WorldWideScience

Sample records for fluorescence analysis xrf

  1. Pigment analysis by Raman microscopy and portable X-ray fluorescence (pXRF) of thirteenth to fourteenth century illuminations and cuttings from Bologna

    Science.gov (United States)

    Chaplin, Tracey D.; Clark, Robin J. H.; Jones, Richard; Gibbs, Robert

    2016-12-01

    Non-destructive pigment analysis by Raman microscopy (RM) and portable X-ray fluorescence (pXRF) has been carried out on some Bolognese illuminations and cuttings chosen to represent the beginnings, evolution and height of Bolognese illuminated manuscript production. Dating to the thirteenth and fourteenth centuries and held in a private collection, the study provides evidence for the pigments generally used in this period. The results, which are compared with those obtained for other north Italian artwork, show the developments in usage of artistic materials and technique. Also addressed in this study is an examination of the respective roles of RM and pXRF analysis in this area of technical art history. This article is part of the themed issue "Raman spectroscopy in art and archaeology".

  2. Analysis of heterogeneous gallstones using laser-induced breakdown spectroscopy (LIBS) and wavelength dispersive X-ray fluorescence (WD-XRF).

    Science.gov (United States)

    Jaswal, Brij Bir S; Kumar, Vinay; Sharma, Jitendra; Rai, Pradeep K; Gondal, Mohammed A; Gondal, Bilal; Singh, Vivek K

    2016-04-01

    Laser-induced breakdown spectroscopy (LIBS) is an emerging analytical technique with numerous advantages such as rapidity, multi-elemental analysis, no specific sample preparation requirements, non-destructiveness, and versatility. It has been proven to be a robust elemental analysis tool attracting interest because of being applied to a wide range of materials including biomaterials. In this paper, we have performed spectroscopic studies on gallstones which are heterogeneous in nature using LIBS and wavelength dispersive X-ray fluorescence (WD-XRF) techniques. It has been observed that the presence and relative concentrations of trace elements in different kind of gallstones (cholesterol and pigment gallstones) can easily be determined using LIBS technique. From the experiments carried out on gallstones for trace elemental mapping and detection, it was found that LIBS is a robust tool for such biomedical applications. The stone samples studied in the present paper were classified using the Fourier transform infrared (FTIR) spectroscopy. WD-XRF spectroscopy has been applied for the qualitative and quantitative analysis of major and trace elements present in the gallstone which was compared with the LIBS data. The results obtained in the present paper show interesting prospects for LIBS and WD-XRF to study cholelithiasis better.

  3. XRF Experiment for Elementary Surface Analysis

    Science.gov (United States)

    Köhler, E.; Dreißigacker, A.; Fabel, O.; van Gasselt, S.; Meyer, M.

    2014-04-01

    The proposed X-Ray Fluorescence Instrument Package (XRF-X and XRF-E) is being designed to quantitatively measure the composition and map the distribution of rock-surface materials in order to support the target area selection process for exploration, sampling, and mining. While energydispersive X-Ray fluorescence (EDX) makes use of Solar X-Rays for excitation to probe materials over arbitrary distances (by XRF-X), electron-beam excitation can be used for proximity measurements (by XRF-E) over short-distance of up to about 10 - 20m. This design is targeted at observing and analyzing surface compositions from orbital platforms and it is in particular applicable to all atmosphereless solidsurface bodies. While the instrument design for observing objects in the outer solar system is challenging due to low count rates, the Moon and objects of the asteroid belt usually receive solar X-ray radiation that allows to integrate a statistically reliable data basis. Asteroids are attractive targets and have been visited using X-ray fluorescence instruments by orbiting spacecraft in the past (Itokawa, Eros). They are wellaccessible objects for determining elemental compositions and assessing potential mineral resources.

  4. X-Ray Diffraction (XRD and X-Ray Fluorescence (XRF Analysis of Proto-historic Votive Tablets from Chawas Cave, Hulu Kelantan, Malaysia

    Directory of Open Access Journals (Sweden)

    Zuliskandar Ramli

    2014-02-01

    Full Text Available This research was conducted to determine the origin of votive tablets found in prehistoric and proto-historic site of Chawas Cave in Hulu Kelantan. The votive tablets found in Chawas Cave showed several Buddhist images which are associated with the Srivijaya Kingdom which existed from 7th century AD until 12th century AD. To determine if the votive tablets were produced by communities that lived in Hulu Kelantan, hence the study of the chemical composition of the votive tablets should be carried out. Two techniques were employed in this research, namely the X-Ray Diffraction (XRD and X-Ray Fluorescence (XRF techniques. The techniques will determine the mineral content as well as the major and trace element content of the votive tablets. Analysis showed that all the votive tablet samples have mineral known as clinochlore. Clinochlore is one of the chlorites, namely a group of phyllosilicate minerals. Chlorite is commonly found in igneous rocks as an alteration product of mafic minerals such as pyroxene, amphibole and biotite. The votive tablets were found in a cave which consisted of limestone cave formation and it showed that the votive tablets were not produced by the local community of Hulu Kelantan. Major elements also showed that the chemical composition of the votive tablets is not similar to the composition of clay samples taken from several rivers in Hulu Kelantan.

  5. The use of X-ray fluorescence (XRF) analysis in predicting the alkaline hydrothermal conversion of fly ash precipitates into zeolites.

    Science.gov (United States)

    Somerset, V S; Petrik, L F; White, R A; Klink, M J; Key, D; Iwuoha, E

    2004-09-08

    The use and application of synthetic zeolites for ion exchange, adsorption and catalysis has shown enormous potential in industry. In this study, X-ray fluorescence (XRF) analysis was used to determine Si and Al in fly ash (FA) precipitates. The Si and Al contents of the fly ash precipitates were used as indices for the alkaline hydrothermal conversion of the fly ash compounds into zeolites. Precipitates were collected by using a co-disposal reaction wherein fly ash is reacted with acid mine drainage (AMD). These co-disposal precipitates were then analysed by XRF spectrometry for quantitative determination of SiO(2) and Al(2)O(3). The [SiO(2)]/[Al(2)O(3)] ratio obtained in the precipitates range from 1.4 to 2.5. The [SiO(2)]/[Al(2)O(3)] ratio was used to predict whether the fly ash precipitates could successfully be converted to faujasite zeolitic material by the synthetic method of [J. Haz. Mat. B 77 (2000) 123]. If the [SiO(2)]/[Al(2)O(3)] ratio is higher than 1.5 in the fly ash precipitates, it favours the formation of faujasite. The zeolite synthesis included an alkaline hydrothermal conversion of the co-disposal precipitates, followed by aging for 8h and crystallization at 100 degrees C. Different factors were investigated during the synthesis of zeolite to ascertain their influence on the end product. The factors included the amount of water in the starting material, composition of fly ash related starting material and the FA:NaOH ratio used for fusing the starting material. The mineralogical and physical analysis of the zeolitic material produced was performed by X-ray diffraction (XRD) and nitrogen Brunauer-Emmett-Teller (N(2) BET) surface analysis. Scanning electron microscopy (SEM) was used to determine the morphology of the zeolites, while inductively coupled mass spectrometry (ICP-MS), Fourier transformed infrared spectrometry (FT-IR) and Cation exchange capacity (CEC) [Report to Water Research Commission, RSA (2003) 15] techniques were used for

  6. Tin accumulation in spermatozoa of the rats exposed to tributyltin chloride by synchrotron radiation X-ray fluorescence (SR-XRF) analysis with microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Homma-Takeda, S. [Environmental Radiation Protection Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku Chiba 263-8555 (Japan)]. E-mail: shino_ht@nirs.go.jp; Nishimura, Y. [Environmental Radiation Protection Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku Chiba 263-8555 (Japan); Terada, Y. [Japan Synchrotron Radiation Research Institute, Mikazuki, Hyogo 679-5198 (Japan); Ueno, S. [School of Veterinary Medicine and Animal Sciences, Kitasato University, Towada, Aomori 034-8628 (Japan); Watanabe, Y. [Environmental Radiation Protection Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku Chiba 263-8555 (Japan); Yukawa, M. [Environmental Radiation Protection Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku Chiba 263-8555 (Japan)

    2005-04-01

    Organotin compounds are widely used in industry and its environmental contamination by these compounds has recently become a concern. It is known that they act as endocrine disruptors but details of the dynamics of Sn in reproductive organs are still unknown. In the present study, we attempted to determine Sn distribution in the testis of rats exposed to tributyltin chloride (TBTC) by inductively coupled argon plasma-mass spectrometry (ICP-MS) for microdissectioned seminiferous tubules and cell-selective metal determination of synchrotron radiation X-ray florescence (SR-XRF) analysis. TBTC was orally administered to rats at a dose of 45 {mu}mol/kg per day for 3 days. One day later, Sn was detected in the microdissectioned seminiferous tubules at a level approximately equivalent to that in the testis. Significant stage-specificity of Sn accumulation was not observed in the experimental model. Sn was also detected in spermatozoa at the stage VIII seminiferous tubule, which are the final step of spermatogenesis in the testis. These data indicate that Sn accumulates in germ cells as well as in spermatozoa in a short period of TBTC exposure.

  7. Micro-XRF analysis of silver coins from medieval Poland

    Energy Technology Data Exchange (ETDEWEB)

    Hoyo-Meléndez, Julio M. del, E-mail: jdelhoyo@muzeum.krakow.pl [Laboratory of Analysis and Non-Destructive Investigation of Heritage Objects, National Museum in Krakow, Krakow 31109 (Poland); Świt, Paweł [Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow 30239 (Poland); Faculty of Chemistry, Jagiellonian University, Krakow 30060 (Poland); Matosz, Marta [Laboratory of Analysis and Non-Destructive Investigation of Heritage Objects, National Museum in Krakow, Krakow 31109 (Poland); Woźniak, Mateusz [Numismatic Cabinet, National Museum in Krakow, Krakow 31109 (Poland); Klisińska-Kopacz, Anna [Laboratory of Analysis and Non-Destructive Investigation of Heritage Objects, National Museum in Krakow, Krakow 31109 (Poland); Bratasz, Łukasz [Laboratory of Analysis and Non-Destructive Investigation of Heritage Objects, National Museum in Krakow, Krakow 31109 (Poland); Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow 30239 (Poland)

    2015-04-15

    Highlights: •A micro-XRF study of the surface composition of Polish Ag coins was conducted. •The main elements are Ag, Cu and Pb; with Ag concentrations in the 82–98% range. •The results indicate that revaluation probably took place during 995–1031. -- Abstract: X-ray fluorescence (XRF) analysis has become a standard method in archaeological science due to its non-invasive and non-destructive nature. This technique has extensively been used for the study of numismatic collections since the data derived from it can be correlated with manufacturing processes, provenance of raw materials, and geographical distribution of ancient mints. A group of 71 silver coins of the first Piasts: Boleslaus the Brave (996–1025) and Mieszko II Lambert (1025–1034) belonging to the collections of the National Museum in Krakow have been characterized using micro-XRF spectrometry. This is the most numerous collection of their coins representing nearly 30% of all known coins from these rulers. The research has focused on evaluating the use of this technique as a screening tool for elemental surface characterization of the alloys. Surveyed coins are mainly constituted by Ag, Cu and Pb along with trace levels of Fe, Ni, Zn, Au, Hg, Bi, and Br. Quantitative analyses have revealed Ag contents in the 81.6–97.5% range for all the evaluated coins. This study had the goal of providing information about the elemental composition of these objects, which will serve to enhance the existing knowledge about geographical and chronological diversification of Polish numismatic collections.

  8. Can field portable X-ray fluorescence (pXRF) produce high quality data for application in environmental contamination research?

    Science.gov (United States)

    Rouillon, Marek; Taylor, Mark P

    2016-07-01

    This research evaluates the analytical capabilities of a field portable X-ray fluorescence spectrometer (pXRF) for the measurement of contaminated soil samples using a matrix-matched calibration. The calibrated pXRF generated exceptional data quality from the measurement of ten soil reference materials. Elemental recoveries improved for all 11 elements post-calibration with reduced measurement variation and detection limits in most cases. Measurement repeatability of reference values ranged between 0.2 and 10% relative standard deviation, while the majority (82%) of reference recoveries were between 90 and 110%. Definitive data quality, the highest of the US EPA's three level quality ranking, was achieved for 15 of 19 elemental datasets. Measurement comparability against inductively coupled plasma atomic emission spectrometry (ICP-AES) values was excellent for most elements (e.g, r(2) 0.999 for Mn and Pb, r(2) > 0.995 for Cu, Zn and Cd). Parallel measurement of reference materials revealed ICP-AES and ICP-MS measured Ti and Cr poorly when compared to pXRF. Individual recoveries of soil reference materials by both ICP-AES and pXRF showed that pXRF was equivalent to or better than ICP-AES values for all but two elements (Ni, As). This study demonstrates pXRF as a suitable alternative to ICP-AES analysis in the measurement of Ti, Cr, Mn, Fe, Cu, Zn, Sr, Cd, and Pb in metal-contaminated soils. Where funds are limited, pXRF provides a low-cost, high quality solution to increasing sample density for a more complete geochemical investigation.

  9. XRF Analysis of mineralogical matrix effects and differences between pulverized and fused ferromanganese slag

    Directory of Open Access Journals (Sweden)

    VALENTINA ZIVANOVIC

    2011-06-01

    Full Text Available Determination and analysis is only as good as the sample preparation that preceded it. Even the most sophisticated analysis is worthless if it follows sloppy sampling and poor preparation. Whether one does plasma emission, infrared or X-ray fluorescence or another spectroscopic technique, it is essential to get reproducible and accurate analysis. This paper shows the effect of mineralogical matrix differences in quantitative measurements by XRF of the main elements (Al, Ca, Mg, Si, Mn and K as oxides of ferromanganese alloy slag. Fused and pulverized slag show a significant difference in XRF microstructure, micro heterogeneity and mineralogy although the results of measurements between pulverized and fused slag, expressed as a percentage of the main elements, is not different. Other analytical techniques such as ICP-OES and classical gravimetric and titrimetric were also used for checking the XRF calibration accuracy

  10. XRF analysis of Roman Imperial coins

    Energy Technology Data Exchange (ETDEWEB)

    Gorghinian, Astrik, E-mail: astrik.gorghinian@lnf.infn.it [INFN-LNF, via Enrico Fermi 40, 00044 Frascati (Rome) (Italy); Esposito, Adolfo [INFN-LNF, via Enrico Fermi 40, 00044 Frascati (Rome) (Italy); Ferretti, Marco [CNR-ITABC, via Salaria Km 29.300, c.p. 10, Monterotondo (Rome) (Italy); Catalli, Fiorenzo [National Archeological Museum, 9B Santissima Annunziata Square, 50121 Florence (Italy)

    2013-08-15

    X-ray Fluorescence analysis has been applied on 477 ancient coins, issued in different mints active during the First Roman Emperor’s reign Augustus. The study of the different denominations has been related to their composition and place/date of struck. The alloys studied were based on gold, silver and copper. The X-ray micro-beam supplied by a polycapillary optics has been often extremely precious in the analysis of very small coin’s spot with no patina due to usage.

  11. Comparison between XRF and IBA techniques in analysis of fine aerosols collected in Rijeka, Croatia

    Science.gov (United States)

    Ivošević, Tatjana; Mandić, Luka; Orlić, Ivica; Stelcer, Eduard; Cohen, David D.

    2014-10-01

    The new system for energy dispersive X-ray fluorescence (EDXRF) analysis has been installed at the Laboratory for Elemental Micro-Analysis (LEMA) at the University of Rijeka. Currently the key application of this new XRF system is in the field of environmental science, i.e. in the analysis of fine airborne particles. In this work, results of initial multi-elemental analysis of PM2.5 fraction is reported for the first time in the region of Rijeka, Croatia. Sampling was performed at the Rijeka City center, during a continuous 9-day period in February/March 2012. All samples were collected on stretched Teflon filters in 12 h periods. To check the reliability of the new XRF system, results of XRF analysis are compared with the results obtained by the well-established Ion Beam Analysis (IBA) laboratory at Australian Nuclear Science and Technology Organisation (ANSTO). The concentrations of H, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Br and Pb were determined. In addition, black carbon was determined by Laser Integrating Plate Method (LIPM). Very good agreement between XRF and IBA techniques is obtained for all elements detected by both techniques. Elemental concentrations were correlated with the traffic volume and wind speed and direction. The summary of our findings is presented and discussed in this paper.

  12. Comparison between XRF and IBA techniques in analysis of fine aerosols collected in Rijeka, Croatia

    Energy Technology Data Exchange (ETDEWEB)

    Ivošević, Tatjana [Faculty of Engineering, University of Rijeka, Vukovarska 58, HR-51000 Rijeka (Croatia); Mandić, Luka, E-mail: lukam@phy.uniri.hr [Department of Physics, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka (Croatia); Orlić, Ivica [Department of Physics, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka (Croatia); Stelcer, Eduard; Cohen, David D. [Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Kirrawee DC, NSW 2232 (Australia)

    2014-10-15

    The new system for energy dispersive X-ray fluorescence (EDXRF) analysis has been installed at the Laboratory for Elemental Micro-Analysis (LEMA) at the University of Rijeka. Currently the key application of this new XRF system is in the field of environmental science, i.e. in the analysis of fine airborne particles. In this work, results of initial multi-elemental analysis of PM{sub 2.5} fraction is reported for the first time in the region of Rijeka, Croatia. Sampling was performed at the Rijeka City center, during a continuous 9-day period in February/March 2012. All samples were collected on stretched Teflon filters in 12 h periods. To check the reliability of the new XRF system, results of XRF analysis are compared with the results obtained by the well-established Ion Beam Analysis (IBA) laboratory at Australian Nuclear Science and Technology Organisation (ANSTO). The concentrations of H, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Br and Pb were determined. In addition, black carbon was determined by Laser Integrating Plate Method (LIPM). Very good agreement between XRF and IBA techniques is obtained for all elements detected by both techniques. Elemental concentrations were correlated with the traffic volume and wind speed and direction. The summary of our findings is presented and discussed in this paper.

  13. Analysis of sculptures using XRF and X-ray radiography

    Science.gov (United States)

    Calza, C.; Oliveira, D. F.; Freitas, R. P.; Rocha, H. S.; Nascimento, J. R.; Lopes, R. T.

    2015-11-01

    This work reports the analysis of two sacred images on polychrome wood using X-ray Radiography and Energy Dispersive X-Ray Fluorescence. The first case is the analysis of a sculpture portraying Saint Sebastian, the patron saint of Rio de Janeiro, which is considered the second most ancient sacred image of Brazil. This sculpture was made in Portugal and was transported to Brazil by Estácio Sá, founder of the city of Rio de Janeiro, in 1565. Nowadays, it is located on the main altar of the Church of Capuchin Friars. The second case is the analysis of a sculpture representing Our Lady of Conception, which is located in the D. João VI Museum (EBA/UFRJ, Rio de Janeiro). The objective of these analyses was to evaluate the general conditions of the sculptures, identifying possible problems and internal damages, areas that revealed signs of previous retouchings and the materials and pigments employed by the artists, in order to assist its restoration procedures. EDXRF measurements were carried out with a portable system, developed at the Nuclear Instrumentation Laboratory, consisting of a Si-PIN XR-100CR detector from Amptek and an Oxford TF3005 X-ray tube with W anode. An X-ray source, a CR System GE CR50P and IP detectors were used to perform the radiographs. The XRF analysis of the sculptures identified the original pigments in both cases and the radiographic images revealed details of the manufacture; restored regions; extensive use of lead white; presence of cracks on the wood; use of nails and spikes, etc.

  14. Data precision of X-ray fluorescence (XRF) scanning of discrete samples with the ITRAX XRF core-scanner exemplified on loess-paleosol samples

    Science.gov (United States)

    Profe, Jörn; Ohlendorf, Christian

    2017-04-01

    XRF-scanning is the state-of-the-art technique for geochemical analyses in marine and lacustrine sedimentology for more than a decade. However, little attention has been paid to data precision and technical limitations so far. Using homogenized, dried and powdered samples (certified geochemical reference standards and samples from a lithologically-contrasting loess-paleosol sequence) minimizes many adverse effects that influence the XRF-signal when analyzing wet sediment cores. This allows the investigation of data precision under ideal conditions and documents a new application of the XRF core-scanner technology at the same time. Reliable interpretations of XRF results require data precision evaluation of single elements as a function of X-ray tube, measurement time, sample compaction and quality of peak fitting. Ten-fold measurement of each sample constitutes data precision. Data precision of XRF measurements theoretically obeys Poisson statistics. Fe and Ca exhibit largest deviations from Poisson statistics. The same elements show the least mean relative standard deviations in the range from 0.5% to 1%. This represents the technical limit of data precision achievable by the installed detector. Measurement times ≥ 30 s reveal mean relative standard deviations below 4% for most elements. The quality of peak fitting is only relevant for elements with overlapping fluorescence lines such as Ba, Ti and Mn or for elements with low concentrations such as Y, for example. Differences in sample compaction are marginal and do not change mean relative standard deviation considerably. Data precision is in the range reported for geochemical reference standards measured by conventional techniques. Therefore, XRF scanning of discrete samples provide a cost- and time-efficient alternative to conventional multi-element analyses. As best trade-off between economical operation and data quality, we recommend a measurement time of 30 s resulting in a total scan time of 30 minutes

  15. The Mineralogy of Martian Dust: Design and Analysis Considerations for an X-Ray Diffraction/X-Ray Fluorescence (XRD/XRF) Instrument for Exobiological Studies

    Science.gov (United States)

    Blake, David; Vaniman, David; Bish, David; Morrison, David (Technical Monitor)

    1994-01-01

    A principal objective of Mars exploration is the search for evidence of past life which may have existed during an earlier clement period of Mars history. We would like to investigate the history of surface water activity (which is a requirement for all known forms of life) by identifying and documenting the distribution of minerals which require water for their formation or distribution. A knowledge of the mineralogy of the present Martian surface would help to identify areas which, due to the early activity of water, might have harbored ancient life. It would be desirable to establish the presence and characterize the distribution of hydrated minerals such as clays, and of minerals which are primarily of sedimentary origin such as carbonates, silica and evaporites. Mineralogy, which is more critical to exobiological exploration than is simple chemical analysis (absent the detection of organics), will remain unknown or will at best be imprecisely constrained unless a technique sensitive to mineral structure such as powder X-ray diffraction (XRD) is employed. Additional information is contained in the original extended abstract.

  16. Prostate-cancer diagnosis by non-invasive prostatic Zinc mapping using X-Ray Fluorescence (XRF)

    Science.gov (United States)

    Cortesi, Marco

    At present, the major screening tools (PSA, DRE, TRUS) for prostate cancer lack sensitivity and specificity, and none can distinguish between low-grade indolent cancer and high-grade lethal one. The situation calls for the promotion of alternative approaches, with better detection sensitivity and specificity, to provide more efficient selection of patients to biopsy and with possible guidance of the biopsy needles. The prime objective of the present work was the development of a novel non-invasive method and tool for promoting detection, localization, diagnosis and follow-up of PCa. The method is based on in-vivo imaging of Zn distribution in the peripheral zone of the prostate, by a trans-rectal X-ray fluorescence (XRF) probe. Local Zn levels, measured in 1--4 mm3 fresh tissue biopsy segments from an extensive clinical study involving several hundred patients, showed an unambiguous correlation with the histological classification of the tissue (Non-Cancer or PCa), and a systematic positive correlation of its depletion level with the cancer-aggressiveness grade (Gleason classification). A detailed analysis of computer-simulated Zn-concentration images (with input parameters from clinical data) disclosed the potential of the method to provide sensitive and specific detection and localization of the lesion, its grade and extension. Furthermore, it also yielded invaluable data on some requirements, such as the image resolution and counting-statistics, requested from a trans-rectal XRF probe for in-vivo recording of prostatic-Zn maps in patients. By means of systematic table-top experiments on prostate-phantoms comprising tumor-like inclusions, followed by dedicated Monte Carlo simulations, the XRF-probe and its components have been designed and optimized. Multi-parameter analysis of the experimental data confirmed the simulation estimations of the XRF detection system in terms of: delivered dose, counting statistics, scanning resolution, target-volume size and the

  17. 100-OL-1 Operable Unit Field Portable X-Ray Fluorescence (XRF) Analyzer Pilot Study Plans

    Energy Technology Data Exchange (ETDEWEB)

    Bunn, Amoret L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fritz, Brad G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wellman, Dawn M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-07-01

    A pilot study is being conducted to support the approval of the Remedial Investigation/Feasibility Study (RI/FS) Work Plan to evaluate the 100-OL-1 Operable Unit (OU) pre-Hanford orchard lands. Based on comments received by the U.S. Environmental Protection Agency (EPA) and Washington State Department of Ecology, the pilot study will evaluate the use of field portable X-ray fluorescence (XRF) spectrometry measurements for evaluating lead and arsenic concentrations on the soil surface as an indicator of past use of lead arsenate pesticide residue in the OU. The work will be performed in the field during the summer of 2014, and assist in the planning for the characterization activities in the RI/FS.

  18. Combined elemental analysis of ancient glass beads by means of ion beam, portable XRF, and EPMA techniques.

    Science.gov (United States)

    Sokaras, D; Karydas, A G; Oikonomou, A; Zacharias, N; Beltsios, K; Kantarelou, V

    2009-12-01

    Ion beam analysis (IBA)- and X-ray fluorescence (XRF)-based techniques have been well adopted in cultural-heritage-related analytical studies covering a wide range of diagnostic role, i.e., from screening purposes up to full quantitative characterization. In this work, a systematic research was carried out towards the identification and evaluation of the advantages and the limitations of laboratory-based (IBA, electron probe microanalyzer) and portable (milli-XRF and micro-XRF) techniques. The study focused on the analysis of an Archaic glass bead collection recently excavated from the city of Thebes (mainland, Greece), in order to suggest an optimized and synergistic analytical methodology for similar studies and to assess the reliability of the quantification procedure of analyses conducted in particular by portable XRF spectrometers. All the employed analytical techniques and methodologies proved efficient to provide in a consistent way characterization of the glass bead composition, with analytical range and sensitivity depending on the particular technique. The obtained compositional data suggest a solid basis for the understanding of the main technological features related to the raw major and minor materials utilized for the manufacture of the Thebian ancient glass bead collection.

  19. Elemental bioimaging and speciation analysis for the investigation of Wilson's disease using μXRF and XANES.

    Science.gov (United States)

    Hachmöller, Oliver; Buzanich, Ana Guilherme; Aichler, Michaela; Radtke, Martin; Dietrich, Dörthe; Schwamborn, Kristina; Lutz, Lisa; Werner, Martin; Sperling, Michael; Walch, Axel; Karst, Uwe

    2016-07-13

    A liver biopsy specimen from a Wilson's disease (WD) patient was analyzed by means of micro-X-ray fluorescenceXRF) spectroscopy to determine the elemental distribution. First, bench-top μXRF was utilized for a coarse scan of the sample under laboratory conditions. The resulting distribution maps of copper and iron enabled the determination of a region of interest (ROI) for further analysis. In order to obtain more detailed elemental information, this ROI was analyzed by synchrotron radiation (SR)-based μXRF with a beam size of 4 μm offering a resolution at the cellular level. Distribution maps of additional elements to copper and iron like zinc and manganese were obtained due to a higher sensitivity of SR-μXRF. In addition to this, X-ray absorption near edge structure spectroscopy (XANES) was performed to identify the oxidation states of copper in WD. This speciation analysis indicated a mixture of copper(i) and copper(ii) within the WD liver tissue.

  20. Long term fine aerosol analysis by XRF and PIXE techniques in the city of Rijeka, Croatia

    Energy Technology Data Exchange (ETDEWEB)

    Ivošević, Tatjana [Faculty of Engineering, University of Rijeka, Vukovarska 58, HR-51000 Rijeka (Croatia); Orlić, Ivica [Department of Physics, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka (Croatia); Radović, Iva Bogdanović [Laboratory for Ion Beam Interaction, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb (Croatia)

    2015-11-15

    Highlights: • For the first time in Croatia, long term of fine aerosol pollution is reported. - Abstract: The results of a long term, multi elemental XRF and PIXE analysis of fine aerosol pollution in the city of Rijeka, Croatia, are reported for the first time. The samples were collected during a seven months period (6th Aug 2013–28th Feb 2014) on thin stretched Teflon filters and analyzed by energy dispersive X-ray fluorescence (EDXRF) at the Laboratory for Elemental Micro-Analysis (LEMA), University of Rijeka and by Particle Induced X-ray Emission (PIXE) using 1.6 MeV protons at the Laboratory for Ion Beam Interactions (LIBI), Ruđer Bošković Institute, Zagreb. The newly developed micro-XRF system at LEMA provided results for 19 elements in the range from Si to Pb. The PIXE at the LIBI provided information for the same elements as well for the light elements such as Na, Mg and Al. Black carbon was determined with the Laser Integrated Plate Method (LIPM). The results were statistically evaluated by means of the positive matrix factorization (PMF). The seven major pollution sources were identified together with their relative contributions, these are: secondary sulfates, road traffic, smoke, road dust, sea spray, ship emissions and soil dust.

  1. Investigating how fundamental parameters of XRF sample preparation and analysis affect the observed elemental concentration: an experiment using fluvial sediment from Sabah, Borneo.

    Science.gov (United States)

    Higton, Sam; Walsh, Rory

    2015-04-01

    X-Ray Fluorescence (XRF) is an important technique for measuring the concentrations of geochemical elements and inorganic contaminants adsorbed to sediments as an input to sediment tracing methods used to evaluate sediment transport dynamics in river catchments. In addition to traditional laboratory-based XRF instruments, the advent of increasingly advanced portable handheld XRF devices now mean that samples of fluvial sediment can be analysed in the field or in the laboratory following appropriate sample preparation procedures. There are limitations and sources of error associated with XRF sample preparation and analysis, however. It is therefore important to understand how fundamental parameters involved in sample preparation and analysis, such as sample compression and measurement exposure duration, affect observed variability in measurement results. Such considerations become important if the resulting measurement variability is high relative to the natural variability in element concentrations at a sample site. This paper deployed a simple experimental design to assess the impacts of varying a number of sample preparation and XRF analysis parameters on recorded measurements of elemental concentrations of the fine fraction (weight and sample quantity was sufficient to satisfy the assumption of 'infinite thickness' of sample. Standard plastic sample cups were used for both the Rigaku laboratory machine and the Niton portable XRF machine. A computer-controlled desktop laboratory stand was used in conjunction with the Niton handheld XRF analyser to ensure consistent repeated measurements. Parameters investigated related to sample preparation included consistent mechanical compression of samples within the sample cup and film thickness. Parameters investigated related to XRF analysis included the XRF machine selected and measurement exposure duration. As XRF is a non-destructive technique, wherever possible the same sample material was used to test different

  2. Nondestructive analysis of Portuguese "dinheiros" using XRF: overcoming patina constraints

    Science.gov (United States)

    Pessanha, Sofia; Costa, Mário; Oliveira, Maria Inês; Jorge, Maria Estrela M.; Carvalho, Maria Luísa

    2015-06-01

    "Dinheiros" are the first Portuguese coins, minted with a billon alloy (majority-based copper alloyed with silver). In this work, a set of "dinheiros" from D. Fernando of Portugal was analyzed and the composition of the alloy was compared with other "dinheiros" from previous reigns. Although the coins were in good state of conservation and no active corrosion was macroscopically observable, they still presented a corrosion layer of unknown thickness that would impair the XRF quantitative determinations. In order to overcome this hindrance, the silver K/L intensity ratios were determined and compared for the analyzed samples in order to choose "clean" spots for quantitative analysis. The results show a clear decrease in the Ag content: from 7-9 % in the previous reigns to 0.2-0.3 % in the coins attributed to D. Fernando. The silver content determined is very comparable to the silver content determined in other copper or bronze artifacts analyzed, leading us to believe that this low amount of silver was not intentionally introduced to create a billon alloy but relates to impurities present in the original mineral specimen.

  3. Determination of the feasibility of using a portable X-ray fluorescence (XRF) analyzer in the field for measurement of lead content of sieved soil.

    Science.gov (United States)

    Markey, Andrea M; Clark, C Scott; Succop, Paul A; Roda, Sandra

    2008-03-01

    Soil samples collected in housing areas with potential lead contamination generally are analyzed with flame atomic absorption spectrometry (FAAS) or other laboratory methods. Previous work indicates that field-portable X-ray fluorescence (XRF) analysis is capable of detecting soil lead levels comparable to those detected by FAAS in samples sieved to less than 125 microm in a laboratory. A considerable savings, both economical and in laboratory reporting time, would occur if a practical field method could be developed that does not require laboratory digestion and analysis. The XRF method also would provide immediate results that would facilitate the provision of information to residents and other interested parties more quickly than is possible with conventional laboratory methods. The goal of the study reported here was to determine the practicality of using the field-portable XRF analyzer for analysis of lead in soil samples that were sieved in the field. The practicality of using the XRF was determined by the amount of time it took to prepare and analyze the samples in the field and by the ease with which the procedure could be accomplished on site. Another objective of the study was to determine the effects of moisture on the process of sieving the soil. Seventy-eight samples were collected from 30 locations near 10 houses and were prepared and analyzed at the locations where they were collected. Mean soil lead concentrations by XRF were 816 ppm before drying and 817 ppm after drying, and by laboratory FAAS were 1,042 ppm. Correlation of field-portable XRF and FAAS results was excellent for samples sieved to less than 125 microm, with R2 values of .9902 and .992 before and after drying, respectively. The saturation ranged from 10 percent to 90 percent. At 65 percent saturation or higher, it was not feasible to sieve the soil in the field without a thorough drying step, since the soil would not pass through the sieve. Therefore the field method with sieving was

  4. Exposure measurements on portable X-ray fluorescence spectrometers (XRF); Expositionsmessungen an mobilen Roentgenfluoreszenz-Spektrometern

    Energy Technology Data Exchange (ETDEWEB)

    Boernsen, Frank; Ludwig, Thomas [Berufsgenossenschaft Energie Textil Elektro Medienerzeugnisse (BG ETEM), Koeln (Germany). Fachbereich Strahlenschutz; Hoewekenmeier, Dirk; Reinhardt, Erich [Bezirksregierung Koeln (Germany). Dezernat 55 - Strahlenschutz

    2011-07-01

    Portable XRF are more and more used for the verification of alloy in miscellaneous materials. Dose rates of five portable XRF were measured with thermoluminescent dose meters in combination with an Alderson phantom. At operating parameters of 40 kV and 50 {mu}A, for example, an extremely high dose rate of 76 Sv/h in the primary beam had been determined. The measurements, the results and the consequences for protection measures will be presented and discussed. (orig.)

  5. Non Invasive XRF Analysis of Human Hair for Health State Determination of Breast Tissue

    OpenAIRE

    Maziar, Asghar; Shahbazi-Gahrouei, Daryoush; Tavakoli, Mohammad Bagher; CHANGIZI, Vahid

    2015-01-01

    Background: Using hair samples to analyze the trace element concentrations is of interest among many researchers. X-ray fluorescence (XRF) and X-ray diffraction (XRD) are the most common methods in studying the structure and concentration of elements of tissues and also crystalline materials, using low energy X-ray. Objectives: In the present study, the detection ability of Wave Length X-ray Fluorescence (WLXRF) of breast cancer at early stages was evaluated and the results were compared with...

  6. The potential of lacquer-peel soil profiles for palaeo-geochemical analysis using XRF analysis

    NARCIS (Netherlands)

    Arnoldussen, Stijn; van Os, B.J.H.

    2015-01-01

    This paper discusses the suitability of hand-held XRF analysis to extract palaeo-geochemical information from lacquer-peel soil sections that have been taken to document pedological information at geological and archaeological sites. This not only allows the study of sections from archaeological and

  7. XRF analysis of turbidites in the Japan Trench: Evidences of provenances?

    Science.gov (United States)

    Schwestermann, Tobias; Fink, Hiske G.; Wefer, Gerold; Fleischmann, Timo; McHugh, Cecilia M.; Ikehara, Ken; Kanamatsu, Toshiya; Kioka, Arata; Strasser, Michael

    2017-04-01

    Since the Mw 9 Tohoku-oki earthquake in 2011, intensive research is going on, in order to analyse earthquake-related changes and fingerprints in the sedimentological record of the Japan Trench. Many turbidites were detected within small depositional trench basins in the central part of the trench by means of high-resolution sub-bottom profiles and sediment cores. There, distinct thick turbidite sequences have been dated by tephra and radiocarbon analyses and correlated to historic earthquakes. However, information on the turbiditeś source areas and, thus, inferences on their causing earthquake characteristics, is so far lacking. For this purpose, this study performs turbidite provenance analyses by detailed petrographic and XRF core scanning analysis on cores retrieved during cruises of R/V Sonne SO-219A and R/V Sonne SO-251A, covering the entire along-strike extent of the Japan Trench from 36° to 40.3°N. Cores were measured on the Avaatech x-ray fluorescence (XRF) core scanner at MARUM, Bremen, with a sampling interval of 1cm with 10kV and 30kV for the elements Al, Si, K, Ca, Ti, Mn, Fe and Rb, Sr, Zr, respectively. First results show distinctly different chemical fingerprints of the various spatially and temporally distributed turbidite sequences. In particular, the fine grained (silt to clay) upper parts of the turbidite sequences have partly distinct trends in elemental ratios, indicating either (i) various source areas, (ii) sorting processes along the turbidités pathways and/or (iii) post-depositional alteration processes. Furthermore, also the coarser basal sequences (mostly composed of multiple fine sand layers and beds) show various trends of elemental ratios. In particular the Fe/Rb vs. density trends can be indicative for the event deposits in the central part of the trench, which have been linked to historic earthquakes. Although, XRF core scanning data from the sand fraction needs to be interpreted with care, also sediment petrographic data (heavy

  8. Integration of XRF spectrometer for simultaneous and/or complementary use with PIXE at the external ion beam analysis setup

    Energy Technology Data Exchange (ETDEWEB)

    Fazinic, S.; Cosic, D.; Jaksic, M. [Laboratory for lon Beam Interactions, Division of Experimental Physics, Rudjer Boskovic Institute, Zagreb (Croatia); Migliori, A.; Karydas, A.G. [Nuclear Spectrometry and Applications Laboratory, International Atomic Energy Agency (IAEA), Vienna (Austria); Desnica, V. [Laboratory for Science and Technology in Art, Academy of Fine Arts in Zagreb, Zagreb (Croatia); Mudronja, D. [Natural Science Laboratory, Croatian Conservation Institute, Zagreb (Croatia)

    2013-07-01

    Full text: The Rudjer Boskovic Institute Tandem Accelerator Facility is equipped with a number of end-stations dedicated to ion beam analysis (IBA), modification of materials and nuclear physics experiments. IBA is performed at the: (1) nuclear microbeam, (2) broad-beam in-vacuum and (3) external beam end-stations. Several lBA techniques can be used simultaneously, Particle Induced X-ray Emission (PIXE) and Particle Induced Gamma-ray Emission (PIGE) at the external beam end-station, and additionally Rutherford Backscattering Spectroscopy (RBS) at the in-vacuum end-station. X-ray fluorescence (XRF) analysis is a technique complementary to PIXE. Both techniques offer high analytical potential for multi-elemental investigations and material characterization. Due to different excitation mechanisms, PIXE generally exhibits higher sensitivity for lighter elements and XRF for heavier, whereas they also have different in-sample depth sensitivities. Although they use different excitation sources, both techniques can use the same data acquisition modules. With the development of miniature, low power and lightweight X-ray tubes it is possible to incorporate an X-ray source within the IBA setup and combine the two techniques for simultaneous use. In this work, the unification of the PIXE and XRF techniques at the RBI external ion beam analysis setup has been investigated and the results are discussed. This has been done by installing a transmission miniature X-ray tube at the end-station. The tube has been properly positioned in order to irradiate the same spot on the sample as the ion beam used for PIXE/PIGE measurements. Our home made data acquisition system SPECTOR, used regularly for the IBA measurements, has been also used to acquire the XRF spectra. At first, the X-ray tube has been installed at the in-vacuum IBA station, and then to the external beam end-station. Test measurements have been carried out on various standard reference materials using both systems and the

  9. Synchrotron radiation based STXM analysis and micro-XRF mapping of differential expression of extracellular thiol groups by Acidithiobacillus ferrooxidans grown on Fe(2+) and S(0).

    Science.gov (United States)

    Xia, Jin-Lan; Liu, Hong-Chang; Nie, Zhen-Yuan; Peng, An-An; Zhen, Xiang-Jun; Yang, Yun; Zhang, Xiu-Li

    2013-09-01

    The differential expression of extracellular thiol groups by Acidithiobacillus ferrooxidans grown on substrates Fe(2+) and S(0) was investigated by using synchrotron radiation based scanning transmission X-ray microscopy (STXM) imaging and microbeam X-ray fluorescence (μ-XRF) mapping. The extracellular thiol groups (SH) were first alkylated by iodoacetic acid forming Protein-SCH2COOH and then the P-SCH2COOH was marked by calcium ions forming P-SCH2COOCa. The STXM imaging and μ-XRF mapping of SH were based on analysis of SCH2COO-bonded Ca(2+). The results indicated that the thiol group content of A. ferrooxidans grown on S(0) is 3.88 times to that on Fe(2+). Combined with selective labeling of SH by Ca(2+), the STXM imaging and μ-XRF mapping provided an in situ and rapid analysis of differential expression of extracellular thiol groups.

  10. The application of XRF and PIXE in the analysis of rice shoot and compositional screening of genotypes

    Energy Technology Data Exchange (ETDEWEB)

    Bado, S., E-mail: s.bado@iaea.org [Plant Breeding and Genetics Laboratory (PGBL), International Atomic Energy (IAEA), Vienna (Austria); Padilla-Alvarez, R., E-mail: rpa2000up@hotmail.com [Nuclear Science and Instrumentation Laboratory (NSIL), International Atomic Energy Agency (IAEA), Vienna International Centre, PO Box 100, 1400 Vienna (Austria); Migliori, A. [Nuclear Science and Instrumentation Laboratory (NSIL), International Atomic Energy Agency (IAEA), Vienna International Centre, PO Box 100, 1400 Vienna (Austria); Forster, B.P., E-mail: brianforster@biohybrids.com [Plant Breeding and Genetics Laboratory (PGBL), International Atomic Energy (IAEA), Vienna (Austria); Jaksic, M., E-mail: jaksic@irb.hr [Institut Ruđer Bošković, Bijenička cesta 54, 10000 Zagreb (Croatia); Diawara, Y.; Kaiser, R. [Nuclear Science and Instrumentation Laboratory (NSIL), International Atomic Energy Agency (IAEA), Vienna International Centre, PO Box 100, 1400 Vienna (Austria); Laimer, M., E-mail: margit.laimer@boku.ac.at [Plant Biotechnology Unit, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A 1190 Vienna (Austria)

    2016-03-15

    The analytical performance of Particle Induced X-ray Emission (PIXE) and X-ray Fluorescence (XRF) techniques was assessed in the determination of fourteen elements (Na, Mg, P, S, Cl, K, Ca, Mn, Fe, Cu, Zn, Br, Rb and Sr) in plant samples. The quality of the results – in terms of accuracy, associated uncertainty and correlation between the two methods – was evaluated with regard to their usability for compositional classification of different rice genotypes with known tolerance levels to salinity stress. Plant uptake of essential elements was explored by Principal Component Analysis, which illuminated patterns between treatments (salt and control treatments) and across the rice genotypes tested.

  11. The three-dimensional elemental distribution based on the surface topography by confocal 3D-XRF analysis

    Science.gov (United States)

    Yi, Longtao; Qin, Min; Wang, Kai; Lin, Xue; Peng, Shiqi; Sun, Tianxi; Liu, Zhiguo

    2016-09-01

    Confocal three-dimensional micro-X-ray fluorescence (3D-XRF) is a good surface analysis technology widely used to analyse elements and elemental distributions. However, it has rarely been applied to analyse surface topography and 3D elemental mapping in surface morphology. In this study, a surface adaptive algorithm using the progressive approximation method was designed to obtain surface topography. A series of 3D elemental mapping analyses in surface morphology were performed in laboratories to analyse painted pottery fragments from the Majiayao Culture (3300-2900 BC). To the best of our knowledge, for the first time, sample surface topography and 3D elemental mapping were simultaneously obtained. Besides, component and depth analyses were also performed using synchrotron radiation confocal 3D-XRF and tabletop confocal 3D-XRF, respectively. The depth profiles showed that the sample has a layered structure. The 3D elemental mapping showed that the red pigment, black pigment, and pottery coat contain a large amount of Fe, Mn, and Ca, respectively. From the 3D elemental mapping analyses at different depths, a 3D rendering was obtained, clearly showing the 3D distributions of the red pigment, black pigment, and pottery coat. Compared with conventional 3D scanning, this method is time-efficient for analysing 3D elemental distributions and hence especially suitable for samples with non-flat surfaces.

  12. The three-dimensional elemental distribution based on the surface topography by confocal 3D-XRF analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Longtao; Qin, Min; Wang, Kai; Peng, Shiqi; Sun, Tianxi; Liu, Zhiguo [Beijing Normal University, College of Nuclear Science and Technology, Beijing (China); Lin, Xue [Northwest University, School of Cultural Heritage, Xi' an (China)

    2016-09-15

    Confocal three-dimensional micro-X-ray fluorescence (3D-XRF) is a good surface analysis technology widely used to analyse elements and elemental distributions. However, it has rarely been applied to analyse surface topography and 3D elemental mapping in surface morphology. In this study, a surface adaptive algorithm using the progressive approximation method was designed to obtain surface topography. A series of 3D elemental mapping analyses in surface morphology were performed in laboratories to analyse painted pottery fragments from the Majiayao Culture (3300-2900 BC). To the best of our knowledge, for the first time, sample surface topography and 3D elemental mapping were simultaneously obtained. Besides, component and depth analyses were also performed using synchrotron radiation confocal 3D-XRF and tabletop confocal 3D-XRF, respectively. The depth profiles showed that the sample has a layered structure. The 3D elemental mapping showed that the red pigment, black pigment, and pottery coat contain a large amount of Fe, Mn, and Ca, respectively. From the 3D elemental mapping analyses at different depths, a 3D rendering was obtained, clearly showing the 3D distributions of the red pigment, black pigment, and pottery coat. Compared with conventional 3D scanning, this method is time-efficient for analysing 3D elemental distributions and hence especially suitable for samples with non-flat surfaces. (orig.)

  13. Experimental study for the feasibility of using hard x-rays for micro-XRF analysis of multilayered metals

    Directory of Open Access Journals (Sweden)

    C. Polese

    2014-07-01

    Full Text Available Application of polycapillary optical systems to improve a spatial resolution for the μ-XRF analysis by focusing a primary x-ray beam and/or by collecting fluorescence emission is well known. The challenge is to optimize them in combination with x-ray source for exciting K-lines above 20 keV that could allow characterization of many materials composed by heavy elements. To pursue this goal, preliminary studies on possible polycapillary lens employment in thickness determination for multilayer metal materials will be presented in this work. In this paper, the results of first attempts of integrating PyMCA with Monte Carlo simulation code (XMI-MSIM that takes into account the secondary fluorescence effects on quantitative analysis of homogeneous matrices, in particular, metal alloys, are presented.

  14. High-energy resolution μ-XRF analysis by position sensitive spectrometer

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    With a high-energy resolution micro-X-ray fluorescence (μ-XRF) analysis setup, which basically consists of an X-ray microbeam formed by an X-ray focusing lens combined with an X-ray apparatus and a wavelength dispersive position sensitive spectrometer with a flat crystal (PSS), preliminary results have been obtained. The counting rate of the analyzed element linearly increased with the power of X-ray apparatus, and the energy resolution, full width of half maximum (FWHM) of Ka lines of Ti and Cr reached 16.6 and 23.6 eV, respectively. The Cr Kb and Mn Ka lines in a sample of stainless steel could clearly be resolved. The above-mentioned results are also compared with those obtained by synchrotron radiation light microbeam combined with the PSS. The facts show that the high-energy resolution element analysis is feasible by using the setup. Moreover, problems for the setup and the ways to resolve them are discussed as well.

  15. Resolving colocalization of bacteria and metal(loid)s on plant root surfaces by combining fluorescence in situ hybridization (FISH) with multiple-energy micro-focused X-ray fluorescence (ME μXRF).

    Science.gov (United States)

    Honeker, Linnea K; Root, Robert A; Chorover, Jon; Maier, Raina M

    2016-12-01

    Metal(loid)-contamination of the environment due to anthropogenic activities is a global problem. Understanding the fate of contaminants requires elucidation of biotic and abiotic factors that influence metal(loid) speciation from molecular to field scales. Improved methods are needed to assess micro-scale processes, such as those occurring at biogeochemical interfaces between plant tissues, microbial cells, and metal(loid)s. Here we present an advanced method that combines fluorescence in situ hybridization (FISH) with synchrotron-based multiple-energy micro-focused X-ray fluorescence microprobe imaging (ME μXRF) to examine colocalization of bacteria and metal(loid)s on root surfaces of plants used to phytostabilize metalliferous mine tailings. Bacteria were visualized on a small root section using SytoBC nucleic acid stain and FISH probes targeting the domain Bacteria and a specific group (Alphaproteobacteria, Gammaproteobacteria, or Actinobacteria). The same root region was then analyzed for elemental distribution and metal(loid) speciation of As and Fe using ME μXRF. The FISH and ME μXRF images were aligned using ImageJ software to correlate microbiological and geochemical results. Results from quantitative analysis of colocalization show a significantly higher fraction of As colocalized with Fe-oxide plaques on the root surfaces (fraction of overlap 0.49±0.19) than to bacteria (0.072±0.052) (pbacteria that colocalized with metal(loid)s, Actinobacteria, known for their metal tolerance, had a higher correlation with both As and Fe than Alphaproteobacteria or Gammaproteobacteria. This method demonstrates how coupling these micro-techniques can expand our understanding of micro-scale interactions between roots, metal(loid)s and microbes, information that should lead to improved mechanistic models of metal(loid) speciation and fate. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Process monitoring and control with CHEMIN, a miniaturized CCD-based instrument for simultaneous XRD/XRF analysis

    Science.gov (United States)

    Vaniman, David T.; Bish, D.; Guthrie, G.; Chipera, S.; Blake, David E.; Collins, S. Andy; Elliott, S. T.; Sarrazin, P.

    1999-10-01

    There is a large variety of mining and manufacturing operations where process monitoring and control can benefit from on-site analysis of both chemical and mineralogic constituents. CHEMIN is a CCD-based instrument capable of both X-ray fluorescence (XRF; chemical) and X-ray diffraction (XRD; mineralogic) analysis. Monitoring and control with an instrument like CHEMIN can be applied to feedstocks, intermediate materials, and final products to optimize production. Examples include control of cement feedstock, of ore for smelting, and of minerals that pose inhalation hazards in the workplace. The combined XRD/XRF capability of CHEMIN can be used wherever a desired commodity is associated with unwanted constituents that may be similar in chemistry or structure but not both (e.g., Ca in both gypsum and feldspar, where only the gypsum is desired to make wallboard). In the mining industry, CHEMIN can determine mineral abundances on the spot and enable more economical mining by providing the means to assay when is being mined, quickly and frequently, at minimal cost. In manufacturing, CHEMIN could be used to spot-check the chemical composition and crystalline makeup of a product at any stage of production. Analysis by CHEMIN can be used as feedback in manufacturing processes where rates of heating, process temperature, mixture of feedstocks, and other variables must be adjusted in real time to correct structure and/or chemistry of the product (e.g., prevention of periclase and alkali sulfate coproduction in cement manufacture).

  17. The suitability of XRF analysis for compositional classification of archaeological ceramic fabric: A comparison with a previous NAA study

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, R. [Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), Laboratorio de Analisis Quimico, Calle 30 no. 502, Playa, Ciudad Habana (Cuba)]. E-mail: roman.padilla@infomed.sld.cu; Espen, P. van [University of Antwerp (Belgium); Torres, P.P. Godo [Centro de Antropologia, Havana (Cuba)

    2006-02-03

    The main drawbacks of EDXRF techniques, restricting its more frequent use for the specific purpose of compositional analysis of archaeological ceramic fabric, have been the insufficient sensitivity to determine some important elements (like Cr, REE, among others), a somewhat worse precision and the inability to perform standard-less quantitative procedures in the absence of suitable certified reference materials (CRM) for ceramic fabric. This paper presents the advantages of combining two energy dispersive X-ray fluorescence methods for fast and non-destructive analysis of ceramic fabric with increased sensitivity. Selective polarized excitation using secondary targets (EDPXRF) and radioisotope excitation (R-XRF) using a {sup 241}Am source. The analytical performance of the methods was evaluated by analyzing several CRM of sediment type, and the fitness for the purpose of compositional classification was compared with that obtained by using Instrumental Neutron Activation Analysis in a previous study of Cuban aborigine pottery.

