WorldWideScience

Sample records for fluorescence spectroscopy trlfs

  1. Surface speciation of Eu3+ adsorbed on kaolinite by time-resolved laser fluorescence spectroscopy (TRLFS) and parallel factor analysis (PARAFAC).

    Science.gov (United States)

    Ishida, Keisuke; Saito, Takumi; Aoyagi, Noboru; Kimura, Takaumi; Nagaishi, Ryuji; Nagasaki, Shinya; Tanaka, Satoru

    2012-05-15

    Time-resolved laser fluorescence spectroscopy (TRLFS) is an effective speciation technique for fluorescent metal ions and can be further extended by the parallel factor analysis (PARAFAC). The adsorption of Eu(3+) on kaolinite as well as gibbsite as a reference mineral was investigated by TRLFS together with batch adsorption measurements. The PAFAFAC modeling provided the fluorescence spectra, decay lifetimes, and relative intensity profiles of three Eu(3+) surface complexes with kaolinite; an outer-sphere (factor A) complex and two inner-sphere (factors B and C) complexes. Their intensity profiles qualitatively explained the measured adsorption of Eu(3+). Based on the TRLFS results in varied H(2)O/D(2)O media, it was shown that the outer-sphere complex exhibited more rapid fluorescence decay than Eu(3+) aquo ion, because of the energy transfer to the surface. Factor B was an inner-sphere complex, which became dominant at relatively high pH, high salt concentration and low Eu(3+) concentration. Its spectrum and lifetime were similar to those of Eu(3+) adsorbed on gibbsite, suggesting its occurrence on the edge face of the gibbsite layer of kaolinite. From the comparison with the spectra and lifetimes of crystalline or aqueous Eu(OH)(3), factor C was considered as a poly-nuclear surface complex of Eu(3+) formed at relatively high Eu(3+) concentration.

  2. Characterization of the uranium (VI) complexes formed by the cells of three A. ferrooxidans eco-types using time-resolved laser-induced fluorescence spectroscopy (TRLFS)

    Energy Technology Data Exchange (ETDEWEB)

    Merroun, M.; Geipel, G.; Selenska-Pobell, S.

    2002-05-01

    TRLFS was used to study the properties of the uranium complexes formed by the cells of the three recently described eco-types of A. ferrooxidans /1/. The results demonstrate that the lifetimes of the complexes are type-specific and are increasing in the same order as the capability of the bacterial strains to accumulate uranium. (orig.)

  3. Complexation of Cm(III) with the recombinant N-lobe of human serum transferrin studied by time-resolved laser fluorescence spectroscopy (TRLFS).

    Science.gov (United States)

    Bauer, N; Smith, V C; MacGillivray, R T A; Panak, P J

    2015-01-28

    The complexation of Cm(III) with the recombinant N-lobe of human serum transferrin (hTf/2N) is investigated in the pH range from 4.0 to 11.0 using TRLFS. At pH ≥ 7.4 a Cm(III) hTf/2N species is formed with Cm(III) bound at the Fe(III) binding site. The results are compared with Cm(III) transferrin interaction at the C-lobe and indicate the similarity of the coordination environment of the C- and N-terminal binding sites with four amino acid residues of the protein, two H2O molecules and three additional ligands (e.g. synergistic anions such as carbonate) in the first coordination sphere. Measurements at c(carbonate)tot = 0.23 mM (ambient carbonate concentration) and c(carbonate)tot = 25 mM (physiological carbonate concentration) show that an increase of the total carbonate concentration suppresses the formation of the Cm(III) hTf/2N species significantly. Additionally, the three Cm(III) carbonate species Cm(CO3)(+), Cm(CO3)2(-) and Cm(CO3)3(3-) are formed successively with increasing pH. In general, carbonate complexation is a competing reaction for both Cm(III) complexation with transferrin and hTf/2N but the effect is significantly higher for the half molecule. At c(carbonate)tot = 0.23 mM the complexation of Cm(III) with transferrin and hTf/2N starts at pH ≥ 7.4. At physiological carbonate concentration the Cm(III) transferrin species II forms at pH ≥ 7.0 whereas the Cm(III) hTf/2N species is not formed until pH > 10.0. Hence, our results reveal significant differences in the complexation behavior of the C-terminal site of transferrin and the recombinant N-lobe (hTf/2N) towards trivalent actinides.

  4. Fluorescence spectroscopy

    DEFF Research Database (Denmark)

    Bagatolli, Luis

    2016-01-01

    Fluorescence spectroscopy is a powerful experimental tool used by scientists from many disciplines. During the last decades there have been important developments on distinct fluorescence methods, particularly those related to the study of biological phenomena. This chapter discusses...

  5. Characterization of powellite-based solid solutions by site-selective time resolved laser fluorescence spectroscopy

    OpenAIRE

    Schmidt, Moritz; Heck, Stephanie; Bosbach, Dirk; Ganschow, Steffen; Walther, Clemens; Stumpf, Thorsten

    2013-01-01

    We present a comprehensive study of the solid solution system Ca-2(MoO4)(2)-NaGd(MoO4)(2) on the molecular scale, by means of site-selective time resolved laser fluorescence spectroscopy (TRLFS). Eu3+ is used as a trace fluorescent probe, homogeneously substituting for Gd3+ in the solid solution crystal structure. Site-selective TRLFS of a series of polycrystalline samples covering the whole composition range of the solid solution series from 10% substitution of Ca2+ to the NaGd end-member re...

  6. Basic TRLFS data of some lanthanides using a tunable laser system and a red-optimized detection system

    Energy Technology Data Exchange (ETDEWEB)

    Heller, Anne [Dresden Technische Univ. (Germany). Inst. for Zoology, Molecular Cell Physiology and Endocrinology; Barkleit, Astrid [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Chemistry of the F-Elements; Geipel, Gerhard [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Biogeochemistry

    2016-07-01

    Lanthanides are crucial raw materials for modern high-tech products and used in medicine, especially as contrast enhancing agents for magnetic resonance imaging [1]. To study their interactions in the geo- and biosphere, Time-Resolved Laser-Induced Fluorescence Spectroscopy (TRLFS), which is a non-invasive, very sensitive, and versatile state of the art method, is used. Up to now, TRLFS is well established for actinides but only some lanthanides (especially Eu and Tb). To extent this scope, we investigate the basic luminescence properties of all lanthanide elements.

  7. Interactions of Eu(III) with biogenic CaCO{sub 3} studied with TRLFS

    Energy Technology Data Exchange (ETDEWEB)

    Johnstone, Erik V.; Schmidt, Moritz [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Surface Processes; Cherkouk, Andrea [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Biogeochemistry

    2016-07-01

    The interactions of Eu(III) with CaCO{sub 3} arising from biogenic origin was investigated by Time-Resolved Laser-Induced Fluorescence Spectroscopy (TRLFS). Biologically-induced precipitation via ureolysis was studied with the bacteria Sporosarcina pasteurii in the presence of Eu(III). Biomineralization occurred forming mixed phases of vaterite and calcite after one day that transformed over two weeks to pure calcite. Eu(III) was quantitatively removed from solution during mineral formation. TRLFS results show that after one day the Eu{sup 3+} is located in the vaterite phase. After one week, the Eu{sup 3+} was found primarily in the vaterite, despite calcite now being the predominant mineral, and a transition species was also formed. In the calcite two incorporated Eu{sup 3+} species were present: one substitutes at the Ca{sup 2+} site in the crystal lattice and the other is speculated to be associated with the organicmineral matrix.

  8. Fluorescence correlation spectroscopy

    NARCIS (Netherlands)

    Hink, M.A.; Verveer, P.J.

    2015-01-01

    Fluorescence fluctuation spectroscopy techniques allow the quantification of fluorescent molecules present at the nanomolar concentration level. After a brief introduction to the technique, this chapter presents a protocol including background information in order to measure and quantify the molecul

  9. Sorption Speciation of Lanthanides/Actinides on Minerals by TRLFS, EXAFS and DFT Studies: A Review

    Directory of Open Access Journals (Sweden)

    Xiaoli Tan

    2010-11-01

    Full Text Available Lanthanides/actinides sorption speciation on minerals and oxides by means of time resolved laser fluorescence spectroscopy (TRLFS, extended X-ray absorption fine structure spectroscopy (EXAFS and density functional theory (DFT is reviewed in the field of nuclear disposal safety research. The theoretical aspects of the methods are concisely presented. Examples of recent research results of lanthanide/actinide speciation and local atomic structures using TRLFS, EXAFS and DFT are discussed. The interaction of lanthanides/actinides with oxides and minerals as well as their uptake are also of common interest in radionuclide chemistry. Especially the sorption and inclusion of radionuclides into several minerals lead to an improvement in knowledge of minor components in solids. In the solid-liquid interface, the speciation and local atomic structures of Eu(III, Cm(III, U(VI, and Np(IV/VI in several natural and synthetic minerals and oxides are also reviewed and discussed. The review is important to understand the physicochemical behavior of lanthanides/actinides at a molecular level in the natural environment.

  10. Ln(III)-malate complexation studies using TRLFS and micro titration calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Taube, F.; Drobot, B. [Technische Univ. Dresden (Germany). Professorship Radiochemistry; Acker, M.; Taut, S. [Technische Univ. Dresden (Germany). Central Radionuclide Laboratory; Stumpf, Thorsten [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Inst. of Resource Ecology

    2017-06-01

    The complexation of trivalent lanthanides was studied using Time-Resolved Laser-Induced Fluorescence Spectroscopy (TRLFS) and Isothermal Titration Calorimetry (ITC). Formation constants, complexation enthalpies and fluorescence lifetimes are determined over a wide pH range at I = 0.5 m NaCl. This subject has the following background: Concrete is widely used as engineering barrier and for waste conditioning in waste repositories. Its binding agent is cement. Organic cement additives, which are used to improve the workability of fresh concrete, are complexation agents for radionuclides after they have been released during the concretes degradation. Thus, these additives might have an impact on the aqueous geochemistry of actinides. Here, the α-hydroxydicarboxylic acid or malic acid is examined. It is used in water-reducers or retarders in cement.

  11. Nanosecond fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Leskovar, B.

    1985-03-01

    This article is a summary of a short course lecture given in conjunction with the 1984 Nuclear Science Symposium. Measuring systems for nanosecond fluorescence spectroscopy using single-photon counting techniques are presented. These involve systems based on relaxation-type spark gap light pulser and synchronously pumped mode-locked dye lasers. Furthermore, typical characteristics and optimization of operating conditions of the critical components responsible for the system time resolution are discussed. A short comparison of the most important deconvolution methods for numerical analysis of experimental data is given particularly with respect to the signal-to-noise ratio of the fluorescence signal. 22 refs., 8 figs.

  12. Interaction of Cm(III) and Am(III) with human serum transferrin studied by time-resolved laser fluorescence and EXAFS spectroscopy.

    Science.gov (United States)

    Bauer, Nicole; Fröhlich, Daniel R; Panak, Petra J

    2014-05-14

    The complexation of Cm(III) with human serum transferrin was investigated in a pH range from 3.5 to 11.0 using time-resolved laser fluorescence spectroscopy (TRLFS). At pH ≥ 7.4 Cm(III) is incorporated at the Fe(III) binding site of transferrin whereas at lower pH a partially bound Cm(III) transferrin species is formed. At physiological temperature (310 K) at pH 7.4, about 70% of the partially bound and 30% of the incorporated Cm(III) transferrin species are present in solution. The Cm(III) results obtained by TRLFS are in very good agreement with Am(III) EXAFS results, confirming the incorporation of Am(III) at the Fe(III) binding site at pH 8.5.

  13. Gallstone identification by fluorescence spectroscopy

    Science.gov (United States)

    Pradhan, Asima; Laxmi, B. V.; Jena, Sidhartha S.; Khulbe, P. K.; Bist, Hari D.; Agarwal, Asha

    1998-04-01

    Gallstones have been classified as being cholesterol type and pigment type. The classification is important for diet control of the patient to avoid recurrence of the stone. Spectroscopy is a sensitive technique to determine the composition of the gallstone both in-vitro and in-vivo. this work deals with the fluorescence spectroscopy of gallstone. For fluorescence spectroscopic studies of gallstone, samples were excited with 5 mw of 488 nm line of argon-ion laser and spectra were recorded with a SPEX 1877E triplemate attached with a cooled PMT and DM3000R data acquisition system. Fluorescence spectra from pure cholesterol and bilirubin were also recorded for comparison. Different types of gallstones: mixed, cholesterol, pigment type were studied. All spectra exhibited a very broad band, 500 to 800 nm and sometimes two bands, depending on type of stone. Pure cholesterol shows three prominent fluorescence peaks at 513, 550, 583 nm along with two peaks at approximately 568 and 586 nm. Pure bilirubin shows prominent peak at 628 nm, without any Raman line. From fluorescence spectra different types of stones are identified. Different gallstones studied show a mixture of cholesterol and bilirubin types and the ratio of the two varies from one sample type to another.

  14. Incorporation of Eu(III) into hydrotalcite: a TRLFS and EXAFS study.

    Science.gov (United States)

    Stumpf, T; Curtius, H; Walther, C; Dardenne, K; Ufer, K; Fanghänelt, T

    2007-05-01

    The behavior of radionuclides in the environment (geo-, hydro-, and biosphere) is determined by interface reactions like adsorption, ion exchange, and incorporation processes. Presently, operational gross parameters for the distribution between solution and minerals are available. For predictive modeling of the radionuclide mobility in such systems, however, individual reactions and processes need to be localized, characterized, and quantified. A prerequisite for localization and clarification of the concerned processes is the use of modern advanced analytical and speciation methods, especially spectroscopy. In this study, Eu(III) was chosen as an analogue for trivalent actinides to identify the different species that occur by the Ln(III)/hydrotalcite interaction. Therefore, Eu(III) doped Mg-Al-Cl-hydrotalcite was synthesized and investigated by TRLFS, EXAFS, and XRD measurements. Two different Eu/hydrotalcite species were obtained. The minor part of the lanthanide is found to be inner-sphere sorbed onto the mineral surface, while the dominating Eu/hydrotalcite species consists of Eu(III) that is incorporated into the hydrotalcite lattice. Both Eu/hydrotalcite species have been characterized by their fluorescence emission spectra and lifetimes. Structural parameters of the incorporated Eu(III) species determined by EXAFS indicate a coordination number of 6.6 +/- 1.3 and distances of 2.41 +/- 0.02 A for the first Eu-OH shell.

  15. Fluorescence fluctuation spectroscopy (FFS), part A

    CERN Document Server

    Tetin, Sergey

    2013-01-01

    This new volume of Methods in Enzymology continues the legacy of this premier serial by containing quality chapters authored by leaders in the field. This volume covers Fluorescence Fluctuation SpectroscopyContains chapters on such topics as Time-integrated fluorescence cumulant analysis, Pulsed Interleaved Excitation, and raster image correlation spectroscopy and number and brightness analysis.Continues the legacy of this premier serial with quality chapters authored by leaders in the fieldCovers fluorescence fluctuation spectroscopyContains chapte

  16. Lifetime Resolved Fluorescence Fluctuation Spectroscopy

    Science.gov (United States)

    Guo, Peng; Berland, Keith

    2009-11-01

    Fluorescence correlation spectroscopy (FCS) has been widely used investigate molecular dynamics and interactions in biological systems. FCS typically resolves the component species of a sample either through differences in diffusion coefficient or molecular brightness. Diffusion based assays currently have a major limitation which requires that the diffusion coefficients of component species in a sample must be substantially different in order to be resolved. This criterion is not met in many important cases, such as when molecules of similar molecular weight bind to each other. This limitation can be overcome, and resolution of FCS measurements enhanced, by combining FCS measurements with measurements of fluorescence lifetimes. By using of global analysis on simultaneously acquired FCS and lifetime data we show that we can dramatically enhance resolution in FCS measurements, and accurately resolve the concentration and diffusion coefficients of multiple sample components even when their diffusion coefficients are identical provided there is a difference in the lifetime of the component species. We show examples of this technique using both simulations and experiments. It is expected that this method will be of significance for binding assays studying molecular interactions.

  17. Complexation of europium(III) with the zwitterionic form of amino acids studied with ultraviolet-visible and time-resolved laser-induced fluorescence spectroscopy.

    Science.gov (United States)

    Heller, Anne; Rönitz, Olivia; Barkleit, Astrid; Bernhard, Gert; Ackermann, Jörg-Uwe

    2010-08-01

    The complex formation of europium(III) with the zwitterionic form of amino acids (alanine, phenylalanine, and threonine) has been studied in aqueous solution. Measurements were performed at I = 0.1 M (NaCl/NaClO(4)), room temperature, and trace metal concentrations in the range of pH 2 to 8 using ultraviolet-visible (UV-Vis) and time-resolved laser-induced fluorescence spectroscopy (TRLFS). While complexation leads to a significant luminescence enhancement in the emission spectrum of the metal ion, absorption in the UV-Vis spectrum of the amino acid (AA) decreases. As zwitterionic species (AAH), all three ligands form weak complexes with 1:1 stoichiometry and a general formula of EuAAH(3+) with the metal. The complex stability constants were determined to be log K approximately 1 for all complexes, indicating the negligible contribution of the amino acid side chain to the complex formation reaction.

  18. Fluorescence correlation spectroscopy in laser gradient field

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Fluorescence correlation spectroscopy (FCS) is capable of probing dynamic processes in living biological systems. From photon fluctuation of fluorescing particles which diffuse through a small detection volume, FCS reveals information on the concentration and the structure of the particles, as well as information on microscopic environment.In this note, we study the radiation forces experienced by Rayleigh particles in a laser field in details, and analyze the effects of gradient field on FCS measurements.

  19. Fluorescence spectroscopy for neoplasms control

    Science.gov (United States)

    Bratchenko, I. A.; Kristoforova, Yu. A.; Myakinin, O. O.; Artemyev, D. N.; Kozlov, S. V.; Moryatov, A. A.; Zakharov, V. P.

    2016-04-01

    Investigation of malignant skin tumors diagnosis was performed involving two setups for native tissues fluorescence control in visible and near infrared regions. Combined fluorescence analysis for skin malignant melanomas and basal cell carcinomas was performed. Autofluorescence spectra of normal skin and oncological pathologies stimulated by 457 nm and 785 nm lasers were registered for 74 skin tissue samples. Spectra of 10 melanomas and 27 basal cell carcinomas were registered ex vivo. Skin tumors analysis was made on the basis of autofluorescence spectra intensity and curvature for analysis of porphyrins, lipo-pigments, flavins and melanin. Separation of melanomas and basal cell carcinomas was performed on the basis of discriminant analysis. Overall accuracy of basal cell carcinomas and malignant melanomas separation in current study reached 86.5% with 70% sensitivity and 92.6% specificity.

  20. Angle-Resolved Spectroscopy of Parametric Fluorescence

    CERN Document Server

    Hsu, Feng-kuo

    2013-01-01

    The parametric fluorescence from a nonlinear crystal forms a conical radiation pattern. We measure the angular and spectral distributions of parametric fluorescence in a beta-barium borate crystal pumped by a 405-nm diode laser employing angle-resolved imaging spectroscopy. The experimental angle-resolved spectra and the generation efficiency of parametric down conversion are compared with a plane-wave theoretical analysis. The parametric fluorescence is used as a broadband light source for the calibration of the instrument spectral response function in the wavelength range from 450 to 1000 nm.

  1. Ultraviolet, Visible, and Fluorescence Spectroscopy

    Science.gov (United States)

    Penner, Michael H.

    Spectroscopy in the ultraviolet-visible (UV-Vis) range is one of the most commonly encountered laboratory techniques in food analysis. Diverse examples, such as the quantification of macrocomponents (total carbohydrate by the phenol-sulfuric acid method), quantification of microcomponents, (thiamin by the thiochrome fluorometric procedure), estimates of rancidity (lipid oxidation status by the thiobarbituric acid test), and surveillance testing (enzyme-linked immunoassays), are presented in this text. In each of these cases, the analytical signal for which the assay is based is either the emission or absorption of radiation in the UV-Vis range. This signal may be inherent in the analyte, such as the absorbance of radiation in the visible range by pigments, or a result of a chemical reaction involving the analyte, such as the colorimetric copper-based Lowry method for the analysis of soluble protein.

  2. Interaction of europium and nickel with calcite studied by Rutherford Backscattering Spectrometry and Time-Resolved Laser Fluorescence Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sabau, A. [Agence Nationale pour la gestion des Déchets RAdioactifs, 1-7 rue J. Monnet, Parc de la Croix Blanche, 92298 Châtenay-Malabry Cedex (France); Université de Nice Sophia Antipolis, Ecosystèmes Côtiers Marins et Réponses aux Stress (ECOMERS), 28 avenue Valrose, 06108 Nice Cedex 2 (France); Pipon, Y., E-mail: pipon@ipnl.in2p3.fr [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69 622 Villeurbanne Cedex (France); Institut Universitaire de Technologie (IUT) Lyon-1, Université Claude Bernard Lyon 1, 69 622 Villeurbanne Cedex (France); Toulhoat, N. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69 622 Villeurbanne Cedex (France); CEA/DEN, Saclay, 91191 Gif sur Yvette (France); Lomenech, C. [Université de Nice Sophia Antipolis, Ecosystèmes Côtiers Marins et Réponses aux Stress (ECOMERS), 28 avenue Valrose, 06108 Nice Cedex 2 (France); Jordan, N. [Helmholtz Zentrum Dresden Rossendorf (HZDR), Institute of Resource Ecology (IRE) (Germany); Moncoffre, N. [Institut de Physique Nucléaire de Lyon (IPNL), Université Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, 69 622 Villeurbanne Cedex (France); Barkleit, A. [Helmholtz Zentrum Dresden Rossendorf (HZDR), Institute of Resource Ecology (IRE) (Germany); and others

    2014-08-01

    This study aims at elucidating the mechanisms regulating the interaction of Eu and Ni with calcite (CaCO{sub 3}). Calcite powders or single crystals (some mm sized) were put into contact with Eu or Ni solutions at concentrations ranging from 10{sup −3} to 10{sup −5} mol L{sup −1} for Eu and 10{sup −3} mol L{sup −1} for Ni. The sorption durations ranged from 1 week to 1 month. Rutherford Backscattering Spectrometry (RBS) well adapted to discriminate incorporation processes such as: (i) adsorption or co precipitation at the mineral surfaces or, (ii) incorporation into the mineral structure (through diffusion for instance), has been carried out. Moreover, using the fluorescence properties of europium, the results have been compared to those obtained by Time-Resolved Laser Fluorescence Spectroscopy (TRLFS) on calcite powders. For the single crystals, complementary SEM observations of the mineral surfaces at low voltage were also performed. Results showed that Ni accumulates at the calcite surface whereas Eu is also incorporated at a greater depth. Eu seems therefore to be incorporated into two different states in calcite: (i) heterogeneous surface accumulation and (ii) incorporation at depth greater than 160 nm after 1 month of sorption. Ni was found to accumulate at the surface of calcite without incorporation.

  3. Adaptive Optics for Fluorescence Correlation Spectroscopy

    CERN Document Server

    Leroux, Charles Edouard; Derouard, Jacques; Delon, Antoine

    2011-01-01

    Fluorescence Correlation Spectroscopy (FCS) yields measurement parameters (number of molecules, diffusion time) that characterize the concentration and kinetics of fluorescent molecules within a supposedly known observation volume. Absolute derivation of concentrations and diffusion constants therefore requires preliminary calibrations of the confocal Point Spread Function with phantom solutions under perfectly controlled environmental conditions. In this paper, we quantify the influence of optical aberrations on single photon FCS and demonstrate a simple Adaptive Optics system for aberration correction. Optical aberrations are gradually introduced by focussing the excitation laser beam at increasing depths in fluorescent solutions with various refractive indices, which leads to drastic depth-dependent bias in the estimated FCS parameters. Aberration correction with a Deformable Mirror stabilizes these parameters within a range of several tens of \\mum into the solution. We also demonstrate, both theoretically...

  4. APD detectors for biological fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mazeres, S. [Institut de Pharmacologie et de Biologie Structurale, IPBS-CNRS, 205 route de Narbonne 31077 Toulouse Cedex 4 (France)]. E-mail: serge.mazeres@ipbs.fr; Borrel, V. [GIATHE/CESR, 9 avenue du Colonel Roche BP 4346, 31029 Toulouse Cedex (France); Magenc, C. [GIATHE/CESR, 9 avenue du Colonel Roche BP 4346, 31029 Toulouse Cedex (France); Courrech, J.L. [GIATHE/CESR, 9 avenue du Colonel Roche BP 4346, 31029 Toulouse Cedex (France); Bazer-Bachi, R. [GIATHE/CESR, 9 avenue du Colonel Roche BP 4346, 31029 Toulouse Cedex (France)

    2006-11-01

    Fluorescence spectroscopy is a very convenient and widely used method for studying the molecular background of biological processes [L. Salome, J.L. Cazeil, A. Lopez, J.F. Tocanne, Eur. Biophys. J. 27 (1998) 391-402]. Chromophores are included in the structure under study and a flash of laser light induces fluorescence (Fluorescence Recovery After Photo-bleaching), the decay of which yields information on the polarity, the speed of rotation, and the speed of diffusion as well as on the temporal and spatial evolution of interactions between molecular species. The method can even be used to study living cells [J.F. Tocanne, L. Cezanne, A. Lopez, Prog. Lipid Res. 33 (1994) 203-237, L. Cezanne, A. Lopez, F. Loste, G. Parnaud, O. Saurel, P. Demange, J.F. Tocanne, Biochemistry 38 (1999) 2779-2786]. This is classically performed with a PM-based system. For biological reasons a decrease of the excitation of the cells is highly desirable. Because the fluorescence response then becomes fainter a significant improvement in detector capability would be welcome. We present here results obtained with an Avalanche Photo Diode (APD)-based system. The small sensitive area of detection allows a very significant improvement in signal/noise ratio, improvement in gain, and the opening-up of a new parameter space. With these new detectors we can begin the study of information transmission between cells through morphine receptors. This work involves both electronics engineers and biophysicists, so results and techniques in both fields will be presented here.

  5. TRLFS Studies on luminescence enhancement of U(VI) using oxidants for quencher species in samples

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Wansik; Jung, Euo Chang; Cho, Hye Ryun [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    The pulse laser-based method detects photo luminescent emission of U(VI) so that it is highly sensitive for non-isotopic al determination of total uranium concentration. Thus, this method has been used for detection of trace quantity of uranium in the environmental, geological, and bioassay samples. One of widely-used pulse laser-based methods is kinetic phosphorescence analysis (KPA), of which instrument is commercially available. The intensity and lifetime of characteristic phosphorescence at 515-520 nm of hexavalent uranium are measured with an excitation wavelength of 425 nm. Particularly in KPA the use of phosphate-based luminescence enhancing agent (LEA) leading to the formation of uranyl-phosphate complexes extends the luminescence (LM) lifetime of uranium (> {approx} 200 {mu}s) and subsequently the overall luminescence intensity. In KPA, however, an extensive sample pretreatment procedure is required to reduce the luminescence quenching effects of ions and molecules present in samples. During such procedures the uranium species in low oxidation states are also oxidized to hexavalent uranium so that the measurement of the total uranium concentration can be achieved. In general, a series of high temperature dry and wet ashing procedures is implemented prior to the addition of LEA to decompose the interfering substances. The aim of this study is to examine the characteristics of the interfering species exhibiting significant quenching effects and to develop a way of minimizing the time required for the sample pretreatment step particularly for certain oxidizable quencher species. In fact, in a previous study we reported that significant LM quenching effects are observed from those possessing chemical reduction capability such as Fe(II) and cysteine. Under such sample conditions it is shown that the conventional KPA is not applicable due to the short lifetime (< {approx} 1 {mu}s), therefore a time-resolved laser-induced fluorescence spectroscopy (TRLFS) capable

  6. Glucose Recognition in Vitro Using Fluorescent Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Noronha, G; Heiss, A M; Reilly, J R; Vachon, Jr, D J; Cary, D R; Zaitseva, N P; Reibold, R A; Lane, S M; Peyser, T A; Satcher, J H

    2001-04-25

    Diabetes is a disease that affects over 16 million people in the USA at a cost of 100 billion dollars annually. The ability to regulate insulin delivery in people with Type 1 diabetes is imperative as is the need to manage glucose levels in all people with this disease. Our current method for monitoring glucose is a (FDA approved) minimally invasive enzymatic sensor that can measure glucose levels in vivo for three days. We are focused on developing a noninvasive implantable glucose sensor that will be interrogated by an external device. The material must be robust, easy to process, biocompatible and resistant to biofouling. In this Presentation we will discuss the development of a new polymeric matrix that can recognize physiological levels of glucose in vitro using fluorescent spectroscopy.

  7. Single Molecule Spectroscopy of Fluorescent Proteins

    NARCIS (Netherlands)

    Blum, Christian; Subramaniam, Vinod

    2009-01-01

    The discovery and use of fluorescent proteins has revolutionized cellular biology. Despite the widespread use of visible fluorescent proteins as reporters and sensors in cellular environments the versatile photophysics of fluorescent proteins is still subject to intense research. Understanding the

  8. Spatially resolved analyses of uranium species using a coupled system made up of confocal laser-scanning microscopy (CLSM) and laser induced fluorescence spectroscopy (LIFS); Ortsaufgeloeste Analyse von Uranspezies mittels einem Gekoppelten System aus Konfokaler Laser-Scanning Mikroskopie (CLSM) und Laser Induzierter Fluoreszenzspektroskopie (LIFS)

    Energy Technology Data Exchange (ETDEWEB)

    Brockmann, S. [Verein fuer Kernverfahrenstechnik und Analytik Rossendorf e.V. (VKTA), Dresden (Germany); Grossmann, K.; Arnold, T. [Helmholtz-Zentrum Dresden-Rossendorf e.V. (Germany). Inst. fuer Ressourcenoekologie

    2014-01-15

    The fluorescent properties of uranium when excited by UV light are used increasingly for spectroscope analyses of uranium species within watery samples. Here, alongside the fluorescent properties of the hexavalent oxidation phases, the tetra and pentavalent oxidation phases also play an increasingly important role. The detection of fluorescent emission spectrums on solid and biological samples using (time-resolved) laser induced fluorescence spectroscopy (TRLFS or LIFS respectively) has, however, the disadvantage that no statements regarding the spatial localisation of the uranium can be made. However, particularly in complex, biological samples, such statements on the localisation of the uranium enrichment in the sample are desired, in order to e.g. be able to distinguish between intra and extra-cellular uranium bonds. The fluorescent properties of uranium (VI) compounds and minerals can also be used to detect their localisation within complex samples. So the application of fluorescent microscopic methods represents one possibility to localise and visualise uranium precipitates and enrichments in biological samples, such as biofilms or cells. The confocal laser-scanning microscopy (CLSM) is especially well suited to this purpose. Coupling confocal laser-scanning microscopy (CLSM) with laser induced fluorescence spectroscopy (LIFS) makes it possible to localise and visualise fluorescent signals spatially and three-dimensionally, while at the same time being able to detect spatially resolved, fluorescent-spectroscopic data. This technology is characterised by relatively low detection limits from up to 1.10{sup -6} M for uranium (VI) compounds within the confocal volume. (orig.)

  9. Two-focus fluorescence correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dertinger, T.

    2007-05-15

    Fluorescence Correlation Spectroscopy (FCS) has been invented more than 30 years ago and experienced a renaissance after stable and affordable laser sources and low-noise single-photon detectors have become available. Its ability to measure diffusion coefficients at nanomolar concentrations of analyte made it a widely used tool in biophysics. However, in recent years it has been shown by many authors that aberrational (e.g. astigmatism) and photophysical effects (e.g. optical saturation) may influence the result of an FCS experiment dramatically, so that a precise and reliable estimation of the diffusion coefficient is no longer possible. In this thesis, we report on the development, implementation, and application of a new and robust modification of FCS that we termed two-focus FCS (2fFCS) and which fulfils two requirements: (i) It introduces an external ruler into the measurement by generating two overlapping laser foci of precisely known and fixed distance. (ii) These two foci and corresponding detection regions are generated in such a way that the corresponding molecule detection functions (MDFs) are sufficiently well described by a simple two-parameter model yielding accurate diffusion coefficients when applied to 2fFCS data analysis. Both these properties enable us to measure absolute values of the diffusion coefficient with an accuracy of a few percent. Moreover, it will turn out that the new technique is robust against refractive index mismatch, coverslide thickness deviations, and optical saturation effects, which so often trouble conventional FCS measurements. This thesis deals mainly with the introduction of the new measurement scheme, 2fFCS, but also presents several applications with far-reaching importance. (orig.)

  10. Quantitative Determination of DNA-Ligand Binding Using Fluorescence Spectroscopy

    Science.gov (United States)

    Healy, Eamonn F.

    2007-01-01

    The effective use of fluorescence spectroscopy for determining the binding of the intercalcating agent crhidium bromide to DNA is being described. The analysis used simple measurement techniques and hence can be easily adopted by the students for a better understanding.

  11. Combined time-resolved laser fluorescence spectroscopy and extended X-ray absorption fine structure spectroscopy study on the complexation of trivalent actinides with chloride at T = 25-200 °C.

    Science.gov (United States)

    Skerencak-Frech, Andrej; Fröhlich, Daniel R; Rothe, Jörg; Dardenne, Kathy; Panak, Petra J

    2014-01-21

    The complexation of trivalent actinides (An(III)) with chloride is studied in the temperature range from 25 to 200 °C by spectroscopic methods. Time-resolved laser fluorescence spectroscopy (TRLFS) is applied to determine the thermodynamic data of Cm(III)-Cl(-) complexes, while extended X-ray absorption fine structure spectroscopy (EXAFS) is used to determine the structural data of the respective Am(III) complexes. The experiments are performed in a custom-built high-temperature cell which is modified for the respective spectroscopic technique. The TRLFS results show that at 25 °C the speciation is dominated mainly by the Cm(3+) aquo ion. Only a minor fraction of the CmCl(2+) complex is present in solution. As the temperature increases, the fraction of this species decreases further. Simultaneously, the fraction of the CmCl2(+) complex increases strongly with the temperature. Also, the CmCl3 complex is formed to a minor extent at T > 160 °C. The conditional stability constant log β'2 is determined as a function of the temperature and extrapolated to zero ionic strength with the specific ion interaction theory approach. The log β°2(T) values increase by more than 3 orders of magnitude in the studied temperature range. The temperature dependency of log β°2 is fitted by the extended van't Hoff equation to determine ΔrH°m, ΔrS°m, and ΔrC°p,m. The EXAFS results support these findings. The results confirm the absence of americium(III) chloride complexes at T = 25 and 90 °C ([Am(III)] = 10(-3) m, [Cl(-)] = 3.0 m), and the spectra are described by 9-10 oxygen atoms at a distance of 2.44-2.48 Å. At T = 200 °C two chloride ligands are present in the inner coordination sphere of Am(III) at a distance of 2.78 Å.

  12. Fluorescence spectroscopy and multi-way techniques. PARAFAC

    DEFF Research Database (Denmark)

    Murphy, Kathleen R.; Stedmon, Colin A.; Graeber, Daniel;

    2013-01-01

    PARAllel FACtor analysis (PARAFAC) is increasingly used to decompose fluorescence excitation emission matrices (EEMs) into their underlying chemical components. In the ideal case where fluorescence conforms to Beers Law, this process can lead to the mathematical identification and quantification...... of independently varying fluorophores. However, many practical and analytical hurdles stand between EEM datasets and their chemical interpretation. This article provides a tutorial in the practical application of PARAFAC to fluorescence datasets, demonstrated using a dissolved organic matter (DOM) fluorescence...... dataset. A new toolbox for MATLAB is presented to support improved visualisation and sensitivity analyses of PARAFAC models in fluorescence spectroscopy. © 2013 The Royal Society of Chemistry....

  13. Detection of Counterfeit Tequila by Fluorescence Spectroscopy

    Directory of Open Access Journals (Sweden)

    José Manuel de la Rosa Vázquez

    2015-01-01

    Full Text Available An ultraviolet (UV light induced fluorescence study to discriminate fake tequila from genuine ones is presented. A portable homemade system based on four light emitting diodes (LEDs from 255 to 405 nm and a miniature spectrometer was used. It has been shown that unlike fake and silver tequila, which produce weak fluorescence signal, genuine mixed, rested, and aged tequilas show high fluorescence emission in the range from 400 to 750 nm. The fluorescence intensity grows with aging in 100% agave tequila. Such fluorescence differences can even be observed with naked eyes. The presented results demonstrate that the fluorescence measurement could be a good method to detect counterfeit tequila.

  14. Detection of Counterfeit Tequila by Fluorescence Spectroscopy

    OpenAIRE

    José Manuel de la Rosa Vázquez; Diego Adrián Fabila-Bustos; Luis Felipe de Jesús Quintanar-Hernández; Alma Valor; Suren Stolik

    2015-01-01

    An ultraviolet (UV) light induced fluorescence study to discriminate fake tequila from genuine ones is presented. A portable homemade system based on four light emitting diodes (LEDs) from 255 to 405 nm and a miniature spectrometer was used. It has been shown that unlike fake and silver tequila, which produce weak fluorescence signal, genuine mixed, rested, and aged tequilas show high fluorescence emission in the range from 400 to 750 nm. The fluorescence intensity grows with aging in 100% ag...

  15. [Fluorescence spectroscopy study of synthetic food colors].

    Science.gov (United States)

    Chen, Guo-qing; Wu, Ya-min; Wang, Jun; Zhu, Tuo; Gao, Shu-mei

    2009-09-01

    According to the characteristic of synthetic food colors molecule and the relationship between fluorescence and molecular structure, and through analyzing, it has been concluded that synthetic food colors is fluorescent material. By using SP-2558 multifunctional spectral measuring system, the three-dimensional fluorescence spectra of ponceau 4R, amaranth, tartrazine, sunset yellow and brilliant blue were measured. The results show that ponceau 4R excited by light at the wavelength of 330-430 nm can generate a strong fluorescence at the 621 nm peak wavelength with its best excitation wavelength being 376 nm, amaranth excited by light at the wavelength of 300-440 nm can generate a strong fluorescence at the 643 nm peak wavelength with its best excitation wavelength being 370 nm, tartrazine excited by light at the wavelength of 280-380 nm can generate a strong fluorescence at the 565 nm peak wavelength with its best excitation wavelength being 315 nm, sunset yellow excited by light with wavelength of 310-410 nm can generate a strong fluorescence at the 592 nm peak wavelength with its best excitation wavelength being 348 nm, and brilliant blue excited by light at the wavelength of 320-390 nm can generate a strong fluorescence at the 456 nm peak wavelength with its best excitation wavelength being 350 nm. Moreover, the fluorescence spectra of the five kinds of synthetic food colors were discussed. These results can provide helps for testing of food colors and food safety.

  16. Unfolding features of bovine testicular hyaluronidase studied by fluorescence spectroscopy and fourier transformed infrared spectroscopy.

    Science.gov (United States)

    Pan, Nina; Cai, Xiaoqiang; Tang, Kai; Zou, Guolin

    2005-11-01

    Chemical unfolding of bovine testicular hyaluronidase (HAase) has been studied by fluorescence spectroscopy and Fourier transformed infrared spectroscopy (FTIR). Thermodynamic parameters were determined for unfolding HAase from changes in the intrinsic fluorescence emission intensity and the formations of several possible unfolding intermediates have been identified. This was further confirmed by representation of fluorescence data in terms of 'phase diagram'. The secondary structures of HAase have been assigned and semiquantitatively estimated from the FTIR. The occurrence of conformational change during chemical unfolding as judged by fluorescence and FTIR spectroscopy indicated that the unfolding of HAase may not follow the typical two-state model.

  17. Fluorescence spectroscopy and multi-way techniques. PARAFAC

    DEFF Research Database (Denmark)

    Murphy, Kathleen R.; Stedmon, Colin A.; Graeber, Daniel;

    2013-01-01

    of independently varying fluorophores. However, many practical and analytical hurdles stand between EEM datasets and their chemical interpretation. This article provides a tutorial in the practical application of PARAFAC to fluorescence datasets, demonstrated using a dissolved organic matter (DOM) fluorescence...... dataset. A new toolbox for MATLAB is presented to support improved visualisation and sensitivity analyses of PARAFAC models in fluorescence spectroscopy. © 2013 The Royal Society of Chemistry....

  18. Sorption of Eu(III)/Cm(III) on Ca-montmorillonite and Na-illite. Part 1: Batch sorption and time-resolved laser fluorescence spectroscopy experiments

    Science.gov (United States)

    Rabung, Th.; Pierret, M. C.; Bauer, A.; Geckeis, H.; Bradbury, M. H.; Baeyens, B.

    2005-12-01

    Sorption of Cm(III) and Eu(III) at trace concentrations onto Ca-montmorillonite (SWy-1) and Na-illite (Illite du Puy) has been studied under anaerobic conditions by batch sorption experiments and time-resolved laser fluorescence spectroscopy (TRLFS). Comparison of the results from spectroscopic and batch sorption experiments with Cm and Eu indicates the existence of outer-sphere complexes at pH 5 for both clay minerals. Five H 2O/OH - molecules remain in the first metal ion coordination sphere of the sorbed Eu/Cm. Measured fluorescence lifetimes of sorbed Eu/Cm and peak deconvolution of Cm-spectra are consistent with the formation of surface complexes of the form ≡S-O-Eu/Cm(OH) x(2-x)(H 2O) 5-x. At pH ≥ 12 Cm becomes incorporated into a surface precipitate at the Ca-montmorillonite surface presumably composed of Ca(OH) 2 or calcium silicate hydrate. A dramatic shift of the fluorescence emission band by more than 20 nm and a clear increase in the fluorescence lifetime suggests the almost complete displacement of coordinated H 2O and OH -. The pH dependent Eu sorption data obtained in batch experiments are consistent with spectroscopic data on Eu and Cm within experimental uncertainties thus demonstrating the validity of Eu as a homologue for trivalent actinides. Parameterization of a two-site protolysis nonelectrostatic surface complexation and cation exchange model using the batch sorption data and spectroscopic results is discussed in Part 2 of this work.

  19. PHOTODYNAMIC DIAGNOSIS AND FLUORESCENCE SPECTROSCOPY IN SUPERFICIAL BLADDER CANCER

    Directory of Open Access Journals (Sweden)

    I. G. Rusakov

    2009-01-01

    Full Text Available A comprehensive fluorescence technique has been developed to study the urinary bladder mucosa in patients with superficial bladder cancer (BC, by using alasense, white light cystoscopy, fluorescence cytoscopy, and local fluorescence spectroscopy in vivo. Quantification of urothelium fluorescence in the red emission foci of 5-ALA-induced protophorphyrin, with the local autofluorescence intensity being borne in mind, has been shown to increase the specificity of photodynamic diagnosis of superficial BC from 70 to 85% (p ≤ 0.05 and the total accuracy of the technique from 80 to 86%.  

  20. Time-resolved spectroscopy of the fluorescence quenching of a donor — acceptor pair by halothane

    Science.gov (United States)

    Sharma, A.; Draxler, S.; Lippitsch, M. E.

    1992-04-01

    Donor (anthracene) sensitized acceptor (perylene) fluorescence is quenched more efficiently by halothane than is intrinsic perylene fluorescence. The underlying process of dynamic fluorescence quenching is investigated by time-resolved fluorescence spectroscopy.

  1. U(IV) fluorescence spectroscopy. A new speciation tool

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, Susanne; Brendler, Vinzenz [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes; Steudtner, Robin [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Inst. of Resource Ecology

    2017-06-01

    We combined absorption and fluorescence spectroscopy to study the speciation of U(IV) in solution in concentrations down to 10{sup -6} M uranium. With our time-resolved laser-induced fluorescence setup we could determine the fluorescence decay time of U(IV) in perchloric as well as in chloric acid with 2.6 ± 0.3 ns at room temperature and 148.4 ± 6.5 ns at liquid nitrogen temperature. For the U(IV) sulfate system, we observed a bathochromic shift and a peak shape modification in the fluorescence spectra with increasing sulfate concentration in solution. Thus, the potential of U(IV) fluorescence for speciation analysis could be proven.

  2. The development of attenuation compensation models of fluorescence spectroscopy signals

    Science.gov (United States)

    Dremin, Victor V.; Zherebtsov, Evgeny A.; Rafailov, Ilya E.; Vinokurov, Andrey Y.; Novikova, Irina N.; Zherebtsova, Angelina I.; Litvinova, Karina S.; Dunaev, Andrey V.

    2016-04-01

    This study examines the effect of blood absorption on the endogenous fluorescence signal intensity of biological tissues. Experimental studies were conducted to identify these effects. To register the fluorescence intensity, the fluorescence spectroscopy method was employed. The intensity of the blood flow was measured by laser Doppler flowmetry. We proposed one possible implementation of the Monte Carlo method for the theoretical analysis of the effect of blood on the fluorescence signals. The simulation is constructed as a four-layer skin optical model based on the known optical parameters of the skin with different levels of blood supply. With the help of the simulation, we demonstrate how the level of blood supply can affect the appearance of the fluorescence spectra. In addition, to describe the properties of biological tissue, which may affect the fluorescence spectra, we turned to the method of diffuse reflectance spectroscopy (DRS). Using the spectral data provided by the DRS, the tissue attenuation effect can be extracted and used to correct the fluorescence spectra.

  3. "FluSpec": A Simulated Experiment in Fluorescence Spectroscopy

    Science.gov (United States)

    Bigger, Stephen W.; Bigger, Andrew S.; Ghiggino, Kenneth P.

    2014-01-01

    The "FluSpec" educational software package is a fully contained tutorial on the technique of fluorescence spectroscopy as well as a simulator on which experiments can be performed. The procedure for each of the experiments is also contained within the package along with example analyses of results that are obtained using the software.

  4. Fluorescence Correlation Spectroscopy Applied to Living Plant Cells

    NARCIS (Netherlands)

    Hink, M.A.

    2002-01-01

    Keywords: Fluorescence correlation spectroscopy, photon counting histogram, intracellular, plant, AtSERK1In order to survive organisms have to be capable to adjust theirselves to changes in the environment. Cells, the building blocks of an organism react to these

  5. "FluSpec": A Simulated Experiment in Fluorescence Spectroscopy

    Science.gov (United States)

    Bigger, Stephen W.; Bigger, Andrew S.; Ghiggino, Kenneth P.

    2014-01-01

    The "FluSpec" educational software package is a fully contained tutorial on the technique of fluorescence spectroscopy as well as a simulator on which experiments can be performed. The procedure for each of the experiments is also contained within the package along with example analyses of results that are obtained using the software.

  6. Fluorescence spectroscopy: a rapid tool for analyzing dairy products.

    Science.gov (United States)

    Andersen, Charlotte Møller; Mortensen, Grith

    2008-02-13

    This paper gives a critical evaluation of the use of fluorescence spectroscopy for measuring chemical and physical changes in dairy products caused by processing and storage. Fluorescence spectroscopy is able to determine various properties of foods without use of chemicals and time-consuming sample preparation. This is shown by examples where the measurement of a given chemical parameter has been appropriately described and validated, as well as situations showing potential applications, but where further research and validation is required. The interpretation of fluorescence spectroscopic data is complex due to absorbance by other molecular groups, changes caused by variation in the sample matrix, etc. It is illustrated how advanced data analytical techniques are required to obtain optimal interpretation of the data. Even though the review focuses on examples from the dairy industry, the principles are broader and can be applied to other fields of food and agricultural research.

  7. Fluorescence fluctuation spectroscopy and its artifacts: simulations and tests

    Institute of Scientific and Technical Information of China (English)

    MENG; Fanbo; CHEN; Bo; LIU; Guang; DING; Jianying

    2005-01-01

    Fluorescence fluctuation spectroscopy (FFS) technique is capable of monitoring changes in concentration, mass, size and structure of fluorescent-labeled bio-molecules in microscopic volume and is suitable for measuring biological interactions in living cells. FFS data may be affected by many experimental factors in complicated biological systems. Using a Monte Carlo approach, we generate fluorescence fluctuation data for different experimental systems. This approach helps to separate the contributions by different experimental factors in a complicated fluorescence fluctuation spectrum. It also helps to validate new theoretical models and new fitting formulations. We describe the algorithm of the simulation program and tests on its statistical performance. The program is then used successfully to study the effects of several experimental factors on FFS detection.

  8. Sucrose monoester micelles size determined by Fluorescence Correlation Spectroscopy (FCS.

    Directory of Open Access Journals (Sweden)

    Susana A Sanchez

    Full Text Available One of the several uses of sucrose detergents, as well as other micelle forming detergents, is the solubilization of different membrane proteins. Accurate knowledge of the micelle properties, including size and shape, are needed to optimize the surfactant conditions for protein purification and membrane characterization. We synthesized sucrose esters having different numbers of methylene subunits on the substituent to correlate the number of methylene groups with the size of the corresponding micelles. We used Fluorescence Correlation Spectroscopy (FCS and two photon excitation to determine the translational D of the micelles and calculate their corresponding hydrodynamic radius, R(h. As a fluorescent probe we used LAURDAN (6-dodecanoyl-2-dimethylaminonaphthalene, a dye highly fluorescent when integrated in the micelle and non-fluorescent in aqueous media. We found a linear correlation between the size of the tail and the hydrodynamic radius of the micelle for the series of detergents measured.

  9. Femtosecond broadband fluorescence upconversion spectroscopy: Improved setup and photometric correction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.-X. [Photonics Center, College of Physical Science, Nankai University, Tianjin (China); Department of Chemistry, Humboldt Universitaet zu Berlin (Germany); Wuerth, C.; Resch-Genger, U. [Federal Institute for Materials Research and Testing, Berlin (Germany); Zhao, L. [Photonics Center, College of Physical Science, Nankai University, Tianjin (China); Ernsting, N. P.; Sajadi, M. [Department of Chemistry, Humboldt Universitaet zu Berlin (Germany)

    2011-06-15

    A setup for fluorescence upconversion spectroscopy (FLUPS) is described which has 80 fs temporal response (fwhm) for emission in the spectral range 425-750 nm. Broadband phase matching is achieved with tilted gate pulses at 1340 nm. Background from harmonics of the gate pulse is removed and sensitivity increased compared to previous designs. Photometric calibration of the upconversion process is performed with a set of fluorescent dyes. For Coumarin 153 in methanol the peak position, bandwidth, and asymmetry depending on delay time are reported.

  10. Femtosecond broadband fluorescence upconversion spectroscopy: Improved setup and photometric correction

    Science.gov (United States)

    Zhang, X.-X.; Würth, C.; Zhao, L.; Resch-Genger, U.; Ernsting, N. P.; Sajadi, M.

    2011-06-01

    A setup for fluorescence upconversion spectroscopy (FLUPS) is described which has 80 fs temporal response (fwhm) for emission in the spectral range 425-750 nm. Broadband phase matching is achieved with tilted gate pulses at 1340 nm. Background from harmonics of the gate pulse is removed and sensitivity increased compared to previous designs. Photometric calibration of the upconversion process is performed with a set of fluorescent dyes. For Coumarin 153 in methanol the peak position, bandwidth, and asymmetry depending on delay time are reported.

  11. Emerging applications of fluorescence spectroscopy in medical microbiology field.

    Science.gov (United States)

    Shahzad, Aamir; Köhler, Gottfried; Knapp, Martin; Gaubitzer, Erwin; Puchinger, Martin; Edetsberger, Michael

    2009-11-26

    There are many diagnostic techniques and methods available for diagnosis of medically important microorganisms like bacteria, viruses, fungi and parasites. But, almost all these techniques and methods have some limitations or inconvenience. Most of these techniques are laborious, time consuming and with chances of false positive or false negative results. It warrants the need of a diagnostic technique which can overcome these limitations and problems. At present, there is emerging trend to use Fluorescence spectroscopy as a diagnostic as well as research tool in many fields of medical sciences. Here, we will critically discuss research studies which propose that Fluorescence spectroscopy may be an excellent diagnostic as well as excellent research tool in medical microbiology field with high sensitivity and specificity.

  12. Emerging applications of fluorescence spectroscopy in medical microbiology field

    Directory of Open Access Journals (Sweden)

    Gaubitzer Erwin

    2009-11-01

    Full Text Available Abstract There are many diagnostic techniques and methods available for diagnosis of medically important microorganisms like bacteria, viruses, fungi and parasites. But, almost all these techniques and methods have some limitations or inconvenience. Most of these techniques are laborious, time consuming and with chances of false positive or false negative results. It warrants the need of a diagnostic technique which can overcome these limitations and problems. At present, there is emerging trend to use Fluorescence spectroscopy as a diagnostic as well as research tool in many fields of medical sciences. Here, we will critically discuss research studies which propose that Fluorescence spectroscopy may be an excellent diagnostic as well as excellent research tool in medical microbiology field with high sensitivity and specificity.

  13. Polarized fluorescence correlation spectroscopy of DNA-DAPI complexes

    OpenAIRE

    Barcellona, ML; Gammon, S; Hazlett, T.; Digman, MA; Gratton, E

    2004-01-01

    We discuss the use of fluorescence correlation spectroscopy for the measurement of relatively slow rotations of large macromolecules in solution or attached to other macromolecular structures. We present simulations and experimental results to illustrate the range of rotational correlation times and diffusion times that the technique can analyze. In particular, we examine various methods to analyze the polarization fluctuation data. We have found that by first constructing the polarization fu...

  14. Intramolecular fluorescence correlation spectroscopy in a feedback tracking microscope

    CERN Document Server

    McHale, Kevin

    2009-01-01

    We derive the statistics of the signals generated by shape fluctuations of large molecules studied by feedback tracking microscopy. We account for the influence of intramolecular dynamics on the response of the tracking system, and derive a general expression for the fluorescence autocorrelation function that applies when those dynamics are linear. We show that tracking provides enhanced sensitivity to translational diffusion, molecular size, heterogeneity and long time-scale decays in comparison to traditional fluorescence correlation spectroscopy. We demonstrate our approach by using a three-dimensional tracking microscope to study genomic $\\lambda$-phage DNA molecules with various fluorescence label configurations. We conclude with a discussion of related techniques, including computation of the relevant statistics for camera-based intramolecular correlation measurements.

  15. Polarized fluorescence correlation spectroscopy of DNA-DAPI complexes.

    Science.gov (United States)

    Barcellona, Maria Luisa; Gammon, Seth; Hazlett, Theodore; Digman, Michelle A; Gratton, Enrico

    2004-11-01

    We discuss the use of fluorescence correlation spectroscopy for the measurement of relatively slow rotations of large macromolecules in solution or attached to other macromolecular structures. We present simulations and experimental results to illustrate the range of rotational correlation times and diffusion times that the technique can analyze. In particular, we examine various methods to analyze the polarization fluctuation data. We have found that by first constructing the polarization function and then calculating the autocorrelation function, we can obtain the rotational motion of the molecule with very little interference from the lateral diffusion of the macromolecule, as long as the rotational diffusion is significantly faster than the lateral diffusion. Surprisingly, for common fluorophores the autocorrelation of the polarization function is relatively unaffected by the photon statistics. In our instrument, two-photon excitation is used to define a small volume of illumination where a few molecules are present at any instant of time. The measurements of long DNA molecules labeled with the fluorescent probe DAPI show local rotational motions of the polymers in addition to translation motions of the entire polymer. For smaller molecules such as EGFP, the viscosity of the solution must be increased to bring the relaxation due to rotational motion into the measurable range. Overall, our results show that polarized fluorescence correlation spectroscopy can be used to detect fast and slow rotational motion in the time scale from microsecond to second, a range that cannot be easily reached by conventional fluorescence anisotropy decay methods.

  16. Synchronous fluorescence spectroscopy for analysis of wine and wine distillates

    Science.gov (United States)

    Andreeva, Ya.; Borisova, E.; Genova, Ts.; Zhelyazkova, Al.; Avramov, L.

    2015-01-01

    Wine and brandies are multicomponent systems and conventional fluorescence techniques, relying on recording of single emission or excitation spectra, are often insufficient. In such cases synchronous fluorescence spectra can be used for revealing the potential of the fluorescence techniques. The technique is based on simultaneously scanning of the excitation and emission wavelength with constant difference (Δλ) maintained between them. In this study the measurements were made using FluoroLog3 spectrofluorimeter (HORIBA Jobin Yvon, France) and collected for excitation and emission in the wavelength region 220 - 700 nm using wavelength interval Δλ from 10 to 100 nm in 10 nm steps. This research includes the results obtained for brandy and red wine samples. Fluorescence analysis takes advantage in the presence of natural fluorophores in wines and brandies, such as gallic, vanillic, p-coumaric, syringic, ferulic acid, umbelliferone, scopoletin and etc. Applying of synchronous fluorescence spectroscopy for analysis of these types of alcohols allows us to estimate the quality of wines and also to detect adulteration of brandies like adding of a caramel to wine distillates for imitating the quality of the original product aged in oak casks.

  17. Fluorescence spectroscopy for rapid detection and classification of bacterial pathogens.

    Science.gov (United States)

    Sohn, Miryeong; Himmelsbach, David S; Barton, Franklin E; Fedorka-Cray, Paula J

    2009-11-01

    This study deals with the rapid detection and differentiation of Escherichia coli, Salmonella, and Campylobacter, which are the most commonly identified commensal and pathogenic bacteria in foods, using fluorescence spectroscopy and multivariate analysis. Each bacterial sample cultured under controlled conditions was diluted in physiologic saline for analysis. Fluorescence spectra were collected over a range of 200-700 nm with 0.5 nm intervals on the PerkinElmer Fluorescence Spectrometer. The synchronous scan technique was employed to find the optimum excitation (lambda(ex)) and emission (lambda(em)) wavelengths for individual bacteria with the wavelength interval (Deltalambda) being varied from 10 to 200 nm. The synchronous spectra and two-dimensional plots showed two maximum lambda(ex) values at 225 nm and 280 nm and one maximum lambda(em) at 335-345 nm (lambda(em) = lambda(ex) + Deltalambda), which correspond to the lambda(ex) = 225 nm, Deltalambda = 110-120 nm, and lambda(ex) = 280 nm, Deltalambda = 60-65 nm. For all three bacterial genera, the same synchronous scan results were obtained. The emission spectra from the three bacteria groups were very similar, creating difficulty in classification. However, the application of principal component analysis (PCA) to the fluorescence spectra resulted in successful classification of the bacteria by their genus as well as determining their concentration. The detection limit was approximately 10(3)-10(4) cells/mL for each bacterial sample. These results demonstrated that fluorescence spectroscopy, when coupled with PCA processing, has the potential to detect and to classify bacterial pathogens in liquids. The methodology is rapid (>10 min), inexpensive, and requires minimal sample preparation compared to standard analytical methods for bacterial detection.

  18. Optimized Time-Gated Fluorescence Spectroscopy for the Classification and Recycling of Fluorescently Labeled Plastics.

    Science.gov (United States)

    Fomin, Petr; Zhelondz, Dmitry; Kargel, Christian

    2016-08-29

    For the production of high-quality parts from recycled plastics, a very high purity of the plastic waste to be recycled is mandatory. The incorporation of fluorescent tracers ("markers") into plastics during the manufacturing process helps overcome typical problems of non-tracer based optical classification methods. Despite the unique emission spectra of fluorescent markers, the classification becomes difficult when the host plastics exhibit (strong) autofluorescence that spectrally overlaps the marker fluorescence. Increasing the marker concentration is not an option from an economic perspective and might also adversely affect the properties of the plastics. A measurement approach that suppresses the autofluorescence in the acquired signal is time-gated fluorescence spectroscopy (TGFS). Unfortunately, TGFS is associated with a lower signal-to-noise (S/N) ratio, which results in larger classification errors. In order to optimize the S/N ratio we investigate and validate the best TGFS parameters-derived from a model for the fluorescence signal-for plastics labeled with four specifically designed fluorescent markers. In this study we also demonstrate the implementation of TGFS on a measurement and classification prototype system and determine its performance. Mean values for a sensitivity of [Formula: see text] = 99.93% and precision [Formula: see text] = 99.80% were achieved, proving that a highly reliable classification of plastics can be achieved in practice.

  19. Two-dimensional fluorescence spectroscopy of laser-produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, Sivanandan S.; LaHaye, Nicole L.; Phillips, Mark C.

    2016-08-01

    We use a two-dimensional laser-induced fluorescence spectroscopy technique to measure the coupled absorption and emission properties of atomic species in plasmas produced via laser ablation of solid aluminum targets at atmospheric pressure. Emission spectra from the Al I 394.4 nm and Al I 396.15 nm transitions are measured while a frequency-doubled, continuous-wave, Ti:Sapphire laser is tuned across the Al I 396.15 nm transition. The resulting two-dimensional spectra show the energy coupling between the two transitions via increased emission intensity for both transitions during resonant absorption of the continuous-wave laser at one transition. Time-delayed and gated detection of the emission spectrum is used to isolate the resonantly-excited fluorescence emission from the thermally-excited emission from the plasma. In addition, the tunable continuous-wave laser measures the absorption spectrum of the Al transition with ultra-high resolution after the plasma has cooled, resulting in narrower spectral linewidths than observed in emission spectra. Our results highlight that fluorescence spectroscopy employing continuous-wave laser re-excitation after pulsed laser ablation combines benefits of both traditional emission and absorption spectroscopic methods.

  20. Investigation on the effect of fluorescence quenching of bovine serum albumin by cefoxitin sodium using fluorescence spectroscopy and synchronous fluorescence spectroscopy.

    Science.gov (United States)

    Li, Gaixia; Liu, Bao-Sheng; Zhang, Qiuju; Han, Rong

    2016-08-01

    The reaction mechanism of cefoxitin sodium with bovine serum albumin was investigated using fluorescence spectroscopy and synchronous fluorescence spectroscopy at different temperatures. The results showed that the change of binding constant of the synchronous fluorescence method with increasing temperature could be used to estimate the types of quenching mechanisms of drugs with protein and was consistent with one of fluorescence quenching method. In addition, the number of binding sites, type of interaction force, cooperativity between drug and protein and energy-transfer parameters of cefoxitin sodium and bovine serum albumin obtained from two methods using the same equation were consistent. Electrostatic force played a major role in the conjugation reaction between bovine serum albumin and cefoxitin sodium, and the type of quenching was static quenching. The primary binding site for cefoxitin sodium was sub-hydrophobic domain IIA, and the number of binding sites was 1. The value of Hill's coefficients (nH ) was approximately equal to 1, which suggested no cooperativity in the bovine serum albumin-cefoxitin sodium system. The donor-to-acceptor distance r fluorescence quenching of bovine serum albumin by cefoxitin sodium was also a non-radiation energy-transfer process. The results indicated that synchronous fluorescence spectrometry could be used to study the reaction mechanism between drug and protein, and was a useful supplement to the conventional method. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Brain cancer probed by native fluorescence and stokes shift spectroscopy

    Science.gov (United States)

    Zhou, Yan; Liu, Cheng-hui; He, Yong; Pu, Yang; Li, Qingbo; Wang, Wei; Alfano, Robert R.

    2012-12-01

    Optical biopsy spectroscopy was applied to diagnosis human brain cancer in vitro. The spectra of native fluorescence, Stokes shift and excitation spectra were obtained from malignant meningioma, benign, normal meningeal tissues and acoustic neuroma benign tissues. The wide excitation wavelength ranges were used to establish the criterion for distinguishing brain diseases. The alteration of fluorescence spectra between normal and abnormal brain tissues were identified by the characteristic fluorophores under the excitation with UV to visible wavelength range. It was found that the ratios of the peak intensities and peak position in both spectra of fluorescence and Stokes shift may be used to diagnose human brain meninges diseases. The preliminary analysis of fluorescence spectral data from cancer and normal meningeal tissues by basic biochemical component analysis model (BBCA) and Bayes classification model based on statistical methods revealed the changes of components, and classified the difference between cancer and normal human brain meningeal tissues in a predictions accuracy rate is 0.93 in comparison with histopathology and immunohistochemistry reports (gold standard).

  2. The study of blue LED to induce fluorescence spectroscopy and fluorescence imaging for oral carcinoma detection

    Science.gov (United States)

    Zheng, Longjiang; Hu, Yuanting

    2009-07-01

    Fluorescence spectroscopy and fluorescence imaging diagnosis of malignant lesions provides us with a new method to diagnose diseases in precancerous stage. Early diagnosis of disease has significant importance in cancer treatment, because most cancers can be cured well in precancerous, especially when the diffusion of cancer is limited in a restricted region. In this study, Golden hamster models were applied to 5% 9, 10 dimethyl-1, 2-benzanthracene (DMBA) to induce hamster buccal cheek pouch carcinoma three times a week. Rose Bengal, which has been used in clinican for years and avoids visible side-effect to human was chosen as photosensitizer. 405 nm blue LED was used to induce the fluorescence of photosensitizer. After topical application of photosensitizer, characteristic red emission fluorescence peak was observed around 600nm. Similar, normal oral cavity has special luminescence around 480nm. Fluorescence spectroscopy technology is based on analysing emission peaks of photosensitizer in the areas of oral carcinoma, moreover, red-to-green (IR/IG) intensity ratio is also applied as a diagnostic algorithm. A CCD which is connected with a computer is used to take pictures at carcinoma areas through different filters. Fluorescence images from normal hamster buccal cheek pouch are compared with those from carcinogen-induced models of carcinoma, and morphological differences between normal and lesion tissue can be distinguished. The pictures are analyzed by Matlab and shown on the screen of computer. This paper demonstrates that Rose Bengal could be used as photosensitizer to detect oral carcinoma, and blue LED as excitation source could not only have a good effect to diagnose oral carcinoma, but also decrease cost greatly.

  3. Laser Induced Fluorescence Spectroscopy of IrN

    Institute of Scientific and Technical Information of China (English)

    H. F. Pang; A. S. C. Cheung

    2009-01-01

    High resolution laser induced fluorescence spectra of IrN in the spectral region between 394and 520 nm were recorded using laser vaporization/reaction free jet expansion and laser induced fluorescence spectroscopy. Seven new vibronic transition bands were observed and analyzed. TwoΩ=1 and five Ω=0 new states were identified. Least squares fit of rotationally resolved transition lines yielded accurate molecular constants for the upper states. Spectra of isotopic molecules were observed, which provided confirmation for the vibrational assignment. Comparison of the observed electronic states of IrB, IrC, and IrN provides a good understanding of the chemical bonding of this group of molecules.

  4. Influence of the surface hydrophobicity on fluorescence correlation spectroscopy measurements

    Science.gov (United States)

    Boutin, Céline; Jaffiol, Rodolphe; Plain, Jérome; Royer, Pascal

    2007-02-01

    Fluorescence correlation spectroscopy (FCS) is a powerful experimental technique used to analyze the diffusion at the single molecule level in solution. FCS is based on the temporal autocorrelation of fluorescent signal generated by dye molecules diffusing through a small confocal volume. These measurements are mostly carried out in a chambered coverglass, close to the glass substrate. In this report, we discuss how the chemical nature of the glass-water interface may interact with the free diffusion of molecules. Our results reveal a strong influence, up to a few μm from the interface, of the surface hydrophobicity degree. This influence is assessed through the relative weight of the two dimension diffusion process observed at the vicinity of the surface.

  5. Quantum process tomography by 2D fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pachón, Leonardo A. [Grupo de Física Atómica y Molecular, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138 (United States); Marcus, Andrew H. [Department of Chemistry and Biochemistry, Oregon Center for Optics, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403 (United States); Aspuru-Guzik, Alán [Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2015-06-07

    Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed.

  6. Fluorescence-excitation and Emission Spectroscopy on Single FMO Complexes.

    Science.gov (United States)

    Löhner, Alexander; Ashraf, Khuram; Cogdell, Richard J; Köhler, Jürgen

    2016-08-22

    In green-sulfur bacteria sunlight is absorbed by antenna structures termed chlorosomes, and transferred to the RC via the Fenna-Matthews-Olson (FMO) complex. FMO consists of three monomers arranged in C3 symmetry where each monomer accommodates eight Bacteriochlorophyll a (BChl a) molecules. It was the first pigment-protein complex for which the structure has been determined with high resolution and since then this complex has been the subject of numerous studies both experimentally and theoretically. Here we report about fluorescence-excitation spectroscopy as well as emission spectroscopy from individual FMO complexes at low temperatures. The individual FMO complexes are subjected to very fast spectral fluctuations smearing out any possible different information from the ensemble data that were recorded under the same experimental conditions. In other words, on the time scales that are experimentally accessible by single-molecule techniques, the FMO complex exhibits ergodic behaviour.

  7. Determination of antioxidant content in biodiesel by fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes, Keurison F.; Caires, Anderson R.L. [Universidade Federal da Grande Dourados, MS (Brazil). Grupo de Optica Aplicada; Oliveira, Samuel L. [Universidade Federal de Mato Grosso do Sul (UFMS), MS (Brazil). Grupo de Optica e Fotonica

    2011-07-01

    Full text. Biodiesel is an alternative fuel composed by mono-alkyl esters obtained from vegetable oils or animal fats. Due to its chemical structure, biodiesel is highly susceptible to oxidation which leads to formation of insoluble gums and sediments that can block the filter system of fuel injection. Biodiesel made from vegetable oils typically has a small amount of natural antioxidants so that it is necessary to add synthetic antioxidants to enhance its stability and retain their properties for a longer period. The main antioxidants are synthetic phenolic compounds such as butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and tert-butyl hydroquinone (TBHQ) as well as natural antioxidants as tocopherols. The fluorescence spectroscopy has been applied for determination of phenolic compounds in oils. Here, a method based on fluorescence is proposed to quantify the BHA and TBHQ antioxidant concentration in biodiesel produced from sunflower and soybean oils. Soybean and sunflower biodiesel were obtained by transesterification of fatty alcohol in the presence of NaOH as catalyst. The reactions were carried out in the molar ratio of 6:1 methanol/oil. After the production and purification, biodiesel samples were stored. Biodiesel samples with BHA and TBHQ concentrations from 1000 to 8000 ppm (m/m) were pre- pared. These samples were diluted in ethanol (95%) in order to measure the fluorescence spectra. Fluorescence and excitation spectra of the solutions were recorded at room temperature using a spectrofluorimeter. The emission spectra were obtained under excitation at about 310nm and fluorescence in the 320-800nm range was evaluated. Biodiesel samples without BHA and TBHQ showed fluorescence band at about 420nm, which can be attributed to tocopherols inherent to the vegetable oils used in the biodiesel production. The addition of BHA and/or TBHQ is responsible for the appearance of a fluorescence band around 330nm. It was verified that the fluorescence

  8. Classification of plum spirit drinks by synchronous fluorescence spectroscopy.

    Science.gov (United States)

    Sádecká, J; Jakubíková, M; Májek, P; Kleinová, A

    2016-04-01

    Synchronous fluorescence spectroscopy was used in combination with principal component analysis (PCA) and linear discriminant analysis (LDA) for the differentiation of plum spirits according to their geographical origin. A total of 14 Czech, 12 Hungarian and 18 Slovak plum spirit samples were used. The samples were divided in two categories: colorless (22 samples) and colored (22 samples). Synchronous fluorescence spectra (SFS) obtained at a wavelength difference of 60 nm provided the best results. Considering the PCA-LDA applied to the SFS of all samples, Czech, Hungarian and Slovak colorless samples were properly classified in both the calibration and prediction sets. 100% of correct classification was also obtained for Czech and Hungarian colored samples. However, one group of Slovak colored samples was classified as belonging to the Hungarian group in the calibration set. Thus, the total correct classifications obtained were 94% and 100% for the calibration and prediction steps, respectively. The results were compared with those obtained using near-infrared (NIR) spectroscopy. Applying PCA-LDA to NIR spectra (5500-6000 cm(-1)), the total correct classifications were 91% and 92% for the calibration and prediction steps, respectively, which were slightly lower than those obtained using SFS.

  9. Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy

    NARCIS (Netherlands)

    Kahya, N; Scherfeld, D; Bacia, K; Poolman, B; Schwille, P

    2003-01-01

    Confocal fluorescence microscopy and fluorescence correlation spectroscopy (FCS) have been employed to investigate the lipid spatial and dynamic organization in giant unilamellar vesicles (GUVs) prepared from ternary mixtures of dioleoyl-phosphatidylcholine/sphingomyelin/ cholesterol. For a certain

  10. The use of fluorescence correlation spectroscopy to probe mitochondrial mobility and intramatrix protein diffusion

    NARCIS (Netherlands)

    P.H.G.M. Willems; H.G. Swarts; M.A. Hink; W.J.H. Koopman

    2009-01-01

    Within cells, functional changes in mitochondrial metabolic state are associated with alterations in organelle mobility, shape, and configuration of the mitochondrial matrix. Fluorescence correlation spectroscopy (FCS) is a technique that measures intensity fluctuations caused by single fluorescent

  11. Fluorescence Spectroscopy and Chemometric Modeling for Bioprocess Monitoring

    Directory of Open Access Journals (Sweden)

    Saskia M. Faassen

    2015-04-01

    Full Text Available On-line sensors for the detection of crucial process parameters are desirable for the monitoring, control and automation of processes in the biotechnology, food and pharma industry. Fluorescence spectroscopy as a highly developed and non-invasive technique that enables the on-line measurements of substrate and product concentrations or the identification of characteristic process states. During a cultivation process significant changes occur in the fluorescence spectra. By means of chemometric modeling, prediction models can be calculated and applied for process supervision and control to provide increased quality and the productivity of bioprocesses. A range of applications for different microorganisms and analytes has been proposed during the last years. This contribution provides an overview of different analysis methods for the measured fluorescence spectra and the model-building chemometric methods used for various microbial cultivations. Most of these processes are observed using the BioView® Sensor, thanks to its robustness and insensitivity to adverse process conditions. Beyond that, the PLS-method is the most frequently used chemometric method for the calculation of process models and prediction of process variables.

  12. Quantitative Studies of Antimicrobial Peptide Pore Formation in Large Unilamellar Vesicles by Fluorescence Correlation Spectroscopy (FCS)

    DEFF Research Database (Denmark)

    Kristensen, Kasper; Henriksen, Jonas Rosager; Andresen, Thomas Lars

    2013-01-01

    leakage of fluorescent probes of different sizes through transmembrane pores formed by each of the three representative antimicrobial peptides: melittin, magainin 2, and mastoparan X. The experimental results demonstrate that leakage assays based on fluorescence correlation spectroscopy offer new...... and detailed insight into the size and cooperative nature of transmembrane pores formed by antimicrobial peptides that is not available from the conventional quenching-based leakage assays....... highly warranted. Fluorescence correlation spectroscopy is a biophysical technique that can be used to quantify leakage of fluorescent probes of different sizes from large unilamellar vesicle, thereby potentially becoming such a new tool. However, the usage of fluorescence correlation spectroscopy...

  13. Assessing Raw and Treated Water Quality Using Fluorescence Spectroscopy

    Science.gov (United States)

    Bridgeman, J.; Baker, A.

    2006-12-01

    To date, much fluorescence spectroscopy work has focused on the use of techniques to characterize pollution in river water and to fingerprint pollutants such as, inter alia, treated and raw sewage effluent. In the face of tightening water quality standards associated with disinfection byproducts, there exists the need for a surrogate THM parameter which can be measured accurately and quickly at the water treatment works and which will give a satisfactory indication of the THM concentration leaving the water treatment works. In addition, water treatment works and distribution system managers require tools which are simple and quick, yet robust, to monitor plant and unit process performance. We extend the use of fluorescence techniques from raw water quality monitoring to (1) the monitoring of water treatment works intakes and the assessment of water treatment works performance by (2) assessing the removal of dissolved organic matter (DOM) through the unit process stages of various water treatment works treating different raw waters and (3) examining the prevalence of microbiological activity found at service reservoirs in the downstream distribution system. 16 surface water treatment works were selected in the central region of the UK and samples taken at works' intakes, downstream of each unit process, and in the distribution systems. The intakes selected abstract water from a broad range of upland and lowland water sources with varying natural and anthropogenic pollutant inputs and significantly different flows. The treatment works selected offer a range of different, but relatively standard, unit processes. The results demonstrate that raw waters exhibit more fluorescence than (partially) treated waters. However, noticeable differences between each site are observed. Furthermore, differences in unit process performance between works are also identified and quantified. Across all sites, treatment with Granular Activated Carbon is found to yield a significant

  14. Quantitative Fluorescence Studies in Living Cells: Extending Fluorescence Fluctuation Spectroscopy to Peripheral Membrane Proteins

    Science.gov (United States)

    Smith, Elizabeth Myhra

    The interactions of peripheral membrane proteins with both membrane lipids and proteins are vital for many cellular processes including membrane trafficking, cellular signaling, and cell growth/regulation. Building accurate biophysical models of these processes requires quantitative characterization of the behavior of peripheral membrane proteins, yet methods to quantify their interactions inside living cells are very limited. Because peripheral membrane proteins usually exist both in membrane-bound and cytoplasmic forms, the separation of these two populations is a key challenge. This thesis aims at addressing this challenge by extending fluorescence fluctuation spectroscopy (FFS) to simultaneously measure the oligomeric state of peripheral membrane proteins in the cytoplasm and at the plasma membrane. We developed a new method based on z-scan FFS that accounts for the fluorescence contributions from cytoplasmic and membrane layers by incorporating a fluorescence intensity z-scan through the cell. H-Ras-EGFP served as a model system to demonstrate the feasibility of the technique. The resolvability and stability of z-scanning was determined as well as the oligomeric state of H-Ras-EGFP at the plasma membrane and in the cytoplasm. Further, we successfully characterized the binding affinity of a variety of proteins to the plasma membrane by quantitative analysis of the z-scan fluorescence intensity profile. This analysis method, which we refer to as z-scan fluorescence profile deconvoution, was further used in combination with dual-color competition studies to determine the lipid specificity of protein binding. Finally, we applied z-scan FFS to provide insight into the early assembly steps of the HTLV-1 retrovirus.

