AIE characteristic of the silole -aggregates in the hybrid nanoparticles. The FSNPs are cytocompatible and can be utilized as fluorescent visualizer for intracellular imaging for HeLa cells.

  4. Instant live-cell super-resolution imaging of cellular structures by nanoinjection of fluorescent probes.

    Science.gov (United States)

    Hennig, Simon; van de Linde, Sebastian; Lummer, Martina; Simonis, Matthias; Huser, Thomas; Sauer, Markus

    2015-02-11

    Labeling internal structures within living cells with standard fluorescent probes is a challenging problem. Here, we introduce a novel intracellular staining method that enables us to carefully control the labeling process and provides instant access to the inner structures of living cells. Using a hollow glass capillary with a diameter of <100 nm, we deliver functionalized fluorescent probes directly into the cells by (di)electrophoretic forces. The label density can be adjusted and traced directly during the staining process by fluorescence microscopy. We demonstrate the potential of this technique by delivering and imaging a range of commercially available cell-permeable and nonpermeable fluorescent probes to cells.

  5. Fluorescence cell imaging and manipulation using conventional halogen lamp microscopy.

    Directory of Open Access Journals (Sweden)

    Kazuo Yamagata

    Full Text Available Technologies for vitally labeling cells with fluorescent dyes have advanced remarkably. However, to excite fluorescent dyes currently requires powerful illumination, which can cause phototoxic damage to the cells and increases the cost of microscopy. We have developed a filter system to excite fluorescent dyes using a conventional transmission microscope equipped with a halogen lamp. This method allows us to observe previously invisible cell organelles, such as the metaphase spindle of oocytes, without causing phototoxicity. Cells remain healthy even after intensive manipulation under fluorescence observation, such as during bovine, porcine and mouse somatic cell cloning using nuclear transfer. This method does not require expensive epifluorescence equipment and so could help to reduce the science gap between developed and developing countries.

  6. The use of near-infrared fluorescence imaging in endocrine surgical procedures.

    Science.gov (United States)

    Kahramangil, Bora; Berber, Eren

    2017-06-01

    Near-infrared fluorescence imaging in endocrine surgery is a new, yet highly investigated area. It involves indocyanine green use as well as parathyroid autofluorescence. Several groups have described their technique and reported on the observed utility. However, there is no consensus on technical details. Furthermore, the correlation between intraoperative findings and postoperative outcomes is unclear. With this study, we aim to review the current literature on fluorescence imaging and share our insights on technical details. © 2017 Wiley Periodicals, Inc.

  7. Dual purpose scanner for thyroid imaging in the fluorescence and emission modes

    International Nuclear Information System (INIS)

    Charleston, D.; Beck, R.; Yasillo, N.; Atkins, F.; Cooper, M.; Kirchner, P.

    1981-01-01

    Quantitative elemental analysis by the use of stimulated fluorescence x-rays has been applied in an imaging modality whereby the relative concentration of iodine-127 in the thyroid can be mapped, and total iodine in the gland estimated for the diagnosis of malignant and benign nodules. To further the development of fluorescence imaging of the thyroid, three areas of work are described which include theoretical studies, empirical studies and hardware development, and clinical feasibility studies

  8. X-ray fluorescence imaging with synchrotron radiation

    International Nuclear Information System (INIS)

    Rivers, M.L.

    1987-01-01

    The micro-distribution of trace elements is of great interest in fields such as geochemistry, biology and material science. The synchrotron x-ray fluorescence microprobe provides a technique to quantitatively measure trace element compositions at individual points and to construct semiquantitative two dimensional maps of trace element compositions. This paper describes an x-ray fluorescence system used at the National Synchrotron Light Source

  9. Lipid nanoparticle vectorization of indocyanine green improves fluorescence imaging for tumor diagnosis and lymph node resection.

    Science.gov (United States)

    Navarro, Fabrice P; Berger, Michel; Guillermet, Stéphanie; Josserand, Véronique; Guyon, Laurent; Neumann, Emmanuelle; Vinet, Françoise; Texier, Isabelle

    2012-10-01

    Fluorescence imaging is opening a new era in image-guided surgery and other medical applications. The only FDA approved contrast agent in the near infrared is IndoCyanine Green (ICG), which despites its low toxicity, displays poor chemical and optical properties for long-term and sensitive imaging applications in human. Lipid nanoparticles are investigated for improving ICG optical properties and in vivo fluorescence imaging sensitivity. 30 nm diameter lipid nanoparticles (LNP) are loaded with ICG. Their characterization and use for tumor and lymph node imaging are described. Nano-formulation benefits dye optical properties (6 times improved brightness) and chemical stability (>6 months at 4 degrees C in aqueous buffer). More importantly, LNP vectorization allows never reported sensitive and prolonged (>1 day) labeling of tumors and lymph nodes. Composed of human-use approved ingredients, this novel ICG nanometric formulation is foreseen to expand rapidly the field of clinical fluorescence imaging applications.

  10. In-vivo optical detection of cancer using chlorin e6 – polyvinylpyrrolidone induced fluorescence imaging and spectroscopy

    International Nuclear Information System (INIS)

    Chin, William WL; Thong, Patricia SP; Bhuvaneswari, Ramaswamy; Soo, Khee Chee; Heng, Paul WS; Olivo, Malini

    2009-01-01

    Photosensitizer based fluorescence imaging and spectroscopy is fast becoming a promising approach for cancer detection. The purpose of this study was to examine the use of the photosensitizer chlorin e6 (Ce6) formulated in polyvinylpyrrolidone (PVP) as a potential exogenous fluorophore for fluorescence imaging and spectroscopic detection of human cancer tissue xenografted in preclinical models as well as in a patient. Fluorescence imaging was performed on MGH human bladder tumor xenografted on both the chick chorioallantoic membrane (CAM) and the murine model using a fluorescence endoscopy imaging system. In addition, fiber optic based fluorescence spectroscopy was performed on tumors and various normal organs in the same mice to validate the macroscopic images. In one patient, fluorescence imaging was performed on angiosarcoma lesions and normal skin in conjunction with fluorescence spectroscopy to validate Ce6-PVP induced fluorescence visual assessment of the lesions. Margins of tumor xenografts in the CAM model were clearly outlined under fluorescence imaging. Ce6-PVP-induced fluorescence imaging yielded a specificity of 83% on the CAM model. In mice, fluorescence intensity of Ce6-PVP was higher in bladder tumor compared to adjacent muscle and normal bladder. Clinical results confirmed that fluorescence imaging clearly captured the fluorescence of Ce6-PVP in angiosarcoma lesions and good correlation was found between fluorescence imaging and spectral measurement in the patient. Combination of Ce6-PVP induced fluorescence imaging and spectroscopy could allow for optical detection and discrimination between cancer and the surrounding normal tissues. Ce6-PVP seems to be a promising fluorophore for fluorescence diagnosis of cancer

  11. Fluorescence imaging of tryptophan and collagen cross-links to evaluate wound closure ex vivo

    Science.gov (United States)

    Wang, Ying; Ortega-Martinez, Antonio; Farinelli, Bill; Anderson, R. R.; Franco, Walfre

    2016-02-01

    Wound size is a key parameter in monitoring healing. Current methods to measure wound size are often subjective, time-consuming and marginally invasive. Recently, we developed a non-invasive, non-contact, fast and simple but robust fluorescence imaging (u-FEI) method to monitor the healing of skin wounds. This method exploits the fluorescence of native molecules to tissue as functional and structural markers. The objective of the present study is to demonstrate the feasibility of using variations in the fluorescence intensity of tryptophan and cross-links of collagen to evaluate proliferation of keratinocyte cells and quantitate size of wound during healing, respectively. Circular dermal wounds were created in ex vivo human skin and cultured in different media. Two serial fluorescence images of tryptophan and collagen cross-links were acquired every two days. Histology and immunohistology were used to validate correlation between fluorescence and epithelialization. Images of collagen cross-links show fluorescence of the exposed dermis and, hence, are a measure of wound area. Images of tryptophan show higher fluorescence intensity of proliferating keratinocytes forming new epithelium, as compared to surrounding keratinocytes not involved in epithelialization. These images are complementary since collagen cross-links report on structure while tryptophan reports on function. HE and immunohistology show that tryptophan fluorescence correlates with newly formed epidermis. We have established a fluorescence imaging method for studying epithelialization processes during wound healing in a skin organ culture model, our approach has the potential to provide a non-invasive, non-contact, quick, objective and direct method for quantitative measurements in wound healing in vivo.

  12. Super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging

    Science.gov (United States)

    Wei, Lu; Zhu, Xinxin; Chen, Zhixing; Min, Wei

    2014-02-01

    Two-photon excited fluorescence microscopy (TPFM) offers the highest penetration depth with subcellular resolution in light microscopy, due to its unique advantage of nonlinear excitation. However, a fundamental imaging-depth limit, accompanied by a vanishing signal-to-background contrast, still exists for TPFM when imaging deep into scattering samples. Formally, the focusing depth, at which the in-focus signal and the out-of-focus background are equal to each other, is defined as the fundamental imaging-depth limit. To go beyond this imaging-depth limit of TPFM, we report a new class of super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging, including multiphoton activation and imaging (MPAI) harnessing novel photo-activatable fluorophores, stimulated emission reduced fluorescence (SERF) microscopy by adding a weak laser beam for stimulated emission, and two-photon induced focal saturation imaging with preferential depletion of ground-state fluorophores at focus. The resulting image contrasts all exhibit a higher-order (third- or fourth- order) nonlinear signal dependence on laser intensity than that in the standard TPFM. Both the physical principles and the imaging demonstrations will be provided for each super-nonlinear microscopy. In all these techniques, the created super-nonlinearity significantly enhances the imaging contrast and concurrently extends the imaging depth-limit of TPFM. Conceptually different from conventional multiphoton processes mediated by virtual states, our strategy constitutes a new class of fluorescence microscopy where high-order nonlinearity is mediated by real population transfer.

  13. Role of quantitative chemical shift magnetic resonance imaging and chemical shift subtraction technique in discriminating adenomatous from non adenomatous adrenal solid lesions

    Directory of Open Access Journals (Sweden)

    Ahmed H. Afifi

    2017-03-01

    Conclusion: The signal intensity index and adrenal to spleen ratio are the most reliable quantitative chemical shift MRI methods in differentiation of adrenal adenomas from other non-adenomatous adrenal solid lesions. Chemical shift subtraction MRI is a recent technique that gives highly confident discrimination between two categories of pathology without using of any reference organ.

  14. Imaging a Large Sample with Selective Plane Illumination Microscopy Based on Multiple Fluorescent Microsphere Tracking

    Science.gov (United States)

    Ryu, Inkeon; Kim, Daekeun

    2018-04-01

    A typical selective plane illumination microscopy (SPIM) image size is basically limited by the field of view, which is a characteristic of the objective lens. If an image larger than the imaging area of the sample is to be obtained, image stitching, which combines step-scanned images into a single panoramic image, is required. However, accurately registering the step-scanned images is very difficult because the SPIM system uses a customized sample mount where uncertainties for the translational and the rotational motions exist. In this paper, an image registration technique based on multiple fluorescent microsphere tracking is proposed in the view of quantifying the constellations and measuring the distances between at least two fluorescent microspheres embedded in the sample. Image stitching results are demonstrated for optically cleared large tissue with various staining methods. Compensation for the effect of the sample rotation that occurs during the translational motion in the sample mount is also discussed.

  15. In Vivo Imaging of Far-red Fluorescent Proteins after DNA Electrotransfer to Muscle Tissue

    DEFF Research Database (Denmark)

    Hojman, Pernille; Eriksen, Jens; Gehl, Julie

    2009-01-01

    DNA electrotransfer to muscle tissue yields long-term, high levels of gene expression; showing great promise for future gene therapy. We want to characterize the novel far-red fluorescent protein Katushka as a marker for gene expression using time domain fluorescence in vivo imaging. Highly...... weeks. Depth and 3D analysis proved that the expression was located in the target muscle. In vivo bio-imaging using the novel Katushka fluorescent protein enables excellent evaluation of the transfection efficacy, and spatial distribution, but lacks long-term stability....... efficient transgenic expression was observed after DNA electrotransfer with 100-fold increase in fluorescent intensity. The fluorescent signal peaked 1 week after transfection and returned to background level within 4 weeks. Katushka expression was not as stable as GFP expression, which was detectable for 8...

  16. Fluorescent carbon dots and nanodiamonds for biological imaging: preparation, application, pharmacokinetics and toxicity.

    Science.gov (United States)

    Liu, Jia-Hui; Yang, Sheng-Tao; Chen, Xin-Xin; Wang, Haifang

    2012-10-01

    The rapid advancement of nanotechnology has brought us some new types of fluorescent probes, which are indispensable for bioimaging in life sciences. Because of their innate biocompatibility, good resistance against photobleaching, long fluorescence lifetime and wide fluorescence spectral region, fluorescent carbon quantum dots (C-Dots) and nanosized diamonds (nanodiamonds, NDs) are gradually evolving into promising reagents for bioimaging. In this review, we summarize the recent achievements in fluorescent C-Dots and NDs with emphases on their preparation, properties, imaging application, pharmacokinetics and toxicity. Perspectives on further investigations and opportunities to develop C-Dots and NDs into the safer and more sensitive imaging probes for both living cells and animal models are discussed.