  18. X-Ray Diffraction and Fluorescence Instrument for Mineralogical Analysis at the Lunar Surface Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop LUNA, a compact and lightweight X-Ray Diffraction (XRD) / X-Ray Fluorescence (XRF) instrument for mineralogical analysis of regolith, rock...

  19. X-Ray Diffraction and Fluorescence Instrument for Mineralogical Analysis at the Lunar Surface Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a compact and lightweight X-Ray Diffraction (XRD) / X-Ray Fluorescence (XRF) instrument for analysis of mineralogical composition of regolith,...

  20. Textural and Mineralogical Analysis of Volcanic Rocks by µ-XRF Mapping.

    Science.gov (United States)

    Germinario, Luigi; Cossio, Roberto; Maritan, Lara; Borghi, Alessandro; Mazzoli, Claudio

    2016-06-01

    In this study, µ-XRF was applied as a novel surface technique for quick acquisition of elemental X-ray maps of rocks, image analysis of which provides quantitative information on texture and rock-forming minerals. Bench-top µ-XRF is cost-effective, fast, and non-destructive, can be applied to both large (up to a few tens of cm) and fragile samples, and yields major and trace element analysis with good sensitivity. Here, X-ray mapping was performed with a resolution of 103.5 µm and spot size of 30 µm over sample areas of about 5×4 cm of Euganean trachyte, a volcanic porphyritic rock from the Euganean Hills (NE Italy) traditionally used in cultural heritage. The relative abundance of phenocrysts and groundmass, as well as the size and shape of the various mineral phases, were obtained from image analysis of the elemental maps. The quantified petrographic features allowed identification of various extraction sites, revealing an objective method for archaeometric provenance studies exploiting µ-XRF imaging.

  1. Evaluation of Portable X-Ray Fluorescence (XRF) Analyzer for Zirconium-Thickness Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Glenn Moore

    2013-09-01

    This Technical Evaluation Report provides details of preliminary testing/experiments performed using a handheld X-ray fluorescence analyzer. The analyzer will be utilized in upcoming fuel-foil-rolling optimization studies at the INL. The studies are being performed in support of DOE’s Office of Global Threat Reduction -- Reactor Conversion Subprogram. Details of the equipment used, operating parameters, and measurement results are provided in this report.

  2. 3D micro-XRF for cultural heritage objects: new analysis strategies for the investigation of the Dead Sea Scrolls.

    Science.gov (United States)

    Mantouvalou, Ioanna; Wolff, Timo; Hahn, Oliver; Rabin, Ira; Lühl, Lars; Pagels, Marcel; Malzer, Wolfgang; Kanngiesser, Birgit

    2011-08-15

    A combination of 3D micro X-ray fluorescence spectroscopy (3D micro-XRF) and micro-XRF was utilized for the investigation of a small collection of highly heterogeneous, partly degraded Dead Sea Scroll parchment samples from known excavation sites. The quantitative combination of the two techniques proves to be suitable for the identification of reliable marker elements which may be used for classification and provenance studies. With 3D micro-XRF, the three-dimensional nature, i.e. the depth-resolved elemental composition as well as density variations, of the samples was investigated and bromine could be identified as a suitable marker element. It is shown through a comparison of quantitative and semiquantitative values for the bromine content derived using both techniques that, for elements which are homogeneously distributed in the sample matrix, quantification with micro-XRF using a one-layer model is feasible. Thus, the possibility for routine provenance studies using portable micro-XRF instrumentation on a vast amount of samples, even on site, is obtained through this work.

  3. μ-XRF analysis of glasses: a non-destructive utility for Cultural Heritage applications.

    Science.gov (United States)

    Vaggelli, G; Cossio, R

    2012-02-07

    This paper presents a μ-XRF analytical approach for a non-destructive study of Cultural Heritage glass finds. This technique can be used for quantitative analysis of small volumes of solid samples, with a sensitivity that is superior to the electron microprobe but inferior to an ICP-MS system. An experimental set-up with natural and synthetic glass standards is proposed here for the quantitative analyses of major and trace elements on glass objects which cannot be sampled such as small archaeological or historical artefacts from Cultural Heritage. The described method, performed by means of the commercial μ-XRF Eagle III-XPL, was applied to Islamic glass specimens of Sasanian production (III-VII century A.D.) previously analyzed by ICP-MS and SEM-EDS techniques (P. Mirti, M. Pace, M. Negro Ponzi and M. Aceto, Archaeometry, 2008, 50(3), 429-450; P. Mirti, M. Pace, M. Malandrino and M. Negro Ponzi, J. Archaeol. Sci., 36, 1061-1069; and M. Gulmini, M. Pace, G. Ivaldi, M. Negro Ponzi and P. Mirti, J. Non-Cryst. Solids, 2009, 355, 1613-1621) and coming from the archaeological site of Veh Ardasir in modern Iraq. Major elements (Na, Mg, Al, Si, K, Ca, Fe) of glass specimens show an accuracy better than 5%. Trace elements (Cr, Mn, Sr and Zr) display an accuracy better than 5% when the checked elements have a concentration >100 ppm by weight, whereas it is around 10% with a concentration <100 ppm by weight. μ-XRF is, therefore, a suitable elemental analysis technique for the non-destructive study of small glass finds due to its relatively good accuracy, reproducibility and low detection limits (∼tens ppm).

  4. Trace element profiles in modern horse molar enamel as tracers of seasonality: Evidence from micro-XRF, LA-ICP-MS and stable isotope analysis

    Science.gov (United States)

    de Winter, Niels; Goderis, Steven; van Malderen, Stijn; Vanhaecke, Frank; Claeys, Philippe

    2016-04-01

    A combination of laboratory micro-X-ray FluorescenceXRF) and stable carbon and oxygen isotope analysis shows that trace element profiles from modern horse molars reveal a seasonal pattern that co-varies with seasonality in the oxygen isotope records of enamel carbonate from the same teeth. A combination of six cheek teeth (premolars and molars) from the same individual yields a seasonal isotope and trace element record of approximately three years recorded during the growth of the molars. This record shows that reproducible measurements of various trace element ratios (e.g., Sr/Ca, Zn/Ca, Fe/Ca, K/Ca and S/Ca) lag the seasonal pattern in oxygen isotope records by 2-3 months. Laser Ablation-ICP-Mass Spectrometry (LA-ICP-MS) analysis on a cross-section of the first molar of the same individual is compared to the bench-top tube-excitation μXRF results to test the robustness of the measurements and to compare both methods. Furthermore, trace element (e.g. Sr, Zn, Mg & Ba) profiles perpendicular to the growth direction of the same tooth, as well as profiles parallel to the growth direction are measured with LA-ICP-MS and μXRF to study the internal distribution of trace element ratios in two dimensions. Results of this extensive complementary line-scanning procedure shows the robustness of state of the art laboratory micro-XRF scanning for the measurement of trace elements in bioapatite. The comparison highlights the advantages and disadvantages of both methods for trace element analysis and illustrates their complementarity. Results of internal variation within the teeth shed light on the origins of trace elements in mammal teeth and their potential use for paleo-environmental reconstruction.

  5. Use of X-ray Fluorescence Analysis for the Determination of Rare Earth Elements

    Science.gov (United States)

    Schramm, Rainer

    2016-09-01

    X-ray fluorescence spectrometry (XRF) is a powerful tool for the analysis of solid material. That is the reason why the technique was applied for the determination of rare earth elements (REEs) since about 1970. At present, energy-dispersive XRF and wavelength-dispersive XRF are used for the analysis of pressed powder pellets or fused Li-borate beads containing REEs. The production of reliable results can only be achieved by careful optimization of the parameter, in particular the selection of spectral lines. The quantification is based on a calibration realized by using reference samples.

  6. First experiences with 2D-mXRF analysis of gunshot residue on garment, tissue, and cartridge cases

    Science.gov (United States)

    Knijnenberg, Alwin; Stamouli, Amalia; Janssen, Martin

    2014-09-01

    The investigation of garment and human tissue originating from a victim of a shooting incident can provide crucial information for the reconstruction of such an incident. The use of 2D-mXRF for such investigations has several advantages over current methods as this new technique can be used to scan large areas, provides simultaneous information on multiple elements, can be applied under ambient conditions and is non-destructive. In this paper we report our experiences and challenges with the implementation of 2D-mXRF in GSR analysis. Currently we mainly focus on the use of 2D-mXRF as a tool for visualizing elemental distributions on various samples.

  7. Remote multispectral imaging with PRISMS and XRF analysis of Tang tomb paintings

    Science.gov (United States)

    Lange, Rebecca; Zhang, Qunxi; Liang, Haida

    2011-06-01

    PRISMS (Portable Remote Imaging System for Multispectral Scanning) is a multispectral/hyperspectral imaging system designed for flexible in situ imaging of wall paintings at high resolution (tens of microns) over a large range of distances (less than a meter to over ten meters). This paper demonstrates a trial run of the VIS/NIR (400-880nm) component of the instrument for non-invasive imaging of wall paintings in situ. Wall painting panels from excavated Tang dynasty (618- 907AD) tombs near Xi'an were examined by PRISMS. Pigment identifications were carried out using the spectral reflectance obtained from multispectral imaging coupled with non-invasive elemental analysis using a portable XRF.

  8. Preliminary investigation of mercury in bone tissues of skua and penguin in Antarctica using AFS and Synchrotron Radiation X-ray Fluorescence (SR-XRF)

    Institute of Scientific and Technical Information of China (English)

    Xie Zhouqing; Cheng Bangbo; Sun Liguang; Huang Yuying; He Wei

    2005-01-01

    Mercury (Hg) was investigated in bone tissues of skua ( Catharacta maccormick) and penguin (Pygoscelis adeliae) collected in the maritime Antarctic using atomic fluorescence spectrometry (AFS) and synchrotron radiation X-ray fluorescence (SR-XRF) method. The total levels of mercury in bone tissues of penguin and skua are much lower than those in other organs ( e. g. , kidney, liver). The toxic effects of mercury in bone tissues of seabirds in polar region are not known. We have used SR-XRF method to map the distribution of trace levels of mercury in bones. The levels of mercury are found to be enriched somewhere near the periosteal surface and/or endosteal surface. The distribution of mercury shows strongly correlation with that of some essential elements and probably poses negative effect on the bone metabolism inferring from the relationship of mercury with the other elements. These studies represent a first step toward understanding the toxic effects of mercury on bone of polar animals by suggesting the possible microscopic investigation.

  9. In-situ XRF and LIBS analysis of roman silver denarii

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, A. El; Harith, M.A. [National Institute for Laser- Enhanced Science (NILES), Cairo University, Giza (Egypt); Ferretti, M. [Istituto per le Tecnologie Applicate ai Beni Culturali, Area della Ricerca del CNR di Montelibretti, Roma (Italy); Foresta, A.; Legnaioli, S.; Lorenzetti, G.; Palleschi, V.; Pardini, L., E-mail: incenzo.palleschi@cnr.it [Istituto di Chimica dei Composti Organometallici del CNR. Area della Ricerca del CNR di Pisa (Italy); Nebbia, E. [Universita degli Studi di Torino (Italy); Catalli, F. [Monetiere di Firenze, Museo Archeologico Nazionale, Firenze (Italy)

    2011-07-01

    Full text: In this paper we present the result of a study performed on a large collection of silver roman republican denarii, encompassing about two centuries of history. The joint use of Laser-Induced Breakdown Spectroscopy (LIBS) and X-Ray Fluorescence (XRF) spectroscopy allowed for an accurate determination of the coins' elemental composition; the measurements, performed mostly in situ at the 'Monetiere' in Florence, revealed a striking correlation of the 'quality' of the silver alloy with some crucial contemporary events. This finding was used for classifying a group of denarii whose dating was otherwise impossible. The results reported demonstrate the possibility of analyzing in short time and in situ a statistically significant number of coins. Useful information can be obtained about the coin composition, both for main components and traces that could be used for classifying the coins in groups, according to different levels of concentrations of the detected elements. The comparison with other contemporary denarii allowed also to controvert a recent theory on the origin of the so called 'serrated' denarii (denarii showing notched chisel marks on the edge of the coin). (author)

  10. Feasibility study of a Compton Suppression system for the X-ray Fluorescence (XRF) using Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Kyu; Seo, Hee; Won, Byung Hee; Lee, Hyun Su; Park, Se-Hwan; Kim, Ho-Dong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The XRF technique compares the measured pulse height of U and Pu peaks which are self-induced characteristic xray emitted from U and Pu to quantify the elemental U and Pu. The measurement of the U and Pu x-ray peak ratio provides information on the relative concentration of U and Pu elements. Photon measurements of spent nuclear fuel using high resolution spectrometers show a large background continuum in the low energy x-ray region in large part from Compton scattering of energetic gamma-rays. The high Compton continuum can make measurements of plutonium x-rays difficult because the relatively small signal to background ratio produced. In pressurized water reactor (PWR) spent fuels with low plutonium contents (-1%), the signal to background ratio may be too low to get an accurate plutonium x-ray measurement. The Compton suppression system has been proposed to reduce the Compton continuum background. In the present study, the feasibility of a Compton suppression system for XRF was evaluated by Monte Carlo simulations and measurements of the radiation source. In this study, the feasibility of a Compton suppression system for XRF was evaluated by MCNP simulations and measurements of the radiation source. Experiments using a standard gamma-ray source showed that the peak-to-total ratios were improved by a factor of three when the Compton suppression system was used.

  11. Performance of portable XRF and micro-XRF on carbonates

    Science.gov (United States)

    de Winter, Niels; Sinnesael, Matthias; Makarona, Christina; Claeys, Philippe

    2016-04-01

    Variations in elemental abundances in various carbonate archives offer a wealth of paleoenvironmental proxy information. State of the art portable handheld X-Ray Fluorescence (pXRF) and laboratory micro X-Ray FluorescenceXRF) instruments provide a relatively inexpensive and fast way of acquiring elemental composition data. However, there are well-known issues and limitations regarding the conversion of XRF spectral data into elemental concentrations. This study aims to offer a guideline for the appropriate use of these XRF techniques for the study of carbonates. Using a certified calcium carbonate standard, accuracy and reproducibility of both a pXRF (Bruker AXS Tracer IV) and a μXRF (Bruker M4 Tornado) instrument are tested under various measurement conditions. The experimental set-up allowed for the variation of several parameters, including measurement area, integration time, quantification method and filter use. The effects on the accuracy and reproducibility of the quantified elemental abundance results are examined in order to investigate under which conditions both devices perform best in determining trace element abundances in natural carbonates. The limits of detection and quantification are evaluated for both instruments for a range of commonly used trace elements (e.g. Sr, Mg, Zn, Fe …). The quality of the XRF spectra is evaluated using spectral processing software. Additionally, different methods of quantification are discussed. As a result, optimized parameter combinations are proposed for a range of commonly used elements. Finally, a comparison between the two X-Ray Fluorescence instruments allows the evaluation of their respective advantages and disadvantages and helps to determine which technique is best suited for a specific research question.

  12. Feasibility of measuring arsenic and selenium in human skin using in vivo x-ray fluorescence (XRF)--a comparison of methods.

    Science.gov (United States)

    Shehab, H; Desouza, E D; O'Meara, J; Pejović-Milić, A; Chettle, D R; Fleming, D E B; McNeill, F E

    2016-01-01

    In recent years, in vivo measurement systems of arsenic in skin by K-shell x-ray fluorescence (XRF) have been developed, including one which was applied in a pilot study of human subjects. Improved tube-based approaches suggest the method can be further exploited for in vivo studies. Recently, it has been suggested that selenium deficiency is correlated with arsenic toxicity. A non-invasive measurement of both elements could therefore be of potential interest. The main aim of this current study was to evaluate and compare the performance of an upgraded portable XRF system and an advanced version of the benchtop XRF system for both selenium and arsenic. This evaluation was performed in terms of arsenic and selenium Kα detection limits for a 4W gold anode Olympus InnovX Delta portable analyzer (40 kVp) in polyester resin skin-mimicking phantoms. Unlike the polychromatic source earlier reported in the literature, the benchtop tube-based technique involves monochromatic excitation (25 W silver anode, manufactured by x-ray optics, XOS) and a higher throughput detector type. Use of a single exciting energy allows for a lower in vivo dose delivered and superior signal-noise ratio. For the portable XRF method, arsenic and selenium minimum detection limits (MDLs) of 0.59  ±  0.03 ppm and 0.75  ±  0.02 ppm respectively were found for 1 min measurement times. The MDLs for arsenic and selenium using the benchtop system were found to be 0.35  ±  0.01 ppm and 0.670  ±  0.004 ppm respectively for 30 min measurement times. In terms of a figure of merit (FOM), allowing for dose as well as MDL, the benchtop system was found to be superior for arsenic and the two systems were equivalent, within error, for selenium. We shall discuss the performance and possible improvements of each system, their ease of use and potential for field application.

  13. SYNCHROTRON RADIATION XRF MICROPROBE STUDY OF HUMAN BONE TUMOR SLICE

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The experimental apparatus of X-ray fluorescence (XRF) microprobe analysis at Beijing Synchrotron Radiation Facility (BSRF) is described Using the bovine liver as the standard reference.the minimum detection limit(MDL) of trace element was measured to determine the capability of biological sample analysis by synchrotron radiation XRF microprobe.The relative change of the content of the major or trace element in the normal and tumor part of human bone tissue slice was investigated The experimental result relation to the clinical medicine was also discussed.

  14. X-ray fluorescence analysis of wear metals in used lubricating oils

    Science.gov (United States)

    Maddox, W. E.; Kelliher, W. C.

    1986-01-01

    Used oils from several aircraft at NASA's Langley Research Center were analyzed over a three year period using X-ray fluorescence (XRF) and atomic emission spectrometry. The results of both analyses are presented and comparisons are made. Fe and Cu data for oil from four internal combustion engines are provided and XRF and atomic emission spectrometry measurements were found to be in perfect agreement. However, distributions were found in the case of oil from a jet aircraft engine whereby the latter method gave values for total iron concentration in the oil and did not distinguish between suspended particles and oil additives. XRF does not have these particle-size limitations; moreover, it is a faster process. It is concluded that XRF is the preferred method in the construction of a man-portable oil wear analysis instrument.

  15. [Application of calibration curve method and partial least squares regression analysis to quantitative analysis of nephrite samples using XRF].

    Science.gov (United States)

    Liu, Song; Su, Bo-min; Li, Qing-hui; Gan, Fu-xi

    2015-01-01

    The authors tried to find a method for quantitative analysis using pXRF without solid bulk stone/jade reference samples. 24 nephrite samples were selected, 17 samples were calibration samples and the other 7 are test samples. All the nephrite samples were analyzed by Proton induced X-ray emission spectroscopy (PIXE) quantitatively. Based on the PIXE results of calibration samples, calibration curves were created for the interested components/elements and used to analyze the test samples quantitatively; then, the qualitative spectrum of all nephrite samples were obtained by pXRF. According to the PIXE results and qualitative spectrum of calibration samples, partial least square method (PLS) was used for quantitative analysis of test samples. Finally, the results of test samples obtained by calibration method, PLS method and PIXE were compared to each other. The accuracy of calibration curve method and PLS method was estimated. The result indicates that the PLS method is the alternate method for quantitative analysis of stone/jade samples.

  16. Combination of ICP-OES, XRF and XRD techniques for analysis of several dental ceramics and their identification using chemometrics

    OpenAIRE

    Safwan M. Obeidat; Al-Momani, Idrees; Haddad, Asma'a; Bani Yasein, Motasem

    2011-01-01

    In this paper dental ceramic samples from seven vendors were studied. The elemental composition for each type was investigated using the ICP-OES and the XRF. Assessment of the seven types of ceramic was also successfully achieved using the XRD spectral data and processed with Principal Component Analysis (PCA). Detecting possible adulteration in different mass percentages of ceramic was also possible by applying the XRD data for the adulterated samples to the original PCA model.

  17. XRF SR technique in the investigations of elements content in aquatic vascular plants and bottom sediments

    Science.gov (United States)

    Kipriyanova, L. M.; Dvurechenskaya, S. Ya.; Sokolovskaya, I. P.; Trunova, V. A.; Anoshin, G. N.

    2001-09-01

    The contents of some elements (mainly heavy metals) in macrophytes and bottom sediments of Novosibirsk Reservoir were determined using X-ray fluorescence analysis with the synchrotron radiation excitation (XRF SR) and atomic absorption spectroscopy (AAS) techniques. The possibility of using of the XRF SR technique along with traditional analytical methods for environmental investigations, especially for complex study of ecosystem of natural and artificial water reservoirs, was considered.

  18. Micro-XRF Analysis of Archean Spherule Layers and Host Rocks from the CT3 Drill Core, Barberton Greenstone Belt, South Africa

    Science.gov (United States)

    Hoehnel, D.; Tagle, R.; Hofmann, A.; Reimold, W. U.; Mohr-Westheide, T.; Fritz, J.; Altenberger, U.

    2016-08-01

    Spherule layers and host rock samples from the Barberton Greenstone Belt were studied with a µ-XRF spectrometer. Elemental distribution maps indicate distinct folding that had been recognized neither by visual inspection nor by petrographic analysis.

  19. Complementary use of the Raman and XRF techniques for non-destructive analysis of historical paint layers

    Science.gov (United States)

    Sawczak, M.; Kamińska, A.; Rabczuk, G.; Ferretti, M.; Jendrzejewski, R.; Śliwiński, G.

    2009-03-01

    The portable XRF spectrometer has been applied in situ for the non-destructive elemental mapping of the pigment components of the XV c. mural painting and frescos of the Little Christopher chamber in the Main Town Hall of Gdańsk, Poland. For a sufficiently large data collection the principal component analysis (PCA) was applied in order to associate the most intense lines of the elements Ca, Cu, Fe, Pb, and Hg in the XRF spectra with the palette of colors: white, brown, green, blue, red, yellow, and black observed in the painting. This allowed to limit the number of extractions of the micro-samples for the complementary Raman measurements thus assuring the practically non-destructive character of the entire analysis. The reliable identification of the pigment compositions was based on coincidence of the XRF, PCA and the Raman results which confirmed the presence of the chalk, malachite, azurite, red lead, mars red, mars yellow and candle black in the historical paints, except of the carbon-based black pigment being out of the XRF detection range. Different hues of the green paint were specified and the variety of the red and brown ones was ascribed to compositions of the Pb- and Fe-based red pigments (Fe 2O 3 and Pb 3O 4) with addition of the vermilion (HgS) and carbon black, in agreement with literature. The traces of elements: Ba and Sr, Sb and Mo, and also Cd, were ascribed to the impurities of Ca, those of some ochre pigments, and to the soluble Cd salts, respectively.

  20. X-RAY FLUORESCENCE ANALYSIS OF HANFORD LOW ACTIVITY WASTE SIMULANTS

    Energy Technology Data Exchange (ETDEWEB)

    Jurgensen, A; David Missimer, D; Ronny Rutherford, R

    2006-05-08

    Savannah River National Laboratory (SRNL) was requested to develop an x-ray fluorescence (XRF) spectrometry method for elemental characterization of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) pretreated low activity waste (LAW) stream to the LAW Vitrification Plant. The WTP is evaluating the potential for using XRF as a rapid turnaround technique to support LAW product compliance and glass former batching. The overall objective of this task was to develop XRF analytical methods that provide the rapid turnaround time (<8 hours) requested by the WTP, while providing sufficient accuracy and precision to determine waste composition variations. For Phase 1a, SRNL (1) evaluated, selected, and procured an XRF instrument for WTP installation, (2) investigated three XRF sample methods for preparing the LAW sub-sample for XRF analysis, and (3) initiated scoping studies on AN-105 (Envelope A) simulant to determine the instrument's capability, limitations, and optimum operating parameters. After preliminary method development on simulants and the completion of Phase 1a activities, SRNL received approval from WTP to begin Phase 1b activities with the objective of optimizing the XRF methodology. Three XRF sample methods used for preparing the LAW sub-sample for XRF analysis were studied: direct liquid analysis, dried spot, and fused glass. The direct liquid method was selected because its major advantage is that the LAW can be analyzed directly without any sample alteration that could bias the method accuracy. It also is the fastest preparation technique--a typical XRF measurement could be completed in < 1hr after sample delivery. Except for sodium, the method detection limits (MDLs) for the most important analytes in solution, the hold point elements, were achieved by this method. The XRF detection limits are generally adequate for glass former batching and product composition reporting, but may be inadequate for some species (Hg, Cd, and Ba) important

  1. A feasibility study to determine the potential of in vivo detection of gadolinium by x-ray fluorescence (XRF) following gadolinium-based contrast-enhanced MRI.

    Science.gov (United States)

    Mostafaei, F; McNeill, F E; Chettle, D R; Noseworthy, M D

    2015-01-01

    The feasibility of using a (109)Cd γ-ray induced K x-ray fluorescence (K-XRF) system for the in vivo detection of gadolinium (Gd) in bone has been investigated. The K-XRF bone measurement system employs an array of four detectors, and is normally used for the non-invasive study of bone lead levels. The system was used to measure bone simulating phantoms doped with varying levels of gadolinium and fixed amounts of sodium (Na), chlorine (Cl) and calcium (Ca). The detection limits for bare bone phantoms, using a source of activity 0.17 GBq, were determined to be 3.9 ppm and 6.5 ppm (µg Gd per gram phantom) for the Kα1 and Kα2 Gd x-ray peaks, respectively. This leads to an overall detection limit of 3.3 ppm (µg Gd per gram phantom). Layers of plastic were used to simulate overlying soft tissue and this permitted prediction of a detection limit, using the current strength of our radioisotope source, of 6.1 ppm to 8.6 ppm (µg Gd per gram phantom) for fingers with 2-4 mm of overlying tissue. With a new source of activity 5 GBq, we predict that this system could achieve a detection limit of 4-5.6 µg Gd g(-1) Ca. This is within the range of levels (2-30 µg Gd g(-1) Ca) previously found in the bone of patients receiving Gd based contrast imaging agents. The technique is promising and warrants further investigation.

  2. DELAMINATION AND XRF ANALYSIS OF NIST LEAD IN PAINT FILM STANDARDS

    Science.gov (United States)

    The objectives of this protocol were to remove the laminate coating from lead paint film standards acquired from NIST by means of surface heating. The average XRF value did not change after removal of the polymer coating suggesting that this protocol is satisfactory for renderin...

  3. ED-XRF spectrometric analysis of comparative elemental composition of in vivo and in vitro roots of Andrographis paniculata (Burm.f.) Wall. ex Nees-a multi-medicinal herb

    Energy Technology Data Exchange (ETDEWEB)

    Behera, P.R., E-mail: priyaranjan2004@gmail.co [Plant Cell and Tissue culture Facility, Post-Graduate Department of Botany, Utkal University, Vani Vihar, Bhubaneswar 751004, Orissa (India); Plant Biotechnology Lab, Institute of Minerals and Materials Technology (CSIR), Bhubaneswar 751013, Orissa (India); Nayak, P., E-mail: pranati_nayak_23@yahoo.co.i [Plant Cell and Tissue culture Facility, Post-Graduate Department of Botany, Utkal University, Vani Vihar, Bhubaneswar 751004, Orissa (India); Plant Biotechnology Lab, Institute of Minerals and Materials Technology (CSIR), Bhubaneswar 751013, Orissa (India); Barik, D.P., E-mail: barikdp@yahoo.co [Plant Cell and Tissue culture Facility, Post-Graduate Department of Botany, Utkal University, Vani Vihar, Bhubaneswar 751004, Orissa (India); Rautray, T.R., E-mail: trrautray@gmail.co [Ion Beam Laboratory, Institute of Physics, Bhubaneswar 751013, Orissa (India); Thirunavoukkarasu, M., E-mail: mtarasu@yahoo.co [Plant Biotechnology Lab, Institute of Minerals and Materials Technology (CSIR), Bhubaneswar 751013, Orissa (India); Chand, P.K., E-mail: pkchanduubot@yahoo.co.i [Plant Cell and Tissue culture Facility, Post-Graduate Department of Botany, Utkal University, Vani Vihar, Bhubaneswar 751004, Orissa (India)

    2010-12-15

    The multi-elemental composition of in vitro-proliferated root tissues of Andrographis paniculata (Burm.f.) Wall. ex Nees was compared with that of the naturally grown in vivo plants. Trace elements namely Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Rb, Sr and Pb in addition to two macro-elements K and Ca were identified and quantified in root tissues of both sources using the energy dispersive X-ray fluorescence (ED-XRF) technique. ED-XRF analysis was performed using Mo K X-rays generated from a secondary molybdenum target. The elemental content of in vitro roots was found to be at par with that of naturally grown plants of the same species. This opens up a possibility of exploiting in vitro root cultures as a viable, alternative and renewable source of phytochemicals of relevance, besides providing a means for conservation of the valuable natural resources.

  4. Archaeologist looks at x-ray fluorescence vs. neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Artzy, M.

    1976-04-01

    X-ray fluorescence (XRE) and neutron activation analysis (NAA) are compared; a periodic table of the elements showing their sensitivity to each method is included. It is proposed to use both methods to make chemical abundances measurements on archaeological samples, including Bichrome Ware and Palestinian samples. The intent is to see if NAA can be replaced by XRF. (DLC)

  5. Semi-empirical schemes for the x-ray mass absorption coefficients used in XRF analysis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    X-ray mass absorption coefficients play an important role in the accu-racy of any XRF intensity calculation. It is necessary to determine the proper schemesfor providing satisfying values μ/p. In this work we examined and compared variousschemes. A program based on the existing schemes to provide more accurate andconvenient μ/p values was then introduced. The results from the program appears tobe tolerable.

  6. The Use of Handheld X-Ray Fluorescence (XRF) Technology in Unraveling the Eruptive History of the San Francisco Volcanic Field, Arizona

    Science.gov (United States)

    Young, Kelsey E.; Evans, C. A.; Hodges, K. V.

    2012-01-01

    While traditional geologic mapping includes the examination of structural relationships between rock units in the field, more advanced technology now enables us to simultaneously collect and combine analytical datasets with field observations. Information about tectonomagmatic processes can be gleaned from these combined data products. Historically, construction of multi-layered field maps that include sample data has been accomplished serially (first map and collect samples, analyze samples, combine data, and finally, readjust maps and conclusions about geologic history based on combined data sets). New instruments that can be used in the field, such as a handheld xray fluorescence (XRF) unit, are now available. Targeted use of such instruments enables geologists to collect preliminary geochemical data while in the field so that they can optimize scientific data return from each field traverse. Our study tests the application of this technology and projects the benefits gained by real-time geochemical data in the field. The integrated data set produces a richer geologic map and facilitates a stronger contextual picture for field geologists when collecting field observations and samples for future laboratory work. Real-time geochemical data on samples also provide valuable insight regarding sampling decisions by the field geologist

  7. Comparative analysis of microscopic images and XRF and EDS results of bricks from arheological sites Mediana and Naisus

    Directory of Open Access Journals (Sweden)

    Kalamković Snežana

    2014-01-01

    Full Text Available This paper describes the archaeological sites Mediana and Naisus during Late Antiquity. Microscopic images of bricks, and the results and analysis of XRF bricks from these archaeological sites are shown. Based on the results, it can be concluded that a similar brick exterior, and approximately the same chemical composition. One reason is, most likely, a similar chemical composition of the soil, because the archaeological sites are geographically close to each other. Another reason could be the same way bricks were producted, and that the same fuel was used in the kilns.

  8. The study of in vivo x-ray fluorescence (XRF) technique for gadolinium (Gd) measurements in human bone

    Science.gov (United States)

    Mostafaei, F.; Nie, L. H.

    2016-08-01

    An in vivo K x-ray fluorescence system, based on 109Cd source, for the detection of gadolinium has been investigated. Gd is of interest because of the extensive use of Gd-based contrast agents in MR imaging. A human simulating bone phantom set has been developed. The phantoms were doped with seven concentrations of Gd. Additional elements important for in vivo x-ray fluorescence, Na, Cl and Ca, were also included to create an overall elemental composition consistent with the Reference Man. A new 5 GBq 109Cd source was purchased to improve the source activity in comparison to the previous study (0.17 GBq). The previously published minimum detection limit (MDL) for Gd phantom measurements using KXRF system was 3.3 ppm. In this study the minimum detection limit for bare bone phantoms was found to reduce the MDL to 0.8, a factor of 4.1. The previous published data used only three layers of plastic as soft tissue equivalent materials and found the MDL of 4-4.8 ppm. In this study we have used the plastic with more realistic thicknesses to simulate a soft tissue at tibia. The detection limits for phantoms with Lucite as a tissue equivalent, using a new source, was determined to be 1.81 to 3.47 ppm (μg Gd per gram phantom). Our next study would be testing an in vivo K x-ray fluorescence system, based on 109Cd source on human volunteers who went through MR imaging and were injected by Gd.

  9. Portable XRF and principal component analysis for bill characterization in forensic science.

    Science.gov (United States)

    Appoloni, C R; Melquiades, F L

    2014-02-01

    Several modern techniques have been applied to prevent counterfeiting of money bills. The objective of this study was to demonstrate the potential of Portable X-ray Fluorescence (PXRF) technique and the multivariate analysis method of Principal Component Analysis (PCA) for classification of bills in order to use it in forensic science. Bills of Dollar, Euro and Real (Brazilian currency) were measured directly at different colored regions, without any previous preparation. Spectra interpretation allowed the identification of Ca, Ti, Fe, Cu, Sr, Y, Zr and Pb. PCA analysis separated the bills in three groups and subgroups among Brazilian currency. In conclusion, the samples were classified according to its origin identifying the elements responsible for differentiation and basic pigment composition. PXRF allied to multivariate discriminate methods is a promising technique for rapid and no destructive identification of false bills in forensic science. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Calibration of handheld X-ray fluorescence (XRF) equipment for optimum determination of elemental concentrations in sediment samples.

    Science.gov (United States)

    Mejía-Piña, K Gabriela; Huerta-Diaz, Miguel Angel; González-Yajimovich, O

    2016-12-01

    Handheld X-ray fluorescence spectrometers (XRFs) represent a more practical, efficient and economic tool to determine the elemental composition of solid inorganic and organic samples than conventional analytical techniques. The objective of this work was to demonstrate that handheld XRFs could be a precise, accurate and reliable tool to analyze up to 27 different elements. This objective was accomplished through the optimization of an empirical calibration curve that, in addition to include certified reference materials (CRM), it also introduced new approaches, such as the use of solid CRM mixtures and combinations of organic and inorganic matrices. These approaches significantly increased the number of calibration points and eliminated hiatuses in the calibration curve. Several factors were evaluated before construction of the calibration curve: incidence time of the X-ray beam, type of film through which the X-ray beams reach the samples, container type, minimum sample volume and sample moisture content. Results show that single elements can be analyzed with variable exposure times or, alternatively, multielemental analyses can be carried out with a constant exposure time (180s). Costs can be reduced by using Ziploc(®) bags as sample containers, but the number of measurable elements drops from 27 to 21, while the possibility of contamination increases.

  11. Holographic Interferometry (HI), Infrared Vision and X-Ray Fluorescence (XRF) spectroscopy for the assessment of painted wooden statues: a new integrated approach

    Energy Technology Data Exchange (ETDEWEB)

    Sfarra, Stefano; Ambrosini, Dario; Paoletti, Domenica [University of L' Aquila, Department of Industrial and Information Engineering and Economics, Las.E.R. Laboratory, Loc. Monteluco di Roio, AQ (Italy); Ibarra-Castanedo, Clemente; Maldague, Xavier [Laval University, Computer Vision and Systems Laboratory, Department of Electrical and Computer Engineering, Quebec City (Canada); Ridolfi, Stefano [Ars Mensurae, Rome (Italy); Cerichelli, Giorgio [University of L' Aquila, Department of Physical and Chemical Sciences, Loc. Coppito, AQ (Italy)

    2014-06-15

    Wood has been routinely employed in decorative arts, as well as in sculptures and paintings (support) during the Middle Ages, because of its unique aesthetic virtues. It may safely be assumed that wood, as a material for monumental sculpture, was much more commonly employed in the mediaeval period than existing examples would seem to indicate (Bulletin of the metropolitan Museum of Art, 2013). Wood is easily obtainable; it could be carved and put in place with less difficulty than stone, it is chemically stable when dry, and its surface offers a compatible substrate for paint application. However, the use of wood is not without pitfalls, and requires an understanding of its anisotropic and hygroscopic nature. It is also dimensionally unstable and subject to deterioration by fungi and insects. Moisture-related dimensional changes are certainly among the most challenging problems in painting conservation. With the purpose of preventing important damages, the use of non-or microdestructive testing (NDT) techniques is undoubtedly of paramount interest for painted wooden statues of great value. This work has a threefold purpose: (1) to validate the effectiveness of an integrated approach using near-infrared (NIR) reflectography, square pulse thermography (SPT), and holographic interferometry (HI) techniques for discovering old repairs and/or inclusions of foreign materials in a wooden structure, (2) to confirm and approximately date the restoration carried out by x-ray fluorescence (XRF) spectroscopy and energy-dispersive x-ray spectroscopy (EDS) (that is assembled with a scanning electron microscopy - SEM) techniques, and (3) to combine into a multidisciplinary approach two quantitative NDT results coming from optical and thermographic methods. The subject of the present study was a statue named ''Virgin with her Child'' (XIV century), whose origins are mysterious and not properly documented. (orig.)

  12. Holographic Interferometry (HI), Infrared Vision and X-Ray Fluorescence (XRF) spectroscopy for the assessment of painted wooden statues: a new integrated approach

    Science.gov (United States)

    Sfarra, Stefano; Ibarra-Castanedo, Clemente; Ridolfi, Stefano; Cerichelli, Giorgio; Ambrosini, Dario; Paoletti, Domenica; Maldague, Xavier

    2014-06-01

    Wood has been routinely employed in decorative arts, as well as in sculptures and paintings (support) during the Middle Ages, because of its unique aesthetic virtues. It may safely be assumed that wood, as a material for monumental sculpture, was much more commonly employed in the mediaeval period than existing examples would seem to indicate (Bulletin of the metropolitan Museum of Art, 2013). Wood is easily obtainable; it could be carved and put in place with less difficulty than stone, it is chemically stable when dry, and its surface offers a compatible substrate for paint application. However, the use of wood is not without pitfalls, and requires an understanding of its anisotropic and hygroscopic nature. It is also dimensionally unstable and subject to deterioration by fungi and insects. Moisture-related dimensional changes are certainly among the most challenging problems in painting conservation. With the purpose of preventing important damages, the use of non-or microdestructive testing (NDT) techniques is undoubtedly of paramount interest for painted wooden statues of great value. This work has a threefold purpose: (1) to validate the effectiveness of an integrated approach using near-infrared (NIR) reflectography, square pulse thermography (SPT), and holographic interferometry (HI) techniques for discovering old repairs and/or inclusions of foreign materials in a wooden structure, (2) to confirm and approximately date the restoration carried out by x-ray fluorescence (XRF) spectroscopy and energy-dispersive x-ray spectroscopy (EDS) (that is assembled with a scanning electron microscopy—SEM) techniques, and (3) to combine into a multidisciplinary approach two quantitative NDT results coming from optical and thermographic methods. The subject of the present study was a statue named "Virgin with her Child" (XIV century), whose origins are mysterious and not properly documented.

  13. Comparison of a portable micro-X-ray fluorescence spectrometry with inductively coupled plasma atomic emission spectrometry for the ancient ceramics analysis

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulou, D.N. [Laboratory of Analytical Chemistry, Faculty of Chemistry, Aristotle University, GR-54124, Thessaloniki (Greece); Zachariadis, G.A. [Laboratory of Analytical Chemistry, Faculty of Chemistry, Aristotle University, GR-54124, Thessaloniki (Greece); Anthemidis, A.N. [Laboratory of Analytical Chemistry, Faculty of Chemistry, Aristotle University, GR-54124, Thessaloniki (Greece); Tsirliganis, N.C. [Archaeometry Laboratory, Cultural and Educational Technology Institute, Tsimiski 58, GR-67100, Xanthi (Greece); Stratis, J.A. [Laboratory of Analytical Chemistry, Faculty of Chemistry, Aristotle University, GR-54124, Thessaloniki (Greece)]. E-mail: jstratis@chem.auth.gr

    2004-12-01

    Two multielement instrumental methods of analysis, micro X-ray fluorescence spectrometry (micro-XRF) and inductively coupled plasma atomic emission spectrometry (ICP-AES) were applied for the analysis of 7th and 5th century B.C. ancient ceramic sherds in order to evaluate the above two methods and to assess the potential to use the current compact and portable micro-XRF instrument for the in situ analysis of ancient ceramics. The distinguishing factor of interest is that micro-XRF spectrometry offers the possibility of a nondestructive analysis, an aspect of primary importance in the compositional analysis of cultural objects. Micro-XRF measurements were performed firstly directly on the ceramic sherds with no special pretreatment apart from surface cleaning (micro-XRF on sherds) and secondly on pressed pellet disks which were prepared for each ceramic sherd (micro-XRF on pellet). For the ICP-AES determination of elements, test solutions were prepared by the application of a microwave-assisted decomposition procedure in closed high-pressure PFA vessels. Also, the standard reference material SARM 69 was used for the efficiency calibration of the micro-XRF instrument and was analysed by both methods. In order to verify the calibration, the standard reference materials NCS DC 73332 and SRM620 as well as the reference materials AWI-1 and PRI-1 were analysed by micro-XRF. Elemental concentrations determined by the three analytical procedures (ICP-AES, micro-XRF on sherds and micro-XRF on pellets) were statistically treated by correlation analysis and Student's t-test (at the 95% confidence level)

  14. Portable generator-based XRF instrument for non-destructive analysis at crime scenes

    Science.gov (United States)

    Schweitzer, Jeffrey S.; Trombka, Jacob I.; Floyd, Samuel; Selavka, Carl; Zeosky, Gerald; Gahn, Norman; McClanahan, Timothy; Burbine, Thomas

    2005-12-01

    Unattended and remote detection systems find applications in space exploration, telemedicine, teleforensics, homeland security and nuclear non-proliferation programs. The National Institute of Justice (NIJ) and the National Aeronautics and Space Administration's (NASA) Goddard Space Flight Center (GSFC) have teamed up to explore the use of NASA developed technologies to help criminal justice agencies and professionals investigate crimes. The objective of the program is to produce instruments and communication networks that have application within both NASA's space program and NIJ, together with state and local forensic laboratories. A general-purpose X-ray fluorescence system has been built for non-destructive analyses of trace and invisible material at crime scenes. This portable instrument is based on a generator that can operate to 60 kV and a Schottky CdTe detector. The instrument has been shown to be successful for the analysis of gunshot residue and a number of bodily fluids at crime scenes.

  15. Study of resolution enhancement methods for impurities quantitative analysis in uranium compounds by XRF

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Clayton P.; Salvador, Vera L.R.; Cotrim, Marycel E.B.; Pires, Maria Ap. F.; Scapin, Marcos A., E-mail: clayton.pereira.silva@usp.b [Instituto de Pesquisas Energeticas e Nucleares (CQMA/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Quimica e Meio Ambiente

    2011-07-01

    X-ray fluorescence analysis is a technique widely used for the determination of both major and trace elements related to interaction between the sample and radiation, allowing direct and nondestructive analysis. However, in uranium matrices these devices are inefficient because the characteristic emission lines of elements like S, Cl, Zn, Zr, Mo and other overlap characteristic emission lines of uranium. Thus, chemical procedures to separation of uranium are needed to perform this sort of analysis. In this paper the deconvolution method was used to increase spectra resolution and correct the overlaps. The methodology was tested according to NBR ISO 17025 using a set of seven certified reference materials for impurities present in U3O8 (New Brunswick Laboratory - NBL). The results showed that this methodology allows quantitative determination of impurities such as Zn, Zr, Mo and others, in uranium compounds. The detection limits were shorter than 50{mu}g. g{sup -1} and uncertainty was shorter than 10% for the determined elements. (author)

  16. Determination of minor and trace elements in kidney stones by x-ray fluorescence analysis

    Science.gov (United States)

    Srivastava, Anjali; Heisinger, Brianne J.; Sinha, Vaibhav; Lee, Hyong-Koo; Liu, Xin; Qu, Mingliang; Duan, Xinhui; Leng, Shuai; McCollough, Cynthia H.

    2014-03-01

    The determination of accurate material composition of a kidney stone is crucial for understanding the formation of the kidney stone as well as for preventive therapeutic strategies. Radiations probing instrumental activation analysis techniques are excellent tools for identification of involved materials present in the kidney stone. In particular, x-ray fluorescence (XRF) can be very useful for the determination of minor and trace materials in the kidney stone. The X-ray fluorescence measurements were performed at the Radiation Measurements and Spectroscopy Laboratory (RMSL) of department of nuclear engineering of Missouri University of Science and Technology and different kidney stones were acquired from the Mayo Clinic, Rochester, Minnesota. Presently, experimental studies in conjunction with analytical techniques were used to determine the exact composition of the kidney stone. A new type of experimental set-up was developed and utilized for XRF analysis of the kidney stone. The correlation of applied radiation source intensity, emission of X-ray spectrum from involving elements and absorption coefficient characteristics were analyzed. To verify the experimental results with analytical calculation, several sets of kidney stones were analyzed using XRF technique. The elements which were identified from this techniques are Silver (Ag), Arsenic (As), Bromine (Br), Chromium (Cr), Copper (Cu), Gallium (Ga), Germanium (Ge), Molybdenum (Mo), Niobium (Nb), Rubidium (Rb), Selenium (Se), Strontium (Sr), Yttrium (Y), Zirconium (Zr). This paper presents a new approach for exact detection of accurate material composition of kidney stone materials using XRF instrumental activation analysis technique.

  17. Trace elemental analysis of school chalk using energy dispersive X-ray florescence spectroscopy (ED-XRF)

    Science.gov (United States)

    Maruthi, Y. A.; Das, N. Lakshmana; Ramprasad, S.; Ram, S. S.; Sudarshan, M.

    2015-08-01

    The present studies focus the quantitative analysis of elements in school chalk to ensure the safety of its use. The elements like Calcium (Ca), Aluminum (Al), Iron (Fe), Silicon (Si) and Chromium (Cr) were analyzed from settled chalk dust samples collected from five classrooms (CD-1) and also from another set of unused chalk samples collected from local market (CD-2) using Energy Dispersive X-Ray florescence(ED-XRF) spectroscopy. Presence of these elements in significant concentrations in school chalk confirmed that, it is an irritant and occupational hazard. It is suggested to use protective equipments like filtered mask for mouth, nose and chalk holders. This study also suggested using the advanced mode of techniques like Digital boards, marker boards and power point presentations to mitigate the occupational hazard for classroom chalk

  18. PIXE and XRF analysis of atmospheric aerosols from a site in the West area of Mexico City

    Science.gov (United States)

    Díaz, R. V.; López-Monroy, J.; Miranda, J.; Espinosa, A. A.

    2014-01-01

    Due to geographical factors, most of the Metropolitan Area of Mexico City features, on average, similar heights above the sea level, climate, wind speed and direction, with very uniform pollution degrees in most of the frequently studied sites. A site with different characteristics, Cuajimalpa de Morelos, was studied. It is located to the West of the urban area at 2760 m above sea level, in contrast to other sites (2240 m). Here, the wind is mostly directed towards the center of the city. Then, the site should not be affected by pollutants from the Northern/Northeastern industrial zones, so lower aerosol concentrations are expected. In this work, the elemental composition of coarse (PM10-2.5) and fine (PM2.5) fractions of atmospheric aerosol samples collected in Cuajimalpa is studied. The sampling period covered the cold-dry season in 2004-2005 (December 1st, 2004 to March 31, 2005), exposing polycarbonate filters with a Stacked Filter Unit of the Gent design along 24 h, every two days. The samples were analyzed with Particle Induced X-ray Emission (PIXE) and X-ray Fluorescence (XRF), to obtain elemental concentrations. The EPA code UNMIX was used to determine the number of possible influencing polluting sources, which were then identified through back-trajectory simulations with the HYSPLIT modeling software. Four sources (mostly related to soil) were found in the coarse fraction, while the fine fraction presented three main sources (fuel oil, industry and biomass burning).

  19. PIXE and XRF analysis of atmospheric aerosols from a site in the West area of Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Díaz, R.V.; López-Monroy, J. [Instituto Nacional de Investigaciones Nucleares, Centro Nuclear “Nabor Carrillo”, Autopista México-Toluca, Salazar, Edo. Mex. (Mexico); Miranda, J., E-mail: miranda@fisica.unam.mx [Instituto Nacional de Investigaciones Nucleares, Centro Nuclear “Nabor Carrillo”, Autopista México-Toluca, Salazar, Edo. Mex. (Mexico); Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 México, DF (Mexico); Espinosa, A.A. [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 México, DF (Mexico)

    2014-01-01

    Due to geographical factors, most of the Metropolitan Area of Mexico City features, on average, similar heights above the sea level, climate, wind speed and direction, with very uniform pollution degrees in most of the frequently studied sites. A site with different characteristics, Cuajimalpa de Morelos, was studied. It is located to the West of the urban area at 2760 m above sea level, in contrast to other sites (2240 m). Here, the wind is mostly directed towards the center of the city. Then, the site should not be affected by pollutants from the Northern/Northeastern industrial zones, so lower aerosol concentrations are expected. In this work, the elemental composition of coarse (PM{sub 10-2.5}) and fine (PM{sub 2.5}) fractions of atmospheric aerosol samples collected in Cuajimalpa is studied. The sampling period covered the cold-dry season in 2004–2005 (December 1st, 2004 to March 31, 2005), exposing polycarbonate filters with a Stacked Filter Unit of the Gent design along 24 h, every two days. The samples were analyzed with Particle Induced X-ray Emission (PIXE) and X-ray Fluorescence (XRF), to obtain elemental concentrations. The EPA code UNMIX was used to determine the number of possible influencing polluting sources, which were then identified through back-trajectory simulations with the HYSPLIT modeling software. Four sources (mostly related to soil) were found in the coarse fraction, while the fine fraction presented three main sources (fuel oil, industry and biomass burning)

  20. Trace metal contaminants in sediments and soils: comparison between ICP and XRF quantitative determination

    Directory of Open Access Journals (Sweden)

    Congiu A.

    2013-04-01

    Full Text Available A mineralization method HCl-free for heavy metals analysis in sediments and soils by DRC-ICP-MS was developed. The procedure, which uses concentrated nitric, hydrofluoric acid and hydrogen peroxide, was applied for the analysis of arsenic, cadmium, chromium, nickel and vanadium. The same samples were then analyzed, as pressed pellets, by wavelength dispersive X ray fluorescence (WD-XRF using the dedicated PANalytical Pro Trace solution for the determination of trace elements. Comparison of ICP and XRF data showed good agreement for the elements under investigation, unless for chromium in soils, which recovery was not complete.

  1. X-Ray Fluorescence Spectroscopy for Analysis of Explosive-Related Materials and Unknowns

    Science.gov (United States)

    2017-08-01

    common thin-film materials . Table B-1. Compatibility of Support Films for Wavelength Dispersive XRF Samples Sample Component Etnom...X-RAY FLUORESCENCE SPECTROSCOPY FOR ANALYSIS OF EXPLOSIVE-RELATED MATERIALS AND UNKNOWNS ECBC-TR-1455...of Explosive-Related Materials and Unknowns 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Valdes, Erica R

  2. {mu}-XRF/{mu}-RS vs. SR {mu}-XRD for pigment identification in illuminated manuscripts

    Energy Technology Data Exchange (ETDEWEB)

    Snickt, G. van der; Nolf, W. de; Vekemans, B.; Janssens, K. [University of Antwerp, Department of Chemistry, Antwerp (Belgium)

    2008-07-15

    For the non-destructive identification of pigments and colorants in works of art, in archaeological and in forensic materials, a wide range of analytical techniques can be used. Bearing in mind that every method holds particular limitations, two complementary spectroscopic techniques, namely confocal {mu}-Raman spectroscopy ({mu}-RS) and {mu}-X-ray fluorescence spectroscopy ({mu}-XRF), were joined in one instrument. The combined {mu}-XRF and {mu}-RS device, called PRAXIS unites both complementary techniques in one mobile setup, which allows {mu}- and in situ analysis. {mu}-XRF allows one to collect elemental and spatially-resolved information in a non-destructive way on major and minor constituents of a variety of materials. However, the main disadvantages of {mu}-XRF are the penetration depth of the X-rays and the fact that only elements and not specific molecular combinations of elements can be detected. As a result {mu}-XRF is often not specific enough to identify the pigments within complex mixtures. Confocal Raman microscopy ({mu}-RS) can offer a surplus as molecular information can be obtained from single pigment grains. However, in some cases the presence of a strong fluorescence background limits the applicability. In this paper, the concrete analytical possibilities of the combined PRAXIS device are evaluated by comparing the results on an illuminated sheet of parchment with the analytical information supplied by synchrotron radiation {mu}-X-ray diffraction (SR {mu}-XRD), a highly specific technique. (orig.)