  15. Fluorescence cross-correlation spectroscopy using single wavelength laser

    Institute of Scientific and Technical Information of China (English)

    Chao XIE; Chaoqing DONG; Jicun REN

    2009-01-01

    In this paper, we first introduced the basic principle of fluorescence cross-correlation spectroscopy (FCCS) and then established an FCCS setup using a single wavelength laser. We systematically optimized the setup, and the detection volume reached about 0.7 fL. The home-built setup was successfully applied for the study of the binding reaction of human immunoglobulin G with goat antihuman immunoglobulin G. Using quantum dots (745 nm emission wavelength) and Rhodamine B (580 nm emission wavelength) as labeling probes and 532 nm laser beam as an excitation source, the cross-talk effect was almost completely suppressed. The molecule numbers in a highly focused volume, the concentration, and the diffusion time and hydrodynamic radii of the reaction products can be determined by FCCS system.

  16. Detecting Nanodomains in Living Cell Membrane by Fluorescence Correlation Spectroscopy

    Science.gov (United States)

    He, Hai-Tao; Marguet, Didier

    2011-05-01

    Cell membranes actively participate in numerous cellular functions. Inasmuch as bioactivities of cell membranes are known to depend crucially on their lateral organization, much effort has been focused on deciphering this organization on different length scales. Within this context, the concept of lipid rafts has been intensively discussed over recent years. In line with its ability to measure diffusion parameters with great precision, fluorescence correlation spectroscopy (FCS) measurements have been made in association with innovative experimental strategies to monitor modes of molecular lateral diffusion within the plasma membrane of living cells. These investigations have allowed significant progress in the characterization of the cell membrane lateral organization at the suboptical level and have provided compelling evidence for the in vivo existence of raft nanodomains. We review these FCS-based studies and the characteristic structural features of raft nanodomains. We also discuss the findings in regards to the current view of lipid rafts as a general membrane-organizing principle.

  17. Fluorescence Correlation Spectroscopy and Nonlinear Stochastic Reaction-Diffusion

    CERN Document Server

    Del Razo, Mauricio J; Qian, Hong; Lin, Guang

    2014-01-01

    The currently existing theory of fluorescence correlation spectroscopy(FCS) is based on the linear fluctuation theory originally developed by Einstein, Onsager, Lax, and others as a phenomenological approach to equilibrium fluctuations in bulk solutions. For mesoscopic reaction-diffusion systems with nonlinear chemical reactions among a small number of molecules, a situation often encountered in single-cell biochemistry, it is expected that FCS time correlation functions of a reaction-diffusion system can deviate from the classic results of Elson and Magde. We first discuss this nonlinear effect for reaction systems without diffusion. For nonlinear stochastic reaction-diffusion systems here are no closed solutions; therefore, stochastic Monte-Carlo simulations are carried out. We show that the deviation is small for a simple bimolecular reaction; the most significant deviations occur when the number of molecules is small and of the same order. Our results show that current linear FCS theory could be adequate ...

  18. Fluorescence correlation spectroscopy in biology, chemistry, and medicine.

    Science.gov (United States)

    Perevoshchikova, I V; Kotova, E A; Antonenko, Y N

    2011-05-01

    This review describes the method of fluorescence correlation spectroscopy (FCS) and its applications. FCS is used for investigating processes associated with changes in the mobility of molecules and complexes and allows researchers to study aggregation of particles, binding of fluorescent molecules with supramolecular complexes, lipid vesicles, etc. The size of objects under study varies from a few angstroms for dye molecules to hundreds of nanometers for nanoparticles. The described applications of FCS comprise various fields from simple chemical systems of solution/micelle to sophisticated regulations on the level of living cells. Both the methodical bases and the theoretical principles of FCS are simple and available. The present review is concentrated preferentially on FCS applications for studies on artificial and natural membranes. At present, in contrast to the related approach of dynamic light scattering, FCS is poorly known in Russia, although it is widely employed in laboratories of other countries. The goal of this review is to promote the development of FCS in Russia so that this technique could occupy the position it deserves in modern Russian science.

  19. Dynamic and unique nucleolar microenvironment revealed by fluorescence correlation spectroscopy.

    Science.gov (United States)

    Park, Hweon; Han, Sung-Sik; Sako, Yasushi; Pack, Chan-Gi

    2015-03-01

    Organization and functions of the nucleolus is maintained by mobilities and interactions of nucleolar factors. Because the nucleolus is a densely packed structure, molecular crowding effects determined by the molecular concentrations and mobilities in the nucleolus should also be important for regulating nucleolar organization and functions. However, such molecular property of nucleolar organization is not fully understood. To understand the biophysical property of nucleolar organization, the diffusional behaviors of inert green fluorescent protein (GFP) oligomers with or without nuclear localization signals (NLSs) were analyzed under various conditions by fluorescence correlation spectroscopy. Our result demonstrates that the mobility of GFPs inside the nucleolus and the nucleoplasm can be represented by single free diffusion under normal conditions, even though the mobility in the nucleolus is considerably slower than that in the chromatin region. Moreover, the free diffusion of GFPs is found to be significantly size- and NLS-dependent only in the nucleolus. Interestingly, the mobility in the nucleolus is highly sensitive to ATP depletion, as well as actinomycin D (ActD) treatment. In contrast, the ultra-structure of the nucleolus was not significantly changed by ATP depletion but was changed by ActD treatment. These results suggest that the nucleolus behaves similarly to an open aqueous-phase medium with an increased molecular crowding effect that depends on both energy and transcription.

  20. Evaluation of actinic cheilitis using fluorescence lifetime spectroscopy

    Science.gov (United States)

    Saito Nogueira, Marcelo; Cosci, Alessandro; Pratavieira, Sebastião.; Takahama, Ademar; Souza Azevedo, Rebeca; Kurachi, Cristina

    2016-03-01

    Actinic cheilitis is a potentially malignant disorder that mostly affects the vermilion border of the lower lip and can lead to squamous cell carcinoma. Because of its heterogeneous clinical aspect, it is difficult to indicate representative biopsy area. Late diagnosis is a limiting factor of therapeutic possibilities available to treat oral cancer. The diagnosis of actinic cheilitis is mainly based on clinical and histopathological analysis and it is a time consuming procedure to get the results. Information about the organization and chemical composition of the tissues can be obtained using fluorescence lifetime spectroscopy techniques without the need for biopsy. The main targeted fluorophores are NADH (nicotinamide adenine dinucleotide) and FAD (flavin adenine dinucleotide), which have free and bound states, each one with different average lifetimes. The average lifetimes for free and bound NADH and FAD change according to tissue metabolic alterations and allow a quick and non-invasive clinical investigation of injuries and to help clinicians with the early diagnosis of actinic cheilitis. This study aims to evaluate the fluorescence lifetime parameters at the discrimination of three degrees of epithelial dysplasia, the most important predictor of malignant development, described in up to 100% of actinic cheilitis cases.

  1. Fluorescence correlation spectroscopy: Statistical analysis and biological applications

    Science.gov (United States)

    Saffarian, Saveez

    2002-01-01

    The experimental design and realization of an apparatus which can be used both for single molecule fluorescence detection and also fluorescence correlation and cross correlation spectroscopy is presented. A thorough statistical analysis of the fluorescence correlation functions including the analysis of bias and errors based on analytical derivations has been carried out. Using the methods developed here, the mechanism of binding and cleavage site recognition of matrix metalloproteinases (MMP) for their substrates has been studied. We demonstrate that two of the MMP family members, Collagenase (MMP-1) and Gelatinase A (MMP-2) exhibit diffusion along their substrates, the importance of this diffusion process and its biological implications are discussed. We show through truncation mutants that the hemopexin domain of the MMP-2 plays and important role in the substrate diffusion of this enzyme. Single molecule diffusion of the collagenase MMP-1 has been observed on collagen fibrils and shown to be biased. The discovered biased diffusion would make the MMP-1 molecule an active motor, thus making it the first active motor that is not coupled to ATP hydrolysis. The possible sources of energy for this enzyme and their implications are discussed. We propose that a possible source of energy for the enzyme can be in the rearrangement of the structure of collagen fibrils. In a separate application, using the methods developed here, we have observed an intermediate in the intestinal fatty acid binding protein folding process through the changes in its hydrodynamic radius also the fluctuations in the structure of the IFABP in solution were measured using FCS.

  2. Photoacoustic and Fluorescence Spectroscopy of Metallomesogens Containing Lanthanide Ions

    Institute of Scientific and Technical Information of China (English)

    Yue-tao Yang; Jun-jia Li; Xiao-jun Liu; Shu-yi Zhang; Jing Liu

    2008-01-01

    Metallomesogens Ln(bta)3L2 (Ln3+:La3+,Eu3+,and Ho3+;bta:benzoyltrifluoroacetonate;L:Schiff base) were prepared.Photoacoustic (PA) spectroscopy was used to study physicoehemical properties of the liquid crystalline metal complexes.In the region of ligand absorption,PA intensity increases for Eu(bta)3L2, La(bta)3L2,and Ho(bta)3L2,in that order.It is found that the PA intensity of the ligand bears a relation to the intramolecular energy transfer process.For the first time,phase transitions of Eu(bta)3L2 from glass state to smectic A (SmA) phase and SmA phase to isotropic liquid are monitored by PA and fluorescence (FL) spectroscopy from two aspects:nonradiative and radiative transitions.The results show that PA technique may serve as a new tool for investigating the spectral properties and phase transitions of liquid crystals containing metal ions.

  3. Observation of Climacteric-Like Behavior of Citrus Leaves Using Fluorescence Spectroscopy

    OpenAIRE

    Wetterich, Caio B.; Lins, Emery C.; José Belasque; Marcassa, Luis G.

    2014-01-01

    Observation of climacteric-like behavior in citrus leaves depends on the detection of ethylene. However, such detection requires a gas chromatographer and complex sample preparation procedures. In this work, fluorescence spectroscopy was investigated as a diagnostic technique for climacteric-like behavior in citrus leaves. Our results indicate that the chlorophyll fluorescence presents a time evolution consistent with the ethylene evolution. Therefore, fluorescence spectroscopy may be used to...

  4. Fluorescence spectroscopy of fulvic acids from fen peatlands

    Science.gov (United States)

    Maryganova, Victoria; Wojciech Szajdak, Lech

    2010-05-01

    Intensive cultivation and agricultural use of peatlands lead to the degradation and mineralization of peat. Fulvic acids (FA) as the most mobile part of peat organic matter can be considered as an early indicator of its changes. One of the most sensitive and simple methods for studying the structural chemistry of humic substances is fluorescence spectroscopy. The objective of this study was to analyze comparatively the fluorescence properties of FA from low-moor peats of different genesis and decomposition degree with respect to the peculiarities of their chemical structure. FA were isolated from 4 peat samples collected from different fen peatlands of Belarus. Fluorescence spectra were obtained on water solutions of FA at a concentration of 50 mg/L after adjustment to pH=2, 6 and 13 on a MSL-4800 spectrofluorimeter (Perkin Elmer, USA.) at 20 ± 2 oC. Emission spectra were obtained using an excitation wavelength of 365 nm. Excitation spectra were recorded by varying the excitation wavelength from 260 to 520 nm and measuring the fluorescence emission at a fixed wavelength of 520 nm. Elemental composition of FA and optical density at 465 nm (D465) of FA solutions in 0.1 N NaOH were determined. Emission spectra of FA are characterized by a broad featureless band of the maximum wavelengths at λ=460-475 nm. Excitation spectra of FA have three peaks localized in different wavelength regions. The maximum wavelengths and intensities of the excitation peaks depend on the pH values. The highest intensities are observed at pH=6. FA exhibit a main excitation peak at λ=355-370 nm, a minor peak at λ=395-400 nm, and a weak band at λ=430-440 nm. At pH=2, all the peaks decrease in intensity. With increasing the pH to 13, the excitation maximum at λ=355-370 nm shifts from 10 to 20 nm towards longer wavelengths compared to acidic solutions. A general decrease in fluorescence intensity is observed, the intensity decline of the peak at λ=355-370 nm being more marked than of the

  5. Eu(3+)-mediated polymerization of benzenetetracarboxylic acid studied by spectroscopy, temperature-dependent calorimetry, and density functional theory.

    Science.gov (United States)

    Barkleit, Astrid; Tsushima, Satoru; Savchuk, Olesya; Philipp, Jenny; Heim, Karsten; Acker, Margret; Taut, Steffen; Fahmy, Karim

    2011-06-20

    Thermodynamic parameters for the complexation of Eu(3+) with pyromellitic acid (1,2,4,5-benzenetetracarboxylic acid, BTC) as a model system for polymerizable metal-complexing humic acids were determined using temperature-dependent time-resolved laser-induced fluorescence spectroscopy (TRLFS) and isothermal titration calorimetry (ITC). At low metal and ligand concentrations (+), 500 μM Eu(3+) and BTC) a temperature-dependent polymerization was observed, where BTC monomers are linked via coordinating shared Eu(3+) ions. The two methods lead to comparable thermodynamic data (ΔH = 18.5 ± 1.5/16.5 ± 0.1 kJ mol(-1); ΔS = 152 ± 5/130 ± 5 J mol(-1) K(-1); TRLFS/ITC) in the absence of polymerization. With the onset of polymerization, TRLFS reveals the water coordination number of the lanthanide, whereas calorimetry is superior in determining the thermodynamic data in this regime. Evaluating the heat uptake kinetics, the monomer and polymer formation steps could be separated by "time-resolved" ITC, revealing almost identical binding enthalpies for the sequential reactions. Structural features of the complexes were studied by Fourier-transform infrared (FTIR) spectroscopy in combination with density functional theory (DFT) calculations showing predominantly chelating coordination with two carboxylate groups in the monomeric complex and monodentate binding of a single carboxylate group in the polymeric complex of the polycarboxylate with Eu(3+). The data show that pyromellitic acid is a suitable model for the study of metal-mediated polymerization as a crucial factor in determining the effect of humic acids on the mobility of heavy metals in the environment.

  6. Fluorescence Correlation Spectroscopy and Nonlinear Stochastic Reaction-Diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Del Razo, Mauricio; Pan, Wenxiao; Qian, Hong; Lin, Guang

    2014-05-30

    The currently existing theory of fluorescence correlation spectroscopy (FCS) is based on the linear fluctuation theory originally developed by Einstein, Onsager, Lax, and others as a phenomenological approach to equilibrium fluctuations in bulk solutions. For mesoscopic reaction-diffusion systems with nonlinear chemical reactions among a small number of molecules, a situation often encountered in single-cell biochemistry, it is expected that FCS time correlation functions of a reaction-diffusion system can deviate from the classic results of Elson and Magde [Biopolymers (1974) 13:1-27]. We first discuss this nonlinear effect for reaction systems without diffusion. For nonlinear stochastic reaction-diffusion systems there are no closed solutions; therefore, stochastic Monte-Carlo simulations are carried out. We show that the deviation is small for a simple bimolecular reaction; the most significant deviations occur when the number of molecules is small and of the same order. Extending Delbrück-Gillespie’s theory for stochastic nonlinear reactions with rapidly stirring to reaction-diffusion systems provides a mesoscopic model for chemical and biochemical reactions at nanometric and mesoscopic level such as a single biological cell.

  7. Fluorescence lifetime spectroscopy for breast cancer margins assessment

    Science.gov (United States)

    Gorpas, Dimitris; Fatakdawala, Hussain; Zhang, Yanhong; Bold, Richard; Marcu, Laura

    2015-03-01

    During breast conserving surgery (BCS), which is the preferred approach to treat most early stage breast cancers, the surgeon attempts to excise the tumor volume, surrounded by thin margin of normal tissue. The intra-operative assessment of cancerous areas is a challenging procedure, with the surgeon usually relying on visual or tactile guidance. This study evaluates whether time-resolved fluorescence spectroscopy (TRFS) presents the potential to address this problem. Point TRFS measurements were obtained from 19 fresh tissue slices (7 patients) and parameters that characterize the transient signals were quantified via constrained least squares deconvolution scheme. Fibrotic tissue (FT, n=69), adipose tissue (AT, n=76), and invasive ductal carcinoma (IDC, n=27) were identified in histology and univariate statistical analysis, followed by multi-comparison test, was applied to the corresponding lifetime data. Significant differentiation between the three tissue types exists at 390 nm and 500 nm bands. The average lifetime is 3.23+/-0.74 ns for AT, 4.21+/-0.83 ns for FT and 4.71+/-0.35 ns (ptissue in real-time and assess tumor margins.

  8. Plasmonic antennas and zero mode waveguides to enhance single molecule fluorescence detection and fluorescence correlation spectroscopy towards physiological concentrations

    CERN Document Server

    Punj, Deep; Moparthi, Satish Babu; de Torres, Juan; Grigoriev, Victor; Rigneault, Hervé; Wenger, Jérôme

    2014-01-01

    Single-molecule approaches to biology offer a powerful new vision to elucidate the mechanisms that underpin the functioning of living cells. However, conventional optical single molecule spectroscopy techniques such as F\\"orster fluorescence resonance energy transfer (FRET) or fluorescence correlation spectroscopy (FCS) are limited by diffraction to the nanomolar concentration range, far below the physiological micromolar concentration range where most biological reaction occur. To breach the diffraction limit, zero mode waveguides and plasmonic antennas exploit the surface plasmon resonances to confine and enhance light down to the nanometre scale. The ability of plasmonics to achieve extreme light concentration unlocks an enormous potential to enhance fluorescence detection, FRET and FCS. Single molecule spectroscopy techniques greatly benefit from zero mode waveguides and plasmonic antennas to enter a new dimension of molecular concentration reaching physiological conditions. The application of nano-optics...

  9. Fluorescence fluctuation spectroscopy: ushering in a new age of enlightenment for cellular dynamics.

    Science.gov (United States)

    Jameson, David M; Ross, Justin A; Albanesi, Joseph P

    2009-09-01

    Originally developed for applications in physics and physical chemistry, fluorescence fluctuation spectroscopy is becoming widely used in cell biology. This review traces the development of the method and describes some of the more important applications. Specifically, the methods discussed include fluorescence correlation spectroscopy (FCS), scanning FCS, dual color cross-correlation FCS, the photon counting histogram and fluorescence intensity distribution analysis approaches, the raster scanning image correlation spectroscopy method, and the Number and Brightness technique. The physical principles underlying these approaches will be delineated, and each of the methods will be illustrated using examples from the literature.

  10. Time-resolved fluorescence spectroscopy of oil spill detected by ocean lidar

    Science.gov (United States)

    Li, Xiao-long; Chen, Yong-hua; Li, Jie; Jiang, Jingbo; Ni, Zuotao; Liu, Zhi-shen

    2016-10-01

    Based on time-resolved fluorescence of oils, an oceanographic fluorescence Lidar was designed to identify oil pollutions. A third harmonic (at 355nm) of Nd:YAG laser is used as the excitation source, and the fluorescence intensities and lifetimes of oil fluorescence at wavelength from 380 nm to 580 nm are measured by an intensified CCD (ICCD). In the experiments, time-resolved fluorescence spectra of 20 oil samples, including crude oils, fuel oils, lubricating oil, diesel oils and gasoline, are analyzed to discuss fluorescence spectral characteristics of samples for oil classification. The spectral characteristics of oil fluorescence obtained by ICCD with delay time of 2 ns, 4 ns, and 6 ns were studied by using the principal component analysis (PCA) method. Moreover, an efficient method is used to improve the recognition rate of the oil spill types, through enlarging spectral differences of oil fluorescence at different delay times. Experimental analysis shows that the optimization method can discriminate between crude oil and fuel oil, and a more accurate classification of oils is obtained by time-resolved fluorescence spectroscopy. As the result, comparing to traditional fluorescence spectroscopy, a higher recognition rate of oil spill types is achieved by time-resolved fluorescence spectroscopy which is also a feasibility technology for Ocean Lidar.

  11. Noninvasive skin fluorescence spectroscopy for detection of abnormal glucose tolerance

    Directory of Open Access Journals (Sweden)

    Edward L. Hull, PhD

    2014-09-01

    Full Text Available The ENGINE study evaluated noninvasive skin fluorescence spectroscopy (SFS for detection of abnormal glucose tolerance (AGT. The AGT detection performance of SFS was compared to fasting plasma glucose (FPG and hemoglobin A1C (A1C. The study was a head-to-head comparison of SFS to FPG and A1C in an at-risk population of 507 subjects, with no prior diagnosis of diabetes, each of whom received a 75 g, two-hour oral glucose tolerance test (OGTT. Subjects were measured by SFS on multiple days in fasting and non-fasting states. SFS data were acquired and analyzed with the SCOUT DS® device (VeraLight, Albuquerque, NM, USA. Disease truth was AGT, defined as OGTT ≥ 7.8 mmol/L. Sensitivity, false positive rate (FPR, ROC area, and equal error rate (EER for detection of AGT were computed. The reproducibility of SFS and FPG was assessed. The AGT sensitivity of SFS at the device's recommended screening threshold of 50 was 75.2%, higher than that of FPG (thresholds of 5.6 mmol/L or 6.1 mmol/L and A1C (thresholds of 5.7% or 6.0%. The SFS FPR was 42.1%, comparable to an A1C threshold of 5.7% (FPR = 43.5%. The EERs of SFS, FPG and A1C were similar, as were the partial ROC areas for FPRs of 20–50%. The reproducibility of SFS was 7.7% versus 8.1% for FPG. SFS had similar AGT detection performance to FPG and A1C and is a viable alternative to screening individuals for AGT.

  12. Two-Dimensional Fluorescence Spectroscopy for Measuring Uranium Isotopes in Femtosecond Laser Ablation

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Mark C.; Brumfield, Brian E.; Harilal, Sivanandan S.; Hartig, Kyle C.; Jovanovic, Igor

    2017-05-30

    We present the first two-dimensional fluorescence spectroscopy measurements of uranium isotopes in femtosecond laser ablation plasmas. A new method of signal normalization is presented to reduce noise in absorption-based measurements of laser ablation.

  13. Assessing topographic cutaneous autofluorescence variation using fluorescence UV and visible excitation emission matrix (EEM) spectroscopy

    Science.gov (United States)

    Zhao, Jianhua; Zandi, Soodabeh; Feng, Florina; Zeng, Haishan; McLean, David I.; Lui, Harvey

    2011-03-01

    Cutaneous autofluorescence properties were systematically studied using fluorescence excitation emission matrix spectroscopy. Twenty-six healthy subjects with a mean age of 34 (range 21-74) participated in this study. The fluorescence of major skin fluorophores such as tryptophan, collagen, elastin and NADH could be readily identified. On average, facial skin shows strong tryptophan and measurable porphyrin fluorescence; the palm and nail show strong tryptophan and keratin fluorescence. These results demonstrate that regional topographic variations exist not only in the amount of fluorescence but also in the relative distribution of fluorophores in normal skin. Moreover this provides a basis for future interpretation of autofluorescence in diseased skin.

  14. Multiple stimulated emission fluorescence photoacoustic sensing and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gaoming [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Normal University, Fuzhou 350007 (China); Gao, Fei; Feng, Xiaohua; Zheng, Yuanjin, E-mail: yjzheng@ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Qiu, Yishen [Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Normal University, Fuzhou 350007 (China)

    2016-07-04

    Multiple stimulated emission fluorescence photoacoustic (MSEF-PA) phenomenon is demonstrated in this letter. Under simultaneous illumination of pumping light and stimulated emission light, the fluorescence emission process is speeded up by the stimulated emission effect. This leads to nonlinear enhancement of photoacoustic signal while the quantity of absorbed photons is more than that of fluorescent molecules illuminated by pumping light. The electronic states' specificity of fluorescent molecular can also be labelled by the MSEF-PA signals, which can potentially be used to obtain fluorescence excitation spectrum in deep scattering tissue with nonlinearly enhanced photoacoustic detection. In this preliminary study, the fluorescence excitation spectrum is reconstructed by MSEF-PA signals through sweeping the wavelength of exciting light, which confirms the theoretical derivation well.

  15. Application of fluorescence spectroscopy and chemometrics in the evaluation of processed cheese during storage.

    Science.gov (United States)

    Christensen, J; Povlsen, V T; Sørensen, J

    2003-04-01

    Front face fluorescence spectroscopy is applied for an evaluation of the stability of processed cheese during storage. Fluorescence landscapes with excitation from 240 to 360 nm and emission in the range of 275 to 475 nm were obtained from cheese samples stored in darkness and light in up to 259 d, at 5, 20 and 37 degrees C, respectively. Parallel factor (PARAFAC) analysis of the fluorescence landscapes exhibits four fluorophores present in the cheese, all related to the storage conditions. The chemometric analysis resolves the fluorescence signal into excitation and emission profiles of the pure fluorescent compounds, which are suggested to be tryptophan, vitamin A and a compound derived from oxidation. Thus, it is concluded that fluorescence spectroscopy in combination with chemometrics has a potential as a fast method for monitoring the stability of processed cheese.

  16. Excitation-emission matrices and synchronous fluorescence spectroscopy for the diagnosis of gastrointestinal cancers

    Science.gov (United States)

    Genova, Ts; Borisova, E.; Penkov, N.; Vladimirov, B.; Zhelyazkova, A.; Avramov, L.

    2016-06-01

    We report the development of an improved fluorescence technique for cancer diagnostics in the gastrointestinal tract. We investigate the fluorescence of ex vivo colorectal (cancerous and healthy) tissue samples using excitation-emission matrix (EEM) and synchronous fluorescence spectroscopy (SFS) steady-state approaches. The obtained results are processed for revealing characteristic fluorescence spectral features with a valuable diagnostic meaning. The main tissue fluorophores, contributing to the observed fluorescence, are tyrosine, tryptophan, NADH, FAD, collagen and elastin. Based on the results of the Mann-Whitney test as useful parameters for differentiation of gastrointestinal cancer from normal mucosa, we suggest using excitation wavelengths in the range 300 - 360 nm for fluorescence spectroscopy and wavelengths intervals of 60 nm and 90 nm for SFS.

  17. Tryptophan content for monitoring breast cancer cell aggressiveness by native fluorescence spectroscopy

    Science.gov (United States)

    Zhang, Lin; Pu, Yang; Xue, Jianpeng; Pratavieira, Sebastião.; Xu, Baogang; Achilefu, Samuel; Alfano, R. R.

    2014-03-01

    This study shows tryptophan as the key native marker in cells to determine the level of aggressive cancer in breast cell lines using native fluorescence spectroscopy. An algorithm based on the ratio of tryptophan fluorescence intensity at 340 nm to intensity at 460 nm is associated with aggressiveness of the cancer cells. The higher the ratio is, the more aggressive the tumor towards metastasis.

  18. Fluorescence correlation spectroscopy in small cytosolic compartments depends critically on the diffusion model used.

    OpenAIRE

    Gennerich, A.; Schild, D.

    2000-01-01

    Fluorescence correlation spectroscopy (FCS) is a powerful technique for measuring low concentrations of fluorescent molecules and their diffusion constants. In the standard case, fluorescence fluctuations are measured in an open detection volume defined by the confocal optics. However, if FCS measurements are carried out in cellular processes that confine the detection volume, the standard FCS model leads to erroneous results. In this paper, we derive a modified FCS model that takes into acco...

  19. Multi-Photon Fluorescence Spectroscopy of Fluorescent Bio-Probes and Bio-Molecules

    Science.gov (United States)

    2000-07-01

    the set-up of a multi-photon fluorescence microscope. The information can also be useful in the detection of multi-photon fluorescence in bio -chip...technology. In addition, we have investigated a few highly fluorescent bio -molecules commonly found in plant cells.

  20. [Rapid identification of potato cultivars using NIR-excited fluorescence and Raman spectroscopy].

    Science.gov (United States)

    Dai, Fen; Bergholt, Mads Sylvest; Benjamin, Arnold Julian Vinoj; Hong, Tian-Sheng; Zhiwei, Huang

    2014-03-01

    Potato is one of the most important food in the world. Rapid and noninvasive identification of potato cultivars plays a important role in the better use of varieties. In this study, The identification ability of optical spectroscopy techniques, including near-infrared (NIR) Raman spectroscopy and NIR fluorescence spectroscopy, for invasive detection of potato cultivars was evaluated. A rapid NIR Raman spectroscopy system was applied to measure the composite Raman and NIR fluorescence spectroscopy of 3 different species of potatoes (98 samples in total) under 785 nm laser light excitation. Then pure Raman and NIR fluorescence spectroscopy were abstracted from the composite spectroscopy, respectively. At last, the partial least squares-discriminant analysis (PLS-DA) was utilized to analyze and classify Raman spectra of 3 different types of potatoes. All the samples were divided into two sets at random: the calibration set (74samples) and prediction set (24 samples), the model was validated using a leave-one-out, cross-validation method. The results showed that both the NIR-excited fluorescence spectra and pure Raman spectra could be used to identify three cultivars of potatoes. The fluorescence spectrum could distinguish the Favorita variety well (sensitivity: 1, specificity: 0.86 and accuracy: 0.92), but the result for Diamant (sensitivity: 0.75, specificity: 0.75 and accuracy: 0. 75) and Granola (sensitivity: 0.16, specificity: 0.89 and accuracy: 0.71) cultivars identification were a bit poorer. We demonstrated that Raman spectroscopy uncovered the main biochemical compositions contained in potato species, and provided a better classification sensitivity, specificity and accuracy (sensitivity: 1, specificity: 1 and accuracy: 1 for all 3 potato cultivars identification) among the three types of potatoes as compared to fluorescence spectroscopy.

  1. Fluorescence spectroscopy of the retina from scrapie-infected mice.

    Science.gov (United States)

    Bose, Sayantan; Schönenbrücher, Holger; Richt, Jürgen A; Casey, Thomas A; Rasmussen, Mark A; Kehrli, Marcus E; Petrich, Jacob W

    2013-01-01

    Recently, we have proposed that the fluorescence spectra of sheep retina can be well correlated with the presence or absence of scrapie. Scrapie is the most widespread TSE (transmissible spongiform encephalopathy) affecting sheep and goats worldwide. Mice eyes have been previously reported as a model system to study age-related accumulation of lipofuscin, which has been investigated by monitoring the increasing fluorescence with age covering its entire life span. The current work aims at developing mice retina as a convenient model system to diagnose scrapie and other fatal TSE diseases in animals such as sheep and cows. The objective of the research reported here was to determine whether the spectral features are conserved between two different species namely mice and sheep, and whether an appropriate small animal model system could be identified for diagnosis of scrapie based on the fluorescence intensity in retina. The results were consistent with the previous reports on fluorescence studies of healthy and scrapie-infected retina of sheep. The fluorescence from the retinas of scrapie-infected sheep was significantly more intense and showed more heterogeneity than that from the retinas of uninfected mice. Although the structural characteristics of fluorescence spectra of scrapie-infected sheep and mice eyes are slightly different, more importantly, murine retinas reflect the enhancement of fluorescence intensity upon infecting the mice with scrapie, which is consistent with the observations in sheep eyes.

  2. Direct solid surface fluorescence spectroscopy of standard chemicals and humic acid in ternary system.

    Science.gov (United States)

    Mounier, S; Nicolodelli, G; Redon, R; Milori, D M B P

    2017-04-15

    The front face fluorescence spectroscopy is often used to quantify chemicals in well-known matrices as it is a rapid and powerful technique, with no sample preparation. However it was not used to investigate extracted organic matter like humic substances. This work aims to fully investigate for the first time front face fluorescence spectroscopy response of a ternary system including boric acid, tryptophan and humic substances, and two binaries system containing quinine sulfate or humic substance in boric acid. Pure chemicals, boric acid, tryptophan, quinine sulfate and humic acid were mixed together in solid pellet at different contents from 0 to 100% in mass. The measurement of excitation emission matrix of fluorescence (3D fluorescence) and laser induced fluorescence were then done in the front face mode. Fluorescence matrices were decomposed using the CP/PARAFAC tools after scattering treatments. Results show that for 3D fluorescence there is no specific component for tryptophan and quinine sulfate, and that humic substances lead to a strong extinction effect for mixture containing quinine sulfate. Laser induced fluorescence gives a very good but non-specific related response for both quinine sulfate and tryptophan. No humic substances fluorescence response was found, but extinction effect is observed as for 3D fluorescence. This effect is stronger for quinine sulfate than for tryptophan. These responses were modeled using a simple absorbance versus emission model.

  3. Direct solid surface fluorescence spectroscopy of standard chemicals and humic acid in ternary system

    Science.gov (United States)

    Mounier, S.; Nicolodelli, G.; Redon, R.; Milori, D. M. B. P.

    2017-04-01

    The front face fluorescence spectroscopy is often used to quantify chemicals in well-known matrices as it is a rapid and powerful technique, with no sample preparation. However it was not used to investigate extracted organic matter like humic substances. This work aims to fully investigate for the first time front face fluorescence spectroscopy response of a ternary system including boric acid, tryptophan and humic substances, and two binaries system containing quinine sulfate or humic substance in boric acid. Pure chemicals, boric acid, tryptophan, quinine sulfate and humic acid were mixed together in solid pellet at different contents from 0 to 100% in mass. The measurement of excitation emission matrix of fluorescence (3D fluorescence) and laser induced fluorescence were then done in the front face mode. Fluorescence matrices were decomposed using the CP/PARAFAC tools after scattering treatments. Results show that for 3D fluorescence there is no specific component for tryptophan and quinine sulfate, and that humic substances lead to a strong extinction effect for mixture containing quinine sulfate. Laser induced fluorescence gives a very good but non-specific related response for both quinine sulfate and tryptophan. No humic substances fluorescence response was found, but extinction effect is observed as for 3D fluorescence. This effect is stronger for quinine sulfate than for tryptophan. These responses were modeled using a simple absorbance versus emission model.

  4. Optical spectroscopy of a highly fluorescent aggregate of bacteriochlorophyll c

    Science.gov (United States)

    Causgrove, T. P.; Cheng, P.; Brune, D. C.; Blankenship, R. E.

    1993-01-01

    Bacteriochlorophyll (BChl) c and a similar model compound, Mg-methyl bacteriopheophorbide d, form several types of aggregates in nonpolar solvents. One of these aggregates is highly fluorescent, with a quantum yield higher than that of the monomer. This aggregate is also unusual in that it shows a rise time in its fluorescence emission decay at certain wavelengths, which is ascribed to a change in conformation of the aggregate. An analysis of fluorescence depolarization data is consistent with either a linear aggregate of four or five monomers or preferably a cyclic arrangement of three dimers.

  5. Two-dimensional fluorescence spectroscopy of uranium isotopes in femtosecond laser ablation plumes

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Mark C.; Brumfield, Brian E.; LaHaye, Nicole L.; Harilal, Sivanandan S.; Hartig, Kyle C.; Jovanovic, Igor

    2017-06-19

    We demonstrate measurement of uranium isotopes in femtosecond laser ablation plumes using two-dimensional fluorescence spectroscopy (2DFS). The high-resolution, tunable CW-laser spectroscopy technique clearly distinguishes atomic absorption from 235U and 238U in natural and highly enriched uranium metal samples. We present analysis of spectral resolution and analytical performance of 2DFS as a function of ambient pressure. Simultaneous measurement using time-resolved absorption spectroscopy provides information on temporal dynamics of the laser ablation plume and saturation behavior of fluorescence signals. The rapid, non-contact measurement is promising for in-field, standoff measurements of uranium enrichment for nuclear safety and security applications.

  6. Anabaena cell ageing monitored with confocal fluorescence spectroscopy.

    Science.gov (United States)

    Ke, Shan; Bindokas, Vytas; Haselkorn, Robert

    2015-01-01

    Cyanobacteria use a sophisticated system of pigments to collect light energy across the visible spectrum for photosynthesis. The pigments are assembled in structures called phycobilisomes, composed of phycoerythrocyanin, phycocyanin and allophycocyanin, which absorb energy and transfer it to chlorophyll in photosystem II reaction centres. All of the components of this system are fluorescent, allowing sensitive measurements of energy transfer using single cell confocal fluorescence microscopy. The native pigments can be interrogated without the use of reporters. Here, we use confocal fluorescence microscopy to monitor changes in the efficiency of energy transfer as single cells age, between the time they are born at cell division until they are ready to divide again. Alteration of fluorescence was demonstrated to change with the age of the cyanobacterial cell.

  7. Excitation emission and time-resolved fluorescence spectroscopy of selected varnishes used in historical musical instruments.

    Science.gov (United States)

    Nevin, Austin; Echard, Jean-Philippe; Thoury, Mathieu; Comelli, Daniela; Valentini, Gianluca; Cubeddu, Rinaldo

    2009-11-15

    The analysis of various varnishes from different origins, which are commonly found on historical musical instruments was carried out for the first time with both fluorescence excitation emission spectroscopy and laser-induced time-resolved fluorescence spectroscopy. Samples studied include varnishes prepared using shellac, and selected diterpenoid and triterpenoid resins from plants, and mixtures of these materials. Fluorescence excitation emission spectra have been collected from films of naturally aged varnishes. In parallel, time-resolved fluorescence spectroscopy of varnishes provides means for discriminating between short- (less than 2.0 ns) and long-lived (greater than 7.5 ns) fluorescence emissions in each of these complex materials. Results suggest that complementary use of the two non destructive techniques allows a better understanding of the main fluorophores responsible for the emission in shellac, and further provides means for distinguishing the main classes of other varnishes based on differences in fluorescence lifetime behaviour. Spectrofluorimetric data and time resolved spectra presented here may form the basis for the interpretation of results from future in situ fluorescence examination and time resolved fluorescence imaging of varnished musical instruments.

  8. Use of fluorescence spectroscopy to control ozone dosage in recirculating aquaculture systems

    DEFF Research Database (Denmark)

    Spiliotopoulou, Aikaterini; Martin, Richard; Pedersen, Lars-Flemming

    2017-01-01

    which fluorescence intensity degradation was eventually determined. Ozonation kinetic experiments showed that RAS water contains fluorescent organic matter, which is easily oxidised upon ozonation in relatively low concentrations (0–5 mg O3/L). Fluorescence spectroscopy has a high level of sensitivity......The aim of this study was to investigate the potential of fluorescence spectroscopy to be used as an ozone dosage determination tool in recirculating aquaculture systems (RASs), by studying the relationship between fluorescence intensities and dissolved organic matter (DOM) degradation by ozone......, in order to optimise ozonation treatment. Water samples from six different Danish facilities (two rearing units from a commercial trout RAS, a commercial eel RAS, a pilot RAS and two marine water aquariums) were treated with different O3 dosages (1.0–20.0 mg/L ozone) in bench-scale experiments, following...

  9. Integrated optical measurement system for fluorescence spectroscopy in microfluidic channels

    DEFF Research Database (Denmark)

    Hübner, Jörg; Mogensen, Klaus Bo; Jørgensen, Anders Michael

    2001-01-01

    A transportable miniaturized fiber-pigtailed measurement system is presented which allows quantitative fluorescence detection in microliquid handling systems. The microliquid handling chips are made in silica on silicon technology and the optical functionality is monolithically integrated...... with the microfluidic channel system. This results in inherent stability and photolithographic alignment precision. Permanently attached optical fibers provide a rugged connection to the light source, detection, and data processing unit, which potentially allows field use of such systems. Fluorescence measurements...

  10. Femtosecond broadband fluorescence spectroscopy by down- and up-conversion in β-barium borate crystals

    Science.gov (United States)

    Sajadi, M.; Quick, M.; Ernsting, N. P.

    2013-10-01

    Broadband transient fluorescence spectroscopy is performed by difference- and sum-frequency generation in β-barium borate crystals at a fixed geometry. Phase matching is spectrally broadened by using (i) 1340 nm gate pulses, (ii) a fluorescence angle of ˜4° extended at the crystal, and (iii) angular dispersion of the fluorescence in a calcite prism. The latter provides 1° angular separation between the two spectral wings of the fluorescence. By combining down- and up-conversion processes, a 26 000 cm-1 wide multiplex window is realized with ˜100 fs time resolution.

  11. Intracellular distribution of fluorescent copper and zinc bis(thiosemicarbazonato) complexes measured with fluorescence lifetime spectroscopy.

    Science.gov (United States)

    Hickey, James L; James, Janine L; Henderson, Clare A; Price, Katherine A; Mot, Alexandra I; Buncic, Gojko; Crouch, Peter J; White, Jonathan M; White, Anthony R; Smith, Trevor A; Donnelly, Paul S

    2015-10-05

    The intracellular distribution of fluorescently labeled copper and zinc bis(thiosemicarbazonato) complexes was investigated in M17 neuroblastoma cells and primary cortical neurons with a view to providing insights into the neuroprotective activity of a copper bis(thiosemicarbazonato) complex known as Cu(II)(atsm). Time-resolved fluorescence measurements allowed the identification of the Cu(II) and Zn(II) complexes as well as the free ligand inside the cells by virtue of the distinct fluorescence lifetime of each species. Confocal fluorescent microscopy of cells treated with the fluorescent copper(II)bis(thiosemicarbazonato) complex revealed significant fluorescence associated with cytoplasmic puncta that were identified to be lysosomes in primary cortical neurons and both lipid droplets and lysosomes in M17 neuroblastoma cells. Fluorescence lifetime imaging microscopy confirmed that the fluorescence signal emanating from the lipid droplets could be attributed to the copper(II) complex but also that some degree of loss of the metal ion led to diffuse cytosolic fluorescence that could be attributed to the metal-free ligand. The accumulation of the copper(II) complex in lipid droplets could be relevant to the neuroprotective activity of Cu(II)(atsm) in models of amyotrophic lateral sclerosis and Parkinson's disease.

  12. Simultaneous Determination of Magnolol and Honokiol by Synchronous Fluorescence Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Min ZHANG; Li Ming DU

    2006-01-01

    A simple sensitive and quick assay for simultaneously determining magnolol (MOL)and honokiol (HOL) has been described based on their natural fluorescence. This method is based on the fact that synchronous fluorometry could resolve the overlapping of fluorescence spectra, which was aroused by their similar molecular structures. In this work, the synchronous spectrum, maintaining a constant difference of Δλ =10 nm between the emission and excitation wavelengths, has been selected for the determination of HOL and MOL. Under the optimum conditions, the fluorescence intensity is proportional to the concentration of MOL and HOL in solution over the range 0.075-0.7 μg/mL and 0.05-0.9 μg/mL with the detection limit of 0.029 μg/mL and 0.019 μg/mL, respectively. The method was applied to the simultaneous determination of MOL and HOL in pharmaceutical dosage with satisfactory results.

  13. Compact point-detection fluorescence spectroscopy system for quantifying intrinsic fluorescence redox ratio in brain cancer diagnostics

    Science.gov (United States)

    Liu, Quan; Grant, Gerald; Li, Jianjun; Zhang, Yan; Hu, Fangyao; Li, Shuqin; Wilson, Christy; Chen, Kui; Bigner, Darell; Vo-Dinh, Tuan

    2011-03-01

    We report the development of a compact point-detection fluorescence spectroscopy system and two data analysis methods to quantify the intrinsic fluorescence redox ratio and diagnose brain cancer in an orthotopic brain tumor rat model. Our system employs one compact cw diode laser (407 nm) to excite two primary endogenous fluorophores, reduced nicotinamide adenine dinucleotide, and flavin adenine dinucleotide. The spectra were first analyzed using a spectral filtering modulation method developed previously to derive the intrinsic fluorescence redox ratio, which has the advantages of insensitivty to optical coupling and rapid data acquisition and analysis. This method represents a convenient and rapid alternative for achieving intrinsic fluorescence-based redox measurements as compared to those complicated model-based methods. It is worth noting that the method can also extract total hemoglobin concentration at the same time but only if the emission path length of fluorescence light, which depends on the illumination and collection geometry of the optical probe, is long enough so that the effect of absorption on fluorescence intensity due to hemoglobin is significant. Then a multivariate method was used to statistically classify normal tissues and tumors. Although the first method offers quantitative tissue metabolism information, the second method provides high overall classification accuracy. The two methods provide complementary capabilities for understanding cancer development and noninvasively diagnosing brain cancer. The results of our study suggest that this portable system can be potentially used to demarcate the elusive boundary between a brain tumor and the surrounding normal tissue during surgical resection.

  14. Time-Resolved Fluorescence Spectroscopy and Fluorescence Lifetime Imaging Microscopy for Characterization of Dendritic Polymer Nanoparticles and Applications in Nanomedicine

    Directory of Open Access Journals (Sweden)

    Alexander Boreham

    2016-12-01

    Full Text Available The emerging field of nanomedicine provides new approaches for the diagnosis and treatment of diseases, for symptom relief and for monitoring of disease progression. One route of realizing this approach is through carefully constructed nanoparticles. Due to the small size inherent to the nanoparticles a proper characterization is not trivial. This review highlights the application of time-resolved fluorescence spectroscopy and fluorescence lifetime imaging microscopy (FLIM for the analysis of nanoparticles, covering aspects ranging from molecular properties to particle detection in tissue samples. The latter technique is particularly important as FLIM allows for distinguishing of target molecules from the autofluorescent background and, due to the environmental sensitivity of the fluorescence lifetime, also offers insights into the local environment of the nanoparticle or its interactions with other biomolecules. Thus, these techniques offer highly suitable tools in the fields of particle development, such as organic chemistry, and in the fields of particle application, such as in experimental dermatology or pharmaceutical research.

  15. Study of the interaction of trivalent actinide and lanthanide ions with human serum transferrin by means of time-resolved laser-fluorescence spectroscopy; Untersuchung der Wechselwirkung trivalenter Actinid- und Lanthanidionen mit humanem Serumtransferrin mittels zeitaufgeloester Laserfluoreszenzspektroskopie

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Nicole

    2015-04-27

    In the present work the complexation of Cm(III), Eu(III) and Am(III) with human serum transferrin is studied. The aim of this work was the identification and the spectroscopic and thermodynamic characterization of An(III) and Ln(III) transferrin complex species. Different speciation methods, such as time-resolved laser fluorescence spectroscopy (TRLFS), luminescence spectroscopy and EXAFS (Extended X-Ray Absorption Fine Structure) spectroscopy were applied. Using TRLFS two unambiguously different Cm(III) transferrin species were identified for the first time. In the pH range from 3.5 to 9.7 the Cm(III) transferrin species I is formed revealing complexation of the metal ion at a nonspecific site of the protein surface. In case of the Cm(III) transferrin species II Cm(III) is bound at the Fe(III) binding site of the protein resulting in a 4-fold coordination via amino acid groups of the protein (His, Asp, 2 x Tyr) and coordination of two water molecules and three additional ligands, e.g. OH{sup -} or CO{sub 3}{sup 2-}. Due to the kinetic and thermodynamic differences of the binding sites of the N- and C-lobe, the experimental conditions ensure exclusive coordination of Cm(III) at the C-terminal binding site. In addition to the complexation studies of Cm(III) with transferrin, the interaction with the recombinant N-lobe of human serum transferrin (hTf/2N) as a model component for the transferrin N-lobe was investigated. At pH≥7.4 a Cm(III) hTf/2N species with Cm(III) bound at the Fe(III) binding site is formed which is comparable to the Cm(III) transferrin species II. An increase of the temperature from room temperature (T=296 K) to physiological temperature (T=310 K) favors the complexation of Cm(III) with both transferrin and hTf/2N. The complexation of Cm(III) with transferrin was investigated at three different carbonate concentrations (c(carbonate){sub tot}=0 mM, 0,23 mM und 25 mM (physiological carbonate concentration)). An increase of the total carbonate

  16. Variation of fluorescence spectroscopy during the menstrual cycle

    Science.gov (United States)

    Macaulay, Calum; Richards-Kortum, Rebecca; Utzinger, Urs; Fedyk, Amanda; Neely Atkinson, E.; Cox, Dennis; Follen, Michele

    2002-06-01

    Cervical autofluorescence has been demonstrated to have potential for real-time diagnosis. Inter-patient and intra-patient variations in fluorescence intensity have been measured. Inter-patient measurements may vary by a factor of ten, while intra-patient measurements may vary by a factor of two. Age and menopausal status have been demonstrated to account for some of the variations, while race and smoking have not. In order to explore in detail the role of the menstrual cycle in intra-patient variation, a study was designed to measure fluorescence excitation emission matrices (EEMs) in patients daily throughout one cycle. Ten patients with a history of normal menstrual cycles and normal Papanicolaou smears underwent daily measurements of fluorescence EEMs from three colposcopically normal sites throughout one menstrual cycle. Changes in signals from porphyrin, NADH, and FAD fluorescence and blood absorption were noted when the data was viewed in a graphical format. Visually interpreted features of the EEMs in this graphical format did not appear to correlate with the day of the menstrual cycle with the exception that blood absorption features were more prominent during the menstrual phase (during which bleeding occurs), suggesting that measurements during the menstrual phase should be avoided. Variations in cycle date likely do not account for inter- or intra-patient variations.

  17. Two-dimensional fluorescence correlation spectroscopy IV: Resolution of fluorescence of tryptophan residues in alcohol dehydrogenase and lysozyme

    Science.gov (United States)

    Fukuma, Hiroaki; Nakashima, Kenichi; Ozaki, Yukihiro; Noda, Isao

    2006-11-01

    Generalized two-dimensional (2D) fluorescence correlation spectroscopy has been used to resolve the fluorescence spectra of two tryptophan (Trp) residues in alcohol dehydrogenase and lysozyme. In each protein, one Trp residue is buried in a hydrophobic domain of the protein matrix and the other Trp residue is located at a hydrophilic domain close to the protein-water interface. Fluorescence quenching by iodide ion, a hydrophilic quencher, was employed as a perturbation to induce the intensity change in the spectra. The Trp residue which is located at the hydrophilic domain is effectively quenched by the quencher, while the Trp residue located at the hydrophobic domain is protected from the quenching. Therefore, the fluorescence of these two Trp residues have a different sensitivity to the quenching, showing a different response to the concentration of the quencher. Fluorescence spectra of the two Trp residues in alcohol dehydrogenase, which are heavily overlapped in conventional one-dimensional spectra, have been successfully resolved by the 2D correlation technique. From the asynchronous correlation map, it was revealed that the quenching of Trp located at the hydrophobic part was brought about after that of Trp located at the hydrophilic part. In contrast, the fluorescence spectra of the two Trp residues could not be resolved after the alcohol dehydrogenase was denatured with guanidine hydrochloride. These results are consistent with the well-known structure of alcohol dehydrogenase. Furthermore, it was elucidated that the present 2D analysis is not interfered by Raman bands of the solvent, which sometimes bring difficulty into the conventional fluorescence analysis. Fluorescence spectra of the Trp residues in lysozyme could not be resolved by the 2D correlation technique. The differences between the two proteins are attributed to the fact that the Trp residue in the hydrophobic site of lysozyme is not sufficiently protected from the quenching.

  18. Spatial fluorescence cross correlation spectroscopy by means of a spatial light modulator

    CERN Document Server

    Blancquaert, Yoann; Derouard, Jacques; Delon, Antoine

    2008-01-01

    Spatial Fluorescence Cross Correlation Spectroscopy is a rarely investigated version of Fluorescence Correlation Spectroscopy, in which the fluorescence signals from differ-ent observation volumes are cross-correlated. In the reported experiments, two observation volumes, typically shifted by a few $\\mu$m, are produced, with a Spatial Light Modulator and two adjustable pinholes. We illustrated the feasibility and potentiality of this technique by: i) measuring molecular flows, in the range 0.2 - 1.5 $\\mu$m/ms, of solutions seeded with fluorescent nanobeads or rhodamine molecules (simulating active transport phenomenons); ii) investigating the perme-ability of phospholipidic membrane of Giant Unilamellar Vesicles versus hydrophilic or hydrophobic molecules (in that case the laser spots were set on both sides of the mem-brane). Theoretical descriptions are proposed together with a discussion about FCS based, alternative methods.

  19. Time-resolved fluorescence spectroscopy for chemical sensors

    Science.gov (United States)

    Draxler, Sonja; Lippitsch, Max E.

    1996-07-01

    A family of sensors is presented with fluorescence decay-time measurements used as the sensing technique. The concept is to take a single fluorophore with a suitably long fluorescence decay time as the basic building block for numerous different sensors. Analyte recognition can be performed by different functional groups that are necessary for selective interaction with the analyte. To achieve this, the principle of excited-state electron transfer is applied with pyrene as the fluorophore. Therefore the same instrumentation based on a small, ambient air-nitrogen laser and solid-state electronics can be used to measure different analytes, for example, oxygen, pH, carbon dioxide, potassium, ammonium, lead, cadmium, zinc, and phosphate.

  20. A scanning fluorescence spectroscopy of decorin under high pressure

    Science.gov (United States)

    Komoda, Takahito; Kim, Yun-Jung; Suzuki, Atsushi; Nishiumi, Tadayuki

    2013-06-01

    High pressure processing is able to tenderize not only meat but also intramuscular connective tissue, which is mainly composed of collagen. Decorin, one of the proteoglycans, binds to and stabilizes collagen fibrils. It has been suggested that structural weakening of intramuscular connective tissue may result from the disappearance of the decorin-collagen interaction. In this study, the fluorescence spectra and the surface hydrophobicity of decorin molecules were measured under high pressure in order to examine the resulting change in the tertiary structure. The fluorescence intensity and the surface hydrophobicity of decorin molecules both decreased with increasing applied pressure and with applied time at the constant applied pressure, respectively. The observations indicate that the native structure of decorin is maintained during 200 MPa pressurization for less than 30 min.

  1. Quantitative frequency-domain fluorescence spectroscopy in tissues and tissue-like media

    Science.gov (United States)

    Cerussi, Albert Edward

    1999-09-01

    In the never-ending quest for improved medical technology at lower cost, modern near-infrared optical spectroscopy offers the possibility of inexpensive technology for quantitative and non-invasive diagnoses. Hemoglobin is the dominant chromophore in the 700-900 nm spectral region and as such it allows for the optical assessment of hemoglobin concentration and tissue oxygenation by absorption spectroscopy. However, there are many other important physiologically relevant compounds or physiological states that cannot be effectively sensed via optical methods because of poor optical contrast. In such cases, contrast enhancements are required. Fluorescence spectroscopy is an attractive component of optical tissue spectroscopy. Exogenous fluorophores, as well as some endogenous ones, may furnish the desperately needed sensitivity and specificity that is lacking in near-infrared optical tissue spectroscopy. The main focus of this thesis was to investigate the generation and propagation of fluorescence photons inside tissues and tissue-like media (i.e., scattering dominated media). The standard concepts of fluorescence spectroscopy have been incorporated into a diffusion-based picture that is sometimes referred to as photon migration. The novelty of this work lies in the successful quantitative recovery of fluorescence lifetimes, absolute fluorescence quantum yields, fluorophore concentrations, emission spectra, and both scattering and absorption coefficients at the emission wavelength from a tissue-like medium. All of these parameters are sensitive to the fluorophore local environment and hence are indicators of the tissue's physiological state. One application demonstrating the capabilities of frequency-domain lifetime spectroscopy in tissue-like media is a study of the binding of ethidium bromide to bovine leukocytes in fresh milk. Ethidium bromide is a fluorescent dye that is commonly used to label DNA, and hence visualize chromosomes in cells. The lifetime of

  2. Statistical techniques for diagnosing CIN using fluorescence spectroscopy: SVD and CART.

    Science.gov (United States)

    Atkinson, E N; Mitchell, M F; Ramanujam, N; Richards-Kortum, R

    1995-01-01

    A quantitative measure of intraepithelial neoplasia which can be made in vivo without tissue removal would be clinically significant in chemoprevention studies. Our group is working to develop such a technique based on fluorescence spectroscopy. Using empirically based algorithms, we have demonstrated that fluorescence is discriminating normal cervix from low- and high-grade cervical dysplasias with similar performance to colposcopy in expert hands. These measurements can be made in vivo, in near real time, and results can be obtained without biopsy. This paper describes a new method using automated analysis of fluorescence emission spectra to classify cervical tissue into multiple diagnostic categories. First, data is reduced using the singular value decomposition (SVD), yielding a set of orthogonal basis vectors. Each patient's emission spectrum is then fit by linear least squares regression to the basis vectors, producing a set of coefficients for each patient. Based on these coefficient values, the classification and regression tree (CART) method predicts the patient's classification. These results suggest that laser-induced fluorescence can be used to automatically recognize and differentially diagnose cervical intraepithelial neoplasia (CIN) at colposcopy. This method of analysis is general in nature, and can analyze fluorescence spectra of suspected intraepithelial neoplasms from other organ sites. As a more complete understanding of the biochemical and morphologic basis of tissue spectroscopy is developed, it may also be possible to use fluorescence spectroscopy of the cervix as a surrogate endpoint biomarker in Phase I and II chemoprevention trials.

  3. Investigation of the Interaction between Adenosine and Human Serum Albumin by Fluorescent Spectroscopy and Molecular Modeling

    Institute of Scientific and Technical Information of China (English)

    CUI Feng-Ling; WANG Jun-Li; LI Fang; FAN Jing; QU Gui-Rong; YAO Xiao-Jun; LEI Bei-Lei

    2008-01-01

    The binding interaction of adenosine with human serum albumin (HSA) was investigated under simulative physiological conditions by fluorescence spectroscopy in combination with a molecular modeling method. A strong fluorescence quenching reaction of adenosine to HSA was observed and the quenching mechanism was suggested as static quenching according to the Stern-Volmer equation. The binding constants (K) at different temperatures as well as thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS), were calculated according to relevant fluorescent data and Vant'Hoff equation. The hydrophobic interaction was a predominant intermolecular force in order to stabilize the complex, which was in agreement with the results of molecular modeling study.

  4. Fluorescence spectroscopy as a tool for determination of organic matter removal efficiency at water treatment works

    Directory of Open Access Journals (Sweden)

    M. Z. Bieroza

    2009-12-01

    Full Text Available Organic matter (OM in drinking water treatment is a common impediment responsible for increased coagulant and disinfectant dosages, formation of carcinogenic disinfection-by products, and microbial re-growth in distribution system. The inherent heterogeneity of OM implies the utilization of advanced analytical techniques for its characterization and assessment of removal efficiency. Here, the application of simple fluorescence excitation-emission technique to OM characterization in drinking water treatment is presented. The fluorescence data of raw and clarified water was obtained from 16 drinking water treatment works. The reduction in fulvic-like fluorescence was found to significantly correlate with OM removal measured with total organic carbon (TOC. Fluorescence properties, fulvic- and tryptophan-like regions, were found to discriminate OM fractions of different removal efficiencies.

    The results obtained in the study show that fluorescence spectroscopy provides a rapid and accurate characterization and quantification of OM fractions and indication of their treatability in conventional water treatment.

  5. Fluorescence spectroscopy as a tool for determination of organic matter removal efficiency at water treatment works

    Directory of Open Access Journals (Sweden)

    M. Z. Bieroza

    2010-04-01

    Full Text Available Organic matter (OM in drinking water treatment is a common impediment responsible for increased coagulant and disinfectant dosages, formation of carcinogenic disinfection-by products, and microbial re-growth in distribution system. The inherent heterogeneity of OM implies the utilization of advanced analytical techniques for its characterization and assessment of removal efficiency. Here, the application of simple fluorescence excitation-emission technique to OM characterization in drinking water treatment is presented. The fluorescence data of raw and clarified water was obtained from 16 drinking water treatment works. The reduction in fulvic-like fluorescence was found to significantly correlate with OM removal measured with total organic carbon (TOC. Fluorescence properties, fulvic- and tryptophan-like regions, were found to discriminate OM fractions of different removal efficiencies. The results obtained in the study show that fluorescence spectroscopy provides a rapid and accurate characterization and quantification of OM fractions and indication of their treatability in conventional water treatment.

  6. Laser-induced atomic fragment fluorescence spectroscopy: a facile technique for molecular spectroscopy of spin-forbidden states.

    Science.gov (United States)

    Zhang, Qun; Chen, Yang; Keil, Mark

    2009-03-01

    Spectra of spin-forbidden and spin-allowed transitions in the mixed b (3)Pi(u) approximately A (1)Sigma(u)(+) state of Na(2) are measured separately by two-photon excitation using a single tunable dye laser. The two-photon excitation produces Na(*)(3p) by photodissociation, which is easily and sensitively detected by atomic fluorescence. At low laser power, only the A (1)Sigma(u)(+) state is excited, completely free of triplet excitation. At high laser power, photodissociation via the intermediate b (3)Pi(u) triplet state becomes much more likely, effectively "switching" the observations from singlet spectroscopy to triplet spectroscopy with only minor apparatus changes. This technique of perturbation-assisted laser-induced atomic fragment fluorescence may therefore be especially useful as a general vehicle for investigating perturbation-related physics pertinent to the spin-forbidden states, as well as for studying allowed and forbidden states of other molecules.

  7. Review of X-ray Tomography and X-ray Fluorescence Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Shear, Trevor A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-16

    This literature review will focus on both laboratory and synchrotron based X-ray tomography of materials and highlight the inner workings of these instruments. X-ray fluorescence spectroscopy will also be reviewed and applications of the tandem use of these techniques will be explored. The real world application of these techniques during the internship will also be discussed.

  8. A statistical strategy to assess cleaning level of surfaces using fluorescence spectroscopy and Wilks’ ratio

    DEFF Research Database (Denmark)

    Stoica, Iuliana-Madalina; Babamoradi, Hamid; van den Berg, Frans

    2017-01-01

    •A statistical strategy combining fluorescence spectroscopy, multivariate analysis and Wilks’ ratio is proposed.•The method was tested both off-line and on-line having riboflavin as a (controlled) contaminant.•Wilks’ ratio signals unusual recordings based on shifts in variance and covariance stru...

  9. The photochemical ring opening reaction of chromene as seen by transient absorption and fluorescence spectroscopy

    NARCIS (Netherlands)

    Herzog, Teja T.; Ryseck, Gerald; Ploetz, Evelyn; Cordes, Thorben

    2013-01-01

    In this paper we investigate the photochromic ring-opening reaction of 2,2-diphenyl-5,6-benzo(2H)-chromene. In particular, we study the uncertainties and contradictions in various published reaction models using a combination of transient absorption and fluorescence spectroscopy with femtosecond

  10. Method for rapid multidiameter single-fiber reflectance and fluorescence spectroscopy through a fiber bundle

    NARCIS (Netherlands)

    Amelink, A.; Hoy, C.L.; Gamm, U.A.; Sterenborg, H.J.C.M.; Robinson, D.J.

    2014-01-01

    We have recently demonstrated a means for quantifying the absorption and scattering properties of biological tissue through multidiameter single-fiber reflectance (MDSFR) spectroscopy. These measurements can be used to correct single-fiber fluorescence (SFF) spectra for the influence of optical prop

  11. Monitoring receptor oligomerization by line-scan fluorescence cross-correlation spectroscopy

    NARCIS (Netherlands)

    Hink, M.A.; Postma, M.; Conn, P.M.

    2013-01-01

    Membrane-localized receptor proteins are involved in many signaling cascades, and diffusion and oligomerization are key processes controlling their activity. In order to study these processes in living cells, fluorescence fluctuation spectroscopy techniques have been developed that allow the quantif

  12. Characterization of Anabaena cylindrica Solution System Using Synchronous- Scan Fluorescence Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    LIU Xian-li; DENG Nan-sheng; TAO Shu

    2005-01-01

    The characterization of the algae Anabaena cylindrica solu tion with Fe (Ⅲ) was investigated using fluorescence emission and syn chronous-scan spectroscopy. The ranges of concentrations of algae and Fe (Ⅲ) in aqueous solutions were 5. 0 × 107-2. 5 × 108 cell/L and 10-60μmol/L, respectively. The effective characterization method used was synchronous-scan fluorescence spectroscopy (SFS). The wavelength difference (△λ) of 90 nm was maintained between excitation wavelength (λex) and emission wavelength(λem ). The peak was observed at about λex 236 nm/λem 326 nm for synchronous-scan fluorescence spectroscopy. The fluorescence quenching in system of algae-Fe( Ⅲ)-HA was studied using synchronous-scan spectroscopy for the first time. Fe(Ⅲ) was clearly the effective quencher. The relationship between I0 / I (quenching efficiency)and c (concentration of Fe (Ⅲ) added) was a linear correlation for the al gae solution with Fe(Ⅲ). Also, Aldrich humic acid (HA) was found to be an effective quencher.

  13. Method for rapid multidiameter single-fiber reflectance and fluorescence spectroscopy through a fiber bundle

    NARCIS (Netherlands)

    Amelink, A.; Hoy, C.L.; Gamm, U.A.; Sterenborg, H.J.C.M.; Robinson, D.J.

    2014-01-01

    We have recently demonstrated a means for quantifying the absorption and scattering properties of biological tissue through multidiameter single-fiber reflectance (MDSFR) spectroscopy. These measurements can be used to correct single-fiber fluorescence (SFF) spectra for the influence of optical

  14. Fluorescence kinetics of Trp-Trp dipeptide and its derivatives in water via ultrafast fluorescence spectroscopy.

    Science.gov (United States)

    Jia, Menghui; Yi, Hua; Chang, Mengfang; Cao, Xiaodan; Li, Lei; Zhou, Zhongneng; Pan, Haifeng; Chen, Yan; Zhang, Sanjun; Xu, Jianhua

    2015-08-01

    Ultrafast fluorescence dynamics of Tryptophan-Tryptophan (Trp-Trp/Trp2) dipeptide and its derivatives in water have been investigated using a picosecond resolved time correlated single photon counting (TCSPC) apparatus together with a femtosecond resolved upconversion spectrophotofluorometer. The fluorescence decay profiles at multiple wavelengths were fitted by a global analysis technique. Nanosecond fluorescence kinetics of Trp2, N-tert-butyl carbonyl oxygen-N'-aldehyde group-l-tryptophan-l-tryptophan (NBTrp2), l-tryptophan-l-tryptophan methyl ester (Trp2Me), and N-acetyl-l-tryptophan-l-tryptophan methyl ester (NATrp2Me) exhibit multi-exponential decays with the average lifetimes of 1.99, 3.04, 0.72 and 1.22ns, respectively. Due to the intramolecular interaction between two Trp residues, the "water relaxation" lifetime was observed around 4ps, and it is noticed that Trp2 and its derivatives also exhibit a new decay with a lifetime of ∼100ps, while single-Trp fluorescence decay in dipeptides/proteins shows 20-30ps. The intramolecular interaction lifetime constants of Trp2, NBTrp2, Trp2Me and NATrp2Me were then calculated to be 3.64, 0.93, 11.52 and 2.40ns, respectively. Candidate mechanisms (including heterogeneity, solvent relaxation, quasi static self-quenching or ET/PT quenching) have been discussed.

  15. Nonlinear Theory of Anomalous Diffusion and Application to Fluorescence Correlation Spectroscopy

    Science.gov (United States)

    Boon, Jean Pierre; Lutsko, James F.

    2015-12-01

    The nonlinear theory of anomalous diffusion is based on particle interactions giving an explicit microscopic description of diffusive processes leading to sub-, normal, or super-diffusion as a result of competitive effects between attractive and repulsive interactions. We present the explicit analytical solution to the nonlinear diffusion equation which we then use to compute the correlation function which is experimentally measured by correlation spectroscopy. The theoretical results are applicable in particular to the analysis of fluorescence correlation spectroscopy of marked molecules in biological systems. More specifically we consider the cases of fluorescently labeled lipids in the plasma membrane and of fluorescent apoferritin (a spherically shaped oligomer) in a crowded dextran solution and we find that the nonlinear correlation spectra reproduce very well the experimental data indicating sub-diffusive molecular motion.

  16. Fluorescence imaging and time-resolved spectroscopy of steroid using confocal synchrotron radiation microscopy

    Science.gov (United States)

    Gerritsen, Hans C.; van der Oord, C. J. R.; Levine, Yehudi K.; Munro, Ian H.; Jones, Gareth R.; Shaw, D. A.; Rommerts, Fokko F.

    1994-08-01

    The Confocal Synchrotron Radiation Microscope at Daresbury was used in a study of the transport and distribution of the steroid Coumestrol in single Leydig cells. The broad spectrum of synchrotron radiation in combination with UV compatible microscope optics affords the extension of confocal microscopy from the visible to the UV region down to about 200 nm. Consequently fluorescent molecules with absorption bands in the UV can be imaged. In addition the pulsed nature of the light source allows us to perform time-resolved fluorescence spectroscopy experiments on microscopic volumes. Coumestrol is a naturally fluorescing plant steroid exhibiting estrogenic activity. In physiological environments it has an absorption peak in the UV at 340 nm and it emits around 440 nm. First results indicate that the Coumestrol transport through the cell membrane is diffusion limited. The weak fluorescence observed in the nuclei of the Leydig cells may be due to fluorescence quenching arising from the interaction of the Coumesterol with nuclear components. However, micro-volume time-resolved fluorescence spectroscopy experiments on cell nuclei have revealed the same decay behavior for Coumesterol in both the cytoplasm and nucleus of the cells.

  17. Fluorescence spectroscopy and birefringence of molecular changes in maturing rat tail tendon.

    Science.gov (United States)

    Korol, Renee M; Finlay, Helen M; Josseau, Melanie J; Lucas, Alexandra R; Canham, Peter B

    2007-01-01

    Tissue remodeling during maturation, wound healing, and response to vascular stress involves molecular changes of collagen and elastin in the extracellular matrix (ECM). Two optical techniques are effective for investigating these changes--laser-induced fluorescence (LIF) spectroscopy and polarizing microscopy. LIF spectroscopy integrates the signal from both elastin and collagen cross-linked structure, whereas birefringence is a measure of only collagen. Our purpose is (1) to evaluate the rat tail tendon (RTT) spectroscopy against data from purified extracted protein standards and (2) to correlate the two optical techniques in the study of RTT and skin. Spectra from tissue samples from 27 male rats and from extracted elastin and collagen were obtained using LIF spectroscopy (357 nm). Birefringence was measured on 5-mum histological sections of the same tissue. Morphometric analysis reveals that elastin represents approximately 10% of tendon volume and contributes to RTT fluorescence. RTT maximum fluorescence emission intensity (FEI(max)), which includes collagen and elastin, increases with animal weight (R(2)=0.64). Birefringence, when plotted against weight, increases to a plateau (nonlinear correlation: R(2)=0.90), tendon having greater birefringence than skin. LIF spectroscopy and collagen fiber birefringence are shown to provide complementary measurements of molecular structure (tendon birefringence versus FEI(max) at R(2)=0.60).

  18. A dark-field scanning spectroscopy platform for localized scatter and fluorescence imaging of tissue

    Science.gov (United States)

    Krishnaswamy, Venkataramanan; Laughney, Ashley M.; Paulsen, Keith D.; Pogue, Brian W.

    2011-03-01

    Tissue ultra-structure and molecular composition provide native contrast mechanisms for discriminating across pathologically distinct tissue-types. Multi-modality optical probe designs combined with spatially confined sampling techniques have been shown to be sensitive to this type of contrast but their extension to imaging has only been realized recently. A modular scanning spectroscopy platform has been developed to allow imaging localized morphology and molecular contrast measures in breast cancer surgical specimens. A custom designed dark-field telecentric scanning spectroscopy system forms the core of this imaging platform. The system allows imaging localized elastic scatter and fluorescence measures over fields of up to 15 mm x 15 mm at 100 microns resolution in tissue. Results from intralipid and blood phantom measurements demonstrate the ability of the system to quantify localized scatter parameters despite significant changes in local absorption. A co-registered fluorescence spectroscopy mode is also demonstrated in a protophorphyrin-IX phantom.

  19. Rapid screening test for porphyria diagnosis using fluorescence spectroscopy

    Science.gov (United States)

    Lang, A.; Stepp, H.; Homann, C.; Hennig, G.; Brittenham, G. M.; Vogeser, M.

    2015-07-01

    Porphyrias are rare genetic metabolic disorders, which result from deficiencies of enzymes in the heme biosynthesis pathway. Depending on the enzyme defect, different types of porphyrins and heme precursors accumulate for the different porphyria diseases in erythrocytes, liver, blood plasma, urine and stool. Patients with acute hepatic porphyrias can suffer from acute neuropathic attacks, which can lead to death when undiagnosed, but show only unspecific clinical symptoms such as abdominal pain. Therefore, in addition to chromatographic methods, a rapid screening test is required to allow for immediate identification and treatment of these patients. In this study, fluorescence spectroscopic measurements were conducted on blood plasma and phantom material, mimicking the composition of blood plasma of porphyria patients. Hydrochloric acid was used to differentiate the occurring porphyrins (uroporphyrin-III and coproporphyrin-III) spectroscopically despite their initially overlapping excitation spectra. Plasma phantom mixtures were measured using dual wavelength excitation and the corresponding concentrations of uroporphyrin-III and coproporphyrin-III were determined. Additionally, three plasma samples of porphyria patients were examined and traces of coproporphyrin-III and uroporphyrin-III were identified. This study may therefore help to establish a rapid screening test method with spectroscopic differentiation of the occurring porphyrins, which consequently allows for the distinction of different porphyrias. This may be a valuable tool for clinical porphyria diagnosis and rapid or immediate treatment.

  20. Evaluating Activated Carbon Adsorption of Dissolved Organic Matter and Micropollutants Using Fluorescence Spectroscopy.

    Science.gov (United States)

    Shimabuku, Kyle K; Kennedy, Anthony M; Mulhern, Riley E; Summers, R Scott

    2017-02-14

    Dissolved organic matter (DOM) negatively impacts granular activated carbon (GAC) adsorption of micropollutants and is a disinfection byproduct precursor. DOM from surface waters, wastewater effluent, and 1 kDa size fractions were adsorbed by GAC and characterized using fluorescence spectroscopy, UV-absorption, and size exclusion chromatography (SEC). Fluorescing DOM was preferentially adsorbed relative to UV-absorbing DOM. Humic-like fluorescence (peaks A and C) was selectively adsorbed relative to polyphenol-like fluorescence (peaks T and B) potentially due to size exclusion effects. In the surface waters and size fractions, peak C was preferentially removed relative to peak A, whereas the reverse was found in wastewater effluent, indicating that humic-like fluorescence is associated with different compounds depending on DOM source. Based on specific UV-absorption (SUVA), aromatic DOM was preferentially adsorbed. The fluorescence index (FI), if interpreted as an indicator of aromaticity, indicated the opposite but exhibited a strong relationship with average molecular weight, suggesting that FI might be a better indicator of DOM size than aromaticity. The influence of DOM intermolecular interactions on adsorption were minimal based on SEC analysis. Fluorescence parameters captured the impact of DOM size on the fouling of 2-methylisoborneol and warfarin adsorption and correlated with direct competition and pore blockage indicators.

  1. Real time optical Biopsy: Time-resolved Fluorescence Spectroscopy instrumentation and validation

    Science.gov (United States)

    Kittle, David S.; Vasefi, Fartash; Patil, Chirag G.; Mamelak, Adam; Black, Keith L.; Butte, Pramod V.

