WorldWideScience

Sample records for fluorescence analysis xrf

  1. Application of x-ray fluorescence (XRF) absolute analysis method for silica refractories

    International Nuclear Information System (INIS)

    Asakura, Hideo; Yamada, Yasujiro; Kansai, Kouhei; Tomatsu, Ichirou; Murata, Mamoru

    2015-01-01

    X-ray fluorescence (XRF) analysis is a rapid and precise quantitative analytical method for the determination of major and trace elements in many industries and academics. XRF analytical values are relative due to the use of the calibration curves calculated from measuring the reference standard materials such as Japanese Refractory Reference Materials (JRRM) series with certified values determined by wet chemical analysis. The development of the XRF analytical method from relative to absolute analysis will help much to determine the absolute values of samples from the fields where reference standard samples have not been prepared, and thus can be applied widely in many industries. The implement of the absolute XRF analysis for silica refractories requires high purity reagents and/or reference standard solution for the binary basic calibration curve, and theoretical matrix correction coefficients for the multi-components silica refractories analysis. The reproducibility and repeatability of this method for Al 2 O 3 5 mass% sample were 0.009 and 0.006 mass% in Al 2 O 3 and showed better values that those of ICP-AES recognized as an absolute method in JIS R 2212-2, which yielded 0.028 and 0.031 mass%, respectively. The XRF absolute analysis for JRRM 200 series, 201a and 205a does not show a bias but coincides with their certified values. (author)

  2. Microbialite Biosignature Analysis by Mesoscale X-ray FluorescenceXRF) Mapping.

    Science.gov (United States)

    Tice, Michael M; Quezergue, Kimbra; Pope, Michael C

    2017-11-01

    As part of its biosignature detection package, the Mars 2020 rover will carry PIXL, the Planetary Instrument for X-ray Lithochemistry, a spatially resolved X-ray fluorescenceXRF) spectrometer. Understanding the types of biosignatures detectable by μXRF and the rock types μXRF is most effective at analyzing is therefore an important goal in preparation for in situ Mars 2020 science and sample selection. We tested mesoscale chemical mapping for biosignature interpretation in microbialites. In particular, we used μXRF to identify spatial distributions and associations between various elements ("fluorescence microfacies") to infer the physical, biological, and chemical processes that produced the observed compositional distributions. As a test case, elemental distributions from μXRF scans of stromatolites from the Mesoarchean Nsuze Group (2.98 Ga) were analyzed. We included five fluorescence microfacies: laminated dolostone, laminated chert, clotted dolostone and chert, stromatolite clast breccia, and cavity fill. Laminated dolostone was formed primarily by microbial mats that trapped and bound loose sediment and likely precipitated carbonate mud at a shallow depth below the mat surface. Laminated chert was produced by the secondary silicification of microbial mats. Clotted dolostone and chert grew as cauliform, cryptically laminated mounds similar to younger thrombolites and was likely formed by a combination of mat growth and patchy precipitation of early-formed carbonate. Stromatolite clast breccias formed as lag deposits filling erosional scours and interstromatolite spaces. Cavities were filled by microquartz, Mn-rich dolomite, and partially dolomitized calcite. Overall, we concluded that μXRF is effective for inferring genetic processes and identifying biosignatures in compositionally heterogeneous rocks. Key Words: Stromatolites-Biosignatures-Spectroscopy-Archean. Astrobiology 17, 1161-1172.

  3. XRF newsletter. No. 9, May 2005

    International Nuclear Information System (INIS)

    2005-06-01

    This periodical XRF Newsletter is to inform the XRF laboratories in IAEA Member States on recent developments in the field of XRF spectrometry and to exchange views on fundamental and applied aspects of sampling, sample preparation, instrumentation, quality control, etc. A few selected examples of the recent activities in the IAEA XRF Laboratory and its results in the field of XRF are presented: In-situ analysis of bronzes by portable X-ray fluorescence spectrometry; Micro-beam X-ray absorption and fluorescence measurement with synchrotron radiation; 5th International BioPIXE Symposium; the spreadsheet method for calculating uncertainty in total reflection x-ray fluorescence analysis

  4. Description of x-ray-fluorescence (XRF) system for the Wet Scrap Development Laboratory (WSDL)

    International Nuclear Information System (INIS)

    Jedlovec, D.R.

    1981-06-01

    In support of the process control and accountability needs of the Wet Scrap Design Laboratory (WSDL), a technique utilizing X-ray Fluorescence (XRF) to determine actinide concentrations was developed and tested in FY 80, FY 81 at the General Electric Vallecitos Nuclear Center (GE-VNC). XRF analysis of uranium and plutonium solutions representative of those expected from the wet chemical processes of the WSDL was performed. This contract was to develop, test, and demonstrate control system concepts to provide a basis for an Integrated Control System (ICS) for a COPRECAL Conversion Plant. Financial support to the ICS was withdrawn before any x-ray fluorescence plutonium testing and development work could be accomplished. The following XRF testing and operation were performed at GE-VNC in FY 80, FY 81: uranium, plutonium, U/Pu testing completed September 1980; in-line testing completed October 1980; high concentration testing completed October 1980; shipment of XRF system components to W-HEDL accomplished January 1981

  5. Analysis of heterogeneous gallstones using laser-induced breakdown spectroscopy (LIBS) and wavelength dispersive X-ray fluorescence (WD-XRF).

    Science.gov (United States)

    Jaswal, Brij Bir S; Kumar, Vinay; Sharma, Jitendra; Rai, Pradeep K; Gondal, Mohammed A; Gondal, Bilal; Singh, Vivek K

    2016-04-01

    Laser-induced breakdown spectroscopy (LIBS) is an emerging analytical technique with numerous advantages such as rapidity, multi-elemental analysis, no specific sample preparation requirements, non-destructiveness, and versatility. It has been proven to be a robust elemental analysis tool attracting interest because of being applied to a wide range of materials including biomaterials. In this paper, we have performed spectroscopic studies on gallstones which are heterogeneous in nature using LIBS and wavelength dispersive X-ray fluorescence (WD-XRF) techniques. It has been observed that the presence and relative concentrations of trace elements in different kind of gallstones (cholesterol and pigment gallstones) can easily be determined using LIBS technique. From the experiments carried out on gallstones for trace elemental mapping and detection, it was found that LIBS is a robust tool for such biomedical applications. The stone samples studied in the present paper were classified using the Fourier transform infrared (FTIR) spectroscopy. WD-XRF spectroscopy has been applied for the qualitative and quantitative analysis of major and trace elements present in the gallstone which was compared with the LIBS data. The results obtained in the present paper show interesting prospects for LIBS and WD-XRF to study cholelithiasis better.

  6. XRF newsletter. No. 6, August 2003

    International Nuclear Information System (INIS)

    2003-08-01

    This periodical XRF Newsletter is to inform the XRF laboratories in IAEA Member States on recent developments in the field of XRF spectrometry and to exchange views on fundamental and applied aspects of sampling, sample preparation, instrumentation, quality control, etc. A few selected examples of the recent activities in the IAEA XRF Laboratory and its results in the field of XRF are presented: Application of X-ray fluorescence techniques for the determination of hazardous and essential trace elements in environmental and biological materials; X-ray fluorescence analysis and computerized tomographic imaging with a laboratory micro-beam scanning spectrometer; Data acquisition software for X-ray microprobe; XRF Laboratories Database; Collaborative Bronze Art Project

  7. Evaluation of portable Raman spectroscopy and handheld X-ray fluorescence analysis (hXRF) for the direct analysis of glyptics

    Science.gov (United States)

    Lauwers, D.; Candeias, A.; Coccato, A.; Mirao, J.; Moens, L.; Vandenabeele, P.

    2016-03-01

    In archaeometry, the advantages of a combined use of Raman spectroscopy and X-ray fluorescence spectroscopy are extensively discussed for applications such as the analysis of paintings, manuscripts, pottery, etc. Here, we demonstrate for the first time the advantage of using both techniques for analysing glyptics. These engraved gemstones or glass materials were originally used as stamps, to identify the owner, for instance on letters, but also on wine vessels. For this research, a set of 64 glyptics (42 Roman glass specimens and 22 modern ones), belonging to the collection of the museum 'Quinta das Cruzes' in Funchal (Madeira, Portugal), was analysed with portable Raman spectroscopy and handheld X-ray fluorescence (hXRF). These techniques were also used to confirm the gemological identification of these precious objects and can give extra information about the glass composition. Raman spectroscopy identifies the molecular composition as well as on the crystalline phases present. On the other hand, hXRF results show that the antique Roman glass samples are characterised with low Pb and Sn levels and that the modern specimens can be discriminated in two groups: lead-based and non-lead-based ones.

  8. The application of X-ray fluorescence (XRF) method for the determination chemical composition of glass bath raw materials

    International Nuclear Information System (INIS)

    Werfel, Z.

    1974-01-01

    The estimation of determination accuracy of glass sand, limestone and dolomite compositions by the means of X-ray fluorescence method has been made. The most important advantage of XRF method application is short time of analysis. The preparation time of sample is not longer than 20 minutes, the analysis of single sample is about 1,5 minutes. The comparison of results of determinations by the means of XRF and complexometric methods have been given. (author)

  9. X-Ray Fluorescence (XRF) to identify chemical analysis of minerals in Buton island, SE Sulawesi, Indonesia

    Science.gov (United States)

    Jamaluddin; Darwis, A.; Massinai, M. A.

    2018-02-01

    Asbuton as natural rock asphalt consists of a granular material; usually limestone or sandstone. In its natural state, it contains bitumen intimately dispersed throughout its mass, while the remainder of the material is a solid mineral matter. This research was conducted in Sorowalio, Buton Regency, Southeast Sulawesi province, Indonesia. This study aims to determine the content and the percentage of minerals contained in the rocks by using X-Ray Fluorescence (XRF). The method of research is a preliminary survey, sampling and laboratory analysis. XRF reports chemical composition, including Si (quartz) and Ca (calcite). The results indicate the content and the percentage of element dominate the rock sample is Fe2O3, MgO, CaO, and SiO2. Research results using XRF show that there are four metal oxide dominant elements. Hematite (Fe2O3) is dominant in all locations of sampling. Magnesium oxide (MgO) has the highest levels found in sample number six and the lowest is in sample number five. Silicates (SiO) has the highest levels at sample number six and the lowest in sample number seven. Calcium oxide (CaO) is dominant in all sampling locations. The sample of asbuton contains 37.90% asphalt, 43.28% carbonate, and18.82% other minerals.

  10. Elemental analysis of granite by instrumental neutron activation analysis (INAA) and X-ray fluorescence analysis (XRF)

    International Nuclear Information System (INIS)

    El-Taher, A.

    2012-01-01

    The instrumental neutron activation analysis technique (INAA) was used for qualitative and quantitative analysis of granite samples collected from four locations in the Aswan area in South Egypt. The samples were prepared together with their standards and simultaneously irradiated in a neutron flux of 7×10 11 n/cm 2 s in the TRIGA Mainz research reactor. Gamma-ray spectra from an hyper-pure germanium detector were analyzed. The present study provides the basic data of elemental concentrations of granite rocks. The following elements have been determined Na, Mg, K, Fe, Mn, Sc, Cr, Ti, Co, Zn, Ga, Rb, Zr, Nb, Sn, Ba, Cs, La, Ce, Nd, Sm, Eu, Yb, Lu, Hf, Ta, Th and U. The X-ray fluorescence (XRF) was used for comparison and to detect elements, which can be detected only by XRF such as F, S, Cl, Co, Cu, Mo, Ni, Pb, Se and V. The data presented here are our contribution to understanding the elemental composition of the granite rocks. Because there are no existing databases for the elemental analysis of granite, our results are a start to establishing a database for the Egyptian granite. It is hoped that the data presented here will be useful to those dealing with geochemistry, granite chemistry and related fields. - Highlights: ► Instrumental neutron activation analysis technique (INAA) was used for qualitative and quantitative analysis of granite. ► The samples were prepared together with their standards and simultaneously irradiated in a neutron flux of 7×10 11 n/cm 2 s in the TRIGA Mainz research reactor. ► Following elements have been determined Na, Mg, K, Fe, Mn, Sc, Cr, Ti, Co, Zn, Ga, Rb, Zr, Nb, Sn, Ba, Cs, La, Ce, Nd, Sm, Eu, Yb, Lu, Hf, Ta, Th and U.

  11. Latest developments and opportunities for 3D analysis of biological samples by confocal μ-XRF

    International Nuclear Information System (INIS)

    Perez, Roberto D.; Sanchez, Hector J.; Perez, Carlos A.; Rubio, Marcelo

    2010-01-01

    X-ray fluorescence analysis performed with a primary radiation focused in the micrometer range is known as micro-X-ray fluorescence (μ-XRF). It is characterized by a penetration depth higher than other micro-analytical methods, reaching hundreds of micrometers in biological samples. This characteristic of the X-ray beam can be employed in 3D analysis. An innovative method to perform 3D analysis by μ-XRF is the so-called confocal setup. The confocal setup consists of X-ray lenses in the excitation as well as in the detection channel. In this configuration, a micro-volume defined by the overlap of the foci of both X-ray lenses is analyzed. Scanning this micro-volume through the sample can be used to perform a study in three dimensions. At present, X-ray lenses used in confocal μ-XRF experiments are mainly glass capillaries and polycapillaries. Glass capillaries are used in the excitation channel with sources of high photon flux like synchrotron radiation. Half polycapillaries or conical polycapillary concentrators are used almost exclusively in the detection channel. Spatial resolution of the confocal μ-XRF depends on the dimensions of the foci of both X-ray lenses. The overlap of these foci forms an ellipsoid which is the probing volume of the confocal setup. The axis length of the probing volume reported in confocal μ-XRF experiments are of order of few tens of micrometer. In our confocal setup, we used a commercial glass monocapillary in the excitation channel and a monolithic half polycapillary in the detection channel. The polycapillary was home-made by means of drawing of multibundles of glass capillaries in a heating furnace. The experiment was carried out at the beamline D09B-XRF of the Synchrotron Light National Laboratory (Laboratorio Nacional de Luz Sincrotron, LNLS) using white beam. A model for the theoretical description of X-ray fluorescence intensity registered by confocal μ-XRF was introduced by Malzer and Kanngieβer [2005. A model for the

  12. XRF Newsletter, No. 22, December 2011

    International Nuclear Information System (INIS)

    2011-12-01

    In this issue: Activities in the IAEA XRF Laboratory, Micro-XRF analysis of metal alloys: Addressing the problem of micro-scale heterogeneity; Meetings; International Conference on Development and Applications of Nuclear Technologies (NUTECH-2011), Cracow, Poland, 11-14 September 2011; Support to Technical Cooperation Projects; Xray Fluorescence in Member States: Austria, Poland, Serbia, Philippines; Publications of potential interest to the XRF community.

  13. Analysis of black japanned furniture by XRF

    Energy Technology Data Exchange (ETDEWEB)

    Felix, Valter de S.; Oliveira, Ana L.C. de; Freitas, Renato P., E-mail: valter.felix@ifrj.edu.br, E-mail: renato.freitas@ifrj.edu.br, E-mail: annalecastro@hotmail.com [Instituto Federal do Rio de Janeiro (LISCOMP/IFRJ-CPAR), Paracambi, RJ (Brazil). Lab. de Instrumentação e Simulação Computacional; Pereira, Marcelo O.; Carvalho, Cristiano S.; Silva, Fabricio L., E-mail: marcelocefetrj@gmail.com [Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET), Nova Iguaçu, RJ (Brazil)

    2017-07-01

    Currently, X-ray fluorescence (XRF) is the most employed technique to characterize Cultural Heritage artifacts. The increasing use of this technique in this research field is due to technological developments that occurred during the last decade, which enabled the construction of easy to handle, XRF portable systems that allow fast, non-destructive and in situ analyses. One of the most common applications of XRF is the characterization of inorganic pigments in works of art, polychrome sculptures, etc. The information obtained in this type of analysis is essential for a better knowledge of the history of the work of art and for restorers and conservators who can choose better intervention methods. In this paper, a European black Japanned furniture dated between the eighteenth and the nineteenth centuries was analyzed by XRF. The analyses were carried out in situ using a portable XRF system, Tracer IV model from Bruker, which has a Rh anode. The analyses allowed concluding that the pigments in the polychrome are: lamp black, vermilion, brown ochre, Prussian blue and green earth. In addition to the polychrome in high relief, the furniture has golden regions where gold was identified mixed with lead-based historical pigments. The results obtained, besides helping to confirm the authenticity of the artifact, were also useful for restorers to choose suitable methods to intervene the work of art, which has recently undergone restoration. (author)

  14. Analysis of black japanned furniture by XRF

    International Nuclear Information System (INIS)

    Felix, Valter de S.; Oliveira, Ana L.C. de; Freitas, Renato P.

    2017-01-01

    Currently, X-ray fluorescence (XRF) is the most employed technique to characterize Cultural Heritage artifacts. The increasing use of this technique in this research field is due to technological developments that occurred during the last decade, which enabled the construction of easy to handle, XRF portable systems that allow fast, non-destructive and in situ analyses. One of the most common applications of XRF is the characterization of inorganic pigments in works of art, polychrome sculptures, etc. The information obtained in this type of analysis is essential for a better knowledge of the history of the work of art and for restorers and conservators who can choose better intervention methods. In this paper, a European black Japanned furniture dated between the eighteenth and the nineteenth centuries was analyzed by XRF. The analyses were carried out in situ using a portable XRF system, Tracer IV model from Bruker, which has a Rh anode. The analyses allowed concluding that the pigments in the polychrome are: lamp black, vermilion, brown ochre, Prussian blue and green earth. In addition to the polychrome in high relief, the furniture has golden regions where gold was identified mixed with lead-based historical pigments. The results obtained, besides helping to confirm the authenticity of the artifact, were also useful for restorers to choose suitable methods to intervene the work of art, which has recently undergone restoration. (author)

  15. Analysis of corrosion-product transport using nondestructive XRF and MS techniques

    International Nuclear Information System (INIS)

    Sawicka, B.D.; Sawicki, J.A.

    1998-01-01

    This paper describes the application of X-ray fluorescence (XRF) and Moessbauer spectroscopy (MS) techniques to monitor corrosion-product transport (CPT) in water circuits of nuclear reactors. The combination of XRF and MS techniques was applied in studies of CPT crud filters from both primary- and secondary-side water circuits (i.e., radioactive and nonradioactive specimens) of CANDU reactors. The XRF-MS method allows nondestructive analysis of species collected on filters and provides more complete information about corrosion products than commonly used digestive methods of chemical analysis. Recent analyses of CPT specimens from the Darlington Nuclear Generating Station (NGS) primary side and the Bruce B NGS feedwater system are shown as examples. Some characteristics of primary and secondary water circuits are discussed using these new data. (author)

  16. X-ray fluorescence analysis of thin films at glancing-incident and -takeoff angles

    International Nuclear Information System (INIS)

    Tsuji, K.; Sato, S.; Hirokawa, K.

    1995-01-01

    We have developed a new analytical method, Glancing-Incidence and -Takeoff X-Ray Fluorescence (GIT-XRF) method for the first time. Here, we present an idea for a thin-film analysis and a surface analysis by the GIT-XRF method. In this method, the dependence of the fluorescent x-ray intensity on takeoff angle is measured at various incident angles of the primary x-ray. Compared with a total reflection x-ray fluorescence method, the GIT-XRF method allows a detailed thin-film analysis, because the thin film is cross-checked by many experimental curves. Moreover, a surface-sensitive analysis is also possible by the GIT-XRF method. (author)

  17. Capacity of X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Wobrauschek, P.; Kregsamer, P.

    1997-01-01

    X-Ray fluorescence analysis (XRF) is a powerful analytical tool for the qualitative and quantitative determination of chemical elements in a sample. Two different detection principles are accepted widely: wavelength dispersive and energy dispersive. Various sources for XRF are discussed: X-ray tubes, accelerators for particle induced XRF, radioactive isotopes, and the use of synchrotron radiation. Applications include environmental, technical, medical, fine art, and forensic studies. Due to the demands of research and application special techniques like total reflection XRF (TXRF) were developed with ultimately achievable detection limits in the femtogram region. The elements detectable by XRF range from Be to U. (author)

  18. PIXE and XRF Analysis of Roman Denarii

    Science.gov (United States)

    Fasano, Cecilia; Raddell, Mark; Manukyan, Khachatur; Stech, Edward; Wiescher, Michael

    2017-09-01

    A set of Roman Denarii from the republican to the imperial period (140BC-240AD) has been studied using X-ray fluorescent (XRF) scanning and proton induced x-ray emission (PIXE) techniques. XRF and PIXE are commonly used in the study of cultural heritage objects because they are nondestructive. The combination of these two methods is also unique because of the ability to penetrate the sample with a broader spectrum of depths and energies than either could achieve on its own. The coins are from a large span of Roman history and their analysis serves to follow the economic and political change of the era using the relative silver and copper contents in each sample. In addition to analyzing the samples, the study sought to compare these two common analysis techniques and to explore the use of a standard to examine any shortcomings in either of the methods. Data sets were compared and then adjusted to a calibration curve which was created from the analysis of a number of standard solutions. The concentrations of the standard solutions were confirmed using inductively coupled plasma spectroscopy. Through this we were able to assemble results which will progress the basis of understanding of PIXE and XRF techniques as well as increase the wealth of knowledge of Ancient Roman currency.

  19. Online X-ray Fluorescence (XRF) Analysis of Heavy Metals in Pulverized Coal on a Conveyor Belt.

    Science.gov (United States)

    Yan, Zhang; XinLei, Zhang; WenBao, Jia; Qing, Shan; YongSheng, Ling; DaQian, Hei; Da, Chen

    2016-02-01

    Heavy metals in haze episode will continue to threaten the quality of public health around the world. In order to decrease the emission of heavy metals produced from coal burning, an online X-ray fluorescence (XRF) analyzer system, consisting of an XRF analyzer with data acquisition software and a laser rangefinder, was developed to carry out the measurement of heavy metals in pulverized coal. The XRF analyzer was mounted on a sled, which can effectively smooth the surface of pulverized coal and reduce the impact of surface roughness during online measurement. The laser rangefinder was mounted over the sled for measuring the distance between a pulverized coal sample and the analyzer. Several heavy metals and other elements in pulverized coal were online measured by the XRF analyzer directly above a conveyor belt. The limits of detection for Hg, Pb, Cr, Ti, Fe, and Ca by the analyzer were 44 ± 2, 34 ± 2, 17 ± 3, 41 ± 4, 19 ± 3, and 65 ± 2 mg·kg(-1), respectively. The relative standard deviation (%RSD) for the elements mentioned was less than 7.74%. By comparison with the results by inductively-coupled plasma mass spectrometry (ICP-MS), relative deviation (%D) of the online XRF analyzer was less than 10% for Cr, Ti, and Ca, in the range of 0.8-24.26% for Fe, and greater than 20% for Hg and Pb. © The Author(s) 2016.

  20. XRF newsletter. No. 10, December 2005

    International Nuclear Information System (INIS)

    2005-12-01

    This periodical XRF Newsletter is to inform the XRF laboratories in IAEA Member States on recent developments in the field of XRF spectrometry and to exchange views on fundamental and applied aspects of sampling, sample preparation, instrumentation, quality control, etc. A few selected examples of the recent activities in the IAEA XRF Laboratory and its results in the field of XRF are presented: (Trans)portable XRF spectrometer with polycapillary optics and vacuum chamber; Recent and forthcoming activities in ion beam accelerator methodology and applications; Implementation of a Quality System in the IAEA X ray fluorescence laboratory; In situ applications of X ray fluorescence techniques; Proficiency test for XRF laboratories; Database of reference materials for XRF laboratories

  1. The evaluation of the x-ray fluorescence (XRF) technique for process monitoring of vitreous slag from thermal waste treatment systems: A comparative study of the analysis of Plasma Hearth slag for Ce, Fe and Cr by XRF and inductively coupled plasma spectrometries

    International Nuclear Information System (INIS)

    Sutton, M.A.H.; Crane, P.J.; Cummings, D.G.; Carney, K.P.

    1995-05-01

    Slag material produced by the Plasma Hearth Process (PHP) varies in chemical composition due to the heterogeneous nature of the input sample feed. X-ray fluorescence (XRF) is a spectroscopic technique which has been evaluated to perform elemental analyses on surrogate slag material for process control. Vitreous slag samples were ground to a fine powder in an impact ball mill and analyzed directly using laboratory prepared standards. The fluorescent intensities of Si, Al and Fe in the slag samples was utilized to determine the appropriate matrix standard set for the determination of Ce. The samples were analyzed for Cr, Ni, Fe and Ce using a wavelength dispersive XRF polychromator. Split samples were dissolved and analyzed by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES). The precision of the XRF technique was better than 5% RSD. The limit of detection for Ce varied with sample matrix and was typically below 0.01% by weight. The linear dynamic range for the technique was evaluated over two orders of magnitude. Typical calibration standards ranged from 0.01% Ce to 1% Ce. The Ce determinations performed directly on ground slag material by the XRF techniques were similar to ICP-AES analyses. Various chemical dissolution and sample preparation techniques were evaluated for the analysis of Ce in slag samples. A fusion procedure utilizing LiBO 2 was found to provide reliable analyses for the actinide surrogate in a variety of slag matrices. The use of the XRF technique reduced the time of analysis for Ce and Cr from three days to one day for five samples. No additional waste streams were created from the analyses by the XRF technique, while the ICP technique generated several liters of liquid waste

  2. Pots, plates and provenance: sourcing Indian coarse wares from Mleiha using X-ray fluorescence (XRF) spectrometry analysis

    International Nuclear Information System (INIS)

    Reddy, A; Attaelmanan, A G; Mouton, M

    2012-01-01

    The identification of more than 25% of the pottery sherds from the late PIR.D period (ca. 2nd - mid. 3rd c. AD) assemblage from the recently excavated building H at Mleiha as Indian is based on form and fabric, but using only visual assessment. Petrographic analysis of the fabrics can provide more precise indicators of the geographical origin of the wares. In this study, a total of 21 sherds from various key sites in Western India were compared with 7 different 'Indian' coarse-ware vessels sampled at Mleiha using X-ray fluorescence (XRF) spectrometry. The analyses were conducted on powdered samples collected from the core of each sherd. Each sample was irradiated for 1000 seconds using a 1.2 mm diameter X-ray beam. The resulting spectra were used for quantification of the X-ray intensity and elemental concentration. Levels of correlation in the elemental ratios of the sherds were statistically tested using an F-test as well as a Chi-test. Initial review of the XRF results indicates that the Maharashtra and Gujarat regions of India are probable source areas for at least two of the types of wares. Collection of additional samples from these areas and other regions of India, and further statistical analysis through methods such as Principal Component Analysis will help to isolate groups of wares from India and correlate them with types of vessels imported into the Oman peninsula in antiquity.

  3. Development of confocal X-ray fluorescence (XRF) microscopy at the Cornell high energy synchrotron source

    International Nuclear Information System (INIS)

    Woll, A.R.; Huang, R.; Mass, J.; Bisulca, C.; Bilderback, D.H.; Gruner, S.; Gao, N.

    2006-01-01

    A confocal X-ray fluorescence microscope was built at the Cornell High Energy Synchrotron Source (CHESS) to obtain compositional depth profiles of historic paintings. The microscope consists of a single-bounce, borosilicate monocapillary optic to focus the incident beam onto the painting and a commercial borosilicate polycapillary lens to collect the fluorescent X-rays. The resolution of the microscope was measured by scanning a variety of thin metal films through this confocal volume while monitoring the fluorescence signal. The capabilities of the technique were then probed using test paint microstructures with up to four distinct layers, each having a thickness in the range of 10-80 microns. Results from confocal XRF were compared with those from stand-alone XRF and visible light microscopy of the paint cross-sections. A large area, high-resolution scanner is currently being built to perform 3D scans on moderately sized paintings. (orig.)

  4. Performance evaluation of the ORNL multi-elemental XRF analysis algorithms

    Energy Technology Data Exchange (ETDEWEB)

    McElroy, Robert Dennis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-11-01

    Hybrid K-Edge Densitometer (HKED) systems integrate both K-Edge Densitometry (KED) and X-Ray Fluorescence (XRF) analyses to provide accurate rapid, assay results of the uranium and plutonium content of dissolver solution samples from nuclear fuel reprocessing facilities. Introduced for international safeguards applications in the late 1980s, the XRF component of the hybrid analyses is limited to quantification of U and Pu over a narrow range of U:Pu concentration ratios in the vicinity of ≈100. The analysis was further limited regarding the presence of minor actinide components where only a single minor actinide (typically Am) is included in the analysis and then only treated as an interference. The evolving nuclear fuel cycle has created the need to assay more complex dissolver solutions where uranium may no longer be the dominant actinide in the solution and the concentrations of the so called minor actinides (e.g., Th, Np, Am, and Cm) are sufficiently high that they can no longer be treated as impurities and ignored. Extension of the traditional HKED Region of Interest (ROI) based analysis to include these additional actinides is not possible due to the increased complexity of the XRF spectra. Oak Ridge National Laboratory (ORNL) has developed a spectral fitting approach to the HKED XRF measurement with an enhanced algorithm set to accommodate these complex XRF spectra. This report provides a summary of the spectral fitting methodology and examines the performance of these algorithms using data obtained from the ORNL HKED system, as well as data provided by the International Atomic Energy Agency (IAEA) on actual dissolver solutions.

  5. XRF analysis of soils contaminated by dust falls

    International Nuclear Information System (INIS)

    Marumo, Katsumi; Onoki, Yuka; Wada, Nobuhiko; Okano, Hideki

    2013-01-01

    Dust falls from the chimneys of waste incineration plants, coal-fired power plants, and refineries may contaminate soil over vast areas. Using an auger machine at 72 sites around a refinery in the Kanto area, Japan, we obtained 216 soil samples for a screening survey of potentially contaminated land. Qualitative and quantitative chemical analyses of zinc, lead, and cadmium were performed using a transmission X-ray fluorescence spectrometer (TXRF). X-ray fluorescence (XRF) chemical analytical data suggested that contaminated soil extends up to 3 km away from the chimneys of the refinery. Using calibration curves for the intensity ratios of Zn Kα X-ray to Mo Kβ Compton scatter X-ray [(Zn Kα)/(Mo-Kβ-Compton)], Pb Lβ X-ray to Mo-Kβ-Compton scatter X-ray [(Pb Lβ)/(Mo-Kβ-Compton)], and Cd Kα X-ray to Mo-Kβ Compton scatter X-ray [(Cd Kβ)/(Mo-Kβ-Compton)] of 30 reference materials, we obtained the Zn, Pb, and Cd concentrations of these 216 soil samples. The Pb and Cd concentrations from the XRF chemical analytical data were very similar to the Pb and Cd leachabilities determined by 1 M HC1 leaching test (MOE-approved method No. 19), suggesting that the chemical forms in which Pb and Cd occur are an adsorbed phase and a carbonate phase, which can be easily dissolved by 1 M HC1. XRF spectra of individual soil particles, obtained by spot-sized X-ray beams passed through a 1.5-mm-diameter and a 0.5-mm-diameter collimators, suggested that most of the soil fractions contained Zn and Pb. The levels of brightness of the X-ray images of these Zn- and Pb-bearing fractions were monitored with an X-ray CCD camera attached to the TXRF. Most of the soil fractions were transparent at the maximum X-ray tube voltage (50 kV), suggesting that the soil samples are suitable for the quantitative XRF chemical analysis of Zn and Pb. (author)

  6. Status of data and data needs for XRF and PIXE based element analysis

    International Nuclear Information System (INIS)

    Kapoor, S.S.; Choudhary, R.K.

    1986-01-01

    The status of data and data needs for X-ray fluorescence (XRF) and particle induced X-ray (PIXE) are examined to determine the areas where additional and improved data are required to improve the accuracy, precision and sensitivity of quantitative element analysis by the above techniques. (author)

  7. Airborne particulate matter collection and analysis by XRF

    International Nuclear Information System (INIS)

    Santos, Flora L.; Esguerra, Luz V.; Pabroa, Preciosa B.; Almoneda, Rosalina

    2004-01-01

    The Philippine Nuclear Research Institute (PNRI) continues to pursue its air pollution research in support of the implementation of the 1999 Clean Air Act. The primary tool for analysis is X-Ray Fluorescence spectrometry (XRF) since the PPP-I is still on extended shut down. Following the workplan approved during the 1991 Workshop on Utilization of Research Reactors, the PNRI collected airborne particulate matter using the Gent sampler. The sampling site selected for the program was Poveda Learning Center, located beside a major highway, the Epifanio delos Santos Avenue (EDSA) where the principal source of pollution is vehicular emissions. Samples collected up to August were analyzed by XRF using three sets of analytical parameters to allow optimized analysis of a wider range of elements including Na and Pb. Although the PNRI has no operating reactor, it has personnel who have trained in NAA but are unable to apply the technique. As mentioned in the 2001 Workshop, the PNRI is considering several options to resume reactor-related activities. Thus, it is necessary to ensure continuing availability of expertise in NAA in the PNRI. It looks forward to collaborating with other Institutes through the FNCA program for the analysis of samples by NAA and using reactor parameters from collaborating Institute, to obtain experience in the use of Ko. This would also allow validation of XRF data obtained for these samples. In return it can analyze samples for collaborating institutions to generate data on Pb and S, which are important for pollutant source apportionment. (author)

  8. Data precision of X-ray fluorescence (XRF) scanning of discrete samples with the ITRAX XRF core-scanner exemplified on loess-paleosol samples

    Science.gov (United States)

    Profe, Jörn; Ohlendorf, Christian

    2017-04-01

    XRF-scanning is the state-of-the-art technique for geochemical analyses in marine and lacustrine sedimentology for more than a decade. However, little attention has been paid to data precision and technical limitations so far. Using homogenized, dried and powdered samples (certified geochemical reference standards and samples from a lithologically-contrasting loess-paleosol sequence) minimizes many adverse effects that influence the XRF-signal when analyzing wet sediment cores. This allows the investigation of data precision under ideal conditions and documents a new application of the XRF core-scanner technology at the same time. Reliable interpretations of XRF results require data precision evaluation of single elements as a function of X-ray tube, measurement time, sample compaction and quality of peak fitting. Ten-fold measurement of each sample constitutes data precision. Data precision of XRF measurements theoretically obeys Poisson statistics. Fe and Ca exhibit largest deviations from Poisson statistics. The same elements show the least mean relative standard deviations in the range from 0.5% to 1%. This represents the technical limit of data precision achievable by the installed detector. Measurement times ≥ 30 s reveal mean relative standard deviations below 4% for most elements. The quality of peak fitting is only relevant for elements with overlapping fluorescence lines such as Ba, Ti and Mn or for elements with low concentrations such as Y, for example. Differences in sample compaction are marginal and do not change mean relative standard deviation considerably. Data precision is in the range reported for geochemical reference standards measured by conventional techniques. Therefore, XRF scanning of discrete samples provide a cost- and time-efficient alternative to conventional multi-element analyses. As best trade-off between economical operation and data quality, we recommend a measurement time of 30 s resulting in a total scan time of 30 minutes

  9. The evaluation of X-ray fluorescence (XRF) for process monitoring of slag from the plasma hearth process

    International Nuclear Information System (INIS)

    Carney, K.P.; Smith, M.A.; Crane, P.J.

    1995-01-01

    Slag material produced by the Plasma Hearth Process (PHP) varies in chemical composition due to the heterogeneous nature of the input sample feed. X-ray fluorescence (XRF) is a spectroscopic technique which has been evaluated to perform elemental analyses on surrogate slag material for process control. The intensity of Si, Al and Fe in the slag samples was utilized to determine the appropriate matrix standard set for the determination of Ce. The precision of the XRF technique was better than 5% RSD. The limit of detection for Ce varied with sample matrix and was typically below 0.01 % by weight. The linear dynamic range for the technique was evaluated over 2 orders of magnitude. The Ce determinations performed directly on slag material by the XRF technique were similar to ICP-AES analyses. No addition waste streams were created from the analyses by the XRF technique

  10. Combining trace elements micro-analysis in deposited dredged sediments: EPMA and μ-XRF analysis

    International Nuclear Information System (INIS)

    Poitevin, A; Lerouge, C; Wille, G; Bataillard, P; Quinn, P; Hennet, L

    2012-01-01

    Since deposited dredged sediments are rich in metallic contaminants, they present a risk for environment. This work aims to study dredged sediments chemical composition, identify metal-carrier minerals and understand their mobility. Combining chemical and spectroscopic techniques at multi-scale for an integrative approach of trace elements (zinc, lead, iron) behaviour is therefore necessary. The global mineralogy and the chemistry of the sediment were determined by X-ray diffraction and fluorescence (XRF), respectively. Zn and Pb enriched fractions were separated using a sequential chemical extraction procedure and measured by inductively coupled plasma atomic emission and mass spectroscopy. Microanalyses using scanning electron microscopy (SEM), electron microprobe microanalysis (EPMA), combined with synchrotron radiation X-ray fluorescence (μ-XRF) were carried out to characterize mineralogical phases and identify Zn and Pb carrier minerals. Iron oxyhydroxides and iron sulphides were consistently identify as Zn and Pb carriers. The assumption that carbonate fraction was the major Zn carried phase, as demonstrated by chemical extraction results, was not verified by EPMA or μ-XRF.

  11. Role of importance of X-ray fluorescence analysis of forensic samples

    International Nuclear Information System (INIS)

    Jha, Shailendra; Sharma, M.

    2009-01-01

    Full text: In the field of forensic science, it is very important to investigate the evidential samples obtained at various crime scenes. X-ray fluorescence (XRF) is used widely in forensic science [1]. Its main strength is its non-destructive nature, thus preserving evidence [2, 3]. In this paper, we report the application of XRF to examine the evidences like purity gold and silver jewelry (Indian Ornaments), remnants of glass pieces and paint chips recovered from crime scenes. The experimental measurements on these samples have been made using X-ray fluorescence spectrometer (LAB Center XRF-1800) procured from Shimazdu Scientific Inst., USA. The results are explained in terms of quantitative/ qualitative analysis of trace elements. (author)

  12. Mineral analysis of the forages as ruminant feed using x-ray fluorescent spectrometry (XRF)

    International Nuclear Information System (INIS)

    Sasangka, B.H.; Tjiptosumirat, T.; Suharyono

    1998-01-01

    An experiment was conducted to evaluate mineral contents of forages as feed. Samples used in this experiment were maize straw, cassava leaf, leucaena leaf, king grass, teki grass, Imperata cyliandria and field grass. These samples were collected from several locations of ranches in Mataram, Lombok island samples were measured for dry matter content, and then were formed into pellet in the size of diameter 3 cm and 0,1 cm thick, as required by the XRF analysis. Excitation of 1 0 9 Cd and 5F e radioisotopes were used as the initial energy for XRF analysis. Result of the analysis of macro elements show that P content was below the detection limit of XRF for Imperata cycliandrica and field grass, while for other samples were between 0.80 % In all samples S content were between 0.12 and 0.33% Potassium content in leucaena and cassava leaves were low ; i.e. 2.49 and 1.28% respectively, however, the concentration of Ca was high in these samples, i.e. 2.13 and 0.74%, respectively. Except leucaena leaves, which was found to be the lowest, result of micro elements analysis showed that Si ranged between 0.34 and 3.24%. On the other hand, Cr content in leucaena leaves was the highest, i.e. 104 ppm, as compared to the other foragers which were undetectable. Manganese was also found undetectable in maize straw and grass, while on other forages ranged between 65.50 and 178 ppm. Cobalt was only detected in maize straw, which is 27.6 ppm. All forage samples contained Cu and Zn with an average range 4.10 - 6.84 ppm and 43.30 - 73.50 ppm, respectively. (author)

  13. Comparison between XRF and IBA techniques in analysis of fine aerosols collected in Rijeka, Croatia

    Energy Technology Data Exchange (ETDEWEB)

    Ivošević, Tatjana [Faculty of Engineering, University of Rijeka, Vukovarska 58, HR-51000 Rijeka (Croatia); Mandić, Luka, E-mail: lukam@phy.uniri.hr [Department of Physics, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka (Croatia); Orlić, Ivica [Department of Physics, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka (Croatia); Stelcer, Eduard; Cohen, David D. [Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Kirrawee DC, NSW 2232 (Australia)

    2014-10-15

    The new system for energy dispersive X-ray fluorescence (EDXRF) analysis has been installed at the Laboratory for Elemental Micro-Analysis (LEMA) at the University of Rijeka. Currently the key application of this new XRF system is in the field of environmental science, i.e. in the analysis of fine airborne particles. In this work, results of initial multi-elemental analysis of PM{sub 2.5} fraction is reported for the first time in the region of Rijeka, Croatia. Sampling was performed at the Rijeka City center, during a continuous 9-day period in February/March 2012. All samples were collected on stretched Teflon filters in 12 h periods. To check the reliability of the new XRF system, results of XRF analysis are compared with the results obtained by the well-established Ion Beam Analysis (IBA) laboratory at Australian Nuclear Science and Technology Organisation (ANSTO). The concentrations of H, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Br and Pb were determined. In addition, black carbon was determined by Laser Integrating Plate Method (LIPM). Very good agreement between XRF and IBA techniques is obtained for all elements detected by both techniques. Elemental concentrations were correlated with the traffic volume and wind speed and direction. The summary of our findings is presented and discussed in this paper.

  14. XRF Newsletter, No. 19, September 2010

    International Nuclear Information System (INIS)

    2010-09-01

    This issue contains articles on activities in the IAEA XRF Laboratory, - Meetings and Conferences, - European Commission Frame Programme 7 (FP7) Projects Promoting Nuclear based Analytical Techniques and Technology, - X ray Fluorescence in Member States, - Publications of Potential Interest to the XRF Community

  15. Evaluation of ABS resin disk certified reference materials for heavy metal analysis by x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Ohata, Masaki; Kidokoro, Toshihiro; Kurahashi, Masayasu; Hioki, Akiharu

    2010-01-01

    ABS resin disk certified reference materials (CRMs) for heavy-metal analysis (NMIJ CRM 8105-a, NMIJ CRM 8106-a, NMIJ CRM 8115-a and NMIJ CRM 8116-a) were evaluated using an energy dispersive X-ray fluorescence (ED-XRF) analysis. The homogeneities of elements for both among-disks and within-disk were evaluated by ED-XRF analysis without any sample pre-treatment, which were similar to those evaluated by ICP-MS analysis after a sample digenstion procedure. The normalized XRF sensitivities for Cd, Cr and Pb in different ABS resin disk CRMs were compared, and the differences among them for those ABS resin disks that have similar matrices were observed. Moreover, Hg in those ABS resin disk CRMs was stable for long-term X-ray irradiation during ED-XRF analysis. (author)

  16. Synchrotron radiation XRF microprobe study of human bone tumor slice

    International Nuclear Information System (INIS)

    Huang Yuying; Zhao Limin; Wang Zhouguang; Shao Hanru; Li Guangcheng; Wu Yingrong; He Wei; Lu Jianxin; He Rongguo

    1999-01-01

    The experimental apparatus of X-ray fluorescence (XRF) microprobe analysis at Beijing Synchrotron Radiation Facility (BSRF) is described. Using the bovine liver as the standard reference, the minimum detection limit (MDL) of trace element was measured to determine the capability of biological sample analysis by synchrotron radiation XRF microprobe. The relative change of the content of the major or trace element in the normal and tumor part of human bone tissue slice was investigated. The experimental result relation to the clinical medicine was also discussed. (author)

  17. Analysis of gold coins on the XIX century by portable XRF

    International Nuclear Information System (INIS)

    Pereira, Marcelo O.; Felix, Valter de S.; Freitas, Renato P.

    2017-01-01

    Coins are cultural symbols and reflect important historical events through of the history. Archaeologists, historians and other experts make use of the study of coins (Numismatics) to reconstruct the economy, forms of commerce, customs, religion, political history and art of people and region throughout the globe. The knowledge about the composition of the metal alloy of coins is essential to characterize the fabrication in a historical period and identify possible falsifications. The X-ray Fluorescence (XRF) is a technique of analysis spectroscopic widely used in archaeometry to investigate the elemental composition of pigments, ceramic objects, metal alloy. In this work were XRF analyzes used in a rare coin of the coronation of the emperor D. Pedro I in 1822, Brazilian coins of 1816 and a Portuguese coin of 1823 from the collection of the Museu Histórico Nacional of Rio de Janeiro (MHN). The XRF analyzes were performed using a portable Bruker TRACE IV model system, the spectra operation at a voltage of 40 keV and electric current of 10 uA in acquisition time of 60s. The results indicated the presence of Au, Ag, Cu. The portable X-ray system was shown to be powerful tool in the investigation of metallic alloys with high concentration. (author)

  18. Analysis of gold coins on the XIX century by portable XRF

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Marcelo O. [Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET/RJ), Nova Iguaçu, RJ (Brazil); Felix, Valter de S.; Freitas, Renato P. [Instituto Federal do Rio de Janeiro (LISCOMP/IFRJ), Paracambi, RJ (Brazil). Lab. de Instrumentação e Simulação Computacional; Aranha, Paula de J.M.; Heringer, Pedro C.S., E-mail: marcelocefetrj@gmail.com, E-mail: renato.freitas@ifrj.edu.br, E-mail: Pedro.Heringer@museus.gov.br, E-mail: Paula.Aranha@museus.gov.br [Museu Histórico Nacional (IBRAM), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Coins are cultural symbols and reflect important historical events through of the history. Archaeologists, historians and other experts make use of the study of coins (Numismatics) to reconstruct the economy, forms of commerce, customs, religion, political history and art of people and region throughout the globe. The knowledge about the composition of the metal alloy of coins is essential to characterize the fabrication in a historical period and identify possible falsifications. The X-ray Fluorescence (XRF) is a technique of analysis spectroscopic widely used in archaeometry to investigate the elemental composition of pigments, ceramic objects, metal alloy. In this work were XRF analyzes used in a rare coin of the coronation of the emperor D. Pedro I in 1822, Brazilian coins of 1816 and a Portuguese coin of 1823 from the collection of the Museu Histórico Nacional of Rio de Janeiro (MHN). The XRF analyzes were performed using a portable Bruker TRACE IV model system, the spectra operation at a voltage of 40 keV and electric current of 10 uA in acquisition time of 60s. The results indicated the presence of Au, Ag, Cu. The portable X-ray system was shown to be powerful tool in the investigation of metallic alloys with high concentration. (author)

  19. Micro-XRF analysis of silver coins from medieval Poland

    Energy Technology Data Exchange (ETDEWEB)

    Hoyo-Meléndez, Julio M. del, E-mail: jdelhoyo@muzeum.krakow.pl [Laboratory of Analysis and Non-Destructive Investigation of Heritage Objects, National Museum in Krakow, Krakow 31109 (Poland); Świt, Paweł [Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow 30239 (Poland); Faculty of Chemistry, Jagiellonian University, Krakow 30060 (Poland); Matosz, Marta [Laboratory of Analysis and Non-Destructive Investigation of Heritage Objects, National Museum in Krakow, Krakow 31109 (Poland); Woźniak, Mateusz [Numismatic Cabinet, National Museum in Krakow, Krakow 31109 (Poland); Klisińska-Kopacz, Anna [Laboratory of Analysis and Non-Destructive Investigation of Heritage Objects, National Museum in Krakow, Krakow 31109 (Poland); Bratasz, Łukasz [Laboratory of Analysis and Non-Destructive Investigation of Heritage Objects, National Museum in Krakow, Krakow 31109 (Poland); Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow 30239 (Poland)

    2015-04-15

    Highlights: •A micro-XRF study of the surface composition of Polish Ag coins was conducted. •The main elements are Ag, Cu and Pb; with Ag concentrations in the 82–98% range. •The results indicate that revaluation probably took place during 995–1031. -- Abstract: X-ray fluorescence (XRF) analysis has become a standard method in archaeological science due to its non-invasive and non-destructive nature. This technique has extensively been used for the study of numismatic collections since the data derived from it can be correlated with manufacturing processes, provenance of raw materials, and geographical distribution of ancient mints. A group of 71 silver coins of the first Piasts: Boleslaus the Brave (996–1025) and Mieszko II Lambert (1025–1034) belonging to the collections of the National Museum in Krakow have been characterized using micro-XRF spectrometry. This is the most numerous collection of their coins representing nearly 30% of all known coins from these rulers. The research has focused on evaluating the use of this technique as a screening tool for elemental surface characterization of the alloys. Surveyed coins are mainly constituted by Ag, Cu and Pb along with trace levels of Fe, Ni, Zn, Au, Hg, Bi, and Br. Quantitative analyses have revealed Ag contents in the 81.6–97.5% range for all the evaluated coins. This study had the goal of providing information about the elemental composition of these objects, which will serve to enhance the existing knowledge about geographical and chronological diversification of Polish numismatic collections.

  20. Resolving colocalization of bacteria and metal(loid)s on plant root surfaces by combining fluorescence in situ hybridization (FISH) with multiple-energy micro-focused X-ray fluorescence (ME μXRF).

    Science.gov (United States)

    Honeker, Linnea K; Root, Robert A; Chorover, Jon; Maier, Raina M

    2016-12-01

    Metal(loid)-contamination of the environment due to anthropogenic activities is a global problem. Understanding the fate of contaminants requires elucidation of biotic and abiotic factors that influence metal(loid) speciation from molecular to field scales. Improved methods are needed to assess micro-scale processes, such as those occurring at biogeochemical interfaces between plant tissues, microbial cells, and metal(loid)s. Here we present an advanced method that combines fluorescence in situ hybridization (FISH) with synchrotron-based multiple-energy micro-focused X-ray fluorescence microprobe imaging (ME μXRF) to examine colocalization of bacteria and metal(loid)s on root surfaces of plants used to phytostabilize metalliferous mine tailings. Bacteria were visualized on a small root section using SytoBC nucleic acid stain and FISH probes targeting the domain Bacteria and a specific group (Alphaproteobacteria, Gammaproteobacteria, or Actinobacteria). The same root region was then analyzed for elemental distribution and metal(loid) speciation of As and Fe using ME μXRF. The FISH and ME μXRF images were aligned using ImageJ software to correlate microbiological and geochemical results. Results from quantitative analysis of colocalization show a significantly higher fraction of As colocalized with Fe-oxide plaques on the root surfaces (fraction of overlap 0.49±0.19) than to bacteria (0.072±0.052) (proots, metal(loid)s and microbes, information that should lead to improved mechanistic models of metal(loid) speciation and fate. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Forensic investigation of brick stones using instrumental neutron activation analysis (INAA), laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and X-ray fluorescence analysis (XRF)

    International Nuclear Information System (INIS)

    Scheid, Nicole; Becker, Stefan; Duecking, Marc; Hampel, Gabriele; Volker Kratz, Jens; Watzke, Peter; Weis, Peter; Zauner, Stephan

    2009-01-01

    Brick stones collected from different production facilities were studied for their elemental compositions under forensic aspects using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), instrumental neutron activation analysis (INAA) and X-ray fluorescence analysis (XRF). The aim of these examinations was to assess the potential of these methods in forensic comparison analyses of brick stones. The accuracy of the analysis methods was evaluated using NIST standard reference materials (679, 98b and 97b). In order to compare the stones to each other, multivariate data analysis was used. The evaluation of the INAA results (based on the concentrations of V, Na, K, Sm, U, Sc, Fe, Co, Rb and Cs) using principal component analysis (PCA) and cluster analysis is presented as an example. The results derived from the different analytical methods are consistent. It was shown that elemental analysis using the described methods is a valuable tool for forensic examinations of brick stones.

  2. XRF newsletter. No. 4, September 2002

    International Nuclear Information System (INIS)

    2002-09-01

    This periodical XRF Newsletter is to inform the XRF laboratories in IAEA Member States on recent developments in the field of XRF spectrometry and to exchange views on fundamental and applied aspects of sampling, sample preparation, instrumentation, quality control, etc. A few selected examples of the recent activities in the IAEA XRF Laboratory and its results in the field of XRF are presented: the evaluation of the results of a Proficiency Test for X-ray fluorescence laboratories, the extending quantitative analytical capabilities of EDXRF techniques for environmental samples, the application of the backscatter fundamental parameter method for in-situ element determination using a portable EDXRF spectrometer, the acquisition and installation of a new (commercial) EDXRF spectrometer and the redesign and rebuild of the sample positioning system attached to the Agency?s beam line at the Ruder Boskovic Institute, Zagreb, Croatia

  3. Piet Mondrian’s Broadway Boogie Woogie : non invasive analysis using macro X-ray fluorescence mapping (MA-XRF) and multivariate curve resolution-alternating least square (MCR-ALS)

    NARCIS (Netherlands)

    Martins, A; Albertson, C.; McGlinchey, C.; Dik, J.

    2016-01-01

    Piet Mondrian’s Broadway Boogie Woogie (1942–1943) was examined using Macro X-Ray Fluorescence mapping (MA-XRF) to help characterize the artist’s materials and understand his creative process as well as the current condition issues of the painting. The presence and distribution of key chemical

  4. XRF analysis of mineralised samples

    International Nuclear Information System (INIS)

    Ahmedali, T.

    2002-01-01

    Full text: Software now supplied by instrument manufacturers has made it practical and convenient for users to analyse unusual samples routinely. Semiquantitative scanning software can be used for rapid preliminary screening of elements ranging from Carbon to Uranium, prior to assigning mineralised samples to an appropriate quantitative analysis routine. The general quality and precision of analytical results obtained from modern XRF spectrometers can be significantly enhanced by several means: a. Modifications in preliminary sample preparation can result in less contamination from crushing and grinding equipment. Optimised techniques of actual sample preparation can significantly increase precision of results. b. Employment of automatic data recording balances and the use of catch weights during sample preparation reduces technician time as well as weighing errors. * c. Consistency of results can be improved significantly by the use of appropriate stable drift monitors with a statistically significant content of the analyte d. A judicious selection of kV/mA combinations, analysing crystals, primary beam filters, collimators, peak positions, accurate background correction and peak overlap corrections, followed by the use of appropriate matrix correction procedures. e. Preventative maintenance procedures for XRF spectrometers and ancillary equipment, which can also contribute significantly to reducing instrument down times, are described. Examples of various facets of sample processing routines are given from the XRF spectrometer component of a multi-instrument analytical university facility, which provides XRF data to 17 Canadian universities. Copyright (2002) Australian X-ray Analytical Association Inc

  5. XRF and leaching characterization of waste glasses derived from wastewater treatment sludges

    International Nuclear Information System (INIS)

    Ragsdale, R.G., Jr.

    1994-12-01

    Purpose of this study was to investigate use of XRF (x-ray fluorescence spectrometry) as a near real-time method to determine melter glass compositions. A range of glasses derived from wastewater treatment sludges associated with DOE sites was prepared. They were analyzed by XRF and wet chemistry digestion with atomic absorption/inductively coupled emission spectrometry. Results indicated good correlation between these two methods. A rapid sample preparation and analysis technique was developed and demonstrated by acquiring a sample from a pilot-scale simulated waste glass melter and analyzing it by XRF within one hour. From the results, XRF shows excellent potential as a process control tool for waste glass vitrification. Glasses prepared for this study were further analyzed for durability by toxicity characteristic leaching procedure and product consistency test and results are presented

  6. Large area imaging of forensic evidence with MA-XRF

    NARCIS (Netherlands)

    Langstraat, K.; Knijnenberg, A.; Edelman, G.; van de Merwe, L.; van Loon, A.; Dik, J.; van Asten, A.

    2017-01-01

    This study introduces the use of macroscopic X-ray fluorescence (MA-XRF) for the detection, classification and imaging of forensic traces over large object areas such as entire pieces of clothing and wall paneling. MA-XRF was sufficiently sensitive and selective to detect human biological traces

  7. Large area imaging of forensic evidence with MA-XRF

    NARCIS (Netherlands)

    Langstraat, Kirsten; Knijnenberg, Alwin; Edelman, Gerda; Van De Merwe, Linda; van Loon, A.; Dik, J.; van Asten, Arian C.

    2017-01-01

    This study introduces the use of macroscopic X-ray fluorescence (MA-XRF) for the detection, classification and imaging of forensic traces over large object areas such as entire pieces of clothing and wall paneling. MA-XRF was sufficiently sensitive and selective to detect human biological traces

  8. Quantitative analysis and metallic coating thickness measurements by X-ray fluorescence

    International Nuclear Information System (INIS)

    Negrea, Denis; Ducu, Catalin; Malinovschi, Viorel; Moga, Sorin; Boicea, Niculae

    2009-01-01

    This work deals with the use of X-ray fluorescence (XRF) for determining the concentration and the coating thickness on metallic samples. The analysis method presented here may also be applicable to other coatings, providing that the elemental nature of the coating and substrate are compatible with the technical aspects of XRF, such as the absorption coefficient of the system, primary radiation, fluorescent radiation and type of detection. For the coating thickness measurement it was used the substrate-line attenuation method and an algorithm was developed. Its advantage relies in the fact that no special calibration with standard samples having different layer thickness is needed. The samples used for evaluation were metallic pieces of iron with zinc-nickel coatings of different thickness obtained by electrochemical deposition. (authors)

  9. Handbook of practical X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Beckhoff, B.; Wedell, R.; Wolff, H.

    2006-01-01

    X-ray fluorescence analysis (XRF) is a reliable multi-elemental and nondestructive analytical method widely used in research and industrial applications. This practical handbook provides self-contained modules featuring XRF instrumentation, quantification methods, and most of the current applications. The broad spectrum of topics is due to the efforts of a large number of authors from a variety of different types of institutions such as universities, research institutes, and companies. The book gives a survey of the theoretical fundamentals, analytical instrumentation, software for data processing, various excitation regimes including gracing incidents and microfocus measurements, quantitative analysis, applications in routine and micro analysis, mineralogy, biology, medicine, criminal investigations, archeology, metallurgy, abrasion, microelectronics, environmental air and water analysis. It gives the basic knowledge on this technique, information on analytical equipment and guides the reader to the various applications. This practical handbook is intended as a resource for graduate students, research scientists, and industrial users. (orig.)

  10. Handbook of practical X-ray fluorescence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Beckhoff, B. [Physikalisch-Technische Bundesanstalt, Berlin (Germany). X-ray Spectrometry; Kanngiesser, B. [Technische Univ. Berlin (Germany). Inst. fuer Atomare Physik und Fachdidaktik; Langhoff, N. [IfG-Institute for Scientific Instruments GmbH, Berlin (Germany); Wedell, R.; Wolff, H. (eds.) [Institut fuer Angewandte Photonik e.V., Berlin (Germany)

    2006-07-01

    X-ray fluorescence analysis (XRF) is a reliable multi-elemental and nondestructive analytical method widely used in research and industrial applications. This practical handbook provides self-contained modules featuring XRF instrumentation, quantification methods, and most of the current applications. The broad spectrum of topics is due to the efforts of a large number of authors from a variety of different types of institutions such as universities, research institutes, and companies. The book gives a survey of the theoretical fundamentals, analytical instrumentation, software for data processing, various excitation regimes including gracing incidents and microfocus measurements, quantitative analysis, applications in routine and micro analysis, mineralogy, biology, medicine, criminal investigations, archeology, metallurgy, abrasion, microelectronics, environmental air and water analysis. It gives the basic knowledge on this technique, information on analytical equipment and guides the reader to the various applications. This practical handbook is intended as a resource for graduate students, research scientists, and industrial users. (orig.)

  11. Fast neutron activation analysis and radioisotope X-ray fluorescence study on KALEWA and NAMMA coal

    Energy Technology Data Exchange (ETDEWEB)

    Naing-Win, [Arts and Science University, Yangon (Myanmar)

    1981-07-01

    Kalewa coal was studied with Fast Neutron Activation Analysis (FNAA) technique, employing KAMAN A-710 neutron generator and HP(Ge) detector coupled to ``Canberra`` series 30 MCA. Sequential irradiation and dual aluminium foil monitoring method was employed. Simultaneous multielement analysis was carried out. Namma Coal was studied with radioisotope X-ray Fluorescence (XRF) technique, employing Co-57 exciter source and HP(Ge) detector coupled to ``Canberra`` series 40 MCA. In both FNAA and XRF study, the results obtained were compared to that obtained with Atomic Absorption Spectrophotometry (AAS) technique. Finally, the results were reviewed together with those obtained from similar work on coal with FNAA and XRF techniques. (author).

  12. Fast neutron activation analysis and radioisotope X-ray fluorescence study on KALEWA and NAMMA coal

    International Nuclear Information System (INIS)

    Naing-Win

    1981-07-01

    Kalewa coal was studied with Fast Neutron Activation Analysis (FNAA) technique, employing KAMAN A-710 neutron generator and HP(Ge) detector coupled to ''Canberra'' series 30 MCA. Sequential irradiation and dual aluminium foil monitoring method was employed. Simultaneous multielement analysis was carried out. Namma Coal was studied with radioisotope X-ray Fluorescence (XRF) technique, employing Co-57 exciter source and HP(Ge) detector coupled to ''Canberra'' series 40 MCA. In both FNAA and XRF study, the results obtained were compared to that obtained with Atomic Absorption Spectrophotometry (AAS) technique. Finally, the results were reviewed together with those obtained from similar work on coal with FNAA and XRF techniques. (author)

  13. 3D Synchrotron μ-x-ray fluorescence analysis on human bones

    International Nuclear Information System (INIS)

    Zoeger, N.; Wobrauschek, P.; Streli, C.; Chinea-Cano, E.; Wegrzynek, D.; Roschger, P.; Simon, R.; Staub, S.; Falkenberg, G.

    2004-01-01

    A comparison between μ-x-ray fluorescence tomography and confocal μ-x-ray fluorescence analysis (μ-XRF) will be presented. These techniques were used to study the three dimensional (3D) elemental distribution in human bone. Since bone shows very strong inhomogeneities in structure as well as in distribution of the chemical elements, two dimensional (2D) analysis (element mapping) of the samples always led to difficulties in interpreting the results and assigning elemental distributions to microscopic structures. Tomography scans in fluorescence and absorption mode have been carried out simultaneously at the fluo-topo beamline at ANKA, Karlsruhe, to determine the distribution of the elements over the depth of the previously prepared sample from human patella. A monochromatized x-ray beam (17 keV) from a bending magnet station focused by a compound refractive lens to a beamsize of 10 x 5 μm was used to perform the measurements. The transmitted beam signal measured with the SD detector was utilized to apply a simplified absorption correction to XRF tomographic images. Based on the XRF sinograms the elemental distribution within the object cross-section was reconstructed by means of filtered backprojection. The same section of human bone has been analyzed by confocal μ-XRF at HASYLAB, Hamburg, Germany beamline L. With this experiment two polycapillary half lenses were used; one for focusing the previously monochromatized primary x-ray beam onto the sample and the second half lens in front of a Si(Li) detector to get a small inspected area. By overlapping the two foci of the lenses a very well defined volume of investigation could be defined. Scanning the sample up- and downstream it was possible to determine the elemental distribution in depth of the sample. An absorption correction has been applied to get a corrected fluorescence image of the sample. Both methods showed consistent results and allowed a precise localization of the elements of interest. (author)

  14. Quantitative analysis and metallic coating thickness measurements by X-ray fluorescence

    International Nuclear Information System (INIS)

    Negrea, Denis; Ducu, Catalin; Malinovschi, Viorel; Moga, Sorin; Boicea, Niculae

    2009-01-01

    Full text: This paperwork covers the use of X-ray fluorescence (XRF) for determining the concentration and the coating thickness on metallic samples. The analysis method presented here may also be applicable to other coatings, providing that the elemental nature of the coating and substrate are compatible with the technical aspects of XRF, such as the absorption coefficient of the system, primary radiation, fluorescent radiation and type of detection. For the coating thickness measurement it was used the substrate-line attenuation method and a computing algorithm was developed. Its advantage relies in the fact that no special calibration with standard samples having different layer thickness is needed. The samples used for evaluation were metallic pieces of iron with zinc-nickel coatings of different thickness obtained by electrochemical deposition. (authors)

  15. XRF determination of trace and major elements using a single-fused disc

    International Nuclear Information System (INIS)

    Thomas, I.R.; Haukka, M.T.

    1978-01-01

    A new fusion method using lithium metaborate, suitable for the determination of major and trace elements by X-ray fluorescence analysis (XRF), has proven to be of comparable accuracy to other XRF methods for the ten major rock-forming oxides. The very low dilution allows determination of trace elements with a decrease in sensitivity of about a factor of 2 compared with XRF determination using pressed-powder pellets. A feature of the method is the flexibility of sample preparation allowed: the matrix-correction parameters may be used for a wide range of dilutions (sample/flux ratios), no 'Loss' correction is necessary, and imperfect or inhomogeneous discs may be crushed and pressed pellets made of the glass powder when required. Considerable savings in the time during preparation, analysis and correction of results are possible with current automation because of streamlining procedures

  16. Fast XRF analysis of mineral elements in dental composites

    International Nuclear Information System (INIS)

    Preoteasa, E. A.; Constantinescu, B.; Preoteasa, E.

    2001-01-01

    Dental composites, made of particles of glass, ceramics or quartz embedded in an organic polymer matrix, extensively replaced silver amalgam in tooth fillings and enabled new applications for restorative dentistry. Long-term alteration of dental fillings together with market pressure motivates the development of composites at a high rate, largely by progress of materials forming their mineral phase. Therefore, dental composites constantly bring at the interface with enamel and dentine new elements foreign to the organism, whose biological action has not been studied. Atomic and nuclear methods for surface multielemental analysis have been used in dental research but not for composites. X-ray fluorescence (XRF) is suited for the fast microanalytical screening of the elements and of their changes at the biomaterial's surface. The potential of radioisotope-excited XRF for the analysis of dental composites has been examined. Flat disk-shaped samples of composites have been prepared and polymerized chemically or by irradiation with intense 420-500 nm light. The measurements were performed with a spectrometric chain containing a 30 mCi source of 241 Am, a Si(Li) detector, and a multichannel analyzer. The spectra were built up for 2000-6000 sec. The characteristic X lines were integrated and normalized to source lines. The following Z ≥ 20 elements were detected in the studied composites: Ba only in Charisma (Kulzer) and Pekafill (Bayer); Zr, Ba, Yb in Tetric Ceram, and Ca, Ba, Yb together with traces of possibly Ti and Fe in Ariston (both from Vivadent); Zr, Hf in Valux Plus (3M Dental); and Sr, Ba together with some trace element, seemingly Cu, in F2000 Compomer (3M Dental) and with other trace elements like Ca, Fe in Surefil (Dentsply). Among older materials, Concise (3M Dental) contained only light (Z 3 that releases F for protection of enamel and dentine. Yb, Zr, Ba, Hf improve the radiological opacity of the materials. Some elements may accompany others as

  17. Comparison of PIXE and XRF analysis of airborne particulate matter samples collected on Teflon and quartz fibre filters

    Science.gov (United States)

    Chiari, M.; Yubero, E.; Calzolai, G.; Lucarelli, F.; Crespo, J.; Galindo, N.; Nicolás, J. F.; Giannoni, M.; Nava, S.

    2018-02-01

    Within the framework of research projects focusing on the sampling and analysis of airborne particulate matter, Particle Induced X-ray Emission (PIXE) and Energy Dispersive X-ray Fluorescence (ED-XRF) techniques are routinely used in many laboratories throughout the world to determine the elemental concentration of the particulate matter samples. In this work an inter-laboratory comparison of the results obtained from analysing several samples (collected on both Teflon and quartz fibre filters) using both techniques is presented. The samples were analysed by PIXE (in Florence, at the 3 MV Tandetron accelerator of INFN-LABEC laboratory) and by XRF (in Elche, using the ARL Quant'X EDXRF spectrometer with specific conditions optimized for specific groups of elements). The results from the two sets of measurements are in good agreement for all the analysed samples, thus validating the use of the ARL Quant'X EDXRF spectrometer and the selected measurement protocol for the analysis of aerosol samples. Moreover, thanks to the comparison of PIXE and XRF results on Teflon and quartz fibre filters, possible self-absorption effects due to the penetration of the aerosol particles inside the quartz fibre-filters were quantified.

  18. X-Ray Diffraction and Fluorescence Instrument for Mineralogical Analysis at the Lunar Surface, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop LUNA, a compact and lightweight X-Ray Diffraction (XRD) / X-Ray Fluorescence (XRF) instrument for mineralogical analysis of regolith, rock...

  19. X-Ray Diffraction and Fluorescence Instrument for Mineralogical Analysis at the Lunar Surface, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a compact and lightweight X-Ray Diffraction (XRD) / X-Ray Fluorescence (XRF) instrument for analysis of mineralogical composition of regolith,...

  20. Analysis of Jordanian Cigarettes Using XRF Techniques

    International Nuclear Information System (INIS)

    Kullab, M.; Ismail, A.; AL-kofahi, M.

    2002-01-01

    Sixteen brands of Jordanian cigarettes were analyzed using X-ray Fluorescence (XRF) techniques. These cigarettes were found to contain the elements: Si, S, Cl, K, Ca, P, Ti, Mn, Fe, Cu, Zn, Br.Rb and Sr. The major elements with concentrations of more than 1% by weight were Cl,K and Ca. The elements with minor concentrations, Between 0.1 and 1% by weight, were Si, S and P. The trace elements with concentrations below 0.1% by weight were Ti, Mn, Fe, Cu, Zn, Br, Rb and Sr. The toxicity of some trace elements, like Br, Rb, and Sr, which are present in some brands of Jordanian cigarettes, is discussed. (Author's) 24 refs., 1 tab., 1 fig

  1. Chemical analysis of copper and gold ores from Papua New Guinea (PNG) by means of X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Sugiyama, Kazumasa; Waseda, Yoshio; Pangum, L.S.; Witney, J.Y.

    1995-01-01

    X-ray fluorescence analysis (XRF) has been made for determining the contents of copper and gold in ores from PNG mines. An internal standard method of Cu Kα/Er Lβ 1 was used for the analysis of the common copper porphyry samples. The results clearly indicate that this technique is quite effective for analyzing any copper ores with complicated matrix elements. On the other hand, an addition method of the diluted Au solution was applied to gold ores. The results of the present XRF analysis were found to reasonably agree with those obtained by the inductively coupled plasma (ICP) technique. (author)

  2. Experimental study for the feasibility of using hard x-rays for micro-XRF analysis of multilayered metals

    Energy Technology Data Exchange (ETDEWEB)

    Polese, C., E-mail: claudia.polese@lnf.infn.it; Dabagov, S. B.; Esposito, A.; Hampai, D.; Gorghinian, A.; Liedl, A. [LNF - INFN, Via E. Fermi 40, I-00044 Frascati (Italy); Ferretti, M. [ITABC - CNR, Via Salaria km 29.300, 00016 Montelibretti (Italy)

    2014-07-15

    Application of polycapillary optical systems to improve a spatial resolution for the μ-XRF analysis by focusing a primary x-ray beam and/or by collecting fluorescence emission is well known. The challenge is to optimize them in combination with x-ray source for exciting K-lines above 20 keV that could allow characterization of many materials composed by heavy elements. To pursue this goal, preliminary studies on possible polycapillary lens employment in thickness determination for multilayer metal materials will be presented in this work. In this paper, the results of first attempts of integrating PyMCA with Monte Carlo simulation code (XMI-MSIM) that takes into account the secondary fluorescence effects on quantitative analysis of homogeneous matrices, in particular, metal alloys, are presented.

  3. Development of a software for reconstruction of X-ray fluorescence intensity maps

    International Nuclear Information System (INIS)

    Almeida, Andre Pereira de; Braz, Delson; Mota, Carla Lemos; Oliveira, Luis Fernando de; Barroso, Regina Cely; Pinto, Nivia Graciele Villela; Cardoso, Simone Coutinho; Moreira, Silvana

    2009-01-01

    The technique of X-ray fluorescence (XRF) using SR microbeams is a powerful analysis tool for studying elemental composition in several samples. One application of this technique is the analysis done through the mapping of chemical elements forming a matrix of data. The aim of this work is the presentation of the program MapXRF, an in-house software designed to optimize the processing and mapping of fluorescence intensities data. This program uses spectra generated by QXAS as input data and separates the intensities of each chemical element found in the fluorescence spectra in files themselves. From these files, the program generates the intensity maps that can be visualized in any program of treatment of images. The proposed software was tested using fluorescence data obtained in the XRF beamline of XRF at Synchrotron Light National Laboratory (LNLS), Brazil. Automatic 2D scans were performed and element distribution maps were obtained in the form of a matrix of data. (author)

  4. Development of a software for reconstruction of X-ray fluorescence intensity maps

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Andre Pereira de; Braz, Delson; Mota, Carla Lemos, E-mail: apalmeid@gmail.co, E-mail: delson@lin.ufrj.b, E-mail: clemos@con.ufrj.b [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Oliveira, Luis Fernando de; Barroso, Regina Cely; Pinto, Nivia Graciele Villela, E-mail: cely@uerj.b, E-mail: lfolive@uerj.b, E-mail: nitatag@gmail.co [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Inst. de Fisica; Cardoso, Simone Coutinho, E-mail: simone@if.ufrj.b [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Fisica; Moreira, Silvana, E-mail: silvana@fec.unicamp.b [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo

    2009-07-01

    The technique of X-ray fluorescence (XRF) using SR microbeams is a powerful analysis tool for studying elemental composition in several samples. One application of this technique is the analysis done through the mapping of chemical elements forming a matrix of data. The aim of this work is the presentation of the program MapXRF, an in-house software designed to optimize the processing and mapping of fluorescence intensities data. This program uses spectra generated by QXAS as input data and separates the intensities of each chemical element found in the fluorescence spectra in files themselves. From these files, the program generates the intensity maps that can be visualized in any program of treatment of images. The proposed software was tested using fluorescence data obtained in the XRF beamline of XRF at Synchrotron Light National Laboratory (LNLS), Brazil. Automatic 2D scans were performed and element distribution maps were obtained in the form of a matrix of data. (author)

  5. Elemental mapping of medieval teeth using XRF technique

    International Nuclear Information System (INIS)

    Muja, Cristina; Therese, Laurent; Guillot, Philippe

    2011-01-01

    Full text: Recent developments in X-Ray Fluorescence micro-analysis techniques made the traditional range of XRF applications expand, benefiting from the combination of single point analysis with high spatial element imaging. The sample is scanned through the X-Ray beam and corresponding spectra are continuously read from the detector and correlated to a particular position on the sample. In this work, elemental concentrations were obtained by X-ray fluorescence (XRF) technique (Jobin Yvon Horiba XGT-5000 instrument) offering detailed elemental analysis. The instrument is equipped with a tungsten X-ray tube and a beryllium window, operating at 50 kV with a beam collimator of 100μm in diameter to irradiate the sample and with a Si detector. Tooth mapping provided semi-quantitative information and highlighted the regions of interest. Then multi-points analysis was used to obtain quantitative results on calcium, phosphorus, strontium and iron. As the chemical composition of dental tissues is similar to the one of bone tissue, the certified reference materials NIST SRM 1400 Bone Ash and NIST SRM 1486 Bone Meal were used for calibration. In this study, only permanent first molars were selected for analysis. The material comes from the medieval cemetery (XII th . XIII th ) of Feldioara (Bra.ov County, Romania). In the same time, modern teeth were used as reference. The top of the tooth was removed using a diamond disk, with a cut lying perpendicular to the dental cusps, creating a flat transversal surface to be characterized. XRF elemental (Ca, P, Sr, Fe) and ratio (Ca/P, Sr/Ca, Sr/Fe) distribution images for dental tissues (enamel and dentin) were obtained from past and modern teeth with and without caries and the results are presented and discussed. The analysis of the spatial element distribution in the teeth tissues revealed severe alterations in elemental composition of both enamel and dentin from the regions affected by caries that were confirmed by the multi

  6. Elemental mapping of medieval teeth using XRF technique

    Energy Technology Data Exchange (ETDEWEB)

    Muja, Cristina [Laboratoire Diagnostics des Plasma, CUFR J.F.C, Albi (France); Faculty of Biology, University of Bucharest (Romania); Vasile Parvan Institute of Archaeology, Bucharest (Romania); Therese, Laurent; Guillot, Philippe, E-mail: philippe.guillot@univ-jfc.fr [Laboratoire Diagnostics des Plasma, CUFR J.F.C, Albi (France)

    2011-07-01

    Full text: Recent developments in X-Ray Fluorescence micro-analysis techniques made the traditional range of XRF applications expand, benefiting from the combination of single point analysis with high spatial element imaging. The sample is scanned through the X-Ray beam and corresponding spectra are continuously read from the detector and correlated to a particular position on the sample. In this work, elemental concentrations were obtained by X-ray fluorescence (XRF) technique (Jobin Yvon Horiba XGT-5000 instrument) offering detailed elemental analysis. The instrument is equipped with a tungsten X-ray tube and a beryllium window, operating at 50 kV with a beam collimator of 100{mu}m in diameter to irradiate the sample and with a Si detector. Tooth mapping provided semi-quantitative information and highlighted the regions of interest. Then multi-points analysis was used to obtain quantitative results on calcium, phosphorus, strontium and iron. As the chemical composition of dental tissues is similar to the one of bone tissue, the certified reference materials NIST SRM 1400 Bone Ash and NIST SRM 1486 Bone Meal were used for calibration. In this study, only permanent first molars were selected for analysis. The material comes from the medieval cemetery (XII{sup th} . XIII{sup th}) of Feldioara (Bra.ov County, Romania). In the same time, modern teeth were used as reference. The top of the tooth was removed using a diamond disk, with a cut lying perpendicular to the dental cusps, creating a flat transversal surface to be characterized. XRF elemental (Ca, P, Sr, Fe) and ratio (Ca/P, Sr/Ca, Sr/Fe) distribution images for dental tissues (enamel and dentin) were obtained from past and modern teeth with and without caries and the results are presented and discussed. The analysis of the spatial element distribution in the teeth tissues revealed severe alterations in elemental composition of both enamel and dentin from the regions affected by caries that were confirmed by the

  7. Determination of minor and trace elements in kidney stones by x-ray fluorescence analysis

    Science.gov (United States)

    Srivastava, Anjali; Heisinger, Brianne J.; Sinha, Vaibhav; Lee, Hyong-Koo; Liu, Xin; Qu, Mingliang; Duan, Xinhui; Leng, Shuai; McCollough, Cynthia H.

    2014-03-01

    The determination of accurate material composition of a kidney stone is crucial for understanding the formation of the kidney stone as well as for preventive therapeutic strategies. Radiations probing instrumental activation analysis techniques are excellent tools for identification of involved materials present in the kidney stone. In particular, x-ray fluorescence (XRF) can be very useful for the determination of minor and trace materials in the kidney stone. The X-ray fluorescence measurements were performed at the Radiation Measurements and Spectroscopy Laboratory (RMSL) of department of nuclear engineering of Missouri University of Science and Technology and different kidney stones were acquired from the Mayo Clinic, Rochester, Minnesota. Presently, experimental studies in conjunction with analytical techniques were used to determine the exact composition of the kidney stone. A new type of experimental set-up was developed and utilized for XRF analysis of the kidney stone. The correlation of applied radiation source intensity, emission of X-ray spectrum from involving elements and absorption coefficient characteristics were analyzed. To verify the experimental results with analytical calculation, several sets of kidney stones were analyzed using XRF technique. The elements which were identified from this techniques are Silver (Ag), Arsenic (As), Bromine (Br), Chromium (Cr), Copper (Cu), Gallium (Ga), Germanium (Ge), Molybdenum (Mo), Niobium (Nb), Rubidium (Rb), Selenium (Se), Strontium (Sr), Yttrium (Y), Zirconium (Zr). This paper presents a new approach for exact detection of accurate material composition of kidney stone materials using XRF instrumental activation analysis technique.

  8. Multiphased use of an X-MET 880 XRF to survey lead in soil at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Gianotto, D.F.; Anderson, I.R.