  3. Elemental analysis of soils from central Sudan by energy dispersive XRF

    DEFF Research Database (Denmark)

    Yousif, A. A.; Kunzendorf, Helmar

    1986-01-01

    Energy dispersive X-ray fluorescence spectroscopy is employed to determine the concentration of nineteen elements in seven profiles representing the aridisols and vertisols groups from agricultural plains of Sudan. A significant variation in the concentration of alkaline and alkaline earth elements...... in the different regions is observed, which is discussed in relation to the texture of the soil and climatic factors. Uranium, determined by the delayed neutron technique, is observed to increase with depth in one area....

  4. Remote X-Ray Diffraction and X-Ray Fluorescence Analysis on Planetary Surfaces

    Science.gov (United States)

    Blake, David F.; DeVincenzi, D. (Technical Monitor)

    1999-01-01

    The legacy of planetary X-ray Diffraction (XRD) and X-ray Fluorescence (XRF) began in 1960 when W. Parish proposed an XRD instrument for deployment on the moon. The instrument was built and flight qualified, but the Lunar XRD program was cancelled shortly before the first human landing in 1969. XRF chemical data have been collected in situ by surface landers on Mars (Viking 1 & 2, Pathfinder) and Venus (Venera 13 & 14). These highly successful experiments provide critical constraints on our current understanding of surface processes and planetary evolution. However, the mineralogy, which is more critical to planetary surface science than simple chemical analysis, will remain unknown or will at best be imprecisely constrained until X-ray diffraction (XRD) data are collected. Recent progress in X-ray detector technology allows the consideration of simultaneous XRD (mineralogic analysis) and high-precision XRF (elemental analysis) in systems miniaturized to the point where they can be mounted on fixed landers or small robotic rovers. There is a variety of potential targets for XRD/XRF equipped landers within the solar system, the most compelling of which are the poles of the moon, the southern highlands of Mars and Europa.

  5. Fundamental parameter based quantification algorithm for confocal nano-X-ray fluorescence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schoonjans, Tom, E-mail: Tom.Schoonjans@UGent.be [X-ray Microspectroscopy and Imaging Research Group (XMI), Department of Analytical Chemistry, Ghent University, Krijgslaan 281 S12, B-9000 Ghent (Belgium); Silversmit, Geert; Vekemans, Bart [X-ray Microspectroscopy and Imaging Research Group (XMI), Department of Analytical Chemistry, Ghent University, Krijgslaan 281 S12, B-9000 Ghent (Belgium); Schmitz, Sylvia [Geosciences Institute/Mineralogy, Goethe University Frankfurt, Altenhoeferallee 1, D-60438 Frankfurt (Germany); Burghammer, Manfred; Riekel, Christian [ESRF, 6 rue Jules Horowitz, BP220, F-38043 Grenoble Cedex (France); Brenker, Frank E. [Geosciences Institute/Mineralogy, Goethe University Frankfurt, Altenhoeferallee 1, D-60438 Frankfurt (Germany); Vincze, Laszlo, E-mail: Laszlo.Vincze@UGent.be [X-ray Microspectroscopy and Imaging Research Group (XMI), Department of Analytical Chemistry, Ghent University, Krijgslaan 281 S12, B-9000 Ghent (Belgium)

    2012-01-15

    A new method for the quantification of X-ray fluorescence (XRF) was derived based on the fundamental parameter method (FPM). The FPM equations were adapted to accommodate the special case of confocal nano-XRF, i.e. X-ray nano-beam excitation coupled with confocal detection, taking into account the special characteristics of the detector channel polycapillary. A thorough error estimation algorithm based on the Monte Carlo method was applied, producing a detailed analysis of the uncertainties of the quantification results. The new FPM algorithm was applied on confocal nano-XRF data obtained from cometary dust returned by NASA's Stardust mission, recorded at beamline ID13 of the European Synchrotron Radiation Facility. - Highlights: Black-Right-Pointing-Pointer A new method for the quantification of confocal XRF is presented. Black-Right-Pointing-Pointer The quantification is based on the fundamental parameter method (FPM). Black-Right-Pointing-Pointer The new FPM algorithm was applied for the analysis of unique cometary dust particles. Black-Right-Pointing-Pointer The cometary particles were returned by NASA's Stardust mission in 2006. Black-Right-Pointing-Pointer Error estimation is based on the Monte Carlo method.

  6. PIXE and XRF analysis of atmospheric aerosols from a site in the West area of Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, R.V.; López-Monroy, J., E-mail: raul.diaz@inin.gob.mx, E-mail: jose.lopezm@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Centro Nuclear Nabor Carrillo, Salazar, Edo. Mex. (Mexico); Miranda, J.; Espinosa, A.A., E-mail: miranda@fisica.unam.mx, E-mail: albertoe@fisica.unam.mx [Instituto de Física, Universidad Nacional Autónoma de México, México, D.F. (Mexico)

    2013-07-01

    Full text: The pollution by atmospheric aerosols in the Metropolitan Area of Mexico City (MAMC) is still presenting issues that require deeper studies. Because of geographical factors, most of the MAMC features, on average, very similar characteristics. These include height above the sea level, climate, wind speed and direction, resulting in very uniform pollution levels in most of the traditionally studied sites. A site with different characteristics with respect to them, Cuajimalpa de Morelos, was selected for the present work. It is located to the West of the MAMC at 2,760 m above sea level (a.s.l.), in contrast to other sites (2,240 m a.s.I); sub-humid area with lush vegetation, influenced by the forest of the 'Desierto de los Leones' National Park. Here, the wind for most part of the day is directed towards the center of the MAMC, joining flows that run from North to South. This prevents the site from receiving influence of pollutants generated in the Northern industrial zone, Xalostoc or Naucalpan. Thus, it is expected that this area should present lower concentration of pollutants than the rest of the MAMC. Therefore, the present work is aimed to study the elemental composition of coarse (PM{sub 10-}2{sub .5}) and fine (PM{sub 2.5}) fractions of atmospheric aerosol samples collected in Cuajimalpa. The sampling period covered the cold-dry season in 2004-2005 (December 1{sup st} , 2004, to March 31, 2005), exposing polycarbonate filters with a Stacked Filter Unit (SFU) of the Gent design along 24 h, every two days. The samples were then analyzed with PIXE and X-ray Fluorescence (XRF), to obtain elemental concentrations. The EPA code UNMIX was used to determine the number of possible influencing polluting sources, which were then identified through back-trajectory simulations with the HYSPLlT modeling software. Four sources (mostly related to soil) were found for the coarse fraction, while the fine fraction presented three main sources (fuel oil

  7. A (not so) dangerous method: pXRF vs. EPMA-WDS analyses of copper-based artefacts

    DEFF Research Database (Denmark)

    Orfanou, Vana; Rehren, Thilo

    2015-01-01

    Analysis of metal objects with portable and handheld X-ray fluorescence spectrometry has become increasingly popular in recent years. Here, methodological concerns that apply to non-destructive, surface examination with XRF instruments of ancient metal artefacts are discussed based on the compara...

  8. Pre-separation of U, Np, Pu in 1AW Samplefor XRF Analysis

    Institute of Scientific and Technical Information of China (English)

    DENG; Wei-qin; TAN; Shu-ping; TAO; Miao-miao; WU; Ji-zong

    2013-01-01

    1AW is the liquid waste of the first separation unit of Purex process.The analysis of U,Np,Pu in1AW contributes to some key points,such as,the recovery of plutonium and uranium,the distribution of neptunium,the control of process.Due to the high radioactivity of 1AW,which accumulated the most

  9. Nondestructive Analysis of Apollo Samples by Micro-CT and Micro-XRF Analysis: A PET Style Examination

    Science.gov (United States)

    Zeigler, Ryan A.

    2014-01-01

    An integral part of any sample return mission is the initial description and classification of returned samples by the preliminary examination team (PET). The goal of a PET is to characterize and classify the returned samples, making this information available to the general research community who can then conduct more in-depth studies on the samples. A PET strives to minimize the impact their work has on the sample suite, which often limits the PET work to largely visual measurements and observations like optical microscopy. More modern techniques can also be utilized by future PET to nondestructively characterize astromaterials in a more rigorous way. Here we present our recent analyses of Apollo samples 14321 and 14305 by micro-CT and micro-XRF (respectively), assess the potential for discovery of "new" Apollo samples for scientific study, and evaluate the usefulness of these techniques in future PET efforts.

  10. Application of GEM-based detectors in full-field XRF imaging

    Science.gov (United States)

    Dąbrowski, W.; Fiutowski, T.; Frączek, P.; Koperny, S.; Lankosz, M.; Mendys, A.; Mindur, B.; Świentek, K.; Wiącek, P.; Wróbel, P. M.

    2016-12-01

    X-ray fluorescence spectroscopy (XRF) is a commonly used technique for non-destructive elemental analysis of cultural heritage objects. It can be applied to investigations of provenance of historical objects as well as to studies of art techniques. While the XRF analysis can be easily performed locally using standard available equipment there is a growing interest in imaging of spatial distribution of specific elements. Spatial imaging of elemental distrbutions is usually realised by scanning an object with a narrow focused X-ray excitation beam and measuring characteristic fluorescence radiation using a high energy resolution detector, usually a silicon drift detector. Such a technique, called macro-XRF imaging, is suitable for investigation of flat surfaces but it is time consuming because the spatial resolution is basically determined by the spot size of the beam. Another approach is the full-field XRF, which is based on simultaneous irradiation and imaging of large area of an object. The image of the investigated area is projected by a pinhole camera on a position-sensitive and energy dispersive detector. The infinite depth of field of the pinhole camera allows one, in principle, investigation of non-flat surfaces. One of possible detectors to be employed in full-field XRF imaging is a GEM based detector with 2-dimensional readout. In the paper we report on development of an imaging system equipped with a standard 3-stage GEM detector of 10 × 10 cm2 equipped with readout electronics based on dedicated full-custom ASICs and DAQ system. With a demonstrator system we have obtained 2-D spatial resolution of the order of 100 μm and energy resolution at a level of 20% FWHM for 5.9 keV . Limitations of such a detector due to copper fluorescence radiation excited in the copper-clad drift electrode and GEM foils is discussed and performance of the detector using chromium-clad electrodes is reported.

  11. New developments of X-ray fluorescence imaging techniques in laboratory

    Science.gov (United States)

    Tsuji, Kouichi; Matsuno, Tsuyoshi; Takimoto, Yuki; Yamanashi, Masaki; Kometani, Noritsugu; Sasaki, Yuji C.; Hasegawa, Takeshi; Kato, Shuichi; Yamada, Takashi; Shoji, Takashi; Kawahara, Naoki

    2015-11-01

    X-ray fluorescence (XRF) analysis is a well-established analytical technique with a long research history. Many applications have been reported in various fields, such as in the environmental, archeological, biological, and forensic sciences as well as in industry. This is because XRF has a unique advantage of being a nondestructive analytical tool with good precision for quantitative analysis. Recent advances in XRF analysis have been realized by the development of new x-ray optics and x-ray detectors. Advanced x-ray focusing optics enables the making of a micro x-ray beam, leading to micro-XRF analysis and XRF imaging. A confocal micro-XRF technique has been applied for the visualization of elemental distributions inside the samples. This technique was applied for liquid samples and for monitoring chemical reactions such as the metal corrosion of steel samples in the NaCl solutions. In addition, a principal component analysis was applied for reducing the background intensity in XRF spectra obtained during XRF mapping, leading to improved spatial resolution of confocal micro-XRF images. In parallel, the authors have proposed a wavelength dispersive XRF (WD-XRF) imaging spectrometer for a fast elemental imaging. A new two dimensional x-ray detector, the Pilatus detector was applied for WD-XRF imaging. Fast XRF imaging in 1 s or even less was demonstrated for Euro coins and industrial samples. In this review paper, these recent advances in laboratory-based XRF imaging, especially in a laboratory setting, will be introduced.

  12. X-RAY FLUORESCENCE ANALYSIS OF HANFORD LOW ACTIVITY WASTE SIMULANTS METHOD DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    Jurgensen, A; David Missimer, D; Ronny Rutherford, R

    2007-08-08

    The x-ray fluorescence laboratory (XRF) in the Analytical Development Directorate (ADD) of the Savannah River National Laboratory (SRNL) was requested to develop an x-ray fluorescence spectrometry method for elemental characterization of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) pretreated low activity waste (LAW) stream to the LAW Vitrification Plant. The WTP is evaluating the potential for using XRF as a rapid turnaround technique to support LAW product compliance and glass former batching. The overall objective of this task was to develop an XRF analytical method that provides rapid turnaround time (<8 hours), while providing sufficient accuracy and precision to determine variations in waste.

  13. Elemental analysis of various biomass solid fractions in biorefineries by X-ray fluorescence spectrometry

    DEFF Research Database (Denmark)

    Le, Duy Michael; Sorensen, Hanne R.; Meyer, Anne S.

    2017-01-01

    Elemental analysis by X-ray fluorescence spectrometry (XRF) of solid samples from a biorefinery process was performed to study the behaviour of mineral elements in a process involving hydrothermal pretreatment of biomass (wheat straw, corn stover, sugarcane bagasse, palm oil empty fruit bunches......, poplar) followed by enzymatic hydrolysis and fermentation. For all the different biomasses, the biorefinery process concentrated silicon, aluminium, and calcium in the solid fraction, while potassium and magnesium were solubilised in the process and removed from the solid fraction. Sodium concentrations...

  14. Synchrotron radiation micro-X-ray fluorescence analysis: A tool to increase accuracy in microscopic analysis

    CERN Document Server

    Adams, F

    2003-01-01

    Microscopic X-ray fluorescence (XRF) analysis has potential for development as a certification method and as a calibration tool for other microanalytical techniques. The interaction of X-rays with matter is well understood and modelling studies show excellent agreement between experimental data and calculations using Monte Carlo simulation. The method can be used for a direct iterative calculation of concentrations using available high accuracy physical constants. Average accuracy is in the range of 3-5% for micron sized objects at concentration levels of less than 1 ppm with focused radiation from SR sources. The end-station ID18F of the ESRF is dedicated to accurate quantitative micro-XRF analysis including fast 2D scanning with collection of full X-ray spectra. Important aspects of the beamline are the precise monitoring of the intensity of the polarized, variable energy beam and the high reproducibility of the set-up measurement geometry, instrumental parameters and long-term stability.

  15. Development of a software for reconstruction of X-ray fluorescence intensity maps

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Andre Pereira de; Braz, Delson; Mota, Carla Lemos, E-mail: apalmeid@gmail.co, E-mail: delson@lin.ufrj.b, E-mail: clemos@con.ufrj.b [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Oliveira, Luis Fernando de; Barroso, Regina Cely; Pinto, Nivia Graciele Villela, E-mail: cely@uerj.b, E-mail: lfolive@uerj.b, E-mail: nitatag@gmail.co [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Inst. de Fisica; Cardoso, Simone Coutinho, E-mail: simone@if.ufrj.b [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Fisica; Moreira, Silvana, E-mail: silvana@fec.unicamp.b [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo

    2009-07-01

    The technique of X-ray fluorescence (XRF) using SR microbeams is a powerful analysis tool for studying elemental composition in several samples. One application of this technique is the analysis done through the mapping of chemical elements forming a matrix of data. The aim of this work is the presentation of the program MapXRF, an in-house software designed to optimize the processing and mapping of fluorescence intensities data. This program uses spectra generated by QXAS as input data and separates the intensities of each chemical element found in the fluorescence spectra in files themselves. From these files, the program generates the intensity maps that can be visualized in any program of treatment of images. The proposed software was tested using fluorescence data obtained in the XRF beamline of XRF at Synchrotron Light National Laboratory (LNLS), Brazil. Automatic 2D scans were performed and element distribution maps were obtained in the form of a matrix of data. (author)

  16. Elemental analysis using a handheld X-Ray fluorescence spectrometer

    Science.gov (United States)

    Groover, Krishangi D.; Izbicki, John

    2016-06-24

    The U.S. Geological Survey is collecting geologic samples from local stream channels, aquifer materials, and rock outcrops for studies of trace elements in the Mojave Desert, southern California. These samples are collected because geologic materials can release a variety of elements to the environment when exposed to water. The samples are to be analyzed with a handheld X-ray fluorescence (XRF) spectrometer to determine the concentrations of up to 27 elements, including chromium.

  17. Elemental mapping of medieval teeth using XRF technique

    Energy Technology Data Exchange (ETDEWEB)

    Muja, Cristina [Laboratoire Diagnostics des Plasma, CUFR J.F.C, Albi (France); Faculty of Biology, University of Bucharest (Romania); Vasile Parvan Institute of Archaeology, Bucharest (Romania); Therese, Laurent; Guillot, Philippe, E-mail: philippe.guillot@univ-jfc.fr [Laboratoire Diagnostics des Plasma, CUFR J.F.C, Albi (France)

    2011-07-01

    Full text: Recent developments in X-Ray Fluorescence micro-analysis techniques made the traditional range of XRF applications expand, benefiting from the combination of single point analysis with high spatial element imaging. The sample is scanned through the X-Ray beam and corresponding spectra are continuously read from the detector and correlated to a particular position on the sample. In this work, elemental concentrations were obtained by X-ray fluorescence (XRF) technique (Jobin Yvon Horiba XGT-5000 instrument) offering detailed elemental analysis. The instrument is equipped with a tungsten X-ray tube and a beryllium window, operating at 50 kV with a beam collimator of 100{mu}m in diameter to irradiate the sample and with a Si detector. Tooth mapping provided semi-quantitative information and highlighted the regions of interest. Then multi-points analysis was used to obtain quantitative results on calcium, phosphorus, strontium and iron. As the chemical composition of dental tissues is similar to the one of bone tissue, the certified reference materials NIST SRM 1400 Bone Ash and NIST SRM 1486 Bone Meal were used for calibration. In this study, only permanent first molars were selected for analysis. The material comes from the medieval cemetery (XII{sup th} . XIII{sup th}) of Feldioara (Bra.ov County, Romania). In the same time, modern teeth were used as reference. The top of the tooth was removed using a diamond disk, with a cut lying perpendicular to the dental cusps, creating a flat transversal surface to be characterized. XRF elemental (Ca, P, Sr, Fe) and ratio (Ca/P, Sr/Ca, Sr/Fe) distribution images for dental tissues (enamel and dentin) were obtained from past and modern teeth with and without caries and the results are presented and discussed. The analysis of the spatial element distribution in the teeth tissues revealed severe alterations in elemental composition of both enamel and dentin from the regions affected by caries that were confirmed by the

  18. XPS and XRF depth patina profiles of ancient silver coins

    Energy Technology Data Exchange (ETDEWEB)

    Caridi, F., E-mail: fcaridi@unime.it [Facoltà di Scienze MM. FF. NN., Università di Messina, V.le F. Stagno D’Alcontres 31, Messina (Italy); INFN-Sez. CT, Gr. coll. di Messina, V.le F. Stagno D’Alcontres 31, Messina (Italy); Torrisi, L. [Dip.to di Fisica, Università di Messina, V.le F. Stagno D’Alcontres 31, Messina (Italy); INFN-Laboratori Nazionali del Sud, V. S. Sofia 62, 95123 Catania (Italy); Cutroneo, M. [Dip.to di Fisica, Università di Messina, V.le F. Stagno D’Alcontres 31, Messina (Italy); Barreca, F. [Advanced and Nanomaterials Research S.r.l., V.le F. Stagno D’Alcontres 31, Messina (Italy); Gentile, C. [Dip.to di Fisica, Università di Messina, V.le F. Stagno D’Alcontres 31, Messina (Italy); Serafino, T. [Dip.to di Fisica della materia e ingegneria elettronica, V.le F. Stagno D’Alcontres 31, Messina (Italy); Castrizio, D. [Dip.to di Scienze dell’Antichità, Università di Messina (Italy)

    2013-05-01

    Ancient silver coins of different historical periods going from IV cent. B.C. up to recent XIX century, coming from different Mediterranean countries have been investigated with different surface physical analyses. X-ray photoelectron spectroscopy (XPS) analysis has been performed by using electron emission induced by 1.4 keV X-rays. X-ray fluorescence (XRF) analysis has been devoted by using 30 keV electron beam. Scanning electron microscopy (SEM) has been employed to analyze the surface morphology and the X-ray map distribution by using a 30 keV microbeam. Techniques were used to investigate about the patina composition and trace elements as a function of the sample depth obtained coupling XPS to 3 keV argon ion sputtering technique.

  19. Assessing Statistically Significant Heavy-Metal Concentrations in Abandoned Mine Areas via Hot Spot Analysis of Portable XRF Data

    Directory of Open Access Journals (Sweden)

    Sung-Min Kim

    2017-06-01

    Full Text Available To develop appropriate measures to prevent soil contamination in abandoned mining areas, an understanding of the spatial variation of the potentially toxic trace elements (PTEs in the soil is necessary. For the purpose of effective soil sampling, this study uses hot spot analysis, which calculates a z-score based on the Getis-Ord Gi* statistic to identify a statistically significant hot spot sample. To constitute a statistically significant hot spot, a feature with a high value should also be surrounded by other features with high values. Using relatively cost- and time-effective portable X-ray fluorescence (PXRF analysis, sufficient input data are acquired from the Busan abandoned mine and used for hot spot analysis. To calibrate the PXRF data, which have a relatively low accuracy, the PXRF analysis data are transformed using the inductively coupled plasma atomic emission spectrometry (ICP-AES data. The transformed PXRF data of the Busan abandoned mine are classified into four groups according to their normalized content and z-scores: high content with a high z-score (HH, high content with a low z-score (HL, low content with a high z-score (LH, and low content with a low z-score (LL. The HL and LH cases may be due to measurement errors. Additional or complementary surveys are required for the areas surrounding these suspect samples or for significant hot spot areas. The soil sampling is conducted according to a four-phase procedure in which the hot spot analysis and proposed group classification method are employed to support the development of a sampling plan for the following phase. Overall, 30, 50, 80, and 100 samples are investigated and analyzed in phases 1–4, respectively. The method implemented in this case study may be utilized in the field for the assessment of statistically significant soil contamination and the identification of areas for which an additional survey is required.

  20. pXRF and IR Fluorescence Imaging Studies of CdS Alteration in Paintings by Edvard Munch and Henri Matisse in Oslo, Copenhagen, and San Francisco

    DEFF Research Database (Denmark)

    Vila, Anna; Wadum, Jørgen; Mass, Jennifer

    2014-01-01

    of their chemical degradation, is of particular concern. The alteration of these pigments causes chalking, flaking, fading, and darkening of the yellow paints, leading to irreversible changes in the physical and chemical structure of the paint layer, and dramatically altering the appearance of the work. Standoff...... it reliably discriminate among intact versus altered cadmium yellow pigments? To answer these questions, the methods were tested on Henri Matisse’s Le Bonheur de vivre (1905-6 The Barnes Foundation, Philadelphia) and oil sketches for this work in The Museum of Modern Art, San Francisco, and The Statens Museum...... for Kunst, Copenhagen. They were also tested on Edvard Munch’s The Scream (c. 1910, Munch Museum, Oslo). It was found that ultraviolet-induced visible fluorescence has the best ability to discriminate between altered and unaltered cadmium yellow paints (even before alteration is visible to the unaided eye...

  1. Assessment of climatic and seismic cycles in southern chile from high resolution XRF and magnetic susceptibility measurements of historic lake sediments.

    Science.gov (United States)

    Boes, X.; Hubert-Ferrari, A.; Fagel, N.

    2006-12-01

    The high-resolution sedimentological studies performed on the sediment cores collected in the oceans or in the lakes constitutes the basis for inter-comparison of past climate variability. Among the new high-resolution approaches, the X-Ray Fluorescence (XRF) analysis of varved marine and lacustrine cores represents some of the best resolution. These data are particularly useful for tracking short-term climate changes expressed with calibrated time scales. However, the XRF results obtain on the fresh cores surface may be of low resolution because the core material is wet and unconsolidated. One particularly attractive method to solve this problem consists of impregnating the sediment cores with polymers in order to polish the core surface for XRF analyses. This step is essential for being able to get significant XRF and Magnetic Susceptibility (MS) results in the muddy cores. Since the 1960s, the evolution of sediment impregnation methods has been strongly linked to the development of innovative techniques (e.g., sampling devices, cryogenic and vacuum technologies, polymers, etc.). In this communication, we first propose a revised method that may be applied to prepare sediment cores for high-resolution XRF and MS data acquisition. Then we show an example of XRF and MS results obtain on laminated lake sediments from South America (Lago Puyehue, 40°S). As this area is very sensitive in terms of precipitation change (i.e., Southern Westerlies); the XRF data are compared with the regional instrumental precipitation database. The results are discussed in terms of climate and sismo- tectonic impacts over historic times. Our results shows that, in order to better interpret XRF tool over long sequences, the measurements should be first "calibrated" according to instrumental data such as precipitation, temperatures, and earthquake magnitudes.

  2. Portable Raman, DRIFTS, and XRF Analysis to Diagnose the Conservation State of Two Wall Painting Panels from Pompeii Deposited in the Naples National Archaeological Museum (Italy).

    Science.gov (United States)

    Madariaga, Juan Manuel; Maguregui, Maite; Castro, Kepa; Knuutinen, Ulla; Martínez-Arkarazo, Irantzu

    2016-01-01

    This work presents a methodology that combines spectroscopic speciation, performed through portable Raman spectroscopy, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and energy dispersive X-ray fluorescence spectrometry (ED-XRF) working in situ, and thermodynamic speciation to diagnose the environmental impacts, induced by past and current events, on two wall painting panels (Nos. 9103 and 9255) extracted more than 150 years ago from the walls of a Pompeian house (Marcus Lucretius House, Regio IX, Insula 3, House 5/24) and deposited in the Naples National Archaeological Museum (MANN). The results show a severe chemical attack of the acid gases that can be explained only by the action of H2S during and just after the eruption of the Vesuvius volcano, that expelled a high concentration of sulfur gases. This fact can be considered as the most important process impacting the wall painting panels deposited in the museum, while the rain-wash processes and the colonization of microorganisms have not been observed in contrast to the impacts shown by the wall paintings left outside in the archaeological site of Pompeii. Moreover, the systematic presence of lead traces and strontium in both wall paintings suggests their presence as impurities of the calcite mortars (intonacco) or calcite binder of these particular fresco Pompeian murals. © The Author(s) 2015.

  3. Study of selection and purification of Brazilian bentonite clay by elutriation: a XRF, SEM and Rietveld analysis

    Directory of Open Access Journals (Sweden)

    J. L. Alves

    2016-03-01

    Full Text Available Abstract Clays obtained from nature have a lot of impurities. Therefore, for best using of these materials, it is necessary its selection and purification. Thus, the aim of this work is to separate and to purify the smectite fractions using water as a solvent at a low flux mixed with a bentonite clay extracted from a mine in Vitória da Conquista - Bahia / Brazil. For this a separation method of fractions of expandable clays based on the Stokes' Law was applied - this process is called elutriation, in order to ensure and to expand possible industrial applications of this material. The samples were characterized by analysis of X-ray diffraction, X-ray fluorescence and scanning electron microscopy. The Rietveld method enabled the quantification of main phase minerals: montmorillonite, kaolinite, nontronite and quartz, reaching 85% in mass of montmorillonite phase at the end of the process. Results showed that the method used was efficient to remove almost all quartz, carbonates and organic matter from the sample. It was also observed a monomodal grain size distribution of elutriated materials with thinner grains, around (18.1 ± 1.8 μm at the end of the process. It has been concluded that the method developed and applied showed promising characters to be applied to elutriate kilograms of clays and could be used in industrial scale.

  4. Study of selection and purification of Brazilian bentonite clay by elutriation: a XRF, SEM and Rietveld analysis

    Energy Technology Data Exchange (ETDEWEB)

    Alves, J.L.; Zanini, A.E.; Souza, M.E. de; Nascimento, M.L.F., E-mail: jeff_eq@yahoo.com.br, E-mail: mlfn@ufba.br [Universidade Federal da Bahia (UFBA/PROTEC/PEI), Salvador, BA (Brazil). Departamento de Engenharia Quimica

    2016-01-15

    Clays obtained from nature have a lot of impurities. Therefore, for best using of these materials, it is necessary its selection and purification. Thus, the aim of this work is to separate and to purify the smectite fractions using water as a solvent at a low flux mixed with a bentonite clay extracted from a mine in Vitoria da Conquista - Bahia / Brazil. For this a separation method of fractions of expandable clays based on the Stokes' Law was applied - this process is called elutriation, in order to ensure and to expand possible industrial applications of this material. The samples were characterized by analysis of X-ray diffraction, X-ray fluorescence and scanning electron microscopy. The Rietveld method enabled the quantification of main phase minerals: montmorillonite, kaolinite, nontronite and quartz, reaching 85% in mass of montmorillonite phase at the end of the process. Results showed that the method used was efficient to remove almost all quartz, carbonates and organic matter from the sample. It was also observed a monomodal grain size distribution of elutriated materials with thinner grains, around (18.1 ± 1.8) μm at the end of the process. It has been concluded that the method developed and applied showed promising characters to be applied to elutriate kilograms of clays and could be used in industrial scale. (author)

  5. Two-dimensional micro-beam imaging of trace elements in a single plankton measured by a synchrotron radiation X-ray fluorescence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ezoe, Masako; Sasaki, Miho; Hokura, Akiko; Nakai, Izumi [Tokyo Univ. of Science, Faculty of Science, Tokyo (Japan); Terada, Yasuko [Japan Synchrotron Radiation Research Inst., Mikazuki, Hyogo (Japan); Yoshinaga, Tatsuki; Tukamoto, Katsumi [Tokyo Univ., Ocean Research Inst., Tokyo (Japan); Hagiwara, Atsushi [Nagasaki Univ., Graduate School of Science and Technology, Bunkyou, Nagasaki (Japan)

    2002-10-01

    Two-dimensional imaging and a quantitative analysis of trace elements in rotifer, Brachionus plicatilis, belonging to zooplankton, were carried out by a synchrotron radiation X-ray fluorescence analysis (SR-XRF). The XRF imaging revealed that female rotifers accumulated Fe and Zn in the digestive organ and Fe, Zn, Cu, and Ca in the sexual organs, while the Mn level was high in the head. From a quantitative analysis by inductively coupled plasma mass spectrometry (ICP-MS), we found that rotifers eat the chlorella and accumulate the above elements in the body. The result of quantitative analyses of Mn, Cu, and Zn by SR-XRF in a single sample is in fair agreement with the average values determined by ICP-MS analyses, which were obtained by measuring a large number of rotifers, digested by nitric acid. The present study has demonstrated that SR-XRF is an effective tool for the trace element analysis of a single individual of rotifer. (author)

  6. Comparing the detection of iron-based pottery pigment on a carbon-coated sherd by SEM-EDS and by Micro-XRF-SEM.

    Science.gov (United States)

    Pendleton, Michael W; Washburn, Dorothy K; Ellis, E Ann; Pendleton, Bonnie B

    2014-03-01

    The same sherd was analyzed using a scanning electron microscope with energy dispersive spectroscopy (SEM-EDS) and a micro X-ray fluorescence tube attached to a scanning electron microscope (Micro-XRF-SEM) to compare the effectiveness of elemental detection of iron-based pigment. To enhance SEM-EDS mapping, the sherd was carbon coated. The carbon coating was not required to produce Micro-XRF-SEM maps but was applied to maintain an unbiased comparison between the systems. The Micro-XRF-SEM analysis was capable of lower limits of detection than that of the SEM-EDS system, and therefore the Micro-XRF-SEM system could produce elemental maps of elements not easily detected by SEM-EDS mapping systems. Because SEM-EDS and Micro-XRF-SEM have been used for imaging and chemical analysis of biological samples, this comparison of the detection systems should be useful to biologists, especially those involved in bone or tooth (hard tissue) analysis.

  7. Characterization of fossil remains using XRF, XPS and XAFS spectroscopies

    Science.gov (United States)

    Zougrou, I. M.; Katsikini, M.; Pinakidou, F.; Brzhezinskaya, M.; Papadopoulou, L.; Vlachos, E.; Tsoukala, E.; Paloura, E. C.

    2016-05-01

    Synchrotron radiation micro-X-Ray Fluorescence (μ-XRF), X-ray photoelectron (XPS) and X-ray Absorption Fine Structure (XAFS) spectroscopies are applied for the study of paleontological findings. More specifically the costal plate of a gigantic terrestrial turtle Titanochelon bacharidisi and a fossilized coprolite of the cave spotted hyena Crocuta crocuta spelaea are studied. Ca L 2,3-edge NEXAFS and Ca 2p XPS are applied for the identification and quantification of apatite and Ca containing minerals. XRF mapping and XAFS are employed for the study of the spatial distribution and speciation of the minerals related to the deposition environment.

  8. Measuring and interpreting X-ray fluorescence from planetary surfaces.

    Science.gov (United States)

    Owens, Alan; Beckhoff, Burkhard; Fraser, George; Kolbe, Michael; Krumrey, Michael; Mantero, Alfonso; Mantler, Michael; Peacock, Anthony; Pia, Maria-Grazia; Pullan, Derek; Schneider, Uwe G; Ulm, Gerhard

    2008-11-15

    As part of a comprehensive study of X-ray emission from planetary surfaces and in particular the planet Mercury, we have measured fluorescent radiation from a number of planetary analog rock samples using monochromatized synchrotron radiation provided by the BESSY II electron storage ring. The experiments were carried out using a purpose built X-ray fluorescence (XRF) spectrometer chamber developed by the Physikalisch-Technische Bundesanstalt, Germany's national metrology institute. The XRF instrumentation is absolutely calibrated and allows for reference-free quantitation of rock sample composition, taking into account secondary photon- and electron-induced enhancement effects. The fluorescence data, in turn, have been used to validate a planetary fluorescence simulation tool based on the GEANT4 transport code. This simulation can be used as a mission analysis tool to predict the time-dependent orbital XRF spectral distributions from planetary surfaces throughout the mapping phase.

  9. Quantitative sampling and analysis of trace elements in ambient air: impactor characterization and Synchrotron-XRF mass calibration

    Science.gov (United States)

    Richard, A.; Bukowiecki, N.; Lienemann, P.; Furger, M.; Weideli, B.; Fierz, M.; Minguillón, M. C.; Figi, R.; Flechsig, U.; Appel, K.; Prévôt, A. S. H.; Baltensperger, U.

    2010-06-01

    Identification of trace elements in ambient air can add substantial information to pollution source apportionment studies, although they do not contribute significantly to emissions in terms of mass. A method for quantitative size and time-resolved trace element evaluation in ambient aerosols with a rotating drum impactor and synchrotron radiation based X-ray fluorescence is presented. The impactor collection efficiency curves and size segregation characteristics were investigated in an experiment with oil and salt particles. Cutoff diameters were determined through the ratio of size distributions measured with two particles sizers. Furthermore, an external calibration technique to empirically link fluorescence intensities to ambient concentrations was developed. Solutions of elemental standards were applied with an ink-jet printer on thin films and area concentrations were subsequently evaluated with external wet chemical methods. These customized and reusable reference standards enable quantification of different data sets analyzed under varying experimental conditions.

  10. Quantitative sampling and analysis of trace elements in atmospheric aerosols: impactor characterization and Synchrotron-XRF mass calibration

    Science.gov (United States)

    Richard, A.; Bukowiecki, N.; Lienemann, P.; Furger, M.; Fierz, M.; Minguillón, M. C.; Weideli, B.; Figi, R.; Flechsig, U.; Appel, K.; Prévôt, A. S. H.; Baltensperger, U.

    2010-10-01

    Identification of trace elements in ambient air can add substantial information to pollution source apportionment studies, although they do not contribute significantly to emissions in terms of mass. A method for quantitative size and time-resolved trace element evaluation in ambient aerosols with a rotating drum impactor and synchrotron radiation based X-ray fluorescence is presented. The impactor collection efficiency curves and size segregation characteristics were investigated in an experiment with oil and salt particles. Cutoff diameters were determined through the ratio of size distributions measured with two particle sizers. Furthermore, an external calibration technique to empirically link fluorescence intensities to ambient concentrations was developed. Solutions of elemental standards were applied with an ink-jet printer on thin films and area concentrations were subsequently evaluated with external wet chemical methods. These customized and reusable reference standards enable quantification of different data sets analyzed under varying experimental conditions.

  11. Quantitative sampling and analysis of trace elements in atmospheric aerosols: impactor characterization and Synchrotron-XRF mass calibration

    Directory of Open Access Journals (Sweden)

    A. Richard

    2010-10-01

    Full Text Available Identification of trace elements in ambient air can add substantial information to pollution source apportionment studies, although they do not contribute significantly to emissions in terms of mass. A method for quantitative size and time-resolved trace element evaluation in ambient aerosols with a rotating drum impactor and synchrotron radiation based X-ray fluorescence is presented. The impactor collection efficiency curves and size segregation characteristics were investigated in an experiment with oil and salt particles. Cutoff diameters were determined through the ratio of size distributions measured with two particle sizers. Furthermore, an external calibration technique to empirically link fluorescence intensities to ambient concentrations was developed. Solutions of elemental standards were applied with an ink-jet printer on thin films and area concentrations were subsequently evaluated with external wet chemical methods. These customized and reusable reference standards enable quantification of different data sets analyzed under varying experimental conditions.

  12. Quantitative sampling and analysis of trace elements in ambient air: impactor characterization and Synchrotron-XRF mass calibration

    Directory of Open Access Journals (Sweden)

    A. Richard

    2010-06-01

    Full Text Available Identification of trace elements in ambient air can add substantial information to pollution source apportionment studies, although they do not contribute significantly to emissions in terms of mass. A method for quantitative size and time-resolved trace element evaluation in ambient aerosols with a rotating drum impactor and synchrotron radiation based X-ray fluorescence is presented. The impactor collection efficiency curves and size segregation characteristics were investigated in an experiment with oil and salt particles. Cutoff diameters were determined through the ratio of size distributions measured with two particles sizers. Furthermore, an external calibration technique to empirically link fluorescence intensities to ambient concentrations was developed. Solutions of elemental standards were applied with an ink-jet printer on thin films and area concentrations were subsequently evaluated with external wet chemical methods. These customized and reusable reference standards enable quantification of different data sets analyzed under varying experimental conditions.

  13. Cancer detection by quantitative fluorescence image analysis.

    Science.gov (United States)

    Parry, W L; Hemstreet, G P

    1988-02-01

    Quantitative fluorescence image analysis is a rapidly evolving biophysical cytochemical technology with the potential for multiple clinical and basic research applications. We report the application of this technique for bladder cancer detection and discuss its potential usefulness as an adjunct to methods used currently by urologists for the diagnosis and management of bladder cancer. Quantitative fluorescence image analysis is a cytological method that incorporates 2 diagnostic techniques, quantitation of nuclear deoxyribonucleic acid and morphometric analysis, in a single semiautomated system to facilitate the identification of rare events, that is individual cancer cells. When compared to routine cytopathology for detection of bladder cancer in symptomatic patients, quantitative fluorescence image analysis demonstrated greater sensitivity (76 versus 33 per cent) for the detection of low grade transitional cell carcinoma. The specificity of quantitative fluorescence image analysis in a small control group was 94 per cent and with the manual method for quantitation of absolute nuclear fluorescence intensity in the screening of high risk asymptomatic subjects the specificity was 96.7 per cent. The more familiar flow cytometry is another fluorescence technique for measurement of nuclear deoxyribonucleic acid. However, rather than identifying individual cancer cells, flow cytometry identifies cellular pattern distributions, that is the ratio of normal to abnormal cells. Numerous studies by others have shown that flow cytometry is a sensitive method to monitor patients with diagnosed urological disease. Based upon results in separate quantitative fluorescence image analysis and flow cytometry studies, it appears that these 2 fluorescence techniques may be complementary tools for urological screening, diagnosis and management, and that they also may be useful separately or in combination to elucidate the oncogenic process, determine the biological potential of tumors

  14. Evaluation on the stability of Hg in ABS disk CRM during measurements by wavelength dispersive X-ray fluorescence spectrometry.

    Science.gov (United States)

    Ohata, Masaki; Kidokoro, Toshihiro; Hioki, Akiharu

    2012-01-01

    The stability of Hg in an acrylonitrile-butadiene-styrene disk certified reference material (ABS disk CRM, NMIJ CRM 8116-a) during measurements by wavelength dispersion X-ray fluorescence (WD-XRF) analysis was evaluated in this study. The XRF intensities of Hg (L(α)) and Pb (L(α)) as well as the XRF intensity ratios of Hg (L(α))/Pb (L(α)) observed under different X-ray tube current conditions as well as their irradiation time were examined to evaluate the stability of Hg in the ABS disk CRM. The observed XRF intensities and the XRF intensity ratios for up to 32 h of measurements under 80 mA of X-ray tube current condition were constant, even though the surface of the ABS disk CRM was charred by the X-ray irradiation with high current for a long time. Moreover, the measurements on Hg and Pb in the charred disks by an energy dispersive XRF (ED-XRF) spectrometer showed constant XRF intensity ratios of Hg (L(α))/Pb (L(α)). From these results, Hg in the ABS disk CRM was evaluated to be sufficiently stable for XRF analysis.

  15. Portable X-ray fluorescence spectroscopy as a rapid screening technique for analysis of TiO2 and ZnO in sunscreens

    Science.gov (United States)

    Bairi, Venu Gopal; Lim, Jin-Hee; Quevedo, Ivan R.; Mudalige, Thilak K.; Linder, Sean W.

    2016-02-01

    This investigation reports a rapid and simple screening technique for the quantification of titanium and zinc in commercial sunscreens using portable X-ray fluorescence spectroscopy (pXRF). A highly evolved technique, inductively coupled plasma-mass spectroscopy (ICP-MS) was chosen as a comparative technique to pXRF, and a good correlation (r2 > 0.995) with acceptable variations (≤ 25%) in results between both techniques was observed. Analytical figures of merit such as detection limit, quantitation limit, and linear range of the method are reported for the pXRF technique. This method has a good linearity (r2 > 0.995) for the analysis of titanium (Ti) in the range of 0.4-14.23 wt%, and zinc (Zn) in the range of 1.0-23.90 wt%. However, most commercial sunscreens contain organic ingredients, and these ingredients are known to cause matrix effects. The development of appropriate matrix matched working standards to obtain the calibration curve was found to be a major challenge for the pXRF measurements. In this study, we have overcome the matrix effect by using metal-free commercial sunscreens as a dispersing media for the preparation of working standards. An easy extension of this unique methodology for preparing working standards in different matrices was also reported. This method is simple, rapid, and cost-effective and, in comparison to conventional techniques (e.g., ICP-MS), did not generate toxic wastes during sample analysis.

  16. Quantitative surface characterization of silicon spheres by combined XRF and XPS analysis for the determination of the Avogadro constant

    Science.gov (United States)

    Müller, Matthias; Beckhoff, Burkhard; Beyer, Edyta; Darlatt, Erik; Fliegauf, Rolf; Ulm, Gerhard; Kolbe, Michael

    2017-10-01

    For the quantitative surface characterization of a monocrystalline silicon sphere, PTB has constructed and put into operation an analytical instrument, which combines x-ray fluorescence and x-ray photoelectron spectroscopy techniques. The main objective of this novel instrument is the characterization of the oxide layer and unintentional contaminations, e.g. from hydrocarbons. It is equipped with a ball manipulator allowing measurements at each point on the surface of ball-shaped samples with a diameter of about 93.7 mm. Monocrystalline silicon spheres with this diameter allow a realization of the SI base unit of mass.

  17. Onboard assessment of XRF spectra using genetic algorithms for decision making on an autonomous underwater vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Breen, Jeremy [Tasmanian Information and Communication Technologies Centre, Commonwealth Scientific and Industrial Research Organisation, GPO Box 1538, Hobart, TAS (Australia); School of Computing and Information Systems, University of Tasmania, Hobart, TAS (Australia); Souza, P. de, E-mail: paulo.desouza@csiro.au [Tasmanian Information and Communication Technologies Centre, Commonwealth Scientific and Industrial Research Organisation, GPO Box 1538, Hobart, TAS (Australia); Timms, G.P. [Tasmanian Information and Communication Technologies Centre, Commonwealth Scientific and Industrial Research Organisation, GPO Box 1538, Hobart, TAS (Australia); Ollington, R. [School of Computing and Information Systems, University of Tasmania, Hobart, TAS (Australia)

    2011-06-15

    In order to optimise use of the limited resources (time, power) of an autonomous underwater vehicle (AUV) with a miniaturised X-ray fluorescence (XRF) spectrometer on board to carry out in situ autonomous chemical mapping of the surface of sediments with desired resolution, a genetic algorithm for rapid curve fitting is reported in this paper. This method quickly converges and provides an accurate in situ assessment of metals present, which helps the control system of the AUV to decide on future sampling locations. More thorough analysis of the available data could be performed once the AUV has returned to the base (laboratory).

  18. X-ray Peltier cooled detectors for X-ray fluorescence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Loupilov, A. E-mail: bsi@bsi.lv; Sokolov, A.; Gostilo, V

    2001-06-01

    The recent results on development of X-ray Si(Li), Si-planar and CdTe p-i-n detectors cooled by Peltier coolers for fabrication of laboratory and portable XRF analysers for different applications are discussed. Low detection limits of XRF analysers are provided by increasing of detectors sensitive surface; improvement of their spectrometrical characteristics; decreasing of front-end-electronics noise level; Peltier coolers and vacuum chambers cooling modes optimization. Solution of all mentioned tasks allowed to develop Peltier cooled detectors with the following performances: (1.) Si(Li) detectors: S=20 mm{sup 2}, thickness=3.5 mm, 175 eV (5.9 keV), 430 eV (59.6 keV); S=100 mm{sup 2}; thickness=4.5 mm, 270 eV (5.9 keV), 485 eV (59.6 keV). (2.) Si-planar detector: S=10 mm{sup 2}, thickness=0.4 mm, 230 eV (5.9 keV), 460 eV (59.6 keV). (3.) CdTe p-i-n detectors: S=16 mm{sup 2}, thickness=0.5 mm, 350 eV (5.9 keV), 585 eV (59.6 keV). S=16 mm{sup 2}, thickness=1.2 mm, 310 eV (5.9 keV), 600 eV (59.6 keV). Advantages and disadvantages of all types of detectors for X-ray fluorescence analysis are compared. Spectra are presented. Application of different XRF analysers based on developed detectors in medicine, environmental science, industry, cryminalistics and history of art are demonstrated.

  19. Reducing risk and increasing confidence of decision making at a lower cost: In-situ pXRF assessment of metal-contaminated sites.

    Science.gov (United States)

    Rouillon, Marek; Taylor, Mark P; Dong, Chenyin

    2017-10-01

    This study evaluates the in-situ use of field portable X-ray Fluorescence (pXRF) for metal-contaminated site assessments, and assesses the advantages of increased sampling to reduce risk, and increase confidence of decision making at a lower cost. Five metal-contaminated sites were assessed using both in-situ pXRF and ex-situ inductively coupled plasma mass spectrometry (ICP-MS) analyses at various sampling resolutions. Twenty second in-situ pXRF measurements of Mn, Zn and Pb were corrected using a subset of parallel ICP-MS measurements taken at each site. Field and analytical duplicates revealed sampling as the major contributor (>95% variation) to measurement uncertainties. This study shows that increased sampling led to several benefits including more representative site characterisation, higher soil-metal mapping resolution, reduced uncertainty around the site mean, and reduced sampling uncertainty. Real time pXRF data enabled efficient, on-site decision making for further judgemental sampling, without the need to return to the site. Additionally, in-situ pXRF was more cost effective than the current approach of ex-situ sampling and ICP-MS analysis, even with higher sampling at each site. Lastly, a probabilistic site assessment approach was applied to demonstrate the advantages of integrating estimated measurement uncertainties into site reporting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Uso da fluorescência de raios X portátil (XRF in vivo como técnica alternativa para acompanhamento dos níveis de ferro em pacientes com sobrecarga de ferro The in vivo use of portable X-ray fluorescence as an alternative technique for the accompaniment of iron levels in patients with iron loading

    Directory of Open Access Journals (Sweden)

    Marcelo Estevam

    2009-01-01

    Full Text Available Foi investigada a viabilidade da aplicação da técnica de fluorescência de raios X (XRF como alternativa para acompanhamento dos níveis de ferro em pacientes portadores de talassemia maior (beta-thalassemia e hemocromatose hereditária (HH. As medidas foram realizadas no Hemocentro do Hospital Universitário e no Laboratório de Física Nuclear Aplicada da Universidade Estadual de Londrina. Foi acompanhada uma portadora de talassemia maior e quatro pessoas sadias. Foi utilizado um sistema portátil de XRF constituído de uma fonte de Raios X de 238Pu e um detector de SiPIN diodo, para as medidas in vivo na mão. O sistema foi calibrado medindo simulados de solução aquosa com 15 a 150 ppm de ferro. A duração de cada medida foi de 50 s. O limite de detecção (LLD atingido foi de 13 ppm de ferro. A dose de radiação na pele foi de 10 mSv. A paciente de talassemia apresentou 74 ± 6 ppm de ferro, enquanto pessoas sadias apresentaram valor médio de 53 ± 5 ppm de ferro. Os resultados estão de acordo com a literatura, que informa níveis de ferro na pele de 15 a 60 ppm em pessoas sadias e de 70 a 150 ppm em pacientes portadores da talassemia maior. Foi concluído ser viável a aplicação da XRF para acompanhamento de pacientes de talassemia maior e HH.The viability of the X-ray fluorescence technique as an alternative to follow up iron levels in patients suffering from thalassemia major (beta-thalassemia and hereditary hemochromatosis was investigated. The measurements were carried out in the University Hospital Blood Center and in the Laboratory of Applied Nuclear Physics of the State University of Londrina. One thalassemia major patient and four healthy individuals were enrolled in the study. A portable X-ray fluorescence system consisting in a 238Pu X-ray source and a Si PIN diode detector was used for in vivo measurements of the hand. The system was calibrated using 15 to 150 ppm concentrations of iron in an aqueous solution. The

  1. Monte Carlo simulation of x-ray fluorescence analysis of gold in kidney using 99mTc radiopharmaceutical

    Science.gov (United States)

    Mahdavi, Naser; Shamsaei, Mojtaba; Shafaei, Mostafa; Rabiei, Ali

    2013-10-01

    The objective of this study was to design a system in order to analyze gold and other heavy elements in internal organs using in vivo x-ray fluorescence (XRF) analysis. Monte Carlo N Particle code MCNP was used to simulate phantoms and sources. A source of 99mTc was simulated in kidney to excite the gold x-rays. Changes in K XRF response due to variations in tissue thickness overlying the kidney at the measurement site were investigated. Different simulations having tissue thicknesses of 20, 30, 40, 50 and 60 mm were performed. Kα1 and Kα2 for all depths were measured. The linearity of the XRF system was also studied by increasing the gold concentration in the kidney phantom from 0 to 500 µg g-1 kidney tissue. The results show that gold concentration between 3 and 10 µg g-1 kidney tissue can be detected for distance between the skin and the kidney surface of 20-60 mm. The study also made a comparison between the skin doses for the source outside and inside the phantom.

  2. [X-ray fluorescence spectrum analysis of chemical element for spider and silkworm silk and its applications].

    Science.gov (United States)

    Yuan, Bo; Xu, Ze-ren; Xie, Zhuo-jun; Shi, Qiang; Zhang, Xing-kang; Xu, Si-chuan

    2010-07-01

    Elemental compositions in spider and silkworm silks were determined by X-ray fluorescence (XRF) spectrum to probe the silk-forming mechanisms and an elemental basis for spider silk with excellent characteristics. XRF analysis demonstrates that in the silkworm silk, the elemental content is 47.10% for C, 29.92% for O and 16. 52% for N, including metal elemental contents: 0.166 2% for Ca, 0.104 0% for Mg and 0.039 5% for K, while Na, Zn, Ni, Fe and Cr show less micro quantity. Due to relative high quantity for Ca and Mg, they both play an important role in the silk-forming mechanism by silkworm. In the spider silk, the determined main nonmetal elemental contents are 44.09% for C, 26.64% for O and 22.34% for N. The high content of nitrogen may be an elemental basis for spider silk with excellent characteristic. The main metal elemental contents are 0.268 0% for Na, 0.081 4% for K and 0.011 6% for Mg, while Ca, Zn, Ni, Cu and Cr possess less micro quantity in the spider silk. Because of relative high quantity for Na and K, they both play an important role in the silk-forming mechanism by spider. The elemental compositions investigated by using mathematic statistic method are quite in agreement with those demonstrated by using XRF spectrum, which validates the experimentally determined elemental compositions in the spider and silkworm silks.