    2016-12-01

    The Time-resolved fluorescence spectroscopy (TR-FS) has the potential to differentiate tumor and normal tissue in real time during surgical excision. In this manuscript, we describe the design of a novel TR-FS device, along with preliminary data on detection accuracy for fluorophores in a mixture. The instrument is capable of near real-time fluorescence lifetime acquisition in multiple spectral bands and analysis. It is also able to recover fluorescence lifetime with sub-20ps accuracy as validated with individual organic fluorescence dyes and dye mixtures yielding lifetime values for standard fluorescence dyes that closely match with published data. We also show that TR-FS is able to quantify the relative concentration of fluorescence dyes in a mixture by the unmixing of lifetime decays. We show that the TR-FS prototype is able to identify in near-real time the concentrations of dyes in a complex mixture based on previously trained data. As a result, we demonstrate that in complex mixtures of fluorophores, the relative concentration information is encoded in the fluorescence lifetime across multiple spectral bands. We show for the first time the temporal and spectral measurements of a mixture of fluorochromes and the ability to differentiate relative concentrations of each fluorochrome mixture in real time.

  2. Fluorescence lifetime spectroscopy in multiple-scattering environments: an application to biotechnology

    Science.gov (United States)

    Cerussi, Albert E.; Gratton, Enrico; Fantini, Sergio

    1999-07-01

    Over the past few years, there has been significant research activity devoted to the application of fluorescence spectroscopy to strongly scattering media, where photons propagate diffusely. Much of this activity focused on fluorescence as a source of contrast enhancement in optical tomography. Our efforts have emphasized the quantitative recovery of fluorescence parameters for spectroscopy. Using a frequency-domain diffusion-based model, we have successfully recovered the lifetime, the absolute quantum yield, the fluorophore concentration, and the emission spectrum of the fluorophore, as well as the absorption and the reduced scattering coefficients at the emission wavelength of the medium in different measurements. In this contribution, we present a sensitive monitor of the binding between ethidium bromide and bovine cells in fresh milk. The spectroscopic contrast was the approximately tenfold increase in the ethidium bromide lifetime upon binding to DNA. The measurement clearly demonstrated that we could quantitatively measure the density of cells in the milk, which is an application vital to the tremendous economic burden of bovine subclinical mastitis detection. Furthermore, we may in principle use the spirit of this technique as a quantitative monitor of the binding of fluorescent drugs inside tissues. This is a first step towards lifetime spectroscopy in tissues.

  3. In-vivo optical detection of cancer using chlorin e6 – polyvinylpyrrolidone induced fluorescence imaging and spectroscopy

    Directory of Open Access Journals (Sweden)

    Soo Khee

    2009-01-01

    Full Text Available Abstract Background Photosensitizer based fluorescence imaging and spectroscopy is fast becoming a promising approach for cancer detection. The purpose of this study was to examine the use of the photosensitizer chlorin e6 (Ce6 formulated in polyvinylpyrrolidone (PVP as a potential exogenous fluorophore for fluorescence imaging and spectroscopic detection of human cancer tissue xenografted in preclinical models as well as in a patient. Methods Fluorescence imaging was performed on MGH human bladder tumor xenografted on both the chick chorioallantoic membrane (CAM and the murine model using a fluorescence endoscopy imaging system. In addition, fiber optic based fluorescence spectroscopy was performed on tumors and various normal organs in the same mice to validate the macroscopic images. In one patient, fluorescence imaging was performed on angiosarcoma lesions and normal skin in conjunction with fluorescence spectroscopy to validate Ce6-PVP induced fluorescence visual assessment of the lesions. Results Margins of tumor xenografts in the CAM model were clearly outlined under fluorescence imaging. Ce6-PVP-induced fluorescence imaging yielded a specificity of 83% on the CAM model. In mice, fluorescence intensity of Ce6-PVP was higher in bladder tumor compared to adjacent muscle and normal bladder. Clinical results confirmed that fluorescence imaging clearly captured the fluorescence of Ce6-PVP in angiosarcoma lesions and good correlation was found between fluorescence imaging and spectral measurement in the patient. Conclusion Combination of Ce6-PVP induced fluorescence imaging and spectroscopy could allow for optical detection and discrimination between cancer and the surrounding normal tissues. Ce6-PVP seems to be a promising fluorophore for fluorescence diagnosis of cancer.

  4. Assessing the photoaging process at sun exposed and non-exposed skin using fluorescence lifetime spectroscopy

    Science.gov (United States)

    Saito Nogueira, Marcelo; Kurachi, Cristina

    2016-03-01

    Photoaging is the skin premature aging due to exposure to ultraviolet light, which damage the collagen, elastin and can induce alterations on the skin cells DNA, and, then, it may evolve to precancerous lesions, which are widely investigated by fluorescence spectroscopy and lifetime. The fluorescence spectra and fluorescence lifetime analysis has been presented as a technique of great potential for biological tissue characterization at optical diagnostics. The main targeted fluorophores are NADH (nicotinamide adenine dinucleotide) and FAD (flavin adenine dinucleotide), which have free and bound states, each one with different average lifetimes. The average lifetimes for free and bound NADH and FAD change according to tissue metabolic alterations and may contribute to a non-invasive clinical investigation of injuries such as skin lesions. These lesions and the possible areas where they may develop can be interrogated using fluorescence lifetime spectroscopy taking into account the variability of skin phototypes and the changes related to melanin, collagen and elastin, endogenous fluorophores which have emissions that spectrally overlap to the NADH and FAD emission. The objective of this study is to assess the variation on fluorescence lifetimes of normal skin at sun exposed and non-exposed areas and associate this variation to the photoaging process.

  5. Optical fluorescence spectroscopy to detect hepatic necrosis after normothermic ischemia: animal model

    Science.gov (United States)

    Romano, Renan A.; Vollet-Filho, Jose D.; Pratavieira, Sebastião.; Fernandez, Jorge L.; Kurachi, Cristina; Bagnato, Vanderlei S.; Castro-e-Silva, Orlando; Sankarankutty, Ajith K.

    2015-06-01

    Liver transplantation is a well-established treatment for liver failure. However, the success of the transplantation procedure depends on liver graft conditions. The tissue function evaluation during the several transplantation stages is relevant, in particular during the organ harvesting, when a decision is made concerning the viability of the graft. Optical fluorescence spectroscopy is a good option because it is a noninvasive and fast technique. A partial normothermic hepatic ischemia was performed in rat livers, with a vascular occlusion of both median and left lateral lobes, allowing circulation only for the right lateral lobe and the caudate lobe. Fluorescence spectra under excitation at 532 nm (doubled frequency Nd:YAG laser) were collected using a portable spectrometer (USB2000, Ocean Optics, USA). The fluorescence emission was collected before vascular occlusion, after ischemia, and 24 hours after reperfusion. A morphometric histology analysis was performed as the gold standard evaluation - liver samples were analyzed, and the percentage of necrotic tissue was obtained. The results showed that changes in the fluorescence emission after ischemia can be correlated with the amount of necrosis evaluated by a morphometric analysis, the Pearson correlation coefficient of the generated model was 0.90 and the root mean square error was around 20%. In this context, the laser-induced fluorescence spectroscopy technique after normothermic ischemia showed to be a fast and efficient method to differentiate ischemic injury from viable tissues.

  6. Design and evaluation of a device for fast multispectral time-resolved fluorescence spectroscopy and imaging.

    Science.gov (United States)

    Yankelevich, Diego R; Ma, Dinglong; Liu, Jing; Sun, Yang; Sun, Yinghua; Bec, Julien; Elson, Daniel S; Marcu, Laura

    2014-03-01

    The application of time-resolved fluorescence spectroscopy (TRFS) to in vivo tissue diagnosis requires a method for fast acquisition of fluorescence decay profiles in multiple spectral bands. This study focusses on development of a clinically compatible fiber-optic based multispectral TRFS (ms-TRFS) system together with validation of its accuracy and precision for fluorescence lifetime measurements. It also presents the expansion of this technique into an imaging spectroscopy method. A tandem array of dichroic beamsplitters and filters was used to record TRFS decay profiles at four distinct spectral bands where biological tissue typically presents fluorescence emission maxima, namely, 390, 452, 542, and 629 nm. Each emission channel was temporally separated by using transmission delays through 200 μm diameter multimode optical fibers of 1, 10, 19, and 28 m lengths. A Laguerre-expansion deconvolution algorithm was used to compensate for modal dispersion inherent to large diameter optical fibers and the finite bandwidth of detectors and digitizers. The system was found to be highly efficient and fast requiring a few nano-Joule of laser pulse energy and time-resolved fluorescence lifetime measurements of low quantum efficiency sub-nanosecond fluorophores.

  7. Center for Fluorescence Spectroscopy: advanced studies of fluorescence dynamics, lifetime imaging, clinical sensing, two-photon excitation, and light quenching

    Science.gov (United States)

    Lakowicz, Joseph R.; Malak, Henryk M.; Gryczynski, Ignacy; Szmacinski, Henryk; Kusba, Jozef; Akkaya, Engin; Terpetschnig, Ewald A.; Johnson, Michael L.

    1994-08-01

    The Center for Fluorescence Spectroscopy (CFS) is a multi-user facility providing state of the art time-resolved fluorescence instrumentation and software for scientists, whose research can be enhanced by such experimental data. The CFS is a national center, supported by the National Center for Research Resources Division of the National Institutes of Health, and in part by the National Science Foundation. Both time-domain (TD) and frequency- domain (FD) measurements (10 MHz to 10 Ghz) are available, with a wide range of excitation and emission wavelengths (UV to NIR). The data can be used to recover distances and site-to-site diffusion in protein, interactions between macromolecules, accessibility of fluorophores to quenchers, and the dynamic properties of proteins, membranes and nucleic acids. Current software provides for analysis of multi-exponential intensity and anisotropy decays, lifetime distribution, distance distributions for independent observation of fluorescence donors and acceptors, transient effects in collisional quenching, phase-modulation spectra and time-resolved emission spectra. Most programs provide for global analysis of multiple data sets obtained under similar experimental conditions. Data can be analyzed on-site by connection with the CFS computers through the internet. During six years of operation we have established scientific collaborations with over 30 academic and industrial groups in the United States. These collaborations have resulted in 63 scientific papers.

  8. Ultrafast Energy Transfer in Artificial Antenna Molecule Measured by Transient Fluorescence Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Hai-long Chen; Yu-xiang Weng; Xi-you Li

    2011-01-01

    We have reported previously the ultrafast energy transfer process with a time constant of 0.8 ps from a monomeric to a dimeric subunit within a perylenetetracarboxylic diimide trimer, which was derived indirectly from a model fitting into the transient absorption ex perimental data. Here we present a direct ultrafast fluorescence quenching measurement by employing fs time-resolved transient fluorescence spectroscopy based on noncollinear optical parametric amplification technique. The rapid decay of the monomer's emission due to energy transfer was observed directly with a time constant of about 0.82 ps, in good agreement with the previous result.

  9. Two-photon-excited fluorescence spectroscopy of atomic fluorine at 170 nm

    Science.gov (United States)

    Herring, G. C.; Dyer, Mark J.; Jusinski, Leonard E.; Bischel, William K.

    1988-01-01

    Two-photon-excited fluorescence spectroscopy of atomic fluorine is reported. A doubled dye laser at 286-nm is Raman shifted in H2 to 170 nm (sixth anti-Stokes order) to excite ground-state 2P(0)J fluorine atoms to the 2D(0)J level. The fluorine atoms are detected by one of two methods: observing the fluorescence decay to the 2PJ level or observing F(+) production through the absorption of an additional photon by the excited atoms. Relative two-photon absorption cross sections to and the radiative lifetimes of the 2D(0)J states are measured.

  10. Rapid detection of authenticity and adulteration of walnut oil by FTIR and fluorescence spectroscopy: a comparative study.

    Science.gov (United States)

    Li, Bingning; Wang, Haixia; Zhao, Qiaojiao; Ouyang, Jie; Wu, Yanwen

    2015-08-15

    Fourier transform infrared (FTIR) and fluorescence spectroscopy combined with soft independent modeling of class analogies (SIMCA) and partial least square (PLS) were used to detect the authenticity of walnut oil and adulteration amount of soybean oil in walnut oil. A SIMCA model of FTIR spectra could differentiate walnut oil and other oils into separate categories; the classification limit of soybean oil in walnut oil was 10%. Fluorescence spectroscopy could differentiate oil composition by the peak position and intensity of emission spectrum without multivariate analysis. The classification limit of soybean oil adulterated in walnut oil by fluorescence spectroscopy was below 5%. The deviation of the prediction model for fluorescence spectra was lower than that for FTIR spectra. Fluorescence spectroscopy was more applicable than FTIR in the adulteration detection of walnut oil, both from the determination limit and prediction deviation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Diode-Laser Induced Fluorescence Spectroscopy of an Optically Thick Plasma in Combination with Laser Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    S. Nomura

    2013-01-01

    Full Text Available Distortion of laser-induced fluorescence profiles attributable to optical absorption and saturation broadening was corrected in combination with laser absorption spectroscopy in argon plasma flow. At high probe-laser intensity, saturated absorption profiles were measured to correct probe-laser absorption. At low laser intensity, nonsaturated absorption profiles were measured to correct fluorescence reabsorption. Saturation broadening at the measurement point was corrected using a ratio of saturated to non-saturated broadening. Observed LIF broadening and corresponding translational temperature without correction were, respectively, 2.20±0.05 GHz and 2510±100 K and corrected broadening and temperature were, respectively, 1.96±0.07 GHz and 1990±150 K. Although this correction is applicable only at the center of symmetry, the deduced temperature agreed well with that obtained by LAS with Abel inversion.

  12. Fluorescence excitation-emission matrix spectroscopy of vitiligo skin in vivo (Conference Presentation)

    Science.gov (United States)

    Zhao, Jianhua; Richer, Vincent; Al Jasser, Mohammed; Zandi, Soodabeh; Kollias, Nikiforos; Kalia, Sunil; Zeng, Haishan; Lui, Harvey

    2016-02-01

    Fluorescence signals depend on the intensity of the exciting light, the absorption properties of the constituent molecules, and the efficiency with which the absorbed photons are converted to fluorescence emission. The optical features and appearance of vitiligo have been explained primarily on the basis of reduced epidermal pigmentation, which results in abnormal white patches on the skin. The objective of this study is to explore the fluorescence properties of vitiligo and its adjacent normal skin using fluorescence excitation-emission matrix (EEM) spectroscopy. Thirty five (35) volunteers with vitiligo were acquired using a double-grating spectrofluorometer with excitation and emission wavelengths of 260-450 nm and 300-700 nm respectively. As expected, the most pronounced difference between the spectra obtained from vitiligo lesions compared to normally pigmented skin was that the overall fluorescence was much higher in vitiligo; these differences increased at shorter wavelengths, thus matching the characteristic spectral absorption of epidermal melanin. When comparing the fluorescence spectra from vitiligo to normal skin we detected three distinct spectral bands centered at 280nm, 310nm, and 335nm. The 280nm band may possibly be related to inflammation, whereas the 335 nm band may arise from collagen or keratin cross links. The source of the 310 nm band is uncertain; it is interesting to note its proximity to the 311 nm UV lamps used for vitiligo phototherapy. These differences are accounted for not only by changes in epidermal pigment content, but also by other optically active cutaneous biomolecules.

  13. X-Ray Fluorescence Spectroscopy for Analysis of Explosive-Related Materials and Unknowns

    Science.gov (United States)

    2017-08-01

    common thin-film materials . Table B-1. Compatibility of Support Films for Wavelength Dispersive XRF Samples Sample Component Etnom...X-RAY FLUORESCENCE SPECTROSCOPY FOR ANALYSIS OF EXPLOSIVE-RELATED MATERIALS AND UNKNOWNS ECBC-TR-1455...of Explosive-Related Materials and Unknowns 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Valdes, Erica R

  14. In vivo detection of epileptic brain tissue using static fluorescence and diffuse reflectance spectroscopy.

    Science.gov (United States)

    Yadav, Nitin; Bhatia, Sanjiv; Ragheb, John; Mehta, Rupal; Jayakar, Prasanna; Yong, William; Lin, Wei-Chiang

    2013-02-01

    Diffuse reflectance and fluorescence spectroscopy are used to detect histopathological abnormalities of an epileptic brain in a human subject study. Static diffuse reflectance and fluorescence spectra are acquired from normal and epileptic brain areas, defined by electrocorticography (ECoG), from pediatric patients undergoing epilepsy surgery. Biopsy specimens are taken from the investigated sites within an abnormal brain. Spectral analysis reveals significant differences in diffuse reflectance spectra and the ratio of fluorescence and diffuse reflectance spectra from normal and epileptic brain areas defined by ECoG and histology. Using these spectral differences, tissue classification models with accuracy above 80% are developed based on linear discriminant analysis. The differences between the diffuse reflectance spectra from the normal and epileptic brain areas observed in this study are attributed to alterations in the static hemodynamic characteristics of an epileptic brain, suggesting a unique association between the histopathological and the hemodynamic abnormalities in an epileptic brain.

  15. O2(1△) Yield Measurement by Raman Spectroscopy With Elimination of Chlorine Fluorescence Interference

    Institute of Scientific and Technical Information of China (English)

    Rong-rong Cui; Wen-bo Shi; Lie-zheng Deng; He-ping Yang; Guo-he Sha; Cun-hao Zhang

    2012-01-01

    Deleterious chlorine fluorescence was found to occur at the same frequency as the Raman scattering of O2(1△) and O2(3∑),seriously affecting the O2(1△) yield measurement in the reaction of chlorine with basic hydrogen peroxide by use of the Raman spectroscopy technique.To solve this problem we have taken advantage of the fact that Raman radiation is always strongly polarized while fluorescence is essentially non-polarized in a gaseous medium.When chlorine utilization of a singlet oxygen generator is 88%,O2(1△) yield reaches (42.4±7.4)%with the effect of chlorine fluorescence completely eliminated.

  16. Fluorescence spectroscopy for assessment of liver transplantation grafts concerning graft viability and patient survival

    Science.gov (United States)

    Vollet Filho, José D.; da Silveira, Marina R.; Castro-e-Silva, Orlando; Bagnato, Vanderlei S.; Kurachi, Cristina

    2015-06-01

    Evaluating transplantation grafts at harvest is essential for its success. Laser-induced fluorescence spectroscopy (LIFS) can help monitoring changes in metabolic/structural conditions of tissue during transplantation. The aim of the present study is to correlate LIFSobtained spectra of human hepatic grafts during liver transplantation with post-operative patients' mortality rate and biochemical parameters, establishing a method to exclude nonviable grafts before implantation. Orthotopic liver transplantation, piggyback technique was performed in 15 patients. LIFS was performed under 408nm excitation. Collection was performed immediately after opening donor's abdominal cavity, after cold perfusion, end of back-table period, and 5 min and 1 h after warm perfusion at recipient. Fluorescence information was compared to lactate, creatinine, bilirubin and INR levels and to survival status. LIFS was sensitive to liver changes during transplantation stages. Study-in-progress; initial results indicate correlation between fluorescence and life/death status of patients.

  17. Blood perfusion and pH monitoring in organs by laser-induced fluorescence spectroscopy

    Science.gov (United States)

    Vari, Sandor G.; Papazoglou, Theodore G.; Pergadia, Vani R.; Stavridi, Marigo; Snyder, Wendy J.; Papaioannou, Thanassis; Duffy, J. T.; Weiss, Andrew B.; Thomas, Reem; Grundfest, Warren S.

    1994-01-01

    Sensitivity of laser-induced fluorescence spectroscopy (LIFS) in detecting a change in tissue pH, and blood perfusion was determined. Rabbits were anesthetized, paralyzed, and mechanically ventilated. The arterial and venous blood supplies of the kidney were isolated and ligated to alter the perfusion. The femoral artery was cannulated to extract samples for blood gas analysis. A 308-nm XeCl was used as an excitation source. A 600 micrometers core diameter fiber was used for fluorescence acquisition, and the spectra analyzed by an optical multichannel analyzer (EG & G, OMA III). the corresponding intensity ratio R equals INADH / ICOLL was used as an index for respiratory acidosis. Blood perfusion was assessed using the following algorithm: (IELAS minus ICOLL) divided by (INADH minus ICOLL). The intensity ratio linearly decreased with the reduction of blood perfusion. When we totally occluded the artery the ratio decreased tenfold when compared to the ratio of a fully perfused kidney. Results of monitoring blood acidosis by laser-induced fluorescence spectroscopy shows a significant trend between pH and intensity ratio. Since all the slopes were negative, there is an obvious significant correlation between the pH and NADH.COLLAGEN RATIO. Blue-light-induced fluorescence measurements and ratio fluorometry is a sensitive method for monitoring blood perfusion and acidity or alkalinity of an organ.

  18. Spoilage of foods monitored by native fluorescence spectroscopy with selective excitation wavelength

    Science.gov (United States)

    Pu, Yang; Wang, Wubao; Alfano, Robert R.

    2015-03-01

    The modern food processing and storage environments require the real-time monitoring and rapid microbiological testing. Optical spectroscopy with selective excitation wavelengths can be the basis of a novel, rapid, reagent less, noncontact and non-destructive technique for monitoring the food spoilage. The native fluorescence spectra of muscle foods stored at 2-4°C (in refrigerator) and 20-24°C (in room temperature) were measured as a function of time with a selective excitation wavelength of 340nm. The contributions of the principal molecular components to the native fluorescence spectra of meat were measured spectra of each fluorophore: collagen, reduced nicotinamide adenine dinucleotide (NADH), and flavin. The responsible components were extracted using a method namely Multivariate Curve Resolution with Alternating Least-Squares (MCR-ALS). The native fluorescence combined with MCR-ALS can be used directly on the surface of meat to produce biochemically interpretable "fingerprints", which reflects the microbial spoilage of foods involved with the metabolic processes. The results show that with time elapse, the emission from NADH in meat stored at 24°C increases much faster than that at 4°C. This is because multiplying of microorganisms and catabolism are accompanied by the generation of NADH. This study presents changes of relative content of NADH may be used as criterion for detection of spoilage degree of meat using native fluorescence spectroscopy.

  19. Applications of Fluorescence Spectroscopy for dissolved organic matter characterization in wastewater treatment plants

    Science.gov (United States)

    Goffin, Angélique; Guérin, Sabrina; Rocher, Vincent; Varrault, Gilles

    2016-04-01

    Dissolved organic matter (DOM) influences wastewater treatment plants efficiency (WTTP): variations in its quality and quantity can induce a foaming phenomenon and a fouling event inside biofiltration processes. Moreover, in order to manage denitrification step (control and optimization of the nitrate recirculation), it is important to be able to estimate biodegradable organic matter quantity before biological treatment. But the current methods used to characterize organic matter quality, like biological oxygen demand are laborious, time consuming and sometimes not applicable to directly monitor organic matter in situ. In the context of MOCOPEE research program (www.mocopee.com), this study aims to assess the use of optical techniques, such as UV-Visible absorbance and more specifically fluorescence spectroscopy in order to monitor and to optimize process efficiency in WWTP. Fluorescence excitation-emission matrix (EEM) spectroscopy was employed to prospect the possibility of using this technology online and in real time to characterize dissolved organic matter in different effluents of the WWTP Seine Centre (240,000 m3/day) in Paris, France. 35 sewage water influent samples were collected on 10 days at different hours. Data treatment were performed by two methods: peak picking and parallel factor analysis (PARAFAC). An evolution of DOM quality (position of excitation - emission peaks) and quantity (intensity of fluorescence) was observed between the different treatment steps (influent, primary treatment, biological treatment, effluent). Correlations were found between fluorescence indicators and different water quality key parameters in the sewage influents. We developed different multivariate linear regression models in order to predict a variety of water quality parameters by fluorescence intensity at specific excitation-emission wavelengths. For example dissolved biological oxygen demand (r2=0,900; p<0,0001) and ammonium concentration (r2=0,898; p<0

  20. Interaction of antihypertensive drug amiloride with metal ions in micellar medium using fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gujar, Varsha; Pundge, Vijaykumar; Ottoor, Divya, E-mail: divya@chem.unipune.ac.in

    2015-05-15

    Steady state and life time fluorescence spectroscopy have been employed to study the interaction of antihypertensive drug amiloride with biologically important metal ions i.e. Cu{sup 2+}, Fe{sup 2+}, Ni{sup 2+} and Zn{sup 2+} in various micellar media (anionic SDS (sodium dodecyl sulfate), nonionic TX-100 (triton X-100) and cationic CTAB (cetyl trimethyl ammonium bromide)). It was observed that fluorescence properties of drug remain unaltered in the absence of micellar media with increasing concentration of metal ions. However, addition of Cu{sup 2+}, Fe{sup 2+} and Ni{sup 2+} caused fluorescence quenching of amiloride in the presence of anionic micelle, SDS. Binding of drug with metal ions at the charged micellar interface could be the possible reason for this pH-dependent metal-mediated fluorescence quenching. There were no remarkable changes observed due to metal ions addition when drug was present in cationic and nonionic micellar medium. The binding constant and bimolecular quenching constant were evaluated and compared for the drug–metal complexes using Stern–Volmer equation and fluorescence lifetime values. - Highlights: • Interaction of amiloride with biologically important metal ions, Fe{sup 2+}, Cu{sup 2+}, Ni{sup 2+} and Zn{sup 2+}. • Monitoring the interaction in various micelle at different pH by fluorescence spectroscopy. • Micelles acts as receptor, amiloride as transducer and metal ions as analyte in the present system. • Interaction study provides pH dependent quenching and binding mechanism of drug with metal ions.

  1. Analyzing pH-induced changes in a myofibril model system with vibrational and fluorescence spectroscopy.

    Science.gov (United States)

    Andersen, Petter Vejle; Veiseth-Kent, Eva; Wold, Jens Petter

    2017-03-01

    The decline of pH and ultimate pH in meat postmortem greatly influences meat quality (e.g. water holding capacity). Four spectroscopic techniques, Raman, Fourier transform infrared (FT-IR), near infrared (NIR) and fluorescence spectroscopy, were used to study protein and amino acid modifications to determine pH-related changes in pork myofibril extracts at three different pH-levels, 5.3, 5.8 and 6.3. Protonation of side-chain carboxylic acids of aspartic and glutamic acid and changes in secondary structure, mainly the amide I-III peaks, were the most important features identified by Raman and FT-IR spectroscopy linked to changes in pH. Fluorescence spectroscopy identified tryptophan interaction with the molecular environment as the most important contributor to changes in the spectra. NIR spectroscopy gave no significant contributions to interpreting protein structure related to pH. Results from our study are useful for interpreting spectroscopic data from meat where pH is an important variable.

  2. Disassembly of structurally modified viral nanoparticles: characterization by fluorescence correlation spectroscopy.

    Science.gov (United States)

    Toivola, Jouni; Gilbert, Leona; Michel, Patrik; White, Daniel; Vuento, Matti; Oker-Blom, Christian

    2005-12-01

    Analysis of the breakdown products of engineered viral particles can give useful information on the particle structure. We used various methods to breakdown both a recombinant enveloped virus and virus-like particles (VLPs) from two non-enveloped viruses and analysed the resulting subunits by fluorescence correlation spectroscopy (FCS). Analysis of the enveloped baculovirus, Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV), displaying the green fluorescent protein (GFP) fused to its envelope protein gp64 was performed in the presence and absence of 5 mM SDS and 25 mM DTT. Without treatment, the viral particle showed a diffusion time of 3.3 ms. In the presence of SDS, fluorescent subunits with diffusion times of 0.2 ms were observed. Additional treatment with DTT caused a drop in the diffusion time to 0.1 ms. Changes in the amplitude of the autocorrelation function suggested a 3-fold increase in fluorescent particle number when viral particles were treated with SDS, and a further 1.5-fold increase with additional treatment with DTT. Thus, the data showed that an average of 4.5 molecules of gp64-GFP was incorporated in the membrane of the modified baculovirus. Further, this suggests that each fluorescent gp64 trimer carries on average 1.5 fluorescent units. Similar experiments were carried out with two non-enveloped fluorescent virus-like particles (fVLPs) that displayed enhanced green fluorescent protein (EGFP). These, fVLPs of canine and human B19 parvoviruses were treated with 6 M urea and 5 mM SDS, respectively. Correspondingly, the original hydrodynamic radii of 17 and 14 nm were reduced to 9 and 5 nm after treatment. Here, the change in the amplitude of the autocorrelation curve suggested a 10-fold increase in particle number when viral particles of CPV were treated with 6 M urea at 50 degrees C for 10 min. For EGFP-B19, there was a decrease in the amplitude, accompanied by a 9-fold increase in the number of fluorescent units with SDS treatment

  3. On the performance of bioanalytical fluorescence correlation spectroscopy measurements in a multiparameter photon-counting microscope

    Energy Technology Data Exchange (ETDEWEB)

    Mazouchi, Amir; Liu Baoxu; Bahram, Abdullah [Department of Physics, Institute for Optical Sciences, University of Toronto, Toronto (Canada); Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd. N., Mississauga, ON, L5L 1C6 (Canada); Gradinaru, Claudiu C., E-mail: claudiu.gradinaru@utoronto.ca [Department of Physics, Institute for Optical Sciences, University of Toronto, Toronto (Canada); Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd. N., Mississauga, ON, L5L 1C6 (Canada)

    2011-02-28

    Fluorescence correlation spectroscopy (FCS) data acquisition and analysis routines were developed and implemented in a home-built, multiparameter photon-counting microscope. Laser excitation conditions were investigated for two representative fluorescent probes, Rhodamine110 and enhanced green fluorescent protein (EGFP). Reliable local concentrations and diffusion constants were obtained by fitting measured FCS curves, provided that the excitation intensity did not exceed 20% of the saturation level for each fluorophore. Accurate results were obtained from FCS measurements for sample concentrations varying from pM to {mu}M range, as well as for conditions of high background signals. These experimental constraints were found to be determined by characteristics of the detection system and by the saturation behavior of the fluorescent probes. These factors actually limit the average number of photons that can be collected from a single fluorophore passing through the detection volume. The versatility of our setup and the data analysis capabilities were tested by measuring the mobility of EGFP in the nucleus of Drosophila cells under conditions of high concentration and molecular crowding. As a bioanalytical application, we studied by FCS the binding affinity of a novel peptide-based drug to the cancer-regulating STAT3 protein and corroborated the results with fluorescence polarization analysis derived from the same photon data.

  4. Enhanced energy transfer in respiratory-deficient endothelial cells probed by microscopic fluorescence excitation spectroscopy

    Science.gov (United States)

    Schneckenburger, Herbert; Gschwend, Michael H.; Bauer, Manfred; Strauss, Wolfgang S. L.; Steiner, Rudolf W.

    1996-12-01

    Mitochondrial malfunction may be concomitant with changes of the redox states of the coenzymes nicotinamide adenine dinucleotide (NAD+/NADH), as well as flavin.mononucleotide or dinucleotide. The intrinsic fluorescence of these coenzymes was therefore proposed to be a measure of malfunction. Since mitochondrial fluorescence is strongly superposed by autofluorescence from various cytoplasmatic fluorophores, cultivated endothelial cells were incubated with the mitochondrial marker rhodamine 123 (R123), and after excitation of flavin molecules, energy transfer to R123 was investigated. Due to spectral overlap of flavin and R123 fluorescence, energy transfer flavin yields R123 could not be detected from their emission spectra. Therefore, the method of microscopic fluorescence excitation spectroscopy was established. When detecting R123 fluorescence, excitation maxima at 370 - 390 nm and 420-460 nm were assigned to flavins, whereas a pronounced excitation band at 465 - 490 nm was attributed to R123. Therefore, excitation at 475 nm reflected the intracellular concentration of R123, whereas excitation at 385 nm reflected flavin excitation with a subsequent energy transfer to R123 molecules. An enhanced energy transfer after inhibition of specific enzyme complexes of the respiratory chain is discussed in the present article.

  5. Applications of fluorescence spectroscopy for predicting percent wastewater in an urban stream

    Science.gov (United States)

    Goldman, Jami H.; Rounds, Stewart A.; Needoba, Joseph A.

    2012-01-01

    Dissolved organic carbon (DOC) is a significant organic carbon reservoir in many ecosystems, and its characteristics and sources determine many aspects of ecosystem health and water quality. Fluorescence spectroscopy methods can quantify and characterize the subset of the DOC pool that can absorb and re-emit electromagnetic energy as fluorescence and thus provide a rapid technique for environmental monitoring of DOC in lakes and rivers. Using high resolution fluorescence techniques, we characterized DOC in the Tualatin River watershed near Portland, Oregon, and identified fluorescence parameters associated with effluent from two wastewater treatment plants and samples from sites within and outside the urban region. Using a variety of statistical approaches, we developed and validated a multivariate linear regression model to predict the amount of wastewater in the river as a function of the relative abundance of specific fluorescence excitation/emission pairs. The model was tested with independent data and predicts the percentage of wastewater in a sample within 80% confidence. Model results can be used to develop in situ instrumentation, inform monitoring programs, and develop additional water quality indicators for aquatic systems.

  6. A comparative evaluation of Raman and fluorescence spectroscopy for optical diagnosis of oral neoplasia

    Science.gov (United States)

    Majumder, S. K.; Krishna, H.; Sidramesh, M.; Chaturvedi, P.; Gupta, P. K.

    2011-08-01

    We report the results of a comparative evaluation of in vivo fluorescence and Raman spectroscopy for diagnosis of oral neoplasia. The study carried out at Tata Memorial Hospital, Mumbai, involved 26 healthy volunteers and 138 patients being screened for neoplasm of oral cavity. Spectral measurements were taken from multiple sites of abnormal as well as apparently uninvolved contra-lateral regions of the oral cavity in each patient. The different tissue sites investigated belonged to one of the four histopathology categories: 1) squamous cell carcinoma (SCC), 2) oral sub-mucous fibrosis (OSMF), 3) leukoplakia (LP) and 4) normal squamous tissue. A probability based multivariate statistical algorithm utilizing nonlinear Maximum Representation and Discrimination Feature for feature extraction and Sparse Multinomial Logistic Regression for classification was developed for direct multi-class classification in a leave-one-patient-out cross validation mode. The results reveal that the performance of Raman spectroscopy is considerably superior to that of fluorescence in stratifying the oral tissues into respective histopathologic categories. The best classification accuracy was observed to be 90%, 93%, 94%, and 89% for SCC, SMF, leukoplakia, and normal oral tissues, respectively, on the basis of leave-one-patient-out cross-validation, with an overall accuracy of 91%. However, when a binary classification was employed to distinguish spectra from all the SCC, SMF and leukoplakik tissue sites together from normal, fluorescence and Raman spectroscopy were seen to have almost comparable performances with Raman yielding marginally better classification accuracy of 98.5% as compared to 94% of fluorescence.

  7. Multiphoton microscopy, fluorescence lifetime imaging and optical spectroscopy for the diagnosis of neoplasia

    Science.gov (United States)

    Skala, Melissa Caroline

    2007-12-01

    the ultraviolet to visible wavelength range indicated that the most diagnostic optical signals originate from sub-surface tissue layers. Optical properties extracted from these spectroscopy measurements showed a significant decrease in the hemoglobin saturation, absorption coefficient, reduced scattering coefficient and fluorescence intensity (at 400 nm excitation) in neoplastic compared to normal tissues. The results from these studies indicate that multiphoton microscopy and optical spectroscopy can non-invasively provide information on tissue structure and function in vivo that is related to tissue pathology.

  8. Design and evaluation of a device for fast multispectral time-resolved fluorescence spectroscopy and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yankelevich, Diego R. [Department of Electrical and Computer Engineering, University of California, 3101 Kemper Hall, Davis, California 95616 (United States); Department of Biomedical Engineering, University of California, 451 Health Sciences Drive, Davis, California 95616 (United States); Ma, Dinglong; Liu, Jing; Sun, Yang; Sun, Yinghua; Bec, Julien; Marcu, Laura, E-mail: lmarcu@ucdavis.edu [Department of Biomedical Engineering, University of California, 451 Health Sciences Drive, Davis, California 95616 (United States); Elson, Daniel S. [Hamlyn Centre for Robotic Surgery, Department of Surgery and Cancer, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom)

    2014-03-15

    The application of time-resolved fluorescence spectroscopy (TRFS) to in vivo tissue diagnosis requires a method for fast acquisition of fluorescence decay profiles in multiple spectral bands. This study focusses on development of a clinically compatible fiber-optic based multispectral TRFS (ms-TRFS) system together with validation of its accuracy and precision for fluorescence lifetime measurements. It also presents the expansion of this technique into an imaging spectroscopy method. A tandem array of dichroic beamsplitters and filters was used to record TRFS decay profiles at four distinct spectral bands where biological tissue typically presents fluorescence emission maxima, namely, 390, 452, 542, and 629 nm. Each emission channel was temporally separated by using transmission delays through 200 μm diameter multimode optical fibers of 1, 10, 19, and 28 m lengths. A Laguerre-expansion deconvolution algorithm was used to compensate for modal dispersion inherent to large diameter optical fibers and the finite bandwidth of detectors and digitizers. The system was found to be highly efficient and fast requiring a few nano-Joule of laser pulse energy and <1 ms per point measurement, respectively, for the detection of tissue autofluorescent components. Organic and biological chromophores with lifetimes that spanned a 0.8–7 ns range were used for system validation, and the measured lifetimes from the organic fluorophores deviated by less than 10% from values reported in the literature. Multi-spectral lifetime images of organic dye solutions contained in glass capillary tubes were recorded by raster scanning the single fiber probe in a 2D plane to validate the system as an imaging tool. The lifetime measurement variability was measured indicating that the system provides reproducible results with a standard deviation smaller than 50 ps. The ms-TRFS is a compact apparatus that makes possible the fast, accurate, and precise multispectral time-resolved fluorescence

  9. In-vivo optical detection of cancer using chlorin e6 – polyvinylpyrrolidone induced fluorescence imaging and spectroscopy

    OpenAIRE

    Soo Khee; Bhuvaneswari Ramaswamy; Thong Patricia SP; Chin William WL; Heng Paul WS; Olivo Malini

    2009-01-01

    Abstract Background Photosensitizer based fluorescence imaging and spectroscopy is fast becoming a promising approach for cancer detection. The purpose of this study was to examine the use of the photosensitizer chlorin e6 (Ce6) formulated in polyvinylpyrrolidone (PVP) as a potential exogenous fluorophore for fluorescence imaging and spectroscopic detection of human cancer tissue xenografted in preclinical models as well as in a patient. Methods Fluorescence imaging was performed on MGH human...

  10. Fluorescence spectroscopy of soil pellets : The use of CP/PARAFAC.

    Science.gov (United States)

    Mounier, Stéphane; Nicolodeli, Gustavo; Redon, Roland; Hacherouf, Kalhed; Milori, Debora M. B. P.

    2014-05-01

    Fluorescence spectroscopy is one of the most sensitive techniques available for analytical purposes. It is relatively easy to implement, phenomenologically straightforward and well investigated. Largely non-invasive and fast, so that it can be useful for environmental applications. Fluorescence phenomenon is highly probable in molecular systems containing atoms with lone pairs of electrons such as C=O, aromatic, phenolic, quinone and more rigid unsaturated conjugated systems. These functional groups are present in humic substances (HS) from soils (Senesi, 1990; N. Senesi et al., 1991) and represent the main fluorophors of Soil Organic Matter (SOM). The extension of the conjugated electronic system, the level of heteroatom substitution and type and number of substituting groups under the aromatic rings strongly affect the intensity and wavelength of molecular fluorescence. However, to analyse the SOM it is generally done a chemical extraction that allows measuring the fluorescence response of the liquid extract. To avoid this fractionation of the SOM, Milori et al. (2006) proposed the application of laser induced fluorescence spectroscopy (LIFS) in whole soil. This work intends to assess the technical feasibility of 3D fluorescence spectroscopy using lamp for excitation to analyse solids opaque samples prepared with different substances. Seventy four (74) solid samples were prepared from different mixtures of boric acid (BA), humic substance acid and tryptophan (TRP) powder. The compounds were mixture and a pellet was done by using pressure (8 ton). The pellets were measured using a spectrofluorimeter HITACHI F4500, and a 3D fluorescence tensor was done from emission spectra (200-600 nm) with excitation range from 200 to 500 nm. The acquisition parameters were: step at 5 nm, scan speed at 2400 nm.min-1, response time at 0.1 s, excitation and emission slits at 5 nm and photomultiplier voltage at 700 V. Furthermore, measures of Laser-induced Fluorescence were

  11. Study of the interaction between N-confused porphyrin and bovine serum albumin by fluorescence spectroscopy.

    Science.gov (United States)

    Yu, Xianyong; Liu, Ronghua; Yi, Rongqiong; Yang, Fengxian; Huang, Haowen; Chen, Jian; Ji, Danhong; Yang, Ying; Li, Xiaofang; Yi, Pinggui

    2011-04-01

    The fluorescence and ultraviolet spectroscopy were explored to study the interaction between N-confused porphyrins (NCP) and bovine serum albumin (BSA) under imitated physiological condition. The experimental results indicated that the fluorescence quenching mechanism between BSA and NCP was static quenching procedure at low NCP concentration at 293 and 305 K or a combined quenching (static and dynamic) procedure at higher NCP concentration at 305 K. The binding constants, binding sites and the corresponding thermodynamic parameters ΔH, ΔS, and ΔG were calculated at different temperatures. The comparison of binding potency of the three NCP to BSA showed that the substituting groups in benzene ring could enhance the binding affinity. From the thermodynamic parameters, we concluded that the action force was mainly hydrophobic interaction. The binding distances between NCP and BSA were calculated using Förster non-radiation energy transfer theory. In addition, the effect of NCP on the conformation of BSA was analyzed using synchronous fluorescence spectroscopy.

  12. A Linear Ion Trap with an Expanded Inscribed Diameter to Improve Optical Access for Fluorescence Spectroscopy

    Science.gov (United States)

    Rajagopal, Vaishnavi; Stokes, Chris; Ferzoco, Alessandra

    2017-08-01

    We report a custom-geometry linear ion trap designed for fluorescence spectroscopy of gas-phase ions at ambient to cryogenic temperatures. Laser-induced fluorescence from trapped ions is collected from between the trapping rods, orthogonal to the excitation laser that runs along the axis of the linear ion trap. To increase optical access to the ion cloud, the diameter of the round trapping rods is 80% of the inscribed diameter, rather than the roughly 110% used to approximate purely quadrupolar electric fields. To encompass as much of the ion cloud as possible, the first collection optic has a 25.4 mm diameter and a numerical aperture of 0.6. The choice of geometry and collection optics yields 107 detected photons/s from trapped rhodamine 6G ions. The trap is coupled to a closed-cycle helium refrigerator, which in combination with two 50 Ohm heaters enables temperature control to below 25 K on the rod electrodes. The purpose of the instrument is to broaden the applicability of fluorescence spectroscopy of gas-phase ions to cases where photon emission is a minority relaxation pathway. Such studies are important to understand how the microenvironment of a chromophore influences excited state charge transfer processes. [Figure not available: see fulltext.

  13. Laser Induced Fluorescence Spectroscopy of Neutral and Ionized Polycyclic Aromatic Hydrocarbons in the Cosmic Simulation Chamber

    Science.gov (United States)

    Bejaoui, Salma; Salama, Farid; Contreras, Cesar; Sciamma O'Brien, Ella; Foing, Bernard; Pascale, Ehrenfreund

    2015-01-01

    Polycyclic aromatic hydrocarbon (PAH) molecules are considered the best carriers to account for the ubiquitous infrared emission bands. PAHs have also been proposed as candidates to explain the diffuse interstellar bands (DIBs), a series of absorption features seen on the interstellar extinction curve and are plausible carriers for the extended red emission (ERE), a photoluminescent process associated with a wide variety of interstellar environments. Extensive efforts have been devoted over the past two decades to characterize the physical and chemical properties of PAH molecules and ions in space. Absorption spectra of PAH molecules and ions trapped in solid matrices have been compared to the DIBs. Absorption spectra of several cold, isolated gas-phase PAHs have also been measured under experimental conditions that mimic the interstellar conditions. The purpose of this study is to provide a new dimension to the existing spectroscopic database of neutral and single ionized PAHs that is largely based on absorption spectra by adding emission spectroscopy data. The measurements are based on the laser induced fluorescence (LIF) technique and are performed with the Pulsed Discharge Nozzle (PDN) of the COSmIC laboratory facility at NASA Ames laboratory. The PDN generates a plasma in a free supersonic jet expansion to simulate the physical and the chemical conditions in interstellar environments. We focus, here, on the fluorescence spectra of large neutral PAHs and their cations where there is a lack of fluorescence spectroscopy data. The astronomical implications of the data (e.g., ERE) are examined.

  14. Interaction Between Baicalein and Amyloid-β Fibrils Studied by Fluorescence Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    SONG Sheng-mei; WANG Yong-xiang; XIONG Li-min; QU Ling-bo; XU Mao-tian

    2013-01-01

    The interaction between baicalein and amyloid-β(Aβ) polypeptide was investigated by fluorescence and UV-Vis absorbance spectroscopy.The absence of the characteristic peak of tyrosinate(Tyr) in the absorption spectra of Aβ-baicalein complexes provided evidence that the sole Tyr residue in Aβ is not bound to baicalein,but remains close to it.The intrinsic fluorescence of Tyr residues in Aβ1-42 aggregates was quenched strongly by the excited-state ionization of baicalein.In this complex the hydroxyl group was not ionized,but to ionize immediately upon excitation.Absorbance,fluorescence and synchronous spectroscopies show that the formation of Schiff base between the quinone of baicalein and the lysine(Lys) side chains of Aβ1-42 is another major reason in the depolymerization of Aβ1-42 aggregates by baicalein.It is desirable that our research would offer some valuable reference for the application of flavonoid derivants in Alzheimer's disease(AD) treatment.

  15. Fourier transform infrared and fluorescence spectroscopy for analysis of vegetable oils

    Directory of Open Access Journals (Sweden)

    Nigri S.

    2013-09-01

    Full Text Available Fourier transform infrared (FTIR and fluorescence spectroscopy, combined with chemometric approaches have been developed to analysis of extra virgin olive oil adulterated with pomace olive oil. The measurements were made on pure vegetable oils: extra virgin oil, pomace olive oil and that adulterated with varying concentration of pomace olive oil. Today, the application of FTIR spectroscopy has increased in food studied, and particularly has become a powerful analytical tool in the study of edible oils and fats. The spectral regions where the variations were observed chosen for developing models and cross validation was used. The synchronous fluorescence spectrometry takes advantage of the hardware capability to vary both the excitation and emission wavelengths during the analysis with constant wavelength difference is maintained between the two. The region between 300 and 400 nm is attributed to the tocopherols and phenols, the derivatives of vitamin E are associated with the region 400–600 nm and the bands in the region of 600–700 nm are attributed to the chlorophyll and peophytin pigments. The results presented in this study suggest that FTIR and fluorescence may be a useful tool for analysis and detecting adulteration of extra virgin olive oil with pomace oil.

  16. [Commercial orange juice beverages detection by fluorescence spectroscopy combined with PCA-ED and PLSR methods].

    Science.gov (United States)

    Hu, Yang-jun; Zhu, Chun; Chen, Guo-qing; Zhang, Yong; Kong, Fan-biao; Li, Run; Zhu, Zhuo-wei; Wang, Xu; Gao, Shu-mei

    2014-08-01

    In order to classify the orange juiice beverages effectively, the fluorescence character differences of two kinds of orange juice beverages including 100% orange juice and orange drink were analyzed and compared, principal component analysis combined with Euclidean distance was adopted to classify two kinds of orange juice beverages, and ideal classification results were obtained. Meanwhile, the orange juice content estimation model was established by using fluorescence spectroscopy combined with partial least squares regression method, and the correlation coefficient R, root mean square error of calibration RMSEC and root mean square error of prediction RMSEP were 0.997, 0.87% and 2.05%, respectively. The experimental results indicate that the calibration model offers comparatively accurate content estimation, which reflect the actual orange juice content in the commercial orange juice beverages. The exploration to classify orange juice beverages was carried out from two aspects of qualitative and quantitative analysis by employing fluorescence spectroscopy combined with chemometrics method, which can provide a new idea for the classification and adulteration detection of commercial orange juice beverages, and also can give certain reference basis for the quality control of orange juice raw material.

  17. Measuring diffusion with polarization-modulation dual-focus fluorescence correlation spectroscopy.

    Science.gov (United States)

    Korlann, You; Dertinger, Thomas; Michalet, Xavier; Weiss, Shimon; Enderlein, Jörg

    2008-09-15

    We present a new technique, polarization-modulation dual-focus fluorescence correlation spectroscopy (pmFCS), based on the recently intro-duced dual-focus fluorescence correlation spectroscopy (2fFCS) to measure the absolute value of diffusion coefficients of fluorescent molecules at pico- to nanomolar concentrations. Analogous to 2fFCS, the new technique is robust against optical saturation in yielding correct values of the diffusion coefficient. This is in stark contrast to conventional FCS where optical saturation leads to an apparent decrease in the determined diffusion coefficient with increasing excitation power. However, compared to 2fFCS, the new technique is simpler to implement into a conventional confocal microscope setup and is compatible with cw-excitation, only needing as add-ons an electro-optical modulator and a differential interference contrast prism. With pmFCS, the measured diffusion coefficient (D) for Atto655 maleimide in water at 25?C is determined to be equal to (4.09 +/- 0.07) x 10(-6)cm(2)/s, in good agreement with the value of 4.04 x 10-6cm2/s as measured by 2fFCS.

  18. Histologic differences between orthotopic xenograft pancreas models affect Verteporfin uptake measured by fluorescence microscopy and spectroscopy

    Science.gov (United States)

    O'Hara, Julia A.; Samkoe, Kimberley S.; Chen, Alina; Isabelle, Martin; Hoopes, P. J.; Hasan, Tayyaba; Pogue, Brian W.

    2012-02-01

    Photodynamic therapy (PDT) that uses the second generation photosensitizer, verteporfin (VP), is a developing therapy for pancreatic cancer. The optimal timing of light delivery related to VP uptake and distribution in pancreatic tumors will be important information to obtain to improve treatment for this intractable disease. In this work we examined uptake and distribution of VP in two orthotopic pancreatic tumors with different histological structure. ASPC-1 (fast-growing) and Panc-1 (slower growing) tumors were implanted in SCID mice and studied when tumors were approximately 100mm3. In a pilot study, these tumors had been shown to differ in uptake of VP using lightinduced fluorescence spectroscopy (LIFS) in vivo and fluorescence imaging ex vivo and that work is extended here. In vivo fluorescence mean readings of tumor and liver increased rapidly up to 15 minutes after photosensitizer injection for both tumor types, and then continued to increase up to 60 minutes post injection to a higher level in ASPC-1 than in Panc-1. There was variability among animals with the same tumor type, in both liver and tumor uptake and no selectivity of tumor over liver. In this work we further examined VP uptake at multiple time points in relation to microvascular density and perfusion, using DiOC7 (to mark blood vessels) and VP fluorescence in the same tissue slices. Analysis of DiOC7 fluorescence indicates that AsPC-1 and Panc-1 have different vascular densities but AsPC-1 vasculature is more perfusive. Analysis of colocalized DiOC7 and VP fluorescence showed ASPC-1 with higher accumulation of VP 3 hrs after injection and more VP at a distance from blood vessels compared to Panc-1. This work shows the need for techniques to analyze photosensitizer distribution in order to optimize photodynamic therapy as an effective treatment for pancreatic tumors.

  19. Extreme ultraviolet fluorescence spectroscopy of pure and core-shell rare gas clusters at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Schroedter, Lasse

    2013-08-15

    The interaction of rare gas clusters with short-wavelength radiation of free-electron lasers (FELs) has been studied extensively over the last decade by means of electron and ion time-of-flight spectroscopy. This thesis describes the design and construction of a fluorescence spectrometer for the extreme ultraviolet (XUV) spectral range and discusses the cluster experiments performed at FLASH, the Free-electron LAser in Hamburg. Fluorescence of xenon and of argon clusters was studied, both in dependence on the FEL pulse intensity and on the cluster size. The FEL wavelength was set to the giant 4d-resonance of xenon at 13.5 nm and the FEL pulse intensity reached peak values of 2.7.10{sup 15} W/cm{sup 2}. For xenon clusters, charge states of at least 11+ were identified. For argon, charge states up to 7+ were detected. The cluster-size dependent study revealed a decrease of the fluorescence yield per atom with increasing cluster size. This decrease is explained with the help of a geometric model. It assumes that virtually the entire fluorescence yield stems from shells of ions on the cluster surface, whereas ions in the cluster core predominantly recombine non-radiatively with electrons. However, the detailed analysis of fluorescence spectra from clusters consisting of a core of Xe atoms and a surrounding shell of argon atoms shows that, in fact, a small fraction of the fluorescence signal comes from Xe ions in the cluster core. Interestingly, these ions are as highly charged as the ions in the shells of a pure Xe cluster. This result goes beyond the current understanding of charge and energy transfer processes in these systems and points toward the observation of ultrafast charging dynamics in a time window where mass spectrometry is inherently blind. (orig.)

  20. Investigation of the inclusion behavior between p-sulfoniccalix[8]arene and norfloxacin by fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xueying [School of Chemistry and Chemical Engineering, Room 204, Building 9, No. 106, Jiwei Road, University of Jinan, Jinan 250022, Shandong (China); Luo Chuannan, E-mail: chm_luocn@ujn.edu.cn [School of Chemistry and Chemical Engineering, Room 204, Building 9, No. 106, Jiwei Road, University of Jinan, Jinan 250022, Shandong (China); Lv Zhen; Lu Fuguang [School of Chemistry and Chemical Engineering, Room 204, Building 9, No. 106, Jiwei Road, University of Jinan, Jinan 250022, Shandong (China)

    2011-09-15

    The host-guest complexation between p-sulfoniccalix[8]arene (SC{sub 8}A) and norfloxacin (NFLX) in aqueous solution was investigated by fluorescence spectroscopy. Strong fluorescence intensity of the NFLX aqueous solution alone and obvious fluorescence quenching of NFLX solution in the presence of SC{sub 8}A were observed. The fluorescence lifetimes of NFLX and SC{sub 8}A-NFLX inclusion complex were determined and the effect of temperature on SC{sub 8}A-NFLX inclusion complex was studied. The static quenching of the inclusion was obtained, that is the SC{sub 8}A can form a nonfluorescent ground-state inclusion complex with NFLX. As the results show, the combined ratio (n) was 1:1 and association constant K was 1.17x10{sup 5} L/mol. Based on the experimental results, the mechanism of the inclusion complex was explored. The space matching, electrostatic force and hydrogen bond play important effects in the inclusion process. Subsequently, the addition of bovine serum albumin (BSA) solution led to the recovery of fluorescence intensity. It is indicated that BSA can liberate the NFLX into the solution by destructing the SC{sub 8}A-NFLX inclusion complex. Hence SC{sub 8}A may be used for controlled-release drug delivery in the pharmaceutical industry. - Highlights: > Fluorescence lifetimes of NFLX and SC8A-NFLX inclusion complex were determined. > Mechanism of the SC8A-NFLX inclusion complex was explored. > It is proved that SC8A can form a nonfluorescent ground-state inclusion complex with NFLX.

  1. Serial Femtosecond Crystallography and Ultrafast Absorption Spectroscopy of the Photoswitchable Fluorescent Protein IrisFP.

    Science.gov (United States)

    Colletier, Jacques-Philippe; Sliwa, Michel; Gallat, François-Xavier; Sugahara, Michihiro; Guillon, Virginia; Schirò, Giorgio; Coquelle, Nicolas; Woodhouse, Joyce; Roux, Laure; Gotthard, Guillaume; Royant, Antoine; Uriarte, Lucas Martinez; Ruckebusch, Cyril; Joti, Yasumasa; Byrdin, Martin; Mizohata, Eiichi; Nango, Eriko; Tanaka, Tomoyuki; Tono, Kensuke; Yabashi, Makina; Adam, Virgile; Cammarata, Marco; Schlichting, Ilme; Bourgeois, Dominique; Weik, Martin

    2016-03-03

    Reversibly photoswitchable fluorescent proteins find growing applications in cell biology, yet mechanistic details, in particular on the ultrafast photochemical time scale, remain unknown. We employed time-resolved pump-probe absorption spectroscopy on the reversibly photoswitchable fluorescent protein IrisFP in solution to study photoswitching from the nonfluorescent (off) to the fluorescent (on) state. Evidence is provided for the existence of several intermediate states on the pico- and microsecond time scales that are attributed to chromophore isomerization and proton transfer, respectively. Kinetic modeling favors a sequential mechanism with the existence of two excited state intermediates with lifetimes of 2 and 15 ps, the second of which controls the photoswitching quantum yield. In order to support that IrisFP is suited for time-resolved experiments aiming at a structural characterization of these ps intermediates, we used serial femtosecond crystallography at an X-ray free electron laser and solved the structure of IrisFP in its on state. Sample consumption was minimized by embedding crystals in mineral grease, in which they remain photoswitchable. Our spectroscopic and structural results pave the way for time-resolved serial femtosecond crystallography aiming at characterizing the structure of ultrafast intermediates in reversibly photoswitchable fluorescent proteins.

  2. Determination of Dynamics of Plant Plasma Membrane Proteins with Fluorescence Recovery and Raster Image Correlation Spectroscopy.

    Science.gov (United States)

    Laňková, Martina; Humpolíčková, Jana; Vosolsobě, Stanislav; Cit, Zdeněk; Lacek, Jozef; Čovan, Martin; Čovanová, Milada; Hof, Martin; Petrášek, Jan

    2016-04-01

    A number of fluorescence microscopy techniques are described to study dynamics of fluorescently labeled proteins, lipids, nucleic acids, and whole organelles. However, for studies of plant plasma membrane (PM) proteins, the number of these techniques is still limited because of the high complexity of processes that determine the dynamics of PM proteins and the existence of cell wall. Here, we report on the usage of raster image correlation spectroscopy (RICS) for studies of integral PM proteins in suspension-cultured tobacco cells and show its potential in comparison with the more widely used fluorescence recovery after photobleaching method. For RICS, a set of microscopy images is obtained by single-photon confocal laser scanning microscopy (CLSM). Fluorescence fluctuations are subsequently correlated between individual pixels and the information on protein mobility are extracted using a model that considers processes generating the fluctuations such as diffusion and chemical binding reactions. As we show here using an example of two integral PM transporters of the plant hormone auxin, RICS uncovered their distinct short-distance lateral mobility within the PM that is dependent on cytoskeleton and sterol composition of the PM. RICS, which is routinely accessible on modern CLSM instruments, thus represents a valuable approach for studies of dynamics of PM proteins in plants.

  3. What information is contained in the fluorescence correlation spectroscopy curves, and where

    Science.gov (United States)

    Khadem, S. M. J.; Hille, C.; Löhmannsröben, H.-G.; Sokolov, I. M.

    2016-08-01

    We discuss the application of fluorescence correlation spectroscopy (FCS) for characterization of anomalous diffusion of tracer particles in crowded environments. While the fact of anomaly may be detected by the standard fitting procedure, the value of the exponent α of anomalous diffusion may be not reproduced correctly for non-Gaussian anomalous diffusion processes. The important information is however contained in the asymptotic behavior of the fluorescence autocorrelation function at long and at short times. Thus, analysis of the short-time behavior gives reliable values of α and of lower moments of the distribution of particles' displacement, which allows us to confirm or reject its Gaussian nature. The method proposed was tested on the FCS data obtained in artificial crowded fluids and in living cells.

  4. Structure and dynamics of fluorescently labeled complex fluids by fourier imaging correlation spectroscopy

    Science.gov (United States)

    Grassman; Knowles; Marcus

    2000-12-01

    We present a method of Fourier imaging correlation spectroscopy (FICS) that performs phase-sensitive measurements of modulated optical signals from fluorescently labeled complex fluids. FICS experiments probe the time-dependent trajectory of a spatial Fourier component of the fluid particle density at a specified wave number k, and provide a direct route to the intermediate scattering function. The FICS approach overcomes signal sensitivity problems associated with dynamic light scattering, while offering a means to acquire time-dependent information about spatial distributions of fluorescent particles, superior in efficiency to direct imaging methods. We describe the instrumental setup necessary to perform FICS experiments, and outline the theory that establishes the connection between FICS observables and statistical mechanical quantities describing liquid state dynamics. Test measurements on monolayer suspensions of rhodamine labeled polystyrene spheres are detailed.

  5. Investigation of polymer electrolyte membrane chemical degradation and degradation mitigation using in situ fluorescence spectroscopy.

    Science.gov (United States)

    Prabhakaran, Venkateshkumar; Arges, Christopher G; Ramani, Vijay

    2012-01-24

    A fluorescent molecular probe, 6-carboxy fluorescein, was used in conjunction with in situ fluorescence spectroscopy to facilitate real-time monitoring of degradation inducing reactive oxygen species within the polymer electrolyte membrane (PEM) of an operating PEM fuel cell. The key requirements of suitable molecular probes for in situ monitoring of ROS are presented. The utility of using free radical scavengers such as CeO(2) nanoparticles to mitigate reactive oxygen species induced PEM degradation was demonstrated. The addition of CeO(2) to uncatalyzed membranes resulted in close to 100% capture of ROS generated in situ within the PEM for a period of about 7 h and the incorporation of CeO(2) into the catalyzed membrane provided an eightfold reduction in ROS generation rate.

  6. Characterization of metabolites in different kiwifruit varieties by NMR and fluorescence spectroscopy.

    Science.gov (United States)

    Abdul Hamid, Nur Ashikin; Mediani, Ahmed; Maulidiani, M; Abas, Faridah; Park, Yong Seo; Leontowicz, Hanna; Leontowicz, Maria; Namiesnik, Jacek; Gorinstein, S

    2017-05-10

    It is known from our previous studies that kiwifruits, which are used in common human diet, have preventive properties of coronary artery disease. This study describes a combination of (1)H NMR spectroscopy, multivariate data analyses and fluorescence measurements in differentiating of some kiwifruit varieties, their quenching and antioxidant properties. A total of 41 metabolites were identified by comparing with literature data Chenomx database and 2D NMR. The binding properties of the extracted polyphenols against HSA showed higher reactivity of studied two cultivars in comparison with the common Hayward. The results showed that the fluorescence of HSA was quenched by Bidan as much as twice than by other fruits. The correlation between the binding properties of polyphenols in the investigated fruits, their relative quantification and suggested metabolic pathway was established. These results can provide possible application of fruit extracts in pharmaceutical industry.

  7. Fluorescence Spectroscopy of the Retina for the Screening of Bovine Spongiform Encephalopathy.

    Science.gov (United States)

    Bhattacharjee, Ujjal; Graham, Catherine; Czub, Stefanie; Dudas, Sandor; Rasmussen, Mark A; Casey, Thomas A; Petrich, Jacob W

    2016-01-13

    Transmissible spongiform encephalopathies (TSE) are progressive, neurodegenerative disorders, of which bovine spongiform encephalopathy (BSE) is of special concern because it is infectious and debilitating to humans. The possibility of using fluorescence spectroscopy to screen for BSE in cattle was explored. Fluorescence spectra from the retinas of experimentally infected BSE-positive cattle with clinical disease were compared with those from both sham-inoculated and non-inoculated BSE-negative cattle. The distinct intensity difference of about 4-10-fold between the spectra of the BSE-positive and the BSE-negative (sham-inoculated and non-inoculated) eyes suggests the basis for a means of developing a rapid, noninvasive examination of BSE in particular and TSEs in general.

  8. X-ray fluorescence/Auger-electron coincidence spectroscopy of vacancy cascades in atomic argon

    Energy Technology Data Exchange (ETDEWEB)

    Arp, U. [National Inst. of Standards and Technology, Gaithersburg, MD (United States). Electron and Optical Physics Div.; LeBrun, T.; Southworth, S.H.; Jung, M. [Argonne National Lab., IL (United States). Physics Div.; MacDonald, M.A. [E.P.S.R.C. Daresbury Lab., Warrington (United Kingdom)

    1996-12-01

    Argon L{sub 2.3}-M{sub 2.3}M{sub 2.3} Auger-electron spectra were measured in coincidence with K{alpha} fluorescent x-rays in studies of Ar K-shell vacancy decays at several photon energies above the K-threshold and on the 1s-4p resonance in atomic argon. The complex spectra recorded by conventional electron spectroscopy are greatly simplified when recorded in coincidence with fluorescent x-rays, allowing a more detailed analysis of the vacancy cascade process. The resulting coincidence spectra are compared with Hartree-Fock calculations which include shake-up transitions in the resonant case. Small energy shifts of the coincidence electron spectra are attributed to post-collision interaction with 1s photoelectrons.

  9. Direct Vpr-Vpr Interaction in Cells monitored by two Photon Fluorescence Correlation Spectroscopy and Fluorescence Lifetime Imaging

    Directory of Open Access Journals (Sweden)

    Mély Yves

    2008-09-01

    Full Text Available Abstract Background The human immunodeficiency virus type 1 (HIV-1 encodes several regulatory proteins, notably Vpr which influences the survival of the infected cells by causing a G2/M arrest and apoptosis. Such an important role of Vpr in HIV-1 disease progression has fuelled a large number of studies, from its 3D structure to the characterization of specific cellular partners. However, no direct imaging and quantification of Vpr-Vpr interaction in living cells has yet been reported. To address this issue, eGFP- and mCherry proteins were tagged by Vpr, expressed in HeLa cells and their interaction was studied by two photon fluorescence lifetime imaging microscopy and fluorescence correlation spectroscopy. Results Results show that Vpr forms homo-oligomers at or close to the nuclear envelope. Moreover, Vpr dimers and trimers were found in the cytoplasm and in the nucleus. Point mutations in the three α helices of Vpr drastically impaired Vpr oligomerization and localization at the nuclear envelope while point mutations outside the helical regions had no effect. Theoretical structures of Vpr mutants reveal that mutations within the α-helices could perturb the leucine zipper like motifs. The ΔQ44 mutation has the most drastic effect since it likely disrupts the second helix. Finally, all Vpr point mutants caused cell apoptosis suggesting that Vpr-mediated apoptosis functions independently from Vpr oligomerization. Conclusion We report that Vpr oligomerization in HeLa cells relies on the hydrophobic core formed by the three α helices. This oligomerization is required for Vpr localization at the nuclear envelope but not for Vpr-mediated apoptosis.

  10. Fluorescence spectroscopy as a tool for quality assessment of humic substances

    Science.gov (United States)

    Boguta, Patrycja

    2016-04-01

    *The studies were partly carried out within the framework of a research project. The project was financed from funds of National Science Center on the base of decision number DEC-2013/11/D/NZ9/02545. Fluorescence spectroscopy belongs to modern, non-destructive, rapid and relatively cheap methods, as well as for many years it was successfully used in studies of organic compounds in the fields of medicine, biology and chemistry. On the other hand, soil organic matter is a group of compounds with a complex spatial structure showing a large number of groups with different kinds of fluorophores. This could suggest the possibility of application of fluorescence spectroscopy in assessing the quality of humic substances as well as in monitoring of their chemical transformations. The aim of study was chemical description of humic and fulvic acids based on fluorescence spectra, as well as an attempt of evaluation of changes occurring under the influence of different pH and during interactions with various concentrations of metal. The humic and fulvic acids were isolated from chemically different soils. The measurements were carried out on Hitachi fluorescence spectrometer in solutions with a concentration of humic acids 40mg dm-3, at pH from 3 to 7, and for the evaluation of the metal impact: with increasing Zn concentrations (0-50mg dm-3). The fluorescence spectra were recorded in the form of synchronous and emission-excitation matrices (EEM). Studies have shown the presence of different groups of fluorophores. Synchronous spectra were characterized by a well-separated bands showing fluorescence in the area of low, medium and high wavelengths, suggesting the presence of structures, both weakly and strongly humified. EEM spectra revealed map of fluorophores within wide ranges of emission and excitation. Fluorophores differed in both position and intensity. The highest intensity was observed for compounds with the lowest humification degree which might be due to high amount

  11. Analysis of the Peiting Woman Using Portable X-Ray Fluorescence Spectroscopy

    Directory of Open Access Journals (Sweden)

    Bauerochse, Andreas

    2013-04-01

    Full Text Available Portable X-ray Fluorescence Spectroscopy was applied to the skeletal remains of 13 bog bodies and their bog burial environments. The objective was to create a better understanding of Northern European bog environmental chemistry and its diagenetic effects on interred bog bodies, determine bog body geographic disparity and/or origin, and identify if post-discovery preservation procedures were applied to the bog body remains. This paper summarizes the findings for one of those 13 bog bodies: the Peiting Woman from Bavaria, Germany. The elements analyzed include Antimony, Cobalt, Copper, Iron, Manganese, Molybdenum, Lead, Strontium, Titanium, Zinc, and Zirconium.

  12. Interactions of hypericin with a model mutagen - Acridine orange analyzed by light absorption and fluorescence spectroscopy

    Science.gov (United States)

    Pietrzak, Monika; Szabelski, Mariusz; Kasparek, Adam; Wieczorek, Zbigniew

    2017-02-01

    The present study was designed to estimate the ability of hypericin to interact with a model mutagen - acridine orange. The hetero-association of hypericin and acridine orange was investigated with absorption and fluorescence spectroscopy methods in aqueous solution of DMSO. The data indicate that hypericin forms complexes with acridine orange and that the association constants are relatively high and depend on DMSO concentration. The absorption spectra of the hypericin - acridine orange complexes were examined as well. Owing to its ability to interact with flat aromatic compounds, hypericin may potentially be used as an interceptor molecule.

  13. Recent Developments in Fluorescence Correlation Spectroscopy for Diffusion Measurements in Planar Lipid Membranes

    Directory of Open Access Journals (Sweden)

    Martin Hof

    2010-01-01

    Full Text Available Fluorescence correlation spectroscopy (FCS is a single molecule technique used mainly for determination of mobility and local concentration of molecules. This review describes the specific problems of FCS in planar systems and reviews the state of the art experimental approaches such as 2-focus, Z-scan or scanning FCS, which overcome most of the artefacts and limitations of standard FCS. We focus on diffusion measurements of lipids and proteins in planar lipid membranes and review the contributions of FCS to elucidating membrane dynamics and the factors influencing it, such as membrane composition, ionic strength, presence of membrane proteins or frictional coupling with solid support.

  14. Detection of citrus canker and Huanglongbing using fluorescence imaging spectroscopy and support vector machine technique.

    Science.gov (United States)

    Wetterich, Caio Bruno; Felipe de Oliveira Neves, Ruan; Belasque, José; Marcassa, Luis Gustavo

    2016-01-10

    Citrus canker and Huanglongbing (HLB) are citrus diseases that represent a serious threat to the citrus production worldwide and may cause large economic losses. In this work, we combined fluorescence imaging spectroscopy (FIS) and a machine learning technique to discriminate between these diseases and other ordinary citrus conditions that may be present at citrus orchards, such as citrus scab and zinc deficiency. Our classification results are highly accurate when discriminating citrus canker from citrus scab (97.8%), and HLB from zinc deficiency (95%). These results show that it is possible to accurately identify citrus diseases that present similar symptoms.

  15. High-Resolution Spectroscopy of Laser Ablation Plumes Using Laser-Induced Fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, Sivanandan S.; LaHaye, Nicole L.; Phillips, Mark C.

    2017-02-06

    We used a CW laser as a narrow-band (~50kHz) tunable LIF excitation source to probe absorption from selected atomic transitions (Al, U etc. ) in a ns laser ablation plume. A comparison of fluorescence signal with respect to emission spectroscopy show significant increase in the magnitude and persistence from selected Al and U transitions in a LIBS plume. The high spectral resolution provided by the LIF measurement allows peaks to be easily separated even if they overlap in the emission spectra.

  16. Detection of orange juice frauds using front-face fluorescence spectroscopy and Independent Components Analysis.

    Science.gov (United States)

    Ammari, Faten; Redjdal, Lamia; Rutledge, Douglas N

    2015-02-01

    The aim of this study was to find simple objective analytical methods to assess the adulteration of orange juice by grapefruit juice. The adulterations by addition of grapefruit juice were studied by 3D-front-face fluorescence spectroscopy followed by Independent Components Analysis (ICA) and by classical methods such as free radical scavenging activity and total flavonoid content. The results of this study clearly indicate that frauds by adding grapefruit juice to orange juice can be detected at percentages as low as 1%.

  17. Steady-state tryptophan fluorescence spectroscopy study to probe tertiary structure of proteins in solid powders.

    Science.gov (United States)

    Sharma, Vikas K; Kalonia, Devendra S

    2003-04-01

    The purpose of this work was to obtain information about protein tertiary structure in solid state by using steady state tryptophan (Trp) fluorescence emission spectroscopy on protein powders. Beta-lactoglobulin (betaLg) and interferon alpha-2a (IFN) powder samples were studied by fluorescence spectroscopy using a front surface sample holder. Two different sets of dried betaLg samples were prepared by vacuum drying of solutions: one containing betaLg, and the other containing a mixture of betaLg and guanidine hydrochloride. Dried IFN samples were prepared by vacuum drying of IFN solutions and by vacuum drying of polyethylene glycol precipitated IFN. The results obtained from solid samples were compared with the emission scans of these proteins in solutions. The emission scans obtained from protein powders were slightly blue-shifted compared to the solution spectra due to the absence of water. The emission scans were red-shifted for betaLg samples dried from solutions containing GuHCl. The magnitude of the shifts in lambda(max) depended on the extent of drying of the samples, which was attributed to the crystallization of GuHCl during the drying process. The shifts in the lambda(max) of the Trp emission spectrum are associated with the changes in the tertiary structure of betaLg. In the case of IFN, the emission scans obtained from PEG-precipitated and dried sample were different compared to the emission scans obtained from IFN in solution and from vacuum dried IFN. The double peaks observed in this sample were attributed to the unfolding of the protein. In the presence of trehalose, the two peaks converged to form a single peak, which was similar to solution emission spectra, whereas no change was observed in the presence of mannitol. We conclude that Trp fluorescence spectroscopy provides a simple and reliable means to characterize Trp microenvironment in protein powders that is related to the tertiary conformation of proteins in the solid state. This study shows

  18. Study on the interaction of anticancer drug mitoxantrone with DNA by fluorescence and Raman spectroscopies

    Institute of Scientific and Technical Information of China (English)

    Lingjuan Tang; Zhenrong Sun; Jianyu Guo; Zugeng Wang

    2006-01-01

    @@ Mitoxantrone, a clinically useful antitumour antibiotic for leukaemia and breast cancer, has received more attentions. In this paper, the interaction between mitoxantrone and calf thymus DNA is investigated by Raman and fluorescence spectroscopies, and the binding site of mitoxantrone to calf thymus DNA is explored. The results showed that mitoxantrone interacts with calf thymus DNA bases by the intercalation of anthracycline into the base pair plane of adenine (A) and thymine (T), and it results in the disruption of the hydrogen bonds between calf thymus DNA bases, and thus the calf thymus DNA double-strand can be disrupted into the B-form DNA double-strand segments.

  19. Metastable Magnesium fluorescence spectroscopy using a frequency-stabilized 517 nm laser

    DEFF Research Database (Denmark)

    He, Ming; Jensen, Brian B; Therkildsen, Kasper T

    2009-01-01

    We present a laser operating at 517 nm for our Magnesium laser-cooling and atomic clock project. A two-stage Yb-doped fiber amplifier (YDFA) system generates more than 1.5 W of 1034 nm light when seeded with a 15 mW diode laser. Using a periodically poled lithium niobate (PPLN) waveguide, we...... obtained more than 40 mW of 517 nm output power by single pass frequency doubling. In addition, fluorescence spectroscopy of metastable magnesium atoms could be used to stabilize the 517 nm laser to an absolute frequency within 1 MHz....

  20. In-situ assessment of metal contamination via portable X-ray fluorescence spectroscopy: Zlatna, Romania.

    Science.gov (United States)

    Weindorf, David C; Paulette, Laura; Man, Titus

    2013-11-01

    Zlatna, Romania is the site of longtime mining/smelting operations which have resulted in widespread metal pollution of the entire area. Previous studies have documented the contamination using traditional methods involving soil sample collection, digestion, and quantification via inductively coupled plasma atomic emission spectroscopy or atomic absorption. However, field portable X-ray fluorescence spectroscopy (PXRF) can accurately quantify contamination in-situ, in seconds. A PXRF spectrometer was used to scan 69 soil samples in Zlatna across multiple land use types. Each site was georeferenced with data inputted into a geographic information system for high resolution spatial interpolations. These models were laid over contemporary aerial imagery to evaluate the extent of pollution on an individual elemental basis. Pb, As, Co, Cu, and Cd exceeded governmental action limits in >50% of the sites scanned. The use of georeferenced PXRF data offers a powerful new tool for in-situ assessment of contaminated soils.