    1995-01-01

    An X-ray fluorescence spectrometer was used in a multiphased approach to analyze soil samples for lead contamination. The objectives of this investigation were to characterize the spatial distribution of lead contamination, identify two areas of surficial soil with elevated lead concentrations (hot-spots), and quantify subsurface soil contamination at the hot-spots to evaluate the vertical migration of lead. Phase I consisted of using non-site-specific standards to calibrate the XRF instrument to qualitatively and semi-quantitatively assess lead contamination (Type I XRF analysis). Phase III involved selecting soil samples for off-site SW-846 analysis and using the results to develop a calibration model based on site-specific calibration standards (SSCS). The XRF was used in Phase III to obtained quantitative results (Type II XRF analysis)

  9. Trace metal contaminants in sediments and soils: comparison between ICP and XRF quantitative determination

    Directory of Open Access Journals (Sweden)

    Congiu A.

    2013-04-01

    Full Text Available A mineralization method HCl-free for heavy metals analysis in sediments and soils by DRC-ICP-MS was developed. The procedure, which uses concentrated nitric, hydrofluoric acid and hydrogen peroxide, was applied for the analysis of arsenic, cadmium, chromium, nickel and vanadium. The same samples were then analyzed, as pressed pellets, by wavelength dispersive X ray fluorescence (WD-XRF using the dedicated PANalytical Pro Trace solution for the determination of trace elements. Comparison of ICP and XRF data showed good agreement for the elements under investigation, unless for chromium in soils, which recovery was not complete.

  10. Application of radionuclide sources for excitation in energy-dispersive X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Hoffmann, P.

    1986-01-01

    X-ray fluorescence (XRF) analysis is in broad application in many fields of science where elemental determinations are necessary. Solid and liquid samples are analyzed by this method. Solids are introduced in thin or thick samples as melted glass, pellets, powders or as original specimen. The excitation of X-ray spectra can be performed by specific and polychromic radiation of X-ray tubes, by protons, deuterons, α-particles, heavy ions and synchrotron radiation from accelerators and by α-particles, X- and γ-rays and by bremsstrahlung generated by β - -particles from radionuclide sources. The radionuclides are devided into groups with respect to their decay mode and the energy of the emitted radiation. The broad application of radionuclides in XRF excitation is shown in examples as semi-quantitative analysis of glasses, as quantitative analysis of coarse ceramics and as quantitative determination of heavy elements (mainly actinides) in solutions. The advantages and disadvantages of radionuclide excitation in XRF analysis are discussed. (orig.) [de

  11. Quantitative X-ray fluorescence analysis at the ESRF ID18F microprobe

    CERN Document Server

    Vekemans, B; Somogyi, A; Drakopoulos, M; Kempenaers, L; Simionovici, A; Adams, F

    2003-01-01

    The new ID18F end-station at the European synchrotron radiation facility (ESRF) in Grenoble (France) is dedicated to sensitive and accurate quantitative micro-X-ray fluorescence (XRF) analysis at the ppm level with accuracy better than 10% for elements with atomic numbers above 18. For accurate quantitative analysis, given a high level of instrumental stability, major steps are the extraction and conversion of experimental X-ray line intensities into elemental concentrations. For this purpose a two-step quantification approach was adopted. In the first step, the collected XRF spectra are deconvoluted on the basis of a non-linear least-squares fitting algorithm (AXIL). The extracted characteristic line intensities are then used as input for a detailed Monte Carlo (MC) simulation code dedicated to XRF spectroscopy taking into account specific experimental conditions (excitation/detection) as well as sample characteristics (absorption and enhancement effects, sample topology, heterogeneity etc.). The iterative u...

  12. XRF Newsletter, No. 26, April 2014

    International Nuclear Information System (INIS)

    2014-04-01

    In this issue: • Handheld XRF analysis of a 16th century Mexican Feather Headdress; • Technical Meeeting on Nuclear Spectrometry Instrumentation for 2D and 3D imaging applied to characterization of materials of potential for nuclear power sector; • Technical Meeting on the application of micro-analytical techniques based on nuclear spectrometry to the characterization of materials of importance for the nuclear power; • Invitation to join the European Radiation Detection and Imaging Technology (ERDIT) activities; • X ray fluorescence in Member States: Indonesia, Italy, Spain

  13. Development of a combined portable x-ray fluorescence and Raman spectrometer for in situ analysis.

    Science.gov (United States)

    Guerra, M; Longelin, S; Pessanha, S; Manso, M; Carvalho, M L

    2014-06-01

    In this work, we have built a portable X-ray fluorescence (XRF) spectrometer in a planar configuration coupled to a Raman head and a digital optical microscope, for in situ analysis. Several geometries for the XRF apparatus and digital microscope are possible in order to overcome spatial constraints and provide better measurement conditions. With this combined spectrometer, we are now able to perform XRF and Raman measurements in the same point without the need for sample collection, which can be crucial when dealing with cultural heritage objects, as well as forensic analysis. We show the capabilities of the spectrometer by measuring several standard reference materials, as well as other samples usually encountered in cultural heritage, geological, as well as biomedical studies.

  14. Wavelength Dispersive X-ray Fluorescence Spectrometry for the Analysis of Organic Polymer Film

    International Nuclear Information System (INIS)

    Choi, Yong Suk; Park, Yong Joon; Kim, Jong Yun

    2008-01-01

    Recently, many studies have been focused on the thin films because there are numerous industrial processes relevant to thin films such as fuel cells, sensors, lubricants, coatings, and so on. Physical and chemical properties of solid surface have been modified by ultra-thin coatings such as Langmuir-Blodgett (LB) method with a variety of types of organic functional materials for the specific purposes in many applications. In addition, the layer-by-layer technique using polyelectrolyte films are now of interest as biosensors, electrochromic and electroluminescent devices, etc. In general, several methods such as X-ray or neutron reflectivity, and quartz crystal microbalance (QCM) have been utilized for the thin film analysis. These optical techniques can measure the film thicknesses up to hundreds of nanometers while X-ray photoelectron spectroscopy is widely used to study a few nanometers thick films. Other methods such as X-ray Photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atom force microscopy (AFM) have also been used in the film analysis in spite of some disadvantages for each method. X-ray fluorescence (XRF) has long been used as a rapid and simple analytical tool for the analysis of elemental composition of materials. XRF technique is suitable for on-line or in-line real-time monitoring because it is a non-destructive and rapid analysis with good precision and good accuracy at low cost. The aim of this work is to develop a new analytical technique for the quantitative analysis of polymer film on metal substrate. In the present study, Compton peak profile was investigated under different experimental conditions by using wavelength-dispersive XRF (WD-XRF). Compared to energy-dispersive XRF (ED-XRF), WD-XRF is more adequate in an accurate quantitative analysis of thin organic film

  15. Sampling, storage and sample preparation procedures for X ray fluorescence analysis of environmental materials

    International Nuclear Information System (INIS)

    1997-06-01

    X ray fluorescence (XRF) method is one of the most commonly used nuclear analytical technique because of its multielement and non-destructive character, speed, economy and ease of operation. From the point of view of quality assurance practices, sampling and sample preparation procedures are the most crucial steps in all analytical techniques, (including X ray fluorescence) applied for the analysis of heterogeneous materials. This technical document covers recent modes of the X ray fluorescence method and recent developments in sample preparation techniques for the analysis of environmental materials. Refs, figs, tabs

  16. Experimental study for the feasibility of using hard x-rays for micro-XRF analysis of multilayered metals

    Directory of Open Access Journals (Sweden)

    C. Polese

    2014-07-01

    Full Text Available Application of polycapillary optical systems to improve a spatial resolution for the μ-XRF analysis by focusing a primary x-ray beam and/or by collecting fluorescence emission is well known. The challenge is to optimize them in combination with x-ray source for exciting K-lines above 20 keV that could allow characterization of many materials composed by heavy elements. To pursue this goal, preliminary studies on possible polycapillary lens employment in thickness determination for multilayer metal materials will be presented in this work. In this paper, the results of first attempts of integrating PyMCA with Monte Carlo simulation code (XMI-MSIM that takes into account the secondary fluorescence effects on quantitative analysis of homogeneous matrices, in particular, metal alloys, are presented.

  17. Exploratory analysis for the identification of false banknotes using portable X-ray Fluorescence spectrometer.

    Science.gov (United States)

    Zamalloa Jara, M A; Luízar Obregón, C; Araujo Del Castillo, C

    2018-05-01

    The aim of this study was to verify if a portable X-ray fluorescence (pXRF) spectrometer can recognize the security features in banknotes that are reproducible by counterfeiters. Peruvian Nuevo Sol banknotes were studied: 4 genuine and 3 fake ones, in 11 points of analysis for each one, at all 77 data set. The correlation analysis of spectra among original notes was 1.0, and there was no correlation with fake banknotes. pXRF prove that two security features were reproducible for counterfeiters. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. XRF newsletter. No. 3, January 2002

    International Nuclear Information System (INIS)

    2002-01-01

    This periodical XRF Newsletter is to inform the XRF laboratories in IAEA Member States on recent developments in the field of XRF spectrometry and to exchange views on fundamental and applied aspects of sampling, sample preparation, instrumentation, quality control, etc. A few selected examples of the recent activities in the IAEA XRF Laboratory and its results in the field of XRF are presented: the assessment of a new detectors for XRF analysis, the IAEA mailing list for XRF laboratories, the training opportunities at the IAEA Laboratories at Seibersdorf and the implementation of a quality assurance system in XRF laboratory

  19. Handheld XRF analysis of a 16th century Mexican Feather Headdress

    International Nuclear Information System (INIS)

    Karydas, A.G; Padilla-Alvarez, R.; Drozdenko, M.; Korn, M.; Moreno Guzmán, M.O.

    2014-01-01

    The 16th century feather headdress in the Weltmuseum Wien (WMW), an affiliated institution of the Kunsthistorisches Museum (KHM) in Vienna, is the most renowned of the few remaining pre-Columbian “Arte Plumaria” artefacts, which were made by feather artisans (Amantecas) using traditional techniques in the territory of present day Mexico. The recorded history of the headdress begins in 1596, when it is first mentioned in the estate inventory of the art collection of Archduke Ferdinand II of Tyrol at Ambras Castle. Due to its age, the variety of materials used, its history and former restoration treatments, the artefact is today one of the most sensitive and demanding care objects of the museum. Despite the object’s long history, very little documentation on past interventions exists. From 2010-2012, a binational research project between Mexico (Instituto Nacional de Antropología e Historia) and Austria (Weltmuseum Wien) performed a systematic investigation focused on the identification of manufacturing techniques and the various materials, the old restoration measures and its conservation. Handheld x-ray fluorescence (XRF) spectrometers are extremely useful for the study of art works in museum collections. The possibility of bringing the instrument to inspect the objects on-site facilitates the study of artefacts that cannot be moved either due to their extreme fragility or due to their large size and/or weight. In addition, non-destructive analysis constitutes a preferred alternative to invasive sampling techniques, which are usually not allowed in the study of unique or extremely valuable objects. The aim of the XRF analysis was twofold: to investigate the possible presence of inorganic toxic elements that could be associated to the use of pesticides in past conservation interventions and; to characterize the chemical composition of the authentic gold and the gilded brass ornaments, which were added in the 19th century. The results of the XRF analytical

  20. X-ray fluorescence spectrometric and optical emission spectographic analysis of thoria in thoriated copper metal powder

    International Nuclear Information System (INIS)

    Chandola, L.C.; Khanna, P.P.

    1984-01-01

    Two methods, one using the X-ray fluorescence (XRF) spectrometric technique and another using optical emission spectrographic (OES) technique are described for the determination of thoria in the concentration range 0.5-10% in thoriated copper metal powder. The precision of XRF method is superior to OES method but when sample quantity is very small, the OES method is useful. For XRF method, 500 mg sample is mixed with boric acid binding material and converted to a tablet for analysis. For OES method, only 200 mg sample is needed which is glued to the flat ends of two graphite electrodes for excitation by AC arc. The precision obtained in XRF is better than +-1% and in OES it is +-23%. (author)

  1. X-RAY FLUORESCENCE ANALYSIS OF HANFORD LOW ACTIVITY WASTE SIMULANTS

    Energy Technology Data Exchange (ETDEWEB)

    Jurgensen, A; David Missimer, D; Ronny Rutherford, R

    2006-05-08

    Savannah River National Laboratory (SRNL) was requested to develop an x-ray fluorescence (XRF) spectrometry method for elemental characterization of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) pretreated low activity waste (LAW) stream to the LAW Vitrification Plant. The WTP is evaluating the potential for using XRF as a rapid turnaround technique to support LAW product compliance and glass former batching. The overall objective of this task was to develop XRF analytical methods that provide the rapid turnaround time (<8 hours) requested by the WTP, while providing sufficient accuracy and precision to determine waste composition variations. For Phase 1a, SRNL (1) evaluated, selected, and procured an XRF instrument for WTP installation, (2) investigated three XRF sample methods for preparing the LAW sub-sample for XRF analysis, and (3) initiated scoping studies on AN-105 (Envelope A) simulant to determine the instrument's capability, limitations, and optimum operating parameters. After preliminary method development on simulants and the completion of Phase 1a activities, SRNL received approval from WTP to begin Phase 1b activities with the objective of optimizing the XRF methodology. Three XRF sample methods used for preparing the LAW sub-sample for XRF analysis were studied: direct liquid analysis, dried spot, and fused glass. The direct liquid method was selected because its major advantage is that the LAW can be analyzed directly without any sample alteration that could bias the method accuracy. It also is the fastest preparation technique--a typical XRF measurement could be completed in < 1hr after sample delivery. Except for sodium, the method detection limits (MDLs) for the most important analytes in solution, the hold point elements, were achieved by this method. The XRF detection limits are generally adequate for glass former batching and product composition reporting, but may be inadequate for some species (Hg, Cd, and Ba) important

  2. X-RAY FLUORESCENCE ANALYSIS OF HANFORD LOW ACTIVITY WASTE SIMULANTS

    International Nuclear Information System (INIS)

    Jurgensen, A; David Missimer, D; Ronny Rutherford, R

    2006-01-01

    Savannah River National Laboratory (SRNL) was requested to develop an x-ray fluorescence (XRF) spectrometry method for elemental characterization of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) pretreated low activity waste (LAW) stream to the LAW Vitrification Plant. The WTP is evaluating the potential for using XRF as a rapid turnaround technique to support LAW product compliance and glass former batching. The overall objective of this task was to develop XRF analytical methods that provide the rapid turnaround time (<8 hours) requested by the WTP, while providing sufficient accuracy and precision to determine waste composition variations. For Phase 1a, SRNL (1) evaluated, selected, and procured an XRF instrument for WTP installation, (2) investigated three XRF sample methods for preparing the LAW sub-sample for XRF analysis, and (3) initiated scoping studies on AN-105 (Envelope A) simulant to determine the instrument's capability, limitations, and optimum operating parameters. After preliminary method development on simulants and the completion of Phase 1a activities, SRNL received approval from WTP to begin Phase 1b activities with the objective of optimizing the XRF methodology. Three XRF sample methods used for preparing the LAW sub-sample for XRF analysis were studied: direct liquid analysis, dried spot, and fused glass. The direct liquid method was selected because its major advantage is that the LAW can be analyzed directly without any sample alteration that could bias the method accuracy. It also is the fastest preparation technique--a typical XRF measurement could be completed in < 1hr after sample delivery. Except for sodium, the method detection limits (MDLs) for the most important analytes in solution, the hold point elements, were achieved by this method. The XRF detection limits are generally adequate for glass former batching and product composition reporting, but may be inadequate for some species (Hg, Cd, and Ba) important to

  3. {mu}-XRF/{mu}-RS vs. SR {mu}-XRD for pigment identification in illuminated manuscripts

    Energy Technology Data Exchange (ETDEWEB)

    Snickt, G. van der; Nolf, W. de; Vekemans, B.; Janssens, K. [University of Antwerp, Department of Chemistry, Antwerp (Belgium)

    2008-07-15

    For the non-destructive identification of pigments and colorants in works of art, in archaeological and in forensic materials, a wide range of analytical techniques can be used. Bearing in mind that every method holds particular limitations, two complementary spectroscopic techniques, namely confocal {mu}-Raman spectroscopy ({mu}-RS) and {mu}-X-ray fluorescence spectroscopy ({mu}-XRF), were joined in one instrument. The combined {mu}-XRF and {mu}-RS device, called PRAXIS unites both complementary techniques in one mobile setup, which allows {mu}- and in situ analysis. {mu}-XRF allows one to collect elemental and spatially-resolved information in a non-destructive way on major and minor constituents of a variety of materials. However, the main disadvantages of {mu}-XRF are the penetration depth of the X-rays and the fact that only elements and not specific molecular combinations of elements can be detected. As a result {mu}-XRF is often not specific enough to identify the pigments within complex mixtures. Confocal Raman microscopy ({mu}-RS) can offer a surplus as molecular information can be obtained from single pigment grains. However, in some cases the presence of a strong fluorescence background limits the applicability. In this paper, the concrete analytical possibilities of the combined PRAXIS device are evaluated by comparing the results on an illuminated sheet of parchment with the analytical information supplied by synchrotron radiation {mu}-X-ray diffraction (SR {mu}-XRD), a highly specific technique. (orig.)

  4. Quantitative X-ray fluorescence analysis at the ESRF ID18F microprobe

    International Nuclear Information System (INIS)

    Vekemans, B.; Vincze, L.; Somogyi, A.; Drakopoulos, M.; Kempenaers, L.; Simionovici, A.; Adams, F.

    2003-01-01

    The new ID18F end-station at the European synchrotron radiation facility (ESRF) in Grenoble (France) is dedicated to sensitive and accurate quantitative micro-X-ray fluorescence (XRF) analysis at the ppm level with accuracy better than 10% for elements with atomic numbers above 18. For accurate quantitative analysis, given a high level of instrumental stability, major steps are the extraction and conversion of experimental X-ray line intensities into elemental concentrations. For this purpose a two-step quantification approach was adopted. In the first step, the collected XRF spectra are deconvoluted on the basis of a non-linear least-squares fitting algorithm (AXIL). The extracted characteristic line intensities are then used as input for a detailed Monte Carlo (MC) simulation code dedicated to XRF spectroscopy taking into account specific experimental conditions (excitation/detection) as well as sample characteristics (absorption and enhancement effects, sample topology, heterogeneity etc.). The iterative use of the MC code gives a 'no-compromise' solution for the quantification problem

  5. Quantitative X-ray fluorescence analysis at the ESRF ID18F microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Vekemans, B. E-mail: vekemans@uia.ua.ac.be; Vincze, L.; Somogyi, A.; Drakopoulos, M.; Kempenaers, L.; Simionovici, A.; Adams, F

    2003-01-01

    The new ID18F end-station at the European synchrotron radiation facility (ESRF) in Grenoble (France) is dedicated to sensitive and accurate quantitative micro-X-ray fluorescence (XRF) analysis at the ppm level with accuracy better than 10% for elements with atomic numbers above 18. For accurate quantitative analysis, given a high level of instrumental stability, major steps are the extraction and conversion of experimental X-ray line intensities into elemental concentrations. For this purpose a two-step quantification approach was adopted. In the first step, the collected XRF spectra are deconvoluted on the basis of a non-linear least-squares fitting algorithm (AXIL). The extracted characteristic line intensities are then used as input for a detailed Monte Carlo (MC) simulation code dedicated to XRF spectroscopy taking into account specific experimental conditions (excitation/detection) as well as sample characteristics (absorption and enhancement effects, sample topology, heterogeneity etc.). The iterative use of the MC code gives a 'no-compromise' solution for the quantification problem.

  6. Measuring and interpreting X-ray fluorescence from planetary surfaces.

    Science.gov (United States)

    Owens, Alan; Beckhoff, Burkhard; Fraser, George; Kolbe, Michael; Krumrey, Michael; Mantero, Alfonso; Mantler, Michael; Peacock, Anthony; Pia, Maria-Grazia; Pullan, Derek; Schneider, Uwe G; Ulm, Gerhard

    2008-11-15

    As part of a comprehensive study of X-ray emission from planetary surfaces and in particular the planet Mercury, we have measured fluorescent radiation from a number of planetary analog rock samples using monochromatized synchrotron radiation provided by the BESSY II electron storage ring. The experiments were carried out using a purpose built X-ray fluorescence (XRF) spectrometer chamber developed by the Physikalisch-Technische Bundesanstalt, Germany's national metrology institute. The XRF instrumentation is absolutely calibrated and allows for reference-free quantitation of rock sample composition, taking into account secondary photon- and electron-induced enhancement effects. The fluorescence data, in turn, have been used to validate a planetary fluorescence simulation tool based on the GEANT4 transport code. This simulation can be used as a mission analysis tool to predict the time-dependent orbital XRF spectral distributions from planetary surfaces throughout the mapping phase.

  7. Comparing the detection of iron-based pottery pigment on a carbon-coated sherd by SEM-EDS and by Micro-XRF-SEM.

    Science.gov (United States)

    Pendleton, Michael W; Washburn, Dorothy K; Ellis, E Ann; Pendleton, Bonnie B

    2014-03-01

    The same sherd was analyzed using a scanning electron microscope with energy dispersive spectroscopy (SEM-EDS) and a micro X-ray fluorescence tube attached to a scanning electron microscope (Micro-XRF-SEM) to compare the effectiveness of elemental detection of iron-based pigment. To enhance SEM-EDS mapping, the sherd was carbon coated. The carbon coating was not required to produce Micro-XRF-SEM maps but was applied to maintain an unbiased comparison between the systems. The Micro-XRF-SEM analysis was capable of lower limits of detection than that of the SEM-EDS system, and therefore the Micro-XRF-SEM system could produce elemental maps of elements not easily detected by SEM-EDS mapping systems. Because SEM-EDS and Micro-XRF-SEM have been used for imaging and chemical analysis of biological samples, this comparison of the detection systems should be useful to biologists, especially those involved in bone or tooth (hard tissue) analysis.

  8. Characterization of Iraq-luster painted pottery by XRF and XAFS analysis

    International Nuclear Information System (INIS)

    Miura, Sanae; Kato, Norihiro; Nakai, Izumi; Shindo, Yoko

    2009-01-01

    Luster is one of the most interesting Islamic ceramic decorations. Their origins are known to be due to a nanostructured thin layer formed by metallic copper and silver nanocrystals. The chemical composition of the glazes and decorations of Iraq luster potteries stored in IDEMITSU museum of art were studied using XRF quantitative analysis and XRF imaging. Moreover, the local environment of copper and silver dispersed in the glaze were analyzed by means of XAFS analysis. The white glaze of Iraq luster pottery can be classified into alkali-lime glaze and alkali-lead-lime glaze according to their contents of PbO and SnO 2 . The present XRF analysis revealed that the almost all samples belong to alkali-lead-lime glaze. In addition, it is found from XRF imaging that different copper/silver ratios affect the color of decorations. Cu K-edge and Ag K-edge XAFS spectra of these shards were measured to reveal the chemical state of copper and silver. Presence of metallic copper is found in the red luster. In olive green and brown luster, copper is almost present in the Cu (I) state. Also, in dark brown luster, both Cu (I) and Cu (II) states are found, while, silver always exists in the metallic form independent of the color. (author)

  9. XRF newsletter. No. 11, July 2006

    International Nuclear Information System (INIS)

    2006-08-01

    This periodical XRF Newsletter is to inform the XRF laboratories in IAEA Member States on recent developments in the field of XRF spectrometry and to exchange views on fundamental and applied aspects of sampling, sample preparation, instrumentation, quality control, etc. A few selected examples of the recent activities in the IAEA XRF Laboratory and its results in the field of XRF are presented: Application of X ray imaging techniques to the study of the morphology of malaria mosquitoes; Preparation of insect specimens for micro-XRF analysis; Coordinated Research Project on Unification of nuclear spectrometries: integrated techniques as a new tool for material research

  10. Comparison of a portable micro-X-ray fluorescence spectrometry with inductively coupled plasma atomic emission spectrometry for the ancient ceramics analysis

    International Nuclear Information System (INIS)

    Papadopoulou, D.N.; Zachariadis, G.A.; Anthemidis, A.N.; Tsirliganis, N.C.; Stratis, J.A.

    2004-01-01

    Two multielement instrumental methods of analysis, micro X-ray fluorescence spectrometry (micro-XRF) and inductively coupled plasma atomic emission spectrometry (ICP-AES) were applied for the analysis of 7th and 5th century B.C. ancient ceramic sherds in order to evaluate the above two methods and to assess the potential to use the current compact and portable micro-XRF instrument for the in situ analysis of ancient ceramics. The distinguishing factor of interest is that micro-XRF spectrometry offers the possibility of a nondestructive analysis, an aspect of primary importance in the compositional analysis of cultural objects. Micro-XRF measurements were performed firstly directly on the ceramic sherds with no special pretreatment apart from surface cleaning (micro-XRF on sherds) and secondly on pressed pellet disks which were prepared for each ceramic sherd (micro-XRF on pellet). For the ICP-AES determination of elements, test solutions were prepared by the application of a microwave-assisted decomposition procedure in closed high-pressure PFA vessels. Also, the standard reference material SARM 69 was used for the efficiency calibration of the micro-XRF instrument and was analysed by both methods. In order to verify the calibration, the standard reference materials NCS DC 73332 and SRM620 as well as the reference materials AWI-1 and PRI-1 were analysed by micro-XRF. Elemental concentrations determined by the three analytical procedures (ICP-AES, micro-XRF on sherds and micro-XRF on pellets) were statistically treated by correlation analysis and Student's t-test (at the 95% confidence level)

  11. Comparison of a portable micro-X-ray fluorescence spectrometry with inductively coupled plasma atomic emission spectrometry for the ancient ceramics analysis

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulou, D.N. [Laboratory of Analytical Chemistry, Faculty of Chemistry, Aristotle University, GR-54124, Thessaloniki (Greece); Zachariadis, G.A. [Laboratory of Analytical Chemistry, Faculty of Chemistry, Aristotle University, GR-54124, Thessaloniki (Greece); Anthemidis, A.N. [Laboratory of Analytical Chemistry, Faculty of Chemistry, Aristotle University, GR-54124, Thessaloniki (Greece); Tsirliganis, N.C. [Archaeometry Laboratory, Cultural and Educational Technology Institute, Tsimiski 58, GR-67100, Xanthi (Greece); Stratis, J.A. [Laboratory of Analytical Chemistry, Faculty of Chemistry, Aristotle University, GR-54124, Thessaloniki (Greece)]. E-mail: jstratis@chem.auth.gr

    2004-12-01

    Two multielement instrumental methods of analysis, micro X-ray fluorescence spectrometry (micro-XRF) and inductively coupled plasma atomic emission spectrometry (ICP-AES) were applied for the analysis of 7th and 5th century B.C. ancient ceramic sherds in order to evaluate the above two methods and to assess the potential to use the current compact and portable micro-XRF instrument for the in situ analysis of ancient ceramics. The distinguishing factor of interest is that micro-XRF spectrometry offers the possibility of a nondestructive analysis, an aspect of primary importance in the compositional analysis of cultural objects. Micro-XRF measurements were performed firstly directly on the ceramic sherds with no special pretreatment apart from surface cleaning (micro-XRF on sherds) and secondly on pressed pellet disks which were prepared for each ceramic sherd (micro-XRF on pellet). For the ICP-AES determination of elements, test solutions were prepared by the application of a microwave-assisted decomposition procedure in closed high-pressure PFA vessels. Also, the standard reference material SARM 69 was used for the efficiency calibration of the micro-XRF instrument and was analysed by both methods. In order to verify the calibration, the standard reference materials NCS DC 73332 and SRM620 as well as the reference materials AWI-1 and PRI-1 were analysed by micro-XRF. Elemental concentrations determined by the three analytical procedures (ICP-AES, micro-XRF on sherds and micro-XRF on pellets) were statistically treated by correlation analysis and Student's t-test (at the 95% confidence level)

  12. Analysis of thin films prepared by vacuum-evaporation and dropping solution by Takeoff Angle-Dependent X-Ray Fluorescence spectroscopy at glancing incidence

    International Nuclear Information System (INIS)

    Tsuji, Kouichi; Hirokawa, Kichinosuke; Mitose, Kengo.

    1995-01-01

    We have introduced Takeoff Angle-Dependent X-Ray Fluorescence (TAD-XRF) method for thin film and surface analysis. In this method, the sample on the optically flat substrate is irradiated with the glancing incidence of the primary X-ray, and the fluorescent X-rays emitted from the sample are detected at the glancing takeoff angle. We had previously calculated the relationship between the fluorescent X-ray intensity and the takeoff angle at the glancing incidence. The characterization of the thin film is achieved by investigating the dependence of the fluorescent X-ray intensity on the takeoff angle with the calculated curve. Using this analytical method, we have reported the results of the TAD-XRF measured for the evaporated thin films and the dried films from dropping solution in this paper. The effect of the thickness of the thin film, the density of the substrate and the incident angle on the TAD-XRF curve has been reported. In the case of the dried film from the dropping solution, a broad peak was observed at the takeoff angle which was close to the critical angle for the total reflection of the fluorescent X-ray in the TAD-XRF curve. This broad peak was explained by the double-excitation of the incident beam and the refracted beam of the fluorescent X-ray with the assumption that the X-ray which has a same wavelength to the observed fluorescent X-ray impinges upon the sample surface, because the reciprocity theorem is expected in the X-ray region. (author)

  13. Multilayers quantitative X-ray fluorescence analysis applied to easel paintings.

    Science.gov (United States)

    de Viguerie, Laurence; Sole, V Armando; Walter, Philippe

    2009-12-01

    X-ray fluorescence spectrometry (XRF) allows a rapid and simple determination of the elemental composition of a material. As a non-destructive tool, it has been extensively used for analysis in art and archaeology since the early 1970s. Whereas it is commonly used for qualitative analysis, recent efforts have been made to develop quantitative treatment even with portable systems. However, the interpretation of the results obtained with this technique can turn out to be problematic in the case of layered structures such as easel paintings. The use of differential X-ray attenuation enables modelling of the various layers: indeed, the absorption of X-rays through different layers will result in modification of intensity ratio between the different characteristic lines. This work focuses on the possibility to use XRF with the fundamental parameters method to reconstruct the composition and thickness of the layers. This method was tested on several multilayers standards and gives a maximum error of 15% for thicknesses and errors of 10% for concentrations. On a painting test sample that was rather inhomogeneous, the XRF analysis provides an average value. This method was applied in situ to estimate the thickness of the layers a painting from Marco d'Oggiono, pupil of Leonardo da Vinci.

  14. Characterization of Archaeological Sediments Using Fourier Transform Infrared (FT-IR) and Portable X-ray Fluorescence (pXRF): An Application to Formative Period Pyro-Industrial Sites in Pacific Coastal Southern Chiapas, Mexico.

    Science.gov (United States)

    Neff, Hector; Bigney, Scott J; Sakai, Sachiko; Burger, Paul R; Garfin, Timothy; George, Richard G; Culleton, Brendan J; Kennett, Douglas J

    2016-01-01

    Archaeological sediments from mounds within the mangrove zone of far-southern Pacific coastal Chiapas, Mexico, are characterized in order to test the hypothesis that specialized pyro-technological activities of the region's prehistoric inhabitants (salt and ceramic production) created the accumulations visible today. Fourier transform infrared spectroscopy (FT-IR) is used to characterize sediment mineralogy, while portable X-ray fluorescence (pXRF) is used to determine elemental concentrations. Elemental characterization of natural sediments by both instrumental neutron activation analysis (INAA) and pXRF also contribute to understanding of processes that created the archaeological deposits. Radiocarbon dates combined with typological analysis of ceramics indicate that pyro-industrial activity in the mangrove zone peaked during the Late Formative and Terminal Formative periods, when population and monumental activity on the coastal plain and piedmont were also at their peaks. © The Author(s) 2015.

  15. The three-dimensional elemental distribution based on the surface topography by confocal 3D-XRF analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Longtao; Qin, Min; Wang, Kai; Peng, Shiqi; Sun, Tianxi; Liu, Zhiguo [Beijing Normal University, College of Nuclear Science and Technology, Beijing (China); Lin, Xue [Northwest University, School of Cultural Heritage, Xi' an (China)

    2016-09-15

    Confocal three-dimensional micro-X-ray fluorescence (3D-XRF) is a good surface analysis technology widely used to analyse elements and elemental distributions. However, it has rarely been applied to analyse surface topography and 3D elemental mapping in surface morphology. In this study, a surface adaptive algorithm using the progressive approximation method was designed to obtain surface topography. A series of 3D elemental mapping analyses in surface morphology were performed in laboratories to analyse painted pottery fragments from the Majiayao Culture (3300-2900 BC). To the best of our knowledge, for the first time, sample surface topography and 3D elemental mapping were simultaneously obtained. Besides, component and depth analyses were also performed using synchrotron radiation confocal 3D-XRF and tabletop confocal 3D-XRF, respectively. The depth profiles showed that the sample has a layered structure. The 3D elemental mapping showed that the red pigment, black pigment, and pottery coat contain a large amount of Fe, Mn, and Ca, respectively. From the 3D elemental mapping analyses at different depths, a 3D rendering was obtained, clearly showing the 3D distributions of the red pigment, black pigment, and pottery coat. Compared with conventional 3D scanning, this method is time-efficient for analysing 3D elemental distributions and hence especially suitable for samples with non-flat surfaces. (orig.)

  16. The three-dimensional elemental distribution based on the surface topography by confocal 3D-XRF analysis

    International Nuclear Information System (INIS)

    Yi, Longtao; Qin, Min; Wang, Kai; Peng, Shiqi; Sun, Tianxi; Liu, Zhiguo; Lin, Xue

    2016-01-01

    Confocal three-dimensional micro-X-ray fluorescence (3D-XRF) is a good surface analysis technology widely used to analyse elements and elemental distributions. However, it has rarely been applied to analyse surface topography and 3D elemental mapping in surface morphology. In this study, a surface adaptive algorithm using the progressive approximation method was designed to obtain surface topography. A series of 3D elemental mapping analyses in surface morphology were performed in laboratories to analyse painted pottery fragments from the Majiayao Culture (3300-2900 BC). To the best of our knowledge, for the first time, sample surface topography and 3D elemental mapping were simultaneously obtained. Besides, component and depth analyses were also performed using synchrotron radiation confocal 3D-XRF and tabletop confocal 3D-XRF, respectively. The depth profiles showed that the sample has a layered structure. The 3D elemental mapping showed that the red pigment, black pigment, and pottery coat contain a large amount of Fe, Mn, and Ca, respectively. From the 3D elemental mapping analyses at different depths, a 3D rendering was obtained, clearly showing the 3D distributions of the red pigment, black pigment, and pottery coat. Compared with conventional 3D scanning, this method is time-efficient for analysing 3D elemental distributions and hence especially suitable for samples with non-flat surfaces. (orig.)

  17. New insights into the painting stratigraphy of L'Homme blesse by Gustave Courbet combining scanning macro-XRF and confocal micro-XRF

    International Nuclear Information System (INIS)

    Reiche, Ina; Eveno, Myriam; Pichon, Laurent; Laval, Eric; Mottin, Bruno; Mueller, Katharina; Calligaro, Thomas; Mysak, Erin

    2016-01-01

    The painting L'Homme blesse by Gustave Courbet kept at the Musee d'Orsay in Paris has been recently studied by X-ray radiography, SEM-EDX observation of paint cross sections and confocal micro-X-ray fluorescence analyses (CXRF) at locations where the cross section samples were taken. This study allowed the establishment of the paint palette used by Courbet for the three paint compositions. Eight or more paint layers could be evidenced. In the view of the complexity of this painting, further analyses using two-dimensional scanning macro-X-ray fluorescence imaging (MA-XRF) providing chemical images corresponding to the superimposition of all detectable paint layers were employed. This method is combined with CXRF for depth-resolved paint layer analysis. Large elemental maps of Hg, Cu, As, Fe, Zn, Cr, Ba, Pb and Ca were obtained by MA-XRF on the painting and are discussed in combination with depth profiles obtained by CXRF on strategic points where three painting compositions overlap. The order of three successive compositions of this painting were determined in this study. This work also highlights the benefits of using complementary imaging methods to obtain a complete three-dimensional vision of the chemistry and stratigraphy of paintings. (orig.)

  18. XRF newsletter, No. 14, December 2007

    International Nuclear Information System (INIS)

    2007-08-01

    This periodical XRF Newsletter is to inform the XRF laboratories in IAEA Member States on recent developments in the field of XRF spectrometry and to exchange views on fundamental and applied aspects of sampling, sample preparation, instrumentation, quality control, etc. A few selected examples of the recent activities in the IAEA XRF Laboratory and its results in the field of XRF are presented: Proficiency test for XRF laboratories; Workshop on Non-destructive and Micro analytical Techniques in Art and Cultural Heritage Research; ANKA users meeting, Karlsruhe; School on Pulsed Neutron Sources: Characterization of Materials; ICT-based Module on Ion Beam Analysis for Learning and Teaching

  19. XRF Spot verification of LDUA materials

    International Nuclear Information System (INIS)

    JANICEK, G.P.

    1998-01-01

    This document consists primarily of a Numatec Hanford Corporation letter report, NHC-9857331, describing x-ray fluorescent (XRF) testing performed on the Light Duty Utility Arm (LDUA) in order to determine/verify the materials of fabrication. Results of the testing indicate that some materials do not correspond to callouts in the governing fabrication drawing

  20. X-ray fluorescence in Member States (Indonesia): Application of ED XRF in supporting national program of air quality improvement in Indonesia

    International Nuclear Information System (INIS)

    Muhayatun, Santoso; Diah Dwiana Lestiani

    2014-01-01

    Since 1997, the National Nuclear Energy Agency, BATAN has been involved in the IAEA’s RAS projects for the application of nuclear analytical techniques to characterize airborne particulate samples. The measurement of the elemental composition of the particulate matters is a key factor in utilization of the data for the determination of possible sources, which the process of identification and apportionment of pollutants to their sources is an important step in air quality management. Nuclear analytical methods such as XRF and PIXE are suitable for characterizations and need to be applied to produce large data sets of elemental compositions of APM. To maintain the sustainability of research in supporting the national program of air quality improvement in Indonesia, in 2011, BATAN has proposed new equipment, Energy Dispersive X-Ray Fluorescence (ED-XRF) Epsilon 5. During the last two years, based on MoU between BATAN and the Ministry of Environment, the assessment and monitoring of air quality has been expanded into 15 cities in Indonesia. In this review, we present the research activities related to the application of XRF in APM samples characterization. (author)

  1. Application of portable X-ray fluorescence spectrometry in environmental investigation of heavy metal-contaminated sites and comparison with laboratory analysis

    Science.gov (United States)

    Ding, Liang; Wang, Shui; Cai, Bingjie; Zhang, Mancheng; Qu, Changsheng

    2018-02-01

    In this study, portable X-ray fluorescence spectrometry (pXRF) was used to measure the heavy metal contents of As, Cu, Cr, Ni, Pb and Zn in the soils of heavy metal-contaminated sites. The precision, accuracy and system errors of pXRF were evaluated and compared with traditional laboratory methods to examine the suitability of in situ pXRF. The results show that the pXRF analysis achieved satisfactory accuracy and precision in measuring As, Cr, Cu, Ni, Pb, and Zn in soils, and meets the requirements of the relevant detection technology specifications. For the certified reference soil samples, the pXRF results of As, Cr, Cu, Ni, Pb, and Zn show good linear relationships and coefficients of determination with the values measured using the reference analysis methods; with the exception of Ni, all the measured values were within the 95% confidence level. In the soil samples, the coefficients of determination between Cu, Zn, Pb, and Ni concentrations measured laboratory pXRF and the values measured with laboratory analysis all reach 0.9, showing a good linear relationship; however, there were large deviations between methods for Cr and As. This study provides reference data and scientific support for rapid detection of heavy metals in soils using pXRF in site investigation, which can better guide the practical application of pXRF.

  2. Use of portable X-ray fluorescence instrument for bulk alloy analysis on low corroded indoor bronzes

    International Nuclear Information System (INIS)

    Šatović, D.; Desnica, V.; Fazinić, S.

    2013-01-01

    One of the most often used non-destructive methods for elemental analysis when performing field measurements on bronze sculptures is X-ray fluorescence (XRF) analysis based on portable instrumentation. However, when performing routine in-situ XRF analysis on corroded objects obtained results are sometimes considerably influenced by the corrosion surface products. In this work the suitability of portable XRF for bulk analysis of low corroded bronzes, which were initially precisely characterized using sophisticated and reliable laboratory methods, was investigated and some improvements in measuring technique and data processing were given. Artificially corroded bronze samples were analyzed by a portable XRF instrument using the same methodology and procedures as when performing in-situ analysis on real objects. The samples were first investigated using sophisticated complementary laboratory techniques: Scanning Electron Microscopy, Proton-Induced X-ray Emission Spectroscopy and Rutherford Backscattering Spectrometry, in order to gain precise information on the formation of the corrosion product layers and in-depth elemental profile of corrosion layers for different aging parameters. It has been shown that for corrosion layers of up to ca. 25 μm a portable XRF can yield very accurate quantification results. - Highlights: • XRF quantification is very accurate for bronze corrosion layers of up to ca. 25 μm. • Corrosion layer formation on bronze described in two phases. • Corrosion layers precisely characterized using PIXE, RBS and SEM. • Corrosion approximated as CuO for layer thickness calculations via X-ray attenuations • Increasingly lighter corrosion matrix may cause SnLα radiation intensity inversion

  3. Use of portable X-ray fluorescence instrument for bulk alloy analysis on low corroded indoor bronzes

    Energy Technology Data Exchange (ETDEWEB)

    Šatović, D., E-mail: dsatovic@alu.hr [Department of Conservation and Restoration, Academy of Fine Arts, Ilica 85, 10000 Zagreb (Croatia); Desnica, V. [Department of Conservation and Restoration, Academy of Fine Arts, Ilica 85, 10000 Zagreb (Croatia); Fazinić, S. [Laboratory for Ion Beam Interactions, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb (Croatia)

    2013-11-01

    One of the most often used non-destructive methods for elemental analysis when performing field measurements on bronze sculptures is X-ray fluorescence (XRF) analysis based on portable instrumentation. However, when performing routine in-situ XRF analysis on corroded objects obtained results are sometimes considerably influenced by the corrosion surface products. In this work the suitability of portable XRF for bulk analysis of low corroded bronzes, which were initially precisely characterized using sophisticated and reliable laboratory methods, was investigated and some improvements in measuring technique and data processing were given. Artificially corroded bronze samples were analyzed by a portable XRF instrument using the same methodology and procedures as when performing in-situ analysis on real objects. The samples were first investigated using sophisticated complementary laboratory techniques: Scanning Electron Microscopy, Proton-Induced X-ray Emission Spectroscopy and Rutherford Backscattering Spectrometry, in order to gain precise information on the formation of the corrosion product layers and in-depth elemental profile of corrosion layers for different aging parameters. It has been shown that for corrosion layers of up to ca. 25 μm a portable XRF can yield very accurate quantification results. - Highlights: • XRF quantification is very accurate for bronze corrosion layers of up to ca. 25 μm. • Corrosion layer formation on bronze described in two phases. • Corrosion layers precisely characterized using PIXE, RBS and SEM. • Corrosion approximated as CuO for layer thickness calculations via X-ray attenuations • Increasingly lighter corrosion matrix may cause SnLα radiation intensity inversion.

  4. New insights into the painting stratigraphy of L'Homme blesse by Gustave Courbet combining scanning macro-XRF and confocal micro-XRF

    Energy Technology Data Exchange (ETDEWEB)

    Reiche, Ina [Staatliche Museen zu Berlin-Preussischer Kulturbesitz, Rathgen-Forschungslabor, Berlin (Germany); Laboratoire d' Archeologie Moleculaire et Structurale, Sorbonne Universites, Univ. Paris 06, CNRS, UMR 8220, Paris (France); Eveno, Myriam; Pichon, Laurent; Laval, Eric; Mottin, Bruno [Centre de Recherche et de Restauration des Musees de France (C2RMF), Paris (France); Mueller, Katharina [Laboratoire d' Archeologie Moleculaire et Structurale, Sorbonne Universites, Univ. Paris 06, CNRS, UMR 8220, Paris (France); Calligaro, Thomas [Centre de Recherche et de Restauration des Musees de France (C2RMF), Paris (France); PSL Research University, Chimie ParisTech-CNRS, Institut de Recherche Chimie Paris, Paris (France); Mysak, Erin [Centre de Recherche et de Restauration des Musees de France (C2RMF), Paris (France); Yale University, Institute for the Preservation of Cultural Heritage, New Haven, CT (United States)

    2016-11-15

    The painting L'Homme blesse by Gustave Courbet kept at the Musee d'Orsay in Paris has been recently studied by X-ray radiography, SEM-EDX observation of paint cross sections and confocal micro-X-ray fluorescence analyses (CXRF) at locations where the cross section samples were taken. This study allowed the establishment of the paint palette used by Courbet for the three paint compositions. Eight or more paint layers could be evidenced. In the view of the complexity of this painting, further analyses using two-dimensional scanning macro-X-ray fluorescence imaging (MA-XRF) providing chemical images corresponding to the superimposition of all detectable paint layers were employed. This method is combined with CXRF for depth-resolved paint layer analysis. Large elemental maps of Hg, Cu, As, Fe, Zn, Cr, Ba, Pb and Ca were obtained by MA-XRF on the painting and are discussed in combination with depth profiles obtained by CXRF on strategic points where three painting compositions overlap. The order of three successive compositions of this painting were determined in this study. This work also highlights the benefits of using complementary imaging methods to obtain a complete three-dimensional vision of the chemistry and stratigraphy of paintings. (orig.)

  5. Development of a reconstruction software of elemental maps by micro X-ray fluorescence

    International Nuclear Information System (INIS)

    Almeida, Andre Pereira de; Braz, Delson; Mota, Carla Lemos; Oliveira, Luis Fernando de; Barroso, Regina Cely; Pinto, Nivia Graciele Villela; Cardoso, Simone Coutinho; Moreira, Silvana

    2009-01-01

    The technique of X-ray fluorescence (XRF) using SR microbeams is a powerful analysis tool for studying elemental composition in several samples. One application of this technique is the analysis done through the mapping of chemical elements forming a matrix of data. The aim of this work is the presentation of the program MapXRF, an in-house software designed to optimize the processing and mapping of fluorescence intensities data. This program uses spectra generated by QXAS as input data and separates the intensities of each chemical element found in the fluorescence spectra in files themselves. From these files, the program generates the intensity maps that can be visualized in any program of treatment of images. The proposed software was tested using fluorescence data obtained in the XRF beamline at National Synchrotron Light Laboratory (LNLS), Brazil. Automatic 2D scans were performed and element distribution maps were obtained in form of a matrix of data. (author)

  6. Development of a reconstruction software of elemental maps by micro X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Andre Pereira de; Braz, Delson; Mota, Carla Lemos, E-mail: apalmeid@gmail.co, E-mail: delson@lin.ufrj.b, E-mail: clemos@con.ufrj.b [Universidade Federal do Rio de Janeiro (PEN/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Energia Nuclear; Oliveira, Luis Fernando de; Barroso, Regina Cely; Pinto, Nivia Graciele Villela, E-mail: cely@uerj.b, E-mail: lfolive@uerj.b, E-mail: nitatag@gmail.co [Universidade do Estado do Rio de Janeiro (IF/UERJ), RJ (Brazil). Inst. de Fisica; Cardoso, Simone Coutinho [Universidade Federal do Rio de Janeiro (IF/UFRJ), RJ (Brazil). Inst. de Fisica; Moreira, Silvana [Universidade Estadual de Campinas (FEC/UNICAMP), SP (Brazil) Faculdade de Engenharia Civil, Arquitetura e Urbanismo

    2009-07-01

    The technique of X-ray fluorescence (XRF) using SR microbeams is a powerful analysis tool for studying elemental composition in several samples. One application of this technique is the analysis done through the mapping of chemical elements forming a matrix of data. The aim of this work is the presentation of the program MapXRF, an in-house software designed to optimize the processing and mapping of fluorescence intensities data. This program uses spectra generated by QXAS as input data and separates the intensities of each chemical element found in the fluorescence spectra in files themselves. From these files, the program generates the intensity maps that can be visualized in any program of treatment of images. The proposed software was tested using fluorescence data obtained in the XRF beamline at National Synchrotron Light Laboratory (LNLS), Brazil. Automatic 2D scans were performed and element distribution maps were obtained in form of a matrix of data. (author)

  7. Energy-Dispersive X-Ray Fluorescence Spectrometry: A Long Overdue Addition to the Chemistry Curriculum

    Science.gov (United States)

    Palmer, Peter T.

    2011-01-01

    Portable Energy-Dispersive X-Ray Fluorescence (XRF) analyzers have undergone significant improvements over the past decade. Salient advantages of XRF for elemental analysis include minimal sample preparation, multielement analysis capabilities, detection limits in the low parts per million (ppm) range, and analysis times on the order of 1 min.…

  8. Two-dimensional micro-beam imaging of trace elements in a single plankton measured by a synchrotron radiation X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Ezoe, Masako; Sasaki, Miho; Hokura, Akiko; Nakai, Izumi; Terada, Yasuko; Yoshinaga, Tatsuki; Tukamoto, Katsumi; Hagiwara, Atsushi

    2002-01-01

    Two-dimensional imaging and a quantitative analysis of trace elements in rotifer, Brachionus plicatilis, belonging to zooplankton, were carried out by a synchrotron radiation X-ray fluorescence analysis (SR-XRF). The XRF imaging revealed that female rotifers accumulated Fe and Zn in the digestive organ and Fe, Zn, Cu, and Ca in the sexual organs, while the Mn level was high in the head. From a quantitative analysis by inductively coupled plasma mass spectrometry (ICP-MS), we found that rotifers eat the chlorella and accumulate the above elements in the body. The result of quantitative analyses of Mn, Cu, and Zn by SR-XRF in a single sample is in fair agreement with the average values determined by ICP-MS analyses, which were obtained by measuring a large number of rotifers, digested by nitric acid. The present study has demonstrated that SR-XRF is an effective tool for the trace element analysis of a single individual of rotifer. (author)

  9. Two-dimensional micro-beam imaging of trace elements in a single plankton measured by a synchrotron radiation X-ray fluorescence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ezoe, Masako; Sasaki, Miho; Hokura, Akiko; Nakai, Izumi [Tokyo Univ. of Science, Faculty of Science, Tokyo (Japan); Terada, Yasuko [Japan Synchrotron Radiation Research Inst., Mikazuki, Hyogo (Japan); Yoshinaga, Tatsuki; Tukamoto, Katsumi [Tokyo Univ., Ocean Research Inst., Tokyo (Japan); Hagiwara, Atsushi [Nagasaki Univ., Graduate School of Science and Technology, Bunkyou, Nagasaki (Japan)

    2002-10-01

    Two-dimensional imaging and a quantitative analysis of trace elements in rotifer, Brachionus plicatilis, belonging to zooplankton, were carried out by a synchrotron radiation X-ray fluorescence analysis (SR-XRF). The XRF imaging revealed that female rotifers accumulated Fe and Zn in the digestive organ and Fe, Zn, Cu, and Ca in the sexual organs, while the Mn level was high in the head. From a quantitative analysis by inductively coupled plasma mass spectrometry (ICP-MS), we found that rotifers eat the chlorella and accumulate the above elements in the body. The result of quantitative analyses of Mn, Cu, and Zn by SR-XRF in a single sample is in fair agreement with the average values determined by ICP-MS analyses, which were obtained by measuring a large number of rotifers, digested by nitric acid. The present study has demonstrated that SR-XRF is an effective tool for the trace element analysis of a single individual of rotifer. (author)

  10. Astrobiological Significance of Definitive Mineralogical Analysis of Martian Surface Samples Using the CheMin XRD/XRF Instrument

    Science.gov (United States)

    Feldman, S. M.; Blake, D. F.; Sarrazin, P.; Bish, D. L.; Chipera, S. J.; Vaniman, D. T.; Collins, S.

    2004-01-01

    The search for evidence of habitability, or of extant or extinct life on Mars, will initially be a search for evidence of past or present conditions supportive of life. The three key requirements for the emergence of life are thought to be liquid water; a suitable energy source; and chemical building blocks. CheMin is a miniaturized XRD/XRF (X-Ray diffraction / X-ray fluorescence) instrument which has been developed for definitive mineralogic analysis of soils and rocks on the Martian surface. The CheMin instrument can provide information that is highly relevant to each of these habitability requirements as summarized below.

  11. Long term fine aerosol analysis by XRF and PIXE techniques in the city of Rijeka, Croatia

    International Nuclear Information System (INIS)

    Ivošević, Tatjana; Orlić, Ivica; Radović, Iva Bogdanović

    2015-01-01

    Highlights: • For the first time in Croatia, long term of fine aerosol pollution is reported. - Abstract: The results of a long term, multi elemental XRF and PIXE analysis of fine aerosol pollution in the city of Rijeka, Croatia, are reported for the first time. The samples were collected during a seven months period (6th Aug 2013–28th Feb 2014) on thin stretched Teflon filters and analyzed by energy dispersive X-ray fluorescence (EDXRF) at the Laboratory for Elemental Micro-Analysis (LEMA), University of Rijeka and by Particle Induced X-ray Emission (PIXE) using 1.6 MeV protons at the Laboratory for Ion Beam Interactions (LIBI), Ruđer Bošković Institute, Zagreb. The newly developed micro-XRF system at LEMA provided results for 19 elements in the range from Si to Pb. The PIXE at the LIBI provided information for the same elements as well for the light elements such as Na, Mg and Al. Black carbon was determined with the Laser Integrated Plate Method (LIPM). The results were statistically evaluated by means of the positive matrix factorization (PMF). The seven major pollution sources were identified together with their relative contributions, these are: secondary sulfates, road traffic, smoke, road dust, sea spray, ship emissions and soil dust.

  12. Long term fine aerosol analysis by XRF and PIXE techniques in the city of Rijeka, Croatia

    Energy Technology Data Exchange (ETDEWEB)

    Ivošević, Tatjana [Faculty of Engineering, University of Rijeka, Vukovarska 58, HR-51000 Rijeka (Croatia); Orlić, Ivica [Department of Physics, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka (Croatia); Radović, Iva Bogdanović [Laboratory for Ion Beam Interaction, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb (Croatia)

    2015-11-15

    Highlights: • For the first time in Croatia, long term of fine aerosol pollution is reported. - Abstract: The results of a long term, multi elemental XRF and PIXE analysis of fine aerosol pollution in the city of Rijeka, Croatia, are reported for the first time. The samples were collected during a seven months period (6th Aug 2013–28th Feb 2014) on thin stretched Teflon filters and analyzed by energy dispersive X-ray fluorescence (EDXRF) at the Laboratory for Elemental Micro-Analysis (LEMA), University of Rijeka and by Particle Induced X-ray Emission (PIXE) using 1.6 MeV protons at the Laboratory for Ion Beam Interactions (LIBI), Ruđer Bošković Institute, Zagreb. The newly developed micro-XRF system at LEMA provided results for 19 elements in the range from Si to Pb. The PIXE at the LIBI provided information for the same elements as well for the light elements such as Na, Mg and Al. Black carbon was determined with the Laser Integrated Plate Method (LIPM). The results were statistically evaluated by means of the positive matrix factorization (PMF). The seven major pollution sources were identified together with their relative contributions, these are: secondary sulfates, road traffic, smoke, road dust, sea spray, ship emissions and soil dust.

  13. Physical aspects of quantitative particles analysis by X-ray fluorescence and electron microprobe techniques

    International Nuclear Information System (INIS)

    Markowicz, A.

    1986-01-01

    The aim of this work is to present both physical fundamentals and recent advances in quantitative particles analysis by X-ray fluorescence (XRF) and electron microprobe (EPXMA) techniques. A method of correction for the particle-size effect in XRF analysis is described and theoretically evaluated. New atomic number- and absorption correction procedures in EPXMA of individual particles are proposed. The applicability of these two correction methods is evaluated for a wide range of elemental composition, X-ray energy and sample thickness. Also, a theoretical model for composition and thickness dependence of Bremsstrahlung background generated in multielement bulk specimens as well as thin films and particles are presented and experimantally evaluated. Finally, the limitations and further possible improvements in quantitative particles analysis by XFR and EPXMA are discussed. 109 refs. (author)

  14. Evaluating the applicability of portable-XRF for the characterization of Hokkaido Obsidian sources. A comparison with INAA, ICP-MS and EPMA

    International Nuclear Information System (INIS)

    Lynch, S.C.

    2016-01-01

    As a result of the limited application of portable X-ray fluorescence (pXRF) in archaeological research in Japan it is necessary to compare this technique to proven, laboratory-based, analytical techniques. In this study instrumental neutron activation analysis, inductively-coupled plasma mass spectrometry, and electron probe microanalysis are used to validate pXRF and determine the overall suitability of this technique for archaeological obsidian provenance studies in Hokkaido, northern Japan. Furthermore, the results of this study are compared to previously published data to assess reproducibility and compatibility. This study demonstrates the reliability of pXRF for the rapid characterization of Hokkaido obsidian while contributing to the ongoing evaluation of the applicability of 'off-the-shelf' pXRF to obsidian provenance research in archaeology. (author)

  15. Application of multivariate statistical methods to classify archaeological pottery from Tel-Alramad site, Syria, based on x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Bakraji, E. H.

    2007-01-01

    Radioisotopic x-ray fluorescence (XRF) analysis has been utilized to determine the elemental composition of 55 archaeological pottery samples by the determination of 17 chemical elements. Fifty-four of them came from the Tel-Alramad Site in Katana town, near Damascus city, Syria, and one sample came from Brazil. The XRF results have been processed using two multivariate statistical methods, cluster and factor analysis, in order to determine similarities and correlation between the selected samples based on their elemental composition. The methodology successfully separates the samples where four distinct chemical groups were identified. (author)

  16. Forensic discrimination of aluminum foil by SR-XRF and ICP-AES

    International Nuclear Information System (INIS)

    Kasamatsu, Masaaki; Suzuki, Yasuhiro; Suzuki, Shinichi; Miyamoto, Naoki; Watanabe, Seiya; Shimoda, Osamu; Takatsu, Masahisa; Nakanishi, Toshio

    2010-01-01

    The application of synchrotron radiation X-ray fluorescence spectrometry (SR-XRF) was investigated for the forensic discrimination of aluminum foil by comparisons of the elemental components. Small fragments (1 x 1 mm) were taken from 4 kinds of aluminum foils produced by different manufactures and used for measurements of the XRF spectrum at BL37XU of SPring-8. A comparison of the XRF spectra was effective for the discrimination of aluminum foils from different sources, because significant differences were observed in the X-ray peak intensities of Fe, Cu, Zn, Ga, Zr and Sn. These elements, except for Zr and Sn in the aluminum foils and NIST SRM1258 (Aluminium Alloy 6011), were also determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). The observed values of Fe, Cu, Zn and Ga in NIST standard samples by ICP-AES showed satisfactorily good agreements with the certified or information values with relative standard deviations from 1.1% for Zn to 6.7% for Ga. The observed values for the aluminum foils by ICP-AES were compared with those by SR-XRF. Correlation coefficients from 0.997 for Cu/Fe to 0.999 for Zn/Fe and Ga/Fe were obtained between the ratio of the elemental concentration by ICP-AES and normalized the X-ray intensity by SR-XRF. This result demonstrates that a comparison of the normalized X-ray intensity is nearly as effective for the discrimination of aluminum foils as quantitative analysis by ICP-AES. Comparisons of the analytical results by SR-XRF allow the discrimination of all aluminum foils using only a 1 mm 2 fragment with no destruction of the samples. (author)

  17. X-ray fluorescence system for thin film composition analysis during deposition

    International Nuclear Information System (INIS)

    Formica, Sarah P.; Lee, Susanne M.

    2005-01-01

    A fast-response-time X-ray fluorescence (XRF) system was designed with a monolithic polycapillary focusing optic for in situ composition profiling during materials deposition. The polycapillary optic produced 10 5 times more intensity at the sample than a pinhole, allowing the detector placement to be outside most deposition chambers. The resultant XRF signals were so strong that measurement times were comparable to monolayer growth times. XRF line scans from Ge 1-x Sn x thin films were used to map Sn concentration versus surface position with a 10 μm resolution. The extrapolated instrumental detection limit using a 20 W Cu source was 10 12 atoms (ng). XRF from a 100-nm ion-implanted Ge 0.72 Sn 0.28 sample demonstrated the system's ability to monitor initial growth stages during deposition

  18. Analysis of eight argonne premium coal samples by X-ray fluorescence spectrometry

    Science.gov (United States)

    Evans, J.R.; Sellers, G.A.; Johnson, R.G.; Vivit, D.V.; Kent, J.

    1990-01-01

    X-ray fluorescence spectrometric methods were used in the analysis of eight Argonne Premium Coal Samples. Trace elements (Cr, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, La, and Ce) in coal ash were determined by energy-dispersive X-ray fluorescence spectrometry; major elements (Na, Mg, Al, Si, P, S, K, Ca, Ti, Mn, and Fe) in coal ash and trace elements (Cl and P) in whole coal were determined by wavelength-dispersive X-ray fluorescence spectrometry. The results of this study will be used in a geochemical database compiled for these materials from various analytical techniques. The experimental XRF methods and procedures used to determine these major and trace elements are described.

  19. XRF newsletter. No. 2

    International Nuclear Information System (INIS)

    2001-10-01

    This periodical XRF Newsletter is to inform the XRF laboratories in IAEA Member States on recent developments in the field of XRF spectrometry and to exchange views on fundamental and applied aspects of sampling, sample preparation, instrumentation, quantitation, quality control, etc. It presents the XRF activities and the main XRF results obtained at the IAEA's model XRF Laboratory in Seibersdorf and in XRF laboratories in the Member States. It includes input from the Member States to help the XRF laboratories to improve their analytical performance, extend the applicability range of XRF techniques and initiate co-operation

  20. XRF newsletter. No. 1

    International Nuclear Information System (INIS)

    2000-12-01

    This periodical XRF Newsletter is to inform the XRF laboratories in IAEA Member States on recent developments in the field of XRF spectrometry and to exchange views on fundamental and applied aspects of sampling, sample preparation, instrumentation, quantitation, quality control, etc. It presents the XRF activities and the main XRF results obtained at the IAEA's model XRF Laboratory in Seibersdorf and in XRF laboratories in the Member States. This Newsletter will include input from the Member States and will help the XRF laboratories to improve their analytical performance, extend the applicability range of XRF techniques and initiate co-operation. It will be distributed to current and potential end-users of the analytical services of XRF laboratories and will further promote the utilisation of this technique in environmental pollution monitoring, mineral exploration, archaeometry and industry. The first issue of the Newsletter provides the XRF laboratories with a description of the facilities, the activities and selected results obtained at the IAEA XRF Laboratory in Seibersdorf, Austria

  1. The application of XRF and PIXE in the analysis of rice shoot and compositional screening of genotypes

    Energy Technology Data Exchange (ETDEWEB)

    Bado, S., E-mail: s.bado@iaea.org [Plant Breeding and Genetics Laboratory (PGBL), International Atomic Energy (IAEA), Vienna (Austria); Padilla-Alvarez, R., E-mail: rpa2000up@hotmail.com [Nuclear Science and Instrumentation Laboratory (NSIL), International Atomic Energy Agency (IAEA), Vienna International Centre, PO Box 100, 1400 Vienna (Austria); Migliori, A. [Nuclear Science and Instrumentation Laboratory (NSIL), International Atomic Energy Agency (IAEA), Vienna International Centre, PO Box 100, 1400 Vienna (Austria); Forster, B.P., E-mail: brianforster@biohybrids.com [Plant Breeding and Genetics Laboratory (PGBL), International Atomic Energy (IAEA), Vienna (Austria); Jaksic, M., E-mail: jaksic@irb.hr [Institut Ruđer Bošković, Bijenička cesta 54, 10000 Zagreb (Croatia); Diawara, Y.; Kaiser, R. [Nuclear Science and Instrumentation Laboratory (NSIL), International Atomic Energy Agency (IAEA), Vienna International Centre, PO Box 100, 1400 Vienna (Austria); Laimer, M., E-mail: margit.laimer@boku.ac.at [Plant Biotechnology Unit, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A 1190 Vienna (Austria)

    2016-03-15

    The analytical performance of Particle Induced X-ray Emission (PIXE) and X-ray Fluorescence (XRF) techniques was assessed in the determination of fourteen elements (Na, Mg, P, S, Cl, K, Ca, Mn, Fe, Cu, Zn, Br, Rb and Sr) in plant samples. The quality of the results – in terms of accuracy, associated uncertainty and correlation between the two methods – was evaluated with regard to their usability for compositional classification of different rice genotypes with known tolerance levels to salinity stress. Plant uptake of essential elements was explored by Principal Component Analysis, which illuminated patterns between treatments (salt and control treatments) and across the rice genotypes tested.

  2. Application of benchtop micro-XRF to geological materials

    DEFF Research Database (Denmark)

    Flude, Stephanie; Haschke, Michael; Storey, Michael

    2017-01-01

    Recent developments in X-ray optics have allowed the development of a range of commercially available benchtop micro-XRF (μ-XRF) instruments that can produce X-ray spot sizes of 20–30 μm on the sample, allowing major- and trace-element analysis on a range of sample types and sizes with minimal......, by using a simple type-calibration against a reference material of similar matrix and composition. Qualitative analysis with micro-XRF can simplify and streamline sample characterization and processing for subsequent geochemical and isotopic analysis....... sample preparation. Such instruments offer quantitative analysis using fundamental parameter based 'standardless' quantification algorithms. The accuracy and precision of this quantitative analysis on geological materials, and application of micro-XRF to wider geological problems is assessed using...

  3. Large area imaging of forensic evidence with MA-XRF.

    Science.gov (United States)

    Langstraat, Kirsten; Knijnenberg, Alwin; Edelman, Gerda; van de Merwe, Linda; van Loon, Annelies; Dik, Joris; van Asten, Arian

    2017-11-08

    This study introduces the use of macroscopic X-ray fluorescence (MA-XRF) for the detection, classification and imaging of forensic traces over large object areas such as entire pieces of clothing and wall paneling. MA-XRF was sufficiently sensitive and selective to detect human biological traces like blood, semen, saliva, sweat and urine on fabric on the basis of Fe, Zn, K, Cl and Ca elemental signatures. With MA-XRF a new chemical contrast is introduced for human stain detection and this can provide a valuable alternative when the evidence item is challenging for conventional techniques. MA-XRF was also successfully employed for the chemical imaging and classification of gunshot residues (GSR). The full and non-invasive elemental mapping (Pb, Ba, Sr, K and Cl) of intact pieces of clothing allows for a detailed shooting incident reconstruction linking firearms and ammunition to point of impact and providing information on the shooting angle. In high resolution mode MA-XRF can even be used to provide information on the shooting order of different ammunition types. Finally, by using the surface penetration of X-rays we demonstrate that the lead signature of a bullet impact can be easily detected even if covered by multiple layers of wall paint or human blood.

  4. Research on key techniques in portable XRF analyzers

    International Nuclear Information System (INIS)

    Li Guodong; Jia Wenyi; Zhou Rongsheng; Tang Hong

    1999-01-01

    Focused on the problems of low sensitivity, poor detection limits, small number of determined elements and poor ability of matrix effect correction of the current field-portable X-ray fluorescence (XRF) analyzers, research work on key units of excitation source, detector, measurement circuit and microcomputerization is carried out. A miniature, low power X-ray tube excitation source is developed. A low dissipative 1024 channel analyzer, fitting to high resolution detectors, is prepared. Microcomputerization based on a notebook computer is realized. On the basis, a field, highly sensitive XRF system is constituted. With this system, multielements can be determined with the detection limits of less than 20 μg/g for the elements with medium or lower atomic numbers, one order of magnitude or more lower than those of the current portable XRF analyzers. The capabilities for matrix effect correction and data processing are enhanced. This system gets rid of radionuclide sources, making its use and carry safe and convenient

  5. Elemental investigation of (Al-Cu) alloys and some geological samples using neutron activation and XRF analysis techniques

    International Nuclear Information System (INIS)

    Hammad, E.A.M.

    2012-01-01

    Neutron activation analysis (NAA) using k 0 - standardization (k 0 -NAA) is well known method for multi-elemental analysis. The method is used to analyze different samples belonging to different fields. In addition, X- ray fluorescence (XRF) is also used for multi-elemental analysis. XRF complements NAA methods. Both methods were used for investigation of some iron ores and aluminum- cupper alloy (Al-Cu) samples. Elemental concentration of Iron ores and Al-Cu alloy samples were determined by k 0 - NAA and XRF methods. The iron ore samples were collected from Wadi Kareim and Umm Nar sites (the Eastern desert of Egypt). Six and two samples representing the ores of Wadi Kareim and Umm Nar, respectively altogether with the standard samples consisting of Fe, Au , Zr and W and the certified reference sample IAEA Soil-7 were irradiated in one of the irradiated boxes at the Second Egyptian Research Reactor (ETRR- 2). The induced activities were counted using an efficiency calibrated HPGe detector systems. The neutron spectrum parameters α and f characterizing the neutron irradiation position that are needed in applying k 0 -NAA method were determined using the activation product of Zr , Au, Fe and W and found α≅ - 0.048 ±0.002 and f ≅ 38± k 0 -NAA method was applied to determine the elemental concentrations in the two iron ore samples. The concentrations determined were found to vary erratically form one sample to another. The results were discussed and compared with similar results in literature. The accuracy of the k 0 - NAA method was checked by determining the elemental concentration in the IAEA-Soil 7 reference sample. The obtained results are compared with the recommended values. Good agreements were found within 10 %. Short time neutron activation analysis (STNAA) was carried out to determine concentration of major elements in Al-Cu alloy samples. Three (Al-Cu) alloys samples with different concentrations of Cu (2, 3.5 and 5 %) altogether. Au standard sample

  6. X-ray fluorescence in investigations of cultural relics and archaeological finds

    Energy Technology Data Exchange (ETDEWEB)

    Musilek, Ladislav, E-mail: musilek@fjfi.cvut.cz [Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Brehova 7, 115 19 Praha 1 (Czech Republic); Cechak, Tomas; Trojek, Tomas [Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Brehova 7, 115 19 Praha 1 (Czech Republic)

    2012-07-15

    Some characteristic features of X-ray fluorescence (XRF) analysis make it an ideal method for investigations of cultural relics and archaeological finds. It has therefore become a standard method used in archaeometry. Paintings, frescos, manuscripts, pottery, metalwork, glass, and many other objects are analysed with the aim of recognising their materials, production technologies and origin, and for identifying counterfeits. This paper reviews various techniques used in XRF analyses of works of art, summarises the advantages and limitations of the method, and presents some typical examples of its use. The general review is supplemented by some techniques used and some results achieved at CTU-FNSPE in Prague. - Highlights: Black-Right-Pointing-Pointer Review of XRF analysis in archaeometry. Black-Right-Pointing-Pointer Instrumentation for XRF analysis with various sources of radiation. Black-Right-Pointing-Pointer Materials and artefacts, which can be measured and information, which can be obtained. Black-Right-Pointing-Pointer XRF analysis of artworks at the CTU Prague.

  7. A compositional study of a museum jewellery collection (7th-1st BC) by means of a portable XRF spectrometer

    International Nuclear Information System (INIS)

    Karydas, A.G.; Kotzamani, D.; Bernard, R.; Barrandon, J.N.; Zarkadas, Ch.

    2004-01-01

    Within the framework of the project 'Jewelmed' (ICA3-1999-10020), the chemical composition of 34 gold and four silver jewels was examined. These jewels belong to the Benaki museum's collection in Athens, Greece and are dating from the 7th to the 1st century BC. The compositional analysis of the jewels was performed by means of a 'home-made' portable X-ray fluorescence (XRF) spectrometer. The XRF results have shown that the gold jewels can be categorized in two groups, which include artifacts made by native and by high purity gold, respectively. For the silver jewels the results have provided interesting information regarding the manufacturing technology, the authenticity of the jewels and the raw materials used. The potential and the limitations of the XRF technique, applied in the chemical analysis of archaeological metal artifacts, are also discussed

  8. Synchrotron radiation based analytical techniques (XAS and XRF)

    International Nuclear Information System (INIS)

    Jha, Shambhu Nath

    2014-01-01

    A brief description of the principles of X-ray absorption spectroscopy (XAS) and X-ray fluorescence (XRF) techniques is given in this article with emphasis on the advantages of using synchrotron radiation-based instrumentation/beamline. XAS technique is described in more detail to emphasize the strength of the technique as a local structural probe. (author)

  9. Atomic and nuclear analytical methods. XRF, Moessbauer, XPS, NAA and ion-beam spectroscopic techniques

    International Nuclear Information System (INIS)

    Verma, H.R.

    2007-01-01

    This book is a blend of analytical methods based on the phenomenon of atomic and nuclear physics. It comprises comprehensive presentations about X-ray Fluorescence (XRF), Moessbauer Spectroscopy (MS), X-ray Photoelectron Spectroscopy (XPS), Neutron- Activation Analysis (NAA), Particle Induced X-ray Emission Analysis (PIXE), Rutherford Backscattering Analysis (RBS), Elastic Recoil Detection (ERD), Nuclear Reaction Analysis (NRA), Particle Induced Gamma-ray Emission Analysis (PIGE), and Accelerator Mass Spectrometry (AMS). These techniques are commonly applied in the fields of medicine, biology, environmental studies, archaeology or geology et al. and pursued in major international research laboratories. (orig.)

  10. Comparison of results analysis of chemical composition of alloys inside the U-Zr-Nb by XRF and AAS techniques

    International Nuclear Information System (INIS)

    Masrukan; Tri Yulianto; Anwar Muchsin

    2011-01-01

    U-Zr-Nb alloy chemical composition analysis using X Ray Fluorescence (XRF) and Atomic Absorption Spectroscopy (AAS) techniques have been conducted, where U-Zr- Nb alloy was chosen as candidates for new high-density fuel for future research reactors . Composition analysis is necessary because the composition of elements in the fuel will determine the characteristics of fuel during the fabrication process and in the reactor. The use of two kinds of analysis techniques were designed to obtain accurate analysis results. The experiment was conducted to determine the major element composition and impurities in the alloy U-Zr-Nb. First U-Zr-Nb varying alloy composition Nb were respectively 1%, 4%, 7% (U10% Zr1% Nb, U10% Zr4% Nb and U10% 7% Nb) as results of the melting process of measuring the diameter of 120 mm crushed on the surface bottom. Once on the bottom surface is smooth, then analyzed using XRF techniques. To analyze the elements using AAS techniques, alloy U-Zr-Nb cut into 10 mm x 5 mm then dissolved using HF and nitric acid. Solution that occurred were analyzed using AAS technique. From the analysis using the XRF technique is obtained the alloy U-10% Zr-1% Nb, U-10% Zr-4% Nb and Zr-10% U-7% Nb) had a content of each element as follows: U (87.8858%), Zr (2.6097%) and Nb (0.2206%), U (87.8556%), Zr (2.6302%), and Nb (0.6573%); U (84.6334%), Zr (2.5773%), and Nb (1.0940) weight. Results of analysis using AAS techniques on samples obtained third consecutive Zr content of 9.25%, 8.90% and 9.80% while the content of Nb was not detected. Meanwhile, the results of elemental analysis of impurities in all three samples showed that almost all the elements are still qualify as fuel except Zn element. Element Zn at the three samples of each alloys U-10% Zr-1% Nb, U-10% Zr-4% Nb and U-10% Zr-7%Nb is 1.3266%, 3.2756% and 1.0927% weight. It could be concluded that the results of analysis of elemental content and impurities in the alloy U-Nb-Zr using both XRF and AAS visible

  11. Analysis of sculptures using XRF and X-ray radiography

    Science.gov (United States)

    Calza, C.; Oliveira, D. F.; Freitas, R. P.; Rocha, H. S.; Nascimento, J. R.; Lopes, R. T.

    2015-11-01

    This work reports the analysis of two sacred images on polychrome wood using X-ray Radiography and Energy Dispersive X-Ray Fluorescence. The first case is the analysis of a sculpture portraying Saint Sebastian, the patron saint of Rio de Janeiro, which is considered the second most ancient sacred image of Brazil. This sculpture was made in Portugal and was transported to Brazil by Estácio Sá, founder of the city of Rio de Janeiro, in 1565. Nowadays, it is located on the main altar of the Church of Capuchin Friars. The second case is the analysis of a sculpture representing Our Lady of Conception, which is located in the D. João VI Museum (EBA/UFRJ, Rio de Janeiro). The objective of these analyses was to evaluate the general conditions of the sculptures, identifying possible problems and internal damages, areas that revealed signs of previous retouchings and the materials and pigments employed by the artists, in order to assist its restoration procedures. EDXRF measurements were carried out with a portable system, developed at the Nuclear Instrumentation Laboratory, consisting of a Si-PIN XR-100CR detector from Amptek and an Oxford TF3005 X-ray tube with W anode. An X-ray source, a CR System GE CR50P and IP detectors were used to perform the radiographs. The XRF analysis of the sculptures identified the original pigments in both cases and the radiographic images revealed details of the manufacture; restored regions; extensive use of lead white; presence of cracks on the wood; use of nails and spikes, etc.

  12. X-ray fluorescence spectrometry and related techniques an introduction

    CERN Document Server

    Margui, Eva

    2013-01-01

    X-ray fluorescence spectrometry (XRF) is a well-established analytical technique for qualitative and quantitative elemental analysis of a wide variety of routine quality control and research samples. Among its many desirable features, it delivers true multi-element character analysis, acceptable speed and economy, easy of automation, and the capacity to analyze solid samples. This remarkable contribution to this field provides a comprehensive and up-to-date account of basic principles, recent developments, instrumentation, sample preparation procedures, and applications of XRF analysis. If you are a professional in materials science, analytic chemistry, or physics, you will benefit from not only the review of basics, but also the newly developed technologies with XRF. Those recent technological advances, including the design of low-power micro- focus tubes and novel X-ray optics and detectors, have made it possible to extend XRF to the analysis of low-Z elements and to obtain 2D or 3D information on a microme...

  13. Description of an XRF system for multielemental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wielopolski, L.; Zhang, R.; Cohn, S.H.

    1986-01-01

    An X-ray fluorescence (XRF) system which uses radioisotopes in an orthogonal configuration between the source, sample, and detector is described. The advantage of such a system is that for large (bulk) samples or for in vivo measurements the background due to Compton scattering in the sample is minimized. High reproducibility for nonuniform samples is obtained by reducing the sample size and thus the effects of non-uniformity in the spatial response of such a system. Germane to any accurate analytical method is the use of proper mathematical algorithms for data evaluation. The problem is acute, in particular, when photopeaks with low counting statistics are to be analyzed. In the case of a single photopeak on flat, background optimal energy window size, which maximizes the signal-to-noise ratio, for trapezoidal intergration is described. The sensitivity and minimum detection limit at different energies together with background considerations are discussed. 13 refs., 8 figs., 2 tabs.

  14. Description of an XRF system for multielemental analysis

    International Nuclear Information System (INIS)

    Wielopolski, L.; Zhang, R.; Cohn, S.H.