  3. Elemental depth profiling of Cu(In,Ga)Se{sub 2} thin films by reference-free grazing incidence X-ray fluorescence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Streeck, C., E-mail: cornelia.streeck@helmholtz-berlin.d [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Hahn-Meitner-Platz 1, Institut Technologie, 14109 Berlin (Germany); Technische Universitaet Berlin, Institut fuer Optik und Atomare Physik, Hardenbergstr. 36, 10623 Berlin (Germany); Beckhoff, B.; Reinhardt, F.; Kolbe, M. [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany); Kanngiesser, B. [Technische Universitaet Berlin, Institut fuer Optik und Atomare Physik, Hardenbergstr. 36, 10623 Berlin (Germany); Kaufmann, C.A.; Schock, H.W. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Hahn-Meitner-Platz 1, Institut Technologie, 14109 Berlin (Germany)

    2010-02-15

    The semiconductor band gap of the Cu(In,Ga)Se{sub 2} (CIGSe) compound can be varied by the In to Ga ratio. This composition variation determines the photovoltaic properties of CIGSe thin films. Their composition depth profile has to be optimized in order to obtain maximum efficiencies in solar cell applications. Synchrotron-radiation-based X-ray fluorescence (XRF) analysis under grazing incidence conditions provides non-destructive access to the compositional depth profile of the CIGSe thin films and, hence, represents a new non-destructive method, which does not require well-characterized standards for calibration purposes. Based on an analytical description of the physical processes, fluorescence line intensities of the specimen can be calculated by using fundamental atomic parameters. The general suitability of the method for determining depth gradients in CIGSe thin films is first shown by calculations. Reference-free XRF test measurements were carried out at the FCM beamline in the PTB laboratory at BESSY II. X-ray fluorescence was induced by photon excitation at energies of 4.0 keV and 10.5 keV, respectively, using various shallow incident angles. The calculations and the experimental measurements show that even small differences in the Ga/In profile may be distinguished, indicating that grazing incidence XRF is a promising tool for a non-destructive characterization of compositional depth profiles. Further refinement of the operational parameters may contribute to the sensitivity of the method.

  4. Elemental depth profiling of Cu(In,Ga)Se 2 thin films by reference-free grazing incidence X-ray fluorescence analysis

    Science.gov (United States)

    Streeck, C.; Beckhoff, B.; Reinhardt, F.; Kolbe, M.; Kanngießer, B.; Kaufmann, C. A.; Schock, H. W.

    2010-02-01

    The semiconductor band gap of the Cu(In,Ga)Se 2 (CIGSe) compound can be varied by the In to Ga ratio. This composition variation determines the photovoltaic properties of CIGSe thin films. Their composition depth profile has to be optimized in order to obtain maximum efficiencies in solar cell applications. Synchrotron-radiation-based X-ray fluorescence (XRF) analysis under grazing incidence conditions provides non-destructive access to the compositional depth profile of the CIGSe thin films and, hence, represents a new non-destructive method, which does not require well-characterized standards for calibration purposes. Based on an analytical description of the physical processes, fluorescence line intensities of the specimen can be calculated by using fundamental atomic parameters. The general suitability of the method for determining depth gradients in CIGSe thin films is first shown by calculations. Reference-free XRF test measurements were carried out at the FCM beamline in the PTB laboratory at BESSY II. X-ray fluorescence was induced by photon excitation at energies of 4.0 keV and 10.5 keV, respectively, using various shallow incident angles. The calculations and the experimental measurements show that even small differences in the Ga/In profile may be distinguished, indicating that grazing incidence XRF is a promising tool for a non-destructive characterization of compositional depth profiles. Further refinement of the operational parameters may contribute to the sensitivity of the method.

  5. Atomic and Nuclear Analytical Methods XRF, Mössbauer, XPS, NAA and Ion-Beam Spectroscopic Techniques

    CERN Document Server

    Verma, H R

    2007-01-01

    This book is a blend of analytical methods based on the phenomenon of atomic and nuclear physics. It comprises comprehensive presentations about X-ray Fluorescence (XRF), Mössbauer Spectroscopy (MS), X-ray Photoelectron Spectroscopy (XPS), Neutron- Activation Analysis (NAA), Particle Induced X-ray Emission Analysis (PIXE), Rutherford Backscattering Analysis (RBS), Elastic Recoil Detection (ERD), Nuclear Reaction Analysis (NRA), Particle Induced Gamma-ray Emission Analysis (PIGE), and Accelerator Mass Spectrometry (AMS). These techniques are commonly applied in the fields of medicine, biology, environmental studies, archaeology or geology et al. and pursued in major international research laboratories.

  6. Multivariate analysis of endometrial tissue fluorescence spectra

    Science.gov (United States)

    Vaitkuviene, Aurelija; Auksorius, E.; Fuchs, D.; Gavriushin, V.

    2002-10-01

    Background and Objective: The detailed multivariate analysis of endometrial tissue fluorescence spectra was done. Spectra underlying features and classification algorithm were analyzed. An effort has been made to determine the importance of neopterin component in endometrial premalignization. Study Design/Materials and Methods: Biomedical tissue fluorescence was measured by excitation with the Nd YAG laser third harmonic. Multivariate analysis techniques were used to analyze fluorescence spectra. Biomedical optics group at Vilnius University analyzed the neopterin substance supplied by the Institute of Medical Chemistry and Biochemistry of Innsbruck University. Results: Seven statistically significant spectral compounds were found. The classification algorithm classifying samples to histopathological categories was developed and resulted in sensitivity of 80% and specificity 93% for malignant vs. hyperplastic and normal. Conclusions: Fluorescence spectra could be classified with high accuracy. Spectral variation underlying features can be extracted. Neopterin component might play an important role in endometrial hyperplasia development.

  7. New insights into the painting stratigraphy of L'Homme blesse by Gustave Courbet combining scanning macro-XRF and confocal micro-XRF

    Energy Technology Data Exchange (ETDEWEB)

    Reiche, Ina [Staatliche Museen zu Berlin-Preussischer Kulturbesitz, Rathgen-Forschungslabor, Berlin (Germany); Laboratoire d' Archeologie Moleculaire et Structurale, Sorbonne Universites, Univ. Paris 06, CNRS, UMR 8220, Paris (France); Eveno, Myriam; Pichon, Laurent; Laval, Eric; Mottin, Bruno [Centre de Recherche et de Restauration des Musees de France (C2RMF), Paris (France); Mueller, Katharina [Laboratoire d' Archeologie Moleculaire et Structurale, Sorbonne Universites, Univ. Paris 06, CNRS, UMR 8220, Paris (France); Calligaro, Thomas [Centre de Recherche et de Restauration des Musees de France (C2RMF), Paris (France); PSL Research University, Chimie ParisTech-CNRS, Institut de Recherche Chimie Paris, Paris (France); Mysak, Erin [Centre de Recherche et de Restauration des Musees de France (C2RMF), Paris (France); Yale University, Institute for the Preservation of Cultural Heritage, New Haven, CT (United States)

    2016-11-15

    The painting L'Homme blesse by Gustave Courbet kept at the Musee d'Orsay in Paris has been recently studied by X-ray radiography, SEM-EDX observation of paint cross sections and confocal micro-X-ray fluorescence analyses (CXRF) at locations where the cross section samples were taken. This study allowed the establishment of the paint palette used by Courbet for the three paint compositions. Eight or more paint layers could be evidenced. In the view of the complexity of this painting, further analyses using two-dimensional scanning macro-X-ray fluorescence imaging (MA-XRF) providing chemical images corresponding to the superimposition of all detectable paint layers were employed. This method is combined with CXRF for depth-resolved paint layer analysis. Large elemental maps of Hg, Cu, As, Fe, Zn, Cr, Ba, Pb and Ca were obtained by MA-XRF on the painting and are discussed in combination with depth profiles obtained by CXRF on strategic points where three painting compositions overlap. The order of three successive compositions of this painting were determined in this study. This work also highlights the benefits of using complementary imaging methods to obtain a complete three-dimensional vision of the chemistry and stratigraphy of paintings. (orig.)

  8. Nano-XRF Analysis of Metal Impurities Distribution at PL Active Grain Boundaries During mc-Silicon Solar Cell Processing

    Energy Technology Data Exchange (ETDEWEB)

    Bernardini, Simone; Johnston, Steve; West, Bradley; Naerland, Tine U.; Stuckelberger, Michael; Lai, Barry; Bertoni, Mariana I.

    2017-01-01

    Metal impurities are known to hinder the performance of commercial Si-based solar cells by inducing bulk recombination, increasing leakage current, and causing direct shunting. Recently, a set of photoluminescence (PL) images of neighboring multicrystalline silicon wafers taken from a cell production line at different processing stages has been acquired. Both band-to-band PL and sub-bandgap PL (subPL) images showed various regions with different PL signal intensity. Interestingly, in several of these regions a reversal of the subPL intensity was observed right after the deposition of the antireflective coating. In this paper, we present the results of the synchrotron-based nano-X-ray fluorescence imaging performed in areas characterized by the subPL reversal to evaluate the possible role of metal decoration in this uncommon behavior. Furthermore, the acquisition of a statistically meaningful set of data for samples taken at different stages of the solar cell manufacturing allows us to shine a light on the precipitation and rediffusion mechanisms of metal impurities at these grain boundaries.

  9. Development of a reconstruction software of elemental maps by micro X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Andre Pereira de; Braz, Delson; Mota, Carla Lemos, E-mail: apalmeid@gmail.co, E-mail: delson@lin.ufrj.b, E-mail: clemos@con.ufrj.b [Universidade Federal do Rio de Janeiro (PEN/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Energia Nuclear; Oliveira, Luis Fernando de; Barroso, Regina Cely; Pinto, Nivia Graciele Villela, E-mail: cely@uerj.b, E-mail: lfolive@uerj.b, E-mail: nitatag@gmail.co [Universidade do Estado do Rio de Janeiro (IF/UERJ), RJ (Brazil). Inst. de Fisica; Cardoso, Simone Coutinho [Universidade Federal do Rio de Janeiro (IF/UFRJ), RJ (Brazil). Inst. de Fisica; Moreira, Silvana [Universidade Estadual de Campinas (FEC/UNICAMP), SP (Brazil) Faculdade de Engenharia Civil, Arquitetura e Urbanismo

    2009-07-01

    The technique of X-ray fluorescence (XRF) using SR microbeams is a powerful analysis tool for studying elemental composition in several samples. One application of this technique is the analysis done through the mapping of chemical elements forming a matrix of data. The aim of this work is the presentation of the program MapXRF, an in-house software designed to optimize the processing and mapping of fluorescence intensities data. This program uses spectra generated by QXAS as input data and separates the intensities of each chemical element found in the fluorescence spectra in files themselves. From these files, the program generates the intensity maps that can be visualized in any program of treatment of images. The proposed software was tested using fluorescence data obtained in the XRF beamline at National Synchrotron Light Laboratory (LNLS), Brazil. Automatic 2D scans were performed and element distribution maps were obtained in form of a matrix of data. (author)

  10. Composition and microstructure of MTA and Aureoseal Plus: XRF, EDS, XRD and FESEM evaluation.

    Science.gov (United States)

    Cianconi, L; Palopoli, P; Campanella, V; Mancini, M

    2016-12-01

    The aim of this study was to determine the chemical composition and the phases' microstructure of Aureoseal Plus (OGNA, Italy) and ProRoot MTA (Dentsply Tulsa Dental, USA) and to compare their characteristics. Study Design: Comparing Aureoseal Plus and ProRoot MTA microstructure by means of several analyses type. The chemical analysis of the two cements was assessed following the UNI EN ISO 196-2 norm. X-Ray fluorescence (XRF) was used to determine the element composition. The crystalline structure was analysed quantitatively using x-ray diffraction (XRD). Powders morphology was evaluated using a scanning electron microscope (SEM) with backscattering detectors, and a field emission scanning electron microscope (FESEM). Elemental analysis was performed by energy dispersive x-ray analysis (EDS). The semi-quantitative XRF analysis showed the presence of heavy metal oxides in both cements. The XRD spectra of the two cements reported the presence of dicalcium silicate, tricalcium silicate, tricalcium aluminate, tetracalcium aluminoferrite, bismuth oxide and gypsum. SEM analysis showed that ProRoot MTA powder is less coarse and more homogeneous than Aureoseal. Both powders are formed by particles of different shapes: round, prismatic and oblong. The EDS analysis showed that some ProRoot MTA particles, differently from Aureoseal, contain Ca, Si, Al and Fe. Oblong particles in ProRoot and Aureoseal are rich of bismuth. The strong interest in developing new Portland cement-based endodontic sealers will create materials with increased handling characteristics and physicochemical properties. A thorough investigation on two cement powders was carried out by using XRF, XRD, SEM and EDS analysis. To date there was a lack of studies on Aureoseal Plus. This cement is similar in composition to ProRoot MTA. Despite that it has distinctive elements that could improve its characteristics, resulting in a good alternative to MTA.

  11. Determination of trace elements in body fluids by XRF spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nadj, M.; Injuk, J.; Valcovic, V.; Lakatos, J.

    1987-04-01

    X-ray emission spectroscopy is used for trace element analysis of body fluids. Analytical procedures that include sample preparation and XRF setup are described for the analysis of blood serum and amniotic fluid samples for different gravidity stages. The comparison between the distribution of these elements in amniotic fluid and serum is presented and discussed.

  12. Study of on-line analysis using energy dispersive X-ray fluorescence spectrometry for controlling lanthanum and neodymium extraction

    Energy Technology Data Exchange (ETDEWEB)

    Wenli, Li; Ascenzo, G.D`; Curini, R. [Department of Chemistry, University of Rome `La Sapienza`, Rome (Italy); Gasparini, G.M.; Casarci, M.; Mattia, B.; Traverso, D.M.; Bellisario, F. [ENEA, CRE Casaccia INN-NUMA (Italy)

    1998-05-04

    Many rare-earth extraction processes require frequent control over separation process quality. Ideally, an analysis method for this type should be simple, rapid and reliable. Energy dispersive X-ray fluorescence (EDXRF) spectrometry, due to its relative simplicity of instrumentation, speed of analysis, and non-destructive nature, is well suited to this on-line analysis application. In particular, since the radioisotope energy dispersive XRF method eliminates the need to transport samples to a laboratory which houses the X-ray spectrometry, it is most commonly used for on-line analysis of extraction systems. The present paper describes an attempt to type the radioisotope source {sup 241}Am XRF on-line analysis arrangement coupled with a personal computer for controlling a lanthanum and neodymium separation process. From the HpGe detector (high-purity germanium) response, a continuous spectral signal is observed during loading of the feed samples. The separation process using countercurrent extraction consists of a 16-stage laboratory mixer-settler, a switching valve, and a pumping system. The performance of this control system is illustrated by extracting La, Nd acidic solutions with 100% tributyl phosphate

  13. Elemental Analysis of Variably Contaminated Cremains Using X-ray Fluorescence Spectrometry.

    Science.gov (United States)

    Gilpin, Megan; Christensen, Angi M

    2015-07-01

    Analyzing and identifying skeletal remains becomes increasingly difficult when remains have been cremated, especially in cases where the cremated material may have been intentionally contaminated with nonskeletal material. This study examined the potential of X-ray fluorescence spectrometry (XRF) to detect the presence of nonskeletal contaminants in samples of cremains. Eleven samples of cremains were variably combined with concrete mix and analyzed using XRF. Photon counts of elements in each sample were analyzed, and the coefficient of determination (R(2)) using unweighted linear regression as a function of percent cremains was calculated. Results showed that with changes in the proportion of skeletal material and contaminant, there were significant (R(2) > 0.90) changes in detected levels of phosphorus, potassium, zinc, aluminum, and sulfur. The use of XRF is concluded to be a valid approach in the identification of the presence of nonskeletal material in potentially contaminated cremains.

  14. 57Fe Mössbauer, SEM/EDX, p-XRF and μ-XRF studies on a Dutch painting

    Science.gov (United States)

    Lehmann, R.; Schmidt, H.-J.; Costa, B. F. O.; Blumers, M.; Sansano, A.; Rull, F.; Wengerowsky, D.; Nürnberger, F.; Maier, H. J.; Klingelhöfer, G.; Renz, F.

    2016-12-01

    The painting of a rich Jewish merchant "Bildnis eines jüdischen Kaufmanns" from the Netherlands is dated presumably to the 16th century. After a vivid historical background, i.e. robbed by the Nazis by order of Hermann Göring, it was recently discovered on an Austrian flea market. Different analysis methods were combined to identify the time of the production of this historically interesting looted art. Non-destructive MIMOS II Fe-57 Mössbauer spectroscopy was utilised for mesurements in selected spots. This mainly revealed haematite ( α-Fe2O3) in the red curtain. In spots of the brown jacket Mössbauer spectra indicated the presence of mainly Iron(III) in super-paramagnetic oxide or oxide-hydroxide. Consecutively SEM measurements revealed a restoration by partly over-painting. The elementary composition of the pigments was examined by a portable-X-ray fluorescence. μ-XRF analysis for element distribution at different areas was performed. The look into a crack showed Zinc-white at the bottom of the crack. Traces of Titanium-white could be found within some locations on the surface of the painting. In terms of provenance of the artwork, the presence of Zink-white suggests that the painting was painted around the 19th century. Titanium-white indicates a reconstruction during the 20th century, approximately between 1917 and 1958.

  15. Feasibility for direct rapid energy dispersive X-ray fluorescence (EDXRF) and scattering analysis of complex matrix liquids by partial least squares.

    Science.gov (United States)

    Angeyo, K H; Gari, S; Mustapha, A O; Mangala, J M

    2012-11-01

    The greatest challenge to material characterization by XRF technique is encountered in direct trace analysis of complex matrices. We exploited partial least squares (PLS) in conjunction with energy dispersive X-ray fluorescence and scattering (EDXRFS) spectrometry to rapidly (200 s) analyze lubricating oils. The PLS-EDXRFS method affords non-invasive quality assurance (QA) analysis of complex matrix liquids as it gave optimistic results for both heavy- and low-Z metal additives. Scatter peaks may further be used for QA characterization via the light elements.

  16. X-Ray Fluorescence Analysis of XII–XIV Century Italian Gold Coins

    Directory of Open Access Journals (Sweden)

    Monica Baldassarri

    2014-01-01

    Full Text Available An extensive analytical study has been performed on a large number of gold coins (Norman-Swabian Augustale and Tarì, Grosso of Lucca, Florin of Florence minted in Italy from the end of XII century to XIV century. The X-ray fluorescence (XRF technique was used for verifying the composition of the coins. XRF is a nondestructive technique particularly suited for in situ quantitative analysis of gold and minor elements in the precious alloy. The Florins turned out to have a gold content very close to 24 carats (pure gold although in a couple of cases we observed relatively high concentrations of iron (around 2% or lead (around 1%. The Grosso of Lucca has a similar composition, with a measured gold content around 97% due to a higher silver percentage (about 2%, with respect to the average Florin. The Augustali analyzed showed, on average, a gold content around 89%. The average gold content of the Tarì analysed is around 72%, with a relatively large variability. The analysis revealed the use of native gold for the coinage of the Florins, excluding the possibility of recycling gold coming from other sources. On the other hand, the variability observed in the compositions of the Tarì and Augustali could suggest the reuse of Islamic and North African gold. The study could shed some light on the sudden diffusion of gold coins in Italy around the first half of XIII century, allowing hypotheses on the provenience of the gold used for a coinage that dominated the economic trades from then on.

  17. Kinetics of elimination and distribution in blood and liver of biocompatible ferrofluids based on Fe{sub 3}O{sub 4} nanoparticles: An EPR and XRF study

    Energy Technology Data Exchange (ETDEWEB)

    Gamarra, L.F. [Instituto de Ensino e Pesquisa, Hospital Israelita Albert Einstein, Sao Paulo 05651-901 (Brazil); Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo 05315-970 (Brazil)], E-mail: lgamarra@if.usp.br; Pontuschka, W.M. [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo 05315-970 (Brazil); Amaro, E. [Instituto de Ensino e Pesquisa, Hospital Israelita Albert Einstein, Sao Paulo 05651-901 (Brazil); Instituto de Radiologia, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-001 (Brazil); Costa-Filho, A.J. [Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Sao Carlos 13560-970 (Brazil); Brito, G.E.S. [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo 05315-970 (Brazil); Vieira, E.D. [Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Sao Carlos 13560-970 (Brazil); Carneiro, S.M. [Laboratorio de Biologia Celular, Instituto Butantan, Sao Paulo 05503-900 (Brazil); Escriba, D.M. [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo 05315-970 (Brazil); Falleiros, A.M.F. [Centro de Ciencias Biologicas, Universidade Estadual de Londrina 86051-990 (Brazil); Salvador, V.L. [Centro de aplicacoes e Lasers, IPEN, Sao Paulo 05508-000 (Brazil)

    2008-05-01

    In this study, we evaluated the biodistribution and the elimination kinetics of a biocompatible magnetic fluid, Endorem{sup TM}, based on dextran-coated Fe{sub 3}O{sub 4} nanoparticles endovenously injected into Winstar rats. The iron content in blood and liver samples was recorded using electron paramagnetic resonance (EPR) and X-ray fluorescence (XRF) techniques. The EPR line intensity at g = 2.1 was found to be proportional to the concentration of magnetic nanoparticles and the best temperature for spectra acquisition was 298 K. Both EPR and XRF analysis indicated that the maximum concentration of iron in the liver occurred 95 min after the ferrofluid administration. The half-life of the magnetic nanoparticles (MNP) in the blood was (11.6 {+-} 0.6) min measured by EPR and (12.6 {+-} 0.6) min determined by XRF. These results indicate that both EPR and XRF are very useful and appropriate techniques for the study of kinetics of ferrofluid elimination and biodistribution after its administration into the organism.

  18. Technique of Hadamard transform microscope fluorescence image analysis

    Institute of Scientific and Technical Information of China (English)

    梅二文; 顾文芳; 曾晓斌; 陈观铨; 曾云鹗

    1995-01-01

    Hadamard transform spatial multiplexed imaging technique is combined with fluorescence microscope and an instrument of Hadamard transform microscope fluorescence image analysis is developed. Images acquired by this instrument can provide a lot of useful information simultaneously, including three-dimensional Hadamard transform microscope cell fluorescence image, the fluorescence intensity and fluorescence distribution of a cell, the background signal intensity and the signal/noise ratio, etc.

  19. Non-destructive analysis of ancient bimetal swords from western Asia by γ-ray radiography and X-ray fluorescence

    Science.gov (United States)

    Shizuma, Kiyoshi; Kajimoto, Tsuyoshi; Endo, Satoru; Matsugi, Kazuhiro; Arimatsu, Yui; Nojima, Hisashi

    2017-09-01

    Eight ancient bimetal swords held by Hiroshima University, Japan were analyzed non-destructively through γ-ray radiography and X-ray fluorescence (XRF). 137Cs and 60Co γ-ray irradiation sources were used to obtain transmission images of swords. A scanning radiography method using a 60Co γ-ray source was developed. XRF was used for qualitative elemental analysis of the swords. The presence of iron cores in the hilts of some swords had been observed and it was assumed that the cores were a ritual symbol or had a functional purpose. However, our work reveals that these swords were originally bronze-hilted iron swords and that the rusty blades were replaced with bronze blades to maintain the swords' commercial value as an antique. Consequently, the rest of the iron blade was left in the hilt as an iron tang. The junction of the blade and the guard was soldered and painted to match the patina color. XRF analysis clearly showed that the elemental Sn/Cu ratios of the blades and the hilts were different. These findings are useful for clarifying the later modifications of the swords and are important for interpreting Bronze Age and Iron Age history correctly.

  20. Portable x-ray fluorescence for the analysis of chromium in nail and nail clippings.

    Science.gov (United States)

    Fleming, David E B; Ware, Chris S

    2017-03-01

    Assessment of chromium content in human nail or nail clippings could serve as an effective biomarker of chromium status. The feasibility of a new portable x-ray fluorescence (XRF) approach to chromium measurement was investigated through analysis of nail and nail clipping phantoms. Five measurements of 180s (real time) duration were first performed on six whole nail phantoms having chromium concentrations of 0, 2, 5, 10, 15, and 20µg/g. Using nail clippers, these phantoms were then converted to nail clippings, and assembled into different mass groups of 20, 40, 60, 80, and 100mg for additional measurements. The amplitude of the chromium Kα characteristic x-ray energy peak was examined as a function of phantom concentration for all measurement conditions to create a series of calibration lines. The minimum detection limit (MDL) for chromium was also calculated for each case. The chromium MDL determined from the whole nail intact phantoms was 0.88±0.03µg/g. For the clipping phantoms, the MDL ranged from 1.2 to 3.3µg/g, depending on the mass group analyzed. For the 40mg clipping group, the MDL was 1.2±0.1µg/g, and higher mass collections did not improve upon this result. This MDL is comparable to chromium concentration levels seen in various studies involving human nail clippings. Further improvements to the portable XRF technique would be required to detect chromium levels expected from the lower end of a typical population.

  1. In Situ Mineralogical Analysis of Planetary Materials Using X-Ray Diffraction and X-Ray Fluorescence

    Science.gov (United States)

    Sarrazin, P.; Blake, D.; Vaniman, D.; Chang, Sherwood (Technical Monitor)

    1996-01-01

    Remote observations of Mars have led scientists to believe that its early climate was similar to that of the early Earth, having had abundant liquid water and a dense atmosphere. One of the most fascinating questions of recent times is whether simple bacterial life developed on Mars (as it did on the Earth) during this early element period. Analyses of SNC meteorites have broadened considerably our knowledge of the chemistry of certain types of Martian rocks, underscoring the tantalizing possibility of early hydrothermal systems and even of ancient bacterial life. Detailed analyses of SNC meteorites in Terrestrial laboratories utilize the most sophisticated organic, isotopic and microscopic techniques in existence. Indeed; it is unlikely that the key biogenic indicators used in McKay et al (ibid) could be identified by a remote instrument on the surface of Mars. As a result, it is probable that any robotic search for evidence of an ancient Martian biosphere will have as its focus the identification of key minerals in likely host rocks rather than the direct detection of organic or isotopic biomarkers. Even on a sample return mission, mineralogical screening will be utilized to choose the most likely candidate rocks. X-ray diffraction (XRD) is the only technique that can provide a direct determination of the crystal structures of the phases present within a sample. When many different crystalline phases are present, quantitative analysis is better constrained if used in conjunction with a determination of elemental composition, obtainable by X-ray fluorescence (XRF) using the same X-ray source as for XRD. For planetary surface analysis, a remote instrument combining XRD and XRF could be used for mineralogical characterization of both soils and rocks. We are designing a remote XRD/XRF instrument with this objective in mind. The instrument concept pays specific attention to constraints in sample preparation, weight, volume, power, etc. Based on the geometry of a

  2. ‘Slag_Fun’ – A New Tool for Archaeometallurgy: Development of an Analytical (PED-XRF Method for Iron-Rich Materials

    Directory of Open Access Journals (Sweden)

    Harald Alexander Veldhuijzen

    2003-11-01

    Full Text Available This paper describes the development of a new analytical tool for bulk chemical analysis of iron-rich archaeometallurgical remains by Polarising Energy Dispersive X-ray Fluorescence ((PED-XRF. Prompted by the ongoing archaeological and archaeometric analyses of early first millennium BC iron smelting and smithing finds from Tell Hammeh (az-Zarqa, Jordan, the creation of this tool has already benefited several studies on iron-rich slag, of widely varying provenance as well as age (Anguilano 2002; Chirikure 2002; Ige and Rehren 2003; Stanway 2003. Following an explanation of the archaeological background and importance of the Hammeh finds, the paper describes the technical foundations of XRF analysis and the design, development and application of the "slag_fun" calibration method.

  3. Capillary electrophoresis micro X-ray fluorescence: a tool for benchtop elemental analysis.

    Science.gov (United States)

    Miller, Thomasin C; Joseph, Martha R; Havrilla, George J; Lewis, Cris; Majidi, Vahid

    2003-05-01

    A new tool was developed for separation and elemental detection by interfacing a simple capillary electrophoresis (CE) apparatus, constructed using a thin-walled fused-silica capillary, with a benchtop energy-dispersive micro X-ray fluorescence (MXRF) system. X-ray excitation and detection of the separated analytes was done using an EDAX Eagle II micro X-ray fluorescence system equipped with a polycapillary Rh target excitation source and a SiLi detector. It was demonstrated that this prototype system could be used for the separation and detection of species containing two different metals from one another, specifically Cu and Co. Free Co could also be separated from Co bound to cyanocobalamin (vitamin B-12). Two organic compounds were also separated from one another, a large biological protein, ferritin, from a small biological organic, cyanocobalamin. Preliminary average detection limits obtained on this system were on the order of 10(-)(4) M and compared favorably to those reported for the similar technique of CE-synchrotron XRF. CEMXRF allows for nondestructive, simultaneous, on-line, benchtop elemental analysis for chemical speciation applications.

  4. Romanian medieval earring analysis by X-ray fluorescence technique

    Energy Technology Data Exchange (ETDEWEB)

    Therese, Laurent; Guillot, Philippe, E-mail: philippe.guillot@univ-jfc.fr [Laboratoire Diagnostics des Plasmas, CUFR J.F.C, Albi (France); Muja, Cristina [Laboratoire Diagnostics des Plasmas, CUFR J.F.C, Albi (France); Faculty of Biology, University of Bucharest (Romania); Vasile Parvan Institute of Archaeology, Bucharest, (Romania)

    2011-07-01

    Full text: Several instrumental techniques of elemental analysis are now used for the characterization of archaeological materials. The combination between archaeological and analytical information can provide significant knowledge on the constituting material origin, heritage authentication and restoration, provenance, migration, social interaction and exchange. Surface mapping techniques such as X-Ray Fluorescence have become a powerful tool for obtaining qualitative and semi-quantitative information about the chemical composition of cultural heritage materials, including metallic archaeological objects. In this study, the material comes from the Middle Age cemetery of Feldioara (Romania). The excavation of the site located between the evangelical church and the parsonage led to the discovery of several funeral artifacts in 18 graves among a total of 127 excavated. Even if the inventory was quite poor, some of the objects helped in establishing the chronology. Six anonymous Hungarian denarii (silver coins) were attributed to Geza II (1141-1161) and Stefan III (1162-1172), placing the cemetery in the second half of the XII century. This period was also confirmed by three loop shaped earrings with the end in 'S' form (one small and two large earrings). The small earring was found during the excavation in grave number 86, while the two others were discovered together in grave number 113. The anthropological study shown that skeletons excavated from graves 86 and 113 belonged respectively to a child (1 individual, medium level preservation, 9 months +/- 3 months) and to an adult (1 individual). In this work, elemental mapping were obtained by X-ray fluorescence (XRF) technique from Jobin Yvon Horiba XGT-5000 instrument offering detailed elemental images with a spatial resolution of 100{mu}m. The analysis revealed that the earrings were composed of copper, zinc and tin as major elements. Minor elements were also determined. The comparison between the two

  5. Mapping Copper and Lead Concentrations at Abandoned Mine Areas Using Element Analysis Data from ICP-AES and Portable XRF Instruments: A Comparative Study.

    Science.gov (United States)

    Lee, Hyeongyu; Choi, Yosoon; Suh, Jangwon; Lee, Seung-Ho

    2016-03-30

    Understanding spatial variation of potentially toxic trace elements (PTEs) in soil is necessary to identify the proper measures for preventing soil contamination at both operating and abandoned mining areas. Many studies have been conducted worldwide to explore the spatial variation of PTEs and to create soil contamination maps using geostatistical methods. However, they generally depend only on inductively coupled plasma atomic emission spectrometry (ICP-AES) analysis data, therefore such studies are limited by insufficient input data owing to the disadvantages of ICP-AES analysis such as its costly operation and lengthy period required for analysis. To overcome this limitation, this study used both ICP-AES and portable X-ray fluorescence (PXRF) analysis data, with relatively low accuracy, for mapping copper and lead concentrations at a section of the Busan abandoned mine in Korea and compared the prediction performances of four different approaches: the application of ordinary kriging to ICP-AES analysis data, PXRF analysis data, both ICP-AES and transformed PXRF analysis data by considering the correlation between the ICP-AES and PXRF analysis data, and co-kriging to both the ICP-AES (primary variable) and PXRF analysis data (secondary variable). Their results were compared using an independent validation data set. The results obtained in this case study showed that the application of ordinary kriging to both ICP-AES and transformed PXRF analysis data is the most accurate approach when considers the spatial distribution of copper and lead contaminants in the soil and the estimation errors at 11 sampling points for validation. Therefore, when generating soil contamination maps for an abandoned mine, it is beneficial to use the proposed approach that incorporates the advantageous aspects of both ICP-AES and PXRF analysis data.

  6. Prediction of XRF analyzers error for elements on-line assaying using Kalman Filter

    Institute of Scientific and Technical Information of China (English)

    Nakhaei F; Sam A; Mosavi MR; Nakhaei A

    2012-01-01

    Determination of chemical elements assay plays an important role in mineral processing operations.This factor is used to control process accuracy,recovery calculation and plant profitability.The new assaying methods including chemical methods,X-ray fluorescence and atomic absorption spectrometry are advanced and accurate.However,in some applications,such as on-line assaying process,high accuracy is required.In this paper,an algorithm based on Kalman Filter is presented to predict on-line XRF errors.This research has been carried out on the basis of based the industrial real data collection for evaluating the performance of the presented algorithm.The measurements and analysis for this study were conducted at the Sarcheshmeh Copper Concentrator Plant located in Iran.The quality of the obtained results was very satisfied; so that the RMS errors of prediction obtained for Cu and Mo grade assaying errors in rougher feed were less than 0.039 and 0.002 and in final flotation concentration less than 0.58 and 0.074,respectively.The results indicate that the mentioned method is quite accurate to reduce the on-line XRF errors measurement.

  7. X-ray fluorescence analysis of Mexican varieties of dried chili peppers II: Commercial and home-grown specimens

    Science.gov (United States)

    Romero-Dávila, E.; Miranda, J.; Pineda, J. C.

    2015-07-01

    Elemental analyses of samples of Mexican varieties of dried chili peppers were carried out using X-ray Fluorescence (XRF). Several specimens of Capsicum annuum L., Capsicum chinense, and Capsicum pubescens were analyzed and the results compared to previous studies of elemental contents in other varieties of Capsicum annuum (ancho, morita, chilpotle, guajillo, pasilla, and árbol). The first set of samples was bought packaged in markets. In the present work, the study focuses on home-grown samples of the árbol and chilpotle varieties, commercial habanero (Capsicum chinense), as well as commercial and home-grown specimens of manzano (Capsicum pubescencs). Samples were freeze dried and pelletized. XRF analyses were carried out using a spectrometer based on an Rh X-ray tube, using a Si-PIN detector. The system detection calibration was performed through the analysis of the NIST certified reference materials 1547 (peach leaves) and 1574 (tomato leaves), while accuracy was checked with the reference material 1571 (orchard leaves). Elemental contents of all elements in the new set of samples were similar to those of the first group. Nevertheless, it was found that commercial samples contain high amounts of Br, while home-grown varieties do not.

  8. Bioaerosol Analysis by Online Fluorescence Detection and Fluorescence Microscopy

    Science.gov (United States)

    Huffman, Alex; Pöhlker, Christopher; Treutlein, Bärbel; Pöschl, Ulrich

    2010-05-01

    Primary biological aerosol particles (PBAPs), including bacteria, spores and pollen, are essential for the spread of organisms and disease in the biosphere, and numerous studies have suggested that they may be important for atmospheric processes, including the formation of clouds and precipitation. The atmospheric abundance and size distribution of PBAPs, however, are largely unknown. At a semi-urban site in Mainz, Germany, we used an ultraviolet aerodynamic particle sizer (UV-APS) to measure fluorescent biological aerosol particles (FBAPs), which can be regarded as viable bioaerosol particles representing a lower limit for the actual abundance of PBAPs. Fluorescence of non-biological aerosol components are likely to influence the measurement results obtained for fine particles (concentration of coarse FBAPs was 3x10-2 cm-3, corresponding to 4% of total coarse particle number [1]. The mean mass concentration of FBAPs was 1 ?g m-3, corresponding to 20% of total coarse particle mass. The FBAP number size distributions exhibited alternating patterns with peaks at various diameters, though a pronounced peak at 3 μm was essentially always observed. This peak is likely due to fungal spores or agglomerated bacteria, and it exhibited a pronounced diel cycle with maximum intensity during early/mid-morning. FBAP peaks around 1.5 μm, 5 μm, and 13 μm were also observed, but less pronounced and less frequent. These may be explained by single bacterial cells, larger fungal spores, and pollen grains, respectively. The observed number concentrations and characteristic sizes of FBAPs are consistent with microscopic, biological and chemical analyses of PBAPs in aerosol filter samples. To our knowledge, however, this is the first study reporting continuous online measurements of bioaerosol particles over several months, a range of characteristic size distribution patterns, and a persistent bioaerosol peak at 3 μm. The measurement results confirm that PBAPs account for a

  9. Methodological challenges of optical tweezers-based X-ray fluorescence imaging of biological model organisms at synchrotron facilities.

    Science.gov (United States)

    Vergucht, Eva; Brans, Toon; Beunis, Filip; Garrevoet, Jan; Bauters, Stephen; De Rijcke, Maarten; Deruytter, David; Janssen, Colin; Riekel, Christian; Burghammer, Manfred; Vincze, Laszlo

    2015-07-01

    Recently, a radically new synchrotron radiation-based elemental imaging approach for the analysis of biological model organisms and single cells in their natural in vivo state was introduced. The methodology combines optical tweezers (OT) technology for non-contact laser-based sample manipulation with synchrotron radiation confocal X-ray fluorescence (XRF) microimaging for the first time at ESRF-ID13. The optical manipulation possibilities and limitations of biological model organisms, the OT setup developments for XRF imaging and the confocal XRF-related challenges are reported. In general, the applicability of the OT-based setup is extended with the aim of introducing the OT XRF methodology in all research fields where highly sensitive in vivo multi-elemental analysis is of relevance at the (sub)micrometre spatial resolution level.

  10. 2D-3D μXRF elemental mapping of archeological samples

    Science.gov (United States)

    Hampai, D.; Liedl, A.; Cappuccio, G.; Capitolo, E.; Iannarelli, M.; Massussi, M.; Tucci, S.; Sardella, R.; Sciancalepore, A.; Polese, C.; Dabagov, S. B.

    2017-07-01

    Recently opened for users at LNF XLab-Frascati a μ XRF station, named ;Rainbow X-ray; - RXR, has been optimized for most of X-ray analytical research fields. The basic principle of the station is in the use of various geometrical combinations of polycapillary optics for X-ray beam shaping (focusing/collimation) at specially designed laboratory unit. In this work we have presented the results of archaeological studies on the artifacts of Paleolithic period and Iron Age (9th century BC to the midway of the 8th BC). The elemental analysis of these artifacts has been first performed by compact laboratory setup. Superficial (2D) and bulk (3D) micro-fluorescence mapping provides useful informations for the geologists in order to identify the possible artifacts provenience and origin. The results presented in this work are a part of wider anthropological/archeological investigations aimed at the understanding of social and economical relations of prehistorical communities.

  11. A comparison of portable XRF and ICP-OES analysis for lead on air filter samples from a lead ore concentrator mill and a lead-acid battery recycler.

    Science.gov (United States)

    Harper, Martin; Pacolay, Bruce; Hintz, Patrick; Andrew, Michael E

    2006-03-01

    Personal and area samples for airborne lead were taken at a lead mine concentrator mill, and at a lead-acid battery recycler. Lead is mined as its sulfidic ore, galena, which is often associated with zinc and silver. The ore typically is concentrated, and partially separated, on site by crushing and differential froth flotation of the ore minerals before being sent to a primary smelter. Besides lead, zinc and iron are also present in the airborne dusts, together with insignificant levels of copper and silver, and, in one area, manganese. The disposal of used lead-acid batteries presents environmental issues, and is also a waste of recoverable materials. Recycling operations allow for the recovery of lead, which can then be sold back to battery manufacturers to form a closed loop. At the recycling facility lead is the chief airborne metal, together with minor antimony and tin, but several other metals are generally present in much smaller quantities, including copper, chromium, manganese and cadmium. Samplers used in these studies included the closed-face 37 mm filter cassette (the current US standard method for lead sampling), the 37 mm GSP or "cone" sampler, the 25 mm Institute of Occupational Medicine (IOM) inhalable sampler, the 25 mm Button sampler, and the open-face 25 mm cassette. Mixed cellulose-ester filters were used in all samplers. The filters were analyzed after sampling for their content of the various metals, particularly lead, that could be analyzed by the specific portable X-ray fluorescence (XRF) analyzer under study, and then were extracted with acid and analyzed by inductively coupled plasma optical emission spectroscopy (ICP-OES). The 25 mm filters were analyzed using a single XRF reading, while three readings on different parts of the filter were taken from the 37 mm filters. For lead at the mine concentrate mill, all five samplers gave good correlations (r2 > 0.96) between the two analytical methods over the entire range of found lead mass

  12. Dye Fluorescence Analysis from Bacterial Metabolism.

    Science.gov (United States)

    1984-04-01

    M were reported for the cell-free extracts of the cultured mouse lymphoma cells mentioned above and an in vitAo solution of porcine pancreas lipase ...fluorescence Fluorescent product Diacetyl fluorescein Lipase Bacterial metabolism 20. ABTRACT fCauhw a o de dif rNooeel md ~Id1)fp by block number) A...nonfluorescing dye is metabolized intracel- lularly by an organism through an enzyme-specific reaction . This produces a fluorescent product which when

  13. Comparative analysis of dose rates in bricks determined by neutron activation analysis, alpha counting and X-ray fluorescence analysis for the thermoluminescence fine grain dating method

    Science.gov (United States)

    Bártová, H.; Kučera, J.; Musílek, L.; Trojek, T.

    2014-11-01

    In order to evaluate the age from the equivalent dose and to obtain an optimized and efficient procedure for thermoluminescence (TL) dating, it is necessary to obtain the values of both the internal and the external dose rates from dated samples and from their environment. The measurements described and compared in this paper refer to bricks from historic buildings and a fine-grain dating method. The external doses are therefore negligible, if the samples are taken from a sufficient depth in the wall. However, both the alpha dose rate and the beta and gamma dose rates must be taken into account in the internal dose. The internal dose rate to fine-grain samples is caused by the concentrations of natural radionuclides 238U, 235U, 232Th and members of their decay chains, and by 40K concentrations. Various methods can be used for determining trace concentrations of these natural radionuclides and their contributions to the dose rate. The dose rate fraction from 238U and 232Th can be calculated, e.g., from the alpha count rate, or from the concentrations of 238U and 232Th, measured by neutron activation analysis (NAA). The dose rate fraction from 40K can be calculated from the concentration of potassium measured, e.g., by X-ray fluorescence analysis (XRF) or by NAA. Alpha counting and XRF are relatively simple and are accessible for an ordinary laboratory. NAA can be considered as a more accurate method, but it is more demanding regarding time and costs, since it needs a nuclear reactor as a neutron source. A comparison of these methods allows us to decide whether the time- and cost-saving simpler techniques introduce uncertainty that is still acceptable.

  14. Fluorescence Analysis of E. coli Bacteria in Water

    OpenAIRE

    Bulycheva, Elizaveta Vladimirovna; Korotkova, Elena Ivanovna; Voronova, Olesya Aleksandrovna; Kustova, A. A.; Petrova, Ekaterina Viktorovna

    2014-01-01

    The fluorescence analysis of Escherichia coli (E. coli) bacteria was done. It has been established that a luminescent signal from the one of metabolites (reduction form of nicotinamide adenine dinucleotide, NADH) can be adopted as a vitality indicator of the bacteria. This signal was chosen as an analytical signal. It was determined that the nature of this signal is fluorescence. In order to eliminate influence of the light scattering on this fluorescence signal optimal conditions were chosen.

  15. Phasor approaches simplify the analysis of tryptophan fluorescence data in protein denaturation studies

    NARCIS (Netherlands)

    Bader, A.N.; Visser, N.V.; Amerongen, van H.; Visser, A.J.W.G.

    2014-01-01

    The intrinsic fluorescence of tryptophan is frequently used to investigate the structure of proteins. The analysis of tryptophan fluorescence data is challenging: fluorescence (anisotropy) decays typically have multiple lifetime (correlation time) components and fluorescence spectra are broad and ex

  16. First attempt to obtain the bulk composition of ancient silver–copper coins by using XRF and GRT

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Suárez, A.I., E-mail: amoreno6@us.es [Centro Nacional de Aceleradores (Universidad de Sevilla-CSIC-Junta de Andalucía), Sevilla (Spain); Departamento de Física Aplicada I, Universidad de Sevilla, Seville (Spain); Ager, F.J. [Centro Nacional de Aceleradores (Universidad de Sevilla-CSIC-Junta de Andalucía), Sevilla (Spain); Departamento de Física Aplicada I, Universidad de Sevilla, Seville (Spain); Scrivano, S.; Ortega-Feliu, I. [Centro Nacional de Aceleradores (Universidad de Sevilla-CSIC-Junta de Andalucía), Sevilla (Spain); Gómez-Tubío, B. [Centro Nacional de Aceleradores (Universidad de Sevilla-CSIC-Junta de Andalucía), Sevilla (Spain); Departamento de Física Aplicada III, Universidad de Sevilla, Seville (Spain); Respaldiza, M.A. [Centro Nacional de Aceleradores (Universidad de Sevilla-CSIC-Junta de Andalucía), Sevilla (Spain); Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, Seville (Spain)

    2015-09-01

    Archeological silver–copper pieces often show surface enrichments in silver, either intentional or fortuitous. When this happens, non-destructive techniques like PIXE (Proton Induced X-ray Emission) and XRF (X-Ray Fluorescence) are not sufficient to access the whole bulk pieces because their penetration depths are typically of a few tens microns. If the archeological pieces cannot be cut or polished, it is necessary to apply other non-destructive techniques to access the bulk pieces. That way, archeological bronze pieces have been successfully studied combining XRF (or PIXE) with GRT (Gamma-Ray Transmission). In this work, the bulk composition of five silver Roman coins have been indirectly measured by combining XRF and GRT. These results were compared with previous works made by our group using the same coins by direct means of PIXE and XRF, so the accuracy of this indirect method could be tested.

  17. Micro-XRF for In Situ Geological Exploration of Other Planets

    Science.gov (United States)

    Wade, Lawrence A.; Hodyss, Robert P.; Allwood, Abigail C.; Gao, Ning; Kozaczek, Kris

    2013-01-01

    In situ analysis of rock chemistry is a fundamental tool for exploration of planets. To meet this need, a high-spatial-resolution micro x-ray fluorescence (Micro-XRF) instrument was developed that is capable of determining the elemental composition of rocks (elements Na U) with 100 microns spatial resolution, thus providing insight to the composition of features as small as sand grains and individual laminae. The resulting excitation beam is of sufficient intensity that high signal-to-noise punctual spectra are acquired in seconds to a few minutes using an Amptek Silicon Drift Detector (SDD). The instrument features a tightly focused x-ray tube and HVPS developed by Moxtek that provides up to 200 micro-A at 10 to 50 keV, with a custom polycapillary optic developed by XOS Inc. and integrated into a breadboard Micro-XRF (see figure). The total mass of the complete breadboard instrument is 2.76 kg, including mounting hardware, mounting plate, camera, laser, etc. A flight version of this instrument would require less than 5W nominal power and 1.5 kg mass. The instrument includes an Amptek SDD that draws 2.5 W and has a resolution of 135 to 155 eV FWHM at 5.9 keV. It weighs 180 g, including the preamplifier, digital pulse processor, multichannel analyzer, detector and preamp power supplies, and packaging. Rock samples are positioned relative to the instrument by a three-axis arm whose position is controlled by closed-loop translators (mimicking the robotic arm of a rover). The distance from the source to the detector is calculated from the position of a focused laser beam on the sample as imaged by the camera. The instrument enables quick scans of major elements in only 1 second, and rapid acquisition (30 s) of data with excellent signal-to-noise and energy resolution for trace element analysis

  18. Spectral Interferences Manganese (Mn) - Europium (Eu) Lines in X-Ray Fluorescence Spectrometry Spectrum

    Science.gov (United States)

    Tanc, Beril; Kaya, Mustafa; Gumus, Lokman; Kumral, Mustafa

    2016-04-01

    X-ray fluorescence (XRF) spectrometry is widely used for quantitative and semi quantitative analysis of many major, minor and trace elements in geological samples. Some advantages of the XRF method are; non-destructive sample preparation, applicability for powder, solid, paste and liquid samples and simple spectrum that are independent from chemical state. On the other hand, there are some disadvantages of the XRF methods such as poor sensitivity for low atomic number elements, matrix effect (physical matrix effects, such as fine versus course grain materials, may impact XRF performance) and interference effect (the spectral lines of elements may overlap distorting results for one or more elements). Especially, spectral interferences are very significant factors for accurate results. In this study, semi-quantitative analyzed manganese (II) oxide (MnO, 99.99%) was examined. Samples were pelleted and analyzed with XRF spectrometry (Bruker S8 Tiger). Unexpected peaks were obtained at the side of the major Mn peaks. Although sample does not contain Eu element, in results 0,3% Eu2O3 was observed. These result can occur high concentration of MnO and proximity of Mn and Eu lines. It can be eliminated by using correction equation or Mn concentration can confirm with other methods (such as Atomic absorption spectroscopy). Keywords: Spectral Interferences; Manganese (Mn); Europium (Eu); X-Ray Fluorescence Spectrometry Spectrum.

  19. Chlorophyll a fluorescence analysis in forests

    OpenAIRE

    M. Pollastrini; Holland, V; Brüggemann, W.; F. Bussotti

    2016-01-01

    A European-wide assessment of chlorophyll a fluorescence (ChlF, prompt fluorescence on dark-adapted samples) parameters in forest ecosystems was carried out in the years 2012-2013, within the 7FP FunDivEUROPE project. A total of 1596 trees growing in 209 stands distributed in six countries, from Mediterranean to boreal sites, were sampled. This paper shows the applicability of the ChlF in forest ecology surveys, the protocols adopted for leaf sampling and ChlF measurements, the variability of...

  20. CHLOROPHYLL a FLUORESCENCE ANALYSIS IN FORESTS

    OpenAIRE

    M. Pollastrini; Holland, V; Brüggemann, W.; F. Bussotti

    2016-01-01

    A European-wide assessment of chlorophyll a fluorescence (ChlF, prompt fluorescence on dark-adapted samples) parameters in forest ecosystems was carried out in the years 2012-2013, within the 7FP FunDivEUROPE project. A total of 1596 trees growing in 209 stands distributed in six countries, from Mediterranean to boreal sites, were sampled. This paper shows the applicability of the ChlF in forest ecology surveys, the protocols adopted for leaf sampling and ChlF measurements, the variability of...

  1. Analysis of Cholesterol Trafficking with Fluorescent Probes

    DEFF Research Database (Denmark)

    Maxfield, Frederick R.; Wustner, Daniel

    2012-01-01

    Cholesterol plays an important role in determining the biophysical properties of biological membranes, and its concentration is tightly controlled by homeostatic processes. The intracellular transport of cholesterol among organelles is a key part of the homeostatic mechanism, but sterol transport...... that can bind to cholesterol to reveal its distribution in cells. We also discuss the use of intrinsically fluorescent sterols that closely mimic cholesterol, as well as some minimally modified fluorophore-labeled sterols. Methods for imaging these sterols by conventional fluorescence microscopy...... and by multiphoton microscopy are described. Some label-free methods for imaging cholesterol itself are also discussed briefly....