  1. On-Line Monitoring of Fermentation Processes by Near Infrared and Fluorescence Spectroscopy

    DEFF Research Database (Denmark)

    Svendsen, Carina

    Monitoring and control of fermentation processes is important to ensure high product yield, product quality and product consistency. More knowledge on on-line analytical techniques such as near infrared and fluorescence spectroscopy is desired in the fermentation industry to increase the efficiency...... of on-line monitoring systems. The primary aim of this thesis is to elucidate and explore the dynamics in fermentation processes by spectroscopy. Though a number of successful on-line lab-scale monitoring systems have been reported, it seems that several challenges are still met, which limits the number...... for on-line monitoring if corrections or preventive measures during the quantification are carried out. The findings presented in this thesis have enabled the possibility of obtaining a better process understanding and to ease monitoring and controlling of fermentation processes....

  2. [Discussion on diagenesis of Xilingang pluton-constrained by X-ray Fluorescence spectroscopy, plasma mass spectrometry and Raman spectroscopy].

    Science.gov (United States)

    Tang, Yu-Kun; Chen, Guo-Neng; Zhang, Ke; Huang, Hai-Hua

    2013-05-01

    The results on Xilingang pluton, mainly consisting of red beds, granites containing numerous debris of red beds and granites, obtained by X-ray fluorescence spectroscopy, plasma mass spectrometry and Raman spectroscopy show: (1) Xilingang pluton from red beds, granites containing numerous debris of red beds to granites has obvious characteristics of decreasing silicon and alkali content, and rising ignition loss, dark mineral content and oxidation index; (2) Chondrite-normalized REE distribution curves and primitive mantle-normalized spider diagram for trace elements of redbed, granites containing numerous debris of red beds and granites have a good consistency, the distribution characteristics of elements are similar to Nanling transformation-type granite; (3) The value of Raman spectrogram characteristic peak of quartz crystal in Xilingang granite decreased from the center of quartz crystal, and FWHM is steady. According to the above, the authors believe that Xilingang granite formed was related to in-situ melting of red beds and underlying strata and magma consolidation. Volatile components were discharged continuously, and oxidation index decreased gradually in the melting process. In the process of diagenesis, the top of pluton tend to be an ongoing silicon and alkali increase, while TFeO and MgO continue to migrate to bottom, and crystallization environment is a relatively closed and steady system.

  3. Synthesis, spectroscopy and photochemistry of novel branched fluorescent nitro-stilbene derivatives with benzopheonone groups.

    Science.gov (United States)

    Gao, Fang; Liu, Jian; Peng, Huayong; Hu, Nvdan; Li, Hongru; Zhang, Shengtao

    2010-05-01

    In this article, we presented novel nitro-stilbene derivatives with one or two benzophenone groups as photoinitiators via multi-steps synthesis. The ultraviolet/visible spectroscopy and the emission spectroscopy of the compounds were determined in various solvents. The results showed that the ultraviolet/visible absorption spectroscopy of the derivatives with benzophenone moiety displayed overlap effects of nitro-stilbene and benzophenone parts. In non-polar solvents, the derivatives exhibited strong emission, while they displayed weak emission in modest and strong polar solvents. Dyes-linked benzopheonone groups displayed stronger fluorescence emission than simple chromophore parent molecules. Visible-light photoinitiating effects of the derivatives were investigated extensively. Methyl methacrylate could be photoinitiated efficiently by the derivatives with benzophenone moieties at very low concentration, even at 1 x 10(-5) mol/L. While the photopolymerization efficiency of styrene initiated by the derivatives was lower than that of methyl methacrylate. Our results showed that the dye-linked photoinitators had more efficient photoinitiating than the simple mixture of dye and photoinitator. Furthermore, the derivative with two benzophenone groups displayed more excellent photoiniatiating effects than the derivative with one benzophenone group. Thermodynamics driving for the occurrence of visible-light photoinduced intramolecular electron transfer from chromophore part to benzophenone part was evaluated. Benzopinacol moiety produced in photoreaction was confirmed by nuclear magnetic resonant spectroscopy. Thermal stability of the derivatives was analyzed.

  4. Dynamic fluorescence spectroscopy on single tryptophan mutants of EIImtl in detergent micelles : Effects of substrate binding and phosphorylation on the fluorescence and anisotropy decay

    NARCIS (Netherlands)

    Swaving Dijkstra, Dolf; Broos, J.; Visser, Antonie J.W.G.; van Hoek, A.; Robillard, George

    1997-01-01

    The effects of substrate and substrate analogue binding and phosphorylation on the conformational dynamics of the mannitol permease of Escherichia coli were investigated, using time-resolved fluorescence spectroscopy on mutants containing five single tryptophans situated in the membrane-embedded C d

  5. Potential application of synchronous fluorescence spectroscopy to determine benzo[a]pyrene in soil extracts

    Energy Technology Data Exchange (ETDEWEB)

    Hua Guoxiong [School of Biology, Institute for Research on the Environment and Sustainability, Devonshire Building, University of Newcastle upon Tyne, NE1 7RU (United Kingdom); Killham, Ken [Department of Plant and Soil Science, Cruickshank Building, University of Aberdeen, AB24 3UU (United Kingdom); Singleton, Ian [School of Biology, Institute for Research on the Environment and Sustainability, Devonshire Building, University of Newcastle upon Tyne, NE1 7RU (United Kingdom)]. E-mail: ian.singleton@ncl.ac.uk

    2006-01-15

    Benzo[a]pyrene (BaP) is a significant environmental pollutant and rapid, accurate methods to quantify this compound in soil for both research and environmental investigation purposes are required. In this work, solvent extracts from five contrasting soils spiked with four different polycyclic aromatic hydrocarbons (PAHs) were rapidly analysed by using a synchronous fluorescence spectroscopy (SFS) method. The SFS method was validated using HPLC with ultraviolet detection. A good correlation for the quantification of BaP in soil extracts by the two methods was observed. The detection limit of the SFS method was 1.6 x 10{sup -9} g/ml in CTAB micellar medium (7.8 mmol/l). The work demonstrates that SFS has potential as a sensitive, accurate, rapid, simple and economic methodology and an efficient alternative to HPLC for fast confirmation and quantification of BaP in complex soil extracts. - Synchronous fluorescence spectroscopy has potential as a method for confirmation of benzo[a]pyrene in soil extracts.

  6. Z-scan fluorescence correlation spectroscopy as a tool for diffusion measurements in planar lipid membranes.

    Science.gov (United States)

    Steinberger, Tomáš; Macháň, Radek; Hof, Martin

    2014-01-01

    Studies of lateral diffusion are used for the characterization of the dynamics of biological membranes. One of the techniques that can be used for this purpose is fluorescence correlation spectroscopy (FCS), which belongs to the single-molecule techniques. Unfortunately, FCS measurements, when performed in planar lipid systems, are associated with a few sources of inaccuracy in the determination of the lateral diffusion coefficient. The main problems are related to the imperfect positioning of the laser focus relative to the plane of the sample. Another source of inaccuracy is the requirement for external calibration of the detection volume size. This protocol introduces a calibration-free method called Z-scan fluorescence correlation spectroscopy (Z-scan FCS), which is based on the determination of the diffusion time and particle number in steps along the optical (z-) axis by sequential FCS measurements. Z-scan FCS could be employed for diffusion measurements in planar membrane model systems-supported phospholipid bilayers (SPBs) and giant unilamellar vesicles (GUVs) and also in biological membranes. A result from measurements in SPBs is also presented in the protocol as a principle example of the Z-scan technique.

  7. Vectorized data acquisition and fast triple-correlation integrals for Fluorescence Triple Correlation Spectroscopy.

    Science.gov (United States)

    Ridgeway, William K; Millar, David P; Williamson, James R

    2013-04-01

    Fluorescence Correlation Spectroscopy (FCS) is widely used to quantitate reaction rates and concentrations of molecules in vitro and in vivo. We recently reported Fluorescence Triple Correlation Spectroscopy (F3CS), which correlates three signals together instead of two. F3CS can analyze the stoichiometries of complex mixtures and detect irreversible processes by identifying time-reversal asymmetries. Here we report the computational developments that were required for the realization of F3CS and present the results as the Triple Correlation Toolbox suite of programs. Triple Correlation Toolbox is a complete data analysis pipeline capable of acquiring, correlating and fitting large data sets. Each segment of the pipeline handles error estimates for accurate error-weighted global fitting. Data acquisition was accelerated with a combination of off-the-shelf counter-timer chips and vectorized operations on 128-bit registers. This allows desktop computers with inexpensive data acquisition cards to acquire hours of multiple-channel data with sub-microsecond time resolution. Off-line correlation integrals were implemented as a two delay time multiple-tau scheme that scales efficiently with multiple processors and provides an unprecedented view of linked dynamics. Global fitting routines are provided to fit FCS and F3CS data to models containing up to ten species. Triple Correlation Toolbox is a complete package that enables F3CS to be performed on existing microscopes.

  8. UV laser-induced fluorescence spectroscopy and laser Doppler flowmetry in the diagnostics of alopecia

    Science.gov (United States)

    Skomorokha, Diana P.; Pigoreva, Yulia N.; Salmin, Vladimir V.

    2016-04-01

    Development of optical biopsy methods has a great interest for medical diagnostics. In clinical and experimental studies it is very important to analyze blood circulation quickly and accurately, thereby laser Doppler flowmetry (LDF) is widely used. UV laser-induced fluorescence spectroscopy (UV LIFS) is express highly sensitive and widely-spread method with no destructive impact, high excitation selectivity and the possibility to use in highly scattering media. The goal of this work was to assess a correlation of UV laser-induced fluorescence spectroscopy and laser Doppler flowmetry parameters, and a possibility to identify or to differentiate various types of pathological changes in tissues according to their autofluorescence spectra. Three groups of patients with diffuse (symptomatic) alopecia, androgenic alopecia, and focal alopecia have been tested. Each groups consisted of not less than 20 persons. The measurements have been done in the parietal and occipital regions of the sculls. We used the original automated spectrofluorimeter to record autofluorescence spectra, and standard laser Doppler flowmeter BLF-21 (Transonic Systems, Inc., USA) to analyze the basal levels of blood circulation. Our results show that UV LIFS accurately distinguishes the zones with different types of alopecia. We found high correlation of the basal levels of blood circulation and the integrated intensity of autofluorescence in the affected tissue.

  9. Study of high density polyethylene under UV irradiation or mechanical stress by fluorescence spectroscopy; Etude du comportement du polyethylene haute densite sous irradiation ultraviolette ou sollicitation mecanique par spectroscopie de fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Douminge, L.

    2010-05-15

    Due to their diversity and their wide range of applications, polymers have emerged in our environment. For technical applications, these materials can be exposed to aggressive environment leading to an alteration of their properties. The effects of this degradation are linked to the concept of life duration, corresponding to the time required for a property to reach a threshold below which the material becomes unusable. Monitoring the ageing of polymer materials constitute a major challenge. Fluorescence spectroscopy is a technique able to provide accurate information concerning this issue. In this study, emphasis was placed on the use of fluorescence spectroscopy to study the phenomena involved in either the UV radiation or mechanical stresses of a polymer. In the case of high density polyethylene, the lack of intrinsic fluorescent signal leads to the use of a dye. This dye gives a fluorescent response depending on its microenvironment. All modifications in the macromolecular chain generate a shift of the fluorescent peak. This work can be dissociated in two major parts, on one hand the influence of UV aging on the fluorescent response and in another hand the influence of mechanical stresses. In the first part, complementary analyses like FTIR or DSC are used to correlate fluorescent results with known photo degradation mechanisms. The results show the great sensibility of the technique to the microstructural rearrangement in the polymer. In the second part, the dependence between the stress and the fluorescence emission gives opportunity to evaluate internal stresses in the material during cyclic solicitations. (author)

  10. Properties of baculovirus particles displaying GFP analyzed by fluorescence correlation spectroscopy.

    Science.gov (United States)

    Toivola, Jouni; Ojala, Kirsi; Michel, Patrik O; Vuento, Matti; Oker-Blom, Christian

    2002-12-01

    Recombinant baculovirus particles displaying green fluorescent protein (GFP) fused to the major envelope glycoprotein gp64 of the Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) were characterized by fluorescence correlation spectroscopy (FCS). FCS detected Brownian motion of single, intact recombinant baculovirus display particles with a diffusion coefficient (D) of (2.89 +/- 0.74) x 10(-8) cm2s(-1) and an apparent hydrodynamic radius of 83.35 +/- 21.22 nm. In the presence of sodium dodecyl sulfate (SDS), Triton X-100, and octylglucoside, the diffusion time was reduced to the 0.2 ms range (D = 7.57 x 10(-7) cm2s(-1)), showing that the fusion proteins were anchored in the viral envelope. This allowed for a calculation of the number of single gp64 fusion proteins incorporated in the viral membrane. A mean value of 3.2 fluorescent proteins per virus particle was obtained. Our results show that FCS is the method of choice for studying enveloped viruses such as a display virus with one component being GFP.

  11. Detection of polycyclic aromatic hydrocarbons (PAHs) in raw menhaden fish oil using fluorescence spectroscopy: Method development.

    Science.gov (United States)

    Pena, Edwin A; Ridley, Lauren M; Murphy, Wyatt R; Sowa, John R; Bentivegna, Carolyn S

    2015-09-01

    Raw menhaden fish oil was developed for biomonitoring polycyclic aromatic hydrocarbons (PAHs) using fluorescence spectroscopy. Menhaden (Genus Brevoortia) were collected in 2010 and/or 2011 from Delaware Bay, New Jersey, USA; James River, Virginia, USA; Vermillion Bay, Louisiana, USA (VBLA); and Barataria Bay, Louisiana, USA (BBLA). Barataria Bay, Louisiana received heavy oiling from the Deepwater Horizon oil spill. Method development included determining optimal wavelengths for PAH detection, fish oil matrix interferences, and influence of solvent concentration on extraction. Results showed that some fish oils contained high molecular weight PAH-like compounds in addition to other fluorescent compounds such as albumin and vitamin A and vitamin E. None of these naturally occurring compounds interfered with detection of high molecular weight PAHs. However, data suggested that the lipid component of fish oil was altering fluorescence spectra by supporting the formation of PAH excimers. For example, the most intense excitation wavelength for hydroxypyrene shifted from Ex285/Em430 to Ex340/Em430. Comparison of Deepwater Horizon crude oil and fish oil spectra indicated that some fish oils contained crude oil-like PAHs. Using wavelengths of Ex360/Em430, fish oil concentrations were calculated as 3.92 μg/g, 0.61 μg/g, and 0.14 μg/g for a Delaware Bay sample, BBLA 2011, and VBLA 2011, respectively. Overall, these results supported using menhaden fish oil to track PAH exposures spatially and temporally.

  12. Two-Dimensional Fluorescence Difference Spectroscopy to Characterize Nanoparticles and their Interactions

    Science.gov (United States)

    Hurst, Miranda N.; Delong, Robert K.

    2016-09-01

    Two dimensional fluorescence difference spectroscopy (2D FDS) detects nanoparticle interactions following surface functionalization and biomolecule loading by generating a spectral signature of the fluorescent intensity per excitation and emission wavelengths. Comparing metal oxide nanoparticles revealed a unique spectral signature per material composition. 2D FDS showed to be sensitive to changes in surface properties between ZnO NPs synthesized by different methods. ZnO NP loaded with glycol chitosan, polyacrylic acid (PAA), or methoxy polyethylene glycol (mPEG) exhibited a distinct spectral signature shift. ZnO NP loaded with Torula Yeast RNA (TYRNA)(640 nm), polyinosinic: polycytidylic acid (pIC)(680 nm), or splice switching oligonucleotide (SSO)(650 nm) each revealed a shift in emission. Ras-Binding domain (RBD) at three concentrations (25, 37.5, 50 μg/mL) showed that fluorescent intensity was inversely related to the concentration of protein loaded. These data support 2D FDS as a novel technique in identifying nanoparticles and their surface interactions as a quality assurance tool.

  13. Use of time-resolved fluorescence spectroscopy to evaluate diagnostic value of collagen degradation products.

    Science.gov (United States)

    Sikora, Joanna; Cyrankiewicz, Michał; Wybranowski, Tomasz; Ziomkowska, Blanka; Ośmiałowski, Borys; Obońska, Ewa; Augustyńska, Beata; Kruszewski, Stefan; Kubica, Jacek

    2015-05-01

    The concentration of collagen degradation products (CDPs) may reflect the process of left ventricular remodeling (LVR). The aim of this study was to evaluate the potential diagnostic usefulness of time-resolved fluorescence spectroscopy (TRFS) in assessment of CDPs. The preliminary experiment was designed to establish if CDPs’ characteristics might be visible by mean fluorescence lifetime (FLT) in determined conditions. The in vitro model of CDPs was prepared by conducting the hydrolysis of type III collagen. The FLT of samples was measured by the time-resolved spectrometer Life Spec II with the subnanosecond pulsed 360-nm EPLED diode. The FLTs were obtained by deconvolution analysis of the data using a multiexponential model of fluorescence decay. In order to determine the limit of traceability of CDPs, a comparison of different collagen/plasma ratio in samples was performed. The results of our study showed that the increase of added plasma to hydrolyzed collagen extended the mean FLT. Thus, the diagnosis of LVR based on measurements using TRFS is possible. However, it is important to point out the experiment was preliminary and further investigation in this field of research is crucial.

  14. Pancreatic tumor detection using hypericin-based fluorescence spectroscopy and cytology

    Science.gov (United States)

    Lavu, Harish; Geary, Kevin; Fetterman, Harold R.; Saxton, Romaine E.

    2005-04-01

    Hypericin is a novel, highly fluorescent photosensitizer that exhibits selective tumor cell uptake properties and is particularly resistant to photobleaching. In this study, we have characterized hypericin uptake in human pancreatic tumor cells with relation to incubation time, cell number, and drug concentration. Ex vivo hypericin based fluorescence spectroscopy was performed to detect the presence of MIA PaCa-2 pancreatic tumor cells in the peritoneal cavity of BALB/c nude mice, as well as to quantify gross tumor burden. Hypericin based cytology of peritoneal lavage samples, using both one and two photon laser confocal microscopy, demonstrated more than a two-fold increase in fluorescence emission of pancreatic tumor cells as compared to control samples. In vitro treatment of pancreatic cancer cells with hypericin based photodynamic therapy showed tumor cell cytotoxicity in a drug dose, incident laser power, and time dependent manner. For these experiments, a continuous wavelength solid-state laser source (532 nm) was operated at power levels in the range of 100-400 mW. Potential applications of hypericin in tumor diagnosis, staging, and therapy will be presented.

  15. Binding mechanism of PicoGreen to DNA characterized by magnetic tweezers and fluorescence spectroscopy.

    Science.gov (United States)

    Wang, Ying; Schellenberg, Helene; Walhorn, Volker; Toensing, Katja; Anselmetti, Dario

    2017-09-01

    Fluorescent dyes are broadly used in many biotechnological applications to detect and visualize DNA molecules. However, their binding to DNA alters the structural and nanomechanical properties of DNA and, thus, interferes with associated biological processes. In this work we employed magnetic tweezers and fluorescence spectroscopy to investigate the binding of PicoGreen to DNA at room temperature in a concentration-dependent manner. PicoGreen is an ultrasensitive quinolinium nucleic acid stain exhibiting hardly any background signal from unbound dye molecules. By means of stretching and overwinding single, torsionally constrained, nick-free double-stranded DNA molecules, we acquired force-extension and supercoiling curves which allow quantifying DNA contour length, persistence length and other thermodynamical binding parameters, respectively. The results of our magnetic tweezers single-molecule binding study were well supported through analyzing the fluorescent spectra of stained DNA. On the basis of our work, we could identify a concentration-dependent bimodal binding behavior, where, apparently, PicoGreen associates to DNA as an intercalator and minor-groove binder simultaneously.

  16. A system for endoscopic mechanically scanned localized proton MR and light-induced fluorescence emission spectroscopies

    Science.gov (United States)

    Sonmez, Ahmet E.; Webb, Andrew G.; Spees, William M.; Ozcan, Alpay; Tsekos, Nikolaos V.

    2012-09-01

    Molecular and near-cellular modalities offer new opportunities in assessing living tissue in situ, and multimodality approaches, which offer complementary information, may lead to improved characterization of tissue pathophysiology benefiting diagnosis and focal therapy. However, many such modalities are limited by their low penetration through tissue, which has led to minimally invasive trans-cannula approaches to place the corresponding sensors locally at the area of interest. This work presents a system for performing localized fluorescence emission and proton magnetic resonance (MR) spectroscopies via endoscopic access. The in-house developed side-firing 1.9-mm wide dual-sensor integrates a three-fiber optical sensor for fluorescence emission optical spectroscopy and a 1-mm circular radiofrequency (RF) coil for localized MR proton spectroscopy. An MR-compatible manipulator was developed for carrying and mechanically translating the dual-sensor along a linear access channel. The hardware and software control of the system allows reconfigurable synchronization of the manipulator-assisted translation of the sensor, and MR and optical data collection. The manipulator serves as the mechanical link for the three modalities and MR images, MR spectra and optical spectra are inherently co-registered to the MR scanner coordinate system. These spectra were then used to generate spatio-spectral maps of the fluorophores and proton MR-signal sources in three-compartment phantoms with optically- and MR-visible, and distinguishable, materials. These data demonstrate a good spatial match between MR images, MR spectra and optical spectra along the scanned path. In addition to basic research, such a system may have clinical applications for assessing and characterizing cancer in situ, as well as guiding focal therapies.

  17. Chemometric classification of Chinese lager beers according to manufacturer based on data fusion of fluorescence, UV and visible spectroscopies.

    Science.gov (United States)

    Tan, Jin; Li, Rong; Jiang, Zi-Tao

    2015-10-01

    We report an application of data fusion for chemometric classification of 135 canned samples of Chinese lager beers by manufacturer based on the combination of fluorescence, UV and visible spectroscopies. Right-angle synchronous fluorescence spectra (SFS) at three wavelength difference Δλ=30, 60 and 80 nm and visible spectra in the range 380-700 nm of undiluted beers were recorded. UV spectra in the range 240-400 nm of diluted beers were measured. A classification model was built using principal component analysis (PCA) and linear discriminant analysis (LDA). LDA with cross-validation showed that the data fusion could achieve 78.5-86.7% correct classification (sensitivity), while those rates using individual spectroscopies ranged from 42.2% to 70.4%. The results demonstrated that the fluorescence, UV and visible spectroscopies complemented each other, yielding higher synergic effect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Fluorescence spectroscopy: a powerful technique for the noninvasive characterization of artwork.

    Science.gov (United States)

    Romani, Aldo; Clementi, Catia; Miliani, Costanza; Favaro, Gianna

    2010-06-15

    very small amounts of sample, either in a laboratory setting or on site. Thus, a new technological highway is open to scientists; it is still difficult to navigate but offers an enormous potential for investigating objects without touching them. Fluorescence spectroscopy is one of the most important of these techniques.

  19. Diffusion behavior of the fluorescent proteins eGFP and Dreiklang in solvents of different viscosity monitored by fluorescence correlation spectroscopy

    Science.gov (United States)

    Junghans, Cornelia; Schmitt, Franz-Josef; Vukojević, Vladana; Friedrich, Thomas

    2016-12-01

    Fluorescence correlation spectroscopy relies on temporal autocorrelation analysis of fluorescence intensity fluctuations that spontaneously arise in systems at equilibrium due to molecular motion and changes of state that cause changes in fluorescence, such as triplet state transition, photoisomerization and other photophysical transformations, to determine the rates of these processes. The stability of a fluorescent molecule against dark state conversion is of particular concern for chromophores intended to be used as reference tags for comparing diffusion processes on multiple time scales. In this work, we analyzed properties of two fluorescent proteins, the photoswitchable Dreiklang and its parental eGFP, in solvents of different viscosity to vary the diffusion time through the observation volume element by several orders of magnitude. In contrast to eGFP, Dreiklang undergoes a dark-state conversion on the time scale of tens to hundreds of microseconds under conditions of intense fluorescence excitation, which results in artificially shortened diffusion times if the diffusional motion through the observation volume is sufficiently slowed down. Such photophysical quenching processes have also been observed in FCS studies on other photoswitchable fluorescent proteins including Citrine, from which Dreiklang was derived by genetic engineering. This property readily explains the discrepancies observed previously between the diffusion times of eGFP- and Dreiklang-labeled plasma membrane protein complexes.

  20. Steady state and time-resolved fluorescence spectroscopy of quinine sulfate dication bound to sodium dodecylsulfate micelles: Fluorescent complex formation

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Sunita; Pant, Debi D., E-mail: ddpant@pilani.bits-pilani.ac.in

    2014-01-15

    Interaction of quinine sulfate dication (QSD) with anionic, sodium dodecylsulphate (SDS) surfactant has been studied at different premicellar, micellar and postmicellar concentrations in aqueous phase using steady state, time-resolved fluorescence and fluorescence anisotropy techniques. At premicellar concentrations of SDS, the decrease in absorbance, appearance of an extra fluorescence band at lower wavelengths and tri-exponential decay behavior of fluorescence, are attributed to complex formation between QSD molecules and surfactant monomers. At postmicellar concentrations the red shift in fluorescence spectrum, increase in quantum yield and increase in fluorescence lifetimes are attributed to incorporation of solute molecules to micelles. At lower concentrations of SDS, a large shift in fluorescence is observed on excitation at the red edge of absorption spectrum and this is explained in terms of distribution of ion pairs of different energies in the ground state and the observed fluorescence lifetime behavior corroborates with this model. The temporal fluorescence anisotropy decay of QSD in SDS micelles allowed determination of restriction on the motion of the fluorophore. All the different techniques used in this study reveal that the photophysics of QSD is very sensitive to the microenvironments of SDS micelles and QSD molecules reside at the water-micelle interface. -- Highlights: • Probe molecule is very sensitive to microenvironment of micelles. • Highly fluorescent ion-pair formation has been observed. • Modulated photophysics of probe molecule in micellar solutions has been observed. • Probe molecules strongly bind with micelles and reside at probe–micelle interface.

  1. Site-selective fluorescence spectroscopy investigations of LnPO{sub 4} xenotime ceramics for radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, A.; Peters, L. [RWTH Aachen Univ. (Germany). Inst. of Crystallography; Holthausen, J.; Neumeier, S. [Forschungszentrum Juelich (Germany); Huittinen, Nina [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes; Loesch, Henry

    2017-06-01

    Europium incorporation in different LnPO{sub 4} (Ln=Tb, Lu and Gd{sub 1-x}Lu{sub x}) phases crystallizing in the xenotime structure was investigated with site-selective TRLFS, PXRD and Rietveld analyses. Based on recorded emission spectra and diffraction patterns, the formation of three different crystal systems (xenotime, anhydrite, and monazite) could be identified. Aging of the ceramic samples and a second sintering step led to an accumulation of europium in the grain boundaries and on the surface.

  2. Temperature-dependent conformations of a membrane supported zinc porphyrin tweezer by 2D fluorescence spectroscopy.

    Science.gov (United States)

    Widom, Julia R; Lee, Wonbae; Perdomo-Ortiz, Alejandro; Rappoport, Dmitrij; Molinski, Tadeusz F; Aspuru-Guzik, Alán; Marcus, Andrew H

    2013-07-25

    We studied the equilibrium conformations of a zinc porphyrin tweezer composed of two carboxylphenyl-functionalized zinc tetraphenyl porphyrin subunits connected by a 1,4-butyndiol spacer, which was suspended inside the amphiphilic regions of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) liposomes. By combining phase-modulation two-dimensional fluorescence spectroscopy (2D FS) with linear absorbance and fluorimetry, we determined that the zinc porphyrin tweezer adopts a mixture of folded and extended conformations in the membrane. By fitting an exciton-coupling model to a series of data sets recorded over a range of temperatures (17-85 °C) and at different laser center wavelengths, we determined that the folded form of the tweezer is stabilized by a favorable change in the entropy of the local membrane environment. Our results provide insights toward understanding the balance of thermodynamic factors that govern molecular assembly in membranes.

  3. High resolution isotope shifts and hyperfine structure measurements of tungsten by laser induced fluorescence spectroscopy

    CERN Document Server

    Lee, Jeongwon; Leanhardt, Aaron

    2012-01-01

    Isotope shifts and hyperfine structure of tungsten were studied in the near UV range. We have used laser induced fluorescence spectroscopy on a pulsed supersonic beam to probe the 5D0 -> 5F1 transition at 384.9 nm, 7S3 -> 7P4 transition at 400.9 nm, and 7S3 -> 7P3 transition at 407.4 nm. Three new magnetic hyperfine constants are reported for 7P3,7P4, and 5F1 states. The isotope shifts of the 384.9 nm transition are presented for the first time, and the isotope shifts of 400.9 nm and 407.4 nm transition are measured with an order of magnitude higher precision compared to the previous measurements. As a result, the nuclear parameters lambda and lambda_{rel} are extracted from the isotope shifts with an improved precision.

  4. Monitoring laboratory-scale bioventing using synchronous scan fluorescence spectroscopy: analysis of the vapor phase.

    Science.gov (United States)

    Bachman, J; Kanan, S M; Patterson, H H

    2001-01-01

    Bioventing is an improved method of soil remediation that is being used with increasing frequency. In this paper, we refine techniques to measure the progress of petroleum hydrocarbon decomposition by monitoring vapor phase composition with synchronous scan fluorescence spectroscopy (SSFS). Analysis of the vapor phase has advantages compared to standard extraction techniques that require extensive sample handling and clean up. For comparison, hydrocarbon contamination in the soil was measured by analysis of Soxhlet extractions with gas chromatography-mass spectrometry (GC-MS). Comparison of the GC-MS and SSFS data showed that changes in hydrocarbon composition measured in the vapor phase provide an accurate measure of decomposition reactions taking place in the soil.

  5. Binding of hairpin polyamides to DNA studied by fluorescence correlation spectroscopy for DNA nanoarchitectures

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, Chayan K.; Parui, Partha P.; Brutschy, Bernhard [University of Frankfurt, Institute for Physical and Theoretical Chemistry, Frankfurt (Germany); Schmidt, Thorsten L.; Heckel, Alexander [University of Frankfurt, Cluster of Excellence Macromolecular Complexes, c/o Institute for Organic Chemistry and Chemical Biology, Frankfurt (Germany)

    2008-03-15

    We have recently constructed a ''DNA strut'' consisting of two DNA-binding hairpin polyamides of Dervan-type connected via a long flexible linker and were able to show that this strut can be used to sequence-selectively connect DNA helices. This approach provides a second structural element (besides the Watson-Crick base pairing) for the assembly of higher-order DNA nanoarchitectures from smaller DNA building blocks. Since none of the existing analytical techniques for studying this kind of system were found suitable for detection and quantification of the formation of the resulting complexes, we chose fluorescence correlation spectroscopy (FCS). In the present study we show that FCS allowed us in a versatile and fast way to investigate the binding of Dervan polyamides to DNA. In particular it also shows its power in the quantitative detection of the formation of multimeric complexes and the in investigation of binding under nonphysiological conditions. (orig.)

  6. Determination of the biodiesel content in diesel/biodiesel blends: a method based on fluorescence spectroscopy.

    Science.gov (United States)

    Scherer, Marisa D; Oliveira, Samuel L; Lima, Sandro M; Andrade, Luis H C; Caires, Anderson R L

    2011-05-01

    Blends of biodiesel and diesel are being used increasingly worldwide because of environmental, economic, and social considerations. Several countries use biodiesel blends with different blending limits. Therefore, it is necessary to develop or improve methods to quantify the biodiesel level in a diesel/biodiesel blend, to ensure compliance with legislation. The optical technique based on the absorption of light in the mid-infrared has been successful for this application. However, this method presents some challenges that must be overcome. In this paper, we propose a novel method, based on fluorescence spectroscopy, to determine the biodiesel content in the diesel/biodiesel blend, which allows in loco measurements by using portable systems. The results showed that this method is both practical and more sensitive than the standard optical method. © Springer Science+Business Media, LLC 2011

  7. Permeability of anti-fouling PEGylated surfaces probed by fluorescence correlation spectroscopy.

    Science.gov (United States)

    Daniels, Charlisa R; Reznik, Carmen; Kilmer, Rachel; Felipe, Mary Jane; Tria, Maria Celeste R; Kourentzi, Katerina; Chen, Wen-Hsiang; Advincula, Rigoberto C; Willson, Richard C; Landes, Christy F

    2011-11-01

    The present work reports on in situ observations of the interaction of organic dye probe molecules and dye-labeled protein with different poly(ethylene glycol) (PEG) architectures (linear, dendron, and bottle brush). Fluorescence correlation spectroscopy (FCS) and single molecule event analysis were used to examine the nature and extent of probe-PEG interactions. The data support a sieve-like model in which size-exclusion principles determine the extent of probe-PEG interactions. Small probes are trapped by more dense PEG architectures and large probes interact more with less dense PEG surfaces. These results, and the tunable pore structure of the PEG dendrons employed in this work, suggest the viability of electrochemically-active materials for tunable surfaces.

  8. DNA binding activity of Anabaena sensory rhodopsin transducer probed by fluorescence correlation spectroscopy.

    Science.gov (United States)

    Kim, Sung Hyun; Kim, So Young; Jung, Kwang-Hwan; Kim, Doseok

    2015-01-01

    Anabaena sensory rhodopsin transducer (ASRT) is believed to be a major player in the photo-signal transduction cascade, which is triggered by Anabaena sensory rhodopsin. Here, we characterized DNA binding activity of ASRT probed by using fluorescence correlation spectroscopy. We observed clear decrease of diffusion coefficient of DNA upon binding of ASRT. The dissociation constant, K(D), of ASRT to 20 bp-long DNA fragments lied in micro-molar range and varied moderately with DNA sequence. Our results suggest that ASRT may interact with several different regions of DNA with different binding affinity for global regulation of several genes that need to be activated depending on the light illumination.

  9. Confocal X-ray fluorescence micro-spectroscopy experiment in tilted geometry

    Energy Technology Data Exchange (ETDEWEB)

    Czyzycki, Mateusz, E-mail: Mateusz.Czyzycki@desy.de [DESY Photon Science, Notkestr. 85, D-22607 Hamburg (Germany); AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. A. Mickiewicza 30, 30-059 Krakow (Poland); Wrobel, Pawel; Lankosz, Marek [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. A. Mickiewicza 30, 30-059 Krakow (Poland)

    2014-07-01

    This paper provides a generalized mathematical model to describe the intensity of primary X-ray fluorescence radiation collected in the tilted confocal geometry mode, where the collimating optics is rotated over an angle relative to a horizontal plane. The influence of newly introduced terms, which take into account the tilted geometry mode, is discussed. The model is verified with a multi-layer test sample scanned in depth. It is proved that for low-Z matrices, the rotation of the detection channel does not induce any significant differences in a reconstruction of the thickness and chemical composition of layers, so that it may safely be ignored. - Highlights: • A mathematical model for confocal XRF spectroscopy in tilted geometry was derived. • Tilted geometry influenced the analytical capabilities of XRF instrument slightly. • Thickness and the chemical composition of multi-layers were determined.

  10. Investigation on the Photodissociation of Oxygen from Oxymyoglobin by Fluorescence Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hua-wei; CAO Hong-yu; TANG Qian; MA Jun-yan; ZHANG Ying-ying; ZHENG Xue-fang

    2011-01-01

    Photodissociation of oxygen from oxymyoglobin(oxyMb)was investigated by means of fluorescence spectroscopy.One of the most important findings of the photodissociation of oxyMb was the discovery of two processes which were affected by excitation intensity,temperature,solvent viscosity,and excitation wavelength.Process Ⅰ(PⅠ)corresponded to oxygen escaping from the binding site at ferrous heme iron atom within the porphyrin ring into the heme pocket,whereas process Ⅱ(PⅡ)was ascribed to oxygen escaping from the heme pocket into the solvent.To elucidate this interesting phenomenon,we proposed a model that oxygen encountered two barriers on its way from the binding site at the ferrous heme iron to the solvent.Reversibility and wavelength sensitivity of the photodissociation were also observed.

  11. Analysis of photographs and photo-paintings by energy-dispersive X-ray fluorescence spectroscopy

    Science.gov (United States)

    Neiva, Augusto Camara; Marcondes, Marli A.; Pinto, Herbert Prince Favero; Almeida, Paula Aline Durães

    2014-02-01

    A collection of Brazilian family photographs and photo-paintings from the beginning of the XX Century was analyzed by portable EDXRF (Energy-Dispersive X-Ray Fluorescence) spectroscopy. The spectrometer uses a Si-drift Amptek detector and an Oxford Cr-tube or an Oxford W-tube. For every region under analysis, spectra obtained with the W-tube were used to detect all the elements above Al, while the Cr-tube was used to obtain more accurate results for elements between Al and V. Thirty nine elements were identified in the photos, and the origin of the most important ones was discussed. These results can be used for cataloging, preservation and restoring procedures.

  12. Time-resolved laser fluorescence spectroscopy of UO2(CO3)3(4-).

    Science.gov (United States)

    Jung, E C; Cho, H-R; Baik, M H; Kim, H; Cha, W

    2015-11-21

    The objective of the present study is to examine the luminescence characteristics of UO2(CO3)3(4-) in detail using time-resolved laser fluorescence spectroscopy. The peak wavelengths and lifetime of UO2(CO3)3(4-) were determined at room temperature using the two excitation laser wavelengths of 266 and 448 nm. The peak wavelengths in the luminescence spectrum exhibited hypsochromic shifts compared with those of UO2(2+). The lifetime determined from several samples containing various uranium concentrations was 8.9 ± 0.8 ns. Explanations for the hindrance to the observation of the luminescence spectrum of UO2(CO3)3(4-) in previous investigations are discussed. The representative experimental parameters, which might interrupt the measurement of weak luminescence, are the insertion delay time of the detection device, the overlapped luminescence of the background materials and the primary inner filter effect in the sample solution.

  13. Vectorized data acquisition and fast triple-correlation integrals for Fluorescence Triple Correlation Spectroscopy

    Science.gov (United States)

    Ridgeway, William K.; Millar, David P.; Williamson, James R.

    2013-04-01

    Fluorescence Correlation Spectroscopy (FCS) is widely used to quantify reaction rates and concentrations of molecules in vitro and in vivo. We recently reported Fluorescence Triple Correlation Spectroscopy (F3CS), which correlates three signals together instead of two. F3CS can analyze the stoichiometries of complex mixtures and detect irreversible processes by identifying time-reversal asymmetries. Here we report the computational developments that were required for the realization of F3CS and present the results as the Triple Correlation Toolbox suite of programs. Triple Correlation Toolbox is a complete data analysis pipeline capable of acquiring, correlating and fitting large data sets. Each segment of the pipeline handles error estimates for accurate error-weighted global fitting. Data acquisition was accelerated with a combination of off-the-shelf counter-timer chips and vectorized operations on 128-bit registers. This allows desktop computers with inexpensive data acquisition cards to acquire hours of multiple-channel data with sub-microsecond time resolution. Off-line correlation integrals were implemented as a two delay time multiple-tau scheme that scales efficiently with multiple processors and provides an unprecedented view of linked dynamics. Global fitting routines are provided to fit FCS and F3CS data to models containing up to ten species. Triple Correlation Toolbox is a complete package that enables F3CS to be performed on existing microscopes. Catalogue identifier: AEOP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOP_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 50189 No. of bytes in distributed program, including test data, etc.: 6135283 Distribution format: tar.gz Programming language: C/Assembly. Computer: Any with GCC and

  14. Super-resolution fluorescence imaging and correlation spectroscopy: Principles and examples of application

    Directory of Open Access Journals (Sweden)

    Jovanović-Talisman Tijana

    2013-01-01

    Full Text Available Self-organization of cell-surface receptors in structurally distinct domains in the plasma membrane is of vital interest for correct cellular signaling. However, this dynamic process is difficult to study in cells with sufficiently high temporal and spatial resolution. We present here two quantitative high-resolution methods with single-molecule sensitivity, Fluorescence Correlation Spectroscopy (FCS and pair-correlation Photoactivated Localization Microscopy (pcPALM, which enable nondestructive study of receptor diffusion and lateral organization at the nanoscale level. We introduce here the methods and review their application in studies of lateral organization of G Protein-Coupled Receptors (GPCRs. Examples from our own work on opioid receptor lateral organization are presented in order to illustrate the most recent advances in the field. [Projekat Ministarstva nauke Republike Srbije, br. 172015 i br. 45001

  15. Time-resolved fluorescence spectroscopy for clinical diagnosis of actinic cheilitis

    Science.gov (United States)

    Cosci, Alessandro; Nogueira, Marcelo Saito; Pratavieira, Sebastião; Takahama, Ademar; Azevedo, Rebeca de Souza; Kurachi, Cristina

    2016-01-01

    Actinic cheilitis is a potentially malignant disorder of the lips. Its first cause is believed to be UV sun radiation. The lesion is highly heterogeneous, making the choice of area to be biopsied difficult. This study exploits the capabilities of time-resolved fluorescence spectroscopy for the identification of the most representative area to be biopsied. A preliminary study was performed on fourteen patients. A classification algorithm was used on data acquired on nine different biopsies. The algorithm discriminated between absent, mild, and moderate dysplasia with a sensitivity of 92.9%, 90.0%, and 80.0%, respectively. The false positive rate for healthy tissue (specificity) was 88.8%. PMID:27867726

  16. Measuring the diffusion coefficient of ganglioside on cell membrane by fluorescence correlation spectroscopy

    Science.gov (United States)

    Dong, Shiqing; You, Minghai; Chen, Jianling; Zhou, Jie; Xie, Shusen; Yang, Hongqin

    2017-06-01

    The fluidity of proteins and lipids on cell membrane plays an important role in cell’s physiological functions. Fluorescence correlation spectroscopy (FCS) is an effective technique to detect the rapid dynamic behaviors of proteins and/or lipids in living cells. In this study, we used the rhodamine6G solution to optimize the FCS system. And, cholera toxin B subunit (CT-B) was used to label ganglioside on living Hela cell membranes. The diffusion time and coefficients of ganglioside can be obtained through fitting the autocorrelation curve based on the model of two-dimensional cell membrane. The results showed that the diffusion coefficients of ganglioside distributed within a wide range. It revealed the lateral diffusion of lipids on cell membrane was inhomogeneous, which was due to different microstructures of cytoplasmic membrane. The study provides a helpful method for further studying the dynamic characteristics of proteins and lipids molecules on living cell membrane.

  17. Towards Environmental Microbial Analysis with Deep UV fluorescence and Raman Spectroscopy

    Science.gov (United States)

    Wanger, G.; Bhartia, R.; Orphan, V. J.; Rowe, A. R.

    2015-12-01

    The study of microbes from the environment is often facilitated by the fixation of samples prior to analyses in the laboratory. Samples not appropriately preserved can show dramatic changes e.g. unwanted growth, loss of biomass and sample degradation between collection and analysis. To move Deep-UV Raman analyses from model lab organisms to environmental samples the effect of preservation must be evaluated. Deep UV Raman and Fluorescence (i.e. excitation culture. The fluorescence signal is typically 3-4 orders of magnitude more intense than the Raman signal and enables rapid location of bacteria on a surface and crudely split them into categories. However it suffers from broad spectral features making discrete classification of bacteria problematic. While a far weaker phenomenon, the chemical specificity of Raman spectroscopy has been shown capable of discriminating between different bacterial species and has even shown spectral variation in same species under differing growth conditions or growth stages and has even been used to measure microbial activity by measuring the incorporation of stable isotope labeled substrates. Typically these analyses are carried out on well-studied, lab-grown model organisms and while relatively easy, these analyses are performed on cells grow under non-environmentally relevant conditions using rich media types not often found in nature. Here we show the effect on the Raman and fluorescence signal (248 nm Deep-UV excitation) from E. coli and other bacteria, grown in more nutrient limited environments, and fixed/preserved in ethanol, PFA and formalin. These fixatives not only preserve the cells for spectroscopic analysis but are compatible with many common techniques that can be used for further characterization of environmental microbial samples. Ethanol appears to heavily degrade the signals from both Raman and fluorescence while formalin and PFA do not. Our ultimate goal is to create an analytical "pipeline" using the Deep UV

  18. The Effect of a Fluorophore Photo-Physics on the Lipid Vesicle Diffusion Coefficient Studied by Fluorescence Correlation Spectroscopy.

    Science.gov (United States)

    Drabik, Dominik; Przybyło, Magda; Sikorski, Aleksander; Langner, Marek

    2016-03-01

    Fluorescence Correlation Spectroscopy (FCS) is a technique, which allows determination of the diffusion coefficient and concentration of fluorescent objects suspended in the solution. The measured parameter is the fluctuation of the fluorescence signal emitted by diffusing molecules. When 100 nm DOPC vesicles labeled with various fluorescent dyes (Fluorescein-PE, NBD-PE, Atto488 DOPE or βBodipy FL) were measured, different values of diffusion coefficients have been obtained. These diffusion coefficients were different from the expected values measured using the dynamic light scattering method (DLS). The FCS was initially developed for solutions containing small fluorescent molecules therefore the observed inconsistency may result from the nature of vesicle suspension itself. The duration of the fluorescence signal may depend on the following factors: the exposure time of the labeled object to the excitation beam, the photo-physical properties (e.g., stability) of a fluorophore, the theoretical model used for the calculations of the diffusion coefficient and optical properties of the vesicle suspension. The diffusion coefficients determined for differently labeled liposomes show that its dependence on vesicle size and quantity of fluorescent probed used for labeling was significant demonstrating that the fluorescence properties of the fluorophore itself (bleaching and/or blinking) were critical factors for a correct outcome of FCS experiment. The new, based on combined FCS and DLS measurements, method for the determination of the focal volume prove itself to be useful for the evaluation of a fluorescence dye with respect to its applicability for FCS experiment.

  19. Fluorescence spectroscopy of single molecules at room temperature and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Taekjip [Univ. of California, Berkeley, CA (United States)

    1996-12-01

    We performed fluorescence spectroscopy of single and pairs of dye molecules on a surface at room temperature. Near field scanning optical microscope (NSOM) and far field scanning optical microscope with multi-color excitation/detection capability were built. The instrument is capable of optical imaging with 100nm resolution and has the sensitivity necessary for single molecule detection. A variety of dynamic events which cannot be observed from an ensemble of molecules is revealed when the molecules are probed one at a time. They include (1) spectral jumps correlated with dark states, (2) individually resolved quantum jumps to and from the meta-stable triplet state, (3) rotational jumps due to desorption/readsorption events of single molecules on the surface. For these studies, a computer controlled optical system which automatically and rapidly locates and performs spectroscopic measurements on single molecules was developed. We also studied the interaction between closely spaced pairs of molecules. In particular, fluorescence resonance energy transfer between a single resonant pair of donor and acceptor molecules was measured. Photodestruction dynamics of the donor or acceptor were used to determine the presence and efficiency of energy transfer Dual molecule spectroscopy was extended to a non-resonant pair of molecules to obtain high resolution differential distance information. By combining NSOM and dual color scheme, we studied the co-localization of parasite proteins and host proteins on a human red blood cell membrane infected with malaria. These dual-molecule techniques can be used to measure distances, relative orientations, and changes in distances/orientations of biological macromolecules with very good spatial, angular and temporal resolutions, hence opening new capabilities in the study of such systems.

  20. Different mechanisms of action of antimicrobial peptides: insights from fluorescence spectroscopy experiments and molecular dynamics simulations.

    Science.gov (United States)

    Bocchinfuso, Gianfranco; Palleschi, Antonio; Orioni, Barbara; Grande, Giacinto; Formaggio, Fernando; Toniolo, Claudio; Park, Yoonkyung; Hahm, Kyung-Soo; Stella, Lorenzo

    2009-09-01

    Most antimicrobial peptides exert their activity by interacting with bacterial membranes, thus perturbing their permeability. They are investigated as a possible solution to the insurgence of bacteria resistant to the presently available antibiotic drugs. However, several different models have been proposed for their mechanism of membrane perturbation, and the molecular details of this process are still debated. Here, we compare fluorescence spectroscopy experiments and molecular dynamics (MD) simulations regarding the association with lipid bilayers and lipid perturbation for two different amphiphilic helical antimicrobial peptides, PMAP-23 and trichogin GA IV. PMAP-23, a cationic peptide member of the cathelicidin family, is considered to induce membrane permeability according to the Shai-Matsuzaki-Huang "carpet" model, while trichogin GA IV is a neutral peptide, member of the peptaibol family. Although several lines of evidence suggest a "barrel-stave" mechanism of pore formation for the latter peptide, its length is only half the normal thickness of a lipid bilayer. Both fluorescence spectroscopy experiments and MD simulations indicated that PMAP-23 associates with membranes close to their surface and parallel to it, and in this arrangement it causes a severe perturbation to the bilayer, both regarding its surface tension and lipid order. By contrast, trichogin GA IV can undergo a transition from a surface-bound state to a transmembrane orientation. In the first arrangement, it does not cause any strong membrane perturbation, while in the second orientation it might be able to span the bilayer from one side to the other, despite its relatively short length, by causing a significant thinning of the membrane.

  1. Detection of rhodopsin dimerization in situ by PIE-FCCS, a time-resolved fluorescence spectroscopy.

    Science.gov (United States)

    Smith, Adam W

    2015-01-01

    Rhodopsin self-associates in the plasma membrane. At low concentrations, the interactions are consistent with a monomer-dimer equilibrium (Comar et al., J Am Chem Soc 136(23):8342-8349, 2014). At high concentrations in native tissue, higher-order clusters have been observed (Fotiadis et al., Nature 421:127-128, 2003). The physiological role of rhodopsin dimerization is still being investigated, but it is clear that a quantitative assessment is essential to determining the function of rhodopsin clusters in vision. To quantify rhodopsin interactions, I will outline the theory and methodology of a specialized time-resolved fluorescence spectroscopy for measuring membrane protein-protein interactions called pulsed-interleaved excitation fluorescence cross-correlation spectroscopy (PIE-FCCS). The strength of this technique is its ability to quantify rhodopsin interactions in situ (i.e., a live cell plasma membrane). There are two reasons for restricting the scope to live cell membranes. First, the compositional heterogeneity of the plasma membrane creates a complex milieu with thousands of lipid, protein, and carbohydrate species. This makes it difficult to infer quaternary interactions from detergent solubilized samples or construct a model phospholipid bilayer that recapitulates all of the interactions present in native membranes. Second, organizational structure and dynamics is a key feature of the plasma membrane, and fixation techniques like formaldehyde cross-linking and vitrification will modulate the interactions. PIE-FCCS is based on two-color fluorescence imaging with time-correlated single-photon counting (TCSPC) (Becker et al., Rev Sci Instrum 70:1835-1841, 1999). By time-tagging every detected photon, the data can be analyzed as a fluorescence intensity distribution, fluorescence lifetime histogram, or fluorescence (cross-)correlation spectra (FCS/FCCS) (Becker, Advanced time-correlated single-photon counting techniques, Springer, Berlin, 2005). These

  2. The use of one- and two- photon induced fluorescence spectroscopy for the optical characterization of carcinogenic aflatoxins

    Science.gov (United States)

    Smeesters, L.; Meulebroeck, W.; Raeymaekers, S.; Thienpont, H.

    2014-09-01

    Carcinogenic and toxic contaminants in food and feed products are nowadays mostly detected by destructive, time-consuming chemical analyses, like HPLC and LC-MS/MS methods. However, as a consequence of the severe and growing regulations on food products by the European Union, there arose an increased demand for the ultra-fast, high-sensitive and non-destructive detection of contaminants in food and feed products. Therefore, we have investigated fluorescence spectroscopy for the characterization of carcinogenic aflatoxins. With the use of a tunable titanium-sapphire laser in combination with second and third harmonic wavelength generation, both one- and two-photon induced fluorescence excitation wavelengths could be generated using the same setup. We characterized and compared the one- and two-photon induced fluorescence spectra of pure aflatoxin powder, after excitation with 365nm and 730nm respectively. Moreover, we investigated the absolute fluorescence intensity as function of the excitation power density. Afterwards, we applied our characterization setup to the detection of aflatoxins in maize grains. The fluorescence spectra of both healthy and contaminated maize samples were experimentally characterized. In addition to the fluorescence spectrum of the pure aflatoxin, we observed an unwanted influence of the intrinsic fluorescence of the maize. Depending on the excitation wavelength, a varying contrast between the fluorescence spectra of the healthy and contaminated samples was obtained. After a comparison of the measured fluorescence signals, a detection criterion for the optical identification of the contaminated maize samples could be defined. As a result, this illustrates the use of fluorescence spectroscopy as a valuable tool for the non-destructive, real-time and high-sensitive detection of aflatoxins in maize.

  3. Fluorescence correlation spectroscopy as tool for high-content-screening in yeast (HCS-FCS)

    Science.gov (United States)

    Wood, Christopher; Huff, Joseph; Marshall, Will; Yu, Elden Qingfeng; Unruh, Jay; Slaughter, Brian; Wiegraebe, Winfried

    2011-03-01

    To measure protein interactions, diffusion properties, and local concentrations in single cells, Fluorescence Correlation Spectroscopy (FCS) is a well-established and widely accepted method. However, measurements can take a long time and are laborious. Therefore investigations are typically limited to tens or a few hundred cells. We developed an automated system to overcome these limitations and make FCS available for High Content Screening (HCS). We acquired data in an auto-correlation screen of more than 4000 of the 6000 proteins of the yeast Saccharomyces cerevisiae, tagged with eGFP and expanded the HCS to use cross-correlation between eGFP and mCherry tagged proteins to screen for molecular interactions. We performed all high-content FCS screens (HCS-FCS) in a 96 well plate format. The system is based on an extended Carl Zeiss fluorescence correlation spectrometer ConfoCor 3 attached to a confocal microscope LSM 510. We developed image-processing software to control these hardware components. The confocal microscope obtained overview images and we developed an algorithm to search for and detect single cells. At each cell, we positioned a laser beam at a well-defined point and recorded the fluctuation signal. We used automatic scoring of the signal for quality control. All data was stored and organized in a database based on the open source Open Microscopy Environment (OME) platform. To analyze the data we used the image processing language IDL and the open source statistical software package R.

  4. Detection and characterization of stomach cancer and atrophic gastritis with fluorescence and Raman spectroscopy

    Science.gov (United States)

    Li, Xiaozhou; Lin, Junxiu; Jia, Chunde; Wang, Rong

    2003-12-01

    In this paper, we attempt to find a valid method to distinguish gastric cancer and atrophic gastritis. Auto-fluorescence and Raman spectroscopy of laser induced (514.5 nm and 488.0 nm) was measured. The serum spectrum is different between normal and cancer. Average value of diagnosis parameter for normal serum, red shift is less than 12 nm and Raman relative intensity of peak C by 514.5 nm excited is stronger than that of 488.0 nm. To gastric cancer, its red shift of average is bigger than 12 nm and relative intensity of Raman peak C by 514.5 nm excited is weaker than that by 488.0 nm. To atrophic gastritis, the distribution state of Raman peaks is similar with normal serum and auto-fluorescence spectrum's shape is similar to that of gastric cancer. Its average Raman peak red shift is bigger than 12 nm and the relative intensity of peak C by 514.5 excited is stronger than that of by 488.0. We considered it as a criterion and got an accuracy of 85.6% for diagnosis of gastric cancer compared with the result of clinical diagnosis.

  5. Detection of long-range electrostatic interactions between charged molecules by means of fluorescence correlation spectroscopy

    Science.gov (United States)

    Nardecchia, Ilaria; Lechelon, Mathias; Gori, Matteo; Donato, Irene; Preto, Jordane; Floriani, Elena; Jaeger, Sebastien; Mailfert, Sebastien; Marguet, Didier; Ferrier, Pierre; Pettini, Marco

    2017-08-01

    In the present paper, an experimental feasibility study on the detection of long-range intermolecular interactions through three-dimensional molecular diffusion in solution is performed. This follows recent theoretical and numerical analyses reporting that long-range electrodynamic forces between biomolecules could be identified through deviations from Brownian diffusion. The suggested experimental technique was fluorescence correlation spectroscopy (FCS). By considering two oppositely charged molecular species in aqueous solution, namely, lysozymes and fluorescent dye molecules (Alexa488), the diffusion coefficient of the dyes has been measured for different values of the concentration of lysozyme, that is, for different average distances between the oppositely charged molecules. For our model, long-range interactions are of electrostatic origin, suggesting that their action radius can be varied by changing the ionic strength of the solution. The experimental outcomes clearly prove the detectability of long-range intermolecular interactions by means of the FCS technique. Molecular dynamics simulations provide a clear and unambiguous interpretation of the experimental results.

  6. THE USE OF FLUORESCENCE CORRELATION SPECTROSCOPY TO PROBE CHROMATIN IN THE CELL NUCLEUS

    Energy Technology Data Exchange (ETDEWEB)

    Sorscher, Stanley M.; Bartholemew, James C.; Klein, Melvin P.

    1980-03-01

    All systems in thermodynamic equilibrium are subject to spontaneous fluctuations from equilibrium. For very small systems, the fluctuations can be made apparent, and can be used to study the behavior of the system without introducing any external perturbations. The mean squared amplitude of these fluctuations contains information about the absolute size of the system. The characteristic time of the fluctuation autocorrelation function contains kinetic information. In the experiments reported here, these concepts are applied to the binding equilibrium between ethidium bromide and DNA, a system where the fluorescence properties of the dye greatly enhance the effect of spontaneous fluctuations in the binding equilibrium. Preliminary experiments employ well characterized DNA preparations, including calf thymus DNA, SV40 DNA, and calf thymus nucleohistone particles. Additional measurements are described which have been made in small regions of individual nuclei, isolated from green monkey kidney cells, observing as few as 5000 dye molecules. The data indicate that the strength of dye binding increases in nuclei isolated from cells which have been stimulated to enter the cell growth cycle. The viscosity of nuclear material is inferred to be between one and two orders of magnitude greater than that of water, and decreases as the cells leave the resting state, and enter the cell growth cycle. Washing the nuclei also lowers the viscosity. These experiments demonstrate that fluorescence correlation spectroscopy can provide information at the subnuclear level that is otherwise unavailable.

  7. Light adaptation of the unicellular red alga, Cyanidioschyzon merolae, probed by time-resolved fluorescence spectroscopy.

    Science.gov (United States)

    Ueno, Yoshifumi; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2015-08-01

    Photosynthetic organisms change the quantity and/or quality of their pigment-protein complexes and the interactions among these complexes in response to light conditions. In the present study, we analyzed light adaptation of the unicellular red alga Cyanidioschyzon merolae, whose pigment composition is similar to that of cyanobacteria because its phycobilisomes (PBS) lack phycoerythrin. C. merolae were grown under different light qualities, and their responses were measured by steady-state absorption, steady-state fluorescence, and picosecond time-resolved fluorescence spectroscopies. Cells were cultivated under four monochromatic light-emitting diodes (blue, green, yellow, and red), and changes in pigment composition and energy transfer were observed. Cells grown under blue and green light increased their relative phycocyanin levels compared with cells cultured under white light. Energy-transfer processes to photosystem I (PSI) were sensitive to yellow and red light. The contribution of direct energy transfer from PBS to PSI increased only under yellow light, while red light induced a reduction in energy transfer from photosystem II to PSI and an increase in energy transfer from light-harvesting chlorophyll protein complex I to PSI. Differences in pigment composition, growth, and energy transfer under different light qualities are discussed.

  8. Fluorescent substituted amidines of benzanthrone: Synthesis, spectroscopy and quantum chemical calculations

    Science.gov (United States)

    Gonta, Svetlana; Utinans, Maris; Kirilov, Georgii; Belyakov, Sergey; Ivanova, Irena; Fleisher, Mendel; Savenkov, Valerij; Kirilova, Elena

    2013-01-01

    Several new substituted amidine derivatives of benzanthrone were synthesized by a condensation reaction from 3-aminobenzo[de]anthracen-7-one and appropriate aromatic and aliphatic amides. The obtained derivatives have a bright yellow or orange fluorescence in organic solvents and in solid state. The novel benzanthrone derivatives were characterized by TLC analysis, 1H NMR, IR, MS, UV/vis, and fluorescence spectroscopy. The solvent effect on photophysical behaviors of these dyes was investigated, and the results showed that the Stoke's shift increased, whereas quantum yield decreased with the growth of the solvent polarity. The structure of some dyes was confirmed by the X-ray single crystal structure analysis. AM1, ZINDO/S and ab initio calculations using Gaussian software were carried out to estimate the electron system of structures. The calculations show planar configurations for the aromatic core of these compounds and two possible orientations of amidine substituents. The calculation results correlate well with red-shifted absorption and emission spectra of compounds.

  9. Comparative Studies of Interactions between Fluorodihydroquinazolin Derivatives and Human Serum Albumin with Fluorescence Spectroscopy

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2016-10-01

    Full Text Available In the present study, 3-(fluorobenzylideneamino-6-chloro-1-(3,3-dimethylbutanoyl-phenyl-2,3-dihydroquinazolin-4(1H-one (FDQL derivatives have been designed and synthesized to study the interaction between fluorine substituted dihydroquinazoline derivatives with human serum albumin (HSA using fluorescence, circular dichroism and Fourier transform infrared spectroscopy. The results indicated that the FDQL could bind to HSA, induce conformation and the secondary structure changes of HSA, and quench the intrinsic fluorescence of HSA through a static quenching mechanism. The thermodynamic parameters, ΔH, ΔS, and ΔG, calculated at different temperatures, revealed that the binding was through spontaneous and hydrophobic forces and thus played major roles in the association. Based on the number of binding sites, it was considered that one molecule of FDQL could bind to a single site of HSA. Site marker competition experiments indicated that the reactive site of HSA to FDQL mainly located in site II (subdomain IIIA. The substitution by fluorine in the benzene ring could increase the interactions between FDQL and HSA to some extent in the proper temperature range through hydrophobic effect, and the substitution at meta-position enhanced the affinity greater than that at para- and ortho-positions.

  10. Planetary Surface Analysis Using Fast Laser Spectroscopic Techniques: Combined Microscopic Raman, LIBS, and Fluorescence Spectroscopy

    Science.gov (United States)

    Blacksberg, J.; Rossman, G. R.; Maruyama, Y.; Charbon, E.

    2011-12-01

    In situ exploration of planetary surfaces has to date required multiple techniques that, when used together, yield important information about their formation histories and evolution. We present a time-resolved laser spectroscopic technique that could potentially collect complementary sets of data providing information on mineral structure, composition, and hydration state. Using a picosecond-scale pulsed laser and a fast time-resolved detector we can simultaneously collect spectra from Raman, Laser Induced Breakdown Spectroscopy (LIBS), and fluorescence emissions that are separated in time due to the unique decay times of each process. The use of a laser with high rep rate (40 KHz) and low pulse energy (1 μJ/pulse) allows us to rapidly collect high signal to noise Raman spectra while minimizing sample damage. Increasing the pulse energy by about an order of magnitude creates a microscopic plasma near the surface and enables the collection of LIBS spectra at an unusually high rep rate and low pulse energy. Simultaneously, broader fluorescence peaks can be detected with lifetimes varying from nanosecond to microsecond. We will present Raman, LIBS, and fluorescence spectra obtained on natural mineral samples such as sulfates, clays, pyroxenes and carbonates that are of interest for Mars mineralogy. We demonstrate this technique using a photocathode-based streak camera detector as well as a newly-developed solid state Single Photon Avalanche Diode (SPAD) sensor array based on Complementary Metal-Oxide Semiconductor (CMOS) technology. We will discuss the impact of system design and detector choice on science return of a potential planetary surface mission, with a specific focus on size, weight, power, and complexity. The research described here was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA).

  11. High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin [Univ. of California, Davis, CA (United States). Dept. of Applied Science

    1996-12-01

    X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXAFS). The spin polarization in K fluorescence could be used to generate spin selective XANES or spin-polarized EXAFS, which provides a new measure of the spin density, or the nature of magnetic neighboring atoms. Finally, dramatic line-sharpening effects by the combination of absorption and emission processes allow observation of structure that is normally unobservable. All these unique characters can enormously simplify a complex x-ray spectrum. Applications of this novel technique have generated information from various transition-metal model compounds to metalloproteins. The absorption and emission spectra by high resolution fluorescence detection are interdependent. The ligand field multiplet model has been used for the analysis of K{alpha} and K{beta} emission spectra. First demonstration on different chemical states of Fe compounds has shown the applicability of site selectivity and spin polarization. Different interatomic distances of the same element in different chemical forms have been detected using site-selective EXAFS.

  12. Recombinant phytochrome of the moss Ceratodon purpureus (CP2): fluorescence spectroscopy and photochemistry.

    Science.gov (United States)

    Sineshchekov, V; Koppel, L; Hughes, J; Lamparter, T; Zeidler, M

    2000-07-01

    The recombinant phytochrome of the moss Ceratodon purpureus (CP2) expressed in Saccharomyces cerevisiae and reconstituted with phycocyanobilin (PCB) was investigated using fluorescence spectroscopy. The pigment had an emission maximum at 670 nm at low temperature (85 K) and at 667 nm at room temperature (RT) and an excitation maximum at 650-652 nm at 85 K (excitation spectra could not be measured at RT). Both spectra had a half-band width of approx. 30-35 nm at 85 K. The fluorescence intensity revealed a steep temperature dependence with an activation energy of fluorescence decay (Ea) of 5.9-6.4 and 12.6-14.7 kJ mol(-1) in the interval from 85 to 210 K and from 210 to 275 K, respectively. The photochemical properties of CP2/PCB were characterised by the extent of the red-induced (lambda(a) = 639 nm) Pr conversion into the first photoproduct lumi-R at 85 K (gamma1) of approximately 0.07 and into Pfr at RT (gamma2) of approximately 0.7. From these characteristics, CP2/PCB can be attributed to the Pr" photochemical type with gamma1 < or = 0.05, which comprises the minor phyA fraction (phyA"), phyB, Adiantum phy1 and Synechocystis Cph1 in contrast to the major phyA' fraction (Pr' type with gamma1 = 0.5). Within the Pr" type, it is closer to phyA" than to phyB and Cph1.

  13. Characterization of the binding of paylean and DNA by fluorescence, UV spectroscopy and molecular docking techniques.

    Science.gov (United States)

    Zhou, Huifeng; Bi, Shuyun; Wang, Yu; Zhao, Tingting

    2016-06-01

    The interaction of paylean (PL) with calf thymus DNA (ctDNA) was investigated using fluorescence spectroscopy, UV absorption, melting studies, ionic strength, viscosity experiments and molecular docking under simulated physiological conditions. Values for the binding constant Ka between PL and DNA were 5.11 × 10(3) , 2.74 × 10(3) and 1.74 × 10(3)  L mol(-1) at 19, 29 and 39°C respectively. DNA quenched the intrinsic fluorescence of PL via a static quenching procedure as shown from Stern-Volmer plots. The relative viscosity and the melting temperature of DNA were basically unchanged in the presence of PL. The fluorescence intensity of PL-DNA decreased with increasing ionic strength. The value of Ka for PL with double-stranded DNA (dsDNA) was larger than that for PL with single-stranded DNA (ssDNA). All the results revealed that the binding mode was groove binding, and molecular docking further indicated that PL was preferentially bonded to A-T-rich regions of DNA. The values for ΔH, ΔS and ΔG suggested that van der Waals forces or hydrogen bonding might be the main acting forces between PL and DNA. The binding distance was determined to be 3.37 nm based on the theory of Förster energy transference, which indicated that a non-radiation energy transfer process occurred. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Evaluating fluorescence spectroscopy as a tool to characterize cyanobacteria intracellular organic matter upon simulated release and oxidation in natural water.

    Science.gov (United States)

    Korak, Julie A; Wert, Eric C; Rosario-Ortiz, Fernando L

    2015-01-01

    Intracellular organic matter (IOM) from cyanobacteria may be released into natural waters following cell death in aquatic ecosystems and during oxidation processes in drinking water treatment plants. Fluorescence spectroscopy was evaluated to identify the presence of IOM from three cyanobacteria species during simulated release into natural water and following oxidation processes (i.e. ozone, free chlorine, chloramine, chlorine dioxide). Peak picking and the fluorescence index (FI) were explored to determine which IOM components (e.g., pigments) provide unique and persistent fluorescence signatures with minimal interferences from the background dissolved organic matter (DOM) found in Colorado River water (CRW). When IOM was added to ultrapure water, the fluorescence signature of the three cyanobacteria species showed similarities to each other. Each IOM exhibited a strong protein-like fluorescence and fluorescence at Ex 370 nm and Em 460 nm (FDOM), where commercial fluorescence sensors monitor. All species also had strong phycobiliprotein fluorescence (i.e. phycocyanin or phycoerythrin) in the higher excitation range (500-650 nm). All three IOM isolates had FI values greater than 2. When IOM was added to CRW, phycobiliprotein fluorescence was quenched through interactions between IOM and CRW-DOM. Mixing IOM and CRW demonstrated that protein-like and FDOM intensity responses were not a simple superposition of the starting material intensities, indicating that interactions between IOM and CRW-DOM fluorescing moieties were important. Fluorescence intensity in all regions decreased with exposure to ozone, free chlorine, and chlorine dioxide, but the FI still indicated compositional differences compared to CRW-DOM. The phycobiliproteins in IOM are not promising as a surrogate for IOM release, because their fluorescence intensity is quenched by interactions with DOM and decreased during oxidation processes. Increases in both FDOM intensity and FI are viable qualitative

  15. X-Ray Fluorescence and Laser-Induced Breakdown Spectroscopy analysis of Roman silver denarii

    Energy Technology Data Exchange (ETDEWEB)

    Pardini, L. [Istituto di Chimica dei Composti Organometallici del CNR, Research Area of Pisa, Via G. Moruzzi 1, 56124 Pisa (Italy); El Hassan, A. [National Institute for Laser- Enhanced Sciences (NILES), Cairo University Giza (Egypt); Ferretti, M. [Istituto per le Tecnologie Applicate ai Beni Culturali, Area della Ricerca del CNR di Montelibretti Roma (Italy); Foresta, A.; Legnaioli, S.; Lorenzetti, G. [Istituto di Chimica dei Composti Organometallici del CNR, Research Area of Pisa, Via G. Moruzzi 1, 56124 Pisa (Italy); Nebbia, E. [Universita degli Studi di Torino (Italy); Catalli, F. [Monetiere di Firenze, Museo Archeologico Nazionale Firenze (Italy); Harith, M.A. [National Institute for Laser- Enhanced Sciences (NILES), Cairo University Giza (Egypt); Diaz Pace, D. [Institute of Physics ' Arroyo Seco' , Faculty of Science, Tandil (Argentina); Anabitarte Garcia, F. [Photonics Engineering Group, University of Cantabria, Santander (Spain); Scuotto, M. [Dipartimento di Scienze Archeologiche, Via Galvani 1, 56126 Pisa (Italy); Palleschi, V., E-mail: vincenzo.palleschi@cnr.it [Istituto di Chimica dei Composti Organometallici del CNR, Research Area of Pisa, Via G. Moruzzi 1, 56124 Pisa (Italy); Dipartimento di Scienze Archeologiche, Via Galvani 1, 56126 Pisa (Italy)

    2012-08-15

    In this paper we present the results of a study performed on a large collection of silver Roman republican denarii, encompassing about two centuries of history. The joint use of Laser-Induced Breakdown Spectroscopy (LIBS) and X-Ray Fluorescence (XRF) spectroscopy allowed for an accurate determination of the coins' elemental composition; the measurements, performed mostly in situ at the 'Monetiere' in Florence, revealed a striking connection between the 'quality' of the silver alloy and some crucial contemporary events. This finding was used to classify a group of denarii whose dating was otherwise impossible. The comparison with other contemporary denarii disproves a recent theory on the origin of the so called 'serrated' denarii (denarii showing notched chisel marks on the edge of the coin). - Highlights: Black-Right-Pointing-Pointer We studied a large collection of Roman republican silver denarii. Black-Right-Pointing-Pointer XRF and LIBS allowed to determine the precious metal content of the coins. Black-Right-Pointing-Pointer A correlation of the 'quality' of the alloy with some contemporary events was found. Black-Right-Pointing-Pointer The study allowed to controvert a recent theory on the so called 'serrated' denarii.

  16. Drug-DNA interactions and their study by UV-Visible, fluorescence spectroscopies and cyclic voltametry.

    Science.gov (United States)

    Sirajuddin, Muhammad; Ali, Saqib; Badshah, Amin

    2013-07-05

    The present paper review the drug-DNA interactions, their types and applications of experimental techniques used to study interactions between DNA and small ligand molecules that are potentially of pharmaceutical interest. DNA has been known to be the cellular target for many cytotoxic anticancer agents for several decades. Understanding how drug molecules interact with DNA has become an active research area at the interface between chemistry, molecular biology and medicine. In this review article, we attempt to bring together topics that cover the breadth of this large area of research. The interaction of drugs with DNA is a significant feature in pharmacology and plays a vital role in the determination of the mechanisms of drug action and designing of more efficient and specifically targeted drugs with lesser side effects. Several instrumental techniques are used to study such interactions. In the present review, we will discuss UV-Visible spectroscopy, fluorescence spectroscopy and cyclic voltammetry. The applications of spectroscopic techniques are reviewed and we have discussed the type of information (qualitative or quantitative) that can be obtained from the use of each technique. Not only have novel techniques been applied to study drug-DNA interactions but such interactions may also be the basis for the development of new assays. The interaction between DNA and drugs can cause chemical and conformational modifications and, thus, variation of the electrochemical properties of nucleobases.

  17. Application de la spectroscopie de fluorescence a l'étude du pétrole : le défi de la complexité Application of Fluorescence Spectroscopy to the Study of Petroleum: Challenging Complexity

    Directory of Open Access Journals (Sweden)

    Ellingsen G.

    2006-12-01

    Full Text Available Grâce à sa sensibilité et à sa sélectivité, la spectroscopie de fluorescence est de plus en plus employée dans l'étude du pétrole. Dans un premier temps, les principes fondamentaux de cette technique sont rappelés, en mettant l'accent sur les difficultés inhérentes à la complexité du milieu et sur les développements récents comme la spectroscopie de fluorescence par excitation synchrone et la détection à distance. Par la suite, les principaux domaines d'application de la fluorescence à la technologie du pétrole sont successivement passés en revue, en particulier la détection de la pollution, la caractérisation rapide des bruts, l'information pour l'exploration et le forage, et enfin l'analyse fine des constituants. Les réactifs fluorogéniques ne sont utilisés qu'après minéralisation de l'échantillon et essentiellement pour détecter les traces de métaux. Due to its sensitivity and selectivity, fluorescence spectroscopy is increasingly used in petroleum technology. Firstly, the fundamentals of fluorescence are briefly presented, emphasizing the many difficulties encountered because of the medium complexity and the recent developments of methods like synchronously excited fluorescence spectroscopy and remote detection. Then, the main application fields are successively reviewed, that is identification of pollutant sources, crude oils fingerprinting, information for drilling and exploration and finally the analysis of petroleum constituents. Fluorogenic reactants are only used for trace metal detection after sample mineralization.

  18. Laser Induced Fluorescence Spectroscopy of Neutral and Ionized Polycyclic Aromatic Hydrocarbons in a Cosmic Simulation Chamber

    Science.gov (United States)

    Bejaoui, Salma; Salama, Farid

    2015-08-01

    Polycyclic aromatic hydrocarbon (PAH) molecules are considered the best carriers to account for the ubiquitous infrared emission bands. PAHs have also been proposed as candidates to explain the diffuse interstellar bands (DIBs), a series of absorption features seen on the interstellar extinction curve and are plausible carriers for the extended red emission (ERE), a photoluminescent process associated with a wide variety of interstellar environments. Extensive efforts have been devoted over the past two decades to characterize the physical and chemical properties of PAH molecules and ions in space. Absorption spectra of PAH molecules and ions trapped in solid matrices have been compared to the DIBs [1, 2]. Absorption spectra of several cold, isolated gas-phase PAHs have also been measured under experimental conditions that mimic the interstellar conditions [see 3 for a review]. The purpose of this study is to provide a new dimension to the existing spectroscopic database of neutral and single ionized PAHs that is largely based on absorption spectra by adding emission spectroscopy data. The measurements are based on the laser-induced fluorescence (LIF) technique [4] and are performed with the Pulsed Discharge Nozzle (PDN) of the COSmIC laboratory facility at NASA Ames laboratory. The PDN generates plasma in a free supersonic jet expansion to simulate the physical and the chemical conditions in interstellar environments. We focus, here, on the fluorescence spectra of large neutral PAHs and their cations where there is a lack of fluorescence spectroscopy data. The astronomical implications of the data (e.g., ERE) are examinedReferences[1] F. Salama, E. Bakes, L.J. Allamandola, A.G.G.M. Tielens, Astrophys. J., 458 (1996) p.621[2] F. Salama, The ISO Revolution, EDP Sciences, Les Ulis, France (1999) p.65[3] Salama F., In Organic Matter in Space, IAU Symposium 251, Kwok & Sandford Eds.Cambridge University Press,4, S251,(2008), p. 357 (2008) and references therein.[4

  19. Investigation on the photo-induced de-oxygenation process of myoglobin in aqueous solution by use of fluorescence spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A photo-induced de-oxygenation process of myoglobin (Mb) in aqueous solution was investigated by use of fluorescence spectroscopy. The spectra are characterized by the fluorescence intensity declining gradually after each scan,and the decay of fluorescence intensity being significant in each scan,which is assigned to the release of oxygen from the opening of the heme-pockets induced by illumination. More illumination will cause more release of oxygen; if the temperature of an Mb solution is increased when it is illuminated,the rate of de-oxygenation will be higher. It was found that ligand-oxygen in Fe-porphyrin could be removed from Mb by nitrogen. This indicates that the interac-tion between oxy-Mb and other different gases can be tested by the method of fluorescence spectros-copy. In addition,fluorescence spectroscopy can be employed to probe the energy transfer between Fe-porphyrin and tryptophan or tyrosine in Mb molecules.