    1986-01-01

    An X-ray fluorescence (XRF) system which uses radioisotopes in an orthogonal configuration between the source, sample, and detector is described. The advantage of such a system is that for large (bulk) samples or for in vivo measurements the background due to Compton scattering in the sample is minimized. High reproducibility for nonuniform samples is obtained by reducing the sample size and thus the effects of non-uniformity in the spatial response of such a system. Germane to any accurate analytical method is the use of proper mathematical algorithms for data evaluation. The problem is acute, in particular, when photopeaks with low counting statistics are to be analyzed. In the case of a single photopeak on flat, background optimal energy window size, which maximizes the signal-to-noise ratio, for trapezoidal intergration is described. The sensitivity and minimum detection limit at different energies together with background considerations are discussed. 13 refs., 8 figs., 2 tabs

  15. X-ray fluorescence in Member States (Spain): Main activities related to the use of XRF techniques at the Analytical and Environmental Chemistry Research Group of the University of Girona (UdG)

    International Nuclear Information System (INIS)

    Marguí, Eva; Hidalgo, Manuela

    2014-01-01

    The Analytical and Environmental Chemistry Group (QAA) is a consolidated research group of the Department of Chemistry of the University of Girona (North- East Spain). The main research topics of the group are related to the development and application of analytical methodologies for the determination of inorganic and organic species in different kind of environmental, clinical and industrial samples. From the beginning of the 2000’s, one of the research focuses of the group, is the use of X-ray fluorescence spectrometry (XRF) for the determination of trace amounts of metals and metalloids mostly in samples related to the environmental and industrial fields. For instance, in collaboration with the Institute of Earth Sciences “Jaume Almera” (ICTJA-CSIC, Spain), we have developed and successfully applied several analytical approaches based on the use of EDXRF (Energy dispersive XRF), WDXRF (Wavelength dispersive XRF) and PEDXRF (Polarised EDXRF) for the determination of metals at trace levels in complex liquid samples such as sea water or electroplating waters in vegetation samples collected around mining environments or in active pharmaceutical ingredients. At present, the evaluation of the analytical possibilities of TXRF (Total reflection XRF) in the chemical analysis field is also one of the research topics of QAA. In this sense, several contributions related to the use of this technique for element determination in liquid and solid samples have been developed. A summary of these contributions is summarized in the last section of this review

  16. Characterization of fossil remains using XRF, XPS and XAFS spectroscopies

    International Nuclear Information System (INIS)

    Zougrou, I M; Katsikini, M; Pinakidou, F; Paloura, E C; Brzhezinskaya, M; Papadopoulou, L; Vlachos, E; Tsoukala, E

    2016-01-01

    Synchrotron radiation micro-X-Ray Fluorescence (μ-XRF), X-ray photoelectron (XPS) and X-ray Absorption Fine Structure (XAFS) spectroscopies are applied for the study of paleontological findings. More specifically the costal plate of a gigantic terrestrial turtle Titanochelon bacharidisi and a fossilized coprolite of the cave spotted hyena Crocuta crocuta spelaea are studied. Ca L 2,3 -edge NEXAFS and Ca 2p XPS are applied for the identification and quantification of apatite and Ca containing minerals. XRF mapping and XAFS are employed for the study of the spatial distribution and speciation of the minerals related to the deposition environment. (paper)

  17. Definitive Mineralogical Analysis of Mars Analog Rocks Using the CheMin XRD/XRF Instrument

    Science.gov (United States)

    Blake, D. F.; Sarrazin, P.; Bish, D. L.; Feldman, S.; Chipera, S. J.; Vaniman, D. T.; Collins, S.

    2004-01-01

    Mineral identification is a critical component of Mars Astrobiological missions. Chemical or elemental data alone are not definitive because a single elemental or chemical composition or even a single bonding type can represent a range of substances or mineral assemblages. Minerals are defined as unique structural and compositional phases that occur naturally. There are about 15,000 minerals that have been described on Earth, all uniquely identifiable via diffraction methods. There are likely many minerals yet undiscovered on Earth, and likewise on Mars. If an unknown phase is identified on Mars, it can be fully characterized by structural (X-ray Diffraction, XRD) and elemental analysis (X-ray Fluorescence, XRF) without recourse to other data because XRD relies on the principles of atomic arrangement for its determinations. XRD is the principal means of identification and characterization of minerals on Earth.

  18. Characterization of reactor coolant by XRF

    Energy Technology Data Exchange (ETDEWEB)

    Legreid, G.; Beverskog, B. [OECD Halden Reactor Project (Norway)

    2002-07-01

    The analyzes of membrane filters is of utmost importance in characterizing the coolant chemistry in nuclear power plants. Traditional analyzes of filters includes oxidative digestion followed by instrumental analyzes. XRF (X-ray Fluorescence spectrometry) can analyze without digestion of the filters. The method is much faster and demands only a cutting step as sample preparation. By use of XRF the analytical laboratory at the Halden Reactor Project will get increased capacity, which makes it possible to analyze more samples and improve the characterization of the water. The method has shown to give more stable results than other methods in use, and has proved to have good precision. New calibration methods have been developed and tested successfully against other methods. A round robin test, attending seven laboratories from nuclear power plants, was initiated by the Halden Project to verify the instrument. The test of standard cation exchange filters showed that conventional filter digestion results in too low values. The XRF methodology shows very good agreement with the standard values. The round robin test for particle filters could not confirm that filter digestion results in too low values. This was mainly due to lack of standard particle filters and large scatter in the reported data. (author)

  19. Characterization of reactor coolant by XRF

    International Nuclear Information System (INIS)

    Legreid, G.; Beverskog, B.

    2002-01-01

    The analyzes of membrane filters is of utmost importance in characterizing the coolant chemistry in nuclear power plants. Traditional analyzes of filters includes oxidative digestion followed by instrumental analyzes. XRF (X-ray Fluorescence spectrometry) can analyze without digestion of the filters. The method is much faster and demands only a cutting step as sample preparation. By use of XRF the analytical laboratory at the Halden Reactor Project will get increased capacity, which makes it possible to analyze more samples and improve the characterization of the water. The method has shown to give more stable results than other methods in use, and has proved to have good precision. New calibration methods have been developed and tested successfully against other methods. A round robin test, attending seven laboratories from nuclear power plants, was initiated by the Halden Project to verify the instrument. The test of standard cation exchange filters showed that conventional filter digestion results in too low values. The XRF methodology shows very good agreement with the standard values. The round robin test for particle filters could not confirm that filter digestion results in too low values. This was mainly due to lack of standard particle filters and large scatter in the reported data. (author)

  20. Development of the quantification procedures for in situ XRF analysis

    International Nuclear Information System (INIS)

    Kump, P.; Necemer, M.; Rupnik, P.

    2005-01-01

    For in situ XRF applications, two excitation systems (radioisotope and tube excited) and an X ray spectrometer based on an Si-PIN detector were assembled and used. The radioisotope excitation system with an Am-241 source was assembled into a prototype of a compact XRF analyser PEDUZO-01, which is also applicable in field work. The existing quantification software QAES (quantitative analysis of environmental samples) was assessed to be adequate also in field work. This QAES software was also integrated into a new software attached to the developed XRF analyser PEDUZO-01, which includes spectrum acquisition, spectrum analysis and quantification and runs in the LABVIEW environment. In a process of assessment of the Si-PIN based X ray spectrometers and QAES quantification software in field work, a comparison was made with the results obtained by the standard Si(Li) based spectrometer. The results of this study prove that the use of this spectrometer is adequate for field work. This work was accepted for publication in X ray Spectrometry. Application of a simple sample preparation of solid samples was studied in view of the analytical results obtained. It has been established that under definite conditions the results are not very different from the ones obtained by the homogenized sample pressed into the pellet. The influence of particle size and mineralogical effects on quantitative results was studied. A simple sample preparation kit was proposed. Sample preparation for the analysis of water samples by precipitation with APDC and aerosol analysis using a dichotomous sampler were also adapted and used in the field work. An adequate sample preparation kit was proposed. (author)

  1. Trace element profiles in modern horse molar enamel as tracers of seasonality: Evidence from micro-XRF, LA-ICP-MS and stable isotope analysis

    Science.gov (United States)

    de Winter, Niels; Goderis, Steven; van Malderen, Stijn; Vanhaecke, Frank; Claeys, Philippe

    2016-04-01

    A combination of laboratory micro-X-ray FluorescenceXRF) and stable carbon and oxygen isotope analysis shows that trace element profiles from modern horse molars reveal a seasonal pattern that co-varies with seasonality in the oxygen isotope records of enamel carbonate from the same teeth. A combination of six cheek teeth (premolars and molars) from the same individual yields a seasonal isotope and trace element record of approximately three years recorded during the growth of the molars. This record shows that reproducible measurements of various trace element ratios (e.g., Sr/Ca, Zn/Ca, Fe/Ca, K/Ca and S/Ca) lag the seasonal pattern in oxygen isotope records by 2-3 months. Laser Ablation-ICP-Mass Spectrometry (LA-ICP-MS) analysis on a cross-section of the first molar of the same individual is compared to the bench-top tube-excitation μXRF results to test the robustness of the measurements and to compare both methods. Furthermore, trace element (e.g. Sr, Zn, Mg & Ba) profiles perpendicular to the growth direction of the same tooth, as well as profiles parallel to the growth direction are measured with LA-ICP-MS and μXRF to study the internal distribution of trace element ratios in two dimensions. Results of this extensive complementary line-scanning procedure shows the robustness of state of the art laboratory micro-XRF scanning for the measurement of trace elements in bioapatite. The comparison highlights the advantages and disadvantages of both methods for trace element analysis and illustrates their complementarity. Results of internal variation within the teeth shed light on the origins of trace elements in mammal teeth and their potential use for paleo-environmental reconstruction.

  2. Atomic and Nuclear Analytical Methods XRF, Mössbauer, XPS, NAA and Ion-Beam Spectroscopic Techniques

    CERN Document Server

    Verma, H R

    2007-01-01

    This book is a blend of analytical methods based on the phenomenon of atomic and nuclear physics. It comprises comprehensive presentations about X-ray Fluorescence (XRF), Mössbauer Spectroscopy (MS), X-ray Photoelectron Spectroscopy (XPS), Neutron- Activation Analysis (NAA), Particle Induced X-ray Emission Analysis (PIXE), Rutherford Backscattering Analysis (RBS), Elastic Recoil Detection (ERD), Nuclear Reaction Analysis (NRA), Particle Induced Gamma-ray Emission Analysis (PIGE), and Accelerator Mass Spectrometry (AMS). These techniques are commonly applied in the fields of medicine, biology, environmental studies, archaeology or geology et al. and pursued in major international research laboratories.

  3. Chemical analysis of zinc electroplating solutions by x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Jung, Sung-Mo; Cho, Young-Mo; Na, Han-Gil

    2007-01-01

    A quantitative analysis method used to analyze chlorine, iron and zinc in electroplating solutions, using X-ray spectrometry in atmospheric He mode, is proposed. The present research concerns the replacement of the conventional analyses of electroplating solutions with rapid and reproducible quantification using X-ray fluorescence spectrometer. An in-depth investigation conducted in the present study identifies the species present in the real electroplating solutions. XRD patterns and semi-quantitative results for the electroplating solutions show synthetic standards based on the compositional range of solutions by analyzing the electroplating solutions obtained in real processes. 28 calibration standard solutions are prepared by diluting liquid standard solutions certified by titration and ICP-OES analyses used to construct the XRF calibration curves for Cl, Fe and Zn. The suggested method showed satisfactory precision and accuracy in the analysis of electroplating solutions. The present study provides evidences that the proposed XRF spectrometry could be an alternative analytical method to replace the conventional techniques by comparing the uncertainties estimated for each method. (author)

  4. Comparison of LIBS and {mu}-XRF measurements on bronze alloys for monitoring plasma effects

    Energy Technology Data Exchange (ETDEWEB)

    Alberghina, M F; Barraco, R; Brai, M; Schillaci, T; Tranchina, L, E-mail: tschillaci@unipa.it [Dipartimento di Fisica e Tecnologie Relative, Universita di Palermo, Viale delle Scienze Ed. 18, 90128 Palermo (Italy)

    2011-01-01

    The laser-induced breakdown spectroscopy (LIBS) technique is often used as atomic spectroscopic technique for elemental analysis of materials. However, it presents some drawbacks that make an accurate quantitative analysis difficult. Since the plasma properties, such as spatial inhomogeneity and plume stoichiometry strongly depend on the experimental conditions, the measurements are less reproducible. In order to evaluate the measurement fluctuations, we propose to use the more established micro X-Ray fluorescence ({mu}-XRF) technique for validating LIBS data. In particular, the quantitative data, obtained by varying the laser fluence, the shot numbers and the temporal acquisition parameters, were compared with those obtained by {mu}-XRF on laboratory made samples of binary, ternary and quaternary bronze alloys. For LIBS measurements a mobile double pulse laser instrument equipped with an high resolution Echelle type monochromator coupled to an intensified CCD camera was used. {mu}-XRF analyses were performed with a portable instrument that uses a micro collimated X-Ray beam and it is equipped with an high resolution detector. The LIBS results show a strong dependence both on the instrumental set up and the chemical-physical properties of the sample. With our findings we could identify the most suitable parameters to be used in the investigation of the different bronze alloys. The possibility to carry out a quantitative analysis by using the LIBS technique was checked through the comparison with related {mu}-XRF data. In particular in this paper we identified a set of reliable LIBS parameters for the quantitative analysis of copper, tin and zinc. Further analyses will be necessary to reach this goal also for the minor constituents as lead.

  5. Trace element analysis of silicate rocks by XRF. Pt. 2

    International Nuclear Information System (INIS)

    Orihashi, Yuji; Yuhara, Masaki; Kagami, Hiroo; Honma, Hiroji

    1993-01-01

    Quantitative X-ray fluorescence analysis of six trace elements (Ce, Ba, Ga, Co, Cr, V) in silicate rocks has been investigated, using pressed powder pellets. Ga analysis was performed using a Cr tube, whereas a Au tube was used for the remaining five elements. Corrections were made for the interference of BaKα on CeKα, FeKβ on CoKα, CrKα on VKβ and VKα on TiKβ. Mass absorption functions were estimated from background intensities at 2θ=35.5deg and that of FeKα at wavelengths longer than the iron absorption edge for a Au tube, and from the value of net intensity/background one for a Cr tube. Calibration lines were constructed using twenty-four U.S. Geological Survey and Geological Survey of Japan igneous rock reference samples. For each line, the correction coefficient is greater than 0.993 except for Ga and Ce (>0.985), indicating that the correction and calibration procedures are appropriate for accurate analysis over a wide compositional range. Analytical results for igneous, sedimentary and metamorphic reference samples (U. S. Geological Survey, Institute of Geophysical and Geochemical Exploration, South-African Bureau of Standards) accord well with recommended or proposed values, respectively. The results of this study and those of Orihashi et al. (1993) show Ce, Ba, Nb, Zr, Y, Sr, Rb, Th, Ga, Zn, Cu, Ni, Co, Cr and V in silicate rocks can be quantitatively determined by XRF at ISEI. (author)

  6. Development of a micro-X-ray fluorescence system based on polycapillary X-ray optics for non-destructive analysis of archaeological objects

    Science.gov (United States)

    Cheng, Lin; Ding, Xunliang; Liu, Zhiguo; Pan, Qiuli; Chu, Xuelian

    2007-08-01

    A new micro-X-ray fluorescence (micro-XRF) system based on rotating anode X-ray generator and polycapillary X-ray optics has been set up in XOL Lab, BNU, China, in order to be used for analysis of archaeological objects. The polycapillary X-ray optics used here can focus the primary X-ray beam down to tens of micrometers in diameter that allows for non-destructive and local analysis of sub-mm samples with minor/trace level sensitivity. The analytical characteristics and potential of this micro-XRF system in archaeological research are discussed. Some described uses of this instrument include studying Chinese ancient porcelain.

  7. Development of a micro-X-ray fluorescence system based on polycapillary X-ray optics for non-destructive analysis of archaeological objects

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Lin [Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing Radiation Center, Beijing, 100875 (China)], E-mail: chenglin@bnu.edu.cn; Ding Xunliang; Liu Zhiguo; Pan Qiuli; Chu Xuelian [Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing Radiation Center, Beijing, 100875 (China)

    2007-08-15

    A new micro-X-ray fluorescence (micro-XRF) system based on rotating anode X-ray generator and polycapillary X-ray optics has been set up in XOL Lab, BNU, China, in order to be used for analysis of archaeological objects. The polycapillary X-ray optics used here can focus the primary X-ray beam down to tens of micrometers in diameter that allows for non-destructive and local analysis of sub-mm samples with minor/trace level sensitivity. The analytical characteristics and potential of this micro-XRF system in archaeological research are discussed. Some described uses of this instrument include studying Chinese ancient porcelain.

  8. Coherent normalization of finger strontium XRF measurements: feasibility and limitations

    Energy Technology Data Exchange (ETDEWEB)

    Zamburlini, M; Pejovic-Milic, A; Chettle, D R [Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, L8S 4K1 (Canada)

    2008-08-07

    A non-invasive in vivo x-ray fluorescence (XRF) method of measuring bone strontium concentrations has previously been reported as a potential diagnostic tool able to detect strontium concentration in the finger and ankle bones. The feasibility of coherent normalization for {sup 125}I-source-based finger bone strontium x-ray fluorescence (XRF) measurements is assessed here by theoretical considerations and Monte Carlo simulations. Normalization would have several advantages, among which are the correction for the signal attenuation by the overlying soft tissue, and intersubject variability in the bone size and shape. The coherent normalization of bone strontium XRF measurements presents several challenges dictated by the behaviour of the coherent cross section and mass attenuation coefficient at the energies involved. It was found that the coherent normalization alone with either 22.1 keV or 35.5 keV photons was not successful in correcting for the overlying soft tissue attenuation. However, it was found that the coherent peak at 35.5 keV was able to correct effectively for variability in the finger bone size between people. Thus, it is suggested that, if the overlying soft tissue thickness can be obtained by means of an independent measurement, the 35.5 keV peak can be used to correct for the bone size, with an overall accuracy of the normalization process of better than 10%. (note)

  9. Exposure measurements on portable X-ray fluorescence spectrometers (XRF); Expositionsmessungen an mobilen Roentgenfluoreszenz-Spektrometern

    Energy Technology Data Exchange (ETDEWEB)

    Boernsen, Frank; Ludwig, Thomas [Berufsgenossenschaft Energie Textil Elektro Medienerzeugnisse (BG ETEM), Koeln (Germany). Fachbereich Strahlenschutz; Hoewekenmeier, Dirk; Reinhardt, Erich [Bezirksregierung Koeln (Germany). Dezernat 55 - Strahlenschutz

    2011-07-01

    Portable XRF are more and more used for the verification of alloy in miscellaneous materials. Dose rates of five portable XRF were measured with thermoluminescent dose meters in combination with an Alderson phantom. At operating parameters of 40 kV and 50 {mu}A, for example, an extremely high dose rate of 76 Sv/h in the primary beam had been determined. The measurements, the results and the consequences for protection measures will be presented and discussed. (orig.)

  10. Electroadsorption-assisted direct determination of trace arsenic without interference using transmission X-ray fluorescence spectroscopy.

    Science.gov (United States)

    Jiang, Tian-Jia; Guo, Zheng; Liu, Jin-Huai; Huang, Xing-Jiu

    2015-08-18

    An analytical technique based on electroadsorption and transmission X-ray fluorescence (XRF) for the quantitative determination of arsenic in aqueous solution with ppb-level limits of detection (LOD) is proposed. The approach uses electroadsorption to enhance the sensitivity and LOD of the arsenic XRF response. Amine-functionalized carbonaceous microspheres (NH2-CMSs) are found to be the ideal materials for both the quantitative adsorption of arsenic and XRF analysis due to the basic amine sites on the surface and their noninterference in the XRF spectrum. In electroadsorptive X-ray fluorescence (EA-XRF), arsenic is preconcentrated by a conventional three-electrode system with a positive electricity field around the adsorbents. Then, the quantification of arsenic on the adsorbents is achieved using XRF. The electroadsorption preconcentration can realize the fast transfer of arsenic from the solution to the adsorbents and improve the LOD of conventional XRF compared with directly determining arsenic solution by XRF alone. The sensitivity of 0.09 cnt ppb(-1) is obtained without the interferences from coexisted metal ions in the determination of arsenic, and the LOD is found to be 7 ppb, which is lower than the arsenic guideline value of 10 ppb given by the World Health Organization (WHO). These results demonstrated that XRF coupled with electroadsorption was able to determine trace arsenic in real water sample.

  11. Micro-XRF complemented by x-radiography and digital microscopy imaging for the study of hidden paintings

    Science.gov (United States)

    Gasanova, Svetlana; Hermon, Sorin

    2017-07-01

    The present study describes a novel approach to the study of hidden by integrating the non-invasive micro-X-Ray Fluorescence spectroscopy, X-radiography and digital microscopy. The case study analysed is a portrait of a male figure discovered under the painting of Ecce Homo, attributed to Titian's studio with an estimated date in the 1550s. The X-radiography images exposed the details of the underpainting, which appeared to be a nearly finished portrait of a standing man, overpainted by the current composition of Ecce Homo at a 180° angle. The microscopy observations of the upper painting's cracks and flaked areas enabled the study of the exposed underlayers in terms of their colour appearance and pigment particles. The subsequent pigment analysis was performed by micro-XRF. Since the described XRF analysis was performed not in scanner mode, the correct selection of the measurement spots for the micro analysis and separation between pigments of the lower and the upper painting was of paramount importance. The described approach for spot selection was based on the results of the preceding X-radiography and digital microscopy tests. The presence of lead white, vermilion, copper green and iron earth in the underlying portrait was confirmed by the multiple point XRF analysis of Pb, Hg, Cu, Fe and Mn lines. The described investigation method proved to be useful in the identification of the pigments of the underlying painting and consequently assisted in the tentative reconstruction of its colour palette. Moreover, the undertaken approach allowed discovering the potential of micro-XRF technique in the study of hidden compositions.

  12. XRF Newsletter, No. 20, December 2010

    International Nuclear Information System (INIS)

    2010-12-01

    The Nuclear Spectrometry and Applications Laboratory (NSAL) at Seibersdorf in cooperation with Mr Mladen Bogovac, Croatia (currently a staff member of NSAL) has designed and constructed a low cost digital spectrometer for XRF. The spectrometer comprises the following components: (1) analog signal pre-conditioning board with power supply, (2) FPGA board with fast ADC, (3) stepper motor driver, (4) acquisition software running on the PC. The spectrometer has a single input and can accept signal from standard spectroscopy preamplifier (TPR or RC feedback type). In addition it can drive existing sample changer on the XRF system. It is connected with PC via USB port. The system has been tested and compared with a standard fully analog-based processing system. The rationale behind this development was to provide the laboratories in Member States with an affordable and cost effective way of modernizing existing XRF spectrometers. Thus, the system can be utilized with nearly all types of XRF detectors and is easily modifiable and adaptable to most of the typical needs in the field of XRF analysis

  13. Polycapillary based μXRF station for 3D colour tomography

    Science.gov (United States)

    Hampai, D.; Cherepennikov, Yu. M.; Liedl, A.; Cappuccio, G.; Capitolo, E.; Iannarelli, M.; Azzutti, C.; Gladkikh, Yu. P.; Marcelli, A.; Dabagov, S. B.

    2018-04-01

    The "Rainbow X-Ray" (RXR) experimental station at XLab Frascati of the Frascati's National Laboratories (LNF) INFN is a dedicated station for X-ray fluorescence studies based on the use of polycapillary lenses in a confocal geometry. The flexible RXR layout allows investigating specimens of the dimensions ranging from several millimeters up to half meter and weighting up to several tens of kilograms. Compared to similar existing XRF stations, apart of the possibility for investigating large samples, the main advantage of this equipment is the detection system with two spectrometers optimized to work separately at high and at low X-ray energies. The confocal geometry combined with a 3-axes fine motion system makes possible 3D μXRF elemental tomographic acquisitions (colour tomography). At present this station in operation at high XRF energies is used for cultural heritage and geological applications. We present and discuss here the analytical performances of this experimental station pointing out the advantages in different application areas.

  14. Analysis of tracer elements in human hair using XRF

    International Nuclear Information System (INIS)

    Hou Jing; Gao Deyu; Zhao Li; Li Hong

    2004-01-01

    Using chemical addition method to calibrate absorption effect, trace element in human hair are analyzed with X-ray fluorescence (XRF). Based on practical samples of human hair, the relative matrix absorption efficienty is determined, and the relation ship between which and the most important componet Ca is fitted. The contents of Ca, Cu, Fe, Zn in the human hair are analyzed using the calibrated constants. A group of standard human hair samples are analyzed and the results are compared with the recommended value of the National Standard. The measured values show a good coincidence with the recommended values. Comparing to the GB, the deviations are Ca 0.28%, Fe 0.99%, Cu 2.6%, Zn 0; the relative errors are Ca 2.2%, Fe 1.7%, Cu 2.2%, Zn 1.1%, and the sensitivity is ≤2.2%. This method may be used to determine the tracing elements in human hair. (authors)

  15. Scan-free grazing emission XRF measurements in the laboratory using a CCD

    International Nuclear Information System (INIS)

    Szwedowski, Veronika; Baumann, Jonas; Mantouvalou, Ioanna; Bauer, Leona; Malzer, Wolfgang; Kanngiesser, Birgit

    2017-01-01

    The rapid development of new classes of nanomaterials calls for easy access methods in order to quantify properties essential for their functionality, e.g., interdiffusion of elements at interfaces, or elemental dopant, or depth profiles. Non-destructive methods, like X-ray fluorescence (XRF), are of special interest, for preserving materials and offering the possibility to incorporate the analysis in a production process. In-depth XRF methods for the characterization of nanomaterials are up until now limited to synchrotron radiation facilities. A novel scan-free grazing emission XRF (GEXRF) setup is presented utilizing conventional and low-cost hardware, acting as a transfer of a synchrotron method into the laboratory. A chromium target X-ray tube with a polycapillary lens is used as X-ray source and a conventional CCD as the 2D energy-dispersive detector. To confirm the feasibility of the described setup a nanometer-layered titanium-aluminium sample is measured. An energy-dispersive spectrum is obtained in single-photon-counting-mode from the CCD measurements and first GEXRF profiles generated. A semi-quantitative evaluation of this setup is implemented by comparing the measured results with simulations, allowing conclusions about the investigated samples' elemental, compositional, and structural layer-by-layer characteristics. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Determination of sulfur and chlorine in fodder by X-ray fluorescence spectral analysis and comparison with other analytical methods

    Science.gov (United States)

    Nečemer, Marijan; Kump, Peter; Rajčevič, Marija; Jačimović, Radojko; Budič, Bojan; Ponikvar, Maja

    2003-07-01

    Sulfur and chlorine are essential elements in the metabolic processes of ruminants, and correct planning strategy of ruminant nutrition should provide a sufficient content of S and Cl in the animal's body. S and Cl can be found in various types of animal fodder in the form of organic compounds and minerals. In this work, the Cl and S content in forage was determined by X-ray fluorescence spectrometry (XRF), and its performance was then compared in parallel analyses by instrumental neutron activation analysis (INAA), inductively coupled plasma atomic emission spectrometry (ICP-AES) and potentiometric methods. The results were compared and critically evaluated in order to assess the performance and capability of the XRF technique in analysis of animal fodder.

  17. Determination of sulfur and chlorine in fodder by X-ray fluorescence spectral analysis and comparison with other analytical methods

    Energy Technology Data Exchange (ETDEWEB)

    Necemer, Marijan; Kump, Peter; Rajcevic, Marija; Jacimovic, Radojko; Budic, Bojan; Ponikvar, Maja

    2003-07-18

    Sulfur and chlorine are essential elements in the metabolic processes of ruminants, and correct planning strategy of ruminant nutrition should provide a sufficient content of S and Cl in the animal's body. S and Cl can be found in various types of animal fodder in the form of organic compounds and minerals. In this work, the Cl and S content in forage was determined by X-ray fluorescence spectrometry (XRF), and its performance was then compared in parallel analyses by instrumental neutron activation analysis (INAA), inductively coupled plasma atomic emission spectrometry (ICP-AES) and potentiometric methods. The results were compared and critically evaluated in order to assess the performance and capability of the XRF technique in analysis of animal fodder.

  18. Instrumental fundamental parameters and selected applications of the microfocus X-ray fluorescence analysis at a scanning electron microscope

    International Nuclear Information System (INIS)

    Rackwitz, Vanessa

    2012-01-01

    For a decade X-ray sources have been commercially available for the microfocus X-ray fluorescence analysis (μ-XRF) and offer the possibility of extending the analytics at a scanning electron microscope (SEM) with an attached energy dispersive X-ray spectrometer (EDS). By using the μ-XRF it is possible to determine the content of chemical elements in a microscopic sample volume in a quantitative, reference-free and non-destructive way. For the reference-free quantification with the XRF the Sherman equation is referred to. This equation deduces the intensity of the detected X-ray intensity of a fluorescence peak to the content of the element in the sample by means of fundamental parameters. The instrumental fundamental parameters of the μ-XRF at a SEM/EDS system are the excitation spectrum consisting of X-ray tube spectrum and the transmission of the X-ray optics, the geometry and the spectrometer efficiency. Based on a calibrated instrumentation the objectives of this work are the development of procedures for the characterization of all instrumental fundamental parameters as well as the evaluation and reduction of their measurement uncertainties: The algorithms known from the literature for the calculation of X-ray tube spectrum are evaluated with regard to their deviations in the spectral distribution. Within this work a novel semi-empirical model is improved with respect to its uncertainties and enhanced in the low energy range as well as extended for another three anodes. The emitted X-ray tube spectrum is calculated from the detected one, which is measured at an especially developed setup for the direct measurement of X-ray tube spectra. This emitted X-ray tube spectrum is compared to the one calculated on base of the model of this work. A procedure for the determination of the most important parameters of an X-ray semi-lens in parallelizing mode is developed. The temporal stability of the transmission of X-ray full lenses, which have been in regular use at

  19. A Combined XRD/XRF Instrument for Lunar Resource Assessment

    Science.gov (United States)

    Vaniman, D. T.; Bish, D. L.; Chipera, S. J.; Blacic, J. D.

    1992-01-01

    Robotic surface missions to the Moon should be capable of measuring mineral as well as chemical abundances in regolith samples. Although much is already known about the lunar regolith, our data are far from comprehensive. Most of the regolith samples returned to Earth for analysis had lost the upper surface, or it was intermixed with deeper regolith. This upper surface is the part of the regolith most recently exposed to the solar wind; as such it will be important to resource assessment. In addition, it may be far easier to mine and process the uppermost few centimeters of regolith over a broad area than to engage in deep excavation of a smaller area. The most direct means of analyzing the regolith surface will be by studies in situ. In addition, the analysis of the impact-origin regolith surfaces, the Fe-rich glasses of mare pyroclastic deposits, are of resource interest, but are inadequately known; none of the extensive surface-exposed pyroclastic deposits of the Moon have been systematically sampled, although we know something about such deposits from the Apollo 17 site. Because of the potential importance of pyroclastic deposits, methods to quantify glass as well as mineral abundances will be important to resource evaluation. Combined x ray diffraction (XRD) and x ray fluorescence (XRF) analysis will address many resource characterization problems on the Moon. XRF methods are valuable for obtaining full major-element abundances with high precision. Such data, collected in parallel with quantitative mineralogy, permit unambiguous determination of both mineral and chemical abundances where concentrations are high enough to be of resource grade. Collection of both XRD and XRF data from a single sample provides simultaneous chemical and mineralogic information. These data can be used to correlate quantitative chemistry and mineralogy as a set of simultaneous linear equations, the solution of which can lead to full characterization of the sample. The use of

  20. An artist's tools [Using XRF, art restorers see beyond surface beauty

    International Nuclear Information System (INIS)

    Hansen, K.; Lodding, L.

    2007-01-01

    The XRF (X-ray fluorescence spectroscopy) is a powerful tool to determine the chemical composition of works of art in a non-destructive way. Sometimes it is even possible to learn about the authenticity of works of art. Its best feature is that the invisible rays do not destroy or harm the treasured art. Another is its portability. Since any movement to a work of art is potentially catastrophic, the goal of art restorers is to minimize any disturbance. And XRF about the size of an overhead projector mounted on a moveable chassis can be brought right to the source. A perfect device to unlock the secrets of art works

  1. Application of XRF and XRD in the study of ceramics and pottery

    International Nuclear Information System (INIS)

    Meor Yusoff Meor Sulaiman

    2004-01-01

    Ceramic artefacts are made from clay-based mineral and their elemental and mineral compositions tend to vary from one locality to another. The elemental and mineral composition data's besides able to verify the originality of the artifact also helps in regard to provenance, fabrication technology and also manufacturing technique. X-ray fluorescence XRF is a non-destructive technique to identify and quantify elements ranging from sodium (atomic number = 11 to uranium atomic number = 92). The paper also looks into recent advances of this technique in the study of ceramics and pottery. Microfocus XRF, besides able to do qualitative and quantitative elemental analysis, it also can perform accurate elemental mapping. Another aspect there is important in this study is the capability to do in-situ analysis. With the recent introduction of the peltiered-cooled silicon detector, in-situ analysis had become more easily available. X-ray diffraction (XRD) analysis on the other hand, helps to identify correctly the different mineral composition present in the ceramic artifact. This could also help in identifying the type of clay that is used in the manufacturing of these ceramic artifacts as well as its origin. Both x-ray techniques complement each other and are very important tool in the archaeological study of ceramic and pottery samples. (Author)

  2. Effect of the sample matrix on measurement uncertainty in X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Morgenstern, P.; Brueggemann, L.; Wennrich, R.

    2005-01-01

    The estimation of measurement uncertainty, with reference to univariate calibration functions, is discussed in detail in the Eurachem Guide 'Quantifying Uncertainty in Analytical Measurement'. The adoption of these recommendations to quantitative X-ray fluorescence analysis (XRF) involves basic problems which are above all due to the strong influence of the sample matrix on the analytical response. In XRF-analysis, the proposed recommendations are consequently applicable only to the matrix corrected response. The application is also restricted with regard to both the matrices and analyte concentrations. In this context the present studies are aimed at the problems to predict measurement uncertainty also with reference to more variable sample compositions. The corresponding investigations are focused on the use of the intensity of the Compton scattered tube line as an internal standard to assess the effect of the individual sample matrix on the analytical response relatively to a reference matrix. Based on this concept the estimation of the measurement uncertainty of an analyte presented in an unknown specimen can be predicted in consideration of the data obtained under defined matrix conditions

  3. Analyses of archaeological pottery samples using X-ray fluorescence technique for provenance study

    International Nuclear Information System (INIS)

    Tamilarasu, S.; Swain, K.K.; Singhal, R.K; Reddy, A.V.R.; Acharya, R.; Velraj, G.

    2015-01-01

    Archaeological artifacts reveal information on past human activities, artifact preparation technology, art and possible trade. Ceramics are the most stable and abundant material in archaeological context. Pottery is the most abundant tracers in all archaeological excavations. Compared to major elements, elements present at trace concentrations levels are source specific and they maintain same concentration levels in source clay as well as finished products e.g., fired clay potteries. As it is difficult to find out exact source or origin, provenance study is carried out first to establish whether objects under study are from the same or different sources/origin. Various analytical techniques like instrumental neutron activation analysis (INAA), Ion beam analysis (IBA) and X-ray fluorescence (XRF) have been used for obtaining elemental concentrations in archaeological potteries. Portable X-ray fluorescence (pXRF) spectrometry provides a non-destructive means for elemental characterization of a wide range of archaeological materials. Ten archaeological pottery samples were collected from Kottapuram, Kerala under the supervision of archaeological survey of India. Portable X-ray fluorescence (pXRF) spectrometry using a handheld Olympus Innov-X Delta XRF device, ACD BARC, has been used for chemical characterization of the pottery samples. The instrument is equipped with the Delta Rhodium (Rh) anode X-Ray tube and uses a Silicon Drift Detector (resolution <200 eV at 5.95 keV Mn Kα X-ray). NIST 2781 SRM was analyzed for quality control purpose. Ten elements namely Fe, Ti, Mn, Co, Cu, Zn, Pb, Zr, Mo and Se were chosen for cluster analysis and their concentration values were utilized for multivariate statistical analysis using WinSTAT 9.0

  4. Evaluation of the veracity of one work by the artist Di Cavalcanti through non-destructive techniques: XRF, imaging and brush stroke analysis

    International Nuclear Information System (INIS)

    Kajiya, E.A.M.; Campos, P.H.O.V.; Rizzutto, M.A.; Appoloni, C.R.; Lopes, F.

    2014-01-01

    This paper presents systematic studies and analysis that contributed to the identification of the forgery of a work by the artist Emiliano Augusto Cavalcanti de Albuquerque e Melo, known as Di Cavalcanti. The use of several areas of expertise such as brush stroke analysis (“pinacologia”), applied physics, and art history resulted in an accurate diagnosis for ascertaining the authenticity of the work entitled “Violeiro” (1950). For this work we used non-destructive methods such as techniques of infrared, ultraviolet, visible and tangential light imaging combined with chemical analysis of the pigments by portable X-Ray Fluorescence (XRF) and graphic gesture analysis. Each applied method of analysis produced specific information that made possible the identification of materials and techniques employed and we concluded that this work is not consistent with patterns characteristic of the artist Di Cavalcanti. - Highlights: • Identification of the forgery of an easel painting of Di Cavalcanti. • Diagnosis for ascertaining the authenticity of the work entitled “Violeiro” (1950). • X-Ray fluorescence spectroscopy and image analysis. • Image analyses allow some identification as hidden underlying lines. • Materials and techniques not characteristic of the artist

  5. Electrochemical X-ray fluorescence spectroscopy for trace heavy metal analysis: enhancing X-ray fluorescence detection capabilities by four orders of magnitude.

    Science.gov (United States)

    Hutton, Laura A; O'Neil, Glen D; Read, Tania L; Ayres, Zoë J; Newton, Mark E; Macpherson, Julie V

    2014-05-06

    The development of a novel analytical technique, electrochemical X-ray fluorescence (EC-XRF), is described and applied to the quantitative detection of heavy metals in solution, achieving sub-ppb limits of detection (LOD). In EC-XRF, electrochemical preconcentration of a species of interest onto the target electrode is achieved here by cathodic electrodeposition. Unambiguous elemental identification and quantification of metal concentration is then made using XRF. This simple electrochemical preconcentration step improves the LOD of energy dispersive XRF by over 4 orders of magnitude (for similar sample preparation time scales). Large area free-standing boron doped diamond grown using microwave plasma chemical vapor deposition techniques is found to be ideal as the electrode material for both electrodeposition and XRF due to its wide solvent window, transparency to the XRF beam, and ability to be produced in mechanically robust freestanding thin film form. During electrodeposition it is possible to vary both the deposition potential (Edep) and deposition time (tdep). For the metals Cu(2+) and Pb(2+) the highest detection sensitivities were found for Edep = -1.75 V and tdep (=) 4000 s with LODs of 0.05 and 0.04 ppb achieved, respectively. In mixed Cu(2+)/Pb(2+) solutions, EC-XRF shows that Cu(2+) deposition is unimpeded by Pb(2+), across a broad concentration range, but this is only true for Pb(2+) when both metals are present at low concentrations (10 nM), boding well for trace level measurements. In a dual mixed metal solution, EC-XRF can also be employed to either selectively deposit the metal which has the most positive formal reduction potential, E(0), or exhaustively deplete it from solution, enabling uninhibited detection of the metal with the more negative E(0).

  6. The suitability of XRF analysis for compositional classification of archaeological ceramic fabric: A comparison with a previous NAA study

    International Nuclear Information System (INIS)

    Padilla, R.; Espen, P. van; Torres, P.P. Godo

    2006-01-01

    The main drawbacks of EDXRF techniques, restricting its more frequent use for the specific purpose of compositional analysis of archaeological ceramic fabric, have been the insufficient sensitivity to determine some important elements (like Cr, REE, among others), a somewhat worse precision and the inability to perform standard-less quantitative procedures in the absence of suitable certified reference materials (CRM) for ceramic fabric. This paper presents the advantages of combining two energy dispersive X-ray fluorescence methods for fast and non-destructive analysis of ceramic fabric with increased sensitivity. Selective polarized excitation using secondary targets (EDPXRF) and radioisotope excitation (R-XRF) using a 241 Am source. The analytical performance of the methods was evaluated by analyzing several CRM of sediment type, and the fitness for the purpose of compositional classification was compared with that obtained by using Instrumental Neutron Activation Analysis in a previous study of Cuban aborigine pottery

  7. The suitability of XRF analysis for compositional classification of archaeological ceramic fabric: A comparison with a previous NAA study

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, R. [Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), Laboratorio de Analisis Quimico, Calle 30 no. 502, Playa, Ciudad Habana (Cuba)]. E-mail: roman.padilla@infomed.sld.cu; Espen, P. van [University of Antwerp (Belgium); Torres, P.P. Godo [Centro de Antropologia, Havana (Cuba)

    2006-02-03

    The main drawbacks of EDXRF techniques, restricting its more frequent use for the specific purpose of compositional analysis of archaeological ceramic fabric, have been the insufficient sensitivity to determine some important elements (like Cr, REE, among others), a somewhat worse precision and the inability to perform standard-less quantitative procedures in the absence of suitable certified reference materials (CRM) for ceramic fabric. This paper presents the advantages of combining two energy dispersive X-ray fluorescence methods for fast and non-destructive analysis of ceramic fabric with increased sensitivity. Selective polarized excitation using secondary targets (EDPXRF) and radioisotope excitation (R-XRF) using a {sup 241}Am source. The analytical performance of the methods was evaluated by analyzing several CRM of sediment type, and the fitness for the purpose of compositional classification was compared with that obtained by using Instrumental Neutron Activation Analysis in a previous study of Cuban aborigine pottery.

  8. XRF analyses for the study of painting technique and degradation on frescoes by Beato Angelico: first results

    International Nuclear Information System (INIS)

    Mazzinghi, A.

    2014-01-01

    Beato Angelico is one of the most important Italian painters of the Renaissance period, in particular he was a master of the so-called 'Buon fresco' technique for mural paintings. A wide diagnostic campaign with X-Ray Fluorescence (XRF) analyses has been carried out on three masterworks painted by Beato Angelico in the San Marco monastery in Florence: the Crocifissione con Santi, the 'Annunciazione' and the 'Madonna delle Ombre'. The latter is painted by mixing fresco and secco techniques, which makes it of particular interest for the study of two different paintings techniques of the same artist. Then the aim of the study was focused on the characterization of the painting palette, and therefore the painting techniques, used by Beato Angelico. Moreover, the conservators were interested in the study of degradation processes and old restoration treatments. Our analyses have been carried out by means of the XRF spectrometer developed at LABEC laboratory at Istituto Nazionale di Fisica Nucleare in Florence (Italy). XRF is indeed especially suited for such a kind of study, allowing for multi-elemental, nondestructive, non-invasive analyses in a short time, with portable instruments. In this paper the first results concerning the XRF analysis are presented.

  9. Design and construction of a detection system for the determination of lead in blood using x-ray fluorescence analysis. Progress report, August 1, 1974--July 31, 1975

    International Nuclear Information System (INIS)

    Laurer, G.R.; Kneip, T.J.

    1975-01-01

    Intercomparison difficulties between x-ray fluorescence (XRF) and atomic absorption (AA) measurements of blood lead were due to weight variations in the samples which are correlated to the hemoglobin content. Correction factors were developed to account for changes in background and sensitivity due to weight and hence hemoglobin content variations. Good agreement was achieved in comparisons of XRF and AA determinations on baboon blood, and a preliminary intercomparison with the New York City Health Department demonstrated that the corrected XRF values are accurate for children's blood. The XRF system can accurately determine blood lead concentrations in the range of 0.1 to 3.0 ppM. The difference in the content of zinc in the urine of two individuals undergoing chelation therapy was determined, using XRF analysis, on samples taken before and after treatment. The ratio of the count rate under the Zn K/sub alpha/ peak for one of these persons after treatment was 250 : 1, compared to before chelation. (U.S.)

  10. Kinetics of elimination and distribution in blood and liver of biocompatible ferrofluids based on Fe3O4 nanoparticles: An EPR and XRF study

    International Nuclear Information System (INIS)

    Gamarra, L.F.; Pontuschka, W.M.; Amaro, E.; Costa-Filho, A.J.; Brito, G.E.S.; Vieira, E.D.; Carneiro, S.M.; Escriba, D.M.; Falleiros, A.M.F.; Salvador, V.L.

    2008-01-01

    In this study, we evaluated the biodistribution and the elimination kinetics of a biocompatible magnetic fluid, Endorem TM , based on dextran-coated Fe 3 O 4 nanoparticles endovenously injected into Winstar rats. The iron content in blood and liver samples was recorded using electron paramagnetic resonance (EPR) and X-ray fluorescence (XRF) techniques. The EPR line intensity at g = 2.1 was found to be proportional to the concentration of magnetic nanoparticles and the best temperature for spectra acquisition was 298 K. Both EPR and XRF analysis indicated that the maximum concentration of iron in the liver occurred 95 min after the ferrofluid administration. The half-life of the magnetic nanoparticles (MNP) in the blood was (11.6 ± 0.6) min measured by EPR and (12.6 ± 0.6) min determined by XRF. These results indicate that both EPR and XRF are very useful and appropriate techniques for the study of kinetics of ferrofluid elimination and biodistribution after its administration into the organism

  11. Improvement in precision and trueness of quantitative XRF analysis with glass-bead method. 1

    International Nuclear Information System (INIS)

    Yamamoto, Yasuyuki; Ogasawara, Noriko; Yuhara, Yoshitaroh; Yokoyama, Yuichi

    1995-01-01

    The factors which lower the precisions of simultaneous X-ray Fluorescence (XRF) spectrometer were investigated. Especially in quantitative analyses of oxide powders with glass-bead method, X-ray optical characteristics of the equipment affects the precision of the X-ray intensities. In focused (curved) crystal spectrometers, the precision depends on the deviation of the actual size and position of the crystals from those of theoretical designs, thus the precision differs for each crystal for each element. When the deviation is large, a dispersion of the measured X-ray intensities is larger than the statistical dispersion, even though the intensity itself keeps unchanged. Moreover, a waviness of the surface of glass-beads makes the difference of the height of an analyzed surface from that of the designed one. This difference makes the change of the amount of the X-ray incident on the analyzing crystal and makes the dispersion of the X-ray intensity larger. Considering these factors, a level of the waviness must be regulated to improve the precision under exsisting XRF equipments. In this study, measurement precisions of 4 simultaneous XRF spectrometers were evaluated, and the element lead (Pb-Lβ1) was found to have the lowest precision. Relative standard deviation (RSD) of the measurements of 10 glass-beads for the same powder sample was 0.3% without the regulation of the waviness of analytical surface. With mechanical flattening of the glass-bead surface, the level of waviness, which is the maximum difference of the heights in a glass-bead, was regulated as under 30 μm, RSD was 0.038%, which is almost comparable to the statistical RSD 0.033%. (author)

  12. In Vivo Quantification of Lead in Bone with a Portable X-ray Fluorescence (XRF) System – Methodology and Feasibility

    Science.gov (United States)

    Nie, LH; Sanchez, S; Newton, K; Grodzins, L; Cleveland, RO; Weisskopf, MG

    2013-01-01

    This study was conducted to investigate the methodology and feasibility of developing a portable XRF technology to quantify lead (Pb) in bone in vivo. A portable XRF device was set up and optimal setting of voltage, current, and filter combination for bone lead quantification were selected to achieve the lowest detection limit. The minimum radiation dose delivered to the subject was calculated by Monte Carlo simulations. An ultrasound device was used to measure soft tissue thickness to account for signal attenuation, and an alternative method to obtain soft tissue thickness from the XRF spectrum was developed and shown to be equivalent to the ultrasound measurements (Intraclass Correlation Coefficient, ICC=0.82). We tested the correlation of in vivo bone lead concentrations between the standard KXRF technology and the portable XRF technology. There was a significant correlation between the bone lead concentrations obtained from the standard KXRF technology and those obtained from the portable XRF technology (ICC=0.65). The detection limit for the portable XRF device was about 8.4 ppm with 2 mm soft tissue thickness. The entrance skin dose delivered to the human subject was about 13 mSv and the total body effective dose was about 1.5 μSv and should pose a minimal radiation risk. In conclusion, portable XRF technology can be used for in vivo bone lead measurement with sensitivity comparable to the KXRF technology and good correlation with KXRF measurements. PMID:21242629

  13. Applicability of annular-source excited systems in quantitative XRF analysis

    International Nuclear Information System (INIS)

    Mahmoud, A.; Bernasconi, G.; Bamford, S.A.; Dosan, B.; Haselberger, N.; Markowicz, A.

    1996-01-01

    Radioisotope-excited XRF systems, using annular sources, are widely used in view of their simplicity, wide availability, relatively low price for the complete system and good overall performance with respect to accuracy and detection limits. However some problems arise when the use of fundamental parameter techniques for quantitative analysis is attempted. These problems are due to the fact that the systems operate with large solid angles for incoming and emerging radiation and both the incident and take-off angles are not trivial. In this paper an improved way to calculate effective values for the incident and take-off angles, using monte Carlo (M C) integration techniques is shown. In addition, a study of the applicability of the effective angles for analysing different samples, or standards was carried out. The M C method allows also calculation of the excitation-detection efficiency for different parts of the sample and estimation of the overall efficiency of a source-excited XRF setup. The former information is useful in the design of optimized XRF set-ups and prediction of the response of inhomogeneous samples. A study of the sensitivity of the results due to sample characteristics and a comparison of the results with experimentally determined values for incident and take-off angles is also presented. A flexible and user-friendly computer program was developed in order to perform efficiently the lengthy calculation involved. (author). 14 refs. 5 figs

  14. Methodological challenges of optical tweezers-based X-ray fluorescence imaging of biological model organisms at synchrotron facilities.

    Science.gov (United States)

    Vergucht, Eva; Brans, Toon; Beunis, Filip; Garrevoet, Jan; Bauters, Stephen; De Rijcke, Maarten; Deruytter, David; Janssen, Colin; Riekel, Christian; Burghammer, Manfred; Vincze, Laszlo

    2015-07-01

    Recently, a radically new synchrotron radiation-based elemental imaging approach for the analysis of biological model organisms and single cells in their natural in vivo state was introduced. The methodology combines optical tweezers (OT) technology for non-contact laser-based sample manipulation with synchrotron radiation confocal X-ray fluorescence (XRF) microimaging for the first time at ESRF-ID13. The optical manipulation possibilities and limitations of biological model organisms, the OT setup developments for XRF imaging and the confocal XRF-related challenges are reported. In general, the applicability of the OT-based setup is extended with the aim of introducing the OT XRF methodology in all research fields where highly sensitive in vivo multi-elemental analysis is of relevance at the (sub)micrometre spatial resolution level.

  15. ED-XRF spectrometric analysis of comparative elemental composition of in vivo and in vitro roots of Andrographis paniculata (Burm.f.) Wall. ex Nees-a multi-medicinal herb

    Energy Technology Data Exchange (ETDEWEB)

    Behera, P.R., E-mail: priyaranjan2004@gmail.co [Plant Cell and Tissue culture Facility, Post-Graduate Department of Botany, Utkal University, Vani Vihar, Bhubaneswar 751004, Orissa (India); Plant Biotechnology Lab, Institute of Minerals and Materials Technology (CSIR), Bhubaneswar 751013, Orissa (India); Nayak, P [Plant Cell and Tissue culture Facility, Post-Graduate Department of Botany, Utkal University, Vani Vihar, Bhubaneswar 751004, Orissa (India); Plant Biotechnology Lab, Institute of Minerals and Materials Technology (CSIR), Bhubaneswar 751013, Orissa (India); Barik, D.P., E-mail: barikdp@yahoo.co [Plant Cell and Tissue culture Facility, Post-Graduate Department of Botany, Utkal University, Vani Vihar, Bhubaneswar 751004, Orissa (India); Rautray, T.R., E-mail: trrautray@gmail.co [Ion Beam Laboratory, Institute of Physics, Bhubaneswar 751013, Orissa (India); Thirunavoukkarasu, M [Plant Biotechnology Lab, Institute of Minerals and Materials Technology (CSIR), Bhubaneswar 751013, Orissa (India); Chand, P.K., E-mail: pkchanduubot@yahoo.co.i [Plant Cell and Tissue culture Facility, Post-Graduate Department of Botany, Utkal University, Vani Vihar, Bhubaneswar 751004, Orissa (India)

    2010-12-15

    The multi-elemental composition of in vitro-proliferated root tissues of Andrographis paniculata (Burm.f.) Wall. ex Nees was compared with that of the naturally grown in vivo plants. Trace elements namely Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Rb, Sr and Pb in addition to two macro-elements K and Ca were identified and quantified in root tissues of both sources using the energy dispersive X-ray fluorescence (ED-XRF) technique. ED-XRF analysis was performed using Mo K X-rays generated from a secondary molybdenum target. The elemental content of in vitro roots was found to be at par with that of naturally grown plants of the same species. This opens up a possibility of exploiting in vitro root cultures as a viable, alternative and renewable source of phytochemicals of relevance, besides providing a means for conservation of the valuable natural resources.

  16. ED-XRF spectrometric analysis of comparative elemental composition of in vivo and in vitro roots of Andrographis paniculata (Burm.f.) Wall. ex Nees-a multi-medicinal herb

    International Nuclear Information System (INIS)

    Behera, P.R.; Nayak, P.; Barik, D.P.; Rautray, T.R.; Thirunavoukkarasu, M.; Chand, P.K.

    2010-01-01

    The multi-elemental composition of in vitro-proliferated root tissues of Andrographis paniculata (Burm.f.) Wall. ex Nees was compared with that of the naturally grown in vivo plants. Trace elements namely Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Rb, Sr and Pb in addition to two macro-elements K and Ca were identified and quantified in root tissues of both sources using the energy dispersive X-ray fluorescence (ED-XRF) technique. ED-XRF analysis was performed using Mo K X-rays generated from a secondary molybdenum target. The elemental content of in vitro roots was found to be at par with that of naturally grown plants of the same species. This opens up a possibility of exploiting in vitro root cultures as a viable, alternative and renewable source of phytochemicals of relevance, besides providing a means for conservation of the valuable natural resources.

  17. Non-destructive analysis of ancient bimetal swords from western Asia by γ-ray radiography and X-ray fluorescence

    Science.gov (United States)

    Shizuma, Kiyoshi; Kajimoto, Tsuyoshi; Endo, Satoru; Matsugi, Kazuhiro; Arimatsu, Yui; Nojima, Hisashi

    2017-09-01

    Eight ancient bimetal swords held by Hiroshima University, Japan were analyzed non-destructively through γ-ray radiography and X-ray fluorescence (XRF). 137Cs and 60Co γ-ray irradiation sources were used to obtain transmission images of swords. A scanning radiography method using a 60Co γ-ray source was developed. XRF was used for qualitative elemental analysis of the swords. The presence of iron cores in the hilts of some swords had been observed and it was assumed that the cores were a ritual symbol or had a functional purpose. However, our work reveals that these swords were originally bronze-hilted iron swords and that the rusty blades were replaced with bronze blades to maintain the swords' commercial value as an antique. Consequently, the rest of the iron blade was left in the hilt as an iron tang. The junction of the blade and the guard was soldered and painted to match the patina color. XRF analysis clearly showed that the elemental Sn/Cu ratios of the blades and the hilts were different. These findings are useful for clarifying the later modifications of the swords and are important for interpreting Bronze Age and Iron Age history correctly.

  18. Preliminary homogeneity study of in-house reference material using neutron activation analysis and X-ray fluorescence

    International Nuclear Information System (INIS)

    Gras, N.; Munoz, L.; Cassorla, V.; Castillo, P.

    1993-01-01

    Although many biological reference materials for quality control of trace element analysis are commercially available, there is still a need for additional local materials for special matrices. In the Latin American region a preliminary study has been commenced involving analytical strategies for the characterization of in-house reference material. A biological sample, prepared in Brazil, constitutes the first regional attempt to prepare reference material. It was analyzed by neutron activation analysis (NAA) and X-ray fluorescence (XRF) to verify its homogeneity. The determination of the trace elements and certain major elements was carried out by instrumental NAA. Trace elements such as Cd, Mn, Mo and Cu were determined using NAA with radiochemical separations to improve the sensitivity and precision. XRF was applied only to major constituents and some trace elements with concentration of more than 10 μg/g. From a total of 18 elements analyzed, only Fe, Cr and Sc were not homogeneously distributed. (orig.)

  19. Mineral analysis of the forages as ruminant feed using x-ray fluorescent spectrometry (XRF); Analisis kandungan mineral dalam hijauan pakan ternak dengan menggunakan spektrometri pedar sinar-x

    Energy Technology Data Exchange (ETDEWEB)

    Sasangka, B H; Tjiptosumirat, T; Suharyono, [Center for Application of Isotopes and Radiation National Atomic Energy Agency Indonesia(Indonesia)

    1998-07-01

    An experiment was conducted to evaluate mineral contents of forages as feed. Samples used in this experiment were maize straw, cassava leaf, leucaena leaf, king grass, teki grass, Imperata cyliandria and field grass. These samples were collected from several locations of ranches in Mataram, Lombok island samples were measured for dry matter content, and then were formed into pellet in the size of diameter 3 cm and 0,1 cm thick, as required by the XRF analysis. Excitation of {sup 109}Cd and {sup 5}Fe radioisotopes were used as the initial energy for XRF analysis. Result of the analysis of macro elements show that P content was below the detection limit of XRF for Imperata cycliandrica and field grass, while for other samples were between 0.80 % In all samples S content were between 0.12 and 0.33% Potassium content in leucaena and cassava leaves were low ; i.e. 2.49 and 1.28% respectively, however, the concentration of Ca was high in these samples, i.e. 2.13 and 0.74%, respectively. Except leucaena leaves, which was found to be the lowest, result of micro elements analysis showed that Si ranged between 0.34 and 3.24%. On the other hand, Cr content in leucaena leaves was the highest, i.e. 104 ppm, as compared to the other foragers which were undetectable. Manganese was also found undetectable in maize straw and grass, while on other forages ranged between 65.50 and 178 ppm. Cobalt was only detected in maize straw, which is 27.6 ppm. All forage samples contained Cu and Zn with an average range 4.10 - 6.84 ppm and 43.30 - 73.50 ppm, respectively. (author)

  20. Nondestructive Analysis of Astromaterials by Micro-CT and Micro-XRF Analysis for PET Examination

    Science.gov (United States)

    Zeigler, R. A.; Righter, K.; Allen, C. C.

    2013-01-01

    An integral part of any sample return mission is the initial description and classification of returned samples by the preliminary examination team (PET). The goal of the PET is to characterize and classify returned samples and make this information available to the larger research community who then conduct more in-depth studies on the samples. The PET tries to minimize the impact their work has on the sample suite, which has in the past limited the PET work to largely visual, nonquantitative measurements (e.g., optical microscopy). More modern techniques can also be utilized by a PET to nondestructively characterize astromaterials in much more rigorous way. Here we discuss our recent investigations into the applications of micro-CT and micro-XRF analyses with Apollo samples and ANSMET meteorites and assess the usefulness of these techniques in future PET. Results: The application of micro computerized tomography (micro-CT) to astromaterials is not a new concept. The technique involves scanning samples with high-energy x-rays and constructing 3-dimensional images of the density of materials within the sample. The technique can routinely measure large samples (up to approx. 2700 cu cm) with a small individual voxel size (approx. 30 cu m), and has the sensitivity to distinguish the major rock forming minerals and identify clast populations within brecciated samples. We have recently run a test sample of a terrestrial breccia with a carbonate matrix and multiple igneous clast lithologies. The test results are promising and we will soon analyze a approx. 600 g piece of Apollo sample 14321 to map out the clast population within the sample. Benchtop micro x-ray fluorescence (micro-XRF) instruments can rapidly scan large areas (approx. 100 sq cm) with a small pixel size (approx. 25 microns) and measure the (semi) quantitative composition of largely unprepared surfaces for all elements between Be and U, often with sensitivity on the order of a approx. 100 ppm. Our recent

  1. Composition and microstructure of MTA and Aureoseal Plus: XRF, EDS, XRD and FESEM evaluation.

    Science.gov (United States)

    Cianconi, L; Palopoli, P; Campanella, V; Mancini, M

    2016-12-01

    The aim of this study was to determine the chemical composition and the phases' microstructure of Aureoseal Plus (OGNA, Italy) and ProRoot MTA (Dentsply Tulsa Dental, USA) and to compare their characteristics. Study Design: Comparing Aureoseal Plus and ProRoot MTA microstructure by means of several analyses type. The chemical analysis of the two cements was assessed following the UNI EN ISO 196-2 norm. X-Ray fluorescence (XRF) was used to determine the element composition. The crystalline structure was analysed quantitatively using x-ray diffraction (XRD). Powders morphology was evaluated using a scanning electron microscope (SEM) with backscattering detectors, and a field emission scanning electron microscope (FESEM). Elemental analysis was performed by energy dispersive x-ray analysis (EDS). The semi-quantitative XRF analysis showed the presence of heavy metal oxides in both cements. The XRD spectra of the two cements reported the presence of dicalcium silicate, tricalcium silicate, tricalcium aluminate, tetracalcium aluminoferrite, bismuth oxide and gypsum. SEM analysis showed that ProRoot MTA powder is less coarse and more homogeneous than Aureoseal. Both powders are formed by particles of different shapes: round, prismatic and oblong. The EDS analysis showed that some ProRoot MTA particles, differently from Aureoseal, contain Ca, Si, Al and Fe. Oblong particles in ProRoot and Aureoseal are rich of bismuth. The strong interest in developing new Portland cement-based endodontic sealers will create materials with increased handling characteristics and physicochemical properties. A thorough investigation on two cement powders was carried out by using XRF, XRD, SEM and EDS analysis. To date there was a lack of studies on Aureoseal Plus. This cement is similar in composition to ProRoot MTA. Despite that it has distinctive elements that could improve its characteristics, resulting in a good alternative to MTA.

  2. X-ray Peltier cooled detectors for X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Loupilov, A.; Sokolov, A.; Gostilo, V.

    2001-01-01

    The recent results on development of X-ray Si(Li), Si-planar and CdTe p-i-n detectors cooled by Peltier coolers for fabrication of laboratory and portable XRF analysers for different applications are discussed. Low detection limits of XRF analysers are provided by increasing of detectors sensitive surface; improvement of their spectrometrical characteristics; decreasing of front-end-electronics noise level; Peltier coolers and vacuum chambers cooling modes optimization. Solution of all mentioned tasks allowed to develop Peltier cooled detectors with the following performances: (1.) Si(Li) detectors: S=20 mm 2 , thickness=3.5 mm, 175 eV (5.9 keV), 430 eV (59.6 keV); S=100 mm 2 ; thickness=4.5 mm, 270 eV (5.9 keV), 485 eV (59.6 keV). (2.) Si-planar detector: S=10 mm 2 , thickness=0.4 mm, 230 eV (5.9 keV), 460 eV (59.6 keV). (3.) CdTe p-i-n detectors: S=16 mm 2 , thickness=0.5 mm, 350 eV (5.9 keV), 585 eV (59.6 keV). S=16 mm 2 , thickness=1.2 mm, 310 eV (5.9 keV), 600 eV (59.6 keV). Advantages and disadvantages of all types of detectors for X-ray fluorescence analysis are compared. Spectra are presented. Application of different XRF analysers based on developed detectors in medicine, environmental science, industry, cryminalistics and history of art are demonstrated

  3. X-ray Peltier cooled detectors for X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Loupilov, A.; Sokolov, A.; Gostilo, V.

    2000-01-01

    The recent results on development of X-ray Si(Li), Si-planar and CdTe p-i- n detectors cooled by Peltier coolers for fabrication of laboratory and portable XRF analysers for different applications are discussed. Low detection limits of XRF analysers are provided by increasing of detectors sensitive surface; improvement of their spectrometrical characteristics; decreasing of front-end-electronics noise level; Peltier coolers and vacuum chambers cooling modes optimization. Solution of all mentioned tasks allowed to develop Peltier cooled detectors with the following performances: (1) Si(Li) detectors: S = 20 mm 2 , thickness = 3.5 mm, 175 eV (5.9 keV), 430 eV (59.6 keV); S = 100 mm 2 ; thickness = 4.5 mm, 270 eV (5.9 keV), 485 eV (59,6 keV). (2) Si-planar detector: S = 10 mm 2 , thickness = 0.4 mm, 230 eV (5.9 keV), 460 eV (59.6 keV). (3) CdTe p-i-n detectors: S = 16 mm 2 , thickness 0.5 mm, 350 eV (5.9 keV), 585 eV (59.6 keV). S = 16 mm 2 , thickness = 1.2 mm, 310 eV (5.9 keV), 600 eV (59.6 keV). Advantages and disadvantages of all types of detectors for X-ray fluorescence analysis are compared. Spectra are presented. Application of different XRF analysers based on developed detectors in medicine, environmental science, industry, criminalistics and history of art are demonstrated. (author)

  4. Determination of elements in industrial waste sample and TENORM using XRF Technique in Nuclear Malaysia

    International Nuclear Information System (INIS)

    Paulus, W.; Sarimah Mahat; Meor Yusoff Meor Sulaiman

    2011-01-01

    Industrial waste such as aluminium dross and TENORM waste, oil sludge has been used as sample in this research. Determination of main elements by using X-Ray Fluorescence (XRF) in Material Technology Group, Malaysian Nuclear Agency. Results shows that main elements in these samples, aluminium and silicon, respectively. Thereby, this research shows that XRF can be considered as one of the techniques that can be used in waste characterization and furthermore, it can help researchers and engineer in the research related to waste treatment especially radioactive waste. (author)

  5. Kinetics of elimination and distribution in blood and liver of biocompatible ferrofluids based on Fe{sub 3}O{sub 4} nanoparticles: An EPR and XRF study

    Energy Technology Data Exchange (ETDEWEB)

    Gamarra, L.F. [Instituto de Ensino e Pesquisa, Hospital Israelita Albert Einstein, Sao Paulo 05651-901 (Brazil); Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo 05315-970 (Brazil)], E-mail: lgamarra@if.usp.br; Pontuschka, W.M. [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo 05315-970 (Brazil); Amaro, E. [Instituto de Ensino e Pesquisa, Hospital Israelita Albert Einstein, Sao Paulo 05651-901 (Brazil); Instituto de Radiologia, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-001 (Brazil); Costa-Filho, A.J. [Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Sao Carlos 13560-970 (Brazil); Brito, G.E.S. [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo 05315-970 (Brazil); Vieira, E.D. [Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Sao Carlos 13560-970 (Brazil); Carneiro, S.M. [Laboratorio de Biologia Celular, Instituto Butantan, Sao Paulo 05503-900 (Brazil); Escriba, D.M. [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo 05315-970 (Brazil); Falleiros, A.M.F. [Centro de Ciencias Biologicas, Universidade Estadual de Londrina 86051-990 (Brazil); Salvador, V.L. [Centro de aplicacoes e Lasers, IPEN, Sao Paulo 05508-000 (Brazil)

    2008-05-01

    In this study, we evaluated the biodistribution and the elimination kinetics of a biocompatible magnetic fluid, Endorem{sup TM}, based on dextran-coated Fe{sub 3}O{sub 4} nanoparticles endovenously injected into Winstar rats. The iron content in blood and liver samples was recorded using electron paramagnetic resonance (EPR) and X-ray fluorescence (XRF) techniques. The EPR line intensity at g = 2.1 was found to be proportional to the concentration of magnetic nanoparticles and the best temperature for spectra acquisition was 298 K. Both EPR and XRF analysis indicated that the maximum concentration of iron in the liver occurred 95 min after the ferrofluid administration. The half-life of the magnetic nanoparticles (MNP) in the blood was (11.6 {+-} 0.6) min measured by EPR and (12.6 {+-} 0.6) min determined by XRF. These results indicate that both EPR and XRF are very useful and appropriate techniques for the study of kinetics of ferrofluid elimination and biodistribution after its administration into the organism.

  6. Evaluation on the stability of Hg in ABS disk CRM during measurements by wavelength dispersive X-ray fluorescence spectrometry.

    Science.gov (United States)

    Ohata, Masaki; Kidokoro, Toshihiro; Hioki, Akiharu

    2012-01-01

    The stability of Hg in an acrylonitrile-butadiene-styrene disk certified reference material (ABS disk CRM, NMIJ CRM 8116-a) during measurements by wavelength dispersion X-ray fluorescence (WD-XRF) analysis was evaluated in this study. The XRF intensities of Hg (L(α)) and Pb (L(α)) as well as the XRF intensity ratios of Hg (L(α))/Pb (L(α)) observed under different X-ray tube current conditions as well as their irradiation time were examined to evaluate the stability of Hg in the ABS disk CRM. The observed XRF intensities and the XRF intensity ratios for up to 32 h of measurements under 80 mA of X-ray tube current condition were constant, even though the surface of the ABS disk CRM was charred by the X-ray irradiation with high current for a long time. Moreover, the measurements on Hg and Pb in the charred disks by an energy dispersive XRF (ED-XRF) spectrometer showed constant XRF intensity ratios of Hg (L(α))/Pb (L(α)). From these results, Hg in the ABS disk CRM was evaluated to be sufficiently stable for XRF analysis.

  7. Applications of synchrotron-based X-ray fluorescence technique in materials science-possibilities at INDUS-2

    International Nuclear Information System (INIS)

    Tiwari, Manoj K.

    2016-01-01

    X-ray fluorescence (XRF) spectroscopy has seen remarkable progress over the last few decades. Numerous applications in basic and applied sciences demonstrate its importance. Various advantages of XRF technique have motivated us to construct a microfocus XRF beamline (BL-16) on Indus-2 national synchrotron radiation facility. The BL-16 beamline offers a wide range of usages - both from research laboratories and industries; and for researchers working in diverse fields. Apart from the fields of pure sciences like physics and chemistry, the beamline provides an attractive platform to exercise material science applications, interdisciplinary applied sciences like medical, forensic and environmental studies etc. In addition to micro-XRF characterization, BL-16 beamline allows a user to perform studies using other advanced synchrotron based experimental methodologies, viz; grazing incidence X-ray fluorescence (GIXRF) analysis, chemical speciation, near-edge absorption spectroscopy and X-ray reflectivity studies of thin layered materials etc. The combined XRR-GIXRF analysis feature of the BL-16 beamline offers a novel capability to perform GIXRF assisted depth resolved X-ray studies to investigate chemical state and electronic structure of the thin nano-structured materials. The design aspects and various salient features of the BL-16 beamline X-ray reflectometer will be presented along with the measured performance. (author)

  8. A dedicated on-line system for the preparation and validation of standard beads in XRF analysis

    International Nuclear Information System (INIS)

    Yamamoto, Yasuyuki; Ogasawara, Noriko; Nakata, Akio; Shoji, Shizuko.

    1995-01-01

    A dedicated on-line system in X-ray Fluorescence (XRF) analysis with glass-bead method was developed in which preparation of standard beads was automated including proper choice of reagents, assignment of bead compositions and validation of the prepared beads. This system features: a. Fundamental Parameter (FP) Method for validation of standard beads. b. An original database of high purity reagents for standards. c. Automatic calculation of suitable composition for each standard bead, by giving a range for each element and the number of standard beads. 1) The calculation is based on random numbers, and makes a random assignment of composition for each bead. 2) The calculation results are automatically stored in a computer as a condition file for quantitative analysis. 3) An amount of a material for a standard mixture is corrected if a valence or a chemical compound for an analysis element is different from that of the standard material in the database. In order to realize these features, many high purity reagents were examined for their purities and other characteristics to test a suitability to use for a standard material, and a software for on-line processings was originally developed. (author)

  9. High resolution micro-XRF maps of iron oxides inside sensory dendrites of putative avian magnetoreceptors

    International Nuclear Information System (INIS)

    Falkenberg, G; Fleissner, G E; Fleissner, G U E; Schuchardt, K; Kuehbacher, M; Chalmin, E; Janssens, K

    2009-01-01

    Iron mineral containing sensory dendrites in the inner lining of the upper beak of homing pigeons and various bird species are the first candidate structures for an avian magnetic field receptor. A new concept of magnetoreception is based on detailed ultra-structural optical and electron microscopy analyses in combination with synchrotron radiation microscopic X-ray fluorescence analysis (micro-XRF) and microscopic X-ray absorption near edge structures (micro-XANES). Several behavioral experiments and first mathematical simulations affirm our avian magnetoreceptor model. The iron minerals inside the dendrites are housed in three different subcellular compartments (bullets, platelets, vesicles), which could be clearly resolved and identified by electron microscopy on ultrathin sections. Micro-XRF and micro-XANES data obtained at HASYLAB beamline L added information about the elemental distribution and Fe speciation, but are averaged over the complete dendrite due to limited spatial resolution. Here we present recently performed micro-XRF maps with sub-micrometer resolution (ESRF ID21), which reveal for the first time subcellular structural information from almost bulk-like dendrite sample material. Due to the thickness of 30 μm the microarchitecture of the dendrites can be considered as undisturbed and artefacts introduced by sectioning might be widely reduced.

  10. XRF newsletter No. 12, December 2006

    International Nuclear Information System (INIS)

    2007-01-01

    This periodical XRF Newsletter is to inform the XRF laboratories in IAEA Member States on recent developments in the field of XRF spectrometry and to exchange views on fundamental and applied aspects of sampling, sample preparation, instrumentation, quality control, etc. A few selected examples of the recent activities in the IAEA XRF Laboratory and its results in the field of XRF are presented: Development of a flexible multi-channel digital spectrometer; Support to Technical Cooperation projects. Conferences and workshops in this field are listed

  11. Non-negative factor analysis supporting the interpretation of elemental distribution images acquired by XRF

    International Nuclear Information System (INIS)

    Alfeld, Matthias; Falkenberg, Gerald; Wahabzada, Mirwaes; Bauckhage, Christian; Kersting, Kristian; Wellenreuther, Gerd

    2014-01-01

    Stacks of elemental distribution images acquired by XRF can be difficult to interpret, if they contain high degrees of redundancy and components differing in their quantitative but not qualitative elemental composition. Factor analysis, mainly in the form of Principal Component Analysis (PCA), has been used to reduce the level of redundancy and highlight correlations. PCA, however, does not yield physically meaningful representations as they often contain negative values. This limitation can be overcome, by employing factor analysis that is restricted to non-negativity. In this paper we present the first application of the Python Matrix Factorization Module (pymf) on XRF data. This is done in a case study on the painting Saul and David from the studio of Rembrandt van Rijn. We show how the discrimination between two different Co containing compounds with minimum user intervention and a priori knowledge is supported by Non-Negative Matrix Factorization (NMF).

  12. MapX: 2D XRF for Planetary Exploration - Image Formation and Optic Characterization

    Science.gov (United States)

    Sarrazin, P.; Blake, D.; Gailhanou, M.; Marchis, F.; Chalumeau, C.; Webb, S.; Walter, P.; Schyns, E.; Thompson, K.; Bristow, T.

    2018-04-01

    Map-X is a planetary instrument concept for 2D X-Ray Fluorescence (XRF) spectroscopy. The instrument is placed directly on the surface of an object and held in a fixed position during the measurement. The formation of XRF images on the CCD detector relies on a multichannel optic configured for 1:1 imaging and can be analyzed through the point spread function (PSF) of the optic. The PSF can be directly measured using a micron-sized monochromatic X-ray source in place of the sample. Such PSF measurements were carried out at the Stanford Synchrotron and are compared with ray tracing simulations. It is shown that artifacts are introduced by the periodicity of the PSF at the channel scale and the proximity of the CCD pixel size and the optic channel size. A strategy of sub-channel random moves was used to cancel out these artifacts and provide a clean experimental PSF directly usable for XRF image deconvolution.

  13. Overview - XRF and XRD

    International Nuclear Information System (INIS)

    Jenkins, R.

    1999-01-01

    Full text: While the roots of both X-ray Fluorescence Spectrometry (XRF) and X-ray Powder Diffractometry (XRD) go back 80 years or so, it is only in the last 30 years or so that both techniques have become widely used in the industrial and research environments. It is the experience of the author that all instrumental techniques go through four basic stages: 1. Innovation - someone has a bright idea 2. Application - people start to apply the bright idea 3. Frustration - the bright idea is found to have complications 4. Consolidation - the complications are understood and resolved. XRF went through these four stages by the mid 1980s. This means that, today, if one understands what one is doing, applies the correct (and generally well known) analytical strategy, there is a high probability that one will obtain the correct result. XRD, on the other hand, is still hovering between 3 and 4 on the list. Problems such as the effect of preferred orientation on intensities, difficulties in obtaining accurate data for larger d-spacings, etc., although better understood today, still pose significant challenges to those involved in both routine and research analysis. The development of low-cost computers has made a dramatic impact in both techniques and it is estimated that today, about 90% of all new spectrometer and diffractometer systems sold, are fully automated. There are about 30,000 X-ray spectrometers and about 25,000 diffractometers in use in the world today. Of these about one half are automated. The process of automation has brought its rewards as well as its consequences. In general, the automation of the two techniques has resulted in a poorer understanding of the instrumentation and methodology, on the part of the typical user. Many laboratories employ both techniques, since they are largely complimentary. This workshop will cover the basics of the two methods, highlighting the advantages and shortcomings of both. Copyright (1999) Australian X-ray Analytical

  14. Portable x-ray fluorescence for the analysis of chromium in nail and nail clippings

    International Nuclear Information System (INIS)

    Fleming, David E.B.; Ware, Chris S.

    2017-01-01

    Assessment of chromium content in human nail or nail clippings could serve as an effective biomarker of chromium status. The feasibility of a new portable x-ray fluorescence (XRF) approach to chromium measurement was investigated through analysis of nail and nail clipping phantoms. Five measurements of 180 s (real time) duration were first performed on six whole nail phantoms having chromium concentrations of 0, 2, 5, 10, 15, and 20 µg/g. Using nail clippers, these phantoms were then converted to nail clippings, and assembled into different mass groups of 20, 40, 60, 80, and 100 mg for additional measurements. The amplitude of the chromium Kα characteristic x-ray energy peak was examined as a function of phantom concentration for all measurement conditions to create a series of calibration lines. The minimum detection limit (MDL) for chromium was also calculated for each case. The chromium MDL determined from the whole nail intact phantoms was 0.88±0.03 µg/g. For the clipping phantoms, the MDL ranged from 1.2 to 3.3 µg/g, depending on the mass group analyzed. For the 40 mg clipping group, the MDL was 1.2±0.1 µg/g, and higher mass collections did not improve upon this result. This MDL is comparable to chromium concentration levels seen in various studies involving human nail clippings. Further improvements to the portable XRF technique would be required to detect chromium levels expected from the lower end of a typical population. - Highlights: • Portable x-ray fluorescence (XRF) was explored as a technique to assess levels of chromium in human nails or nail clippings. • Results were found to depend on the mass of clipping sample provided. • Minimum detection limits for chromium were similar to concentration levels found in previous studies of human nail clippings.

  15. Non-destructive assay system for uranium and plutonium in reprocessing input solutions. Hybrid K-edge/XRF Densitometer. JASPAS JC-11 final report

    International Nuclear Information System (INIS)

    Surugaya, N.; Abe, K.; Kurosawa, A.; Ikeda, H.; Kuno, Y.

    1997-05-01

    As a part of JASPAS programme, a non-radioactive assay system for the accountability of uranium and plutonium in input dissolver solutions of a spent fuel reprocessing plant, called Hybrid K-edge/XRF Densitometer, has been developed at the Tokai Reprocessing plant (TRP) since 1991. The instrument is the one of the hybrid type combined K-edge densitometry (KED) and X-ray fluorescence (XRF) analysis. The KED is used to determine the uranium concentration and the XRF is used to determine the U/Pu ratio. These results give the plutonium concentration in consequence. It is considered that the instrument has the capability of timely on-site verification for input accountancy. The instrument had been installed in the analytical hot cell at the TRP and the experiments comparing with Isotope Dilution Mass Spectrometry (IDMS) method have been carried out. As the results of measurements for the actual input solutions in the acceptance and performance tests, it was typically confirmed that the precision for determining uranium concentration by the KED was within 0.2%, whereas the XRF for plutonium performed within 0.7%. This final report summarizes the design information and performance data so as to end the JASPAS programme. (author)

  16. Pattern recognition on X-ray fluorescence records from Copenhagen lake sediments using principal component analysis

    DEFF Research Database (Denmark)

    Schreiber, Norman; Garcia, Emanuel; Kroon, Aart

    2014-01-01

    Principle Component Analysis (PCA) was performed on chemical data of two sediment cores from an urban fresh-water lake in Copenhagen, Denmark. X-ray fluorescence (XRF) core scanning provided the underlying datasets on 13 variables (Si, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Rb, Cd, Pb). Principle......, Fe, Rb) and characterized the content of minerogenic material in the sediment. In case of both cores, PC2 was a good descriptor emphasized as the contamination component. It showed strong linkages with heavy metals (Cu, Zn, Pb), disclosing changing heavy-metal contamination trends across different...