  2. Portable XRF and PIXE as complementary techniques for the analysis of old books: study of decorated flyleaves and edges; FRX portatil y PIXE como tecnicas complementarias para el analisis de libros antiguos: estudio de guardas y cantos decorados

    Energy Technology Data Exchange (ETDEWEB)

    Torner M, L.; Gonzalez T, C. [Laboratorio de Conservacion, Biblioteca Nacional de Antropologia e Historia, INAH, Paseo dela Reforma y Gandhi s/n Chapultepec Polanco, Mexico DF 11560 (Mexico); Ruvalcaba S, J.L. [Instituto de Fisica, UNAM. A.P. 20-364, Mexico DF 01000 (Mexico)]. e-mail: luciatorner@gmail.com

    2006-07-01

    Traditionally in the study of ancient books, the binding (leather, parchment, cloth) and their decorations have not the same importance than other parts of the book. Most of the times, paper, inks and internal decorations attract entirely the attention for analytical studies. Nevertheless, it must be considered that the binding keep the book safe and it may be exposed D higher deterioration. Moreover, often it is changed and the historical value of this part of the book is lost. his is also the case of binding's decorations. For these reasons, it is clear that the binding of ancient books must be studied as a part of their material essence. In this work, methodology based on t]he combined use of microscopic and elemental analyses was applied in order to study four types of decorations of guards of books (marbled, colored, splashed, dotted). In particular, this study was focused on Colonial and Mexican books from XVIII and XIX centuries from the collection of the Biblioteca Nacional de Antropologia e Historia, lNAH. Twelve books and 62 decoration's colors were analyzed in situ, in the library, using a portable X-ray Fluorescence Spectroscopy system (XRF) for a quick nondestructive pigment identification and to select a reduced number of books for complementary analyses at the laboratory by Particle Induced X-ray Emission Spectroscopy (PIXE). By combining these nondestructive techniques, it was possible to identify most of the pigments used in the decorations and to establish a general pattern of use of colorants and pigments in XVIII and XIX centuries for the guard's decorations. This work represents the first study on this topic. (Author)

  3. Downsizing of Johansson spectrometer for X-ray fluorescence trace analysis with brilliant undulator source

    CERN Document Server

    Sakurai, K; Inoue, K; Yagi, N

    2001-01-01

    The downsizing of a Johansson-type X-ray fluorescence (XRF) spectrometer has been examined as a way of enhancing detection efficiency with a tolerable loss of energy resolution. A compact spectrometer equipped with a Ge(2 2 0) analyzing crystal with a Rowland radius of 120 mm has been tested with a highly brilliant helical undulator source at BL40XU, SPring-8. The energy resolution obtained for cobalt K alpha sub 1 (6930.32 eV) was 8.8 eV, which is 10-20 times better than that obtained using a Si(Li) detector, and effectively improved the signal-to-background ratio for XRF spectra. The combination of the present spectrometer and a third generation synchrotron source could provide new opportunities for trace analytical applications, which have been difficult so far by conventional synchrotron XRF experiments based on a Si(Li) detector system. The detection limit obtained for solid bulk samples has reached a level of several tens of ppb.

  4. Global analysis of fluorescence fluctuation data

    NARCIS (Netherlands)

    Skakun, V.V.; Hink, M.A.; Digris, A.V.; Engel, R.; Novikov, E.G.; Apanasovich, V.V.; Visser, A.J.W.G.

    2005-01-01

    Over the last decade the number of applications of fluorescence correlation spectroscopy (FCS) has grown rapidly. Here we describe the development and application of a software package, FCS Data Processor, to analyse the acquired correlation curves. The algorithms combine strong analytical power

  5. Mapping element distributions in plant tissues using synchrotron X-ray fluorescence techniques.

    Science.gov (United States)

    Donner, Erica; de Jonge, Martin D; Kopittke, Peter M; Lombi, Enzo

    2013-01-01

    Synchrotron-based X-ray fluorescence (XRF) is allowing substantial advances in several disciplines of plant science by allowing the in situ examination of elements within plant tissues. Continual improvements in detector speed, sensitivity, and resolution are increasing the diversity of questions that can be addressed using this technique, including the in situ analysis of elements (such as nutrients or toxicants) within fresh and hydrated tissues. Here, we describe the general principles for designing and conducting experiments for the examination of elemental distributions in plant material using micro-XRF.

  6. [New methodology for heavy metals measurement in water samples by PGNAA-XRF].

    Science.gov (United States)

    Jia, Wen-Bao; Zhang, Yan; Hei, Da-Qian; Ling, Yong-Sheng; Shan, Qing; Cheng, Can

    2014-11-01

    In the present paper, a new combined detection method was proposed using prompt gamma neutron activation analysis (PGNAA) and characteristic X-ray fluorescence to improve the heavy metals measurement accuracy for in-situ environmental water rejects analysis by PGNAA technology. Especially, the characteristic X-ray fluorescence (XRF) of heavy metals is induced by prompt gamma-ray directly instead of the traditional excitation sources. Thus, a combined measurement facility with an 241 AmBe neutron source, a BGO detector and a NaI-Be detector was developed to analyze the pollutants in water. The two detectors were respectively used to record prompt gamma-ray and characteristic X-ray fluorescence of heavy metals. The prompt gamma-ray intensity (I(γ)) and characteristic X-ray fluorescence intensity (I(x)) was determined by MCNP calculations for different concentration (c(i)) of chromium (Cr), cadmium (Cd), mercury (Hg) and lead (Pb), respectively. The simulation results showed that there was a good linear relationship between I(γ), I(x) and (c(i)), respectively. The empirical formula of combined detection method was given based on the above calculations. It was found that the combined detection method was more sensitive for high atomic number heavy metals like Hg and Pb measurement than low atomic number like Cr and Cd by comparing and analyzing I(γ) and I(x). The limits of detection for Hg and Pb by the combined measurement instrument were 17.4 and 24.2 mg x kg(-1), respectively.

  7. X-ray fluorescence in investigations of cultural relics and archaeological finds

    Energy Technology Data Exchange (ETDEWEB)

    Musilek, Ladislav, E-mail: musilek@fjfi.cvut.cz [Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Brehova 7, 115 19 Praha 1 (Czech Republic); Cechak, Tomas; Trojek, Tomas [Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Brehova 7, 115 19 Praha 1 (Czech Republic)

    2012-07-15

    Some characteristic features of X-ray fluorescence (XRF) analysis make it an ideal method for investigations of cultural relics and archaeological finds. It has therefore become a standard method used in archaeometry. Paintings, frescos, manuscripts, pottery, metalwork, glass, and many other objects are analysed with the aim of recognising their materials, production technologies and origin, and for identifying counterfeits. This paper reviews various techniques used in XRF analyses of works of art, summarises the advantages and limitations of the method, and presents some typical examples of its use. The general review is supplemented by some techniques used and some results achieved at CTU-FNSPE in Prague. - Highlights: Black-Right-Pointing-Pointer Review of XRF analysis in archaeometry. Black-Right-Pointing-Pointer Instrumentation for XRF analysis with various sources of radiation. Black-Right-Pointing-Pointer Materials and artefacts, which can be measured and information, which can be obtained. Black-Right-Pointing-Pointer XRF analysis of artworks at the CTU Prague.

  8. {sup 57}Fe Mössbauer, SEM/EDX, p-XRF and μ-XRF studies on a Dutch painting

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, R., E-mail: lehmann@acc.uni-hannover.de; Schmidt, H.-J. [Leibniz Universität Hannover, Institut für Anorganische Chemie (Germany); Costa, B. F. O. [University of Coimbra, CFisUC, Physics Department (Portugal); Blumers, M. [Joh. Gutenberg-Universität Mainz, Institut für Anorganische Chemie und Analytische Chemie (Germany); Sansano, A.; Rull, F. [Fisica de Materia Condensata, Centro de Astrobiologia, Universidade de Valladolid (Spain); Wengerowsky, D. [Leibniz Universität Hannover, Institut für Anorganische Chemie (Germany); Nürnberger, F.; Maier, H. J. [Leibniz Universität Hannover, Institut für Werkstoffkunde (Germany); Klingelhöfer, G. [University of Coimbra, CFisUC, Physics Department (Portugal); Renz, F., E-mail: renz@acd.uni-hannover.de [Leibniz Universität Hannover, Institut für Anorganische Chemie (Germany)

    2016-12-15

    The painting of a rich Jewish merchant “Bildnis eines jüdischen Kaufmanns” from the Netherlands is dated presumably to the 16{sup th} century. After a vivid historical background, i.e. robbed by the Nazis by order of Hermann Göring, it was recently discovered on an Austrian flea market. Different analysis methods were combined to identify the time of the production of this historically interesting looted art. Non-destructive MIMOS II Fe-57 Mössbauer spectroscopy was utilised for mesurements in selected spots. This mainly revealed haematite (α-Fe{sub 2}O{sub 3}) in the red curtain. In spots of the brown jacket Mössbauer spectra indicated the presence of mainly Iron(III) in super-paramagnetic oxide or oxide-hydroxide. Consecutively SEM measurements revealed a restoration by partly over-painting. The elementary composition of the pigments was examined by a portable-X-ray fluorescence. μ-XRF analysis for element distribution at different areas was performed. The look into a crack showed Zinc-white at the bottom of the crack. Traces of Titanium-white could be found within some locations on the surface of the painting. In terms of provenance of the artwork, the presence of Zink-white suggests that the painting was painted around the 19{sup th} century. Titanium-white indicates a reconstruction during the 20{sup th} century, approximately between 1917 and 1958.

  9. Elemental Analysis of Bone, Teeth, Horn and Antler in Different Animal Species Using Non-Invasive Handheld X-Ray Fluorescence.

    Directory of Open Access Journals (Sweden)

    Kittisak Buddhachat

    Full Text Available Mineralized tissues accumulate elements that play crucial roles in animal health. Although elemental content of bone, blood and teeth of human and some animal species have been characterized, data for many others are lacking, as well as species comparisons. Here we describe the distribution of elements in horn (Bovidae, antler (Cervidae, teeth and bone (humerus across a number of species determined by handheld X-ray fluorescence (XRF to better understand differences and potential biological relevance. A difference in elemental profiles between horns and antlers was observed, possibly due to the outer layer of horns being comprised of keratin, whereas antlers are true bone. Species differences in tissue elemental content may be intrinsic, but also related to feeding habits that contribute to mineral accumulation, particularly for toxic heavy metals. One significant finding was a higher level of iron (Fe in the humerus bone of elephants compared to other species. This may be an adaptation of the hematopoietic system by distributing Fe throughout the bone rather than the marrow, as elephant humerus lacks a marrow cavity. We also conducted discriminant analysis and found XRF was capable of distinguishing samples from different species, with humerus bone being the best source for species discrimination. For example, we found a 79.2% correct prediction and success rate of 80% for classification between human and non-human humerus bone. These findings show that handheld XRF can serve as an effective tool for the biological study of elemental composition in mineralized tissue samples and may have a forensic application.

  10. Fluorescence analysis of iodinated acetophenone derivatives.

    Science.gov (United States)

    Crivelaro, F; Oliveira, M R S; Lima, S M; Andrade, L H C; Casagrande, G A; Raminelli, C; Caires, A R L

    2015-03-15

    In the present paper the synthesis and optical characterization of iodinated acetophenone, 4-hydroxy-3-iodoacetophenone and 4-hydroxy-3,5-diiodoacetophenone obtained from 4-hydroxyacetophenone, were carried out. The optical features of iodinated molecules were determined by performing the UV-Vis absorption, fluorescence and thermal lens spectroscopies. The results showed that the optical properties of the 4-hydroxyacetophenone is altered when the iodine atom is inserted, as substituent, in the aromatic ring. Although it was determined that the optical feature was changed when one iodine atom was inserted in the aromatic ring (4-hydroxy-3-iodoacetophenone), the results revealed that emission behavior was strongly altered when two iodine atoms (4-hydroxy-3,5-diiodoacetophenone) were acting as substituents: the fluorescence quantum efficiency increases approximately 60%.

  11. [Development of Fluorescence Sensing Mechanism for Cell Functional Analysis].

    Science.gov (United States)

    Ojida, Akio; Takashima, Ippei

    2016-01-01

      Fluorescence probes are now widely used as indispensable tools in many cell functional analyses. At present, the design of fluorescent probes largely depends on the limited numbers of established sensing mechanisms such as photo-induced electron transfer (PET), photo-induced charge transfer (PCT), and fluorescence resonance energy transfer (FRET). Although these mechanisms are versatile in metal ion sensing, introduction of a new sensing mechanism is highly desirable not only to design a more sophisticated probe with high selectivity and sensitivity but also to expand the diversity of the sensing targets to unveil biological phenomena. In this article, we report the design of dual emission fluorescent probes for metal ions based on a unique fluorescence-sensing mechanism. The fluorescent probes incorporating this sensing mechanism displayed a large emission red-shift on complexation with metal ions such as Cd(II) and Ag(I). X-ray crystallography and theoretical computational calculations of the Cd(II) and Ag(I) complexes revealed that the emission shift was induced by non-coordination contact between the aromatic ring of fluorophore and the metal ion (arene-metal ion contact; AM-contact), which modulates the energy levels of molecular orbitals. The fluorescent probe was successfully applied to in cell ratiometric bioimaging of bioactive hydrogen sulfide (H2S). These successful applications highlight the usefulness of this sensing mechanism in biological fluorescence analysis.

  12. X-ray fluorescence spectrometry and related techniques an introduction

    CERN Document Server

    Margui, Eva

    2013-01-01

    X-ray fluorescence spectrometry (XRF) is a well-established analytical technique for qualitative and quantitative elemental analysis of a wide variety of routine quality control and research samples. Among its many desirable features, it delivers true multi-element character analysis, acceptable speed and economy, easy of automation, and the capacity to analyze solid samples. This remarkable contribution to this field provides a comprehensive and up-to-date account of basic principles, recent developments, instrumentation, sample preparation procedures, and applications of XRF analysis. If you are a professional in materials science, analytic chemistry, or physics, you will benefit from not only the review of basics, but also the newly developed technologies with XRF. Those recent technological advances, including the design of low-power micro- focus tubes and novel X-ray optics and detectors, have made it possible to extend XRF to the analysis of low-Z elements and to obtain 2D or 3D information on a microme...

  13. Portable apparatus for in situ x-ray diffraction and fluorescence analyses of artworks.

    Science.gov (United States)

    Eveno, Myriam; Moignard, Brice; Castaing, Jacques

    2011-10-01

    A portable X-ray fluorescence/X-ray diffraction (XRF/XRD) system for artwork studies has been designed constructed and tested. It is based on Debye Scherrer XRD in reflection that takes advantage of many recent improvements in the handling of X-rays (polycapillary optics; advanced two-dimensional detection). The apparatus is based on a copper anode air cooled X-ray source, and the XRD analysis is performed on a 5-20 μm thick layer from the object surface. Energy dispersive XRF elemental analysis can be performed at the same point as XRD, giving elemental compositions that support the interpretation of XRD diagrams. XRF and XRD analyses were tested to explore the quality and the limits of the analytical technique. The XRD diagrams are comparable in quality with diagrams obtained with conventional laboratory equipment. The mineral identification of materials in artwork is routinely performed with the portable XRF-XRD system. Examples are given for ceramic glazes containing crystals and for paintings where the determination of pigments is still a challenge for nondestructive analysis. For instance, lead compounds that provide a variety of color pigments can be easily identified as well as a pigment such as lapis lazuli that is difficult to identify by XRF alone. More than 70 works of art have been studied in situ in museums, monuments, etc. In addition to ceramics and paintings, these works include bronzes, manuscripts, etc., which permit improvement in the comprehension of ancient artistic techniques.

  14. Global analysis of fluorescence decays to probe the internal dynamics of fluorescently labeled macromolecules.

    Science.gov (United States)

    Duhamel, Jean

    2014-03-11

    The aim of this review is to introduce the reader first to the mathematical complexity associated with the analysis of fluorescence decays acquired with solutions of macromolecules labeled with a fluorophore and its quencher that are capable of interacting with each other via photophysical processes within the macromolecular volume, second to the experimental and mathematical approaches that have been proposed over the years to handle this mathematical complexity, and third to the information that one can expect to retrieve with respect to the internal dynamics of such fluorescently labeled macromolecules. In my view, the ideal fluorophore-quencher pair to use in studying the internal dynamics of fluorescently labeled macromolecules would involve a long-lived fluorophore, a fluorophore and a quencher that do not undergo energy migration, and a photophysical process that results in a change in fluorophore emission upon contact between the excited fluorophore and quencher. Pyrene, with its ability to form an excimer on contact between excited-state and ground-state species, happens to possess all of these properties. Although the concepts described in this review apply to any fluorophore and quencher pair sharing pyrene's exceptional photophysical properties, this review focuses on the study of pyrene-labeled macromolecules that have been characterized in great detail over the past 40 years and presents the main models that are being used today to analyze the fluorescence decays of pyrene-labeled macromolecules reliably. These models are based on Birks' scheme, the DMD model, the fluorescence blob model, and the model free analysis. The review also provides a step-by-step protocol that should enable the noneducated user to achieve a successful decay analysis exempt of artifacts. Finally, some examples of studies of pyrene-labeled macromolecules are also presented to illustrate the different types of information that can be retrieved from these fluorescence decay

  15. Instrumental fundamental parameters and selected applications of the microfocus X-ray fluorescence analysis at a scanning electron microscope; Instrumentelle Fundamentalparameter und ausgewaehlte Anwendungen der Mikrofokus-Roentgenfluoreszenzanalyse am Rasterelektronenmikroskop

    Energy Technology Data Exchange (ETDEWEB)

    Rackwitz, Vanessa

    2012-05-30

    For a decade X-ray sources have been commercially available for the microfocus X-ray fluorescence analysis ({mu}-XRF) and offer the possibility of extending the analytics at a scanning electron microscope (SEM) with an attached energy dispersive X-ray spectrometer (EDS). By using the {mu}-XRF it is possible to determine the content of chemical elements in a microscopic sample volume in a quantitative, reference-free and non-destructive way. For the reference-free quantification with the XRF the Sherman equation is referred to. This equation deduces the intensity of the detected X-ray intensity of a fluorescence peak to the content of the element in the sample by means of fundamental parameters. The instrumental fundamental parameters of the {mu}-XRF at a SEM/EDS system are the excitation spectrum consisting of X-ray tube spectrum and the transmission of the X-ray optics, the geometry and the spectrometer efficiency. Based on a calibrated instrumentation the objectives of this work are the development of procedures for the characterization of all instrumental fundamental parameters as well as the evaluation and reduction of their measurement uncertainties: The algorithms known from the literature for the calculation of X-ray tube spectrum are evaluated with regard to their deviations in the spectral distribution. Within this work a novel semi-empirical model is improved with respect to its uncertainties and enhanced in the low energy range as well as extended for another three anodes. The emitted X-ray tube spectrum is calculated from the detected one, which is measured at an especially developed setup for the direct measurement of X-ray tube spectra. This emitted X-ray tube spectrum is compared to the one calculated on base of the model of this work. A procedure for the determination of the most important parameters of an X-ray semi-lens in parallelizing mode is developed. The temporal stability of the transmission of X-ray full lenses, which have been in regular

  16. Fluorescence Image Analyzer - FLIMA: software for quantitative analysis of fluorescence in situ hybridization.

    Science.gov (United States)

    Silva, H C M; Martins-Júnior, M M C; Ribeiro, L B; Matoso, D A

    2017-03-30

    The Fluorescence Image Analyzer (FLIMA) software was developed for the quantitative analysis of images generated by fluorescence in situ hybridization (FISH). Currently, the images of FISH are examined without a coefficient that enables a comparison between them. Through GD Graphics Library, the FLIMA software calculates the amount of pixels on image and recognizes each present color. The coefficient generated by the algorithm shows the percentage of marks (probes) hybridized on the chromosomes. This software can be used for any type of image generated by a fluorescence microscope and is able to quantify digoxigenin probes exhibiting a red color, biotin probes exhibiting a green color, and double-FISH probes (digoxigenin and biotin used together), where the white color is displayed.

  17. Quantitative analysis for nonlinear fluorescent spectra based on edges matching

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A novel spectra-edge-matching approach is proposed for the quantitative analysis of the nonlinear fluorescence spectra of the air impurities excited by a femtosecond laser.The fluorescence spectra are first denoised and compressed,both by wavelet transform,and several peak groups are then picked from each spectrum according to a threshold of intensity and are used to extract the spectral features through principal component analysis.It is indicated that the first two principle components actually cover up to 98% of the total information and are sufficient for the final concentration analysis.The analysis reveals a monotone relationship between the spectra intensity and the concentration of the air impurities,suggesting that the femtosecond laser induced fluorescence spectroscopy along with the proposed spectra analysis method can become a powerful tool for monitoring environmental pollutants.

  18. Digital analysis and sorting of fluorescence lifetime by flow cytometry.

    Science.gov (United States)

    Houston, Jessica P; Naivar, Mark A; Freyer, James P

    2010-09-01

    Frequency-domain flow cytometry techniques are combined with modifications to the digital signal-processing capabilities of the open reconfigurable cytometric acquisition system (ORCAS) to analyze fluorescence decay lifetimes and control sorting. Real-time fluorescence lifetime analysis is accomplished by rapidly digitizing correlated, radiofrequency (RF)-modulated detector signals, implementing Fourier analysis programming with ORCAS' digital signal processor (DSP) and converting the processed data into standard cytometric list mode data. To systematically test the capabilities of the ORCAS 50 MS/sec analog-to-digital converter (ADC) and our DSP programming, an error analysis was performed using simulated light scatter and fluorescence waveforms (0.5-25 ns simulated lifetime), pulse widths ranging from 2 to 15 micros, and modulation frequencies from 2.5 to 16.667 MHz. The standard deviations of digitally acquired lifetime values ranged from 0.112 to >2 ns, corresponding to errors in actual phase shifts from 0.0142 degrees to 1.6 degrees. The lowest coefficients of variation (digital analysis system to a previous analog phase-sensitive flow cytometer demonstrated similar precision and accuracy on measurements of a range of fluorescent microspheres, unstained cells, and cells stained with three common fluorophores. Sorting based on fluorescence lifetime was accomplished by adding analog outputs to ORCAS and interfacing with a commercial cell sorter with a RF-modulated solid-state laser. Two populations of fluorescent microspheres with overlapping fluorescence intensities but different lifetimes (2 and 7 ns) were separated to approximately 98% purity. Overall, the digital signal acquisition and processing methods we introduce present a simple yet robust approach to phase-sensitive measurements in flow cytometry. The ability to simply and inexpensively implement this system on a commercial flow sorter will allow both better dissemination of this technology and better

  19. Fluorescence spectrum analysis of atherosclerotic plaque using doxycycline.

    Science.gov (United States)

    Miyagi, M; Nakajima, H; Katoh, T; Usui, M; Amemiya, T; Nagai, Y; Ibukiyama, C

    1999-05-01

    Using doxycycline (DOXY), fluorescence spectrum analysis was performed on arteriosclerotic lesions, and the efficacy of this method was examined in basic and clinical studies. In the basic study, DOXY 50 mg was administered intravenously to arteriosclerotic rabbits, and the thoracoabdominal aorta removed. Fluorescence spectral analysis was performed on each specimen, and the fluorescence spectral pattern, peak intensity and degree of intimal hypertrophy were studied. In the clinical study, DOXY 200 mg was administered intravenously to 6 human subjects with stable angina and coronary arterial stenosis of greater than 90%, and coronary angiography, coronary angioscopy and fluorescence spectral analysis were performed. DOXY accumulation in the arteriosclerotic intima of rabbit aortae was confirmed. The fluorescence spectrum was monomodal, peaking at around 532 nm. In the noncalcification group, significant correlation was observed between peak intensity and arteriosclerotic intimal thickness. Using DOXY as a fluorescent marker, it was possible to assess the level of arteriosclerotic intimal hypertrophy. Clinically, it was possible to obtain the DOXY spectrum of the coronary arteries.

  20. Methodology to detect and quantify the presence of recycled PET in bottle-grade PET blends: mass spectrometry (MALDI-TOF) and X-ray fluorescence; Metodologia para detectar e quantificar a presenca do PET reciclado em misturas de PET grau-garrafa: espectrometria de massas (MALDI-MS) e fluorescencia de raios-X (XRF)

    Energy Technology Data Exchange (ETDEWEB)

    Romao, Wanderson; Franco, Marcos F.; Gozzo, Fabio C.; Iglesias, Amadeu H.; Sanvido, Gustavo B.; Eberlin, Marcos N.; Bueno, Maria I.M.S.; Maretto, Danilo A.; Poppi, Ronei J.; Paoli, Marco-Aurelio de, E-mail: wromao@iqm.unicamp.b [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2009-07-01

    New methodologies were developed to detect and to quantify the presence of the bottle-grade post-consumption PET (PET{sub pc}-btg) in the bottle-grade virgin PET (PET{sub v}-btg), preventing frauds and illegal uses of recycled PET{sub pc}-btg. MALDI-MS results together with PCA (principal component analysis) was used to classify the samples into several groups: intrinsic viscosity changes; processed and not submitted to some industrial process; wt % PET{sub pc}-btg in the PET{sub v}-btg; synthesis process change (manufacturer). From these results, it was possible to create a calibration model, that differentiated between PET{sub v}-btg and PET{sub pc}-btg resins. XRF results show that some manufacturers use one or more catalysts for PET{sub v}-btg synthesis, where our prediction model is valid only when the studied resin is known. We observed also that the Fe concentration in PET increase in as a function of the recycling process. Therefore, this variable could be used, in the future work, to create chemometric models including a higher number of variables. (author)

  1. SDD探测器在X荧光分析系统中的应用%Application of SDD detector in the X-ray fluorescence analysis system

    Institute of Scientific and Technical Information of China (English)

    何伟龙; 王健; 杨勇

    2012-01-01

      介绍了硅漂移(SDD)探测器在X荧光分析系统中的应用,与SI-PIN探测器在能量分辨率、计数率等性能指标上的对比,以及在系统检出限上的实验对比,SDD探测器在性能指标及检出限上有着较大的优势。%  In this paper, the application of silicon drift detector (SDD) in the X-ray fluorescence (XRF) analysis system was mostly discussed. Compared with SI-PIN detector at the key performance parameter like energy resolution and count rates, and also on the detection limit, the SDD detector had a larger advantage.

  2. Evaluation of a novel portable x-ray fluorescence screening tool for detection of arsenic exposure.

    Science.gov (United States)

    McIver, David J; VanLeeuwen, John A; Knafla, Anthony L; Campbell, Jillian A; Alexander, Kevin M; Gherase, Mihai R; Guernsey, Judith R; Fleming, David E B

    2015-12-01

    A new portable x-ray fluorescence (XRF) screening tool was evaluated for its effectiveness in arsenic (As) quantification in human finger and toe nails ([Formula: see text]). Nail samples were measured for total As concentration by XRF and inductively coupled plasma-mass spectrometry (ICP-MS). Using concordance correlation coefficient (CCC), kappa, diagnostic sensitivity (Sn) and specificity (Sp), and linear regression analyses, the concentration of As measured by XRF was compared to ICP-MS. The CCC peaked for scaled values of fingernail samples, at 0.424 (95% CI: 0.065-0.784). The largest kappa value, 0.400 (95% CI:  -0.282-1.000), was found at a 1.3 μg g(-1) cut-off concentration, for fingernails only, and the largest kappa at a clinically relevant cut-off concentration of 1.0 μg g(-1) was 0.237 (95% CI:  -0.068-0.543), again in fingernails. Analyses generally showed excellent XRF Sn (up to 100%, 95% CI: 48-100%), but low Sp (up to 30% for the same analysis, 95% CI: 14-50%). Portable XRF shows some potential for use as a screening tool with fingernail samples. The difference between XRF and ICP-MS measurements decreased as sample mass increased to 30 mg. While this novel method of As detection in nails has shown relatively high agreement in some scenarios, this portable XRF is not currently considered suitable as a substitute for ICP-MS.

  3. XRF Method Determination of Nickel 、Chrome、Antimony、Niobium、Molybdenum、Titanium、Vanadium、Lead in Molten iron%XRF 法测定铁水中镍铬锑铌钼钛钒铅

    Institute of Scientific and Technical Information of China (English)

    张莉; 苏红梅

    2014-01-01

    Sample preparation conditions and the XRF analysis conditions were studied,By XRF method for determining the content of Ni、Cr、Sb、Nb、Mo、Ti、V、Pb of molten iron. The method has fast speed,Less investment and better accuracy and precision,The results obtained with wet chemical analysis.%研究了样品制备条件和 XRF 的分析条件,采用 XRF 法测定铁水中 Ni、Cr、Sb、Nb、Mo、Ti、V、Pb 元素的含量。本法分析速度快,投资少,测量准确度和精密度较好,所得结果与湿法化学分析吻合。

  4. CHLOROPHYLL a FLUORESCENCE ANALYSIS IN FORESTS

    Directory of Open Access Journals (Sweden)

    M. Pollastrini

    2016-03-01

    Full Text Available A European-wide assessment of chlorophyll a fluorescence (ChlF, prompt fluorescence on dark-adapted samples parameters in forest ecosystems was carried out in the years 2012-2013, within the 7FP FunDivEUROPE project. A total of 1596 trees growing in 209 stands distributed in six countries, from Mediterranean to boreal sites, were sampled. This paper shows the applicability of the ChlF in forest ecology surveys, the protocols adopted for leaf sampling and ChlF measurements, the variability of the ChlF parameters within and between trees, their dependence to environmental factors and the relationships with other functional leaf traits. The most relevant findings were as follows: (i The least variable ChlF parameter within and between the trees was the maximum quantum yield of primary photochemistry (FV/FM, whereas the performance indices (PIABS and PITOT showed the highest variability; (ii for a given tree, the ChlF parameters measured at two heights of the crown (top and bottom leaves were correlated and, in coniferous species, the ChlF parameters were correlated between different needle age classes (from the current year and previous year; (iii the ChlF parameters showed a geographical pattern, and the photochemical performance of the forest trees was higher in central Europe than in the edge sites (northernmost and southernmost; and (iv ChlF parameters showed different sensitivity to specific environmental factors: FV/FM increased with the increase of the leaf area index of stands and soil fertility; ΔVIP was reduced under high temperature and drought. The photochemical responses of forest tree species, analyzed with ChlF parameters, were influenced by the ecology of the trees (i.e. their functional groups, continental distribution, successional status, etc., tree species’ richness and composition of the stands. Our results support the applicability and usefulness of the ChlF in forest monitoring investigations on a large spatial scale and

  5. Algorithms for a hand-held miniature x-ray fluorescence analytical instrument

    Energy Technology Data Exchange (ETDEWEB)

    Elam, W.T.; Newman, D.; Ziemba, F. [and others

    1998-12-31

    The purpose of this joint program was to provide technical assistance with the development of a Miniature X-ray Fluorescence (XRF) Analytical Instrument. This new XRF instrument is designed to overcome the weaknesses of spectrometers commercially available at the present time. Currently available XRF spectrometers (for a complete list see reference 1) convert spectral information to sample composition using the influence coefficients technique or the fundamental parameters method. They require either a standard sample with composition relatively close to the unknown or a detailed knowledge of the sample matrix. They also require a highly-trained operator and the results often depend on the capabilities of the operator. In addition, almost all existing field-portable, hand-held instruments use radioactive sources for excitation. Regulatory limits on such sources restrict them such that they can only provide relatively weak excitation. This limits all current hand-held XRF instruments to poor detection limits and/or long data collection times, in addition to the licensing requirements and disposal problems for radioactive sources. The new XRF instrument was developed jointly by Quantrad Sensor, Inc., the Naval Research Laboratory (NRL), and the Department of Energy (DOE). This report describes the analysis algorithms developed by NRL for the new instrument and the software which embodies them.

  6. Possible Radiation-Induced Damage to the Molecular Structure of Wooden Artifacts Due to Micro-Computed Tomography, Handheld X-Ray Fluorescence, and X-Ray Photoelectron Spectroscopic Techniques

    Directory of Open Access Journals (Sweden)

    Madalena Kozachuk

    2016-05-01

    Full Text Available This study was undertaken to ascertain whether radiation produced by X-ray photoelectron spectroscopy (XPS, micro-computed tomography (μCT and/or portable handheld X-ray fluorescence (XRF equipment might damage wood artifacts during analysis. Changes at the molecular level were monitored by Fourier transform infrared (FTIR analysis. No significant changes in FTIR spectra were observed as a result of μCT or handheld XRF analysis. No substantial changes in the collected FTIR spectra were observed when XPS analytical times on the order of minutes were used. However, XPS analysis collected over tens of hours did produce significant changes in the FTIR spectra.

  7. The analysis of thallium in geological materials by radiochemical neutron activation and x-ray fluorescence spectrometry: a comparison

    Energy Technology Data Exchange (ETDEWEB)

    McGoldrick, P.J.; Robinson, P. [Tasmania Univ., Sandy Bay, TAS (Australia)

    1993-12-31

    Carrier-based radiochemical neutron activation (RNAA) is a precise and accurate technique for the analysis of Tl in geological materials. For about a decade, until the mid-80s, a procedure modified from Keays et al. (1974) was used at the University of Melbourne to analyse for Tl in a wide variety of geological materials. Samples of powdered rock weighing several hundred milligrams each were irradiated in HIFAR for between 12 hours and 1 week, and subsequently fused with a sodium hydroxide - sodium peroxide mixture and several milligrams of inactive Tl carrier. Following acid digestion of the fusion mixture anion exchange resin was used to separate Tl from the major radioactive rock constituents. The Tl was then stripped from the resin and purified as thallium iodide and a yield measured gravimetrically. Activity from {sup 204}Tl (a {beta}-emitter with a 3 8 year half-life) was measured and Tl determined by reference to pure chemical standards irradiated and processed along with the unkowns. Detection limits for the longer irradiations were about one part per billion. Precision was monitored by repeat analyses of `internal standard` rocks and was estimated to be about five to ten percent (one standard deviation). On the other hand, X-ray fluorescence spectrometry (XRF) was seen as an excellent cost-effective alternative for thallium analysis in geological samples, down to 1 ppm. 6 refs. 1 tab., 1 fig.

  8. Analysis of nuclear materials by energy dispersive x-ray fluorescence and spectral effects of alpha decay

    Energy Technology Data Exchange (ETDEWEB)

    Worley, Christopher G [Los Alamos National Laboratory

    2009-01-01

    Energy dispersive X-ray fluorescence (EDXRF) spectra collected from alpha emitters are complicated by artifacts inherent to the alpha decay process, particularly when using portable instruments. For example, {sup 239}Pu EDXRF spectra exhibit a prominent uranium L X-ray emission peak series due to sample alpha decay rather than source-induced X-ray fluorescence. A portable EDXRF instrument was used to collect spectra from plutonium, americium, and a Pu-contaminated steel sample. The plutonium sample was also analyzed by wavelength dispersive XRF to demonstrate spectral differences observed when using these very different instruments.

  9. Synchronous fluorescence spectroscopy for analysis of wine and wine distillates

    Science.gov (United States)

    Andreeva, Ya.; Borisova, E.; Genova, Ts.; Zhelyazkova, Al.; Avramov, L.

    2015-01-01

    Wine and brandies are multicomponent systems and conventional fluorescence techniques, relying on recording of single emission or excitation spectra, are often insufficient. In such cases synchronous fluorescence spectra can be used for revealing the potential of the fluorescence techniques. The technique is based on simultaneously scanning of the excitation and emission wavelength with constant difference (Δλ) maintained between them. In this study the measurements were made using FluoroLog3 spectrofluorimeter (HORIBA Jobin Yvon, France) and collected for excitation and emission in the wavelength region 220 - 700 nm using wavelength interval Δλ from 10 to 100 nm in 10 nm steps. This research includes the results obtained for brandy and red wine samples. Fluorescence analysis takes advantage in the presence of natural fluorophores in wines and brandies, such as gallic, vanillic, p-coumaric, syringic, ferulic acid, umbelliferone, scopoletin and etc. Applying of synchronous fluorescence spectroscopy for analysis of these types of alcohols allows us to estimate the quality of wines and also to detect adulteration of brandies like adding of a caramel to wine distillates for imitating the quality of the original product aged in oak casks.

  10. 3-D Image Analysis of Fluorescent Drug Binding

    Directory of Open Access Journals (Sweden)

    M. Raquel Miquel

    2005-01-01

    Full Text Available Fluorescent ligands provide the means of studying receptors in whole tissues using confocal laser scanning microscopy and have advantages over antibody- or non-fluorescence-based method. Confocal microscopy provides large volumes of images to be measured. Histogram analysis of 3-D image volumes is proposed as a method of graphically displaying large amounts of volumetric image data to be quickly analyzed and compared. The fluorescent ligand BODIPY FL-prazosin (QAPB was used in mouse aorta. Histogram analysis reports the amount of ligand-receptor binding under different conditions and the technique is sensitive enough to detect changes in receptor availability after antagonist incubation or genetic manipulations. QAPB binding was concentration dependent, causing concentration-related rightward shifts in the histogram. In the presence of 10 μM phenoxybenzamine (blocking agent, the QAPB (50 nM histogram overlaps the autofluorescence curve. The histogram obtained for the 1D knockout aorta lay to the left of that of control and 1B knockout aorta, indicating a reduction in 1D receptors. We have shown, for the first time, that it is possible to graphically display binding of a fluorescent drug to a biological tissue. Although our application is specific to adrenergic receptors, the general method could be applied to any volumetric, fluorescence-image-based assay.

  11. Monitoring of WEEE plastics in regards to brominated flame retardants using handheld XRF

    Energy Technology Data Exchange (ETDEWEB)

    Aldrian, Alexia, E-mail: alexia.aldrian@unileoben.ac.at [Chair of Waste Processing Technology and Waste Management, Montanuniversitaet Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria); Ledersteger, Alfred, E-mail: a.ledersteger@saubermacher.at [Saubermacher Dienstleistungs AG, Hans-Roth-Straße 1, 8073 Feldkirchen bei Graz (Austria); Pomberger, Roland, E-mail: roland.pomberger@unileoben.ac.at [Chair of Waste Processing Technology and Waste Management, Montanuniversitaet Leoben, Franz-Josef-Straße 18, 8700 Leoben (Austria)

    2015-02-15

    Highlights: • Specification of an empirical factor for conversion from bromine to PBB and PBDE. • The handheld XRF device was validated for this particular application. • A very large number of over 4600 pieces of monitor housings was analysed. • The recyclable fraction mounts up to 85% for TV but only 53% of PC waste plastics. • A high percentage of pieces with bromine contents of over 50,000 ppm was obtained. - Abstract: This contribution is focused on the on-site determination of the bromine content in waste electrical and electronic equipment (WEEE), in particular waste plastics from television sets (TV) and personal computer monitors (PC) using a handheld X-ray fluorescence (XRF) device. The described approach allows the examination of samples in regards to the compliance with legal specifications for polybrominated biphenyls (PBBs) and polybrominated diphenyl ethers (PBDEs) directly after disassembling and facilitates the sorting out of plastics with high contents of brominated flame retardants (BFRs). In all, over 3000 pieces of black (TV) and 1600 pieces of grey (PC) plastic waste were analysed with handheld XRF technique for this study. Especially noticeable was the high percentage of pieces with a bromine content of over 50,000 ppm for TV (7%) and PC (39%) waste plastics. The applied method was validated by comparing the data of handheld XRF with results obtained by GC–MS. The results showed the expected and sufficiently accurate correlation between these two methods. It is shown that handheld XRF technique is an effective tool for fast monitoring of large volumes of WEEE plastics in regards to BFRs for on-site measurements.

  12. Investigation of gunshot residue patterns using milli-XRF-techniques: first experiences in casework

    Science.gov (United States)

    Schumacher, Rüdiger; Barth, Martin; Neimke, Dieter; Niewöhner, Ludwig

    2010-06-01

    The investigation of gunshot residue (GSR) patterns for shooting range estimation is usually based on visualizing the lead, copper, or nitrocellulose distributions on targets like fabric or adhesive tape by chemographic color tests. The method usually provides good results but has its drawbacks when it comes to the examination of ammunition containing lead-free primers or bloody clothing. A milli-X-ray fluorescence (m-XRF) spectrometer with a large motorized stage can help to circumvent these problems allowing the acquisition of XRF mappings of relatively large areas (up to 20 x 20 cm) in millimeter resolution within reasonable time (2-10 hours) for almost all elements. First experiences in GSR casework at the Forensic Science Institute of the Bundeskriminalamt (BKA) have shown, that m-XRF is a useful supplementation for conventional methods in shooting ranges estimation, which helps if there are problems in transferring a GSR pattern to secondary targets (e.g. bloody or stained garments) or if there is no suitable color test available for the element of interest. The resulting elemental distributions are a good estimate for the shooting range and can be evaluated by calculating radial distributions or integrated count rates of irregular shaped regions like pieces of human skin which are too small to be investigated with a conventional WD-XRF spectrometer. Beside a mapping mode the milli-XRF offers also point and line scan modes which can also be utilized in gunshot crime investigations as a quick survey tool to identify bullet holes based on the elements present in the wipe ring.

  13. Use of a field portable X-Ray fluorescence analyzer to determine the concentration of lead and other metals in soil samples.

    Science.gov (United States)

    Clark, S; Menrath, W; Chen, M; Roda, S; Succop, P

    1999-01-01

    Field portable methods are often needed in risk characterization, assessment and management to rapidly determine metal concentrations in environmental samples. Examples are for determining: "hot spots" of soil contamination, whether dust wipe lead levels meet housing occupancy standards, and worker respiratory protection levels. For over 30 years portable X-Ray Fluorescence (XRF) analyzers have been available for the in situ, non-destructive, measurement of lead in paint. Recent advances made possible their use for analysis of airborne dust filter samples, soil, and dust wipes. Research at the University of Cincinnati with the NITON 700 Series XRF instrument (40 millicurie Cadmium 109 source, L X-Rays) demonstrated its proficiency on air sample filters (NIOSH Method No. 7702, "Lead by Field Portable XRF; limit of detection 6 microg per sample; working range 17-1,500 microg/m3 air). Research with lead dust wipe samples from housing has also shown promising results. This XRF instrument was used in 1997 in Poland on copper smelter area soil samples with the cooperation of the Wroclaw Medical Academy and the Foundation for the Children from the Copper Basin (Legnica). Geometric mean soil lead concentrations were 200 ppm with the portable XRF, 201 ppm with laboratory-based XRF (Kevex) and 190 ppm using atomic absorption (AA). Correlations of field portable XRF and AA results were excellent for samples sieved to less than 125 micrometers with R-squared values of 0.997, 0.957, and 0.976 for lead, copper and zinc respectively. Similarly, correlations were excellent for soil sieved to less than 250 micrometers, where R-squared values were 0. 924, 0.973, and 0.937 for lead, copper and zinc, respectively. The field portable XRF instrument appears to be useful for the determination of soil pollution by these metals in industrial regions.

  14. Feasibility study of the application of micro-Raman imaging as complement to micro-XRF imaging

    Science.gov (United States)

    Deneckere, A.; Vekemans, B.; van de Voorde, L.; de Paepe, P.; Vincze, L.; Moens, L.; Vandenabeele, P.

    2012-02-01

    X-ray fluorescence (XRF) spectroscopy and Raman spectroscopy are preferential analytical techniques to study cultural heritage objects, since both techniques may provide complementary information in a non-destructive manner. Moreover, the application of microscopic beams allows the investigation of heterogeneous samples on the microscopic level and the study of the heterogeneity of particular samples. The micro-XRF method became already a routine analytical imaging method also because of the well-established spectrum evaluation methodology enabling specific data handling procedures. These include multivariate statistical analysis procedures such as principal components analysis (PCA) in order to explore and describe the acquired data, and clustering techniques in order to find similar pixels (or areas) in the obtained images. In the case of the micro-Raman technique, however, the usual approach is to perform a single spot analysis of only a few selected positions in order to ultimately identify the material on the basis of the comparison with Raman spectra obtained from reference materials. However, when samples are heterogeneous, imaging is still to be preferred in order to deal with the problem of sampling. With the arrival of a new micro-Raman spectrometer at the UGent laboratories, there was the need to explore the possibilities of Raman imaging. One of the most important aspects of imaging is the time needed for the analysis. Therefore, the influence of different instrumental parameters, such as resolution (low or high) and measuring time per pixel, on the quality of Raman spectra and images was investigated in order to evaluate the possibility of performing fast Raman mappings because of the need to identify the regions of interest on the art object in a more systematic manner.

  15. Quantitative analysis of concrete using portable x-ray fluorescence: Method development and validation

    Energy Technology Data Exchange (ETDEWEB)

    Washington, Aaron L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Narrows, William [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Christian, Jonathan H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Msgwood, Leroy [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-07-27

    During Decommissioning and Demolition (D&D) activities at SRS, it is important that the building be screened for radionuclides and heavy metals to ensure that the proper safety and disposal metrics are in place. A major source of contamination at DOE facilities is the accumulation of mercury contamination, from nuclear material processing and Liquid Waste System (LWS). This buildup of mercury could possibly cause harm to any demolition crew or the environment should this material be released. The current standard method is to take core samples in various places in the facility and use X-ray fluorescence (XRF) to detect the contamination. This standard method comes with a high financial value due to the security levels of these sample facilities with unknown contamination levels. Here in we propose the use of portable XRF units to detect for this contamination on-site. To validate this method, the instrument has to be calibrated to detect the heavy metal contamination, be both precise with the known elemental concentrations and consistent with its actual results of a sample concrete and pristine contaminant, and be able to detect changes in the sample concrete’s composition. After receiving the various concrete samples with their compositions found by a XRF wave-dispersive method, the calibration factor’s linear regressions were adjusted to give the baseline concentration of the concrete with no contamination. Samples of both concrete and concrete/flyash were evaluated; their standard deviations revealed that the measurements were consistent with the known composition. Finally, the samples were contaminated with different concentrations of sodium tungsten dihydrate, allowed to air dry, and measured. When the contaminated samples were analyzed, the heavy metal contamination was seen within the spectrum of the instrument, but there was not a trend of quantification based on the concentration of the solution.

  16. Final Report DE-SC0006997; PI Sharp; Coupled Biological and Micro-XAS/XRF Analysis of In Situ Uranium Biogeochemical Processes

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, Jonathan O. [Colorado School of Mines, Golden, CO (United States)

    2016-03-30

    Project Overview: The impact of the original seed award was substantially increased by leveraging a postdoctoral fellowship (Marie Curie Postdoctoral Fellowship) and parallel funds from (A) synergistic project supported by NSF and (B) with DOE collaborators (PI’s Ranville and Williams) as well as no-cost extension that greatly increased the impact and publications associated with the project. In aligning with SBR priorities, the project’s focus was extended more broadly to explore coupled biogeochemical analysis of metal (im)mobilization processes beyond uranium with a foundation in integrating microbial ecology with geochemical analyses. This included investigations of arsenic and zinc during sulfate reducing conditions in addition to direct microbial reduction of metals. Complimentary work with NSF funding and collaborative DOE interactions further increased the project scope to investigate metal (im)mobilization coupled to biogeochemical perturbations in forest ecosystems with an emphasis on coupled carbon and metal biogeochemistry. In total, the project was highly impactful and resulted in 9 publications and directly supported salary/tuition for 3 graduate students at various stages of their academic careers as well as my promotion to Associate Professor. In going forward, findings provided inspiration for a two subsequent proposals with collaborators at Lawrence Berkeley Laboratory and others that are currently in review (as of March 2016).

  17. Trends in environmental science using microscopic X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Fittschen, Ursula Elisabeth Adriane, E-mail: ursula.fittschen@chemie.uni-hamburg.de [Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany); Falkenberg, Gerald [Deutsches Elektronen-Synchrotron, Notkestr. 85, 22603 Hamburg (Germany)

    2011-08-15

    Microscopic X-ray fluorescence (micro-XRF) is a versatile tool in environmental analysis. We review work done in this field from 2008 to 2010 and highlight new aspects. Overall, there is a strong trend to combine fluorescence data with other data like diffraction or absorption spectroscopy. Also, the use of laboratory based instrumentation has become wide spread as more commercial instruments are available. At laboratories and synchrotron sites the trend towards higher spatial resolution is still persistent hitting sub micrometer values in case of synchrotron set ups.

  18. Mercury mass measurement in fluorescent lamps via neutron activation analysis

    Science.gov (United States)

    Viererbl, L.; Vinš, M.; Lahodová, Z.; Fuksa, A.; Kučera, J.; Koleška, M.; Voljanskij, A.

    2015-11-01

    Mercury is an essential component of fluorescent lamps. Not all fluorescent lamps are recycled, resulting in contamination of the environment with toxic mercury, making measurement of the mercury mass used in fluorescent lamps important. Mercury mass measurement of lamps via instrumental neutron activation analysis (NAA) was tested under various conditions in the LVR-15 research reactor. Fluorescent lamps were irradiated in different positions in vertical irradiation channels and a horizontal channel in neutron fields with total fluence rates from 3×108 cm-2 s-1 to 1014 cm-2 s-1. The 202Hg(n,γ)203Hg nuclear reaction was used for mercury mass evaluation. Activities of 203Hg and others induced radionuclides were measured via gamma spectrometry with an HPGe detector at various times after irradiation. Standards containing an Hg2Cl2 compound were used to determine mercury mass. Problems arise from the presence of elements with a large effective cross section in luminescent material (europium, antimony and gadolinium) and glass (boron). The paper describes optimization of the NAA procedure in the LVR-15 research reactor with particular attention to influence of neutron self-absorption in fluorescent lamps.

  19. Assessment of occupational exposure to manganese and other metals in welding fumes by portable X-ray fluorescence spectrometer.

    Science.gov (United States)

    Laohaudomchok, Wisanti; Cavallari, Jennifer M; Fang, Shona C; Lin, Xihong; Herrick, Robert F; Christiani, David C; Weisskopf, Marc G

    2010-08-01

    Elemental analysis of welding fume samples can be done using several laboratory-based techniques. However, portable measurement techniques could offer several advantages. In this study, we sought to determine whether the portable X-ray fluorescence spectrometer (XRF) is suitable for analysis of five metals (manganese, iron, zinc, copper, and chromium) on 37-mm polytetrafluoroethylene filters. Using this filter fitted on a cyclone in line with a personal pump, gravimetric samples were collected from a group of boilermakers exposed to welding fumes. We assessed the assumption of uniform deposition of these metals on the filters, and the relationships between measurement results of each metal obtained from traditional laboratory-based XRF and the portable XRF. For all five metals of interest, repeated measurements with the portable XRF at the same filter area showed good consistency (reliability ratios are equal or close to 1.0 for almost all metals). The portable XRF readings taken from three different areas of each filter were not significantly different (p-values = 0.77 to 0.98). This suggested that the metal rich PM(2.5) deposits uniformly on the samples collected using this gravimetric method. For comparison of the two XRFs, the results from the portable XRF were well correlated and highly predictive of those from the laboratory XRF. The Spearman correlation coefficients were from 0.325 for chromium, to 0.995 for manganese and 0.998 for iron. The mean differences as a percent of the mean laboratory XRF readings were also small (<5%) for manganese, iron, and copper. The differences were greater for zinc and chromium, which were present at very low amounts in our samples and below the limits of detection of the portable XRF for many of the samples. These five metals were moderately to strongly correlated with the total fine particle fraction on filters (Spearman rho = 0.41 for zinc to 0.97 for iron). Such strong correlations and comparable results suggested that

  20. X-Ray Fluorescence and Laser-Induced Breakdown Spectroscopy analysis of Roman silver denarii

    Energy Technology Data Exchange (ETDEWEB)

    Pardini, L. [Istituto di Chimica dei Composti Organometallici del CNR, Research Area of Pisa, Via G. Moruzzi 1, 56124 Pisa (Italy); El Hassan, A. [National Institute for Laser- Enhanced Sciences (NILES), Cairo University Giza (Egypt); Ferretti, M. [Istituto per le Tecnologie Applicate ai Beni Culturali, Area della Ricerca del CNR di Montelibretti Roma (Italy); Foresta, A.; Legnaioli, S.; Lorenzetti, G. [Istituto di Chimica dei Composti Organometallici del CNR, Research Area of Pisa, Via G. Moruzzi 1, 56124 Pisa (Italy); Nebbia, E. [Universita degli Studi di Torino (Italy); Catalli, F. [Monetiere di Firenze, Museo Archeologico Nazionale Firenze (Italy); Harith, M.A. [National Institute for Laser- Enhanced Sciences (NILES), Cairo University Giza (Egypt); Diaz Pace, D. [Institute of Physics ' Arroyo Seco' , Faculty of Science, Tandil (Argentina); Anabitarte Garcia, F. [Photonics Engineering Group, University of Cantabria, Santander (Spain); Scuotto, M. [Dipartimento di Scienze Archeologiche, Via Galvani 1, 56126 Pisa (Italy); Palleschi, V., E-mail: vincenzo.palleschi@cnr.it [Istituto di Chimica dei Composti Organometallici del CNR, Research Area of Pisa, Via G. Moruzzi 1, 56124 Pisa (Italy); Dipartimento di Scienze Archeologiche, Via Galvani 1, 56126 Pisa (Italy)

    2012-08-15

    In this paper we present the results of a study performed on a large collection of silver Roman republican denarii, encompassing about two centuries of history. The joint use of Laser-Induced Breakdown Spectroscopy (LIBS) and X-Ray Fluorescence (XRF) spectroscopy allowed for an accurate determination of the coins' elemental composition; the measurements, performed mostly in situ at the 'Monetiere' in Florence, revealed a striking connection between the 'quality' of the silver alloy and some crucial contemporary events. This finding was used to classify a group of denarii whose dating was otherwise impossible. The comparison with other contemporary denarii disproves a recent theory on the origin of the so called 'serrated' denarii (denarii showing notched chisel marks on the edge of the coin). - Highlights: Black-Right-Pointing-Pointer We studied a large collection of Roman republican silver denarii. Black-Right-Pointing-Pointer XRF and LIBS allowed to determine the precious metal content of the coins. Black-Right-Pointing-Pointer A correlation of the 'quality' of the alloy with some contemporary events was found. Black-Right-Pointing-Pointer The study allowed to controvert a recent theory on the so called 'serrated' denarii.