  17. Time-resolved spectroscopic imaging reveals the fundamentals of cellular NADH fluorescence.

    Science.gov (United States)

    Li, Dong; Zheng, Wei; Qu, Jianan Y

    2008-10-15

    A time-resolved spectroscopic imaging system is built to study the fluorescence characteristics of nicotinamide adenine dinucleotide (NADH), an important metabolic coenzyme and endogenous fluorophore in cells. The system provides a unique approach to measure fluorescence signals in different cellular organelles and cytoplasm. The ratios of free over protein-bound NADH signals in cytosol and nucleus are slightly higher than those in mitochondria. The mitochondrial fluorescence contributes about 70% of overall cellular fluorescence and is not a completely dominant signal. Furthermore, NADH signals in mitochondria, cytosol, and the nucleus respond to the changes of cellular activity differently, suggesting that cytosolic and nuclear fluorescence may complicate the well-known relationship between mitochondrial fluorescence and cellular metabolism.

  18. Digital subtraction cardiopulmonary angiography using FCR (Fuji computed radiography)

    International Nuclear Information System (INIS)

    Tanimura, Shigeo; Tomoyasu, Hiroshi; Banba, Jiro; Masaki, Mikio; Kanno, Yukio; Abe, Kazuo

    1987-01-01

    Digital subtraction cardiopulmonary angiography using FCR was performed on 46 patients including lung cancer, mediastinal tumor, giant bullous formation and others. The images of digital subtraction for pulmonary artery, pulmonary vein and thoracic aorta were studied by comparing to the conventional pulmonary angiogram. Good images of pulmonary artery due to digital subtraction were obtained in 80 % of the 45 cases. This method needed only half volume of contrast media compared to the conventional for obtaining good images and thus reduced side effect. Therefore this method seems to be an usefull pre-operative examination in various chest diseases, especially in case of lung cancer. (author)

  19. In vivo tomographic imaging with fluorescence and MRI using tumor-targeted dual-labeled nanoparticles

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2013-12-01

    Full Text Available Yue Zhang,1 Bin Zhang,1 Fei Liu,1,2 Jianwen Luo,1,3 Jing Bai1 1Department of Biomedical Engineering, School of Medicine, 2Tsinghua-Peking Center for Life Sciences, 3Center for Biomedical Imaging Research, Tsinghua University, Beijing, People's Republic of China Abstract: Dual-modality imaging combines the complementary advantages of different modalities, and offers the prospect of improved preclinical research. The combination of fluorescence imaging and magnetic resonance imaging (MRI provides cross-validated information and direct comparison between these modalities. Here, we report on the application of a novel tumor-targeted, dual-labeled nanoparticle (NP, utilizing iron oxide as the MRI contrast agent and near infrared (NIR dye Cy5.5 as the fluorescent agent. Results of in vitro experiments verified the specificity of the NP to tumor cells. In vivo tumor targeting and uptake of the NPs in a mouse model were visualized by fluorescence and MR imaging collected at different time points. Quantitative analysis was carried out to evaluate the efficacy of MRI contrast enhancement. Furthermore, tomographic images were also acquired using both imaging modalities and cross-validated information of tumor location and size between these two modalities was revealed. The results demonstrate that the use of dual-labeled NPs can facilitate the dual-modal detection of tumors, information cross-validation, and direct comparison by combing fluorescence molecular tomography (FMT and MRI. Keywords: dual-modality, fluorescence molecular tomography (FMT, magnetic resonance imaging (MRI, nanoparticle

  20. Cu2+-labeled dansyl compounds as fluorescent and PET probes for imaging apoptosis.

    Science.gov (United States)

    Han, Junyan; Wang, Xukui; Yu, MeiXiang

    2016-11-15

    Compound DNSTT-Cu 2+ , a novel chelate of Cu 2+ with DOTA conjugated to a fluorescent dansyl fragment, is developed for imaging cell apoptosis. Apoptotic U-87MG cells could be selectively visualized by the fluorescence of DNSTT-Cu 2+ from cytoplasm of cells, confirmed by the fluorescence of apoptosis cells co-labeled with Alexa Fluor 568-labeled annexin V, a conventional probe for selectively labeling membranes of apoptosis cells. A radioactive 64 Cu 2 + analog, DNSTT- 64 Cu 2+ , was easily synthesized, providing a potential PET probe for imaging apoptosis in vivo. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Fluorescent Bisphosphonate and Carboxyphosphonate Probes: A Versatile Imaging Toolkit for Applications in Bone Biology and Biomedicine.

    Science.gov (United States)

    Sun, Shuting; Błażewska, Katarzyna M; Kadina, Anastasia P; Kashemirov, Boris A; Duan, Xuchen; Triffitt, James T; Dunford, James E; Russell, R Graham G; Ebetino, Frank H; Roelofs, Anke J; Coxon, Fraser P; Lundy, Mark W; McKenna, Charles E

    2016-02-17

    A bone imaging toolkit of 21 fluorescent probes with variable spectroscopic properties, bone mineral binding affinities, and antiprenylation activities has been created, including a novel linking strategy. The linking chemistry allows attachment of a diverse selection of dyes fluorescent in the visible to near-infrared range to any of the three clinically important heterocyclic bisphosphonate bone drugs (risedronate, zoledronate, and minodronate or their analogues). The resultant suite of conjugates offers multiple options to "mix and match" parent drug structure, fluorescence emission wavelength, relative bone affinity, and presence or absence of antiprenylation activity, for bone-related imaging applications.

  2. Quantification of epithelial cells in coculture with fibroblasts by fluorescence image analysis.

    Science.gov (United States)

    Krtolica, Ana; Ortiz de Solorzano, Carlos; Lockett, Stephen; Campisi, Judith

    2002-10-01

    To demonstrate that senescent fibroblasts stimulate the proliferation and neoplastic transformation of premalignant epithelial cells (Krtolica et al.: Proc Natl Acad Sci USA 98:12072-12077, 2001), we developed methods to quantify the proliferation of epithelial cells cocultured with fibroblasts. We stained epithelial-fibroblast cocultures with the fluorescent DNA-intercalating dye 4,6-diamidino-2-phenylindole (DAPI), or expressed green fluorescent protein (GFP) in the epithelial cells, and then cultured them with fibroblasts. The cocultures were photographed under an inverted microscope with appropriate filters, and the fluorescent images were captured with a digital camera. We modified an image analysis program to selectively recognize the smaller, more intensely fluorescent epithelial cell nuclei in DAPI-stained cultures and used the program to quantify areas with DAPI fluorescence generated by epithelial nuclei or GFP fluorescence generated by epithelial cells in each field. Analysis of the image areas with DAPI and GFP fluorescences produced nearly identical quantification of epithelial cells in coculture with fibroblasts. We confirmed these results by manual counting. In addition, GFP labeling permitted kinetic studies of the same coculture over multiple time points. The image analysis-based quantification method we describe here is an easy and reliable way to monitor cells in coculture and should be useful for a variety of cell biological studies. Copyright 2002 Wiley-Liss, Inc.

  3. The MicroAnalysis Toolkit: X-ray Fluorescence Image Processing Software

    International Nuclear Information System (INIS)

    Webb, S. M.

    2011-01-01

    The MicroAnalysis Toolkit is an analysis suite designed for the processing of x-ray fluorescence microprobe data. The program contains a wide variety of analysis tools, including image maps, correlation plots, simple image math, image filtering, multiple energy image fitting, semi-quantitative elemental analysis, x-ray fluorescence spectrum analysis, principle component analysis, and tomographic reconstructions. To be as widely useful as possible, data formats from many synchrotron sources can be read by the program with more formats available by request. An overview of the most common features will be presented.

  4. Comparative study of protoporphyrin IX fluorescence image enhancement methods to improve an optical imaging system for oral cancer detection

    Science.gov (United States)

    Jiang, Ching-Fen; Wang, Chih-Yu; Chiang, Chun-Ping

    2011-07-01

    Optoelectronics techniques to induce protoporphyrin IX fluorescence with topically applied 5-aminolevulinic acid on the oral mucosa have been developed to noninvasively detect oral cancer. Fluorescence imaging enables wide-area screening for oral premalignancy, but the lack of an adequate fluorescence enhancement method restricts the clinical imaging application of these techniques. This study aimed to develop a reliable fluorescence enhancement method to improve PpIX fluorescence imaging systems for oral cancer detection. Three contrast features, red-green-blue reflectance difference, R/B ratio, and R/G ratio, were developed first based on the optical properties of the fluorescence images. A comparative study was then carried out with one negative control and four biopsy confirmed clinical cases to validate the optimal image processing method for the detection of the distribution of malignancy. The results showed the superiority of the R/G ratio in terms of yielding a better contrast between normal and neoplastic tissue, and this method was less prone to errors in detection. Quantitative comparison with the clinical diagnoses in the four neoplastic cases showed that the regions of premalignancy obtained using the proposed method accorded with the expert's determination, suggesting the potential clinical application of this method for the detection of oral cancer.

  5. Comparative assessment of fluorescent proteins for in vivo imaging in an animal model system.

    Science.gov (United States)

    Heppert, Jennifer K; Dickinson, Daniel J; Pani, Ariel M; Higgins, Christopher D; Steward, Annette; Ahringer, Julie; Kuhn, Jeffrey R; Goldstein, Bob

    2016-11-07

    Fluorescent protein tags are fundamental tools used to visualize gene products and analyze their dynamics in vivo. Recent advances in genome editing have expedited the precise insertion of fluorescent protein tags into the genomes of diverse organisms. These advances expand the potential of in vivo imaging experiments and facilitate experimentation with new, bright, photostable fluorescent proteins. Most quantitative comparisons of the brightness and photostability of different fluorescent proteins have been made in vitro, removed from biological variables that govern their performance in cells or organisms. To address the gap, we quantitatively assessed fluorescent protein properties in vivo in an animal model system. We generated transgenic Caenorhabditis elegans strains expressing green, yellow, or red fluorescent proteins in embryos and imaged embryos expressing different fluorescent proteins under the same conditions for direct comparison. We found that mNeonGreen was not as bright in vivo as predicted based on in vitro data but is a better tag than GFP for specific kinds of experiments, and we report on optimal red fluorescent proteins. These results identify ideal fluorescent proteins for imaging in vivo in C. elegans embryos and suggest good candidate fluorescent proteins to test in other animal model systems for in vivo imaging experiments. © 2016 Heppert et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  6. Second-harmonic generation and fluorescence lifetime imaging microscopy through a rodent mammary imaging window

    Science.gov (United States)

    Young, Pamela A.; Nazir, Muhammad; Szulczewski, Michael J.; Keely, Patricia J.; Eliceiri, Kevin W.

    2012-03-01

    Tumor-Associated Collagen Signatures (TACS) have been identified that manifest in specific ways during breast tumor progression and that correspond to patient outcome. There are also compelling metabolic changes associated with carcinoma invasion and progression. We have characterized the difference in the autofluorescent properties of metabolic co-factors, NADH and FAD, between normal and carcinoma breast cell lines. Also, we have shown in vitro that increased collagen density alters metabolic genes which are associated with glycolysis and leads to a more invasive phenotype. Establishing the relationship between collagen density, cellular metabolism, and metastasis in physiologically relevant cancer models is crucial for developing cancer therapies. To study cellular metabolism with respect to collagen density in vivo, we use multiphoton fluorescence excitation microscopy (MPM) in conjunction with a rodent mammary imaging window implanted in defined mouse cancer models. These models are ideal for the study of collagen changes in vivo, allowing determination of corresponding metabolic changes in breast cancer invasion and progression. To measure cellular metabolism, we collect fluorescence lifetime (FLIM) signatures of NADH and FAD, which are known to change based on the microenvironment of the cells. Additionally, MPM systems are capable of collecting second harmonic generation (SHG) signals which are a nonlinear optical property of collagen. Therefore, MPM, SHG, and FLIM are powerful tools with great potential for characterizing key features of breast carcinoma in vivo. Below we present the current efforts of our collaborative group to develop intravital approaches based on these imaging techniques to look at defined mouse mammary models.

  7. Patch-based anisotropic diffusion scheme for fluorescence diffuse optical tomography--part 2: image reconstruction.

    Science.gov (United States)

    Correia, Teresa; Koch, Maximilian; Ale, Angelique; Ntziachristos, Vasilis; Arridge, Simon

    2016-02-21

    Fluorescence diffuse optical tomography (fDOT) provides 3D images of fluorescence distributions in biological tissue, which represent molecular and cellular processes. The image reconstruction problem is highly ill-posed and requires regularisation techniques to stabilise and find meaningful solutions. Quadratic regularisation tends to either oversmooth or generate very noisy reconstructions, depending on the regularisation strength. Edge preserving methods, such as anisotropic diffusion regularisation (AD), can preserve important features in the fluorescence image and smooth out noise. However, AD has limited ability to distinguish an edge from noise. We propose a patch-based anisotropic diffusion regularisation (PAD), where regularisation strength is determined by a weighted average according to the similarity between patches around voxels within a search window, instead of a simple local neighbourhood strategy. However, this method has higher computational complexity and, hence, we wavelet compress the patches (PAD-WT) to speed it up, while simultaneously taking advantage of the denoising properties of wavelet thresholding. Furthermore, structural information can be incorporated into the image reconstruction with PAD-WT to improve image quality and resolution. In this case, the weights used to average voxels in the image are calculated using the structural image, instead of the fluorescence image. The regularisation strength depends on both structural and fluorescence images, which guarantees that the method can preserve fluorescence information even when it is not structurally visible in the anatomical images. In part 1, we tested the method using a denoising problem. Here, we use simulated and in vivo mouse fDOT data to assess the algorithm performance. Our results show that the proposed PAD-WT method provides high quality and noise free images, superior to those obtained using AD.