  17. Advances in low atomic number element analysis by wavelength dispersive x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Vrebos, B.

    1996-01-01

    Traditionally, the analysis of low atomic number has been a chal1enging task for wavelength dispersive x-ray fluorescence spectrometry. Among the most important factors influencing analysis of the low atomic number elements (from Z=11 downwards) are the fluorescence yield, absorption and the dispersion. The effect of each of these factors on the overall performance will be illustrated. The long wavelengths involved (longer than I nm) used to pose severe problems concerning the monochromator used. Early instruments relied on lead stearate or Blodgett Langmuir soap films for the diffraction of the characteristic radiation. Nowadays, synthetic multilayers are commonly used. The performance of these multilayers is determined by the reflectivity, the resolution and the absorption of the characteristic radiation to be diffracted. These parameters can be optimised by adequately selecting the composition of the materials involved. The sensitivity of the modem instruments is sufficient to allow quantitative analysis. However, this aspect of WDS XRF is still met with considerable scepticism. Examples of quantitative analysis will be given to illustrate the current capability

  18. Comparison of two semi-absolute methods. k{sub 0}-instrumental neutron activation analysis and fundamental parameter method X-ray fluorescence spectrometry for Ni-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wasim, Mohammad [Pakistan Institute of Nuclear Science and Technology, Islamabad (Pakistan). Chemistry Div.; Ahmad, Sajjad [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Chemistry

    2015-07-01

    Nickel based alloys play important role in nuclear, mechanical and chemical industry. Two semi-absolute standardless methods, k{sub 0}-instrumental neutron activation analysis (k{sub 0}-INAA) and fundamental parameter X-ray fluorescence spectrometry (FP-XRF) were used for the characterization of certified nickel based alloys. The optimized experimental conditions for NAA provided results for 18 and XRF for 15 elements. Both techniques were unable to quantify some important alloy making elements. However, both reported results of other elements as information values. The techniques were analyzed for their sensitivity and accuracy. Sensitivity was evaluated by the number of elements determined by each technique. Accuracy was ascertained by using the linear regression analysis and the average root mean squared error.

  19. XRF newsletter, No. 13, August 2007

    International Nuclear Information System (INIS)

    2007-08-01

    This periodical XRF Newsletter is to inform the XRF laboratories in IAEA Member States on recent developments in the field of XRF spectrometry and to exchange views on fundamental and applied aspects of sampling, sample preparation, instrumentation, quality control, etc. A few selected examples of the recent activities in the IAEA XRF Laboratory and its results in the field of XRF are presented: Application of X-ray imaging techniques for studying the morphology of malaria-transmitting mosquitoes; International workshop on X-ray Emission Techniques for Forensic Applications; First Research Coordination Meeting under Coordinated Research Project on Unification of Nuclear Spectrometry; Integrated Techniques as a New Tool for Material Research

  20. Study of the circumstance influence on the elemental distribution in ancient animal bone using μ-XRF

    International Nuclear Information System (INIS)

    Yan Lingtong; Feng Songlin; Li Li; Xu Wei; Feng Xiangqian; Xie Guoxi

    2010-01-01

    Elemental analysis of archaeological bone plays an important role in the study of the dietary habits of ancient animals. The elemental characteristic of diagenetic skeletons depends on the surrounding circumstance. The study of environmental influence on the elemental concentration of ancient bone is significant. In this paper, the diagenetic influence on archaeological skeletons is analyzed by microbeam X-ray fluorescence (μ-XRF). The results show that the enamel is an excellent barrier to the diagenesis and the element Sr in bone isn't susceptible to contamination from the buried environment. (authors)

  1. Energy-dispersive X-ray fluorescence analysis of cerium in ferrosilicon

    International Nuclear Information System (INIS)

    Marbec, E.R.

    1987-01-01

    The cerium was determined in ferrosilicon samples by energy-dispersive X-ray fluorescence techniques (XRF) techniques, with a secondary target of gadolinium. The methods employed were: comparison and linear regression with reference materials with cerium concentration between 0.4 and 1.0%. The samples were prepared in the form of pellets and the analytical results are reported as an average of five determinations with a confidence limits at 95% probability. (Author) [es

  2. Study on judgement baseline for XRF on-line detection system

    International Nuclear Information System (INIS)

    Zhang Quanshi; Bao Min

    2000-01-01

    Based on the Signal Detection Theory (SDT) and the statistics principle, the choice method of judgement baseline was studied. According to the characteristics of X-ray Fluorescence (XRF) spectra in the on-line detection system, the calculation methods for the characteristic peak of the element-tagged and background were carried out. The complex judgement baseline were rationally selected after a lot of experiments and analyzing. The operating results of near one year show that it is available

  3. X-ray fluorescence in IAEA Member States: Greece

    International Nuclear Information System (INIS)

    Karydas, A.

    2004-01-01

    The Laboratory of Material Analysis (LMA) of the Institute of Nuclear Physics (INP) at the National Center for Scientific Research (NCSR) 'Demokritos', has been involved very actively during the past few years in the development, evaluation and analytical application of portable X-Ray Fluorescence (XRF) instruments, applied in particular for the non-destructive analysis of cultural materials. The study, conservation and preservation of cultural materials are considered nowadays issues of main concern for countries and international cultural organizations. Due to the strong interest and motivation from archaeologists, conservators and archaeometrical scientists in Greece and elsewhere, a large network has been developed involving the LMA and archaeologists/conservator scientists from Museums (Benaki Museum in Athens), Cultural Foundations (Thera Foundation P. Nomikos), the Greek Ministry of Culture-Conservation Department, Foreign Schools in Greece (American School of Classical Studies, French School of Athens), Universities (Department of Conservation of Antiquities and Works of Art in the Technological Educational Institution of Athens, University of Cincinnatti, Universite de Paris I, Pantheon Sorbonne), private sectors (THETIS, Thetis Authentics - Science and Techniques for Art History Conservation Ltd) and Institutions (Centre de Recherche et de Rastauration des Musees de France, LNS-INFN, LANDIS group). A variety of cultural materials/artifacts have been examined so far, including ceramic vases with colored decoration, bronze artifacts, wall-painting pigments, traces of polychromy on marble sculptures, Gold and Silver ancient jewelry, Gemstones, Roman Coins. Our research and analytical applications of the in-situ XRF analysis have been focused so far on the following: 1) optimum selection and integration of portable XRF instrumentation for improving analytical and sensitivity range; 2) evaluation of the potential of in-situ XRF analysis to provide specific

  4. Twenty-seventh annual conference applications of x-ray analysis

    International Nuclear Information System (INIS)

    McCarthy, G.J.; Ruud, C.O.

    1978-01-01

    Abstracts are presented of papers given at the conference. Topics covered include: special techniques in powder diffraction; specimen handling; x-ray fluorescence applications; applications of XRD and x-ray imaging; progress in the reduction of matrix effects in XRF; evaluation of XRD patterns; XRF innovations; XRD stress analysis and mathematical data analysis

  5. Use of some nuclear methods for materials analysis

    International Nuclear Information System (INIS)

    Habbani, Farouk

    1994-01-01

    A review is given about the use of two nuclear-related analytical methods, namely: X-ray fluorescence (XRF) and neutron activation analysis (NAA), for the determination of elemental composition of various materials. Special emphasis is given to the use of XRF for the analysis of geological samples, and NAA for the analysis of food - stuffs for their protein content. (Author)

  6. Trends in environmental science using microscopic X-ray fluorescence

    International Nuclear Information System (INIS)

    Fittschen, Ursula Elisabeth Adriane; Falkenberg, Gerald

    2011-01-01

    Microscopic X-ray fluorescence (micro-XRF) is a versatile tool in environmental analysis. We review work done in this field from 2008 to 2010 and highlight new aspects. Overall, there is a strong trend to combine fluorescence data with other data like diffraction or absorption spectroscopy. Also, the use of laboratory based instrumentation has become wide spread as more commercial instruments are available. At laboratories and synchrotron sites the trend towards higher spatial resolution is still persistent hitting sub micrometer values in case of synchrotron set ups.

  7. Trends in environmental science using microscopic X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Fittschen, Ursula Elisabeth Adriane, E-mail: ursula.fittschen@chemie.uni-hamburg.de [Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany); Falkenberg, Gerald [Deutsches Elektronen-Synchrotron, Notkestr. 85, 22603 Hamburg (Germany)

    2011-08-15

    Microscopic X-ray fluorescence (micro-XRF) is a versatile tool in environmental analysis. We review work done in this field from 2008 to 2010 and highlight new aspects. Overall, there is a strong trend to combine fluorescence data with other data like diffraction or absorption spectroscopy. Also, the use of laboratory based instrumentation has become wide spread as more commercial instruments are available. At laboratories and synchrotron sites the trend towards higher spatial resolution is still persistent hitting sub micrometer values in case of synchrotron set ups.

  8. X-ray fluorescence camera for imaging of iodine media in vivo.

    Science.gov (United States)

    Matsukiyo, Hiroshi; Watanabe, Manabu; Sato, Eiichi; Osawa, Akihiro; Enomoto, Toshiyuki; Nagao, Jiro; Abderyim, Purkhet; Aizawa, Katsuo; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Ehara, Shigeru; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2009-01-01

    X-ray fluorescence (XRF) analysis is useful for measuring density distributions of contrast media in vivo. An XRF camera was developed for carrying out mapping for iodine-based contrast media used in medical angiography. Objects are exposed by an X-ray beam from a cerium target. Cerium K-series X-rays are absorbed effectively by iodine media in objects, and iodine fluorescence is produced from the objects. Next, iodine Kalpha fluorescence is selected out by use of a 58-microm-thick stannum filter and is detected by a cadmium telluride (CdTe) detector. The Kalpha rays are discriminated out by a multichannel analyzer, and the number of photons is counted by a counter card. The objects are moved and scanned by an x-y stage in conjunction with a two-stage controller, and X-ray images obtained by iodine mapping are shown on a personal computer monitor. The scan pitch of the x and y axes was 2.5 mm, and the photon counting time per mapping point was 2.0 s. We carried out iodine mapping of non-living animals (phantoms), and iodine Kalpha fluorescence was produced from weakly remaining iodine elements in a rabbit skin cancer.

  9. Censoring approach to the detection limits in X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Pajek, M.; Kubala-Kukus, A.

    2004-01-01

    We demonstrate that the effect of detection limits in the X-ray fluorescence analysis (XRF), which limits the determination of very low concentrations of trace elements and results in appearance of the so-called 'nondetects', can be accounted for using the statistical concept of censoring. More precisely, the results of such measurements can be viewed as the left random censored data, which can further be analyzed using the Kaplan-Meier method correcting the data for the presence of nondetects. Using this approach, the results of measured, detection limit censored concentrations can be interpreted in a nonparametric manner including the correction for the nondetects, i.e. the measurements in which the concentrations were found to be below the actual detection limits. Moreover, using the Monte Carlo simulation technique we show that by using the Kaplan-Meier approach the corrected mean concentrations for a population of the samples can be estimated within a few percent uncertainties with respect of the simulated, uncensored data. This practically means that the final uncertainties of estimated mean values are limited in fact by the number of studied samples and not by the correction procedure itself. The discussed random-left censoring approach was applied to analyze the XRF detection-limit-censored concentration measurements of trace elements in biomedical samples

  10. Micro-Raman and micro-XRF analysis of glass beads from the Chungde site, Taiwan

    Science.gov (United States)

    Liou, Y. S.; Wang, S. C.; Liu, Y. C.

    2014-12-01

    A large number of ancient glass beads dating back from Late Neolithic Age to early Historical Period (ca. 2300-400 BP) of Taiwan have been uncovered from archaeological sites. These glass beads with variant colors, shapes, and stylistics have long been considered to possess socio-cultural significance. Due to the color and chemical composition of glass bead might be determined by raw materials, fluxing agents, colorants, opacifiers and stabilizers. In addition, ancient glass beads are rare and precious, non-destructive analysis has been employed to decipher about the provenances, manufacturing techniques, and exchange/trade routes. In this work, micro-Raman spectroscopy and micro X-ray fluorescent spectrometer (μ-XRF) were used to examine ten ancient glass beads excavated from the Chungde site, Hualien, Taiwan, dating back to 1500-800 BP, to unravel the mineralogical and chemical compositions. Micro Raman experimental results show that glass and anorthite glass are the main constituents accompanying with trace level of quartz, albite, siderite, ankerite, and amazonite. The Raman Index of Polymerization (Ip) indicate that the sintering temperature of the glass beads is in the range of 1000~1400°C. Furthermore, the chemical compositions are corresponding to the maximum stretching vibration peak wave number (νmax Si-O Stretching) and the maximum bending vibration peak wave number (δmax Si-O Bending), which are essentially consistent with that of the India-Pacific beads. The μ-XRF results indicate the presence of oxides including SiO2, Al2O3, Fe2O3, Na2O, K2O, CaO, MgO, SnO2, TiO2, CuO, etc., and could be classified to high aluminum of soda-lime glass system. According to ternary phase diagram analysis of CaO-K2O-Na2O and K2O-Al2O3-CaO, the ancient glass beads analyzed could be attributed to the India-Pacific beads, and is in accordance with that of Raman spectra. The combination of these facts leads to the conclusion that glass beads obtained from the Chungde

  11. Hybrid XRF

    International Nuclear Information System (INIS)

    Heckel, J.

    2002-01-01

    Full text: In the last 10 years significant innovations of EDXRF, e.g. total reflection XRF or polarized beam XRF, were utilized in different industrial applications. The decrease of background within the spectra was the goal of these developments. Excellent detection limits and sensitivities demonstrate the success of these new techniques. Nevertheless, further improvements are possible by using Si drift detectors. These detectors allow the processing of input count rates up to 10 6 cps in comparison to 10 5 of Si(Li) detectors. New excitation optics are necessary to produce such count rates. One possibility is the use of doubly curved crystals between tube and sample. These crystals enable the reflection of the primary beam within the given solid angle (0.4π) of an end window tube to the sample. Using such brightness optics excellent sensitivities mainly for light elements are achievable. The combination of a BRAGG crystal as a wavelength dispersive component and a solid state detector as an energy dispersive component creates a new technique: hybrid XRF. Copyright (2002) Australian X-ray Analytical Association Inc. Copyright (2002) Australian X-ray Analytical Association Inc

  12. μXRF analysis of decoration motifs on Majolica pottery

    International Nuclear Information System (INIS)

    Padilla Lavarez, Roman; Van Espen, Pierr M.; Janssens, K; Schalm, O.

    2001-01-01

    μXRF analysis of decoration motifs on Majolica pottery in fragments corresponding to several Majolica types was carried out using an spectrometer comprising a low power Mo X-ray tube and a elliptic-shape concentration lens with a 60 um spot. Both surface scanning and spot measurements were carried a out, allowing the qualitative identification of the inorganic pigments used for the surface painting decoration and the quantitative analysis of the main glaze composition. The absence of interference signal arising from the excitation on the underlying paste when analysing thin-lead glazing was evaluated, allowing ensuring the suitable of the analytical procedures. A distinction was found between different types of majolica by the composition of the lead tin glaze enamel and by the presence of other elements in the blue, black and orange decoration

  13. Onboard assessment of XRF spectra using genetic algorithms for decision making on an autonomous underwater vehicle

    International Nuclear Information System (INIS)

    Breen, Jeremy; Souza, P. de; Timms, G.P.; Ollington, R.

    2011-01-01

    In order to optimise use of the limited resources (time, power) of an autonomous underwater vehicle (AUV) with a miniaturised X-ray fluorescence (XRF) spectrometer on board to carry out in situ autonomous chemical mapping of the surface of sediments with desired resolution, a genetic algorithm for rapid curve fitting is reported in this paper. This method quickly converges and provides an accurate in situ assessment of metals present, which helps the control system of the AUV to decide on future sampling locations. More thorough analysis of the available data could be performed once the AUV has returned to the base (laboratory).

  14. Disparity in formulations used for fluorescent X-ray intensity measurements

    International Nuclear Information System (INIS)

    Mittal, Raj; Gupta, Sheenu

    2011-01-01

    The paper presents a problem in computations of X-ray fluorescence cross-sections, shell/sub-shell fluorescence yields, Coster-Kronig yields, vacancy alignment, etc. from X-ray fluorescence (XRF) studies. While using barn/atom as a unit for cross-sections if the atomic masses are not considered it causes a discrepancy in the measured cross-section, yield and alignment values. Most of the earlier publications are being quoted where such an oversight has occurred and discrepancy is evident. - Highlights: → Manuscript gives basic formulation for measurements of fluorescent X-ray intensities. → Most publications ignored the fact that use of barn/atom units for cross-sections requires atomic masses. → Published experimental results higher by a factor ≥2 or less by factor 1/M K . → Inspection of published data on XRF parameters needed.

  15. Application of radioisotope excited XRF in the quality control of jewelry

    International Nuclear Information System (INIS)

    Calix, V.S.; Africa, L.B.; Saligan, P.P.

    1996-01-01

    The use of radioactive Cd-109 and Fe-55 as excitation sources x-ray fluorescence spectrometry (XRF) applied to the non-destructive qualitative and quantitative elemental analyses of various types of jewelry is demonstrated, specifically, accurate gold content of fine jewelry is measured. In addition, other alloying elements or impurities are also detected. In the case of costume jewelry, average thickness of the gold coating could also be measured. The determination is very rapid and reasonably cheap. (author)

  16. A calibration method for proposed XRF measurements of arsenic and selenium in nail clippings

    International Nuclear Information System (INIS)

    Gherase, Mihai R; Fleming, David E B

    2011-01-01

    A calibration method for proposed x-ray fluorescence (XRF) measurements of arsenic and selenium in nail clippings is demonstrated. Phantom nail clippings were produced from a whole nail phantom (0.7 mm thickness, 25 x 25 mm 2 area) and contained equal concentrations of arsenic and selenium ranging from 0 to 20 μg g -1 in increments of 5 μg g -1 . The phantom nail clippings were then grouped in samples of five different masses: 20, 40, 60, 80 and 100 mg for each concentration. Experimental x-ray spectra were acquired for each of the sample masses using a portable x-ray tube and a detector unit. Calibration lines (XRF signal in a number of counts versus stoichiometric elemental concentration) were produced for each of the two elements. A semi-empirical relationship between the mass of the nail phantoms (m) and the slope of the calibration line (s) was determined separately for arsenic and selenium. Using this calibration method, one can estimate elemental concentrations and their uncertainties from the XRF spectra of human nail clippings. (note)

  17. An Application of X-ray Fluorescence as Process Analytical Technology (PAT) to Monitor Particle Coating Processes.

    Science.gov (United States)

    Nakano, Yoshio; Katakuse, Yoshimitsu; Azechi, Yasutaka

    2018-03-30

    An attempt to apply X-ray Fluorescence (XRF) analysis to evaluate small particle coating process as a Process Analytical Technologies (PAT) was made. The XRF analysis was used to monitor coating level in small particle coating process with at-line manner. The small particle coating process usually consists of multiple coating processes. This study was conducted by a simple coating particles prepared by first coating of a model compound (DL-methionine) and second coating by talc on spherical microcrystalline cellulose cores. The particles with two layered coating are enough to demonstrate the small particle coating process. From the result by the small particle coating process, it was found that the XRF signal played different roles, resulting that XRF signals by first coating (layering) and second coating (mask coating) could demonstrate the extent with different mechanisms for the coating process. Furthermore, the particle coating of the different particle size has also been investigated to evaluate size effect of these coating processes. From these results, it was concluded that the XRF could be used as a PAT in monitoring particle coating processes and become powerful tool in pharmaceutical manufacturing.

  18. Monitoring of WEEE plastics in regards to brominated flame retardants using handheld XRF

    Energy Technology Data Exchange (ETDEWEB)

    Aldrian, Alexia, E-mail: alexia.aldrian@unileoben.ac.at [Chair of Waste Processing Technology and Waste Management, Montanuniversitaet Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria); Ledersteger, Alfred, E-mail: a.ledersteger@saubermacher.at [Saubermacher Dienstleistungs AG, Hans-Roth-Straße 1, 8073 Feldkirchen bei Graz (Austria); Pomberger, Roland, E-mail: roland.pomberger@unileoben.ac.at [Chair of Waste Processing Technology and Waste Management, Montanuniversitaet Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria)

    2015-02-15

    Highlights: • Specification of an empirical factor for conversion from bromine to PBB and PBDE. • The handheld XRF device was validated for this particular application. • A very large number of over 4600 pieces of monitor housings was analysed. • The recyclable fraction mounts up to 85% for TV but only 53% of PC waste plastics. • A high percentage of pieces with bromine contents of over 50,000 ppm was obtained. - Abstract: This contribution is focused on the on-site determination of the bromine content in waste electrical and electronic equipment (WEEE), in particular waste plastics from television sets (TV) and personal computer monitors (PC) using a handheld X-ray fluorescence (XRF) device. The described approach allows the examination of samples in regards to the compliance with legal specifications for polybrominated biphenyls (PBBs) and polybrominated diphenyl ethers (PBDEs) directly after disassembling and facilitates the sorting out of plastics with high contents of brominated flame retardants (BFRs). In all, over 3000 pieces of black (TV) and 1600 pieces of grey (PC) plastic waste were analysed with handheld XRF technique for this study. Especially noticeable was the high percentage of pieces with a bromine content of over 50,000 ppm for TV (7%) and PC (39%) waste plastics. The applied method was validated by comparing the data of handheld XRF with results obtained by GC–MS. The results showed the expected and sufficiently accurate correlation between these two methods. It is shown that handheld XRF technique is an effective tool for fast monitoring of large volumes of WEEE plastics in regards to BFRs for on-site measurements.

  19. Limitations of portable XRF implementations in evaluating depth information: an archaeometric perspective

    International Nuclear Information System (INIS)

    Gianoncelli, A.; Kourousias, G.

    2007-01-01

    Portable instruments that can perform non-destructive analysis techniques are of great importance due to their high applicability, which can extend beyond the controlled laboratory environment. Their importance has long been recognised in the archaeometric field where art historians, conservators and restorers perform analyses on art works without causing any damage and without the need to move the objects to specialized laboratories. The X-ray fluorescence (XRF) technique is a popular choice in the archaeometric field for in situ investigations with portable instrumentations. This enables qualitative (elemental analysis) and quantitative (chemical composition) information retrieval from the objects of interest. Quantitative analyses can be performed under the assumption that the sample is homogeneous and its surface material is the same as in the rest of the object. This work aims to expose various details, including the strengths and the weaknesses of typical XRF analyses in the case of surface alterations, focusing on portable implementations. The chosen approach will be in line with certain issues considered important in archaeometry; nevertheless the presented findings are valid beyond this. We will focus our discussion on two kinds of objects that can be found in the cultural heritage field: artefacts that had their surface material altered due to prolonged exposure to the environment and artefacts that have been gilded. Our work also includes a critically examined overview of relevant information available in the literature. The core of our analysis focuses on two main distinct cases, that of multilayer objects and that of bronzes. (orig.)

  20. X-ray fluorescence analysis of archaeological finds and art objects: Recognizing gold and gilding

    International Nuclear Information System (INIS)

    Trojek, Tomáš; Hložek, Martin

    2012-01-01

    Many cultural heritage objects were gilded in the past, and nowadays they can be found in archeological excavations or in historical buildings dating back to the Middle Ages, or from the modern period. Old gilded artifacts have been studied using X-ray fluorescence analysis and 2D microanalysis. Several techniques that enable the user to distinguish gold and gilded objects are described and then applied to investigate artifacts. These techniques differ in instrumentation, data analysis and numbers of measurements. The application of Monte Carlo calculation to a quantitative analysis of gilded objects is also introduced. - Highlights: ► Three techniques of gilding identification with XRF analysis are proposed. ► These techniques are applied to gold and gilded art and archeological objects. ► Composition of a substrate material is determined by a Monte Carlo simulation.

  1. XRF measurements of tin, copper and zinc in antifouling paints coated on leisure boats

    International Nuclear Information System (INIS)

    Ytreberg, Erik; Bighiu, Maria Alexandra; Lundgren, Lennart; Eklund, Britta

    2016-01-01

    Tributyltin (TBT) and other organotin compounds have been restricted for use on leisure boats since 1989 in the EU. Nonetheless, release of TBT is observed from leisure boats during hull maintenance work, such as pressure hosing. In this work, we used a handheld X-ray Fluorescence analyser (XRF) calibrated for antifouling paint matrixes to measure tin, copper and zinc in antifouling paints coated on leisure boats in Sweden. Our results show that over 10% of the leisure boats (n = 686) contain >400 μg/cm 2 of tin in their antifouling coatings. For comparison, one layer (40 μm dry film) of a TBT-paint equals ≈ 800 μg Sn/cm 2 . To our knowledge, tin has never been used in other forms than organotin (OT) in antifouling paints. Thus, even though the XRF analysis does not provide any information on the speciation of tin, the high concentrations indicate that these leisure boats still have OT coatings present on their hull. On several leisure boats we performed additional XRF measurements by progressively scraping off the top coatings and analysing each underlying layer. The XRF data show that when tin is detected, it is most likely present in coatings close to the hull with several layers of other coatings on top. Thus, leaching of OT compounds from the hull into the water is presumed to be negligible. The risk for environmental impacts arises during maintenance work such as scraping, blasting and high pressure hosing activities. The data also show that many boat owners apply excessive paint layers when following paint manufacturers recommendations. Moreover, high loads of copper were detected even on boats sailing in freshwater, despite the more than 20 year old ban, which poses an environmental risk that has not been addressed until now. - Highlights: • A new XRF application for analysing metals in antifouling paints has been used. • Almost 700 leisure boats were analysed for tin, copper and zinc. • Over 10% of the leisure boats contained high, >400

  2. Chemical characterization of archaeological ceramics fragments by X-ray (μ-XRF) micro fluorescence

    International Nuclear Information System (INIS)

    Silva, Richard Maximiliano da Cunha e; Nascimento Filho, Virgilio Franco do; Appoloni, Carlos Roberto; Perez, Carlos Alberto

    2002-01-01

    The concentrations of the inorganic chemical elements presents in archaeological ceramic samples and clay samples allows the study about the clay sources determination used in the ceramic production. The analyzed samples are fragments of Brazilian indigenous ceramic, found in the area of the city of Londrina, North of Parana, and they belong to the archaeological collection of the 'Padre Carlos Weiss' Historical Museum, of the State University of Londrina. The determination of the chemical elements in these fragments was performed by energy dispersive X-ray microfluorescence (μ-XRF), for being not destructive and multielementar. The analytic technique allowed the identification of the K, Ca, Ti, Mn, Fe minority elements, and the Cr, Ni, Cu, Zn and Rb trace elements. The cluster analysis for the method of the medium grouping was used, and it was obtained two different groups, taking to conclude that indigenous Tupiguaranis used two clay sources in the making of its ceramic. (author)

  3. Quantitative analysis of thorium-containing materials using an Industrial XRF analyzer

    International Nuclear Information System (INIS)

    Hasikova, J.; Titov, V.; Sokolov, A.

    2014-01-01

    Thorium (Th) as nuclear fuel is clean and safe and offers significant advantages over uranium. The technology for several types of thorium reactors is proven but still must be developed on a commercial scale. In the case of commercialization of thorium nuclear reactor thorium raw materials will be on demand. With this, mining and processing companies producing Th and rare earth elements will require prompt and reliable methods and instrumentation for Th quantitative on-line analysis. Potential applicability of X-ray fluorescence conveyor analyzer CON-X series is discussed for Th quantitative or semi-quantitative on-line measurement in several types of Th-bearing materials. Laboratory study of several minerals (zircon sands and limestone as unconventional Th resources; monazite concentrate as Th associated resources and uranium ore residues after extraction as a waste product) was performed and analyzer was tested for on-line quantitative measurements of Th contents along with other major and minor components. Th concentration range in zircon sand is 50-350 ppm; its detection limit at this level is estimated at 25- 50 ppm in 5 minute measurements depending on the type of material. On-site test of the CON-X analyzer for continuous analysis of thorium traces along with other elements in zircon sand showed that accuracy of Th measurements is within 20% relative. When Th content is higher than 1% as in the concentrate of monazite ore (5-8% ThO_2) accuracy of Th determination is within 1% relative. Although preliminary on-site test is recommended in order to address system feasibility at a large scale, provided results show that industrial conveyor XRF analyzer CON-X series can be effectively used for analytical control of mining and processing streams of Th-bearing materials. (author)

  4. Remote In-Situ Quantitative Mineralogical Analysis Using XRD/XRF

    Science.gov (United States)

    Blake, D. F.; Bish, D.; Vaniman, D.; Chipera, S.; Sarrazin, P.; Collins, S. A.; Elliott, S. T.

    2001-01-01

    X-Ray Diffraction (XRD) is the most direct and accurate method for determining mineralogy. The CHEMIN XRD/XRF instrument has shown promising results on a variety of mineral and rock samples. Additional information is contained in the original extended abstract.

  5. Instrumental fundamental parameters and selected applications of the microfocus X-ray fluorescence analysis at a scanning electron microscope; Instrumentelle Fundamentalparameter und ausgewaehlte Anwendungen der Mikrofokus-Roentgenfluoreszenzanalyse am Rasterelektronenmikroskop

    Energy Technology Data Exchange (ETDEWEB)

    Rackwitz, Vanessa

    2012-05-30

    For a decade X-ray sources have been commercially available for the microfocus X-ray fluorescence analysis ({mu}-XRF) and offer the possibility of extending the analytics at a scanning electron microscope (SEM) with an attached energy dispersive X-ray spectrometer (EDS). By using the {mu}-XRF it is possible to determine the content of chemical elements in a microscopic sample volume in a quantitative, reference-free and non-destructive way. For the reference-free quantification with the XRF the Sherman equation is referred to. This equation deduces the intensity of the detected X-ray intensity of a fluorescence peak to the content of the element in the sample by means of fundamental parameters. The instrumental fundamental parameters of the {mu}-XRF at a SEM/EDS system are the excitation spectrum consisting of X-ray tube spectrum and the transmission of the X-ray optics, the geometry and the spectrometer efficiency. Based on a calibrated instrumentation the objectives of this work are the development of procedures for the characterization of all instrumental fundamental parameters as well as the evaluation and reduction of their measurement uncertainties: The algorithms known from the literature for the calculation of X-ray tube spectrum are evaluated with regard to their deviations in the spectral distribution. Within this work a novel semi-empirical model is improved with respect to its uncertainties and enhanced in the low energy range as well as extended for another three anodes. The emitted X-ray tube spectrum is calculated from the detected one, which is measured at an especially developed setup for the direct measurement of X-ray tube spectra. This emitted X-ray tube spectrum is compared to the one calculated on base of the model of this work. A procedure for the determination of the most important parameters of an X-ray semi-lens in parallelizing mode is developed. The temporal stability of the transmission of X-ray full lenses, which have been in regular

  6. The Determination of Composite Elements in Zircaloy-2 by X-Ray Fluorescence and Emission Spectrometry Method

    International Nuclear Information System (INIS)

    Dian Anggraini; Rosika Kriswarini; Yusuf N

    2007-01-01

    Analysis of composing elements in zircaloy-2 has been done by Emission Spectrometry method and X-Ray Fluorescence (XRF). The aim of the analysis is to verify conformity between composing elements in zircaloy-2 and the material certificate. Spectrometry Emission method has higher sensitivity in element determination of a material than that of XRF method, so can be estimated that emission spectrometry method has higher accuracy than that of XRF method. The result of qualitative analysis by Emission Spectrometry indicate that the composing elements in zircaloy-2 were Sn, Cr and Ni. However, the qualitative analysis result by XRF method indicated that the composing elements in zircaloy 2 were Sn, Cr, Ni and Fe. Fe element can not be analysed by Emission Spectrometry method because Emission Spectrometer did not equipped with Fe detector. The quantitative analysis result of the composing elements in the material with both methods showed that Sn, Cr and Ni concentration of zircaloy 2 existed in concentration ranges of the material certificate. Result of statistical test (F and t-test) of analysis result of both methods can be used for analyzing composing elements in zircaloy 2. Emission Spectrometry method was more sensitive and accurate for determining Cr and Ni element in zircaloy 2 than that of emission Spectrometry method but both methods had same accuracy. The precision of measurement of Sn, Cr and Ni element using XRF method was better than that of Emission spectrometry method. (author)

  7. XRF Newsletter, No. 18, December 2009

    International Nuclear Information System (INIS)

    2009-12-01

    Considerable progress has been observed in recent years in the development and applications of micro-analytical techniques based on nuclear spectrometry. Major reasons for this include the possibility to use new excitation sources such as synchrotron radiation (SR) facilities, and low-power compact X ray tubes designed to offer optimum excitation geometry, combined with the availability of advanced new-generation thermoelectrically cooled semiconductor detectors and of miniaturized or large-scale X ray optics with improved performance (in particular for use with SR sources). Consequently, the quality of characterization of various materials has improved considerably not only in large- scale laboratory facilities (ion-beam and SR sources) but also with in-house experimental set-ups, and new applications have become possible in support of applied research, teaching and education in nuclear science and technology in a wide variety of fields. The following nuclear spectrometry (and related) techniques can be used for microanalysis: (i) X ray fluorescence (XRF), (ii) total reflection X ray fluorescence (TXRF) (iii) neutron activation analysis (NAA), (iv) ion beam analysis based on applications of low-energy particle accelerators (including particle X ray emission - PIXE, particle induced gamma ray emission - PIGE, Rutherford backscattering spectrometry - RBS), (v) extended X ray absorption fine structure spectroscopy (EXAFS) and X ray absorption near-edge spectroscopy (XANES), (vi) X ray fluorescence micro-tomography, (vii) scanning electron microscopy (SEM), etc. The techniques are usually used for elemental analysis, 2D and 3D microscopy imaging, and chemical speciation. The range of possible applications of micro-analytical techniques is very wide and covers, inter alia, the following fields: - Industrial applications including microelectronics, mineralogy, study of corrosion processes, measurement of coating thickness, study of catalytic materials, waste

  8. The use of synchrotron radiation for trace element analysis and element mapping by scanning X-ray fluorescence

    International Nuclear Information System (INIS)

    Davies, S.T.

    1983-01-01

    Synchrotron Radiation excited X-Ray Fluorescence is a potentially powerful tool for the routine quantitative chemical analysis of materials, with minimum detection limits typically of the order of a tenth of a ppm, and with the added advantages of simultaneous multi-element detection capability, spatial resolution on a micron scale, large signal to noise ratios and short analysis times. This paper presents a brief review of the use of Synchrotron Radiation in Trace Element Analysis and discusses the requirements for a microprobe for chemical analysis utilising SR. Data obtained at the Synchrotron Radiation Source, Daresbury Laboratory include XRF spectra of standard reference materials and an application of the technique to the study of ion implanted layers in semiconductors is outlined. (author)

  9. Chemical U-Th-Pb dating of monazite by 3D-Micro x-ray fluorescence analysis with synchrotron radiation

    DEFF Research Database (Denmark)

    Schmitz, Susanne; Möller, Andreas; Wilke, Max

    2009-01-01

    A confocal set-up for three-dimensional (3D) micro X-ray fluorescence (micro-XRF) was used at the mySpot beamline at BESSY II, which allows compositional depth profiling for various applications. We present results obtained with a confocal 3D micro-XRF set-up for chemical age dating using the U, Th...... and Pb concentrations of monazite within rock thin sections. The probing volume was determined to be approximately 21 × 21 × 24 µm3 for W-La using an excitation energy of 19 keV. The relative detection limits particularly for Pb are below 10 ppm (for counting times of 1000 s). Therefore, this 3D micro...... of ages, varying from 20 Ma to 1.82 Ga. Reference materials (GM3, F6, 3345) can be reproduced within error. The spread in the ages of all points determined by 3D micro-XRF is within 8 % of the isotopic reference value. The average 3D micro-XRF dates reproduce the reference ages with discrepancies between...

  10. Algorithms for a hand-held miniature x-ray fluorescence analytical instrument

    International Nuclear Information System (INIS)

    Elam, W.T.; Newman, D.; Ziemba, F.

    1998-01-01

    The purpose of this joint program was to provide technical assistance with the development of a Miniature X-ray Fluorescence (XRF) Analytical Instrument. This new XRF instrument is designed to overcome the weaknesses of spectrometers commercially available at the present time. Currently available XRF spectrometers (for a complete list see reference 1) convert spectral information to sample composition using the influence coefficients technique or the fundamental parameters method. They require either a standard sample with composition relatively close to the unknown or a detailed knowledge of the sample matrix. They also require a highly-trained operator and the results often depend on the capabilities of the operator. In addition, almost all existing field-portable, hand-held instruments use radioactive sources for excitation. Regulatory limits on such sources restrict them such that they can only provide relatively weak excitation. This limits all current hand-held XRF instruments to poor detection limits and/or long data collection times, in addition to the licensing requirements and disposal problems for radioactive sources. The new XRF instrument was developed jointly by Quantrad Sensor, Inc., the Naval Research Laboratory (NRL), and the Department of Energy (DOE). This report describes the analysis algorithms developed by NRL for the new instrument and the software which embodies them

  11. Advanced of X-ray fluorescence logging technique in China

    International Nuclear Information System (INIS)

    Zhou Sichun; Ge Liangquan; Lai Wanchang; Yang Qiang

    2010-01-01

    The paper discuses principle of X-ray fluorescence logging, and introduces advanced of X-ray fluorescence logging technique in China. By 2009, third generation XRF logging instrument has been developed in China, and good logging result has been obtained in Lala copper mine. (authors)

  12. Comparison of 14 MeV-NAA, k0-NAA and ED-XRF for air pollution bio-monitoring

    International Nuclear Information System (INIS)

    Senhou, A.; Chouak, A.; Cherkaoui, R.; Lferde, M.; Elyahyaoui, A.; Bertho, X.; Gaudry, A.; Ayrault, S.; Piccot, D.

    2002-01-01

    Performances and the limitations of three multi-elementary analysis techniques are compared applied to a study of air pollution biomonitoring in Morocco. These techniques are: 14 MeV neutron activation analysis (14 MeV-NAA), thermal neutron activation analysis using the k 0 quasi-absolute method (k 0 -NAA) and energy dispersive X-ray fluorescence analysis (ED-XRF). The experimental procedures and the control of the analytical results using certified reference materials are described and discussed. The three methods were confronted for the analysis of lichens, mosses and tree-barks. The complementarity of these methods enabled us to determine 43 elements in different samples. The most suitable method for each element was selected according to the sensitivity and selectivity necessitating the minimum corrections of the matrix effects and/or the interfering reactions. (author)

  13. {sup 57}Fe Mössbauer, SEM/EDX, p-XRF and μ-XRF studies on a Dutch painting

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, R., E-mail: lehmann@acc.uni-hannover.de; Schmidt, H.-J. [Leibniz Universität Hannover, Institut für Anorganische Chemie (Germany); Costa, B. F. O. [University of Coimbra, CFisUC, Physics Department (Portugal); Blumers, M. [Joh. Gutenberg-Universität Mainz, Institut für Anorganische Chemie und Analytische Chemie (Germany); Sansano, A.; Rull, F. [Fisica de Materia Condensata, Centro de Astrobiologia, Universidade de Valladolid (Spain); Wengerowsky, D. [Leibniz Universität Hannover, Institut für Anorganische Chemie (Germany); Nürnberger, F.; Maier, H. J. [Leibniz Universität Hannover, Institut für Werkstoffkunde (Germany); Klingelhöfer, G. [University of Coimbra, CFisUC, Physics Department (Portugal); Renz, F., E-mail: renz@acd.uni-hannover.de [Leibniz Universität Hannover, Institut für Anorganische Chemie (Germany)

    2016-12-15

    The painting of a rich Jewish merchant “Bildnis eines jüdischen Kaufmanns” from the Netherlands is dated presumably to the 16{sup th} century. After a vivid historical background, i.e. robbed by the Nazis by order of Hermann Göring, it was recently discovered on an Austrian flea market. Different analysis methods were combined to identify the time of the production of this historically interesting looted art. Non-destructive MIMOS II Fe-57 Mössbauer spectroscopy was utilised for mesurements in selected spots. This mainly revealed haematite (α-Fe{sub 2}O{sub 3}) in the red curtain. In spots of the brown jacket Mössbauer spectra indicated the presence of mainly Iron(III) in super-paramagnetic oxide or oxide-hydroxide. Consecutively SEM measurements revealed a restoration by partly over-painting. The elementary composition of the pigments was examined by a portable-X-ray fluorescence. μ-XRF analysis for element distribution at different areas was performed. The look into a crack showed Zinc-white at the bottom of the crack. Traces of Titanium-white could be found within some locations on the surface of the painting. In terms of provenance of the artwork, the presence of Zink-white suggests that the painting was painted around the 19{sup th} century. Titanium-white indicates a reconstruction during the 20{sup th} century, approximately between 1917 and 1958.

  14. "5"7Fe Mössbauer, SEM/EDX, p-XRF and μ-XRF studies on a Dutch painting

    International Nuclear Information System (INIS)

    Lehmann, R.; Schmidt, H.-J.; Costa, B. F. O.; Blumers, M.; Sansano, A.; Rull, F.; Wengerowsky, D.; Nürnberger, F.; Maier, H. J.; Klingelhöfer, G.; Renz, F.

    2016-01-01

    The painting of a rich Jewish merchant “Bildnis eines jüdischen Kaufmanns” from the Netherlands is dated presumably to the 16"t"h century. After a vivid historical background, i.e. robbed by the Nazis by order of Hermann Göring, it was recently discovered on an Austrian flea market. Different analysis methods were combined to identify the time of the production of this historically interesting looted art. Non-destructive MIMOS II Fe-57 Mössbauer spectroscopy was utilised for mesurements in selected spots. This mainly revealed haematite (α-Fe_2O_3) in the red curtain. In spots of the brown jacket Mössbauer spectra indicated the presence of mainly Iron(III) in super-paramagnetic oxide or oxide-hydroxide. Consecutively SEM measurements revealed a restoration by partly over-painting. The elementary composition of the pigments was examined by a portable-X-ray fluorescence. μ-XRF analysis for element distribution at different areas was performed. The look into a crack showed Zinc-white at the bottom of the crack. Traces of Titanium-white could be found within some locations on the surface of the painting. In terms of provenance of the artwork, the presence of Zink-white suggests that the painting was painted around the 19"t"h century. Titanium-white indicates a reconstruction during the 20"t"h century, approximately between 1917 and 1958.

  15. Quantitative analysis by X-ray fluorescence using first principles for matrix correction

    International Nuclear Information System (INIS)

    Hulett, L.D.; Dunn, H.W.; Tarter, J.G.

    1978-01-01

    The quantitative interpretation of X-ray fluorescence (XRF) data is often difficult because of matrix effects. The intensity of fluorescence measured for a given element is not only dependent on the element's concentration, but also on the mass absorption coefficients of the sample for the excitation and fluorescence radiation. Also, there are interelement effects in which high-energy fluorescence from heavier elements is absorbed by lighter elements with a resulting enhancement of their fluorescence. Recent theoretical treatments of this problem have shown that X-ray fluorescence data can be corrected for these matrix effects by calculations based on first principles. Fundamental constants, available in atomic physics data tables, are the only parameters needed. It is not necessary to make empirical calibrations. The application of this correctional procedure to alloys and alumina-supported catalysts is described. A description is given of a low-background spectrometer which uses monochromatic Ag Ksub(α) radiation for excitation. Matrix corrections by first principles can be easily applied to data from instruments of this type because fluorescence excitation cross-sections and mass absorption coefficients can be accurately defined for monochromatic radiation. (author)

  16. X-ray fluorescence analysis (XRF) and secondary ion mass spectrometry (SIMS) for analysis of iodine concentration in vitro in benign and malignant thyroid tissue

    International Nuclear Information System (INIS)

    Hansson, Marie; Berg, Gertrud; Ericsson, Lars; Grunditz, Torsten; Isaksson, Mats; Jansson, Svante; Nystrom, Ernst; Sodervall, Ulf

    2005-01-01

    Full text: The thyroid ability to store and concentrate iodine is of importance for radioiodine therapy in thyroid cancer. It is known that a normal thyroid contains 2-20 mg iodine while the information regarding malignant thyroid tissue is scarce. The purpose of this study was to investigate the iodine concentration in benign compared to malignant tissue. Methods: Thyroid tissue samples from healthy patients and from patients with papillary cancer were collected and frozen in connection with surgery. For the thyroid cancer patients, tissue was taken from both benign and malignant tissue. The iodine concentration was analysed with an XRF system consisting of a 241-Am source and an HPGe detector. When irradiating iodine containing tissue, characteristic X-rays are emitted. That radiation is detected with the strength of the detected signal being proportional to the amount of iodine in the sample. SIMS was used on glutaraldehyde fixed tissue as a histological tool for quantification and localization of iodine by sputtering and analysis of secondary ions. Results: The iodine concentration in benign tissue is considerably higher than in malignant samples. XRF measurements showed a medium iodine concentration in healthy thyroid tissue of 0.5 mg/mL. For the cancer patients, the iodine concentration was 0.3 mg/mL in benign tissue while no iodine could be detected in the malignant samples. These findings were consistent with the results from the SIMS investigation that gave a 100 times lower iodine concentration in malignant than in benign tissue. SIMS also showed that the iodine in benign tissue was predominantly located in the follicle lumen, while in the cancer cells low iodine concentration was found intra cellular as well as in the lumen. Conclusion: Iodine concentration in tissue from papillary cancer can be 100 times lower than in normal thyroid tissue. This is in accordance with the empirical knowledge that thyroid cancer should need about 100 times higher activity

  17. Studies of some alloys using x-ray fluorescence

    International Nuclear Information System (INIS)

    Elmahi, Elamin Musaid

    1997-01-01

    In this project an attempt has been made for the study of alloys commonly used using x-ray fluorescence ( XRF ) technique. The alloys selected for the study included gold jewellery, steels, brasses and coins. The XRF method proved to be simple, fast, non-destructive and reliable as compared to chemical methods. The results showed that most of the gold jewellery used in this country have carat value of 18 and 21. Also most coins used in different countries are alloys of Cu and Ni. A simple spark method was used for the determination of C in steels, since C is not possible to analyze by XRF. ( Author )

  18. Environmental studies in Khartoum area using x-ray fluorescence

    International Nuclear Information System (INIS)

    Abdel Elmagid, Suliman Alamin

    1996-06-01

    In the present work an attempt has been made for the analysis of some soil, plant, sediments and fish samples of relevance to environmental pollution in Khartoum area. These samples have been collected from different places in residential areas, so as to cover industrial areas, agricultural and residential areas, as well as Tuti Island as control area. Special attention has been dedicated to the analysis of lead concentrations resulting from automobile-emissions in soils and to other toxic metals such as Cr in some industries. The samples were analysed by x-ray fluorescence (XRF) technique. The results obtained using XRF measurements and computer software called QXAS for data analysis. The concentrations of lead and some heavy metals such as Cr in soils from certain locations were alarming and may create pollution problems in the near future. The results obtained from different countries. The results are generally lower than the international limits. (Author)

  19. Nondestructive 3D confocal laser imaging with deconvolution of seven whole stardust tracks with complementary XRF and quantitative analysis

    International Nuclear Information System (INIS)

    Greenberg, M.; Ebel, D.S.

    2009-01-01

    We present a nondestructive 3D system for analysis of whole Stardust tracks, using a combination of Laser Confocal Scanning Microscopy and synchrotron XRF. 3D deconvolution is used for optical corrections, and results of quantitative analyses of several tracks are presented. The Stardust mission to comet Wild 2 trapped many cometary and ISM particles in aerogel, leaving behind 'tracks' of melted silica aerogel on both sides of the collector. Collected particles and their tracks range in size from submicron to millimeter scale. Interstellar dust collected on the obverse of the aerogel collector is thought to have an average track length of ∼15 (micro)m. It has been our goal to perform a total non-destructive 3D textural and XRF chemical analysis on both types of tracks. To that end, we use a combination of Laser Confocal Scanning Microscopy (LCSM) and X Ray Florescence (XRF) spectrometry. Utilized properly, the combination of 3D optical data and chemical data provides total nondestructive characterization of full tracks, prior to flattening or other destructive analysis methods. Our LCSM techniques allow imaging at 0.075 (micro)m/pixel, without the use of oil-based lenses. A full textural analysis on track No.82 is presented here as well as analysis of 6 additional tracks contained within 3 keystones (No.128, No.129 and No.140). We present a method of removing the axial distortion inherent in LCSM images, by means of a computational 3D Deconvolution algorithm, and present some preliminary experiments with computed point spread functions. The combination of 3D LCSM data and XRF data provides invaluable information, while preserving the integrity of the samples for further analysis. It is imperative that these samples, the first extraterrestrial solids returned since the Apollo era, be fully mapped nondestructively in 3D, to preserve the maximum amount of information prior to other, destructive analysis.

  20. Determination of Cu, Cr, and As in preserved wood (Eucalyptus sp.) using x-ray fluorescent spectrometry techniques

    International Nuclear Information System (INIS)

    Sergio Matias Pereira Junior; Vera Akiko Maihara; Edson Goncalves Moreira; Vera Lucia Ribeiro Salvador; Ivone Mulako Sato

    2016-01-01

    Energy dispersive (EDXRF) and Portable (PXRF) X-ray fluorescence techniques are proposed for wood treatment control process and wood waste assortment. In this study, different retentions of chromated copper arsenate preservative were applied to Eucalyptus sp. sapwood samples. Cu, Cr and As were determined by XRF techniques in treated sapwood massive blocks and treated sapwood sawdust samples were analyzed by FAAS spectrometry (Flame Atomic Absorption) and INAA (Instrumental Neutron Activation Analysis). Cu, Cr and As mean values, obtained by FAASS and INAA, showed to be statically equal; however, XRF analysis showed considerable deviations, presenting the absorption and the enhancement effects in analytical lines. (author)

  1. Micro SR-XRF analysis on underglaze copper red porcelain of ming dynasty

    International Nuclear Information System (INIS)

    Guan Li; Zhu Jian; Yang Yimin; Fan Changsheng; Chen Dongliang; Xu Wei; Zhang Jing; Wang Lihua

    2013-01-01

    Background: The firing techniques of producing underglaze copper red porcelain emerged in the Yuan dynasty and reached its maturity during the Ming and Qing Dynasties in Jingdezhen city. The technique of producing underglaze red porcelain was sensitive to the firing temperature and atmosphere, so it was very hard to produce and also difficult to display red color under the surface successfully. Purpose and Methods: The micro SR-XRF technique was employed to analysis a piece of sherd of underglaze copper red porcelain of early Ming dynasty. The Chemical compositions of glaze and color areas were presented, and the elemental contents in different color areas were obtained by using line-scanning techniques. Results: Some elements such as As and Pb were contained in raw materials, and the content of Cu had obviously increased with the color changing from gray to red. The results indicated that the nature mineral possibly used as the pigment for underglazed copper red porcelain coloration, and the color appearance also depends on the amount of copper in the pigments contained. Conclusions: This paper presents the advantage of the synchrotron radiation XRF technology and contributes to the science evidences for the Chinese ancient porcelain handcraft research. (authors)

  2. Determination of some trace elements in biological samples using XRF and TXRF techniques

    International Nuclear Information System (INIS)

    Khuder, A.; Karjou, J.; Sawan, M. K.

    2006-07-01

    XRF and TXRF techniques were successfully used for the multi-element determination of trace elements in whole blood and human head hair samples. This was achieved by the direct analysis using XRF technique with different collimation units and by the optimized chemical procedures for TXRF analysis. Light element of S and P were preferably determined by XRF with primary x-ray excitation, while, elements of K, Ca, Fe, and Br were determined with a very good accuracy and precision using XRF with Cu- and Mo-secondary targets. The chemical procedure dependent on the preconcentration of trace elements by APDC was superiorly used for the determination of traces of Ni and Pb in the range of 1.0-1.7 μg/dl and 11-23 μg/dl, respectively, in whole blood samples by TXRF technique; determination of other elements as Cu and Zn was also achievable using this approach. Rb in whole blood samples was determined directly after the digestion of samples using PTFE-bomb for TXRF analysis. (author)

  3. The calibration of XRF polyethylene reference materials with k 0-NAA and ICP-AES

    International Nuclear Information System (INIS)

    Swagten, Josefien; Bossus, Daniel; Vanwersch, Hanny

    2006-01-01

    Due to the lack of commercially available polyethylene reference materials for the calibration of X-ray fluorescence spectrometers (XRF), DSM Resolve, in cooperation with PANalytical, prepared and calibrated such a set of standards in 2005. The reference materials were prepared based on the addition of additives to virgin polyethylene. The mentioned additives are added to improve the performance of the polymers. The elements present in additives are tracers for the used additives. The reference materials contain the following elements: F, Na, Mg, Al, Si, P, S, Ca, Ti and Zn in the concentration range of 5 mg/kg for Ti, up to 600 mg/kg for Mg. The calibration of the reference materials, including a blank, was performed using inductively coupled plasma atomic emission spectrometry (ICP-AES) and Neutron Activation Analysis (k 0 -NAA). ICP-AES was used to determine the elements Na, Mg, Al, P, Ca, Ti and Zn whereas k 0 -NAA was used for F, Na, Mg, Al, Ca, Ti and Zn. Over the complete concentration range, a good agreement of the results was found between the both techniques. This project has shown that within DSM Resolve, it is possible to develop and to calibrate homogenous reference materials for XRF

  4. A strategy for vitrification product assurance and control with X-ray fluorescence spectrometry (PACX)

    International Nuclear Information System (INIS)

    Resce, J.L.

    1995-01-01

    A product control strategy is proposed for the vitrification of low-level and/or mixed waste. This strategy is called Product Assurance and Control with X-ray fluorescence spectrometry (PACX). The strategy utilizes sequential wavelength dispersive x-ray fluorescence spectrometry and standardless fundamental parameters calculations to analyze both the melter feed and the glassy products. The melter feed is sampled prior to addition to the melt tank and then melted and cast into samples which should closely resemble the product from the vitrification process itself. The resulting sample disks are then analyzed by x-ray fluorescence spectrometry. All elements with atomic numbers down to sodium can be determined directly and then either boron or lithium can be determined by difference from the mass balance. The XRF intensities are converted into oxide compositions with the use of a novel standardless fundamental parameters program. Previous work has shown that there is an excellent correlation between the XRF results and the results from conventional wet chemical analyses, but the XRF results can be obtained within two to three hours of sampling. If compositional control limits for durability are available, the product acceptability can be determined prior to the batch being introduced into the melter. The durability could also be estimated from a model, if available, which predicts product durability from composition. If the predicted durability is estimated to be too low, the model can then be used to determine additives which will raise the durability of the final product to within acceptable limits. The additives can then be incorporated into the batch prior to addition into the melter. A similar XRF analysis can be carried out on the glass product from the melter which can then be used to predict and thus assure product acceptance

  5. Trace elements in natural azurite pigments found in illuminated manuscript leaves investigated by synchrotron x-ray fluorescence and diffraction mapping

    Science.gov (United States)

    Smieska, Louisa M.; Mullett, Ruth; Ferri, Laurent; Woll, Arthur R.

    2017-07-01

    We present trace-element and composition analysis of azurite pigments in six illuminated manuscript leaves, dating from the thirteenth to sixteenth century, using synchrotron-based, large-area x-ray fluorescence (SR-XRF) and diffraction (SR-XRD) mapping. SR-XRF mapping reveals several trace elements correlated with azurite, including arsenic, zirconium, antimony, barium, and bismuth, that appear in multiple manuscripts but were not always detected by point XRF. Within some manuscript leaves, variations in the concentration of trace elements associated with azurite coincide with distinct regions of the illuminations, suggesting systematic differences in azurite preparation or purification. Variations of the trace element concentrations in azurite are greater among different manuscript leaves than the variations within each individual leaf, suggesting the possibility that such impurities reflect distinct mineralogical/geologic sources. SR-XRD maps collected simultaneously with the SR-XRF maps confirm the identification of azurite regions and are consistent with impurities found in natural mineral sources of azurite. In general, our results suggest the feasibility of using azurite trace element analysis for provenance studies of illuminated manuscript fragments, and demonstrate the value of XRF mapping in non-destructive determination of trace element concentrations within a single pigment.

  6. Trace elements in natural azurite pigments found in illuminated manuscript leaves investigated by synchrotron x-ray fluorescence and diffraction mapping

    Energy Technology Data Exchange (ETDEWEB)

    Smieska, Louisa M.; Woll, Arthur R. [Cornell High Energy Synchrotron Source, Wilson Laboratory, Ithaca, NY (United States); Mullett, Ruth [Cornell University, Medieval Studies Program, Ithaca, NY (United States); Ferri, Laurent [Cornell University, Cornell Library Rare and Manuscript Collections, Ithaca, NY (United States)

    2017-07-15

    We present trace-element and composition analysis of azurite pigments in six illuminated manuscript leaves, dating from the thirteenth to sixteenth century, using synchrotron-based, large-area x-ray fluorescence (SR-XRF) and diffraction (SR-XRD) mapping. SR-XRF mapping reveals several trace elements correlated with azurite, including arsenic, zirconium, antimony, barium, and bismuth, that appear in multiple manuscripts but were not always detected by point XRF. Within some manuscript leaves, variations in the concentration of trace elements associated with azurite coincide with distinct regions of the illuminations, suggesting systematic differences in azurite preparation or purification. Variations of the trace element concentrations in azurite are greater among different manuscript leaves than the variations within each individual leaf, suggesting the possibility that such impurities reflect distinct mineralogical/geologic sources. SR-XRD maps collected simultaneously with the SR-XRF maps confirm the identification of azurite regions and are consistent with impurities found in natural mineral sources of azurite. In general, our results suggest the feasibility of using azurite trace element analysis for provenance studies of illuminated manuscript fragments, and demonstrate the value of XRF mapping in non-destructive determination of trace element concentrations within a single pigment. (orig.)

  7. The Mapping X-ray Fluorescence Spectrometer (MapX)

    Science.gov (United States)

    Sarrazin, P.; Blake, D. F.; Marchis, F.; Bristow, T.; Thompson, K.

    2017-12-01

    Many planetary surface processes leave traces of their actions as features in the size range 10s to 100s of microns. The Mapping X-ray Fluorescence Spectrometer (MapX) will provide elemental imaging at 100 micron spatial resolution, yielding elemental chemistry at a scale where many relict physical, chemical, or biological features can be imaged and interpreted in ancient rocks on planetary bodies and planetesimals. MapX is an arm-based instrument positioned on a rock or regolith with touch sensors. During an analysis, an X-ray source (tube or radioisotope) bombards the sample with X-rays or alpha-particles / gamma-rays, resulting in sample X-ray Fluorescence (XRF). X-rays emitted in the direction of an X-ray sensitive CCD imager pass through a 1:1 focusing lens (X-ray micro-pore Optic (MPO)) that projects a spatially resolved image of the X-rays onto the CCD. The CCD is operated in single photon counting mode so that the energies and positions of individual X-ray photons are recorded. In a single analysis, several thousand frames are both stored and processed in real-time. Higher level data products include single-element maps with a lateral spatial resolution of 100 microns and quantitative XRF spectra from ground- or instrument- selected Regions of Interest (ROI). XRF spectra from ROI are compared with known rock and mineral compositions to extrapolate the data to rock types and putative mineralogies. When applied to airless bodies and implemented with an appropriate radioisotope source for alpha-particle excitation, MapX will be able to analyze biogenic elements C, N, O, P, S, in addition to the cations of the rock-forming elements >Na, accessible with either X-ray or gamma-ray excitation. The MapX concept has been demonstrated with a series of lab-based prototypes and is currently under refinement and TRL maturation.

  8. X-ray fluorescence in Member States: Philippines. XRF activities at Analytical Measurements Research Group, Philippine Nuclear Research Institute

    International Nuclear Information System (INIS)

    Pabroa, Corazon B.; Castaneda, Soledad S.; Almoneda, Rosalina V.; Sucgang, Raymond J.; Racho, Joseph Michael D.; Morco, Ryan P.; Cuyco, Danilo; Jimenez, Gloria; Santos, Flora L.

    2008-01-01

    Full text: XRF analysis and activities of the Analytical Measurements Research (AMR) Group (see Fig.1) of the Philippine Nuclear Research Institute (PNRI) focus on both research and analytical services. Air pollution research, in particular source apportionment studies, requires multi-elemental data for a substantial number of samples. In the PNRI, energy-dispersive X-ray fluorescence (EDXRF) has been used as an effective tool for providing such multi-elemental data. With the latest acquisition of the Panalytical Epsilon 5 (E5) EDXRF system, the process of quantification has become easier and faster with the auto-quantify method. Other research involvements of the group are in the analysis of samples in relation to mineral explorations and the elemental characterization of water in support for isotope hydrology research. The AMR group, as part of its function to provide analytical services, offers qualitative or semi quantitative analysis of solid samples using the auto quantify method, quantitative analysis of environmental samples using the emission-transmission method and quantitative analysis of air particulate matter collected on filters. Telephone wire materials sold in junkshops (alleged to have been pilfered from installed telephone lines of a major telecommunications company in the country) and materials being assessed in relation to patent claims are other examples of samples submitted for analytical services. As mentioned, a useful feature of the E5 system is the use of the auto-quantify (AQ) method. Calibration lines used for this type of application are obtained using the fundamental parameter (FP) model. For AQ applications, accurate results are obtained for samples prepared as fused glass beads in which the whole matrix is known. However, only qualitative or semi quantitative analysis can be applied for other types of solid samples. The AQ method was adapted for the multi-elemental analysis of air particulates using the MicroMatter standards to set

  9. Application of radioisotope XRF and thermoluminescence (TL) dating in investigation of pottery from Tell AL-Kasra archaeological site, Syria

    International Nuclear Information System (INIS)

    Abboud, R.; Issa, H.; Abed-Allah, Y.D.; Bakraji, E.H.

    2015-01-01

    Statistical analysis based on chemical composition, using radioisotope X-ray fluorescence, have been applied on 39 ancient pottery fragments coming from the excavation at Tell Al-Kasra archaeological site, Syria. Three groups were defined by applying Cluster and Factor analysis statistical methods. Thermoluminescence (TL) dating was investigated on three sherds taken from the bathroom (hammam) on the site. Multiple aliquot additive dose (MAAD) was used to estimate the paleodose value, and the gamma spectrometry was used to estimate the dose rate. The average age was found to be 715±36 year. - Highlights: • Providing new additional data of Syrian archaeological ceramics. • This work investigates both elemental content and dating of Syrian ceramics. • Elemental analysis and dating were performed by XRF and TL dating respectively.

  10. In vivo x-ray fluorescence of lead and other toxic trace elements

    International Nuclear Information System (INIS)

    Chettle, D.R.

    1995-01-01

    The first in vivo x-ray fluorescence measurements of lead in bone used y-rays from a 57 Co source to excite Pb K x-rays. Later systems used γ-rays from 109 Cd to excite Pb K x-rays or polarized x-rays to excite Ph L x-rays. All three approaches involve an extremely low effective dose to the subject. Of the two K x-ray techniques, 109 Cd is more precise and more flexible in choice of measurement site. Pb L x-ray fluorescence (L-XRF) effectively samples lead at bone surfaces, whereas Ph K x-ray fluorescence (K-XRF) samples through the bulk of a bone. Both the polarized L-XRF and 109 Cd K-XRF achieve similar precision. Renal mercury has recently been determined using a polarized x-ray source, Both renal and hepatic cadmium can be measured using polarized x-rays in conjunction with a Si(Li) detector. Platinum and gold have been measured both by radioisotopic source excitation and by using polarized x-rays, but the latter is to be preferred. Applications of Pb K-XRF have shown that measured bone lead relates strongly to cumulative lead exposure. Secondly, biological half lives of lead in different bone types have been estimated from limited longitudinal data sets and from some cross sectional surveys. Thirdly, the effect of bone lead as an endogenous source of lead has been demonstrated and it has been shown that a majority of circulating blood lead can be mobilized from bone, rather than deriving from new exposure, in some retired lead workers. 35 refs., 5 tabs

  11. Enrichment method for trace amounts of rare earth elements using chemofiltration and XRF determination

    International Nuclear Information System (INIS)

    De Vito, I.E.; Olsina, R.A.; Masi, A.N.

    2000-01-01

    A preconcentration method for subsequent determination of rare earth elements (REE) by X-ray fluorescence (XRF) spectrometry was developed. The method is based on using (o-[3,6-disulfo-2-hydroxy-1-naphthylazo]-benzenearsonic acid) (Thorin) as a complexing agent which is retained on a polyamide membrane by a chemofiltration process. The pH dependence of the chemofiltration of these metal ions on the membrane and other variables, such as flow-rate, contact time, kinetic of complex formation, etc. were determined. The membrane containing the chemofiltrate formed a thin film, which eliminated the interelemental effects when measured by XRF. The detection limits were 23, 23 and 49 ng/mL for Sm(III), Eu(III) and Gd(III), respectively. High enrichment factors were obtained. The method was successfully applied to the preconcentration of Sm(III), Eu(III) and Gd(III) from different samples. (orig.)

  12. Assessment of occupational exposure to manganese and other metals in welding fumes by portable X-ray fluorescence spectrometer.

    Science.gov (United States)

    Laohaudomchok, Wisanti; Cavallari, Jennifer M; Fang, Shona C; Lin, Xihong; Herrick, Robert F; Christiani, David C; Weisskopf, Marc G

    2010-08-01

    Elemental analysis of welding fume samples can be done using several laboratory-based techniques. However, portable measurement techniques could offer several advantages. In this study, we sought to determine whether the portable X-ray fluorescence spectrometer (XRF) is suitable for analysis of five metals (manganese, iron, zinc, copper, and chromium) on 37-mm polytetrafluoroethylene filters. Using this filter fitted on a cyclone in line with a personal pump, gravimetric samples were collected from a group of boilermakers exposed to welding fumes. We assessed the assumption of uniform deposition of these metals on the filters, and the relationships between measurement results of each metal obtained from traditional laboratory-based XRF and the portable XRF. For all five metals of interest, repeated measurements with the portable XRF at the same filter area showed good consistency (reliability ratios are equal or close to 1.0 for almost all metals). The portable XRF readings taken from three different areas of each filter were not significantly different (p-values = 0.77 to 0.98). This suggested that the metal rich PM(2.5) deposits uniformly on the samples collected using this gravimetric method. For comparison of the two XRFs, the results from the portable XRF were well correlated and highly predictive of those from the laboratory XRF. The Spearman correlation coefficients were from 0.325 for chromium, to 0.995 for manganese and 0.998 for iron. The mean differences as a percent of the mean laboratory XRF readings were also small (metals were moderately to strongly correlated with the total fine particle fraction on filters (Spearman rho = 0.41 for zinc to 0.97 for iron). Such strong correlations and comparable results suggested that the portable XRF could be used as an effective and reliable tool for exposure assessment in many studies.

  13. Effect of surface roughness on takeoff-angle-dependent X-ray fluorescence of ultrathin films at glancing incidence

    International Nuclear Information System (INIS)

    Tsuji, Kouichi; Hirokawa, Kichinosuke; Sasaki, Atsushi.

    1994-01-01

    We had previously shown that takeoff-angle-dependent X-ray fluorescence (TAD-XRF) at glancing incidence is a useful method for the characterization of thin films. Here we report the effect of surface roughness of the substrate on TAD-XRF of an ultrathin film at a glancing incidence. An optically flat glass, scratched glasses and plano-convex lenses were used as substrates. A large-range contour such as warp and a roughness of microscopic scale affect the TAD-XRF profile. Therefore, to characterize the ultrathin film by the TAD-XRF method, the material whose roughness is being investigated should be used as the substrate in TAD-XRF measurement. (author)

  14. Spatially resolved synchrotron radiation induced X-ray fluorescence analyses of rare Rembrandt silverpoint drawings

    International Nuclear Information System (INIS)

    Reiche, I.; Radtke, M.; Berger, A.; Goerner, W.; Merchel, S.; Riesemeier, H.; Bevers, H.

    2006-01-01

    New analyses of a series of very rare silverpoint drawings that were executed by Rembrandt Harmensz. van Rijn (1606-1669) which are kept today in the Kupferstichkabinett (Museum of Prints and Drawings) of the State Museums of Berlin are reported here. Analysis of these drawings requires particular attention because the study has to be fully non-destructive and extremely sensitive. The metal alloy on the paper does not exceed some hundreds of μg/cm 2 . Therefore, synchrotron radiation induced X-ray fluorescence (SR-XRF) is - together with external micro-proton-induced X-ray emission - the only well-suited method for the analyses of metalpoint drawings. In some primary work, about 25 German and Flemish metalpoint drawings were investigated using spatially resolved SR-XRF analysis at the BAMline at BESSY. This study enlarges the existing French-German database of metalpoint drawings dating from the 15th and 16th centuries, as these Rembrandt drawings originate from the 17th century where this graphical technique was even rarer and already obsolete. It also illustrates how SR-XRF analysis can reinforce art historical assumptions on the dating of drawings and their connection. (orig.)

  15. Basic design of on-line analyzer for sheet paper using X-ray fluorescence (XRF) technique

    International Nuclear Information System (INIS)

    Rony Djokorayono; Ahmad Suntoro; Ikhsan Shobari; Usep Setia Gunawan

    2016-01-01

    Basic design of on-line analyzer for sheet paper using X-ray fluorescence technique has been carried out. Compared with sampling technique, this X-ray fluorescence technique has some advantages in term of analysis accuracy and time. The design activities performed including the establishment of design requirements, functional requirements, technical requirements, technical specification, detection sub-system design, data acquisition sub-system design, and operator computer console design. This program will use silicon drift or CdTe X-ray detector to detect X-ray fluorescence emitted by elements in sheet paper due to X-ray interaction of a X-ray source, 55 Fe (Ferro-55).This basic design of on-line analyzer for sheet paper using X-ray fluorescence technique should be followed up with the development of detailed design, prototype construction, and field testing. (author)

  16. Synchrotron μ-XRF determination of element distribution in fossilized sauropod bones

    International Nuclear Information System (INIS)

    Zoeger, N.; Wobrauschek, P.; Streli, C.; Jokubonis, C.; Pepponi, G.; FalKEXnberg, G.; Sander, P.M.; Ferreyro, R.; Pyzalla, A.R.

    2005-01-01

    Full text: Sauropod dinosaurs were typically one magnitude larger than any other living or extinct terrestrial animal. This sheer size of the sauropod leads to scale effects in their biology and physiology that still are only inadequately understood. The primary remnants of the sauropods are their fossilized bones. These fossilized bones have sustained burial for some hundred million years and thus may have experienced significant diagenetic changes which are not affecting bone preservation at the histological level, but lead to significant alterations of the bone microstructure at the sub histological level. We investigated the influence of diagenesis on the microstructure of fossilized sauropod bones using bone cross sections of Brachiosaurus brancai and Barosaurus africanus long bones (femura and humeri) that were excavated from the Tendaguru beds in Tanzania. The change in chemical composition due to interactions between bone and sediments was characterized by synchrotron micro-X-ray fluorescence analysis (SR l'-XRF) in confocal geometry. Measurements have been carried out at the micro-focus end-station at HASYLAB beamline L using a monochromatic synchrotron beam from a bending magnet at 17.2 KEXV. The high spatial resolution achievable using this variant of SR l'-XRF revealed two-dimensional element maps of U, Sr, Pb, Fe, Cu, Mn, V, Cr, Co in the fluorapatite of the fossilized bone and in the calcite filling of the bone cavities. The results show distinct differences in the spatial distribution of these elements. The inhomogeneities of the element distribution observed in the dinosaur bone thus give some indications about the interdiffusion between the bone and its environment. (author)

  17. Synchrotron {mu}-XRF determination of element distribution in fossilized sauropod bones

    Energy Technology Data Exchange (ETDEWEB)

    Zoeger, N; Wobrauschek, P; Streli, C; Jokubonis, C [TU Wien, Atominstitiut der Oesterreichischen Universitaeten, Stadionallee 2, A-1020 Wien (Austria); Pepponi, G [ITC-irst, Centro per la Ricerca Scientifica e Tecnologica, via Sommarive 18, 38050 Povo, Trento (Italy); FalKEXnberg, G [Hamburger Synchrotronstrahlungslabor HASYLAB am Deutschen Elektronen-Synchrotron, NotKEXstr. 85, 22603 Hamburg (Germany); Sander, P M [Institute for Paleontology, University of Bonn, Nussallee 8, D-53115 Bonn (Germany); Ferreyro, R; Pyzalla, A R [TU Wien, Institute of Material Science and Technology, Karlsplatz 13-308, A-1040 Wien (Austria)

    2005-07-01

    Full text: Sauropod dinosaurs were typically one magnitude larger than any other living or extinct terrestrial animal. This sheer size of the sauropod leads to scale effects in their biology and physiology that still are only inadequately understood. The primary remnants of the sauropods are their fossilized bones. These fossilized bones have sustained burial for some hundred million years and thus may have experienced significant diagenetic changes which are not affecting bone preservation at the histological level, but lead to significant alterations of the bone microstructure at the sub histological level. We investigated the influence of diagenesis on the microstructure of fossilized sauropod bones using bone cross sections of Brachiosaurus brancai and Barosaurus africanus long bones (femura and humeri) that were excavated from the Tendaguru beds in Tanzania. The change in chemical composition due to interactions between bone and sediments was characterized by synchrotron micro-X-ray fluorescence analysis (SR l'-XRF) in confocal geometry. Measurements have been carried out at the micro-focus end-station at HASYLAB beamline L using a monochromatic synchrotron beam from a bending magnet at 17.2 KEXV. The high spatial resolution achievable using this variant of SR l'-XRF revealed two-dimensional element maps of U, Sr, Pb, Fe, Cu, Mn, V, Cr, Co in the fluorapatite of the fossilized bone and in the calcite filling of the bone cavities. The results show distinct differences in the spatial distribution of these elements. The inhomogeneities of the element distribution observed in the dinosaur bone thus give some indications about the interdiffusion between the bone and its environment. (author)

  18. In situ investigation of the surface silvering of late Roman coins by combined use of high energy broad-beam and low energy micro-beam X-ray fluorescence techniques

    Energy Technology Data Exchange (ETDEWEB)

    Romano, F.P., E-mail: romanop@lns.infn.it [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); LNS, INFN, Via S. Sofia 62, 95123 Catania (Italy); Garraffo, S. [ITABC, CNR, Via Salaria km 29.300, 00016 Monterotondo, Roma (Italy); Pappalardo, L. [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); LNS, INFN, Via S. Sofia 62, 95123 Catania (Italy); Rizzo, F. [LNS, INFN, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, 95123 Catania (Italy)

    2012-07-15

    The compositional analysis of archeological metals performed with the X-ray Fluorescence technique (XRF) provides information on the ancient technology. One of the most interesting case-study concerns the techniques used by Romans for silvering the surface of coins. Different metallurgical processes have been suggested in previous studies. Recently the investigation has been addressed to the mercury-silvering and to its possible use in the mass-production of coins minted during the late period (after 294 AD). In the present paper the non-destructive investigation of the silvering process used for manufacturing the Roman nummi - the important typology of coin introduced by Diocletian in his monetary reform - is approached by the combined use of the standard X-Ray Fluorescence (XRF) and the low energy micro-X-Ray Fluorescence (LE-{mu}XRF) portable methods. The research was focused on the systematic determination of the mercury presence in a large number of samples and on its correlation with silver in the surface of the coins. 1041 Roman nummi belonging to the Misurata Treasure were analyzed in situ, at the Leptis Magna Museum (Al Khums, Libya). The treasure, composed of about 108 thousand silvered coins, gives the unique opportunity to study the Roman coinage in a wide interval of time (about 40 years in the period 294-333 AD) and in almost all the imperial mints operating in the Roman world. - Highlights: Black-Right-Pointing-Pointer Custom-building of a high energy broad-beam and a low energy micro-beam XRF Black-Right-Pointing-Pointer In situ analysis of the silvering methods in late Roman nummi with plated surfaces Black-Right-Pointing-Pointer The broad-beam XRF was applied for the detection of mercury traces in the coin alloy. Black-Right-Pointing-Pointer The low energy micro-XRF was used to scan the surface patina of the coins. Black-Right-Pointing-Pointer The correlation between mercury and silver at the coin surface was evidenced.

  19. Analysis of Thousands of Prehistoric Mediterranean Obsidian Artifacts Using a Nondestructive Portable X-Ray Fluorescence Spectrometer

    Science.gov (United States)

    Tykot, Robert

    A portable, hand-held X-ray fluorescence spectrometer has been used for a decade to elementally analyze prehistoric obsidian artifacts in the Mediterranean. Nearly 400 geological obsidian samples and 7500 obsidian artifacts have been analyzed. The pXRF can distinguish all individual sources, as well as assign artifacts specifically to most subsources. For the island sources of Lipari, Pantelleria, Sardinia, and Melos, it is important to address the usage of obsidian from specific subsources due to human selection based on physical properties of the raw material and their production practices, which may have changed over time from the Early Neolithic to the Bronze Age. The analysis of 50 or more artifacts from 60 different archaeological sites allows for statistical comparison between sites, and their contexts, geographic areas (e.g. coastal/inland, highland/lowland) and distance from geological sources. The frequency of transport between island sources and mainland sites is suggestive of maritime capabilities also for the transport of domesticated animals, ceramics, and other materials. This presentation will specifically address potential limitations of the portable XRF, including non-destructive surface analysis of potentially heterogeneous materials, and limited trace element detection compared to other analytical methods, versus its highly beneficial ``package'' of analyzing great numbers of artifacts non-destructively and rapidly without needing to export them from museums and facilities in many countries.

  20. X-ray fluorescence determination of Sn, Sb, Pb in lead-based bearing alloys using a solution technique

    Science.gov (United States)

    Tian, Lunfu; Wang, Lili; Gao, Wei; Weng, Xiaodong; Liu, Jianhui; Zou, Deshuang; Dai, Yichun; Huang, Shuke

    2018-03-01

    For the quantitative analysis of the principal elements in lead-antimony-tin alloys, directly X-ray fluorescence (XRF) method using solid metal disks introduces considerable errors due to the microstructure inhomogeneity. To solve this problem, an aqueous solution XRF method is proposed for determining major amounts of Sb, Sn, Pb in lead-based bearing alloys. The alloy samples were dissolved by a mixture of nitric acid and tartaric acid to eliminated the effects of microstructure of these alloys on the XRF analysis. Rh Compton scattering was used as internal standard for Sb and Sn, and Bi was added as internal standard for Pb, to correct for matrix effects, instrumental and operational variations. High-purity lead, antimony and tin were used to prepare synthetic standards. Using these standards, calibration curves were constructed for the three elements after optimizing the spectrometer parameters. The method has been successfully applied to the analysis of lead-based bearing alloys and is more rapid than classical titration methods normally used. The determination results are consistent with certified values or those obtained by titrations.

  1. A compact XRF unit for determining total sulphur content in coals

    International Nuclear Information System (INIS)

    Sumitra, T.; Chankow, N.; Punnachaiya, S.; Srisatit, S.

    1994-01-01

    A microcomputer based x-ray fluorescence (XRF) unit was developed for off-line determination of total sulphur content in coal samples. The unit consisted of the x-ray exciting/measuring set and the microcomputer with a plug-in interface card. An Fe-55 radioisotope was used as the exciting source while a krypton-filled proportional counter was used to measure x-rays from the samples. The x-ray spectrum was simultaneously displayed on the microcomputer screen. For quantitative determination of sulphur, the intensities of sulphur K x-rays as well as calcium K x-rays and scattered x-rays were taken into account. The unit was tested with finely-ground, dried and compressed lignite, subbituminous and bituminous samples. If was found that for low-calcium coals, the results were in good agreement with those obtained from the standard chemical analysis method within ± 0.2% and within ± 0.5%S for high-calcium coals. 2 refs., 2 tabs., 3 figs

  2. Blood cells kinetics by stable tracers assayed by XRF-analysis and by radioactive tracers

    International Nuclear Information System (INIS)

    Cesareo, R.; Del Principe, D.; Tallarida, B.