  1. Gene expression analysis of in vivo fluorescent cells.

    Directory of Open Access Journals (Sweden)

    Konstantin Khodosevich

    Full Text Available BACKGROUND: The analysis of gene expression for tissue homogenates is of limited value because of the considerable cell heterogeneity in tissues. However, several methods are available to isolate a cell type of interest from a complex tissue, the most reliable one being Laser Microdissection (LMD. Cells may be distinguished by their morphology or by specific antigens, but the obligatory staining often results in RNA degradation. Alternatively, particular cell types can be detected in vivo by expression of fluorescent proteins from cell type-specific promoters. METHODOLOGY/PRINCIPAL FINDINGS: We developed a technique for fixing in vivo fluorescence in brain cells and isolating them by LMD followed by an optimized RNA isolation procedure. RNA isolated from these cells was of equal quality as from unfixed frozen tissue, with clear 28S and 18S rRNA bands of a mass ratio of approximately 2ratio1. We confirmed the specificity of the amplified RNA from the microdissected fluorescent cells as well as its usefulness and reproducibility for microarray hybridization and quantitative real-time PCR (qRT-PCR. CONCLUSIONS/SIGNIFICANCE: Our technique guarantees the isolation of sufficient high quality RNA obtained from specific cell populations of the brain expressing soluble fluorescent marker, which is a critical prerequisite for subsequent gene expression studies by microarray analysis or qRT-PCR.

  2. Heavy-metal contamination of rivers by mining gallery waters during the flood in 2002 in Saxony/Germany and low-cost rapid analysis of contaminated river sediments by XRF

    Science.gov (United States)

    Mucke, D.; Kumann, R.; Mucke, S.

    2012-04-01

    ńt a dilution of the loads, in fact the contents and loads increased: mean value daily value increase factor 1995/1996 14.08.2002 mg/l mg/l n-fold content: 0,067 1,340 20 lead 5,080 7,590 1,5 zinc 0,038 0,068 1,8 cadmium 0,019 0,230 12 arsenic load: kg/d kg/d n-fold lead 4,0 626 167 zinc 303,3 3548 12 cadmium 2,3 318 14 arsenic 1,1 108 9,5 Parts of these contaminants dońt arrive the ocean, but deposit on the continuing flow path of the rivers. The maintenance of the water bodies and during construction works stream sediments need to be removed and depolluted. With the X-ray fluorescence spectrometry (XRF) a very low-cost and - with a measurement period of 30 seconds - a very quick method for the rough calculation of contaminant loads is available. The results of investigations of the sediments of the Freiberger Mulde and the Triebisch in 2011/2012 are presented. High contents of arsenic, cadmium, thallium and lead are identified as waste, which needs to be controlled.

  3. [Analysis of fluorescence spectrum of petroleum-polluted water].

    Science.gov (United States)

    Huang, Miao-Fen; Song, Qing-Jun; Xing, Xu-Feng; Jian, Wei-Jun; Liu, Yuan; Zhao, Zu-Long

    2014-09-01

    In four ratio experiments, natural waters, sampled from the mountain reservoir and the sea water around Dalian city, were mixed with the sewage from petroleum refinery and petroleum exploitation plants. The fluorescence spectra of water samples containing only chromophoric dissolved organic matters(CDOM), samples containing only petroleum, and samples containing a mixture of petroleum and CDOM were analyzed, respectively. The purpose of this analysis is to provide a basis for determining the contribution of petroleum substances and CDOM to the total absorption coefficient of the petroleum-contaminated water by using fluorescence technique. The results showed that firstly, CDOM in seawater had three main fluorescence peaks at Ex: 225-230 nm/Em: 320-330 nm, Ex: 280 nm/Em: 340 nm and Ex: 225-240 nm/Em: 430-470 nm, respectively, and these may arise from the oceanic chlorophyll. CDOM in natural reservoir water had two main fluorescence peaks at EX: 240- 260 nm/Em: 420-450 nm and Ex: 310~350 nm/Em: 420--440 nm, respectively, and these may arise from the terrestrial sources; secondly, the water samples containing only petroleum extracted with n-hexane had one to three fluorescence spectral peaksat Ex: 220-240 nm/Em: 320-340 nm, Ex: 270-290 nm/Em: 310-340 nm and Ex: 220-235 nm/Em: 280-310 nm, respectively, caused by their hydrocarbon component; finally, the water samples containing both petroleum and CDOM showed a very strong fluorescence peak at Ex: 230-250 nm/Em: 320-370 nm, caused by the combined effect of CDOM and petroleum hydrocarbons.

  4. Flow cytometric fluorescence lifetime analysis of DNA binding fluorochromes

    Energy Technology Data Exchange (ETDEWEB)

    Crissman, Harry A.; Cui, H. H. (H. Helen); Steinkamp, J. A.

    2002-01-01

    Most flow cytometry (FCM) applications monitor fluorescence intensity to quantitate the various cellular parameters; however, the fluorescence emission also contains information relative to the fluorescence lifetime. Recent developments in FCM (Pinsky et al., 1993; Steinkamp & Crissman, 1993; Steinkamp et al., 1993), provide for the measurement of fluorescence lifetime which is also commonly referred to as fluorescence decay, or the time interval in which a fluorochrome remains in the excited state. Many unbound fluorochromes have characteristic lifetime values that are determined by their molecular structure; however, when the probe becomes bound, the lifetime value is influenced by a number of factors that affect the probe interaction with a target molecule. Monitoring the changes in the lifetime of the probe yields information relating to the molecular conformation, the functional state or activity of the molecular target. In addition, the lifetime values can be used as signatures to resolve the emissions of multiple fluorochrome labels with overlapping emission spectra that cannot be resolved by conventional FCM methodology. Such strategies can increase the number of fluorochrome combinations used in a flow cytometer with a single excitation source. Our studies demonstrate various applications of lifetime measurements for the analysis of the binding of different fluorochromes to DNA in single cells. Data presented in this session will show the utility of lifetime measurements for monitoring changes in chromatin structure associated with cell cycle progression, cellular differentiation, or DNA damage, such as induced during apoptosis. Several studies show that dyes with specificity for nucleic acids display different lifetime values when bound to DNA or to dsRNA. The Phase Sensitive Flow Cytometer is a multiparameter instrument, capable of performing lifetime measurements in conjunction with all the conventional FCM measurements. Future modifications of this

  5. Chemical U-Th-Pb dating of monazite by 3D-Micro x-ray fluorescence analysis with synchrotron radiation

    DEFF Research Database (Denmark)

    Schmitz, Susanne; Möller, Andreas; Wilke, Max

    2009-01-01

    A confocal set-up for three-dimensional (3D) micro X-ray fluorescence (micro-XRF) was used at the mySpot beamline at BESSY II, which allows compositional depth profiling for various applications. We present results obtained with a confocal 3D micro-XRF set-up for chemical age dating using the U, Th......-XRF set-up is suitable for dating of minerals with low Pb concentrations as long as all Pb is radiogenic, allowing spatial resolution comparable to ion microprobe or laser ablation techniques. The set-up was tested on monazites that are well characterized by isotopic techniques and have a wide range...... of ages, varying from 20 Ma to 1.82 Ga. Reference materials (GM3, F6, 3345) can be reproduced within error. The spread in the ages of all points determined by 3D micro-XRF is within 8 % of the isotopic reference value. The average 3D micro-XRF dates reproduce the reference ages with discrepancies between...

  6. Elemental composition study of heavy metal (Ni, Cu, Zn) in riverbank soil by electrokinetic-assisted phytoremediation using XRF and SEM/EDX

    Energy Technology Data Exchange (ETDEWEB)

    Jamari, Suhailly [Faculty of Science, Technology and Human Development, Universiti Tun Hussein Onn Malaysia (UTHM) (Malaysia); Embong, Zaidi [Faculty of Science, Technology and Human Development, Universiti Tun Hussein Onn Malaysia (UTHM) and Research Center for Soft Soils (RECESS), Office of Research, Innovation, Commercialization and Consultancy Management - ORRIC, Universiti Tun Hussein (Malaysia); Bakar, Ismail [Research Center for Soft Soils (RECESS), Office of Research, Innovation, Commercialization and Consultancy Management (ORRIC), Universiti Tun Hussein Onn Malaysia -UTHM, 86400 Batu Pahat, Johor (Malaysia)

    2014-02-12

    Electrokinetic (EK)-assisted phytoremediation is one of the methods that have a big potential in enhancing the ability of plant uptake in soils remediation process. This research was conducted to investigate the difference in elemental composition concentration of riverbank soil and the change of pH between pre- and post-phytoremediation under the following condition: 1) control or as-receive sample; 2) Dieffenbachia spp plant with EK system (a pair of EK electrodes connected to a direct current (DC) power supply). After the electrodes were connected to a magnitude of 6V/cm{sup −1} electric field for 4 hours/day, the soil and plant samples were analyzed using and X-ray Fluorescence Spectrometer (XRF) and Scanning Electron Microscope / Energy Dispersive X-ray Spectroscopy (SEM/EDX). The SEM/EDX analysis showed that concentration of elemental composition (Ni, Cu and Zn) in post-phytoremediation plant powder samples had increase while elemental concentrations in the post-phytoremediation soil samples were decreased. XRF analysis presented a variation in soil elemental composition concentration from anode to cathode where the concentration near anode region increased while decreased near the cathode region. A significant changes in soil pH were obtained where the soil pH increase in cathode region while decrease in anode region. The results reveal that the assistance of EK in phytoremediation process has increase the efficiency of plant uptake.

  7. Elemental composition study of heavy metal (Ni, Cu, Zn) in riverbank soil by electrokinetic-assisted phytoremediation using XRF and SEM/EDX

    Science.gov (United States)

    Jamari, Suhailly; Embong, Zaidi; Bakar, Ismail

    2014-02-01

    Electrokinetic (EK)-assisted phytoremediation is one of the methods that have a big potential in enhancing the ability of plant uptake in soils remediation process. This research was conducted to investigate the difference in elemental composition concentration of riverbank soil and the change of pH between pre- and post-phytoremediation under the following condition: 1) control or as-receive sample; 2) Dieffenbachia spp plant with EK system (a pair of EK electrodes connected to a direct current (DC) power supply). After the electrodes were connected to a magnitude of 6V/cm-1 electric field for 4 hours/day, the soil and plant samples were analyzed using and X-ray Fluorescence Spectrometer (XRF) and Scanning Electron Microscope / Energy Dispersive X-ray Spectroscopy (SEM/EDX). The SEM/EDX analysis showed that concentration of elemental composition (Ni, Cu and Zn) in post-phytoremediation plant powder samples had increase while elemental concentrations in the post-phytoremediation soil samples were decreased. XRF analysis presented a variation in soil elemental composition concentration from anode to cathode where the concentration near anode region increased while decreased near the cathode region. A significant changes in soil pH were obtained where the soil pH increase in cathode region while decrease in anode region. The results reveal that the assistance of EK in phytoremediation process has increase the efficiency of plant uptake.

  8. Instrumental characterization of clay by XRF, XRD and FTIR

    Indian Academy of Sciences (India)

    Preeti Sagar Nayak; B K Singh

    2007-06-01

    Instrumental characterizations of the clay were performed by different techniques such as XRF, XRD and FTIR. XRF shows the chemical compositions of the clay where Al-oxide and silica oxide are present in major quantity whereas XRD confirms the presence of these minerals in clay. FTIR studies show the presence of quartz, alumina, haematite and different mineral matters.

  9. Developing and Testing a Bayesian Analysis of Fluorescence Lifetime Measurements

    Science.gov (United States)

    Needleman, Daniel J.

    2017-01-01

    FRET measurements can provide dynamic spatial information on length scales smaller than the diffraction limit of light. Several methods exist to measure FRET between fluorophores, including Fluorescence Lifetime Imaging Microscopy (FLIM), which relies on the reduction of fluorescence lifetime when a fluorophore is undergoing FRET. FLIM measurements take the form of histograms of photon arrival times, containing contributions from a mixed population of fluorophores both undergoing and not undergoing FRET, with the measured distribution being a mixture of exponentials of different lifetimes. Here, we present an analysis method based on Bayesian inference that rigorously takes into account several experimental complications. We test the precision and accuracy of our analysis on controlled experimental data and verify that we can faithfully extract model parameters, both in the low-photon and low-fraction regimes. PMID:28060890

  10. Health hazards by lead exposure: evaluation using ASV and XRF.

    Science.gov (United States)

    Herman, D'Souza Sunil; Geraldine, Menezes; Scott, Clark C; Venkatesh, Thuppil

    2006-07-01

    Globally, of many toxic heavy metals, lead is the most widely used for various purposes, resulting in a variety of health hazards due to environmental contamination. Lead in the workplace enters the workers through inhalation of lead-contaminated air, by ingestion, and sometimes through dermal exposure. Furthermore, exposure outside the workplace can occur from inhalation of lead-contaminated air, ingestion of lead-contaminated dust and soil, consumption of lead polluted water, lead adulterated food and lead supplemented medicine. In the present study, an evaluation of blood lead was carried out with the aid of a 3010 B lead analyser, based on the principle of anodic stripping voltametry (ASV), and environmental lead in paint, soil and dust samples by a field portable X-ray fluorescence (XRF) analyser. This revealed a high incidence of lead toxicity in most of the lead-based industrial workers in the four facilities tested in India and high levels of lead in the environmental samples. Developed countries have complied with the global standards for regulating environmental lead poisoning in the workplace, eliminating to some degree excessive exposure to lead. A developing country, such as India, can tackle this problem by implementing national and international policies. The US Occupational Safety and Health Administration (OSHA) and Environmental Protection Agency (EPA) regulations, which are of prime importance, or similar regulations, can be adapted for use in India and implemented to minimize lead exposure and to reduce the resultant health hazards.

  11. Fluorescent analysis for bioindication of ozone on unicellular models.

    Science.gov (United States)

    Roshchina, Victoria V; Yashin, V A; Kuchin, A V

    2015-05-01

    Unicellular model plant systems (vegetative microspores of horsetail Equisetum arvense and pollen of six plant species Corylus avellana, Dolichothele albescens Populus balsamifera, Salix caprea, Saintpaulia ionantha, Tulipa hybridum, on which autofluorescence and fluorescence after histochemical treatment studied, have been represented as bioindicators of ozone. It has found that low doses of ozone 0.005 or 0.008 μl/l did not affect or stimulate the autofluorescence of the samples with the ability to germinate in an artificial medium. In higher ozone concentrations (0.032 μl/l) either the decrease in the intensity of the emission or changing in the position of the maxima in the fluorescence spectrum (new 515-520 nm maximum characteristic for the green-and yellow area has appeared) were observed. In dose of 0.2 μl/l, higher than above the threshold of danger to human health, autofluorescence in all samples fell down to up to zero, and there was no the ability to germinate. In this case the formation of lipofuscin-like compounds fluoresced in blue with maxima from 440 to 485 nm was observed. Stress metabolites, known as neurotransmitters biogenic amines, were found in treated cells as determined on the characteristic fluorescence at 460-480 nm in the samples after a specific histochemical reactions for catecholamines (with glyoxylic acid) or for histamine (with o-phthalic aldehyde). Increased intensity of the emission under the treatment with ozone (total doses from 0.012 to 0.032 μl/l) was associated with an increase in the concentrations of catecholamines and histamine. The fluorescent analysis on undamaged cells-possible bioindicators of ozone can be useful in ecomonitoring for earlier warning about health hazardous concentrations of this compound in the air.

  12. Use of Feedback to Maximize Photon Count Rate in XRF Spectroscopy

    CERN Document Server

    Lucas, Benjamin A

    2016-01-01

    The effective bandwidth of an energy dispersive x-ray fluorescence spectroscopy system is limited by the timing of incident photons. When multiple photons strike the detector within the processing time of the detector photon pile-up occurs and the signal received by the detector during this interval must be ignored. In conventional ED-XRF systems the probability of a photon being incident upon the detector is uniform over time, and thus pile-up follows Poisson statistics. In this paper we present a mathematical treatment of the relationship between photon timing statistics and the count rate of an XRF system. We show that it is possible to increase the maximum count rates by applying feedback from the detector to the x-ray source to alter the timing statistics of photon emission. Monte-Carlo simulations, show that this technique can increase the maximum count rate of an XRF spectroscopy system by a factor of 2.94 under certain circumstances.

  13. Some aspects of analytical chemistry as applied to water quality assurance techniques for reclaimed water: The potential use of X-ray fluorescence spectrometry for automated on-line fast real-time simultaneous multi-component analysis of inorganic pollutants in reclaimed water

    Science.gov (United States)

    Ling, A. C.; Macpherson, L. H.; Rey, M.

    1981-01-01

    The potential use of isotopically excited energy dispersive X-ray fluorescence (XRF) spectrometry for automated on line fast real time (5 to 15 minutes) simultaneous multicomponent (up to 20) trace (1 to 10 parts per billion) analysis of inorganic pollutants in reclaimed water was examined. Three anionic elements (chromium 6, arsenic and selenium) were studied. The inherent lack of sensitivity of XRF spectrometry for these elements mandates use of a preconcentration technique and various methods were examined, including: several direct and indirect evaporation methods; ion exchange membranes; selective and nonselective precipitation; and complexation processes. It is shown tha XRF spectrometry itself is well suited for automated on line quality assurance, and can provide a nondestructive (and thus sample storage and repeat analysis capabilities) and particularly convenient analytical method. Further, the use of an isotopically excited energy dispersive unit (50 mCi Cd-109 source) coupled with a suitable preconcentration process can provide sufficient sensitivity to achieve the current mandated minimum levels of detection without the need for high power X-ray generating tubes.

  14. New applications of the good old wavelength-dispersive X-ray fluorescence

    Indian Academy of Sciences (India)

    Andrzej Kuczumow; Paweł Wolski

    2011-02-01

    Wavelength-dispersive X-ray fluorescence can be characterized by its advantages and drawbacks. Unbeaten spectral resolution in a range below 5 keV, good operational stability, excellent ability of making averaged analysis, and good presentation of peak shape which gives the basis for the chemical speciation are the advantages. Among the drawbacks, the following are important: system with sequential analysis of particular elements, low output of energy supplied to the device, and great cost of instrument which can be amortized only in routine operations. In routine geological and environmental analyses, the WD-XRF performs better than other simpler instrumental or wet techniques. WD-XRF is continuously improved, by applying new multilayer interference mirrors (MIM) for detection and quantification of very light elements. Bad spectral resolution of MIM noted earlier is now improved by tailoring their shape to the shape of gratings. The progress in the long wavelength spectral region joined with efficient and precise wavelength resolution systems enables the application of WD-XRF for speciation analysis. In another effort, XRF spectrometry is treated as a tool for obtaining quantitative basis for the judgement on Linnaean systematic classification of plants and opens the field to a new discipline – quantitative biology.

  15. A Quantitative Method for Microtubule Analysis in Fluorescence Images.

    Science.gov (United States)

    Lan, Xiaodong; Li, Lingfei; Hu, Jiongyu; Zhang, Qiong; Dang, Yongming; Huang, Yuesheng

    2015-12-01

    Microtubule analysis is of significant value for a better understanding of normal and pathological cellular processes. Although immunofluorescence microscopic techniques have proven useful in the study of microtubules, comparative results commonly rely on a descriptive and subjective visual analysis. We developed an objective and quantitative method based on image processing and analysis of fluorescently labeled microtubular patterns in cultured cells. We used a multi-parameter approach by analyzing four quantifiable characteristics to compose our quantitative feature set. Then we interpreted specific changes in the parameters and revealed the contribution of each feature set using principal component analysis. In addition, we verified that different treatment groups could be clearly discriminated using principal components of the multi-parameter model. High predictive accuracy of four commonly used multi-classification methods confirmed our method. These results demonstrated the effectiveness and efficiency of our method in the analysis of microtubules in fluorescence images. Application of the analytical methods presented here provides information concerning the organization and modification of microtubules, and could aid in the further understanding of structural and functional aspects of microtubules under normal and pathological conditions.

  16. Fluorescent microscopy approaches of quantitative soil microbial analysis

    Science.gov (United States)

    Ivanov, Konstantin; Polyanskaya, Lubov

    2015-04-01

    hybridization method (FISH). This approach was used for evaluation of contribution of each gram-negative bactera group. No significant difference between the main soil gram-negative bacterial groups (phylum Proteobacteria and Bacteroidetes) was found both under anaerobic and anaerobic conditions in chernozem in the topsoil. Thus soil gram-negative bacteria play an important ecological role in natural polymer degradation as common group of microorganisms. Another approach with using cascade filtration technique for bacterial population density estimation in chernozem was compared to classical method of fluorescent microscopy. Quantification of soil bacteria with cascade filtration provided by filters with different diameters and filtering of soil suspension in fixed amount. In comparison to the classical fluorescent microscopy method the modification with filtration of soil suspension provided to quantify more bacterial cells. Thus biomass calculation results of soil bacteria by using classical fluorescent microscopy could be underestimated and combination with cascade filtration technique allow to avoid potential experimental error. Thereby, combination and comparison of several fluorescent microscopy methods modifications established during the research provided miscellaneous approaches in soil bacteria quantification and analysis of ecological roles of soil microorganisms.

  17. Iodine Content and Distribution in Thyroid Specimens from Two Patients with Graves' Disease Pretreated with Either Propylthiouracil or Stable Iodine: Analysis Using X-Ray Fluorescence and Time-of-Flight Secondary Ion Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Marie Hansson

    2012-01-01

    Full Text Available Patients with Graves' disease can be medically prepared before surgery in different ways, which may have various effects on iodine stores. Thyroid specimens were collected at surgery from two patients pretreated with propylthiouracil (PTU and stable iodine, respectively. A quantitative analysis of iodine content was performed using X-ray fluorescence (XRF in frozen tissue and a qualitative analysis of aldehyde-fixed material with Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS. Iodine concentrations were 0.9 mg/mL and 0.5 mg/mL in the thyroid tissue from the patients treated with PTU and stable iodine respectively. TOF-SIMS showed iodine in the follicle lumina in both. However, in the PTU case, iodine was also seen within the thyrocytes indicating accumulation of iodinated compounds from uninhibited hormone release. XRF and TOF-SIMS can be used to follow iodine distribution within the thyroid and the intricate processes following the different medical treatment alternatives in Graves' disease.

  18. Fluorescent foci quantitation for high-throughput analysis

    Science.gov (United States)

    Ledesma-Fernández, Elena; Thorpe, Peter H.

    2015-01-01

    A number of cellular proteins localize to discrete foci within cells, for example DNA repair proteins, microtubule organizing centers, P bodies or kinetochores. It is often possible to measure the fluorescence emission from tagged proteins within these foci as a surrogate for the concentration of that specific protein. We wished to develop tools that would allow quantitation of fluorescence foci intensities in high-throughput studies. As proof of principle we have examined the kinetochore, a large multi-subunit complex that is critical for the accurate segregation of chromosomes during cell division. Kinetochore perturbations lead to aneuploidy, which is a hallmark of cancer cells. Hence, understanding kinetochore homeostasis and regulation are important for a global understanding of cell division and genome integrity. The 16 budding yeast kinetochores colocalize within the nucleus to form a single focus. Here we have created a set of freely-available tools to allow high-throughput quantitation of kinetochore foci fluorescence. We use this ‘FociQuant’ tool to compare methods of kinetochore quantitation and we show proof of principle that FociQuant can be used to identify changes in kinetochore protein levels in a mutant that affects kinetochore function. This analysis can be applied to any protein that forms discrete foci in cells. PMID:26290880

  19. Energetic electron processes fluorescence effects for structured nanoparticles X-ray analysis and nuclear medicine applications

    Energy Technology Data Exchange (ETDEWEB)

    Taborda, A.; Desbrée, A. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM/SDI/LEDI, BP-17, 31, Avenue de la Division Leclerc, 92262 Fontenay-aux-Roses (France); Carvalho, A. [IEQUALTECS, Lda, Rua Dr. Francisco Sá Carneiro, 36, 2500-065 S. Gregório CLD (Portugal); Chaves, P.C. [C" 2TN, Campus Tecnológico e Nuclear, Instituto Superior Técnico, Universidade de Lisboa, EN10 km 139.7, 2685-066 Bobadela LRS (Portugal); Reis, M.A., E-mail: mareis@ctn.tecnico.ulisboa.pt [IEQUALTECS, Lda, Rua Dr. Francisco Sá Carneiro, 36, 2500-065 S. Gregório CLD (Portugal); C" 2TN, Campus Tecnológico e Nuclear, Instituto Superior Técnico, Universidade de Lisboa, EN10 km 139.7, 2685-066 Bobadela LRS (Portugal)

    2016-08-15

    Superparamagnetic iron oxide (SPIO) nanoparticles are widely used as contrast agents for nuclear magnetic resonance imaging (MRI), and can be modified for improved imaging or to become tissue-specific or even protein-specific. The knowledge of their detailed elemental composition characterisation and potential use in nuclear medicine applications, is, therefore, an important issue. X-ray fluorescence techniques such as particle induced X-ray emission (PIXE) or X-ray fluorescence spectrometry (XRF), can be used for elemental characterisation even in problematic situations where very little sample volume is available. Still, the fluorescence coefficient of Fe is such that, during the decay of the inner-shell ionised atomic structure, keV Auger electrons are produced in excess to X-rays. Since cross-sections for ionisation induced by keV electrons, for low atomic number atoms, are of the order of 10{sup 3} barn, care should be taken to account for possible fluorescence effects caused by Auger electrons, which may lead to the wrong quantification of elements having atomic number lower than the atomic number of Fe. Furthermore, the same electron processes will occur in iron oxide nanoparticles containing {sup 57}Co, which may be used for nuclear medicine therapy purposes. In the present work, simple approximation algorithms are proposed for the quantitative description of radiative and non-radiative processes associated with Auger electrons cascades. The effects on analytical processes and nuclear medicine applications are quantified for the case of iron oxide nanoparticles, by calculating both electron fluorescence emissions and energy deposition on cell tissues where the nanoparticles may be embedded.

  20. Energetic electron processes fluorescence effects for structured nanoparticles X-ray analysis and nuclear medicine applications

    Science.gov (United States)

    Taborda, A.; Desbrée, A.; Carvalho, A.; Chaves, P. C.; Reis, M. A.

    2016-08-01

    Superparamagnetic iron oxide (SPIO) nanoparticles are widely used as contrast agents for nuclear magnetic resonance imaging (MRI), and can be modified for improved imaging or to become tissue-specific or even protein-specific. The knowledge of their detailed elemental composition characterisation and potential use in nuclear medicine applications, is, therefore, an important issue. X-ray fluorescence techniques such as particle induced X-ray emission (PIXE) or X-ray fluorescence spectrometry (XRF), can be used for elemental characterisation even in problematic situations where very little sample volume is available. Still, the fluorescence coefficient of Fe is such that, during the decay of the inner-shell ionised atomic structure, keV Auger electrons are produced in excess to X-rays. Since cross-sections for ionisation induced by keV electrons, for low atomic number atoms, are of the order of 103 barn, care should be taken to account for possible fluorescence effects caused by Auger electrons, which may lead to the wrong quantification of elements having atomic number lower than the atomic number of Fe. Furthermore, the same electron processes will occur in iron oxide nanoparticles containing 57Co, which may be used for nuclear medicine therapy purposes. In the present work, simple approximation algorithms are proposed for the quantitative description of radiative and non-radiative processes associated with Auger electrons cascades. The effects on analytical processes and nuclear medicine applications are quantified for the case of iron oxide nanoparticles, by calculating both electron fluorescence emissions and energy deposition on cell tissues where the nanoparticles may be embedded.

  1. Elemental concentration analysis in brain of young, adult and old wistar rats by X-ray total reflection fluorescence with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Serpa, Renata F.B.; Jesus, Edgar F.O. de; Lopes, Ricardo T. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Lab. de Instrumentacao Nuclear]. E-mail: renata@lin.ufrj.br; Anjos, Marcelino J. dos [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Inst. de Fisica]. E-mail: marcelin@lin.ufrj.br; Carmo, Maria da Graca T. do [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Nutricao]. E-mail: tcarmo@editema.com.br; Rocha, Monica S. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Dept. de Farmacologia]. E-mail: mrocha@farmaco.ufrj.br; Moreira, Silvana [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Civil]. E-mail: silvana@fec.unicamp.br; Martinez, Ana Maria B. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Dept. de Histologia]. E-mail: martinez@histo.ufrj.br

    2005-07-01

    The mainly goal of this work is to compare the elemental concentrations with different postnatal ages (2, 8, 20, 48 and 72 weeks) at three different regions of the rat brain, namely temporal cortex, entorhinal cortex and hippocampus by X-Ray Total Reflection Fluorescence with Synchrotron Radiation (SR-TXRF). The advantages for this analytical multielemental technique are: low background, linear relation in the quantification analysis and low detection limit (ngg{sup -1}). The fluorescence measurements were carried out at XRF beamline at the Brazilian Light Synchrotron Laboratory (Campinas, Brazil). It was possible to determine the following elements: Ti, Mn, Fe, Cu, Zn, Br, Rb and Sr (at trace level) and P, S, Cl, K and Ca (at major levels) were determined in the brain. In general, Fe levels were more pronounced in entorhinal cortex. There was also observed that the hippocampus of the old female rat presented the highest concentrations for Al, P, S, K, and Zn. In contrast to this, the hippocampus and entorhinal cortex presented the less levels for Al and K in the young animals. On the other hand, Cl levels were more conspicuous in the entorhinal cortex of the oldest male animal studied. (author)

  2. In-vivo analysis of the uptake process of heavy metals through maize roots by using synchrotron X-ray fluorescence spectroscopy

    Science.gov (United States)

    Hwang, Bae Geun; Lee, Sang Joon; Gil, Kyehwan

    2016-12-01

    The uptake of heavy metals by plants has been receiving much attention for crop contamination and phytoremediation. We employed synchrotron X-ray fluorescence (XRF) spectroscopy for an in-vivo analysis of heavy-metal uptake through a strand of maize root. A focused X-ray beam of 2.5 × 2.5 μm2 in physical dimensions was scanned along horizontal lines of the maize root at intervals of 3 μm at the 4B X-ray micro-diffraction beamline of the Pohang Accelerator Laboratory (PAL). Time-resolved mapping of the fluorescence intensities from multiple metallic elements in the root tissues provided information about the radial distributions of heavy-metal elements and their temporal variations. The concentrated core stream of heavy-metal elements spread radially up to roughly 500 μm, corresponding to 40 % of the root diameter. The absorption characteristics of three heavy metals, Cr, Mn and Ni, and their physiological features were analyzed. The absolute concentrations and the contents of the heavy-metal elements in the tested maize roots were quantitatively evaluated by using the calibration curve obtained from reference samples with preset concentrations. The uptake quantities of the tested heavy-metal elements are noticeably different, although their molecular weights are similar. This study should be helpful for understanding plant physiology related with heavy-metal uptake.

  3. Multielement analysis of X-Ray fluorescence of Nerium oleander L. Leaves in metropolitan region of Rio de Janeiro

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Ramon S.; Sanches, Francis Anna C.R.A.; Neves, Arthur O.P.; Oliveira, Davi F.; Anjos, Marcelino J., E-mail: ramonziosp@yahoo.com.br, E-mail: francissanches@gmail.com, E-mail: arthur.nevess@yahoo.com.br, E-mail: davi.oliveira@uerj.br, E-mail: marcelin@uerj.br [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Instituto de Fisica. Departamento de Fisica Aplicada e Termodinamica

    2015-07-01

    Some plants are used in the detection of the air pollutants due to leaves ability to absorb the pollutants through their stomata and the cuticle, thus, the plants leaves work as a natural sample of the air emissions that are deposited in their self. However, the foliar analysis of these vegetal species can be used to environmental monitoring. The Nerium oleander L. is a specie of plant commonly used as an environmental biomonitor. In this study, Nerium oleander L. leaves were used as biomonitors to evaluate the levels of environmental pollutants in a sub-region in the Metropolitan Region of Rio de Janeiro-Brazil through Energy Dispersive X-ray Fluorescence technique - EDXRF. The EDXRF system was developed in the own laboratory and consist of a portable XRF system formed by a mini X-ray tube of low power (anode of Ag and operated in 15 kV/50 μA and 35 kV/50 μA) and a SiPIN detector. Samples of Nerium oleander L. were collected from adult plants drawn randomly so as not favoring one side of the plant. The samples were collected during the year seasons (summer and winter). It was detected the concentration of 13 elements: S, Cl, K, Ca, Mn, Fe, Cu, Zn, Br, Rb, Sr, Ba and Pb, and obtain elemental maps of the regions of study. The study shows that the use of EDXRF technique associated to the Nerium oleander L. leaves used as biomonitor is an efficient, precise, fast and low-cost option for air pollutants analysis. (author)

  4. Enamel paint techniques in archaeology and their identification using XRF and micro-XRF

    Science.gov (United States)

    Hložek, M.; Trojek, T.; Komoróczy, B.; Prokeš, R.

    2017-08-01

    This investigation focuses in detail on the analysis of discoveries in South Moravia - important sites from the Roman period in Pasohlávky and Mušov. Using X-ray fluorescence analysis and micro-analysis we help identify the techniques of enamel paint and give a thorough chemical analysis in details which would not be possible to determine by means of macroscopic examination. We thus address the influence of elemental composition on the final colour of the enamel paint and describe the less known technique of combining enamel with millefiori. The material analyses of the metal artefacts decorated with enamel paint significantly contribute to our knowledge of the technology being used during the Roman period.

  5. Uranium and Iron XRF distribution and Fe speciation results

    Data.gov (United States)

    U.S. Environmental Protection Agency — Dataset 1: XRF image of U and Fe distribution Dataset 2: Fe linear combination fitting data. This dataset is associated with the following publication: Koster van...

  6. Fluorescence correlation spectroscopy: Statistical analysis and biological applications

    Science.gov (United States)

    Saffarian, Saveez

    2002-01-01

    The experimental design and realization of an apparatus which can be used both for single molecule fluorescence detection and also fluorescence correlation and cross correlation spectroscopy is presented. A thorough statistical analysis of the fluorescence correlation functions including the analysis of bias and errors based on analytical derivations has been carried out. Using the methods developed here, the mechanism of binding and cleavage site recognition of matrix metalloproteinases (MMP) for their substrates has been studied. We demonstrate that two of the MMP family members, Collagenase (MMP-1) and Gelatinase A (MMP-2) exhibit diffusion along their substrates, the importance of this diffusion process and its biological implications are discussed. We show through truncation mutants that the hemopexin domain of the MMP-2 plays and important role in the substrate diffusion of this enzyme. Single molecule diffusion of the collagenase MMP-1 has been observed on collagen fibrils and shown to be biased. The discovered biased diffusion would make the MMP-1 molecule an active motor, thus making it the first active motor that is not coupled to ATP hydrolysis. The possible sources of energy for this enzyme and their implications are discussed. We propose that a possible source of energy for the enzyme can be in the rearrangement of the structure of collagen fibrils. In a separate application, using the methods developed here, we have observed an intermediate in the intestinal fatty acid binding protein folding process through the changes in its hydrodynamic radius also the fluctuations in the structure of the IFABP in solution were measured using FCS.

  7. Characterization of calcium and zinc spatial distributions at the fibrocartilage zone of bone–tendon junction by synchrotron radiation-based micro X-ray fluorescence analysis combined with backscattered electron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Hongbin; Chen, Can; Wang, Zhanwen; Qu, Jin; Xu, Daqi [Department of Sports Medicine, Research Center of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410008 (China); Wu, Tianding; Cao, Yong [Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008 (China); Zhou, Jingyong; Zheng, Cheng [Department of Sports Medicine, Research Center of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410008 (China); Hu, Jianzhong, E-mail: jianzhonghu@hotmail.com [Department of Sports Medicine, Research Center of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410008 (China); Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008 (China)

    2015-09-01

    Tendon attaches to bone through a functionally graded fibrocartilage zone, including uncalcified fibrocartilage (UF), tidemark (TM) and calcified fibrocartilage (CF). This transition zone plays a pivotal role in relaxing load transfer between tendon and bone, and serves as a boundary between otherwise structurally and functionally distinct tissue types. Calcium and zinc are believed to play important roles in the normal growth, mineralization, and repair of the fibrocartilage zone of bone–tendon junction (BTJ). However, spatial distributions of calcium and zinc at the fibrocartilage zone of BTJ and their distribution–function relationship are not totally understood. Thus, synchrotron radiation-based micro X-ray fluorescence analysis (SR-μXRF) in combination with backscattered electron imaging (BEI) was employed to characterize the distributions of calcium and zinc at the fibrocartilage zone of rabbit patella–patellar tendon complex (PPTC). For the first time, the unique distributions of calcium and zinc at the fibrocartilage zone of the PPTC were clearly mapped by this method. The distributions of calcium and zinc at the fibrocartilage zone of the PPTC were inhomogeneous. A significant accumulation of zinc was exhibited in the transition region between UF and CF. The highest zinc content (3.17 times of that of patellar tendon) was found in the TM of fibrocartilage zone. The calcium content began to increase near the TM and increased exponentially across the calcified fibrocartilage region towards the patella. The highest calcium content (43.14 times of that of patellar tendon) was in the transitional zone of calcified fibrocartilage region and the patella, approximately 69 μm from the location with the highest zinc content. This study indicated, for the first time, that there is a differential distribution of calcium and zinc at the fibrocartilage zone of PPTC. These observations reveal new insights into region-dependent changes across the fibrocartilage

  8. In situ determination of trace elements in Fucus spp. by field-portable-XRF.

    Science.gov (United States)

    Turner, Andrew; Poon, Hiu; Taylor, Alex; Brown, Murray T

    2017-09-01

    Fresh and freeze-dried sample sections of the coastal macroalgae, Fucus serratus and F. vesiculosus, and the brackish water macroalga, F. ceranoides, have been analysed for trace elements by field-portable-X-ray fluorescence (FP-XRF) spectrometry using a Niton XL3t in a low density mode with thickness correction. When analysed fresh in a laboratory accessory stand for a period of 200 seconds, As, Br, Fe and Zn were registered in the apex, mid-frond and lower stipe of all species, with detection limits of a few μg g(-1) (As) or a few tens of μg g(-1) (Br, Fe, Zn); when analysed dry under the same conditions, concentrations returned were systematically higher and Cu and Pb were detected in a number of F. ceranoides sections. Concentrations arising from both approaches on a dry weight basis were highly correlated, with deviations from unit slope attributed to the absorption of fluorescent X-rays by internal and surficial water when analysed fresh. With algorithms correcting for the effects of water on mass and X-ray absorption, sections of F. vesiculosus and F. ceranoides were analysed in situ with the XRF connected to a mobile stand and laptop. Dry weight concentrations returned for As and Zn were significantly correlated with respective concentrations subsequently determined by ICP-MS following acid digestion and with a slope close to unity; lower concentrations of Fe returned by ICP were attributed to the incomplete acid digestion of silt particles that evaded an initial cleaning step, while Br concentrations could not be verified independently because of loss of volatile forms during digestion. The in situ determination of trace elements in fucoids by FP-XRF provides a rapid and non-destructive means of monitoring environmental quality and identifying hot-spots of contamination, and enables a research strategy to be developed iteratively that is informed by immediate results. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Analysis of human aorta using fluorescence lifetime imaging microscopy (FLIM)

    Science.gov (United States)

    Vieira-Damiani, Gislaine; Adur, J.; Ferro, D. P.; Adam, R. L.; Pelegati, V.; Thomáz, A.; Cesar, C. L.; Metze, K.

    2012-03-01

    The use of photonics has improved our understanding of biologic phenomena. For the study of the normal and pathologic architecture of the aorta the use of Two-Photon Excited Fluorescence (TPEF) and Second Harmonic Generation showed interesting details of morphologic changes of the elastin-collagen architecture during aging or development of hypertension in previous studies. In this investigation we tried to apply fluorescence lifetime imaging (FLIM) for the morphologic analysis of human aortas. The aim of our study was to use FLIM in non-stained formalin-fixed and paraffin-embedded samples of the aorta ascendants in hypertensive and normotensive patients of various ages, examining two different topographical regions. The FLIM-spectra of collagen and elastic fibers were clearly distinguishable, thus permitting an exact analysis of unstained material on the microscopic level. Moreover the FLIM spectrum of elastic fibers revealed variations between individual cases, which indicate modifications on a molecular level and might be related to FLIM age or diseases states and reflect modifications on a molecular level.

  10. Green direct determination of mineral elements in artichokes by infrared spectroscopy and X-ray fluorescence.

    Science.gov (United States)

    Mir-Marqués, Alba; Martínez-García, Maria; Garrigues, Salvador; Cervera, M Luisa; de la Guardia, Miguel

    2016-04-01

    Near infrared (NIR) and X-ray fluorescence (XRF) spectroscopy were investigated to predict the concentration of calcium, potassium, iron, magnesium, manganese and zinc in artichoke samples. Sixty artichokes were purchased from different Spanish areas (Benicarló, Valencia and Murcia). NIR and XRF spectra, combined with partial least squares (PLS) data treatment, were used to develop chemometric models for the prediction of mineral concentration. To obtain reference data, samples were mineralised and analysed by inductively coupled plasma optical emission spectrometry (ICP-OES). Coefficients of determination obtained for the regression between predicted values and reference ones for calcium, potassium, magnesium, iron, manganese and zinc were 0.61, 0.79, 0.53, 0.77, 0.54 and 0.60 for NIR and 0.96, 0.93, 0.80, 0.79, 0.76 and 0.90 for XRF, respectively. Both assayed methodologies, offer green alternatives to classical mineral analysis, but XRF provided the best results in order to be used as a quantitative screening method.

  11. Noble metals determination in ancient jewels with portable ED-XRF system

    Energy Technology Data Exchange (ETDEWEB)

    Parreira, Paulo S.; Galvao, Tiago D.; Appoloni, Carlos R. [Universidade Estadual de Londrina (UEL), PR (Brazil). Dept. de Fisica. Lab. de Fisica Nuclear Aplicada ], e-mail: parreira@uel.br, e-mail: tdggalvao@yahoo.com.br, e-mail: appoloni@uel.br

    2009-07-01

    A handmade system of Energy Dispersive X-Ray Fluorescence (ED-XRF) was used to perform the analysis of some jewels of the XIX century, as napkin holder, tobacco case, cigarette case, pen, pendant shrines, bracelets and a crucifix from the collection of the Museu Historico Nacional do Rio de Janeiro (MHN), Brazil. It was possible to verify the presence of Cu, Au and Ag as macro elements of the alloys, besides Hg as contaminant for one silver piece. Some gold and silver coins with well-known concentrations of gold and silver were also analysed, as reference material, to check out the methodology. To determine the concentrations of the metals, a methodology based on the equation of the fundamental parameters was used. For the jewels with silver aspect, it was possible to determine in average 90.4% of Ag for the napkin holder and 46.6% of Ag for one the bracelets, this last one presented also a high concentration of copper. For the jewels with golden aspect, it was possible to determine, in average, 88.6% to 98.9% for the Au content . For one special piece it was observed 62.5% of Au and 37.5% of Cu. For the coins, the obtained values showed a deviation of 0.4 and 7.6 percent for the average concentration of noble metals Ag and Au, respectively. The portable X-ray system showed to be a powerful tool in the investigation of metallic alloys with high concentration of major elements, allowing in situ measurements.(author)

  12. RELIABILITY ANALYSIS OF X-RAY FLUORESCENCE CORE-SCANNING IN THE YANGTZE RIVER DELTA LIMNETIC SEDIMENTS%长江三角洲平原湖沼沉积物XRF岩芯扫描结果的可靠性分析

    Institute of Scientific and Technical Information of China (English)

    周锐; 李珍; 宋兵; 谢昕; 李贞; 陆岸青

    2013-01-01

    对长江三角洲顶部湖沼相沉积为主的X J02孔(32°19 ′57″N,119°16 ′22″E)进行XRF全岩芯扫描(XRF-cps)分析,同时选取70个样品利用X射线荧光光谱仪(XRF-ppm)进行元素含量测定.通过对两种测试方法所获结果的对比及相关性分析,探讨了XRF岩芯扫描方法测定元素含量的可靠性及其影响因素.结果表明:两种方法所测得的6种元素Ti,Zn,Rb,Sr,Fe和Ca的相关系数很高,XRF扫描强度变化可以很好地反映其含量的变化;XRF扫描强度受含水量的影响,尤其对原子量较小的元素Si等影响比较明显;对于含量较低的元素P和Pb,XRF扫描强度不能真实的反映沉积物中的元素含量.%X-ray fluorescence(XRF)core scanning is increasingly accepted as an effective method for high-resolution elemental records because of its rapid,non-destructive and continuous measurements.In order to know the reliability of XRF core scanning,we compare the measurement results from core scanning method with those results from the well-acceptable traditional X-ray fluorescence spectrometer.The materials we used are the sediments of core X J02 (32 ° 19′57″N,119°16′22″E,core length 31.8m) from the Yangtze River delta.The core sediments is mainly consist of silt and clay.We measure the whole core using XRF core scanner in Tongji University.At the same time,70 samples (intervals of 45cm) from the core XJ02 are selected for element measurement by traditional X-ray fluorescence spectrometer.Comparing the results of twelve detectable elements from two methods,and carrying out a correlation analysis on each element from the XRF core scanner and the conventional X-ray fluorescence spectrometer,we group three types of elements base on the correlation coefficients (R2):1) Type one includes Ti,Zn,Rb,Sr,Fe and Ca with high correlation (R2 >0.8) ; 2) Type two includes Zr,Al and K that were weaker correlated (0.5 <R2 <0.8) ; 3)Type three includes Pb,Si and P,which are

  13. Quantitative Brightness Analysis of Fluorescence Intensity Fluctuations in E. Coli.

    Science.gov (United States)

    Hur, Kwang-Ho; Mueller, Joachim D

    2015-01-01

    The brightness measured by fluorescence fluctuation spectroscopy specifies the average stoichiometry of a labeled protein in a sample. Here we extended brightness analysis, which has been mainly applied in eukaryotic cells, to prokaryotic cells with E. coli serving as a model system. The small size of the E. coli cell introduces unique challenges for applying brightness analysis that are addressed in this work. Photobleaching leads to a depletion of fluorophores and a reduction of the brightness of protein complexes. In addition, the E. coli cell and the point spread function of the instrument only partially overlap, which influences intensity fluctuations. To address these challenges we developed MSQ analysis, which is based on the mean Q-value of segmented photon count data, and combined it with the analysis of axial scans through the E. coli cell. The MSQ method recovers brightness, concentration, and diffusion time of soluble proteins in E. coli. We applied MSQ to measure the brightness of EGFP in E. coli and compared it to solution measurements. We further used MSQ analysis to determine the oligomeric state of nuclear transport factor 2 labeled with EGFP expressed in E. coli cells. The results obtained demonstrate the feasibility of quantifying the stoichiometry of proteins by brightness analysis in a prokaryotic cell.

  14. Quantitative Brightness Analysis of Fluorescence Intensity Fluctuations in E. Coli.

    Directory of Open Access Journals (Sweden)

    Kwang-Ho Hur

    Full Text Available The brightness measured by fluorescence fluctuation spectroscopy specifies the average stoichiometry of a labeled protein in a sample. Here we extended brightness analysis, which has been mainly applied in eukaryotic cells, to prokaryotic cells with E. coli serving as a model system. The small size of the E. coli cell introduces unique challenges for applying brightness analysis that are addressed in this work. Photobleaching leads to a depletion of fluorophores and a reduction of the brightness of protein complexes. In addition, the E. coli cell and the point spread function of the instrument only partially overlap, which influences intensity fluctuations. To address these challenges we developed MSQ analysis, which is based on the mean Q-value of segmented photon count data, and combined it with the analysis of axial scans through the E. coli cell. The MSQ method recovers brightness, concentration, and diffusion time of soluble proteins in E. coli. We applied MSQ to measure the brightness of EGFP in E. coli and compared it to solution measurements. We further used MSQ analysis to determine the oligomeric state of nuclear transport factor 2 labeled with EGFP expressed in E. coli cells. The results obtained demonstrate the feasibility of quantifying the stoichiometry of proteins by brightness analysis in a prokaryotic cell.

  15. Determination of Te, Bi, Ni, Sb and Au by X-ray fluorescence spectrometry following electroenrichment on a copper cathode

    Science.gov (United States)

    Zawisza, Beata; Sitko, Rafał

    2007-10-01

    The electrodepositons of Te, Bi, Ni, Sb and Au from aqueous solution of pH = 1 on the cathode surface have been studied for X-ray fluorescence analysis (XRF). A special holder for a copper electrode has been constructed to perform the electrodeposition process on only one side of the electrode. After electrolysis, the copper electrode can be easily removed from the holder; after rinsing it with water and drying it can be analyzed by XRF. The proposed method of sample preparation and preconcentration of Te, Bi, Ni, Sb, Au provides suitable samples which are devoid of the negative and undesirable effects of XRF analysis, such as particle size and matrix effects. The influence of time on the deposition yield has been examined. The method of preconcentration is efficient. The inhomogeneity of the prepared specimens has been studied using internal standard method. The calibration is based on using synthetic standards, certified reference materials and standard addition method. The best results are achieved by the standard addition method. The agreement between results obtained with XRF analysis and certified values is satisfactory and indicates the usefulness of the proposed method for determination of Te, Bi, Ni, Sb and Au in anode slime.

  16. Destructive versus non-destructive methods for geochemical analyses of ceramic artifacts: comparison of portable XRF and ICP-MS data on Bronze Age ceramics from Failaka Island (Kuwait) and Bahrain

    Science.gov (United States)

    Stremtan, Ciprian; Ashkanani, Hasan; Tykot, Robert H.

    2013-04-01

    The study of bi-phase (i.e. matrix and clasts) geochemical composition of ceramic artifacts is a very powerful tool in fingerprinting the raw materials used by ancient manufacturers (clay sources, tempering materials, coloring agents, etc.), as well as in understanding the physical parameters of the manufacturing techniques. Reliable datasets often require the deployment of destructive techniques that will irremediably damage the artifact. Recent advances in portable X-ray fluorescence instrumentation (pXRF) allow for quick measurements of a range of chemical elements that not too long ago were available only through complicated and often destructive means of analytical chemistry (instrumental neutron activation analysis - INAA, inductively coupled plasma mass spectrometry - ICP-MS, direct coupled plasma-optical emission spectroscopy - DCP-OES etc.). In this contribution we present a comparison of datasets acquired by means of pXRF, DCP-OES, and ICP-MS on Bronze Age ceramics from Failaka Island (Kuwait) and Bahrain. The samples chosen for this study are fine grained, with very well sorted mineral components, and lack any visible organic material fragments. The sample preparation for ICP-MS and DCP-OES analyses was carried out on powdered samples, by using LiBO2 flux fusion and Ge (for the DCP-OES) and In (for ICP-MS) were used as internal standards. The measurements were calibrated against certified reference materials ranging from shales to rhyolites (SGR-1, SDo-1, JA-2, and JR-1) and performed at Univerity of South Florida's Center for Geochemical Analyses. The analytical errors for major elements was smaller than 5 %, while for selected trace elements the error was usually smaller than 3 %. The same set of elements was measured on the same samples at University of South Florida's Anthropology Department using a pXRF device equipped with obsidian filter. Each sample was measured three times and the values were averaged. Two certified reference materials (NIST-612

  17. Data analysis considerations in probing single quantum dot fluorescence intermittency

    Science.gov (United States)

    Krogmeier, Jeffrey R.; Hwang, Jeeseong

    2005-04-01

    The fluorescence intermittency of single, bare, CdSe/ZnS quantum dots was probed using single molecule confocal microscopy and found to demonstrate power law kinetics. Various threshold values and line fitting parameters are employed in the data analysis and their effects on the extracted power law exponents, moff and mon, are presented. The threshold is found to be critical in determining moff while having no significant effect on mon. The mean plus 2σ threshold, calculated from the background noise in the measurement, results in a more negative moff slope in comparison to the mean plus 3σ or mean plus 4σ thresholds. This is likely due to the mean plus 2σ threshold lying within the background noise outliers which mimic short on events. In contrast, the mean plus 4σ threshold is above 99.99% of the background noise while adequately below the fluorescence signal. Additionally, it is found that fitting only the ten most probable data points rather than all the data points in the log-log probability density graphs results in no significant change in moff and mon.