  8. Digital subtraction angiography in patients with central vertigo

    International Nuclear Information System (INIS)

    Inamori, Toru; Takayasu, Yukio; Umetani, Yoshio; Taruoka, Akinori.

    1985-01-01

    Digital subtraction angiography (DSA) is a recently developed non-invasive intravenous angiography which has become possible through real time digital subtraction of x-ray transmission data from an image intensifier and television system. The output signals of the image intensifier-television camera system are digitized by an analog-digital converter. The digital information, 512x512 pixels and 9 bits deep, is fed into the image processing assembly after logarithmic amplification, where 2-8 frames are added and subtracted from mask images for the final digital images. Intravenous digital subtraction angiography was performed in 21 patients with intractable dizzy spells of central origin resistant to treatment. These patients showed some signs of CNS disturbance, although there were no significant findings on CT scans. Surprisingly, findings were abnormal in 14 of 21 patients (66.7%). DSA is, therefore, considered to be an important aid in the diagnosis of vertigo of the central type. (J.P.N.)

  9. Fibered Confocal Fluorescence Microscopy for the Noninvasive Imaging of Langerhans Cells in Macaques.

    Science.gov (United States)

    Todorova, Biliana; Salabert, Nina; Tricot, Sabine; Boisgard, Raphaël; Rathaux, Mélanie; Le Grand, Roger; Chapon, Catherine

    2017-01-01

    We developed a new approach to visualize skin Langerhans cells by in vivo fluorescence imaging in nonhuman primates. Macaques were intradermally injected with a monoclonal, fluorescently labeled antibody against HLA-DR molecule and were imaged for up to 5 days by fibered confocal microscopy (FCFM). The network of skin Langerhans cells was visualized by in vivo fibered confocal fluorescence microscopy. Quantification of Langerhans cells revealed no changes to cell density with time. Ex vivo experiments confirmed that injected fluorescent HLA-DR antibody specifically targeted Langerhans cells in the epidermis. This study demonstrates the feasibility of single-cell, in vivo imaging as a noninvasive technique to track Langerhans cells in nontransgenic animals.

  10. Quantitative segmentation of fluorescence microscopy images of heterogeneous tissue: Approach for tuning algorithm parameters

    Science.gov (United States)

    Mueller, Jenna L.; Harmany, Zachary T.; Mito, Jeffrey K.; Kennedy, Stephanie A.; Kim, Yongbaek; Dodd, Leslie; Geradts, Joseph; Kirsch, David G.; Willett, Rebecca M.; Brown, J. Quincy; Ramanujam, Nimmi

    2013-02-01

    The combination of fluorescent contrast agents with microscopy is a powerful technique to obtain real time images of tissue histology without the need for fixing, sectioning, and staining. The potential of this technology lies in the identification of robust methods for image segmentation and quantitation, particularly in heterogeneous tissues. Our solution is to apply sparse decomposition (SD) to monochrome images of fluorescently-stained microanatomy to segment and quantify distinct tissue types. The clinical utility of our approach is demonstrated by imaging excised margins in a cohort of mice after surgical resection of a sarcoma. Representative images of excised margins were used to optimize the formulation of SD and tune parameters associated with the algorithm. Our results demonstrate that SD is a robust solution that can advance vital fluorescence microscopy as a clinically significant technology.

  11. Near infrared spatial frequency domain fluorescence imaging of tumor phantoms containing erythrocyte-derived optical nanoplatforms

    Science.gov (United States)

    Burns, Joshua M.; Schaefer, Elise; Anvari, Bahman

    2018-02-01

    Light-activated theranostic constructs provide a multi-functional platform for optical imaging and phototherapeutic applications. Our group has engineered nano-sized vesicles derived from erythrocytes that encapsulate the FDAapproved near infrared (NIR) absorber indocyanine green (ICG). We refer to these constructs as NIR erythrocytemimicking transducers (NETs). Once photo-excited by NIR light these constructs can transduce the photons energy to emit fluorescence, generate heat, or induce chemical reactions. In this study, we investigated fluorescence imaging of NETs embedded within tumor phantoms using spatial frequency domain imaging (SFDI). Using SFDI, we were able to fluorescently image simulated tumors doped with different concentration of NETs. These preliminary results suggest that NETs can be used in conjunction with SFDI for potential tumor imaging applications.

  12. Improved localization of cellular membrane receptors using combined fluorescence microscopy and simultaneous topography and recognition imaging

    International Nuclear Information System (INIS)

    Duman, M; Pfleger, M; Chtcheglova, L A; Neundlinger, I; Bozna, B L; Ebner, A; Schuetz, G J; Hinterdorfer, P; Zhu, R; Mayer, B; Rankl, C; Moertelmaier, M; Kada, G; Kienberger, F; Salio, M; Shepherd, D; Polzella, P; Cerundolo, V; Dieudonne, M

    2010-01-01

    The combination of fluorescence microscopy and atomic force microscopy has a great potential in single-molecule-detection applications, overcoming many of the limitations coming from each individual technique. Here we present a new platform of combined fluorescence and simultaneous topography and recognition imaging (TREC) for improved localization of cellular receptors. Green fluorescent protein (GFP) labeled human sodium-glucose cotransporter (hSGLT1) expressed Chinese Hamster Ovary (CHO) cells and endothelial cells (MyEnd) from mouse myocardium stained with phalloidin-rhodamine were used as cell systems to study AFM topography and fluorescence microscopy on the same surface area. Topographical AFM images revealed membrane features such as lamellipodia, cytoskeleton fibers, F-actin filaments and small globular structures with heights ranging from 20 to 30 nm. Combined fluorescence and TREC imaging was applied to detect density, distribution and localization of YFP-labeled CD1d molecules on α-galactosylceramide (αGalCer)-loaded THP1 cells. While the expression level, distribution and localization of CD1d molecules on THP1 cells were detected with fluorescence microscopy, the nanoscale distribution of binding sites was investigated with molecular recognition imaging by using a chemically modified AFM tip. Using TREC on the inverted light microscope, the recognition sites of cell receptors were detected in recognition images with domain sizes ranging from ∼ 25 to ∼ 160 nm, with the smaller domains corresponding to a single CD1d molecule.

  13. A parallel adaptive finite element simplified spherical harmonics approximation solver for frequency domain fluorescence molecular imaging

    International Nuclear Information System (INIS)

    Lu Yujie; Zhu Banghe; Rasmussen, John C; Sevick-Muraca, Eva M; Shen Haiou; Wang Ge

    2010-01-01

    Fluorescence molecular imaging/tomography may play an important future role in preclinical research and clinical diagnostics. Time- and frequency-domain fluorescence imaging can acquire more measurement information than the continuous wave (CW) counterpart, improving the image quality of fluorescence molecular tomography. Although diffusion approximation (DA) theory has been extensively applied in optical molecular imaging, high-order photon migration models need to be further investigated to match quantitation provided by nuclear imaging. In this paper, a frequency-domain parallel adaptive finite element solver is developed with simplified spherical harmonics (SP N ) approximations. To fully evaluate the performance of the SP N approximations, a fast time-resolved tetrahedron-based Monte Carlo fluorescence simulator suitable for complex heterogeneous geometries is developed using a convolution strategy to realize the simulation of the fluorescence excitation and emission. The validation results show that high-order SP N can effectively correct the modeling errors of the diffusion equation, especially when the tissues have high absorption characteristics or when high modulation frequency measurements are used. Furthermore, the parallel adaptive mesh evolution strategy improves the modeling precision and the simulation speed significantly on a realistic digital mouse phantom. This solver is a promising platform for fluorescence molecular tomography using high-order approximations to the radiative transfer equation.

  14. Improved localization of cellular membrane receptors using combined fluorescence microscopy and simultaneous topography and recognition imaging

    Energy Technology Data Exchange (ETDEWEB)

    Duman, M; Pfleger, M; Chtcheglova, L A; Neundlinger, I; Bozna, B L; Ebner, A; Schuetz, G J; Hinterdorfer, P [Institute for Biophysics, University of Linz, Altenbergerstrasse 69, A-4040 Linz (Austria); Zhu, R; Mayer, B [Christian Doppler Laboratory for Nanoscopic Methods in Biophysics, Institute for Biophysics, University of Linz, Altenbergerstrasse 69, A-4040 Linz (Austria); Rankl, C; Moertelmaier, M; Kada, G; Kienberger, F [Agilent Technologies Austria GmbH, Aubrunnerweg 11, A-4040 Linz (Austria); Salio, M; Shepherd, D; Polzella, P; Cerundolo, V [Cancer Research UK Tumor Immunology Group, Weatherall Institute of Molecular Medicine, Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DS (United Kingdom); Dieudonne, M, E-mail: ferry_kienberger@agilent.com [Agilent Technologies Belgium, Wingepark 51, Rotselaar, AN B-3110 (Belgium)

    2010-03-19

    The combination of fluorescence microscopy and atomic force microscopy has a great potential in single-molecule-detection applications, overcoming many of the limitations coming from each individual technique. Here we present a new platform of combined fluorescence and simultaneous topography and recognition imaging (TREC) for improved localization of cellular receptors. Green fluorescent protein (GFP) labeled human sodium-glucose cotransporter (hSGLT1) expressed Chinese Hamster Ovary (CHO) cells and endothelial cells (MyEnd) from mouse myocardium stained with phalloidin-rhodamine were used as cell systems to study AFM topography and fluorescence microscopy on the same surface area. Topographical AFM images revealed membrane features such as lamellipodia, cytoskeleton fibers, F-actin filaments and small globular structures with heights ranging from 20 to 30 nm. Combined fluorescence and TREC imaging was applied to detect density, distribution and localization of YFP-labeled CD1d molecules on {alpha}-galactosylceramide ({alpha}GalCer)-loaded THP1 cells. While the expression level, distribution and localization of CD1d molecules on THP1 cells were detected with fluorescence microscopy, the nanoscale distribution of binding sites was investigated with molecular recognition imaging by using a chemically modified AFM tip. Using TREC on the inverted light microscope, the recognition sites of cell receptors were detected in recognition images with domain sizes ranging from {approx} 25 to {approx} 160 nm, with the smaller domains corresponding to a single CD1d molecule.

  15. Near-infrared II fluorescence for imaging hindlimb vessel regeneration with dynamic tissue perfusion measurement.

    Science.gov (United States)

    Hong, Guosong; Lee, Jerry C; Jha, Arshi; Diao, Shuo; Nakayama, Karina H; Hou, Luqia; Doyle, Timothy C; Robinson, Joshua T; Antaris, Alexander L; Dai, Hongjie; Cooke, John P; Huang, Ngan F

    2014-05-01

    Real-time vascular imaging that provides both anatomic and hemodynamic information could greatly facilitate the diagnosis of vascular diseases and provide accurate assessment of therapeutic effects. Here, we have developed a novel fluorescence-based all-optical method, named near-infrared II (NIR-II) fluorescence imaging, to image murine hindlimb vasculature and blood flow in an experimental model of peripheral arterial disease, by exploiting fluorescence in the NIR-II region (1000-1400 nm) of photon wavelengths. Because of the reduced photon scattering of NIR-II fluorescence compared with traditional NIR fluorescence imaging and thus much deeper penetration depth into the body, we demonstrated that the mouse hindlimb vasculature could be imaged with higher spatial resolution than in vivo microscopic computed tomography. Furthermore, imaging during 26 days revealed a significant increase in hindlimb microvascular density in response to experimentally induced ischemia within the first 8 days of the surgery (Pimaging make it a useful imaging tool for murine models of vascular disease. © 2014 American Heart Association, Inc.

  16. Digital contrast subtraction radiography for proximal caries diagnosis

    International Nuclear Information System (INIS)

    Kang, Byung Cheol; Yoon, Suk Ja

    2002-01-01

    To determine whether subtraction images utilizing contrast media can improve the diagnostic performance of proximal caries diagnosis compared to conventional periapical radiographic images. Thirty-six teeth with 57 proximal surfaces were radiographied using a size no.2 RVG-ui sensor (Trophy Radiology, Marne-la-Vallee, France). The teeth immersed in water-soluble contrast media and subtraction images were taken. Each tooth was then sectioned for histologic examination. The digital radiographic images and subtraction images were examined and interpreted by three dentists for proximal caries. The results of the proximal caries diagnosis were then verified with the results of the histologic examination. The proximal caries sensitivity using digital subtraction radiography was significantly higher than simply examining a single digital radiograph. The sensitivity of the proximal dentinal carious lesion when analyzed with the subtraction radiograph and the radiograph together was higher than with the subtraction radiograph or the radiograph alone. The use of subtraction radiography with contrast media may be useful for detecting proximal dentinal carious lesions.

  17. Intraoperative Detection of Superficial Liver Tumors by Fluorescence Imaging Using Indocyanine Green and 5-aminolevulinic Acid.