  20. Investigation of ultrafast dynamics of CdTe quantum dots by femtosecond fluorescence up-conversion spectroscopy

    NARCIS (Netherlands)

    Yao, G.-X.; Lü, L.-H.; Gui, M.-F.; Zhang, X.-Y.; Zheng, X.-F.; Ji, X.-H.; Zhang, H.; Cui, Z.-F.

    2012-01-01

    The ultrafast carrier relaxation processes in CdTe quantum dots are investigated by femtosecond fluorescence up-conversion spectroscopy. Photo-excited hole relaxing to the edge of the forbidden gap takes a maximal time of ~ 1.6 ps with exciting at 400 nm, depending on the state of the photo-excited

  1. Organic Light Emitting Device as a fluorescence spectroscopy's light source : one step towards the lab-on-a-chip device

    Science.gov (United States)

    Camou, S.; Kitamura, M.; Gouy, Jean-Philippe; Fujita, Hiroyuki; Arakawa, Yasuhiko; Fujii, Teruo

    2003-02-01

    Many papers were recently dedicated to the lab-on-a-chip applications, where all the basic elements should be integrated directly onto the microchip. The fluorescence spectroscopy is mostly used as a detection method due to its high reliability and sensitivity, but requires light source and photo-detector. For the first time, we then propose to use Organic material Light Emitting Diode (OLED) to supply a light source for the optical detection based on fluorescence spectroscopy. By combining this OLED with micro-fluidic channels patterned in PDMS layer, the integration of light source on the chip is then achieved. First, the ability of Organic Material to excite fluorescent response from dye is demonstrated. Then, some configurations are described in order to decrease the major drawbacks that have to be solved before applying such kind of devices.

  2. Fluorescence spectroscopy in the visible range for the assessment of UVB radiation effects in hairless mice skin.

    Science.gov (United States)

    de Paula Campos, Carolina; de Paula D'Almeida, Camila; Nogueira, Marcelo Saito; Moriyama, Lilian Tan; Pratavieira, Sebastião; Kurachi, Cristina

    2017-08-28

    Ultraviolet (UV) radiation may induce skin alterations as observed in photoaging. Some recognized modifications are epidermal hyperplasia, amorphous deposition of degraded elastic fibers and reduction in the number of collagen fibers. They alter the tissue biochemical properties that can be interrogated by steady state fluorescence spectroscopy (SSFS). In this study, we monitored the changes in endogenous fluorescence emission from hairless mice skin during a protocol of photoaging using UVB irradiation. To perform the fluorescence spectroscopy, it was used a violet laser (408nm) to induce the native fluorescence that is emitted in the visible range. Under 408nm excitation, the emission spectrum showed bands with peaks centered around 510, 633 and 668nm for irradiated and control groups. A relative increase of the fluorescence at 633nm emission on the flank was observed with time when compared to the ventral skin at the same animal and the non-irradiated control group. We correlated the emission at 633nm with protoporphyrin IX (PpIX), and our hypothesis is that the PpIX metabolism in the photoaged and aged skin are different. PpIX fluorescence intensity in the photoaged skin is higher and more heterogeneous than in the aged skin. Notwithstanding, more spectroscopic and biochemistry studies investigating the 510 and 633nm emission are needed to confirm this hypothesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Study of anti-cancer effects of chemotherapeutic agents and radiotherapy in breast cancer patients using fluorescence spectroscopy

    Science.gov (United States)

    Chithra, K.; Vijayaraghavan, S.; Prakasarao, Aruna; Singaravelu, Ganesan

    2017-02-01

    The analysis of the variations in the spectroscopic patterns of the key bio molecules using Native fluorescence spectroscopy, without exogenous labels, has emerged as a new trend in the characterization of the Physiological State and the Discrimination of Pathological from normal conditions of cells and tissues as the relative concentration of these bio-molecules serve as markers in evaluating the presence of cancer in the body. The aim of this unique study is to use these features of Optical spectroscopy in monitoring the behavior of cells to treatment and thus to evaluate the response to Chemotherapeutic agents and Radiation in Breast Cancer Patients. The results of the study conducted using NFS of Human blood plasma of biopsy proved Breast Cancer patients undergoing treatment are promising, enhancing the scope of Native fluorescence Spectroscopy emerging as a promising technology in the evaluation of Therapeutic Response in Breast Cancer Patients.

  4. Conformation of self-assembled porphyrin dimers in liposome vesicles by phase-modulation 2D fluorescence spectroscopy

    CERN Document Server

    Lott, Geoffrey A; Utterback, James K; Widom, Julia R; Aspuru-Guzik, Alán; Marcus, Andrew H

    2011-01-01

    By applying a phase-modulation fluorescence approach to 2D electronic spectroscopy, we studied the conformation-dependent exciton-coupling of a porphyrin dimer embedded in a phospholipid bilayer membrane. Our measurements specify the relative angle and separation between interacting electronic transition dipole moments, and thus provide a detailed characterization of dimer conformation. Phase-modulation 2D fluorescence spectroscopy (PM-2D FS) produces 2D spectra with distinct optical features, similar to those obtained using 2D photon-echo spectroscopy (2D PE). Specifically, we studied magnesium meso tetraphenylporphyrin dimers, which form in the amphiphilic regions of 1,2-distearoyl-sn-glycero-3-phosphocholine liposomes. Comparison between experimental and simulated spectra show that while a wide range of dimer conformations can be inferred by either the linear absorption spectrum or the 2D spectrum alone, consideration of both types of spectra constrains the possible structures to a "T-shaped" geometry. The...

  5. A Proposed Method for Measurement of Absolute Air Fluorescence Yield based on High Resolution Optical Emission Spectroscopy

    CERN Document Server

    Gika, V; Maltezos, S

    2016-01-01

    In this work, we present a method for absolute measurement of air fluorescence yield based on high resolution optical emission spectroscopy. The absolute measurement of the air fluorescence yield is feasible using the Cherenkov light, emitted by an electron beam simultaneously with the fluorescence light, as a "standard candle". The separation of these two radiations can be accomplished exploiting the "dark" spectral regions of the emission band systems of the molecular spectrum of nitrogen. In these "dark" regions the net Cherenkov light can be recorded experimentally and be compared with the calculated one. The instrumentation for obtaining the nitrogen molecular spectra in high resolution and the noninvasive method for monitoring the rotational temperature of the emission process are also described. For the experimental evaluation of the molecular spectra analysis we used DC normal glow discharges in air performed in an appropriate spectral lamp considered as an air-fluorescence light emulator. The propose...

  6. Fluorescence correlation spectroscopy, a tool to investigate supramolecular dynamics: inclusion complexes of pyronines with cyclodextrin.

    Science.gov (United States)

    Al-Soufi, Wajih; Reija, Belén; Novo, Mercedes; Felekyan, Suren; Kühnemuth, Ralf; Seidel, Claus A M

    2005-06-22

    The control of supramolecular systems requires a thorough understanding of their dynamics on a molecular level. We present fluorescence correlation spectroscopy (FCS) as a powerful spectroscopic tool to study supramolecular dynamics with single molecule sensitivity. The formation of a supramolecular complex between beta-cyclodextrin (beta-CD) as host and pyronines Y (PY) and B (PB) as guests is studied by FCS. Global target analysis of full correlation curves with a newly derived theoretical model yields in a single experiment the fluorescence lifetimes and the diffusion coefficients of free and complexed guests and the rate constants describing the complexation dynamics. These data give insight into the recently published surprising fact that the association equilibrium constant of beta-CD with PY is much lower than that with the much bulkier guest PB. FCS shows that the stability of the complexes is dictated by the dissociation and not by the association process. The association rate constants are very similar for both guests and among the highest reported for this type of systems, although much lower than the diffusion-controlled collision rate constant. A two-step model including the formation of an encounter complex allows one to identify the unimolecular inclusion reaction as the rate-limiting step. Simulations indicate that this step may be controlled by geometrical and orientational requirements. These depend on critical molecular dimensions which are only weakly affected by the different alkyl substituents of PY and PB. Diffusion coefficients of PY and PB, of their complexes, and of rhodamine 110 are given and compared to those of similar molecules.

  7. Tracking transport and transformation of dissolved organic matter using fluorescence spectroscopy at Rifle vadose zone, Colorado

    Science.gov (United States)

    Dong, W.; Wan, J.; Tokunaga, T. K.; Gilbert, B.; Kim, Y.; Williams, K. H.

    2015-12-01

    Dissolved organic matter (DOM) represents the most mobile and active form of natural organic matter. It plays important roles in terrestrial C transport and biogeochemical cycles. Its reactivity makes it sensitive to seasonal variations and climate change. The objective of this study is to investigate the transport and transformation of DOM by tracking the spatial and seasonal variations of DOM concentrations and characteristics throughout the vadose zone and groundwater within a semi-arid floodplain at Rifle, Colorado. Three sets of vertically stratified pore water samplers were installed along a groundwater flow transect, and allowed collection of temporally resolved pore water samples from different depths. Fluorescence excitation-emission matrix (EEM) spectroscopy was used to trace changes in DOM characteristics. The humification index (HIX) was applied to evaluate variations in humification extent of DOM. EEM analysis identified fulvic-like, humic-like, tryptophan-like and tyrosine-like substances as the major fluorescent components of DOM in pore waters. Tryptophan-like and tyrosine-like compounds are typically considered as the recent microbial by-products, and they showed higher concentrations in the deeper vadose zone in late spring, and decrease from spring to winter. HIX values are smaller within the deeper vadose zone (1.5 ̶ 3.5 m) than in the overlying 1.0 m soil water and underlying groundwater samples (≥ 3.5 m), suggesting that some non- or less-humified DOM (or "fresh" microbial-derived DOM) was transferred during late spring. HIX value at each depth increased continuously from late spring to winter, with rapid humification occurring in late spring to early summer. These results suggest an annual cycle in which less humified soil organic matter is transferred into the deeper vadose zone during snowmelt/rainfall events, and then humified further through microbial transformation.

  8. Tumor margin assessment in Mohs surgery using reflectance, fluorescence and Raman spectroscopy

    Science.gov (United States)

    Nguyen, Hieu T. M.; Moy, Austin J.; Zhang, Yao; Feng, Xu; Reichenberg, Jason S.; Fox, Matthew; Tunnell, James W.

    2017-02-01

    Mohs surgery is the current gold standard to treat large, aggressive or high-risk non-melanoma skin cancer (NMSC) cases. While Mohs surgery is an effective treatment, the procedure is time-consuming and expensive for physicians as well as burdensome for patients as they wait for frozen section histology. Our group has recently demonstrated high diagnostic accuracy using a noninvasive "spectral biopsy" (combination of diffuse reflectance (DRS), fluorescence (FS) and Raman spectroscopy (RS)) to classify NMSC vs. normal lesion in a screening setting of intact tissue. Here, we examine the sensitivity of spectral biopsy to pathology in excised Mohs sections. The system is designed with three modalities integrated into one fiber probe, which is utilized to measure DRS, FS, and RS of freshly excised skin from patients with various NMSC pathologies including basal cell carcinoma (BCC) and squamous cell carcinoma (SCC), where each measurement location is correlated to histopathology. The spectral biopsy provides complimentary physiological information including the reduced scattering coefficient, hemoglobin content and oxygen saturation from DRS, NADH and collagen contribution from FS and information regarding multiple proteins and lipids from RS. We then apply logistic regression model to the extracted physiological parameters to classify NMSC vs. normal tissue. The results on the excised tissue are generally consistent with in vivo measurements showing decreased scattering within the tumor and reduced fluorescence. Due to the high sensitivity of RS to lipids, subcutaneous fat often dominates the RS signal. This pilot study demonstrates the potential for a spectral biopsy to classify NMSC vs. normal tissue, indicating the opportunity to guide Mohs excisions.

  9. Ablation plume structure and dynamics in ambient gas observed by laser-induced fluorescence imaging spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Miyabe, M.; Oba, M.; Iimura, H.; Akaoka, K.; Khumaeni, A.; Kato, M.; Wakaida, I.

    2015-08-01

    The dynamic behavior of an ablation plume in ambient gas has been investigated by laser-induced fluorescence imaging spectroscopy. The second harmonic beam from an Nd:YAG laser (0.5–6 J/cm{sup 2}) was focused on a sintered oxide pellet or a metal chip of gadolinium. The produced plume was subsequently intersected with a sheet-shaped UV beam from a dye laser so that time-resolved fluorescence images were acquired with an intensified CCD camera at various delay times. The obtained cross-sectional images of the plume indicate that the ablated ground state atoms and ions of gadolinium accumulate in a hemispherical contact layer between the plume and the ambient gas, and a cavity containing a smaller density of ablated species is formed near the center of the plume. At earlier expansion stage, another luminous component also expands in the cavity so that it coalesces into the hemispherical layer. The splitting and coalescence for atomic plume occur later than those for ionic plume. Furthermore, the hemispherical layer of neutral atoms appears later than that of ions; however, the locations of the layers are nearly identical. This coincidence of the appearance locations of the layers strongly suggests that the neutral atoms in the hemispherical layer are produced as a consequence of three-body recombination of ions through collisions with gas atoms. The obtained knowledge regarding plume expansion dynamics and detailed plume structure is useful for optimizing the experimental conditions for ablation-based spectroscopic analysis. - Highlights: • Ablated ground-state species accumulated in a thin hemispherical boundary layer • Inside the layer, a cavity containing a small density of ablated species was formed. • The hemispherical layers of atoms and ions appeared at a nearly identical location. • The measured intensity peak variation was in good agreement with a model prediction. • We ascribed the dominant process for forming the layer to a three

  10. Characterization of type I, II, III, IV, and V collagens by time-resolved laser-induced fluorescence spectroscopy

    Science.gov (United States)

    Marcu, Laura; Cohen, David; Maarek, Jean-Michel I.; Grundfest, Warren S.

    2000-04-01

    The relative proportions of genetically distinct collagen types in connective tissues vary with tissue type and change during disease progression, development, wound healing, aging. This study aims to 1) characterize the spectro- temporal fluorescence emission of fiber different types of collagen and 2) assess the ability of time-resolved laser- induced fluorescence spectroscopy to distinguish between collagen types. Fluorescence emission of commercially available purified samples was induced with nitrogen laser excitation pulses and detected with a MCP-PMT connected to a digital storage oscilloscope. The recorded time-resolved emission spectra displayed distinct fluorescence emission characteristics for each collagen type. The time domain information complemented the spectral domain intensity data for improved discrimination between different collagen types. Our results reveal that analysis of the fluorescence emission can be used to characterize different species of collagen. Also, the results suggest that time-resolved spectroscopy can be used for monitoring of connective tissue matrix composition changes due to various pathological and non-pathological conditions.

  11. Synchrotron X-ray fluorescence spectroscopy of salts in natural sea ice

    Science.gov (United States)

    Obbard, Rachel W.; Lieb-Lappen, Ross M.; Nordick, Katherine V.; Golden, Ellyn J.; Leonard, Jeremiah R.; Lanzirotti, Antonio; Newville, Mathew G.

    2016-11-01

    We describe the use of synchrotron-based X-ray fluorescence spectroscopy to examine the microstructural location of specific elements, primarily salts, in sea ice. This work was part of an investigation of the location of bromine in the sea ice-snowpack-blowing snow system, where it plays a part in the heterogeneous chemistry that contributes to tropospheric ozone depletion episodes. We analyzed samples at beamline 13-ID-E of the Advanced Photon Source at Argonne National Laboratory. Using an 18 keV incident energy beam, we produced elemental maps of salts for sea ice samples from the Ross Sea, Antarctica. The distribution of salts in sea ice depends on ice type. In our columnar ice samples, Br was located in parallel lines spaced roughly 0.5 mm apart, corresponding to the spacing of lamellae in the skeletal region during initial ice growth. The maps revealed concentrations of Br in linear features in samples from all but the topmost and bottommost depths. For those samples, the maps revealed rounded features. Calibration of the Br elemental maps showed bulk concentrations to be 5-10 g/m3, with concentrations ten times larger in the linear features. Through comparison with horizontal thin sections, we could verify that these linear features were brine sheets or layers.

  12. X-ray Fluorescence Spectroscopy Study of Coating Thickness and Base Metal Composition

    Science.gov (United States)

    Rolin, T. D.; Leszczuk, Y.

    2008-01-01

    For electrical, electronic, and electromechanical (EEE) parts to be approved for space use, they must be able to meet safety standards approved by NASA. A fast, reliable, and precise method is needed to make sure these standards are met. Many EEE parts are coated in gold (Au) and nickel (Ni), and the thickness coating is crucial to a part s performance. A nondestructive method that is efficient in measuring coating thickness is x-ray fluorescence (XRF) spectroscopy. The XRF spectrometer is a machine designed to measure layer thickness and composition of single or multilayered samples. By understanding the limitations in the collection of the data by this method, accurate composition and thickness measurements can be obtained for samples with Au and Ni coatings. To understand the limitations of data found, measurements were taken with the XRF spectrometer and compared to true values of standard reference materials (SRM) that were National Institute of Standards and Technology (NIST) traceable. For every sample, six different parameters were varied to understand measurement error: coating/substrate combination, number of layers, counting interval, collimator size, coating thickness, and test area location. Each measurement was taken in accordance with standards set by the American Society for Testing and Materials (ASTM) International Standard B 568.

  13. Measurement of the hydrodynamic radius of quantum dots by fluorescence correlation spectroscopy excluding blinking.

    Science.gov (United States)

    de Thomaz, A A; Almeida, D B; Pelegati, V B; Carvalho, H F; Cesar, C L

    2015-03-19

    One of the most important properties of quantum dots (QDs) is their size. Their size will determine optical properties and in a colloidal medium their range of interaction. The most common techniques used to measure QD size are transmission electron microscopy (TEM) and X-ray diffraction. However, these techniques demand the sample to be dried and under a vacuum. This way any hydrodynamic information is excluded and the preparation process may alter even the size of the QDs. Fluorescence correlation spectroscopy (FCS) is an optical technique with single molecule sensitivity capable of extracting the hydrodynamic radius (HR) of the QDs. The main drawback of FCS is the blinking phenomenon that alters the correlation function implicating in a QD apparent size smaller than it really is. In this work, we developed a method to exclude blinking of the FCS and measured the HR of colloidal QDs. We compared our results with TEM images, and the HR obtained by FCS is higher than the radius measured by TEM. We attribute this difference to the cap layer of the QD that cannot be seen in the TEM images.

  14. Monitoring lysin motif-ligand interactions via tryptophan analog fluorescence spectroscopy.

    Science.gov (United States)

    Petrović, Dejan M; Leenhouts, Kees; van Roosmalen, Maarten L; Kleinjan, Fenneke; Broos, Jaap

    2012-09-15

    The lysin motif (LysM) is a peptidoglycan binding protein domain found in a wide range of prokaryotes and eukaryotes. Various techniques have been used to study the LysM-ligand interaction, but a sensitive spectroscopic method to directly monitor this interaction has not been reported. Here a tryptophan analog fluorescence spectroscopy approach is presented to monitor the LysM-ligand interaction using the LysM of the N-acetylglucosaminidase enzyme of Lactococcus lactis. A three-dimensional model of this LysM protein was built based on available structural information of a homolog. This model allowed choosing the amino acid positions to be labeled with a Trp analog. Four functional single-Trp LysM mutants and one double-Trp LysM mutant were constructed and biosynthetically labeled with 7-azatryptophan or 5-hydroxytryptophan. These Trp analogs feature red-shifted absorption spectra, enabling the monitoring of the LysM-ligand interaction in media with a Trp background. The emission intensities of four of the five LysM constructs were found to change markedly on exposure to either L. lactis bacterium-like particles or peptidoglycan as ligands. The method reported here is suitable to monitor LysM-ligand interactions at (sub)micromolar LysM concentrations and can be used for the detection of low levels of peptidoglycan or microbes in solutions. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. DNA interaction with DAPI fluorescent dye: Force spectroscopy decouples two different binding modes.

    Science.gov (United States)

    Reis, L A; Rocha, M S

    2017-05-01

    In this work, we use force spectroscopy to investigate the interaction between the DAPI fluorescent dye and the λ-DNA molecule under high (174 mM) and low (34 mM) ionic strengths. Firstly, we have measured the changes on the mechanical properties (persistence and contour lengths) of the DNA-DAPI complexes as a function of the dye concentration in the sample. Then, we use recently developed models in order to connect the behavior of both mechanical properties to the physical chemistry of the interaction. Such analysis has allowed us to identify and to decouple two main binding modes, determining the relevant physicochemical (binding) parameters for each of these modes: minor groove binding, which saturates at very low DAPI concentrations ( CT ∼ 0.50 μM) and presents equilibrium binding constants of the order of ∼10(7) M(-1) for the two ionic strengths studied; and intercalation, which starts to play a significant role only after the saturation of the first mode, presenting much smaller equilibrium binding constants (∼10(5) M(-1) ).

  16. The photochemical ring opening reaction of chromene as seen by transient absorption and fluorescence spectroscopy.

    Science.gov (United States)

    Herzog, Teja T; Ryseck, Gerald; Ploetz, Evelyn; Cordes, Thorben

    2013-07-01

    In this paper we investigate the photochromic ring-opening reaction of 2,2-diphenyl-5,6-benzo(2H)chromene. In particular, we study the uncertainties and contradictions in various published reaction models using a combination of transient absorption and fluorescence spectroscopy with femtosecond time resolution. We propose a simplified reaction scheme which is in good agreement with theoretical studies. Here, photoexcitation populates a Franck-Condon state, whose fast vibrational wave packet motion, vibrational relaxation, bond-alternation and/or solvent rearrangement processes occur on the sub-picosecond timescale. Our data suggest that the resulting excited state minimum with picosecond lifetime still features structural characteristics of the closed form. Subsequently, the ring-opened photoproducts are formed in a concerted step from the excited state. The velocity of the photoreaction hence only depends on the time that the molecule needs to reach the transition region between the ground and excited states where the crucial bond breakage occurs.

  17. Phospholipid diffusion coefficients of cushioned model membranes determined via z-scan fluorescence correlation spectroscopy.

    Science.gov (United States)

    Sterling, Sarah M; Allgeyer, Edward S; Fick, Jörg; Prudovsky, Igor; Mason, Michael D; Neivandt, David J

    2013-06-25

    Model cellular membranes enable the study of biological processes in a controlled environment and reduce the traditional challenges associated with live or fixed cell studies. However, model membrane systems based on the air/water or oil/solution interface do not allow for incorporation of transmembrane proteins or for the study of protein transport mechanisms. Conversely, a phospholipid bilayer deposited via the Langmuir-Blodgett/Langmuir-Schaefer method on a hydrogel layer is potentially an effective mimic of the cross section of a biological membrane and facilitates both protein incorporation and transport studies. Prior to application, however, such membranes must be fully characterized, particularly with respect to the phospholipid bilayer phase transition temperature. Here we present a detailed characterization of the phase transition temperature of the inner and outer leaflets of a chitosan supported model membrane system. Specifically, the lateral diffusion coefficient of each individual leaflet has been determined as a function of temperature. Measurements were performed utilizing z-scan fluorescence correlation spectroscopy (FCS), a technique that yields calibration-free diffusion information. Analysis via the method of Wawrezinieck and co-workers revealed that phospholipid diffusion changes from raftlike to free diffusion as the temperature is increased-an insight into the dynamic behavior of hydrogel supported membranes not previously reported.

  18. Chemical library screening for WNK signalling inhibitors using fluorescence correlation spectroscopy.

    Science.gov (United States)

    Mori, Takayasu; Kikuchi, Eriko; Watanabe, Yuko; Fujii, Shinya; Ishigami-Yuasa, Mari; Kagechika, Hiroyuki; Sohara, Eisei; Rai, Tatemitsu; Sasaki, Sei; Uchida, Shinichi

    2013-11-01

    WNKs (with-no-lysine kinases) are the causative genes of a hereditary hypertensive disease, PHAII (pseudohypoaldosteronism type II), and form a signal cascade with OSR1 (oxidative stress-responsive 1)/SPAK (STE20/SPS1-related proline/alanine-rich protein kinase) and Slc12a (solute carrier family 12) transporters. We have shown that this signal cascade regulates blood pressure by controlling vascular tone as well as renal NaCl excretion. Therefore agents that inhibit this signal cascade could be a new class of antihypertensive drugs. Since the binding of WNK to OSR1/SPAK kinases was postulated to be important for signal transduction, we sought to discover inhibitors of WNK/SPAK binding by screening chemical compounds that disrupt the binding. For this purpose, we developed a high-throughput screening method using fluorescent correlation spectroscopy. As a result of screening 17000 compounds, we discovered two novel compounds that reproducibly disrupted the binding of WNK to SPAK. Both compounds mediated dose-dependent inhibition of hypotonicity-induced activation of WNK, namely the phosphorylation of SPAK and its downstream transporters NKCC1 (Na/K/Cl cotransporter 1) and NCC (NaCl cotransporter) in cultured cell lines. The two compounds could be the promising seeds of new types of antihypertensive drugs, and the method that we developed could be applied as a general screening method to identify compounds that disrupt the binding of two molecules.

  19. Tracking transcription factor mobility and interaction in Arabidopsis roots with fluorescence correlation spectroscopy.

    Science.gov (United States)

    Clark, Natalie M; Hinde, Elizabeth; Winter, Cara M; Fisher, Adam P; Crosti, Giuseppe; Blilou, Ikram; Gratton, Enrico; Benfey, Philip N; Sozzani, Rosangela

    2016-06-11

    To understand complex regulatory processes in multicellular organisms, it is critical to be able to quantitatively analyze protein movement and protein-protein interactions in time and space. During Arabidopsis development, the intercellular movement of SHORTROOT (SHR) and subsequent interaction with its downstream target SCARECROW (SCR) control root patterning and cell fate specification. However, quantitative information about the spatio-temporal dynamics of SHR movement and SHR-SCR interaction is currently unavailable. Here, we quantify parameters including SHR mobility, oligomeric state, and association with SCR using a combination of Fluorescent Correlation Spectroscopy (FCS) techniques. We then incorporate these parameters into a mathematical model of SHR and SCR, which shows that SHR reaches a steady state in minutes, while SCR and the SHR-SCR complex reach a steady-state between 18 and 24 hr. Our model reveals the timing of SHR and SCR dynamics and allows us to understand how protein movement and protein-protein stoichiometry contribute to development.

  20. Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation.

    Science.gov (United States)

    Tekavec, Patrick F; Lott, Geoffrey A; Marcus, Andrew H

    2007-12-07

    Two-dimensional electronic coherence spectroscopy (ECS) is an important method to study the coupling between distinct optical modes of a material system. Such studies often involve excitation using a sequence of phased ultrashort laser pulses. In conventional approaches, the delays between pulse temporal envelopes must be precisely monitored or maintained. Here, we introduce a new experimental scheme for phase-selective nonlinear ECS, which combines acousto-optic phase modulation with ultrashort laser excitation to produce intensity modulated nonlinear fluorescence signals. We isolate specific nonlinear signal contributions by synchronous detection, with respect to appropriately constructed references. Our method effectively decouples the relative temporal phases from the pulse envelopes of a collinear train of four sequential pulses. We thus achieve a robust and high signal-to-noise scheme for phase-selective ECS to investigate the resonant nonlinear optical response of photoluminescent systems. We demonstrate the validity of our method using a model quantum three-level system-atomic Rb vapor. Moreover, we show how our measurements determine the resonant complex-valued third-order susceptibility.

  1. Heat shock-induced interactions among nuclear HSFs detected by fluorescence cross-correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pack, Chan-Gi, E-mail: changipack@amc.seoul.kr [Asan Institute for Life Sciences, University of Ulsan, College of Medicine, Asan Medical Center, Seoul 138-736 (Korea, Republic of); Ahn, Sang-Gun [Dept. of Pathology, College of Dentistry, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759 (Korea, Republic of)

    2015-07-31

    The cellular response to stress is primarily controlled in cells via transcriptional activation by heat shock factor 1 (HSF1). HSF1 is well-known to form homotrimers for activation upon heat shock and subsequently bind to target DNAs, such as heat-shock elements, by forming stress granules. A previous study demonstrated that nuclear HSF1 and HSF2 molecules in live cells interacted with target DNAs on the stress granules. However, the process underlying the binding interactions of HSF family in cells upon heat shock remains unclear. This study demonstrate for the first time that the interaction kinetics among nuclear HSF1, HSF2, and HSF4 upon heat shock can be detected directly in live cells using dual color fluorescence cross-correlation spectroscopy (FCCS). FCCS analyses indicated that the binding between HSFs was dramatically changed by heat shock. Interestingly, the recovery kinetics of interaction between HSF1 molecules after heat shock could be represented by changes in the relative interaction amplitude and mobility. - Highlights: • The binding interactions among nuclear HSFs were successfully detected. • The binding kinetics between HSF1s during recovery was quantified. • HSF2 and HSF4 strongly formed hetero-complex, even before heat shock. • Nuclear HSF2 and HSF4 bound to HSF1 only after heat shock.

  2. Laser-induced fluorescence and FT-Raman spectroscopy for characterizing patinas on stone substrates.

    Science.gov (United States)

    Oujja, M; Vázquez-Calvo, C; Sanz, M; Álvarez de Buergo, M; Fort, R; Castillejo, M

    2012-02-01

    This article reports on a compositional investigation of stone patinas: thin colored layers applied for protective and/or aesthetic purposes on architectural or sculptural substrates of cultural heritage. The analysis and classification of patinas provide important information of historic and artistic interest, as their composition reflects local practices, the availabilities of different materials, and the development of technological knowledge during specific historical periods. Model patinas fabricated according to traditional procedures and applied onto limestone, and a historic patina sample from the main façade of the San Blas Monastery in Lerma (a village in the province of Burgos, Spain), were analyzed by laser-induced fluorescence and Fourier transform Raman spectroscopy. The results obtained demonstrate the ability of these two analytical techniques to identify the key components of each formulation and those of the reaction products which result from the chemical and mineralogical transformations that occur during aging, as well as to provide information that can aid the classification of different types of patinas.

  3. Multi-confocal Fluorescence Correlation Spectroscopy : experimental demonstration and potential applications for living cell measurements

    CERN Document Server

    Galland, Rémi; Kloster, Meike; Herbomel, Gaetan; Destaing, Olivier; Balland, Martial; Souchier, Catherine; Usson, Yves; Derouard, Jacques; Wang, Irène; Delon, Antoine; 10.2741/e263

    2011-01-01

    We report, for the first time, a multi-confocal Fluorescence Correlation Spectroscopy (mFCS) technique which allows parallel measurements at different locations, by combining a Spatial Light Modulator (SLM), with an Electron Multiplying-CCD camera (EM-CCD). The SLM is used to produce a series of laser spots, while the pixels of the EM-CCD play the roles of virtual pinholes. The phase map addressed to the SLM is calculated by using the spherical wave approximation and makes it possible to produce several diffraction limited laser spots, either aligned or spread over the field of view. To attain fast enough imaging rates, the camera has been used in different acquisition modes, the fastest of which leads to a time resolution of 100 $\\mu$s. We qualified the experimental set-up by using solutions of sulforhodamine G in glycerol and demonstrated that the observation volumes are similar to that of a standard confocal set-up. To demonstrate that our mFCS method is suitable for intracellular studies, experiments have...

  4. Using fluorescence correlation spectroscopy to study diffusion in the presence of a hierarchy of membrane domains

    Science.gov (United States)

    Kalay, Ziya

    2014-03-01

    Fluorescence correlation spectroscopy (FCS) is a commonly used experimental technique to study molecular transport, especially in biological systems. FCS is particularly useful in two-dimensional systems such as the cell membrane, where molecules approximately move in a plane over several hundreds of nanometers, and the signal to noise ratio is high. Recent observations showed that proteins and lipids in the plasma membrane (the outermost membrane of a cell) can become temporarily confined in a hierarchy of membrane domains, induced by actin filaments and dynamic clusters formed by lipids and proteins (rafts). There has been considerable interest in measuring the characteristic size and lifetime of these domains via microscopy techniques, including FCS. Even though FCS is widely applicable, interpretation of the results is often indirect, as data has to be fit to model predictions in order to extract transport coefficients. In this talk, I will present our recent theoretical and computational findings on how FCS measurements would reflect diffusion in the simultaneous presence of cytoskeleton induced membrane compartments, and raft-like domains.

  5. Tar analysis from biomass gasification by means of online fluorescence spectroscopy

    Science.gov (United States)

    Baumhakl, Christoph; Karellas, Sotirios

    2011-07-01

    Optical methods in gas analysis are very valuable mainly due to their non-intrusive character. That gives the possibility to use them for in-situ or online measurements with only optical intervention in the measurement volume. In processes like the gasification of biomass, it is of high importance to monitor the gas quality in order to use the product gas in proper machines for energy production following the restrictions in the gas composition but also improving its quality, which leads to high efficient systems. One of the main problems in the biomass gasification process is the formation of tars. These higher hydrocarbons can lead to problems in the operation of the energy system. Up to date, the state of the art method used widely for the determination of tars is a standardized offline measurement system, the so-called "Tar Protocol". The aim of this work is to describe an innovative, online, optical method for determining the tar content of the product gas by means of fluorescence spectroscopy. This method uses optical sources and detectors that can be found in the market at low cost and therefore it is very attractive, especially for industrial applications where cost efficiency followed by medium to high precision are of high importance.

  6. Green direct determination of mineral elements in artichokes by infrared spectroscopy and X-ray fluorescence.

    Science.gov (United States)

    Mir-Marqués, Alba; Martínez-García, Maria; Garrigues, Salvador; Cervera, M Luisa; de la Guardia, Miguel

    2016-04-01

    Near infrared (NIR) and X-ray fluorescence (XRF) spectroscopy were investigated to predict the concentration of calcium, potassium, iron, magnesium, manganese and zinc in artichoke samples. Sixty artichokes were purchased from different Spanish areas (Benicarló, Valencia and Murcia). NIR and XRF spectra, combined with partial least squares (PLS) data treatment, were used to develop chemometric models for the prediction of mineral concentration. To obtain reference data, samples were mineralised and analysed by inductively coupled plasma optical emission spectrometry (ICP-OES). Coefficients of determination obtained for the regression between predicted values and reference ones for calcium, potassium, magnesium, iron, manganese and zinc were 0.61, 0.79, 0.53, 0.77, 0.54 and 0.60 for NIR and 0.96, 0.93, 0.80, 0.79, 0.76 and 0.90 for XRF, respectively. Both assayed methodologies, offer green alternatives to classical mineral analysis, but XRF provided the best results in order to be used as a quantitative screening method.

  7. Mapping Liquid-liquid protein phase separation using ultra-fast-scanning fluorescence correlation spectroscopy

    Science.gov (United States)

    Wei, Ming-Tzo; Elbaum-Garfinkle, Shana; Arnold, Craig B.; Priestley, Rodney D.; Brangwynne, Clifford P.

    Intrinsically disordered proteins (IDPs) are an understudied class of proteins that play important roles in a wide variety of biological processes in cells. We've previously shown that the C. elegans IDP LAF-1 phase separates into P granule-like droplets in vitro. However, the physics of the condensed phase remains poorly understood. Here, we use a novel technique, ultra-fast-scanning fluorescence correlation spectroscopy, to study the nano-scale rheological properties of LAF-1 droplets. Ultra-fast-scanning FCS uses a tunable acoustic gradient index of refraction (TAG) lens with an oil immersion objective to control axial movement of the focal point over a length of several micrometers at frequencies of 70kHz. Using ultra-fast-scanning FCS allows for the accurate determination of molecular concentrations and their diffusion coefficient, when the particle is passing through an excitation volume. Our work reveals an asymmetric LAF-1 phase diagram, and demonstrates that LAF-1 droplets are purely viscous phases which are highly tunable by salt concentration.

  8. Cell cycle-dependent mobility of Cdc45 determined in vivo by fluorescence correlation spectroscopy.

    Directory of Open Access Journals (Sweden)

    Ronan Broderick

    Full Text Available Eukaryotic DNA replication is a dynamic process requiring the co-operation of specific replication proteins. We measured the mobility of eGFP-Cdc45 by Fluorescence Correlation Spectroscopy (FCS in vivo in asynchronous cells and in cells synchronized at the G1/S transition and during S phase. Our data show that eGFP-Cdc45 mobility is faster in G1/S transition compared to S phase suggesting that Cdc45 is part of larger protein complex formed in S phase. Furthermore, the size of complexes containing Cdc45 was estimated in asynchronous, G1/S and S phase-synchronized cells using gel filtration chromatography; these findings complemented the in vivo FCS data. Analysis of the mobility of eGFP-Cdc45 and the size of complexes containing Cdc45 and eGFP-Cdc45 after UVC-mediated DNA damage revealed no significant changes in diffusion rates and complex sizes using FCS and gel filtration chromatography analyses. This suggests that after UV-damage, Cdc45 is still present in a large multi-protein complex and that its mobility within living cells is consistently similar following UVC-mediated DNA damage.

  9. Spectral characterization of crude oil using fluorescence (synchronous and time-resolved) and NIR (Near Infrared Spectroscopy); Caracterizacao espectral do petroleo utilizando fluorescencia (sincronizada e resolvida no tempo) e NIR (Near Infrared Spectroscopy)

    Energy Technology Data Exchange (ETDEWEB)

    Falla Sotelo, F.; Araujo Pantoja, P.; Lopez-Gejo, J.; Le Roux, G.A.C.; Nascimento, C.A.O. [Universidade de Sao Paulo (USP), SP (Brazil). Dept. de Engenharia Quimica. Lab. de Simulacao e Controle de Processos; Quina, F.H. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica. Centro de Capacitacao e Pesquisa em Meio Ambiente (CEPEMA)

    2008-07-01

    The objective of the present work is to evaluate the performance of two spectroscopic techniques employed in the crude oil characterization: NIR spectroscopy and fluorescence spectroscopy (Synchronous fluorescence - SF and Time Resolved Fluorescence - TRF) for the development of correlation models between spectral profiles of crude oil samples and both physical properties (viscosity and API density) and physico-chemical properties (SARA analysis: Saturated, Aromatic, Resins and Asphaltenes). The better results for viscosity and density were obtained using NIR whose prediction capacity was good (1.5 cP and 0.5 deg API, respectively). For SARA analysis, fluorescence spectroscopy revealed its potential in the model calibration showing good results (R2 coefficients greater than 0.85). TRF spectroscopy had better performance than SF spectroscopy. (author)

  10. Effect of ethanol-water mixture on the structure and dynamics of lysozyme: A fluorescence correlation spectroscopy study

    Science.gov (United States)

    Chattoraj, Shyamtanu; Mandal, Amit Kumar; Bhattacharyya, Kankan

    2014-03-01

    Effect of ethanol-water mixture on the hydrodynamic radius (rH) and conformational dynamics of lysozyme has been studied by circular dichroism, emission spectra, and fluorescence correlation spectroscopy. For this purpose, the protein lysozyme is covalently labeled near the active site with a fluorescent probe, alexa 488. The ethanol molecules are sequestered near the hydrophobic tryptophan residues as indicated by the blue shift of the emission maximum of tryptophan. It is observed that both size (rH) and time constant of conformational relaxation (τR) of lysozyme oscillate with increase in ethanol concentration. The rH of the protein fluctuates from 19 Å in the native state, to a minimum of 13 Å, and a maximum of 29 Å. It is proposed that the oscillating behavior arises from competition between mutual interaction among protein, ethanol, and water. The fluorescence intensity fluctuates because of quenching of the fluorescence of the probe (alexa) by the free amino group of certain residues (e.g., tryptophan). Rate of inter-conversion (folding dynamics) between the open (fluorescent) and closed (non-fluorescent) form has been determined and is found to exhibit similar oscillation with variation in ethanol content.

  11. Excited-state dynamics of dGMP measured by steady-state and femtosecond fluorescence spectroscopy.

    Science.gov (United States)

    Miannay, Francois-Alexandre; Gustavsson, Thomas; Banyasz, Akos; Markovitsi, Dimitra

    2010-03-11

    The room-temperature fluorescence of 2'-deoxyguanosine 5'-monophosphate (dGMP) in aqueous solution is studied by steady-state and time-resolved fluorescence spectroscopy. The steady-state fluorescence spectrum of dGMP shows one band centered at 334 nm but has an extraordinary long red tail, extending beyond 700 nm. Both the fluorescence quantum yield and the relative weight of the 334 nm peak increase with the excitation wavelength. The initial fluorescence anisotropy after excitation at 267 nm is lower than 0.2 for all emission wavelengths, indicating an ultrafast S(2) --> S(1) internal conversion. The fluorescence decays depend strongly on the emission wavelength, getting longer with the wavelength. A rise time of 100-150 fs was observed for wavelengths longer than 450 nm, in accordance with a gradual red shift of the time-resolved spectra. The results are discussed in terms of a relaxation occurring mainly on the lowest excited (1)pi pi*-state surface toward a conical intersection with the ground state, in line with recent theoretical predictions. Our results show that the excited-state population undergoes a substantial "spreading out" before reaching the CI, explaining the complex dynamics observed.

  12. Longitudinal diffusion behavior of hemicyanine dyes across phospholipid vesicle membranes as studied by second-harmonic generation and fluorescence spectroscopies.

    Science.gov (United States)

    Yamaguchi, Akira; Nakano, Masaki; Nochi, Kimihisa; Yamashita, Tomohisa; Morita, Kotaro; Teramae, Norio

    2006-10-01

    The adsorption and longitudinal diffusion behaviors of a series of hemicyanine dyes to phospholipid vesicle membranes were studied by second-harmonic generation (SHG) and fluorescence spectroscopies. It was observed that the longitudinal diffusion of cationic hemicyanine dyes takes place immediately after the initial adsorption of these dyes to the outer surface of the vesicle membrane. In contrast, hardly any amount of a zwitterionic hemicyanine dye with a sulfonate group diffused across the vesicle membrane within the measurement time (<2000 s). Based on the difference in the time-course responses of SHG and fluorescence spectroscopies for all of the hemicyanine dyes tested, we propose that hydration of the sulfonate group is mainly responsible for the low diffusivity of the zwitterionic hemicyanine dye.

  13. Mechanisms of ultrafast fluorescence depletion spectroscopy and applications to measure slovation dynamics of coummarin 153 in methanol

    Energy Technology Data Exchange (ETDEWEB)

    Yang Songqiu, E-mail: sqyang@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Liu Jianyong, E-mail: beam@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Zhou Panwang, E-mail: pwzhou@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Chen Junsheng, E-mail: junshengchen@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Han Keli, E-mail: klhan@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); He Guozhong, E-mail: gzhe@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2012-09-15

    Subpicosecond fluorescence depletion spectroscopy (FDS) was used to measure the solvation dynamics of coumarin 153 (C153) in methanol. The FDS mechanisms were discussed. A quasi-continuous model was used to describe the solvational relaxation of excited states. The perturbations of the probe pulse on the excited sample system, including up-conversion and stimulated emission, were sufficiently discussed. For a probe molecule used in the FDS experiment, ensuring that the up-conversion perturbation can be negligible is important. FDS was found to be a good technique for measuring the solvation dynamics of C153 in methanol. - Highlights: Black-Right-Pointing-Pointer Mechanisms of subpicosecond fluorescence depletion spectroscopy. Black-Right-Pointing-Pointer Quasi-continuous model was used to describe the solvational relaxation. Black-Right-Pointing-Pointer The solvation dynamics of coumarin 153 in methanol has been measured.

  14. Interaction of fisetin with human serum albumin by fluorescence, circular dichroism spectroscopy and DFT calculations: binding parameters and conformational changes

    Energy Technology Data Exchange (ETDEWEB)

    Matei, Iulia; Ionescu, Sorana [Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bd. Regina Elisabeta 4-12, 030018 Bucharest (Romania); Hillebrand, Mihaela, E-mail: mihh@gw-chimie.math.unibuc.ro [Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bd. Regina Elisabeta 4-12, 030018 Bucharest (Romania)

    2011-08-15

    The interaction between fisetin, an antioxidant and neuroprotective flavonoid, and human serum albumin (HSA) is investigated by means of fluorescence (steady-state, synchronous, time-resolved) and circular dichroism (CD) spectroscopy. The formation of a 1:1 complex with a constant of about 10{sup 5} M{sup -1} was evidenced. Foerster's resonance energy transfer and competitive binding with site markers warfarin and ibuprofen were considered and discussed. Changes in the CD band of HSA indicate a decrease in the {alpha}-helix content upon binding. An induced CD signal for bound fisetin was observed and rationalized in terms of density functional theory calculations. - Highlights: > Fisetin-BSA system was studied by fluorescence spectroscopy. > Binding parameters, association constant and number of sites were estimated. > Binding site of fisetin was identified by competitive experiments. > Conformational changes in HSA and fisetin were evidenced by circular dichroism. > TDDFT calculated CD spectra supported the experimental data.

  15. Development of fiber optic spectroscopy for in-vitro and in-planta detection of fluorescent proteins

    Science.gov (United States)

    Liew, Oi Wah; Chen, Jun-Wei; Asundi, Anand K.

    2001-10-01

    The objective of this project is to apply photonics technology to bio-safety management of genetically modified (GM) plants. The conventional method for screening GM plants is through selection using antibiotic resistance markers. There is public concern with such approaches and these are associated with food safety issues, escape of antibiotic resistance genes to pathogenic microorganisms and interference with antibiotic therapy. Thus, the strategy taken in this project is to replace antibiotic resistance markers with fluorescent protein markers that allow for rapid and non-invasive optical screening of genetically modified plants. In this paper, fibre optic spectroscopy was developed to detect and quantify recombinant green (EGFP) and red (DsRED) fluorescent proteins in vitro and in planta. In vitro detection was first carried out to optimize the sensitivity of the optical system. The bacterial expression vectors carrying the coding regions of EGFP and DsRED were introduced into Escherichia coli host cells and fluorescent proteins were produced following induction with IPTG. Soluble EGFP and DsRED proteins were isolated from lysed bacterial cells and serially diluted for quantitative analysis by fibre optic spectroscopy using different light sources, namely, blue LED (475 nm), tungsten halogen (350 - 1000 nm) and double frequency Nd:YAG green laser (532 nm). Fluorescence near the expected emission wavelengths could be detected up to 320X dilution for EGFP and DsRED with blue LED and 532 nm green laser, respectively, as the excitation source. Tungsten halogen was found to be unsuitable for excitation of both EGFP and DsRED. EGFP was successfully purified by size separation under non-denaturing electrophoretic conditions and quantified. The minimum concentration of EGFP detectable with blue LED excitation was 5 mg/ml. To determine the capability of spectroscopy detection in planta, transgenic potato hairy roots and whole modified plant lines expressing the

  16. A versatile dual spot laser scanning confocal microscopy system for advanced fluorescence correlation spectroscopy analysis in living cell

    CERN Document Server

    Ferrand, P; Kress, A; Aillaud, A; Rigneault, H; Marguet, D

    2009-01-01

    A fluorescence correlation spectroscopy (FCS) system based on two independent measurement volumes is presented. The optical setup and data acquisition hardware are detailed, as well as a complete protocol to control the location, size and shape of the measurement volumes. A method that allows to monitor independently the excitation and collection efficiency distribution is proposed. Finally, a few examples of measurements that exploit the two spots in static and/or scanning schemes, are reported.

  17. Speciation of bioaccumulated uranium(VI) by Euglena mutabilis cells obtained by laser fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Brockmann, Sina; Bernhard, Gert [Technical Univ. Dresden (Germany). Radiochemistry; Helmholtz-Zentrum Dresden-Rossendorf (HZDR) e.V., Dresden (Germany). Inst. of Resource Ecology; Arnold, Thuro [Helmholtz-Zentrum Dresden-Rossendorf (HZDR) e.V., Dresden (Germany). Inst. of Resource Ecology

    2014-07-01

    The ability of Euglena mutabilis cells - a unicellular protozoan with a flexible pellicle, which is typically found in acid mine drainage (AMD) environments - to bioaccumulate uranium under acid conditions was studied in batch sorption experiments at pH 3 and 4 using Na{sub 2}SO{sub 4} and NaClO{sub 4} as background media. It was found that axenic cultures of Euglena mutabilis Schmitz were able to bioaccumulate in 5 days 94.9 to 99.2% of uranium from a 1 x 10{sup -5} mol/L uranium solution in perchlorate medium and 95.1 to 95.9% in sodium sulfate medium, respectively. The speciation of uranium in solution and uranium bioaccumulated by Euglena mutabilis cells, were studied by laser induced fluorescence spectroscopy (LIFS). The LIFS investigations showed that the uranium speciation in the NaClO{sub 4} systems was dominated by free uranyl(VI) species and that the UO{sub 2}SO{sub 4} species was dominating in the Na{sub 2}SO{sub 4} medium. Fluorescence spectra of the bioaccumulated uranium revealed that aqueous uranium binds to carboxylic and/or (organo)phosphate groups located on the euglenid pellicle or inside the Euglena mutabilis cells. Reduced uranium immobilization rates of 0.93-1.43 mg uranium per g Euglena mutabilis biomass were observed in similar experiments, using sterile filtrated AMD waters containing, 4.4 x 10{sup -5} mol/L uranium. These lower rates were attributed to competition with other cations for available sorption sites. Additional LIFS measurements, however, showed that the speciation of the bioaccumulated uranium by the Euglena mutabilis cells was found to be identical with the uranium speciation found in the bioaccumulation experiments carried out in Na{sub 2}SO{sub 4} and NaClO{sub 4} media. The results indicate that Euglena mutabilis has the potential to immobilize aqueous uranium under acid condition and thus may be used in future as promising agent for immobilizing uranium in low pH waste water environments. (orig.)

  18. Study of diffusion in polymer solutions and networks by fluorescence correlation spectroscopy

    Science.gov (United States)

    Chehreghanianzabi, Yasaman

    Diffusion in polymer solutions and networks is a topic of vast importance in many fields related to medical devices, tissue engineering, and drug delivery. Understanding diffusion in such environments is also essential for describing molecular transport through biological systems such as cells and tissues. Fluorescence correlation spectroscopy (FCS) is single molecule spectroscopic technique that measures the fluctuations of fluorescent probes in a defined confocal volume and correlates them in time to give information on diffusion times, concentrations, and interactions as well as indirectly, on macromolecular structure or conformation. In the first project we used diffusivity data obtained by FCS to develop a novel homogenization theory model to accurately predict solute diffusivity in polymer solutions. We focused on a setting where diffusivity was hindered by obstruction only. By choosing experimental conditions that satisfied the model assumptions, we were able to validate the homogenization theory model. While testing diffusivity in various polymer solutions, we also observed an unexpected phenomenon--a dramatic decrease in diffusivity of small fluorophores in dilute solutions of polyethylene glycol (PEG), which led to the second project. Here, we determined that the rapid drop was due to a complexation between the PEG and the fluorophore. We also determined that this complexation was highly specific and could be attributed to hydrogel bonding between the ether oxygen of PEG and the carboxylic hydrogen of the fluorophore. We then transitioned to a more complex hydrogel network environment, namely fluorophore diffusivity in various alginate hydrogels--varied by concentration and modifications with a cell adhesive ligand. Importantly, we were able to determine that while the fluorophore diffusivity was hindered due to electrostatic interactions, it was the same irrespective of the alginate concentration or modifications. The last part of this thesis was focused

  19. Synchrotron Radiation Total Reflection X-ray Fluorescence Spectroscopy for Microcontamination Analysis on Silicon Wafer Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Takaura, Norikatsu

    1997-10-01

    As dimensions in state-of-the-art CMOS devices shrink to less than 0.1 pm, even low levels of impurities on wafer surfaces can cause device degradation. Conventionally, metal contamination on wafer surfaces is measured using Total Reflection X-Ray Fluorescence Spectroscopy (TXRF). However, commercially available TXRF systems do not have the necessary sensitivity for measuring the lower levels of contamination required to develop new CMOS technologies. In an attempt to improve the sensitivity of TXRF, this research investigates Synchrotron Radiation TXRF (SR TXRF). The advantages of SR TXRF over conventional TXRF are higher incident photon flux, energy tunability, and linear polarization. We made use of these advantages to develop an optimized SR TXRF system at the Stanford Synchrotron Radiation Laboratory (SSRL). The results of measurements show that the Minimum Detection Limits (MDLs) of SR TXRF for 3-d transition metals are typically at a level-of 3x10{sup 8} atoms/cm{sup 2}, which is better than conventional TXRF by about a factor of 20. However, to use our SR TXRF system for practical applications, it was necessary to modify a commercially available Si (Li) detector which generates parasitic fluorescence signals. With the modified detector, we could achieve true MDLs of 3x10{sup 8} atoms/cm{sup 2} for 3-d transition metals. In addition, the analysis of Al on Si wafers is described. Al analysis is difficult because strong Si signals overlap the Al signals. In this work, the Si signals are greatly reduced by tuning the incident beam energy below the Si K edge. The results of our measurements show that the sensitivity for Al is limited by x-ray Raman scattering. Furthermore, we show the results of theoretical modeling of SR TXRF backgrounds consisting of the bremsstrahlung generated by photoelectrons, Compton scattering, and Raman scattering. To model these backgrounds, we extended conventional theoretical models by taking into account several aspects particular

  20. Dynamics and flexibility of human aromatase probed by FTIR and time resolved fluorescence spectroscopy.

    Directory of Open Access Journals (Sweden)

    Giovanna Di Nardo

    Full Text Available Human aromatase (CYP19A1 is a steroidogenic cytochrome P450 converting androgens into estrogens. No ligand-free crystal structure of the enzyme is available to date. The crystal structure in complex with the substrate androstenedione and the steroidal inhibitor exemestane shows a very compact conformation of the enzyme, leaving unanswered questions on the conformational changes that must occur to allow access of the ligand to the active site. As H/D exchange kinetics followed by FTIR spectroscopy can provide information on the conformational changes in proteins where solvent accessibility is affected, here the amide I region was used to measure the exchange rates of the different elements of the secondary structure for aromatase in the ligand-free form and in the presence of the substrate androstenedione and the inhibitor anastrozole. Biphasic exponential functions were found to fit the H/D exchange data collected as a function of time. Two exchange rates were assigned to two populations of protons present in different flexible regions of the protein. The addition of the substrate androstenedione and the inhibitor anastrozole lowers the H/D exchange rates of the α-helices of the enzyme when compared to the ligand-free form. Furthermore, the presence of the inhibitor anastrozole lowers exchange rate constant (k1 for β-sheets from 0.22±0.06 min(-1 for the inhibitor-bound enzyme to 0.12±0.02 min(-1 for the free protein. Dynamics effects localised in helix F were studied by time resolved fluorescence. The data demonstrate that the fluorescence lifetime component associated to Trp224 emission undergoes a shift toward longer lifetimes (from ≈5.0 to ≈5.5 ns when the substrate or the inhibitor are present, suggesting slower dynamics in the presence of ligands. Together the results are consistent with different degrees of flexibility of the access channel and therefore different conformations adopted by the enzyme in the free, substrate- and

  1. Dynamics and flexibility of human aromatase probed by FTIR and time resolved fluorescence spectroscopy.

    Science.gov (United States)

    Di Nardo, Giovanna; Breitner, Maximilian; Sadeghi, Sheila J; Castrignanò, Silvia; Mei, Giampiero; Di Venere, Almerinda; Nicolai, Eleonora; Allegra, Paola; Gilardi, Gianfranco

    2013-01-01

    Human aromatase (CYP19A1) is a steroidogenic cytochrome P450 converting androgens into estrogens. No ligand-free crystal structure of the enzyme is available to date. The crystal structure in complex with the substrate androstenedione and the steroidal inhibitor exemestane shows a very compact conformation of the enzyme, leaving unanswered questions on the conformational changes that must occur to allow access of the ligand to the active site. As H/D exchange kinetics followed by FTIR spectroscopy can provide information on the conformational changes in proteins where solvent accessibility is affected, here the amide I region was used to measure the exchange rates of the different elements of the secondary structure for aromatase in the ligand-free form and in the presence of the substrate androstenedione and the inhibitor anastrozole. Biphasic exponential functions were found to fit the H/D exchange data collected as a function of time. Two exchange rates were assigned to two populations of protons present in different flexible regions of the protein. The addition of the substrate androstenedione and the inhibitor anastrozole lowers the H/D exchange rates of the α-helices of the enzyme when compared to the ligand-free form. Furthermore, the presence of the inhibitor anastrozole lowers exchange rate constant (k1) for β-sheets from 0.22±0.06 min(-1) for the inhibitor-bound enzyme to 0.12±0.02 min(-1) for the free protein. Dynamics effects localised in helix F were studied by time resolved fluorescence. The data demonstrate that the fluorescence lifetime component associated to Trp224 emission undergoes a shift toward longer lifetimes (from ≈5.0 to ≈5.5 ns) when the substrate or the inhibitor are present, suggesting slower dynamics in the presence of ligands. Together the results are consistent with different degrees of flexibility of the access channel and therefore different conformations adopted by the enzyme in the free, substrate- and inhibitor

  2. Cure characterization of an unsaturated polyester resin using near-infrared, fluorescence and UV/visible reflection spectroscopies

    Science.gov (United States)

    Grunden, Bradley Lyn

    This dissertation seeks to characterize the cure reaction of an unsaturated polyester resin using near-infrared, fluorescence and UV/Visible reflection spectroscopies. The results will provide a foundation for developing fiber-optic in-situ cure monitoring techniques based on near-infrared, fluorescence, and UV/Visible reflection spectroscopies for an unsaturated polyester resin system. Near-infrared spectra of the unsaturated polyester resin during cure showed a decrease in absorption at 1629, 2087, 2117, and 2227 nm. Model compounds representing the reactants and products of the cure reaction were characterized, and assignment of peaks in the NIR were made. Conversion of styrene and vinylene, determined from NIR measurements, were compared with values obtained using conventional FTIR measurements. Discrepancies between conversion values determined from NIR and FTIR measurements were attributed to a difference in sample sizes used for measurement. Using a microgel based reaction mechanism, the effects of temperature on the conversion of styrene and vinylene was discussed. A strong fluorescence emission was found during cure of the unsaturated polyester resin. As the reaction proceeded, the emission intensity at 306 nm increased. Model compound studies confirmed that the unsaturated polyester vinylene component exhibits negligible fluorescence when excited at 250 nm. The fluorescence emission at 306 nm was attributed to a reduced self-quenching effect of styrene monomer. In-situ fluorescence characterization of the cure reaction was also attempted. Fiber-optic fluorescence measurements taken in-situ at 75°C were found to be higher than those taken by fiber-optics at room temperature, indicating a temperature effect on the fluorescence emission. These results may be a consequence of the static quenching behavior of styrene monomer. UV/Visible reflection spectra of styrene showed a decrease in the % Reflectance at 255 nm with reaction time. This decrease was

  3. Multimodal Raman-fluorescence spectroscopy of formalin fixed samples is able to discriminate brain tumors from dysplastic tissue

    Science.gov (United States)

    Anand, Suresh; Cicchi, Riccardo; Giordano, Flavio; Buccoliero, Anna Maria; Pavone, Francesco Saverio

    2014-05-01

    In the recent years, there has been a considerable surge in the application of spectroscopy for disease diagnosis. Raman and fluorescence spectra provide characteristic spectral profile related to biochemical and morphological changes when tissues progress from normal state towards malignancy. Spectroscopic techniques offer the advantage of being minimally invasive compared to traditional histopathology, real time and quantitative. In biomedical optical diagnostics, freshly excised specimens are preferred for making ex-vivo spectroscopic measurements. With regard to fresh tissues, if the lab is located far away from the clinic it could pose a problem as spectral measurements have to be performed immediately after dissection. Tissue samples are usually placed in a fixative agent such as 4% formaldehyde to preserve the samples before processing them for routine histopathological studies. Fixation prevents the tissues from decomposition by arresting autolysis. In the present study, we intend to investigate the possibility of using formalin fixed samples for discrimination of brain tumours from dysplastic tissue using Raman and fluorescence spectroscopy. Formalin fixed samples were washed with phosphate buffered saline for about 5 minutes in order to remove the effects of formalin during spectroscopic measurements. In case of fluorescence spectroscopy, changes in spectral profile have been observed in the region between 550-670 nm between dysplastic and tumor samples. For Raman measurements, we found significant differences in the spectral profiles between dysplasia and tumor. In conclusion, formalin fixed samples can be potentially used for the spectroscopic discrimination of tumor against dysplastic tissue in brain samples.

  4. Delta-ALA-mediated fluorescence spectroscopy of gastrointestinal tumors: comparison of in vivo and in vitro results

    Science.gov (United States)

    Vladimirov, B.; Borisova, E.; Avramov, L.

    2007-06-01

    The limitations of standard endoscopy for detection of dysplastic changes of mucosa are significant challenge and initiate development of new photodiagnostic techniques, additional to diagnostic possibilities of standard endoscopic equipment. One of the most widely examined optical modalities is the laser- or light-induced fluorescence spectroscopy (LIFS), because of its rapid and highly sensitive response to early biochemical and morphological changes in biological tissues. In the recent study delta-aminolevulinic acid/protoporphyrin IX is used as fluorescent marker for dysplasia and tumor detection in esophagus and stomach. The δ -ALA is administered per os six hours before measurements at dose 20mg/kg weight. High-power light-emitting diode at 405 nm is used as an excitation source. Special opto-mechanical device is built to use the light guide of standard video-endoscopic system. Through endoscopic instrumental channel a fiber is applied to return information about fluorescence to microspectrometer. The fluorescence detected from in vivo tumor sites has very complex spectral origins. It consists of autofluorescence, fluorescence from exogenous fluorophores and re-absorption from the chromophores accumulated in the tissue investigated. Mucosa autofluorescence lies at 450-600 nm region. The fluorescence of PpIX is clearly pronounced at the 630-710 nm region. Deep minima in the tumor fluorescence signals are observed in the region 540-575 nm, related to hemoglobin re-absorption. Such high hemoglobin content is an indication of the tumors vascularization and it is clearly pronounced in all dysplastic and tumor sites investigated. After formalin conservation for in vitro samples hemoglobin absorption is strongly reduced that increases mucous fluorescence signal in green-yellow spectral region. Simultaneously the maxima at 635 nm and 720 nm are reduced.

  5. Detection and characterization of chemical-induced abnormal tissue and rat tumors at different stages using fluorescence spectroscopy

    Science.gov (United States)

    Chen, Wei R.; Jassemnejad, Baha; Crull, Jason; Knobbe, Edward T.; Nordquist, Robert E.

    1996-04-01

    Fluorescence spectroscopy of diseased tissues, including chemical-induced rat liver, kidney and testis lesions, as well as murine mammary tumor, was studied. The rat liver, kidney and testis tissues were excited by radiation of 350 and 366 nm, which appeared to provide the optimal differentiation between normal and lesion tissues; the tumor tissues were excited by both 350 nm and 775 nm wavelengths. In comparison with normal liver tissue, at (lambda) ex equals 366 nm, the fluorescent spectrum of liver lesion showed a clear red shift around the emission peak of 470 nm, the major native fluorescent peak of organized tissue. When excited by 350 nm wavelength, all the chemically induced lesion tissues (liver, kidney and testis) appeared to cause a significant reduction of emission intensity at the 470 nm peak. While the 775 nm excitation did not reveal any significant difference among tumor, muscle and skin tissues, the 350 nm excitation did provide some interesting features among the tumor tissues at different stages. Compared with muscle tissue, the viable tumor showed an overall reduction of emission intensity around 470 nm. In addition, the viable tumor tissue showed a secondary emission peak at 390 nm with necrotic tumor tissue having a reduced intensity. The histology of both viable and necrotic tumor tissue was examined and appeared to correlate with the results of the fluorescent spectroscopy observation.

  6. Ultraviolet-visible and fluorescence spectroscopy can be used as a diagnostic tool for gamma irradiation detection in vivo.

    Science.gov (United States)

    K-Abdelhalim, Mohamed Anwar; Moussa, Sherif A-Abdelmottaleb

    2016-09-01

    The spectroscopic properties can indicate important features about the nature and severity of the disease. However, no earlier studies have been used the spectroscopic properties as a diagnostic tool for radiation detection. This study was aimed to use ultraviolet-visible and fluorescence spectroscopy as a diagnostic tool for gamma irradiation detection in rats in vivo. Adult male rats were exposed to 25, 50, 75 and 100 Gray as single dose, using Cobalt-60 (Co-60) source with a dose rate of 0.883 centi Gray/sec (cGy/s). Ultraviolet and fluorescence spectroscopy of rat's blood serum were measured. After gamma irradiation of rats in vivo, the blood serum absorbance peaks for 25, 50, 75 and 100 Gray (Gy) decreased and shifted towards the ultra violet wavelength. A maximal change in fluorescence intensity of blood serum at 350 nm was obtained when exciting light at 194 nm after irradiation. The fluorescence intensity also decreased with the dose. The highest radiation gamma dose might be accompanied with the highest oxidative stress. This study suggests that at the above mentioned gamma radiation doses, the blood is highly fragmented; with low aggregation at 25 Gy and with high aggregation at 50-100 Gy.

  7. Study of Organic Matter in Soils of the Amazon Region Employing Laser Induced Fluorescence Spectroscopy

    Science.gov (United States)

    Tadini, Amanda Maria; Nicolodelli, Gustavo; Mounier, Stéphane; Montes, Célia Regina; Marcondes Bastos Pereira Milori, Débora

    2014-05-01

    In the face of climate change and increasing CO2 levels in the atmosphere, the global carbon cycle, soil organic carbon (SOC) sequestration, and the role of different world biomes as potential sources and sinks of carbon are receiving increasing attention. Carbon quantification is an important environmental indicator, but the structure of organic matter is also important because is related to carbon stability. The synthesis of soil organic matter (SOM), as presented in soils of forest vegetation, can be originated from condensation polymeric polyphenols and quinones that are responsible for controlling the main physical-chemical properties of soils. These systems are present in humic substances, representing the major fluorophore of SOM[1-3]. Abiotic factors, such as soil texture, use and occupation of soil, can influence on the process of SOM formation, molecular structure and in its humification index[4]. Laser Induced Fluorescence Spectroscopy (LIFS) have become a promising technique for assessing humification index of SOM (HLIFS). In this context, the aim of this study was to analyze the humification index of the SOM in the region of Barcelos (Amazon) employing LIFS. The study area was the region of Barcelos, close the river Demeni. The whose vegetation distribution in this area, is two biomes the Dense Ombrophylous Forest (DPQD) and Campinarana (DPQT), with areas of edaphic contacts between these two phytophysiognomies, which ranged from Open field (FDE) to closed Depression (DPQ). Preliminary results showed that the area closed Depression (DPQ) there was a continuous gradient of humification with increasing soil depth. A similar behavior was verified for area Forest (DPQD), where the highest values of HLIFS were obtained between the four points analyzed, indicating the magnitude of the molecular recalcitrance this organic matter in this area. The results obtained for area Campinarana (DPQT) and Open field (FDE) showed an opposite behavior. These points there

  8. New Homogeneous Standards by Atomic Layer Deposition for Synchrotron X-ray Fluorescence and Absorption Spectroscopies.

    Energy Technology Data Exchange (ETDEWEB)

    Butterworth, A.L.; Becker, N.; Gainsforth, Z.; Lanzirotti, A.; Newville, M.; Proslier, T.; Stodolna, J.; Sutton, S.; Tyliszczak, T.; Westphal, A.J.; Zasadzinski, J. (UCB)

    2012-03-13

    Quantification of synchrotron XRF analyses is typically done through comparisons with measurements on the NIST SRM 1832/1833 thin film standards. Unfortunately, these standards are inhomogeneous on small scales at the tens of percent level. We are synthesizing new homogeneous multilayer standards using the Atomic Layer Deposition technique and characterizing them using multiple analytical methods, including ellipsometry, Rutherford Back Scattering at Evans Analytical, Synchrotron X-ray Fluorescence (SXRF) at Advanced Photon Source (APS) Beamline 13-ID, Synchrotron X-ray Absorption Spectroscopy (XAS) at Advanced Light Source (ALS) Beamlines 11.0.2 and 5.3.2.1 and by electron microscopy techniques. Our motivation for developing much-needed cross-calibration of synchrotron techniques is borne from coordinated analyses of particles captured in the aerogel of the NASA Stardust Interstellar Dust Collector (SIDC). The Stardust Interstellar Dust Preliminary Examination (ISPE) team have characterized three sub-nanogram, {approx}1{micro}m-sized fragments considered as candidates to be the first contemporary interstellar dust ever collected, based on their chemistries and trajectories. The candidates were analyzed in small wedges of aerogel in which they were extracted from the larger collector, using high sensitivity, high spatial resolution >3 keV synchrotron x-ray fluorescence spectroscopy (SXRF) and <2 keV synchrotron x-ray transmission microscopy (STXM) during Stardust ISPE. The ISPE synchrotron techniques have complementary capabilities. Hard X-ray SXRF is sensitive to sub-fg mass of elements Z {ge} 20 (calcium) and has a spatial resolution as low as 90nm. X-ray Diffraction data were collected simultaneously with SXRF data. Soft X-ray STXM at ALS beamline 11.0.2 can detect fg-mass of most elements, including cosmochemically important oxygen, magnesium, aluminum and silicon, which are invisible to SXRF in this application. ALS beamline 11.0.2 has spatial resolution

  9. Simulated 'On-Line' Wear Metal Analysis of Lubricating Oils by X-Ray Fluorescence Spectroscopy

    Science.gov (United States)

    Kelliher, Warren C.; Partos, Richard D.; Nelson, Irina

    1996-01-01

    The objective of this project was to assess the sensitivity of X-ray Fluorescence Spectroscopy (XFS) for quantitative evaluation of metal particle content in engine oil suspensions and the feasibility of real-time, dynamic wear metal analysis. The study was focused on iron as the majority wear metal component. Variable parameters were: particle size, particle concentration and oil velocity. A commercial XFS spectrometer equipped with interchangeable static/dynamic (flow cell) sample chambers was used. XFS spectra were recorded for solutions of Fe-organometallic standard and for a series of DTE oil suspensions of high purity spherical iron particles of 2g, 4g, and 8g diameter, at concentrations from 5 ppm to 5,000 ppm. Real contaminated oil samples from Langley Air Force Base aircraft engines and NASA Langley Research Center wind tunnels were also analyzed. The experimental data conform the reliability of XFS as the analytical method of choice for this project. Intrinsic inadequacies of the instrument for precise analytic work at low metal concentrations were identified as being related to the particular x-ray beam definition, system geometry, and flow-cell materials selection. This work supports a proposal for the design, construction and testing of a conceptually new, miniature XFS spectrometer with superior performance, dedicated to on-line, real-time monitoring of lubricating oils in operating engines. Innovative design solutions include focalization of the incident x-ray beam, non-metal sample chamber, and miniaturization of the overall assembly. The instrument would contribute to prevention of catastrophic engine failures. A proposal for two-year funding has been presented to NASA Langley Research Center Internal Operation Group (IOG) Management, to continue the effort begun by this summer's project.

  10. Measurement of OH reactivity by laser flash photolysis coupled with laser-induced fluorescence spectroscopy

    Science.gov (United States)

    Stone, Daniel; Whalley, Lisa K.; Ingham, Trevor; Edwards, Peter M.; Cryer, Danny R.; Brumby, Charlotte A.; Seakins, Paul W.; Heard, Dwayne E.

    2016-07-01

    OH reactivity (k'OH) is the total pseudo-first-order loss rate coefficient describing the removal of OH radicals to all sinks in the atmosphere, and is the inverse of the chemical lifetime of OH. Measurements of ambient OH reactivity can be used to discover the extent to which measured OH sinks contribute to the total OH loss rate. Thus, OH reactivity measurements enable determination of the comprehensiveness of measurements used in models to predict air quality and ozone production, and, in conjunction with measurements of OH radical concentrations, to assess our understanding of OH production rates. In this work, we describe the design and characterisation of an instrument to measure OH reactivity using laser flash photolysis coupled to laser-induced fluorescence (LFP-LIF) spectroscopy. The LFP-LIF technique produces OH radicals in isolation, and thus minimises potential interferences in OH reactivity measurements owing to the reaction of HO2 with NO which can occur if HO2 is co-produced with OH in the instrument. Capabilities of the instrument for ambient OH reactivity measurements are illustrated by data collected during field campaigns in London, UK, and York, UK. The instrumental limit of detection for k'OH was determined to be 1.0 s-1 for the campaign in London and 0.4 s-1 for the campaign in York. The precision, determined by laboratory experiment, is typically < 1 s-1 for most ambient measurements of OH reactivity. Total uncertainty in ambient measurements of OH reactivity is ˜ 6 %. We also present the coupling and characterisation of the LFP-LIF instrument to an atmospheric chamber for measurements of OH reactivity during simulated experiments, and provide suggestions for future improvements to OH reactivity LFP-LIF instruments.

  11. Resonant inelastic scattering in dilute magnetic semiconductors by x-ray fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lawniczak-Jablonska, K. [Lawrence Berkeley National Lab., CA (United States)]|[Institute of Physics, Warsaw (Poland); Jia, J.J.; Underwood, J.H. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    As modern, technologically important materials have become more complex, element specific techniques have become invaluable in studying the electronic structure of individual components from the system. Soft x-ray fluorescence (SXF) and absorption (SXA) spectroscopies provide a unique means of measuring element and angular momentum density of electron states, respectively, for the valence and conducting bands in complex materials. X-ray absorption and the decay through x-ray emission are generally assumed to be two independent one-photon processes. Recent studies, however have demonstrated that SXF excited near the absorption threshold generate an array of spectral features that depend on nature of materials, particularly on the localization of excited states in s and d-band solids and that these two processes can no be longer treated as independent. Resonant SXF offers thus the new way to study the dynamics of the distribution of electronic valence states in the presence of a hole which is bound to the electron low lying in the conduction band. This process can simulate the interaction between hole-electron pair in wide gap semiconductors. Therefore such studies can help in understanding of transport and optics phenomena in the wide gap semiconductors. The authors report the result of Mn and S L-resonant emission in Zn{sub 1{minus}x}Mn{sub x}S (with x=0.2 and 0.3) and MnS as the energy of exciting radiation is tuned across the Mn and S L{sub 3,2} absorption edge, along with the resonant excited spectra from elemental Mn as a reference.