  18. Acceleration of dynamic fluorescence molecular tomography with principal component analysis.

    Science.gov (United States)

    Zhang, Guanglei; He, Wei; Pu, Huangsheng; Liu, Fei; Chen, Maomao; Bai, Jing; Luo, Jianwen

    2015-06-01

    Dynamic fluorescence molecular tomography (FMT) is an attractive imaging technique for three-dimensionally resolving the metabolic process of fluorescent biomarkers in small animal. When combined with compartmental modeling, dynamic FMT can be used to obtain parametric images which can provide quantitative pharmacokinetic information for drug development and metabolic research. However, the computational burden of dynamic FMT is extremely huge due to its large data sets arising from the long measurement process and the densely sampling device. In this work, we propose to accelerate the reconstruction process of dynamic FMT based on principal component analysis (PCA). Taking advantage of the compression property of PCA, the dimension of the sub weight matrix used for solving the inverse problem is reduced by retaining only a few principal components which can retain most of the effective information of the sub weight matrix. Therefore, the reconstruction process of dynamic FMT can be accelerated by solving the smaller scale inverse problem. Numerical simulation and mouse experiment are performed to validate the performance of the proposed method. Results show that the proposed method can greatly accelerate the reconstruction of parametric images in dynamic FMT almost without degradation in image quality.

  19. Water analysis via portable X-ray fluorescence spectrometry

    Science.gov (United States)

    Pearson, Delaina; Chakraborty, Somsubhra; Duda, Bogdan; Li, Bin; Weindorf, David C.; Deb, Shovik; Brevik, Eric; Ray, D. P.

    2017-01-01

    Rapid, in-situ elemental water analysis would be an invaluable tool in studying polluted and/or salt-impacted waters. Analysis of water salinity has commonly used electrical conductance (EC); however, the identity of the elements responsible for the salinity are not revealed using EC. Several studies have established the viability of using portable X-ray fluorescence (PXRF) spectrometry for elemental data analysis of soil, sediment, and other matrices. However, the accuracy of PXRF is known to be affected while scanning moisture-laden soil samples. This study used PXRF elemental data in water samples to predict water EC. A total of 256 water samples, from 10 different countries were collected and analyzed via PXRF, inductively coupled plasma atomic emission spectroscopy (ICP-AES), and a digital salinity bridge. The PXRF detected some elements more effectively than others, but overall results indicated that PXRF can successfully predict water EC via quantifying Cl in water samples (validation R2 and RMSE of 0.77 and 0.95 log μS cm-1, respectively). The findings of this study elucidated the potential of PXRF for future analysis of pollutant and/or metal contaminated waters.

  20. Pattern recognition on X-ray fluorescence records from Copenhagen lake sediments using principal component analysis

    DEFF Research Database (Denmark)

    Schreiber, Norman; Garcia, Emanuel; Kroon, Aart

    2014-01-01

    , Fe, Rb) and characterized the content of minerogenic material in the sediment. In case of both cores, PC2 was a good descriptor emphasized as the contamination component. It showed strong linkages with heavy metals (Cu, Zn, Pb), disclosing changing heavy-metal contamination trends across different...... Component Analysis helped to trace geochemical patterns and temporal trends in lake sedimentation. The PCA models explained more than 80 % of the original variation in the datasets using only 2 or 3 principle components. The first principle component (PC1) was mostly associated with geogenic elements (Si, K...... depths. The sediments featured a temporal association with contaminant dominance. Lead contamination was superseded by zinc within the compound pattern which was linked to changing contamination sources over time. Principle Component Analysis was useful to visualize and interpret geochemical XRF data...

  1. Illustration of compositional variations over time of Chinese porcelain glazes combining micro-X-ray Fluorescence spectrometry, multivariate data analysis and Seger formulas

    Science.gov (United States)

    Van Pevenage, J.; Verhaeven, E.; Vekemans, B.; Lauwers, D.; Herremans, D.; De Clercq, W.; Vincze, L.; Moens, L.; Vandenabeele, P.

    2015-01-01

    In this research, the transparent glaze layers of Chinese porcelain samples were investigated. Depending on the production period, these samples can be divided into two groups: the samples of group A dating from the Kangxi period (1661-1722), and the samples of group B produced under emperor Qianlong (1735-1795). Due to the specific sample preparation method and the small spot size of the X-ray beam, investigation of the transparent glaze layers is enabled. Despite the many existing research papers about glaze investigations of ceramics and/or porcelain ware, this research reveals new insights into the glaze composition and structure of Chinese porcelain samples. In this paper it is demonstrated, using micro-X-ray Fluorescence (μ-XRF) spectrometry, multivariate data analysis and statistical analysis (Hotelling's T-Square test) that the transparent glaze layers of the samples of groups A and B are significantly different (95% confidence level). Calculation of the Seger formulas, enabled classification of the glazes. Combining all the information, the difference in composition of the Chinese porcelain glazes of the Kangxi period and the Qianlong period can be demonstrated.

  2. SIMA: Python software for analysis of dynamic fluorescence imaging data

    Directory of Open Access Journals (Sweden)

    Patrick eKaifosh

    2014-09-01

    Full Text Available Fluorescence imaging is a powerful method for monitoring dynamic signals in the nervous system. However, analysis of dynamic fluorescence imaging data remains burdensome, in part due to the shortage of available software tools. To address this need, we have developed SIMA, an open source Python package that facilitates common analysis tasks related to fluorescence imaging. Functionality of this package includes correction of motion artifacts occurring during in vivo imaging with laser-scanning microscopy, segmentation of imaged fields into regions of interest (ROIs, and extraction of signals from the segmented ROIs. We have also developed a graphical user interface (GUI for manual editing of the automatically segmented ROIs and automated registration of ROIs across multiple imaging datasets. This software has been designed with flexibility in mind to allow for future extension with different analysis methods and potential integration with other packages. Software, documentation, and source code for the SIMA package and ROI Buddy GUI are freely available at http://www.losonczylab.org/sima/.

  3. Fluorescent eco-particles for surface flow physics analysis

    Science.gov (United States)

    Tauro, F.; Porfiri, M.; Grimaldi, S.

    2013-03-01

    In this letter, we describe a novel methodology for fabricating inexpensive environmentally-friendly fluorescent microparticles for quantitative surface flow visualization. Particles are synthesized from natural white beeswax and a highly diluted solution of a nontoxic fluorescent red dye. Bead fluorescence exhibits a long lifetime in adverse conditions, such as exposure to weathering agents, and is enhanced by Ultra Violet radiation. The fluorescent eco-particles are integrated in a particle image velocimetry study of circular hydraulic jump to demonstrate their feasibility in tracing complex surface flows.

  4. Fluorescent eco-particles for surface flow physics analysis

    Directory of Open Access Journals (Sweden)

    F. Tauro

    2013-03-01

    Full Text Available In this letter, we describe a novel methodology for fabricating inexpensive environmentally-friendly fluorescent microparticles for quantitative surface flow visualization. Particles are synthesized from natural white beeswax and a highly diluted solution of a nontoxic fluorescent red dye. Bead fluorescence exhibits a long lifetime in adverse conditions, such as exposure to weathering agents, and is enhanced by Ultra Violet radiation. The fluorescent eco-particles are integrated in a particle image velocimetry study of circular hydraulic jump to demonstrate their feasibility in tracing complex surface flows.

  5. X-ray fluorescence analysis with micro glass beads using milligram-scale siliceous samples for archeology and geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Shintaro, E-mail: sichi@meiji.ac.jp [Organization for the Strategic Coordination of Research and Intellectual Properties, Meiji University, Kawasaki 214-8571 (Japan); Nakamura, Toshihiro [Department of Applied Chemistry, Meiji University, Kawasaki 214-8571 (Japan)

    2014-06-01

    A micro glass bead technique was developed to assay precious siliceous samples for geochemical and archeological analyses. The micro-sized (approximately 3.5 mm in diameter and 0.8 mm in height) glass beads were prepared by mixing and fusing 1.1 mg of the powdered sample and 11.0 mg of the alkali lithium tetraborate flux for wavelength-dispersive X-ray fluorescence determination of major oxides (Na{sub 2}O, MgO, Al{sub 2}O{sub 3}, SiO{sub 2}, P{sub 2}O{sub 5}, K{sub 2}O, CaO, TiO{sub 2}, MnO, and total Fe{sub 2}O{sub 3}). The preparation parameters, including temperature and agitation during the fusing process, were optimized for the use of a commercial platinum crucible rather than a custom-made crucible. The procedure allows preparation of minute sample amounts of siliceous samples using conventional fusing equipment. Synthetic calibration standards were prepared by compounding chemical reagents such as oxides, carbonates, and diphosphates. Calibration curves showed good linearity with r values > 0.997, and the lower limits of detection were in the 10s to 100s of μg g{sup −1} range (e.g., 140 μg g{sup −1} for Na{sub 2}O, 31 μg g{sup −1} for Al{sub 2}O{sub 3}, and 8.9 μg g{sup −1} for MnO). Using the present method, we determined ten major oxides in igneous rocks, stream sediments, ancient potteries, and obsidian. This was applicable to siliceous samples with various compositions, because of the excellent agreement between the analytical and recommended values of six geochemical references. This minimal-scale analysis may be available for precious and limited siliceous samples (e.g., rock, sand, soil, sediment, clay, and archeological ceramics) in many fields such as archeology and geochemistry. - Highlights: • X-ray fluorescence determination of major oxides was performed using 1.1 mg of sample. • Preparation and measurement techniques of the XRF micro glass bead specimen were optimized. • Calibration curves using synthetic standards showed good

  6. Non-destructive measurement of calcium and potassium in apple and pear using handheld x-ray fluorescence

    Directory of Open Access Journals (Sweden)

    Lee A Kalcsits

    2016-04-01

    Full Text Available Calcium and potassium are essential for cell signalling, ion homeostasis and cell wall strength in plants. Unlike nutrients such as nitrogen and potassium, calcium is immobile in plants. Localized calcium deficiencies result in agricultural losses; particularly for fleshy horticultural crops in which elemental imbalances in fruit contribute to the development of physiological disorders such as bitter pit in apple and cork spot in pear. Currently, elemental analysis of plant tissue is destructive, time consuming and costly. This is a limitation for nutrition studies related to calcium in plants. Handheld portable x-ray fluorescence (XRF can be used to non-destructively measure elemental concentrations. The main objective was to test if handheld XRF can be used for semi-quantitative calcium and potassium analysis of in-tact apple and pear. Semi-quantitative measurements for individual fruit were compared to results obtained from traditional lab analysis. Here, we observed significant correlations between handheld XRF measurements of calcium and potassium and concentrations determined using MP-AES lab analysis. Pearson correlation coefficients ranged from 0.73 and 0.97. Furthermore, measuring apple and pear using handheld XRF identified spatial variability in calcium and potassium concentrations on the surface of individual fruit. This variability may contribute to the development of localized nutritional imbalances. This highlights the importance of understanding spatial and temporal variability in elemental concentrations in plant tissue. Handheld XRF is a relatively high-throughput approach for measuring calcium and potassium in plant tissue. It can be used in conjunction with traditional lab analysis to better understand spatial and temporal patterns in calcium and potassium uptake and distribution within an organ, plant or across the landscape.

  7. Spectral and Temporal Laser Fluorescence Analysis Such as for Natural Aquatic Environments

    Science.gov (United States)

    Chekalyuk, Alexander (Inventor)

    2015-01-01

    An Advanced Laser Fluorometer (ALF) can combine spectrally and temporally resolved measurements of laser-stimulated emission (LSE) for characterization of dissolved and particulate matter, including fluorescence constituents, in liquids. Spectral deconvolution (SDC) analysis of LSE spectral measurements can accurately retrieve information about individual fluorescent bands, such as can be attributed to chlorophyll-a (Chl-a), phycobiliprotein (PBP) pigments, or chromophoric dissolved organic matter (CDOM), among others. Improved physiological assessments of photosynthesizing organisms can use SDC analysis and temporal LSE measurements to assess variable fluorescence corrected for SDC-retrieved background fluorescence. Fluorescence assessments of Chl-a concentration based on LSE spectral measurements can be improved using photo-physiological information from temporal measurements. Quantitative assessments of PBP pigments, CDOM, and other fluorescent constituents, as well as basic structural characterizations of photosynthesizing populations, can be performed using SDC analysis of LSE spectral measurements.

  8. Thermodynamic analysis of fluorescence enhancement and Quenching theory equations

    Institute of Scientific and Technical Information of China (English)

    Manman YANG; Xiaoli XI; Pin YANG

    2008-01-01

    The action of the three kinds of new third generation cephalosporin,class drugs,cefepime hydrochroride,cefpiramide and ceftizoxime with HSA and BSA was studied at different temperatures through the fluorescence method. First,the binding constants were calculated by using fluorescence quenching and enhancement theoretical equations. Their thermodynamic functions were also calculated. Because the KA corresponding to the different theoretical equations are not completely the same,the thermodynamic parameters calculated are also different. In this paper,the differences among these thermodynamic data obtained from the different theoretical equations were analyzed and the results show that the thermodynamic data deduced from fluorescence enhancement are more reasonable. Thus,we propose that even when the fluorescence quenching action of the acceptorsubstrate is studied,more realistic data can be obtained by using the fluorescence enhancement equation.

  9. Evanescent wave induced fluorescence. A tool for quantitative interfacial analysis

    CERN Document Server

    Byrne, C D

    2000-01-01

    Time-resolved angle-resolved evanescent wave induced fluorescence spectroscopy (EWIFS) has been used, for the first time, to determine interfacial concentration distributions of molecular species. Theoretical calculations demonstrate that in dynamic systems the non-radiative fluorescence decay coefficients of molecular species are effected only in a minor way by the presence of a dielectric interface. Consequently, measurements of interfacial fluorescence decay times are used to probe variations in molecular fluorescence quantum efficiencies, caused by the presence of an interface. The understanding of these variations is combined with angle-resolved evanescent wave theory. Examination of derived theoretical models using simulated data demonstrates that angle-resolved EWIFS is capable of measuring interfacial interactions on a nanometer scale. An evanescent wave induced fluorescence spectrometer is designed and fabricated to allow the measurement of the time-integrated and time-resolved interfacial emission. ...

  10. X-ray Fluorescence analytical criteria to assess the fineness of ancient silver coins: Application on Ptolemaic coinage

    Energy Technology Data Exchange (ETDEWEB)

    Kantarelou, Vasiliki, E-mail: kantarelou@inp.demokritos.gr [Institute of Nuclear Physics, NCSR ' Demokritos' , Aghia Paraskevi Attikis, 153 10 (Greece); Ager, Francisco Jose, E-mail: fjager@us.es [Departamento de Fisica Aplicada I, Universidad de Sevilla, Sevilla (Spain); Centro Nacional de Aceleradores, Avda. Thomas A. Edison, 7. E-41092 Sevilla (Spain); Eugenidou, Despoina [Numismatic Museum, Athens (NMA), Athens (Greece); Chaves, Francisca [Departamento de Prehistoria y Arqueologia, Universidad de Sevilla, Sevilla (Spain); Andreou, Alexandros; Kontou, Elena; Katsikosta, Niki [Numismatic Museum, Athens (NMA), Athens (Greece); Respaldiza, Miguel Angel [Departamento de Fisica Aplicada I, Universidad de Sevilla, Sevilla (Spain); Serafin, Patrizia [Dipartimento di Beni Culturali, Musica e Spettacolo, Universita degli Studi di Roma ' Tor Vergata' , Roma (Italy); Sokaras, Dimosthenis [Institute of Nuclear Physics, NCSR ' Demokritos' , Aghia Paraskevi Attikis, 153 10 (Greece); Zarkadas, Charalambos [PANalytical B.V., 7600 AA Almelo (Netherlands); Polikreti, Kyriaki, E-mail: kpolykreti@culture.gr [Hellenic Ministry of Culture, Directorate of Conservation of Ancient and Modern Monuments, Dept. of Applied Research, Pireos 81, 105 53, Athens (Greece); Karydas, Andreas Germanos, E-mail: A.Karydas@iaea.org [Institute of Nuclear Physics, NCSR ' Demokritos' , Aghia Paraskevi Attikis, 153 10 (Greece); Nuclear Spectrometry and Applications Laboratory, IAEA, Seibersdorf (Austria)

    2011-09-15

    The application of X-ray Fluorescence (XRF) analysis in a non-invasive manner on ancient silver coins may not provide reliable bulk compositional data due to possible presence of a surface, silver enriched layer. The present work proposes a set of three complementary analytical methodologies to assess and improve the reliability of XRF data in such cases: a) comparison of XRF data on original and cleaned micro-spots on coin surface, b) Ag K/L ratio test and c) comparison of experimental and theoretically simulated intensities of the Rayleigh characteristic radiation emitted from the anode. The proposed methodology was applied on 82 silver coins from the collection of Ioannes Demetriou, donated to the Numismatic Museum of Athens in the 1890s. The coins originate from different mints and are attributed to the first five Ptolemaic kings' reign (321-180 B.C.). They were analyzed in-situ by using a milli-probe XRF spectrometer. The presence of an Ag-enriched layer was excluded for the majority of them. The silver fineness was found to be high, with very low concentrations of copper and lead. The composition data provide important information about possible sources of silver during the Ptolemaic period and indications of a gradual coinage debasement after 270 B.C. due to economic or technical reasons.

  11. Rapid and reliable diagnosis of Wilson disease using X‐ray fluorescence

    Science.gov (United States)

    Kaščáková, Slávka; Kewish, Cameron M.; Rouzière, Stéphan; Schmitt, Françoise; Sobesky, Rodolphe; Poupon, Joël; Sandt, Christophe; Francou, Bruno; Somogyi, Andrea; Samuel, Didier; Jacquemin, Emmanuel; Dubart‐Kupperschmitt, Anne; Nguyen, Tuan Huy; Bazin, Dominique; Duclos‐Vallée, Jean‐Charles; Guettier, Catherine

    2016-01-01

    Abstract Wilson's disease (WD) is a rare autosomal recessive disease due to mutations of the gene encoding the copper‐transporter ATP7B. The diagnosis is hampered by the variability of symptoms induced by copper accumulation, the inconstancy of the pathognomonic signs and the absence of a reliable diagnostic test. We investigated the diagnostic potential of X‐ray fluorescence (XRF) that allows quantitative analysis of multiple elements. Studies were performed on animal models using Wistar rats (n = 10) and Long Evans Cinnamon (LEC) rats (n = 11), and on human samples including normal livers (n = 10), alcohol cirrhosis (n = 8), haemochromatosis (n = 10), cholestasis (n = 6) and WD (n = 22). XRF experiments were first performed using synchrotron radiation to address the elemental composition at the cellular level. High‐resolution mapping of tissue sections allowed measurement of the intensity and the distribution of copper, iron and zinc while preserving the morphology. Investigations were further conducted using a laboratory X‐ray source for irradiating whole pieces of tissue. The sensitivity of XRF was highlighted by the discrimination of LEC rats from wild type even under a regimen using copper deficient food. XRF on whole formalin‐fixed paraffin embedded needle biopsies allowed profiling of the elements in a few minutes. The intensity of copper related to iron and zinc significantly discriminated WD from other genetic or chronic liver diseases with 97.6% specificity and 100% sensitivity. This study established a definite diagnosis of Wilson's disease based on XRF. This rapid and versatile method can be easily implemented in a clinical setting. PMID:27499926

  12. Rapid and reliable diagnosis of Wilson disease using X-ray fluorescence.

    Science.gov (United States)

    Kaščáková, Slávka; Kewish, Cameron M; Rouzière, Stéphan; Schmitt, Françoise; Sobesky, Rodolphe; Poupon, Joël; Sandt, Christophe; Francou, Bruno; Somogyi, Andrea; Samuel, Didier; Jacquemin, Emmanuel; Dubart-Kupperschmitt, Anne; Nguyen, Tuan Huy; Bazin, Dominique; Duclos-Vallée, Jean-Charles; Guettier, Catherine; Le Naour, François

    2016-07-01

    Wilson's disease (WD) is a rare autosomal recessive disease due to mutations of the gene encoding the copper-transporter ATP7B. The diagnosis is hampered by the variability of symptoms induced by copper accumulation, the inconstancy of the pathognomonic signs and the absence of a reliable diagnostic test. We investigated the diagnostic potential of X-ray fluorescence (XRF) that allows quantitative analysis of multiple elements. Studies were performed on animal models using Wistar rats (n = 10) and Long Evans Cinnamon (LEC) rats (n = 11), and on human samples including normal livers (n = 10), alcohol cirrhosis (n = 8), haemochromatosis (n = 10), cholestasis (n = 6) and WD (n = 22). XRF experiments were first performed using synchrotron radiation to address the elemental composition at the cellular level. High-resolution mapping of tissue sections allowed measurement of the intensity and the distribution of copper, iron and zinc while preserving the morphology. Investigations were further conducted using a laboratory X-ray source for irradiating whole pieces of tissue. The sensitivity of XRF was highlighted by the discrimination of LEC rats from wild type even under a regimen using copper deficient food. XRF on whole formalin-fixed paraffin embedded needle biopsies allowed profiling of the elements in a few minutes. The intensity of copper related to iron and zinc significantly discriminated WD from other genetic or chronic liver diseases with 97.6% specificity and 100% sensitivity. This study established a definite diagnosis of Wilson's disease based on XRF. This rapid and versatile method can be easily implemented in a clinical setting.

  13. [Progress in application of microbeam X-ray fluorescence spectroscopy in forensic science].

    Science.gov (United States)

    Su, Hui-Fang; Liu, Chao; Hu, Sun-Lin; Wang, Song-Cai; Sun, Li-Min; Huang, Wei; Zhang, Xiao-Ting; Li, Shuang-Lin

    2013-02-01

    Microbeam X-ray fluorescence (micro-XRF) spectrometry has been raised as an analytical technique of microbeam during the recent years. With its advantages of high sensitivity, small sample requirement, high testing accuracy and non-destruction, the technique is widely utilized in forensic science. This review bases on recent researches at home and abroad, describes its applications including identification of gunshot residue, visualization of fingerprints, discrimination of drug source, production process, and other material evidences of analysis in crime scene. Thanks to the advances in technology, intelligent and portable micro-XRF equipment has appeared to be applied. It is believed that it may be more popular and frequent in administration of forensic science in the near future.

  14. Using Nondestructive Portable X-ray Fluorescence Spectrometers on Stone, Ceramics, Metals, and Other Materials in Museums: Advantages and Limitations.

    Science.gov (United States)

    Tykot, Robert H

    2016-01-01

    Elemental analysis is a fundamental method of analysis on archaeological materials to address their overall composition or identify the source of their geological components, yet having access to instrumentation, its often destructive nature, and the time and cost of analyses have limited the number and/or size of archaeological artifacts tested. The development of portable X-ray fluorescence (pXRF) instruments over the past decade, however, has allowed nondestructive analyses to be conducted in museums around the world, on virtually any size artifact, producing data for up to several hundred samples per day. Major issues have been raised, however, about the sensitivity, precision, and accuracy of these devices, and the limitation of performing surface analysis on potentially heterogeneous objects. The advantages and limitations of pXRF are discussed here regarding archaeological studies of obsidian, ceramics, metals, bone, and painted materials.

  15. Provenance studies on Dead Sea scrolls parchment by means of quantitative micro-XRF.

    Science.gov (United States)

    Wolff, Timo; Rabin, Ira; Mantouvalou, Ioanna; Kanngiesser, Birgit; Malzer, Wolfgang; Kindzorra, Emanuel; Hahn, Oliver

    2012-02-01

    In this study, we address the question of the provenance and origin of the Dead Sea Scrolls manuscripts. A characteristic low ratio of chlorine to bromine, corresponding to that of the Dead Sea water, may serve as an indicator for local production. For this aim we developed a non-destructive procedure to determine the Cl/Br ratio in the parchment of these manuscripts. Micro-X-ray fluorescence (μ-XRF) measurements of a large number of parchment and leather fragments from the Dead Sea Scrolls were analyzed with a routine we developed based on fundamental parameter quantification. This routine takes into account the absorption of the collagen matrix and the influence of the different sample thicknesses. To calculate the representative Cl/Br ratio for each fragment, we investigated the lateral homogeneity and determined the total mass deposition using the intensity of the inelastically scattered, characteristic tube radiation. The distribution of the Cl/Br ratios thus obtained from the μ-XRF measurements make it possible to distinguish fragments whose origin lies within the Dead Sea region from those produced in other locations.

  16. Surface and in-depth characterization of lithium-ion battery cathodes at different cycle states using confocal micro-X-ray fluorescence-X-ray absorption near edge structure analysis

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, Magnus; Schlifke, Annalena [Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany); Falk, Mareike; Janek, Jürgen [Physikalisch-Chemisches Institut, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 58, 35392 Gießen (Germany); Fröba, Michael, E-mail: froeba@chemie.uni-hamburg.de [Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany); Fittschen, Ursula Elisabeth Adriane, E-mail: ursula.fittschen@chemie.uni-hamburg.de [Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany)

    2013-07-01

    The cathode material LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} for lithium-ion batteries has been studied with confocal micro-X-ray fluorescence (CMXRF) combined with X-ray absorption near edge structure (XANES) at the Mn-K edge and the Ni-K edge. This technique allows for a non-destructive, spatially resolved (x, y and z) investigation of the oxidation states of surface areas and to some extent of deeper layers of the electrode. Until now CMXRF-XANES has been applied to a limited number of applications, mainly geo-science. Here, we introduce this technique to material science applications and show its performance to study a part of a working system. A novel mesoporous LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} material was cycled (charged and discharged) to investigate the effects on the oxidation states at the cathode/electrolyte interface. With this approach the degradation of Mn{sup 3+} to Mn{sup 4+} only observable at the surface of the electrode could be directly shown. The spatially resolved non-destructive analysis provides knowledge helpful for further understanding of deterioration and the development of high voltage battery materials, because of its nondestructive nature it will be also suitable to monitor processes during battery cycling. - Highlights: • The potential of confocal micro-XRF-XANES for spatial resolved species analysis in a part of a working system is shown. • The spatial resolution enables differentiation of the oxidized interface from deeper layers. • With the analytical technique confocal micro-XRF-XANES 3D in-situ analyses of working systems are feasible. • The multidimensional and nondestructive analysis of Li-ion battery cathodes is shown. • The analysis will allow for a deeper understanding of processes at interfaces in battery science and others.

  17. Genetic Analysis of Digestive Physiology Using Fluorescent Phospholipid Reporters

    Science.gov (United States)

    Farber, Steven A.; Pack, Michael; Ho, Shiu-Ying; Johnson, Iain D.; Wagner, Daniel S.; Dosch, Roland; Mullins, Mary C.; Hendrickson, H. Stewart; Hendrickson, Elizabeth K.; Halpern, Marnie E.

    2001-05-01

    Zebrafish are a valuable model for mammalian lipid metabolism; larvae process lipids similarly through the intestine and hepatobiliary system and respond to drugs that block cholesterol synthesis in humans. After ingestion of fluorescently quenched phospholipids, endogenous lipase activity and rapid transport of cleavage products results in intense gall bladder fluorescence. Genetic screening identifies zebrafish mutants, such as fat free, that show normal digestive organ morphology but severely reduced phospholipid and cholesterol processing. Thus, fluorescent lipids provide a sensitive readout of lipid metabolism and are a powerful tool for identifying genes that mediate vertebrate digestive physiology.

  18. Research on U,Np,Pu Excitation Parameter With X-ray Fluorescence Analysis

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>X-ray fluorescence analysis is a characteristic analysis technique widely applied in the geology environment and chemical industry. It is also an important quality control analytical method in nuclear

  19. Quantitative micro x-ray fluorescence analyses without reference standard material; Referenzprobenfreie quantitative Mikro-Roentgenfluoreszenzanalyse

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, Timo

    2009-07-15

    X-ray fluorescence analysis (XRF) is a standard method for non-destructive investigations. Due to the development of polycapillary optics and SDDdetectors requiring no cooling with liquid nitrogen, XRF becomes a suitable method for a large number of applications, e. g. for the analysis of objects in arts and archaeology. Spectrometers developed for those purposes allow investigations outside of laboratories und provide excitation areas with diameters of 10-70 {mu}m. In most applications, quantification of XRF data is realized by the usage of standard reference materials. Due to absorption processes in the samples the accuracy of the results depends strongly on the similarity of the sample and the reference standard. In cases where no suitable references are available, quantification can be done based on the ''fundamental parameter (fp) method''. This quantification procedure is based on a set of equations describing the fluorescence production and detection mathematical. The cross sections for the interaction of x-rays with matter can be taken from different databases. During an iteration process the element concentrations can be determined. Quantitative XRF based on fundamental parameters requires an accurate knowledge of the excitation spectrum. In case of a conventional setup this spectrum is given by the X-ray tube spectrum and can be calculated. The use of polycapillary optics in micro-XRF spectrometers changes the spectral distribution of the excitation radiation. For this reason it is necessary to access the transmission function of the used optic. The aim of this work is to find a procedure to describe this function for routine quantification based on fundamental parameters. Most of the measurements have been carried out using a commercial spectrometer developed for applications in arts and archaeology. On the one hand the parameters of the lens, used in the spectrometer, have been investigated by different experimental characterization

  20. Quantitative analysis of autophagy using advanced 3D fluorescence microscopy.

    Science.gov (United States)

    Changou, Chun A; Wolfson, Deanna L; Ahluwalia, Balpreet Singh; Bold, Richard J; Kung, Hsing-Jien; Chuang, Frank Y S

    2013-05-03

    Prostate cancer is the leading form of malignancies among men in the U.S. While surgery carries a significant risk of impotence and incontinence, traditional chemotherapeutic approaches have been largely unsuccessful. Hormone therapy is effective at early stage, but often fails with the eventual development of hormone-refractory tumors. We have been interested in developing therapeutics targeting specific metabolic deficiency of tumor cells. We recently showed that prostate tumor cells specifically lack an enzyme (argininosuccinate synthase, or ASS) involved in the synthesis of the amino acid arginine(1). This condition causes the tumor cells to become dependent on exogenous arginine, and they undergo metabolic stress when free arginine is depleted by arginine deiminase (ADI)(1,10). Indeed, we have shown that human prostate cancer cells CWR22Rv1 are effectively killed by ADI with caspase-independent apoptosis and aggressive autophagy (or macroautophagy)(1,2,3). Autophagy is an evolutionarily-conserved process that allows cells to metabolize unwanted proteins by lysosomal breakdown during nutritional starvation(4,5). Although the essential components of this pathway are well-characterized(6,7,8,9), many aspects of the molecular mechanism are still unclear - in particular, what is the role of autophagy in the death-response of prostate cancer cells after ADI treatment? In order to address this question, we required an experimental method to measure the level and extent of autophagic response in cells - and since there are no known molecular markers that can accurately track this process, we chose to develop an imaging-based approach, using quantitative 3D fluorescence microscopy(11,12). Using CWR22Rv1 cells specifically-labeled with fluorescent probes for autophagosomes and lysosomes, we show that 3D image stacks acquired with either widefield deconvolution microscopy (and later, with super-resolution, structured-illumination microscopy) can clearly capture the early

  1. Study and Application of Source Excitated XRF Equipment

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>As a non-destructive detect method,source excitated XRF has widely used in vary field. When it is used to determine containning Pu samples, it must be closed to avoid the harm of aerosol. In this work a

  2. Surface-Enhanced X-Ray Fluorescence

    Science.gov (United States)

    Anderson, Mark

    2010-01-01

    Surface-enhanced x-ray fluorescence (SEn-XRF) spectroscopy is a form of surface- enhanced spectroscopy that was conceived as a means of obtaining greater sensitivity in x-ray fluorescence (XRF) spectroscopy. As such, SEn-XRF spectroscopy joins the ranks of such other, longer-wavelength surface-enhanced spectroscopies as those based on surface-enhanced Raman scattering (SERS), surface-enhanced resonance Raman scattering (SERRS), and surfaceenhanced infrared Raman absorption (SEIRA), which have been described in previous NASA Tech Briefs articles. XRF spectroscopy has been used in analytical chemistry for determining the elemental compositions of small samples. XRF spectroscopy is rapid and quantitative and has been applied to a variety of metal and mineralogical samples. The main drawback of XRF spectroscopy as practiced heretofore is that sensitivity has not been as high as required for some applications. In SEn-XRF as in the other surface-enhanced spectroscopies, one exploits several interacting near-field phenomena, occurring on nanotextured surfaces, that give rise to local concentrations of incident far-field illumination. In this case, the far-field illumination comes from an x-ray source. Depending on the chemical composition and the geometry of a given nanotextured surface, these phenomena could include the lightning-rod effect (concentration of electric fields at the sharpest points on needlelike surface features), surface plasmon resonances, and grazing incidence geometric effects. In the far field, the observable effect of these phenomena is an increase in the intensity of the spectrum of interest - in this case, the x-ray fluorescence spectrum of chemical elements of interest that may be present within a surface layer at distances no more than a few nanometers from the surface.

  3. Preparation and elements analysis of porous fluorescent glasses

    Institute of Scientific and Technical Information of China (English)

    ZHU Dong-mei; LUO Fa; ZHOU Wan-cheng; D. E. DAY; C. S. RAY

    2006-01-01

    A large variety of porous fluorescent glasses were prepared and the concentration of different elements in these glasses was analyzed. The start porous glasses were soaked in a solution containing soluble salts and then heated at 650 ℃ for 3 h to decompose the salts in the pores into oxides. Fluorescent agents,such as UO3,Eu2O3,were impregnated into the porous glasses to prepare the fluorescent glasses. The results show that soaking is a feasible method to prepare the glass sphere with compositions distinguishable from each other and easy to be located in a complicated background. Six or more components can be impregnated together into one glass sample and the concentration of them can be analyzed accurately. UO3 and Eu2O3 can be impregnated into porous glass to make the glass strongly fluorescent. Higher concentration of Eu2O3 produces stronger fluorescence while higher concentration of UO3 reduces the fluorescence intensity because of the concentration quenching effect.

  4. Low-energy ED-XRF spectrometry application in gold assaying

    Energy Technology Data Exchange (ETDEWEB)

    Marucco, Alessandra E-mail: marucco@itia.cnr.it

    2004-01-01

    The performances of a low-energy dispersive XRF spectrometer in gold assaying are evaluated by a series of analysis on international standards and other certified gold alloys with. Results of standard-free analysis based on fundamental parameters method compared to results of multi-standard method, demonstrate a large gain of accuracy by drawing appropriate calibration curves with use of 1 to 16 matrix-specific standards. The accuracy of gold assaying has improved by a factor of 10, as compared to the conventional touchstone test. This rather economical technique satisfies then numerous precious alloys analyst needs, representing an excellent alternative to the traditional method for quick anti-fraud controls.

  5. Determination of the chemical properties of residues retained in individual cloud droplets by XRF microprobe at SPring-8

    Energy Technology Data Exchange (ETDEWEB)

    Ma, C.-J. E-mail: ma@uji.energy.kyoto-u.ac.jp; Tohno, S.; Kasahara, M.; Hayakawa, S

    2004-06-01

    To determine the chemical properties of residue retained in individual cloud droplets is primarily important for the understanding of rainout mechanism and aerosol modification in droplet. The sampling of individual cloud droplets were carried out on the summit of Mt. Taiko located in Tango peninsula, Kyoto prefecture, during Asian dust storm event in March of 2002. XRF microprobe system equipped at SPring-8, BL-37XU was applied to the subsequent quantification analysis of ultra trace elements in residues of individual cloud droplets. It was possible to form the replicas of separated individual cloud droplets on the thin collodion film. The two dimensional XRF maps for the residues in individual cloud droplets were clearly drawn by scanning of micro-beam. Also, XRF spectra of trace elements in residues were well resolved. From the XRF spectra for individual residues, the chemical mixed state of residues could be assumed. The chemical forms of Fe (Fe{sup +++}) and Zn (Zn{sup +}) could be clearly characterized by their K-edge micro-XANES spectra. By comparison of Z/Si mass ratios of residues in cloud droplets and those of the original sands collected in desert areas in China, the aging of ambient dust particles and their in cloud modification were indirectly assumed.

  6. On-line monitoring of particulate iron oxides in steam generator feedwater using x-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, C.C.; Connolly, D.J. [Babcock and Wilcox, Alliance, OH (United States). Research and Development Division; Millett, P.J. [Electric Power Research Inst., Palo Alto, CA (United States)

    1995-12-01

    Corrosion product monitoring is important as power plants strive to minimize corrosion and maximize availability. Current methodology for monitoring corrosion products involves grab sampling and/or collection of integrated samples using membrane filters followed by analysis of the membranes in the laboratory. This technique is labor intensive and provides only average values over lengthy sampling intervals (typically 1--3 days). Recently, a laboratory tool -- x-ray fluorescence (XRF) spectroscopy -- was combined with existing on-line sampling techniques resulting in an on-line XRF monitor capable of measuring iron oxide particulates in a flowing stream at the parts-per-billion (ppb) level and below. After development in the laboratory, the instrument was successfully field tested in two power plants. After testing at the first power plant, modifications to improve instrument performance were incorporated. This paper presents information regarding design and operation of the instrument, improvements made during the first test period, and field data obtained during plant service. Results show that this instrument will provide on-line measurements of iron oxides at the ppb level with minimal operator involvement. Finally, there are wider applications for this on-line XRF monitor. Though the present system is geared toward iron analysis in corrosion products, it could as well be configured for other elements or groups of elements for other applications such lead, sulfur, copper, chromium, or any other element detectable by x-ray fluorescence.

  7. Single aflatoxin contaminated corn kernel analysis with fluorescence hyperspectral image

    Science.gov (United States)

    Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Ononye, Ambrose; Brown, Robert L.; Cleveland, Thomas E.

    2010-04-01

    Aflatoxins are toxic secondary metabolites of the fungi Aspergillus flavus and Aspergillus parasiticus, among others. Aflatoxin contaminated corn is toxic to domestic animals when ingested in feed and is a known carcinogen associated with liver and lung cancer in humans. Consequently, aflatoxin levels in food and feed are regulated by the Food and Drug Administration (FDA) in the US, allowing 20 ppb (parts per billion) limits in food and 100 ppb in feed for interstate commerce. Currently, aflatoxin detection and quantification methods are based on analytical tests including thin-layer chromatography (TCL) and high performance liquid chromatography (HPLC). These analytical tests require the destruction of samples, and are costly and time consuming. Thus, the ability to detect aflatoxin in a rapid, nondestructive way is crucial to the grain industry, particularly to corn industry. Hyperspectral imaging technology offers a non-invasive approach toward screening for food safety inspection and quality control based on its spectral signature. The focus of this paper is to classify aflatoxin contaminated single corn kernels using fluorescence hyperspectral imagery. Field inoculated corn kernels were used in the study. Contaminated and control kernels under long wavelength ultraviolet excitation were imaged using a visible near-infrared (VNIR) hyperspectral camera. The imaged kernels were chemically analyzed to provide reference information for image analysis. This paper describes a procedure to process corn kernels located in different images for statistical training and classification. Two classification algorithms, Maximum Likelihood and Binary Encoding, were used to classify each corn kernel into "control" or "contaminated" through pixel classification. The Binary Encoding approach had a slightly better performance with accuracy equals to 87% or 88% when 20 ppb or 100 ppb was used as classification threshold, respectively.

  8. Simultaneous x-ray fluorescence and K-edge CT imaging with photon-counting detectors

    Science.gov (United States)

    Li, Liang; Li, Ruizhe; Zhang, Siyuan; Chen, Zhiqiang

    2016-10-01

    Rapid development of the X-ray phonon-counting detection technology brings tremendous research and application opportunities. In addition to improvements in conventional X-ray imaging performance such as radiation dose utilization and beam hardening correction, photon-counting detectors allows significantly more efficient X-ray fluorescence (XRF) and K-edge imaging, and promises a great potential of X-ray functional, cellular and molecular imaging. XRF is the characteristic emission of secondary X-ray photons from a material excited by initial X-rays. The phenomenon is widely used for chemical and elemental analysis. K-edge imaging identifies a material based on its chemically-specific absorption discontinuity over X-ray photon energy. In this paper, we try to combine XRF and K-edge signals from the contrast agents (e.g., iodine, gadolinium, gold nanoparticles) to simultaneously realize XFCT and K-edge CT imaging for superior image performance. As a prerequisite for this dual-modality imaging, the accurate energy calibration of multi-energy-bin photon-counting detectors is critically important. With the measured XRF data of different materials, we characterize the energy response function of a CZT detector for energy calibration and spectrum reconstruction, which can effectively improve the energy resolution and decrease the inconsistence of the photon counting detectors. Then, a simultaneous K-edge and X-ray fluorescence CT imaging (SKYFI) experimental setup is designed which includes a cone-beam X-ray tube, two separate photon counting detector arrays, a pin-hole collimator and a rotation stage. With a phantom containing gold nanoparticles the two types of XFCT and K-edge CT datasets are collected simultaneously. Then, XFCT and K-edge CT images are synergistically reconstructed in a same framework. Simulation results are presented and quantitative analyzed and compared with the separate XFCT and K-edge CT results.

  9. Mineral composition of TALDICE aeolian ice core dust by means of synchrotron radiation XAS and XRF techniques

    Science.gov (United States)

    Marcelli, A.; Cibin, G.; Sala, M.; Hampai, D.; Maggi, V.; Marino, F.; Delmonte, B.

    2009-04-01

    In this work we present the first accurate non-destructive comparison of the mineral composition of atmospheric dusts contained in a deep ice core from Antarctica using synchrotron radiation. Different mineral assemblages reaching glaciated areas could be correlated to sources areas starting from the knowledge of the dust composition. In this investigation we demonstrate the possibility to characterize with SR the mineral composition of the dust in order to perform its geochemical characterization and to understand the pattern of the transport and the trajectories of the aerosol. This study has been focused on the elemental characterization and the identification of the iron oxidation state of aeolian Antarctic dust by means of synchrotron radiation X-Ray Fluorescence and X-Ray Absorption Spectroscopy. A set of twelve ice samples from the TALDICE (TD, 72˚ 46'S, 159˚ 04'E, 2316 m a.s.l., mean accumulation rate 80 kg*m-2*yr-1) ice core, corresponding to the warm climatic period, Holocene, and to the cold climatic period, Marine Isotopic Stage 3 (MIS 3) have been measured. To obtain both the elemental composition and the iron oxidation state of the mineral dust we performed experiments on specially prepared samples at the Stanford Synchrotron Radiation Lightsource (SSRL) laboratory in the framework of the Proposal N.3082B. Actually, melted ice samples were filtered and then mineral particles were deposited onto Nuclepore polycarbonate membranes in a 1000 class clean room under a 100 class laminar flow bench for both XRF and XAS experiments. A dedicated HV experimental chamber, that allows performing different type of experimental technique on very low absorber concentration samples was developed and tested in Italy. The original experimental setup, including an in-vacuum sample micromanipulator and a special alignment and docking sample system was installed at the beamline 10-2 at SSRL. For the x-ray detection a 7 mm2 high sensitive Silicon Drift Detector was

  10. Illustration of compositional variations over time of Chinese porcelain glazes combining micro-X-ray Fluorescence spectrometry, multivariate data analysis and Seger formulas

    Energy Technology Data Exchange (ETDEWEB)

    Van Pevenage, J., E-mail: Raman@UGent.be [Department of Analytical Chemistry, Raman Spectroscopy Research Group, Ghent University, Krijgslaan 281, S12, B-9000 Ghent (Belgium); Verhaeven, E. [Department of Conservation and Restoration, University College Antwerp, Blindestraat 9, B-2000 Antwerp (Belgium); Vekemans, B. [Department of Analytical Chemistry, Ghent University, Krijgslaan 281, S12, B-9000 Ghent (Belgium); Lauwers, D., E-mail: Raman@UGent.be [Department of Analytical Chemistry, Raman Spectroscopy Research Group, Ghent University, Krijgslaan 281, S12, B-9000 Ghent (Belgium); Herremans, D.; De Clercq, W. [Department of Archaeology, Ghent University, Sint-Pietersnieuwstraat 35, B-9000 Ghent (Belgium); Vincze, L. [Department of Analytical Chemistry, Ghent University, Krijgslaan 281, S12, B-9000 Ghent (Belgium); Moens, L., E-mail: Raman@UGent.be [Department of Analytical Chemistry, Raman Spectroscopy Research Group, Ghent University, Krijgslaan 281, S12, B-9000 Ghent (Belgium); Vandenabeele, P. [Department of Archaeology, Ghent University, Sint-Pietersnieuwstraat 35, B-9000 Ghent (Belgium)

    2015-01-01

    In this research, the transparent glaze layers of Chinese porcelain samples were investigated. Depending on the production period, these samples can be divided into two groups: the samples of group A dating from the Kangxi period (1661–1722), and the samples of group B produced under emperor Qianlong (1735–1795). Due to the specific sample preparation method and the small spot size of the X-ray beam, investigation of the transparent glaze layers is enabled. Despite the many existing research papers about glaze investigations of ceramics and/or porcelain ware, this research reveals new insights into the glaze composition and structure of Chinese porcelain samples. In this paper it is demonstrated, using micro-X-ray Fluorescence (μ-XRF) spectrometry, multivariate data analysis and statistical analysis (Hotelling's T-Square test) that the transparent glaze layers of the samples of groups A and B are significantly different (95% confidence level). Calculation of the Seger formulas, enabled classification of the glazes. Combining all the information, the difference in composition of the Chinese porcelain glazes of the Kangxi period and the Qianlong period can be demonstrated. - Highlights: • Fully described methodology for the analysis of silicate glazes of Chinese porcelain samples • The combination of a semi-quantitative analysis of silicate glazes, multi-variate data and statistical analysis. • The use of Seger formula to understand better the composition of the glazes. • New insights into the glaze composition and structure of Chinese porcelain glazes of different time periods.

  11. Development of Standard Samples for on-board Calibration of a New Planetary X-Ray Fluorescence Spectrometer

    Science.gov (United States)

    Dreißigacker, Anne; Köhler, Eberhard; Fabel, Oliver; van Gasselt, Stephan

    2014-05-01

    At the Planetary Sciences and Remote Sensing research group at Freie Universität Berlin an SCD-based X-Ray Fluorescence Spectrometer is being developed to be employed on planetary orbiters to conduct direct, passive energy-dispersive x-ray fluorescence measurements of planetary surfaces through measuring the emitted X-Ray fluorescence induced by solar x-rays and high energy particles. Because the Sun is a highly variable radiation source, the intensity of solar X-Ray radiation has to be monitored constantly to allow for comparison and signal calibration of X-Ray radiation from lunar surface materials. Measurements are obtained by indirectly monitoring incident solar x-rays emitted from a calibration sample. This has the additional advantage of minimizing the risk of detector overload and damage during extreme solar events such as high-energy solar flares and particle storms as only the sample targets receive the higher radiation load directly (while the monitor is never directly pointing towards the Sun). Quantitative data are being obtained and can be subsequently analysed through synchronous measurement of fluorescence of the Moon's surface by the XRF-S main instrument and the emitted x-ray fluorescence of calibration samples by the XRF-S-ISM (Indirect Solar Monitor). We are currently developing requirements for 3 sample tiles for onboard correction and calibration of XRF-S, each with an area of 3-9 cm2 and a maximum weight of 45 g. This includes development of design concepts, determination of techniques for sample manufacturing, manufacturing and testing of prototypes and statistical analysis of measurement characteristics and quantification of error sources for the advanced prototypes and final samples. Apart from using natural rock samples as calibration sample, we are currently investigating techniques for sample manufacturing including laser sintering of rock-glass on metals, SiO2-stabilized mineral-powders, or artificial volcanic glass. High precision

  12. Strategies of fluorescence staining for trace total ribonucleic acid analysis by capillary electrophoresis with argon ion laser-induced fluorescence.

    Science.gov (United States)

    Chung, Yi-An; Chen, Yi-Hsin; Chang, Po-Ling

    2015-08-01

    In this work, five fluorescent dyes (SYTO-9, SYBR Green I, SYBR Green II, SYBR Safe, and SYBR Gold) were used as both on-column and precolumn stains for total RNA analysis by CE-LIF with Ar ion laser excitation. In the on-column RNA stain, the SYTO-9 provided the highest fluorescence intensity and the lowest detectable concentration, as low as 10 pg/μL, while the SYBR Green II and SYBR Gold were adsorbed on the poly(ethylene oxide) thus affected the separation efficiency. As a precolumn stain, SYBR Gold was the most sensitive among the five dyes due to the strong affinity between the dye and RNA molecules. As a result, a single-cell quantity of RNA (10-30 pg per cell) could be detected by CE-LIF with precolumn staining by SYBR Gold. Because of the great savings of fluorescent dye using precolumn stain (one button dye may use for one million stain), this method is the best strategy for RNA staining in terms of cost-effectiveness and sensitivity.

  13. XRF core scanners as a quick and good screening tool for detecting pollution in sediment cores

    Directory of Open Access Journals (Sweden)

    Belén Rubio

    2014-05-01

    Full Text Available The capabilities of X-Ray Fluorescence (XRF core scanners, to acquire high-resolution geochemical data sets in relatively short time, have made them an increasingly popular geochemical screening tool to study sediment cores for palaeoclimatologic and palaeoceanographic purposes (Peck et al., 2007; Rebolledo et al., 2008. These scanners are able to obtain optical images, X-ray radiographs, and continuous geochemical data with a maximum resolution of 200 µm directly from sediment cores (Croudace et al., 2006. Geochemical results are obtained as peak areas of counts per second that are proportional to element concentrations in the sediment, and thus the assumed semi-quantitative nature of these analyses have hampered the use of this type of instruments to monitor and detect pollution at large; where the availability of a fast screening tool that could substantially cut analytical and time costs will certainly be an advantage. This study explores the sensitivity of a ITRAX core scanner (Cox Analytical Systems on sedimentary records from estuarine-like environments in NW (Rías Baixas Galicia and SW Spain (Ría de Huelva. The Galician Rías Baixas sediments are characterized by high contents of organic matter, but in general terms, are not heavily polluted. We have selected one core in the Marín harbour (Ría de Pontevedra and another in the intertidal area of San Simón Bay (inner Ría de Vigo, close to a ceramic factory, which is relatively highly polluted by lead. By the contrary, the Ría de Huelva is one of the most polluted areas in western Europe because of the high acid mining activity together with the chemical industries located in its margins. We have selected a core in the Padre Santo Channel in the confluence of the Odiel and Tinto rivers. ITRAX sensitivity was obtained by establishing equivalences between peak areas and concentrations obtained by traditional analytical techniques such as ICP-MS, ICP-OES and/or conventional XRF of

  14. Photon budget analysis for fluorescence lifetime imaging microscopy

    NARCIS (Netherlands)

    Zhao, Q.; Young, I.T.; De Jong, J.G.S.

    2011-01-01

    We have constructed a mathematical model to analyze the photon efficiency of frequency-domain fluorescence lifetime imaging microscopy (FLIM). The power of the light source needed for illumination in a FLIM system and the signal-to-noise ratio of the detector have led us to a photon “budget.” These

  15. LASER FLUORESCENCE EEM PROBE FOR CONE PENETROMETER POLLUTION ANALYSIS

    Science.gov (United States)

    A fiber optic LIF (Laser induced fluorescence) EEM (Excitation emission matrix) instrument for CPT deployment has been successfully developed and field tested. The system employs a Nd: YAG laser and Raman shifter as a rugged field portable excitation source. This excitation sou...

  16. Energy dispersive X-ray fluorescence analysis of ancient potteries from Vellore District Tamilnadu, India with statistical approach

    Directory of Open Access Journals (Sweden)

    R. Ravisankar

    2014-01-01

    Full Text Available In the present study concentration of trace elements in ancient potteries collected in Vellore Dist of Tamilnadu, India, was determined using ED-XRF technique. The analysed shreds are belong to the 18th century. Fourteen elements have been determined in 56 pottery fragments. These elemental concentrations were processed using multivariate statistical methods, principal component analysis and cluster analyses to determine similarities and correlation between the various samples. Chemical composition of examined shreds revealed the type of clay (Calcareous/Non-Calcareous. The statistical results revealed patterns of trade between these communities. The 56 shards had been classified into three major groups based on variations in composition.