    Science.gov (United States)

    Kaibori, Masaki; Matsui, Kosuke; Ishizaki, Morihiko; Iida, Hiroya; Okumura, Tadayoshi; Sakaguchi, Tatsuma; Inoue, Kentaro; Ikeura, Tsukasa; Asano, Hiroaki; Kon, Masanori

    2016-04-01

    Indocyanine green (ICG) and the porphyrin precursor 5-aminolevulinic acid (5-ALA) have been approved as fluorescence imaging agents in the clinical setting. This study evaluated the usefulness of fluorescence imaging with both ICG and 5-ALA for intraoperative identification of latent small liver tumors. There were 48 patients who had main tumors within 5 mm of the liver surface. 5-ALA hydrochloride was orally administered to patients 3 h before surgery. ICG had been intravenously injected within 14 days prior to surgery. Intraoperatively, after visual inspection, manual palpation and ultrasonography fluorescence images of the liver surface were obtained with ICG and 5-ALA prior to resection. With ICG, the sensitivity, specificity and accuracy for detecting the preoperatively identified main tumors were 96%, 50% and 94%, respectively. Twelve latent small tumors were newly detected on the liver surface using ICG, five of which proved to be carcinomas. With 5-ALA, the sensitivity, specificity and accuracy for detecting the main tumors were 57%, 100% and 58%, respectively. Five latent small tumors were newly detected using 5-ALA; all were carcinomas. Overall, five new tumors were detected by both ICG and 5-ALA fluorescence imaging; two were hepatocellular carcinomas (HCCs) and three were metastases of colorectal cancer. The sensitivity and specificity of ICG fluorescence imaging for main tumor detection were relatively high and low, respectively, but the opposite was true of 5-ALA imaging. Fluorescence imaging using 5-ALA may provide greater specificity in the detection of surface-invisible malignant liver tumors than using ICG fluorescence imaging alone. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  18. Energy dispersive detector for white beam synchrotron x-ray fluorescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Matthew D., E-mail: Matt.Wilson@stfc.ac.uk; Seller, Paul; Veale, Matthew C. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Campus,UK (United Kingdom); Connolley, Thomas [Diamond Light Source, I12 Beamline, Harwell Campus, Didcot, Oxfordshire (United Kingdom); Dolbnya, Igor P.; Malandain, Andrew; Sawhney, Kawal [Diamond Light Source, B16 Beamline, Harwell Campus, Didcot, Oxfordshire (United Kingdom); Grant, Patrick S.; Liotti, Enzo; Lui, Andrew [Department of Materials, University of Oxford Parks Road, Oxford (United Kingdom)

    2016-07-27

    A novel, “single-shot” fluorescence imaging technique has been demonstrated on the B16 beamline at the Diamond Light Source synchrotron using the HEXITEC energy dispersive imaging detector. A custom made furnace with 200µm thick metal alloy samples was positioned in a white X-ray beam with a hole made in the furnace walls to allow the transmitted beam to be imaged with a conventional X-ray imaging camera consisting of a 500 µm thick single crystal LYSO scintillator, mirror and lens coupled to an AVT Manta G125B CCD sensor. The samples were positioned 45° to the incident beam to enable simultaneous transmission and fluorescence imaging. The HEXITEC detector was positioned at 90° to the sample with a 50 µm pinhole 13 cm from the sample and the detector positioned 2.3m from pinhole. The geometric magnification provided a field of view of 1.1×1.1mm{sup 2} with one of the 80×80 pixels imaging an area equivalent to 13µm{sup 2}. Al-Cu alloys doped with Zr, Ag and Mo were imaged in transmission and fluorescence mode. The fluorescence images showed that the dopant metals could be simultaneously imaged with sufficient counts on all 80x80 pixels within 60 s, with the X-ray flux limiting the fluorescence imaging rate. This technique demonstrated that it is possible to simultaneously image and identify multiple elements on a spatial resolution scale ~10µm or higher without the time consuming need to scan monochromatic energies or raster scan a focused beam of X-rays. Moving to high flux beamlines and using an array of detectors could improve the imaging speed of the technique with element specific imaging estimated to be on a 1 s timescale.

  19. Energy dispersive detector for white beam synchrotron x-ray fluorescence imaging

    International Nuclear Information System (INIS)

    Wilson, Matthew D.; Seller, Paul; Veale, Matthew C.; Connolley, Thomas; Dolbnya, Igor P.; Malandain, Andrew; Sawhney, Kawal; Grant, Patrick S.; Liotti, Enzo; Lui, Andrew

    2016-01-01

    A novel, “single-shot” fluorescence imaging technique has been demonstrated on the B16 beamline at the Diamond Light Source synchrotron using the HEXITEC energy dispersive imaging detector. A custom made furnace with 200µm thick metal alloy samples was positioned in a white X-ray beam with a hole made in the furnace walls to allow the transmitted beam to be imaged with a conventional X-ray imaging camera consisting of a 500 µm thick single crystal LYSO scintillator, mirror and lens coupled to an AVT Manta G125B CCD sensor. The samples were positioned 45° to the incident beam to enable simultaneous transmission and fluorescence imaging. The HEXITEC detector was positioned at 90° to the sample with a 50 µm pinhole 13 cm from the sample and the detector positioned 2.3m from pinhole. The geometric magnification provided a field of view of 1.1×1.1mm"2 with one of the 80×80 pixels imaging an area equivalent to 13µm"2. Al-Cu alloys doped with Zr, Ag and Mo were imaged in transmission and fluorescence mode. The fluorescence images showed that the dopant metals could be simultaneously imaged with sufficient counts on all 80x80 pixels within 60 s, with the X-ray flux limiting the fluorescence imaging rate. This technique demonstrated that it is possible to simultaneously image and identify multiple elements on a spatial resolution scale ~10µm or higher without the time consuming need to scan monochromatic energies or raster scan a focused beam of X-rays. Moving to high flux beamlines and using an array of detectors could improve the imaging speed of the technique with element specific imaging estimated to be on a 1 s timescale.

  20. Automating dipole subtraction

    International Nuclear Information System (INIS)

    Hasegawa, K.; Moch, S.; Uwer, P.

    2008-07-01

    We report on automating the Catani-Seymour dipole subtraction which is a general procedure to treat infrared divergences in real emission processes at next-to-leading order in QCD. The automatization rests on three essential steps: the creation of the dipole terms, the calculation of the color linked squared Born matrix elements, and the evaluation of different helicity amplitudes. The routines have been tested for a number of complex processes, such as the real emission process gg→t anti tggg. (orig.)

  1. Automating dipole subtraction

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, K.; Moch, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Uwer, P. [Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Theoretische Teilchenphysik

    2008-07-15

    We report on automating the Catani-Seymour dipole subtraction which is a general procedure to treat infrared divergences in real emission processes at next-to-leading order in QCD. The automatization rests on three essential steps: the creation of the dipole terms, the calculation of the color linked squared Born matrix elements, and the evaluation of different helicity amplitudes. The routines have been tested for a number of complex processes, such as the real emission process gg{yields}t anti tggg. (orig.)

  2. Colourful FKS subtraction

    CERN Document Server

    Frixione, Stefano

    2011-01-01

    I formulate in a colour-friendly way the FKS method for the computation of QCD cross sections at the next-to-leading order accuracy. This is achieved through the definition of subtraction terms for squared matrix elements, constructed with single colour-dressed or pairs of colour-ordered amplitudes. The latter approach relies on the use of colour flows, is exact to all orders in $N$, and is thus particularly suited to being organized as a systematic expansion in 1/N.

  3. Clinical multi-colour fluorescence imaging of malignant tumours - initial experience

    International Nuclear Information System (INIS)

    Svanberg, K.; Wang, I.; Montan, S.; Andersson-Engels, S.; Svanberg, S.; Lund Inst. of Technology

    1998-01-01

    The purpose of this study was to present a new technique for non-invasive tumour detection based on tissue fluorescence imaging. A clinically adapted multi-colour fluorescence system was employed in the real-time imaging of malignant tumours of the skin, breast, head and neck region, and urinary bladder. Tumour detection was based on the contrast displayed in fluorescence between normal and malignant tissue, related to the selective uptake of tumour-marking agents and natural chromophore differences between various tissues. In order to demarcate basal cell carcinomas of the skin, ALA was applied topically 4-6 h before the fluorescence investigation. For urinary bladder tumour visualisation, ALA was instilled into the bladder 1-2 h prior to the study. Malignant and premalignant lesions in the head and neck region were imaged after i.v. injection of HPD (Photofrin). The tumour imaging system was coupled to an endoscope. Fluorescence light emission from the tissue surface was induced with 100-ns-long optical pulses at 390 nm, generated from a frequency-doubled alexandrite laser. With the use of special image-splitting optics, the tumour fluorescence, intensified in a micro-channel plate, was imaged in 3 selected wavelength bands. These 3 images were processed together to form a new optimised-contrast image of the tumour. This image, updated at a rate of about 3 frames/s was mixed with a normal colour video image of the tissue. A clear demarcation from normal surrounding tissue was found during in vivo measurements of superficial bladder carcinoma, basal cell carcinoma of the skin, and leukoplakia with dysplasia of the lip, and in vitro investigations of resected breast cancer. (orig./MG)

  4. Functional imaging in bulk tissue specimens using optical emission tomography: fluorescence preservation during optical clearing

    International Nuclear Information System (INIS)

    Sakhalkar, H S; Dewhirst, M; Oliver, T; Cao, Y; Oldham, M

    2007-01-01

    Optical emission computed tomography (optical-ECT) is a technique for imaging the three-dimensional (3D) distribution of fluorescent probes in biological tissue specimens with high contrast and spatial resolution. In optical-ECT, functional information can be imaged by (i) systemic application of functional labels (e.g. fluorophore labelled proteins) and/or (ii) endogenous expression of fluorescent reporter proteins (e.g. red fluorescent protein (RFP), green fluorescent protein (GFP)) in vivo. An essential prerequisite for optical-ECT is optical clearing, a procedure where tissue specimens are made transparent to light by sequential perfusion with fixing, dehydrating and clearing agents. In this study, we investigate clearing protocols involving a selection of common fixing (4% buffered paraformaldehyde (PFA), methanol and ethanol), dehydrating (methanol and ethanol) and clearing agents (methyl salicylate and benzyl-alcohol-benzyl-benzoate (BABB)) in order to determine a 'fluorescence friendly' clearing procedure. Cell culture experiments were employed to optimize the sequence of chemical treatments that best preserve fluorescence. Texas red (TxRed), fluorescein isothiocyanate (FITC), RFP and GFP were tested as fluorophores and fluorescent reporter proteins of interest. Fluorescent and control cells were imaged on a microscope using a DSred2 and FITC filter set. The most promising clearing protocols of cell culture experiments were applied to whole xenograft tumour specimens, to test their effectiveness in large unsectioned samples. Fluorescence of TxRed/FITC fluorophores was not found to be significantly affected by any of the test clearing protocols. RFP and GFP fluorescence, however, was found to be significantly greater when cell fixation was in ethanol. Fixation in either PFA or methanol resulted in diminished fluorescence. After ethanol fixation, the RFP and GFP fluorescence proved remarkably robust to subsequent exposure to either methyl salicylate or BABB

  5. Functional imaging in bulk tissue specimens using optical emission tomography: fluorescence preservation during optical clearing

    Energy Technology Data Exchange (ETDEWEB)

    Sakhalkar, H S [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States); Dewhirst, M [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States); Oliver, T [Department of Cell Biology, Duke University Medical Center, Durham, NC 27710 (United States); Cao, Y [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States); Oldham, M [Department of Radiation Oncology Physics, and Biomedical Engineering, Duke University Medical Center, Durham, NC 27710 (United States)

    2007-04-21

    Optical emission computed tomography (optical-ECT) is a technique for imaging the three-dimensional (3D) distribution of fluorescent probes in biological tissue specimens with high contrast and spatial resolution. In optical-ECT, functional information can be imaged by (i) systemic application of functional labels (e.g. fluorophore labelled proteins) and/or (ii) endogenous expression of fluorescent reporter proteins (e.g. red fluorescent protein (RFP), green fluorescent protein (GFP)) in vivo. An essential prerequisite for optical-ECT is optical clearing, a procedure where tissue specimens are made transparent to light by sequential perfusion with fixing, dehydrating and clearing agents. In this study, we investigate clearing protocols involving a selection of common fixing (4% buffered paraformaldehyde (PFA), methanol and ethanol), dehydrating (methanol and ethanol) and clearing agents (methyl salicylate and benzyl-alcohol-benzyl-benzoate (BABB)) in order to determine a 'fluorescence friendly' clearing procedure. Cell culture experiments were employed to optimize the sequence of chemical treatments that best preserve fluorescence. Texas red (TxRed), fluorescein isothiocyanate (FITC), RFP and GFP were tested as fluorophores and fluorescent reporter proteins of interest. Fluorescent and control cells were imaged on a microscope using a DSred2 and FITC filter set. The most promising clearing protocols of cell culture experiments were applied to whole xenograft tumour specimens, to test their effectiveness in large unsectioned samples. Fluorescence of TxRed/FITC fluorophores was not found to be significantly affected by any of the test clearing protocols. RFP and GFP fluorescence, however, was found to be significantly greater when cell fixation was in ethanol. Fixation in either PFA or methanol resulted in diminished fluorescence. After ethanol fixation, the RFP and GFP fluorescence proved remarkably robust to subsequent exposure to either methyl salicylate

  6. Super-resolution fluorescence imaging of nanoimprinted polymer patterns by selective fluorophore adsorption combined with redox switching

    KAUST Repository

    Yabiku, Y.; Kubo, S.; Nakagawa, M.; Vacha, M.; Habuchi, Satoshi

    2013-01-01

    We applied a super-resolution fluorescence imaging based on selective adsorption and redox switching of the fluorescent dye molecules for studying polymer nanostructures. We demonstrate that nano-scale structures of polymer thin films can

  7. Quantitative method to assess caries via fluorescence imaging from the perspective of autofluorescence spectral analysis

    International Nuclear Information System (INIS)

    Chen, Q G; Xu, Y; Zhu, H H; Chen, H; Lin, B

    2015-01-01

    A quantitative method to discriminate caries lesions for a fluorescence imaging system is proposed in this paper. The autofluorescence spectral investigation of 39 teeth samples classified by the International Caries Detection and Assessment System levels was performed at 405 nm excitation. The major differences in the different caries lesions focused on the relative spectral intensity range of 565–750 nm. The spectral parameter, defined as the ratio of wavebands at 565–750 nm to the whole spectral range, was calculated. The image component ratio R/(G + B) of color components was statistically computed by considering the spectral parameters (e.g. autofluorescence, optical filter, and spectral sensitivity) in our fluorescence color imaging system. Results showed that the spectral parameter and image component ratio presented a linear relation. Therefore, the image component ratio was graded as <0.66, 0.66–1.06, 1.06–1.62, and >1.62 to quantitatively classify sound, early decay, established decay, and severe decay tissues, respectively. Finally, the fluorescence images of caries were experimentally obtained, and the corresponding image component ratio distribution was compared with the classification result. A method to determine the numerical grades of caries using a fluorescence imaging system was proposed. This method can be applied to similar imaging systems. (paper)

  8. Quantitative method to assess caries via fluorescence imaging from the perspective of autofluorescence spectral analysis

    Science.gov (United States)

    Chen, Q. G.; Zhu, H. H.; Xu, Y.; Lin, B.; Chen, H.