    1980-01-01

    Stable rubidium, as an analogue of potassium, has been employed to label human and rabbit red cells and platelets. The concentration of rubidium bound to the cells, which are deposited on filter paper disks, is assayed by a simple version of the X-ray fluorescence equipment, characterized by a 1 mCi Cd-109 radioisotopic source, a xenon-filled proportional detector and a single-channel-analyzer. Survival curves of platelets and of red-cells labelled with stable Rb were determined by measuring the Rb concentration in the labelled cells, withdrawn at different times. The fluorescent counts are linearly proportional to the mass of rubidium per unit area of the filter. The sensitivity of the XRF technique is about 0.05 μg/cm 2 in a measuring time of 500 s. The mean quantity of Rb incorporated by the platelets is of about 5-10 μg for human platelets labelled ''in vitro'', of about 30-50 μg for rabbit platelets labelled in vivo and of about 0.5 mg for rabbit red cell labelled in vivo. The following half-time values were deduced: Tsub(1/2) = 35-45 h for human platelets labelled in ''in vitro''. Tsub(1/2) = 22 +- 3 h for rabbit platelets labelled ''in vivo''. Tsub(1/2) = 310 +- 15 h for rabbit red cells labelled ''in vivo''. The next step of our studies is to label ''in vivo'' human red cells and human platelets. (author)

  3. Portable X-ray diffractometer equipped with XRF for archaeometry

    Science.gov (United States)

    Uda, M.; Ishizaki, A.; Satoh, R.; Okada, K.; Nakajima, Y.; Yamashita, D.; Ohashi, K.; Sakuraba, Y.; Shimono, A.; Kojima, D.

    2005-09-01

    A portable X-ray diffractometer equipped with an X-ray fluorescence spectrometer was improved so as to get a diffraction pattern and a fluorescence spectrum simultaneously in air from one and the same small area on a specimen. Here, diffraction experiments were performed in two modes, i.e. an angle rotation mode and an energy dispersive mode. In the latter a diffraction pattern and a fluorescence spectrum were simultaneously recorded in a short time, 100 s or less, on one display. The diffractometer was tested in the field to confirm its performance. Targets chosen for this purpose were a bronze mirror from the Eastern Han Dynasty (25-220), and a stupa and its pedestal which are part of the painted statue of "Tamonten holding a stupa" from the Heian Period (794-1192), enshrined in the Engyouji temple founded in 996. The bronze mirror was identified as a product of the Han Dynasty from its chemical composition and the existence of the δ phase in the Cu-Sn alloy. The stupa and its pedestal were decorated with gold powder and gold leaf, respectively. From the XRF data of the pedestal, the underlying layer of gold leaf seems to have been painted with emerald green.

  4. Portable X-ray diffractometer equipped with XRF for archaeometry

    International Nuclear Information System (INIS)

    Uda, M.; Ishizaki, A.; Satoh, R.; Okada, K.; Nakajima, Y.; Yamashita, D.; Ohashi, K.; Sakuraba, Y.; Shimono, A.; Kojima, D.

    2005-01-01

    A portable X-ray diffractometer equipped with an X-ray fluorescence spectrometer was improved so as to get a diffraction pattern and a fluorescence spectrum simultaneously in air from one and the same small area on a specimen. Here, diffraction experiments were performed in two modes, i.e. an angle rotation mode and an energy dispersive mode. In the latter a diffraction pattern and a fluorescence spectrum were simultaneously recorded in a short time, 100 s or less, on one display. The diffractometer was tested in the field to confirm its performance. Targets chosen for this purpose were a bronze mirror from the Eastern Han Dynasty (25-220), and a stupa and its pedestal which are part of the painted statue of 'Tamonten holding a stupa' from the Heian Period (794-1192), enshrined in the Engyouji temple founded in 996. The bronze mirror was identified as a product of the Han Dynasty from its chemical composition and the existence of the δ phase in the Cu-Sn alloy. The stupa and its pedestal were decorated with gold powder and gold leaf, respectively. From the XRF data of the pedestal, the underlying layer of gold leaf seems to have been painted with emerald green

  5. Possible Radiation-Induced Damage to the Molecular Structure of Wooden Artifacts Due to Micro-Computed Tomography, Handheld X-Ray Fluorescence, and X-Ray Photoelectron Spectroscopic Techniques

    Directory of Open Access Journals (Sweden)

    Madalena Kozachuk

    2016-05-01

    Full Text Available This study was undertaken to ascertain whether radiation produced by X-ray photoelectron spectroscopy (XPS, micro-computed tomography (μCT and/or portable handheld X-ray fluorescence (XRF equipment might damage wood artifacts during analysis. Changes at the molecular level were monitored by Fourier transform infrared (FTIR analysis. No significant changes in FTIR spectra were observed as a result of μCT or handheld XRF analysis. No substantial changes in the collected FTIR spectra were observed when XPS analytical times on the order of minutes were used. However, XPS analysis collected over tens of hours did produce significant changes in the FTIR spectra.

  6. Improving x-ray fluorescence signal for benchtop polychromatic cone-beam x-ray fluorescence computed tomography by incident x-ray spectrum optimization: a Monte Carlo study.

    Science.gov (United States)

    Manohar, Nivedh; Jones, Bernard L; Cho, Sang Hyun

    2014-10-01

    To develop an accurate and comprehensive Monte Carlo (MC) model of an experimental benchtop polychromatic cone-beam x-ray fluorescence computed tomography (XFCT) setup and apply this MC model to optimize incident x-ray spectrum for improving production/detection of x-ray fluorescence photons from gold nanoparticles (GNPs). A detailed MC model, based on an experimental XFCT system, was created using the Monte Carlo N-Particle (MCNP) transport code. The model was validated by comparing MC results including x-ray fluorescence (XRF) and scatter photon spectra with measured data obtained under identical conditions using 105 kVp cone-beam x-rays filtered by either 1 mm of lead (Pb) or 0.9 mm of tin (Sn). After validation, the model was used to investigate the effects of additional filtration of the incident beam with Pb and Sn. Supplementary incident x-ray spectra, representing heavier filtration (Pb: 2 and 3 mm; Sn: 1, 2, and 3 mm) were computationally generated and used with the model to obtain XRF/scatter spectra. Quasimonochromatic incident x-ray spectra (81, 85, 90, 95, and 100 keV with 10 keV full width at half maximum) were also investigated to determine the ideal energy for distinguishing gold XRF signal from the scatter background. Fluorescence signal-to-dose ratio (FSDR) and fluorescence-normalized scan time (FNST) were used as metrics to assess results. Calculated XRF/scatter spectra for 1-mm Pb and 0.9-mm Sn filters matched (r ≥ 0.996) experimental measurements. Calculated spectra representing additional filtration for both filter materials showed that the spectral hardening improved the FSDR at the expense of requiring a much longer FNST. In general, using Sn instead of Pb, at a given filter thickness, allowed an increase of up to 20% in FSDR, more prominent gold XRF peaks, and up to an order of magnitude decrease in FNST. Simulations using quasimonochromatic spectra suggested that increasing source x-ray energy, in the investigated range of 81-100 ke

  7. Alloying effect on K shell X-ray fluorescence cross-sections and yields in Ti-Ni based shape memory alloys

    Directory of Open Access Journals (Sweden)

    Bünyamin Alım

    2018-04-01

    Full Text Available K shell X-ray fluorescence cross-sections (σKα, σKβ and σK, and K shell fluorescence yields (ωK of Ti, Ni both in pure metals and in different alloy compositions (TixNi1-x; x = 0.3, 0.4, 0.5, 0.6, 0.7 were measured by using energy dispersive X-ray fluorescence (EDXRF technique. The samples were excited by 22.69 keV X-rays from a 10 mCi Cd-109 radioactive point source and K X rays emitted by samples were counted by a high resolution Si(Li solid-state detector coupled to a 4 K multichannel analyzer (MCA. The alloying effects on the X-ray fluorescence (XRF parameters of Ti-Ni shape memory alloys (SMAs were investigated. It is clearly observed that alloying effect causes to change in K shell XRF parameter values in Ti-Ni based SMAs for different compositions of x. Also, the present investigation makes it possible to perform reliable interpretation of experimental σKα, σKβ and ωK values for Ti and Ni in SMAs and can also provide quantitative information about the changes of K shell X-ray fluorescence cross sections and fluorescence yields of these metals with alloy composition. Keywords: Alloying effect, XRF, K X-ray fluorescence cross-section, K shell fluorescence yield, Shape memory alloy

  8. Applicability of X-ray fluorescence spectroscopy as method to determine thickness and composition of stacks of metal thin films: A comparison with imaging and profilometry

    International Nuclear Information System (INIS)

    Vrielink, J.A.M.; Tiggelaar, R.M.; Gardeniers, J.G.E.; Lefferts, L.

    2012-01-01

    In this work the applicability of X-ray fluorescence spectroscopy (XRF) for fast, accurate and non-destructive determination of the thickness of a variety of single-layer and multi-layer metal thin films deposited on glass and silicon is investigated. Data obtained with XRF is compared with information from profilometry and images from scanning electron microscopy (SEM). Whereas thickness determinations based on profilometry and cross-sectional SEM-imaging have restrictions with respect to thickness of metal stacks or hardness of the metals, XRF has no such limitations. Moreover, XRF can discriminate between sublayers in a multi-layer film, and can also be utilized for compositional analysis and density estimations. Good agreement between thickness data obtained with XRF, profilometry and SEM-images is found, under the justifiable assumption that the density of sputter-deposited and evaporated thin films is ca. 5% below that of bulk metals. Similar XRF-results are found for non-patterned areas (64 mm 2 metal) as well as lithographically patterned areas containing a series of small metal lines (total metal surface ca. 8 mm 2 ). As a consequence, it is concluded that XRF is a versatile technique for analysis, verification, control or evaluation of the thickness, density or (elemental) composition of thin metal film line-patterns, during their fabrication as well as prior or post to applications.

  9. A novel XRF method to measure environmental release of copper and zinc from antifouling paints.

    Science.gov (United States)

    Ytreberg, Erik; Lagerström, Maria; Holmqvist, Albin; Eklund, Britta; Elwing, Hans; Dahlström, Magnus; Dahl, Peter; Dahlström, Mia

    2017-06-01

    The release of copper (Cu) and zinc (Zn) from vessels and leisure crafts coated with antifouling paints can pose a threat to water quality in semi-enclosed areas such as harbors and marinas as well as to coastal archipelagos. However, no reliable, practical and low-cost method exists to measure the direct release of metals from antifouling paints. Therefore, the paint industry and regulatory authorities are obliged to use release rate measurements derived from either mathematical models or from laboratory studies. To bridge this gap, we have developed a novel method using a handheld X-Ray Fluorescence spectrometer (XRF) to determine the cumulative release of Cu and Zn from antifouling paints. The results showed a strong linear relationship between XRF K α net intensities and metal concentrations, as determined by ICP-MS. The release of Cu and Zn were determined for coated panels exposed in harbors located in the Baltic Sea and in Kattegat. The field study showed salinity to have a strong impact on the release of Cu, i.e. the release increased with salinity. Contrary, the effect of salinity on Zn was not as evident. As exemplified in this work, the XRF method also makes it possible to identify the governing parameters to the release of Cu and Zn, e.g. salinity and type of paint formulation. Thus, the XRF method can be used to measure environmentally relevant releases of metallic compounds to design more efficient and optimized antifouling coatings. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. In vivo elemental analysis in occupational medicine using X-ray fluorescence

    International Nuclear Information System (INIS)

    Christoffersson, J.O.

    1986-01-01

    A technique for the in vivo determination of cadmium in the kidney cortex using X-ray fluorescence analysis (XRF) has been developed for clinical use. The method uses the Cd K-alfa X-rays. The radiation from the tube was polarized by scattering at 90 degrees in a plastic disc. Using a Si(Li) detector the minimum detectable concentration (MDC) of cadmium in the renal cortex was about 6 ppm for an effective dose equivalent of 3 micro-Sievert. The precision of the method was estimated to be about 23 percent. The clinical usefulness was confirmed by studying 20 occupationally exposed cadmium workers and three controls. The cadmium workers showed levels of cadmium in the kidney in the range 47-317 ppm, and controls showed levels below 30 ppm. Using XRF in vivo large-scale measurements of lead in the fingerbone of more than 100 lead workers were performed. The technique used included two 57-Co sources for excitation and a higher-purity Ge detector for the analysis of the Pb K-alfa X-rays. The MDC was about 20 ppm for an effective dose equivalent of 0.1 micro-Sievert. The precision of the method was estimated to be about 15 per cent. The in vivo measurements showed levels of fingerbone-Pb up to 148 ppm. The existence of a significant endogenous exposure from lead in the skeleton was confirmed. The fingerbone-Pb was correlated to time-integrated blood-Pb indicating that it could be used as a rough estimated of time-integrated exposure. The results from the measurements were used to develop a three-compartment (cortical bone, trabecular bone, blood/soft tissues) model. Using this model, lead levels in fingerbone, vertebrae and blood could be predicted in good agreement with observations. (author)

  11. Portable x-ray fluorescence spectrometer for Works of art

    International Nuclear Information System (INIS)

    Mendoza, A.; Griesser, A.

    2001-01-01

    X-ray fluorescence is an analytical technique of prier importance in archaeometry, for restoration and art history investigation; it is because of non-destructive and multi-elemental character of the analysis simplicity and high speed of operation, ability to produce immediate analytical results for the objects, which can neither be sampled nor removed to the laboratory Recent advances in X-ray tubes, X-ray detectors and electronic provided an opportunity to produce portable high resolution XRF spectrometers characterized by a good reliability and analytical performance; in this paper a prototype portable XRF spectrometer based on a small size, low power X-ray tube and a thermometrically cooled Si-Pin detector is described. The spectrometer provides a possibility for direct and secondary target excitation geometry use of proper secondary target and filter and size adjustment of the primary photon bean by using a set of different beam collimators; the portable XRF spectrometer was successfully applied to study art objects in the Art History Museum in Vienna, including such objects as old master paintings bronze and brass alloys of antique as well as Renaissance objects and silver/copper coins produced at different locations. Quantitative and Quantitative analysis were amedee depending of the curator questions and discussed from the point of view of art History. The importance of the results for restoration and authentification of the art objects is also emphasized

  12. Development and applications of grazing exit micro X-ray fluorescence instrument using a polycapillary X-ray lens

    International Nuclear Information System (INIS)

    Emoto, T.; Sato, Y.; Konishi, Y.; Ding, X.; Tsuji, K.

    2004-01-01

    A polycapillary X-ray lens is an effective optics to obtain a μm-size X-ray beam for micro-X-ray fluorescence spectrometry (μ-XRF). We developed a μ-XRF instrument using a polycapillary X-ray lens, which also enabled us to perform Grazing Exit μ-XRF (GE-μ-XRF). The evaluated diameter of the primary X-ray beam was 48 μm at the focal distance of the X-ray lens. Use of this instrument enabled two-dimensional mapping of the elemental distributions during growth of the plant 'Quinoa'. The results of the mapping revealed elemental transition during growth. In addition, a small region of thin film was analyzed by GE-μ-XRF. We expect that GE-μ-XRF will become an effective method of estimating the film thickness of a small region

  13. Portable x-ray fluorescence spectrometer. Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-12-01

    This report describes the application of portable X-ray fluorescence (XRF) spectrometry to characterize materials related to deactivation and decommissioning (D and D) of contaminated facilities. Two portable XRF instruments manufactured by TN Spectrace were used in a technology evaluation as part of the Large-Scale Demonstration Project (LSDP) held at the Chicago Pile-5 Research Reactor (CP-5) located at Argonne National Laboratory (ANL). The LSDP is sponsored by the US Department of Energy (DOE), Office of Science and Technology, Deactivation and Decommissioning Focus Are (DDFA). The objective of the LSDP is to demonstrate innovative technologies or technology applications potentially beneficial to the D and D of contaminated facilities. The portable XRF technology offers several potential benefits for rapid characterization of facility components and contaminants, including significant cost reduction, fast turnaround time,a nd virtually no secondary waste. Field work for the demonstration of the portable XRF technology was performed from August 28--September 3, 1996 and October 30--December 13, 1996

  14. Trace elements in airborne particles in internal industrial environments: spectrometric analysis of x-ray fluorescence (XRF)

    International Nuclear Information System (INIS)

    Salazar Matarrita, Alfonso

    2001-01-01

    Fluorescence spectroscopy x-ray, is a technique of non-destructive analysis, that allows quantitative determination of the absolute concentration of chemical elements that make up a given matrix. The detected elements depend on atomic number and energy of the secondary target used for irradiation of samples. X-rays are detected and counted in a spectroscopy system based on a multichannel analyzer, that discriminates by energy and form a spectrum of independent photopeaks, whose energy identifies the element and its intensity is proportional to its concentration. The quantification requires the irradiation and counting of a set of pattern comparators, of the same elements identified in the samples. The x-ray emission shows only during the time that the selected sample is subjected to irradiation by x-ray tube. This irradiation does not change the structure nor the chemical composition of the matrix, so the sample remains unchanged, after irradiation. This condition non-destructive characterizes the fluorescence x-ray. The trace elements present in airborne particles, are determined and collected on a Nuclepore filter. The collection sites selected are: Taller de Mecanica de Precision de la Escuela de Fisica, Universidad de Costa Rica; Taller J. V. G. Precision, San Antonio de Coronado; Taller de Muflas, MUFLASA, Alto de Guadalupe; Industria Silvania S. A., Pavas. In addition, it is attached the service rendered to the enterprise Sellos Generales S. A. The working conditions and physical conditions of facilities were considered. An aerosol sampler with a temporal variation was used. Irradiation of samples and an evaluation of the concentrations have been made. (author) [es

  15. Normalizing XRF-scanner data: A cautionary note on the interpretation of high-resolution records from organic-rich lakes

    Science.gov (United States)

    Löwemark, L.; Chen, H.-F.; Yang, T.-N.; Kylander, M.; Yu, E.-F.; Hsu, Y.-W.; Lee, T.-Q.; Song, S.-R.; Jarvis, S.

    2011-04-01

    X-ray fluorescence (XRF) scanning of unlithified, untreated sediment cores is becoming an increasingly common method used to obtain paleoproxy data from lake records. XRF-scanning is fast and delivers high-resolution records of relative variations in the elemental composition of the sediment. However, lake sediments display extreme variations in their organic matter content, which can vary from just a few percent to well over 50%. As XRF scanners are largely insensitive to organic material in the sediment, increasing levels of organic material effectively dilute those components that can be measured, such as the lithogenic material (the closed-sum effect). Consequently, in sediments with large variations in organic material, the measured variations in an element will to a large extent mirror the changes in organic material. It is therefore necessary to normalize the elements in the lithogenic component of the sediment against a conservative element to allow changes in the input of the elements to be addressed. In this study we show that Al, which is the lightest element that can be measured using the Itrax XRF-scanner, can be used to effectively normalize the elements of the lithogenic fraction of the sediment against variations in organic content. We also show that care must be taken when choosing resolution and exposure time to ensure optimal output from the measurements.

  16. Evaluation of Rock Powdering Methods to Obtain Fine-grained Samples for CHEMIN, a Combined XRD/XRF Instrument

    Science.gov (United States)

    Chipera, S. J.; Vaniman, D. T.; Bish, D. L.; Sarrazin, P.; Feldman, S.; Blake, D. F.; Bearman, G.; Bar-Cohen, Y.

    2004-01-01

    A miniature XRD/XRF (X-ray diffraction / X-ray fluorescence) instrument, CHEMIN, is currently being developed for definitive mineralogic analysis of soils and rocks on Mars. One of the technical issues that must be addressed to enable remote XRD analysis is how best to obtain a representative sample powder for analysis. For powder XRD analyses, it is beneficial to have a fine-grained sample to reduce preferred orientation effects and to provide a statistically significant number of crystallites to the X-ray beam. Although a two-dimensional detector as used in the CHEMIN instrument will produce good results even with poorly prepared powder, the quality of the data will improve and the time required for data collection will be reduced if the sample is fine-grained and randomly oriented. A variety of methods have been proposed for XRD sample preparation. Chipera et al. presented grain size distributions and XRD results from powders generated with an Ultrasonic/Sonic Driller/Corer (USDC) currently being developed at JPL. The USDC was shown to be an effective instrument for sampling rock to produce powder suitable for XRD. In this paper, we compare powder prepared using the USDC with powder obtained with a miniaturized rock crusher developed at JPL and with powder obtained with a rotary tungsten carbide bit to powders obtained from a laboratory bench-scale Retsch mill (provides benchmark mineralogical data). These comparisons will allow assessment of the suitability of these methods for analysis by an XRD/XRF instrument such as CHEMIN.

  17. Application of Industrial XRF Coating Thickness Analyzer for Phosphate Coating Thickness on Steel

    Directory of Open Access Journals (Sweden)

    Aleksandr Sokolov

    2018-03-01

    Full Text Available The results of industrial application of an online X-ray fluorescence coating thickness analyzer for measuring the thickness of phosphate coatings on moving steel strips are considered in the article. The target range of coating thickness to be measured is from tens to hundreds of mg/m2 in a measurement time of 10 s. The measurement accuracy observed during long-duration factory acceptance test was 10–15%. The coating thickness analyzer consists of two XRF gauges, mounted above and below the steel strip and capable of moving across the moving strip system for their suspension and relocation and electronic control unit. Fully automated software was developed to automatically and continuously (24/7 control both gauges, scanning both sides of the steel strip, and develop and test methods for measuring new coatings. It allows performing offline storage and retrieval of the measurement results, remotely controlling the analyzer components and measurement modes from a control room. The developed XRF coating thickness analyzer can also be used for real-time measurement of other types of coatings, both metallic and non-metallic.

  18. X-ray fluorescence analysis of ytterbium oxide/oxalate for rare earth impurities

    International Nuclear Information System (INIS)

    Chandola, L.C.; Khanna, P.P.; Thomas, A.

    1982-01-01

    An XRF method for the determination of Ho, Er, Tm, Lu and Y oxides in Yb 2 O 3 is described. 450 mg sample in the oxalate form is mixed with 150 mg boric acid binding material and pressed into 1.25 inch diameter pellet over a supporting pellet of boric acid. The sample is irradiated by X-rays from a tungsten tube and the fluorescent X-rays are dispersed by a LiF(200) crystal in a Philips PW 1220 semiautomatic X-ray fluorescence spectrometer. The intensities of characteristic X-rays of the impurity elements are measured by a flow proportional counter or a scintillation counter. The lowest determination limit is 0.005% for Ho, Er, Tm and Y and 0.01% for Lu. Calculations for theoretical detection limit, standard deviation and uncertainty are done and presented. (author)

  19. Assessing arsenic and selenium in a single nail clipping using portable X-ray fluorescence

    International Nuclear Information System (INIS)

    Fleming, David E.B.; Nader, Michel N.; Foran, Kelly A.; Groskopf, Craig; Reno, Michael C.; Ware, Chris S.; Tehrani, Mina; Guimarães, Diana; Parsons, Patrick J.

    2017-01-01

    The feasibility of measuring arsenic and selenium contents in a single nail clipping was investigated using a small-focus portable X-ray fluorescence (XRF) instrument with monochromatic excitation beams. Nail clipping phantoms supplemented with arsenic and selenium to produce materials with 0, 5, 10, 15, and 20 µg/g were used for calibration purposes. In total, 10 different clippings were analyzed at two different measurement positions. Energy spectra were fit with detection peaks for arsenic K_α, selenium K_α, arsenic K_β, selenium K_β, and bromine K_α characteristic X-rays. Data analysis was performed under two distinct conditions of fitting constraint. Calibration lines were established from the amplitude of each of the arsenic and selenium peaks as a function of the elemental contents in the clippings. The slopes of the four calibration lines were consistent between the two conditions of analysis. The calculated minimum detection limit (MDL) of the method, when considering the K_α peak only, ranged from 0.210±0.002 µg/g selenium under one condition of analysis to 0.777±0.009 µg/g selenium under another. Compared with previous portable XRF nail clipping studies, MDLs were substantially improved for both arsenic and selenium. The new measurement technique had the additional benefits of being short in duration (~3 min) and requiring only a single nail clipping. The mass of the individual clipping used did not appear to play a major role in signal strength, but positioning of the clipping is important. - Highlights: • Portable X-ray fluorescence was used to assess As and Se in nail clipping phantoms. • Calibration lines were consistent between two different conditions of data analysis. • This new XRF approach was sensitive and required only a single nail clipping.

  20. DELAMINATION AND XRF ANALYSIS OF NIST LEAD IN PAINT FILM STANDARDS

    Science.gov (United States)

    The objectives of this protocol were to remove the laminate coating from lead paint film standards acquired from NIST by means of surface heating. The average XRF value did not change after removal of the polymer coating suggesting that this protocol is satisfactory for renderin...

  1. Applications of the X-ray fluorescence analysis to the cultural patrimony of the Comunidad Valenciana (Spain). Painting, metal and paper

    International Nuclear Information System (INIS)

    Ferrero, J.L.; Ardid, M.; Roldan, C.; Navarro, E.; Marzal, M.; Almirante, J.; Ineba, P.; Vergara, J.; Mata, C.

    1999-01-01

    Examples of the application of the X-ray fluorescence (XRF) to the study of the artistic and cultural patrimony of the Comunidad Valenciana are presented in the following areas: a) Valencian paintings of the XV an XVI centuries; b) silver ornaments coming from Iberian towns (s. III b.C.); c) ink and paper samples in manuscripts and engravings of the XVII and XIX centuries. The non destructive analyses are carried out 'in situ' using a XRF system that consists of a tube of X-rays of 50 kV and 1 mA, and a detector of Si(Li) with an energy resolution 140 eV (FWHM at 5.9 keV). (author)

  2. Development and applications of grazing exit micro X-ray fluorescence instrument using a polycapillary X-ray lens

    Energy Technology Data Exchange (ETDEWEB)

    Emoto, T.; Sato, Y.; Konishi, Y.; Ding, X.; Tsuji, K. E-mail: tsuji@a-chem.eng.osaka-cu.ac.jp

    2004-08-31

    A polycapillary X-ray lens is an effective optics to obtain a {mu}m-size X-ray beam for micro-X-ray fluorescence spectrometry ({mu}-XRF). We developed a {mu}-XRF instrument using a polycapillary X-ray lens, which also enabled us to perform Grazing Exit {mu}-XRF (GE-{mu}-XRF). The evaluated diameter of the primary X-ray beam was 48 {mu}m at the focal distance of the X-ray lens. Use of this instrument enabled two-dimensional mapping of the elemental distributions during growth of the plant 'Quinoa'. The results of the mapping revealed elemental transition during growth. In addition, a small region of thin film was analyzed by GE-{mu}-XRF. We expect that GE-{mu}-XRF will become an effective method of estimating the film thickness of a small region.

  3. Quantification of trace arsenic in soils by field-portable X-ray fluorescence spectrometry: considerations for sample preparation and measurement conditions.

    Science.gov (United States)

    Parsons, Chris; Margui Grabulosa, Eva; Pili, Eric; Floor, Geerke H; Roman-Ross, Gabriela; Charlet, Laurent

    2013-11-15

    Recent technological improvements have led to the widespread adoption of field portable energy dispersive X-ray fluorescence (FP-XRF) by governmental agencies, environmental consultancies and research institutions. FP-XRF units often include analysis modes specifically designed for the quantification of trace elements in soils. Using these modes, X-ray tube based FP-XRF units can offer almost "point and shoot" ease of use and results comparable to those of laboratory based instruments. Nevertheless, FP-XRF analysis is sensitive to spectral interferences as well as physical and chemical matrix effects which can result in decreased precision and accuracy. In this study, an X-ray tube-based FP-XRF analyser was used to determine trace (low ppm) concentrations of As in a floodplain soil. The effect of different sample preparation and analysis conditions on precision and accuracy were systematically evaluated. We propose strategies to minimise sources of error and maximise data precision and accuracy, achieving in situ limits of detection and precision of 6.8 ppm and 14.4%RSD, respectively for arsenic. We demonstrate that soil moisture, even in relatively dry soils, dramatically affects analytical performance with a signal loss of 37% recorded for arsenic at 20 wt% soil moisture relative to dry soil. We also highlight the importance of the use of certified reference materials and independent measurement methods to ensure accurate correction of field values. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. The Use of Handheld X-Ray Fluorescence (XRF) Technology in Unraveling the Eruptive History of the San Francisco Volcanic Field, Arizona

    Science.gov (United States)

    Young, Kelsey E.; Evans, C. A.; Hodges, K. V.

    2012-01-01

    While traditional geologic mapping includes the examination of structural relationships between rock units in the field, more advanced technology now enables us to simultaneously collect and combine analytical datasets with field observations. Information about tectonomagmatic processes can be gleaned from these combined data products. Historically, construction of multi-layered field maps that include sample data has been accomplished serially (first map and collect samples, analyze samples, combine data, and finally, readjust maps and conclusions about geologic history based on combined data sets). New instruments that can be used in the field, such as a handheld xray fluorescence (XRF) unit, are now available. Targeted use of such instruments enables geologists to collect preliminary geochemical data while in the field so that they can optimize scientific data return from each field traverse. Our study tests the application of this technology and projects the benefits gained by real-time geochemical data in the field. The integrated data set produces a richer geologic map and facilitates a stronger contextual picture for field geologists when collecting field observations and samples for future laboratory work. Real-time geochemical data on samples also provide valuable insight regarding sampling decisions by the field geologist

  5. Cyclostratigraphic analysis of the Middle to lower Upper Ordovician Postolonnec Formation in the Armorican Massif (France): integrating pXRF, gammay-ray and lithological data

    Science.gov (United States)

    Sinnesael, Matthias; Loi, Alfredo; Dabard, Marie-Pierre; Vandenbroucke, Thijs; Claeys, Philippe

    2017-04-01

    The Middle to lower Upper Ordovician sections of the Crozon Peninsula area (Postolonnec Formation, Armorican Massif, western France) show multi-order eustatic sea-level changes (Dabard et al., 2015). The sections are characterized by siliciclastic facies, which were deposited in tidal to storm-dominated shelf environments. Dabard et al. (2015) analysed the facies, their stacking patterns, and gamma-ray data and applied backstripping to identify subsidence and several orders of sea-level change. The main stratigraphic constraints are coming from (chitinozoan) biostratigraphy. The 3th to 5th orders changes are hypothesized to correspond to various frequencies related to astronomical forcing. This study investigates the potential added value of portable X-Ray Fluorescence (pXRF) and the application of spectral analyses. High-resolution (cm-scale) non-destructive pXRF and natural gamma-ray measurements were carried out on 14 m of section that was equally logged on a cm resolution. The pXRF measurements on the surface of the outcrops are compared with earlier results of wavelength dispersive XRF spectrometry and ICP-MS. The potassium records of the pXRF and gamma-ray logs are comparable and essentially reflect lithological variations (i.e., between mudstone and coarse sandstones). Other reliably measured elements also reflected lithological aspects such as clay-sandstone alternations (e.g. K, Rb, Ti), placer locations (Zr, Ce, Ti) and potentially clay mineralogy and condensation horizons (Ni, Zn, Co, Mn). Spectral analyses of the various proxies (lithology, natural gamma-ray and pXRF) are compared with each other. Both the new high-resolution data (14 m of section) as well as the published low-resolution data (which span almost 400 m of Darriwilian-Sandbian) were analyzed. The study reveals strong indications for the imprint of obliquity, precession and eccentricity. Obtaining age constraints, in addition to the existing biostratigraphical framework is a challenge in

  6. Full Field X-Ray Fluorescence Imaging Using Micro Pore Optics for Planetary Surface Exploration

    Science.gov (United States)

    Sarrazin, P.; Blake, D. F.; Gailhanou, M.; Walter, P.; Schyns, E.; Marchis, F.; Thompson, K.; Bristow, T.

    2016-01-01

    Many planetary surface processes leave evidence as small features in the sub-millimetre scale. Current planetary X-ray fluorescence spectrometers lack the spatial resolution to analyse such small features as they only provide global analyses of areas greater than 100 mm(exp 2). A micro-XRF spectrometer will be deployed on the NASA Mars 2020 rover to analyse spots as small as 120m. When using its line-scanning capacity combined to perpendicular scanning by the rover arm, elemental maps can be generated. We present a new instrument that provides full-field XRF imaging, alleviating the need for precise positioning and scanning mechanisms. The Mapping X-ray Fluorescence Spectrometer - "Map-X" - will allow elemental imaging with approximately 100µm spatial resolution and simultaneously provide elemental chemistry at the scale where many relict physical, chemical and biological features can be imaged in ancient rocks. The arm-mounted Map-X instrument is placed directly on the surface of an object and held in a fixed position during measurements. A 25x25 mm(exp 2) surface area is uniformly illuminated with X-rays or alpha-particles and gamma-rays. A novel Micro Pore Optic focusses a fraction of the emitted X-ray fluorescence onto a CCD operated at a few frames per second. On board processing allows measuring the energy and coordinates of each X-ray photon collected. Large sets of frames are reduced into 2d histograms used to compute higher level data products such as elemental maps and XRF spectra from selected regions of interest. XRF spectra are processed on the ground to further determine quantitative elemental compositions. The instrument development will be presented with an emphasis on the characterization and modelling of the X-ray focussing Micro Pore Optic. An outlook on possible alternative XRF imaging applications will be discussed.

  7. Determination of U, Th and K in bricks by gamma-ray spectrometry, X-ray fluorescence analysis and neutron activation analysis

    Science.gov (United States)

    Bártová, H.; Kučera, J.; Musílek, L.; Trojek, T.; Gregorová, E.

    2017-11-01

    Knowledge of the content of natural radionuclides in bricks can be important in some cases in dosimetry and application of ionizing radiation. Dosimetry of naturally occurring radionuclides in matter (NORM) in general is one of them, the other one, related to radiation protection, is radon exposure evaluation, and finally, it is needed for the thermoluminescence (TL) dating method. The internal dose rate inside bricks is caused mostly by contributions of the natural radionuclides 238U, 232Th, radionuclides of their decay chains, and 40K. The decay chain of 235U is usually much less important. The concentrations of 238U, 232Th and 40K were measured by various methods, namely by gamma-ray spectrometry, X-ray fluorescence analysis (XRF), and neutron activation analysis (NAA) which was used as a reference method. These methods were compared from the point of view of accuracy, limit of detection (LOD), amount of sample needed and sample handling, time demands, and instrument availability.

  8. XRF analysis to identify historical photographic processes: The case of some Interguglielmi Jr.’s images from the Palermo Municipal Archive

    International Nuclear Information System (INIS)

    Modica, A.; Alberghina, M.F.; Brai, M.; Bruno, M.; Di Bella, M.; Fontana, D.; Tranchina, L.

    2017-01-01

    In the early period, even though professional photographers worked with similar techniques and products, their artistic and commercial aims determined different choices and led them to follow different, often personal, recipes. For this reason, identification of the techniques through date and name of the photographer or through some visual features like colour, tonality and surface of the image layer, often needs further investigation to be proved. Chemical characterization, carried out in a non or micro destructive way, can be crucial to provide useful information about the original composition, degradation process, realization technique, in obtaining an indirect dating of the photograph and/or to choose the most correct conservation treatment. In our case, x-ray fluorescence (XRF) analysis was used to confirm the chemical composition of eleven historical photographs dated between the end of the 19th century and the beginning of the 20th, shot in Palermo (Sicily) by a renowned photographer of the time, and pasted on their original cardboards. The elemental identification, obtained with a non destructive approach, provided important information to distinguish among different photographic techniques in terms of distribution and characterization of chemical elements markers in the photographic surface. - Highlights: • Overview of the photographic processes used in the early XX century. • X-ray fluorescence used to characterize photographs made by different techniques. • Diagnostic and conservative approach in the photographic material restoration. • Non invasive approach in studying photographic materials.

  9. A method for determination of mass per unit area inhomogeneity of thin samples in XRF analysis

    International Nuclear Information System (INIS)

    Sitko, R.; Jurczyk, J.

    1999-01-01

    The authors have presented a simple method for the determination of possible inhomogeneity of thin samples in a wavedispersive XRF analysis after previous examination of intensity distribution of exciting radiation on sample's surface. Investigations were carried out using as an example microsamples of mono- and polycrystals. Samples were prepared by digesting an analysed material directly on the substrate. The obtained results have been presented in a graphical way. (author)

  10. An Integrated XRF/XRD Instrument for Mars Exobiology and Geology Experiments

    Science.gov (United States)

    Koppel, L. N.; Franco, E. D.; Kerner, J. A.; Fonda, M. L.; Schwartz, D. E.; Marshall, J. R.

    1993-01-01

    By employing an integrated x-ray instrument on a future Mars mission, data obtained will greatly augment those returned by Viking; details characterizing the past and present environment on Mars and those relevant to the possibility of the origin and evolution of life will be acquired. A combined x-ray fluorescence/x-ray diffraction (XRF/XRD) instrument was breadboarded and demonstrated to accommodate important exobiology and geology experiment objectives outlined for MESUR and future Mars missions. Among others, primary objectives for the exploration of Mars include the intense study of local areas on Mars to establish the chemical, mineralogical, and petrological character of different components of the surface material; to determine the distribution, abundance, and sources and sinks of volatile materials, including an assessment of the biologic potential, now and during past epoches; and to establish the global chemical and physical characteristics of the Martian surface. The XRF/XRD breadboard instrument identifies and quantifies soil surface elemental, mineralogical, and petrological characteristics and acquires data necessary to address questions on volatile abundance and distribution. Additionally, the breadboard is able to characterize the biogenic element constituents of soil samples providing information on the biologic potential of the Mars environment. Preliminary breadboard experiments confirmed the fundamental instrument design approach and measurement performance.

  11. A novel approach to measure elemental concentrations in cation exchange resins using XRF-scanning technique, and its potential in water pollution studies

    Science.gov (United States)

    Huang, Jyh-Jaan; Lin, Sheng-Chi; Löwemark, Ludvig; Liou, Ya-Hsuan; Chang, Queenie; Chang, Tsun-Kuo; Wei, Kuo-Yen; Croudace, Ian W.

    2016-04-01

    X-ray fluorescence (XRF) core-scanning is a fast, and convenient technique to assess elemental variations for a wide variety of research topics. However, the XRF scanning counts are often considered a semi-quantitative measurement due to possible absorption or scattering caused by down core variability in physical properties. To overcome this problem and extend the applications of XRF-scanning to water pollution studies, we propose to use cation exchange resin (IR-120) as an "elemental carrier", and to analyze the resins using the Itrax-XRF core scanner. The use of resin minimizes the matrix effects during the measurements, and can be employed in the field in great numbers due to its low price. Therefore, the fast, and non-destructive XRF-scanning technique can provide a quick and economical method to analyze environmental pollution via absorption in the resin. Five standard resin samples were scanned by the Itrax-XRF core scanner at different exposure times (1 s, 5 s, 15 s, 30 s, 100 s) to allow the comparisons of scanning counts with the absolute concentrations. The regression lines and correlation coefficients of elements that are generally used in pollution studies (Ca, Ti, Cr, Ni, Cu, Zn, and Pb) were examined for the different exposure times. The result shows that within the test range (from few ppm to thousands ppm), the correlation coefficients are all higher than 0.97, even at the shortest exposure time (1 s). Therefore, we propose to use this method in the field to monitor for example sewage disposal events. The low price of resin, and fast, multi elements and precise XRF-scanning technique provide a viable, cost- and time-effective approach that allows large sample numbers to be processed. In this way, the properties and sources of wastewater pollution can be traced for the purpose of environmental monitoring and environmental forensics.

  12. Mineralogical analysis of clays in hardsetting soil horizons, by X-ray fluorescence and X-ray diffraction using Rietveld method

    International Nuclear Information System (INIS)

    Prandel, L.V.; Saab, S.C.; Brinatti, A.M.; Giarola, N.F.B.; Leite, W.C.; Cassaro, F.A.M.

    2014-01-01

    Diffraction and spectroscopic techniques have been shown to be suitable for obtaining physical and mineralogical properties in polycrystalline soil samples, and also in their precursor compounds. For instance, the X-ray fluorescence (XRF) spectroscopy allows obtaining the elemental composition of an investigated sample, while the X-ray diffraction (XRD) technique permits obtaining qualitative and quantitative composition of the soil minerals through the Rietveld method (RM). In this study Yellow Latosol (Oxisol), Yellow Argisol (Ultisol) and Gray Argisol (Ultisol) soil samples, classified as “hardsetting soils”, extracted from areas located at Northeast and Southeast of Brazilian coast were investigated. The soils and their fractions were analyzed in an EDX-700 and an XRD-6000 (Cu K α radiation). XRF results indicate high percentages of Si and Al, and small percentage of Fe and Ti in the investigated samples. The DRX data and RM indicate that there was a predominance of kaolinite and halloysite minerals (kaolin group minerals) in the clay fractions, which are presumably responsible for the formation of kaolinitic plasma in these soils. Also, the obtained results showed that the XRF, XRD techniques and RM were very helpful for investigating the mineralogical composition of a hardsetting soil. - Highlights: ► Elemental composition of soil samples through X-Ray fluorescence. ► Mineralogical quantification through X-ray diffraction and Rietveld method. ► Oxisol and Ultisol, Brazil ‘Barreiras’ formation. ► High amounts of Si and Al oxides and low amounts of Fe and Ti oxides. ► Predominance of kaolinite in the clay fraction

  13. Study on accumulation mechanism of lead and copper in metal-hypertolerant fern, Athyrium yokoscense, by micro-XRF analysis utilizing synchrotron radiation

    International Nuclear Information System (INIS)

    Mitsuo, Sakiko; Kashiwabara, Teruhiko; Hokura, Akiko; Nakai, Izumi; Kitajima, Nobuyuki; Goto, Fumiyuki; Yoshihara, Toshihiro; Abe, Tomoko

    2009-01-01

    Athyrium yokoscense is a plant which accumulates high level of heavy metals such as Cu, Zn, Pb and Cd, and is expected to be used for phytoremediation. This paper reports the distribution and the chemical forms of Pb and Cu in underground parts (root and old leaf stalks) of the metal-hypertolerant fern, A. yokoscense, by synchrotron radiation micro-XRF imaging and micro-XANES analyses. The old and new tissues of root and leaf stalks were prepared for micro-XRF analysis. The XRF imaging of the young root revealed that K, Cu and Zn were distributed in whole area of cross-section, whereas Pb was found in a certain part of the epidermal tissue. For the old root, Pb and Cu were mainly distributed in the cell wall of the whole tissue. The distribution of heavy metal in old tissue is different from those of new tissue, and consequently it was assumed that the root at different age have different heavy metal accumulation mechanism. Alternatively, for the old leaf stalks, Cu and Pb were highly accumulated in a specific part located around the vascular tissue. Cu K-edge micro-XANES analysis indicated that the chemical form of Cu at the Cu accumulating point was Cu (II). (author)

  14. X-ray fluorescence microscopy artefacts in elemental maps of topologically complex samples: Analytical observations, simulation and a map correction method

    Science.gov (United States)

    Billè, Fulvio; Kourousias, George; Luchinat, Enrico; Kiskinova, Maya; Gianoncelli, Alessandra

    2016-08-01

    XRF spectroscopy is among the most widely used non-destructive techniques for elemental analysis. Despite the known angular dependence of X-ray fluorescence (XRF), topological artefacts remain an unresolved issue when using X-ray micro- or nano-probes. In this work we investigate the origin of the artefacts in XRF imaging of topologically complex samples, which are unresolved problems in studies of organic matter due to the limited travel distances of low energy XRF emission from the light elements. In particular we mapped Human Embryonic Kidney (HEK293T) cells. The exemplary results with biological samples, obtained with a soft X-ray scanning microscope installed at a synchrotron facility were used for testing a mathematical model based on detector response simulations, and for proposing an artefact correction method based on directional derivatives. Despite the peculiar and specific application, the methodology can be easily extended to hard X-rays and to set-ups with multi-array detector systems when the dimensions of surface reliefs are in the order of the probing beam size.

  15. Advance features in the SPAN and SPAN/XRF gamma ray and X ray spectrum analysis software

    International Nuclear Information System (INIS)

    Wang Liyu

    1998-01-01

    This paper describes the advanced techniques, integral peak background, experimental peak shape and complex peak shape, which have been used successfully in the software packages SPAN and SPAN/XRF to process gamma ray and X ray spectra from HPGe and Si(Li) detector. Main features of SPAN and SPAN/XRF are also described. The software runs on PC and has convenient graphical capabilities and a powerful user interface. (author)

  16. Elemental Analysis of Bone, Teeth, Horn and Antler in Different Animal Species Using Non-Invasive Handheld X-Ray Fluorescence

    Science.gov (United States)

    Buddhachat, Kittisak; Klinhom, Sarisa; Siengdee, Puntita; Brown, Janine L.; Nomsiri, Raksiri; Kaewmong, Patcharaporn; Thitaram, Chatchote; Mahakkanukrauh, Pasuk; Nganvongpanit, Korakot

    2016-01-01

    Mineralized tissues accumulate elements that play crucial roles in animal health. Although elemental content of bone, blood and teeth of human and some animal species have been characterized, data for many others are lacking, as well as species comparisons. Here we describe the distribution of elements in horn (Bovidae), antler (Cervidae), teeth and bone (humerus) across a number of species determined by handheld X-ray fluorescence (XRF) to better understand differences and potential biological relevance. A difference in elemental profiles between horns and antlers was observed, possibly due to the outer layer of horns being comprised of keratin, whereas antlers are true bone. Species differences in tissue elemental content may be intrinsic, but also related to feeding habits that contribute to mineral accumulation, particularly for toxic heavy metals. One significant finding was a higher level of iron (Fe) in the humerus bone of elephants compared to other species. This may be an adaptation of the hematopoietic system by distributing Fe throughout the bone rather than the marrow, as elephant humerus lacks a marrow cavity. We also conducted discriminant analysis and found XRF was capable of distinguishing samples from different species, with humerus bone being the best source for species discrimination. For example, we found a 79.2% correct prediction and success rate of 80% for classification between human and non-human humerus bone. These findings show that handheld XRF can serve as an effective tool for the biological study of elemental composition in mineralized tissue samples and may have a forensic application. PMID:27196603

  17. Elemental Analysis of Bone, Teeth, Horn and Antler in Different Animal Species Using Non-Invasive Handheld X-Ray Fluorescence.

    Directory of Open Access Journals (Sweden)

    Kittisak Buddhachat

    Full Text Available Mineralized tissues accumulate elements that play crucial roles in animal health. Although elemental content of bone, blood and teeth of human and some animal species have been characterized, data for many others are lacking, as well as species comparisons. Here we describe the distribution of elements in horn (Bovidae, antler (Cervidae, teeth and bone (humerus across a number of species determined by handheld X-ray fluorescence (XRF to better understand differences and potential biological relevance. A difference in elemental profiles between horns and antlers was observed, possibly due to the outer layer of horns being comprised of keratin, whereas antlers are true bone. Species differences in tissue elemental content may be intrinsic, but also related to feeding habits that contribute to mineral accumulation, particularly for toxic heavy metals. One significant finding was a higher level of iron (Fe in the humerus bone of elephants compared to other species. This may be an adaptation of the hematopoietic system by distributing Fe throughout the bone rather than the marrow, as elephant humerus lacks a marrow cavity. We also conducted discriminant analysis and found XRF was capable of distinguishing samples from different species, with humerus bone being the best source for species discrimination. For example, we found a 79.2% correct prediction and success rate of 80% for classification between human and non-human humerus bone. These findings show that handheld XRF can serve as an effective tool for the biological study of elemental composition in mineralized tissue samples and may have a forensic application.

  18. Elemental Analysis of Bone, Teeth, Horn and Antler in Different Animal Species Using Non-Invasive Handheld X-Ray Fluorescence.

    Science.gov (United States)

    Buddhachat, Kittisak; Klinhom, Sarisa; Siengdee, Puntita; Brown, Janine L; Nomsiri, Raksiri; Kaewmong, Patcharaporn; Thitaram, Chatchote; Mahakkanukrauh, Pasuk; Nganvongpanit, Korakot

    2016-01-01

    Mineralized tissues accumulate elements that play crucial roles in animal health. Although elemental content of bone, blood and teeth of human and some animal species have been characterized, data for many others are lacking, as well as species comparisons. Here we describe the distribution of elements in horn (Bovidae), antler (Cervidae), teeth and bone (humerus) across a number of species determined by handheld X-ray fluorescence (XRF) to better understand differences and potential biological relevance. A difference in elemental profiles between horns and antlers was observed, possibly due to the outer layer of horns being comprised of keratin, whereas antlers are true bone. Species differences in tissue elemental content may be intrinsic, but also related to feeding habits that contribute to mineral accumulation, particularly for toxic heavy metals. One significant finding was a higher level of iron (Fe) in the humerus bone of elephants compared to other species. This may be an adaptation of the hematopoietic system by distributing Fe throughout the bone rather than the marrow, as elephant humerus lacks a marrow cavity. We also conducted discriminant analysis and found XRF was capable of distinguishing samples from different species, with humerus bone being the best source for species discrimination. For example, we found a 79.2% correct prediction and success rate of 80% for classification between human and non-human humerus bone. These findings show that handheld XRF can serve as an effective tool for the biological study of elemental composition in mineralized tissue samples and may have a forensic application.

  19. Report of the first research co-ordination meeting under co-ordinated research project on 'In situ applications of XRF techniques'

    International Nuclear Information System (INIS)

    2001-03-01

    X-ray fluorescence is a well-established analytical technique widely used in industrial and research applications for materials characterisation. However, a relatively recent development has been the availability of portable instrumentation, which can be used for both the direct in situ non-destructive analysis of samples, and also is readily transportable to field sites for use in a 'mobile laboratory' style of operation. In situ analyses using the XRF technique can make an essential contribution to a wide range of projects, including: - Analysis of soils, particularly in the assessment of agricultural land and contaminated land - Sorting scrap metal alloys and plastics to increase the value of recyclable materials - Geochemical mapping and exploration to locate mineralisation deposits - Environmental monitoring related to air pollution studies and contamination of the work - The on-line control of industrial processes for the production of raw materials - Archaeological studies and the classification of artefacts, the restoration of sculptures, paintings and other objects of cultural heritage. - In situ geochemical studies on Mars, including the 1997 NASA Pathfinder mission and the forthcoming European Space Agency Mars Express mission, which includes the In these applications, the major advantages of field-portable X-ray fluorescence (FPXRF) spectrometry include: on-site immediate availability of analytical results, non-destructive analysis, a multielement capability, speed of operation and access to valuable/unique samples that otherwise would be unavailable for chemical analysis. The CRP on 'In situ applications of XRF techniques' is one element of the project on Nuclear Instruments for Specific Applications the major objective of which is to assist Member States in the development of nuclear instruments and software for special applications, such as the characterisation of materials. An overall objective of this CRP is to assist laboratories in Member States

  20. Tin accumulation in spermatozoa of the rats exposed to tributyltin chloride by synchrotron radiation X-ray fluorescence (SR-XRF) analysis with microprobe

    International Nuclear Information System (INIS)

    Homma-Takeda, S.; Nishimura, Y.; Terada, Y.; Ueno, S.; Watanabe, Y.; Yukawa, M.

    2005-01-01

    Organotin compounds are widely used in industry and its environmental contamination by these compounds has recently become a concern. It is known that they act as endocrine disruptors but details of the dynamics of Sn in reproductive organs are still unknown. In the present study, we attempted to determine Sn distribution in the testis of rats exposed to tributyltin chloride (TBTC) by inductively coupled argon plasma-mass spectrometry (ICP-MS) for microdissectioned seminiferous tubules and cell-selective metal determination of synchrotron radiation X-ray florescence (SR-XRF) analysis. TBTC was orally administered to rats at a dose of 45 μmol/kg per day for 3 days. One day later, Sn was detected in the microdissectioned seminiferous tubules at a level approximately equivalent to that in the testis. Significant stage-specificity of Sn accumulation was not observed in the experimental model. Sn was also detected in spermatozoa at the stage VIII seminiferous tubule, which are the final step of spermatogenesis in the testis. These data indicate that Sn accumulates in germ cells as well as in spermatozoa in a short period of TBTC exposure

  1. Tin accumulation in spermatozoa of the rats exposed to tributyltin chloride by synchrotron radiation X-ray fluorescence (SR-XRF) analysis with microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Homma-Takeda, S. [Environmental Radiation Protection Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku Chiba 263-8555 (Japan)]. E-mail: shino_ht@nirs.go.jp; Nishimura, Y. [Environmental Radiation Protection Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku Chiba 263-8555 (Japan); Terada, Y. [Japan Synchrotron Radiation Research Institute, Mikazuki, Hyogo 679-5198 (Japan); Ueno, S. [School of Veterinary Medicine and Animal Sciences, Kitasato University, Towada, Aomori 034-8628 (Japan); Watanabe, Y. [Environmental Radiation Protection Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku Chiba 263-8555 (Japan); Yukawa, M. [Environmental Radiation Protection Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku Chiba 263-8555 (Japan)

    2005-04-01

    Organotin compounds are widely used in industry and its environmental contamination by these compounds has recently become a concern. It is known that they act as endocrine disruptors but details of the dynamics of Sn in reproductive organs are still unknown. In the present study, we attempted to determine Sn distribution in the testis of rats exposed to tributyltin chloride (TBTC) by inductively coupled argon plasma-mass spectrometry (ICP-MS) for microdissectioned seminiferous tubules and cell-selective metal determination of synchrotron radiation X-ray florescence (SR-XRF) analysis. TBTC was orally administered to rats at a dose of 45 {mu}mol/kg per day for 3 days. One day later, Sn was detected in the microdissectioned seminiferous tubules at a level approximately equivalent to that in the testis. Significant stage-specificity of Sn accumulation was not observed in the experimental model. Sn was also detected in spermatozoa at the stage VIII seminiferous tubule, which are the final step of spermatogenesis in the testis. These data indicate that Sn accumulates in germ cells as well as in spermatozoa in a short period of TBTC exposure.

  2. Direct rapid analysis of trace bioavailable soil macronutrients by chemometrics-assisted energy dispersive X-ray fluorescence and scattering spectrometry.

    Science.gov (United States)

    Kaniu, M I; Angeyo, K H; Mwala, A K; Mangala, M J

    2012-06-04

    Precision agriculture depends on the knowledge and management of soil quality (SQ), which calls for affordable, simple and rapid but accurate analysis of bioavailable soil nutrients. Conventional SQ analysis methods are tedious and expensive. We demonstrate the utility of a new chemometrics-assisted energy dispersive X-ray fluorescence and scattering (EDXRFS) spectroscopy method we have developed for direct rapid analysis of trace 'bioavailable' macronutrients (i.e. C, N, Na, Mg, P) in soils. The method exploits, in addition to X-ray fluorescence, the scatter peaks detected from soil pellets to develop a model for SQ analysis. Spectra were acquired from soil samples held in a Teflon holder analyzed using (109)Cd isotope source EDXRF spectrometer for 200 s. Chemometric techniques namely principal component analysis (PCA), partial least squares (PLS) and artificial neural networks (ANNs) were utilized for pattern recognition based on fluorescence and Compton scatter peaks regions, and to develop multivariate quantitative calibration models based on Compton scatter peak respectively. SQ analyses were realized with high CMD (R(2)>0.9) and low SEP (0.01% for N and Na, 0.05% for C, 0.08% for Mg and 1.98 μg g(-1) for P). Comparison of predicted macronutrients with reference standards using a one-way ANOVA test showed no statistical difference at 95% confidence level. To the best of the authors' knowledge, this is the first time that an XRF method has demonstrated utility in trace analysis of macronutrients in soil or related matrices. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. X-ray fluorescent analysis on Indo-Pacific glass beads from Sungai Mas archaeological sites, Kedah, Malaysia

    International Nuclear Information System (INIS)

    Zuliskandar Ramli; Nik Hassan Shuhaimi; Nik Abdul Rahman; Abdul Latif Samian

    2011-01-01

    Sungai Mas was an ancient port-kingdom located on West Coast of Peninsula Malaysia in a district of Kota Kuala Muda, Kedah, Malaysia. The port-kingdom evolved as an entrepot since fifth century AD and continuously visited by international trader from India, China, Middle East and Europe until eighteenth century AD. Sungai Mas was also one of the Indo-Pacific beads making centers in Southeast Asia since sixth to thirteenth century AD and also produced pottery and brick. X-ray fluorescent analysis (XRF) on Sungai Mas Indo-Pacific beads is carried out to determine whether the glass beads originated from Arikamedu, India or locally made by community in Sungai Mas. Totally, twenty-two samples of beads and beads materials assayed by XRF were chosen. Contents of nine major elements and nine trace elements, which might be present of flux, stabilizer, colorants or opacifier were examined. The elements Si, Na, K, Ca, Fe, Al, Ti, Mn, Mg, Cu, Pb, Zr, Sr, Ba, La, U, Ni and Cr were detectable in all samples. The concentration of elements found are discussed in terms of flux, silica or lead base glass, color and/or opacity of the glass beads and glass samples. The result showed that Sungai Mas produced their own Indo-Pacific beads from sixth to thirteenth century AD. (author)

  4. Study on transportation and accumulation mechanisms of cesium in Camellia sinensis by SR-XRF imaging

    International Nuclear Information System (INIS)

    Oda, Nahoko; Nakai, Izumi; Terada, Yasuko

    2014-01-01

    After the tragedy in Fukushima, soil and food pollution by radionuclides has become a serious problem. Cs can be uptaken by many plants due to its chemical similarities with K. So, removal of radioactive Cs from the soils can be carried out using the phytoremediation technology. However, the development of phytoremediation techniques require the knowledge on the interactions between the plants and soils. Although the competitive relation between K and Cs to enter the plant is known, few works were dedicated to the visual localization of Cs in the plant and its relation to potassium. In this study, we have used synchrotron radiation X-ray fluorescence (SR-XRF) imaging in order to reveal accumulation of Cs with a cellular spatial resolution. The Cs Lβ intensity measured in the XRF imaging were transformed into the Cs concentration based on the calibration curves prepared using in house standard samples of known Cs concentrations. It is remarkable that after exposure to 10 ppm Cs solution for 4 weeks Camellia sinensis accumulated Cs up to 300 ppm (expressed in dry weight) in the body. XRF imaging of the root show that Cs was located mainly at the epidermis. On the other hand, K was located mainly at endodermis and the cell wall. A correlation coefficient(R) between XRF intensity of K and that of Cs in the root was about R=0.5. This suggest that Cs is hardly absorbed from roots of Camellia sinensis compared with K, due to its large ionic radius. In the case of stem, distribution of Cs was similar to that of K. They were located at the exodermis, epidermis and the cell wall. Their correlation coefficient was about R=0.8. These results suggest that Cs was transported through the same pathway as that of K in the stem. (author)

  5. Radionuclide X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Cechak, T.

    1994-01-01

    The author's achievements in the title field are summarized and discussed. The following topics are dealt with: (i) principles of radionuclide X-ray fluorescence analysis; (ii) mathematical methods in X-ray fluorescence analysis; (iii) Ross differential filters; (iv) application of radionuclide X-ray fluorescence analysis in the coal industry (with emphasis on the determination of the ash content, sulfur content, and arsenic content of coal); and (v) evaluation of the X-ray fluorescence analyzer from the radiological safety point of view. (P.A.)

  6. Quantitative micro x-ray fluorescence analyses without reference standard material; Referenzprobenfreie quantitative Mikro-Roentgenfluoreszenzanalyse

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, Timo

    2009-07-15

    X-ray fluorescence analysis (XRF) is a standard method for non-destructive investigations. Due to the development of polycapillary optics and SDDdetectors requiring no cooling with liquid nitrogen, XRF becomes a suitable method for a large number of applications, e. g. for the analysis of objects in arts and archaeology. Spectrometers developed for those purposes allow investigations outside of laboratories und provide excitation areas with diameters of 10-70 {mu}m. In most applications, quantification of XRF data is realized by the usage of standard reference materials. Due to absorption processes in the samples the accuracy of the results depends strongly on the similarity of the sample and the reference standard. In cases where no suitable references are available, quantification can be done based on the ''fundamental parameter (fp) method''. This quantification procedure is based on a set of equations describing the fluorescence production and detection mathematical. The cross sections for the interaction of x-rays with matter can be taken from different databases. During an iteration process the element concentrations can be determined. Quantitative XRF based on fundamental parameters requires an accurate knowledge of the excitation spectrum. In case of a conventional setup this spectrum is given by the X-ray tube spectrum and can be calculated. The use of polycapillary optics in micro-XRF spectrometers changes the spectral distribution of the excitation radiation. For this reason it is necessary to access the transmission function of the used optic. The aim of this work is to find a procedure to describe this function for routine quantification based on fundamental parameters. Most of the measurements have been carried out using a commercial spectrometer developed for applications in arts and archaeology. On the one hand the parameters of the lens, used in the spectrometer, have been investigated by different experimental characterization

  7. Analysis of trace elements in ceramic prints on automobile glasses for forensic examination using high-energy synchrotron radiation x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Nishiwaki, Yoshinori; Takatsu, Masahisa; Miyamoto, Naoki; Watanabe, Seiya; Shimoda, Osamu; Muratsu, Seiji; Nakanishi, Toshio; Nakai, Izumi

    2007-01-01

    This study revealed that high-energy SRXRF (synchrotron radiation X-ray fluorescence spectrometry) utilizing 75.5 keV X-rays of SPring-8 is a powerful technique for trace elemental analysis of ceramic prints on automotive glasses for forensic examination. Fragments of 99 ceramic prints were collected from automobiles of various manufacturers, types and model years. Their major heavy element-components were found to be either Pb or Bi. Because of recent environment protection movement for lead-free material, there was a tendency of the shift of material from the Pb Type to the Bi Type with years of the production. A utilization of 75.5 keV X-rays as excitation source allowed us to detect trace heavy-elements, such as Sb, La, Ce, Hf and W, as well as relatively light-elements, such as V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr and Mo, in samples using K series of XRF emission lines. XRF intensities of these elements normalized by those of the major heavy-elements (Pb or Bi) became characteristic finger prints, showing the identity of each sample with a size of less than 0.5x0.5 mm 2 . The mean relative standard deviations of the normalized XRF intensities measured for the three fragments of each sample were less than 9.3%. These results show that the ceramic prints on automobile glasses contain rich elemental information for discrimination, and therefore the materials can be important evidence for practical forensic examinations. (author)

  8. Analysis of environmental samples by roentgen fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Hroncova, E.; Ladomersky, J.

    2004-01-01

    We can use it to analyse nearly all elements of solid and liquid samples. The possibility of analysing solid samples in compact shape, in powder or either under shape of fine layers shortens appreciably the total time of analysis, that is in addition to its no destructiveness, the main reason of as a XRF favourite method. (authors)

  9. First use of portable system coupling X-ray diffraction and X-ray fluorescence for in-situ analysis of prehistoric rock art.

    Science.gov (United States)

    Beck, L; Rousselière, H; Castaing, J; Duran, A; Lebon, M; Moignard, B; Plassard, F

    2014-11-01

    Study of prehistoric art is playing a major role in the knowledge of human evolution. Many scientific methods are involved in this investigation including chemical analysis of pigments present on artefacts or applied to cave walls. In the past decades, the characterization of coloured materials was carried on by taking small samples. This procedure had two main disadvantages: slight but existing damage of the paintings and limitation of the number of samples. Thanks to the advanced development of portable systems, in-situ analysis of pigment in cave can be now undertaken without fear for this fragile Cultural Heritage. For the first time, a portable system combining XRD and XRF was used in an underground and archaeological environment for prehistoric rock art studies. In-situ non-destructive analysis of black prehistoric drawings and determination of their composition and crystalline structure were successfully carried out. Original results on pigments used 13,000 years ago in the cave of Rouffignac (France) were obtained showing the use of two main manganese oxides: pyrolusite and romanechite. The capabilities of the portable XRD-XRF system have been demonstrated for the characterization of pigments as well as for the analysis of rock in a cave environment. This first in-situ experiment combining X-ray diffraction and X-ray fluorescence open up new horizons and can fundamentally change our approach of rock art studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. A bench-top K X-ray fluorescence system for quantitative measurement of gold nanoparticles for biological sample diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Ricketts, K., E-mail: k.ricketts@ucl.ac.uk [Division of Surgery and Interventional Sciences, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF (United Kingdom); Guazzoni, C.; Castoldi, A. [Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano and INFN, Sezione di Milano P.za Leonardo da Vinci, 32-20133 Milano (Italy); Royle, G. [Department of Medical Physics and Bioengineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT (United Kingdom)

    2016-04-21

    Gold nanoparticles can be targeted to biomarkers to give functional information on a range of tumour characteristics. X-ray fluorescence (XRF) techniques offer potential quantitative measurement of the distribution of such heavy metal nanoparticles. Biologists are developing 3D tissue engineered cellular models on the centimetre scale to optimise targeting techniques of nanoparticles to a range of tumour characteristics. Here we present a high energy bench-top K-X-ray fluorescence system designed for sensitivity to bulk measurement of gold nanoparticle concentration for intended use in such thick biological samples. Previous work has demonstrated use of a L-XRF system in measuring gold concentrations but being a low energy technique it is restricted to thin samples or superficial tumours. The presented system comprised a high purity germanium detector and filtered tungsten X-ray source, capable of quantitative measurement of gold nanoparticle concentration of thicker samples. The developed system achieved a measured detection limit of between 0.2 and 0.6 mgAu/ml, meeting specifications of biologists and being approximately one order of magnitude better than the detection limit of alternative K-XRF nanoparticle detection techniques. The scatter-corrected K-XRF signal of gold was linear with GNP concentrations down to the detection limit, thus demonstrating potential in GNP concentration quantification. The K-XRF system demonstrated between 5 and 9 times less sensitivity than a previous L-XRF bench-top system, due to a fundamental limitation of lower photoelectric interaction probabilities at higher K-edge energies. Importantly, the K-XRF technique is however less affected by overlying thickness, and so offers future potential in interrogating thick biological samples.

  11. On the distribution of uranium in hair: Non-destructive analysis using synchrotron radiation induced X-ray fluorescence microprobe techniques

    Science.gov (United States)

    Israelsson, A.; Eriksson, M.; Pettersson, H. B. L.

    2015-06-01

    In the present study the distribution of uranium in single human hair shafts has been evaluated using two synchrotron radiation (SR) based micro X-ray fluorescence techniques; SR μ-XRF and confocal SR μ-XRF. The hair shafts originated from persons that have been exposed to elevated uranium concentrations. Two different groups have been studied, i) workers at a nuclear fuel fabrication factory, exposed mainly by inhalation and ii) owners of drilled bedrock wells exposed by ingestion of water. The measurements were carried out on the FLUO beamline at the synchrotron radiation facility ANKA, Karlsruhe. The experiment was optimized to detect U with a beam size of 6.8 μm × 3 μm beam focus allowing detection down to ppb levels of U in 10 s (SR μ-XRF setup) and 70 s (SR confocal μ-XRF setup) measurements. It was found that the uranium was present in a 10-15 μm peripheral layer of the hair shafts for both groups studied. Furthermore, potential external hair contamination was studied by scanning of unwashed hair shafts from the workers. Sites of very high uranium signal were identified as particles containing uranium. Such particles, were also seen in complementary analyses using variable pressure electron microscope coupled with energy dispersive X-ray analyzer (ESEM-EDX). However, the particles were not visible in washed hair shafts. These findings can further increase the understanding of uranium excretion in hair and its potential use as a biomonitor.

  12. Online sorting of recovered wood waste by automated XRF-technology: part II. Sorting efficiencies.

    Science.gov (United States)

    Hasan, A Rasem; Solo-Gabriele, Helena; Townsend, Timothy

    2011-04-01

    Sorting of waste wood is an important process practiced at recycling facilities in order to detect and divert contaminants from recycled wood products. Contaminants of concern include arsenic, chromium and copper found in chemically preserved wood. The objective of this research was to evaluate the sorting efficiencies of both treated and untreated parts of the wood waste stream, and metal (As, Cr and Cu) mass recoveries by the use of automated X-ray fluorescence (XRF) systems. A full-scale system was used for experimentation. This unit consisted of an XRF-detection chamber mounted on the top of a conveyor and a pneumatic slide-way diverter which sorted wood into presumed treated and presumed untreated piles. A randomized block design was used to evaluate the operational conveyance parameters of the system, including wood feed rate and conveyor belt speed. Results indicated that online sorting efficiencies of waste wood by XRF technology were high based on number and weight of pieces (70-87% and 75-92% for treated wood and 66-97% and 68-96% for untreated wood, respectively). These sorting efficiencies achieved mass recovery for metals of 81-99% for As, 75-95% for Cu and 82-99% of Cr. The incorrect sorting of wood was attributed almost equally to deficiencies in the detection and conveyance/diversion systems. Even with its deficiencies, the system was capable of producing a recyclable portion that met residential soil quality levels established for Florida, for an infeed that contained 5% of treated wood. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Environmental application of XRF, ICP-AES and INAA on biological matrix

    International Nuclear Information System (INIS)

    Zararsiz, A.; Dogangun, A.; Tuncel, S.

    2004-01-01

    Full text: It is very important to determine trace quantities of metals in different matrices with high accuracy since the metals are used as markers for different sources in air pollution studies. In this study, the analytical capabilities of XRF, ICP-AES and INM techniques on a biological matrix namely lichens, which are widely used as bio monitoring organisms for the pollutants mapping in the atmosphere, were tested. Lichen samples were collected in Aegean Region of Turkey where pollution is an important issue. 9 elements were determined by XRF, 14 elements by ICP-AES and 13 elements by INM. Quality assurance was achieved using lichen SRM (IAEA-336) and Orchard leaves SRM (NIST- 1571). Produced data are subjected to statistical tests, like t-test, Q-test in order to determine the accuracy and precision of each technique. A recommendation list of the proper analytical technique is obtained for determination of each specific element considering analytical capabilities of ICP-AES, XRF and INM. As a result we can recommend that the first choice for Cd, Cu, Mg is ICP-AES, for In, K, Rb is INAA, for Br is XRF, if the concentrations are not close to the detection limit of XRF. For V, Cr, AI, Na, Fe ICP-AES and INM are both well, for Pb ICP-AES and XRF are both well, if the concentrations are not close to the detection limit of XRF, for Mn and Ca INM, XRF and ICP-AES are all give similar results for this type of biological matrix

  14. Elemental composition study of heavy metal (Ni, Cu, Zn) in riverbank soil by electrokinetic-assisted phytoremediation using XRF and SEM/EDX

    International Nuclear Information System (INIS)

    Jamari, Suhailly; Embong, Zaidi; Bakar, Ismail

    2014-01-01

    Electrokinetic (EK)-assisted phytoremediation is one of the methods that have a big potential in enhancing the ability of plant uptake in soils remediation process. This research was conducted to investigate the difference in elemental composition concentration of riverbank soil and the change of pH between pre- and post-phytoremediation under the following condition: 1) control or as-receive sample; 2) Dieffenbachia spp plant with EK system (a pair of EK electrodes connected to a direct current (DC) power supply). After the electrodes were connected to a magnitude of 6V/cm −1 electric field for 4 hours/day, the soil and plant samples were analyzed using and X-ray Fluorescence Spectrometer (XRF) and Scanning Electron Microscope / Energy Dispersive X-ray Spectroscopy (SEM/EDX). The SEM/EDX analysis showed that concentration of elemental composition (Ni, Cu and Zn) in post-phytoremediation plant powder samples had increase while elemental concentrations in the post-phytoremediation soil samples were decreased. XRF analysis presented a variation in soil elemental composition concentration from anode to cathode where the concentration near anode region increased while decreased near the cathode region. A significant changes in soil pH were obtained where the soil pH increase in cathode region while decrease in anode region. The results reveal that the assistance of EK in phytoremediation process has increase the efficiency of plant uptake

  15. Elemental composition study of heavy metal (Ni, Cu, Zn) in riverbank soil by electrokinetic-assisted phytoremediation using XRF and SEM/EDX

    Energy Technology Data Exchange (ETDEWEB)

    Jamari, Suhailly [Faculty of Science, Technology and Human Development, Universiti Tun Hussein Onn Malaysia (UTHM) (Malaysia); Embong, Zaidi [Faculty of Science, Technology and Human Development, Universiti Tun Hussein Onn Malaysia (UTHM) and Research Center for Soft Soils (RECESS), Office of Research, Innovation, Commercialization and Consultancy Management - ORRIC, Universiti Tun Hussein (Malaysia); Bakar, Ismail [Research Center for Soft Soils (RECESS), Office of Research, Innovation, Commercialization and Consultancy Management (ORRIC), Universiti Tun Hussein Onn Malaysia -UTHM, 86400 Batu Pahat, Johor (Malaysia)

    2014-02-12

    Electrokinetic (EK)-assisted phytoremediation is one of the methods that have a big potential in enhancing the ability of plant uptake in soils remediation process. This research was conducted to investigate the difference in elemental composition concentration of riverbank soil and the change of pH between pre- and post-phytoremediation under the following condition: 1) control or as-receive sample; 2) Dieffenbachia spp plant with EK system (a pair of EK electrodes connected to a direct current (DC) power supply). After the electrodes were connected to a magnitude of 6V/cm{sup −1} electric field for 4 hours/day, the soil and plant samples were analyzed using and X-ray Fluorescence Spectrometer (XRF) and Scanning Electron Microscope / Energy Dispersive X-ray Spectroscopy (SEM/EDX). The SEM/EDX analysis showed that concentration of elemental composition (Ni, Cu and Zn) in post-phytoremediation plant powder samples had increase while elemental concentrations in the post-phytoremediation soil samples were decreased. XRF analysis presented a variation in soil elemental composition concentration from anode to cathode where the concentration near anode region increased while decreased near the cathode region. A significant changes in soil pH were obtained where the soil pH increase in cathode region while decrease in anode region. The results reveal that the assistance of EK in phytoremediation process has increase the efficiency of plant uptake.

  16. Using Nondestructive Portable X-ray Fluorescence Spectrometers on Stone, Ceramics, Metals, and Other Materials in Museums: Advantages and Limitations.

    Science.gov (United States)

    Tykot, Robert H

    2016-01-01

    Elemental analysis is a fundamental method of analysis on archaeological materials to address their overall composition or identify the source of their geological components, yet having access to instrumentation, its often destructive nature, and the time and cost of analyses have limited the number and/or size of archaeological artifacts tested. The development of portable X-ray fluorescence (pXRF) instruments over the past decade, however, has allowed nondestructive analyses to be conducted in museums around the world, on virtually any size artifact, producing data for up to several hundred samples per day. Major issues have been raised, however, about the sensitivity, precision, and accuracy of these devices, and the limitation of performing surface analysis on potentially heterogeneous objects. The advantages and limitations of pXRF are discussed here regarding archaeological studies of obsidian, ceramics, metals, bone, and painted materials. © The Author(s) 2015.

  17. Use of x-ray fluorescence for in-situ detection of metals

    Science.gov (United States)

    Elam, W. T. E.; Whitlock, Robert R.; Gilfrich, John V.

    1995-01-01

    X-ray fluorescence (XRF) is a well-established, non-destructive method of determining elemental concentrations at ppm levels in complex samples. It can operate in atmosphere with no sample preparation, and provides accuracies of 1% or better under optimum conditions. This report addresses two sets of issues concerning the use of x-ray fluorescence as a sensor technology for the cone penetrometer, for shipboard waste disposal, or for other in-situ, real- time environmental applications. The first issue concerns the applicability of XRF to these applications, and includes investigation of detection limits and matrix effects. We have evaluated the detection limits and quantitative accuracy of a sensor mock-up for metals in soils under conditions expected in the field. In addition, several novel ways of improving the lower limits of detection to reach the drinking water regulatory limits have been explored. The second issue is the engineering involved with constructing a spectrometer within the 1.75 inch diameter of the penetrometer pipe, which is the most rigorous physical constraint. Only small improvements over current state-of-the-art are required. Additional advantages of XRF are that no radioactive sources or hazardous materials are used in the sensor design, and no reagents or any possible sources of ignition are involved.

  18. Micro-beam X-ray fluorescence and absorption imaging techniques at the IAEA Laboratories

    International Nuclear Information System (INIS)

    Wegrzynek, Dariusz; Markowicz, A.; Bamford, S.; Chinea-Cano, E.; Bogovac, M.

    2005-01-01

    X-ray tube based, micro-beam X-ray fluorescence scanning spectrometer has been equipped with two energy dispersive X-ray detectors. The two-detector configuration allows for simultaneous collection of X-ray fluorescence (XRF) and transmitted X-ray beam signals with a spatial resolution in the range of 10-50 μm, depending on the X-ray focussing element in use. The XRF signal is collected with a standard, liquid nitrogen cooled Si(Li) detector. The X-ray beam transmitted through the sample is acquired with a thermoelectrically cooled, silicon drift (SD) detector. The data acquisition is carried out in a fully automatic way under control of the SPECTOR-LOCATOR software. The software controls the scanning procedure and X-ray spectra acquisition during the scan. The energy dispersive X-ray spectra collected at every 'pixel' are stored for off-line processing. For selected regions of interest (ROI's), the element maps are constructed and displayed on-line. The spectrometer has been used for mapping elemental distributions and for performing 2D- and 3D-tomograpic imaging of minute objects in X-ray absorption and in X-ray fluorescence mode. A unique feature of the described system is simultaneous utilization of the two detectors, Si(Li) and SD, which adds new options for quantitative analysis and data interpretation. Examples of elemental mapping and 3D tomographic imaging as well as the advanced features of the SPECTOR-LOCATOR measurement control and data acquisition software are presented in this work

  19. Study on transportation and accumulation mechanism of cadmium in metal-hyperaccumulating fern, Athyrium yokoscense, by synchrotron radiation x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Taoka, Hiroki; Nakai, Izumi; Hokura, Akiko; Goto, Fumiyuki; Yoshihara, Toshihiro; Abe, Tomoko; Terada, Yasuko

    2012-01-01

    High energy synchrotron radiation micro X-ray fluorescence (HE-SR-μ-XRF) analysis and X-ray absorption fine structure (XAFS) analysis were applied to reveal accumulation mechanism of Cd in a generated callus of Cd hyperaccumulator fern Athyrium yokoscense. The effects of plant age on the distributions and the chemical forms of Cd were examined using the plant grown in the 1/2 M Murashige and Skoog (MS) medium containing 200 μM Cd. The callus grew vigorously with periodical medium change. The μ-XRF imaging of the mature and young root showed that Cd was located around the cell wall of the epidermis, cortex, endodermis and vascular bundles. It is estimated that Cd absorbed from the root was transported to the shoots via the apoplast. On the other hand, Cd was accumulated in the cell wall of the epidermis, cortex and vascular bundles in the stem. Furthermore, the concentration of Cd in the vascular bundles of the mature stem was higher than that of the young stem. On the other hand, Cd located in whole area in the leaf. The Cd K-edge XAFS analysis revealed that the majority of Cd in the roots of both mature and immature stages of A. yokoscense is bounded to the oxygen ligands. In contrast, it is found that Cd was bound to sulfur ligands as well as to oxygen ligands in the shoots. (author)

  20. XRF intermediate thickness layer technique for analysis of residue of hard to dissolve materials

    International Nuclear Information System (INIS)

    Mzyk, Z.; Mzyk, J.; Buzek, L.; Baranowska, I.