  12. Fluorescence correlation spectroscopy diffusion laws in the presence of moving nanodomains

    Science.gov (United States)

    Šachl, Radek; Bergstrand, Jan; Widengren, Jerker; Hof, Martin

    2016-03-01

    It has been shown by means of simulations that spot variation fluorescence correlation spectroscopy (sv-FCS) can be used for the identification and, to some extent, also characterization of immobile lipid nanodomains in model as well as cellular plasma membranes. However, in these simulations, the nanodomains were assumed to be stationary, whereas they actually tend to move like the surrounding lipids. In the present study, we investigated how such domain movement influences the diffusion time/spot-size dependence observed in FCS experiments, usually referred to as ‘diffusion law’ analysis. We show that domain movement might mask the effects of the ‘anomalous’ diffusion characteristics of membrane lipids or proteins predicted for stationary domains, making it difficult to identify such moving nanodomains by sv-FCS. More specifically, our simulations indicate that (i) for domains moving up to a factor of 2.25 slower than the surrounding lipids, such impeded diffusion cannot be observed and the diffusion behaviour of the proteins or lipids is indistinguishable from that of freely diffusing molecules, i.e. nanodomains are not detected; (ii) impeded protein/lipid diffusion behaviour can be observed in experiments where the radii of the detection volume are similar in size to the domain radii, the domain diffusion is about 10 times slower than that of the lipids, and the probes show a high affinity to the domains; and (iii) presence of nanodomains can only be reliably detected by diffraction limited sv-FCS when the domains move very slowly (about 200 times slower than the lipid diffusion). As nanodomains are expected to be in the range of tens of nanometres and most probes show low affinities to such domains, sv-FCS is limited to stationary domains and/or STED-FCS. However, even for that latter technique, diffusing domains smaller than 50 nm in radius are hardly detectable by FCS diffusion time/spot-size dependencies.

  13. Direct observation of T4 lysozyme hinge-bending motion by fluorescence correlation spectroscopy.

    Science.gov (United States)

    Yirdaw, Robel B; McHaourab, Hassane S

    2012-10-01

    Bacteriophage T4 Lysozyme (T4L) catalyzes the hydrolysis of the peptidoglycan layer of the bacterial cell wall late in the infection cycle. It has long been postulated that equilibrium dynamics enable substrate access to the active site located at the interface between the N- and C-terminal domains. Crystal structures of WT-T4L and point mutants captured a range of conformations that differ by the hinge-bending angle between the two domains. Evidence of equilibrium between open and closed conformations in solution was gleaned from distance measurements between the two domains but the nature of the equilibrium and the timescale of the underlying motion have not been investigated. Here, we used fluorescence fluctuation spectroscopy to directly detect T4L equilibrium conformational fluctuations in solution. For this purpose, Tetramethylrhodamine probes were introduced at pairs of cysteines in regions of the molecule that undergo relative displacement upon transition from open to closed conformations. Correlation analysis of Tetramethylrhodamine intensity fluctuations reveals hinge-bending motion that changes the relative distance and orientation of the N- and C-terminal domains with ≅ 15 μs relaxation time. That this motion involves interconversion between open and closed conformations was further confirmed by the dampening of its amplitude upon covalent substrate trapping. In contrast to the prevalent two-state model of T4L equilibrium, molecular brightness and number of particles obtained from cumulant analysis suggest that T4L populates multiple intermediate states, consistent with the wide range of hinge-bending angles trapped in the crystal structure of T4L mutants.

  14. Ex vivo optical coherence tomography and laser induced fluorescence spectroscopy imaging of murine gastrointestinal tract

    Science.gov (United States)

    Hariri, Lida; Tumlinson, Alexandre R.; Wade, Norman; Besselsen, David; Utzinger, Urs; Gerner, Eugene; Barton, Jennifer

    2005-04-01

    Optical Coherence Tomography (OCT) and Laser Induced Fluorescence Spectroscopy (LIF) have separately been found to have clinical potential in identifying human gastrointestinal (GI) pathologies, yet their diagnostic capability in mouse models of human disease is unknown. We combine the two modalities to survey the GI tract of a variety of mouse strains and sample dysplasias and inflammatory bowel disease (IBD) of the small and large intestine. Segments of duodenum and lower colon 2.5 cm in length and the entire esophagus from 10 mice each of two colon cancer models (ApcMin and AOM treated A/J) and two IBD models (Il-2 and Il-10) and 5 mice each of their respective controls were excised. OCT images and LIF spectra were obtained simultaneously from each tissue sample within 1 hour of extraction. Histology was used to classify tissue regions as normal, Peyer"s patch, dysplasia, adenoma, or IBD. Features in corresponding regions of OCT images were analyzed. Spectra from each of these categories were averaged and compared via the student's t-test. Features in OCT images correlated to histology in both normal and diseased tissue samples. In the diseased samples, OCT was able to identify early stages of mild colitis and dysplasia. In the sample of IBD, the LIF spectra displayed unique peaks at 635nm and 670nm, which were attributed to increased porphyrin production in the proliferating bacteria of the disease. These peaks have the potential to act as a diagnostic for IBD. OCT and LIF appear to be useful and complementary modalities for imaging mouse models.

  15. Dynamic fluorescence spectroscopy on single tryptophan mutants of EII(mtl) in detergent micelles. Effects of substrate binding and phosphorylation on the fluorescence and anisotropy decay.

    Science.gov (United States)

    Dijkstra, D S; Broos, J; Visser, A J; van Hoek, A; Robillard, G T

    1997-04-22

    The effects of substrate and substrate analogue binding and phosphorylation on the conformational dynamics of the mannitol permease of Escherichia coli were investigated, using time-resolved fluorescence spectroscopy on mutants containing five single tryptophans situated in the membrane-embedded C domain of the enzyme [Swaving Dijkstra et al. (1996) Biochemistry 35, 6628-6634]. Since no fluorescent impurities are present in these mutants, the changes in fluorescence and anisotropy could be related with changes in the tryptophan microenvironment. Tryptophans at positions 30 and 42 showed changes in fluorescence intensity decay upon binding mannitol, which were reflected in the changes in lifetime distribution patterns. The disappearance of the shortest-lived decay component in these mutants, as well as in the mutant with a single tryptophan at position 109, indicates a change in the local environment such that quenching via neighboring side chains or solvent is reduced. Phosphorylation at histidine 554 and cysteine 384, located in the cytoplasmatic A and B domains of EII(mtl), respectively, induced an increase in the average fluorescence lifetimes of all of the tryptophans. The effect was most pronounced for tryptophans 30 and 109 which show large increases in the average fluorescence lifetime mainly due to loss of short-lived decay components. A correlation time distribution of the individual tryptophans deduced from an analysis of the anisotropy decay showed that they differed in their rotational mobility with tryptophan 30 showing the least local flexibility. Phosphorylation resulted in immobilization of W109 which, together with changes in the average fluorescence lifetime, is evidence for a conformational coupling between the phosphorylated B domain and the C domain. The influence of mannitol binding on the rotational behavior of the tryptophans is limited; it induces more internal flexibility at all tryptophan positions. A rotational correlation time of 30 ns

  16. Evaluation of CDOM sources and their links with water quality in the lakes of Northeast China using fluorescence spectroscopy

    Science.gov (United States)

    Zhao, Ying; Song, Kaishan; Wen, Zhidan; Fang, Chong; Shang, Yingxin; Lv, Lili

    2017-07-01

    The spatial distributions of the fluorescence intensities Fmax for chromophoric dissolved organic matter (CDOM) components, the fluorescence indices (FI370 and FI310) and their correlations with water quality of 19 lakes in the Songhua River Basin (SHRB) across semiarid regions of Northeast China were examined with the data collected in September 2012 and 2015. The 19 lakes were divided into two groups according to EC (threshold value = 800 μS cm-1): fresh water (N = 13) and brackish water lakes (N = 6). The fluorescent characteristics of CDOM in the 19 lakes were investigated using excitation-emission matrix fluorescence spectroscopy (EEM) coupled with parallel factor (PARAFAC) and multivariate analysis. Two humic-like components (C1 and C3), one tryptophan-like component (C2), and one tyrosine-like component (C4) were identified by PARAFAC. The component C4 was not included in subsequent analyses due to the strong scatter in some colloidal water samples from brackish water lakes. The correlations between Fmax for the three EEM-PARAFAC extracted CDOM components C1-C3, the fluorescence indices (FI370 and FI310) and the water quality parameters (i.e., TN, TP, Chl-a, pH, EC, turbidity (Turb) and dissolved organic carbon (DOC)) were determined by redundancy analysis (RDA). The results of RDA analysis showed that spatial variation in land cover, pollution sources, and salinity/EC gradients in water quality affected Fmax for the fluorescent components C1-C3 and the fluorescence indices (FI370 and FI310). Further examination indicated that the CDOM fluorescent components and the fluorescence indices (FI370 and FI310) did not significantly differ (t-test, p > 0.05) in fresh water (N = 13) and brackish water lakes (N = 6). There was a difference in the distribution of the average Fmax for the CDOM fluorescent components between C1 to C3 from agricultural sources and urban wastewater sources in hypereutrophic brackish water lakes. The Fmax for humic-like components C1 and

  17. A versatile chiral selector for determination of enantiomeric composition of fluorescent and nonfluorescent chiral molecules using steady-state fluorescence spectroscopy.

    Science.gov (United States)

    Williams, Alicia A; Fakayode, Sayo O; Lowry, Mark; Warner, Isiah M

    2009-02-01

    A fluorescent chiral molecular micelle (FCMM), poly (sodium N-undecanoyl-L-phenylalaninate) (poly-L-SUF), was developed as a chiral selector for enantiomeric recognition and determination of enantiomeric composition of four fluorescent and four nonfluorescent chiral molecules by use of steady-state fluorescence spectroscopy. The influence of FCMM concentration, buffer pH and complexation medium on FCMM-analyte host-guest complexation, and the emission spectral properties of the resulting complexes were investigated. The chiral interactions of the analytes,1,1'-binaphthyl-2,2'-diamine, 1-(9-anthryl)-2,2,2-trifluoroethanol, propranolol, naproxen, chloromethyl menthyl ether (CME), citramalic acid, tartaric acid, and limonene (LIM), in the presence of poly-L-SUF were based on diastereomeric complex formation. The figures of merit obtained from the partial-least-squares regression modeling of the calibration samples suggested good prediction ability for the validation of six of the eight chiral analytes. Better host-guest complexation of the more hydrophobic molecules, CME and LIM, were obtained in methanol/water mixtures, resulting in better predictability of the regression models. Prediction ability of the models was evaluated by use of the root-mean-square percent relative error (RMS%RE) and was found to range from 1.77 to 15.80% (buffer), 1.26 to 7.95% (25:75 methanol/water), and 1.21 to 4.28% (75:25 methanol/water).

  18. Detecting oil sands process-affected waters in the Alberta oil sands region using synchronous fluorescence spectroscopy.

    Science.gov (United States)

    Kavanagh, Richard J; Burnison, B Kent; Frank, Richard A; Solomon, Keith R; Van Der Kraak, Glen

    2009-06-01

    Large volumes of oil sands process-affected waters (OSPW) are produced during the extraction of bitumen from oil sand. There are approximately 10(9) m(3) of OSPW currently being stored in settling basins on oil sands mining sites in Northern Alberta. Developers plan to create artificial lakes with OSPW and it is expected that this water may eventually enter the environment. This study was conducted in order to determine if synchronous fluorescence spectroscopy (SFS) could detect OSPW contamination in water systems. Water samples collected from ponds containing OSPW and selected sites in the Alberta oil sands region were evaluated using SFS with an offset value of 18 nm. OSPW ponds consistently displayed a minor peak at 282.5 nm and a broad major peak ranging between 320 and 340 nm. Water from reference sites within the oil sands region had little fluorescence at 282.5 nm but greater fluorescence beyond 345 nm. Naphthenic acids are the major toxic component of OSPW. Both a commercial naphthenic acid and a naphthenic acid extract prepared from OSPW had similar fluorescent spectra with peaks at 280 nm and 320 nm and minor shoulders at approximately 303 and 331 nm. The presence of aromatic acids closely associated with the naphthenic acids may be responsible for unique fluorescence at 320-340 nm. SFS is proposed to be a simple and fast method to monitor the release of OSPW into ground and surface waters in the oil sands region.

  19. Fluorescence rejection in resonance Raman spectroscopy using a picosecond-gated intensified charge-coupled device camera.

    Science.gov (United States)

    Efremov, Evtim V; Buijs, Joost B; Gooijer, Cees; Ariese, Freek

    2007-06-01

    A Raman instrument was assembled and tested that rejects typically 98-99% of background fluorescence. Use is made of short (picosecond) laser pulses and time-gated detection in order to record the Raman signals during the pulse while blocking most of the fluorescence. Our approach uses an ultrafast-gated intensified charge-coupled device (ICCD) camera as a simple and straightforward alternative to ps Kerr gating. The fluorescence rejection efficiency depends mainly on the fluorescence lifetime and on the closing speed of the gate (which is about 80 ps in our setup). A formula to calculate this rejection factor is presented. The gated intensifier can be operated at 80 MHz, so high repetition rates and low pulse energies can be used, thus minimizing photodegradation. For excitation we use a frequency-tripled or -doubled Ti : sapphire laser with a pulse width of 3 ps; it should not be shorter in view of the required spectral resolution. Other critical aspects tested include intensifier efficiency as a function of gate width, uniformity of the gate pulse across the spectrum, and spectral resolution in comparison with ungated detection. The total instrumental resolution is 7 cm(-1) in the blue and 15 cm(-1) in the ultraviolet (UV) region. The setup allows one to use resonance Raman spectroscopy (RRS) for extra sensitivity and selectivity, even in the case of strong background fluorescence. Excitation wavelengths in the visible or UV range no longer have to be avoided. The effectiveness of this setup is demonstrated on a test system: pyrene in the presence of toluene fluorescence (lambda(exc) = 257 nm). Furthermore, good time-gated RRS spectra are shown for a strongly fluorescent flavoprotein (lambda(exc) = 405 nm). Advantages and disadvantages of this approach for RRS are discussed.

  20. Model-based analysis of clinical fluorescence spectroscopy for in vivo detection of cervical intraepithelial dysplasia

    Science.gov (United States)

    Chang, Sung K.; Marín, Nena; Follen, Michelle; Richards-Kortum, Rebecca R.

    2006-03-01

    We present a mathematical model to calculate the relative concentration of light scatterers, light absorbers, and fluorophores in the epithelium and stroma. This mathematical description is iteratively fit to the fluorescence spectra measured in vivo, yielding relative concentrations of each molecule. The mathematical model is applied to a total of 493 fluorescence measurements of normal and dysplastic cervical tissue acquired in vivo from 292 patients. The estimated parameters are compared with histopathologic diagnosis to evaluate their diagnostic potential. The mathematical model is validated using fluorescence spectra simulated with known sets of optical parameters. Subsequent application of the mathematical model to in vivo fluorescence measurements from cervical tissue yields fits that accurately describe measured data. The optical parameters estimated from 493 fluorescence measurements show an increase in epithelial flavin adenine dinucleotide (FAD) fluorescence, a decrease in epithelial keratin fluorescence, an increase in epithelial light scattering, a decrease in stromal collagen fluorescence, and an increase in stromal hemoglobin light absorption in dysplastic tissue compared to normal tissue. These changes likely reflect an increase in the metabolic activity and loss of differentiation of epithelial dysplastic cells, and stromal angiogenesis associated with dysplasia. The model presented here provides a tool to analyze clinical fluorescence spectra yielding quantitative information about molecular changes related to dysplastic transformation.

  1. Determination of the PSI/PSII ratio in living plant cells at room temperature by spectrally resolved fluorescence spectroscopy

    Science.gov (United States)

    Elgass, Kirstin; Zell, Martina; Maurino, Veronica G.; Schleifenbaum, Frank

    2011-02-01

    Leaf cells of living plants exhibit strong fluorescence from chloroplasts, the reaction centers of photosynthesis. Mutations in the photosystems change their structure and can, thus, be monitored by recording the fluorescence spectra of the emitted chlorophyll light. These measurements have, up to now, mostly been carried out at low temperatures (77 K), as these conditions enable the differentiation between the fluorescence of Photosystem I (PSI) and Photosystem II (PSII). In contrast, at room temperature, energy transfer processes between the various photosynthetic complexes result in very similar fluorescence emissions, which mainly consist of fluorescence photons emitted by PSII hindering a discrimination based on spectral ROIs (regions of interest). However, by statistical analysis of high resolution fluorescence spectra recorded at room temperature, it is possible to draw conclusions about the relative PSI/PSII ratio. Here, the possibility of determining the relative PSI/PSII ratio by fluorescence spectroscopy is demonstrated in living maize plants. Bundle-sheath chloroplasts of mature maize plants have a special morphologic characteristic; they are agranal, or exhibit only rudimentary grana, respectively. These chloroplasts are depleted in PSII activity and it could be shown that PSII is progressively reduced during leaf differentiation. A direct comparison of PSII activity in isolated chloroplasts is nearly impossible, since the activity of PSII in both mesophyll- and bundle-sheath chloroplasts decays with time after isolation and it takes significantly longer to isolate bundle-sheath chloroplasts. Considering this fact the measurement of PSI/PSII ratios with the 77K method, which includes taking fluorescence spectra from a diluted suspension of isolated chloroplasts at 77K, is questionable. These spectra are then used to analyze the distribution of energy between PSI and PSII. After rapid cooling to 77K secondary biochemical influences, which attenuate the

  2. New insight in the template decomposition process of large zeolite ZSM-5 crystals: an in situ UV-Vis/fluorescence micro-spectroscopy study

    NARCIS (Netherlands)

    Karwacki, L.; Weckhuysen, B.M.

    2011-01-01

    A combination of in situ UV-Vis and confocal fluorescence micro-spectroscopy was used to study the template decomposition process in large zeolite ZSM-5 crystals. Correlation of polarized light dependent UV-Vis absorption spectra with confocal fluorescence emission spectra in the 400–750 nm region

  3. Translational and rotational motions of albumin sensed by a non-covalent associated porphyrin under physiological and acidic conditions: a fluorescence correlation spectroscopy and time resolved anisotropy study.

    NARCIS (Netherlands)

    Andrade, S.M.; Costa, S.M.; Borst, J.W.; Hoek, van A.; Visser, A.J.W.G.

    2008-01-01

    The interaction between a free-base, anionic water-soluble porphyrin, TSPP, and the drug carrier protein, bovine serum albumin (BSA) has been studied by time-resolved fluorescence anisotropy (TRFA) and fluorescence correlation spectroscopy (FCS) at two different pH-values. Both rotational correlatio

  4. New insight in the template decomposition process of large zeolite ZSM-5 crystals: an in situ UV-Vis/fluorescence micro-spectroscopy study

    NARCIS (Netherlands)

    Karwacki, L.; Weckhuysen, B.M.

    2011-01-01

    A combination of in situ UV-Vis and confocal fluorescence micro-spectroscopy was used to study the template decomposition process in large zeolite ZSM-5 crystals. Correlation of polarized light dependent UV-Vis absorption spectra with confocal fluorescence emission spectra in the 400–750 nm region a

  5. A method for the measurement of in line pistachio aflatoxin concentration based on the laser induced fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Paghaleh, Soodeh Jamali [Vali-e-Asr University of Rafsanjan, Rafsanjan (Iran, Islamic Republic of); Askari, Hassan Ranjbar; Marashi, Seyed Mohammad Bagher [Department of Physics, Faculty of Science, Vali-e-Asr University of Rafsanjan, Rafsanjan (Iran, Islamic Republic of); Rahimi, Mojtaba, E-mail: m_rahimi@vru.ac.ir [Department of Physics, Faculty of Science, Vali-e-Asr University of Rafsanjan, Rafsanjan (Iran, Islamic Republic of); Bahrampour, Ali Reza [Physics Department of Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2015-05-15

    Contamination of pistachio nuts with aflatoxin is one of the most significant issues related to pistachio health and expert. A fast pistachio aflatoxin concentration measurement method based on the laser induced fluorescence spectroscopy (LIFS) is proposed. The proposed method from theoretical and experimental points of view is analyzed. In our experiments XeCl Excimer laser is employed as an Ultra Violet (UV) source (λ=308 nm) and a UV–visible (UV–vis) spectrometer is used for fluorescent emission detection. Our setup is employed to measure the concentration of different type of Aflatoxins in pistachio nuts. Measurements results obtained by the LIFS method are compared with those are measured by the standard HPLC method. Aflatoxins concentrations are in good agreement with those are obtained by the HPLC method. The proposed laser induced fluorescence spectroscopy can be used as an in line aflatoxins concentrations measurement instrument for industrial applications. - Highlights: • XeCl Excimer laser is employed as an UV source for measurement of AFs in pistachio nuts. • Results are compared with those are measured by the standard HPLC method. • LIFS is an online AFs concentration measurement method for industrial applications.

  6. Mechanism of ceroid formation in atherosclerotic plaque: in situ studies using a combination of Raman and fluorescence spectroscopy

    Science.gov (United States)

    Haka, Abigail S.; Kramer, John R.; Dasari, Ramachandra R.; Fitzmaurice, Maryann

    2011-01-01

    Accumulation of the lipid-protein complex ceroid is a characteristic of atherosclerotic plaque. The mechanism of ceroid formation has been extensively studied, because the complex is postulated to contribute to plaque irreversibility. Despite intensive research, ceroid deposits are defined through their fluorescence and histochemical staining properties, while their composition remains unknown. Using Raman and fluorescence spectral microscopy, we examine the composition of ceroid in situ in aorta and coronary artery plaque. The synergy of these two types of spectroscopy allows for identification of ceroid via its fluorescence signature and elucidation of its chemical composition through the acquisition of a Raman spectrum. In accordance with in vitro predictions, low density lipoprotein (LDL) appears within the deposits primarily in its peroxidized form. The main forms of modified LDL detected in both coronary artery and aortic plaques are peroxidation products from the Fenton reaction and myeloperoxidase-hypochlorite pathway. These two peroxidation products occur in similar concentrations within the deposits and represent ∼40 and 30% of the total LDL (native and peroxidized) in the aorta and coronary artery deposits, respectively. To our knowledge, this study is the first to successfully employ Raman spectroscopy to unravel a metabolic pathway involved in disease pathogenesis: the formation of ceroid in atherosclerotic plaque. PMID:21280898

  7. Development of a dual-modal tissue diagnostic system combining time-resolved fluorescence spectroscopy and ultrasonic backscatter microscopy

    Science.gov (United States)

    Sun, Yang; Park, Jesung; Stephens, Douglas N.; Jo, Javier A.; Sun, Lei; Cannata, Jonathan M.; Saroufeem, Ramez M. G.; Shung, K. Kirk; Marcu, Laura

    2009-06-01

    We report a tissue diagnostic system which combines two complementary techniques of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) and ultrasonic backscatter microscopy (UBM). TR-LIFS evaluates the biochemical composition of tissue, while UBM provides tissue microanatomy and enables localization of the region of diagnostic interest. The TR-LIFS component consists of an optical fiber-based time-domain apparatus including a spectrometer, gated multichannel plate photomultiplier, and fast digitizer. It records the fluorescence with high sensitivity (nM concentration range) and time resolution as low as 300 ps. The UBM system consists of a transducer, pulser, receiving circuit, and positioning stage. The transducer used here is 45 MHz, unfocused, with axial and lateral resolutions 38 and 200 μm. Validation of the hybrid system and ultrasonic and spectroscopic data coregistration were conducted both in vitro (tissue phantom) and ex vivo (atherosclerotic tissue specimens of human aorta). Standard histopathological analysis of tissue samples was used to validate the UBM-TRLIFS data. Current results have demonstrated that spatially correlated UBM and TR-LIFS data provide complementary characterization of both morphology (necrotic core and calcium deposits) and biochemistry (collagen, elastin, and lipid features) of the atherosclerotic plaques at the same location. Thus, a combination of fluorescence spectroscopy with ultrasound imaging would allow for better identification of features associated with tissue pathologies. Current design and performance of the hybrid system suggests potential applications in clinical diagnosis of atherosclerotic plaque.

  8. Applying fluorescence correlation spectroscopy to investigate peptide-induced membrane disruption

    DEFF Research Database (Denmark)

    Kristensen, Kasper; Henriksen, Jonas Rosager; Andresen, Thomas Lars

    2017-01-01

    to quantify leakage of fluorescent molecules of different sizes from large unilamellar lipid vesicles, thereby providing a tool for estimating the size of peptide-induced membrane disruptions. If fluorescently labeled lipids are incorporated into the membranes of the vesicles, FCS can also be used to obtain...

  9. Photo-initiated dynamics and spectroscopy of the deprotonated Green Fluorescent Protein chromophore

    DEFF Research Database (Denmark)

    Bochenkova, Anastasia; Andersen, Lars Henrik

    2013-01-01

    This chapter combines recent advances in understanding the photophysics of the chromophore anion of the Green Fluorescent Protein (GFP) from the jellyfish Aequorea Victoria. GFP and its homologues are widely used for in vivo labeling in biology through their remarkable fluorescent properties...

  10. Deriving binary phase diagrams for chromonic materials in water mixtures via fluorescence spectroscopy: cromolyn and water.

    Science.gov (United States)

    Van Hecke, Gerald R; Karukstis, Kerry K; Rayermann, Scott

    2015-01-14

    We report here the first example of a new and novel method of determining the binary temperature-composition phase diagram of a chromonic material in water using its intrinsic fluorescence. Disodium cromoglycate, or cromolyn, is an anti-allergy medicine representative of a class of compounds known as the chromonics. We have discovered that cromolyn's fluorescence is very sensitive to the polarity, hence structure, of the phase it exhibits. The fluorescence signal shifts its wavelength maximum and its shape depending on whether the cromolyn is a single phase or in coexisting phases. Since the signal due to individual phases can be identified, the fluorescence signal can reveal the temperature-induced transitions between single phase and phase coexistence regions. By studying such fluorescence data for different compositions, an isobaric temperature-composition phase diagram may be constructed. We present here a phase diagram derived from fluorescence studies that is in agreement with previous determinations using other techniques. Our results suggest that the binary phase diagrams of other intrinsically fluorescent chromonic materials, such as perylene monoimide and bisimide derivatives used in organic optoelectronic devices, solar cells, and light-emitting diodes, can be studied in water using an analogous fluorescence approach.

  11. Optical and structural properties of plasma-treated Cordyceps bassiana spores as studied by circular dichroism, absorption, and fluorescence spectroscopy

    Science.gov (United States)

    Lee, Geon Joon; Sim, Geon Bo; Choi, Eun Ha; Kwon, Young-Wan; Kim, Jun Young; Jang, Siun; Kim, Seong Hwan

    2015-01-01

    To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated water (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.

  12. Optical and structural properties of plasma-treated Cordyceps bassiana spores as studied by circular dichroism, absorption, and fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Geon Joon, E-mail: gjlee@kw.ac.kr; Sim, Geon Bo; Choi, Eun Ha [Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul 139-701 (Korea, Republic of); Kwon, Young-Wan [KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701 (Korea, Republic of); Kim, Jun Young; Jang, Siun; Kim, Seong Hwan, E-mail: piceae@naver.com [Department of Microbiology and Institute of Basic Sciences, Dankook University, Cheonan 330-714 (Korea, Republic of)

    2015-01-14

    To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated water (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.

  13. Fluorescence spectroscopy and parallel factor analysis as a dissolved organic monitoring tool to assess treatment performance in drinking water trains.

    Science.gov (United States)

    Vera, M; Cruz, S; Boleda, M R; Mesa, J; Martín-Alonso, J; Casas, S; Gibert, O; Cortina, J L

    2017-04-15

    Fluorescence excitation emission matrix (FEEM) spectroscopy was used to evaluate its applicability as a tool to track dissolved organic matter (DOM) in a drinking water treatment plant (DWTP) that incorporates a conventional line (consisting in ozonation and GAC filtration) and a membrane-based line (consisting in ultrafiltration, reverse osmosis and mineralization) working in parallel. Seven sampling points within the different process stages were characterized monthly during 2014. A global Parallel Factor Analysis (PARAFAC) was used to pull out underlying organic fractions from the fluorescence spectra. Accordingly a five components model was selected to describe the system and the pros and cons of the model were discussed by analysis of the residuals. Among the five fluorescent components, those associated to humic-like matter (C1, C3 and C4) showed a similar season variability in the river water feeding the DWTP (which resembled that of UV254 and TOC), whereas the two components associated to protein-like matter (C2 and C5) exhibited a different behavior. The maximum fluorescence intensity values (Fmax) were used to quantify DOM removals across the plant. Compared to the conventional line, water from the UF/RO membrane-based line showed between 6 and 14 times lower fluorescence intensity signal for the humic-like components and between 1 and 3 for the protein-like components as compared to the conventional line. The differences in DOM composition due to seasonal variations and along the treatment trains point out the suitability of using fluorescence measurements over other parameters such as UV254 as a monitoring tool to help optimize operation conditions of each treatment stage and improve produced water quality in a DWTP.

  14. One- and two-photon induced fluorescence spectroscopy enabling the detection of localized aflatoxin contamination in individual maize kernels

    Science.gov (United States)

    Smeesters, L.; Meulebroeck, W.; Raeymaekers, S.; Thienpont, H.

    2016-04-01

    The presence of carcinogenic aflatoxins in food and feed products is a major worldwide problem. To date, the aflatoxin contamination can only be detected by the use of destructive sample-based chemical analyses. Therefore, we developed an optical setup able to detect the localized aflatoxin contamination in individual maize kernels, on the basis of one- and two- photon induced fluorescence spectroscopy. Our developed optical configuration comprises a tunable titanium-sapphire laser (710nm-830nm) in combination with second harmonic wavelength generation (355nm-415nm), enabling the measurement of both one- and two-photon induced fluorescence spectra. Moreover, an accurate scanning of the kernel's surface was induced by the use of automated translation stages, allowing to study the localized maize contamination. First, the operation of the setup is validated by the characterization of pure aflatoxin B1 powder. Second, the fluorescence spectra of healthy (maize kernels (>70ppb aflatoxin B1) were measured, after excitation with 365nm, 730nm, 750nm and 780nm. For both the one- and two- photon induced fluorescence processes, the presence of the aflatoxin inside the contaminated maize kernels influenced the intrinsic fluorescence signals. Based on the fluorescence spectrum between 400nm and 550nm, we defined a detection criterion to identify the contaminated maize kernels. Furthermore, we demonstrate the sensing of the localized contamination level, indicating both contaminated maize kernels with a high contamination level in a limited surface area (as small as 1mm2) as with a lower contamination spread over a large surface area (up to 20mm2). As a result, our developed measurement methodology allows the identification of the localized aflatoxin contamination, paving the way to the non-destructive, real-time and high-sensitive industrial scanning-based detection of aflatoxins in food products.

  15. 3D-front-face fluorescence spectroscopy and independent components analysis: A new way to monitor bread dough development.

    Science.gov (United States)

    Garcia, Rebeca; Boussard, Aline; Rakotozafy, Lalatiana; Nicolas, Jacques; Potus, Jacques; Rutledge, Douglas N; Cordella, Christophe B Y

    2016-01-15

    Following bread dough development can be a hard task as no reliable method exists to give the optimal mixing time. Dough development is linked to the evolution of gluten proteins, carbohydrates and lipids which can result in modifications in the spectral properties of the various fluorophores naturally present in the system. In this paper, we propose to use 3-D-front-face-fluorescence (3D-FFF) spectroscopy in the 250-550nm domain to follow the dough development as influenced by formulation (addition or not of glucose, glucose oxidase and ferulic acid in the dough recipe) and mixing time (2, 4, 6 and 8min). In all the 32 dough samples as well as in flour, three regions of maximum fluorescence intensities have been observed at 320nm after excitation at 295nm (Region 1), at 420nm after excitation at 360nm (Region 2) and 450nm after excitation at 390nm (Region 3). The principal components analysis (PCA) of the evolution of these maxima shows that the formulations with and without ferulic acid are clearly separated since the presence of ferulic acid induces a decrease of fluorescence in Region 1 and an increase in Regions 2 and 3. In addition, a kinetic effect of the mixing time can be observed (decrease of fluorescence in the Regions 1 and 2) mainly in the absence of ferulic acid. The analysis of variance (ANOVA) on these maximum values statistically confirms these observations. Independent components analysis (ICA) is also applied to the complete 3-D-FFF spectra in order to extract interpretable signals from spectral data which reflect the complex contribution of several fluorophores as influenced by their environment. In all cases, 3 signals can be clearly separated matching the 3 regions of maximal fluorescence. The signals corresponding to regions 1 and 2 can be ascribed to proteins and ferulic acid respectively, whereas the fluorophores associated with the 3rd signal (corresponding to region 3) remain unidentified. Good correlations are obtained between the IC

  16. Monitoring human parvovirus B19 virus-like particles and antibody complexes in solution by fluorescence correlation spectroscopy.

    Science.gov (United States)

    Toivola, Jouni; Michel, Patrik O; Gilbert, Leona; Lahtinen, Tomi; Marjomäki, Varpu; Hedman, Klaus; Vuento, Matti; Oker-Blom, Christian

    2004-01-01

    Fluorescence correlation spectroscopy (FCS) was used in monitoring human parvovirus B19 virus-like particle (VLP) antibody complexes from acute phase and past-immunity serum samples. The Oregon Green 488-labeled VLPs gave an average diffusion coefficient of 1.7 x 10(-7) cm2 s(-1) with an apparent hydrodynamic radius of 14 nm. After incubation of the fluorescent VLPs with an acute phase serum sample, the mobility information obtained from the fluorescence intensity fluctuation by autocorrelation analysis showed an average diffusion coefficient of 1.5 x 10(-8) cm2 s(-1), corresponding to an average radius of 157 nm. In contrast, incubation of the fluorescent VLPs with a past-immunity serum sample gave an average diffusion coefficient of 3.5 x 10(-8) cm2 s(-1) and a radius of 69 nm. A control serum devoid of B19 antibodies caused a change in the diffusion coefficient from 1.7 x 10(-7) to 1.6 x 10(-7) cm2 s(-1), which is much smaller than that observed with acute phase or past-immunity sera. Thus, VLP-antibody complexes with different diffusion coefficients could be identified for the acute phase and past-immunity sera. FCS measurement of VLP-immune complexes could be useful in distinguishing between antibodies present in acute phase or past-immunity sera as well as in titration of the VLPs.

  17. Laser induced fluorescence and Raman spectroscopy in capillary electrophoresis as an possible instrument for extraterrestrial life signs detection.

    Science.gov (United States)

    Mikhail, Gorlenko; Cheptcov, Vladimir; Anton, Maydykovskiy; Eugeniy, Vasilev

    The one of a significant aims in extraterrestrial exploration is a seeking for a life traces in a open space and planetary objects. Complex composition and unknown origin of suspected signs of life required у new analytical approaches and technical solutions. The promising assai here can be Laser induced fluorescence and Raman spectroscopy methods. The combined instrument developed by our team reveal the advantage of capillary electrophoresis assays in a junction with laser induced fluorescence detection technology. We optimized excitation configuration of fluorescence in capillary electrophoresis to reduce pumping laser power up to 1 mW and decrease background scattering. The improvement of the device sensitivity at poor sample concentration we achieved by incorporating fluorescence flow-through cuvette into spectrometer. That allows to simplify setup, to minimize weight and increase reproducibility of measurements. The device has been tasted in complex organic chemical mixes and microbial strains differentiation tasks. 3d multinational spectra allow us to increase the spectra information loads in comparison with ordinary capillary electrophoresis approaches. Possible updating the device with Raman approach can even furthermore multiple the differentiation power of the instrument. The analytical module developed using this approach can be potentially effectively used in extraterrestrial researches as a payload of the future spacecraft.

  18. Simultaneous determination of 2-naphthoxyacetic acid and indole-3-acetic acid by first derivation synchronous fluorescence spectroscopy.

    Science.gov (United States)

    Liu, Xiangxiang; Wan, Yiqun

    2013-07-01

    A simple, rapid, sensitive and selective method for simultaneously determining 2-naphthoxyacetic acid (BNOA) and Indole-3-Acetic Acid (IAA) in mixtures has been developed using derivation synchronous fluorescence spectroscopy based on their synchronous fluorescence. The synchronous fluorescence spectra were obtained with Δλ=100 nm in a pH 8.5 NaH2PO4-NaOH buffer solution, and the detected wavelengths of quantitative analysis were set at 239 nm for BNOA and 293 nm for IAA respectively. The over lapped fluorescence spectra were well separated by the synchronous derivative method. Under optimized conditions, the limits of detection (LOD) were 0.003 μg/mL for BNOA and 0.012 μg/mL for IAA. This method is simple and expeditious, and it has been successfully applied to the determination of 2-naphthoxyacetic acid and indole-3-acetic acid in fruit juice samples with satisfactory results. The samples were only filtrated through a 0.45 μm membrane filter, which was free from the tedious separation procedures. The obtaining recoveries were in the range of 83.88-87.43% for BNOA and 80.76-86.68% for IAA, and the relative standard deviations were all less than 5.0%. Statistical comparison of the results with high performance liquid chromatography Mass Spectrometry (HPLC-MS) method revealed good agreement and proved that there were no significant difference in the accuracy and precision between these two methods.

  19. Simultaneous determination of 2-naphthoxyacetic acid and indole-3-acetic acid by first derivation synchronous fluorescence spectroscopy

    Science.gov (United States)

    Liu, Xiangxiang; Wan, Yiqun

    2013-07-01

    A simple, rapid, sensitive and selective method for simultaneously determining 2-naphthoxyacetic acid (BNOA) and Indole-3-Acetic Acid (IAA) in mixtures has been developed using derivation synchronous fluorescence spectroscopy based on their synchronous fluorescence. The synchronous fluorescence spectra were obtained with Δλ = 100 nm in a pH 8.5 NaH2PO4-NaOH buffer solution, and the detected wavelengths of quantitative analysis were set at 239 nm for BNOA and 293 nm for IAA respectively. The over lapped fluorescence spectra were well separated by the synchronous derivative method. Under optimized conditions, the limits of detection (LOD) were 0.003 μg/mL for BNOA and 0.012 μg/mL for IAA. This method is simple and expeditious, and it has been successfully applied to the determination of 2-naphthoxyacetic acid and indole-3-acetic acid in fruit juice samples with satisfactory results. The samples were only filtrated through a 0.45 μm membrane filter, which was free from the tedious separation procedures. The obtaining recoveries were in the range of 83.88-87.43% for BNOA and 80.76-86.68% for IAA, and the relative standard deviations were all less than 5.0%. Statistical comparison of the results with high performance liquid chromatography Mass Spectrometry (HPLC-MS) method revealed good agreement and proved that there were no significant difference in the accuracy and precision between these two methods.

  20. Fluorescence Spectroscopy Approaches for the Development of a Real-Time Organophosphate Detection System Using an Enzymatic Sensor

    Directory of Open Access Journals (Sweden)

    Paola Carullo

    2015-02-01

    Full Text Available Organophosphates are organic substances that contain a phosphoryl or a thiophosphoryl bond. They are mainly used around the world as pesticides, but can also be used as chemical warfare agents. Their detection is normally entrusted to techniques like GC- and LC-MS that, although sensitive, do not allow their identification on site and in real time. We have approached their identification by exploiting the high-affinity binding of these compounds with the esterase 2 from Alicyclobacillus acidocaldarius. Using an in silico analysis to evaluate the binding affinities of the enzyme with organophosphate inhibitors, like paraoxon, and other organophosphate compounds, like parathion, chlorpyriphos, and other organophosphate thio-derivatives, we have designed fluorescence spectroscopy experiments to study the quenching of the tryptophan residues after esterase 2 binding with the organophosphate pesticides. The changes in the fluorescence signals permitted an immediate and quantitative identification of these compounds from nano- to picomolar concentrations. A fluorescence based polarity-sensitive probe (ANS was also employed as a means to understand the extent of the interactions involved, as well as to explore other ways to detect organophosphate pesticides. Finally, we designed a framework for the development of a biosensor that exploits fluorescence technology in combination with a sensitive and very stable bio-receptor.

  1. A 32-channel photon counting module with embedded auto/cross-correlators for real-time parallel fluorescence correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gong, S.; Labanca, I.; Rech, I.; Ghioni, M. [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2014-10-15

    Fluorescence correlation spectroscopy (FCS) is a well-established technique to study binding interactions or the diffusion of fluorescently labeled biomolecules in vitro and in vivo. Fast FCS experiments require parallel data acquisition and analysis which can be achieved by exploiting a multi-channel Single Photon Avalanche Diode (SPAD) array and a corresponding multi-input correlator. This paper reports a 32-channel FPGA based correlator able to perform 32 auto/cross-correlations simultaneously over a lag-time ranging from 10 ns up to 150 ms. The correlator is included in a 32 × 1 SPAD array module, providing a compact and flexible instrument for high throughput FCS experiments. However, some inherent features of SPAD arrays, namely afterpulsing and optical crosstalk effects, may introduce distortions in the measurement of auto- and cross-correlation functions. We investigated these limitations to assess their impact on the module and evaluate possible workarounds.

  2. Pb distribution in bones from the Franklin expedition: synchrotron X-ray fluorescence and laser ablation/mass spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Ronald Richard; Naftel, Steven; Macfie, Sheila; Jones, Keith; Nelson, Andrew [The University of Western Ontario, London, ON (Canada)

    2013-04-15

    Synchrotron micro-X-ray Fluorescence has been used to map the metal distribution in selected bone fragments representative of remains associated with the Franklin expedition. In addition, laser ablation mass spectroscopy using a 25 {mu}m diameter circular spot was employed to compare the Pb isotope distributions in small regions within the bone fragments. The X-ray Fluorescence mapping shows Pb to be widely distributed in the bone while the Pb isotope ratios obtained by laser ablation within small areas representative of bone with different Pb exchange rates do not show statistically significant differences. These results are inconsistent with the hypothesis that faulty solder seals in tinned meat were the principle source of Pb in the remains of the expedition personnel. (orig.)

  3. Solvation dynamics of coumarin 153 embedded in AOT + phenol organogels studied by time-resolved fluorescence spectroscopy

    Science.gov (United States)

    Nishiyama, Katsura; Takata, Kei; Watanabe, Keiichi; Shigematsu, Hirotake

    2012-03-01

    We investigate solvation dynamics of organogel utilizing ps-ns fluorescence spectroscopy. The organogel studied in this Letter comprises bis(2-ethylhexyl) sulfosuccinate (AOT) and p-chlorophenol in the m-xylene solvent, that produce an organogel architecture with self-assembly. Within the organogel, an emitting probe, coumarin 153 (C153), is embedded. We then obtain dynamic response functions of solvation derived from the time-resolved fluorescence spectra of C153. We propose that total energy of the C153-organogel system relaxes with a relaxation time of 3.9 ns, whereas the entire rearrangement of the organogel structure around C153 is achieved with that of 6.1 ns, respectively.

  4. Investigation on the Competition Interaction of Synthetic Food Colorants and Ciprofloxacin Hydrochloride with Bovine Serum Albumin by Fluorescence Spectroscopy

    Directory of Open Access Journals (Sweden)

    Baosheng Liu

    2011-01-01

    Full Text Available The effects of synthetic food colorants like tartrazine (TTZ, sunset yellow (SY, and erythrosine (ETS on the binding reaction between ciprofloxacin hydrochloride (CPFX and bovine serum albumin (BSA were investigated by fluorescence spectroscopy in the aqueous solution of pH = 7.40. Results showed that CPFX caused the fluorescence quenching of BSA through a static quenching procedure and the primary binding site was located at subdomain IIA of BSA (site I. According to the calculated thermodynamic parameters, it confirmed that CPFX bound to BSA by electrostatic interaction. In addition, the colorants affected the formation of BSA-CPFX complex. This resulted in an increase of the free, biological active fraction of CPFX. The binding distance of BSA-CPFX systems was evaluated according to Förster's theory. Results suggested that the binding distance were increased in the presence of synthetic food colorants.

  5. Laser-induced fluorescence spectroscopy of jet-cooled TiC: Observation of low-lying 1Σ+ states

    Science.gov (United States)

    Nakhate, S. G.; Mukund, Sheo; Bhattacharyya, Soumen

    2017-07-01

    The TiC has been investigated using laser-induced fluorescence spectroscopy. The a1Σ+, b1Σ+, and c1Σ+ states are found to lie respectively at T0 = 319.3, 786.0, and 1407.2 cm-1 and have internuclear distances respectively of r0 = 1.6607, 1.6906, and 1.6927 Å. Similar r0 values of the b1Σ+ and c1Σ+ states with that of the X3Σ+ state (1.6953 Å) indicate that either of these states could be isocofigurational to the ground state. Dispersed fluorescence suggests reassignment of the 3Π1 state to a mixed state with dominant 1Π character. Higher spectral resolution of the 1Π-X3Σ+ band provided improved molecular constants.

  6. A study of ancient pottery by means of X-ray fluorescence spectroscopy, multivariate statistics and mineralogical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Papachristodoulou, Christina [Nuclear Physics Laboratory, Department of Physics, University of Ioannina, 451 10 Ioannina (Greece); Oikonomou, Artemios [Composite Materials Laboratory, Department of Materials' Science and Engineering, University of Ioannina, 451 10 Ioannina (Greece); Ioannides, Kostas [Nuclear Physics Laboratory, Department of Physics, University of Ioannina, 451 10 Ioannina (Greece); Gravani, Konstantina [Archaelogy Section, Department of History-Archaeology, University of Ioannina, 451 10 Ioannina (Greece)

    2006-07-28

    Energy-dispersive X-ray fluorescence spectroscopy was used to determine the composition of 64 potsherds from the Hellenistic settlement of Orraon, in northwestern Greece. Data classification by principal components analysis revealed four distinct groups of pottery, pointing to different local production practices rather than different provenance. The interpretation of statistical grouping was corroborated by a complementary X-ray diffraction analysis. Compositional and mineralogical data, combined with archaeological and materials' science criteria, allowed addressing various aspects of pottery making, such as selection of raw clays, tempers and firing conditions.

  7. A study of ancient pottery by means of X-ray fluorescence spectroscopy, multivariate statistics and mineralogical analysis.

    Science.gov (United States)

    Papachristodoulou, Christina; Oikonomou, Artemios; Ioannides, Kostas; Gravani, Konstantina

    2006-07-28

    Energy-dispersive X-ray fluorescence spectroscopy was used to determine the composition of 64 potsherds from the Hellenistic settlement of Orraon, in northwestern Greece. Data classification by principal components analysis revealed four distinct groups of pottery, pointing to different local production practices rather than different provenance. The interpretation of statistical grouping was corroborated by a complementary X-ray diffraction analysis. Compositional and mineralogical data, combined with archaeological and materials' science criteria, allowed addressing various aspects of pottery making, such as selection of raw clays, tempers and firing conditions.

  8. Binding of human serum albumin to PEGylated liposomes: insights into binding numbers and dynamics by fluorescence correlation spectroscopy

    DEFF Research Database (Denmark)

    Kristensen, Kasper; Urquhart, Andrew; Thormann, Esben

    2016-01-01

    understood. For example, there is generally a lack of knowledge about the liposome binding affinities and dynamics of common types of blood plasma proteins. Fluorescence correlation spectroscopy (FCS) is a powerful experimental technique that potentially can provide such knowledge. In this study, we have...... used FCS to investigate the binding of human serum albumin (HSA) to standard types of PEGylated fluid-phase liposomes (consisting of DOPC and DOPE-PEG2k) and PEGylated gel-phase liposomes (consisting of DSPC and DSPE-PEG2k) with various PEG chain surface densities. We detected no significant binding...

  9. Using Fluorescence Spectroscopy to Evaluate Hill Parameters and Heterogeneity of Ligand Binding to Cytochromes P450

    Science.gov (United States)

    Marsch, Glenn A.; Carlson, Benjamin; Hansen, Jennifer; Mihelc, Elaine; Martin, Martha V.; Guengerich, F. Peter

    2009-03-01

    The cytochromes P450 (CYPs) are hemoproteins that oxidize many drugs and carcinogens. Binding interactions of two CYPs with Nile Red, pyrene, and alpha-naphthoflavone were studied using fluorescence quenching. Upon interaction with CYPs, fluorescence from pyrene excited-state dimers was quenched more efficiently than fluorescence from pyrene monomers. Quenching data was fit to the Hill equation to determine binding affinities and the Hill parameter n for the interaction of substrates with CYPs. All ligands showed strong binding to the CYPs, especially alpha-naphthoflavone, but exhibited little or no cooperativity in the interaction. Modified Stern-Volmer plots were used to confirm binding affinities, and suggested heterogeneous populations of amino acid fluorophores. Fluorescence anisotropy experiments suggest that CYP molecules tumble more rapidly when alpha-naphthoflavone is added.

  10. Identification of tartrazine and sunset yellow by fluorescence spectroscopy combined with radial basis function neural network

    Institute of Scientific and Technical Information of China (English)

    Jun Wang; Guoqing Chen; Tuo Zhu; Shumei Gao; Bailin Wei; Linna Bi

    2009-01-01

    @@ The fluorescence spectra of synthetic food dyes of sunset yellow and tartrazine are analyzed.The fluorescence peak wavelengths of sunset yellow and tartrazine are 576 and 569 nm, respectively, while the fluorescence spectra widths are 480-750 and 500-750 nm induced by ultraviolet light between 310-400 nm.The fluorescence spectra of sunset yellow overlap heavily with those of tartrazine, so it is diffic ult to distinguish them.Based on the principle of radial basis function neural network, a neural network is obtained from the training of the 14 groups of experimental data.The results show that the species of sunset yellow and tartrazine could be recognized accurately.This method has potential applications in other synthetic food dyes detection and food safety inspection.

  11. [Investigation on low power microwave irradiation-assisted enzymatic esterification in organic solvent by fluorescence spectroscopy].

    Science.gov (United States)

    Min, Rui; Fang, Yun; Xia, Yong-Mei

    2009-02-01

    The authors studied the fluorescence change of immobilized lipase from Rhizomucor miehei in the microwave assisted enzymatic esterification of caprylic acid and butanol in organic medium by investigating the fluorescence spectra in solvent or aqueous buffer after incubating the lipase with the solvent, caprylic acid and butanol under microwave irradiation, respectively. A comparison was made with the conventional heated enzymatic esterification in the solvents. Both of the heating modes, the microwave irradiation and conventional heating, can enhance the fluorescence intensity without shifting the emission wavelength of the lipase. In the circumstance that the irradiation can accelerate the esterification, the irradiation can enhance the exposure of the lipase protein molecules in the aqueous environment after incubating the lipase with solvents or the substrates. The effect of the reaction mixture on the fluorescence intensity was dominated by the solvents. The trend of the plot of log P versus the initial reaction rate was similar to that of log P versus fluorescence intensity of lipase in aqueous buffer after esterification; but was different from that of log P versus fluorescence intensity of lipase in organic medium.

  12. Fluorescence-enhanced optical spectroscopy using early arriving photons in transmission mode: a finite element approach

    Science.gov (United States)

    Piron, Vianney; L'Huillier, Jean-Pierre

    2012-06-01

    Optical imaging of turbid media is a challenging problem mainly due to the scattering process that reduces image contrast and degrades spatial resolution. The development of fluorescent probes has recently improved the noninvasive optical technique. In this paper, we are interested in the time gating fluorescence signals. The diffusion approximation is used in order to describe the light propagation of a laser pulse in a turbid media that mimics breast like biological tissue. A numerical model based on a finite element method is proposed. Fluorescence time dependent numerical simulations are performed in order to compute time-gated intensities resulting from line scans across partially absorbing and scattering slab configurations. Optical properties of embedded objects are chosen to be the same as optical properties of breast tumor. Tacking into account two hidden objects, we investigate the lateral resolution aimed by fluorescence modality, and we also compared the results to thus obtained by photon propagation. Different widths of the time gate are computed and it is demonstrated that both lateral localization of one inclusion, and resolution of two inclusions, are enhanced when the time-gate width (▵t) is decreased. The overall computations confirm that fluorescent time-gating technique is very sensitive to local variations in optical properties that are due to breast-like tumors in turbid media.

  13. Polydopamine Thin Films as Protein Linker Layer for Sensitive Detection of Interleukin-6 by Surface Plasmon Enhanced Fluorescence Spectroscopy.

    Science.gov (United States)

    Toma, Mana; Tawa, Keiko

    2016-08-31

    Polydopamine (PDA) thin films are introduced to the surface modification of biosensor surfaces utilizing surface plasmon enhanced fluorescence spectroscopy (SPFS) as the linker layer of capture antibody on to the sensor surfaces. The capture antibody can be directly attached to the sensor surface without using any coupling agent by functionalizing the gold sensor surface with PDA thin films. The PDA coating is performed by a single-step preparation process by applying the dopamine solution on the sensor surface, which requires an extremely short incubation time (10 min). The real-time in situ measurement of the adsorption kinetics of the capture antibody onto the PDA-coated sensor surface is studied by surface plasmon resonance (SPR) spectroscopy. It reveals that the immobilization of capture antibody immediately occurs after introduction of a solution containing capture antibody, and the sensor surface is fully covered with the capture antibody. The sensitive detection of the cytokine marker interleukin-6 (IL-6) is performed by SPFS using a sandwich assay format with fluorescently labeled detection antibody. The sensor chips functionalized by PDA chemistry exhibited sensitive sensor responses with low nonspecific adsorption of the detection antibody onto the sensor surface. The detection limit of IL-6 with the developed SPFS biosensor is determined to be 2 pg/mL (100 fM), which is within the range of the diagnostic criteria. Our observation elucidates the remarkable utility of PDA coatings for chemical modification of the metallic sensor surfaces by a simple, brief, and inexpensive manner.

  14. New insights into heat induced structural changes of pectin methylesterase on fluorescence spectroscopy and molecular modeling basis

    Science.gov (United States)

    Nistor, Oana Viorela; Stănciuc, Nicoleta; Aprodu, Iuliana; Botez, Elisabeta

    2014-07-01

    Heat-induced structural changes of Aspergillus oryzae pectin methylesterase (PME) were studied by means of fluorescence spectroscopy and molecular modeling, whereas the functional enzyme stability was monitored by inactivation studies. The fluorescence spectroscopy experiments were performed at two pH value (4.5 and 7.0). At both pH values, the phase diagrams were linear, indicating the presence of two molecular species induced by thermal treatment. A red shift of 7 nm was observed at neutral pH by increasing temperature up to 60 °C, followed by a blue shift of 4 nm at 70 °C, suggesting significant conformational rearrangements. The quenching experiments using acrylamide and iodide demonstrate a more flexible conformation of enzyme with increasing temperature, especially at neutral pH. The experimental results were complemented with atomic level observations on PME model behavior after performing molecular dynamics simulations at different temperatures. The inactivation kinetics of PME in buffer solutions was fitted using a first-order kinetics model, resulting in activation energy of 241.4 ± 7.51 kJ mol-1.

  15. Characterization of bacterial spore germination using phase-contrast and fluorescence microscopy, Raman spectroscopy and optical tweezers.

    Science.gov (United States)

    Kong, Lingbo; Zhang, Pengfei; Wang, Guiwen; Yu, Jing; Setlow, Peter; Li, Yong-qing

    2011-05-01

    This protocol describes a method combining phase-contrast and fluorescence microscopy, Raman spectroscopy and optical tweezers to characterize the germination of single bacterial spores. The characterization consists of the following steps: (i) loading heat-activated dormant spores into a temperature-controlled microscope sample holder containing a germinant solution plus a nucleic acid stain; (ii) capturing a single spore with optical tweezers; (iii) simultaneously measuring phase-contrast images, Raman spectra and fluorescence images of the optically captured spore at 2- to 10-s intervals; and (iv) analyzing the acquired data for the loss of spore refractility, changes in spore-specific molecules (in particular, dipicolinic acid) and uptake of the nucleic acid stain. This information leads to precise correlations between various germination events, and takes 1-2 h to complete. The method can also be adapted to use multi-trap Raman spectroscopy or phase-contrast microscopy of spores adhered on a cover slip to simultaneously obtain germination parameters for multiple individual spores.

  16. Quantification of Coffea arabica and Coffea canephora var. robusta concentration in blends by means of synchronous fluorescence and UV-Vis spectroscopies.

    Science.gov (United States)

    Dankowska, A; Domagała, A; Kowalewski, W

    2017-09-01

    The potential of fluorescence, UV-Vis spectroscopies as well as the low- and mid-level data fusion of both spectroscopies for the quantification of concentrations of roasted Coffea arabica and Coffea canephora var. robusta in coffee blends was investigated. Principal component analysis was used to reduce data multidimensionality. To calculate the level of undeclared addition, multiple linear regression (PCA-MLR) models were used with lowest root mean square error of calibration (RMSEC) of 3.6% and root mean square error of cross-validation (RMSECV) of 7.9%. LDA analysis was applied to fluorescence intensities and UV spectra of Coffea arabica, canephora samples, and their mixtures in order to examine classification ability. The best performance of PCA-LDA analysis was observed for data fusion of UV and fluorescence intensity measurements at wavelength interval of 60nm. LDA showed that data fusion can achieve over 96% of correct classifications (sensitivity) in the test set and 100% of correct classifications in the training set, with low-level data fusion. The corresponding results for individual spectroscopies ranged from 90% (UV-Vis spectroscopy) to 77% (synchronous fluorescence) in the test set, and from 93% to 97% in the training set. The results demonstrate that fluorescence, UV, and visible spectroscopies complement each other, giving a complementary effect for the quantification of roasted Coffea arabica and Coffea canephora var. robusta concentration in blends. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Laser induced fluorescence spectroscopy of chemo-drugs as biocompatible fluorophores: irinotecan, gemcitabine and navelbine

    Science.gov (United States)

    Motlagh, N. S. Hosseini; Parvin, P.; Ghasemi, F.; Atyabi, F.; Jelvani, S.; Abolhosseini, S.

    2016-07-01

    The fluorescence nature of chemo-drugs is useful for simultaneous cancer diagnosis and therapy. Here, the laser induced fluorescence (LIF) properties of irinotecan, gemcitabine and navelbine are extensively investigated. The UV photons provoke the desired transitions of the several chemo-drugs by virtue of the XeCl laser at 308 nm. It is shown that LIF spectra are strongly dependent on the fluorophore concentration, while no spectral shift is measured for irinotecan, gemcitabine and navelbine because of a large Stokes shift. On the other hand, doxorubicin is characterized by a large overlapping between absorption and emission spectra giving rise to a sensible red shift. The fluorescence extinction α and self-quenching k coefficients as well as the quantum yield η f of those chemo-drugs are determined accordingly. In fact, irinotecan shows the highest quantum efficiency among the chemo-drugs of interest.

  18. Excited-state dynamics of bacteriorhodopsin probed by broadband femtosecond fluorescence spectroscopy.

    Science.gov (United States)

    Schmidt, B; Sobotta, C; Heinz, B; Laimgruber, S; Braun, M; Gilch, P

    2005-01-07

    The impact of varying excitation densities (approximately 0.3 to approximately 40 photons per molecule) on the ultrafast fluorescence dynamics of bacteriorhodopsin has been studied in a wide spectral range (630-900 nm). For low excitation densities, the fluorescence dynamics can be approximated biexponentially with time constants of <0.15 and approximately 0.45 ps. The spectrum associated with the fastest time constant peaks at 650 nm, while the 0.45 ps component is most prominent at 750 nm. Superimposed on these kinetics is a shift of the fluorescence maximum with time (dynamic Stokes shift). Higher excitation densities alter the time constants and their amplitudes. These changes are assigned to multi-photon absorptions.

  19. Drug/protein interactions studied by time-resolved fluorescence spectroscopy

    Science.gov (United States)

    Gustavsson, Thomas; Markovitsi, Dimitra; Vayá, Ignacio; Bonancía, Paula; Jiménez, M. C.; Miranda, Miguel A.

    2014-09-01

    We report here on a recent time-resolved fluorescence study [1] of the interaction between flurbiprofen (FBP), a chiral non-steroidal anti-inflammatory drug, and human serum albumin (HSA), the main transport protein in the human body. We compare the results obtained for the drug-protein complex with those of various covalently linked flurbiprofentryptophan dyads having well-defined geometries. In all cases stereoselective dynamic fluorescence quenching is observed, varying greatly from one system to another. In addition, the fluorescence anisotropy decays also display a clear stereoselectivity. For the drug-protein complexes, this can be interpreted in terms of the protein microenvironment playing a significant role in the conformational relaxation of FBP, which is more restricted in the case of the (R)- enantiomer.

  20. EPR and Fluorescence Spectroscopy in the Photodegradation Study of Arabian and Colombian Crude Oils

    Directory of Open Access Journals (Sweden)

    Carmen L. B. Guedes

    2006-01-01

    W/m2. The reduction in the linewidth of the free radical of 9.8% in Arabian oil and 18.5% in Colombian oil, as well as the decrease in radical numbers, indicated photochemical degradation, especially in Colombian oil. The linewidth narrowing corresponding to free radicals in the irradiated oils occurred due to the rearrangement among radicals and aromatic carbon consumption. The irradiated oils showed a reduction in the relative intensity of fluorescence of the aromatics with high molecular mass, polar aromatics, and asphaltene. The fluorescent fraction was reduced by 61% in Arabian oil and 72% in Colombian oil, corresponding to photochemical degradation of crude oil aromatic compounds.

  1. Interaction of quinine with negatively charged lipid vesicles studied by fluorescence spectroscopy Influence of the pH

    Science.gov (United States)

    Pedrós, Jesús; Porcar, Iolanda; Gómez, Clara M.; Campos, Agustín; Abad, Concepción

    1997-03-01

    The interaction of quinine with dimyristoylphosphatidic acid (DMPA) and dimyristoylphosphatidyl glycerol (DMPG) small unilamellar vesicles in the gel phase was studied by steady-state fluorescence spectroscopy at pHs 7, 6, 5 and 4 and 20°C. In aqueous solution, with excitation at 335 nm, the emission fluorescence spectrum of quinine varied with pH reflecting the occurrence of different charged species of the drug. In all cases, the emission maximum centered at 383 or 443 nm shifted to lower wavelength in the presence of vesicles. This indicates that the membrane-bound state quinine is in an environment of low polarity. Drug monocationic species were deeply buried in DMPG relative to DMPA bilayers whereas no significant differences were observed for dicationic species, the fluorophore being located in this case in a more aqueous-like environment. Experimental association isotherms generated from fluorescence intensity changes were quantitatively analyzed in terms of the binding equilibrium model. Although the binding affinity of quinine to anionic membranes was always higher for DMPG over DMPA, dicationic species showed a reduced ability to bind the negatively charged membrane. In addition, the binding model has been related with the partition model leading to a good agreement between the theoretical (calculated from the binding model) and the experimental (from the initial slope of the experimental isotherms) partition coefficient derived in each case.

  2. Applicability of UV laser-induced solid-state fluorescence spectroscopy for characterization of solid dosage forms.

    Science.gov (United States)

    Woltmann, Eva; Meyer, Hans; Weigel, Diana; Pritzke, Heinz; Posch, Tjorben N; Kler, Pablo A; Schürmann, Klaus; Roscher, Jörg; Huhn, Carolin

    2014-10-01

    High production output of solid pharmaceutical formulations requires fast methods to ensure their quality. Likewise, fast analytical procedures are required in forensic sciences, for example at customs, to substantiate an initial suspicion. We here present the design and the optimization of an instrumental setup for rapid and non-invasive characterization of tablets by laser-induced fluorescence spectroscopy (with a UV-laser (λ ex = 266 nm) as excitation source) in reflection geometry. The setup was first validated with regard to repeatability, bleaching phenomena, and sensitivity. The effect on the spectra by the physical and chemical properties of the samples, e.g. their hardness, homogeneity, chemical composition, and granule grain size of the uncompressed material, using a series of tablets, manufactured in accordance with design of experiments, was investigated. Investigation of tablets with regard to homogeneity, especially, is extremely important in pharmaceutical production processes. We demonstrate that multiplicative scatter correction is an appropriate tool for data preprocessing of fluorescence spectra. Tablets with different physical and chemical characteristics can be discriminated well from their fluorescence spectra by subjecting the results to principal component analysis.

  3. Brightness analysis by Z-scan fluorescence fluctuation spectroscopy for the study of protein interactions within living cells.

    Science.gov (United States)

    Macdonald, Patrick J; Chen, Yun; Wang, Xiao; Chen, Yan; Mueller, Joachim D

    2010-08-04

    Fluorescence fluctuation spectroscopy (FFS) quantifies interactions of fluorescently labeled proteins inside living cells by brightness analysis. Conventional FFS implicitly requires that the sample thickness exceeds the size of the observation volume. This condition is not always fulfilled when measuring cells. Cytoplasmic sections, especially, can be thinner than the axial size of the observation volume. The finite sample thickness introduces a brightness bias which, if not recognized, leads to an erroneous interpretation of the data. To avoid this artifact, we introduce z-scan FFS which consists of a fluorescence intensity z scan through the sample followed by an FFS measurement. To model the experimental z-scan data, a new PSF model had to be introduced. We use the intensity z scan together with the PSF model to determine the geometry of the sample and then extract the brightness from the FFS data. Cells expressing EGFP serve as a model system for testing the experimental approach. We demonstrate that z-scan FFS abolishes the brightness artifact and use the method to determine the oligomerization of cytoplasmic nuclear transport factor 2. 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Further evidence for charge transfer complexes in brown carbon aerosols from excitation-emission matrix fluorescence spectroscopy.

    Science.gov (United States)

    Phillips, Sabrina M; Smith, Geoffrey D

    2015-05-14

    The light-absorbing fraction of organic molecules in ambient aerosols, known as "brown carbon," is an important yet poorly characterized component. Despite the fact that brown carbon could alter the radiative forcing of aerosols significantly, identification of specific chromophores has remained challenging. We recently demonstrated that charge transfer (CT) complexes formed in organic molecules could be responsible for a large fraction of absorption observed in water-extracted ambient particulate matter.1 In the present study, we use excitation-emission matrix fluorescence spectroscopy to further corroborate the importance of CT complexes in defining aerosol optical properties. Monotonically increasing and decreasing quantum yields, decreasing Stokes shifts, and red-shifting emission maxima are observed from ambient particulate matter collected in Athens, Georgia, strongly suggesting that a superposition of independent chromophores is not sufficient to explain brown carbon absorption and fluorescence. Instead, we show that a model in which such chromophores are energetically coupled to a dense manifold of CT complexes is consistent with all of the observations. Further, we suggest that a significant fraction of the observed fluorescence originates from CT complexes and that their contribution to brown carbon absorption is likely greater than we reported previously.

  5. UV fluorescence excitation spectroscopy as a non-invasive predictor of epidermal proliferation and clinical performance of cosmetic formulations

    Science.gov (United States)

    Maidhof, Robert; Liebel, Frank; Hwang, Cheng; Ruvolo, Eduardo; Lyga, John

    2017-02-01

    The epidermis is the outermost layer of skin and is composed of cells primarily containing keratin. It consists of about ten layers of living cells (keratinocytes) and ten layers of dead cells (corneocytes). These cells are continually shed from the outside and replaced from the inside in a process called desquamation which is controlled by two biological events - proliferation and differentiation. One method to non-invasively study biological changes in the skin is using fluorescence excitation spectroscopy. Several characteristic excitation-emission peaks occur in skin that have been related to the epidermal and dermal composition. The magnitude of the peak that occurs at 295nm excitation (F295) has been linked to changes in skin proliferation, cell turnover, epidermal thickening, and skin aging. We hypothesize that changes in this fluorescent signal could be used to assess the potential activity of cosmetic anti-aging compounds to deliver a benefit to skin. Previous work with retinol and glycolic acid, two commonly used actives that effect epidermal proliferation and exfoliation, has demonstrated an increase in F295 (attributed to tryptophan excitation fluorescence). In this study we present the results of a placebo controlled study that aims to correlate changes in F295 with biological performance (epidermal thickening and Ki67 expression).

  6. Luminescence properties of uranyl-acetate species

    Energy Technology Data Exchange (ETDEWEB)

    Brinkmann, Hannes; Moll, Henry [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Inst. of Resource Ecology; Stumpf, Thorsten [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biogeochemistry

    2017-06-01

    Time-resolved laser-induced fluorescence spectroscopy (TRLFS) was applied to characterize uranium(VI)- acetate species based on their luminescence properties. In contrast to previous interpretations, no indications were detected for the existence of the 1: 3 complex.

  7. Theoretical Studies on Electronic Structures and Spectroscopy of Fluorescent Arylamino Fumaronitrile

    Institute of Scientific and Technical Information of China (English)

    Xiao-peng Chen; Yu-qi Ding; Qi-wen Teng

    2008-01-01

    A new series of fluorescent arylamino fumarinitrile derivatives was designed and optimized using density function theory at the B3LYP/6-31G* level.Based on the optimized geometries,the electronic,fluorescent and 13C NMR spectra are calculated with INDO/CIS,CIS-ZINDO TD,and B3LYP/6-31G* methods,re-spectively.Starting with the first of the series,the LUMO-HOMO energy gaps of the derivatives become wider and the fluorescent wavelengths and the main peaks in the electronic spectra axe blue-shifted owing to the large steric effect of naphthyl rings.On the contrary,the energy gaps of the derivatives turn narrow,and the fluorescent wavelengths and the main peaks in the electronic spectra are red-shifted since hydroxyl groups improve the symmetry and extend the conjugation system.The chemical shifts of sp2-C on the phenyl rings are moved upfield,while chemical shifts of carbon atoms on the cyano groups and those connected with the cyano groups are changed downfield in the presence of hydroxyl groups.

  8. Excitation-emission fluorescence spectroscopy and time-gated Raman microscopy analysis of dental tissues

    Science.gov (United States)

    Mukhin, M.; Sen, S.; Kouklin, Nikolai A.; Skliarov, A.; Dhuru, D. B.; Iacopino, A. M.; Yakovlev, Vladislav V.

    2007-02-01

    We applied two new spectroscopic techniques (time-gated Raman microscopy and excitation-emission fluorescence microspectroscopy) to characterize healthy and carious dental tissues. These methods were used together with visual inspection, DIAGNOdent, optical polarization microscopy, scanning electron microscopy, and chemical microanalysis to get a more detailed picture of chemical and structural transformations in dental tissues as a result of caries development.

  9. Two-photon excited fluorescence lifetime imaging and spectroscopy of melanins in vitro and in vivo

    Science.gov (United States)

    Krasieva, Tatiana B.; Stringari, Chiara; Liu, Feng; Sun, Chung-Ho; Kong, Yu; Balu, Mihaela; Meyskens, Frank L.; Gratton, Enrico; Tromberg, Bruce J.

    2013-03-01

    Changes in the amounts of cellular eumelanin and pheomelanin have been associated with carcinogenesis. The goal of this work is to develop methods based on two-photon-excited-fluorescence (TPEF) for measuring relative concentrations of these compounds. We acquire TPEF emission spectra (λex=1000 nm) of melanin in vitro from melanoma cells, hair specimens, and in vivo from healthy volunteers. We find that the pheomelanin emission peaks at approximately 615 to 625 nm and eumelanin exhibits a broad maximum at 640 to 680 nm. Based on these data we define an optical melanin index (OMI) as the ratio of fluorescence intensities at 645 and 615 nm. The measured OMI for the MNT-1 melanoma cell line is 1.6±0.22 while the Mc1R gene knockdown lines MNT-46 and MNT-62 show substantially greater pheomelanin production (OMI=0.5±0.05 and 0.17±0.03, respectively). The measured values are in good agreement with chemistry-based melanin extraction methods. In order to better separate melanin fluorescence from other intrinsic fluorophores, we perform fluorescence lifetime imaging microscopy of in vitro specimens. The relative concentrations of keratin, eumelanin, and pheomelanin components are resolved using a phasor approach for analyzing lifetime data. Our results suggest that a noninvasive TPEF index based on spectra and lifetime could potentially be used for rapid melanin ratio characterization both in vitro and in vivo.

  10. Structural Changes of Yellow Cameleon Domains Observed by Quantitative FRET Analysis and Polarized Fluorescence Correlation Spectroscopy

    NARCIS (Netherlands)

    Borst, J.W.; Laptenok, S.; Westphal, A.H.; Kühnemuth, R.; Hornen, H.; Visser, N.V.; Kalinin, S.; Aker, J.C.M.; Hoek, van A.; Seidel, C.A.M.; Visser, A.J.W.G.

    2008-01-01

    Förster resonance energy transfer (FRET) is a widely used method for monitoring interactions between or within biological macromolecules conjugated with suitable donor-acceptor pairs. Donor fluorescence lifetimes in absence and presence of acceptor molecules are often measured for the observation of

  11. [Discrimination of Crude Oil Samples Using Laser-Induced Time-Resolved Fluorescence Spectroscopy].

    Science.gov (United States)

    Han, Xiao-shuang; Liu, De-qing; Luan, Xiao-ning; Guo, Jin-jia; Liu, Yong-xin; Zheng, Rong-er

    2016-02-01

    The Laser-induced fluorescence spectra combined with pattern recognition method has been widely applied in discrimination of different spilled oil, such as diesel, gasoline, and crude oil. However, traditional three-dimension fluorescence analysis method, which is not adapted to requirement of field detection, is limited to laboratory investigatio ns. The development of oil identification method for field detection is significant to quick response and operation of oil spill. In this paper, a new method based on laser-induced time-resolved fluorescence combined with support vector machine (SVM) model was introduced to discriminate crude oil samples. In this method, time-resolved spectra data was descended into two dimensions with selecting appropriate range in time and wavelength domains respectively to form a SVM data base. It is found that the classification accurate rate increased with an appropriate selection. With a selected range from 54 to 74 ns in time domain, the classification accurate rate has been increased from 83.3% (without selection) to 88.1%. With a selected wavelength range of 387.00~608.87 nm, the classification accurate rate of suspect oil was improved from 84% (without selection) to 100%. Since the detection delay of fluorescence lidar fluctuates due to wave and platform swing, the identification method with optimizing in both time and wavelength domains could offer a better flexibility for field applications. It is hoped that the developed method could provide some useful reference with data reduction for classification of suspect crude oil in the future development.

  12. Differentiation of cancerous and normal brain tissue using label free fluorescence and Stokes shift spectroscopy

    Science.gov (United States)

    Zhou, Yan; Wang, Leana; Liu, Cheng-hui; He, Yong; Yu, Xinguang; Cheng, Gangge; Wang, Peng; Shu, Cheng; Alfano, Robert R.

    2016-03-01

    In this report, optical biopsy was applied to diagnose human brain cancer in vitro for the identification of brain cancer from normal tissues by native fluorescence and Stokes shift spectra (SSS). 77 brain specimens including three types of human brain tissues (normal, glioma and brain metastasis of lung cancers) were studied. In order to observe spectral changes of fluorophores via fluorescence, the selected excitation wavelength of UV at 300 and 340 nm for emission spectra and a different Stokes Shift spectra with intervals Δλ = 40 nm were measured. The fluorescence spectra and SSS from multiple key native molecular markers, such as tryptophan, collagen, NADH, alanine, ceroid and lipofuscin were observed in normal and diseased brain tissues. Two diagnostic criteria were established based on the ratios of the peak intensities and peak position in both fluorescence and SSS spectra. It was observed that the ratio of the spectral peak intensity of tryptophan (340 nm) to NADH (440 nm) increased in glioma, meningioma (benign), malignant meninges tumor, and brain metastasis of lung cancer tissues in comparison with normal tissues. The ratio of the SS spectral peak (Δλ = 40 nm) intensities from 292 nm to 366 nm had risen similarly in all grades of tumors.

  13. Mapping of wave packets in direct fragmentation via pump-probe frequency integrated fluorescence spectroscopy

    DEFF Research Database (Denmark)

    Engel, Volker; Henriksen, Niels Engholm

    2000-01-01

    We consider femtosecond excitation of a molecule to a dissociative electronic state. The quantum dynamics is recorded via delayed excitation to a higher electronic state and measurement of the total fluorescence from this state detected as a function of delay time. It is shown that the signal can...