    2015-08-01

    A quantitative method to discriminate caries lesions for a fluorescence imaging system is proposed in this paper. The autofluorescence spectral investigation of 39 teeth samples classified by the International Caries Detection and Assessment System levels was performed at 405 nm excitation. The major differences in the different caries lesions focused on the relative spectral intensity range of 565-750 nm. The spectral parameter, defined as the ratio of wavebands at 565-750 nm to the whole spectral range, was calculated. The image component ratio R/(G + B) of color components was statistically computed by considering the spectral parameters (e.g. autofluorescence, optical filter, and spectral sensitivity) in our fluorescence color imaging system. Results showed that the spectral parameter and image component ratio presented a linear relation. Therefore, the image component ratio was graded as 1.62 to quantitatively classify sound, early decay, established decay, and severe decay tissues, respectively. Finally, the fluorescence images of caries were experimentally obtained, and the corresponding image component ratio distribution was compared with the classification result. A method to determine the numerical grades of caries using a fluorescence imaging system was proposed. This method can be applied to similar imaging systems.

  9. Imaging Primary Mouse Sarcomas After Radiation Therapy Using Cathepsin-Activatable Fluorescent Imaging Agents

    Energy Technology Data Exchange (ETDEWEB)

    Cuneo, Kyle C. [Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina (United States); Mito, Jeffrey K.; Javid, Melodi P. [Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina (United States); Ferrer, Jorge M. [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts (United States); Kim, Yongbaek [Department of Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul (Korea, Republic of); Lee, W. David [The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts (United States); Bawendi, Moungi G. [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts (United States); Brigman, Brian E. [Department of Orthopedic Surgery, Duke University School of Medicine, Durham, North Carolina (United States); Kirsch, David G., E-mail: david.kirsch@duke.edu [Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina (United States); Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina (United States)

    2013-05-01

    Purpose: Cathepsin-activated fluorescent probes can detect tumors in mice and in canine patients. We previously showed that these probes can detect microscopic residual sarcoma in the tumor bed of mice during gross total resection. Many patients with soft tissue sarcoma (STS) and other tumors undergo radiation therapy (RT) before surgery. This study assesses the effect of RT on the ability of cathepsin-activated probes to differentiate between normal and cancerous tissue. Methods and Materials: A genetically engineered mouse model of STS was used to generate primary hind limb sarcomas that were treated with hypofractionated RT. Mice were injected intravenously with cathepsin-activated fluorescent probes, and various tissues, including the tumor, were imaged using a hand-held imaging device. Resected tumor and normal muscle samples were harvested to assess cathepsin expression by Western blot. Uptake of activated probe was analyzed by flow cytometry and confocal microscopy. Parallel in vitro studies using mouse sarcoma cells were performed. Results: RT of primary STS in mice and mouse sarcoma cell lines caused no change in probe activation or cathepsin protease expression. Increasing radiation dose resulted in an upward trend in probe activation. Flow cytometry and immunofluorescence showed that a substantial proportion of probe-labeled cells were CD11b-positive tumor-associated immune cells. Conclusions: In this primary murine model of STS, RT did not affect the ability of cathepsin-activated probes to differentiate between tumor and normal muscle. Cathepsin-activated probes labeled tumor cells and tumor-associated macrophages. Our results suggest that it would be feasible to include patients who have received preoperative RT in clinical studies evaluating cathepsin-activated imaging probes.

  10. Microdose fluorescence imaging of ABY-029 on an operating microscope adapted by custom illumination and imaging modules.

    Science.gov (United States)

    Elliott, Jonathan T; Dsouza, Alisha V; Marra, Kayla; Pogue, Brian W; Roberts, David W; Paulsen, Keith D

    2016-09-01

    Fluorescence guided surgery has the potential to positively impact surgical oncology; current operating microscopes and stand-alone imaging systems are too insensitive or too cumbersome to maximally take advantage of new tumor-specific agents developed through the microdose pathway. To this end, a custom-built illumination and imaging module enabling picomolar-sensitive near-infrared fluorescence imaging on a commercial operating microscope is described. The limits of detection and system specifications are characterized, and in vivo efficacy of the system in detecting ABY-029 is evaluated in a rat orthotopic glioma model following microdose injections, showing the suitability of the device for microdose phase 0 clinical trials.

  11. Rapid Analysis and Exploration of Fluorescence Microscopy Images

    OpenAIRE

    Pavie, Benjamin; Rajaram, Satwik; Ouyang, Austin; Altschuler, Jason; Steininger, Robert J; Wu, Lani; Altschuler, Steven

    2014-01-01

    Despite rapid advances in high-throughput microscopy, quantitative image-based assays still pose significant challenges. While a variety of specialized image analysis tools are available, most traditional image-analysis-based workflows have steep learning curves (for fine tuning of analysis parameters) and result in long turnaround times between imaging and analysis. In particular, cell segmentation, the process of identifying individual cells in an image, is a major bottleneck in this regard.

  12. The application of anti-ESAT-6 monoclonal antibody fluorescent probe in ex vivo near-infrared fluorescence imaging in mice with pulmonary tuberculosis.

    Science.gov (United States)

    Feng, Feng; Zhang, Haoling; Zhu, Zhaoqin; Li, Cong; Shi, Yuxin; Zhang, Zhiyong

    2014-09-01

    Here, we aimed to assess the feasibility of anti-ESAT-6 monoclonal antibody (mAb) coupling with IR783 and rhodamine fluorescent probe in the detection of ESAT-6 expression in tuberculosis tissue of mice using near-infrared fluorescence imaging. IR783 and rhodamine were conjugated to the anti-ESAT-6 mAb or IgG. Mice in the experimental group were injected with fluorescence-labeled mAb probe, and mice in the control group were injected with fluorescence-labeled non-specific IgG antibody. Twenty-four hours later, the lung tissue of mice was examined using ex vivo near-infrared fluorescence imaging. In addition, the contrast-to-noise ratio (CNR) was calculated by measuring the signal intensities of the pulmonary lesions, normal lung tissue and background noise. The frozen lung tissue section was examined under fluorescence microscopy and compared with hemoxylin and eosin (HE) staining. The ex vivo near-infrared fluorescence imaging showed that the fluorescence signal in the lung tuberculosis lesions in the experimental group was significantly enhanced, whereas there was only a weak fluorescence signal or even no fluorescence signal in the control group. CNR values were 64.40 ± 7.02 (n = 6) and 8.75 ± 3.87 (n = 6), respectively (t = 17.01, p fluorescence accumulation distribution detected under fluorescence microscopy was consistent with HE staining of the tuberculosis region. In conclusion, anti-ESAT-6 mAb fluorescent probe could target and be applied in specific ex vivo imaging of mice tuberculosis, and may be of further use in tuberculosis in living mice. Copyright © 2013 John Wiley & Sons, Ltd.

  13. Multistage morphological segmentation of bright-field and fluorescent microscopy images

    Science.gov (United States)

    Korzyńska, A.; Iwanowski, M.

    2012-06-01

    This paper describes the multistage morphological segmentation method (MSMA) for microscopic cell images. The proposed method enables us to study the cell behaviour by using a sequence of two types of microscopic images: bright field images and/or fluorescent images. The proposed method is based on two types of information: the cell texture coming from the bright field images and intensity of light emission, done by fluorescent markers. The method is dedicated to the image sequences segmentation and it is based on mathematical morphology methods supported by other image processing techniques. The method allows for detecting cells in image independently from a degree of their flattening and from presenting structures which produce the texture. It makes use of some synergic information from the fluorescent light emission image as the support information. The MSMA method has been applied to images acquired during the experiments on neural stem cells as well as to artificial images. In order to validate the method, two types of errors have been considered: the error of cell area detection and the error of cell position using artificial images as the "gold standard".

  14. Multiparameter fluorescence imaging for quantification of TH-1 and TH-2 cytokines at the single-cell level

    Science.gov (United States)

    Fekkar, Hakim; Benbernou, N.; Esnault, S.; Shin, H. C.; Guenounou, Moncef

    1998-04-01

    procedure of the original image using a structuring element. The opened image was therefore subtracted from the original one, and the gray intensities were subsequently measured. Fluorescence intensities are mapped in MD representation using Matlab software. Consequently, quantitative comparative expression of intracellular cytokines and cell membrane markers was achieved. Using this technique, we showed that CD4+ and CD8+T lymphocytes expressed a large panel of cytokines, and that protein kinase A (PKA) activation pathway induced a polarization of activated human T cells to the TH-2 type profile. Data also showed different sensitivities of CD45 RO/CD45RA lymphocytes to the activation of PKA, thus suggesting the implication of memory CD4+- and CD8+-T cells in the T cell specific immune and inflammatory processes and their control by PKA activation pathway. Finally, this method represents a powerful tool for the detection and quantification of intracellular cytokine expression and the analysis of the functional properties of T lymphocytes during immune responses.

  15. A novel approach for phytotoxicity assessment by CCD fluorescence imaging

    Czech Academy of Sciences Publication Activity Database

    Gavel, Alan; Maršálek, Blahoslav

    2004-01-01

    Roč. 19, - (2004), s. 429-432 ISSN 1520-4081 R&D Projects: GA AV ČR KSK6005114 Institutional research plan: CEZ:AV0Z6005908 Keywords : phytotoxicity * chlorophyll fluorescence * algal bioassay Subject RIV: EF - Botanics Impact factor: 1.373, year: 2004

  16. Self-assembled fluorescent organic nanoparticles for live cell imaging

    NARCIS (Netherlands)

    Fischer, I.; Petkau, K.; Dorland, Y.L.; Schenning, A.P.H.J.; Brunsveld, L.

    2013-01-01

    Fluorescent, cell-permeable, organic nanoparticles based on self-assembled p-conjugated oligomers with high absorption cross-sections and high quantum yields have been developed. The nanoparticles are generated with a tuneable density of amino groups for charge-mediated cellular uptake by a

  17. Preliminary Results of Nuclear Fluorescence Imaging of Alpha and Beta Emitting Sources

    International Nuclear Information System (INIS)

    Feener, Jessica S.; Charlton, William S.