    1998-01-01

    This work presents a quick method for lead and silver determination in materials, such as slags from silver metallurgy and slimes from copper electrorefining, which are very difficult to dissolve, even using a microwave technique. The idea was to dissolve the possibly greatest amount of the sample using acids. Insoluble deposit was filtered out. Silver content in the solution was analysed by potentiometric titration or AAS, lead content by XRS, while sediment deposit on filter - by XRF intermediate thickness technique. The results of silver and lead analysis obtained by this method were compared with those obtained by classical method, i.e. melting the residue with sodium peroxide. (author)

  1. Application of XRF methods for multielemental analysis of lichen samples collected in Havana City. Comparison with ICP-AES, ICP-MS and FAAS

    International Nuclear Information System (INIS)

    Herrero Fernandez, Zahily; Estevez Alvarez, Juan R.; Montero Alvarez, Alfredo; Pupo Gonzalez, Ivan; Ortueta Milan, Marvic; Mesa Perez, Guillermo; Leyva Bombuse, Dennys; Rodriguez Gonzalez, Maydel; Hernandez Torres, Debora; Padilla Alvarez, Roman; Quejido Cabezas, Alberto J.; Rucandio Saez, Maria I.; Fernandez Diaz, Marta

    2011-01-01

    This paper presents the results of the analysis of Ca, Fe, Zn, Br, Rb, Sr and Pb in samples of lichens used as biomonitors of air pollution collecting in Havana City during 2009-2010. Two different X-Ray Fluorescence methods were used. First, a combination of Si (Li) detector with an annular 109Cd as primary excitation source was employed. The second system consisted in a Mo X-ray tube with a secondary target of Molybdenum and a X-PIPS detector. In both configurations, the correction of matrix effects was achieved by using the Compton scattering peak. The quantification was performed using calibration curves obtained from different biological Certified Reference Materials. The determination of elements by Inductively Coupled Plasma-Atomic Emission Spectrometry, Inductively Coupled Plasma-Mass Spectrometry and Flame Atomic Absorption Spectrophotometry was carried out in order to evaluate the reliability of XRF methods. No significant differences were found between the obtained results by the different techniques. The levels of concentration of the analyzed elements in the lichens in 2009 and 2010 respectively were similar. The elemental distribution patters obtained for each metal were associated with different sources of contamination. (Author)

  2. Laboratory evaluation of a field-portable sealed source X-ray fluorescence spectrometer for determination of metals in air filter samples.

    Science.gov (United States)

    Lawryk, Nicholas J; Feng, H Amy; Chen, Bean T

    2009-07-01

    Recent advances in field-portable X-ray fluorescence (FP XRF) spectrometer technology have made it a potentially valuable screening tool for the industrial hygienist to estimate worker exposures to airborne metals. Although recent studies have shown that FP XRF technology may be better suited for qualitative or semiquantitative analysis of airborne lead in the workplace, these studies have not extensively addressed its ability to measure other elements. This study involved a laboratory-based evaluation of a representative model FP XRF spectrometer to measure elements commonly encountered in workplace settings that may be collected on air sample filter media, including chromium, copper, iron, manganese, nickel, lead, and zinc. The evaluation included assessments of (1) response intensity with respect to location on the probe window, (2) limits of detection for five different filter media, (3) limits of detection as a function of analysis time, and (4) bias, precision, and accuracy estimates. Teflon, polyvinyl chloride, polypropylene, and mixed cellulose ester filter media all had similarly low limits of detection for the set of elements examined. Limits of detection, bias, and precision generally improved with increasing analysis time. Bias, precision, and accuracy estimates generally improved with increasing element concentration. Accuracy estimates met the National Institute for Occupational Safety and Health criterion for nearly all the element and concentration combinations. Based on these results, FP XRF spectrometry shows potential to be useful in the assessment of worker inhalation exposures to other metals in addition to lead.

  3. Monitoring body iron burden using X-ray fluorescence (XRF)

    International Nuclear Information System (INIS)

    Farquharson, M.J.; Bagshaw, A.P.

    2001-01-01

    X-ray fluorescence, using Cu K alpha and K beta radiation, has been used to measure the Fe content of skin of two groups of rats, one Fe overloaded and one control group. These skin Fe levels were compared to the liver and heart Fe levels measured using colorimetry. Correlation coefficients of 0.86 and 0.88 respectively were found indicating that skin Fe levels may be a potential marker for body iron burden.

  4. Modelling of a total reflection X-ray fluorescence (TXRF) system ...

    African Journals Online (AJOL)

    The simulation of the different stages involved in x-ray fluorescence emissions was carried out by writing a suite of computer programs using FORTRAN programming language. These computer simulated XRF stages were then integrated together to generate a general robust model which was run with the digital visual ...

  5. Chemical Characterization of Nuclear Materials: Development a New Combined X-Ray Fluorescence and Raman Spectrometer

    International Nuclear Information System (INIS)

    Szaloki, I.; Gerenyi, A.

    2015-01-01

    New mobile analytical device based on combination of X-ray fluorescence and Raman spectrometer has been developed for prompt and quantitative characterization of chemical component from Al to U in nuclear waste or undeclared materials. The excitation source of the X-ray fluorescence spectrometer is an air-cooled X-ray tube with Ag transmission anode. For collection of secondary X-ray photons and data processing, a compact Amptek X-ray detector system is applied with silicon drift X-ray detector. The XRF system operates in confocal mode with focal volume around 1-4 mm 3 . Varying the geometrical position and orientation of the sample optional part of its surface can be analyzed. The Raman unit includes thermoelectrically cooled laser source having 500 mW power at wavelength 785 nm. In order to obtain spectral information from sample surface a reflection-type probe is connected by optical fibres to the Raman spectrometer. A mini focusing optics is set up to the sensor-fibre that provides the system to operate as confocal optical device in reflection mode. The XRF spectrometer with X-ray detector, Raman probe and X-ray tube are mechanically fixed and hermetically connected to an aluminium chamber, which can be optionally filled with helium. The chamber is mounted on a vertical stage that provides moving it to the sample surface. A new model and computer code have been developed for XRF quantitative analysis which describes the mathematical relationship between the concentration of sample elements and their characteristic X-ray intensities. For verification of the calculations standard reference alloy samples were measured. The results was in good agreement with certified concentrations in range of 0.001-100 w%. According to these numerical results this new method is successfully applicable for quick and non-destructive quantitative analysis of waste materials without using standard samples. (author)

  6. Direct rapid analysis of trace bioavailable soil macronutrients by chemometrics-assisted energy dispersive X-ray fluorescence and scattering spectrometry

    International Nuclear Information System (INIS)

    Kaniu, M.I.; Angeyo, K.H.; Mwala, A.K.; Mangala, M.J.

    2012-01-01

    Highlights: ► Chemometrics-assisted EDXRFS spectroscopy realizes direct, rapid and accurate analysis of trace bioavailable macronutrients in soils. ► The method is minimally invasive, involves little sample preparation, short analysis times and is relatively insensitive to matrix effects. ► This opens up the ability to rapidly characterize large number of samples/matrices with this method. - Abstract: Precision agriculture depends on the knowledge and management of soil quality (SQ), which calls for affordable, simple and rapid but accurate analysis of bioavailable soil nutrients. Conventional SQ analysis methods are tedious and expensive. We demonstrate the utility of a new chemometrics-assisted energy dispersive X-ray fluorescence and scattering (EDXRFS) spectroscopy method we have developed for direct rapid analysis of trace ‘bioavailable’ macronutrients (i.e. C, N, Na, Mg, P) in soils. The method exploits, in addition to X-ray fluorescence, the scatter peaks detected from soil pellets to develop a model for SQ analysis. Spectra were acquired from soil samples held in a Teflon holder analyzed using 109 Cd isotope source EDXRF spectrometer for 200 s. Chemometric techniques namely principal component analysis (PCA), partial least squares (PLS) and artificial neural networks (ANNs) were utilized for pattern recognition based on fluorescence and Compton scatter peaks regions, and to develop multivariate quantitative calibration models based on Compton scatter peak respectively. SQ analyses were realized with high CMD (R 2 > 0.9) and low SEP (0.01% for N and Na, 0.05% for C, 0.08% for Mg and 1.98 μg g −1 for P). Comparison of predicted macronutrients with reference standards using a one-way ANOVA test showed no statistical difference at 95% confidence level. To the best of the authors’ knowledge, this is the first time that an XRF method has demonstrated utility in trace analysis of macronutrients in soil or related matrices.

  7. Rapid limit tests for metal impurities in pharmaceutical materials by X-ray fluorescence spectroscopy using wavelet transform filtering.

    Science.gov (United States)

    Arzhantsev, Sergey; Li, Xiang; Kauffman, John F

    2011-02-01

    We introduce a new method for analysis of X-ray fluorescence (XRF) spectra based on continuous wavelet transform filters, and the method is applied to the determination of toxic metals in pharmaceutical materials using hand-held XRF spectrometers. The method uses the continuous wavelet transform to filter the signal and noise components of the spectrum. We present a limit test that compares the wavelet domain signal-to-noise ratios at the energies of the elements of interest to an empirically determined signal-to-noise decision threshold. The limit test is advantageous because it does not require the user to measure calibration samples prior to measurement, though system suitability tests are still recommended. The limit test was evaluated in a collaborative study that involved five different hand-held XRF spectrometers used by multiple analysts in six separate laboratories across the United States. In total, more than 1200 measurements were performed. The detection limits estimated for arsenic, lead, mercury, and chromium were 8, 14, 20, and 150 μg/g, respectively.

  8. A gravimetric and an X-ray fluorescence method for the determination of rubidium in Rb2U(SO4)3

    International Nuclear Information System (INIS)

    Mudher, K.D.S.; Krishnan, K.; Jayadevan, N.C.

    1993-01-01

    Chemical characterization of rubidium uranium(IV) trisulfate, RB 2 U(SO 4 ) 3 , a new chemical assay standard for uranium requires accurate analysis of rubidium. A gravimetric and an X-ray fluorescence method (XRF) for the determination of rubidium in this compound are described. In the gravimetric method, rubidium is determined as Rb 2 Na[Co(NO 2 ) 6 ].H 2 O without separating uranium with a precision of the order of ±0.5%. In the XRF method, the concentration ratio of rubidium to uranium, C Rb /C U , is determined in the solid samples by the binary ratio method using calibration between intensity ratios (I Rb /I U ) and concentration ratios (C Rb /C U ). (author) 6 refs.; 2 figs.; 3 tabs

  9. Application of the X-ray fluorescence analysis and X-ray diffraction in geochemical studies of the Pleistocene tills from Holy Cross Mountains

    International Nuclear Information System (INIS)

    Kubala-Kukuś, A.; Ludwikowska-Kedzia, M.; Banaś, D.; Braziewicz, J.; Majewska, U.; Pajek, M.; Wudarczyk-Moćko, J.

    2013-01-01

    X-ray fluorescence analysis methods (wavelength dispersive X-ray fluorescence analysis (WDXRF) and total reflection X-ray fluorescence (TXRF)) and X-ray powder diffraction (XRPD) have been applied in complementary geochemical studies of the Pleistocene till samples. The XRPD technique gave information about the mineral composition of the analyzed samples while the WDXRF and TXRF studies allowed the fast elemental analysis. The till samples were collected from different regions of Holy Cross Mountains (located in central Poland) which are still not unambiguously described in the context of the geochemical studies of the Quaternary sediments. The analysis was concentrated on the geochemical composition of the till samples both for materials occurring on the surface (characterized by continuous weathering processes) and for samples taken from core borehole. The overriding purpose of these studies is determination of the local lithotype of the tills and its lithologic and petrographic diagnostic properties, including the chemical composition of clay and minerals found in the clay. In the presented work the experimental sets up, sample preparation procedure and measurements programme will be discussed in details. Finally, the elemental and mineral compositions will be presented for studied different groups of the samples. - Highlights: • XRF analysis and X-ray diffraction used in studies of the till samples. • The till samples were collected from different regions of Holy Cross Mountains. • The analysis concentrates both on the samples from surface and from core borehole. • The purpose is determination of the local lithotype of the tills. • The experimental setup, sample preparation, measurements and results are discussed

  10. X-Ray Fluorescence and Laser-Induced Breakdown Spectroscopy analysis of Roman silver denarii

    Energy Technology Data Exchange (ETDEWEB)

    Pardini, L. [Istituto di Chimica dei Composti Organometallici del CNR, Research Area of Pisa, Via G. Moruzzi 1, 56124 Pisa (Italy); El Hassan, A. [National Institute for Laser- Enhanced Sciences (NILES), Cairo University Giza (Egypt); Ferretti, M. [Istituto per le Tecnologie Applicate ai Beni Culturali, Area della Ricerca del CNR di Montelibretti Roma (Italy); Foresta, A.; Legnaioli, S.; Lorenzetti, G. [Istituto di Chimica dei Composti Organometallici del CNR, Research Area of Pisa, Via G. Moruzzi 1, 56124 Pisa (Italy); Nebbia, E. [Universita degli Studi di Torino (Italy); Catalli, F. [Monetiere di Firenze, Museo Archeologico Nazionale Firenze (Italy); Harith, M.A. [National Institute for Laser- Enhanced Sciences (NILES), Cairo University Giza (Egypt); Diaz Pace, D. [Institute of Physics ' Arroyo Seco' , Faculty of Science, Tandil (Argentina); Anabitarte Garcia, F. [Photonics Engineering Group, University of Cantabria, Santander (Spain); Scuotto, M. [Dipartimento di Scienze Archeologiche, Via Galvani 1, 56126 Pisa (Italy); Palleschi, V., E-mail: vincenzo.palleschi@cnr.it [Istituto di Chimica dei Composti Organometallici del CNR, Research Area of Pisa, Via G. Moruzzi 1, 56124 Pisa (Italy); Dipartimento di Scienze Archeologiche, Via Galvani 1, 56126 Pisa (Italy)

    2012-08-15

    In this paper we present the results of a study performed on a large collection of silver Roman republican denarii, encompassing about two centuries of history. The joint use of Laser-Induced Breakdown Spectroscopy (LIBS) and X-Ray Fluorescence (XRF) spectroscopy allowed for an accurate determination of the coins' elemental composition; the measurements, performed mostly in situ at the 'Monetiere' in Florence, revealed a striking connection between the 'quality' of the silver alloy and some crucial contemporary events. This finding was used to classify a group of denarii whose dating was otherwise impossible. The comparison with other contemporary denarii disproves a recent theory on the origin of the so called 'serrated' denarii (denarii showing notched chisel marks on the edge of the coin). - Highlights: Black-Right-Pointing-Pointer We studied a large collection of Roman republican silver denarii. Black-Right-Pointing-Pointer XRF and LIBS allowed to determine the precious metal content of the coins. Black-Right-Pointing-Pointer A correlation of the 'quality' of the alloy with some contemporary events was found. Black-Right-Pointing-Pointer The study allowed to controvert a recent theory on the so called 'serrated' denarii.

  11. Rapid detection of toxic metals in non-crushed oyster shells by portable X-ray fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Chou Ju, E-mail: Ju.Chou@selu.ed [Department of Chemistry and Physics, Southeastern Louisiana University, Hammond, LA 70402 (United States); Clement, Garret; Bursavich, Bradley; Elbers, Don [Department of Chemistry and Physics, Southeastern Louisiana University, Hammond, LA 70402 (United States); Cao Baobao; Zhou Weilie [Advanced Material Research Institute, University of New Orleans, New Orleans, LA 70148 (United States)

    2010-06-15

    The aim of this study was the multi-elemental detection of toxic metals such as lead (Pb) in non-crushed oyster shells by using a portable X-ray fluorescence (XRF) spectrometer. A rapid, simultaneous multi-element analytical methodology for non-crushed oyster shells has been developed using a portable XRF which provides a quick, quantitative, non-destructive, and cost-effective mean for assessment of oyster shell contamination from Pb. Pb contamination in oyster shells was further confirmed by scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS). The results indicated that Pb is distributed in-homogeneously in contaminated shells. Oyster shells have a lamellar structure that could contribute to the high accumulation of Pb on oyster shells. - A rapid, simultaneous multi-element analytical methodology for non-crushed oyster shells has been developed using XRF and contamination of lead on oyster shells was confirmed by XRF and SEM-EDS.

  12. Rapid detection of toxic metals in non-crushed oyster shells by portable X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Chou Ju; Clement, Garret; Bursavich, Bradley; Elbers, Don; Cao Baobao; Zhou Weilie

    2010-01-01

    The aim of this study was the multi-elemental detection of toxic metals such as lead (Pb) in non-crushed oyster shells by using a portable X-ray fluorescence (XRF) spectrometer. A rapid, simultaneous multi-element analytical methodology for non-crushed oyster shells has been developed using a portable XRF which provides a quick, quantitative, non-destructive, and cost-effective mean for assessment of oyster shell contamination from Pb. Pb contamination in oyster shells was further confirmed by scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS). The results indicated that Pb is distributed in-homogeneously in contaminated shells. Oyster shells have a lamellar structure that could contribute to the high accumulation of Pb on oyster shells. - A rapid, simultaneous multi-element analytical methodology for non-crushed oyster shells has been developed using XRF and contamination of lead on oyster shells was confirmed by XRF and SEM-EDS.

  13. Quantitative analysis of concrete using portable x-ray fluorescence: Method development and validation

    Energy Technology Data Exchange (ETDEWEB)

    Washington, Aaron L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Narrows, William [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Christian, Jonathan H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Msgwood, Leroy [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-07-27

    During Decommissioning and Demolition (D&D) activities at SRS, it is important that the building be screened for radionuclides and heavy metals to ensure that the proper safety and disposal metrics are in place. A major source of contamination at DOE facilities is the accumulation of mercury contamination, from nuclear material processing and Liquid Waste System (LWS). This buildup of mercury could possibly cause harm to any demolition crew or the environment should this material be released. The current standard method is to take core samples in various places in the facility and use X-ray fluorescence (XRF) to detect the contamination. This standard method comes with a high financial value due to the security levels of these sample facilities with unknown contamination levels. Here in we propose the use of portable XRF units to detect for this contamination on-site. To validate this method, the instrument has to be calibrated to detect the heavy metal contamination, be both precise with the known elemental concentrations and consistent with its actual results of a sample concrete and pristine contaminant, and be able to detect changes in the sample concrete’s composition. After receiving the various concrete samples with their compositions found by a XRF wave-dispersive method, the calibration factor’s linear regressions were adjusted to give the baseline concentration of the concrete with no contamination. Samples of both concrete and concrete/flyash were evaluated; their standard deviations revealed that the measurements were consistent with the known composition. Finally, the samples were contaminated with different concentrations of sodium tungsten dihydrate, allowed to air dry, and measured. When the contaminated samples were analyzed, the heavy metal contamination was seen within the spectrum of the instrument, but there was not a trend of quantification based on the concentration of the solution.

  14. XRF and TXRF techniques for multi-element determination of trace elements in whole blood and human hair samples

    International Nuclear Information System (INIS)

    Khuder, A.; Karjou, J.; Sawan, M.Kh.; Bakir, M.A.

    2007-01-01

    XRF and TXRF were established as useful techniques for multi-element analysis of whole blood and human head hair samples. Direct-XRF with different collimation units and different X-ray excitation modes was successfully used for the determination of S, P, K, Ca, Fe, and Br elements in blood samples and K, Ca, Mn, Fe elements in human hair samples. Direct analysis by TXRF was used for the determination of Rb and Sr in digested blood and human hair samples, respectively, while, the co-precipitation method using APDC for TXRF analysis was used for the determination of Ni, Cu, Zn, and Pb elements in both matrices. As a result, the improved XRF and TXRF methods were applied for multi-element determination of elements in whole blood and human hair samples in non-occupational exposed population living in Damascus city. The mean concentrations of analyzed elements in both matrices were on the reported range values for non-occupational population in other countries. (author)

  15. XRF and TXRF techniques for multi-element determination of trace elements in whole blood and human hair samples

    International Nuclear Information System (INIS)

    Khuder, A.; Karjou, J.; Sawan, M.Kh.; Bakir, M.A.

    2008-01-01

    XRF and TXRF were established as useful techniques for multi-element analysis of whole blood and human head hair samples. Direct-XRF with different collimation units and different X-ray excitation modes was successfully used for the determination of S, P, K, Ca, Fe, and Br elements in blood samples and K, Ca, Mn, Fe elements in human hair samples. Direct analysis by TXRF was used for the determination of Rb and Sr in digested blood and human hair samples, respectively, while, the co-precipitation method using APDC for TXRF analysis was used for the determination of Ni, Cu, Zn, and Pb elements in both matrices. As a result, the improved XRF and TXRF methods were applied for multi-element determination of elements in whole blood and human hair samples in non-occupational exposed population living in Damascus city. The mean concentrations of analyzed elements in both matrices were on the reported range values for non-occupational population in other countries. (author)

  16. Analysis of nickel-base alloys by Grimm-type glow discharge emission and x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Ferreira, N.P.; Strauss, J.A.; Van Maarseveen, I.; Ivanfy, A.B.

    1985-01-01

    Nickel-base alloys can be analysed as satisfactorily as steels by XRF as well as by the Grimm-type source, in spite of problems caused by element combinations, spectral line overlap and the influence of the structure and heat conduction properties on sputtering in the glow discharge source. This extended abstract briefly discusses the use of Grimm-type glow discharge emission and XRF as techniques for the analysis of nickel-base alloys

  17. The application of XRF to the thickness measurement of paper

    International Nuclear Information System (INIS)

    Guo Wei; Lai Wangchang; Guo Shengliang; Cheng Feng

    2007-01-01

    The purpose of this paper is to study on the application of XRF to the thickness measurement of paper. The mass thickness of a number of paper samples were respectively measured by the X-ray absorption method and the primary rays of radiated sources scattering method. The measurement results had been compared with each other, and got several helpful discussions. The measurement was using the IED-2000P type X-ray fluorescence analyzer from Chengdu Micro-Particle Technology Ltd., which is composed of a Si-pin X-ray detector with thermo electrical cooler, and double isotope sources ( 238 Pu). The experiment indicated that the veracity of the X-ray absorption method on the thickness measurement of paper is better than the primary rays of radiated sources scattering method, and the application of the primary rays of radiated sources scattering method to the thickness measurement of paper is verified as feasible. (authors)

  18. X-ray Fluorescence analytical criteria to assess the fineness of ancient silver coins: Application on Ptolemaic coinage

    Energy Technology Data Exchange (ETDEWEB)

    Kantarelou, Vasiliki, E-mail: kantarelou@inp.demokritos.gr [Institute of Nuclear Physics, NCSR ' Demokritos' , Aghia Paraskevi Attikis, 153 10 (Greece); Ager, Francisco Jose, E-mail: fjager@us.es [Departamento de Fisica Aplicada I, Universidad de Sevilla, Sevilla (Spain); Centro Nacional de Aceleradores, Avda. Thomas A. Edison, 7. E-41092 Sevilla (Spain); Eugenidou, Despoina [Numismatic Museum, Athens (NMA), Athens (Greece); Chaves, Francisca [Departamento de Prehistoria y Arqueologia, Universidad de Sevilla, Sevilla (Spain); Andreou, Alexandros; Kontou, Elena; Katsikosta, Niki [Numismatic Museum, Athens (NMA), Athens (Greece); Respaldiza, Miguel Angel [Departamento de Fisica Aplicada I, Universidad de Sevilla, Sevilla (Spain); Serafin, Patrizia [Dipartimento di Beni Culturali, Musica e Spettacolo, Universita degli Studi di Roma ' Tor Vergata' , Roma (Italy); Sokaras, Dimosthenis [Institute of Nuclear Physics, NCSR ' Demokritos' , Aghia Paraskevi Attikis, 153 10 (Greece); Zarkadas, Charalambos [PANalytical B.V., 7600 AA Almelo (Netherlands); Polikreti, Kyriaki, E-mail: kpolykreti@culture.gr [Hellenic Ministry of Culture, Directorate of Conservation of Ancient and Modern Monuments, Dept. of Applied Research, Pireos 81, 105 53, Athens (Greece); Karydas, Andreas Germanos, E-mail: A.Karydas@iaea.org [Institute of Nuclear Physics, NCSR ' Demokritos' , Aghia Paraskevi Attikis, 153 10 (Greece); Nuclear Spectrometry and Applications Laboratory, IAEA, Seibersdorf (Austria)

    2011-09-15

    The application of X-ray Fluorescence (XRF) analysis in a non-invasive manner on ancient silver coins may not provide reliable bulk compositional data due to possible presence of a surface, silver enriched layer. The present work proposes a set of three complementary analytical methodologies to assess and improve the reliability of XRF data in such cases: a) comparison of XRF data on original and cleaned micro-spots on coin surface, b) Ag K/L ratio test and c) comparison of experimental and theoretically simulated intensities of the Rayleigh characteristic radiation emitted from the anode. The proposed methodology was applied on 82 silver coins from the collection of Ioannes Demetriou, donated to the Numismatic Museum of Athens in the 1890s. The coins originate from different mints and are attributed to the first five Ptolemaic kings' reign (321-180 B.C.). They were analyzed in-situ by using a milli-probe XRF spectrometer. The presence of an Ag-enriched layer was excluded for the majority of them. The silver fineness was found to be high, with very low concentrations of copper and lead. The composition data provide important information about possible sources of silver during the Ptolemaic period and indications of a gradual coinage debasement after 270 B.C. due to economic or technical reasons.

  19. X-ray Fluorescence analytical criteria to assess the fineness of ancient silver coins: Application on Ptolemaic coinage

    International Nuclear Information System (INIS)

    Kantarelou, Vasiliki; Ager, Francisco José; Eugenidou, Despoina; Chaves, Francisca; Andreou, Alexandros; Kontou, Elena; Katsikosta, Niki; Respaldiza, Miguel Angel; Serafin, Patrizia; Sokaras, Dimosthenis; Zarkadas, Charalambos; Polikreti, Kyriaki; Karydas, Andreas Germanos

    2011-01-01

    The application of X-ray Fluorescence (XRF) analysis in a non-invasive manner on ancient silver coins may not provide reliable bulk compositional data due to possible presence of a surface, silver enriched layer. The present work proposes a set of three complementary analytical methodologies to assess and improve the reliability of XRF data in such cases: a) comparison of XRF data on original and cleaned micro-spots on coin surface, b) Ag K/L ratio test and c) comparison of experimental and theoretically simulated intensities of the Rayleigh characteristic radiation emitted from the anode. The proposed methodology was applied on 82 silver coins from the collection of Ioannes Demetriou, donated to the Numismatic Museum of Athens in the 1890s. The coins originate from different mints and are attributed to the first five Ptolemaic kings' reign (321–180 B.C.). They were analyzed in-situ by using a milli-probe XRF spectrometer. The presence of an Ag-enriched layer was excluded for the majority of them. The silver fineness was found to be high, with very low concentrations of copper and lead. The composition data provide important information about possible sources of silver during the Ptolemaic period and indications of a gradual coinage debasement after 270 B.C. due to economic or technical reasons.

  20. Spatially resolved density and ionization measurements of shocked foams using x-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, M. J.; Keiter, P. A.; Montgomery, D. S.; Scott, H. A.; Biener, M. M.; Fein, J. R.; Fournier, K. B.; Gamboa, E. J.; Kemp, G. E.; Klein, S. R.; Kuranz, C. C.; LeFevre, H. J.; Manuel, M. J. -E.; Wan, W. C.; Drake, R. P.

    2016-09-28

    We present experiments at the Trident laser facility demonstrating the use of x-ray fluorescence (XRF) to simultaneously measure density, ionization state populations, and electron temperature in shocked foams. An imaging x-ray spectrometer obtained spatially resolved measurements of Ti K-α emission. Density profiles were measured from K-α intensity. Ti ionization state distributions and electron temperatures were inferred by fitting K-α spectra to spectra from CRETIN simulations. This work shows that XRF provides a powerful tool to complement other diagnostics to make equation of state measurements of shocked materials containing a suitable tracer element.

  1. Gold Provenance Studies for Romanian Archaeological Objects Using Micro-SR-XRF

    Science.gov (United States)

    Vasilescu, Angela; Constantinescu, Bogdan; Bugoi, Roxana; Radtke, Martin; Reinholz, Uwe; Simon, Rolf

    2010-04-01

    Studies by Synchrotron Radiation—X-Ray Fluorescence (SR-XRF) for the search of the presence of trace elements like Sb, Sn, Te and Pb in archaeological metallic objects found on the territory of Romania—old coins and Bronze Age jewelry, aimed to determine the provenance of the gold used in their manufacture. The results are compared with the detailed elemental composition of alluvial or primary gold samples, obtained by the same technique. This work attempted to establish the origin of the gold used for the mint of two different types of koson coins. We found that the kosons with monogram are made of refined gold, while the one used for the kosons without monogram is mainly alluvial. The gold used in the manufacture of the Calarasi Vulchitrun-type disk and the Tauteu hair ring is also of alluvial origin.

  2. Comparative analysis of dose rates in bricks determined by neutron activation analysis, alpha counting and X-ray fluorescence analysis for the thermoluminescence fine grain dating method

    Science.gov (United States)

    Bártová, H.; Kučera, J.; Musílek, L.; Trojek, T.

    2014-11-01

    In order to evaluate the age from the equivalent dose and to obtain an optimized and efficient procedure for thermoluminescence (TL) dating, it is necessary to obtain the values of both the internal and the external dose rates from dated samples and from their environment. The measurements described and compared in this paper refer to bricks from historic buildings and a fine-grain dating method. The external doses are therefore negligible, if the samples are taken from a sufficient depth in the wall. However, both the alpha dose rate and the beta and gamma dose rates must be taken into account in the internal dose. The internal dose rate to fine-grain samples is caused by the concentrations of natural radionuclides 238U, 235U, 232Th and members of their decay chains, and by 40K concentrations. Various methods can be used for determining trace concentrations of these natural radionuclides and their contributions to the dose rate. The dose rate fraction from 238U and 232Th can be calculated, e.g., from the alpha count rate, or from the concentrations of 238U and 232Th, measured by neutron activation analysis (NAA). The dose rate fraction from 40K can be calculated from the concentration of potassium measured, e.g., by X-ray fluorescence analysis (XRF) or by NAA. Alpha counting and XRF are relatively simple and are accessible for an ordinary laboratory. NAA can be considered as a more accurate method, but it is more demanding regarding time and costs, since it needs a nuclear reactor as a neutron source. A comparison of these methods allows us to decide whether the time- and cost-saving simpler techniques introduce uncertainty that is still acceptable.

  3. Elemental composition study of heavy metal (Ni, Cu, Zn) in riverbank soil by electrokinetic-assisted phyto remediation using XRF and SEM/EDX

    International Nuclear Information System (INIS)

    Suhailly Jamari; Zaidi Embong; Zaidi Embong; Ismail Bakar

    2013-01-01

    Full-text: Electrokinetic (EK)-assisted phyto remediation is one of the methods that have a big potential in enhancing the ability of plant uptake in soils remediation process. This research was conducted to investigate the difference in elemental composition concentration of riverbank soil and the change of pH between pre- and post-phyto remediation under the following condition: 1) control or as-receive sample; 2) Dieffenbachia spp plant with EK system (a pair of EK electrodes connected to a direct current (DC) power supply). After the electrodes were connected to a magnitude of 6 V/ cm -1 electric field for 4 hours/ day, the soil and plant samples were analyzed using and X-ray Fluorescence Spectrometer (XRF) and Scanning Electron Microscope/ Energy Dispersive X-ray Spectroscopy (SEM/ EDX). The SEM/EDX analysis showed that concentration of elemental composition (Ni, Cu and Zn) in post-phyto remediation plant powder samples had increase while elemental concentrations in the post-hydrotreatment soil samples were decreased. XRF analysis presented a variation in soil elemental composition concentration from anode to cathode where the concentration near anode region increased while decreased near the cathode region. A significant changes in soil pH were obtained where the soil pH increase in cathode region while decrease in anode region. The results reveal that the assistance of EK in phyto remediation process has increase the efficiency of plant uptake. (author)

  4. Synchrotron-based nu-XRF mapping and mu-FTIR microscopy enable to look into the fate and effects of tattoo pigments in human skin

    OpenAIRE

    Schreiver , Ines; Hesse , Bernhard; Seim , Christian; Castillo-Michel , Hiram; Villanova , Julie; Laux , Peter; Dreiack , Nadine; Penning , Randolf; Tucoulou , Remi; Cotte , Marine; Luch , Andreas

    2017-01-01

    International audience; The increasing prevalence of tattoos provoked safety concerns with respect to particle distribution and effects inside the human body. We used skin and lymphatic tissues from human corpses to address local biokinetics by means of synchrotron X-ray fluorescence (XRF) techniques at both the micro (mu) and nano (nu) scale. Additional advanced mass spectrometry-based methodology enabled to demonstrate simultaneous transport of organic pigments, heavy metals and titanium di...

  5. Nanoscopic X-ray fluorescence imaging and quantification of intracellular key-elements in cryofrozen Friedreich's ataxia fibroblasts.

    Directory of Open Access Journals (Sweden)

    Björn De Samber

    Full Text Available Synchrotron radiation based nanoscopic X-ray fluorescence (SR nano-XRF analysis can visualize trace level elemental distribution in a fully quantitative manner within single cells. However, in-air XRF analysis requires chemical fixation modifying the cell's chemical composition. Here, we describe first nanoscopic XRF analysis upon cryogenically frozen (-150°C fibroblasts at the ID16A-NI 'Nano-imaging' end-station located at the European Synchrotron Radiation Facility (ESRF in Grenoble (France. Fibroblast cells were obtained from skin biopsies from control and Friedreich's ataxia (FRDA patients. FRDA is an autosomal recessive disorder with dysregulation of iron metabolism as a key feature. By means of the X-ray Fundamental Parameter (FP method, including absorption correction of the ice layer deposited onto the fibroblasts, background-corrected mass fraction elemental maps of P, S, Cl, K, Ca, Fe and Zn of entire cryofrozen human fibroblasts were obtained. Despite the presence of diffracting microcrystals in the vitreous ice matrix and minor sample radiation damage effects, clusters of iron-rich hot-spots with similar mass fractions were found in the cytoplasm of both control and FRDA fibroblasts. Interestingly, no significant difference in the mean iron concentration was found in the cytoplasm of FRDA fibroblasts, but a significant decrease in zinc concentration. This finding might underscore metal dysregulation, beyond iron, in cells derived from FRDA patients. In conclusion, although currently having slightly increased limits of detection (LODs compared to non-cryogenic mode, SR based nanoscopic XRF under cryogenic sample conditions largely obliterates the debate on chemical sample preservation and provides a unique tool for trace level elemental imaging in single cells close to their native state with a superior spatial resolution of 20 nm.

  6. Quality control in a modern XRF laboratory

    International Nuclear Information System (INIS)

    Grigolato, E.

    2002-01-01

    Full text: In the last twenty years manufacturers have improved instruments significantly. Many of these advances have come from the computing power now available using a PC. Unfortunately, now in many laboratories, the senior analyst is responsible for multiple instruments and may have little experience in XRF. It is now common for instruments to be calibrated by consultants and used in a black box mode. The session will look at a range of tools for monitoring and controlling your XRF from date of installation, thru calibration, routine use and maintenance. Discussion of user problems is an integral part of the session. Copyright (2002) Australian X-ray Analytical Association Inc

  7. Fingerprinting ancient gold by measuring Pt with spatially resolved high energy Sy-XRF

    International Nuclear Information System (INIS)

    Guerra, M.F.; Calligaro, T.; Radtke, M.; Reiche, I.; Riesemeier, H.

    2005-01-01

    Trace elements of ancient gold such as Pt, give fundamental information on the circulation of the metal in the past. In the case of objects from the cultural heritage, the determination of trace elements requires non-destructive point analysis in general. These conditions and the need of good detection limits restrain the number of applicable analytical techniques. After the development of a PIXE set-up with a selective Cu or Zn filter of 75 μm and of a PIXE-XRF set-up using a primary target of As, we tested the possibilities of spatially resolved Sy-XRF to determine Pt in gold alloys. With a Zn filter, PIXE showed a detection limit of 1000 ppm in gold while PIXE-XRF lowers this detection limit down to 80 ppm. This last value being constrained by the resonant Raman effect produced on gold. In order to improve the detection limit of Pt keeping the non-destructiveness and access to point analysis, we developed an analytical protocol for XRF with synchrotron radiation at BESSY II, using the BAMline set-up. The L-lines of Pt were excited by a beam of energy above and below 11.564 keV and measured using a Si(Li) detector with a 50 μm Cu filter. A μ-beam of 100-250 μm 2 was used according to the size of the sample. The determination of the Pt content in the samples was carried out by Monte-Carlo simulation and subtraction of Au and Pt spectra obtained on pure standards. The limit of detection for Pt of 20 ppm was determined by using certified standards. The detection limits of a small set of other characteristic elements of gold were also measured using an incident energy of 33 keV

  8. Trends in hard X-ray fluorescence mapping: environmental applications in the age of fast detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lombi, E.; Donner, E. [University of South Australia, Centre for Environmental Risk Assessment and Remediation, Mawson Lakes, South Australia (Australia); CRC CARE, PO Box 486, Salisbury, South Australia (Australia); Jonge, M.D. de; Paterson, D. [Australian Synchrotron, X-ray Fluorescence Microscopy, 800 Blackburn Road, Clayton, Victoria (Australia); Ryan, C.G. [CSIRO Earth Science and Resource Engineering, Normanby Road, Clayton, Victoria (Australia)

    2011-06-15

    Environmental samples are extremely diverse but share a tendency for heterogeneity and complexity. This heterogeneity poses methodological challenges when investigating biogeochemical processes. In recent years, the development of analytical tools capable of probing element distribution and speciation at the microscale have allowed this challenge to be addressed. Of these available tools, laterally resolved synchrotron techniques such as X-ray fluorescence mapping are key methods for the in situ investigation of micronutrients and inorganic contaminants in environmental samples. This article demonstrates how recent advances in X-ray fluorescence detector technology are bringing new possibilities to environmental research. Fast detectors are helping to circumvent major issues such as X-ray beam damage of hydrated samples, as dwell times during scanning are reduced. They are also helping to reduce temporal beamtime requirements, making particularly time-consuming techniques such as micro X-ray fluorescence ({mu}XRF) tomography increasingly feasible. This article focuses on {mu}XRF mapping of nutrients and metalloids in environmental samples, and suggests that the current divide between mapping and speciation techniques will be increasingly blurred by the development of combined approaches. (orig.)

  9. Experimental demonstration of direct L-shell x-ray fluorescence imaging of gold nanoparticles using a benchtop x-ray source

    International Nuclear Information System (INIS)

    Manohar, Nivedh; Reynoso, Francisco J.; Cho, Sang Hyun

    2013-01-01

    Purpose: To develop a proof-of-principle L-shell x-ray fluorescence (XRF) imaging system that locates and quantifies sparse concentrations of gold nanoparticles (GNPs) using a benchtop polychromatic x-ray source and a silicon (Si)-PIN diode x-ray detector system.Methods: 12-mm-diameter water-filled cylindrical tubes with GNP concentrations of 20, 10, 5, 0.5, 0.05, 0.005, and 0 mg/cm 3 served as calibration phantoms. An imaging phantom was created using the same cylindrical tube but filled with tissue-equivalent gel containing structures mimicking a GNP-loaded blood vessel and approximately 1 cm 3 tumor. Phantoms were irradiated by a 3-mm-diameter pencil-beam of 62 kVp x-rays filtered by 1 mm aluminum. Fluorescence/scatter photons from phantoms were detected at 90° with respect to the beam direction using a Si-PIN detector placed behind a 2.5-mm-diameter lead collimator. The imaging phantom was translated horizontally and vertically in 0.3-mm steps to image a 6 mm × 15 mm region of interest (ROI). For each phantom, the net L-shell XRF signal from GNPs was extracted from background, and then corrected for detection efficiency and in-phantom attenuation using a fluorescence-to-scatter normalization algorithm.Results: XRF measurements with calibration phantoms provided a calibration curve showing a linear relationship between corrected XRF signal and GNP mass per imaged voxel. Using the calibration curve, the detection limit (at the 95% confidence level) of the current experimental setup was estimated to be a GNP mass of 0.35 μg per imaged voxel (1.73 × 10 −2 cm 3 ). A 2D XRF map of the ROI was also successfully generated, reasonably matching the known spatial distribution as well as showing the local variation of GNP concentrations.Conclusions: L-shell XRF imaging can be a highly sensitive tool that has the capability of simultaneously imaging the spatial distribution and determining the local concentration of GNPs presented on the order of parts

  10. X-ray Fluorescence Spectroscopy of Pre-Federal American Currency

    Science.gov (United States)

    Raddell, Mark; Manukyan, Khachatur; Aprahamian, Ani; Wiescher, Michael; Jordan, Louis

    2017-09-01

    X-ray Fluorescence Spectroscopy (XRF) was used to study 17th and 18th century Mexican, Potosí, and Massachusetts silver colonial coins from the University of Notre Dame's Rare Books and Special Collections. Using different configurations and devices, we have learned more about the limitations and optimizations of the method. We have developed a moveable stand that may be used for XRF mapping of coin surfaces. We created standard silver alloy materials for quantification of the elemental composition of the coins. Inductively coupled plasma (ICP) spectroscopy was applied to determine the precise composition of the standards for accurate and non-destructive analyses of the colonial coins. XRF measurements were performed using two different XRF spectrometers, in both air and vacuum conditions, as well as an x-ray beam tube of varying diameters from 2 mm, 1 mm, and 0.03 mm. We quantified both the major elements and the bulk and surface impurities for 90 coins. We are using PCA to look at possible correlations between compositions of coinage from different geographical regions. Preliminary data analyses suggest that Massachusetts coins were minted using silver from Latin American sources. These results are of great interest to historians in tracing the origins of the currency. This work was made possible by the Notre Dame College of Science Summer Undergraduate Research Fellowships (COS-SURF).

  11. X-ray analysis of a single aerosol particle with combination of scanning electron microscope and synchrotron radiation X-ray microscope

    International Nuclear Information System (INIS)

    Toyoda, Masatoshi; Kaibuchi, Kazuki; Nagasono, Mitsuru; Terada, Yasuko; Tanabe, Teruo; Hayakawa, Shinjiro; Kawai, Jun

    2004-01-01

    We developed a microscope by a combination of synchrotron radiation X-ray fluorescence (SR-XRF) microscope and scanning electron microscope (SEM) with an energy dispersive X-ray spectrometer (EDX). SR-XRF is appropriate to detect trace and micro amount of elements and sensitive to heavy elements in an analyte but it cannot observe the real time image. SEM-EDX can observe the secondary electron image of a single particle in real time and is appropriate to detect lighter elements. This combination microscope can ensure the identification of the XRF spectrum to the SEM image without transferring the sample. For aerosol analysis, it is important to analyze each particle. The present method makes feasible to analyze not only the average elemental composition as the total particles but also elemental composition of each particle, which is dependent on the particle shape and size. The microscope was applied to an individual aerosol particle study. The X-ray spectra were different among the particles, but also different between SR-XRF and SEM-EDX for the same particle, due to the difference in fluorescence yields between X-ray excitation and electron excitation

  12. Study of archaeological objects by neutron imaging, xrd and xrf

    International Nuclear Information System (INIS)

    Dinca, M.; Dinu, A. D.; Stanciulescu, M. G.; Mandescu, D.

    2015-01-01

    Archaeological objects were borrowed from Arges County History Museum (ACHM) and investigated at the Institute for Nuclear Research (INR). Metallic objects made in iron, copper alloys and silver discovered in southern part of Romania, mostly Dacian and Roman origin, were investigated. For imaging was used the neutron and gamma imaging facility from tangential channel of the TRIGA ACPR to put in evidence the internal structure of the objects. For elemental and chemical composition, concentration levels in objects were performed investigations by X-ray fluorescence (XRF) and X-ray diffraction (XRD). These investigations offer valuable information in archaeological research about composition, structure of the bulk, presence of alteration, inclusions, typology of the location of material extraction, manufacturing techniques etc. This work is an example of application of neutron imaging and other radiation-based analytical methods for cultural heritage research that had the aim to involve some of the non-destructive investigation methods available at INR. (authors)

  13. Analysis of oil shale and oil shale products for certain minor elements

    International Nuclear Information System (INIS)

    Dickman, P.T.; Purdy, M.; Doerges, J.E.; Ryan, V.A.; Poulson, R.E.

    1977-01-01

    The University of Wyoming was contracted by the Department of Energy's Laramie Energy Research Center (LERC) to develop rapid, inexpensive, and simple methods of quantitative and qualitative elemental analysis for products used and generated in the simulated in-situ retorting of oil shale. Alpha particle spectrometry was used to determine the radioisotope content of the aqueous retort products. Alpha particles are mono-energetic and the spectrometry method employed had very low background levels (1 count per 2000 seconds). These factors allow for both the quantitative and qualitative analysis of natural radioisotopes at the 1 ppm level. Sample preparation does not require any chemical treatment. Energy dispersive x-ray fluorescence (XRF) was used for the multi-element analysis of the retort products. The XRF, integrated with a mini-computer, allows rapid analysis of several elements in multiple samples. XRF samples require minimal amounts of preparation and analytical results are highly reproducible. This paper presents the methods developed and preliminary analytical results from oil shale by-products. Results from the analysis of oil shale rocks are not yet ready for presentation

  14. Design and construction of focusing lens to be applied to the XRF analysis. Final report for the period 1 December 1993 - 30 November 1995

    International Nuclear Information System (INIS)

    Yan Yiming

    1996-01-01

    The construction and performance test for assembled and monolithic lenses have been done. Experimental setups and procedures for the determination of focussing capability of the lenses (diameter of the X-ray beam), beam profile at the focal plane, and transmission efficiency were designed and provided the necessary data. The results of the test of both lenses (assembled and monolithic) are good. The fact that the monolithic lens is significantly better as far as the spot size and gain factor are concerned, proves the advantages of the new technology for production of focussing optics for XRF analysis. The spot size of X-ray microbeam (200 μm) is adequate for many applications of XRF technique for trace element determination with both advantageous detection limits and imaging capability

  15. Mapping metals in Parkinson's and normal brain using rapid-scanning x-ray fluorescence

    International Nuclear Information System (INIS)

    Popescu, Bogdan F Gh; George, Martin J; McCrea, Richard P E; Devon, Richard M; George, Graham N; Hanson, Akela D; Chapman, L Dean; Nichol, Helen; Bergmann, Uwe; Garachtchenko, Alex V; Luening, Katharina; Kelly, Michael E; Harder, Sheri M; Pickering, Ingrid J

    2009-01-01

    Rapid-scanning x-ray fluorescence (RS-XRF) is a synchrotron technology that maps multiple metals in tissues by employing unique hardware and software to increase scanning speed. RS-XRF was validated by mapping and quantifying iron, zinc and copper in brain slices from Parkinson's disease (PD) and unaffected subjects. Regions and structures in the brain were readily identified by their metal complement and each metal had a unique distribution. Many zinc-rich brain regions were low in iron and vice versa. The location and amount of iron in brain regions known to be affected in PD agreed with analyses using other methods. Sample preparation is simple and standard formalin-fixed autopsy slices are suitable. RS-XRF can simultaneously and non-destructively map and quantify multiple metals and holds great promise to reveal metal pathologies associated with PD and other neurodegenerative diseases as well as diseases of metal metabolism.

  16. Assessment of Sediment Heavy Metals Pollution Using Screening Methods (XRF, TGA/MS, XRPD and Earthworms Bioassay)

    Science.gov (United States)

    Findoráková, Lenka; Šestinová, Ol'ga; Hančul'ák, Jozef; Fedorová, Erika; Zorkovská, Anna

    2016-10-01

    The aim of this study is focused on the use of screening methods (TG/DTA coupled with MS, XRF, AAS, XRPD and earthworm bioassay) for sediments pollution assessing by heavy metals (Cu, Zn, Pb, Hg) coming from the former mining workloads in the central Spis, Eastern Slovakia. The screening methods (XRF, AAS) indicated pollution of studied sediments by Cu, Zn, Pb, Hg. The earthworms Dendrobaena veneta caused in some studied samples decrease of heavy metals concentration after their 7 days’ exposure in sediments. The other screening methods such as thermal analysis and XRPD analysis, does not confirm the specifically changes in physicochemical properties comparing the properties before and after 7 days’ earthworm's exposure.

  17. Qualitative evaluation of heavy metals in soils using portable XRF instruments

    International Nuclear Information System (INIS)

    McCain, R.G.

    1993-10-01

    Portable isotope-source energy dispersive x-ray fluorescence (XRF) analyzers can provide rapid on site screening for heavy metals in soils. Their use generally involves empirical calibration to a suite of representative soil samples spiked with a range of concentrations of the analytes of interest. In most cases, only a limited number of analytes can be measured with this approach, because of constraints imposed by the operational software and costs associated with preparing the calibration suite. A simple approach is described that provides a qualitative indication of anomalous concentrations of heavy metals based on numeric comparison of gross count rates to background values. This approach can rapidly identify contaminated soils and does not depend on a suite of calibration samples. Direct measurements can be made to rapidly map soil contamination without sample collection, and the method can also be applied to other surfaces such as concrete

  18. On the distribution of uranium in hair: Non-destructive analysis using synchrotron radiation induced X-ray fluorescence microprobe techniques

    Energy Technology Data Exchange (ETDEWEB)

    Israelsson, A., E-mail: axel.israelsson@liu.se [Department of Medical and Health Sciences, Linköping University, 58183 Linköping (Sweden); Eriksson, M. [Swedish Radiation Safety Authority, 17116 Stockholm (Sweden); Pettersson, H.B.L. [Department of Radiation Physics, Linköping University, 58183 Linköping (Sweden); Department of Medical and Health Sciences, Linköping University, 58183 Linköping (Sweden)

    2015-06-01

    In the present study the distribution of uranium in single human hair shafts has been evaluated using two synchrotron radiation (SR) based micro X-ray fluorescence techniques; SR μ-XRF and confocal SR μ-XRF. The hair shafts originated from persons that have been exposed to elevated uranium concentrations. Two different groups have been studied, i) workers at a nuclear fuel fabrication factory, exposed mainly by inhalation and ii) owners of drilled bedrock wells exposed by ingestion of water. The measurements were carried out on the FLUO beamline at the synchrotron radiation facility ANKA, Karlsruhe. The experiment was optimized to detect U with a beam size of 6.8 μm × 3 μm beam focus allowing detection down to ppb levels of U in 10 s (SR μ-XRF setup) and 70 s (SR confocal μ-XRF setup) measurements. It was found that the uranium was present in a 10–15 μm peripheral layer of the hair shafts for both groups studied. Furthermore, potential external hair contamination was studied by scanning of unwashed hair shafts from the workers. Sites of very high uranium signal were identified as particles containing uranium. Such particles, were also seen in complementary analyses using variable pressure electron microscope coupled with energy dispersive X-ray analyzer (ESEM–EDX). However, the particles were not visible in washed hair shafts. These findings can further increase the understanding of uranium excretion in hair and its potential use as a biomonitor. - Highlights: • Uranium at the fg level was detectable and the uranium distribution in single hair shafts was derived. • The uranium is located peripherally on the shafts in what seems to be a layer of approximately 10-15 μm thickness. • Uranium bearing particles were found on hairs that had not been washed.

  19. Use of handheld X-ray fluorescence spectrometry units for identification of arsenic in treated wood

    Energy Technology Data Exchange (ETDEWEB)

    Block, Colleen N. [University of Miami, Department of Civil, Architectural, and Environmental Engineering, P.O. Box 248294, McArthur Building, Coral Gables, FL 33124-0630 (United States); Shibata, Tomoyuki [University of Miami, Department of Civil, Architectural, and Environmental Engineering, P.O. Box 248294, McArthur Building, Coral Gables, FL 33124-0630 (United States); Solo-Gabriele, Helena M. [University of Miami, Department of Civil, Architectural, and Environmental Engineering, P.O. Box 248294, McArthur Building, Coral Gables, FL 33124-0630 (United States)]. E-mail: hmsolo@miami.edu; Townsend, Timothy G. [University of Florida, Department of Environmental Engineering Sciences, Gainesville, FL 32611-6450 (United States)

    2007-07-15

    The objective of this study was to evaluate the performance of handheld XRF analyzers on wood that has been treated with a preservative containing arsenic. Experiments were designed to evaluate precision, detection limit, effective depth of analysis, and accuracy of the XRF arsenic readings. Results showed that the precision of the XRF improved with increased sample concentration and longer analysis times. Reported detection limits decreased with longer analysis times to values of less than 1 mg/kg or 18 mg/kg, depending on the model used. The effective depth of analysis was within the top 1.2 cm and 2.0 cm of sample for wood containing natural gradients of chemical preservative and concentration extremes, respectively. XRF results were found to be 1.5-2.3 times higher than measurements from traditional laboratory analysis. Equations can be developed to convert XRF values to results which are consistent with traditional laboratory testing. - Handheld XRF analyzers provided quantitative results for the amount of arsenic within preservative-treated wood.

  20. Direct rapid analysis of trace bioavailable soil macronutrients by chemometrics-assisted energy dispersive X-ray fluorescence and scattering spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kaniu, M.I., E-mail: ikaniu@uonbi.ac.ke [Institute of Nuclear Science and Technology, University of Nairobi, P.O. Box 30197-00100 Nairobi (Kenya); Angeyo, K.H. [Department of Physics, University of Nairobi, P.O. Box 30197-00100 Nairobi (Kenya); Mwala, A.K. [Department of Land Resource Management and Agricultural Technology, University of Nairobi, P.O. Box 30197-00100 Nairobi (Kenya); Mangala, M.J. [Institute of Nuclear Science and Technology, University of Nairobi, P.O. Box 30197-00100 Nairobi (Kenya)

    2012-06-04

    Highlights: Black-Right-Pointing-Pointer Chemometrics-assisted EDXRFS spectroscopy realizes direct, rapid and accurate analysis of trace bioavailable macronutrients in soils. Black-Right-Pointing-Pointer The method is minimally invasive, involves little sample preparation, short analysis times and is relatively insensitive to matrix effects. Black-Right-Pointing-Pointer This opens up the ability to rapidly characterize large number of samples/matrices with this method. - Abstract: Precision agriculture depends on the knowledge and management of soil quality (SQ), which calls for affordable, simple and rapid but accurate analysis of bioavailable soil nutrients. Conventional SQ analysis methods are tedious and expensive. We demonstrate the utility of a new chemometrics-assisted energy dispersive X-ray fluorescence and scattering (EDXRFS) spectroscopy method we have developed for direct rapid analysis of trace 'bioavailable' macronutrients (i.e. C, N, Na, Mg, P) in soils. The method exploits, in addition to X-ray fluorescence, the scatter peaks detected from soil pellets to develop a model for SQ analysis. Spectra were acquired from soil samples held in a Teflon holder analyzed using {sup 109}Cd isotope source EDXRF spectrometer for 200 s. Chemometric techniques namely principal component analysis (PCA), partial least squares (PLS) and artificial neural networks (ANNs) were utilized for pattern recognition based on fluorescence and Compton scatter peaks regions, and to develop multivariate quantitative calibration models based on Compton scatter peak respectively. SQ analyses were realized with high CMD (R{sup 2} > 0.9) and low SEP (0.01% for N and Na, 0.05% for C, 0.08% for Mg and 1.98 {mu}g g{sup -1} for P). Comparison of predicted macronutrients with reference standards using a one-way ANOVA test showed no statistical difference at 95% confidence level. To the best of the authors' knowledge, this is the first time that an XRF method has demonstrated

  1. Laboratory Scale X-ray Fluorescence Tomography: Instrument Characterization and Application in Earth and Environmental Science.

    Science.gov (United States)

    Laforce, Brecht; Vermeulen, Bram; Garrevoet, Jan; Vekemans, Bart; Van Hoorebeke, Luc; Janssen, Colin; Vincze, Laszlo

    2016-03-15

    A new laboratory scale X-ray fluorescence (XRF) imaging instrument, based on an X-ray microfocus tube equipped with a monocapillary optic, has been developed to perform XRF computed tomography experiments with both higher spatial resolution (20 μm) and a better energy resolution (130 eV @Mn-K(α)) than has been achieved up-to-now. This instrument opens a new range of possible applications for XRF-CT. Next to the analytical characterization of the setup by using well-defined model/reference samples, demonstrating its capabilities for tomographic imaging, the XRF-CT microprobe has been used to image the interior of an ecotoxicological model organism, Americamysis bahia. This had been exposed to elevated metal (Cu and Ni) concentrations. The technique allowed the visualization of the accumulation sites of copper, clearly indicating the affected organs, i.e. either the gastric system or the hepatopancreas. As another illustrative application, the scanner has been employed to investigate goethite spherules from the Cretaceous-Paleogene boundary, revealing the internal elemental distribution of these valuable distal ejecta layer particles.

  2. Nuclear analysis of Jordanian tobacco

    Science.gov (United States)

    Al-Saleh, K. A.; Saleh, N. S.

    The concentration of trace and minor elements in six different Jordanian and two foreign brands of cigarette tobacco and wrapping paper were determined using combined X-ray fluorescence (XRF) and Rutherford backscatteing (RBS) analysis techniques. The cigarette filter and the ash were also analyzed to determine the trapped elements on the filter and their transference with smoke. The toxic effects of some elements have been briefly discussed.

  3. In vivo XRF measurements of heavy elements: Summary of a workshop

    International Nuclear Information System (INIS)

    Wielopolski, L.; Ryon, R.W.

    1995-01-01

    This is a brief summary of the first workshop of open-quotes In Vivo XRF Measurements of Heavy Elements,close quotes at the Denver Conference on Applications of X-Ray Analysis. In vivo x-ray fluorescence has been applied to medical applications since the 1960's, with much of the pioneering work being done in Sweden (1). First measurements were of iodine in the thyroid. Elements from iron ID uranium have now been measured, at natural and elevated levels. Elevated levels occur either unintentionally through occupational or environmental exposure, or intentionally through medical administration. Examples of measurements are cadmium in kidney and liver, platinum in kidneys and tumors, mercury in the wrists and skulls of dentists, lead in various near-surface bones, copper in the eye and iron in skin. Nearly all measurements make use of either silicon or germanium detectors; radioisotopes and less frequently x-ray tubes are used for excitation. One question that those who work in an analytical chemistry laboratory often ask concerns radiation doses. Concern for x-ray safety ordinarily precludes putting living subjects into the x-ray beam. It turns out that radiation exposure due to in vivo x-ray fluorescence is quite low. The effective dose values for measurement of tibia lead concentration using a 109 Cd source (30 minute exposure) ranges from 0.036 uSv for adults to 1.1 uSv for infants (less than one tenth of a single dental x-ray) (2). Lower effective doses were reported when an x-ray machine was Used to measure L x-rays (3). These values are far below proposed limits of negligibility (10 USv) and average annual U.S. natural background radiation (3000 uSv). 17 refs

  4. Quantitative analysis of phosphosilicate glass films on silicon wafers for calibration of x-ray fluorescence spectrometry standards

    International Nuclear Information System (INIS)

    Weissman, S.H.

    1983-01-01

    The phosphorus and silicon contents of phosphosilicate glass films deposited by chemical vapor deposition (CVD) on silicon wafers were determined. These films were prepared for use as x-ray fluorescence (XRF) spectrometry standards. The thin films were removed from the wafer by etching with dilute hydrofluoric acid, and the P and Si concentrations in solution were determined by inductively coupled plasma atomic emission spectroscopy (ICP). The calculated phosphorus concentration ranged from 2.2 to 12 wt %, with an uncertainty of 2.73 to 10.1 relative percent. Variation between the calculated weight loss (summation of P 2 O 5 and SiO 2 amounts as determined by ICP) and the measured weight loss (determined gravimetrically) averaged 4.9%. Results from the ICP method, Fourier transform-infrared spectroscopy (FT-IR), dispersive infrared spectroscopy, electron microprobe, and x-ray fluorescence spectroscopy for the same samples are compared

  5. In vivo quantification of lead in bone with a portable x-ray fluorescence system--methodology and feasibility.

    Science.gov (United States)

    Nie, L H; Sanchez, S; Newton, K; Grodzins, L; Cleveland, R O; Weisskopf, M G

    2011-02-07

    This study was conducted to investigate the methodology and feasibility of developing a portable x-ray fluorescence (XRF) technology to quantify lead (Pb) in bone in vivo. A portable XRF device was set up and optimal settings of voltage, current, and filter combination for bone lead quantification were selected to achieve the lowest detection limit. The minimum radiation dose delivered to the subject was calculated by Monte Carlo simulations. An ultrasound device was used to measure soft tissue thickness to account for signal attenuation, and an alternative method to obtain soft tissue thickness from the XRF spectrum was developed and shown to be equivalent to the ultrasound measurements (intraclass correlation coefficient, ICC = 0.82). We tested the correlation of in vivo bone lead concentrations between the standard KXRF technology and the portable XRF technology. There was a significant correlation between the bone lead concentrations obtained from the standard KXRF technology and those obtained from the portable XRF technology (ICC = 0.65). The detection limit for the portable XRF device was about 8.4 ppm with 2 mm soft tissue thickness. The entrance skin dose delivered to the human subject was about 13 mSv and the total body effective dose was about 1.5 µSv and should pose minimal radiation risk. In conclusion, portable XRF technology can be used for in vivo bone lead measurement with sensitivity comparable to the KXRF technology and good correlation with KXRF measurements.

  6. In vivo quantification of lead in bone with a portable x-ray fluorescence system-methodology and feasibility

    International Nuclear Information System (INIS)

    Nie, L H; Sanchez, S; Newton, K; Weisskopf, M G; Grodzins, L; Cleveland, R O

    2011-01-01

    This study was conducted to investigate the methodology and feasibility of developing a portable x-ray fluorescence (XRF) technology to quantify lead (Pb) in bone in vivo. A portable XRF device was set up and optimal settings of voltage, current, and filter combination for bone lead quantification were selected to achieve the lowest detection limit. The minimum radiation dose delivered to the subject was calculated by Monte Carlo simulations. An ultrasound device was used to measure soft tissue thickness to account for signal attenuation, and an alternative method to obtain soft tissue thickness from the XRF spectrum was developed and shown to be equivalent to the ultrasound measurements (intraclass correlation coefficient, ICC = 0.82). We tested the correlation of in vivo bone lead concentrations between the standard KXRF technology and the portable XRF technology. There was a significant correlation between the bone lead concentrations obtained from the standard KXRF technology and those obtained from the portable XRF technology (ICC = 0.65). The detection limit for the portable XRF device was about 8.4 ppm with 2 mm soft tissue thickness. The entrance skin dose delivered to the human subject was about 13 mSv and the total body effective dose was about 1.5 μSv and should pose minimal radiation risk. In conclusion, portable XRF technology can be used for in vivo bone lead measurement with sensitivity comparable to the KXRF technology and good correlation with KXRF measurements. (note)

  7. Structural analysis of bioceramic materials for denture application

    Energy Technology Data Exchange (ETDEWEB)

    Rauf, Nurlaela, E-mail: n-rauf@fmipa.unhas.ac.id; Tahir, Dahlang; Arbiansyah, Muhammad [Dept of Physics, FMIPA-Univ. Hasanuddin Makassar Indonesia (Indonesia)

    2016-03-11

    Structural analysis has been performed on bioceramic materials for denture application by using X-ray diffraction (XRD), X-ray fluorescence (XRF), and Scanning Electron Microscopy (SEM). XRF is using for analysis chemical composition of raw materials. XRF shows the ratio 1 : 1 : 1 : 1 between feldspar, quartz, kaolin and eggshell, respectively, resulting composition CaO content of 56.78 %, which is similar with natural tooth. Sample preparation was carried out on temperature of 800 °C, 900 °C and 1000 °C. X-ray diffraction result showed that the structure is crystalline with trigonal crystal system for SiO{sub 2} (a=b=4.9134 Å and c=5.4051 Å) and CaH{sub 2}O{sub 2} (a=b=3.5925 Å and c=4.9082 Å). Based on the Scherrer’s equation showed the crystallite size of the highest peak (SiO{sub 2}) increase with increasing the temperature preparation. The highest hardness value (87 kg/mm{sup 2}) and match with the standards of dentin hardness. The surface structure was observed by using SEM also discussed.

  8. Carbon nanotubes allow capture of krypton, barium and lead for multichannel biological X-ray fluorescence imaging.

    Science.gov (United States)

    Serpell, Christopher J; Rutte, Reida N; Geraki, Kalotina; Pach, Elzbieta; Martincic, Markus; Kierkowicz, Magdalena; De Munari, Sonia; Wals, Kim; Raj, Ritu; Ballesteros, Belén; Tobias, Gerard; Anthony, Daniel C; Davis, Benjamin G

    2016-10-26

    The desire to study biology in situ has been aided by many imaging techniques. Among these, X-ray fluorescence (XRF) mapping permits observation of elemental distributions in a multichannel manner. However, XRF imaging is underused, in part, because of the difficulty in interpreting maps without an underlying cellular 'blueprint'; this could be supplied using contrast agents. Carbon nanotubes (CNTs) can be filled with a wide range of inorganic materials, and thus can be used as 'contrast agents' if biologically absent elements are encapsulated. Here we show that sealed single-walled CNTs filled with lead, barium and even krypton can be produced, and externally decorated with peptides to provide affinity for sub-cellular targets. The agents are able to highlight specific organelles in multiplexed XRF mapping, and are, in principle, a general and versatile tool for this, and other modes of biological imaging.

  9. Determination of Fe in blood using portable X-ray fluorescence spectrometry: an alternative for sports medicine

    International Nuclear Information System (INIS)

    Zamboni, C.B.; Metairon, S.; Kovacs, L.; Macedo, D.V.; Rizzutto, M.A.

    2016-01-01

    An alternate methodology based on a portable X-ray fluorescence spectrometry (PXRFS) for determination of Fe in blood was evaluated. The iron concentrations was determined in whole blood of 18 male amateur athletes (runners) using this portable XRF spectrometer and compared with a control group (54 male donors at the same age but not involved with physical activities) obtained by XRF and NAA techniques. The Fe concentration in the blood of runners is an important factor in sports medicine contributing to the performance of endurance athletes as well as for proposing new protocols of clinical evaluation. (author)

  10. Energetic electron processes fluorescence effects for structured nanoparticles X-ray analysis and nuclear medicine applications

    Energy Technology Data Exchange (ETDEWEB)

    Taborda, A.; Desbrée, A. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM/SDI/LEDI, BP-17, 31, Avenue de la Division Leclerc, 92262 Fontenay-aux-Roses (France); Carvalho, A. [IEQUALTECS, Lda, Rua Dr. Francisco Sá Carneiro, 36, 2500-065 S. Gregório CLD (Portugal); Chaves, P.C. [C" 2TN, Campus Tecnológico e Nuclear, Instituto Superior Técnico, Universidade de Lisboa, EN10 km 139.7, 2685-066 Bobadela LRS (Portugal); Reis, M.A., E-mail: mareis@ctn.tecnico.ulisboa.pt [IEQUALTECS, Lda, Rua Dr. Francisco Sá Carneiro, 36, 2500-065 S. Gregório CLD (Portugal); C" 2TN, Campus Tecnológico e Nuclear, Instituto Superior Técnico, Universidade de Lisboa, EN10 km 139.7, 2685-066 Bobadela LRS (Portugal)

    2016-08-15

    Superparamagnetic iron oxide (SPIO) nanoparticles are widely used as contrast agents for nuclear magnetic resonance imaging (MRI), and can be modified for improved imaging or to become tissue-specific or even protein-specific. The knowledge of their detailed elemental composition characterisation and potential use in nuclear medicine applications, is, therefore, an important issue. X-ray fluorescence techniques such as particle induced X-ray emission (PIXE) or X-ray fluorescence spectrometry (XRF), can be used for elemental characterisation even in problematic situations where very little sample volume is available. Still, the fluorescence coefficient of Fe is such that, during the decay of the inner-shell ionised atomic structure, keV Auger electrons are produced in excess to X-rays. Since cross-sections for ionisation induced by keV electrons, for low atomic number atoms, are of the order of 10{sup 3} barn, care should be taken to account for possible fluorescence effects caused by Auger electrons, which may lead to the wrong quantification of elements having atomic number lower than the atomic number of Fe. Furthermore, the same electron processes will occur in iron oxide nanoparticles containing {sup 57}Co, which may be used for nuclear medicine therapy purposes. In the present work, simple approximation algorithms are proposed for the quantitative description of radiative and non-radiative processes associated with Auger electrons cascades. The effects on analytical processes and nuclear medicine applications are quantified for the case of iron oxide nanoparticles, by calculating both electron fluorescence emissions and energy deposition on cell tissues where the nanoparticles may be embedded.

  11. Impurities determination on nuclear fuel element components for the IEA-R1 research reactor by analytical methods based on ED-XRF and ICP-OES

    International Nuclear Information System (INIS)

    Reis, Edson Luis Tocaia dos; Scapin, Marcos; Cotrim, Marycel Elena Barboza; Salvador, Vera Lucia; Pires, Maria Aparecida Faustino

    2009-01-01

    The production of nuclear fuel used in the research reactor at Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP) requires a series of chemical and metallurgical processes. The quality of the end product depends on the control over all the stages of the manufacturing process and over the quality of raw materials employed. In fact, spectrometric methods are increasingly used as quantitative analytical techniques applicable to uranium compounds because of simultaneous determination of several elements with minimum amounts of sample. However, the main obstacle of uranium compounds analysis by spectrometric techniques such as optical emission spectrometry with inductively coupled plasma (ICP-OES) is the complex emission spectrum of uranium. The ICP-OES is not appropriately capable of determining the major elements of interest without initial chemical separation of uranium. In this sense, the use of X-ray fluorescence spectrometry (XRF) has been considered for quantitative determination of main elements with the advantage of not being destructive and not requiring a prior preparation of samples for analysis. Due to the simplicity of this technique, its applicability includes research and quality control in universities, research institutions, petrochemical industries, metallurgy, mining, etc. In this work, some components considered impurities in nuclear fuel element samples used in the IEA-R1 research reactor of IPEN/CNEN-SP were chemically characterized by ICP-OES analysis after chromatography extraction separation by using TBP/XAD-14 system and compared to results obtained by energy dispersive X-ray fluorescence spectrometry (EDXRF) and wavelength dispersive X-ray fluorescence (WDXRF). (author)

  12. Portable X-ray fluorescence for the detection of POP-BFRs in waste plastics.

    Science.gov (United States)

    Sharkey, Martin; Abdallah, Mohamed Abou-Elwafa; Drage, Daniel S; Harrad, Stuart; Berresheim, Harald

    2018-05-17

    The purpose of this study was to establish the efficacy of portable X-ray fluorescence (XRF) instrumentation as a screening tool for a variety of end of life plastics which may contain excess amounts of brominated flame retardants (BFRs), in compliance with European Union (EU) and United Nations Environment Programme (UNEP) legislative limits (low POP concentration limits - LPCLs). 555 samples of waste plastics were collected from eight waste and recycling sites in Ireland, including waste electrical and electronic equipment (WEEE), textiles, polyurethane foams (PUFs), and expanded polystyrene foams. Samples were screened for bromine content, in situ using a Niton™ XL3T GOLDD XRF analyser, the results of which were statistically compared to mass spectrometry (MS)-based measurements of polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCDD) and tetrabromobisphenol-A (TBBP-A) concentrations in the same samples. Regression between XRF and MS for WEEE samples shows that, despite an overall favourable trend, large deviations occur for a cluster of samples indicative of other bromine-based compounds in some samples; even compensating for false-positives due to background interference from electronic components, XRF tends to over-estimate MS-determined BFR concentrations in the 100 to 10,000 mg kg -1 range. Substantial deviations were additionally found between results for PUFs, textiles and polystyrene samples, with the XRF over-estimating BFR concentrations by a factor of up to 1.9; this is likely due to matrix effects influencing XRF measurements. However, expanded (EPS) and extruded polystyrene (XPS) yielded much more reliable estimations of BFR-content due to a dominance of HBCDD in these materials. XRF proved much more reliable as a "pass/fail" screening tool for LPCL compliance (including a prospective LPCL on Deca-BDE based on REACH). Using a conservative threshold of BFR content exceeding legislative limits (710 mg kg -1 bromine

  13. X-ray fluorescence analysis in environmental radiological surveillance using HPGe detectors

    International Nuclear Information System (INIS)

    Herrera Peraza, E.; Renteria Villalobos, M.; Montero Cabrera, M.E.; Munoz Romero, A.

    2004-01-01

    X-ray fluorescence (XRF) has been proven to be a valuable tool for determining trace quantities of heavy metals, such as uranium and lead, in different types of samples. The present paper demonstrates the applicability of XRF spectrometry to measure the concentrations of these heavy metals in samples from natural ore and soil. The values of uranium concentrations in rock from the Pena Blanca uranium ore, in Chihuahua, Mexico, were calculated for the purpose of precertifying the rock powders samples. The comparison with other techniques, such as inductively coupled plasma atomic emission spectrometry, atomic absorption spectrometry, alpha spectrometry and electron microscopy, was used to complete the precertification process, so that the sample powders may be used as secondary standards. The source-sample-detector geometry and the incident angle are the most important factors for obtaining low detection limits. The selected system uses a 57 Co source of about 0.1 mCi to excite the K X-rays from uranium and lead. X-rays were recorded on a CANBERRA HPGe coaxial detector. The comparative results for two incident angles (90 deg and 180 deg ) performed previously by other authors show that the best geometry is the backscattering geometry. In the present paper, using EGS4 code system with Monte Carlo simulation, it was possible to determine the location and distribution of background produced by the Compton edge in the optimized geometry. This procedure allowed to find the minimum detectable concentration of uranium and lead, which was experimentally calculated using standards. The possibility of performing in vivo measurements rapidly and easily, as well as the factors affecting accuracy and the minimum detectable concentration in several samples are also discussed

  14. X-ray fluorescence analysis in environmental radiological surveillance using HPGe detectors

    Energy Technology Data Exchange (ETDEWEB)

    Herrera Peraza, E. [Department of Environmental Radiological Surveillance, Centro de Investigacion en Materiales Avanzados (CIMAV), P.O. Box 31109, Miguel de Cervantes no. 120, Complejo Industrial Chihuahua, Chihuahua (Mexico)]. E-mail: eduardo.herrera@cimav.edu.mx; Renteria Villalobos, M. [Department of Environmental Radiological Surveillance, Centro de Investigacion en Materiales Avanzados (CIMAV), P.O. Box 31109, Miguel de Cervantes no. 120, Complejo Industrial Chihuahua, Chihuahua (Mexico); Montero Cabrera, M.E. [Department of Environmental Radiological Surveillance, Centro de Investigacion en Materiales Avanzados (CIMAV), P.O. Box 31109, Miguel de Cervantes no. 120, Complejo Industrial Chihuahua, Chihuahua (Mexico); Munoz Romero, A. [Department of Environmental Radiological Surveillance, Centro de Investigacion en Materiales Avanzados (CIMAV), P.O. Box 31109, Miguel de Cervantes no. 120, Complejo Industrial Chihuahua, Chihuahua (Mexico)

    2004-10-08

    X-ray fluorescence (XRF) has been proven to be a valuable tool for determining trace quantities of heavy metals, such as uranium and lead, in different types of samples. The present paper demonstrates the applicability of XRF spectrometry to measure the concentrations of these heavy metals in samples from natural ore and soil. The values of uranium concentrations in rock from the Pena Blanca uranium ore, in Chihuahua, Mexico, were calculated for the purpose of precertifying the rock powders samples. The comparison with other techniques, such as inductively coupled plasma atomic emission spectrometry, atomic absorption spectrometry, alpha spectrometry and electron microscopy, was used to complete the precertification process, so that the sample powders may be used as secondary standards. The source-sample-detector geometry and the incident angle are the most important factors for obtaining low detection limits. The selected system uses a {sup 57}Co source of about 0.1 mCi to excite the K X-rays from uranium and lead. X-rays were recorded on a CANBERRA HPGe coaxial detector. The comparative results for two incident angles (90 deg and 180 deg ) performed previously by other authors show that the best geometry is the backscattering geometry. In the present paper, using EGS4 code system with Monte Carlo simulation, it was possible to determine the location and distribution of background produced by the Compton edge in the optimized geometry. This procedure allowed to find the minimum detectable concentration of uranium and lead, which was experimentally calculated using standards. The possibility of performing in vivo measurements rapidly and easily, as well as the factors affecting accuracy and the minimum detectable concentration in several samples are also discussed.

  15. Low-energy ED-XRF spectrometry application in gold assaying

    International Nuclear Information System (INIS)

    Marucco, Alessandra

    2004-01-01

    The performances of a low-energy dispersive XRF spectrometer in gold assaying are evaluated by a series of analysis on international standards and other certified gold alloys with. Results of standard-free analysis based on fundamental parameters method compared to results of multi-standard method, demonstrate a large gain of accuracy by drawing appropriate calibration curves with use of 1 to 16 matrix-specific standards. The accuracy of gold assaying has improved by a factor of 10, as compared to the conventional touchstone test. This rather economical technique satisfies then numerous precious alloys analyst needs, representing an excellent alternative to the traditional method for quick anti-fraud controls

  16. Quantitative analysis or rare earths by X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Taam, Isabel; Mantovano, J.L.; Gante, Valdir; Jesus, Camila S.

    2013-01-01

    Rare earths ores and compounds are of growing importance to the worldwide industry. Its applications range from raw material to catalysts, manufacturing of electronics and even super magnets. Therefore, the demand for quick and accurate quantitative analysis methods is continuously growing. Current quantification methods of rare earths involve the separation of these elements by ion exchange and liquid-liquid extraction prior to the analysis itself, processes both time and reagent consuming. In the present work, we propose a method that directly quantifies by XRF technique the following rare earths: La, Pr, Nd, Sm and Gd in a concentrated liquor whose matrix also contains Ca, Y, PO4, U and Th. We evaluated the analytical interference of each element present on the sample on X-rays spectrum. The studied samples are certified standards and the obtained results have been compared to EDTA titration results, an already well-established and widely trusted method.We also measured the matrix effect thus using a complex rare earths standard. Results show that quantification by XRF technique is as accurate as the results in dose titration with EDTA for the same elements, with the advantage of exempting the previous separation step from each rare earth and from other elements present in the matrix (such as U and Th). (author)

  17. Choice of excitation source for determination of rare earth elements with radioisotope excited X ray fluorescence

    International Nuclear Information System (INIS)

    Zhang Quanshi; Chang Yongfu

    2000-01-01

    The comparisons of two radioisotope source ( 241 Am and 238 Pu) which are the most available in the radioisotope excited X Ray Fluorescence (XRF) analysis technique and two characteristic X ray series (KX and LX) analyzed for the determination of the rare-earth (RE) elements were investigated in detail. According to the principle of emission and detection of X ray , the relative excitation efficiencies were calculated by the some fundamental physical parameters including the photoelectric mass attenuation coefficient, the fluorescent yield, the absorption jump factor, the emission probability of the detected fluorescent line with reference to other liens of the same series etc., The advantages and disadvantages of the two conditions are discussed. These results may determine the optimal excitation and detection conditions for different rare-earth elements. The experimental results with nine rare-earth elements (Ce, Nd, Sm, Tb, Tm, Ho, Er, Yb and Lu) are in agreement with the results of theoretical calculations

  18. Measurement of plutonium in spent nuclear fuel by self-induced x-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Hoover, Andrew S [Los Alamos National Laboratory; Rudy, Cliff R [Los Alamos National Laboratory; Tobin, Steve J [Los Alamos National Laboratory; Charlton, William S [Los Alamos National Laboratory; Stafford, A [TEXAS A& M; Strohmeyer, D [TEXAS A& M; Saavadra, S [ORNL

    2009-01-01

    Direct measurement of the plutonium content in spent nuclear fuel is a challenging problem in non-destructive assay. The very high gamma-ray flux from fission product isotopes overwhelms the weaker gamma-ray emissions from plutonium and uranium, making passive gamma-ray measurements impossible. However, the intense fission product radiation is effective at exciting plutonium and uranium atoms, resulting in subsequent fluorescence X-ray emission. K-shell X-rays in the 100 keV energy range can escape the fuel and cladding, providing a direct signal from uranium and plutonium that can be measured with a standard germanium detector. The measured plutonium to uranium elemental ratio can be used to compute the plutonium content of the fuel. The technique can potentially provide a passive, non-destructive assay tool for determining plutonium content in spent fuel. In this paper, we discuss recent non-destructive measurements of plutonium X-ray fluorescence (XRF) signatures from pressurized water reactor spent fuel rods. We also discuss how emerging new technologies, like very high energy resolution microcalorimeter detectors, might be applied to XRF measurements.