  14. Binding of Cu(II) ions to peptides studied by fluorescence spectroscopy and isothermal titration calorimetry.

    Science.gov (United States)

    Makowska, Joanna; Żamojć, Krzysztof; Wyrzykowski, Dariusz; Uber, Dorota; Wierzbicka, Małgorzata; Wiczk, Wiesław; Chmurzyński, Lech

    2016-01-15

    Steady-state and time-resolved fluorescence quenching measurements supported by Isothermal Titration Calorimetry (ITC) were used to study the interactions of Cu(2+) with four peptides. Two of them were taken from the N-terminal part of the FBP28 protein (formin binding protein) WW domain: Tyr-Lys-Thr-Ala-Asp-Gly-Lys-Thr-Tyr-NH2 (D9) and its mutant Tyr-Lys-Thr-Ala-Asn-Gly-Lys-Thr-Tyr-NH2 (D9_M) as well as two mutated peptides from the B3 domain of the immunoglobulin binding protein G derived from Streptococcus: Asp-Val-Ala-Thr-Tyr-Thr-NH2 (J1) and Glu-Val-Ala-Thr-Tyr-Thr-NH2 (J2). The measurements were carried out at 298.15K in 20mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer solution with a pH of 6. The fluorescence of all peptides was quenched by Cu(2+) ions. The stoichiometry, conditional stability constants and thermodynamic parameters for the interactions of the Cu(2+) ions with D9 and D9_M were determined from the calorimetric data. The values of the conditional stability constants were additionally determined from fluorescence quenching measurements and compared with those obtained from calorimetric studies. There was a good correlation between data obtained from the two techniques. On the other hand, the studies revealed that J1 and J2 do not exhibit an affinity towards metal ions. The obtained results prove that fluorescence quenching experiments may be successfully used in order to determine stability constants of complexes with fluorescent ligands. Finally, based on the obtained results, the coordinating properties of the peptides towards the Cu(2+) ions are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Development of a Multi-modal Tissue Diagnostic System Combining High Frequency Ultrasound and Photoacoustic Imaging with Lifetime Fluorescence Spectroscopy

    Science.gov (United States)

    Sun, Yang; Stephens, Douglas N.; Park, Jesung; Sun, Yinghua; Marcu, Laura; Cannata, Jonathan M.; Shung, K. Kirk

    2010-01-01

    We report the development and validate a multi-modal tissue diagnostic technology, which combines three complementary techniques into one system including ultrasound backscatter microscopy (UBM), photoacoustic imaging (PAI), and time-resolved laser-induced fluorescence spectroscopy (TR-LIFS). UBM enables the reconstruction of the tissue microanatomy. PAI maps the optical absorption heterogeneity of the tissue associated with structure information and has the potential to provide functional imaging of the tissue. Examination of the UBM and PAI images allows for localization of regions of interest for TR-LIFS evaluation of the tissue composition. The hybrid probe consists of a single element ring transducer with concentric fiber optics for multi-modal data acquisition. Validation and characterization of the multi-modal system and ultrasonic, photoacoustic, and spectroscopic data coregistration were conducted in a physical phantom with properties of ultrasound scattering, optical absorption, and fluorescence. The UBM system with the 41 MHz ring transducer can reach the axial and lateral resolution of 30 and 65 μm, respectively. The PAI system with 532 nm excitation light from a Nd:YAG laser shows great contrast for the distribution of optical absorbers. The TR-LIFS system records the fluorescence decay with the time resolution of ~300 ps and a high sensitivity of nM concentration range. Biological phantom constructed with different types of tissues (tendon and fat) was used to demonstrate the complementary information provided by the three modalities. Fluorescence spectra and lifetimes were compared to differentiate chemical composition of tissues at the regions of interest determined by the coregistered high resolution UBM and PAI image. Current results demonstrate that the fusion of these techniques enables sequentially detection of functional, morphological, and compositional features of biological tissue, suggesting potential applications in diagnosis of tumors

  16. Characterization of caries progression on dentin after irradiation with Nd:YAG laser by FTIR spectroscopy and fluorescence imaging

    Science.gov (United States)

    Ana, P. A.; Brito, A. M. M.; Zezell, D. M.; Lins, E. C. C. C.

    2015-06-01

    Considering the use of high intensity lasers for preventing dental caries, this blind in vitro study evaluated the compositional and fluorescence effects promoted by Nd:YAG laser (λ=1064 nm) when applied for prevention of progression of dentin caries, in association or not with topical application of acidulated phosphate fluoride (APF). Sixty bovine root dentin slabs were prepared and demineralized by 32h in order to create early caries lesions. After, the slabs were distributed into six experimental groups: G1- untreated and not submitted to a pH-cycling model; G2- untreated and submitted to a pH-cycling model; G3- acidulated phosphate fluoride application (APF); G4- Nd:YAG irradiation (84.9 J/cm2, 60 mJ/pulse); G5- treated with Nd:YAG+APF; G6- treated with APF+Nd:YAG. After treatments, the samples of groups G2 to G6 were submitted to a 4-day pH-cycling model in order to simulate the progression of early caries lesions. All samples were characterized by the micro-attenuated total reflection technique of Fourier transformed infrared spectroscopy (μATR-FTIR), using a diamond crystal, and by a fluorescence imaging system (FIS), in which it was used an illuminating system at λ= 405±30 nm. Demineralization promoted reduction in carbonate and phosphate contents, exposing the organic matter; as well, it was observed a significant reduction of fluorescence intensity. Nd:YAG laser promoted additional chemical changes, and increased the fluorescence intensity even with the development of caries lesions. It was concluded that the compositional changes promoted by Nd:YAG, when associated to APF, are responsible for the reduction of demineralization progression observed on root dentin.

  17. Differential Laser-Induced Perturbation Spectroscopy for Analysis of Mixtures of the Fluorophores l-Phenylalanine, l-Tyrosine and l-Tryptophan Using a Fluorescence Probe.

    Science.gov (United States)

    Oztekin, Erman K; Hahn, David W

    2016-09-01

    Quantitative detection of common endogenous fluorophores is accomplished using differential laser-induced perturbation spectroscopy (DLIPS) with a 193-nm UV fluorescence probe and various UV perturbation wavelengths. In this study, DLIPS is explored as an alternative to traditional fluorescence spectroscopy alone, with a goal of exploring natural fluorophores pursuant to biological samples and tissue analysis. To this end, aromatic amino acids, namely, l-phenylalanine, l-tyrosine and l-tryptophan are mixed with differing mass ratios and then classified with various DLIPS schemes. Classification with a traditional fluorescence probe is used as a benchmark. The results show a 20% improvement in classification performance of the DLIPS method over the traditional fluorescence method using partial least squares (PLS) analysis. Additional multivariate analyses are explored, and the relevant photochemistry is elucidated in the context of perturbation wavelengths. We conclude that DLIPS is a promising biosensing approach with potential for in vivo analysis given the current findings with fluorophores relevant to biological tissues.

  18. Quantitative generalized ratiometric fluorescence spectroscopy for turbid media based on probe encapsulated by biologically localized embedding

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Xiu-Fang; Chen, Zeng-Ping, E-mail: zpchen2002@hotmail.com; Cui, Yin-Yin; Hu, Yuan-Liang; Yu, Ru-Qin

    2016-05-19

    PEBBLE (probe encapsulated by biologically localized embedding) nanosensor encapsulating an intensity-based fluorescence indicator and an inert reference fluorescence dye inside the pores of stable matrix can be used as a generalized wavelength-ratiometric probe. However, the lack of an efficient quantitative model render the choices of inert reference dyes and intensity-based fluorescence indicators used in PEBBLEs based generalized wavelength-ratiometric probes rather limited. In this contribution, an extended quantitative fluorescence model was derived specifically for generalized wavelength-ratiometric probes based on PEBBLE technique (QFM{sub GRP}) with a view to simplify the design of PEBBLEs and hence further extend their application potentials. The effectiveness of QFM{sub GRP} has been tested on the quantitative determination of free Ca{sup 2+} in both simulated and real turbid media using a Ca{sup 2+} sensitive PEBBLE nanosensor encapsulating Rhod-2 and eosin B inside the micropores of stable polyacrylamide matrix. Experimental results demonstrated that QFM{sub GRP} could realize precise and accurate quantification of free Ca{sup 2+} in turbid samples, even though there is serious overlapping between the fluorescence excitation peaks of eosin B and Ca{sup 2+} bound Rhod-2. The average relative predictive error value of QFM{sub GRP} for the test simulated turbid samples was 5.9%, about 2–4 times lower than the corresponding values of partial least squares calibration model and the empirical ratiometric model based on the ratio of fluorescence intensities at the excitation peaks of Ca{sup 2+} bound Rhod-2 and eosin B. The recovery rates of QFM{sub GRP} for the real and spiked turbid samples varied from 93.1% to 101%, comparable to the corresponding results of atomic absorption spectrometry. - Highlights: • An advanced model was derived for generalized wavelength-ratiometric PEBBLEs. • The model can simplify the design of generalized wavelength

  19. Monitoring the diffusion behavior of Na,K-ATPase by fluorescence correlation spectroscopy (FCS) upon fluorescence labelling with eGFP or Dreiklang

    Science.gov (United States)

    Junghans, Cornelia; Schmitt, Franz-Josef; Vukojević, Vladana; Friedrich, Thomas

    2016-02-01

    Measurement of lateral mobility of membraneembedded proteins in living cells with high spatial and temporal precision is a challenging task of optofluidics. Biological membranes are complex structures, whose physico-chemical properties depend on the local lipid composition, cholesterol content and the presence of integral or peripheral membrane proteins, which may be involved in supramolecular complexes or are linked to cellular matrix proteins or the cytoskeleton. The high proteinto- lipid ratios in biomembranes indicate that membrane proteins are particularly subject to molecular crowding, making it difficult to follow the track of individual molecules carrying a fluorescence label. Novel switchable fluorescence proteins such as Dreiklang [1], are, in principle, promising tools to study the diffusion behavior of individual molecules in situations of molecular crowding due to excellent spectral control of the ON- and OFF-switching process. In this work, we expressed an integral membrane transport protein, the Na,K-ATPase comprising the human α2-subunit carrying an N-terminal eGFP or Dreiklang tag and human β1-subunit, in HEK293T cells and measured autocorrelation curves by fluorescence correlation spectroscopy (FCS). Furthermore,we measured diffusion times and diffusion constants of eGFP and Dreiklang by FCS, first, in aqueous solution after purification of the proteins upon expression in E. coli, and, second, upon expression as soluble proteins in the cytoplasm of HEK293T cells. Our data show that the diffusion behavior of the purified eGFP and Dreiklang in solution as well as the properties of the proteins expressed in the cytoplasm are very similar. However, the autocorrelation curves of eGFP- and Dreiklanglabeled Na,K-ATPase measured in the plasma membrane exhibit marked differences, with the Dreiklang-labeled construct showing shorter diffusion times. This may be related to an additional, as yet unrecognized quenching process that occurs on the same time

  20. Early detection of the carious conditions by laser-induced fluorescence spectroscopy

    Science.gov (United States)

    Borisova, Ekaterina G.; Uzunov, Tzonko T.; Gisbreht, Alexander I.; Avramov, Lachezar A.

    2003-09-01

    The aim of this study was to investigate the natural intrinsic fluorescence in sound and diseased human teeth and the correspondence of such autofluorescence to the stages of the dental lesions. Direct visual examination was used for comparison. Different stages of caries lesions are detected, by using a nitrogen laser (337 nm), light-emitting diode (LED) (440 nm) and argon laser (488 nm). Besides caries, there were investigated samples of the fluorosa dentis and odontolithiasis, for better determination of the influence of other teeth pathologies over the teeth autofluorescence spectra. There was observed a significant decrease in the intensity of the autofluorescence signal in the case of caries. The carious lesions revealed characteristic emission of endogenous fluorophores with fluorescence band in the red spectral region. Healthy hard dental tissue exhibited no emission bands in the red. An algorithm for early diagnosis is created on the basis of collected significant statistical material.

  1. Investigation of burn effect on skin using simultaneous Raman-Brillouin spectroscopy, and fluorescence microspectroscopy

    Science.gov (United States)

    Coker, Zachary; Meng, Zhaokai; Troyanova-Wood, Maria; Traverso, Andrew; Ballmann, Charles; Petrov, Georgi; Ibey, Bennett L.; Yakovlev, Vladislav

    2017-02-01

    Burns are thermal injuries that can completely damage or at least compromise the protective function of skin, and affect the ability of tissues to manage moisture. Burn-damaged tissues exhibit lower elasticity than healthy tissues, due to significantly reduced water concentrations and plasma retention. Current methods for determining burn intensity are limited to visual inspection, and potential hospital x-ray examination. We present a unique confocal microscope capable of measuring Raman and Brillouin spectra simultaneously, with concurrent fluorescence investigation from a single spatial location, and demonstrate application by investigating and characterizing the properties of burn-afflicted tissue on chicken skin model. Raman and Brillouin scattering offer complementary information about a material's chemical and mechanical structure, while fluorescence can serve as a useful diagnostic indicator and imaging tool. The developed instrument has the potential for very diverse analytical applications in basic biomedical science and biomedical diagnostics and imaging.

  2. Multi-angular regolith effects on planetary soft X-ray fluorescence spectroscopy

    Science.gov (United States)

    Näränen, J.; Parviainen, H.; Carpenter, J.; Muinonen, K.

    2009-04-01

    Fluorescent X-rays from the surfaces of airless planetary bodies in the inner solar system have been measured by instruments on several spacecraft. MESSENGER carries an X-ray spectrometer (XRS) on-board and has already attempted to obtain fluorescent X-rays from the Hermean surface. BepiColombo will later on carry an X-ray telescope (MIXS-T) along with a more conventional collimating detector (MIXS-C) to the Hermean orbit, supported by a next-generation X-ray solar monitor (SIXS). These instruments will provide unprecedented knowledge about the geochemical properties of the Hermean regolith. X-ray emission from planetary surfaces follows photoionisation by incident solar X-rays and charged particles and reveals information about the elemental composition of the surface. Analyses of X-ray spectra, obtained by orbiting spacecraft, use both the relative intensities of elemental emission lines (e.g., Ca/Si, Fe/Si) and absolute abundancies of the elements to determine the geochemistry of the target body. Historically, the analysis of X-ray spectra has largely assumed that surfaces can be considered as homogeneous plane-parallel media. It has been shown, however, that fluorescent line intensities are affected by the physical properties of the target surface (e.g., surface roughness of the regolith) as a function of the viewing and illumination geometry of observations in a way that cannot be explained by the traditional models. We describe experimental investigations where we simulated the effects of regolith properties on the fluorescent lines measured by an orbiting instrument, with a large variety of illumination and viewing angles. The planetary regolith analogue used in these experiments was a terrestrial, olivine rich basalt, which has been used by previous authors as an analogue to the lunar maria. The basalt samples were ground to powder and sieved to discriminate particles in the ranges, pellets. The separation of particles with different sizes allows some

  3. A LabVIEW-Based Virtual Instrument System for Laser-Induced Fluorescence Spectroscopy.

    Science.gov (United States)

    Wu, Qijun; Wang, Lufei; Zu, Lily

    2011-01-01

    We report the design and operation of a Virtual Instrument (VI) system based on LabVIEW 2009 for laser-induced fluorescence experiments. This system achieves synchronous control of equipment and acquisition of real-time fluorescence data communicating with a single computer via GPIB, USB, RS232, and parallel ports. The reported VI system can also accomplish data display, saving, and analysis, and printing the results. The VI system performs sequences of operations automatically, and this system has been successfully applied to obtain the excitation and dispersion spectra of α-methylnaphthalene. The reported VI system opens up new possibilities for researchers and increases the efficiency and precision of experiments. The design and operation of the VI system are described in detail in this paper, and the advantages that this system can provide are highlighted.

  4. A new screening method for flunitrazepam in vodka and tequila by fluorescence spectroscopy.

    Science.gov (United States)

    Leesakul, Nararak; Pongampai, Sirintip; Kanatharana, Proespichaya; Sudkeaw, Pravit; Tantirungrotechai, Yuthana; Buranachai, Chittanon

    2013-01-01

    A new screening method for flunitrazepam in colourless alcoholic beverages based on a spectroscopic technique is proposed. Absorption and steady-state fluorescence of flunitrazepam and its protonated form with various acids were investigated. The redshift of the wavelength of maximum absorption was distinctively observed in protonated flunitrazepam. An emissive fluorescence at 472 nm was detected in colourless spirits (vodka and tequila) at room temperature. 2-M perchloric acid was the most appropriated proton source. By using electron ionization mass spectrometry and time-dependent density functional theory calculations, the possible structure of protonated flunitrazepam was identified to be 2-nitro-N-methylacridone, an acridone derivative as opposed to 2-methylamino-5-nitro-2'-fluorobenzophenone, a benzophenone derivative.

  5. Fluorescence spectroscopy for field surveillance of THM formation precursors to increase sustainable drinking water treatment for the water industry

    Science.gov (United States)

    Stutter, Marc; Cooper, Pat; Wyness, Adam; Allan, Richard; Weir, Paul; Frogbrook, Zoe; Haffey, Mark

    2017-04-01

    Our understanding of the composition and diversity of dissolved organic matter (DOM) in natural waters is improving rapidly with techniques such as fluorescence spectroscopy. For the water industry issues of the reaction of DOM and different processes used to reduce microbial contamination in water for public supply are a pressing concern. A range of processes can be used but the common disinfection by free chlorine can react with DOM to produce a group of substances referred to as disinfection by-products (DBPs) that have been linked to health concerns. Hence, management at water treatment works aims to remove DOM prior to the disinfection reaction or change the treatment method. Both are costly financially and in terms of process chemical, such as coagulents that work variably with different DOM forms. Hence, enabling methods of catchment management, which have long been associated with tackling other forms of pollution (e.g. N, P) through source-pathway-receptor concepts, are options for the water industry where catchment raw water source management is a possible sustainable addition to conventional treatment. This presentation looks at the requirements and ongoing work to inform source water management options using bench-top fluorescence excitation-emission spectroscopy and hand-held sensors to detect DBP precursors, namely trihalomethanes (THMs), in complex multi-source environments. We start by introducing the forms of DOM discernible in the fluorescence excitation-emission matrix, how these have been ascribed to different compounds by previous studies and what wavelengths are available for in-situ detection. We then discuss methodology issues for sample storage and standard materials. Then we draw on results from a national set of Scottish catchments and a small catchment study to evaluate relationships between THM compounds from standard assay and GC-MS detection against spectral DOM surrogates, including catchment hydrochemical and spatial data covariates

  6. Correlation coefficient mapping in fluorescence spectroscopy: tissue classification for cancer detection.

    Science.gov (United States)

    Crowell, Ed; Wang, Gufeng; Cox, Jason; Platz, Charles P; Geng, Lei

    2005-03-01

    Correlation coefficient mapping has been applied to intrinsic fluorescence spectra of colonic tissue for the purpose of cancer diagnosis. Fluorescence emission spectra were collected of 57 colonic tissue sites in a range of 4 physiological conditions: normal (29), hyperplastic (2), adenomatous (5), and cancerous tissues (21). The sample-sample correlation was used to examine the ability of correlation coefficient mapping to determine tissue disease state. The correlation coefficient map indicates two main categories of samples. These categories were found to relate to disease states of the tissue. Sensitivity, selectivity, predictive value positive, and predictive value negative for differentiation between normal tissue and all other categories were all above 92%. This was found to be similar to, or higher than, tissue classification using existing methods of data reduction. Wavelength-wavelength correlation among the samples highlights areas of importance for tissue classification. The two-dimensional correlation map reveals absorption by NADH and hemoglobin in the samples as negative correlation, an effect not obvious from the one-dimensional fluorescence spectra alone. The integrity of tissue was examined in a time series of spectra of a single tissue sample taken after tissue resection. The wavelength-wavelength correlation coefficient map shows the areas of significance for each fluorophore and their relation to each other. NADH displays negative correlation to collagen and FAD, from the absorption of emission or fluorescence resonance energy transfer. The wavelength-wavelength correlation map for the decay set also clearly shows that there are only three fluorophores of importance in the samples, by the well-defined pattern of the map. The sample-sample correlation coefficient map reveals the changes over time and their impact on tissue classification. Correlation coefficient mapping proves to be an effective method for sample classification and cancer

  7. A quinoline based pH sensitive ratiometric fluorescent sensor: Structure and spectroscopy

    Indian Academy of Sciences (India)

    Soma Mukherjee; Amit Kumar Paul; Helen Stoeckli-Evans

    2015-09-01

    A new quinoline based hydrazone was synthesized via a condensation reaction and characterized by NMR, mass and single crystal X-ray diffraction studies. It was investigated for suitability as a reversible ratiometric fluorescent pH sensor in acidic pH region. The sensor exhibits intramolecular charge transfer (ICT) type photophysical changes upon protonation of the quinoline ring. No significant interference on emission behavior was observed in the presence of various metal ions.

  8. CHARACTERIZATION OF SOIL HUMIC SUBSTANCES BY ULTRAVIOLET-VISIBLE AND SYNCHRONOUS FLUORESCENCE SPECTROSCOPY

    OpenAIRE

    NADĚŽDA FASUROVÁ; LUBICA POSPÍŠILOVÁ

    2011-01-01

    We focused our study on ultraviolet-visible and synchronous fluorescence spectra and indexes of humic subctances isolated from five Czech soil samples: Haplic Chernozem, Luvic Chernozem, Gleyic Luvisol, Haplic Cambisol and Leptic Cambisol. Results indicated the following HS quality: Haplic Chernozem > Luvic Chernozem > Gleyic Luvisol > Haplic Cambisol > Leptic Cambisol. Humic acids and fulvic acids ratios (HA/FA) were increasing together with decreasing values of Q4/6 measured in ...

  9. Binding between Saikosaponin C and Human Serum Albumin by Fluorescence Spectroscopy and Molecular Docking

    Directory of Open Access Journals (Sweden)

    Yi-Cun Chen

    2016-01-01

    Full Text Available Saikosaponin C (SSC is one of the major active constituents of dried Radix bupleuri root (Chaihu in Chinese that has been widely used in China to treat a variety of conditions, such as liver disease, for many centuries. The binding of SSC to human serum albumin (HSA was explored by fluorescence, circular dichroism (CD, UV-vis spectrophotometry, and molecular docking to understand both the pharmacology and the basis of the clinical use of SSC/Chaihu. SSC produced a concentration-dependent quenching effect on the intrinsic fluorescence of HSA, accompanied by a blue shift in the fluorescence spectra. The Stern-Volmer equation showed that this quenching was dominated by static quenching. The binding constant of SSC with HSA was 3.72 × 103 and 2.99 × 103 L·mol−1 at 26 °C and 36 °C, respectively, with a single binding site on each SSC and HSA molecule. Site competitive experiments demonstrated that SSC bound to site I (subdomain IIA and site II (subdomain IIIA in HSA. Analysis of thermodynamic parameters indicated that hydrogen bonding and van der Waals forces were mostly responsible for SSC-HSA association. The energy transfer efficiency and binding distance between SSC and HSA was calculated to be 0.23 J and 2.61 nm at 26 °C, respectively. Synchronous fluorescence and CD measurements indicated that SSC affected HSA conformation in the SSC-HSA complex. Molecular docking supported the experimental findings in conformational changes, binding sites and binding forces, and revealed binding of SSC at the interface between subdomains IIA-IIB.

  10. Improved identification of peripheral lung tumors by using diffuse reflectance and fluorescence spectroscopy

    NARCIS (Netherlands)

    Spliethoff, J.W.; Spliethoff, Jarich; Evers, Daniel; Evers, D.J.; Klomp, H.M.; van Sandick, J.W.; Wouters, M.W.J.M.; Nachabe, R.; Lucassen, G.W.; Lucassen, Gerald; Hendriks, B.H.W.; Wesseling, J.; Ruers, Theo J.M.

    2013-01-01

    Introduction: A significant number of transthoracic diagnostic biopsy procedures for lung lesions show indeterminate results. Such failures are potentially due to inadequate recognition of vital tumor tissue. The objective of this study was to evaluate whether optical spectroscopy at the tip of a

  11. Fluorescence spectroscopy of gastrointestinal tumors: in vitro studies and in vivo clinical applications

    Science.gov (United States)

    Angelova, L.; Borisova, E.; Zhelyazkova, Al.; Keremedchiev, M.; Vladimirov, B.; Avramov, L.

    2013-11-01

    The limitations of standard endoscopy for detection and evaluation of cancerous changes in the gastrointestinal tract (GIT) are significant challenges and initiate development of new diagnostic modalities. Therefore many spectral and optical techniques are applied recently into the clinical practice for obtaining qualitatively and quantitatively new data from gastrointestinal neoplasia with different levels of clinical applicability and diagnostic success. Fluorescence imaging has been one of the most promising technologies in this area. The technique is very topical with its practical application in intra-operative, image-guided resection of tumors, because it permits minimal surgery intervention and friendly therapeutic conditions. The investigations presented here are based on in vitro measurements of excitation-emission matrices (EEM) for GIT neoplasia and in vivo measurements in the frames of initial clinical trial for tumor fluorescence spectra detection, applied for introduction of spectroscopic diagnostic system for optical biopsy of GIT tumors in the daily clinical practice of the University Hospital "Queen Jiovanna - ISUL"- Sofia. Autofluorescence and exogenous fluorescence signals are detected from normal mucosa, inflammation, dysphasia and carcinoma and main spectral features are evaluated. The systems and methods developed for diagnosis and monitoring could open new dimensions in diagnostic and real-time tumor resection. This will make the entire procedure more personal, patient friendly and effective and will help for further understanding of the tumor nature.

  12. Delayed fluorescence spectroscopy and mechanism of the 730 nm component of chloroplast

    Institute of Scientific and Technical Information of China (English)

    WANG Cheng-long; XING Da; FAN Duo-wang; QIAN Long; LU Mai

    2006-01-01

    Charge recombination in reaction center (RC) of photosystem Ⅱ(PS Ⅱ)is regarded as the location of 685 nm delayed fluorescence (DF). The mechanism of 730 nm component appearing in the DF spectrum for chloroplast was studied by various spectral analysis methods. Experimental results of the DF spectrum at different chloroplast concentration show that the intensity of peaks at 685nm and 730 nm ascends with the chloroplast concentration increasing when the concentration is relatively low. When the concentration increases to the level of 7.8 μg/ml, a maximum intensity of the peak at 685 nm appears but the intensity of 730 nm peak still increases. The peak at 730 nm finally reaches a maximum intensity at the chloroplast concentration of 31.2 μg/ml while the intensity of the 685 nm peak has apparently fallen down. The results of absorption spectrum show that the ratios of A685 to A730 keep almost constant with the increasing of chloroplast concentration. Furthermore, the excitation spectrum for 730 nm fluorescence shows that the 685nm light has high excitation efficiency.These results indicate that the 730nm component of DF spectrum is the fluorescence of chlorophyll in PS Ⅰ RC excited by 685 nm DF. Meanwhile, this can be further verified by the invariability of DF spectrum at different delay time (1 second~9 seconds).

  13. Characterization of flavonoid-protein interactions using fluorescence spectroscopy: Binding of pelargonidin to dairy proteins.

    Science.gov (United States)

    Arroyo-Maya, Izlia J; Campos-Terán, José; Hernández-Arana, Andrés; McClements, David Julian

    2016-12-15

    In this study, the interaction between the flavonoid pelargonidin and dairy proteins: β-lactoglobulin (β-LG), whey protein (WPI), and caseinate (CAS) was investigated. Fluorescence experiments demonstrated that pelargonidin quenched milk proteins fluorescence strongly. However, the protein secondary structure was not significantly affected by pelargonidin, as judged from far-UV circular dichroism. Analysis of fluorescence data indicated that pelargonidin-induced quenching does not arise from a dynamical mechanism, but instead is due to protein-ligand binding. Therefore, quenching data were analyzed using the model of independent binding sites. Both β-LG and CAS, but not WPI, showed hyperbolic binding isotherms indicating that these proteins firmly bound pelargonidin at both pH 7.0 and 3.0 (binding constants ca. 1.0×10(5) at 25.0°C). To investigate the underlying thermodynamics, binding constants were determined at 25.0, 35.0, and 45.0°C. These results pointed to binding processes that depend on the structural conformation of the milk proteins.

  14. Excitation spectroscopy in multispectral optical fluorescence tomography: methodology, feasibility and computer simulation studies

    Science.gov (United States)

    Chaudhari, Abhijit J.; Ahn, Sangtae; Levenson, Richard; Badawi, Ramsey D.; Cherry, Simon R.; Leahy, Richard M.

    2009-08-01

    Molecular probes used for in vivo optical fluorescence tomography (OFT) studies in small animals are typically chosen such that their emission spectra lie in the 680-850 nm wavelength range. This is because tissue attenuation in this spectral band is relatively low, allowing optical photons even from deep sites in tissue to reach the animal surface and consequently be detected by a CCD camera. The wavelength dependence of tissue optical properties within the 680-850 nm band can be exploited for emitted light by measuring fluorescent data via multispectral approaches and incorporating the spectral dependence of these optical properties into the OFT inverse problem—that of reconstructing underlying 3D fluorescent probe distributions from optical data collected on the animal surface. However, in the aforementioned spectral band, due to only small variations in the tissue optical properties, multispectral emission data, though superior for image reconstruction compared to achromatic data, tend to be somewhat redundant. A different spectral approach for OFT is to capitalize on the larger variations in the optical properties of tissue for excitation photons than for the emission photons by using excitation at multiple wavelengths as a means of decoding source depth in tissue. The full potential of spectral approaches in OFT can be realized by a synergistic combination of these two approaches, that is, exciting the underlying fluorescent probe at multiple wavelengths and measuring emission data multispectrally. In this paper, we describe a method that incorporates both excitation and emission spectral information into the OFT inverse problem. We describe a linear algebraic formulation of the multiple wavelength illumination-multispectral detection forward model for OFT and compare it to models that use only excitation at multiple wavelengths or those that use only multispectral detection techniques. This study is carried out in a realistic inhomogeneous mouse atlas

  15. Applications of fluorescence spectroscopy to problems of food safety: detection of fecal contamination and of the presence of central nervous system tissue and diagnosis of neurological disease

    Science.gov (United States)

    Adhikary, Ramkrishna; Bose, Sayantan; Casey, Thomas A.; Gapsch, Al; Rasmussen, Mark A.; Petrich, Jacob W.

    2010-02-01

    Applications of fluorescence spectroscopy that enable the real-time or rapid detection of fecal contamination on beef carcasses and the presence of central nervous system tissue in meat products are discussed. The former is achieved by employing spectroscopic signatures of chlorophyll metabolites; the latter, by exploiting the characteristic structure and intensity of lipofuscin in central nervous system tissue. The success of these techniques has led us to investigate the possibility of diagnosing scrapie in sheep by obtaining fluorescence spectra of the retina. Crucial to this diagnosis is the ability to obtain baseline correlations of lipofuscin fluorescence with age. A murine model was employed as a proof of principle of this correlation.

  16. Characterization of Construction Material Properties through Gamma Spectroscopy, X-ray Fluorescence, and Hyper-spectral Imagery for Background Correction Applications in Nuclear Detection

    Science.gov (United States)

    2014-03-27

    spectroscopy, 2) X-ray fluorescence (XRF), and 3) hyper-spectral imagery. Gamma-spectroscopy focuses on the presence of potassium as well as uranium and...each material. Each materials hyper-spectral characteristics are compared to chemical composition and radioactive properties to determine if any...of bundling a variety of sensors onto a small number of vehicles. A MISTI vehicle carries a ten by ten sodium iodide detector array with a coded

  17. Fluorescence correlation spectroscopy of CdSe/ZnS quantum dot optical bioimaging probes with ultra-thin biocompatible coatings.

    Science.gov (United States)

    Murcia, Michael J; Shaw, David L; Long, Eric C; Naumann, Christoph A

    2008-04-01

    The current study reports on the colloidal stabilities and emission properties of CdSe/ZnS quantum dot (QD) optical probes capped with a variety of thin, hydrophilic surface coatings as studied using confocal fluorescence correlation spectroscopy. These coatings are based on mercaptoethanol, mercaptopropionic acid (with and without conjugated aminoethoxyethanol), lipopolymers (DSPE-PEG2000), cysteine (Cys), and a variety of Xaa-Cys dipeptides. The study shows that several types of QDs with thin hydrophilic coatings can be designed that combine good colloidal stability and excellent emission properties (brightness). Furthermore, there is a general correlation between colloidal stability and brightness. The experiments reported herein illustrate that QDs with multiple types of thin coatings can be created for optical imaging applications in a biological environment while also maintaining a size below 10 nm.

  18. Total reflection x-ray fluorescence spectroscopy (TXRF) a new high sensitivity (PPT) quantitative method for forensic and environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Kubic, T.A.; Amray, M.S. [ATOMIKA, Bedford, MA (United States); Reus, U. [ATOMKIA Instruments, Munich (Germany)] [and others

    1995-12-31

    Total Reflection X-Ray Fluorescence (TYRF) Spectroscopy instrumentation has recently become available on the U.S. commercial market. This x-ray excited method is touted for its sensitivity (parts per trillion), quantitative ability without the need for multi-element standards and lack of response change to matrix element differences. It has been promoted for use in forensic science and on environmental samples. This paper will discuss the results of a blind studies, wherein well characterized samples of forensic interest and environmental water proficiency tests were submitted for determination of elemental composition and concentration. The results indicate that this instrumentation should be considered by those laboratories analyzing materials at low (trace) concentrations or small (microscopical) size.

  19. Studies of Landé gJ-factors of singly ionized lanthanum by laser-induced fluorescence spectroscopy

    Science.gov (United States)

    Werbowy, S.; Güney, C.; Windholz, L.

    2016-08-01

    Laser-induced fluorescence spectroscopy, using a cooled hollow cathode discharge lamp as source of ions, was used to observe the Zeeman splitting of 18 lines of La II in the wavelength range 629.6-680.9 nm, in external intermediate magnetic fields up to 800 G. The recorded hyperfine-Zeeman patterns were analyzed in detail using already known accurate hyperfine structure A- and B-constants. From the recordings the Landé gJ-factors for some levels belonging to the 5d2, 5d6s, 5d6p, 4f5d, 4f6s and 4f6p configurations of La II were determined. The obtained experimental gJ-factors are compared with earlier measurements and theoretical calculations.

  20. The development of methods of analysis of documents on the basis of the methods of Raman spectroscopy and fluorescence analysis

    Science.gov (United States)

    Gorshkova, Kseniia O.; Tumkin, Ilya I.; Kirillova, Elizaveta O.; Panov, Maxim S.; Kochemirovsky, Vladimir A.

    2017-05-01

    The investigation of natural aging of writing inks printed on paper using Raman spectroscopy was performed. Based on the obtained dependencies of the Raman peak intensities ratios on the exposure time, the dye degradation model was proposed. It was suggested that there are several competing bond breaking and bond forming reactions corresponding to the characteristic vibration frequencies of the dye molecule that simultaneously occur during ink aging process. Also we propose a methodology based on the study of the optical properties of paper, particularly changes in the fluorescence of optical brighteners included in its composition as well as the paper reflectivity using spectrophotometric methods. These results can be implemented to develop the novel and promising method of criminology.

  1. Monitoring the RNA distribution in human embryonic stem cells using Raman micro-spectroscopy and fluorescence imaging

    Science.gov (United States)

    Falamas, A.; Kalra, S.; Chis, V.; Notingher, I.

    2013-11-01

    The aim of this study was to monitor the intracellular distribution of nucleic acids in human embryonic stem cells. Raman micro-spectroscopy and fluorescence imaging investigations were employed to obtain high-spatial resolution maps of nucleic acids. The DNA Raman signal was identified based on the 782 cm-1 band, while the RNA characteristic signal was detected based on the 813 cm-1 fingerprint band assigned to O-P-O symmetric stretching vibrations. Additionally, principal components analysis was performed and nucleic acids characteristic Raman signals were identified in the data set, which were plotted at each position in the cells. In this manner, high intensity RNA signal was identified in the cells nucleolus and cytoplasm, while the nucleus presented a much lower signal.

  2. Laser fluorescence spectroscopy of zinc neutrals originating from laser-irradiated and ion-bombarded zinc sulfide and zinc surfaces

    Science.gov (United States)

    Arlinghaus, H. F.; Calaway, W. F.; Young, C. E.; Pellin, M. J.; Gruen, D. M.; Chase, L. L.

    Time-of-flight (TOF) measurements, employing high-resolution laser-induced fluorescence spectroscopy (LFS) as a probe, have been used to measure the yield and velocity distribution of Zn atoms ejected from a ZnS single crystal under irradiation by 308 nm photons. By comparison with the known ion sputtering yield for pure zinc, the absolute yield was determined to be 10 to the 10th power atoms/pulse at a laser fluence of 30 mJ/sq cm. The velocity distribution of the Zn atoms could be fitted by a Maxwell-Boltzmann distribution, having characteristic temperature of approx 2300 K. In addition, Doppler-shift techniques have been combined with TOF measurements in order to separate prompt from delayed emission of ablated atoms, as well as to probe possible molecular or cluster fragmentation. The results obtained suggest the possibility of molecular or cluster emission from ZnS.

  3. Localizing internal friction along the reaction coordinate of protein folding by combining ensemble and single-molecule fluorescence spectroscopy.

    Science.gov (United States)

    Borgia, Alessandro; Wensley, Beth G; Soranno, Andrea; Nettels, Daniel; Borgia, Madeleine B; Hoffmann, Armin; Pfeil, Shawn H; Lipman, Everett A; Clarke, Jane; Schuler, Benjamin

    2012-01-01

    Theory, simulations and experimental results have suggested an important role of internal friction in the kinetics of protein folding. Recent experiments on spectrin domains provided the first evidence for a pronounced contribution of internal friction in proteins that fold on the millisecond timescale. However, it has remained unclear how this contribution is distributed along the reaction and what influence it has on the folding dynamics. Here we use a combination of single-molecule Förster resonance energy transfer, nanosecond fluorescence correlation spectroscopy, microfluidic mixing and denaturant- and viscosity-dependent protein-folding kinetics to probe internal friction in the unfolded state and at the early and late transition states of slow- and fast-folding spectrin domains. We find that the internal friction affecting the folding rates of spectrin domains is highly localized to the early transition state, suggesting an important role of rather specific interactions in the rate-limiting conformational changes.

  4. 10×10-pixel 606kS/s multi-point fluorescence correlation spectroscopy CMOS image sensor

    Science.gov (United States)

    Kagawa, Keiichiro; Takasawa, Taishi; Bo, Zhang; Seo, Min-Woong; Imai, Kaita; Yamamoto, Jotaro; Kinjo, Masataka; Terakawa, Susumu; Yasutomi, Keita; Kawahito, Shoji

    2014-03-01

    To observe molecular transport in a living cell, a high-speed CMOS image sensor for multi-point fluorescence correlation spectroscopy is developed. To achieve low-noise and high-speed simultaneously, a prototype CMOS image sensor is designed based on a complete pixel-parallel architecture and multi-channel pipelined pixel readout. The prototype chip with 10×10 effective pixels is fabricated in 0.18-μm CMOS image sensor technology. The pixel pitch and the photosensitive area are 56μm and 10μm in diameter without a microlens, respectively. In the experiment, the total sampling rate of 606kS/s is achieved. The measured average random noise is 24.9LSB, which is equivalent to about 2.5 electrons in average.

  5. Depth profiles of pulmonary surfactant protein B in phosphatidylcholine bilayers, studied by fluorescence and electron spin resonance spectroscopy

    DEFF Research Database (Denmark)

    Cruz, A; Casals, C; Plasencia, I

    1998-01-01

    . These differences in the extent of insertion lead to qualitative and quantitative differences in the effect of the protein on the mobility of the phospholipid acyl chains, as studied by spin-label electron spin resonance (ESR) spectroscopy, and could represent different functional stages in the surfactant cycle......Pulmonary surfactant-associated protein B (SP-B) has been isolated from porcine lungs and reconstituted in bilayers of dipalmitoylphosphatidylcholine (DPPC) or egg yolk phosphatidylcholine (PC) to characterize the extent of insertion of the protein into phospholipid bilayers. The parameters...... for the interaction of SP-B with DPPC or PC using different reconstitution protocols have been estimated from the changes induced in the fluorescence emission spectrum of the single protein tryptophan. All the different reconstituted SP-B-phospholipid preparations studied had similar Kd values for the binding...

  6. Direct observation of bis(dicarbollyl)nickel conformers in solution by fluorescence spectroscopy: an approach to redox-controlled metallacarborane molecular motors.

    Science.gov (United States)

    Safronov, Alexander V; Shlyakhtina, Natalia I; Everett, Thomas A; VanGordon, Monika R; Sevryugina, Yulia V; Jalisatgi, Satish S; Hawthorne, M Frederick

    2014-10-06

    As a continuation of work on metallacarborane-based molecular motors, the structures of substituted bis(dicarbollyl)nickel complexes in Ni(III) and Ni(IV) oxidation states were investigated in solution by fluorescence spectroscopy. Symmetrically positioned cage-linked pyrene molecules served as fluorescent probes to enable the observation of mixed meso-trans/dl-gauche (pyrene monomer fluorescence) and dl-cis/dl-gauche (intramolecular pyrene excimer fluorescence with residual monomer fluorescence) cage conformations of the nickelacarboranes in the Ni(III) and Ni(IV) oxidation states, respectively. The absence of energetically disfavored conformers in solution--dl-cis in the case of nickel(III) complexes and meso-trans in the case of nickel(IV)--was demonstrated based on spectroscopic data and conformer energy calculations in solution. The conformational persistence observed in solution indicates that bis(dicarbollyl)nickel complexes may provide attractive templates for building electrically driven and/or photodriven molecular motors.

  7. Nuclear magnetic resonance, fluorescence correlation spectroscopy and time-resolved fluorescence anisotropy studies of intermolecular interactions in bis(1-methyl-1H-imidazol-3-ium-3-yl)dihydroborate bis(trifluoromethylsulfonyl)amide and its mixtures with various cosolvents

    Science.gov (United States)

    Sahu, Prabhat Kumar; Nanda, Raju; Seth, Sudipta; Ghosh, Arindam; Sarkar, Moloy

    2016-09-01

    Keeping in mind the potential usefulness of mixed ionic liquid (IL)-cosolvents systems in several industrial applications, intermolecular interactions between a borate-based IL, bis(1-methyl-1H-imidazol-3-ium-3-yl)dihydroborate bis(trifluoromethylsulfonyl)amide ([BIMIMDBA][TF2N]), and its binary mixtures with several molecular solvents has been investigated through NMR and fluorescence spectroscopy. Analysis of the 1H chemical shifts (δ/ppm) and translational diffusion coefficients (D) of the IL in different solvent mixtures demonstrate interplay of nonspecific (ion-dipole) and specific (hydrogen bonding) interactions in governing the properties of these mixtures. Fluorescence correlation spectroscopy (FCS) and time-resolved fluorescence anisotropy data provide evidence in favour of different IL-solvent interaction for different IL-cosolvent systems.

  8. Simultaneous determination of sulpiride and its alkaline degradation product by second derivative synchronous fluorescence spectroscopy.

    Science.gov (United States)

    Abdelal, Amina; El-Enany, Nahed; Belal, Fathalla

    2009-12-15

    Simple and sensitive synchronous fluorimetric, and second derivative synchronous fluorometric methods were developed for the validated and simultaneous determination of sulpiride (SLP) and its alkaline degradation product (DSLP). The method is based on measuring the synchronous fluorescence of both the drug and its degradation product in borate buffer of pH 8 at Deltalambda of 45 nm. The peak amplitude ((2)D) was measured at 295.5 and 342 nm for SLP and DSLP, respectively. The different experimental parameters affecting the synchronous fluorescence intensity of both compounds were studied and optimized. The fluorescence-concentration plots were rectilinear over the range of 0.05-1.0 and 2-10 microg mL(-1) for SLP and DSLP, respectively. The limits of detection (LOD) were 0.02 and 0.4 microg mL(-1) and quantification limits (LOQs) were 0.05 and 1.2 microg mL(-1) for SLP and DSLP, respectively. The proposed methods were successfully applied to commercial capsules and tablets. Statistical comparison of the results with those of the official method revealed good agreement and proved that there were no significant difference in the accuracy and precision between the two methods, respectively. The method was utilized to study the kinetics of the alkaline induced degradation of the drug. The application was further extended to include the in vivo and in vitro determination of sulpiride. The mean % recoveries (n=3) were 100.22+/-2.04 and 92.00+/-3.00 for spiked and real human plasma, respectively.

  9. Real-time water and wastewater quality monitoring using LED-based fluorescence spectroscopy

    Science.gov (United States)

    Bridgeman, John; Zakharova, Yulia

    2016-04-01

    In recent years there have been a number of attempts to design and introduce into water management tools that are capable of measuring organic and microbial matter in real time and in situ. This is important, as the delivery of safe water to customers, and the discharge of good quality effluent to rivers are primary concerns to water undertakers. A novel, LED-based portable fluorimeter 'Duo Fluor' has been designed and constructed at the University of Birmingham to monitor the quality of (waste)water continuously and in real time, and its performance has been assessed in a range of environments. To be of use across a range of environments, special attention must be paid to two crucially important characteristics of such instruments, i.e. their sensitivity and robustness. Thus, the objectives of this study were: 1. To compare the performance (in terms of their sensitivity and robustness) of the Duo Fluor and two other commercial fluorescence devices in laboratory conditions. 2. To assess the performance of the Duo Fluor in situ, in real time at a 450,000PE WwTW. Initially, the impact of quinine sulphate (QS), a highly fluorescent alkaloid with high quantum fluorescence yield, on peak T fluorescence in environmental waters was examined for the Duo Fluor and two commercially available, chamber-based fluorimeters, (F1) and (F2). The instruments' responses to three scenarios were assessed: 1. Deionised water (DW) spiked with QS (from 0.05 to 0.4 mg/L); 2. Environmental water (pond water, PW) spiked with QS (from 0.05 to 0.4 mg/L); 3. Different water samples from various environmental source. The results show that the facility to amend gain settings and the suitable choice of gain are crucial to obtaining reliable data on both peaks T and C in a wide range of water types. The Duo Fluor offers both of these advantages whilst commercially available instruments currently do not. The Duo Fluor was subsequently fixed at the final effluent (FE) discharge point of a WwTW and FE

  10. Assessment of drinking water quality at the tap using fluorescence spectroscopy

    DEFF Research Database (Denmark)

    Heibati, Masoumeh; Stedmon, Colin A; Stenroth, Karolina

    2017-01-01

    Treated drinking water may become contaminated while travelling in the distribution system on the way to consumers. Elevated dissolved organic matter (DOM) at the tap relative to the water leaving the treatment plant is a potential indicator of contamination, and can be measured sensitively......, relationships between DOM optical properties, microbial indicator organisms and trace elements were investigated for households connected to a biologically-stable drinking water distribution system. Across the network, humic-like fluorescence intensities showed limited variation (RSD = 3.5-4.4%), with half...

  11. Kinetics of C. elegans DcpS cap hydrolysis studied by fluorescence spectroscopy.

    Science.gov (United States)

    Wierzchowski, J; Pietrzak, M; Stepinski, J; Jemielity, J; Kalek, M; Bojarska, E; Jankowska-Anyszka, M; Davis, R E; Darzynkiewicz, E

    2007-01-01

    DcpS (scavenger decapping enzyme) from nematode C. elegans readily hydrolyzes both monomethyl- and trimethylguanosine cap analogues. The reaction was followed fluorimetrically. The marked increase of fluorescence intensity after the cleavage of pyrophosphate bond in dinucleotides was used to determine K(m) and V(max)values. Kinetic parameters were similar for both classes of substrates and only slightly dependent on pH. The hydrolysis was strongly inhibited by methylene cap analogues (m(7)Gp(CH(2))ppG and m(7)Gpp(CH(2))pG) and less potently by ARCA (m(7,3' O)GpppG).

  12. Characterising organic matter in recirculating aquaculture systems with fluorescence EEM spectroscopy

    DEFF Research Database (Denmark)

    Hambly, Adam; Arvin, Erik; Pedersen, Lars-Flemming;

    2015-01-01

    The potential of recirculating aquaculture systems (RAS) in the aquaculture industry is increasingly being acknowledged. Along with intensified application, the need to better characterise and understand the accumulated dissolved organic matter (DOM) within these systems increases. Mature RASs...... there was considerable variation between the five fluorescence components with respect to the degree of accumulation with feed loading. The five components were found to originate from three sources: the feed; the influent tap water (groundwater); and processes related to the fish and the water treatment system...

  13. Interaction between titanium dioxide nanoparticles and human serum albumin revealed by fluorescence spectroscopy in the absence of photoactivation

    Energy Technology Data Exchange (ETDEWEB)

    Sun Wen [Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009 (China); Du Yingxiang, E-mail: du_yingxiang@126.co [Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, No. 24, Tongjiaxiang, Nanjing, Jiangsu 210009 (China) and Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009 (China); Chen Jianqiu [Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009 (China); Kou Junping; Yu Boyang [Department of Complex Prescription of TCM, China Pharmaceutical University, Nanjing 210009 (China)

    2009-08-15

    Titanium dioxide (TiO{sub 2}) nanoparticles (NPs) are widely used as an important kind of biomaterials. The interaction between TiO{sub 2} (P25) at 20 nm in diameter and human serum albumin (HSA) was studied by fluorescence spectroscopy in this work. Under the simulative physiological conditions, fluorescence data revealed the presence of a single class of binding site on HSA and its binding constants (K{sub a}) were 2.18+-0.04x10{sup 4}, 0.87+-0.05x10{sup 4}, 0.68+-0.06x10{sup 4} M{sup -1} at 298, 304 and 310 K, respectively. In addition, according to the Van't Hoff equation, the thermodynamic functions standard enthalpy (DELTAH{sup 0}) and standard entropy (DELTAS{sup 0}) for the reaction were calculated to be -75.18+-0.15 kJ mol{sup -1} and -170.11+-0.38 J mol{sup -1} K{sup -1}. These results indicated that TiO{sub 2} NPs bond to HSA mainly by van der Waals force and hydrogen bonding formation in low dielectric media, and the electrostatic interactions cannot be excluded. Furthermore, the effects of common ions on the binding constant of TiO{sub 2} NPs-HSA complex were discussed.

  14. Characterization of cytoplasmic Gag-gag interactions by dual-color z-scan fluorescence fluctuation spectroscopy.

    Science.gov (United States)

    Fogarty, Keir H; Chen, Yan; Grigsby, Iwen F; Macdonald, Patrick J; Smith, Elizabeth M; Johnson, Jolene L; Rawson, Jonathan M; Mansky, Louis M; Mueller, Joachim D

    2011-03-16

    Fluorescence fluctuation spectroscopy (FFS) quantifies the interactions of fluorescently-labeled proteins inside living cells by brightness analysis. However, the study of cytoplasmic proteins that interact with the plasma membrane is challenging with FFS. If the cytoplasmic section is thinner than the axial size of the observation volume, cytoplasmic and membrane-bound proteins are coexcited, which leads to brightness artifacts. This brightness bias, if not recognized, leads to erroneous interpretation of the data. We have overcome this challenge by introducing dual-color z-scan FFS and the addition of a distinctly colored reference protein. Here, we apply this technique to study the cytoplasmic interactions of the Gag proteins from human immunodeficiency virus type 1 (HIV-1) and human T-lymphotropic virus type 1 (HTLV-1). The Gag protein plays a crucial role in the assembly of retroviruses and is found in both membrane and cytoplasm. Dual-color z-scans demonstrate that brightness artifacts are caused by a dim nonpunctate membrane-bound fraction of Gag. We perform an unbiased brightness characterization of cytoplasmic Gag by avoiding the membrane-bound fraction and reveal previously unknown differences in the behavior of the two retroviral Gag species. HIV-1 Gag exhibits concentration-dependent oligomerization in the cytoplasm, whereas HTLV-1 Gag lacks significant cytoplasmic Gag-Gag interactions. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. Research on Fluorescence Spectroscopy Characteristics of Dissolved Organic Matter of Landfill Leachate in the Rear Part of Three Gorges Reservoir

    Directory of Open Access Journals (Sweden)

    Zhigang Xie

    2015-01-01

    Full Text Available Three-dimensional fluorescence and infrared spectroscopy analysis of the leachate dissolved organic matter (DOM of the Three Gorges was reported in spring, summer, and autumn seasons, respectively. Studies show that, that organic matter of landfill leachate in Yongchuan, Dazu and Jiangjin is the class of fulvic-like acid and protein-like fluorescence. The study also found that the longer the time of the pile of garbage, the lower the content of class of protein-like concentration, and the higher the concentration of fulvic-like acid, indicating that the protein waste material in the humification process is easy degradation. However, the same source of DOM is similar in the functional group composition and molecular structure. Characteristic frequency area analysis showed that humic acids (HA, and fulvic acids (FA contain more than hydrophilic organic matter (HyI aromatic ring structure, and FA aromatic ring structure is the most. Because of Chung-amide NH deformation vibration, there are strong absorption peaks in the 1562~1572 cm−1 for various components; HyI contains many organic nitrogen compounds and fatty acids.

  16. [Effect of temperature on the aggregation behavior of collagen solution by two-dimensional synchronous fluorescence correlation spectroscopy].

    Science.gov (United States)

    Wu, Wan-ye; Wu, Kun; Li, Guo-ying

    2015-02-01

    The synchronous fluorescence spectroscopy and two dimensional correlation analysis method were applied to study the aggregation behavior of acid-soluble collagen solutions (0.2, 0.4 and 1.6 mg x mL(-1)) during the heating process of 10-70 degrees C. It was found that the fluorescence excited at 292 and 282 nm (delta lamda=9 nm) belongs to the tyrosine (Tyr) residues which participate in forming hydrogen bonds or not, respectively. The two dimensional correlation analysis with the temperature varying showed that with the temperature increased (10-30 degrees C) hydrogen bonds among collagen molecular with Tyr residues formed in the 0.2 mg x mL(-1) collagen solution, while the higher aggregations of collagen molecular and hydrophobic micro-domains appeared in the 0.4 and 1.6 mg x mL(-1) collagen solutions. With approaching the denatured temperature of collagen (36-38 degrees C), the hydrophobic micro-domain and aggregates seemed to be broken in the 0.4 and 1.6 mg x mL(-1) collagen solutions, however the hydrogen bonds in the 0.2 mg x mL(-1) were stable. Above the denaturation temperature of collagen, the triple-helix structure of collagen molecular in solution of each concentration tended to be loose. In the heating process of 45-70 degrees C, this trend was more obvious.

  17. Site-specific structural dynamics of α-Synuclein revealed by time-resolved fluorescence spectroscopy: a review

    Science.gov (United States)

    Sahay, Shruti; Krishnamoorthy, G.; Maji, Samir K.

    2016-12-01

    Aggregation of α-Synuclein (α-Syn) into amyloid fibrils is known to be associated with the pathogenesis of Parkinson’s disease (PD). Several missense mutations of the α-Syn gene have been associated with rare, early onset familial forms of PD. Despite several studies done so far, the local/residue-level structure and dynamics of α-Syn in its soluble and aggregated fibril form and how these are affected by the familial PD associated mutations are still not clearly understood. Here, we review studies performed by our group as well as other research groups, where time-resolved fluorescence spectroscopy has been used to understand the site-specific structure and dynamics of α-Syn under physiological conditions as well as under conditions that alter the aggregation properties of the protein such as low pH, high temperature, presence of membrane mimics and familial PD associated mutations. These studies have provided important insights into the critical structural properties of α-Syn that may govern its aggregation. The review also highlights time-resolved fluorescence as a promising tool to study the critical conformational transitions associated with early oligomerization of α-Syn, which are otherwise not accessible using other commonly used techniques such as thioflavin T (ThT) binding assay.

  18. A space- and time-resolved single photon counting detector for fluorescence microscopy and spectroscopy

    Science.gov (United States)

    Michalet, X.; Siegmund, O. H. W.; Vallerga, J. V.; Jelinsky, P.; Millaud, J. E.; Weiss, S.

    2006-02-01

    We have recently developed a wide-field photon-counting detector having high-temporal and high-spatial resolutions and capable of high-throughput (the H33D detector). Its design is based on a 25 mm diameter multi-alkali photocathode producing one photo electron per detected photon, which are then multiplied up to 10 7 times by a 3-microchannel plate stack. The resulting electron cloud is proximity focused on a cross delay line anode, which allows determining the incident photon position with high accuracy. The imaging and fluorescence lifetime measurement performances of the H33D detector installed on a standard epifluorescence microscope will be presented. We compare them to those of standard single-molecule detectors such as single-photon avalanche photodiode (SPAD) or electron-multiplying camera using model samples (fluorescent beads, quantum dots and live cells). Finally, we discuss the design and applications of future generation of H33D detectors for single-molecule imaging and high-throughput study of biomolecular interactions.

  19. Laser tissue welding analyzed using fluorescence, Stokes shift spectroscopy, and Huang-Rhys parameter.

    Science.gov (United States)

    Sriramoju, Vidyasagar; Alfano, Robert R

    2012-02-01

    Near infrared (NIR) continuous wave laser radiation at the 1,450 nm wavelength was used to weld porcine aorta and skin samples via the absorption of combitional vibrational modes of native water in the tissues. The fluorescence spectra were measured from the key native molecules of welded and non-welded tissues at specific excitation and emission wavelengths from collagen, elastin, and tryptophan. The changes in the fluorescence intensities and differences in Stokes shift (Δν(ss) ) of key native fluorophores were measured to differentiate the Huang-Rhys parameter values (S) of the chromophores. The strength of coupling depends on the local electron-vibration intra-tissue molecular environment and the amount of polar solvent water surrounding the net charges on collagen, elastin, and tryptophan. The S values for both non-welded and welded tissues were almost the same and less than 3, suggesting minimal changes in the local molecular environment as a result of welding. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Raman scattering or fluorescence emission? Raman spectroscopy study on lime-based building and conservation materials.

    Science.gov (United States)

    Kaszowska, Zofia; Malek, Kamilla; Staniszewska-Slezak, Emilia; Niedzielska, Karina

    2016-12-05

    This work presents an in-depth study on Raman spectra excited with 1064 and 532nm lasers of lime binders employed in the past as building materials and revealed today as valuable conservation materials. We focus our interest on the bands of strong intensity, which are present in the spectra of all binders acquired with laser excitation at 1064nm, but absent in the corresponding spectra acquired with laser excitation at 532nm. We suggest, that the first group of spectra represents fluorescence phenomena of unknown origin and the second true Raman scattering. In our studies, we also include two other phases of lime cycle, i.e. calcium carbonate (a few samples of calcite of various origins) and calcium oxide (quicklime) to assess how structural and chemical transformations of lime phases affect the NIR-Raman spectral profile. Furthermore, we analyse a set of carbonated limewashes and lime binders derived from old plasters to give an insight into their spectral characteristics after excitation with the 1064nm laser line. NIR-Raman micro-mapping results are also presented to reveal the spatial distribution of building materials and fluorescent species in the cross-section of plaster samples taken from a 15th century chapel. Our study shows that the Raman analysis can help identify lime-based building and conservation materials, however, a caution is advised in the interpretation of the spectra acquired using 1064nm excitation.

  1. Study of interaction between human serum albumin and three phenanthridine derivatives: Fluorescence spectroscopy and computational approach

    Science.gov (United States)

    Liu, Jianming; Yue, Yuanyuan; Wang, Jing; Yan, Xuyang; Liu, Ren; Sun, Yangyang; Li, Xiaoge

    2015-06-01

    Over the past decades, phenanthridine derivatives have captured the imagination of many chemists due to their wide applications. In the present work, the interaction between phenanthridine derivatives benzo [4,5]imidazo[1,2-a]thieno[2,3-c]quinoline (BTQ), benzo[4,5]imidazo[1,2-a]furo[2,3-c]quinoline (BFQ), 5,6-dimethylbenzo[4,5]imidazo[1,2-a]furo[2,3-c]quinoline (DFQ) and human serum albumin (HSA) were investigated by molecular modeling techniques and spectroscopic methods. The results of molecular modeling simulations revealed that the phenanthridine derivatives could bind on both site I in HSA. Fluorescence data revealed that the fluorescence quenching of HSA by phenanthridine derivatives were the result of the formation of phenanthridine derivatives-HSA complex, and the binding intensity between three phenanthridine derivatives and HSA was BTQ > BFQ > DFQ. Thermodynamics confirmed that the interaction were entropy driven with predominantly hydrophobic forces. The effects of some biological metal ions and toxic ions on the binding affinity between phenanthridine derivatives and HSA were further examined.

  2. Correlating cell morphology and stochastic gene expression using fluorescence spectroscopy and GPU-enabled image analysis

    Science.gov (United States)

    Shepherd, Douglas; Shapiro, Evan; Perillo, Evan; Werner, James

    2014-03-01

    Biological processes at the microscopic level appear stochastic, requiring precise measurement and analytical techniques to determine the nature of the underlying regulatory networks. Single-molecule, single-cell studies of gene expression have provided insights into how cells respond to external stimuli. Recent work has suggested that macroscopic cell properties, such as cell morphology, are correlated with gene expression. Here we present single-cell studies of a signal-activated gene network: Interleukin 4 (IL4) RNA production in rat basophil leukemia (RBL) cells during the allergic response. We fluorescently label individual IL4 RNA transcripts in populations of RBL cells, subject to varying external stimuli. A custom super-resolution microscope is used to measure the number of fluorescent labeled IL4 transcripts in populations of RBL cells on a cell-by-cell basis. To test the hypothesis that cell morphology is connected genotype, we analyze white light images of RBL cells and cross-reference cell morphology with IL4 RNA levels. We find that the activation of RBL cells, determined by white-light imaging, is well correlated with IL4 mRNA expression.

  3. Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal

    1968-01-01

    This booklet discusses spectroscopy, the study of absorption of radiation by matter, including X-ray, gamma-ray, microwave, mass spectroscopy, as well as others. Spectroscopy has produced more fundamental information to the study of the detailed structure of matter than any other tools.

  4. A comparative study of gallstones from children and adults using FTIR spectroscopy and fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Marks Robert S

    2002-02-01

    Full Text Available Abstract Background Cholelithiasis is the gallstone disease (GSD where stones are formed in the gallbladder. The main function of the gallbladder is to concentrate bile by the absorption of water and sodium. GSD has high prevalence among elderly adults. There are three major types of gallstones found in patients, White, Black and Brown. The major chemical component of white stones is cholesterol. Black and brown stones contain different proportions of cholesterol and bilirubin. The pathogenesis of gallstones is not clearly understood. Analysis of the chemical composition of gallstones using various spectroscopic techniques offers clues to the pathogenesis of gallstones. Recent years has seen an increasing trend in the number of cases involving children. The focus of this study is on the analysis of the chemical composition of gallstones from child and adult patients using spectroscopic methods. Methods In this report, we present FTIR spectroscopic studies and fluorescence microscopic analysis of gallstones obtained from 67 adult and 21 child patients. The gallstones were removed during surgical operations at Soroka University Medical Center. Results Our results show that black stones from adults and children are rich in bilirubin. Brown stones are composed of varying amounts of bilirubin and cholesterol. Green stones removed from an adult, which is rare, was found to be composed mainly of cholesterol. Our results also indicated that cholesterol and bilirubin could be the risk factors for gallstone formation in adults and children respectively. Fluorescence micrographs showed that the Ca-bilirubinate was present in all stones in different quantities and however, Cu-bilirubinate was present only in the mixed and black stones. Conclusions Analysis based on FTIR suggest that the composition of black and brown stones from both children and adults are similar. Various layers of the brown stone from adults differ by having varying quantities of

  5. Comparison of field portable measurements of ultrafine TiO2: X-ray fluorescence, laser-induced breakdown spectroscopy, and Fourier-transform infrared spectroscopy.

    Science.gov (United States)

    LeBouf, Ryan F; Miller, Arthur L; Stipe, Christopher; Brown, Jonathan; Murphy, Nate; Stefaniak, Aleksandr B

    2013-06-01

    Laboratory measurements of ultrafine titanium dioxide (TiO2) particulate matter loaded on filters were made using three field portable methods (X-ray fluorescence (XRF), laser-induced breakdown spectroscopy (LIBS), and Fourier-transform infrared (FTIR) spectroscopy) to assess their potential for determining end-of-shift exposure. Ultrafine TiO2 particles were aerosolized and collected onto 37 mm polycarbonate track-etched (PCTE) filters in the range of 3 to 578 μg titanium (Ti). Limit of detection (LOD), limit of quantification (LOQ), and calibration fit were determined for each measurement method. The LOD's were 11.8, 0.032, and 108 μg Ti per filter, for XRF, LIBS, and FTIR, respectively and the LOQ's were 39.2, 0.11, and 361 μg Ti per filter, respectively. The XRF calibration curve was linear over the widest dynamic range, up to the maximum loading tested (578 μg Ti per filter). LIBS was more sensitive but, due to the sample preparation method, the highest loaded filter measurable was 252 μg Ti per filter. XRF and LIBS had good predictability measured by regressing the predicted mass to the gravimetric mass on the filter. XRF and LIBS produced overestimations of 4% and 2%, respectively, with coefficients of determination (R(2)) of 0.995 and 0.998. FTIR measurements were less dependable due to interference from the PCTE filter media and overestimated mass by 2% with an R(2) of 0.831.

  6. Fluorescence Spectroscopy of tRNA[superscript Phe] Y Base in the Presence of Mg[superscript 2+] and Small Molecule Ligands

    Science.gov (United States)

    Kirk, Sarah R.; Silverstein, Todd P.; McFarlane Holman, Karen L.

    2008-01-01

    This laboratory project is one component of a semester-long advanced biochemistry laboratory course that uses several complementary techniques to study tRNA[superscript Phe] conformational changes induced by ligand binding. In this article we describe a set of experiments in which students use fluorescence spectroscopy to study tRNA[superscript…

  7. Ultrafast fluorescence relaxation spectroscopy of 6,7-dimethyl-(8-ribityl)-lumazine and riboflavin, free and bound to antenna proteins from bioluminescent bacteria

    NARCIS (Netherlands)

    Petushkov, V.N.; Stokkum, van I.H.M.; Gobets, B.; Mourik, van F.; Lee, J.; Grondelle, van R.; Visser, A.J.W.G.

    2003-01-01

    The solvation dynamics of interesting bioluminescent chromophores have been determined, using subpicosecond and wavelength-resolved fluorescence spectroscopy, in combination with global analysis of the multidimensional data sets. The systems investigated comprise the free ligands 6,7-dimethyl-(8-rib

  8. A reassessment of the association between azulene and [60]fullerene. Possible pitfalls in the determination of binding constants through fluorescence spectroscopy.

    Science.gov (United States)

    Stella, Lorenzo; Capodilupo, Agostina L; Bietti, Massimo

    2008-10-21

    We show here that the recently reported surprisingly large association constant (K = 7.6 x 10(4) M(-1)) between azulene and [60]fullerene is due to experimental artifacts, pointing out potential errors in the characterization of association equilibria by fluorescence spectroscopy, and suggesting the best experimental practices.

  9. Applicability of X-ray fluorescence spectroscopy as method to determine thickness and composition of stacks of metal thin films: A comparison with imaging and profilometry

    NARCIS (Netherlands)

    Vrielink, J.A.M.; Tiggelaar, R.M.; Gardeniers, J.G.E.; Lefferts, L.

    2012-01-01

    In this work the applicability of X-ray fluorescence spectroscopy (XRF) for fast, accurate and non-destructive determination of the thickness of a variety of single-layer and multi-layer metal thin films deposited on glass and silicon is investigated. Data obtained with XRF is compared with informat

  10. [Progress in application of microbeam X-ray fluorescence spectroscopy in forensic science].

    Science.gov (United States)

    Su, Hui-Fang; Liu, Chao; Hu, Sun-Lin; Wang, Song-Cai; Sun, Li-Min; Huang, Wei; Zhang, Xiao-Ting; Li, Shuang-Lin

    2013-02-01

    Microbeam X-ray fluorescence (micro-XRF) spectrometry has been raised as an analytical technique of microbeam during the recent years. With its advantages of high sensitivity, small sample requirement, high testing accuracy and non-destruction, the technique is widely utilized in forensic science. This review bases on recent researches at home and abroad, describes its applications including identification of gunshot residue, visualization of fingerprints, discrimination of drug source, production process, and other material evidences of analysis in crime scene. Thanks to the advances in technology, intelligent and portable micro-XRF equipment has appeared to be applied. It is believed that it may be more popular and frequent in administration of forensic science in the near future.

  11. Indirect determination of the electric field in plasma discharges using laser-induced fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Vaudolon, J., E-mail: julien.vaudolon@cnrs-orleans.fr; Mazouffre, S., E-mail: stephane.mazouffre@cnrs-orleans.fr [CNRS - ICARE (Institut de Combustion Aérothermique Réactivité et Environnement), 1 C Av. de la Recherche Scientifique, 45071 Orléans Cedex 2 (France)

    2014-09-15

    The evaluation of electric fields is of prime interest for the description of plasma characteristics. In this work, different methods for determining the electric field profile in low-pressure discharges using one- and two-dimensional Laser-Induced Fluorescence (LIF) measurements are presented and discussed. The energy conservation, fluid, and kinetic approaches appear to be well-suited for the electric field evaluation in this region of the plasma flow. However, the numerical complexity of a two-dimensional kinetic model is penalizing due to the limited signal-to-noise ratio that can be achieved, making the computation of the electric field subject to large error bars. The ionization contribution which appears in the fluid model makes it unattractive on an experimental viewpoint. The energy conservation and 1D1V kinetic approaches should therefore be preferred for the determination of the electric field when LIF data are used.

  12. Effect of regolith on planetary X-ray fluorescence spectroscopy: laboratory and numerical studies

    Science.gov (United States)

    Naranen, Jyri; Carpenter, James; Parviainen, Hannu; Muinonen, Karri

    Fluorescent X-rays from the surfaces of airless planetary bodies in the inner solar system have been measured by instruments on several spacecraft. X-ray emission follows photoionisation by incident solar X-rays and charged particles and reveals the elemental composition of the surface. Analyses of X-ray spectra obtained by orbiting spacecraft, use the relative intensities of elemental emission lines (e.g., Ca/Si, Fe/Si) to determine the geochemistry of the target body. Historically, the analysis of X-ray spectra has assumed that surfaces can be considered as homogeneous plane-parallel media. It has been shown, however, that relative line intensities are affected by the physical properties of the target surface (e.g. particle size distribution and packing density of the regolith) and the viewing and illumination geometry of observations. We describe experimental investigations into the effects of regolith properties on the line ratios measured by a nadir pointing (emergence angle 0° ) orbiting instrument, with with solar illumination angles in the range 25-75° from zenith. The planetary regolith analogue used in these experiments was a terrestrial, olivine rich basalt, which has been used by previous authors as an analogue to the lunar maria. The basalt samples were ground to powder and sieved to discriminate particles in the ranges, pellets. The separation of particles with different sizes allows some determination of the effects due to changes in particle size. All measurements were made at pressures of less than 0.5 mbar to prevent absorption of fluorescent X-rays in air. The relative fluorescent line ratios of several major rock forming elements (K, Ca, Ti, Si) were measured. We find that for measurements made in a "nadir" pointing geometry, the measured spectrum becomes increasingly hard as illumination angle increases (i.e. X-ray lines at higher energies are enhanced relative to those at lower energies). Some hardening of spectra is predicted by the

  13. Single-molecule fluorescence spectroscopy maps the folding landscape of a large protein.

    Science.gov (United States)

    Pirchi, Menahem; Ziv, Guy; Riven, Inbal; Cohen, Sharona Sedghani; Zohar, Nir; Barak, Yoav; Haran, Gilad

    2011-10-11

    Proteins attain their function only after folding into a highly organized three-dimensional structure. Much remains to be learned about the mechanisms of folding of large multidomain proteins, which may populate metastable intermediate states on their energy landscapes. Here we introduce a novel method, based on high-throughput single-molecule fluorescence experiments, which is specifically geared towards tracing the dynamics of folding in the presence of a plethora of intermediates. We employ this method to characterize the folding reaction of a three-domain protein, adenylate kinase. Using thousands of single-molecule trajectories and hidden Markov modelling, we identify six metastable states on adenylate kinase's folding landscape. Remarkably, the connectivity of the intermediates depends on denaturant concentration; at low concentration, multiple intersecting folding pathways co-exist. We anticipate that the methodology introduced here will find broad applicability in the study of folding of large proteins, and will provide a more realistic scenario of their conformational dynamics.

  14. Two-photon excited fluorescence spectroscopy and imaging of melanin in vitro and in vivo

    Science.gov (United States)

    Krasieva, Tatiana B.; Liu, Feng; Sun, Chung-Ho; Kong, Yu; Balu, Mihaela; Meyskens, Frank L.; Tromberg, Bruce J.

    2012-03-01

    The ability to detect early melanoma non-invasively would improve clinical outcome and reduce mortality. Recent advances in two-photon excited fluorescence (TPEF) in vivo microscopy offer a powerful tool in early malignant melanoma diagnostics. The goal of this work was to develop a TPEF optical index for measuring relative concentrations of eumelanin and pheomelanin since ex vivo studies show that changes in this ratio have been associated with malignant transformation. We acquired TPEF emission spectra (λex=1000 nm) of melanin from several specimens, including human hair, malignant melanoma cell lines, and normal melanocytes and keratinocytes in different skin layers (epidermis, papillary dermis) in five healthy volunteers in vivo. We found that the pheomelanin emission peaks at around 620 nm and is blue-shifted from the eumelanin with broad maximum at 640-680nm. We defined "optical melanin index" (OMI) as a ratio of fluorescence signal intensities measured at 645 nm and 615nm. The measured OMI for a melanoma cell line MNT-1 was 1.6+/-0.2. The MNT-46 and MNT-62 lines (Mc1R gene knockdown) showed an anticipated change in melanins production ratio and had OMI of 0.55+/-0.05 and 0.17+/-0.02, respectively, which strongly correlated with HPLC data obtained for these lines. Average OMI measured for basal cells layers (melanocytes and keratinocytes) in normal human skin type I, II-III (not tanned and tanned) in vivo was 0.5, 1.05 and 1.16 respectively. We could not dependably detect the presence of pheomelanin in highly pigmented skin type V-VI. These data suggest that a non-invasive TPEF index could potentially be used for rapid melanin ratio characterization both in vitro and in vivo, including pigmented lesions.

  15. Dynamics of hybrid amoeba proteus containing zoochlorellae studied using fluorescence spectroscopy

    Science.gov (United States)

    Liu, C.-H.; Fong, B. A.; Alfano, S. A., Jr.; Rakhlin, I.; Wang, W. B.; Ni, X. H.; Yang, Y. L.; Zhou, F.; Zuzolo, R. C.; Alfano, R. R.

    2011-03-01

    The microinjection of organelles, plants, particles or chemical solutions into Amoeba proteus coupled with spectroscopic analysis and observed for a period of time provides a unique new model for cancer treatment and studies. The amoeba is a eukaryote having many similar features of mammalian cells. The amoeba biochemical functions monitored spectroscopically can provide time sequence in vivo information about many metabolic transitions and metabolic exchanges between cellar organelles and substances microinjected into the amoeba. It is possible to microinject algae, plant mitochondria, drugs or carcinogenic solutions followed by recording the native fluorescence spectra of these composites. This model can be used to spectroscopically monitor the pre-metabolic transitions in developing diseased cells such as a cancer. Knowing specific metabolic transitions could offer solutions to inhibit cancer or reverse it as well as many other diseases. In the present study a simple experiment was designed to test the feasibility of this unique new model by injecting algae and chloroplasts into amoeba. The nonradiative dynamics found from these composites are evidence in terms of the emission ratios between the intensities at 337nm and 419nm; and 684nm bands. There were reductions in the metabolic and photosynthetic processes in amoebae that were microinjected with chloroplasts and zoochlorellae as well of those amoebae that ingested the algae and chloroplasts. The changes in the intensity of the emissions of the peaks indicate that the zoochlorellae lived in the amoebae for ten days. Spectral changes in intensity under the UV and 633nm wavelength excitation are from the energy transfer of DNA and RNA, protein-bound chromophores and chlorophylls present in zoochlorellae undergoing photosynthesis. The fluorescence spectroscopic probes established the biochemical interplay between the cell organelles and the algae present in the cell cytoplasm. This hybrid state is indicative

  16. Use of a Superconducting Tunnel Junction for X-Ray Fluorescence Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hiller, L

    2001-03-06

    A superconducting tunnel junction (STJ) in combination with a superconducting absorber of radiation may function as a highly resolving x-ray spectrometer. Electronic excitations, or quasiparticles, are created when a superconductor absorbs an x ray and are detected as an excess tunnel current through the junction. The number of quasiparticles created and the magnitude of the excess current is proportional to the energy of the absorbed x ray. This is similar to existing semiconductor-based spectrometers that measure electron-hole pairs, but with 1000 times more excitations. The energy measurement therefore can be up to 30 times more precise with a superconducting detector than with a semiconductor detector. This work describes the development and testing of an STJ spectrometer design for x-ray fluorescence applications. First, the basic principles of the STJ spectrometer are explained. This is followed by detailed simulations of the variance in the number of quasiparticles produced by absorption of an x ray. This variance is inherent in the detector and establishes an upper limit on the resolving power of the spectrometer. These simulations include effects due to the materials used in the spectrometer and to the multilayer structure of the device. Next, the spectrometer is characterized as functions of operating temperature, incident x-ray energy, and count rate. Many of these tests were performed with the spectrometer attached to a synchrotron radiation port. Finally, example x-ray fluorescence spectra of materials exposed to synchrotron radiation are presented. These materials are of interest to semiconductor processing and structural biology, two fields that will benefit immediately from the improved resolving power of the STJ spectrometer.