    2013-06-01

    The preliminary results from a series of nuclear fluorescence imaging experiments using a variety of radioactive sources and shielding are given. These experiments were done as part of a proof of concept to determine if nuclear fluorescence imaging could be used as a safeguards measurements tool or for nuclear warhead verification for nuclear arms control treaties such as the New Strategic Arms Reduction Treaty and the Fissile Material Cut-Off Treaty. An off-the-shelf Princeton Instruments charged coupled device camera system was used to image the emission of fluorescence photons from the de-excitation of nitrogen molecules in air that have been excited by ionizing radiation. The fluorescence emissions are primarily in the near ultraviolet range; between the wavelengths of 300 and 400 nm. Fluorescent imaging techniques are currently being investigated in a number of applications. A French research team has successfully demonstrated this concept for remote imaging of alpha contamination. It has also been shown that the phenomenon can be seen through translucent materials and that alpha radiation can be seen in the presence of large gamma backgrounds. Additionally, fluorescence telescopes and satellites utilize the de-excitation of nitrogen molecules to observe cosmic ray showers in the atmosphere. In cosmic ray shower detection, electrons are the main contributor to the excitation of the of nitrogen molecules in air. The experiments presented in this paper were designed to determine if the imaging system could observe beta emitting sources, differentiate between beta emitters and alpha emitting materials such as uranium oxide and uranium metal, and to further investigate the phenomenon through translucent and non-translucent materials. The initial results show that differentiation can be made between beta and alpha emitting sources and that the device can observe the phenomenon through very thin non-transparent material. Additionally, information is given on the

  18. Benzothiadiazole Derivatives as Fluorescence Imaging Probes: Beyond Classical Scaffolds.

    Science.gov (United States)

    Neto, Brenno A D; Carvalho, Pedro H P R; Correa, Jose R

    2015-06-16

    This Account describes the origins, features, importance, and trends of the use of fluorescent small-molecule 2,1,3-benzothiadiazole (BTD) derivatives as a new class of bioprobes applied to bioimaging analyses of several (live and fixed) cell types. BTDs have been successfully used as probes for a plethora of biological analyses for only a few years, and the impressive responses obtained by using this important class of heterocycle are fostering the development of new fluorescent BTDs and expanding the biological applications of such derivatives. The first use of a fluorescent small-molecule BTD derivative as a selective cellular probe dates back to 2010, and since then impressive advances have been described by us and others. The well-known limitations of classical scaffolds urged the development of new classes of bioprobes. Although great developments have been achieved by using classical scaffolds such as coumarins, BODIPYs, fluoresceins, rhodamines, cyanines, and phenoxazines, there is still much to be done, and BTDs aim to succeed where these dyes have shown their limitations. Important organelles and cell components such as nuclear DNA, mitochondria, lipid droplets, and others have already been successfully labeled by fluorescent small-molecule BTD derivatives. New technological systems that use BTDs as the fluorophores for bioimaging experiments have been described in recent scientific literature. The successful application of BTDs as selective bioprobes has led some groups to explore their potential for use in studying membrane pores or tumor cells under hypoxic conditions. Finally, BTDs have also been used as fluorescent tags to investigate the action mechanism of some antitumor compounds. The attractive photophysical data typically observed for π-extended BTD derivatives is fostering interest in the use of this new class of bioprobes. Large Stokes shifts, large molar extinction coefficients, high quantum yields, high stability when stored in solution or

  19. Hybrid fluorescence and electron cryo-microscopy for simultaneous electron and photon imaging.

    Science.gov (United States)

    Iijima, Hirofumi; Fukuda, Yoshiyuki; Arai, Yoshihiro; Terakawa, Susumu; Yamamoto, Naoki; Nagayama, Kuniaki

    2014-01-01

    Integration of fluorescence light and transmission electron microscopy into the same device would represent an important advance in correlative microscopy, which traditionally involves two separate microscopes for imaging. To achieve such integration, the primary technical challenge that must be solved regards how to arrange two objective lenses used for light and electron microscopy in such a manner that they can properly focus on a single specimen. To address this issue, both lateral displacement of the specimen between two lenses and specimen rotation have been proposed. Such movement of the specimen allows sequential collection of two kinds of microscopic images of a single target, but prevents simultaneous imaging. This shortcoming has been made up by using a simple optical device, a reflection mirror. Here, we present an approach toward the versatile integration of fluorescence and electron microscopy for simultaneous imaging. The potential of simultaneous hybrid microscopy was demonstrated by fluorescence and electron sequential imaging of a fluorescent protein expressed in cells and cathodoluminescence imaging of fluorescent beads. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Red fluorescence imaging for dental plaque detection and quantification: pilot study

    Science.gov (United States)

    Liu, Zhao; Gomez, Juliana; Khan, Soniya; Peru, Debbie; Ellwood, Roger

    2017-09-01

    The red fluorescence of dental plaque originating from porphyrins in oral bacteria may allow visualization, detection, and scoring of plaque without disclosing agents. Two studies were conducted. The first included 24 healthy participants who abstained from oral hygiene for 24 h. Dental plaque was collected from tooth surfaces, and a 10% solution was prepared. These were scanned by a molecular spectrometer to identify the optimum excitation and emission wavelengths of plaque for developing a red fluorescence imaging system. Fourteen healthy subjects completed the second study. After a washout period (1 week), participants had a prophylaxis at baseline and abstained from oral hygiene during the study. They were monitored using the fluorescence imaging system at baseline, 24 h, and 48 h. A dentist clinically assessed plaque after disclosing and on red fluorescence images. Three descriptors were extracted from images and a RUSBoost classifier derived computer fluorescence scores through cross-validation. Red fluorescence plaque levels increased during the 48-h accumulation. Plaque progression was identified by dentist assessment and computer analysis, presenting significant differences between visits at tooth and subject levels (phygiene assessment.

  1. Wide-field spectrally resolved quantitative fluorescence imaging system: toward neurosurgical guidance in glioma resection

    Science.gov (United States)

    Xie, Yijing; Thom, Maria; Ebner, Michael; Wykes, Victoria; Desjardins, Adrien; Miserocchi, Anna; Ourselin, Sebastien; McEvoy, Andrew W.; Vercauteren, Tom

    2017-11-01

    In high-grade glioma surgery, tumor resection is often guided by intraoperative fluorescence imaging. 5-aminolevulinic acid-induced protoporphyrin IX (PpIX) provides fluorescent contrast between normal brain tissue and glioma tissue, thus achieving improved tumor delineation and prolonged patient survival compared with conventional white-light-guided resection. However, commercially available fluorescence imaging systems rely solely on visual assessment of fluorescence patterns by the surgeon, which makes the resection more subjective than necessary. We developed a wide-field spectrally resolved fluorescence imaging system utilizing a Generation II scientific CMOS camera and an improved computational model for the precise reconstruction of the PpIX concentration map. In our model, the tissue's optical properties and illumination geometry, which distort the fluorescent emission spectra, are considered. We demonstrate that the CMOS-based system can detect low PpIX concentration at short camera exposure times, while providing high-pixel resolution wide-field images. We show that total variation regularization improves the contrast-to-noise ratio of the reconstructed quantitative concentration map by approximately twofold. Quantitative comparison between the estimated PpIX concentration and tumor histopathology was also investigated to further evaluate the system.

  2. A portable UV-fluorescence multispectral imaging system for the analysis of painted surfaces

    Science.gov (United States)

    Comelli, Daniela; Valentini, Gianluca; Nevin, Austin; Farina, Andrea; Toniolo, Lucia; Cubeddu, Rinaldo

    2008-08-01

    A portable fluorescence multispectral imaging system was developed and has been used for the analysis of artistic surfaces. The imaging apparatus exploits two UV lamps for fluorescence excitation and a liquid crystal tunable filter coupled to a low-noise charge coupled device as the image detector. The main features of the system are critically presented, outlining the assets, drawbacks, and practical considerations of portability. A multivariate statistical treatment of spectral data is further considered. Finally, the in situ analysis with the new apparatus of recently restored Renaissance wall paintings is presented.

  3. Current Concepts and Future Perspectives on Intraoperative Fluorescence Imaging in Cancer : Clinical Need

    NARCIS (Netherlands)

    van Dam, Gooitzen M.; Ntziachristos, Vasilis

    Progress with technology and regulatory approvals has recently allowed the successful clinical translation of fluorescence molecular imaging to intra-operative applications. Initial studies have demonstrated a promising outlook for imaging cancer micro-foci, margins and lymph-nodes. However, not all

  4. Red to far-red multispectral fluorescence image fusion for detection of fecal contamination on apples

    Science.gov (United States)

    This research developed a multispectral algorithm derived from hyperspectral line-scan fluorescence imaging under violet/blue LED excitation for detection of fecal contamination on Golden Delicious apples. Using a hyperspectral line-scan imaging system consisting of an EMCCD camera, spectrograph, an...

  5. Applications of two-photon fluorescence microscopy in deep-tissue imaging

    Science.gov (United States)

    Dong, Chen-Yuan; Yu, Betty; Hsu, Lily L.; Kaplan, Peter D.; Blankschstein, D.; Langer, Robert; So, Peter T. C.

    2000-07-01

    Based on the non-linear excitation of fluorescence molecules, two-photon fluorescence microscopy has become a significant new tool for biological imaging. The point-like excitation characteristic of this technique enhances image quality by the virtual elimination of off-focal fluorescence. Furthermore, sample photodamage is greatly reduced because fluorescence excitation is limited to the focal region. For deep tissue imaging, two-photon microscopy has the additional benefit in the greatly improved imaging depth penetration. Since the near- infrared laser sources used in two-photon microscopy scatter less than their UV/glue-green counterparts, in-depth imaging of highly scattering specimen can be greatly improved. In this work, we will present data characterizing both the imaging characteristics (point-spread-functions) and tissue samples (skin) images using this novel technology. In particular, we will demonstrate how blind deconvolution can be used further improve two-photon image quality and how this technique can be used to study mechanisms of chemically-enhanced, transdermal drug delivery.

  6. Fluorescence hyperspectral imaging technique for foreign substance detection on fresh-cut lettuce.

    Science.gov (United States)

    Mo, Changyeun; Kim, Giyoung; Kim, Moon S; Lim, Jongguk; Cho, Hyunjeong; Barnaby, Jinyoung Yang; Cho, Byoung-Kwan

    2017-09-01

    Non-destructive methods based on fluorescence hyperspectral imaging (HSI) techniques were developed to detect worms on fresh-cut lettuce. The optimal wavebands for detecting the worms were investigated using the one-way ANOVA and correlation analyses. The worm detection imaging algorithms, RSI-I (492-626)/492 , provided a prediction accuracy of 99.0%. The fluorescence HSI techniques indicated that the spectral images with a pixel size of 1 × 1 mm had the best classification accuracy for worms. The overall results demonstrate that fluorescence HSI techniques have the potential to detect worms on fresh-cut lettuce. In the future, we will focus on developing a multi-spectral imaging system to detect foreign substances such as worms, slugs and earthworms on fresh-cut lettuce. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. Characterization of a new series of fluorescent probes for imaging membrane order.

    Directory of Open Access Journals (Sweden)

    Joanna M Kwiatek

    Full Text Available Visualization and quantification of lipid order is an important tool in membrane biophysics and cell biology, but the availability of environmentally sensitive fluorescent membrane probes is limited. Here, we present the characterization of the novel fluorescent dyes PY3304, PY3174 and PY3184, whose fluorescence properties are sensitive to membrane lipid order. In artificial bilayers, the fluorescence emission spectra are red-shifted between the liquid-ordered and liquid-disordered phases. Using ratiometric imaging we demonstrate that the degree of membrane order can be quantitatively determined in artificial liposomes as well as live cells and intact, live zebrafish embryos. Finally, we show that the fluorescence lifetime of the dyes is also dependent on bilayer order. These probes expand the current palate of lipid order-sensing fluorophores affording greater flexibility in the excitation/emission wavelengths and possibly new opportunities in membrane biology.

  8. Very High Spectral Resolution Imaging Spectroscopy: the Fluorescence Explorer (FLEX) Mission

    Science.gov (United States)

    Moreno, Jose F.; Goulas, Yves; Huth, Andreas; Middleton, Elizabeth; Miglietta, Franco; Mohammed, Gina; Nedbal, Ladislav; Rascher, Uwe; Verhoef, Wouter; Drusch, Matthias

    2016-01-01

    The Fluorescence Explorer (FLEX) mission has been recently selected as the 8th Earth Explorer by the European Space Agency (ESA). It will be the first mission specifically designed to measure from space vegetation fluorescence emission, by making use of very high spectral resolution imaging spectroscopy techniques. Vegetation fluorescence is the best proxy to actual vegetation photosynthesis which can be measurable from space, allowing an improved quantification of vegetation carbon assimilation and vegetation stress conditions, thus having key relevance for global mapping of ecosystems dynamics and aspects related with agricultural production and food security. The FLEX mission carries the FLORIS spectrometer, with a spectral resolution in the range of 0.3 nm, and is designed to fly in tandem with Copernicus Sentinel-3, in order to provide all the necessary spectral / angular information to disentangle emitted fluorescence from reflected radiance, and to allow proper interpretation of the observed fluorescence spatial and temporal dynamics.

  9. Speckle correlation resolution enhancement of wide-field fluorescence imaging (Conference Presentation)

    Science.gov (United States)

    Yilmaz, Hasan

    2016-03-01

    Structured illumination enables high-resolution fluorescence imaging of nanostructures [1]. We demonstrate a new high-resolution fluorescence imaging method that uses a scattering layer with a high-index substrate as a solid immersion lens [2]. Random scattering of coherent light enables a speckle pattern with a very fine structure that illuminates the fluorescent nanospheres on the back surface of the high-index substrate. The speckle pattern is raster-scanned over the fluorescent nanospheres using a speckle correlation effect known as the optical memory effect. A series of standard-resolution fluorescence images per each speckle pattern displacement are recorded by an electron-multiplying CCD camera using a commercial microscope objective. We have developed a new phase-retrieval algorithm to reconstruct a high-resolution, wide-field image from several standard-resolution wide-field images. We have introduced phase information of Fourier components of standard-resolution images as a new constraint in our algorithm which discards ambiguities therefore ensures convergence to a unique solution. We demonstrate two-dimensional fluorescence images of a collection of nanospheres with a deconvolved Abbe resolution of 116 nm and a field of view of 10 µm × 10 µm. Our method is robust against optical aberrations and stage drifts, therefore excellent for imaging nanostructures under ambient conditions. [1] M. G. L. Gustafsson, J. Microsc. 198, 82-87 (2000). [2] H. Yilmaz, E. G. van Putten, J. Bertolotti, A. Lagendijk, W. L. Vos, and A. P. Mosk, Optica 2, 424-429 (2015).