  19. Trace elemental analysis of school chalk using energy dispersive X-ray florescence spectroscopy (ED-XRF)

    International Nuclear Information System (INIS)

    Maruthi, Y. A.; Das, N. Lakshmana; Ramprasad, S.; Ram, S. S.; Sudarshan, M.

    2015-01-01

    The present studies focus the quantitative analysis of elements in school chalk to ensure the safety of its use. The elements like Calcium (Ca), Aluminum (Al), Iron (Fe), Silicon (Si) and Chromium (Cr) were analyzed from settled chalk dust samples collected from five classrooms (CD-1) and also from another set of unused chalk samples collected from local market (CD-2) using Energy Dispersive X-Ray florescence(ED-XRF) spectroscopy. Presence of these elements in significant concentrations in school chalk confirmed that, it is an irritant and occupational hazard. It is suggested to use protective equipments like filtered mask for mouth, nose and chalk holders. This study also suggested using the advanced mode of techniques like Digital boards, marker boards and power point presentations to mitigate the occupational hazard for classroom chalk

  20. Trace elemental analysis of school chalk using energy dispersive X-ray florescence spectroscopy (ED-XRF)

    Energy Technology Data Exchange (ETDEWEB)

    Maruthi, Y. A., E-mail: ymjournal2014@gmail.com [Associate professor, Dept of Environmental Studies, GITAM Institute of Science, GITAM University, Visakhapatnam, A.P (India); Das, N. Lakshmana, E-mail: nldas9@gmail.com [Professor, Dept of Physics, GITAM Institute of Science, GITAM University, Visakhapatnam, A.P (India); Ramprasad, S., E-mail: ramprasadsurakala@gmail.com [Research Scholar, Dept of Environmental science, GITAM Institute of Science, GITAM University, Visakhapatnam, A.P (India); Ram, S. S., E-mail: tracebio@gmail.com [Research Scholar, Dept of Trace element research, UGC-DAE Consortium Centre, Kolkata centre India (India); Sudarshan, M., E-mail: sude@alpha.iuc.res.in [Scientist-F, Dept of Trace element research, UGC-DAE Consortium Centre, Kolkata centre India (India)

    2015-08-28

    The present studies focus the quantitative analysis of elements in school chalk to ensure the safety of its use. The elements like Calcium (Ca), Aluminum (Al), Iron (Fe), Silicon (Si) and Chromium (Cr) were analyzed from settled chalk dust samples collected from five classrooms (CD-1) and also from another set of unused chalk samples collected from local market (CD-2) using Energy Dispersive X-Ray florescence(ED-XRF) spectroscopy. Presence of these elements in significant concentrations in school chalk confirmed that, it is an irritant and occupational hazard. It is suggested to use protective equipments like filtered mask for mouth, nose and chalk holders. This study also suggested using the advanced mode of techniques like Digital boards, marker boards and power point presentations to mitigate the occupational hazard for classroom chalk.

  1. Analysis of precious metals at parts-per-billion levels in industrial applications

    International Nuclear Information System (INIS)

    Tickner, James; O'Dwyer, Joel; Roach, Greg; Smith, Michael; Van Haarlem, Yves

    2015-01-01

    Precious metals, including gold and the platinum group metals (notable Pt, Pd and Rh), are mined commercially at concentrations of a few parts-per-million and below. Mining and processing operations demand sensitive and rapid analysis at concentrations down to about 100 parts-per-billion (ppb). In this paper, we discuss two technologies being developed to meet this challenge: X-ray fluorescence (XRF) and gamma-activation analysis (GAA). We have designed on-stream XRF analysers capable of measuring targeted elements in slurries with precisions in the 35–70 ppb range. For the past two years, two on-stream analysers have been in continuous operation at a precious metals concentrator plant. The simultaneous measurement of feed and waste stream grades provides real-time information on metal recovery, allowing changes in operating conditions and plant upsets to be detected and corrected more rapidly. Separately, we have been developing GAA for the measurement of gold as a replacement for the traditional laboratory fire-assay process. High-energy Bremsstrahlung X-rays are used to excite gold via the 197 Au(γ,γ′) 197 Au-M reaction, and the gamma-rays released in the decay of the meta-state are then counted. We report on work to significantly improve accuracy and detection limits. - Highlights: • X-ray fluorescence analysis at sub-parts-per-million concentration in bulk materials. • Gamma activation analysis of gold at high accuracy and low concentrations. • Use of advanced Monte Carlo techniques to optimise radiation-based analysers. • Industrial application of XRF and GAA technologies for minerals processing.

  2. Off-line NDA measurement of actinides in reprocessing solution using hybrid K-edge/K-XRF densitometer

    International Nuclear Information System (INIS)

    Bootharajan, M.; Swaminathan, K.; Venkata Subramani, C.R.; Kumar, R.

    2015-01-01

    A versatile, nondestructive assay (NDA) system of a hybrid K-edge/K-XRF facility adapted to a glove box facility has been developed at RCL, IGCAR for the analysis of U and Pu in process solutions obtained from the reprocessing of spent nuclear fuels. This paper describes i) The development of a hybrid K-edge/K-XRF facility adapted to a glove box system ii) The results obtained using conditioner solution of burn up 155 GWd/t with a dose of 20 R/h and iii) Comparison of the results with the parallel analyses of the same by Isotope dilution mass spectrometry. The hybrid K-edge cum K-XRF densitometer is ideally suited for dissolver solutions as well as U and Pu product solutions from reprocessing plant. This method can be useful in the analysis of mixed solution of Special Nuclear Materials (SNM) without chemical separation. To assay solutions with high radiation background, the hybrid K-edge/K-XRF system is designed and fabricated inside a glove box with adequate shielding from both source X-rays and the sample radiation. The theory and preliminary experiments are described elsewhere. Around 5 mL of the conditioner solution (burn up of 155 GWd/t with a dose of 20 R/h) was taken in a poly propylene vial placed concentrically in to another poly propylene vial. The concentration was estimated by K-edge densitometry with X-ray tube operated with 150 kV and 1 mA and counting period of 3000s. Background correction was obtained with the X-ray tube in OFF condition. The solution was analysed parallelly using isotopic dilution mass spectrometry

  3. Matrix Effects in XRF Measurements

    International Nuclear Information System (INIS)

    Kandil, A.T.; Gabr, N.A.; El-Aryan, S.M.

    2015-01-01

    This research treats the matrix effect on XRF measurements. The problem is treated by preparing general oxide program, which contains many samples that represent all materials in cement factories, then by using T rail Lachance m ethod to correct errors of matrix effect. This work compares the effect of using lithium tetraborate or sodium tetraborate as a fluxing agent in terms of accuracy and economic cost

  4. Exams for attribution of sevres porcelain by x-ray fluorescence in Havana museums

    International Nuclear Information System (INIS)

    Mendoza Cuevas, Ariadna; Nazco Torres, Julio

    2010-01-01

    Analysis with X-ray fluorescence on Sevres porcelain was performed in order to determine criteria from the scientific examination that may support the attribution of special pieces. Multielemental chemical analyses of decorations colours, marks and glazed porcelain body were related to specific historic information about used materials and procedure of Sevres french manufactory. The used portable XRF spectrometer allows non destructive and in situ studies of Havana's collections with adequate sensibility for this application. Collections of Havana City Museum, Decorative Art Museum and Napoleonic Museum and some pieces of different background were studied. Non typical pigments used in Sevres allows to identify non genuine Sevres decorations while cluster analysis on porcelain body differentiates Sevres and 'surdecor' porcelains from Sevres style non genuine porcelains. (author)

  5. Exams for attribution of sevres porcelain by x-ray fluorescence in Havana museums

    International Nuclear Information System (INIS)

    Mendoza Cuevas, Ariadna; Nazco Torres, Julio

    2009-01-01

    Analysis with X-ray fluorescence on Sevres porcelain was performed in order to determine criteria from the scientific examination that may support the attribution of special pieces. Multielemental chemical analyses of decorations colours, marks and glazed porcelain body were related to specific historic information about used materials and procedure of Sevres french manufactory. The used portable XRF spectrometer allows non destructive and in situ studies of Havana's collections with adequate sensibility for this application. Collections of Havana City Museum, Decorative Art Museum and Napoleonic Museum and some pieces of different background were studied. Non typical pigments used in Sevres allows to identify non genuine Sevres decorations while cluster analysis on porcelain body differentiates Sevres and 'surdecor' porcelains from Sevres style non genuine porcelains. (author)

  6. Applications of the X-ray fluorescence technique to medical dynamic studies

    International Nuclear Information System (INIS)

    Magrini, A.; Cesareo, R.; Salmi, M.; Gigante, G.E.

    1978-01-01

    The energy dispersive X ray fluorescence technique (XRF) was employed to follow the evolution of the concentration of stable tracers for diagnostic purposes. A simple and relatively inexpensive XRF system, based on the use of a small sealed-off radioisotopic source and a proportional gas counter, was utilized in the study of human blood platelet survival 'in vitro', rabbit platelet survival 'in vivo' and in clearance studies of the human knee joint 'in vivo'. The survival curves of human and rabbit platelets were determined employing stable Rubidium as a tracer. The clearance rate of a stable Iodinate compound from the synovial cavity was measured in normal and pathological conditions. Results obtained suggest that the method can be usefully employed to monitor the course of disease and to establish the efficacy of treatment

  7. Development of a portable system of grazing exit X-Ray fluorescence applied to environmental and biological studies

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Ramon S.; Oliveira, Davi F.; Anjos, Marcelino J. [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Instituto de Fisica; Assis, Joaquim T., E-mail: ramonziosp@yahoo.com.br, E-mail: davi.oliveira@uerj.br, E-mail: marcelin@uerj.br, E-mail: joaquim.iprj@gmail.com [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Instituto Politécnico

    2017-07-01

    In this study was developed a portable system of grazing exit X-ray fluorescence (geometric 90° - 0°) that will be applied in environmental studies (aerosol samples) and biological studies. GE-XRF portable system is formed by a mini X-ray tube of low power (anode of Au, maximum voltage and current of 50 kV and 200 μA, respectively) and a SiPIN detector (model XR-100CR of the Amptek). The reflectors used as sample support (sampler carrier) were quartz discs with 25.4 mm diameter and 3.0 mm thickness. The grazing exit angle was experimentally determined by measuring a cooper solution (10 μg.g{sup -1}). The system of GE-XRF proved to be quite stable and reproducible. It was calculated the sensibility curve of the system using multielement solutions. The accuracy of the system was checked using multielement reference solution as standard reference material. The relative errors between measured and certified values are in the range of 4 to 19%. The first results showed a background was drastically reduced at grazing exit angles, enabling trace elemental analysis. This paper shows that it is possible to produce a portable system of grazing exit X-ray fluorescence compact, efficient, low-cost and easy-to-handle instrumentation using a low-power X-ray tube and a SiPIN compact detector. (author)

  8. Where Worlds Collide : A typological and compositional analysis of the copper-alloy mounts from Viking Age Walcheren

    NARCIS (Netherlands)

    Roxburgh, Marcus A.; IJssennagger, Nelleke; Huisman, Hans D.J.; Van Os, Bertil J.H.

    2015-01-01

    In this article we present a new typological analysis, supported by compositional data gathered using Hand-Held X-Ray Fluorescence Spectrometry (HH-XRF), for a large group of Viking-Age mounts, found in and around the North Sea coastal town of Domburg (Walcheren, The Netherlands). This new data

  9. Some considerations on X-ray fluorescence use in museum measurements - The case of medieval silver coins

    International Nuclear Information System (INIS)

    Constantinescu, B.; Bugoi, R.; Oberlaender-Tarnoveanu, E.; Parvan, K.

    2005-01-01

    The purpose of this paper is to give a general layout for the potential applications of Energy-Dispersive X-Ray Fluorescence (ED-XRF) technique for ancient silver coin characterization, using in-situ (in museums) measurements. Examples concerning originality testing, provenance (mines, workshops) identification, counterfeits selection, historical studies (manufacturing technologies, commercial, military and political relationships) are given. Two study cases of medieval coins are described: German brakteaten pfennige and Moldavian groschen. Other analysis methods and their use in the study of medieval coins are illustrated with the example of Particle Induced X-ray Emission (PIXE) technique. (authors)

  10. Development of a portable system of X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Mantuano, Andrea; Crisostomo, Jose V.V.; Barros, Mariana J.; Oliveira, Luis F.; Barroso, Regina C.

    2009-01-01

    This paper develops a compact and portable spectrometry system that will be used at the Laboratory of Applied Physics to the Biomedical and Environmental Sciences of the Institute of Physics/UERJ, Rio de Janeiro, Brazil. The laboratory both prepares the samples and develops the X-ray spectrometry techniques. The techniques of X-ray diffraction and fluorescence on various samples (biological, industrial and environmental) are used, attending to pos-graduation and graduation students, with multidisciplinary characteristics. The Mini-X system consists of X-ray mini tube MINI-X from Amptek with tungsten (W) target, and a compact spectrometer X123, also from Amptek that includes a detector, pre-amplifier, digital pulse processor, and multichannel. All the system is controlled by dedicated microprocessor. This work will present both a methodology for alignment and calibration of the system as far the first measurements performed using the X-ray fluorescence technique on standard samples. The multi elementary analysis by X-ray fluorescence (XRF) is based on the measurements of the characteristic X-ray intensity emitted by the chemical elements components of the samples when excited. Therefore, from the development of this compact and versatile system it will be possible to obtain the fluorescent intensities of the analysed samples at the Laboratory, not only at the research area but at the teaching area. Besides, new laboratory practices are being developed for the discipline of medical physics

  11. Sample preparation for total reflection X-ray fluorescence analysis using resist pattern technique

    Science.gov (United States)

    Tsuji, K.; Yomogita, N.; Konyuba, Y.

    2018-06-01

    A circular resist pattern layer with a diameter of 9 mm was prepared on a glass substrate (26 mm × 76 mm; 1.5 mm thick) for total reflection X-ray fluorescence (TXRF) analysis. The parallel cross pattern was designed with a wall thickness of 10 μm, an interval of 20 μm, and a height of 1.4 or 0.8 μm. This additional resist layer did not significantly increase background intensity on the XRF peaks in TXRF spectra. Dotted residue was obtained from a standard solution (10 μL) containing Ti, Cr, Ni, Pb, and Ga, each at a final concentration of 10 ppm, on a normal glass substrate with a silicone coating layer. The height of the residue was more than 100 μm, where self-absorption in the large residue affected TXRF quantification (intensity relative standard deviation (RSD): 12-20%). In contrast, from a droplet composed of a small volume of solution dropped and cast on the resist pattern structure, the obtained residue was not completely film but a film-like residue with a thickness less than 1 μm, where self-absorption was not a serious problem. In the end, this sample preparation was demonstrated to improve TXRF quantification (intensity RSD: 2-4%).

  12. Identification and characterization of historical pigments with x-ray diffraction analysis (XRD), x-ray fluorescence analysis (XRA) and Fourier transformed infrared spectroscopy (FTIR)

    International Nuclear Information System (INIS)

    Hochleitner, B.

    2002-11-01

    This thesis presents a systematic characterization of historical inorganic pigments with respect to their crystallographic structure, main components, and trade elements, utilizing three complementary methods. The results are compiled in a computer-database containing the experimentally obtained information. The specimens examined in this study originate from a collection of 19th and 20th century pigments, dyes and binders with a wide variety of colors and materials at the Institute of Natural Sciences and Technologies in Art of the Academy of Fine Arts in Vienna. Approximately 400 different inorganic pigments were analysed for this first study of its kind by combining the experimental techniques explained in the next paragraph. For analyzing the inorganic pigments three different methods were applied: x-ray diffraction (XRD), x-ray fluorescence (XRF) and fourier-transformed infrared spectroscopy (FTIR) proved to be suitable techniques to identify and characterize the composition of the materials. The experimental work was focused on x-ray diffraction to detect the main components and to perform phase analysis for the identification of the crystallographic structure. To facilitate the analysis of the diffractograms and investigate differences in the elemental composition, XRF-measurements were carried out and complemented by FTIR-spectroscopy. The latter technique supports the identification of organic components of the samples and both ease phase analysis. In some cases, the obtained results show remarkable differences in composition for pigments having the same trade name. These differences consist either with respect to the identified elements or added components, such as pure white pigments. However, in most cases the chemical structure of the phase determining the color of the relevant pigment group was similar. Knowledge of the composition of the originally used pigments is of great importance for the restoration and conservation of art objects. In order to

  13. In situ characterization of the black pigment from parietal art of the Rouffignac Cave with a portable XRF system

    International Nuclear Information System (INIS)

    Sanoit, J. de; Chambellan, D.; Plassard, F.

    2005-01-01

    The Rouffignac cave in Dordogne (France) is a palaeolithic site which contains, among others, an important patrimony of cave art realized with black pigment (mammoths, bisons, woolly rhinoceros, horses, ibexes). Although no direct dating has ever been realized to date, the graphic works of this cave are generally connected to the Magdalenian age by cross-dating (stylistic comparison). For the first time, in situ non destructive analyses of this pigment were able to be made due to the use of a portable XRF system (X-Ray Fluorescence). The experimental set-up is mainly constituted with a small X-ray generator (Bullet TM 40 kV, Moxtek), a SDD detector (silicon drift detector, Rontec 1102) cooled by a Peltier cryostat and an optical system, the whole being connected to a portable system for acquisition of spectrometric data. The experimental spectra obtained on the three rhinoceros frieze, the horse over the flint nodule, the ten mammoths frieze and some animals of the Grand Plafond showed a systematic presence of manganese in all figures. This hypothesis had been already suggested by Graziosi in 1956 in the review 'La Nature' after a destructive analysis of a sample taken on one of the horses of the Grand Plafond. A Monte-Carlo simulation allowed a first quantitative approach in the analysis of the black pigment of the drawings. We can assess that the used manganese ore does not only result from a unique source because variable ratios of manganese, barium and iron were probed in the black pigment. None of the studied drawing was executed exclusively with black charcoal that would have made the selection of a sample suitable for radiocarbon dating less complicated. Additional non destructive in situ analysis using a portable PIXE set-up (Particles Induced X-ray Emission) equipped with a 210 Po as radiation source can be foreseen to allow the detection of elements with atomic numbers (Z) between 11 and 16 in the first layers of the black pigment, there where the XRF

  14. Portable XRF as a valuable device for preliminary in situ pigment investigation of wooden inventory in the Trski Vrh Church in Croatia

    International Nuclear Information System (INIS)

    Desnica, V.; Skaric, K.; Mudronja, D.; Pavlicic, M.; Peranic, I.; Jembrih-Simbuerger, D.; Schreiner, M.; Fazinic, S.; Jaksic, M.

    2008-01-01

    The aim of this work was the investigation of pigments from the painted wooden inventory of the pilgrimage church of Saint Mary of Jerusalem in Trski Vrh - one of the most beautiful late-baroque sacral ensembles in Croatia. Being an object of high relevance for the national cultural heritage, an extensive research on the wooden polychromy was undertaken in order to work out a proposal for a conservation treatment. It consists mainly of two painted and gilded layers (the original one from the 18th century and a later one from 1903), partly overpainted during periodic conservation treatments in the past. The approach was to carry out extensive preliminary in situ pigment investigations using a portable XRF (X-ray fluorescence) device, and only the problems not resolved by this method on site were further analyzed using sophisticated laboratory equipment. Therefore, the XRF results acted as a valuable guideline for subsequent targeted sampling actions, thus minimizing the sampling damage. Important questions not answered by XRF (identification of organic pigments, ultramarine, etc.) were subsequently resolved using additional ex situ laboratory methods, primarily μ-PIXE (particle-induced X-ray emission) at the nuclear microprobe of the Rudjer Boskovic accelerator facility as well as μ-Raman spectroscopy at the Institute of the Academy of Fine Arts in Vienna. It is shown that by the combination of these often complementary methods a thorough characterization of each pigment can be obtained, allowing for a proper strategy of the conservation treatment. (orig.)

  15. Determination of the chemical properties of residues retained in individual cloud droplets by XRF microprobe at SPring-8

    International Nuclear Information System (INIS)

    Ma, C.-J.; Tohno, S.; Kasahara, M.; Hayakawa, S.

    2004-01-01

    To determine the chemical properties of residue retained in individual cloud droplets is primarily important for the understanding of rainout mechanism and aerosol modification in droplet. The sampling of individual cloud droplets were carried out on the summit of Mt. Taiko located in Tango peninsula, Kyoto prefecture, during Asian dust storm event in March of 2002. XRF microprobe system equipped at SPring-8, BL-37XU was applied to the subsequent quantification analysis of ultra trace elements in residues of individual cloud droplets. It was possible to form the replicas of separated individual cloud droplets on the thin collodion film. The two dimensional XRF maps for the residues in individual cloud droplets were clearly drawn by scanning of micro-beam. Also, XRF spectra of trace elements in residues were well resolved. From the XRF spectra for individual residues, the chemical mixed state of residues could be assumed. The chemical forms of Fe (Fe +++ ) and Zn (Zn + ) could be clearly characterized by their K-edge micro-XANES spectra. By comparison of Z/Si mass ratios of residues in cloud droplets and those of the original sands collected in desert areas in China, the aging of ambient dust particles and their in cloud modification were indirectly assumed

  16. Sheet Fluorescence and Annular Analysis of Ultracold Neutral Plasmas

    International Nuclear Information System (INIS)

    Castro, J.; Gao, H.; Killian, T. C.

    2009-01-01

    Annular analysis of fluorescence imaging measurements on Ultracold Neutral Plasmas (UNPs) is demonstrated. Spatially-resolved fluorescence imaging of the strontium ions produces a spectrum that is Doppler-broadened due to the thermal ion velocity and shifted due to the ion expansion velocity. The fluorescence excitation beam is spatially narrowed into a sheet, allowing for localized analysis of ion temperatures within a volume of the plasma with small density variation. Annular analysis of fluorescence images permits an enhanced signal-to-noise ratio compared to previous fluorescence measurements done in strontium UNPs. Using this technique and analysis, plasma ion temperatures are measured and shown to display characteristics of plasmas with strong coupling such as disorder induced heating and kinetic energy oscillations.

  17. A high-quality multilayer structure characterization method based on X-ray fluorescence and Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Brunetti, Antonio; Golosio, Bruno [Universita degli Studi di Sassari, Dipartimento di Scienze Politiche, Scienze della Comunicazione e Ingegneria dell' Informazione, Sassari (Italy); Melis, Maria Grazia [Universita degli Studi di Sassari, Dipartimento di Storia, Scienze dell' Uomo e della Formazione, Sassari (Italy); Mura, Stefania [Universita degli Studi di Sassari, Dipartimento di Agraria e Nucleo di Ricerca sulla Desertificazione, Sassari (Italy)

    2014-11-08

    X-ray fluorescence (XRF) is a well known nondestructive technique. It is also applied to multilayer characterization, due to its possibility of estimating both composition and thickness of the layers. Several kinds of cultural heritage samples can be considered as a complex multilayer, such as paintings or decorated objects or some types of metallic samples. Furthermore, they often have rough surfaces and this makes a precise determination of the structure and composition harder. The standard quantitative XRF approach does not take into account this aspect. In this paper, we propose a novel approach based on a combined use of X-ray measurements performed with a polychromatic beam and Monte Carlo simulations. All the information contained in an X-ray spectrum is used. This approach allows obtaining a very good estimation of the sample contents both in terms of chemical elements and material thickness, and in this sense, represents an improvement of the possibility of XRF measurements. Some examples will be examined and discussed. (orig.)

  18. A high-quality multilayer structure characterization method based on X-ray fluorescence and Monte Carlo simulation

    International Nuclear Information System (INIS)

    Brunetti, Antonio; Golosio, Bruno; Melis, Maria Grazia; Mura, Stefania

    2015-01-01

    X-ray fluorescence (XRF) is a well known nondestructive technique. It is also applied to multilayer characterization, due to its possibility of estimating both composition and thickness of the layers. Several kinds of cultural heritage samples can be considered as a complex multilayer, such as paintings or decorated objects or some types of metallic samples. Furthermore, they often have rough surfaces and this makes a precise determination of the structure and composition harder. The standard quantitative XRF approach does not take into account this aspect. In this paper, we propose a novel approach based on a combined use of X-ray measurements performed with a polychromatic beam and Monte Carlo simulations. All the information contained in an X-ray spectrum is used. This approach allows obtaining a very good estimation of the sample contents both in terms of chemical elements and material thickness, and in this sense, represents an improvement of the possibility of XRF measurements. Some examples will be examined and discussed. (orig.)

  19. Analysis of gold in jewellery articles by energy dispersive XRF

    International Nuclear Information System (INIS)

    Meor Yusoff Meor Sulaiman; Latifah Amin

    2001-01-01

    The value of a precious metal article is much related to its fineness. For gold assay, conventional fire assay technique has been used as the standard technique for more than 500 years. Alternative modern techniques like energy dispersive x-ray fluorescence can also be used in the determination of gold purity. Advantages of this technique compared to the conventional method including non-destructive analysis, does not use any toxic or hazardous chemicals, automatic computer control and is user friendly, requires minimum number of personnel, shorter analysis time and able to determine associated elements in the metal. Analysis was performed on different sizes and purity of gold. Comparison results for the analysis using different reference standards show small differences between technique and its certified value. The technique also gives small standard deviation value in its repeatability test. (Author)

  20. Micro energy dispersive X-ray fluorescence analysis of polychrome lead-glazed Portuguese faiences

    International Nuclear Information System (INIS)

    Guilherme, A.; Pessanha, S.; Carvalho, M.L.; Santos, J.M.F. dos; Coroado, J.

    2010-01-01

    Several glazed ceramic pieces, originally produced in Coimbra (Portugal), were submitted to elemental analysis, having as premise the pigment manufacture production recognition. Although having been produced in Coimbra, their location changed as time passed due to historical reasons. A recent exhibition in Coimbra brought together a great number of these pieces and in situ micro Energy Dispersive X-ray Fluorescence (μ-EDXRF) analyses were performed in order to achieve some chemical and physical data on the manufacture of faiences in Coimbra. A non-commercial μ-EDXRF equipment for in situ analysis was employed in this work, carrying some important improvements when compared to the conventional ones, namely, analyzing spot sizes of about 100 μm diameter. The combination of a capillary X-ray lens with a new generation of low power microfocus X-ray tube and a drift chamber detector enabled a portable unit for micro-XRF with a few tens of μm lateral resolution. The advantages in using a portable system emphasized with polycapillary optics enabled to distinguish proximal different pigmented areas, as well as the glaze itself. These first scientific results on the pigment analysis of the collection of faiences seem to point to a unique production center with own techniques and raw materials. This conclusion arose with identification of the blue pigments having in its constitution Mn, Fe Co and As and the yellows as a result of the combination between Pb and Sb. A statistical treatment was used to reveal groups of similarities on the pigments elemental profile.

  1. Scanning fluorescent microscopy is an alternative for quantitative fluorescent cell analysis.

    Science.gov (United States)

    Varga, Viktor Sebestyén; Bocsi, József; Sipos, Ferenc; Csendes, Gábor; Tulassay, Zsolt; Molnár, Béla

    2004-07-01

    Fluorescent measurements on cells are performed today with FCM and laser scanning cytometry. The scientific community dealing with quantitative cell analysis would benefit from the development of a new digital multichannel and virtual microscopy based scanning fluorescent microscopy technology and from its evaluation on routine standardized fluorescent beads and clinical specimens. We applied a commercial motorized fluorescent microscope system. The scanning was done at 20 x (0.5 NA) magnification, on three channels (Rhodamine, FITC, Hoechst). The SFM (scanning fluorescent microscopy) software included the following features: scanning area, exposure time, and channel definition, autofocused scanning, densitometric and morphometric cellular feature determination, gating on scatterplots and frequency histograms, and preparation of galleries of the gated cells. For the calibration and standardization Immuno-Brite beads were used. With application of shading compensation, the CV of fluorescence of the beads decreased from 24.3% to 3.9%. Standard JPEG image compression until 1:150 resulted in no significant change. The change of focus influenced the CV significantly only after +/-5 microm error. SFM is a valuable method for the evaluation of fluorescently labeled cells. Copyright 2004 Wiley-Liss, Inc.

  2. Preliminary Study to Test the Feasibility of Sex Identification of Human (Homo sapiens) Bones Based on Differences in Elemental Profiles Determined by Handheld X-ray Fluorescence.

    Science.gov (United States)

    Nganvongpanit, Korakot; Buddhachat, Kittisak; Brown, Janine L; Klinhom, Sarisa; Pitakarnnop, Tanita; Mahakkanukrauh, Pasuk

    2016-09-01

    Sex assignment of human remains is a crucial step in forensic anthropological studies. The aim of this study was to examine elemental differences between male and female bones using X-ray fluorescence (XRF) and determine if elemental profiling could be used for sex discrimination. Cranium, humerus, and os coxae of 60 skeletons (30 male, 30 female) from the Chiang Mai University Skeletal Collection were scanned by XRF and differences in elemental profiles between male and female bones determined using discriminant analysis. In the cranium, three elements (S, Ca, Pb) were significantly higher in males and five elements (Si, Mn, Fe, Zn, Ag) plus light elements (atomic number lower than 12) were higher in females. In humerus and os coxae, nine elements were significantly higher in male and one element was higher in female samples. The accuracy rate for sex estimation was 60, 63, and 61 % for cranium, humerus, and os coxae, respectively, and 67 % when data for all three bones were combined. We conclude that there are sex differences in bone elemental profiles; however, the accuracy of XRF analyses for discriminating between male and female samples was low compared to standard morphometric and molecular methods. XRF could be used on small samples that cannot be sexed by traditional morphological methods, but more work is needed to increase the power of this technique for gender assignment.

  3. Use of portable X-ray fluorescence spectrometry for environmental quality assessment of peri-urban agriculture.

    Science.gov (United States)

    Weindorf, David C; Zhu, Yuanda; Chakraborty, Somsubhra; Bakr, Noura; Huang, Biao

    2012-01-01

    Urban expansion into traditional agricultural lands has augmented the potential for heavy metal contamination of soils. This study examined the utility of field portable X-ray fluorescence (PXRF) spectrometry for evaluating the environmental quality of sugarcane fields near two industrial complexes in Louisiana, USA. Results indicated that PXRF provided quality results of heavy metal levels comparable to traditional laboratory analysis. When coupled with global positioning system technology, the use of PXRF allows for on-site interpolation of heavy metal levels in a matter of minutes. Field portable XRF was shown to be an effective tool for rapid assessment of heavy metals in soils of peri-urban agricultural areas.

  4. Analysis of trace element compositions in adhesive cloth tapes using high-energy x-ray fluorescence spectrometer with three-dimensional polarization optics for forensic discrimination

    International Nuclear Information System (INIS)

    Goto, Akiko; Hokura, Akiko; Nakai, Izumi

    2008-01-01

    The forensic discrimination of adhesive cloth tapes often used in crimes was developed using a high-energy energy-dispersive X-ray fluorescence spectrometer with 3-dimensional polarization optics. The best measurement condition for discrimination of the tape was as follows: secondary targets, Rh and Al 2 O 3 ; measurement time, 300 s for Rh and 600 s for Al 2 O 3 ; 14 elements (Ca, Ti, Cr, Mn, Fe, Ni, Zn, Sr, Zr, Nb, Mo, Sb, Ba and Pb) were used for discrimination. It is found that the combined information of yarn density and the XRF peak intensity of the 14 elements successfully discriminated 29 out of 31 samples, of which 2 probably had the same origin. This technique is useful for forensic analysis, because it is nondestructive, rapid and easy. Therefore, it can be applied to actual forensic identification. (author)

  5. Development of a 170Tm source for mercury monitoring studies in humans using XRF

    International Nuclear Information System (INIS)

    Timmaraju, K. Phanisree; Fajurally, Bibi Najah; Armstrong, Andrea F.; Chettle, David R.

    2016-01-01

    The goals of the present study were to develop a 170 Tm radioisotope and generate a K XRF spectrum of mercury. Thulium foil and thulium oxide powder were both tested for impurities and the latter was found to be a better prospect for further studies. The 170 Tm radioisotope was developed from thulium oxide powder following the method of disolution and absorption. A suitable source holder and collimator were also designed based on Monte Carlo simulations. Using the radioisotope thus developed, a mercury XRF spectrum was successfully generated. - Highlights: • We tested the purity of thulium samples by XRF and NAA techniques. • Developed a procedure to generate Tm-170 isotope out of thulium oxide powder. • Designed a collimator and source holder • Generated XRF spectrum of mercury using the Tm-170 isotope. • Compared the highlights in mercury spectra from Tm-170 and Cd-109 isotopes.

  6. Case Studies on Facility Characterization with X-Ray Fluorescence Spectrometry

    International Nuclear Information System (INIS)

    Kirk, K.T.; Brooksbank, R.D.; Meszaros, J.M.; Towery, W.E.

    2008-01-01

    A hand-held x-ray fluorescence (XRF) analyzer is being used to characterize facilities in support of demolition activities at the East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee. Approximately 500 facilities at the U.S. Department of Energy site are being demolished under the ETTP Decontamination and Decommissioning (D and D) project. Facility characterization is being conducted to provide data for waste profiling and identify hazards to demolition workers. XRF spectrometry is a non-destructive analytical technique used to identify and quantify the elemental composition of a substance based on the intensity of its characteristic X-ray emission wavelength or energy. The Innov-X Systems R Model XT-245S XRF analyzer used at ETTP is equipped with a silver anode x-ray tube and a Si PIN diode detector. X-rays are generated by electrical current, eliminating the need for radioactive isotopes. Electronic components can be powered by either a lithium-ion battery or an A/C adapter, and the instrument is controlled by an iPAQ R pocket personal computer. The unit has two primary operating modes. Alloy analysis mode measures percent levels of elements in metals such as a pipes, valves, equipment, or construction materials. Soil mode provides parts-per-million (ppm) quantities in bulk solids like concrete dust, residue, paint chips, or soil. The hand-held unit can analyze material in place, or it can analyze samples in a test stand by remote operation. This paper present some case studies demonstrating a variety of XRF applications for facility characterization: Metal Materials Characterization, Lead Paint Identification, Hot Spot Delineation, Bulk Solids Testing. XRF has been the analytical technique of choice for identifying metal alloy components and has also been useful in analyzing bulk materials. Limitations of XRF testing include the inability to directly analyze elements with low atomic weights. Light elements such as beryllium and aluminum do not emit

  7. A new detector system for low energy X-ray fluorescence coupled with soft X-ray microscopy: First tests and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Gianoncelli, Alessandra, E-mail: alessandra.gianoncelli@elettra.eu [Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale SS14, km 163.5, Basovizza 34149 (Italy); Bufon, Jernej [INFN Trieste, Padriciano 99, Trieste 34149 (Italy); Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale SS14, km 163.5, Basovizza 34149 (Italy); University of Trieste, Piazzale Europa 1, Trieste 34127 (Italy); Ahangarianabhari, Mahdi [Politecnico di Milano, Via Anzani 42, Como 22100 (Italy); INFN Milano, Via Celoria 16, Milano 20133 (Italy); Altissimo, Matteo [Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale SS14, km 163.5, Basovizza 34149 (Italy); Bellutti, Pierluigi [Fondazione Bruno Kessler, Via Sommarive 18, Trento 38123 (Italy); Bertuccio, Giuseppe [Politecnico di Milano, Via Anzani 42, Como 22100 (Italy); INFN Milano, Via Celoria 16, Milano 20133 (Italy); Borghes, Roberto [Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale SS14, km 163.5, Basovizza 34149 (Italy); Carrato, Sergio [University of Trieste, Piazzale Europa 1, Trieste 34127 (Italy); Cautero, Giuseppe [Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale SS14, km 163.5, Basovizza 34149 (Italy); INFN Trieste, Padriciano 99, Trieste 34149 (Italy); Fabiani, Sergio [INFN Trieste, Padriciano 99, Trieste 34149 (Italy); Giacomini, Gabriele [Fondazione Bruno Kessler, Via Sommarive 18, Trento 38123 (Italy); Giuressi, Dario [Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale SS14, km 163.5, Basovizza 34149 (Italy); INFN Trieste, Padriciano 99, Trieste 34149 (Italy); Kourousias, George [Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale SS14, km 163.5, Basovizza 34149 (Italy); Menk, Ralf Hendrik [Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale SS14, km 163.5, Basovizza 34149 (Italy); INFN Trieste, Padriciano 99, Trieste 34149 (Italy); Picciotto, Antonino; Piemonte, Claudio [Fondazione Bruno Kessler, Via Sommarive 18, Trento 38123 (Italy); Rachevski, Alexandre [INFN Trieste, Padriciano 99, Trieste 34149 (Italy); and others

    2016-04-21

    The last decades have witnessed substantial efforts in the development of several detector technologies for X-ray fluorescence (XRF) applications. In spite of the increasing trend towards performing, cost-effective and reliable XRF systems, detectors for soft X-ray spectroscopy still remain a challenge, requiring further study, engineering and customization in order to yield effective and efficient systems. In this paper we report on the development, first characterization and tests of a novel multielement detector system based on low leakage current silicon drift detectors (SDD) coupled to ultra low noise custom CMOS preamplifiers for synchrotron-based low energy XRF. This new system exhibits the potential for improving the count rate by at least an order of magnitude resulting in ten-fold shorter dwell time at an energy resolution similar to that of single element silicon drift detectors.

  8. Pigments identification in Havana Colonial wall painting by portable XRF System

    International Nuclear Information System (INIS)

    Nazca, J.; Mendoza, A.; Rodriguez, A.; Rodriguez, T.

    2001-01-01

    The Havana City historical center is being recuperated in the las years. Numerous are the colonial houses with values typical wall painting as internal decoration that need to be investigated and restored. The pigment identification is essential to have knowledge about pictorial technique and to help and monitor the restoration process. The identification of inorganic pigments in the Havana colonial wall painting has been not almost studied. The opportunity to have a new Portable XRF system in the Archaeometry laboratory of the Conservation and Restoration Gabinet of Havana Historitian Office allows to investigate the wall painting, samples that because of its more of this nature it would be impossible to move to the laboratory for non destructive analysis. The most of the pigment are made of inorganic elements and they can be identified property by XRF technique. All complete archaeometric investigation has to use several technique and to work in a multidisciplinary research team to give a fundamental answer about the past, The suitable techniques selection to employ depends of the art Historitian and archaeologist's questions. The pictorial technique are traditionally investigated using stratigraphical information obtained by Optical Microscopy and organic compound determination by Gas Chromatography. The global analysis of the results from the different employed techniques and the discussion from the restaurateur point of view is presented

  9. XRF, XRD and SEM facilities in the School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia

    International Nuclear Information System (INIS)

    Azmi Rahmat

    1996-01-01

    The School has acquired excellent facilities for elemental analysis by XRF and EDX and phase analysis by XRD. The type of research work carried out in the School is described. The school also assists the local industries in trying to solve their problems fully utilizing these facilities along with other testing units

  10. Energy dispersive X-ray fluorescence analysis with multiple total reflection

    International Nuclear Information System (INIS)

    Freitag, K.

    1985-01-01

    The development of a total reflection XRF analyzer and the performance data of this instrument are described. The drastic reduction of the scattered radiation is the outstanding property of the method. Detection limits of elements and matrix effects are discussed. The competition with other methods of analysis has proven its advantages in a wide range. In addition to its multi-element features down to the picogram level, particularly its universal calibration function has turned out to be a great help in the analytical practice. (orig./RB)

  11. Measurement of L-XRF cross-sections and Coster–Kronig enhancement factors for {sup 62}Sm at excitation energies 6.8, 7.4 and 8 KeV

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, R., E-mail: rajiv_005@rediffmail.com [Department of Physics, HCTM Technical Campus, Kaithal, Haryana 136027 (India); Rani, A., E-mail: anita_teotia@rediffmail.com [Department of Physics, University P.G. College Kurukshetra, Kurukshetra University, Kurukshetra, Haryana 136119 (India); Singh, R.M. [Department of Physics, Ch. Devi Lal University, Sirsa, Haryana 125055 (India); Tiwari, M.K.; Singh, A.K. [X-ray Optics Section, Indus Synchrotron Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013 (India)

    2016-05-15

    Highlights: • L XRF production cross-sections for {sup 62}Sm at excitation energies 6.8, 7.4 and 8 KeV were measured. • Synchrotron radiations with Peltier cooled Si(Li) detector was employed. • Experimental L XRF cross sections are in good agreement with the theoretical estimations of Puri’s data. • The present study was also carried out to examine the effect of Coster - Kronig transitions on L XRF cross section. • The measured enhancement factors are found to be smaller than the theoretical estimations. - Abstract: L{sub ℓ}, L{sub α} and L{sub β} XRF production cross-sections were measured for {sup 62}Sm at excitation energies i.e. 6.8 KeV, 7.4 KeV and 8 KeV using synchrotron radiations. Experimental measurements were also carried out to examine the effect of Coster–Kronig transitions (non-radiative transitions) on fluorescence cross section for the L{sub i} (i = 1, 2, 3) X-ray lines. The experimental cross-sections with greater accuracy and better signal to noise ratio can be measured using a polarized monoenergetic excitation beam and a high resolution detector system. A Peltier cooled vortex solid state detector with energy resolution of 138 eV at 5.959 keV X-ray was employed. Experimentally measured cross-sections have been compared with the theoretical predictions with the data of M.O. Krause [J. Phys. Chem. Ref. Data 8 (1979) 307], J.L. Campbell [At. Data Nucl. Data Tables 85 (2003) 291] and S. Puri et al. [X-Ray Spectrom. 22 (1993) 358]. The measured enhancement factors were found to be smaller than the theoretically calculated values.

  12. X-ray fluorescence spectroscopy for the elemental analysis of plutonium-bearing materials for the materials disposition program

    International Nuclear Information System (INIS)

    Voit, S.L.; Boerigter, S.T.; Rising, T.L.

    1997-01-01

    The US Fissile Materials Disposition (MD) program will disposition about 50 MT of plutonium in the next century. Both of the alternative technologies for disposition, MOX Fuel and Immobilization require knowledge of the incoming composition to 1--5 wt%. Wavelength Dispersive X-Ray Fluorescence (WDXRF) systems, a common elemental analysis technology with a variety of industrial applications and commercial vendors, can readily achieve this level of characterization. Since much of the excess plutonium will be packaged in a long-term storage container as part of the DOE Environmental Management (DOE-EM) program to stabilize plutonium-bearing materials, the characterization system must be implemented during the packaging process. The authors describe a preliminary design for the integration of the WDXRF system into the packaging system to be used at the Rocky Flats site. The Plutonium Stabilization and Packaging System (PuSPS), coupled with the WDXRF characterization system will provide MD with stabilized plutonium-bearing excess material that can be more readily fed to an immobilization facility. The overall added expense to the MD program of obtaining analytical information after materials have been packaged in long-term storage containers could far exceed the expense of implementing XRF analysis during the packaging process

  13. Illustration of compositional variations over time of Chinese porcelain glazes combining micro-X-ray Fluorescence spectrometry, multivariate data analysis and Seger formulas

    Science.gov (United States)

    Van Pevenage, J.; Verhaeven, E.; Vekemans, B.; Lauwers, D.; Herremans, D.; De Clercq, W.; Vincze, L.; Moens, L.; Vandenabeele, P.

    2015-01-01

    In this research, the transparent glaze layers of Chinese porcelain samples were investigated. Depending on the production period, these samples can be divided into two groups: the samples of group A dating from the Kangxi period (1661-1722), and the samples of group B produced under emperor Qianlong (1735-1795). Due to the specific sample preparation method and the small spot size of the X-ray beam, investigation of the transparent glaze layers is enabled. Despite the many existing research papers about glaze investigations of ceramics and/or porcelain ware, this research reveals new insights into the glaze composition and structure of Chinese porcelain samples. In this paper it is demonstrated, using micro-X-ray Fluorescence (μ-XRF) spectrometry, multivariate data analysis and statistical analysis (Hotelling's T-Square test) that the transparent glaze layers of the samples of groups A and B are significantly different (95% confidence level). Calculation of the Seger formulas, enabled classification of the glazes. Combining all the information, the difference in composition of the Chinese porcelain glazes of the Kangxi period and the Qianlong period can be demonstrated.

  14. Unified Theory for Decoding the Signals from X-Ray Florescence and X-Ray Diffraction of Mixtures.

    Science.gov (United States)

    Chung, Frank H

    2017-05-01

    For research and development or for solving technical problems, we often need to know the chemical composition of an unknown mixture, which is coded and stored in the signals of its X-ray fluorescence (XRF) and X-ray diffraction (XRD). X-ray fluorescence gives chemical elements, whereas XRD gives chemical compounds. The major problem in XRF and XRD analyses is the complex matrix effect. The conventional technique to deal with the matrix effect is to construct empirical calibration lines with standards for each element or compound sought, which is tedious and time-consuming. A unified theory of quantitative XRF analysis is presented here. The idea is to cancel the matrix effect mathematically. It turns out that the decoding equation for quantitative XRF analysis is identical to that for quantitative XRD analysis although the physics of XRD and XRF are fundamentally different. The XRD work has been published and practiced worldwide. The unified theory derives a new intensity-concentration equation of XRF, which is free from the matrix effect and valid for a wide range of concentrations. The linear decoding equation establishes a constant slope for each element sought, hence eliminating the work on calibration lines. The simple linear decoding equation has been verified by 18 experiments.

  15. Reverse engineering the ancient ceramic technology based on X-ray fluorescence spectromicroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sciau, Philippe; Leon, Yoanna; Goudeau, Philippe; Fakra, Sirine C.; Webb, Sam; Mehta, Apurva

    2011-07-06

    We present results of X-ray fluorescence (XRF) microprobe analyses of ancient ceramic cross-sections aiming at deciphering the different firing protocols used for their production. Micro-focused XRF elemental mapping, Fe chemical mapping and Fe K-edge X-ray absorption near edge structure spectroscopy were performed on pre-sigillata ceramics from southern Gaul, and terra Sigillata vessels from Italy and southern Gaul. Pieces from the different workshops and regions showed significant difference in the starting clay material, clay conditioning and kiln firing condition. By contrast, sherds from the same workshop exhibited more subtle differences and possible misfirings. Understanding the precise firing conditions and protocols would allow recreation of kilns for various productions. Furthermore, evolution and modification of kiln design would shed some light on how ancient potters devised solutions to diverse technological problems they encountered.

  16. PIXE and XRF analysis of atmospheric aerosols from a site in the West area of Mexico City

    International Nuclear Information System (INIS)

    Díaz, R.V.; López-Monroy, J.; Miranda, J.; Espinosa, A.A.

    2014-01-01

    Due to geographical factors, most of the Metropolitan Area of Mexico City features, on average, similar heights above the sea level, climate, wind speed and direction, with very uniform pollution degrees in most of the frequently studied sites. A site with different characteristics, Cuajimalpa de Morelos, was studied. It is located to the West of the urban area at 2760 m above sea level, in contrast to other sites (2240 m). Here, the wind is mostly directed towards the center of the city. Then, the site should not be affected by pollutants from the Northern/Northeastern industrial zones, so lower aerosol concentrations are expected. In this work, the elemental composition of coarse (PM 10-2.5 ) and fine (PM 2.5 ) fractions of atmospheric aerosol samples collected in Cuajimalpa is studied. The sampling period covered the cold-dry season in 2004–2005 (December 1st, 2004 to March 31, 2005), exposing polycarbonate filters with a Stacked Filter Unit of the Gent design along 24 h, every two days. The samples were analyzed with Particle Induced X-ray Emission (PIXE) and X-ray Fluorescence (XRF), to obtain elemental concentrations. The EPA code UNMIX was used to determine the number of possible influencing polluting sources, which were then identified through back-trajectory simulations with the HYSPLIT modeling software. Four sources (mostly related to soil) were found in the coarse fraction, while the fine fraction presented three main sources (fuel oil, industry and biomass burning)

  17. PIXE and XRF analysis of atmospheric aerosols from a site in the West area of Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Díaz, R.V.; López-Monroy, J. [Instituto Nacional de Investigaciones Nucleares, Centro Nuclear “Nabor Carrillo”, Autopista México-Toluca, Salazar, Edo. Mex. (Mexico); Miranda, J., E-mail: miranda@fisica.unam.mx [Instituto Nacional de Investigaciones Nucleares, Centro Nuclear “Nabor Carrillo”, Autopista México-Toluca, Salazar, Edo. Mex. (Mexico); Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 México, DF (Mexico); Espinosa, A.A. [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 México, DF (Mexico)

    2014-01-01

    Due to geographical factors, most of the Metropolitan Area of Mexico City features, on average, similar heights above the sea level, climate, wind speed and direction, with very uniform pollution degrees in most of the frequently studied sites. A site with different characteristics, Cuajimalpa de Morelos, was studied. It is located to the West of the urban area at 2760 m above sea level, in contrast to other sites (2240 m). Here, the wind is mostly directed towards the center of the city. Then, the site should not be affected by pollutants from the Northern/Northeastern industrial zones, so lower aerosol concentrations are expected. In this work, the elemental composition of coarse (PM{sub 10-2.5}) and fine (PM{sub 2.5}) fractions of atmospheric aerosol samples collected in Cuajimalpa is studied. The sampling period covered the cold-dry season in 2004–2005 (December 1st, 2004 to March 31, 2005), exposing polycarbonate filters with a Stacked Filter Unit of the Gent design along 24 h, every two days. The samples were analyzed with Particle Induced X-ray Emission (PIXE) and X-ray Fluorescence (XRF), to obtain elemental concentrations. The EPA code UNMIX was used to determine the number of possible influencing polluting sources, which were then identified through back-trajectory simulations with the HYSPLIT modeling software. Four sources (mostly related to soil) were found in the coarse fraction, while the fine fraction presented three main sources (fuel oil, industry and biomass burning)

  18. X-ray fluorescence method for trace analysis and imaging

    International Nuclear Information System (INIS)

    Hayakawa, Shinjiro

    2000-01-01

    X-ray fluorescence analysis has a long history as conventional bulk elemental analysis with medium sensitivity. However, with the use of synchrotron radiation x-ray fluorescence method has become a unique analytical technique which can provide tace elemental information with the spatial resolution. To obtain quantitative information of trace elemental distribution by using the x-ray fluorescence method, theoretical description of x-ray fluorescence yield is described. Moreover, methods and instruments for trace characterization with a scanning x-ray microprobe are described. (author)

  19. Uranium and Iron XRF distribution and Fe speciation results

    Data.gov (United States)

    U.S. Environmental Protection Agency — Dataset 1: XRF image of U and Fe distribution Dataset 2: Fe linear combination fitting data. This dataset is associated with the following publication: Koster van...

  20. Quantitative SRXRF analysis on the BL15U1 beamline at SSRF

    International Nuclear Information System (INIS)

    Zhang Yanle; Yu Xiaohan

    2010-01-01

    In this paper, we give an introduction first to two quantification methods for synchrotron radiation X-ray fluorescence analysis (SRXRF), namely fundamental parameters method and Monte-Carlo simulation method, for their application on the BL15U1 beamline (hard X-ray microprobe) at SSRF (Shanghai Synchrotron Radiation Facility). Effectiveness of the two methods is demonstrated and the XRF detection limits of the BL15U1 beamline are calculated. The results show that, quantitative analysis at the ppm level can be done using the two methods, with an accuracy of better than 10%. Although both the methods are valid for the SRXRF data analysis,the Monte Carlo method gives better analysis result, as it compares the simulated spectrum with the experiment spectrum, and this helps the determination of experiment parameters and thus minimizes the error caused by incorrect parameters. Finally, the detection limits shows that the BL15U1 beamline is capable of carrying out standard-of-the-art XRF experiment. (authors)

  1. Real Time Demonstration Project XRF Performance Evaluation Report for Paducah Gaseous Diffusion Plant AOC 492

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Robert L [Argonne National Laboratory

    2008-04-03

    This activity was undertaken to demonstrate the applicability of market-available XRF instruments to quantify metal concentrations relative to background and risk-based action and no action levels in Paducah Gaseous Diffusion Plant (PGDP) soils. As such, the analysis below demonstrates the capabilities of the instruments relative to soil characterization applications at the PGDP.

  2. The use of x-ray fluorescence technique (XRF) in the determination of trace elements in environmental study: a case study for sediments and soils

    International Nuclear Information System (INIS)

    Hamzah Mohamad

    1997-01-01

    A specific X-ray fluorescence technique (XRF) was developed to determine the concentrations of nine common and significant trace elements in sediments and soils, i.e. two of the common materials used in environmental studies. The elements are Ba, Cr, Cu, Fe, Mn, Ni, Pb, V and Zn. A total of 22 international reference materials of rocks, soils, minerals, ores and sediments were employed to construct nine calibration curves, all of which depict linear correlation of concentration-intensity, with correlation coefficients of 0.9 or better. The accuracy of determination is implied from the relative differences between the observed and suggested values in four reference materials: USGS SCO-1, shale; CCRMP SO-1, soil; CCRMP CO-2, soil; and SARM 42, soil. The determinations of four elements are considered as accurate, with relative errors of smaller than 10%; they are Fe (5%), Mn (6%), Cr (8%), and Cu (9%). Only a moderate accuracy has been achieved in the determinations of Ba (13%), Zn (18%) and V (21 %). Ni and Ph results are associated with larger errors. The developed technique is considered rapid, whereby nine elements in 30 samples in the form of pressed powder briquettes can be analysed in 8 hours. Without extrapolating the calibration curves, the method is suitable to analyse elements in soils and sediments in the following ranges of concentrations: Ba, 0-1500 ppm; Cr, 0-3000 ppm; Cu, 0-300 ppm; Fe, 0.7%; Mn, 0-1000 ppm; Ni, 0-300 ppm; Pb, 0-70 ppm; V, 0-300 ppm and Zn, 0-270 ppm

  3. Development of quantitative analysis for cadmium, lead and chromium in aluminum alloys by using x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Yamashita, Satoshi; Kurusu, Kazuhiko; Kudou, Aiko

    2009-01-01

    A highly reliable quantitative analysis for cadmium, lead and chromium in aluminum alloys was developed. Standard samples were made by doping cadmium, lead and chromium into several aluminum alloys, and the composition of standard samples were determined by inductively coupled plasma optical emission spectrometry and gravimetric method. The calibration curves for these standard samples by using WD-XRF and ED-XRF exhibited linear correlation. Slope of calibration curves for Al-Cu alloy and Al-Zn-Mg alloy were smaller than other alloy's one, because of the effect by coexistent elements. Then, all calibration curves agreed with each other by performing correction with α-coefficient method. (author)

  4. SRXRF analysis with spatial resolution of dental calculus

    International Nuclear Information System (INIS)

    Sanchez, Hector Jorge; Perez, Carlos Alberto; Grenon, Miriam

    2000-01-01

    This work presents elemental-composition studies of dental calculus by X-ray fluorescence analysis using synchrotron radiation. The intrinsic characteristics of synchrotron light allow for a semi-quantitative analysis with spatial resolution. The experiments were carried out in the high-vacuum station of the XRF beamline at the Synchrotron Light National Laboratory (Campinas, Brazil). All the measurements were performed in conventional geometry (45 deg. + 45 deg.) and the micro-collimation was attained via a pair of orthogonal slits mounted in the beamline. In this way, pixels of 50 μmx50 μm were obtained keeping a high flux of photons on the sample. Samples of human dental calculus were measured in different positions along their growing axis, in order to determine variations of the compositions in the pattern of deposit. Intensity ratios of minor elements and traces were obtained, and linear profiles and surface distributions were determined. As a general summary, we can conclude that μXRF experiments with spatial resolution on dental calculus are feasible with simple collimation and adequate positioning systems, keeping a high flux of photon. These results open interesting perspectives for the future station of the line, devoted to μXRF, which will reach resolutions of the order of 10 μm

  5. SRXRF analysis with spatial resolution of dental calculus

    Science.gov (United States)

    Sánchez, Héctor Jorge; Pérez, Carlos Alberto; Grenón, Miriam

    2000-09-01

    This work presents elemental-composition studies of dental calculus by X-ray fluorescence analysis using synchrotron radiation. The intrinsic characteristics of synchrotron light allow for a semi-quantitative analysis with spatial resolution. The experiments were carried out in the high-vacuum station of the XRF beamline at the Synchrotron Light National Laboratory (Campinas, Brazil). All the measurements were performed in conventional geometry (45°+45°) and the micro-collimation was attained via a pair of orthogonal slits mounted in the beamline. In this way, pixels of 50 μm×50 μm were obtained keeping a high flux of photons on the sample. Samples of human dental calculus were measured in different positions along their growing axis, in order to determine variations of the compositions in the pattern of deposit. Intensity ratios of minor elements and traces were obtained, and linear profiles and surface distributions were determined. As a general summary, we can conclude that μXRF experiments with spatial resolution on dental calculus are feasible with simple collimation and adequate positioning systems, keeping a high flux of photon. These results open interesting perspectives for the future station of the line, devoted to μXRF, which will reach resolutions of the order of 10 μm.

  6. Evaluation of a new optic-enabled portable X-ray fluorescence spectrometry instrument for measuring toxic metals/metalloids in consumer goods and cultural products

    Science.gov (United States)

    Guimarães, Diana; Praamsma, Meredith L.; Parsons, Patrick J.

    2016-08-01

    X-ray fluorescence spectrometry (XRF) is a rapid, non-destructive multi-elemental analytical technique used for determining elemental contents ranging from percent down to the μg/g level. Although detection limits are much higher for XRF compared to other laboratory-based methods, such as inductively coupled plasma mass spectrometry (ICP-MS), ICP-optical emission spectrometry (OES) and atomic absorption spectrometry (AAS), its portability and ease of use make it a valuable tool, especially for field-based studies. A growing necessity to monitor human exposure to toxic metals and metalloids in consumer goods, cultural products, foods and other sample types while performing the analysis in situ has led to several important developments in portable XRF technology. In this study, a new portable XRF analyzer based on the use of doubly curved crystal optics (HD Mobile®) was evaluated for detecting toxic elements in foods, medicines, cosmetics and spices used in many Asian communities. Two models of the HD Mobile® (a pre-production and a final production unit) were investigated. Performance parameters including accuracy, precision and detection limits were characterized in a laboratory setting using certified reference materials (CRMs) and standard solutions. Bias estimates for key elements of public health significance such as As, Cd, Hg and Pb ranged from - 10% to 11% for the pre-production, and - 14% to 16% for the final production model. Five archived public health samples including herbal medicine products, ethnic spices and cosmetic products were analyzed using both XRF instruments. There was good agreement between the pre-production and final production models for the four key elements, such that the data were judged to be fit-for-purpose for the majority of samples analyzed. Detection of the four key elements of interest using the HD Mobile® was confirmed using archived samples for which ICP-OES data were available based on digested sample materials. The HD

  7. Holographic Interferometry (HI), Infrared Vision and X-Ray Fluorescence (XRF) spectroscopy for the assessment of painted wooden statues: a new integrated approach

    International Nuclear Information System (INIS)

    Sfarra, Stefano; Ambrosini, Dario; Paoletti, Domenica; Ibarra-Castanedo, Clemente; Maldague, Xavier; Ridolfi, Stefano; Cerichelli, Giorgio

    2014-01-01

    Wood has been routinely employed in decorative arts, as well as in sculptures and paintings (support) during the Middle Ages, because of its unique aesthetic virtues. It may safely be assumed that wood, as a material for monumental sculpture, was much more commonly employed in the mediaeval period than existing examples would seem to indicate (Bulletin of the metropolitan Museum of Art, 2013). Wood is easily obtainable; it could be carved and put in place with less difficulty than stone, it is chemically stable when dry, and its surface offers a compatible substrate for paint application. However, the use of wood is not without pitfalls, and requires an understanding of its anisotropic and hygroscopic nature. It is also dimensionally unstable and subject to deterioration by fungi and insects. Moisture-related dimensional changes are certainly among the most challenging problems in painting conservation. With the purpose of preventing important damages, the use of non-or microdestructive testing (NDT) techniques is undoubtedly of paramount interest for painted wooden statues of great value. This work has a threefold purpose: (1) to validate the effectiveness of an integrated approach using near-infrared (NIR) reflectography, square pulse thermography (SPT), and holographic interferometry (HI) techniques for discovering old repairs and/or inclusions of foreign materials in a wooden structure, (2) to confirm and approximately date the restoration carried out by x-ray fluorescence (XRF) spectroscopy and energy-dispersive x-ray spectroscopy (EDS) (that is assembled with a scanning electron microscopy - SEM) techniques, and (3) to combine into a multidisciplinary approach two quantitative NDT results coming from optical and thermographic methods. The subject of the present study was a statue named ''Virgin with her Child'' (XIV century), whose origins are mysterious and not properly documented. (orig.)

  8. Holographic Interferometry (HI), Infrared Vision and X-Ray Fluorescence (XRF) spectroscopy for the assessment of painted wooden statues: a new integrated approach

    Energy Technology Data Exchange (ETDEWEB)

    Sfarra, Stefano; Ambrosini, Dario; Paoletti, Domenica [University of L' Aquila, Department of Industrial and Information Engineering and Economics, Las.E.R. Laboratory, Loc. Monteluco di Roio, AQ (Italy); Ibarra-Castanedo, Clemente; Maldague, Xavier [Laval University, Computer Vision and Systems Laboratory, Department of Electrical and Computer Engineering, Quebec City (Canada); Ridolfi, Stefano [Ars Mensurae, Rome (Italy); Cerichelli, Giorgio [University of L' Aquila, Department of Physical and Chemical Sciences, Loc. Coppito, AQ (Italy)

    2014-06-15

    Wood has been routinely employed in decorative arts, as well as in sculptures and paintings (support) during the Middle Ages, because of its unique aesthetic virtues. It may safely be assumed that wood, as a material for monumental sculpture, was much more commonly employed in the mediaeval period than existing examples would seem to indicate (Bulletin of the metropolitan Museum of Art, 2013). Wood is easily obtainable; it could be carved and put in place with less difficulty than stone, it is chemically stable when dry, and its surface offers a compatible substrate for paint application. However, the use of wood is not without pitfalls, and requires an understanding of its anisotropic and hygroscopic nature. It is also dimensionally unstable and subject to deterioration by fungi and insects. Moisture-related dimensional changes are certainly among the most challenging problems in painting conservation. With the purpose of preventing important damages, the use of non-or microdestructive testing (NDT) techniques is undoubtedly of paramount interest for painted wooden statues of great value. This work has a threefold purpose: (1) to validate the effectiveness of an integrated approach using near-infrared (NIR) reflectography, square pulse thermography (SPT), and holographic interferometry (HI) techniques for discovering old repairs and/or inclusions of foreign materials in a wooden structure, (2) to confirm and approximately date the restoration carried out by x-ray fluorescence (XRF) spectroscopy and energy-dispersive x-ray spectroscopy (EDS) (that is assembled with a scanning electron microscopy - SEM) techniques, and (3) to combine into a multidisciplinary approach two quantitative NDT results coming from optical and thermographic methods. The subject of the present study was a statue named ''Virgin with her Child'' (XIV century), whose origins are mysterious and not properly documented. (orig.)

  9. Evaluation of field-portable X-ray fluorescence spectrometry for the determination of lead contamination on small-arms firing ranges

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, J.F.; Taylor, J.D.; Bass, D.A.; Zellmer, D. [Argonne National Lab., IL (United States); Rieck, M. [U.S. Army, Grafenwoehr Training Area (Germany)

    1995-02-01

    Field analytical methods for the characterization of lead contamination in soil are being developed. In this study, the usefulness of a commercially available, field-portable energy-dispersive X-ray fluorescence spectrometer (XRF) is evaluated for determining the extent of lead contamination in soils on small-arms firing ranges at a military installation. This field screening technique provides significant time and cost savings for the study of sites with lead-contaminated soil. Data obtained with the XRF unit in the field are compared with data obtained from soil samples analyzed in an analytical laboratory by inductively coupled plasma atomic emission spectroscopy. Results indicate that the field-portable XRF unit evaluated in this study provides data that are useful in determining the extent and relative magnitude of lead contamination. For the commercial unit used in this study, improvements in the spectral resolution and in the limit of detection would be required to make the unit more than just a screening tool.

  10. The use of swept-charge devices in planetary analogue X-ray fluorescence studies

    International Nuclear Information System (INIS)

    Walker, T E; Smith, D R

    2012-01-01

    The Chandrayaan-1 X-ray Spectrometer (C1XS) was launched onboard the Indian Space Research Organisation (ISRO) Chandrayaan-1 lunar mission in October 2008. The instrument consisted of 24 swept-charge device (SCD) silicon X-ray detectors providing a total collecting area of ∼ 24 cm 2 , corresponding to a 14° field of view (FWHM), with the ability to measure X-rays from 0.8–10 keV. One algorithm used to analyse the C1XS flight data was developed at Rutherford Appleton Laboratory (RAL) to convert the raw X-ray flux data into elemental ratios and abundances to make geological interpretations about the lunar surface. Laboratory X-ray fluorescence (XRF) data were used to validate the RAL algorithm, with previous studies investigating how the measured XRF flux varies with target surface characteristics including grain size and roughness. Evidence for a grain-size effect was observed in the data, the XRF line intensity generally decreasing with increasing sample grain size, dependent on the relative abundance of elemental components. This paper presents a subsequent study using more homogeneous samples made from mixtures of MgO, Al 2 O 3 and SiO 2 powders, all of grain size < 44 μm, across a broader range of mixture ratios and at a higher level of X-ray flux data in order to further validate the RAL algorithm. For the majority of the C1XS flight data analysed so far with the RAL algorithm, the corresponding lunar ground tracks have been generally basaltic, laboratory verification of the algorithm having been primarily conducted using basaltic lunar regolith simulant (JSC-1A) XRF data. This paper also presents results from tests on a terrestrial anorthosite sample, more relevant to the anorthositic lunar highlands, from where the remaining C1XS lunar dataset derives. The operation of the SCD, the XRF test facility, sample preparation and collected XRF spectra are discussed in this paper.

  11. The application of x-ray fluorescence spectrometry for multielemental analysis of air particulate samples

    International Nuclear Information System (INIS)

    Mohamad Rashid Mohamad Yusoff

    1986-01-01

    The performance of XRF spectrometer as a tool for multielemental analysis of air pollution samples was discussed. The non-destructive couples with multielemental nature of the technique satisfactory sensitivity for most elements were the most important characteristics for its popularity as a method of analysis. Thus, the technique promises a significant reduction in cost and time of analysis. As a result, more extensive and revealing air particulates survey should be possible, with consequent improvements in the discovery and positive identification of particulate pollution sources. (author)

  12. Surface and in-depth characterization of lithium-ion battery cathodes at different cycle states using confocal micro-X-ray fluorescence-X-ray absorption near edge structure analysis

    International Nuclear Information System (INIS)

    Menzel, Magnus; Schlifke, Annalena; Falk, Mareike; Janek, Jürgen; Fröba, Michael; Fittschen, Ursula Elisabeth Adriane

    2013-01-01

    The cathode material LiNi 0.5 Mn 1.5 O 4 for lithium-ion batteries has been studied with confocal micro-X-ray fluorescence (CMXRF) combined with X-ray absorption near edge structure (XANES) at the Mn-K edge and the Ni-K edge. This technique allows for a non-destructive, spatially resolved (x, y and z) investigation of the oxidation states of surface areas and to some extent of deeper layers of the electrode. Until now CMXRF-XANES has been applied to a limited number of applications, mainly geo-science. Here, we introduce this technique to material science applications and show its performance to study a part of a working system. A novel mesoporous LiNi 0.5 Mn 1.5 O 4 material was cycled (charged and discharged) to investigate the effects on the oxidation states at the cathode/electrolyte interface. With this approach the degradation of Mn 3+ to Mn 4+ only observable at the surface of the electrode could be directly shown. The spatially resolved non-destructive analysis provides knowledge helpful for further understanding of deterioration and the development of high voltage battery materials, because of its nondestructive nature it will be also suitable to monitor processes during battery cycling. - Highlights: • The potential of confocal micro-XRF-XANES for spatial resolved species analysis in a part of a working system is shown. • The spatial resolution enables differentiation of the oxidized interface from deeper layers. • With the analytical technique confocal micro-XRF-XANES 3D in-situ analyses of working systems are feasible. • The multidimensional and nondestructive analysis of Li-ion battery cathodes is shown. • The analysis will allow for a deeper understanding of processes at interfaces in battery science and others

  13. Surface and in-depth characterization of lithium-ion battery cathodes at different cycle states using confocal micro-X-ray fluorescence-X-ray absorption near edge structure analysis

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, Magnus; Schlifke, Annalena [Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany); Falk, Mareike; Janek, Jürgen [Physikalisch-Chemisches Institut, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 58, 35392 Gießen (Germany); Fröba, Michael, E-mail: froeba@chemie.uni-hamburg.de [Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany); Fittschen, Ursula Elisabeth Adriane, E-mail: ursula.fittschen@chemie.uni-hamburg.de [Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany)

    2013-07-01

    The cathode material LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} for lithium-ion batteries has been studied with confocal micro-X-ray fluorescence (CMXRF) combined with X-ray absorption near edge structure (XANES) at the Mn-K edge and the Ni-K edge. This technique allows for a non-destructive, spatially resolved (x, y and z) investigation of the oxidation states of surface areas and to some extent of deeper layers of the electrode. Until now CMXRF-XANES has been applied to a limited number of applications, mainly geo-science. Here, we introduce this technique to material science applications and show its performance to study a part of a working system. A novel mesoporous LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} material was cycled (charged and discharged) to investigate the effects on the oxidation states at the cathode/electrolyte interface. With this approach the degradation of Mn{sup 3+} to Mn{sup 4+} only observable at the surface of the electrode could be directly shown. The spatially resolved non-destructive analysis provides knowledge helpful for further understanding of deterioration and the development of high voltage battery materials, because of its nondestructive nature it will be also suitable to monitor processes during battery cycling. - Highlights: • The potential of confocal micro-XRF-XANES for spatial resolved species analysis in a part of a working system is shown. • The spatial resolution enables differentiation of the oxidized interface from deeper layers. • With the analytical technique confocal micro-XRF-XANES 3D in-situ analyses of working systems are feasible. • The multidimensional and nondestructive analysis of Li-ion battery cathodes is shown. • The analysis will allow for a deeper understanding of processes at interfaces in battery science and others.

  14. Polychrome glass from Etruscan sites: first non-destructive characterization with synchrotron μ-XRF, μ-XANES and XRPD

    International Nuclear Information System (INIS)

    Arletti, R.; Vezzalini, G.; Quartieri, S.; Ferrari, D.; Merlini, M.; Cotte, M.

    2008-01-01

    This work is devoted to the characterization of a suite of very rare, highly decorated and coloured glass vessels and beads from the VII to the IV century BC. The most serious difficulty in developing this study was that any sampling - even micro-sampling - was absolutely forbidden. As a consequence, the mineralogical and chemical nature of chromophores and opacifiers present in these Iron Age finds were identified by means of the following synchrotron-based, strictly non-destructive, techniques: micro X-ray fluorescence (μ-XRF), Fe K-edge micro X-ray absorption near edge spectroscopy (μ-XANES) and X-ray powder diffraction (XRPD). The μ-XRF mapping evidenced high levels of Pb and Sb in the yellow decorations and the presence of only Sb in the white and light-blue ones. Purple and black glass show high amounts of Mn and Fe, respectively. The XRPD analyses confirmed the presence of lead and calcium antimonates in yellow, turquoise and white decorations. Fe K-edge μ-XANES spectra were collected in different coloured parts of the finds, thus enabling the mapping of the oxidation state of these elements across the samples. In most of the samples iron is present in the reduced form Fe 2+ in the bulk glass of the vessels, and in the oxidized form Fe 3+ in the decorations, indicating that these glass artefacts were produced in at least two distinct processing steps under different furnace conditions. (orig.)

  15. Provenance Study of Archaeological Ceramics from Syria Using XRF Multivariate Statistical Analysis and Thermoluminescence Dating

    OpenAIRE

    Bakraji, Elias Hanna; Abboud, Rana; Issa, Haissm

    2014-01-01

    Thermoluminescence (TL) dating and multivariate statistical methods based on radioisotope X-ray fluorescence analysis have been utilized to date and classify Syrian archaeological ceramics fragment from Tel Jamous site. 54 samples were analyzed by radioisotope X-ray fluorescence; 51 of them come from Tel Jamous archaeological site in Sahel Akkar region, Syria, which fairly represent ceramics belonging to the Middle Bronze Age (2150 to 1600 B.C.) and the remaining three samples come from Mar-T...

  16. Neutron activation analysis technique and X-ray fluorescence in bovine liver sample

    International Nuclear Information System (INIS)

    Maihara, V.A.; Favaro, D.I.T.; Vasconcellos, M.B.A.; Sato, I.M.; Salvador, V.L.

    2002-01-01

    Many analytical techniques have been used in food and diet analysis in order to determine a great number of nutritional elements, ranging from percentage to ng g -1 , with high sensitivity and accuracy. Instrumental Neutron activation Analysis (INAA) has been employed to certificate many trace elements in biological reference materials. More recently, the X-Ray Fluorescence (FRX-WD) has been also used to determine some essential elements in food samples. The INAA has been applied in nutrition studies in our laboratory at IPEN since the 80 s. For the development of analytical methodologies the use of the reference materials with the same characteristics of the sample analyzed is essential. Several Brazilian laboratories do not have conditions to use these materials due their high cost.In this paper preliminary results of commercial bovine liver sample analyses obtained by INAA and WD-XRF methods are presented. This sample was prepared to be a Brazilian candidate of reference material for a group of laboratories participating in a research project sponsored by FAPESP. The concentrations of some elements like Cl, K, Na, P, S and trace elements Br, Ca, Co, Cu, Fe, Mg, Mn, Mo, Rb, Se and Zn were determined by INAA and WD-XFR. For validation methodology of both techniques, NIST SRM 1577b Bovine Liver reference material was analyzed and the detection limits were calculated. The concentrations of elements determined by both analytical techniques were compared by using the Student's t-test and for Cl, Cu, Fe, K, Mg, Na, Rn and Zn the results do show no statistical difference for 95% significance level. (author)

  17. A new large solid angle multi-element silicon drift detector system for low energy X-ray fluorescence spectroscopy

    Science.gov (United States)

    Bufon, J.; Schillani, S.; Altissimo, M.; Bellutti, P.; Bertuccio, G.; Billè, F.; Borghes, R.; Borghi, G.; Cautero, G.; Cirrincione, D.; Fabiani, S.; Ficorella, F.; Gandola, M.; Gianoncelli, A.; Giuressi, D.; Kourousias, G.; Mele, F.; Menk, R. H.; Picciotto, A.; Rachevski, A.; Rashevskaya, I.; Sammartini, M.; Stolfa, A.; Zampa, G.; Zampa, N.; Zorzi, N.; Vacchi, A.

    2018-03-01

    Low-energy X-ray fluorescence (LEXRF) is an essential tool for bio-related research of organic samples, whose composition is dominated by light elements. Working at energies below 2 keV and being able to detect fluorescence photons of lightweight elements such as carbon (277 eV) is still a challenge, since it requires in-vacuum operations to avoid in-air photon absorption. Moreover, the detectors must have a thin entrance window and collect photons at an angle of incidence near 90 degrees to minimize the absorption by the protective coating. Considering the low fluorescence yield of light elements, it is important to cover a substantial part of the solid angle detecting ideally all emitted X-ray fluorescence (XRF) photons. Furthermore, the energy resolution of the detection system should be close to the Fano limit in order to discriminate elements whose XRF emission lines are often very close within the energy spectra. To ensure all these features, a system consisting of four monolithic multi-element silicon drift detectors was developed. The use of four separate detector units allows optimizing the incidence angle on all the sensor elements. The multi-element approach in turn provides a lower leakage current on each anode, which, in combination with ultra-low noise preamplifiers, is necessary to achieve an energy resolution close to the Fano limit. The potential of the new detection system and its applicability for typical LEXRF applications has been proved on the Elettra TwinMic beamline.

  18. XRF analysis of ceramics, minerals and allied materials

    International Nuclear Information System (INIS)

    Bennett, H.; Oliver, G.J.

    1992-01-01

    This book is a compilation of practical information on the X-ray fluorescence analysis by the fused, cast bead method of mineral type materials and products. A range of general information about equipment and apparatus and its use and care is given and particular attention is devoted to the spectrometer and the topic of line selection. Experimental details of the method, including calibration, are presented. In the final section of the book, analytical procedures for a wide range of materials are described. This includes sampling, drying, weighing, loss on ignition, fusion, casting, constituents to be determined, calibration ranges and reporting of results. The materials covered are silica/alumina range materials, calcium-rich materials, magnesium rich materials, zircon-bearing materials, various oxides and titanates, reduced materials and samples of unknown composition. The appendices contain data on loss on ignition techniques, specific fusion techniques, problem elements or oxides, certified references materials and details on laboratory accreditation. (UK)

  19. High-resolution fluorescence mapping of impurities in historical zinc oxide pigments: hard X-ray nanoprobe applications to the paints of Pablo Picasso

    International Nuclear Information System (INIS)

    Casadio, Francesca; Rose, Volker

    2013-01-01

    Here for the first time we describe the use of high resolution nanoprobe X-ray fluorescence (XRF) mapping for the analysis of artists' paints, hierarchically complex materials typically composed of binder, pigments, fillers, and other additives. The work undertaken at the nanoprobe sought to obtain highly spatially resolved, highly sensitive mapping of metal impurities (Pb, Cd, Fe, and other metals) in submicron particles of zinc oxide pigments used in early 20th century artists' tube paints and enamel paints, with particular emphasis on Ripolin, a popular brand of French house paint used extensively by Pablo Picasso and some of his contemporaries. Analysis revealed that the Zn oxide particles only contain a little Fe, proving that the highest quality Zn oxide pigment, free of Pb and Cd, was used for Ripolin house paints as well as artists' paints. Nanoprobe XRF mapping also demonstrated that artists' tube paints generally have more abundant fillers and additional whites (based on Pb, Ti, Ca) than Ripolin paints, which contain mostly pure zinc oxide. The chemical characterization of paints at the nanoscale opens the path to a better understanding of their fabrication and chemical reactivity. (orig.)

  20. High-resolution fluorescence mapping of impurities in historical zinc oxide pigments: hard X-ray nanoprobe applications to the paints of Pablo Picasso

    Energy Technology Data Exchange (ETDEWEB)

    Casadio, Francesca [The Art Institute of Chicago, Chicago, IL (United States); Rose, Volker [Argonne National Laboratory, Advanced Photon Source and Center for Nanoscale Materials, Argonne, IL (United States)

    2013-04-15

    Here for the first time we describe the use of high resolution nanoprobe X-ray fluorescence (XRF) mapping for the analysis of artists' paints, hierarchically complex materials typically composed of binder, pigments, fillers, and other additives. The work undertaken at the nanoprobe sought to obtain highly spatially resolved, highly sensitive mapping of metal impurities (Pb, Cd, Fe, and other metals) in submicron particles of zinc oxide pigments used in early 20th century artists' tube paints and enamel paints, with particular emphasis on Ripolin, a popular brand of French house paint used extensively by Pablo Picasso and some of his contemporaries. Analysis revealed that the Zn oxide particles only contain a little Fe, proving that the highest quality Zn oxide pigment, free of Pb and Cd, was used for Ripolin house paints as well as artists' paints. Nanoprobe XRF mapping also demonstrated that artists' tube paints generally have more abundant fillers and additional whites (based on Pb, Ti, Ca) than Ripolin paints, which contain mostly pure zinc oxide. The chemical characterization of paints at the nanoscale opens the path to a better understanding of their fabrication and chemical reactivity. (orig.)

  1. [Analysis and characterization of Belamcanda chinensis with space mutagenesis breeding by X-ray fluorescence analysis and X-ray diffraction].