  17. Serpin alpha 1proteinase inhibitor probed by intrinsic tryptophan fluorescence spectroscopy.

    Science.gov (United States)

    Koloczek, H.; Banbula, A.; Salvesen, G. S.; Potempa, J.

    1996-01-01

    Various conformational forms of the archetypal serpin human alpha 1proteinase inhibitor (alpha 1PI), including ordered polymers, active and inactive monomers, and heterogeneous aggregates, have been produced by refolding from mild denaturing conditions. These forms presumably originate by different folding pathways during renaturation, under the influence of the A and C sheets of the molecule. Because alpha 1PI contains only two Trp residues, at positions 194 and 238, it is amenable to fluorescence quenching resolved spectra and red-edge excitation measurements of the Trp environment. Thus, it is possible to define the conformation of the various forms based on the observed fluorescent properties of each of the Trp residues measured under a range of conditions. We show that denaturation in GuHCl, or thermal denaturation in Tris, followed by renaturation, leads to the formation of polymers that contain solvent-exposed Trp 238, which we interpret as ordered head-to-tail polymers (A-sheet polymers). However, thermal denaturation in citrate leads to shorter polymers where some of the Trp 238 residues are not solvent accessible, which we interpret as polymers capped by head-to-head interactions via the C sheet. The latter treatment also generates monomers thought to represent a latent form, but in which the environment of Trp 238 is occluded by ionized groups. These data indicate that the folding pathway of alpha 1PI, and presumably other serpins, is sensitive to solvent composition that affects the affinity of the reactive site loop for the A sheet or the C sheet. PMID:8931141

  18. Spectroscopy

    CERN Document Server

    Walker, S

    1976-01-01

    The three volumes of Spectroscopy constitute the one comprehensive text available on the principles, practice and applications of spectroscopy. By giving full accounts of those spectroscopic techniques only recently introduced into student courses - such as Mössbauer spectroscopy and photoelectron spectroscopy - in addition to those techniques long recognised as being essential in chemistry teaching - sucha as e.s.r. and infrared spectroscopy - the book caters for the complete requirements of undergraduate students and at the same time provides a sound introduction to special topics for graduate students.

  19. Europium Uptake and Partitioning in Oat (Avena sativa) Roots as studied By Laser-Induced Fluorescence Spectroscopy and Confocal Microscopy Profiling Technique

    Energy Technology Data Exchange (ETDEWEB)

    Fellows, Robert J.; Wang, Zheming; Ainsworth, Calvin C.

    2003-11-15

    The uptake of Eu3+ by elongating oat plant roots was studied by fluorescence spectroscopy, fluorescence lifetime measurement, as well as laser excitation time-resolved confocal fluorescence profiling technique. The results of this work indicated that the initial uptake of Eu(III) by oat root was most evident within the apical meristem of the root just proximal to the root cap. Distribution of assimilated Eu(III) within the roots differentiation and elongation zone was non-uniform. Higher concentrations were observed within the vascular cylinder, specifically in the phloem and developing xylem parenchyma. Elevated levels of the metal were also observed in the root hairs of the mature root. The concentration of assimilated Eu3+ dropped sharply from the apical meristem to the differentiation and elongation zone and then gradually decreased as the distance from the root cap increased. Fluorescence spectroscopic characteristics of the assimilated Eu3+ suggested that the Eu3+ exists a s inner-sphere mononuclear complexes inside the root. This work has also demonstrated the effectiveness of a time-resolved Eu3+ fluorescence spectroscopy and confocal fluorescence profiling techniques for the in vivo, real-time study of metal[Eu3+] accumulation by a functioning intact plant root. This approach can prove valuable for basic and applied studies in plant nutrition and environmental uptake of actinide radionuclides.

  20. Ultraviolet-Visible and Fluorescence Spectroscopy Techniques Are Important Diagnostic Tools during the Progression of Atherosclerosis: Diet Zinc Supplementation Retarded or Delayed Atherosclerosis

    Science.gov (United States)

    Abdelhalim, Mohamed Anwar K.; Moussa, Sherif A. Abdelmottaleb; AL-Mohy, Yanallah Hussain

    2013-01-01

    Background. In this study, we examined whether UV-visible and fluorescence spectroscopy techniques detect the progression of atherosclerosis in serum of rabbits fed on high-cholesterol diet (HCD) and HCD supplemented with zinc (HCD + Zn) compared with the control. Methods. The control rabbits group was fed on 100 g/day of normal diet. The HCD group was fed on Purina Certified Rabbit Chow supplemented with 1.0% cholesterol plus 1.0% olive oil (100 g/day) for the same period. The HCD + Zn group was fed on normal Purina Certified Rabbit Chow plus 1.0% cholesterol and 1.0% olive oil supplemented with 470 ppm Zn for the same feeding period. UV-visible and fluorescence spectroscopy and biochemistry in Rabbit's blood serum and blood hematology were measured in Rabbit's blood. Results. We found that the fluorescent peak of HCD shifted toward UV-visible wavelength compared with the control using fluorescent excitation of serum at 192 nm. In addition, they showed that supplementation of zinc (350 ppm) restored the fluorescent peak closely to the control. By using UV-visible spectroscopy approach, we found that the peak absorbance of HCD (about 280 nm) was higher than that of control and that zinc supplementation seemed to decrease the absorbance. Conclusions. This study demonstrates that ultraviolet-visible and fluorescence spectroscopy techniques can be applied as noninvasive techniques on a sample blood serum for diagnosing or detecting the progression of atherosclerosis. The Zn supplementation to rabbits fed on HCD delays or retards the progression of atherosclerosis. Inducing anemia in rabbits fed on HCD delays the progression of atherosclerosis. PMID:24350281

  1. Ultraviolet-visible and fluorescence spectroscopy techniques are important diagnostic tools during the progression of atherosclerosis: diet zinc supplementation retarded or delayed atherosclerosis.

    Science.gov (United States)

    Abdelhalim, Mohamed Anwar K; Moussa, Sherif A Abdelmottaleb; Al-Mohy, Yanallah Hussain

    2013-01-01

    In this study, we examined whether UV-visible and fluorescence spectroscopy techniques detect the progression of atherosclerosis in serum of rabbits fed on high-cholesterol diet (HCD) and HCD supplemented with zinc (HCD + Zn) compared with the control. The control rabbits group was fed on 100 g/day of normal diet. The HCD group was fed on Purina Certified Rabbit Chow supplemented with 1.0% cholesterol plus 1.0% olive oil (100 g/day) for the same period. The HCD + Zn group was fed on normal Purina Certified Rabbit Chow plus 1.0% cholesterol and 1.0% olive oil supplemented with 470 ppm Zn for the same feeding period. UV-visible and fluorescence spectroscopy and biochemistry in Rabbit's blood serum and blood hematology were measured in Rabbit's blood. We found that the fluorescent peak of HCD shifted toward UV-visible wavelength compared with the control using fluorescent excitation of serum at 192 nm. In addition, they showed that supplementation of zinc (350 ppm) restored the fluorescent peak closely to the control. By using UV-visible spectroscopy approach, we found that the peak absorbance of HCD (about 280 nm) was higher than that of control and that zinc supplementation seemed to decrease the absorbance. This study demonstrates that ultraviolet-visible and fluorescence spectroscopy techniques can be applied as noninvasive techniques on a sample blood serum for diagnosing or detecting the progression of atherosclerosis. The Zn supplementation to rabbits fed on HCD delays or retards the progression of atherosclerosis. Inducing anemia in rabbits fed on HCD delays the progression of atherosclerosis.

  2. In vitro binding kinetics of DNA double strand break repair proteins Ku70/80 and DNA-PKcs quantified by fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy

    Science.gov (United States)

    Abdisalaam, Salim; Chen, David J.; Alexandrakis, George

    2012-02-01

    DNA double-strand breaks (DSBs) are one of the most lethal types of DNA damage that occurs in eukaryotic cells. There are two distinct pathways of repairing DSBs, homologous recombination (HR) and non-homologous end joining (NHEJ). In the NHEJ repairing pathway, DSB recognition and repair initiation is directed by the interaction of DNAbinding subunit Ku70/80 heterodimer with the DNA-PK protein catalytic subunit (DNA-PKcs). Mutations in these proteins result in repair stalling and eventual DNA misrepair that may lead to genomic instability. Studying the binding kinetics of these repair proteins is therefore important for understanding the conditions under which DSB repair stalls. Currently open questions are, what is the minimum DNA length that this complex needs to get a foothold onto a DSB and how tightly does DNA-PKcs bind onto the DNA-Ku70/80 complex. Fluorescence Correlation Spectroscopy (FCS) and Fluorescence Cross-Correlation Spectroscopy (FCCS) techniques have the potential to give information about the binding kinetics of DNA-protein and protein-protein interactions at the single-molecule level. In this work, FCS/FCCS measurements were performed to explore the minimum DNA base-pair (bp) length that Ku70/80 needed as a foothold to bind effectively onto the tips of different lengths of double-stranded DNA (dsDNA) fragments that mimic DSBs. 25 bp, 33 bp and 50 bp of dsDNA were used for these experiments and binding was studied as a function of salt concentration in solution. It was found that the 25 bp binding was weak even at physiological salt concentrations while the dissociation constant (Kd) remained constant for 33 and 50 bp dsDNA strand lengths. These studies indicated that the minimum binding length for the Ku70/8 is in the vicinity of 25 bp. The specificity of binding of Ku70/80 was proven by competitive binding FCCS experiments between Cy5-labeled DNA, GFP-Ku70/80 and titrations of unlabeled Ku70/80. Finally, using FCCS it was possible to estimate

  3. Photo-initiated dynamics and spectroscopy of the deprotonated Green Fluorescent Protein chromophore

    DEFF Research Database (Denmark)

    Bochenkova, Anastasia; Andersen, Lars Henrik

    2013-01-01

    . Knowledge of intrinsic properties of the GFP photoabsorbing molecular unit is a prerequisite in understanding the atomic-scale interactions that play a key role for the diverse functioning of these proteins. Here, we show how recent developments in action and photoelectron spectroscopy combined with state......-of-the-art electronic structure theory provide valuable insights into photo-initiated quantum dynamics and enable to disclose mechanisms of multiple intrinsic excited-state decay channels in the bare GFP chromophore anion. When taken out of the protein, the deprotonated chromophore exhibits the ultrafast excited state...... efficiently compete with each other in spite of their inherently different intrinsic timescales. The reason behind this is an efficient coupling between the nuclear and electronic motion in the photo-initiated dynamics, where the energy may be transferred from nuclei to electrons and from electrons to nuclei...

  4. Real-time detection of dental calculus by blue-LED-induced fluorescence spectroscopy.

    Science.gov (United States)

    Qin, Y L; Luan, X L; Bi, L J; Lü, Z; Sheng, Y Q; Somesfalean, G; Zhou, C N; Zhang, Z G

    2007-05-25

    Successful periodontal therapy requires sensitive techniques to discriminate dental calculus from healthy teeth. The aim of the present study was to develop a fluorescence-based procedure to enable real-time detection and quantification of dental calculus. Thirty human teeth--15 teeth with sub- and supragingival calculus and 15 healthy teeth--covered with a layer of physiological saline solution or blood were illuminated by a focused blue LED light source of 405 nm. Autofluorescence spectra recorded along a randomly selected line stretching over the crown-neck-root area of each tooth were utilized to evaluate a so called calculus parameter R, which was selected to define a relationship between the integrated intensities specific for healthy teeth and for calculus in the 477-497 nm (S(A)) and 628-685 nm (S(B)) wavelength regions, respectively. Statistical analysis was performed and a cut-off threshold of R=0.2 was found to distinguish dental calculus from healthy teeth with 100% sensitivity and specificity under various experimental conditions. The results of the spectral evaluation were confirmed by clinical and histological findings. Automated real-time detection and diagnostics for clinical use were implemented by a corresponding software program written in Visual Basic language. The method enables cost-effective and reliable calculus detection, and can be further developed for imaging applications.

  5. Dynamics of the L-fucose/H+ symporter revealed by fluorescence spectroscopy.

    Science.gov (United States)

    Sugihara, Junichi; Sun, Linfeng; Yan, Nieng; Kaback, H Ronald

    2012-09-11

    FucP of Escherichia coli catalyzes L-fucose/H(+) symport, and a crystal structure in an outward-facing conformation has been reported. However, nothing is known about FucP conformational dynamics. Here, we show that addition of L-fucose to purified FucP in detergent induces ∼20% quenching of Trp fluorescence in a concentration-dependent manner without a shift in λ(max). Quenching is essentially abolished when both Trp38 and Trp278, which are positioned on opposing faces of the outward-facing cavity walls, are replaced with Tyr or Phe, and reduced quenching is observed when either Trp is mutated. Therefore, both Trp residues are involved in the phenomenon. Furthermore, replacement of either Trp38 or Trp278, predominantly Trp38, causes decreased quenching, decreased apparent affinity for L-fucose, and significant inhibition of active L-fucose transport, indicating that the two residues are likely involved directly in sugar binding. It is proposed that sugar binding induces a conformational change in which the outward-facing cavity in FucP closes, thereby bringing Trp38 and Trp278 into close proximity around the bound sugar to form an "occluded" intermediate. The location of these two Trp residues provides a unique method for analyzing structural dynamics in FucP.

  6. Hydrazone based luminescent receptors for fluorescent sensing of Cu{sup 2+}: Structure and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Soma, E-mail: sommukh445@yahoo.co.in [Department of Environmental Science, University of Kalyani, Kalyani, Nadia, 741235 West Bengal (India); Mal, Palash [Department of Environmental Science, University of Kalyani, Kalyani, Nadia, 741235 West Bengal (India); Stoeckli-Evans, Helen [Institute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel (Switzerland)

    2014-11-15

    Two new luminescent hydrazones, HL1 and HL2 were investigated for selective and sensitive fluorescent recognition of Cu{sup 2+} in aqueous medium (CH{sub 3}CN/H{sub 2}O (1:4, v/v) solvent system) with a 1:1 binding stoichiometry. The emission peak of HL (λ{sub em}=405 nm), undergoes significant quenching upon complexation with Cu{sup 2+}. The quantum yields for the receptors and in situ formed Cu{sup 2+} complexes were determined. The absorption ratiometric analysis was carried out in presence of various metal ions to confirm the selectivity of the receptors towards Cu{sup 2+}. They were able to detect Cu{sup 2+} with a ∼0.9 µM detection limit as indicated by fluorimetric measurements. The molecular structures of the receptors were determined by single crystal X-ray diffraction analysis. - Highlights: • Small molecule luminescent hydrazones were developed for recognition of Cu{sup 2+}. • Selectivity and sensitivity were studied spectroscopically in aqueous medium. • Binding stoichiometry, association constant, and quantum yields were calculated. • Receptors have low detection limit for Cu{sup 2+}. • Crystal structures of the receptors were solved by X-ray diffractometry.

  7. Assessment of ternary iron-cyclodextrin-2-naphthol complexes using NMR and fluorescence spectroscopies

    Science.gov (United States)

    Zheng, Weixi; Tarr, Matthew A.

    2006-12-01

    Recent research has indicated that ternary complexes can be formed among carboxymethyl-β-cyclodextrin, certain polycyclic aromatic hydrocarbons (PAHs) (e.g. anthracene and 2-naphthol), and Fe 2+ in aqueous solution. The formation of these ternary complexes has been suggested as the reason for improved reaction efficiency in iron catalyzed Fenton degradation (H 2O 2 + Fe 2+ → rad OH + OH - + Fe 3+) of PAHs and other pollutants. In the present work, several other cyclodextrins were examined to determine their ability to form similar ternary complexes with 2-naphthol and Fe 2+. Fluorescence and NMR techniques were employed in this study. Results showed that hydroxypropyl-β-cyclodextrin, β-cyclodextrin, and α-cyclodextrin were able to encapsulate 2-naphthol molecules, but their binding with Fe 2+ was weak. On the contrary, sulfated-β-cyclodextrin has significant binding with Fe 2+, but it showed little inclusion of 2-naphthol molecules. Consequently, none of these four cyclodextrins formed significant amounts of ternary complexes in aqueous solution. The techniques used in this study provide useful methods for assessing the ability of cyclodextrins to form ternary complexes with guest compounds and metal ions.

  8. Economical and Efficient Detector for Fluorescent X-Ray Absorption Spectroscopy

    Science.gov (United States)

    Khalid, S. M.; Rosenbaum, G.; Chance, B.

    1986-08-01

    The available synchrotron radiation sources and those proposed for construction in the near future in the US and abroad can produce fluxes of x-radiation high enough that the fluorescent and scattered flux even from biological samples approach and will exceed acceptable levels of counting losses even in fast photon counting detector system. Ionization chambers in current integration mode can afford very high flux and large apertures. But they suffer time limitations in the fraction of the millisecond region, microphonics, and the necessity of a gas supply of very constant pressure. We have developed an alternative detector system consisting of a photomultiplier tube equipped with a highly efficient ZnS (Ag) scintillator in current integration mode. It can have apertures up to 5 inches in diameter and a time resolution adequate for rapid reaction studies using synchrontron radiation (70 ns decay time to 10%). In initial tests, we did not detect any saturation effects with the fluxes available. The advantages of these detectors seem to be simplicity and reliability in addition to freedom from environmental effects and the relatively low cost compared to other devices. These detectors have been used successfully at the Photon Factory, Japan and at CHESS.

  9. Quantifying and characterizing boreal headwater NOM using hydrological understanding, absorbance spectroscopy, and fluorescence techniques

    Science.gov (United States)

    Ledesma, José; Köhler, Stephan; Grabs, Thomas; Bishop, Kevin; Kothawala, Dolly; Schiff, Sherry; Futter, Martyn

    2017-04-01

    Boreal forests store large amounts of carbon, especially in headwater terrestrial-aquatic interfaces dominated by OM-rich riparian zones (RZs). Thus, RZs are the main source of natural organic matter (NOM) in boreal surface waters. We hydrologically illustrated that the transfer of substances, including NOM, from RZs to streams is dominated by a narrow depth range with the highest contribution to solute and water fluxes, the so-called dominant source layer (DSL). By comparing the size of potential sources in relation to lateral fluxes in the DSL in several RZs within a Swedish boreal catchment, we demonstrated that there is a potential long-lasting supply of NOM from these RZ into the stream. This was supported by rough estimates of primary production and 14C measurements, which indicated that modern carbon is the predominant fraction exported. Despite the overwhelming quantitative evidence that RZs are the source of NOM to boreal streams, few studies have compared NOM quality in streams, RZs, and upslope areas. Using absorbance indicators and fluorescence techniques we showed that the NOM character in several RZ sampling sites resembles that of the corresponding streams and differs from that of the upslope soils. Given that forecast future climate in the boreal region and depletion of sulfur pools are expected to increase NOM in aquatic systems, potentially disrupting water quality and the global carbon cycle, is critical to integrate quantitative and qualitative approaches to understand OM cycling in boreal RZs.

  10. Structural features of membrane-bound glucocerebrosidase and α-synuclein probed by neutron reflectometry and fluorescence spectroscopy.

    Science.gov (United States)

    Yap, Thai Leong; Jiang, Zhiping; Heinrich, Frank; Gruschus, James M; Pfefferkorn, Candace M; Barros, Marilia; Curtis, Joseph E; Sidransky, Ellen; Lee, Jennifer C

    2015-01-01

    Mutations in glucocerebrosidase (GCase), the enzyme deficient in Gaucher disease, are a common genetic risk factor for the development of Parkinson disease and related disorders, implicating the role of this lysosomal hydrolase in the disease etiology. A specific physical interaction exists between the Parkinson disease-related protein α-synuclein (α-syn) and GCase both in solution and on the lipid membrane, resulting in efficient enzyme inhibition. Here, neutron reflectometry was employed as a first direct structural characterization of GCase and α-syn·GCase complex on a sparsely-tethered lipid bilayer, revealing the orientation of the membrane-bound GCase. GCase binds to and partially inserts into the bilayer with its active site most likely lying just above the membrane-water interface. The interaction was further characterized by intrinsic Trp fluorescence, circular dichroism, and surface plasmon resonance spectroscopy. Both Trp fluorescence and neutron reflectometry results suggest a rearrangement of loops surrounding the catalytic site, where they extend into the hydrocarbon chain region of the outer leaflet. Taking advantage of contrasting neutron scattering length densities, the use of deuterated α-syn versus protiated GCase showed a large change in the membrane-bound structure of α-syn in the complex. We propose a model of α-syn·GCase on the membrane, providing structural insights into inhibition of GCase by α-syn. The interaction displaces GCase away from the membrane, possibly impeding substrate access and perturbing the active site. GCase greatly alters membrane-bound α-syn, moving helical residues away from the bilayer, which could impact the degradation of α-syn in the lysosome where these two proteins interact.

  11. Structural Features of Membrane-bound Glucocerebrosidase and α-Synuclein Probed by Neutron Reflectometry and Fluorescence Spectroscopy*

    Science.gov (United States)

    Yap, Thai Leong; Jiang, Zhiping; Heinrich, Frank; Gruschus, James M.; Pfefferkorn, Candace M.; Barros, Marilia; Curtis, Joseph E.; Sidransky, Ellen; Lee, Jennifer C.

    2015-01-01

    Mutations in glucocerebrosidase (GCase), the enzyme deficient in Gaucher disease, are a common genetic risk factor for the development of Parkinson disease and related disorders, implicating the role of this lysosomal hydrolase in the disease etiology. A specific physical interaction exists between the Parkinson disease-related protein α-synuclein (α-syn) and GCase both in solution and on the lipid membrane, resulting in efficient enzyme inhibition. Here, neutron reflectometry was employed as a first direct structural characterization of GCase and α-syn·GCase complex on a sparsely-tethered lipid bilayer, revealing the orientation of the membrane-bound GCase. GCase binds to and partially inserts into the bilayer with its active site most likely lying just above the membrane-water interface. The interaction was further characterized by intrinsic Trp fluorescence, circular dichroism, and surface plasmon resonance spectroscopy. Both Trp fluorescence and neutron reflectometry results suggest a rearrangement of loops surrounding the catalytic site, where they extend into the hydrocarbon chain region of the outer leaflet. Taking advantage of contrasting neutron scattering length densities, the use of deuterated α-syn versus protiated GCase showed a large change in the membrane-bound structure of α-syn in the complex. We propose a model of α-syn·GCase on the membrane, providing structural insights into inhibition of GCase by α-syn. The interaction displaces GCase away from the membrane, possibly impeding substrate access and perturbing the active site. GCase greatly alters membrane-bound α-syn, moving helical residues away from the bilayer, which could impact the degradation of α-syn in the lysosome where these two proteins interact. PMID:25429104

  12. PCR-Free Detection of Genetically Modified Organisms Using Magnetic Capture Technology and Fluorescence Cross-Correlation Spectroscopy

    Science.gov (United States)

    Zhou, Xiaoming; Xing, Da; Tang, Yonghong; Chen, Wei R.

    2009-01-01

    The safety of genetically modified organisms (GMOs) has attracted much attention recently. Polymerase chain reaction (PCR) amplification is a common method used in the identification of GMOs. However, a major disadvantage of PCR is the potential amplification of non-target DNA, causing false-positive identification. Thus, there remains a need for a simple, reliable and ultrasensitive method to identify and quantify GMO in crops. This report is to introduce a magnetic bead-based PCR-free method for rapid detection of GMOs using dual-color fluorescence cross-correlation spectroscopy (FCCS). The cauliflower mosaic virus 35S (CaMV35S) promoter commonly used in transgenic products was targeted. CaMV35S target was captured by a biotin-labeled nucleic acid probe and then purified using streptavidin-coated magnetic beads through biotin-streptavidin linkage. The purified target DNA fragment was hybridized with two nucleic acid probes labeled respectively by Rhodamine Green and Cy5 dyes. Finally, FCCS was used to detect and quantify the target DNA fragment through simultaneously detecting the fluorescence emissions from the two dyes. In our study, GMOs in genetically engineered soybeans and tomatoes were detected, using the magnetic bead-based PCR-free FCCS method. A detection limit of 50 pM GMOs target was achieved and PCR-free detection of GMOs from 5 µg genomic DNA with magnetic capture technology was accomplished. Also, the accuracy of GMO determination by the FCCS method is verified by spectrophotometry at 260 nm using PCR amplified target DNA fragment from GM tomato. The new method is rapid and effective as demonstrated in our experiments and can be easily extended to high-throughput and automatic screening format. We believe that the new magnetic bead-assisted FCCS detection technique will be a useful tool for PCR-free GMOs identification and other specific nucleic acids. PMID:19956680

  13. Mutational definition of binding requirements of an hnRNP-like protein in Arabidopsis using fluorescence correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Leder, Verena [Molecular Cell Physiology, Faculty of Biology, Bielefeld University (Germany); Biomolecular Photonics, Faculty of Physics, Bielefeld University (Germany); Lummer, Martina [Molecular Cell Physiology, Faculty of Biology, Bielefeld University (Germany); Tegeler, Kathrin [Molecular Cell Physiology, Faculty of Biology, Bielefeld University (Germany); Biomolecular Photonics, Faculty of Physics, Bielefeld University (Germany); Humpert, Fabian [Biomolecular Photonics, Faculty of Physics, Bielefeld University (Germany); Lewinski, Martin [Molecular Cell Physiology, Faculty of Biology, Bielefeld University (Germany); Schüttpelz, Mark [Biomolecular Photonics, Faculty of Physics, Bielefeld University (Germany); Staiger, Dorothee, E-mail: dorothee.staiger@uni-bielefeld.de [Molecular Cell Physiology, Faculty of Biology, Bielefeld University (Germany)

    2014-10-10

    Highlights: • We use FCS to investigate binding site requirements for the hnRNP-like protein AtGRP7. • We identify three nucleotides critical for AtGRP7 binding to its own intron. • Mutation of the conserved R{sup 49} abolishes binding altogether. • The paralogue AtGRP8 binds to an overlapping motif with different sequence requirement. • The glycine-rich stretch of a plant hnRNP-like protein contributes to binding. - Abstract: Arabidopsis thaliana glycine-rich RNA binding protein 7 (AtGRP7) is part of a negative feedback loop through which it regulates alternative splicing and steady-state abundance of its pre-mRNA. Here we use fluorescence correlation spectroscopy to investigate the requirements for AtGRP7 binding to its intron using fluorescently-labelled synthetic oligonucleotides. By systematically introducing point mutations we identify three nucleotides that lead to an increased K{sub d} value when mutated and thus are critical for AtGRP7 binding. Simultaneous mutation of all three residues abrogates binding. The paralogue AtGRP8 binds to an overlapping motif but with a different sequence preference, in line with overlapping but not identical functions of this protein pair. Truncation of the glycine-rich domain reduces the binding affinity of AtGRP7, showing for the first time that the glycine-rich stretch of a plant hnRNP-like protein contributes to binding. Mutation of the conserved R{sup 49} that is crucial for AtGRP7 function in pathogen defence and splicing abolishes binding.

  14. PCR-free detection of genetically modified organisms using magnetic capture technology and fluorescence cross-correlation spectroscopy.

    Directory of Open Access Journals (Sweden)

    Xiaoming Zhou

    Full Text Available The safety of genetically modified organisms (GMOs has attracted much attention recently. Polymerase chain reaction (PCR amplification is a common method used in the identification of GMOs. However, a major disadvantage of PCR is the potential amplification of non-target DNA, causing false-positive identification. Thus, there remains a need for a simple, reliable and ultrasensitive method to identify and quantify GMO in crops. This report is to introduce a magnetic bead-based PCR-free method for rapid detection of GMOs using dual-color fluorescence cross-correlation spectroscopy (FCCS. The cauliflower mosaic virus 35S (CaMV35S promoter commonly used in transgenic products was targeted. CaMV35S target was captured by a biotin-labeled nucleic acid probe and then purified using streptavidin-coated magnetic beads through biotin-streptavidin linkage. The purified target DNA fragment was hybridized with two nucleic acid probes labeled respectively by Rhodamine Green and Cy5 dyes. Finally, FCCS was used to detect and quantify the target DNA fragment through simultaneously detecting the fluorescence emissions from the two dyes. In our study, GMOs in genetically engineered soybeans and tomatoes were detected, using the magnetic bead-based PCR-free FCCS method. A detection limit of 50 pM GMOs target was achieved and PCR-free detection of GMOs from 5 microg genomic DNA with magnetic capture technology was accomplished. Also, the accuracy of GMO determination by the FCCS method is verified by spectrophotometry at 260 nm using PCR amplified target DNA fragment from GM tomato. The new method is rapid and effective as demonstrated in our experiments and can be easily extended to high-throughput and automatic screening format. We believe that the new magnetic bead-assisted FCCS detection technique will be a useful tool for PCR-free GMOs identification and other specific nucleic acids.

  15. PCR-free detection of genetically modified organisms using magnetic capture technology and fluorescence cross-correlation spectroscopy.

    Science.gov (United States)

    Zhou, Xiaoming; Xing, Da; Tang, Yonghong; Chen, Wei R

    2009-11-26

    The safety of genetically modified organisms (GMOs) has attracted much attention recently. Polymerase chain reaction (PCR) amplification is a common method used in the identification of GMOs. However, a major disadvantage of PCR is the potential amplification of non-target DNA, causing false-positive identification. Thus, there remains a need for a simple, reliable and ultrasensitive method to identify and quantify GMO in crops. This report is to introduce a magnetic bead-based PCR-free method for rapid detection of GMOs using dual-color fluorescence cross-correlation spectroscopy (FCCS). The cauliflower mosaic virus 35S (CaMV35S) promoter commonly used in transgenic products was targeted. CaMV35S target was captured by a biotin-labeled nucleic acid probe and then purified using streptavidin-coated magnetic beads through biotin-streptavidin linkage. The purified target DNA fragment was hybridized with two nucleic acid probes labeled respectively by Rhodamine Green and Cy5 dyes. Finally, FCCS was used to detect and quantify the target DNA fragment through simultaneously detecting the fluorescence emissions from the two dyes. In our study, GMOs in genetically engineered soybeans and tomatoes were detected, using the magnetic bead-based PCR-free FCCS method. A detection limit of 50 pM GMOs target was achieved and PCR-free detection of GMOs from 5 microg genomic DNA with magnetic capture technology was accomplished. Also, the accuracy of GMO determination by the FCCS method is verified by spectrophotometry at 260 nm using PCR amplified target DNA fragment from GM tomato. The new method is rapid and effective as demonstrated in our experiments and can be easily extended to high-throughput and automatic screening format. We believe that the new magnetic bead-assisted FCCS detection technique will be a useful tool for PCR-free GMOs identification and other specific nucleic acids.

  16. A study of the dynamics of PTEN proteins in living cells using in vivo fluorescence correlation spectroscopy

    Science.gov (United States)

    Du, Zhixue; Dong, Chaoqing; Ren, Jicun

    2017-06-01

    PTEN (phosphatase and tensin homolog on chromosome 10) is one of the most important tumor-suppressor proteins, which plays a key role in negative regulation of the PI3K/AKT pathway, and governs many cellular processes including growth, proliferation, survival and migration. The dynamics of PTEN proteins in single living cells is as yet unclear owing to a shortage of suitable in vivo approaches. Here, we report a single-molecule method for in vivo study of the dynamics of PTEN proteins in living cells using fluorescence correlation spectroscopy (FCS). First, we established a monoclonal H1299 stable cell line expressing enhanced green fluorescent protein (EGFP) and PTEN (EGFP-PTEN) fusion proteins; we then developed an in vivo FCS method to study the dynamics of EGFP-PTEN both in the nucleus and the cytoplasm. We investigated the diffusion behaviors of EGFP and EGFP-PTEN in solution, nucleus and cytosol, and observed that the motion of PTEN in living cells was restricted compared with EGFP. Finally, we investigated the protein dynamics in living cells under oxidative stress stimulation and a cellular ATP depletion treatment. Under oxidative stress stimulation, the EGFP-PTEN concentration increased in the nucleus, but slightly decreased in the cytoplasm. The diffusion coefficient and alpha value of EGFP-PTEN reduced significantly both in the nucleus and cytoplasm; the significantly decreased alpha parameter indicates a more restricted Brownian diffusion behavior. Under the cellular ATP depletion treatment, the concentration of EGFP-PTEN remained unchanged in the nucleus and decreased significantly in cytosol. The diffusion coefficient of EGFP-PTEN decreased significantly in cytosol, but showed no significant change in the nucleus; the alpha value decreased significantly in both the nucleus and cytoplasm. These results suggest that the concentration and mobility of PTEN in the nucleus and cytoplasm can be regulated by stimulation methods. Our approach provides a unique

  17. Temperature-dependent loop formation kinetics in flexible peptides studied by time-resolved fluorescence spectroscopy

    Directory of Open Access Journals (Sweden)

    Harekrushna Sahoo

    2006-01-01

    Full Text Available Looping rates in short polypeptides can be determined by intramolecular fluorescence quenching of a 2,3-diazabicyclo[2.2.2]oct-2-ene-labeled asparagine (Dbo by tryptophan. By this methodology, the looping rates in glycine-serine peptides with the structure Trp-(Gly-Sern-Dbo-NH2 of different lengths (n = 0–10 were determined in dependence on temperature in D2O and the activation parameters were derived. In general, the looping rate increases with decreasing peptide length, but the shortest peptide (n=0 shows exceptional behavior because its looping rate is slower than that for the next longer ones (n=1,2. The activation energies increase from 17.5 kJ mol−1 for the longest peptide (n=10 to 20.5 kJ mol−1 for the shortest one (n=0, while the pre-exponential factors (log⁡(A/s−1 range from 10.20 to 11.38. The data are interpreted in terms of an interplay between internal friction (stiffness of the biopolymer backbone and steric hindrance effects and solvent friction (viscosity-limited diffusion. For the longest peptides, the activation energies resemble more and more the value expected for solvent viscous flow. Internal friction is most important for the shortest peptides, causing a negative curvature and a smaller than ideal slope (ca. –1.1 of the double-logarithmic plots of the looping rates versus the number of peptide chain segments (N. Interestingly, the corresponding plot for the pre-exponential factors (logA versus logN shows the ideal slope (–1.5. While the looping rates can be used to assess the flexibility of peptides in a global way, it is suggested that the activation energies provide a measure of the “thermodynamic” flexibility of a peptide, while the pre-exponential factors reflect the “dynamic” flexibility.

  18. Study of decorated archeological ceramics by micro X-ray fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulou, D. [Archaeometry Laboratory, Cultural and Educational Technology Institute/R.C. ' Athena' , Tsimiski 58, 67100 Xanthi (Greece); Technological Educational Institute of Kavala, Department of Science, Agios Loukas, 654 04 Kavala (Greece); Sakalis, A. [Archaeometry Laboratory, Cultural and Educational Technology Institute/R.C. ' Athena' , Tsimiski 58, 67100 Xanthi (Greece)], E-mail: asakalis@ceti.gr; Merousis, N. [Hellenic Open University, Kyzikou 25-27, 55133 Kalamaria, Thessaloniki (Greece); Tsirliganis, N.C. [Archaeometry Laboratory, Cultural and Educational Technology Institute/R.C. ' Athena' , Tsimiski 58, 67100 Xanthi (Greece)

    2007-09-21

    Micro-X-ray fluorescence ({mu}-XRF) spectrometry is an analytical technique that is especially suitable for the study of archeological findings since it is non-destructive, rapid, universal, versatile and multi-elemental. In the present work a compact portable {mu}-XRF spectrometer was used to characterize decorated sherds of Neolithic pottery from Polyplatanos, North Greece. The sherds were divided into four decorative groups (crusted, classic Dimini, cream on red, and black on red) and the characterization was focused on the determination of certain major, minor and trace elements (Si, K, Ca, Ti, Cr, Mn, Fe, Ni) on the decorated surface and in the clay body. The aim of this characterization was to supplement and confirm archeological information regarding the origin of the artifacts and the manufacturing techniques used for their production. The most predominant chemical elements were determined, and representative ratios (Ca/K, Fe/Mn) were calculated and compared for each individual sample group. The crusted samples and the cream on red samples showed higher concentrations of Ca in the white-crusted surface in comparison with the clay body while Fe was the predominant element in the red decorated surface. The analysis of the samples of classic Dimini, revealed higher concentrations of Mn in the black painted surfaces and higher Ca content in the light-coloured clay bodies. Finally, most samples of the black on red group present high concentrations of Mn in their decoration surface. Zn and Ni were also detected in this group in contrast with the remaining groups.

  19. Dynamics of bolaamphiphilic fluorescent polyenes in lipid bilayers from polarization emission spectroscopy.

    Science.gov (United States)

    Acuña, A Ulises; Amat-Guerri, Francisco; Quesada, Ernesto; Vélez, Marisela

    2006-06-20

    The rotational motions of the biamphiphilic polyenes (bolapolyenes) dimethyl all-(E)-octacosa-10,12,14,16,18-pentaenedioate (DE28:5) and dimethyl all-(E)-tetratriaconta-13,15,17,19,21-pentaenedioate (DE34:5), with head-to-head distances of 34 and 42A, respectively, have been examined by fluorescence anisotropy methods. The membrane-spanning bolapolyenes, which contain a central emitting pentaene group tethered to two methoxycarbonyl opposite polar heads by symmetric C(8) (DE28:5) and C(11) (DE34:5) polymethylene chains, were dispersed in lipid bilayers of DPPC or DMPC, and the stationary and picosecond-resolved emission was recorded as a function of temperature. In fluid-phase DMPC bilayers, three relaxation times could be determined, assigned to fast (0.2 and 2ns) single-bond isomerization processes localized on the alkyl chains, and to whole-molecule oscillations ( approximately 11ns), respectively. The anisotropy decay parameters were further analyzed in terms of a diffusive model for wobbling in a Gaussian ordering potential, to assess the anchoring effect of the symmetric polar heads. In this way, the average rotational diffusion constant of the bolapolyenes, D( perpendicular), could be estimated as 0.022-0.026rad(2) ns(-1) (DMPC bilayers, 35 degrees Celsius), a value that is only 1/3 of that corresponding to the related pentaene fatty acid spanning a single membrane monolayer. In contrast, the amplitude of the equilibrium orientational distribution (theta(half-cone) approximately 50 degrees ) is very similar for both the transmembrane and the single-headed polyenes. The reorientational oscillations of the central emitting group in the bolapolyenes necessarily would produce large-amplitude (2-5A) and very fast (ns) translational motions of the polar heads.

  20. Study of decorated archeological ceramics by micro X-ray fluorescence spectroscopy

    Science.gov (United States)

    Papadopoulou, D.; Sakalis, A.; Merousis, N.; Tsirliganis, N. C.

    2007-09-01

    Micro-X-ray fluorescence (μ-XRF) spectrometry is an analytical technique that is especially suitable for the study of archeological findings since it is non-destructive, rapid, universal, versatile and multi-elemental. In the present work a compact portable μ-XRF spectrometer was used to characterize decorated sherds of Neolithic pottery from Polyplatanos, North Greece. The sherds were divided into four decorative groups (crusted, classic Dimini, cream on red, and black on red) and the characterization was focused on the determination of certain major, minor and trace elements (Si, K, Ca, Ti, Cr, Mn, Fe, Ni) on the decorated surface and in the clay body. The aim of this characterization was to supplement and confirm archeological information regarding the origin of the artifacts and the manufacturing techniques used for their production. The most predominant chemical elements were determined, and representative ratios (Ca/K, Fe/Mn) were calculated and compared for each individual sample group. The crusted samples and the cream on red samples showed higher concentrations of Ca in the white-crusted surface in comparison with the clay body while Fe was the predominant element in the red decorated surface. The analysis of the samples of classic Dimini, revealed higher concentrations of Mn in the black painted surfaces and higher Ca content in the light-coloured clay bodies. Finally, most samples of the black on red group present high concentrations of Mn in their decoration surface. Zn and Ni were also detected in this group in contrast with the remaining groups.

  1. Analysis of limestones and dolomites by x-ray fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, B.D.

    1999-07-01

    Sources of calcium are generally widespread and quite extensive. These sources are limestone, dolomite, marl, chalk, and oyster shell. Cement plants account for nearly half of the demand, while two hundred lime plants in the US and Puerto Rico consume about twenty five percent. Since the chemical composition of the limestone and other sources of calcium is critical in the cement and lime industry, particularly for the deleterious compounds such as sodium oxide, Na{sub 2}O, magnesium oxide, MgO, phosphorus pentoxide, P{sub 2}O{sub 5}, and potassium oxide, K{sub 2}O, accurate determinations are critical. Due to the tonnage per hour, these determinations must be made rapidly and accurately. X-ray fluorescence can thereby satisfy this need for accuracy and also precision. Production of lime is performed by calcining limestone or dolomite in which the industry is generally located and concentrated in the States of Michigan and Pennsylvania. The resulting product is quicklime, CaO, and hydrated lime, Ca(OH){sub 2}. Substantial amounts of quicklime is further processed into calcium carbide in order to produce acetylene gas. In this case, the determination of P{sub 2}O{sub 5} is critical since minor quantities of phosphorus in acetylene gas can cause premature explosions. Other uses for lime are well known in the treatment of water, the paper and pulp industry, and in the steel industry for the production of slag to remove impurities. Dolomitic lime is heavily utilized in the manufacture of magnesite refractories by reacting dolomitic lime with brines from the Michigan Basin to produce magnesium oxide, MgO, and calcium chloride, CaCl{sub 2}. Sample preparation for these materials usually is performed by grinding and pelletizing or fusion with lithium-tetra-borate, Li{sub 2}B{sub 4}O{sub 7}.

  2. Fluorescence spectroscopy of UV-MALDI matrices and implications of ionization mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Hou-Yu; Hsu, Hsu Chen; Lu, I-Chung; Lee, Yuan-Tseh; Ni, Chi-Kung [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan (China); Hsu, Kuo-Tung; Liao, Chih-Yu; Lee, Yin-Yu [National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China); Tseng, Chien-Ming [Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan (China)

    2014-10-28

    Matrix-assisted laser desorption ionization (MALDI) has been widely used in the mass analysis of biomolecules; however, there are a lot of debates about the ionization mechanisms. Previous studies have indicated that S{sub 1}-S{sub 1} annihilation might be a key process in the generation of primary ions. This study investigates S{sub 1}-S{sub 1} annihilation by examining the time-resolved fluorescence spectra of 12 matrices. No S{sub 1}-S{sub 1} annihilation was observed in six of these matrices (3-hydroxy-picolinic acid, 6-aza-2-thiothymine, 2,4-dihydroxy-acetophenone, 2,6-dihydroxy-acetophenone, 2,4,6-trihydroxy-acetophenone, and ferulic acid). We observed two matrix molecules reacting in an electronically excited state (S{sub 1}) in five of these matrices (2,5-dihydroxybenzoic acid, α-cyano-4-hydroxycinnamic acid, 2,5-dihydroxy-acetophenone, 2,3-dihydroxybenzoic acid, and 2,6-dihydroxybenzoic acid), and S{sub 1}-S{sub 1} annihilation was a possible reaction. Among these five matrices, no S{sub 1}-S{sub 1} annihilation was observed for 2,3-dihydroxybenzoic acid in typical peak power region of nanosecond laser pulses in MALDI, but a very small value of reaction rate constant was observed only in the high peak power region. The excited-state lifetime of sinapinic acid was too short to determine whether the molecules reacted in an electronically excited state. No correlation was observed between the ion generation efficiency of MALDI and S{sub 1}-S{sub 1} annihilation. The results indicate that the proposal of S{sub 1}-S{sub 1} annihilation is unnecessary in MALDI and energy pooling model for MALDI ionization mechanism has to be modified.

  3. Early diagnosis of tongue malignancy using laser induced fluorescence spectroscopy technique

    Science.gov (United States)

    Patil, Ajeetkumar; Unnikrishnan V., K.; Ongole, Ravikiran; Pai, Keerthilatha M.; Kartha, V. B.; Chidangil, Santhosh

    2015-07-01

    Oral cancer together with pharyngeal cancer is the sixth most common malignancy reported worldwide and one with high mortality ratio among all malignancies [1]. Worldwide 450,000 new cases are estimated in 2014[2]. About 90% are a type of cancer called squamous cell carcinoma (SCC). SCC of the tongue is the most common oral malignancy accounting for approximately 40% of all oral carcinomas. One of the important factors for successful therapy of any malignancy is early diagnosis. Although considerable progress has been made in understanding the cellular and molecular mechanisms of tumorigenesis, lack of reliable diagnostic methods for early detection leading to delay in therapy is an important factor responsible for the increase in the mortality rate in various types of cancers. Spectroscopy techniques are extremely sensitive for the analysis of biochemical changes in cellular systems. These techniques can provide a valuable information on alterations that occur during the development of cancer. This is especially important in oral cancer, where "tumor detection is complicated by a tendency towards field cancerization, leading to multi-centric lesions" and "current techniques detect malignant change too late" [3], and "biopsies are not representative of the whole premalignant lesion". [4

  4. Evaluation of natural organic matter changes from Lake Hohloh by three-dimensional excitation-emission matrix fluorescence spectroscopy during TiO(2)/UV process.

    Science.gov (United States)

    Valencia, Sergio; Marín, Juan M; Restrepo, Gloria; Frimmel, Fritz H

    2014-03-15

    This study shows the changes of natural organic matter (NOM) from Lake Hohloh, (Black Forest, Germany) during heterogeneous photocatalysis with TiO2 (TiO2/UV). The effect of pH on the adsorption of NOM onto TiO2 in the dark and TiO2/UV degradation of NOM was followed using three-dimensional excitation-emission matrix (EEM) fluorescence. At pH values between 4 and 9, the NOM was adsorbed onto TiO2 in the dark with a greater decrease in the fluorescence intensity and in the spectral shapes, especially under acidic pH conditions. However, at pH = 10 there was not adsorption on NOM which led to a negligible changes the fluorescence intensity. A significant high linear correlation was observed between the DOC adsorption onto TiO2 and the maximum fluorescence intensity. Additionally, the NOM adsorption onto TiO2 and its TiO2/UV degradation shifted the fluorescence maxima toward shorter wavelengths in the EEM contour plots, with a decrease in aromaticity. These changes were accompanied by a substantial decrease in the organically bound halogens adsorbable on activated carbon (AOXFP) and the trihalomethane formation potential (THMFP). Thus, the decrease in maximum fluorescence intensity can be used as an indicator of AOXFP and TTHMFP removal efficiency. Therefore, fluorescence spectroscopy is a robust analytical technique for evaluate TiO2/UV removal of NOM.

  5. Monitoring the process of purification of crude glycerol derived from biodiesel production: a method based on fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes, Keurison F.; Caires, Anderson R.L. [Universidade Federal da Grande Dourados, MS (Brazil). Grupo de Optica Aplicada; Oliveira, Samuel L. [Universidade Federal de Mato Grosso do Sul (UFMS), MS (Brazil). Grupo de Optica e Fotonica

    2011-07-01

    Full text. The use of biodiesel has increased worldwide. The biodiesel production on an industrial scale has been based on the transesterification of vegetable oils and fats with methanol in the presence of an alkaline catalyst. During the transesterification, one molecule of triglyceride reacts with three molecules of alcohol to produce glycerol and molecules of alkyl esters (biodiesel). As a result, an increase in biodiesel production also enhances the availability of glycerol on the market. However, crude glycerin has about 30% of impurities which are inherent to biodiesel production such as catalyst, alcohol and fatty acids. The present study evaluated the usefulness of the fluorescence spectroscopy as a tool to monitor the glycerol purification process. Glycerol samples were obtained from transesterification of soybean, canola, and sunflower oils in the presence of NaOH. After stirring time, the solutions were let to stand in separating funnels, then two phases were observed: one containing mainly biodiesel and other consisting of glycol. Then, the respective glycerol samples were collected, henceforth called G1. After that, it was added H2SO4 (20%) in the crude glycerol samples to reduce their pH to 4 in order to remove fatty acids. The solutions were stored for 24 hours in separating funnels. The glycerol (heavy phase), hereafter named G2, was then separated and filtered. To remove other impurities from G2 samples by means of ionic exchange columns, the samples were neutralized and diluted using Milli-Q water (G3 samples). Aliquots of 20 mL were then passed through cationic and anionic resins (G4 and G5 samples, respectively). Emission and excitation spectra of the G1-G5 samples as well as of the glycerol PA-ACS (reference) were recorded at room temperature using a spectrofluorimeter. The emission spectra were obtained setting the excitation at 325nm and monitoring the emission in the 330-800nm range. Fluorimetric maps were also achieved by pumping the

  6. Characterization of the AT180 epitope of phosphorylated Tau protein by a combined nuclear magnetic resonance and fluorescence spectroscopy approach

    Energy Technology Data Exchange (ETDEWEB)

    Amniai, Laziza [CNRS-UMR 8576 UGSF-IFR 147, Universite des Sciences et Technologies de Lille 1, 59655 Villeneuve d' Ascq Cedex (France); Lippens, Guy, E-mail: guy.lippens@univ-lille1.fr [CNRS-UMR 8576 UGSF-IFR 147, Universite des Sciences et Technologies de Lille 1, 59655 Villeneuve d' Ascq Cedex (France); Landrieu, Isabelle, E-mail: isabelle.landrieu@univ-lille1.fr [CNRS-UMR 8576 UGSF-IFR 147, Universite des Sciences et Technologies de Lille 1, 59655 Villeneuve d' Ascq Cedex (France)

    2011-09-09

    Highlights: {yields} pThr231 of the Tau protein is necessary for the binding of the AT180 antibody. {yields} pSer235 of the Tau protein does not interfere with the AT180 recognition of pThr231. {yields} Epitope mapping is efficiently achieved by combining NMR and FRET spectroscopy. -- Abstract: We present here the characterization of the epitope recognized by the AT180 monoclonal antibody currently used to define an Alzheimer's disease (AD)-related pathological form of the phosphorylated Tau protein. Some ambiguity remains as to the exact phospho-residue(s) recognized by this monoclonal: pThr231 or both pThr231 and pSer235. To answer this question, we have used a combination of nuclear magnetic resonance (NMR) and fluorescence spectroscopy to characterize in a qualitative and quantitative manner the phospho-residue(s) essential for the epitope recognition. Data from the first step of NMR experiments are used to map the residues bound by the antibodies, which were found to be limited to a few residues. A fluorophore is then chemically attached to a cystein residue introduced close-by the mapped epitope, at arginine 221, by mutagenesis of the recombinant protein. The second step of Foerster resonance energy transfer (FRET) between the AT180 antibody tryptophanes and the phospho-Tau protein fluorophore allows to calculate a dissociation constant Kd of 30 nM. We show that the sole pThr231 is necessary for the AT180 recognition of phospho-Tau and that phosphorylation of Ser235 does not interfere with the binding.

  7. Insights into Nano- and Micron-Scale Phase Separation in Amorphous Solid Dispersions Using Fluorescence-Based Techniques in Combination with Solid State Nuclear Magnetic Resonance Spectroscopy.

    Science.gov (United States)

    Purohit, Hitesh S; Ormes, James D; Saboo, Sugandha; Su, Yongchao; Lamm, Matthew S; Mann, Amanda K P; Taylor, Lynne S

    2017-07-01

    Miscibility between the drug and the polymer in an amorphous solid dispersion (ASD) is considered to be one of the most important factors impacting the solid state stability and dissolution performance of the active pharmaceutical ingredient (API). The research described herein utilizes emerging fluorescence-based methodologies to probe (im)miscibility of itraconazole (ITZ)-hydroxypropyl methylcellulose (HPMC) ASDs. The ASDs were prepared by solvent evaporation with varying evaporation rates and were characterized by steady-state fluorescence spectroscopy, confocal imaging, differential scanning calorimetry (DSC), and solid state nuclear magnetic resonance (ssNMR) spectroscopy. The size of the phase separated domains for the ITZ-HPMC ASDs was affected by the solvent evaporation rate. Smaller domains (30 nm) were found in ASDs prepared using slower evaporation rates. Confocal imaging provided visual confirmation of phase separation along with chemical specificity, achieved by selectively staining drug-rich and polymer-rich phases. ssNMR confirmed the results of fluorescence-based techniques and provided information on the size of phase separated domains. The fluorescence-based methodologies proved to be sensitive and rapid in detecting phase separation, even at the nanoscale, in the ITZ-HPMC ASDs. Fluorescence-based methods thus show promise for miscibility evaluation of spray-dried ASDs.

  8. Fluorescence spectroscopy incorporated in an Optical Biopsy System for the detection of early neoplasia in Barrett's esophagus.

    Science.gov (United States)

    Boerwinkel, D F; Holz, J A; Hawkins, D M; Curvers, W L; Aalders, M C; Weusten, B L; Visser, M; Meijer, S L; Bergman, J J

    2015-01-01

    Endoscopic surveillance is recommended for patients with Barrett's esophagus (BE) to detect high-grade intraepithelial neoplasia (HGIN) or early cancer (EC). Early neoplasia is difficult to detect with white light endoscopy and random biopsies are associated with sampling error. Fluorescence spectroscopy has been studied to distinguish non-dysplastic Barrett's epithelium (NDBE) from early neoplasia. The Optical Biopsy System (OBS) uses an optical fiber integrated in a regular biopsy forceps. This allows real-time spectroscopy and ensures spot-on correlation between the spectral signature and corresponding physical biopsy. The OBS may provide an easy-to-use endoscopic tool during BE surveillance. We aimed to develop a tissue-differentiating algorithm and correlate the discriminating properties of the OBS with the constructed algorithm to the endoscopist's assessment of the Barrett's esophagus. In BE patients undergoing endoscopy, areas suspicious for neoplasia and endoscopically non-suspicious areas were investigated with the OBS, followed by a correlating physical biopsy with the optical biopsy forceps. Spectra were correlated to histology and an algorithm was constructed to discriminate between HGIN/EC and NDBE using smoothed linear dicriminant analysis. The constructed classifier was internally cross-validated and correlated to the endoscopist's assessment of the BE segment. A total of 47 patients were included (39 males, age 66 years): 35 BE patients were referred with early neoplasia and 12 patients with NDBE. A total of 245 areas were investigated with following histology: 43 HGIN/EC, 66 low-grade intraepithelial neoplasia, 108 NDBE, 28 gastric or squamous mucosa. Areas with low-grade intraepithelial neoplasia and gastric/squamous mucosa were excluded. The area under the receiver operating characteristic curve of the constructed classifier was 0.78. Sensitivity and specificity for the discrimination between NDBE and HGIN/EC of OBS alone were 81% and 58

  9. Effects of surface functionalization on the adsorption of human serum albumin onto nanoparticles – a fluorescence correlation spectroscopy study

    Directory of Open Access Journals (Sweden)

    Pauline Maffre

    2014-11-01

    Full Text Available By using fluorescence correlation spectroscopy (FCS, we have studied the adsorption of human serum albumin (HSA onto Fe–Pt nanoparticles (NPs, 6 nm radius, CdSe/ZnS quantum dots (QDs, 5 nm radius and Au and Ag nanoclusters (1–4 nm radius, which are enshrouded by various water-solubilizing surface layers exposing different chemical functional groups (carboxyl, amino and both, thereby endowing the NPs with different surface charges. We have also measured the effects of modified surface functionalizations on the protein via succinylation and amination. A step-wise increase in hydrodynamic radius with protein concentration was always observed, revealing formation of protein monolayers coating the NPs, independent of their surface charge. The differences in the thickness of the protein corona were rationalized in terms of the different orientations in which HSA adsorbs onto the NPs. The midpoints of the binding transition, which quantifies the affinity of HSA toward the NP, were observed to differ by almost four orders of magnitude. These variations can be understood in terms of specific Coulombic interactions between the proteins and the NP surfaces.

  10. Fluorescence lifetime and UV-Vis spectroscopy to evaluate the interactions between quercetin and its yeast microcapsule.

    Science.gov (United States)

    Pham-Hoang, Bao-Ngoc; Winckler, Pascale; Waché, Yves

    2017-09-09

    Quercetin is a fragile bioactive compound. Several works have tried to preserve it by encapsulation but the form of encapsulation (mono- or supra-molecular structure, tautomeric form), though important for stability and bioavailability, remains unknown. The present work aims at developing a fluorescence lifetime technique to evaluate the structure of quercetin during encapsulation in a vector capsule that has already proven efficiency, yeast cells. Molecular stabilization was observed during a four-month storage period. The time-correlated single-photon counting (TCSPC) technique was used to evaluate the interaction between quercetin molecules and the yeast capsule. The various tautomeric forms, as identified by UV-Vis spectroscopy, resulted in various lifetimes in TCSPC, although they varied also with the buffer environment. Quercetin in buffer exhibited a three-to-four longer long time after 24 h (changing from 6-7 to 18-23 ns), suggesting an aggregation of molecules. In yeast microcapsules, the long-time population exhibited a longer lifetime (around 27 ns) from the beginning and concerned about 20% of molecules compared to dispersed quercetin. This shows that lifetime analysis can show the monomolecular instability of quercetin in buffer and the presence of interactions between quercetin molecules and their microcapsules. This article is protected by copyright. All rights reserved.

  11. Structural stability of soybean (Glycine max) α-amylase: properties of the unfolding transition studied with fluorescence and CD spectroscopy.

    Science.gov (United States)

    Kumari, Arpana; Rosenkranz, Tobias; Fitter, Jörg; Kayastha, Arvind M

    2011-03-01

    Stability and unfolding of mammalian and microbial α-amylases have been intensively investigated. However, there is only limited information available on the structural stability of plant α-amylases, namely of the two isoenzymes from barley AMY1 and AMY2, of the α-amylase from mung bean (Vigna radiata), and of the α-amylase from malted sorghum (Sorghum bicolor). We report here the stability of soyabean α-amylase (GMA), against elevated temperatures and chemical denaturants (GndHCl) by employing circular dichroism and fluorescence spectroscopy. Since it is well-known that calcium ions play a crucial role for enzymatic activity and stability of a-amylases, we performed our studies with calcium bound and calcium free GMA. The thermal unfolding transition temperature decreased from 72°C for calcium saturated samples to 57°C for the case of calcium depleted GMA. Similarly, the GndHCl transition concentration was lowered from 0.70 M for calcium bound GMA to 0.41 M in the absence of calcium. Thermal unfolding of GMA irreversible due to aggregation of the unfolded state. GMA unfolded in 6 M GndHCl shows high degree of reversibility after diluting the unfolded enzyme in native buffer containing 7 M glycerol. Furthermore, the refolded enzyme showed 93% of activity.

  12. Scanning fluorescence correlation spectroscopy as a versatile tool to measure static and dynamic properties of soft matter systems.

    Science.gov (United States)

    Nepal, Manish; Oyler-Yaniv, Alon; Krichevsky, Oleg

    2015-12-14

    We present the formalism and experimental implementation of scanning fluorescence correlation spectroscopy (SFCS) for the measurements of soft matter system structure and dynamics. We relate the SFCS function Fourier transform to the system intermediate scattering function and demonstrate how SFCS can be combined with specific labelling to measure the desired statistical and kinetic features of the system. Using DNA as a model polymer, we demonstrate the application of SFCS to measure (1) the static structure factor of the system, (2) polymer end-to-end distance distribution, and (3) polymer segmental dynamics in dilute and in dense solutions. The measured DNA end-to-end distance distributions are close to Gaussian. Implementing SFCS we obtain reliable data on segmental mean-square displacement kinetics in dense solutions, where the static FCS approach fails because of dye photobleaching. For moderate concentrations in the semidilute regime (at ∼7 overlap concentrations) segmental dynamics exhibit only weak entanglements. Both of these experimental findings are consistent with theoretical predictions of the weakness of excluded interactions in semiflexible polymers.

  13. Laser-Induced Fluorescence Spectroscopy of Two Ruthenium-Bearing Molecules: RuF and RuCl

    Science.gov (United States)

    Zarringhalam, Hanif; Adam, Allan G.; Linton, Colan; Tokaryk, Dennis W.

    2017-06-01

    This work extends the electronic spectroscopy of RuF, and reports on what we believe is the first observation of RuCl. Both molecules have been created in a laser-ablation molecular beam apparatus at UNB, and their spectra have been detected by laser-induced fluorescence. In the low-resolution survey of RuF from 400 to 770 nm, five bands were detected in the blue, green and infrared regions of the electromagnetic spectrum. Four of them were rotationally analyzed from high-resolution data. The three bands in the green region are associated with the ^4Γ_{11/2}-X^4Φ_{9/2} system first observed by Steimle et al. A new ^4Δ_{7/2}-X^4Φ_{9/2} transition in the blue region was also detected. Two high-resolution bands of RuCl were rotationally analyzed, and the ground state was also found to be X^4Φ_{9/2}. The data provide detailed structural information about the molecules, such as bond lengths, vibrational frequencies, isotopic structure, spin-orbit interactions and hyperfine interactions. T. C. Steimle, W. Virgo and T. Ma, J. Chem. Phys. 124 024309 (2006).

  14. Total reflection x-ray fluorescence spectroscopy as a tool for evaluation of iron concentration in ferrofluids and yeast samples

    Energy Technology Data Exchange (ETDEWEB)

    Kulesh, N.A., E-mail: nikita.kulesh@urfu.ru [Ural Federal University, Mira 19, 620002 Ekaterinburg (Russian Federation); Novoselova, I.P. [Ural Federal University, Mira 19, 620002 Ekaterinburg (Russian Federation); Immanuel Kant Baltic Federal University, 236041 Kaliningrad (Russian Federation); Safronov, A.P. [Ural Federal University, Mira 19, 620002 Ekaterinburg (Russian Federation); Institute of Electrophysics UD RAS, Amundsen 106, 620016 Ekaterinburg (Russian Federation); Beketov, I.V.; Samatov, O.M. [Institute of Electrophysics UD RAS, Amundsen 106, 620016 Ekaterinburg (Russian Federation); Kurlyandskaya, G.V. [Ural Federal University, Mira 19, 620002 Ekaterinburg (Russian Federation); University of the Basque Country UPV-EHU, 48940 Leioa (Spain); Morozova, M. [Ural Federal University, Mira 19, 620002 Ekaterinburg (Russian Federation); Denisova, T.P. [Irkutsk State University, Karl Marks 1, 664003 Irkutsk (Russian Federation)

    2016-10-01

    In this study, total reflection x-ray fluorescent (TXRF) spectrometry was applied for the evaluation of iron concentration in ferrofluids and biological samples containing iron oxide magnetic nanoparticles obtained by the laser target evaporation technique. Suspensions of maghemite nanoparticles of different concentrations were used to estimate the limitation of the method for the evaluation of nanoparticle concentration in the range of 1–5000 ppm in absence of organic matrix. Samples of single-cell yeasts grown in the nutrient media containing maghemite nanoparticles were used to study the nanoparticle absorption mechanism. The obtained results were analyzed in terms of applicability of TXRF for quantitative analysis in a wide range of iron oxide nanoparticle concentrations for biological samples and ferrofluids with a simple established protocol of specimen preparation. - Highlights: • Ferrofluids and yeasts samples were analysed by TXRF spectroscopy. • Simple protocol for iron quantification by means of TXRF was proposed. • Results were combined with magnetic, structural, and morphological characterization. • Preliminary conclusion on nanoparticles uptake mechanism was made.

  15. Detection of Non-Cavitated Occlusal Caries with Impedance Spectroscopy and Laser Fluorescence: an In Vitro Study

    Science.gov (United States)

    Mortensen, Diana; Dannemand, Katrine; Twetman, Svante; Keller, Mette Kirstine

    2014-01-01

    Objective: To evaluate the performance of an impedance spectroscopy technology for detecting non-cavitated occlusal caries lesions in permanent teeth in vitro. The method was compared with a commonly used laser fluorescence device and validated against histology. Material and Methodology: A non-cavitated sample of 100 extracted posterior teeth was randomly selected and assessed for caries on enamel and dentin level with aid of CarioScan PRO (ACIS) and DIAGNOdent pen (LF pen) by three examiners. After the measurements, the extension of the lesion was histologically determined as gold standard. Sensitivity, specificity, accuracy and receiver-operating curves were calculated. Intra- and inter-examiner reproducibility was expressed by intra class correlation coefficients. Results: The histological caries prevalence was 99% and 41% exhibited dentin caries. The ACIS technique displayed high specificities but almost negligible sensitivities at readings >50. A similar pattern was noted for the LF pen at readings >30. The intra- and inter-examiner reproducibility varied between 0.47 and 0.98 and the values were generally lower for the ACIS technique than for the LF pen. The inter-examiner agreement reached excellent levels with both methods. Conclusions: In vitro,the ACIS technique showed a low ability to disclose occlusal caries lesions in the enamel and/or dentin of non-cavitated permanent molars. However, further in vivo studies of permanent occlusal surfaces are needed to mirror the clinical situation. PMID:24799965

  16. Comparison of visual, impedance spectroscopy and laser fluorescence methods in detecting early carious lesions on occlusal surfaces

    Directory of Open Access Journals (Sweden)

    Chalas Renata

    2014-06-01

    Full Text Available The diagnostic management is a very important and integral part of the entire treatment process and has a direct influence on the decision-taking on the choice of the most appropriate form of therapy consistent with current knowledge. Knowledge of the morphology of hard dental tissues lesions has led to the development of quantitative methods for diagnosis and monitoring of dental caries, which enabled the implementation of appropriate treatments aimed at repairing than replacing damaged tissue. The aim of the study was to compare selected diagnostic methods: visual (ICDAS, impedance spectroscopy (CarieScan PRO and laser fluorescence (Diagnodent Pen in detecting caries in grooves on the chewing surfaces of molars and premolars. The obtained results indicated a high concordance of measurements performed with the Diagnodent Pen with the results of visual examination and a lower compliance of visual examination with the results obtained using the CarieScan PRO. A combination of visual and tactile method with tests using advanced technology provides greater opportunity to confirm the diagnosis of carious lesions requiring medical intervention.

  17. Rapid quantification of polycyclic aromatic hydrocarbons in hydroxypropyl-{beta}-cyclodextrin (HPCD) soil extracts by synchronous fluorescence spectroscopy (SFS)

    Energy Technology Data Exchange (ETDEWEB)

    Hua Guoxiong [School of Biology and Psychology, Institute for Research on Environment and Sustainability, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom)]. E-mail: gh15@st-andrews.ac.uk; Broderick, John [School of Biology and Psychology, Institute for Research on Environment and Sustainability, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Semple, Kirk T. [Department of Environmental Science, Faculty of Science and Technology, University of Lancaster, Lancaster LA1 4YQ (United Kingdom); Killham, Ken [School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3UU (United Kingdom); Singleton, Ian [School of Biology and Psychology, Institute for Research on Environment and Sustainability, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2007-07-15

    Synchronous fluorescence spectroscopy (SFS) was directly applied to rapidly quantify selected polycyclic aromatic hydrocarbons (PAHs: benzo[a]pyrene and pyrene) in aqueous hydroxypropyl-{beta}-cyclodextrin (HPCD) soil extract solutions from a variety of aged contaminated soils containing four different PAHs. The method was optimized and validated. The results show that SFS can be used to analyse benzo[a]pyrene and pyrene in HPCD based soil extracts with high sensitivity and selectivity. The linear calibration ranges were 4.0 x 10{sup -6}-1.0 x 10{sup -3} mM for benzo[a]pyrene and 6.0 x 10{sup -6}-1.2 x 10{sup -3} mM for pyrene in 10 mM HPCD aqueous solution alone. The detection limits according to the error propagation theory for benzo[a]pyrene and pyrene were 3.9 x 10{sup -6} and 5.4 x 10{sup -6} mM, respectively. A good agreement between SFS and HPLC was reached for both determinations of PAHs in HPCD alone and in soil HPCD extracts. Hence, SFS is a potential means to simplify the present non-exhaustive hydroxypropyl-{beta}-cyclodextrin (HPCD)-based extraction technique for the evaluation of PAH bioavailability in soil. - SFS can be used to rapidly quantify selected PAHs in soil extracts and to simplify the non-exhaustive HPCD-based extraction technique for the evaluation of PAH bioavailability.

  18. Fluorescent and ultraviolet-visible spectroscopy studies on the antioxidation and DNA binding properties of binuclear Tb(III) complexes.

    Science.gov (United States)

    Liu, Yongchun; Jiang, Xinhui; Yang, Zhengyin; Zheng, Xudong; Liu, Jianning; Zhou, Tianlin

    2010-09-01

    Tb(III) complexes were prepared from Tb(NO(3))(3)·6H(2)O and four Schiff-base ligands derived from 8-hydroxyquinoline-2-carboxaldehyde with aroylhydrazines. X-ray crystal and other structural analyses indicate that Tb(III) and every ligand can form a binuclear Tb(III) complex with 1:1 metal-to-ligand stoichiometry and nine-coordination at the Tb(III) center. Viscosity titration experiments and fluorescent and ultraviolet-visible (UV-Vis) spectroscopy results indicate that all the Tb(III) complexes can bind to Calf thymus DNA through intercalation with the binding constants at the order of magnitude of 10(6)-10(7) M(-1), and they may be used as potential anticancer drugs, but complexes containing active phenolic hydroxy groups may have stronger antitumor activities. Antioxidation results indicate that all the Tb(III) complexes have strong abilities of scavenging hydroxyl radicals and superoxide radicals, but complexes containing active phenolic hydroxy groups show stronger scavenging effects on hydroxyl radicals and complexes containing N-heteroaromatic substituent show stronger scavenging effects on superoxide radicals. However, Tb(III) emission with these systems is not observed, for these ligands rather are quenchers and unable to sensitize this metal ion.

  19. Sorption Characteristics of Rare Earth Element Eu3+ onto Silica-Water Interfaces Studied by Fluorescence Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Yin Xiulan; Hu Ping; Li Dien

    2004-01-01

    The sorption of Eu species onto nano-size silica-water interfaces was investigated using fluorescence spectroscopy for Ph ranges of 1-8.5 and an initial Eu concentration (Ceu) of 2×10-4 M. The sorption rate of Eu was initially low, but significantly increased at Ph>4. The sorption density of Eu species on a silica surface was ~1.58×10-7 mol/m2 when the dissolved Eu species were completely sorbed onto silica-water interfaces at Ph=~5.8. The sorbed Eu species at Ph<6 is aquo Eu3+, which is sorbed onto silica-water interfaces as an outer-sphere complex at Ph<5, but may be sorbed as an inner-sphere bidentate complex at 5

  20. Synchronous front-face fluorescence spectroscopy for authentication of the adulteration of edible vegetable oil with refined used frying oil.

    Science.gov (United States)

    Tan, Jin; Li, Rong; Jiang, Zi-Tao; Tang, Shu-Hua; Wang, Ying; Shi, Meng; Xiao, Yi-Qian; Jia, Bin; Lu, Tian-Xiang; Wang, Hao

    2017-02-15

    Synchronous front-face fluorescence spectroscopy has been developed for the discrimination of used frying oil (UFO) from edible vegetable oil (EVO), the estimation of the using time of UFO, and the determination of the adulteration of EVO with UFO. Both the heating time of laboratory prepared UFO and the adulteration of EVO with UFO could be determined by partial least squares regression (PLSR). To simulate the EVO adulteration with UFO, for each kind of oil, fifty adulterated samples at the adulterant amounts range of 1-50% were prepared. PLSR was then adopted to build the model and both full (leave-one-out) cross-validation and external validation were performed to evaluate the predictive ability. Under the optimum condition, the plots of observed versus predicted values exhibited high linearity (R(2)>0.96). The root mean square error of cross-validation (RMSECV) and root mean square error of prediction (RMSEP) were both lower than 3%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Noninvasive assessment of the risk of tobacco abuse in oral mucosa using fluorescence spectroscopy: a clinical approach

    Science.gov (United States)

    Nazeer, Shaiju S.; Asish, Rajashekharan; Venugopal, Chandrashekharan; Anita, Balan; Gupta, Arun Kumar; Jayasree, Ramapurath S.

    2014-05-01

    Tobacco abuse and alcoholism cause cancer, emphysema, and heart disease, which contribute to high death rates, globally. Society pays a significant cost for these habits whose first demonstration in many cases is in the oral cavity. Oral cavity disorders are highly curable if a screening procedure is available to diagnose them in the earliest stages. The aim of the study is to identify the severity of tobacco abuse, in oral cavity, as reflected by the emission from endogenous fluorophores and the chromophore hemoglobin. A group who had no tobacco habits and another with a history of tobacco abuse were included in this study. To compare the results with a pathological condition, a group of leukoplakia patients were also included. Emission from porphyrin and the spectral filtering modulation effect of hemoglobin were collected from different sites. Multivariate analysis strengthened the spectral features with a sensitivity of 60% to 100% and a specificity of 76% to 100% for the discrimination. Total hemoglobin and porphyrin levels of habitués and leukoplakia groups were comparable, indicating the alarming situation about the risk of tobacco abuse. Results prove that fluorescence spectroscopy along with multivariate analysis is an effective noninvasive tool for the early diagnosis of pathological changes due to tobacco abuse.

  2. Preliminary selection and evaluation of the binding of aptamers against a Hantavirus antigen using fluorescence spectroscopy and modeling

    Science.gov (United States)

    Missailidis, Sotiris; de Oliveira, Renata Carvalho; Silva, Dilson; Cortez, Célia Martins; Guterres, Alexandro; Vicente, Luciana Helena Bassan; de Godoy, Daniela Tupy; Lemos, Elba

    2015-12-01

    In this study we have aimed to develop novel aptamers against the Hantavirus nucleoprotein N, a valid antigen already used in the Hantavirus reference laboratory of the Institute Oswaldo Cruz in Rio de Janeiro, Brazil. Such aptamers, if they are found to bind with high affinity and specificity for the selected hantavirus antigen, they could be translated into novel diagnostic assays with the ability to provide early detection for hantaviroses and their related disease syndromes. In a preliminary screening, we have managed to identify three aptamer species. We have analyzed a short and a long version of these aptamer using fluorescence spectroscopy and modelled their binding. We have identified Stern-Volmer constants for the selected aptamers, which have shown affinity for their target, with a different binding between the short and the long versions of them. Short aptamers have shown to have a higher Stern-Volmer constant and the ability to potentially bind to more than one binding site on the antigen. The information provided by the spectroscopic screening has been invaluable in allowing us to define candidates for further development into diagnostic assays.

  3. A combined fluorescence spectroscopy, confocal and 2-photon microscopy approach to re-evaluate the properties of sphingolipid domains.

    Science.gov (United States)

    Pinto, Sandra N; Fernandes, Fábio; Fedorov, Alexander; Futerman, Anthony H; Silva, Liana C; Prieto, Manuel

    2013-09-01

    The aim of this study is to provide further insight about the interplay between important signaling lipids and to characterize the properties of the lipid domains formed by those lipids in membranes containing distinct composition. To this end, we have used a combination of fluorescence spectroscopy, confocal and two-photon microscopy and a stepwise approach to re-evaluate the biophysical properties of sphingolipid domains, particularly lipid rafts and ceramide (Cer)-platforms. By using this strategy we were able to show that, in binary mixtures, sphingolipids (Cer and sphingomyelin, SM) form more tightly packed gel domains than those formed by phospholipids with similar acyl chain length. In more complex lipid mixtures, the interaction between the different lipids is intricate and is strongly dictated by the Cer-to-Chol ratio. The results show that in quaternary phospholipid/SM/Chol/Cer mixtures, Cer forms gel domains that become less packed as Chol is increased. Moreover, the extent of gel phase formation is strongly reduced in these mixtures, even though Cer molar fraction is increased. These results suggest that in biological membranes, lipid domains such as rafts and ceramide platforms, might display distinctive biophysical properties depending on the local lipid composition at the site of the membrane where they are formed, further highlighting the potential role of membrane biophysical properties as an underlying mechanism for mediating specific biological processes.

  4. Determination of alkylphenol and alkylphenolethoxylates in biota by liquid chromatography with detection by tandem mass spectrometry and fluorescence spectroscopy

    Science.gov (United States)

    Schmitz-Afonso, I.; Loyo-Rosales, J.E.; de la Paz Aviles, M.; Rattner, B.A.; Rice, C.P.

    2003-01-01

    A quantitative method for the simultaneous determination of octylphenol, nonylphenol and the corresponding ethoxylates (1 to 5) in biota is presented. Extraction methods were developed for egg and fish matrices based on accelerated solvent extraction followed by a solid-phase extraction cleanup, using octadecylsilica or aminopropyl cartridges. Identification and quantitation were accomplished by liquid chromatography-electrospray tandem mass spectrometry (LC-MS-MS) and compared to the traditional liquid chromatography with fluorescence spectroscopy detection