  10. Catheter-based time-gated near-infrared fluorescence/OCT imaging system

    Science.gov (United States)

    Lu, Yuankang; Abran, Maxime; Cloutier, Guy; Lesage, Frédéric

    2018-02-01

    We developed a new dual-modality intravascular imaging system based on fast time-gated fluorescence intensity imaging and spectral domain optical coherence tomography (SD-OCT) for the purpose of interventional detection of atherosclerosis. A pulsed supercontinuum laser was used for fluorescence and OCT imaging. A double-clad fiber (DCF)- based side-firing catheter was designed and fabricated to have a 23 μm spot size at a 2.2 mm working distance for OCT imaging. Its single-mode core is used for OCT, while its inner cladding transports fluorescence excitation light and collects fluorescent photons. The combination of OCT and fluorescence imaging was achieved by using a DCF coupler. For fluorescence detection, we used a time-gated technique with a novel single-photon avalanche diode (SPAD) working in an ultra-fast gating mode. A custom-made delay chip was integrated in the system to adjust the delay between the excitation laser pulse and the SPAD gate-ON window. This technique allowed to detect fluorescent photons of interest while rejecting most of the background photons, thus leading to a significantly improved signal to noise ratio (SNR). Experiments were carried out in turbid media mimicking tissue with an indocyanine green (ICG) inclusion (1 mM and 100 μM) to compare the time-gated technique and the conventional continuous detection technique. The gating technique increased twofold depth sensitivity, and tenfold SNR at large distances. The dual-modality imaging capacity of our system was also validated with a silicone-based tissue-mimicking phantom.

  11. A Geometric Dictionary Learning Based Approach for Fluorescence Spectroscopy Image Fusion

    Directory of Open Access Journals (Sweden)

    Zhiqin Zhu

    2017-02-01

    Full Text Available In recent years, sparse representation approaches have been integrated into multi-focus image fusion methods. The fused images of sparse-representation-based image fusion methods show great performance. Constructing an informative dictionary is a key step for sparsity-based image fusion method. In order to ensure sufficient number of useful bases for sparse representation in the process of informative dictionary construction, image patches from all source images are classified into different groups based on geometric similarities. The key information of each image-patch group is extracted by principle component analysis (PCA to build dictionary. According to the constructed dictionary, image patches are converted to sparse coefficients by simultaneous orthogonal matching pursuit (SOMP algorithm for representing the source multi-focus images. At last the sparse coefficients are fused by Max-L1 fusion rule and inverted to fused image. Due to the limitation of microscope, the fluorescence image cannot be fully focused. The proposed multi-focus image fusion solution is applied to fluorescence imaging area for generating all-in-focus images. The comparison experimentation results confirm the feasibility and effectiveness of the proposed multi-focus image fusion solution.

  12. Near-infrared-fluorescence imaging of lymph nodes by using liposomally formulated indocyanine green derivatives.

    Science.gov (United States)

    Toyota, Taro; Fujito, Hiromichi; Suganami, Akiko; Ouchi, Tomoki; Ooishi, Aki; Aoki, Akira; Onoue, Kazutaka; Muraki, Yutaka; Madono, Tomoyuki; Fujinami, Masanori; Tamura, Yutaka; Hayashi, Hideki

    2014-01-15

    Liposomally formulated indocyanine green (LP-ICG) has drawn much attention as a highly sensitive near-infrared (NIR)-fluorescence probe for tumors or lymph nodes in vivo. We synthesized ICG derivatives tagged with alkyl chains (ICG-Cn), and we examined NIR-fluorescence imaging for lymph nodes in the lower extremities of mice by using liposomally formulated ICG-Cn (LP-ICG-Cn) as well as conventional liposomally formulated ICG (LP-ICG) and ICG. Analysis with a noninvasive preclinical NIR-fluorescence imaging system revealed that LP-ICG-Cn accumulates in only the popliteal lymph node 1h after injection into the footpad, whereas LP-ICG and ICG accumulate in the popliteal lymph node and other organs like the liver. This result indicates that LP-ICG-Cn is a useful NIR-fluorescence probe for noninvasive in vivo bioimaging, especially for the sentinel lymph node. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Digital subtraction cerebral angiography by intraarterial injection: comparison with conventional angiography

    International Nuclear Information System (INIS)

    Brant-Zawadzki, M.; Gould, R.; Norman, D.; Newton, T.H.; Lane, B.

    1983-01-01

    For 4 months, a prototype digital subtraction system was used to obtain images of the cerebral vasculature after intraarterial contrast injections. In 12 instances, the intraarterial injections were recorded with both a digital subtraction unit and conventional direct magnification film-screen system. The digital subtraction and conventional film subtraction images were compared and graded for quality and information content by three skilled observers. In addition, quantitative measurements of contrast-detail performance and spatial resolution were obtained on both the digital system and the screen-film imaging chain. In a clinical setting, both the digital subtraction and conventional film-screen systems provided similar quality images and angiographic information. Contrast-detail curves demonstrated that digital subtraction angiography outperformed conventional film technique for low-contrast objects. Digital subtraction angiography also reduced the time required to obtain the angiogram, markedly reduced film cost, and lowered the contrast agent burden

  14. Cell tracking with gadophrin-2: a bifunctional contrast agent for MR imaging, optical imaging, and fluorescence microscopy

    International Nuclear Information System (INIS)

    Daldrup-Link, Heike E.; Rudelius, Martina; Piontek, Guido; Schlegel, Juergen; Metz, Stephan; Settles, Marcus; Rummeny, Ernst J.; Pichler, Bernd; Heinzmann, Ulrich; Oostendorp, Robert A.J.

    2004-01-01

    The purpose of this study was to assess the feasibility of use of gadophrin-2 to trace intravenously injected human hematopoietic cells in athymic mice, employing magnetic resonance (MR) imaging, optical imaging (OI), and fluorescence microscopy. Mononuclear peripheral blood cells from GCSF-primed patients were labeled with gadophrin-2 (Schering AG, Berlin, Germany), a paramagnetic and fluorescent metalloporphyrin, using established transfection techniques with cationic liposomes. The labeled cells were evaluated in vitro with electron microscopy and inductively coupled plasma atomic emission spectrometry. Then, 1 x 10 6 -3 x 10 8 labeled cells were injected into 14 nude Balb/c mice and the in vivo cell distribution was evaluated with MR imaging and OI before and 4, 24, and 48 h after intravenous injection (p.i.). Five additional mice served as controls: three mice were untreated controls and two mice were investigated after injection of unlabeled cells. The contrast agent effect was determined quantitatively for MR imaging by calculating signal-to-noise-ratio (SNR) data. After completion of in vivo imaging studies, fluorescence microscopy of excised organs was performed. Intracellular cytoplasmatic uptake of gadophrin-2 was confirmed by electron microscopy. Spectrometry determined an uptake of 31.56 nmol Gd per 10 6 cells. After intravenous injection, the distribution of gadophrin-2 labeled cells in nude mice could be visualized by MR, OI, and fluorescence microscopy. At 4 h p.i., the transplanted cells mainly distributed to lung, liver, and spleen, and 24 h p.i. they also distributed to the bone marrow. Fluorescence microscopy confirmed the distribution of gadophrin-2 labeled cells to these target organs. Gadophrin-2 is suited as a bifunctional contrast agent for MR imaging, OI, and fluorescence microscopy and may be used to combine the advantages of each individual imaging modality for in vivo tracking of intravenously injected hematopoietic cells. (orig.)

  15. Imaging Amyloid Tissues Stained with Luminescent Conjugated Oligothiophenes by Hyperspectral Confocal Microscopy and Fluorescence Lifetime Imaging.

    Science.gov (United States)

    Nyström, Sofie; Bäck, Marcus; Nilsson, K Peter R; Hammarström, Per

    2017-10-20

    Proteins that deposit as amyloid in tissues throughout the body can be the cause or consequence of a large number of diseases. Among these we find neurodegenerative diseases such as Alzheimer's and Parkinson's disease afflicting primarily the central nervous system, and systemic amyloidosis where serum amyloid A, transthyretin and IgG light chains deposit as amyloid in liver, carpal tunnel, spleen, kidney, heart, and other peripheral tissues. Amyloid has been known and studied for more than a century, often using amyloid specific dyes such as Congo red and Thioflavin T (ThT) or Thioflavin (ThS). In this paper, we present heptamer-formyl thiophene acetic acid (hFTAA) as an example of recently developed complements to these dyes called luminescent conjugated oligothiophenes (LCOs). hFTAA is easy to use and is compatible with co-staining in immunofluorescence or with other cellular markers. Extensive research has proven that hFTAA detects a wider range of disease associated protein aggregates than conventional amyloid dyes. In addition, hFTAA can also be applied for optical assignment of distinct aggregated morphotypes to allow studies of amyloid fibril polymorphism. While the imaging methodology applied is optional, we here demonstrate hyperspectral imaging (HIS), laser scanning confocal microscopy and fluorescence lifetime imaging (FLIM). These examples show some of the imaging techniques where LCOs can be used as tools to gain more detailed knowledge of the formation and structural properties of amyloids. An important limitation to the technique is, as for all conventional optical microscopy techniques, the requirement for microscopic size of aggregates to allow detection. Furthermore, the aggregate should comprise a repetitive β-sheet structure to allow for hFTAA binding. Excessive fixation and/or epitope exposure that modify the aggregate structure or conformation can render poor hFTAA binding and hence pose limitations to accurate imaging.

  16. Fluorescent Probes for Analysis and Imaging of Monoamine Oxidase Activity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dokyoung; Jun, Yong Woong; Ahn, Kyo Han [POSTECH, Pohang (Korea, Republic of)

    2014-05-15

    Monoamine oxidases catalyze the oxidative deamination of dietary amines and amine neurotransmitters, and assist in maintaining the homeostasis of the amine neurotransmitters in the brain. Dysfunctions of these enzymes can cause neurological and behavioral disorders including Parkinson's and Alzheimer's diseases. To understand their physiological roles, efficient assay methods for monoamine oxidases are essential. Reviewed in this Perspective are the recent progress in the development of fluorescent probes for monoamine oxidases and their applications to enzyme assays in cells and tissues. It is evident that still there is strong need for a fluorescent probe with desirable substrate selectivity and photophysical properties to challenge the much unsolved issues associated with the enzymes and the diseases.

  17. Automated parasite faecal egg counting using fluorescence labelling, smartphone image capture and computational image analysis.

    Science.gov (United States)

    Slusarewicz, Paul; Pagano, Stefanie; Mills, Christopher; Popa, Gabriel; Chow, K Martin; Mendenhall, Michael; Rodgers, David W; Nielsen, Martin K

    2016-07-01

    Intestinal parasites are a concern in veterinary medicine worldwide and for human health in the developing world. Infections are identified by microscopic visualisation of parasite eggs in faeces, which is time-consuming, requires technical expertise and is impractical for use on-site. For these reasons, recommendations for parasite surveillance are not widely adopted and parasite control is based on administration of rote prophylactic treatments with anthelmintic drugs. This approach is known to promote anthelmintic resistance, so there is a pronounced need for a convenient egg counting assay to promote good clinical practice. Using a fluorescent chitin-binding protein, we show that this structural carbohydrate is present and accessible in shells of ova of strongyle, ascarid, trichurid and coccidian parasites. Furthermore, we show that a cellular smartphone can be used as an inexpensive device to image fluorescent eggs and, by harnessing the computational power of the phone, to perform image analysis to count the eggs. Strongyle egg counts generated by the smartphone system had a significant linear correlation with manual McMaster counts (R(2)=0.98), but with a significantly lower coefficient of variation (P=0.0177). Furthermore, the system was capable of differentiating equine strongyle and ascarid eggs similar to the McMaster method, but with significantly lower coefficients of variation (P<0.0001). This demonstrates the feasibility of a simple, automated on-site test to detect and/or enumerate parasite eggs in mammalian faeces without the need for a laboratory microscope, and highlights the potential of smartphones as relatively sophisticated, inexpensive and portable medical diagnostic devices. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  18. Diagnostic imaging of cervical intraepithelial neoplasia based on hematoxylin and eosin fluorescence.

    Science.gov (United States)

    Castellanos, Mario R; Szerszen, Anita; Gundry, Stephen; Pirog, Edyta C; Maiman, Mitchell; Rajupet, Sritha; Gomez, John Paul; Davidov, Adi; Debata, Priya Ranjan; Banerjee, Probal; Fata, Jimmie E

    2015-07-25

    Pathological classification of cervical intraepithelial neoplasia (CIN) is problematic as it relies on subjective criteria. We developed an imaging method that uses spectroscopy to assess the fluorescent intensity of cervical biopsies derived directly from hematoxylin and eosin (H&E) stained tissues. Archived H&E slides were identified containing normal cervical tissue, CIN I, and CIN III cases, from a Community Hospital and an Academic Medical Center. Cases were obtained by consensus review of at least 2 senior pathologists. Images from H&E slides were captured first with bright field illumination and then with fluorescent illumination. We used a Zeiss Axio Observer Z1 microscope and an AxioVision 4.6.3-AP1 camera at excitation wavelength of 450-490 nm with emission captured at 515-565 nm. The 32-bit grayscale fluorescence images were used for image analysis. We reviewed 108 slides: 46 normal, 33 CIN I and 29 CIN III. Fluorescent intensity increased progressively in normal epithelial tissue as cells matured and advanced from the basal to superficial regions of the epithelium. In CIN I cases this change was less prominent as compared to normal. In high grade CIN lesions, there was a slight or no increase in fluorescent intensity. All groups examined were statistically different. Presently, there are no markers to help in classification of CIN I-III lesions. Our imaging method may complement standard H&E pathological review and provide objective criteria to support the CIN diagnosis.