    Science.gov (United States)

    Guan, Ying; Ding, Xi-Feng; Wang, Wen-Jing; Guo, Xi-Hua; Zhu, Yan-Ying

    2008-02-01

    The contents of various elements in the fourth generation Belamcanda chinensis (L.) DC. with space mutagenesis breeding were analyzed and characterized. X-ray fluorescence spectrum analysis (XRF) and powder X-ray diffraction (PXRD) were applied jointly. It was found that the content of K element in the space flight mutagenesis increases 1.03 and 0.31 times, Mg enhances 1.44 and 0.06 times, but Al reduces 38.5% and 85.5% respectively compared to the contents in the ground group and the comparison group, while those of Ca, Mn and Fe enhance 0.95, 0.30 and 0.29 times respectively contrasted to the ground group. Besides, there was discovered the crystal of whewellite in the Belamcanda chinensis (L.) DC. and the content in the ground group is less than that of the outer space and the outer space group, which in turn is less than that of the comparison group. It is concluded that the contents of mineral elements indispensable to body in the space group are closer or superior to the comparison, group as compared to the ground group. In the present paper, a quick and simple appraising method is offered, which may be of great significance to the popularization of the planting outer space Chinese traditional medicine to filtrate more excellent breed and set up norm of quality appraisal.

  2. ED-XRF spectrometry-based comparative inorganic profile of leaf-derived in vitro calli and in vivo leaf samples of Phyllanthus amarus Schum. & Thonn.--a hepatoprotective herb.

    Science.gov (United States)

    Nayak, P; Behera, P R; Thirunavoukkarasu, M; Chand, P K

    2011-03-01

    The Energy Dispersive X-ray Fluorescence (ED-XRF) set-up incorporating a molybdenum secondary exciter was used for quantitative determination of major and minor elements in leaves of in vivo grown medicinal herb Phyllanthus amarus vis-á-vis its leaf-derived in vitro callus culture. The elements such as K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Rb, Sr and Pb were identified, quantified and compared between both the sources. Experimental results revealed that, compared to the naturally grown herb, in vitro leaf-derived callus cultures were more efficient in accumulating inorganic elements, especially trace elements, which are essential for growth and development and more importantly for prevention and cure of diseases. This investigation on a medicinal plant species is the first of its kind to have used the ED-XRF technique to demonstrate a comparative account of the elemental profile of in vitro callus cultures with their in vivo donor in order to explore the possibility of exploiting the former as a viable alternative and a renewable source of phytochemicals. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. A Ca/Fe X-ray fluorescence analyzer suitable for the purpose of teaching

    International Nuclear Information System (INIS)

    Qu Guopu; Guo Lanying; Xu Shaoyi

    2003-01-01

    This paper introduces a Ca/Fe XRF analyzer specially designed for the purpose of teaching the related courses on nuclear engineering and nuclear technology in the university. Both working principle and constitution of the instrument are presented. A comparison between XRF analysis and chemical analysis showed that the two results were in agreement with an error of ±0.7%

  4. Forensic classification of counterfeit banknote paper by X-ray fluorescence and multivariate statistical methods.

    Science.gov (United States)

    Guo, Hongling; Yin, Baohua; Zhang, Jie; Quan, Yangke; Shi, Gaojun

    2016-09-01

    Counterfeiting of banknotes is a crime and seriously harmful to economy. Examination of the paper, ink and toners used to make counterfeit banknotes can provide useful information to classify and link different cases in which the suspects use the same raw materials. In this paper, 21 paper samples of counterfeit banknotes seized from 13 cases were analyzed by wavelength dispersive X-ray fluorescence. After measuring the elemental composition in paper semi-quantitatively, the normalized weight percentage data of 10 elements were processed by multivariate statistical methods of cluster analysis and principle component analysis. All these paper samples were mainly classified into 3 groups. Nine separate cases were successfully linked. It is demonstrated that elemental composition measured by XRF is a useful way to compare and classify papers used in different cases. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Trends in grazing emission x-ray analysis techniques

    International Nuclear Information System (INIS)

    Grieken, R. van; Tsuji, K.; Injuk, J.

    2000-01-01

    In grazing-emission x-ray fluorescence (GEXRF) spectrometry, XRF is made surface-sensitive, not by grazing incidence of the exciting radiation as in total reflection XRF (TXRF), but by detecting only that part of fluorescence radiation that is emitted at grazing angles above a polished sample carrier or above a flat wafer. In case of GEXRF, and contrary to TXRF, wavelength-dispersive (WD) detection can be used. Applications are, in principle, similar to those of (variable angle) TXRF. At the laboratory scale, only prototype instruments are available, and the GEXRF unit can be an accessory to a commercial WD-XRF instrument. The detection limits of GEXRF are in the higher pg range, corresponding to a concentration of between 0.4-3 μg/l, if a sample volume of 100 μl is examined. Because of the WD detection, GEXRF also lends itself for the analysis of low-Z elements, from Z > 5; this is an advantage over conventional TXRF (but similar to TXRF using a thin-window energy-dispersive detector). Since the GEXRF prototype is a sequential rather than a simultaneous instrument, the analysis time is long when many elements have to be determined. Moreover, because the soft characteristic radiation is more strongly absorbed in its longer path through the matrix than in TXRF, the linear response for trace analysis using GEXRF is limited; this was proven by calculating the fluorescence intensities as a function of layer thickness and composition. The specimens are very limited in thickness. The sample preparation procedure for liquid or other samples to be analyzed with the GEXRF unit is thus very problematic. Results for water samples, bio-materials and pigment and aerosol samples have indeed shown that the quantitative nature of GEXRF for trace analysis is poor. The most promising features of GEXRF are in the field of surface and thin-layer analysis. Trace contaminations on silicon wafers can be determined and depth profiling can characterize stratified near-surface layers. But

  6. 5-ALA induced fluorescent image analysis of actinic keratosis

    Science.gov (United States)

    Cho, Yong-Jin; Bae, Youngwoo; Choi, Eung-Ho; Jung, Byungjo

    2010-02-01

    In this study, we quantitatively analyzed 5-ALA induced fluorescent images of actinic keratosis using digital fluorescent color and hyperspectral imaging modalities. UV-A was utilized to induce fluorescent images and actinic keratosis (AK) lesions were demarcated from surrounding the normal region with different methods. Eight subjects with AK lesion were participated in this study. In the hyperspectral imaging modality, spectral analysis method was utilized for hyperspectral cube image and AK lesions were demarcated from the normal region. Before image acquisition, we designated biopsy position for histopathology of AK lesion and surrounding normal region. Erythema index (E.I.) values on both regions were calculated from the spectral cube data. Image analysis of subjects resulted in two different groups: the first group with the higher fluorescence signal and E.I. on AK lesion than the normal region; the second group with lower fluorescence signal and without big difference in E.I. between two regions. In fluorescent color image analysis of facial AK, E.I. images were calculated on both normal and AK lesions and compared with the results of hyperspectral imaging modality. The results might indicate that the different intensity of fluorescence and E.I. among the subjects with AK might be interpreted as different phases of morphological and metabolic changes of AK lesions.

  7. Instrumental activation and X-ray fluorescent analysis of human bone in health and disease

    International Nuclear Information System (INIS)

    Zaichick, V.Y.

    1994-01-01

    A complex of methods for the in-vitro and in-vivo bone analysis was developed. Among the in-vitro methods are: INAA with reactor and 14 MeV neutrons, IGAA with 25 MeV linear accelerator; XRF with 55 Fe, 109 Cd, 241 Am radionuclide sources. Twenty-five elements could be analyzed by it: N, F, Na, Mg, P, Cl, K, Ca, Sc, Cr, Mn, Fe, Co, Zn, Se, Br, Rb, Sr, Ag, Sb, Cs, Ba, Tb, Hg, and Pb. Among the in-vivo methods are: INAA of band, foot and spine Ca and limb bone tumour Ca, Na and Cl with 238 Pu-Be neutron sources; IGAA of N and P in limb bone tumours; XRF of tooth Ca, Zn, Sr and Pb with 109 Cs radionuclide sources. The methods developed were used both in clinical and experimental medicine for studying the healthy human and animal bone with different diseases and environmental influence. (author) 28 refs.; 7 tabs

  8. SU-G-IeP3-07: High-Resolution, High-Sensitivity Imaging and Quantification of Intratumoral Distributions of Gold Nanoparticles Using a Benchtop L-Shell XRF Imaging System

    Energy Technology Data Exchange (ETDEWEB)

    Manohar, N; Diagaradjane, P; Krishnan, S; Cho, S [UT MD Anderson Cancer Center, Houston, TX (United States); Reynoso, F [UT MD Anderson Cancer Center, Houston, TX (United States); Washington University School of Medicine, St. Louis, MO (United States)

    2016-06-15

    Purpose: To demonstrate the ability to perform high-resolution imaging and quantification of sparse distributions of gold nanoparticles (GNPs) within ex vivo tumor samples using a highly-sensitive benchtop L-shell x-ray fluorescence (XRF) imaging system. Methods: An optimized L-shell XRF imaging system was assembled using a tungsten-target x-ray source (operated at 62 kVp and 45 mA). The x-rays were filtered (copper: 0.08 mm & aluminum: 0.04 mm) and collimated (lead: 5 cm thickness, 3 cm aperture diameter) into a cone-beam in order to irradiate small samples or objects. A collimated (stainless steel: 4 cm thickness, 2 mm aperture diameter) silicon drift detector, capable of 2D translation, was placed at 90° with respect to the beam to acquire XRF/scatter spectra from regions of interest. Spectral processing involved extracting XRF signal from background, followed by attenuation correction using a Compton scatter-based normalization algorithm. Calibration phantoms with water/GNPs (0 and 0.00001–10 mg/cm{sup 3}) were used to determine the detection limit of the system at a 10-second acquisition time. The system was then used to map the distribution of GNPs within a 12×11×2 mm{sup 3} slice excised from the center of a GNP-loaded ex vivo murine tumor sample; a total of 110 voxels (2.65×10{sup −3} cm{sup 3}) were imaged with 1.3-mm spatial resolution. Results: The detection limit of the current cone-beam benchtop L-shell XRF system was 0.003 mg/cm{sup 3} (3 ppm). Intratumoral GNP concentrations ranging from 0.003 mg/cm{sup 3} (3 ppm) to a maximum of 0.055 mg/cm{sup 3} (55 ppm) and average of 0.0093 mg/cm{sup 3} (9.3 ppm) were imaged successfully within the ex vivo tumor slice. Conclusion: The developed cone-beam benchtop L-shell XRF imaging system can immediately be used for imaging of ex vivo tumor samples containing low concentrations of GNPs. With minor finetuning/optimization, the system can be directly adapted for performing routine preclinical in vivo

  9. Journeys of our ancestors: Conservation science approaches to the analysis of cultural material

    Science.gov (United States)

    O'Grady, Caitlin Rose

    The application and use of non-destructive portable x-ray fluorescence (XRF) analysis is a critical tool in the preservation and interpretation of cultural material. Portable XRF instrumentation produce elemental compositional data that is used to reconstruct current artifact composition, which can be related to materials and methods of manufacture, technological practice, as well as object condition and presence of corrosion surfaces. Portable XRF analysis is used to assess a variety of material classes utilized in artifact manufacture. The dissertation research is based on a series of three case studies that represent typical groups of material culture commonly encountered in conservation and conservation science research. Conservators and conservation scientists frequently undertake analysis and interpretation of disparate groups of materials. Often, these objects are tied together by research questions or themes directed by outside influences including preservation issues requiring action; curatorial research interests; museum exhibition programs; as well as many other cultural heritage stakeholders. To this end, both non-destructive and destructive tools that provide measurements of interest play critical roles in analysis. The case studies have been designed to answer common compositional questions relating to (a) bulk analysis of Chinese coins, (b) characterization of Southwestern ceramic colorants, and, (c) chemical examination of post-depositional manganese dioxide accretions occurring on archaeological ceramic materials. They evaluate the value of data produced using effectiveness of non-destructive portable XRF analysis for the interpretation of archaeological materials. The case studies provide a template for the development of conservation science research, predicated on object preservation, which produce meaningful data for the interpretation and conservation of the analyzed archaeological artifacts. Portable XRF provides useful data that is used to

  10. In situ analysis of soil at an open burning/open detonation disposal facility: J-Field, Aberdeen Proving Ground, Maryland

    International Nuclear Information System (INIS)

    Martino, L.; Cho, E.; Wrobel, J.

    1994-01-01

    Investigators have used a field-portable X-Ray Fluorescence (XRF) Analyzer to screen soils for a suite of metals indicative of the open burning and open detonation (OB/OD) activities that occurred at the J-Field site at Aberdeen Proving Ground, Maryland. The field XRF results were incorporated into a multiphase investigation of contaminants at the Toxic Burning Pits Area of Concern at J-Field. The authors determined that the field-portable XRF unit used for the study and the general concept of field XRF screening are invaluable tools for investigating an OB/OD site where intrusive sampling techniques could present unacceptable hazards to site workers

  11. Micro-SR-XRF and micro-PIXE studies for archaeological gold identification - The case of Carpathian (Transylvanian) gold and of Dacian bracelets

    International Nuclear Information System (INIS)

    Constantinescu, B.; Bugoi, R.; Cojocaru, V.; Radtke, M.; Calligaro, T.; Salomon, J.; Pichon, L.; Roehrs, S.; Ceccato, D.; Oberlaender-Tarnoveanu, E.

    2008-01-01

    Trace-elements are more significant for provenancing archaeological metallic artifacts than the main components. For gold, the most promising elements are platinum group elements (PGE), Sn, Te, Sb, Hg and Pb. Several small fragments of natural Transylvanian gold - placer and primary - were studied by using micro-PIXE technique at the Legnaro National Laboratory AN2000 microbeam facility, Italy and at the AGLAE accelerator, C2RMF, Paris, France and by using micro synchrotron radiation X-ray fluorescence (micro-SR-XRF) at BESSY synchrotron, Berlin, Germany. The goal of the study was to identify the trace-elements, especially Sn, Sb and Te. A spectacular application to five Dacian gold bracelets authentication is presented (Sn and Sb traces)

  12. Spatially resolved synchrotron-induced X-ray fluorescence analyses of metal point drawings and their mysterious inscriptions

    International Nuclear Information System (INIS)

    Reiche, Ina; Radtke, Martin; Berger, Achim; Goerner, Wolf; Ketelsen, Thomas; Merchel, Silke; Riederer, Josef; Riesemeier, Heinrich; Roth, Michael

    2004-01-01

    Synchrotron-induced X-ray fluorescence (Sy-XRF) analysis was used to study the chemical composition of precious Renaissance silverpoint drawings. Drawings by famous artists such as Albrecht Duerer (1471-1528) and Jan van Eyck (approximately 1395-1441) must be investigated non-destructively. Moreover, extremely sensitive synchrotron- or accelerator-based techniques are needed since only small quantities of silver are deposited on the paper. New criteria for attributing these works to a particular artist could be established based on the analysis of the chemical composition of the metal points used. We illustrate how analysis can give new art historical information by means of two case studies. Two particular drawings, one of Albrecht Duerer, showing a profile portrait of his closest friend, 'Willibald Pirckheimer' (1503), and a second one attributed to Jan van Eyck, showing a 'Portrait of an elderly man', often named 'Niccolo Albergati', are the object of intense art historical controversy. Both drawings show inscriptions next to the figures. Analyses by Sy-XRF could reveal the same kind of silverpoint for the Pirckheimer portrait and its mysterious Greek inscription, contrary to the drawing by Van Eyck where at least three different metal points were applied. Two different types of silver marks were found in this portrait. Silver containing gold marks were detected in the inscriptions and over-subscriptions. This is the first evidence of the use of gold points for metal point drawings in the Middle Ages

  13. Limestone rocks analysis by X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Izquierdo M, G.; Ponce R, R.; Vazquez J, J.

    1996-01-01

    By request of a private company, employing basically X-ray fluorescence analysis (X RF), was established a fast and accurate method for the analysis of the major elements in limestone rocks. Additionally, for complementing analysis was determined by ion chromatography, the chlorides appearance and by atomic absorption of sodium. By gravimetry, was determined the losses by ignition and the alpha quartz. (Author)

  14. X-ray emission fluorescence (XRF) analysis of origin of raw materials of light dark reddish brown porcelain and porcelain with black flower on a white background of Dangyangyu kiln

    International Nuclear Information System (INIS)

    Zhang Hongyu; Yang Dawei; Guo Wenyu

    2009-01-01

    Dangyangyu kiln was an important civil porcelain production place in the North China during the Song Dynasty. In order to find out the source of raw materials of the porcelain body and glaze and their classification relationship so as to correctly distinguish them, we have used XRF to determine the major chemical elements of some porcelain samples with light brown and samples with black flower on a white background. Dynamic fuzzy cluster analysis was applied to the data. Results indicate that the origin of raw materials of light brown porcelain body samples is comparatively more concentrated, while that of the porcelain with black flower on a white background is scattered about. The origin of the body materials of those two kinds of porcelain samples is obviously different. The origin of raw materials of light brown porcelain samples is comparatively concentrated and stable, while that of the porcelain with black flower on a white background is scattered about, moreover, the origin of glaze raw materials and the formula of the two kinds are obviously different. The origin and formula of the light brown porcelain with white glaze in the interior are close to those of the white glaze of porcelain with black flower on a white background, but they are not entirely identical. (author)

  15. Multispectral processing of combined visible and x-ray fluorescence imagery in the Archimedes palimpsest

    Science.gov (United States)

    Walvoord, Derek; Bright, Allison; Easton, Roger L., Jr.

    2008-02-01

    The Archimedes palimpsest is one of the most significant early texts in the history of science that has survived to the present day. It includes the oldest known copies of text from seven treatises by Archimedes, along with pages from other important historical writings. In the 13th century, the original texts were erased and overwritten by a Christian prayer book, which was used in religious services probably into the 19th century. Since 2001, much of the text from treatises of Archimedes has been transcribed from images taken in reflected visible light and visible fluorescence generated by exposure of the parchment to ultraviolet light. However, these techniques do not work well on all pages of the manuscript, including the badly stained colophon, four pages of the manuscript obscured by icons painted during the first half of the 20th century, and some pages of non-Archimedes texts. Much of the text on the colophon and overpainted pages has been recovered from X-ray fluorescence (XRF) imagery. In this work, the XRF images of one of the other pages were combined with the bands of optical images to create hyperspectral image cubes and processed using standard statistical classification techniques developed for environmental remote sensing to test if this improved the recovery of the original text.

  16. Portable XRF on Prehistoric Bronze Artefacts: Limitations and Use for the Detection of Bronze Age Metal Workshops

    DEFF Research Database (Denmark)

    Nørgaard, Heide Wrobel

    2017-01-01

    sections were analysed using a scanning electron microscope (SEM). Results from the corrosion crust of copper-tin alloys, and the change measured within the elemental composition from the bulk metal to the surface, greatly influenced the interpretation of the second data set, which was measured using......Two different scientific analyses—one destructive and one non destructive—were conducted on two separate groups of bronze ornaments dating from 1500–1100 BC to investigate, amongst other traits, the metal composition of their copper-tin alloys. One group of artefacts was sampled, and polished thin...... a handheld X-ray fluorescence (XRF) device. The surface of corroded bronze ornaments consists mostly of copper carbonates, oxides, and chlorides. Chemical processes, such as decuprification, change the element composition in such a manner that the original alloy cannot be traced with a non-destructive method...

  17. A Brazilian tree collection analyzed by X ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, H; Fernandes, E A.N.; Ferraz, E S.B. [Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Laboratorio de Radioisotopos, Piracicaba (Brazil); Haselberger, N; Markowicz, A [International Atomic Energy Agency, Seibersdorf (Austria)

    2000-06-01

    The analysis of the inorganic components of wood is of great interest for several reasons, including the acquisition of basic data creating a data base of values for individual species. Knowing the wide variability in matrix composition (lignin, oil, resin, silica) and densities (0.39-1.09 g cm{sup -3}), 40 species of trees were analysed by X ray fluorescence (XRF) to determine the concentrations of Br, Ca, Cu, K, Mn, Pb, Rb, Sr, and A. This technique is widely used because of its accuracy and simplicity of sample preparation, normally complex for this type of biological material. This multi-elemental analysis has proven suitable for wood, a material in which a wide range for each element was encountered in the different species studied: 0.3-5.2 for Br, 126-9074 for Ca, 2.2-11 for Cu, 108-5873 for K, 3.1-134 for Mn, 0.5-4.7 for Pb, 0.3-20 for Rb, 1.2-120 for Sr, and 1.1-20 for Zn (values given in {mu}g g{sup -1}). (author)

  18. A Brazilian tree collection analyzed by X ray fluorescence

    International Nuclear Information System (INIS)

    Oliveira, H.; Fernandes, E.A.N.; Ferraz, E.S.B.; Haselberger, N.; Markowicz, A.

    2000-01-01

    The analysis of the inorganic components of wood is of great interest for several reasons, including the acquisition of basic data creating a data base of values for individual species. Knowing the wide variability in matrix composition (lignin, oil, resin, silica) and densities (0.39-1.09 g cm -3 ), 40 species of trees were analysed by X ray fluorescence (XRF) to determine the concentrations of Br, Ca, Cu, K, Mn, Pb, Rb, Sr, and A. This technique is widely used because of its accuracy and simplicity of sample preparation, normally complex for this type of biological material. This multi-elemental analysis has proven suitable for wood, a material in which a wide range for each element was encountered in the different species studied: 0.3-5.2 for Br, 126-9074 for Ca, 2.2-11 for Cu, 108-5873 for K, 3.1-134 for Mn, 0.5-4.7 for Pb, 0.3-20 for Rb, 1.2-120 for Sr, and 1.1-20 for Zn (values given in μg g -1 ). (author)

  19. ED-XRF spectrometry-based comparative inorganic profile of leaf-derived in vitro calli and in vivo leaf samples of Phyllanthus amarus Schum. and Thonn.-a hepatoprotective herb

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, P., E-mail: pranati_nayak_23@yahoo.co.i [Plant Tissue and Cell Culture Facility, Post-Graduate Department of Botany, Utkal University, Bhubaneswar 751004, Orissa (India); Plant Biotechnology Laboratory, Institute of Minerals and Materials Technology, (C.S.I.R., Govt. of India), Bhubaneswar 751013, Orissa (India); Behera, P.R., E-mail: priyaranjan2004@gmail.co [Plant Tissue and Cell Culture Facility, Post-Graduate Department of Botany, Utkal University, Bhubaneswar 751004, Orissa (India); Plant Biotechnology Laboratory, Institute of Minerals and Materials Technology, (C.S.I.R., Govt. of India), Bhubaneswar 751013, Orissa (India); Thirunavoukkarasu, M., E-mail: mtarasu@yahoo.co [Plant Biotechnology Laboratory, Institute of Minerals and Materials Technology, (C.S.I.R., Govt. of India), Bhubaneswar 751013, Orissa (India); Chand, P.K., E-mail: pkchanduubot@rediffmail.co [Plant Tissue and Cell Culture Facility, Post-Graduate Department of Botany, Utkal University, Bhubaneswar 751004, Orissa (India)

    2011-03-15

    The Energy Dispersive X-ray Fluorescence (ED-XRF) set-up incorporating a molybdenum secondary exciter was used for quantitative determination of major and minor elements in leaves of in vivo grown medicinal herb Phyllanthus amarus vis-a-vis its leaf-derived in vitro callus culture. The elements such as K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Rb, Sr and Pb were identified, quantified and compared between both the sources. Experimental results revealed that, compared to the naturally grown herb, in vitro leaf-derived callus cultures were more efficient in accumulating inorganic elements, especially trace elements, which are essential for growth and development and more importantly for prevention and cure of diseases. This investigation on a medicinal plant species is the first of its kind to have used the ED-XRF technique to demonstrate a comparative account of the elemental profile of in vitro callus cultures with their in vivo donor in order to explore the possibility of exploiting the former as a viable alternative and a renewable source of phytochemicals.

  20. X-ray fluorescence investigation of gilded and enamelled silver: The case study of four medieval processional crosses from central Italy

    International Nuclear Information System (INIS)

    Ferretti, Marco; Polese, Claudia; Roldán García, Clodoaldo

    2013-01-01

    The presence of multilayered structures is common in such cultural artefacts as paintings, corroded metals, objects that underwent a whatever form of surface qualification. One of the most usual and complete ways to investigate such structures is observing a cross section, which requires sampling. There are however situations where at least part of the stratigraphic information can be derived non-destructively: the literature shows that X-ray fluorescence (XRF) has frequently been used, in recent years, for this purpose, with special regard to paintings and gilded metals. Aim of this paper is to further explore the suitability of XRF-based techniques to characterise multilayered structures. This is achieved by introducing improvements, with respect to previous works, in both equipment and data processing. The method, that has been developed for gilded and enamelled silver artefacts, relies on optimum excitation conditions provided for silver and on the relationship existing between the ratio AgKα/AgKβ of its fluorescence lines and the gilding thickness itself. The coating (gilding or enamel) thickness is derived by verifying the condition C Kα,Ag = C Kβ,Ag , where C Kα,Ag and C Kβ,Ag are the mass fractions of silver calculated on the lines AgKα and AgKβ, respectively. The calculations are carried out by PyMCA, a Fundamental Parameters code that implements the analysis of multilayered samples. As a case study we investigated in situ the four processional crosses of Borbona, Sant'Elpidio, Rosciolo and Forcella, made of a wood core with attached gilt and embossed silver sheets and enamelled silver plates. The analyses allowed to distinguish ancient restorations from original parts, to characterise the enamels and find their composition consistent with the dates of manufacturing and, as regards the cross of Rosciolo, to hypothesize the contribution of different “hands” in its manufacturing. - Highlights: ► We discuss a non-destructive XRF method for the

  1. X-ray fluorescence investigation of gilded and enamelled silver: The case study of four medieval processional crosses from central Italy

    Energy Technology Data Exchange (ETDEWEB)

    Ferretti, Marco, E-mail: marco.ferretti@itabc.cnr.it [CNR, Istituto per le Tecnologie Applicate ai Beni Culturali, AdR RM1, Via Salaria km 29.300, 00016 Montelibretti (Roma) (Italy); Polese, Claudia, E-mail: claudia.polese87@hotmail.it [Dip. di Chimica, Università di Roma “Sapienza,” Piazzale Aldo Moro 5, 00185 Roma (Italy); Roldán García, Clodoaldo, E-mail: Clodoaldo.Roldan@uv.es [Instituto de Ciencia de Materiales, Parc Cientific Universidad de Valencia, C/Catedrático José Beltrán 2, 46980 Paterna (Valencia) (Spain)

    2013-05-01

    The presence of multilayered structures is common in such cultural artefacts as paintings, corroded metals, objects that underwent a whatever form of surface qualification. One of the most usual and complete ways to investigate such structures is observing a cross section, which requires sampling. There are however situations where at least part of the stratigraphic information can be derived non-destructively: the literature shows that X-ray fluorescence (XRF) has frequently been used, in recent years, for this purpose, with special regard to paintings and gilded metals. Aim of this paper is to further explore the suitability of XRF-based techniques to characterise multilayered structures. This is achieved by introducing improvements, with respect to previous works, in both equipment and data processing. The method, that has been developed for gilded and enamelled silver artefacts, relies on optimum excitation conditions provided for silver and on the relationship existing between the ratio AgKα/AgKβ of its fluorescence lines and the gilding thickness itself. The coating (gilding or enamel) thickness is derived by verifying the condition C{sub Kα,Ag} = C{sub Kβ,Ag}, where C{sub Kα,Ag} and C{sub Kβ,Ag} are the mass fractions of silver calculated on the lines AgKα and AgKβ, respectively. The calculations are carried out by PyMCA, a Fundamental Parameters code that implements the analysis of multilayered samples. As a case study we investigated in situ the four processional crosses of Borbona, Sant'Elpidio, Rosciolo and Forcella, made of a wood core with attached gilt and embossed silver sheets and enamelled silver plates. The analyses allowed to distinguish ancient restorations from original parts, to characterise the enamels and find their composition consistent with the dates of manufacturing and, as regards the cross of Rosciolo, to hypothesize the contribution of different “hands” in its manufacturing. - Highlights: ► We discuss a non

  2. Assessment of an X-Ray Spectrometer for fluorescence cross sections measurements of elements with 22≤Ζ≤55 in a secondary target configuration

    International Nuclear Information System (INIS)

    Delabat Diaz, Y.

    2015-01-01

    A performance evaluation of an X-Ray Fluorescence Spectrometer for X-Ray Fluorescence (XRF) cross section measurements in a Secondary Target (ST) set-up has been carried out. Using Cd and Dy as STs, an annular 241 Am (∼1 Ci) radioactive source and an X-Ray Spectrometer with a Si(Li) semiconductor detector, the photon effective flux factors (Ι 0 Gε) were measured for some elements with 22≤Ζ≤55 as a function of the characteristics X-Rays energy for two different distances Source-St (0.5 cm and 1.0 cm). Thin high purity foils and a few pellets made out of composed materials were used as samples for the Ι 0 Gε calibrations. the contribution of 59.54 KeV scattered photons to the XRF was analysed and the Scattering Correction Factor (SCF) due to excitation by 59.54 keV scattered photons was estimated in the Cd configuration for further cross section measurements improvements. (Author)

  3. Enamel paint techniques in archaeology and their identification using XRF and micro-XRF

    Science.gov (United States)

    Hložek, M.; Trojek, T.; Komoróczy, B.; Prokeš, R.

    2017-08-01

    This investigation focuses in detail on the analysis of discoveries in South Moravia - important sites from the Roman period in Pasohlávky and Mušov. Using X-ray fluorescence analysis and micro-analysis we help identify the techniques of enamel paint and give a thorough chemical analysis in details which would not be possible to determine by means of macroscopic examination. We thus address the influence of elemental composition on the final colour of the enamel paint and describe the less known technique of combining enamel with millefiori. The material analyses of the metal artefacts decorated with enamel paint significantly contribute to our knowledge of the technology being used during the Roman period.

  4. Ion beam analysis in cultural heritage studies: Milestones and perspectives

    International Nuclear Information System (INIS)

    Dran, Jean-Claude; Calligaro, Thomas

    2013-01-01

    For three decades, ion beam analysis (IBA) in external mode was considered as the best choice for the characterisation of cultural heritage materials, as it combines excellent analytical performance and non-invasive character. However, in recent years, other analytical techniques arose as serious competitors, such as those based on synchrotron radiation (X-ray absorption, fluorescence or diffraction) or those using portable instruments (XRF, micro-Raman). It is shown that nevertheless IBA remains unmatched thanks to two unique features, namely the analysis of light elements and the high-resolution 3D chemical imaging

  5. LabVIEW interface with Tango control system for a multi-technique X-ray spectrometry IAEA beamline end-station at Elettra Sincrotrone Trieste

    Energy Technology Data Exchange (ETDEWEB)

    Wrobel, P.M. [Physics Section, Nuclear Science and Instrumentation Laboratory (NSIL), IAEA Laboratories, A-2444 Seibersdorf (Austria); AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. A. Mickiewicza 30, 30-059 Krakow (Poland); Bogovac, M. [Physics Section, Nuclear Science and Instrumentation Laboratory (NSIL), IAEA Laboratories, A-2444 Seibersdorf (Austria); Sghaier, H. [Physics Section, Nuclear Science and Instrumentation Laboratory (NSIL), IAEA Laboratories, A-2444 Seibersdorf (Austria); Institut Superieur d’Informatique et de Mathematiques de Monastir (ISIMM), Departement de technologie, 5000 Monastir (Tunisia); Leani, J.J. [Physics Section, Nuclear Science and Instrumentation Laboratory (NSIL), IAEA Laboratories, A-2444 Seibersdorf (Austria); IFEG – CONICET, Facultad de Matematica Astronomia y Fisica, Universidad Nacional de Cordoba, 5000 Cordoba (Argentina); Migliori, A.; Padilla-Alvarez, R. [Physics Section, Nuclear Science and Instrumentation Laboratory (NSIL), IAEA Laboratories, A-2444 Seibersdorf (Austria); Czyzycki, M. [Physics Section, Nuclear Science and Instrumentation Laboratory (NSIL), IAEA Laboratories, A-2444 Seibersdorf (Austria); AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. A. Mickiewicza 30, 30-059 Krakow (Poland); Osan, J. [Physics Section, Nuclear Science and Instrumentation Laboratory (NSIL), IAEA Laboratories, A-2444 Seibersdorf (Austria); Environmental Physics Department, Hungarian Academy of Sciences Centre for Energy Research, Konkoly-Thege M. út 29-33., H-1121 Budapest (Hungary); Kaiser, R.B. [Physics Section, Nuclear Science and Instrumentation Laboratory (NSIL), IAEA Laboratories, A-2444 Seibersdorf (Austria); and others

    2016-10-11

    A new synchrotron beamline end-station for multipurpose X-ray spectrometry applications has been recently commissioned and it is currently accessible by end-users at the XRF beamline of Elettra Sincrotrone Trieste. The end-station consists of an ultra-high vacuum chamber that includes as main instrument a seven-axis motorized manipulator for sample and detectors positioning, different kinds of X-ray detectors and optical cameras. The beamline end-station allows performing measurements in different X-ray spectrometry techniques such as Microscopic X-Ray Fluorescence analysisXRF), Total Reflection X-Ray Fluorescence analysis (TXRF), Grazing Incidence/Exit X-Ray Fluorescence analysis (GI-XRF/GE-XRF), X-Ray Reflectometry (XRR), and X-Ray Absorption Spectroscopy (XAS). A LabVIEW Graphical User Interface (GUI) bound with Tango control system consisted of many custom made software modules is utilized as a user-friendly tool for control of the entire end-station hardware components. The present work describes this advanced Tango and LabVIEW software platform that utilizes in an optimal synergistic manner the merits and functionality of these well-established programming and equipment control tools. - Highlights: • A new methodology for control of a synchrotron beamline end-station is shown. • The new control system comprises a novel binding of Tango control system with LabVIEW interface. • The reliability of the control system is demonstrated by examples of analytical applications.

  6. Analysis of Colonial Currency

    Science.gov (United States)

    Kurkowski, Michael; Cangany, Catherine; Jordan, Louis; Manukyan, Khachatur; Schultz, Zachary; Wiescher, Michael

    2017-09-01

    This project entailed studying the cellulose in paper, the ink, colorants, and other materials used to produce American colonial currency. The technique primarily used in this project was X-Ray Fluorescence Spectroscopy (XRF). XRF mapping was used to provide both elemental analysis of large-scale objects as well as microscopic examination of individual pigment particles in ink, in addition to the inorganic additives used to prepare paper. The combination of elemental mapping with Fourier Transform Infrared (FTIR) and Raman Spectroscopies permits an efficient analysis of the currency. These spectroscopic methods help identify the molecular composition of the pigments. This combination of atomic and molecular analytical techniques provided an in-depth characterization of the paper currency on the macro, micro, and molecular levels. We have identified several of pigments that were used in the preparation of inks and colorants. Also, different inorganic crystals, such as alumina-silicates, have been detected in different papers. The FTIR spectroscopy allowed us to determine the type of cellulose fiber used in the production of paper currency. Our future research will be directed toward revealing important historical relationships between currencies printed throughout the colonies. ISLA Da Vinci Grant.

  7. Applications of optical fiber to remote laser fluorescence analysis

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Shin, Jang Soo; Lee, Sang Mock; Kim, Jeong Moog; Kim, Duk Heon; Hong, Seok Kyung

    1991-12-01

    Fluorescence analysis using time-resolved laser fluorimetry has been used for trace uranium analysis because this method shows high sensitivity and low detection limit and is less matrix dependent than any other fluorimetric measurement. By this time, the uranium analyses in the solution of reprocessing process or high radioactive area have been primarily analyzed by sampling of the solution, but recently, a study on a remote uranium fluorescence analysis using optical fiber has been setting out based on the development of an optical fiber with radiation resistivity and of an advanced laser excitation source. Laser fluorimetry developed by our laboratory for trace uranium analyses in uranium handling process or in urine samples of workers in a nuclear facility has been used in our institute since 1988. A development of the system for remote control of uranium fluorescence analysis will be expected to contribute to an on-line uranium concentration monitoring in the cooling water of reconversion stream. In this report, we summarize the information related to fluorescence analyses and remote fluorescence monitoring methods established by foreign countries and our laboratory. We also present a future research direction for remote on-line monitoring of uranium in conversion or reconversion process. (Author)

  8. Use of thin layer chromatography and x-ray fluorescence analysis to evaluation of Leng 3 mobility in soil

    International Nuclear Information System (INIS)

    Tornisielo, Valdemar L.; Furlan, Gilberto R.; Regitano, Jussara B.; Costa, Maria A.; Nascimento Filho, Virgilio L.; Navarro, Angela A.; Simabuco, Silvana M.

    1996-01-01

    'Leng 3' is a product used for wood preservation and its formulation contain a water solution of copper sulfate, boric acid, sulfuric acid and sodium dichromate. The 'Leng 3' mobility in soil was evaluated using TLC coated with soil film and eluted with distilled water. Three different soils of Sao Paulo state, a Sandy Soil (AQ), a Dark red Latossol (LE) and a Latossol Roxo (LR) were evaluated ed. The products were applied on TLC-soil plates then eluted, dried at room temperature, divide in 10 parts of 1.0 cm wide from the application point to the top scratching the soil out to analysis. The determination of chrome and copper were done by energy dispersive X-ray fluorescence technique (ED-XRF) with 238 Pu radioisotopic excitation (3,61 GBq). Boron was determine by conventional chemical method (hot water extraction) of analysis. The results shown that the three elements chrome, copper and boron were mobile in all soils. Copper had the least mobility in the three soils, but boron and chrome showed a high mobility in all soils. The chrome front rate (Rf) in the soil AQ, LE and LR were 0.85, 0.95 while o.85, 0.35, 0.45 for copper. The element boron had a Rf 1.0 for all soils. (author)

  9. Rapid screening of natually occurring radioactive nuclides({sup 2}'3{sup 8}U, {sup 232}Th) in raw materials and by-products samples using XRF

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Young; Lim, Chung Sup [Radiation Biotechnology and Applied Radioiostope Science, University of Science and Technology, Daejeon (Korea, Republic of); Lim, Jong Myoung; Ji, Young Yong; Chung, Kun Ho; Lee, Wan No; Kang, Mun Ja [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Jang, Byung Uck [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-12-15

    As new legislation has come into force implementing radiation safety management for the use of naturally occurring radioactive materials (NORM), it is necessary to establish a rapid and accurate measurement technique. Measurement of {sup 238}U and {sup 232}Th using conventional methods encounter the most significant difficulties for pretreatment (e.g., purification, speciation, and dilution/enrichment) or require time-consuming processes. Therefore, in this study, the applicability of ED-XRF as a non-destructive and rapid screening method was validated for raw materials and by-product samples. A series of experiments was conducted to test the applicability for rapid screening of XRF measurement to determine activity of {sup 238}U and {sup 23{sup 2}}Th based on certified reference materials (e.g., soil, rock, phosphorus rock, bauxite, zircon, and coal ash) and NORM samples commercially used in Korea. Statistical methods were used to compare the analytical results of ED-XRF to those of certified values of certified reference materials (CRM) and inductively coupled plasma mass spectrometry (ICP-MS). Results of the XRF measurement for {sup 238}U and {sup 232}Th showed under 20% relative error and standard deviation. The results of the U-test were statistically significant except for the case of U in coal fly ash samples. In addition, analytical results of {sup 238}U and {sup 232}Th in the raw material and by-product samples using XRF and the analytical results of those using ICP-MS (R{sup 2}≥0.95) were consistent with each other. Thus, the analytical results rapidly derived using ED-XRF were fairly reliable. Based on the validation results, it can be concluded that the ED-XRF analysis may be applied to rapid screening of radioactivities ({sup 238}U and {sup 232}Th) in NORM samples.

  10. Sampling and analytical methodologies for energy dispersive X-ray fluorescence analysis of airborne particulate matter

    International Nuclear Information System (INIS)

    1993-01-01

    The present document represents an attempt to summarize the most important features of the different forms of ED-XFR as applied to the analysis of airborne particulate matter. It is intended to serve as a set of guidelines for use by participants in the IAEA's own programmes, and other scientists, who are not yet fully experienced in the application of ED-XRF to airborne particulate samples, and who wish either to make a start on using this technique or to improve their existing procedures. The methodologies for sampling described in this document are of rather general applicability. Emphasis is also placed on the sources of errors affecting the sampling of airborne particulate matter. The analytical part of the document describes the different forms of ED-XRF and their potential applications. Spectrum evaluation, a key step in X-ray spectrometry, is covered in depth, including discussion on several calibration and peak fitting techniques and computer programs especially designed for this purpose. 148 refs, 25 figs, 13 tabs

  11. X-ray fluorescence analysis of yellow pigments in altarpieces by Valencian artists of the XV and XVI centuries

    International Nuclear Information System (INIS)

    Ferrero, J.L.; Roldan, C.; Ardid, M.; Navarro, E.

    1999-01-01

    XRF analysis has allowed a quick and precise detection and identification of the inorganic elements that compose the yellow pigments in altarpieces of the XV and XVI centuries painted by the Valencian artists Miguel Alcaniz, Vicente Macip, Juan de Juanes, Hernando Yanez de la Almedina and Hernando Llanos. The analyses have been carried out with an XRF portable system that consists of a tube of X-rays and detectors of Si(Li) and cadmium zinc telluride. This system has enabled a non-aggressive and non-destructive analysis of many pieces at the Museo de Bellas Artes of Valencia (Spain). Among the yellow pigments we have identified a pigment composed by lead and tin oxides named lead-tin yellow (Pb 2 SnO 4 ), frequently used in European paintings from the XIV century until the first half of the XVIII century. This fact demonstrates the influence of elements and pictorial techniques from Europe to the region of Valencia

  12. Geochemical studies of Guarani ethnic groups pottery with XRF

    International Nuclear Information System (INIS)

    Facetti-Masulli, J.F.; Romero de Gonzalez, V.; Zulma de Diaz; Kump, P.

    2010-01-01

    Artefacts of pottery belonging to the Guarani ethnic group were investigated by XRF techniques. The Tupi-Guarani, is one of the three main representatives of the Neolithic culture in the Amazonian scope. Such an ethnic group dispersed towards the South; in the Paraguayan area between the Paraguay and the Parana Rivers several Guarani ethnic movements by both rivers and their tributaries are perceived. The lithology and ceramics typology have contributed to support that perception. The archaeological findings help to clarify prehistoric cultural aspects and dispersal areas. In that context, the knowledge of the chemical composition of the found ceramic devices, in particular of the rare earth elements (REE) and other refractory ones provide information on this dispersion and its expansion. Selected trace elements (Rb, Sr, Y, Zr, Nb, Ba, La, Ce, and Nd) were determined in samples from thirteen archaeological sites with XRF using an Am-241 source. Their spidergrams have allowed identifying four different sets of samples according to their areas of provenance. (author)

  13. Study on accumulation mechanism of Cu and Pb in moss, Scopelophila cataractae, by micro-XRF imaging and XAFS analysis

    International Nuclear Information System (INIS)

    Yoshii, Yuichi; Nakai, Izumi; Hokura, Akiko; Abe, Tomoko; Itouga, Misao; Sakakibara, Hitoshi; Terada, Yasuko

    2011-01-01

    Scopelophila cataractae is known as a 'copper moss'. It is known as a peculiar moss which can accumulate high level of metals (Cu, Pb, etc.) in its plant body. This moss is expected as a material to collect metals from water. In this study, gametophyte's leaf of the moss was examined by μ-XRF imaging, and Cu K-edge and Pb L 1 -, L 3 -edge XAFS analyses to reveal the accumulation behavior of Cu and Pb. μ-XRF imaging was carried out utilizing X-ray microbeam at BL37XU, SPring-8 from the undulator source, and at BL-4A, Photon Factory KEK from the bending magnet. The results have revealed that Cu and Pb were accumulated on the cell wall of the leaf, and especially at the stereid cells of midrib. It was found that Cu-XANES spectra of the leaf were similar to that of copper(II) acetate, a reference substance. On the other hand, Pb XANES spectra of the leaf were similar to that of a reference, lead(II) stearate. These results suggested that these metals were bound to oxygen of carboxyl group in the plant. Consequently, it is assumed that Cu and Pb could be bound to acidic sugar which is a component of its cell wall such as pectic acid, polygalacturonic acid and others. Furthermore, to compare with other heavy-metal accumulating moss (Scopelophila ligulata and Sphagnum palustre), their gametophyte's leaves were also examined by μ-XRF imaging. S. ligulata accumulated Pb in its stereid cells of midlib, while S. palustre accumulated Pb in its hyaline cells. (author)

  14. A guide for approval of x-ray fluorescence analysis devices

    International Nuclear Information System (INIS)

    1990-01-01

    This guide has been written to assist manufacturers, distributors and users of x-ray fluorescence analysis devices in the preparation of a submission to the Atomic Energy Control Board (AECB) in support of a request for approval of an x-ray fluorescence analysis device. Prior to the issuance of a Radioisotope licence authorizing the use or possession of an x-ray fluorescence analysis device in Canada, the design and construction of the device must be approved by the AECB. The AECB assessment is limited to the radiation safety aspects of use and packaging for transportation

  15. High resolution HH-XRF scanning and XRD modelling as a tool in sedimentological analysis - A case study from the Enreca-3 core, Bach Long Vi Island, Vietnam

    Science.gov (United States)

    Rizzi, Malgorzata; Hemmingsen Schovsbo, Niels; Korte, Christoph; Bryld Wessel Fyhn, Michael

    2017-04-01

    To improve the understanding and interpretation of the depositional environment of a late Oligocene lacustrine organic rich oil-prone source rock succession, 2464 hand held (HH)-XRF measurements were made systematically on the 500 m long, continuous core from the fully cored Enreca-3 well. This core, drilled on the remote Bach Long Vi Island, northern Gulf of Tonkin, offshore Vietnam, represents a deep lake succession alternating between lacustrine pelagic dominated sediments interrupted by hyperpycnal turbidites, high density turbidites and debris flows [1, 2]. From a combined HH-XRF-XRD data set, multivariate data analysis and regression models are used to type the rock and to predict the XRD mineral composition based on HH-XRF composition. The rock types and the modelled mineral composition highlight the geochemical variations of the sediment and allows for direct comparison with sedimentological processes and facies changes. The modeling also depicts the cyclic alteration of rock types that are present on many different scales ranging from centimeters to hundreds of meters [1, 2]. The sedimentological and geochemical variations observed throughout the cored section reflects fluctuating paleoclimate, tectonism and hinterland condition controlling the depositional setting, which may provide a deeper understanding of the deposition of this and similar Paleogene syn-rift succession in the South China Sea region. It allows furthermore the development of a more generalized depositional model relevant for other deep-lacustrine syn-rift basins. [1] Petersen et al. (2014) Journal of Petroleum Geology, 37: 373-389. [2] Hovikoski et al. (2016) Journal of Sedimentary Research, 86(8): 982-1007.

  16. Romanian medieval earring analysis by X-ray fluorescence technique

    International Nuclear Information System (INIS)

    Therese, Laurent; Guillot, Philippe; Muja, Cristina

    2011-01-01

    Full text: Several instrumental techniques of elemental analysis are now used for the characterization of archaeological materials. The combination between archaeological and analytical information can provide significant knowledge on the constituting material origin, heritage authentication and restoration, provenance, migration, social interaction and exchange. Surface mapping techniques such as X-Ray Fluorescence have become a powerful tool for obtaining qualitative and semi-quantitative information about the chemical composition of cultural heritage materials, including metallic archaeological objects. In this study, the material comes from the Middle Age cemetery of Feldioara (Romania). The excavation of the site located between the evangelical church and the parsonage led to the discovery of several funeral artifacts in 18 graves among a total of 127 excavated. Even if the inventory was quite poor, some of the objects helped in establishing the chronology. Six anonymous Hungarian denarii (silver coins) were attributed to Geza II (1141-1161) and Stefan III (1162-1172), placing the cemetery in the second half of the XII century. This period was also confirmed by three loop shaped earrings with the end in 'S' form (one small and two large earrings). The small earring was found during the excavation in grave number 86, while the two others were discovered together in grave number 113. The anthropological study shown that skeletons excavated from graves 86 and 113 belonged respectively to a child (1 individual, medium level preservation, 9 months +/- 3 months) and to an adult (1 individual). In this work, elemental mapping were obtained by X-ray fluorescence (XRF) technique from Jobin Yvon Horiba XGT-5000 instrument offering detailed elemental images with a spatial resolution of 100μm. The analysis revealed that the earrings were composed of copper, zinc and tin as major elements. Minor elements were also determined. The comparison between the two large earrings

  17. Romanian medieval earring analysis by X-ray fluorescence technique

    Energy Technology Data Exchange (ETDEWEB)

    Therese, Laurent; Guillot, Philippe, E-mail: philippe.guillot@univ-jfc.fr [Laboratoire Diagnostics des Plasmas, CUFR J.F.C, Albi (France); Muja, Cristina [Laboratoire Diagnostics des Plasmas, CUFR J.F.C, Albi (France); Faculty of Biology, University of Bucharest (Romania); Vasile Parvan Institute of Archaeology, Bucharest, (Romania)

    2011-07-01

    Full text: Several instrumental techniques of elemental analysis are now used for the characterization of archaeological materials. The combination between archaeological and analytical information can provide significant knowledge on the constituting material origin, heritage authentication and restoration, provenance, migration, social interaction and exchange. Surface mapping techniques such as X-Ray Fluorescence have become a powerful tool for obtaining qualitative and semi-quantitative information about the chemical composition of cultural heritage materials, including metallic archaeological objects. In this study, the material comes from the Middle Age cemetery of Feldioara (Romania). The excavation of the site located between the evangelical church and the parsonage led to the discovery of several funeral artifacts in 18 graves among a total of 127 excavated. Even if the inventory was quite poor, some of the objects helped in establishing the chronology. Six anonymous Hungarian denarii (silver coins) were attributed to Geza II (1141-1161) and Stefan III (1162-1172), placing the cemetery in the second half of the XII century. This period was also confirmed by three loop shaped earrings with the end in 'S' form (one small and two large earrings). The small earring was found during the excavation in grave number 86, while the two others were discovered together in grave number 113. The anthropological study shown that skeletons excavated from graves 86 and 113 belonged respectively to a child (1 individual, medium level preservation, 9 months +/- 3 months) and to an adult (1 individual). In this work, elemental mapping were obtained by X-ray fluorescence (XRF) technique from Jobin Yvon Horiba XGT-5000 instrument offering detailed elemental images with a spatial resolution of 100{mu}m. The analysis revealed that the earrings were composed of copper, zinc and tin as major elements. Minor elements were also determined. The comparison between the two

  18. X-ray fluorescent elemental analysis. Ch. 16

    International Nuclear Information System (INIS)

    Baryshev, V.; Kulipanov, G.; Skrinsky, A.

    1991-01-01

    X-ray fluorescence analysis (XFA) is used worldwide to define a quantitative content of the elements as well as to visualize the distribution of elements in different regions (element mapping). Utilization of synchrotron radiation (SR) to excite X-ray fluorescence enables the XFA method to be qualitatively improved. This chapter reviews the experimental work in especially the last decade (author). 71 refs.; 24 figs.; 3 tabs

  19. Characterization of calcium and zinc spatial distributions at the fibrocartilage zone of bone–tendon junction by synchrotron radiation-based micro X-ray fluorescence analysis combined with backscattered electron imaging

    International Nuclear Information System (INIS)

    Lu, Hongbin; Chen, Can; Wang, Zhanwen; Qu, Jin; Xu, Daqi; Wu, Tianding; Cao, Yong; Zhou, Jingyong; Zheng, Cheng; Hu, Jianzhong

    2015-01-01

    Tendon attaches to bone through a functionally graded fibrocartilage zone, including uncalcified fibrocartilage (UF), tidemark (TM) and calcified fibrocartilage (CF). This transition zone plays a pivotal role in relaxing load transfer between tendon and bone, and serves as a boundary between otherwise structurally and functionally distinct tissue types. Calcium and zinc are believed to play important roles in the normal growth, mineralization, and repair of the fibrocartilage zone of bone–tendon junction (BTJ). However, spatial distributions of calcium and zinc at the fibrocartilage zone of BTJ and their distribution–function relationship are not totally understood. Thus, synchrotron radiation-based micro X-ray fluorescence analysis (SR-μXRF) in combination with backscattered electron imaging (BEI) was employed to characterize the distributions of calcium and zinc at the fibrocartilage zone of rabbit patella–patellar tendon complex (PPTC). For the first time, the unique distributions of calcium and zinc at the fibrocartilage zone of the PPTC were clearly mapped by this method. The distributions of calcium and zinc at the fibrocartilage zone of the PPTC were inhomogeneous. A significant accumulation of zinc was exhibited in the transition region between UF and CF. The highest zinc content (3.17 times of that of patellar tendon) was found in the TM of fibrocartilage zone. The calcium content began to increase near the TM and increased exponentially across the calcified fibrocartilage region towards the patella. The highest calcium content (43.14 times of that of patellar tendon) was in the transitional zone of calcified fibrocartilage region and the patella, approximately 69 μm from the location with the highest zinc content. This study indicated, for the first time, that there is a differential distribution of calcium and zinc at the fibrocartilage zone of PPTC. These observations reveal new insights into region-dependent changes across the fibrocartilage

  20. Characterization of calcium and zinc spatial distributions at the fibrocartilage zone of bone–tendon junction by synchrotron radiation-based micro X-ray fluorescence analysis combined with backscattered electron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Hongbin; Chen, Can; Wang, Zhanwen; Qu, Jin; Xu, Daqi [Department of Sports Medicine, Research Center of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410008 (China); Wu, Tianding; Cao, Yong [Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008 (China); Zhou, Jingyong; Zheng, Cheng [Department of Sports Medicine, Research Center of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410008 (China); Hu, Jianzhong, E-mail: jianzhonghu@hotmail.com [Department of Sports Medicine, Research Center of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410008 (China); Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008 (China)

    2015-09-01

    Tendon attaches to bone through a functionally graded fibrocartilage zone, including uncalcified fibrocartilage (UF), tidemark (TM) and calcified fibrocartilage (CF). This transition zone plays a pivotal role in relaxing load transfer between tendon and bone, and serves as a boundary between otherwise structurally and functionally distinct tissue types. Calcium and zinc are believed to play important roles in the normal growth, mineralization, and repair of the fibrocartilage zone of bone–tendon junction (BTJ). However, spatial distributions of calcium and zinc at the fibrocartilage zone of BTJ and their distribution–function relationship are not totally understood. Thus, synchrotron radiation-based micro X-ray fluorescence analysis (SR-μXRF) in combination with backscattered electron imaging (BEI) was employed to characterize the distributions of calcium and zinc at the fibrocartilage zone of rabbit patella–patellar tendon complex (PPTC). For the first time, the unique distributions of calcium and zinc at the fibrocartilage zone of the PPTC were clearly mapped by this method. The distributions of calcium and zinc at the fibrocartilage zone of the PPTC were inhomogeneous. A significant accumulation of zinc was exhibited in the transition region between UF and CF. The highest zinc content (3.17 times of that of patellar tendon) was found in the TM of fibrocartilage zone. The calcium content began to increase near the TM and increased exponentially across the calcified fibrocartilage region towards the patella. The highest calcium content (43.14 times of that of patellar tendon) was in the transitional zone of calcified fibrocartilage region and the patella, approximately 69 μm from the location with the highest zinc content. This study indicated, for the first time, that there is a differential distribution of calcium and zinc at the fibrocartilage zone of PPTC. These observations reveal new insights into region-dependent changes across the fibrocartilage

  1. X-ray fluorescent scanning of the thyroid

    International Nuclear Information System (INIS)

    Jonckheer, M.H.; Deconinck, F.

    1983-01-01

    The main emphasis of the technical chapters of this monograph lies on the aspects which are of direct importance to thyroid scanning: the general principles of X-ray fluorescence, the choice and characteristics of appropriate sources and detectors, a stationary system, quantification problems, and the pitfalls in the interpretation of the intrathyroidal iodine imaging and quantification. The clinical part of the monograph consists of chapters on the role of stable iodine and the thyroid function, on endemic non-toxic goiter, on hyperthyroidism as a result of iodine overload, on feasibility of dynamic studies, on stable iodine stores in thyroiditis, and on a general review of the clinical usefulness of XRF in thyroid disease. (Auth.)

  2. Characterization of a confocal three-dimensional micro X-ray fluorescence facility based on polycapillary X-ray optics and Kirkpatrick-Baez mirrors

    International Nuclear Information System (INIS)

    Sun Tianxi; Ding Xunliang; Liu Zhiguo; Zhu Guanghua; Li Yude; Wei Xiangjun; Chen Dongliang; Xu Qing; Liu Quanru; Huang Yuying; Lin Xiaoyan; Sun Hongbo

    2008-01-01

    A new confocal three-dimensional micro X-ray fluorescence (3D micro-XRF) facility based on polycapillary X-ray optics in the detection channel and Kirkpatrick-Baez (KB) mirrors in the excitation channel is designed. The lateral resolution (l x , l y ) of this confocal three-dimensional micro-X-ray fluorescence facility is 76.3(l x ) and 53.4(l y ) μm respectively, and its depth resolution d z is 77.1 μm at θ = 90 o . A plant sample (twig of B. microphylla) and airborne particles are analyzed

  3. Development of a fused glass disc XRF facility and comparison with the pressed powder pellet technique at Instituto de Geociencias, Sao Paulo University, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Paulo Ernesto; Correia, Ciro Teixeira [Sao Paulo Univ., SP (Brazil). Dept. of Mineralogia e Geotectonia; Reeves, Shane [Melbourne Univ., Parkville, VIC (Australia). School of Earth Sciences; Haukka, Maunu [Melbourne Univ., Parkville, VIC (Australia). Dept. of Chemical Engineering

    1999-09-01

    An X-ray fluorescence spectrometry pressed powder pellet technique (PPP) currently in use at the X-ray facility of the Instituto de Geociencias, Sao Paulo University has been extended to include additional elements and complemented by a full major and trace element calibration by fused glass disc X-ray fluorescence. A total of 38 major and trace elements are available (F, Na, Mg, Al, Si, P, S, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Rb, Sr, Y, Zr, Nb, Mo, Sn, Sb, Ba, Pb, Bi, La, Ce, Nd, Th and U) with variable detection limits, but generally below 10 ppm for trace elements. Loss-on-ignitions determined by weight difference and totals provide extremely good control on data quality. A full analysis, including background, matrix correction and all relevant corrections can be achieved automatically in less than 60 minutes. Virtually any sample matrix can be accommodated. The data support the view that fused disc and power pellet techniques are complementary and together provide a definite, rigorous XRF analysis. However, both techniques require considerable attention to details, with the glass disc technique prone to losses of F and S and increase detection limits for certain elements. The powder pellet technique requires fine micronizing and caution when dealing with the light elements Si and Al. Additionally the paper presents a new, previously unpublished experimentally determined Alpha coefficients for all matrix-corrected elements, which are based on the lithium metaborate system and contrast with the Philips theoretical alpha coefficients. (author)

  4. Development of a fused glass disc XRF facility and comparison with the pressed powder pellet technique at Instituto de Geociencias, Sao Paulo University, Brazil

    International Nuclear Information System (INIS)

    Mori, Paulo Ernesto; Correia, Ciro Teixeira; Reeves, Shane; Haukka, Maunu

    1999-01-01

    An X-ray fluorescence spectrometry pressed powder pellet technique (PPP) currently in use at the X-ray facility of the Instituto de Geociencias, Sao Paulo University has been extended to include additional elements and complemented by a full major and trace element calibration by fused glass disc X-ray fluorescence. A total of 38 major and trace elements are available (F, Na, Mg, Al, Si, P, S, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Rb, Sr, Y, Zr, Nb, Mo, Sn, Sb, Ba, Pb, Bi, La, Ce, Nd, Th and U) with variable detection limits, but generally below 10 ppm for trace elements. Loss-on-ignitions determined by weight difference and totals provide extremely good control on data quality. A full analysis, including background, matrix correction and all relevant corrections can be achieved automatically in less than 60 minutes. Virtually any sample matrix can be accommodated. The data support the view that fused disc and power pellet techniques are complementary and together provide a definite, rigorous XRF analysis. However, both techniques require considerable attention to details, with the glass disc technique prone to losses of F and S and increase detection limits for certain elements. The powder pellet technique requires fine micronizing and caution when dealing with the light elements Si and Al. Additionally the paper presents a new, previously unpublished experimentally determined Alpha coefficients for all matrix-corrected elements, which are based on the lithium metaborate system and contrast with the Philips theoretical alpha coefficients. (author)

  5. Use of an Ultrasonic/Sonic Driller/Corer to Obtain Sample Powder for CHEMIN, a Combined XRD/XRF Instrument

    Science.gov (United States)

    Chipera, S. J.; Bish, D. L.; Vaniman, D. T.; Sherrit, S.; Bar-Cohen, Y.; Sarrazin, P.; Blake, D. F.

    2003-01-01

    A miniature CHEMIN XRD/XRF (X-Ray Diffraction/X-Ray Fluourescence) instrument is currently being developed for definitive mineralogic analysis of soils and rocks on Mars. One of the technical issues that must be addressed in order to enable XRD analysis on an extraterrestrial body is how best to obtain a representative sample powder for analysis. For XRD powder diffraction analyses, it is beneficial to have a fine-grained sample to reduce preferred orientation effects and to provide a statistically significant number of crystallites to the X-ray beam. Although a 2-dimensional detector as used in the CHEMIN instrument will produce good results with poorly prepared powders, the quality of the data will improve if the sample is fine-grained and randomly oriented. An Ultrasonic/Sonic Driller/Corer (USDC) currently being developed at JPL is an effective mechanism of sampling rock to produce cores and powdered cuttings. It requires low axial load (XRD/XRF spectrometer such as CHEMIN, powders obtained from the JPL ultrasonic drill were analyzed and the results were compared to carefully prepared powders obtained using a laboratory bench scale Retsch mill.

  6. A comparison of portable XRF and ICP-OES analysis for lead on air filter samples from a lead ore concentrator mill and a lead-acid battery recycler.

    Science.gov (United States)

    Harper, Martin; Pacolay, Bruce; Hintz, Patrick; Andrew, Michael E

    2006-03-01

    Personal and area samples for airborne lead were taken at a lead mine concentrator mill, and at a lead-acid battery recycler. Lead is mined as its sulfidic ore, galena, which is often associated with zinc and silver. The ore typically is concentrated, and partially separated, on site by crushing and differential froth flotation of the ore minerals before being sent to a primary smelter. Besides lead, zinc and iron are also present in the airborne dusts, together with insignificant levels of copper and silver, and, in one area, manganese. The disposal of used lead-acid batteries presents environmental issues, and is also a waste of recoverable materials. Recycling operations allow for the recovery of lead, which can then be sold back to battery manufacturers to form a closed loop. At the recycling facility lead is the chief airborne metal, together with minor antimony and tin, but several other metals are generally present in much smaller quantities, including copper, chromium, manganese and cadmium. Samplers used in these studies included the closed-face 37 mm filter cassette (the current US standard method for lead sampling), the 37 mm GSP or "cone" sampler, the 25 mm Institute of Occupational Medicine (IOM) inhalable sampler, the 25 mm Button sampler, and the open-face 25 mm cassette. Mixed cellulose-ester filters were used in all samplers. The filters were analyzed after sampling for their content of the various metals, particularly lead, that could be analyzed by the specific portable X-ray fluorescence (XRF) analyzer under study, and then were extracted with acid and analyzed by inductively coupled plasma optical emission spectroscopy (ICP-OES). The 25 mm filters were analyzed using a single XRF reading, while three readings on different parts of the filter were taken from the 37 mm filters. For lead at the mine concentrate mill, all five samplers gave good correlations (r2 > 0.96) between the two analytical methods over the entire range of found lead mass

  7. Using X-Ray Fluorescence Technique to Quantify Metal Concentration in Coral Cores from Belize

    Science.gov (United States)

    Kingsley, C.; Bhattacharya, A.; Hangsterfer, A.; Carilli, J.; Field, D. B.

    2016-12-01

    Caribbean coral reefs are some of the most threatened marine ecosystems in the world. Research appears to suggest that environmental stressors of local origin, such as sediment run off, can reduce the resilience of these reefs to global threats such as ocean warming. Sedimentation can stunt coral growth, reduce its resilience, and it is possible that trapped material could render coral skeletons brittle (personal discussions). Material trapped in coral skeletons can provide information on the sources of particulate matter in the ocean ecosystem. Despite the importance of quantifying sources and types of materials trapped in corals, the research community is yet to fully develop techniques that allow accurate representation of trapped matter, which is potentially a major source of metal content in reef building coral skeletons. The dataset presented here explores the usefulness of X-Ray Fluorescence (XRF), a widely used tool in environmental studies (but generally not in corals), to estimate metal content in coral cores collected from four locations near Belize, with varying degrees of impact from coastal processes. The coral cores together cover a period of 1862-2006. Trace, major, and minor metal content from these cores have been well-studied using solution-based ICP-MS, providing us with the unique opportunity to test the efficacy of XRF technique in characterizing metal content in these coral cores. We have measured more than 50 metals using XRF every two millimeters along slabs removed from the middle of a coral core to characterize materials present in coral skeletons. We compared the results from XRF to solution-based ICP-MS - that involves dissolving subsamples of coral skeleton to measure metal content. Overall, it appears that the non-destructive XRF technique is a viable supplement in determining sediment and metal content in coral cores, and may be particularly helpful for assessing resistant phases such as grains of sediment that are not fully

  8. 100-OL-1 Operable Unit Pilot Study: XRF Evaluation of Select Pre-Hanford Orchards

    Energy Technology Data Exchange (ETDEWEB)

    Bunn, Amoret L.; Fritz, Brad G.; Pulsipher, Brent A.; Gorton, Alicia M.; Bisping, Lynn E.; Brandenberger, Jill M.; Pino, Christian; Martinez, Dominique M.; Rana, Komal; Wellman, Dawn M.

    2014-11-20

    Prior to the acquisition of land by the U.S. Department of War in February 1943 and the creation of the Hanford Site, the land along the Columbia River was home to over 1000 people. Farming and orchard operations by both homesteaders and commercial organizations were prevalent. Orchard activities and the associated application of lead arsenate pesticide ceased in 1943, when residents were moved from the Hanford Site at the beginning of the Manhattan Project. Today, the residues from historical application of lead arsenate pesticide persist in some locations on the Hanford Site. In 2012, the U.S. Department of Energy, U.S. Environmental Protection Agency, and Washington State Department of Ecology established the 100-OL-1 Operable Unit (OU) through the Hanford Federal Facility Agreement and Consent Order, known as the Tri-Party Agreement. The pre-Hanford orchard lands identified as the 100-OL-1 OU are located south of the Columbia River and east of the present-day Vernita Bridge, and extend southeast to the former Hanford townsite. The discontinuous orchard lands within 100-OL-1 OU are approximately 20 km2 (5000 ac). A pilot study was conducted to support the approval of the remedial investigation/feasibility study work plan to evaluate the 100-OL-1 OU. This pilot study evaluated the use of a field portable X-ray fluorescence (XRF) analyzer for evaluating lead and arsenic concentrations on the soil surface as an indicator of lead arsenate pesticide residues in the OU. The objectives of the pilot study included evaluating a field portable XRF analyzer as the analytical method for decision making, estimating the nature and extent of lead and arsenic in surface soils in four decision units, evaluating the results for the purpose of optimizing the sampling approach implemented in the remedial investigation, and collecting information to improve the cost estimate and planning the cultural resources review for sampling activities in the remedial investigation. Based on

  9. Elemental characterization of alloy composition by wavelength dispersive X-ray fluorescence spectrometer

    International Nuclear Information System (INIS)

    Khan, F.A.; Pandey, A.; Das, D.K.; Behere, P.G; Mohd Afzal

    2015-01-01

    Wave length Dispersive X-ray Fluorescence (WD-XRF) is a non-destructive well-established analytical technique widely used in industrial and research applications for materials characterization. In nuclear industry various types of alloys have been used as per their application and importance. Few of them like SS-304, SS-316 and SS-316L are being regularly used for manufacturing of glove boxes at AFFF SS-304 alloy has been used in glove boxes of production line of MOX fuel due to its corrosive resistance and SS-316L is being used in chemical quality control lab and microwave applicator due to its acidic resistivity. In view of this an endeavor has been taken up to characterize these alloy steel. The experiments were carried out using a Rigaku make 'supermini', WD-XRF spectrometer having 200W Pd X-ray tube, 12 sample holder position, scintillation and proportional counters as a detector. All the parameters such as kV, mA, collimator, crystal and detectors were selected and operated via computer as per the given programme except for the sample preparation. EZscan (Energy Atomic Number Scan) technique is applied for the analysis of the above samples and the results obtained were in close agreement with the standard values. The present paper describes the characterization of SS-304L and SS-316L which have got better corrosion resistance properties against acids due to its compositions and suited for glove box manufacturing. (author)

  10. 3-D Image Analysis of Fluorescent Drug Binding

    Directory of Open Access Journals (Sweden)

    M. Raquel Miquel

    2005-01-01

    Full Text Available Fluorescent ligands provide the means of studying receptors in whole tissues using confocal laser scanning microscopy and have advantages over antibody- or non-fluorescence-based method. Confocal microscopy provides large volumes of images to be measured. Histogram analysis of 3-D image volumes is proposed as a method of graphically displaying large amounts of volumetric image data to be quickly analyzed and compared. The fluorescent ligand BODIPY FL-prazosin (QAPB was used in mouse aorta. Histogram analysis reports the amount of ligand-receptor binding under different conditions and the technique is sensitive enough to detect changes in receptor availability after antagonist incubation or genetic manipulations. QAPB binding was concentration dependent, causing concentration-related rightward shifts in the histogram. In the presence of 10 μM phenoxybenzamine (blocking agent, the QAPB (50 nM histogram overlaps the autofluorescence curve. The histogram obtained for the 1D knockout aorta lay to the left of that of control and 1B knockout aorta, indicating a reduction in 1D receptors. We have shown, for the first time, that it is possible to graphically display binding of a fluorescent drug to a biological tissue. Although our application is specific to adrenergic receptors, the general method could be applied to any volumetric, fluorescence-image-based assay.

  11. Extraction X-ray fluorescence determination of gold in natural samples

    International Nuclear Information System (INIS)

    Dmitriev, S.N.; Shishkina, T.V.; Zhuravleva, E.L.; Chimehg, Zh.

    1990-01-01

    The behaviour of gold and other elements impeding its X-ray fluorescence (XRF) determination, namely, of zinc, lead, and arsenic, has been studied during their extraction by TBP from hydrochloric, nitric, and aqua regia solutions using solid extractant (SE(TBP)). Gold extraction from pulps after aqua regia leaching, with the gold distribution coefficient (D) being equal to about 10 4 , was observed as the most favourable one for the quantitative and selective recovery of gold. For extraction from hydrochloric solutions the D Au value does not depend on the gold content of initial solutions (10 -8 - 10 -4 M), but it decreases substantially with increasing extraction temperature (from 5x10 5 at 20 deg C to 9x10 3 at 70 deg C). An anomalously high distribution coefficient of lead (D Pb =10 3 ) was observed during extraction from hydrochloric solutions in the presence of chlorine. This fact could be explained by the formation of the chlorocomplexes of lead (IV). The XRF method of gold determination in natural samples has been developed, which includes the aqua regia decomposition of the samples, recovery of gold from the pulp after its leaching by SE(TBP) and back - extraction using a 0.025 M hot thiourea solution providing a thin sample film for secondary XRF spectrometry. For 25 g of the sample material the limit of determination is set at 0.01 g per ton (10 -6 %). The accuracy of the technique has been checked on different reference materials. The results agree within 10%. 16 refs.; 5 figs.; 1 tab

  12. A structural study of bone changes in knee osteoarthritis by synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy techniques

    Science.gov (United States)

    Sindhupakorn, Bura; Thienpratharn, Suwittaya; Kidkhunthod, Pinit

    2017-10-01

    Osteoarthritis (OA) is characterized by degeneration of articular cartilage and thickening of subchondral bone. The present study investigated the changing of biochemical components of cartilage and bone compared between normal and OA people. Using Synchrotron-based X-ray fluorescence (SR-XRF) and X-ray absorption spectroscopy (XAS) techniquesincluding X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) were employed for the bone changes in kneeosteoarthritisstudies. The bone samples were collected from various osteoarthritis patients with both male and female in the ages range between 20 and 74 years old. SR-XRF results excited at 4240 eV for Ca elements show a majority three main groups, based on their XRF intensities, 20-36 years, 40-60 years and over 70 years, respectively. By employing XAS techniques, XANES features can be used to clearly explain in term of electronic transitions occurring in bone samples which are affected from osteoarthritis symptoms. Moreover, a structural change around Ca ions in bone samples is obviously obtained by EXAFS results indicating an increase of Ca-amorphous phase when the ages increase.

  13. Old traces, read anew - 'The Reading Hermit' painting in the light of X-ray fluorescence

    OpenAIRE

    Seim, C.; Laurenze-Landsberg, C.; Schröder-Smeibidl, B.; Mantouvalou, I.; Boer, C. de; Kanngießer, B.

    2014-01-01

    There exist several very similar looking versions of the painting ‘The Reading Hermit’, all allegedly painted by Rembrandt Harmenszoon van Rijn (approx. in ∼1630 A.D., Leiden). The classification of Rembrandt's paintings, which were produced by Rembrandt himself, in his academy by his students and the ones being mere copies is a crucial and difficult task. We gathered background evidence and performed elemental analyses by non-destructive micro-X-ray fluorescence (micro-XRF) in order to eluci...

  14. Three-dimensional micro-XRF investigations of paint layers with a tabletop setup

    International Nuclear Information System (INIS)

    Kanngiesser, Birgit; Malzer, Wolfgang; Rodriguez, Alexis Fuentes; Reiche, Ina

    2005-01-01

    The non-destructive investigation of art and archaeological objects with depth sensitivity is now possible using 3D micro-XRF spectroscopy. More detailed answers for questions on painting techniques, on the pigment palette, on the production processes and indirectly on dating or provenancing of objects are accessible now. This was already illustrated by the investigation of Mughal miniatures with a confocal setup at the synchrotron source BESSY. In this paper we demonstrate the feasibility of 3D micro-XRF spectroscopy with a tabletop setup and discuss its sensitivity in comparison to the synchrotron-based setup. Investigated objects are glass standards and also prepared paint layers. Perspectives for other types of studies are proposed

  15. Actinide L-line ED-XRF and Hybrid K-edge Densitometer Spectra Processing

    International Nuclear Information System (INIS)

    Esbelin, E.

    2015-01-01

    The analysis laboratory in the CEA Atalante complex at Marcoule (France) performs numerous R and D studies carried out in glove-boxes or in hot cells. Most of the samples are measured in liquid phase, aqueous or organic. The concentration of the main actinides of interest (U, Np, Pu, Am and Cm) are determined by XRF in a hot cell via their L-line X-ray between 13 and 15 keV. In order to limit the counting rate of many radioactive emitters (X-ray and gamma emitters) in the analysis solution and the continuous spectrum, a graphite monochromator is placed between the sample and detector. Commercial or free, the software packages available for processing X-ray spectra are designed and dedicated to a specific instrument and/or do not take into account the specific feature of our system, in other words, the presence of a monochromator. Therefore, a new X-ray analysis software programme was developed for this particular system which takes into account matrix effects corrections. For sample with U and/or Pu in high concentrations, the hybrid K-edge densitometer is used. A new software programme was also developed. For K-edge densitometry spectra processing, no calibration process is used. Spectra processing is based on theoretical equation and uses XCOM database for mass attenuation coefficients. Measured spectra on K-edge densitometer of Rokkasho Safeguards Analytical Laboratory were processed with this software and a very good agreement was found with IDTIMS results. The new graphical user interface allows to manually correct the defined edge. For the XRF spectra processing, new algorithms are used to define the base line and to find/integrate peaks. With these two analytical devices in laboratory, U and Pu concentrations can be measured from 0.5 mg/l to several hundred of g/l. (author)

  16. Characteristics of X-ray fluorescence of nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seunghoon; Kwak, Sung-Woo; Shin, Jung-Ki; Park, Uk-Rayng; Jung, Heejun [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2015-10-15

    LED is a technique of determination of uranium concentration as a continuous X-ray energy beams transmit a uranium liquid sample for safeguards. Compared to K-edge densitometer, due to relatively lower energy (L-edge energy is 17.17 keV) of Uranium L series energy than K-series energy, L-edge densitometer does not require high purity germanium detector with liquid nitride cooling. Therefore, the Ledge densitometer is appropriate for portable equipment for on-site nuclear material inspection and safeguards at facility sites. XRF combined with LED is a technique of finding of nuclear materials from reflected characteristic X-ray photons. In this study, characteristics of XRF of nuclear materials are simulated Monte Carlo method (Geant4) for feasibility of the system for determination of concentration of nuclear species. The analysis method of uranium concentration or minor actinides is applied using combination of linear extrapolation from jump of L-edge of sample and ratio between uranium and minor actinide from XRF measurement. In this study, The XRF ch aracteristics was simulated from Monte Carlo method. The peaks were obtained from nuclear material mixture. The estimated nuclear material concentration is low due to the volume effect of the sample. The correction factor or minimization of the effect is required.

  17. Elemental analysis of various biomass solid fractions in biorefineries by X-ray fluorescence spectrometry

    DEFF Research Database (Denmark)

    Le, Duy Michael; Sorensen, Hanne R.; Meyer, Anne S.

    2017-01-01

    , poplar) followed by enzymatic hydrolysis and fermentation. For all the different biomasses, the biorefinery process concentrated silicon, aluminium, and calcium in the solid fraction, while potassium and magnesium were solubilised in the process and removed from the solid fraction. Sodium concentrations....... Based on ultimate elemental analysis of all biomasses, the formula for biomass was C6H8.4O3.5, which was used for all types of samples (raw biomass, pretreated biomass, and lignin residue) and can be used in future XRF analysis of samples of similar process and biomass feedstock as those used...

  18. Applications of optical fiber to the remote fluorescence analysis

    International Nuclear Information System (INIS)

    Shin, Jang Soo; Kim, Duck Hueon; Lee, Soo Ho

    1992-12-01

    The laser fluorometer developed in 1987 has been used in real circumstances for trace uranium analysis. And, we have been trying to improve the instrument to be able to apply in analytical circumstances of remote measurement using optical fiber. The N 2 laser beam and the resulting fluorescence light could be successfully transmitted through a quartz-made optical fiber. The wavelength resolution and the fluorescence decay time resolution induced by pulsed N 2 laser were used to the uranium fluorescence analyses. The fluorescence of uranium in nitric acid medium was measured successfully using the system. The fluorescence signal was analysed using simplex method which is useful to deconvolute the mixed signals. An analytical method using thermal lens effect was developed. The method will be a complementary one for the fluorescence measurement. (Author)

  19. Quality control of clinker products by SEM and XRF analysis

    International Nuclear Information System (INIS)

    Ziad Abu Kaddourah; Khairun Azizi

    1996-01-01

    The microstructure and chemical properties of industrial Portland cement clinkers have been examined by SEM and XRF methods to establish the nature of the clinkers and how variations in the clinker characteristics can be used to control the clinker quality. The clinker nodules were found to show differences in the chemical composition and microstructure between the inner and outer parts of the clinker nodules. Microstructure studies of industrial Portland cement clinker have shown that the outer part of the nodules are enriched in silicate more than the inner part. There is better crystallization and larger alite crystal size in the outer part than in the inner part. The alite crystal size varied between 16.2 -46.12 μ m. The clinker chemical composition was found to affect the residual >45 μ m, where a higher belite content causes an increase in the residual >45 μ m in the the cement product and will cause a decrease in the concrete strength of the cement product. The aluminate and ferrite crystals and the microcracks within the alite crystal are clear in some clinker only. The quality of the raw material preparation, burning and cooling stages can be controlled using the microstructure of the clinker product

  20. Elemental Analysis of Galium incanum SM subsp Centrale Ehrend ...

    African Journals Online (AJOL)

    . centrale Ehrend. Methods: The air-dried aerial parts of the plant material were used and its water extract (2 % w/v infusion) was analysed for trace elements using x-ray fluorescence (XRF ) spectrometry. Results: The aqueous extract depicted ...