  19. Parallel scan hyperspectral fluorescence imaging system and biomedical application for microarrays

    International Nuclear Information System (INIS)

    Liu Zhiyi; Ma Suihua; Liu Le; Guo Jihua; He Yonghong; Ji Yanhong

    2011-01-01

    Microarray research offers great potential for analysis of gene expression profile and leads to greatly improved experimental throughput. A number of instruments have been reported for microarray detection, such as chemiluminescence, surface plasmon resonance, and fluorescence markers. Fluorescence imaging is popular for the readout of microarrays. In this paper we develop a quasi-confocal, multichannel parallel scan hyperspectral fluorescence imaging system for microarray research. Hyperspectral imaging records the entire emission spectrum for every voxel within the imaged area in contrast to recording only fluorescence intensities of filter-based scanners. Coupled with data analysis, the recorded spectral information allows for quantitative identification of the contributions of multiple, spectrally overlapping fluorescent dyes and elimination of unwanted artifacts. The mechanism of quasi-confocal imaging provides a high signal-to-noise ratio, and parallel scan makes this approach a high throughput technique for microarray analysis. This system is improved with a specifically designed spectrometer which can offer a spectral resolution of 0.2 nm, and operates with spatial resolutions ranging from 2 to 30 μm . Finally, the application of the system is demonstrated by reading out microarrays for identification of bacteria.

  20. Lipidots: competitive organic alternative to quantum dots for in vivo fluorescence imaging

    Science.gov (United States)

    Gravier, Julien; Navarro, Fabrice P.; Delmas, Thomas; Mittler, Frédérique; Couffin, Anne-Claude; Vinet, Françoise; Texier, Isabelle

    2011-09-01

    The use of fluorescent nanostructures can bring several benefits on the signal to background ratio for in vitro microscopy, in vivo small animal imaging, and image-guided surgery. Fluorescent quantum dots (QDs) display outstanding optical properties, with high brightness and low photobleaching rate. However, because of their toxic element core composition and their potential long term retention in reticulo-endothelial organs such as liver, their in vivo human applications seem compromised. The development of new dye-loaded (DiO, DiI, DiD, DiR, and Indocyanine Green (ICG)) lipid nanoparticles for fluorescence imaging (lipidots) is described here. Lipidot optical properties quantitatively compete with those of commercial QDs (QTracker®705). Multichannel in vivo imaging of lymph nodes in mice is demonstrated for doses as low as 2 pmols of particles. Along with their optical properties, fluorescent lipidots display very low cytotoxicity (IC50 > 75 nM), which make them suitable tools for in vitro, and especially in vivo, fluorescence imaging applications.

  1. Real-time Fluorescence Image-Guided Oncologic Surgery

    Science.gov (United States)

    Mondal, Suman B.; Gao, Shengkui; Zhu, Nan; Liang, Rongguang; Gruev, Viktor; Achilefu, Samuel

    2014-01-01

    Medical imaging plays a critical role in cancer diagnosis and planning. Many of these patients rely on surgical intervention for curative outcomes. This requires a careful identification of the primary and microscopic tumors, and the complete removal of cancer. Although there have been efforts to adapt traditional imaging modalities for intraoperative image guidance, they suffer from several constraints such as large hardware footprint, high operation cost, and disruption of the surgical workflow. Because of the ease of image acquisition, relatively low cost devices and intuitive operation, optical imaging methods have received tremendous interests for use in real-time image-guided surgery. To improve imaging depth under low interference by tissue autofluorescence, many of these applications utilize light in the near-infra red (NIR) wavelengths, which is invisible to human eyes. With the availability of a wide selection of tumor-avid contrast agents, advancements in imaging sensors, electronic and optical designs, surgeons are able to combine different attributes of NIR optical imaging techniques to improve treatment outcomes. The emergence of diverse commercial and experimental image guidance systems, which are in various stages of clinical translation, attests to the potential high impact of intraoperative optical imaging methods to improve speed of oncologic surgery with high accuracy and minimal margin positivity. PMID:25287689

  2. Facile method for CLSM imaging unfunctionalized Au nanoparticles through fluorescent channels

    International Nuclear Information System (INIS)

    Yuan Lan; Wei Wei; Li Juan; Sun, Zhiwei; Wang Hongfang; Zhang Xiuzhi; Chen Yueyue

    2009-01-01

    The microscopic visualization of metal nanoparticles has become a useful tool for the investigation of their applications in cell labeling and the study of their bio-effects. In the current study, we have developed a facile method with confocal laser scanning microscope (CLSM) to observe unfunctionalized Au nanoparticles through fluorescent channels. The sharp reflected signal and photostable property of the metal nanoparticles makes the present method very ideal for fluorescent co-localization, real-time imaging, and further quantitative analysis.

  3. CMOS Time-Resolved, Contact, and Multispectral Fluorescence Imaging for DNA Molecular Diagnostics

    Directory of Open Access Journals (Sweden)

    Nan Guo

    2014-10-01

    Full Text Available Instrumental limitations such as bulkiness and high cost prevent the fluorescence technique from becoming ubiquitous for point-of-care deoxyribonucleic acid (DNA detection and other in-field molecular diagnostics applications. The complimentary metal-oxide-semiconductor (CMOS technology, as benefited from process scaling, provides several advanced capabilities such as high integration density, high-resolution signal processing, and low power consumption, enabling sensitive, integrated, and low-cost fluorescence analytical platforms. In this paper, CMOS time-resolved, contact, and multispectral imaging are reviewed. Recently reported CMOS fluorescence analysis microsystem prototypes are surveyed to highlight the present state of the art.

  4. Deep brain two-photon NIR fluorescence imaging for study of Alzheimer's disease

    Science.gov (United States)

    Chen, Congping; Liang, Zhuoyi; Zhou, Biao; Ip, Nancy Y.; Qu, Jianan Y.

    2018-02-01

    Amyloid depositions in the brain represent the characteristic hallmarks of Alzheimer's disease (AD) pathology. The abnormal accumulation of extracellular amyloid-beta (Aβ) and resulting toxic amyloid plaques are considered to be responsible for the clinical deficits including cognitive decline and memory loss. In vivo two-photon fluorescence imaging of amyloid plaques in live AD mouse model through a chronic imaging window (thinned skull or craniotomy) provides a mean to greatly facilitate the study of the pathological mechanism of AD owing to its high spatial resolution and long-term continuous monitoring. However, the imaging depth for amyloid plaques is largely limited to upper cortical layers due to the short-wavelength fluorescence emission of commonly used amyloid probes. In this work, we reported that CRANAD-3, a near-infrared (NIR) probe for amyloid species with excitation wavelength at 900 nm and emission wavelength around 650 nm, has great advantages over conventionally used probes and is well suited for twophoton deep imaging of amyloid plaques in AD mouse brain. Compared with a commonly used MeO-X04 probe, the imaging depth of CRANAD-3 is largely extended for open skull cranial window. Furthermore, by using two-photon excited fluorescence spectroscopic imaging, we characterized the intrinsic fluorescence of the "aging pigment" lipofuscin in vivo, which has distinct spectra from CRANAD-3 labeled plaques. This study reveals the unique potential of NIR probes for in vivo, high-resolution and deep imaging of brain amyloid in Alzheimer's disease.

  5. Segmentation-based retrospective shading correction in fluorescence microscopy E. coli images for quantitative analysis

    Science.gov (United States)

    Mai, Fei; Chang, Chunqi; Liu, Wenqing; Xu, Weichao; Hung, Yeung S.

    2009-10-01

    Due to the inherent imperfections in the imaging process, fluorescence microscopy images often suffer from spurious intensity variations, which is usually referred to as intensity inhomogeneity, intensity non uniformity, shading or bias field. In this paper, a retrospective shading correction method for fluorescence microscopy Escherichia coli (E. Coli) images is proposed based on segmentation result. Segmentation and shading correction are coupled together, so we iteratively correct the shading effects based on segmentation result and refine the segmentation by segmenting the image after shading correction. A fluorescence microscopy E. Coli image can be segmented (based on its intensity value) into two classes: the background and the cells, where the intensity variation within each class is close to zero if there is no shading. Therefore, we make use of this characteristics to correct the shading in each iteration. Shading is mathematically modeled as a multiplicative component and an additive noise component. The additive component is removed by a denoising process, and the multiplicative component is estimated using a fast algorithm to minimize the intra-class intensity variation. We tested our method on synthetic images and real fluorescence E.coli images. It works well not only for visual inspection, but also for numerical evaluation. Our proposed method should be useful for further quantitative analysis especially for protein expression value comparison.

  6. Improved detection of soma location and morphology in fluorescence microscopy images of neurons.

    Science.gov (United States)

    Kayasandik, Cihan Bilge; Labate, Demetrio

    2016-12-01

    Automated detection and segmentation of somas in fluorescent images of neurons is a major goal in quantitative studies of neuronal networks, including applications of high-content-screenings where it is required to quantify multiple morphological properties of neurons. Despite recent advances in image processing targeted to neurobiological applications, existing algorithms of soma detection are often unreliable, especially when processing fluorescence image stacks of neuronal cultures. In this paper, we introduce an innovative algorithm for the detection and extraction of somas in fluorescent images of networks of cultured neurons where somas and other structures exist in the same fluorescent channel. Our method relies on a new geometrical descriptor called Directional Ratio and a collection of multiscale orientable filters to quantify the level of local isotropy in an image. To optimize the application of this approach, we introduce a new construction of multiscale anisotropic filters that is implemented by separable convolution. Extensive numerical experiments using 2D and 3D confocal images show that our automated algorithm reliably detects somas, accurately segments them, and separates contiguous ones. We include a detailed comparison with state-of-the-art existing methods to demonstrate that our algorithm is extremely competitive in terms of accuracy, reliability and computational efficiency. Our algorithm will facilitate the development of automated platforms for high content neuron image processing. A Matlab code is released open-source and freely available to the scientific community. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles.

    Science.gov (United States)

    Gu, Luo; Hall, David J; Qin, Zhengtao; Anglin, Emily; Joo, Jinmyoung; Mooney, David J; Howell, Stephen B; Sailor, Michael J

    2013-01-01

    Fluorescence imaging is one of the most versatile and widely used visualization methods in biomedical research. However, tissue autofluorescence is a major obstacle confounding interpretation of in vivo fluorescence images. The unusually long emission lifetime (5-13 μs) of photoluminescent porous silicon nanoparticles can allow the time-gated imaging of tissues in vivo, completely eliminating shorter-lived (50-fold in vitro and by >20-fold in vivo when imaging porous silicon nanoparticles. Time-gated imaging of porous silicon nanoparticles accumulated in a human ovarian cancer xenograft following intravenous injection is demonstrated in a live mouse. The potential for multiplexing of images in the time domain by using separate porous silicon nanoparticles engineered with different excited state lifetimes is discussed.

  8. Selective imaging of cancer cells with a pH-activatable lysosome-targeting fluorescent probe.

    Science.gov (United States)

    Shi, Rongguang; Huang, Lu; Duan, Xiaoxue; Sun, Guohao; Yin, Gui; Wang, Ruiyong; Zhu, Jun-Jie

    2017-10-02

    Fluorescence imaging with tumor-specific fluorescent probe has emerged as a tool to aid surgeons in the identification and removal of tumor tissue. We report here a new lysosome-targeting fluorescent probe (NBOH) with BODIPY fluorephore to distinguish tumor tissue out of normal tissue based on different pH environment. The probe exhibited remarkable pH-dependent fluorescence behavior in a wide pH range from 3.0 to 11.0, especially a sensitive pH-dependent fluorescence change at pH range between 3.5 and 5.5, corresponding well to the acidic microenvironment of tumor cells, in aqueous solution. The response time of NBOH was extremely short and the photostability was proved to be good. Toxicity test and fluorescence cell imaging together with a sub-cellular localization study were carried out revealing its low biotoxicity and good cell membrane permeability. And NBOH was successfully applied to the imaging of tumor tissue in tumor-bearing mice suggesting potential application to surgery as a tumor-specific probe. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Nonmydriatic fluorescence-based quantitative imaging of human macular pigment distributions

    Science.gov (United States)

    Sharifzadeh, Mohsen; Bernstein, Paul S.; Gellermann, Werner

    2006-10-01

    We have developed a CCD-camera-based nonmydriatic instrument that detects fluorescence from retinal lipofuscin chromophores ("autofluorescence") as a means to indirectly quantify and spatially image the distribution of macular pigment (MP). The lipofuscin fluorescence intensity is reduced at all retinal locations containing MP, since MP has a competing absorption in the blue-green wavelength region. Projecting a large diameter, 488 nm excitation spot onto the retina, centered on the fovea, but extending into the macular periphery, and comparing lipofuscin fluorescence intensities outside and inside the foveal area, it is possible to spatially map out the distribution of MP. Spectrally selective detection of the lipofuscin fluorescence reveals an important wavelength dependence of the obtainable image contrast and deduced MP optical density levels, showing that it is important to block out interfering fluorescence contributions in the detection setup originating from ocular media such as the lens. Measuring 70 healthy human volunteer subjects with no ocular pathologies, we find widely varying spatial extent of MP, distinctly differing distribution patterns of MP, and strongly differing absolute MP levels among individuals. Our population study suggests that MP imaging based on lipofuscin fluorescence is useful as a relatively simple, objective, and quantitative noninvasive optical technique suitable to rapidly screen MP levels and distributions in healthy humans with undilated pupils.

  10. Use of multiphoton tomography and fluorescence lifetime imaging to inve