  17. Time-resolved fluorescence analysis of the mobile flavin cofactor in -hydroxybenzoate hydroxylase

    Indian Academy of Sciences (India)

    Petra A W Van Den Berg; Koert Grever; Arie Van Hoek; Willem J H Van Berkel; Antonie J W G Visser

    2007-03-01

    Conformational heterogeneity of the FAD cofactor in -hydroxybenzoate hydroxylase (PHBH) was investigated with time-resolved polarized flavin fluorescence. For binary enzyme/substrate (analogue) complexes of wild-type PHBH and Tyr222 mutants, crystallographic studies have revealed two distinct flavin conformations; the `in’ conformation with the isoalloxazine ring located in the active site, and the `out’ conformation with the isoalloxazine ring disposed towards the protein surface. Fluorescence-lifetime analysis of these complexes revealed similar lifetime distributions for the `in’ and `out’ conformations. The reason for this is twofold. First, the active site of PHBH contains various potential fluorescence-quenching sites close to the flavin. Fluorescence analysis of uncomplexed PHBH Y222V and Y222A showed that Tyr222 is responsible for picosecond fluorescence quenching free enzyme. In addition, other potential quenching sites, including a tryptophan and two tyrosines involved in substrate binding, are located nearby. Since the shortest distance between these quenching sites and the isoalloxazine ring differs only little on average, these aromatic residues are likely to contribute to fluorescence quenching. Second, the effect of flavin conformation on the fluorescence lifetime distribution is blurred by binding of the aromatic substrates: saturation with aromatic substrates induces highly efficient fluorescence quenching. The flavin conformation is therefore only reflected in the small relative contributions of the longer lifetimes.

  18. pXRF analyses of Louise Herreshoff's paintings in relation to CdS and other pigment degradation issues

    Energy Technology Data Exchange (ETDEWEB)

    Uffelman, Erich S.; Barisas, Derek A.G. [Washington and Lee University, Department of Chemistry, Lexington, VA (United States); Hobbs, Patricia A. [Washington and Lee University, University Collections of Art and History, Lexington, VA (United States); Mass, Jennifer L. [Winterthur Museum, Scientific Research and Analysis Laboratory, Conservation Department, Winterthur, DE (United States)

    2013-04-15

    Portable X-ray Fluorescence Spectrometry (pXRF) was used to survey 33 works in Washington and Lee University's collection of Louise Herreshoff's paintings. This work was done both to support a condition assessment of the paintings and their pigments and to determine which paintings might be appropriate for further study in the context of ongoing key synchrotron research into the degradation mechanisms of cadmium sulfide yellow pigment (CdS). (orig.)

  19. X-ray fluorescence microscopy artefacts in elemental maps of topologically complex samples: Analytical observations, simulation and a map correction method

    Science.gov (United States)

    Billè, Fulvio; Kourousias, George; Luchinat, Enrico; Kiskinova, Maya; Gianoncelli, Alessandra

    2016-08-01

    XRF spectroscopy is among the most widely used non-destructive techniques for elemental analysis. Despite the known angular dependence of X-ray fluorescence (XRF), topological artefacts remain an unresolved issue when using X-ray micro- or nano-probes. In this work we investigate the origin of the artefacts in XRF imaging of topologically complex samples, which are unresolved problems in studies of organic matter due to the limited travel distances of low energy XRF emission from the light elements. In particular we mapped Human Embryonic Kidney (HEK293T) cells. The exemplary results with biological samples, obtained with a soft X-ray scanning microscope installed at a synchrotron facility were used for testing a mathematical model based on detector response simulations, and for proposing an artefact correction method based on directional derivatives. Despite the peculiar and specific application, the methodology can be easily extended to hard X-rays and to set-ups with multi-array detector systems when the dimensions of surface reliefs are in the order of the probing beam size.

  20. Preliminary Study to Test the Feasibility of Sex Identification of Human (Homo sapiens) Bones Based on Differences in Elemental Profiles Determined by Handheld X-ray Fluorescence.

    Science.gov (United States)

    Nganvongpanit, Korakot; Buddhachat, Kittisak; Brown, Janine L; Klinhom, Sarisa; Pitakarnnop, Tanita; Mahakkanukrauh, Pasuk

    2016-09-01

    Sex assignment of human remains is a crucial step in forensic anthropological studies. The aim of this study was to examine elemental differences between male and female bones using X-ray fluorescence (XRF) and determine if elemental profiling could be used for sex discrimination. Cranium, humerus, and os coxae of 60 skeletons (30 male, 30 female) from the Chiang Mai University Skeletal Collection were scanned by XRF and differences in elemental profiles between male and female bones determined using discriminant analysis. In the cranium, three elements (S, Ca, Pb) were significantly higher in males and five elements (Si, Mn, Fe, Zn, Ag) plus light elements (atomic number lower than 12) were higher in females. In humerus and os coxae, nine elements were significantly higher in male and one element was higher in female samples. The accuracy rate for sex estimation was 60, 63, and 61 % for cranium, humerus, and os coxae, respectively, and 67 % when data for all three bones were combined. We conclude that there are sex differences in bone elemental profiles; however, the accuracy of XRF analyses for discriminating between male and female samples was low compared to standard morphometric and molecular methods. XRF could be used on small samples that cannot be sexed by traditional morphological methods, but more work is needed to increase the power of this technique for gender assignment.

  1. Rapid screening of natually occurring radioactive nuclides({sup 2}'3{sup 8}U, {sup 232}Th) in raw materials and by-products samples using XRF

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Young; Lim, Chung Sup [Radiation Biotechnology and Applied Radioiostope Science, University of Science and Technology, Daejeon (Korea, Republic of); Lim, Jong Myoung; Ji, Young Yong; Chung, Kun Ho; Lee, Wan No; Kang, Mun Ja [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Jang, Byung Uck [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-12-15

    As new legislation has come into force implementing radiation safety management for the use of naturally occurring radioactive materials (NORM), it is necessary to establish a rapid and accurate measurement technique. Measurement of {sup 238}U and {sup 232}Th using conventional methods encounter the most significant difficulties for pretreatment (e.g., purification, speciation, and dilution/enrichment) or require time-consuming processes. Therefore, in this study, the applicability of ED-XRF as a non-destructive and rapid screening method was validated for raw materials and by-product samples. A series of experiments was conducted to test the applicability for rapid screening of XRF measurement to determine activity of {sup 238}U and {sup 23{sup 2}}Th based on certified reference materials (e.g., soil, rock, phosphorus rock, bauxite, zircon, and coal ash) and NORM samples commercially used in Korea. Statistical methods were used to compare the analytical results of ED-XRF to those of certified values of certified reference materials (CRM) and inductively coupled plasma mass spectrometry (ICP-MS). Results of the XRF measurement for {sup 238}U and {sup 232}Th showed under 20% relative error and standard deviation. The results of the U-test were statistically significant except for the case of U in coal fly ash samples. In addition, analytical results of {sup 238}U and {sup 232}Th in the raw material and by-product samples using XRF and the analytical results of those using ICP-MS (R{sup 2}≥0.95) were consistent with each other. Thus, the analytical results rapidly derived using ED-XRF were fairly reliable. Based on the validation results, it can be concluded that the ED-XRF analysis may be applied to rapid screening of radioactivities ({sup 238}U and {sup 232}Th) in NORM samples.

  2. Correlations of trace elements in breast human tissues: Evaluation of spatial distribution using {mu}-XRF

    Energy Technology Data Exchange (ETDEWEB)

    Piacenti da Silva, Marina; Silva, Deisy Mara da; Ribeiro-Silva, Alfredo; Poletti, Martin Eduardo [Departamento de Fisica, FFCLRP/USP, Av. dos Bandeirantes n. 3900, 14040-901 Ribeirao Preto - SP (Brazil); Departamento de Patologia, HCFM/USP, Av. dos Bandeirantes n. 3900, 14040-901 Ribeirao Preto - SP (Brazil); Departamento de Fisica, FFCLRP/USP, Av. dos Bandeirantes n. 3900, 14040-901 Ribeirao Preto - SP (Brazil)

    2012-05-17

    The aim of this work is to investigate microscopic correlations between trace elements in breast human tissues. A synchrotron X-ray fluorescence microprobe system ({mu}-XRF) was used to obtain two-dimensional distribution of trace element Ca, Fe, Cu and Zn in normal (6 samples) and malignant (14 samples) breast tissues. The experiment was performed in X-ray Fluorescence beam line at Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, Brazil. The white microbeam was generated with a fine conical capillary with a 20 {mu}m output diameter. The samples were supported on a XYZ table. An optical microscope with motorized zoom was used for sample positioning and choice the area to be scanned. Automatic two-dimensional scans were programmed and performed with steps of 30 {mu}m in each direction (x, y) on the selected area. The fluorescence signals were recorded using a Si(Li) detector, positioned at 90 degrees with respect to the incident beam, with a collection time of 10 s per point. The elemental maps obtained from each sample were overlap to observe correlation between trace elements. Qualitative results showed that the pairs of elements Ca-Zn and Fe-Cu could to be correlated in malignant breast tissues. Quantitative results, achieved by Spearman correlation tests, indicate that there is a spatial correlation between these pairs of elements (p < 0.001) suggesting the importance of these elements in metabolic processes associated with the development of the tumor.

  3. On the distribution of uranium in hair: Non-destructive analysis using synchrotron radiation induced X-ray fluorescence microprobe techniques

    Energy Technology Data Exchange (ETDEWEB)

    Israelsson, A., E-mail: axel.israelsson@liu.se [Department of Medical and Health Sciences, Linköping University, 58183 Linköping (Sweden); Eriksson, M. [Swedish Radiation Safety Authority, 17116 Stockholm (Sweden); Pettersson, H.B.L. [Department of Radiation Physics, Linköping University, 58183 Linköping (Sweden); Department of Medical and Health Sciences, Linköping University, 58183 Linköping (Sweden)

    2015-06-01

    In the present study the distribution of uranium in single human hair shafts has been evaluated using two synchrotron radiation (SR) based micro X-ray fluorescence techniques; SR μ-XRF and confocal SR μ-XRF. The hair shafts originated from persons that have been exposed to elevated uranium concentrations. Two different groups have been studied, i) workers at a nuclear fuel fabrication factory, exposed mainly by inhalation and ii) owners of drilled bedrock wells exposed by ingestion of water. The measurements were carried out on the FLUO beamline at the synchrotron radiation facility ANKA, Karlsruhe. The experiment was optimized to detect U with a beam size of 6.8 μm × 3 μm beam focus allowing detection down to ppb levels of U in 10 s (SR μ-XRF setup) and 70 s (SR confocal μ-XRF setup) measurements. It was found that the uranium was present in a 10–15 μm peripheral layer of the hair shafts for both groups studied. Furthermore, potential external hair contamination was studied by scanning of unwashed hair shafts from the workers. Sites of very high uranium signal were identified as particles containing uranium. Such particles, were also seen in complementary analyses using variable pressure electron microscope coupled with energy dispersive X-ray analyzer (ESEM–EDX). However, the particles were not visible in washed hair shafts. These findings can further increase the understanding of uranium excretion in hair and its potential use as a biomonitor. - Highlights: • Uranium at the fg level was detectable and the uranium distribution in single hair shafts was derived. • The uranium is located peripherally on the shafts in what seems to be a layer of approximately 10-15 μm thickness. • Uranium bearing particles were found on hairs that had not been washed.

  4. Monitoring organic loading to swimming pools by fluorescence excitation–emission matrix with parallel factor analysis (PARAFAC)

    DEFF Research Database (Denmark)

    Seredynska-Sobecka, Bozena; Stedmon, Colin; Boe-Hansen, Rasmus

    2011-01-01

    Fluorescence Excitation–Emission Matrix spectroscopy combined with parallel factor analysis was employed to monitor water quality and organic contamination in swimming pools. The fluorescence signal of the swimming pool organic matter was low but increased slightly through the day. The analysis...... loading in swimming pool water. The fluorescence at 420nm gradually increased during opening hours and represented material accumulating through the day....

  5. Quantitative assessment of historical coastal landfill contamination using in-situ field portable XRF (FPXRF)

    Science.gov (United States)

    O'Shea, Francis; Spencer, Kate; Brasington, James

    2014-05-01

    Historically, waste was deposited on low value, easily accessible coastal land (e.g. marsh land). Within England and Wales alone, there are over 5000 historical landfills situated within coastal areas at risk of flooding at a 1 in 100 year return period (Environment Agency, 2012). Historical sites were constructed prior to relevant legislation, and have no basal or side wall engineering, and the waste constituents are mostly unknown. In theory, contaminant concentrations should be reduced through natural attenuation as the leachate plume migrates through surrounding fine-grained inter-tidal sediments before reaching receptor waters. However, erosion resulting from rising sea level and increased storm intensity may re-distribute these sediments and release associated contaminants into the estuarine and coastal environment. The diffuse discharge from these sites has not been quantified and this presents a problem for those landfill managers who are required to complete EIAs. An earlier detailed field campaign at Newlands landfill site, on the Thames Estuary, UK identified a sub-surface (~2m depth) contaminant plume extending c. 20 m from the landfill boundary into surrounding fine-grained saltmarsh sediments. These saltmarsh sediments are risk of being eroded releasing their contaminant load to the Thames Estuary. The aims of this work were to; 1) assess whether this plume is representative of other historical landfills with similar characteristics and 2) to develop a rapid screening methodology using field portable XRF that could be used to identify potential risk of other coastal landfill sites. GIS was used to select landfill sites of similar age, hydrological regime and sedimentary setting in the UK, for comparison. Collection of sediment samples and analysis by ICP OES is expensive and time-consuming, therefore cores were extracted and analysed with a Niton Goldd XRF in-situ. Contaminant data were available immediately and the sampling strategy could be adapted

  6. Micro-beam XRF localization by a laser beam

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    A new method for micro-beam XRF localization is presented. A laserbeam along with an incident X-ray hits on the surface of a sample. The micro region onthe sample that reached by X-ray beam can be localized by means of thevisible spot of the laser beam. This method is suitable for X-ray microprobesusing anX-ray tube or synchrotron radiation as excitation sources.

  7. Correction of interstitial water changes in calibration methods applied to XRF core-scanning major elements in long sediment cores: Case study from the South China Sea

    Science.gov (United States)

    Chen, Quan; Kissel, Catherine; Govin, Aline; Liu, Zhifei; Xie, Xin

    2016-05-01

    Fast and nondestructive X-ray fluorescence (XRF) core scanning provides high-resolution element data that are widely used in paleoclimate studies. However, various matrix and specimen effects prevent the use of semiquantitative raw XRF core-scanning intensities for robust paleoenvironmental interpretations. We present here a case study of a 50.8 m-long piston Core MD12-3432 retrieved from the northern South China Sea. The absorption effect of interstitial water is identified as the major source of deviations between XRF core-scanning intensities and measured element concentrations. The existing two calibration methods, i.e., normalized median-scaled calibration (NMS) and multivariate log-ratio calibration (MLC), are tested with this sequence after the application of water absorption correction. The results indicate that an improvement is still required to appropriately correct the influence of downcore changes in interstitial water content in the long sediment core. Consequently, we implement a new polynomial water content correction in NMS and MLC methods, referred as NPS and P_MLC calibrations. Results calibrated by these two improved methods indicate that the influence of downcore water content changes is now appropriately corrected. We therefore recommend either of the two methods to be applied for robust paleoenvironmental interpretations of major elements measured by XRF-scanning in long sediment sequences with significant downcore interstitial water content changes.

  8. A Novel Fluorescent Reagent for Analysis of Hydrogen Peroxide

    Institute of Scientific and Technical Information of China (English)

    董素英; 苏美红; 聂丽华; 马会民

    2003-01-01

    8-(4,6-Dichloro-1,3,5-trazinoxy)quinoline(DTQ) was evaluated as a new fluorescent reagent for determining hydrogen peroxide.It was found that the fluorescence intensity of DTQ in alkaline medium could be dramatically enhanced upon addition of H2O2.Based on this effect,a simple and selective method for the spectrofluorimetric determination of hydrogen peroxide was estabhlished.The relative standard deviation of the method was found to be 1.1?for 9 replicate determinations of a 4.6×10-6mol/L hydrogen peroxide solution.The linear range was 2.3×10-7-2.3×10-5mol/L with a detection limit of 2.2×10-8mol/L(S/N=3).The ,method was attempted to determine hydrogen peroxide in synthetic human serum samples with satisfactory results.

  9. Fluorescent Probes for Analysis and Imaging of Monoamine Oxidase Activity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dokyoung; Jun, Yong Woong; Ahn, Kyo Han [POSTECH, Pohang (Korea, Republic of)

    2014-05-15

    Monoamine oxidases catalyze the oxidative deamination of dietary amines and amine neurotransmitters, and assist in maintaining the homeostasis of the amine neurotransmitters in the brain. Dysfunctions of these enzymes can cause neurological and behavioral disorders including Parkinson's and Alzheimer's diseases. To understand their physiological roles, efficient assay methods for monoamine oxidases are essential. Reviewed in this Perspective are the recent progress in the development of fluorescent probes for monoamine oxidases and their applications to enzyme assays in cells and tissues. It is evident that still there is strong need for a fluorescent probe with desirable substrate selectivity and photophysical properties to challenge the much unsolved issues associated with the enzymes and the diseases.

  10. On-chip cell analysis platform: Implementation of contact fluorescence microscopy in microfluidic chips

    Science.gov (United States)

    Takehara, Hiroaki; Kazutaka, Osawa; Haruta, Makito; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Ohta, Jun

    2017-09-01

    Although fluorescence microscopy is the gold standard tool for biomedical research and clinical applications, their use beyond well-established laboratory infrastructures remains limited. The present study investigated a novel on-chip cell analysis platform based on contact fluorescence microscopy and microfluidics. Combined use of a contact fluorescence imager based on complementary metal-oxide semiconductor technology and an ultra-thin glass bottom microfluidic chip enabled both to observe living cells with minimal image distortion and to ease controlling and handling of biological samples (e.g. cells and biological molecules) in the imaged area. A proof-of-concept experiment of on-chip detection of cellular response to endothelial growth factor demonstrated promising use for the recently developed on-chip cell analysis platform. Contact fluorescence microscopy has numerous desirable features including compatibility with plastic microfluidic chips and compatibility with the electrical control system, and thus will fulfill the requirements of a fully automated cell analysis system.

  11. Development and applications of grazing exit micro X-ray fluorescence instrument using a polycapillary X-ray lens*1

    Science.gov (United States)

    Emoto, T.; Sato, Y.; Konishi, Y.; Ding, X.; Tsuji, K.

    2004-08-01

    A polycapillary X-ray lens is an effective optics to obtain a μm-size X-ray beam for micro-X-ray fluorescence spectrometry (μ-XRF). We developed a μ-XRF instrument using a polycapillary X-ray lens, which also enabled us to perform Grazing Exit μ-XRF (GE-μ-XRF). The evaluated diameter of the primary X-ray beam was 48 μm at the focal distance of the X-ray lens. Use of this instrument enabled two-dimensional mapping of the elemental distributions during growth of the plant "Quinoa". The results of the mapping revealed elemental transition during growth. In addition, a small region of thin film was analyzed by GE-μ-XRF. We expect that GE-μ-XRF will become an effective method of estimating the film thickness of a small region.

  12. Development and applications of grazing exit micro X-ray fluorescence instrument using a polycapillary X-ray lens

    Energy Technology Data Exchange (ETDEWEB)

    Emoto, T.; Sato, Y.; Konishi, Y.; Ding, X.; Tsuji, K. E-mail: tsuji@a-chem.eng.osaka-cu.ac.jp

    2004-08-31

    A polycapillary X-ray lens is an effective optics to obtain a {mu}m-size X-ray beam for micro-X-ray fluorescence spectrometry ({mu}-XRF). We developed a {mu}-XRF instrument using a polycapillary X-ray lens, which also enabled us to perform Grazing Exit {mu}-XRF (GE-{mu}-XRF). The evaluated diameter of the primary X-ray beam was 48 {mu}m at the focal distance of the X-ray lens. Use of this instrument enabled two-dimensional mapping of the elemental distributions during growth of the plant 'Quinoa'. The results of the mapping revealed elemental transition during growth. In addition, a small region of thin film was analyzed by GE-{mu}-XRF. We expect that GE-{mu}-XRF will become an effective method of estimating the film thickness of a small region.

  13. Heavy metals assessment in Oum Er Rbia bassin using WD-XRF and ICP-AES

    Science.gov (United States)

    Zahry, F.; Labraimi, M.; Bilal, E.; Gruffat, J. J.; Moutte, J.; Garcia, D.; Bounakhla, M.

    2003-05-01

    The analysis of water, suspended particulate matter (SPM) and sediment collected from Oum er Rbia Moroccan basin for the content of six elements has been performed utilizing ICP-AES and WD-XRF methods. Sediment have been analyzed by WD-XRF; Water and MPS by ICP-AES. The detection limits are sufficient for most of the elements to be determined. Results were assessed for the accuracy by the analysis of a multi-elemental standards. The results for most of the elements obtained were accurate to about 2 15%. The objective of the analysis were to determine the geochemical areas on this bassin, to explain the mechanisms of sediment transport and nevertheless, to assess the pollution of the bassin by heavy metals generated by human activities. This work interests only the last aspect. It has done one 30samples of water and SPM, and about 80 sediments. Samples were collected along the river, between its source in meddle Atlas and the Atlantic ocean at Azemour city. The results obtained on the basin were normalized to the international norms.

  14. Laser-induced fluorescence: quantitative analysis of atherosclerotic plaque chemical content in human aorta

    Science.gov (United States)

    Dai, Erbin; Wishart, David; Khoury, Samir; Kay, Cyril M.; Jugdutt, Bodh I.; Tulip, John; Lucas, Alexandra

    1996-05-01

    We have been studying laser-induced fluorescence as a technique for identification of selected changes in the chemical composition of atherosclerotic plaque. Formulae for quantification of chemical changes have been developed based upon analysis of fluorescence emission spectra using multiple regression analysis and the principal of least squares. The intima of human aortic necropsy specimens was injected with chemical compounds present in atherosclerotic plaque. Spectra recorded after injection of selected chemical components found in plaque (collagen I, III, IV, elastin and cholesterol) at varying concentrations (0.01 - 1.0 mg) were compared with saline injection. A single fiber system was used for both fluorescence excitation (XeCl excimer laser, 308 nm, 1.5 - 2.0 mJ/ pulse, 5 Hz) and fluorescence emission detection. Average spectra for each chemical have been developed and the wavelengths of peak emission intensity identified. Curve fitting analysis as well as multiple regression analysis were used to develop formulae for assessment of chemical content. Distinctive identifying average curves were established for each chemical. Excellent correlations were identified for collagen I, III, and IV, elastin, and cholesterol (R2 equals 0.92 6- 0.997). Conclusions: (1) Fluorescence spectra of human aortas were significantly altered by collagen I, collagen III, elastin and cholesterol. (2) Fluorescence spectroscopic analysis may allow quantitative assessment of atherosclerotic plaque chemical content in situ.

  15. Assessment of Sediment Heavy Metals Pollution Using Screening Methods (XRF, TGA/MS, XRPD and Earthworms Bioassay)

    Science.gov (United States)

    Findoráková, Lenka; Šestinová, Ol'ga; Hančul'ák, Jozef; Fedorová, Erika; Zorkovská, Anna

    2016-10-01

    The aim of this study is focused on the use of screening methods (TG/DTA coupled with MS, XRF, AAS, XRPD and earthworm bioassay) for sediments pollution assessing by heavy metals (Cu, Zn, Pb, Hg) coming from the former mining workloads in the central Spis, Eastern Slovakia. The screening methods (XRF, AAS) indicated pollution of studied sediments by Cu, Zn, Pb, Hg. The earthworms Dendrobaena veneta caused in some studied samples decrease of heavy metals concentration after their 7 days’ exposure in sediments. The other screening methods such as thermal analysis and XRPD analysis, does not confirm the specifically changes in physicochemical properties comparing the properties before and after 7 days’ earthworm's exposure.

  16. Performance of hybrid angle-energy dispersive X-ray diffraction and fluorescence portable system for non-invasive surface-mineral identification in Archaeometry

    CERN Document Server

    Cuevas, Ariadna Mendoza

    2016-01-01

    Low power energy dispersive XRD-XRF portable instruments equipped with multiple angle scanning can take advantage of the shorter acquisition time of EDXRD with respect to ADXRD, and bring closer higher accuracy and resolution of inter-planar distance with those obtained by ADXRD. The data produced by this new hybrid configuration is correlated in the sense that a single XRF or XRD specimen appear in multiple spectra (the later shifted in energy for differing angles). Hence, for fully benefit from the richer data released by this configuration, the analysis should not be confined to the independent processing of the spectra, specialized hybrid data processing should be conceived. We previously reported some advances in the processing of the resulting 3D data (intensity, energy and angle). Here the analytical performance of the first hybrid angle-energy dispersive X-ray diffraction and fluorescence portable system is assessed for non-invasive surface mineral analysis of samples relevant for archaeometrical appl...

  17. 100-OL-1 Operable Unit Pilot Study: XRF Evaluation of Select Pre-Hanford Orchards

    Energy Technology Data Exchange (ETDEWEB)

    Bunn, Amoret L.; Fritz, Brad G.; Pulsipher, Brent A.; Gorton, Alicia M.; Bisping, Lynn E.; Brandenberger, Jill M.; Pino, Christian; Martinez, Dominique M.; Rana, Komal; Wellman, Dawn M.

    2014-11-20

    Prior to the acquisition of land by the U.S. Department of War in February 1943 and the creation of the Hanford Site, the land along the Columbia River was home to over 1000 people. Farming and orchard operations by both homesteaders and commercial organizations were prevalent. Orchard activities and the associated application of lead arsenate pesticide ceased in 1943, when residents were moved from the Hanford Site at the beginning of the Manhattan Project. Today, the residues from historical application of lead arsenate pesticide persist in some locations on the Hanford Site. In 2012, the U.S. Department of Energy, U.S. Environmental Protection Agency, and Washington State Department of Ecology established the 100-OL-1 Operable Unit (OU) through the Hanford Federal Facility Agreement and Consent Order, known as the Tri-Party Agreement. The pre-Hanford orchard lands identified as the 100-OL-1 OU are located south of the Columbia River and east of the present-day Vernita Bridge, and extend southeast to the former Hanford townsite. The discontinuous orchard lands within 100-OL-1 OU are approximately 20 km2 (5000 ac). A pilot study was conducted to support the approval of the remedial investigation/feasibility study work plan to evaluate the 100-OL-1 OU. This pilot study evaluated the use of a field portable X-ray fluorescence (XRF) analyzer for evaluating lead and arsenic concentrations on the soil surface as an indicator of lead arsenate pesticide residues in the OU. The objectives of the pilot study included evaluating a field portable XRF analyzer as the analytical method for decision making, estimating the nature and extent of lead and arsenic in surface soils in four decision units, evaluating the results for the purpose of optimizing the sampling approach implemented in the remedial investigation, and collecting information to improve the cost estimate and planning the cultural resources review for sampling activities in the remedial investigation. Based on

  18. Molecular Detection of Bladder Cancer by Fluorescence Microsatellite Analysis and an Automated Genetic Analyzing System

    Directory of Open Access Journals (Sweden)

    Sarel Halachmi

    2007-01-01

    Full Text Available To investigate the ability of an automated fluorescent analyzing system to detect microsatellite alterations, in patients with bladder cancer. We investigated 11 with pathology proven bladder Transitional Cell Carcinoma (TCC for microsatellite alterations in blood, urine, and tumor biopsies. DNA was prepared by standard methods from blood, urine and resected tumor specimens, and was used for microsatellite analysis. After the primers were fluorescent labeled, amplification of the DNA was performed with PCR. The PCR products were placed into the automated genetic analyser (ABI Prism 310, Perkin Elmer, USA and were subjected to fluorescent scanning with argon ion laser beams. The fluorescent signal intensity measured by the genetic analyzer measured the product size in terms of base pairs. We found loss of heterozygocity (LOH or microsatellite alterations (a loss or gain of nucleotides, which alter the original normal locus size in all the patients by using fluorescent microsatellite analysis and an automated analyzing system. In each case the genetic changes found in urine samples were identical to those found in the resected tumor sample. The studies demonstrated the ability to detect bladder tumor non-invasively by fluorescent microsatellite analysis of urine samples. Our study supports the worldwide trend for the search of non-invasive methods to detect bladder cancer. We have overcome major obstacles that prevented the clinical use of an experimental system. With our new tested system microsatellite analysis can be done cheaper, faster, easier and with higher scientific accuracy.

  19. Spectral phasor analysis allows rapid and reliable unmixing of fluorescence microscopy spectral images

    NARCIS (Netherlands)

    Fereidouni, F.; Bader, A.N.; Gerritsen, H.C.

    2012-01-01

    A new global analysis algorithm to analyse (hyper-) spectral images is presented. It is based on the phasor representation that has been demonstrated to be very powerful for the analysis of lifetime imaging data. In spectral phasor analysis the fluorescence spectrum of each pixel in the image is Fou

  20. FLUORESCENT TRANSGENIC FISH IN PERU: BIOSAFETY AND RISK ANALYSIS PENDING

    Directory of Open Access Journals (Sweden)

    Scotto, Carlos

    2010-07-01

    Full Text Available Transgenesis involves processes of molecular genetic manipulation of DNAwhich seeks to "introduce genes" of interest from one organism into the genetic material of another to obtain goods or services. The resulting organism is called a Genetically Modified Organism or GMO. It shows the first case of transgenic fluorescent fish as a real example of GMOs existing in Peru. Reproduction and hybridization in confined environments, provide new approaches to biosecurity decision-makers about this new technological contribution to the task of Peru.

  1. Bloodstain age analysis: toward solid state fluorescent lifetime measurements

    Science.gov (United States)

    Guo, Kevin; Zhegalova, Natalia; Achilefu, Samuel; Berezin, Mikhail Y.

    2013-03-01

    One of the most pressing unsolved challenges in forensic science is the determination of time since deposition (TSD) of bloodstains at crime scenes. Despite a number of high profile cases over the past couple hundred years involving controversy over TSD methods, no reliable quantitative method has been established. We present here an approach that has yet to be explored by forensic scientist: measuring the fluorescence lifetime of solid-state blood. Such a method would allow for on-site measurements of bloodstains utilizing the appropriate device, and would allow for rapid results returned in real-time to investigators.

  2. X-ray fluorescence analysis of yellow pigments in altarpieces by Valencian artists of the XV and XVI centuries

    Science.gov (United States)

    Ferrero, J. L.; Roldán, C.; Ardid, M.; Navarro, E.

    1999-02-01

    XRF analysis has allowed a quick and precise detection and identification of the inorganic elements that compose the yellow pigments in altarpieces of the XV and XVI centuries painted by the Valencian artists Miguel Alcañiz, Vicente Macip, Juan de Juanes, Hernando Yáñez de la Almedina and Hernando Llanos. The analyses have been carried out with an XRF portable system that consists of a tube of X-rays and detectors of Si(Li) and cadmium zinc telluride. This system has enabled a non-aggressive and non-destructive analysis of many pieces at the Museo de Bellas Artes of Valencia (Spain). Among the yellow pigments we have identified a pigment composed by lead and tin oxides named lead-tin yellow (Pb 2SnO 4), frequently used in European paintings from the XIV century until the first half of the XVIII century. This fact demonstrates the influence of elements and pictorial techniques from Europe to the region of Valencia.

  3. Analysis of Dental Enamel Surface Submitted to Fruit Juice Plus Soymilk by Micro X-Ray Fluorescence: In Vitro Study

    Directory of Open Access Journals (Sweden)

    Janaína Salmos Brito

    2016-01-01

    Full Text Available Objective. This paper aimed to analyze the in vitro industrialized fruit juices effect plus soy to establish the erosive potential of these solutions. Materials and Methods. Seventy bovine incisors were selected after being evaluated under stereomicroscope. Their crowns were prepared and randomly divided into 7 groups, using microhardness with allocation criteria. The crowns were submitted to the fruit juice plus soy during 15 days, twice a day. The pH values, acid titration, and Knoop microhardness were recorded and the specimens were evaluated using X-ray microfluorescence (µXRF. Results. The pH average for all juices and after 3 days was significantly below the critical value for dental erosion. In average, the pH value decreases 14% comparing initial time and pH after 3 days. Comparing before and after, there was a 49% microhardness decrease measured in groups (p<0.05. Groups G1, G2, G5, and G6 are above this average. The analysis by μXRF showed a decrease of approximately 7% Ca and 4% P on bovine crowns surface. Florida (FL statistical analysis showed a statistically significant 1 difference between groups. Thus, a tooth chance to suffer demineralization due to industrialized fruit juices plus soy is real.

  4. Efficacy of Laser Fluorescence in Dental Caries Diagnosis: A Meta-Analysis

    Science.gov (United States)

    2012-06-01

    iii     EFFICACY OF LASER FLUORESCENCE IN DENTAL CARIES DIAGNOSIS: A META-ANALYSIS by Derek T. Fagen LCDR...not be re-printed without the expressed written permission of the author. vi     ABSTRACT EFFICACY OF LASER FLUORESCENCE IN DENTAL CARIES ...presence or absence of dental caries is of the utmost importance since errors may lead to either performance of irreversible, but unnecessary

  5. Bright field microscopy as an alternative to whole cell fluorescence in automated analysis of macrophage images.

    Directory of Open Access Journals (Sweden)

    Jyrki Selinummi

    Full Text Available BACKGROUND: Fluorescence microscopy is the standard tool for detection and analysis of cellular phenomena. This technique, however, has a number of drawbacks such as the limited number of available fluorescent channels in microscopes, overlapping excitation and emission spectra of the stains, and phototoxicity. METHODOLOGY: We here present and validate a method to automatically detect cell population outlines directly from bright field images. By imaging samples with several focus levels forming a bright field -stack, and by measuring the intensity variations of this stack over the -dimension, we construct a new two dimensional projection image of increased contrast. With additional information for locations of each cell, such as stained nuclei, this bright field projection image can be used instead of whole cell fluorescence to locate borders of individual cells, separating touching cells, and enabling single cell analysis. Using the popular CellProfiler freeware cell image analysis software mainly targeted for fluorescence microscopy, we validate our method by automatically segmenting low contrast and rather complex shaped murine macrophage cells. SIGNIFICANCE: The proposed approach frees up a fluorescence channel, which can be used for subcellular studies. It also facilitates cell shape measurement in experiments where whole cell fluorescent staining is either not available, or is dependent on a particular experimental condition. We show that whole cell area detection results using our projected bright field images match closely to the standard approach where cell areas are localized using fluorescence, and conclude that the high contrast bright field projection image can directly replace one fluorescent channel in whole cell quantification. Matlab code for calculating the projections can be downloaded from the supplementary site: http://sites.google.com/site/brightfieldorstaining.

  6. Spectroscopic Analysis of Today's Compact Fluorescent Light Bulbs

    Science.gov (United States)

    Pluhar, Edward

    2012-03-01

    In today's consumer market, there are many different light bulbs that claim to produce `natural' light. In my research, I both quantitatively and qualitatively analyzed this claim. First, utilizing a spectroscope, I compared the spectra emitted by different brands and types of compact fluorescent light (CFL) bulbs to the spectra emitted by the Sun. Once the bulbs were quantitatively analyzed, I proceeded to qualitatively analyze them by exposing subjects to the different bulbs. The subjects were asked to rate the quality of color in different pictures illuminated by each type of CFL. From these tests, I was able to determine the ``best'' CFL bulbs, and conclude whether the health risks associated with CFL bulbs outweigh the cost savings, longevity of the bulbs, and/or quality of light benefits.

  7. Analysis of Septin Reorganization at Cytokinesis Using Polarized Fluorescence Microscopy

    Directory of Open Access Journals (Sweden)

    Molly McQuilken

    2017-05-01

    Full Text Available Septins are conserved filament-forming proteins that act in diverse cellular processes. They closely associate with membranes and, in some systems, components of the cytoskeleton. It is not well understood how filaments assemble into higher-order structures in vivo or how they are remodeled throughout the cell cycle. In the budding yeast S. cerevisiae, septins are found through most of the cell cycle in an hourglass organization at the mother-bud neck until cytokinesis when the collar splits into two rings that disassemble prior to the next cell cycle. Experiments using polarized fluorescence microscopy have suggested that septins are arranged in ordered, paired filaments in the hourglass and undergo a coordinated 90° reorientation during splitting at cytokinesis. This apparent reorganization could be due to two orthogonal populations of filaments disassembling and reassembling or being preferentially retained at cytokinesis. In support of this idea, we report a decrease in septin concentration at the mother-bud neck during cytokinesis consistent with other reports and the timing of the decrease depends on known septin regulators including the Gin4 kinase. We took a candidate-based approach to examine what factors control reorientation during splitting and used polarized fluorescence microscopy to screen mutant yeast strains deficient in septin interacting proteins. Using this method, we have linked known septin regulators to different aspects of the assembly, stability, and reorganization of septin assemblies. The data support that ring splitting requires Gin4 activity and an anillin-like protein Bud4, and normal accumulation of septins at the ring requires phosphorylation of Shs1. We found distinct regulatory requirements for septin organization in the hourglass compared to split rings. We propose that septin subpopulations can vary in their localization and assembly/disassembly behavior in a cell-cycle dependent manner at cytokinesis.

  8. In situ investigation of the surface silvering of late Roman coins by combined use of high energy broad-beam and low energy micro-beam X-ray fluorescence techniques

    Science.gov (United States)

    Romano, F. P.; Garraffo, S.; Pappalardo, L.; Rizzo, F.

    2012-07-01

    The compositional analysis of archeological metals performed with the X-ray Fluorescence technique (XRF) provides information on the ancient technology. One of the most interesting case-study concerns the techniques used by Romans for silvering the surface of coins. Different metallurgical processes have been suggested in previous studies. Recently the investigation has been addressed to the mercury-silvering and to its possible use in the mass-production of coins minted during the late period (after 294 AD). In the present paper the non-destructive investigation of the silvering process used for manufacturing the Roman nummi - the important typology of coin introduced by Diocletian in his monetary reform - is approached by the combined use of the standard X-Ray Fluorescence (XRF) and the low energy micro-X-Ray Fluorescence (LE-μXRF) portable methods. The research was focused on the systematic determination of the mercury presence in a large number of samples and on its correlation with silver in the surface of the coins. 1041 Roman nummi belonging to the Misurata Treasure were analyzed in situ, at the Leptis Magna Museum (Al Khums, Libya). The treasure, composed of about 108 thousand silvered coins, gives the unique opportunity to study the Roman coinage in a wide interval of time (about 40 years in the period 294-333 AD) and in almost all the imperial mints operating in the Roman world.

  9. Pathological changes in Alzheimer"s brain evaluated with fluorescence emission analysis (FEA)

    Science.gov (United States)

    Christov, Alexander; Ottman, Todd; Grammas, Paula

    2004-07-01

    Development of AD is associated with cerebrovascular deposition of amyloid beta (Aβ) as well as a progressive increase in vasular collagen content. Both AΒ and collagen are naturally fluorescent compounds when exposed to UV light. We analyzed autofluorescence emitted from brain tissue samples and isolated brain resistance vessels harvested postmortem from patients with Alzheimer's disease (AD) and age-matched controls. Fluorescence emission, excited at 355 nm with an Nd:YAG laser, was measured using a fiber-optic based fluorescence spectroscopic system for tissue analysis. Significantly higher values of fluorescence emission intensity (Pcollagen, and reduced levels of type IV collagen in resistance vessels from AD patients, compared to control samples. In addition, using direct scanning of the cortical suface for fluoresxcence emission by the laser-induced fluorescence spectroscopy system we detected a significantly (P<0.05) higher level of apoptosis in AD brain tissue compared to age-matched controls. Fluorescence emission analysis (FEA) appears to be a sensitive technique for detecting structural changes in AD brain tissue.

  10. Applicability of X-ray fluorescence spectroscopy as method to determine thickness and composition of stacks of metal thin films: A comparison with imaging and profilometry

    NARCIS (Netherlands)

    Vrielink, J.A.M.; Tiggelaar, R.M.; Gardeniers, J.G.E.; Lefferts, L.

    2012-01-01

    In this work the applicability of X-ray fluorescence spectroscopy (XRF) for fast, accurate and non-destructive determination of the thickness of a variety of single-layer and multi-layer metal thin films deposited on glass and silicon is investigated. Data obtained with XRF is compared with informat

  11. X-Ray Fluorescence Analysis for Barium, Zinc, Calcium and Phosphorus in Oil Additives.

    Science.gov (United States)

    1983-08-01

    HOAlD-I’ 908 XRAY FLUORESCENCE ANALYSIS FOR BARIUM ZINC CALCIUM AND i/i PHOSPHORUS IN OIL HDDITIVES(U MATERIALS RESEARCH LABS ASCOT VALE (AUSTRALIA...film technique was used by McGinness, Scott and Mortensen [101 for the quantitative x-ray emission analysis of paints . The paint films, "one-half mil

  12. Quantitative analysis by synchrotron radiation induced X-ray fluorescence at lure

    Science.gov (United States)

    Chevallier, P.; Brissaud, I.; Wang, J. X.

    1990-04-01

    The main features that makes synchrotron radiation an ideal source for X-ray fluorescence analysis are emphasized. Examples of quantitative analysis are given and a new type of spectrometer taking advantage of the focusing properties of a flat mosaic crystal and a position sensitive detector is described.

  13. Chemical profile of meta-chlorophenylpiperazine (m-CPP) in ecstasy tablets by easy ambient sonic-spray ionization, X-ray fluorescence, ion mobility mass spectrometry and NMR.

    Science.gov (United States)

    Romão, Wanderson; Lalli, Priscila M; Franco, Marcos F; Sanvido, Gustavo; Schwab, Nicolas V; Lanaro, Rafael; Costa, José Luiz; Sabino, Bruno D; Bueno, Maria Izabel M S; de Sa, Gilberto F; Daroda, Romeu J; de Souza, Vanderlea; Eberlin, Marcos N

    2011-07-01

    Meta-chlorophenylpiperazine (m-CPP) is a new illicit drug that has been sold as ecstasy tablets. Easy ambient sonic-spray ionization mass spectrometry (EASI-MS) and X-ray fluorescence spectrometry (XRF) are shown to provide relatively simple and selective screening tools to distinguish m-CPP tablets from tablets containing amphetamines (mainly 3,4-methylenedioxymethamphetamine (MDMA)). EASI-MS detects the active ingredients in their protonated forms: [m-CPP + H](+) of m/z 197, [MDMA + H](+) of m/z 194, and [2MDMA + HCl + H](+) of m/z 423 and other ions from excipients directly on the tablet surface, providing distinct chemical fingerprints. XRF identifies Cl, K, Ca, Fe, and Cu as inorganic ingredients present in the m-CPP tablets. In contrast, higher Cl concentrations and a more diverse set of elements (P, Cl, Ca, Fe, Cu, Zn, Pt, V, Hf, Ti, Pt, and Zr) were found in MDMA tablets. Principal component analysis applied to XRF data arranged samples in three groups: m-CPP tablets (four samples), MDMA tablets (twenty three samples), and tablets with no active ingredients (three samples). The EASI-MS and XRF techniques were also evaluated to quantify m-CPP in ecstasy tablets, with concentrations ranging from 4 to 40 mg of m-CPP per tablets. The m-CPP could only be differentiated from its isomers (o-CPP and for the three isomers p-CPP) by traveling wave ion mobility mass spectrometry and NMR measurements.

  14. A Mexican kaolin deposit: XANES characterization, mineralogical phase analysis and applications

    OpenAIRE

    Martínez, A.; Garza, L. L.; L. M. Torres; Vázquez, F.; López, W.

    2009-01-01

    A kaolin obtained from Villa de Reyes, a region near to San Luis Potosí (México) was characterized by means of X-ray powder diffraction (XRD, optical microscopy (OM), scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-Ray Absorption Near Edge Spectroscopy (XANES), thermal analysis (DTA/TGA), dilatometry (DIL), and chemical analysis. Mineralogical and morphological characteristics of the mineral are presented. The kaolin sample was formed mainly by kaolinite, but other minor phase...

  15. An assessment of a handheld X-ray fluorescence instrument for use in exploration and development with an emphasis on REEs and related specialty metals

    Science.gov (United States)

    Simandl, G. J.; Stone, R. S.; Paradis, S.; Fajber, R.; Reid, H. M.; Grattan, K.

    2014-12-01

    Handheld (portable) X-ray fluorescence (pXRF) instruments are designed for use in the exploration for base metals, precious metals, and specialty metals (e.g. rare earth elements (REE), Ta, and Nb) and allow rapid decision-making directly in the field. This paper evaluates the technical merits and limitations of pXRF technology in the exploration for specialty metals using data generated from the analysis of three geochemical standards and a silica blank: Standard Reference Material NIST 2780 from the National Institute of Standards and Technology, Gaithersburg; the Certified Reference Material "TRLK" Rare Earth Ore "CGL 124" from the Mongolia Central Geological Laboratory; the Reference Niobium Ore OKA-1 (CANMET); and a silica blank described as Si (IV) oxide (99.8 % on metal basis) from Alpha Aesar (Ward Hill, MA, USA). The data was acquired over a period of nearly 2 years as a by-product of several distinct specialty metal-related projects using the same pXRF instrument and the same settings. Instrumental analytical accuracy was determined using the percent difference (%diff) between the average concentrations of the pXRF instrument readings and the reported certified values of the standard. Percent relative standard deviation (%RSD) was used as a measure of precision. Smaller %diff and %RSD indicate more accurate and precise data, and the accuracy and precision of the pXRF depended strongly on the elemental concentrations in the standards used. Box and whisker diagrams were used to illustrate characteristics of pXRF data sets (mean, lower and upper quartiles, and range) corresponding to individual standards. The bias of the pXRF determinations (under/overestimation) relative to certified values of individual standards are also depicted on these diagrams. This study indicates that the pXRF was capable of producing readings for Si, K, Al, Fe, Ca, Ti, Pb, Zn, Sr, Ag, Cd, Th, Sb, P, S, Mo, Mn, Mg, As, Nb, Rb, La, Ce, Pr, Nd, and Y within 10 %RSD of the reported

  16. Determination of trace elements in Syrian medicinal plants and their infusions by energy dispersive X-ray fluorescence and total reflection X-ray fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Khuder, A. [Department of Chemistry, Atomic Energy Commission, P.O. Box 6091, Damascus (Syrian Arab Republic)], E-mail: scientific2@aec.org.sy; Sawan, M.Kh.; Karjou, J. [Department of Chemistry, Atomic Energy Commission, P.O. Box 6091, Damascus (Syrian Arab Republic); Razouk, A.K. [Department of Agriculture, Atomic Energy Commission, P.O. Box 6091, Damascus (Syrian Arab Republic)

    2009-07-15

    X-ray fluorescence (XRF) and total-reflection X-ray fluorescence (TXRF) techniques suited well for a multi-element determination of K, Ca, Mn, Fe, Cu, Zn, Rb, and Sr in some Syrian medicinal plant species. The accuracy and the precision of both techniques were verified by analyzing the Standard Reference Materials (SRM) peach-1547 and apple leaves-1515. A good agreement between the measured concentrations of the previously mentioned elements and the certified values were obtained with errors less than 10.7% for TXRF and 15.8% for XRF. The determination of Br was acceptable only by XRF with an error less than 24%. Furthermore, the XRF method showed a very good applicability for the determination of K, Ca, Mn, Fe, Cu, Zn, Rb, Sr, and Br in infusions of different Syrian medicinal plant species, namely anise (Anisum vulgare), licorice root (Glycyrrhiza glabra), and white wormwood (Artemisia herba-alba)

  17. Determination of trace elements in Syrian medicinal plants and their infusions by energy dispersive X-ray fluorescence and total reflection X-ray fluorescence spectrometry

    Science.gov (United States)

    Khuder, A.; Sawan, M. Kh.; Karjou, J.; Razouk, A. K.

    2009-07-01

    X-ray fluorescence (XRF) and total-reflection X-ray fluorescence (TXRF) techniques suited well for a multi-element determination of K, Ca, Mn, Fe, Cu, Zn, Rb, and Sr in some Syrian medicinal plant species. The accuracy and the precision of both techniques were verified by analyzing the Standard Reference Materials (SRM) peach-1547 and apple leaves-1515. A good agreement between the measured concentrations of the previously mentioned elements and the certified values were obtained with errors less than 10.7% for TXRF and 15.8% for XRF. The determination of Br was acceptable only by XRF with an error less than 24%. Furthermore, the XRF method showed a very good applicability for the determination of K, Ca, Mn, Fe, Cu, Zn, Rb, Sr, and Br in infusions of different Syrian medicinal plant species, namely anise ( Anisum vulgare), licorice root ( Glycyrrhiza glabra), and white wormwood ( Artemisia herba-alba).

  18. A portable UV-fluorescence multispectral imaging system for the analysis of painted surfaces.

    Science.gov (United States)

    Comelli, Daniela; Valentini, Gianluca; Nevin, Austin; Farina, Andrea; Toniolo, Lucia; Cubeddu, Rinaldo

    2008-08-01

    A portable fluorescence multispectral imaging system was developed and has been used for the analysis of artistic surfaces. The imaging apparatus exploits two UV lamps for fluorescence excitation and a liquid crystal tunable filter coupled to a low-noise charge coupled device as the image detector. The main features of the system are critically presented, outlining the assets, drawbacks, and practical considerations of portability. A multivariate statistical treatment of spectral data is further considered. Finally, the in situ analysis with the new apparatus of recently restored Renaissance wall paintings is presented.

  19. Classification of corn kernels contaminated with aflatoxins using fluorescence and reflectance hyperspectral images analysis

    Science.gov (United States)

    Zhu, Fengle; Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Brown, Robert; Bhatnagar, Deepak; Cleveland, Thomas

    2015-05-01

    Aflatoxins are secondary metabolites produced by certain fungal species of the Aspergillus genus. Aflatoxin contamination remains a problem in agricultural products due to its toxic and carcinogenic properties. Conventional chemical methods for aflatoxin detection are time-consuming and destructive. This study employed fluorescence and reflectance visible near-infrared (VNIR) hyperspectral images to classify aflatoxin contaminated corn kernels rapidly and non-destructively. Corn ears were artificially inoculated in the field with toxigenic A. flavus spores at the early dough stage of kernel development. After harvest, a total of 300 kernels were collected from the inoculated ears. Fluorescence hyperspectral imagery with UV excitation and reflectance hyperspectral imagery with halogen illumination were acquired on both endosperm and germ sides of kernels. All kernels were then subjected to chemical analysis individually to determine aflatoxin concentrations. A region of interest (ROI) was created for each kernel to extract averaged spectra. Compared with healthy kernels, fluorescence spectral peaks for contaminated kernels shifted to longer wavelengths with lower intensity, and reflectance values for contaminated kernels were lower with a different spectral shape in 700-800 nm region. Principal component analysis was applied for data compression before classifying kernels into contaminated and healthy based on a 20 ppb threshold utilizing the K-nearest neighbors algorithm. The best overall accuracy achieved was 92.67% for germ side in the fluorescence data analysis. The germ side generally performed better than endosperm side. Fluorescence and reflectance image data achieved similar accuracy.

  20. Analysis of root surface properties by fluorescence/Raman intensity ratio.

    Science.gov (United States)

    Nakamura, Shino; Ando, Masahiro; Hamaguchi, Hiro-O; Yamamoto, Matsuo

    2017-07-25

    The aim of this study is to evaluate the existence of residual calculus on root surfaces by determining the fluorescence/Raman intensity ratio. Thirty-two extracted human teeth, partially covered with calculus on the root surface, were evaluated by using a portable Raman spectrophotometer, and a 785-nm, 100-mW laser was applied for fluorescence/Raman excitation. The collected spectra were normalized to the hydroxyapatite Raman band intensity at 960 cm(-1). Raman spectra were recorded from the same point after changing the focal distance of the laser and the target radiating angle. In seven teeth, the condition of calculus, cementum, and dentin were evaluated. In 25 teeth, we determined the fluorescence/Raman intensity ratio following three strokes of debridement. Raman spectra collected from the dentin, cementum, and calculus were different. After normalization, spectra values were constant. The fluorescence/Raman intensity ratio of calculus region showed significant differences compared to the cementum and dentin (p < 0.05). The fluorescence/Raman intensity ratio decreased with calculus debridement. For this analysis, the delta value was defined as the difference between the values before and after three strokes, with the final 2 delta values close to zero, indicating a gradual asymptotic curve and the change in intensity ratio approximating that of individual constants. Fluorescence/Raman intensity ratio was effectively used to cancel the angle- and distance-dependent fluctuations of fluorescence collection efficiency during measurement. Changes in the fluorescence/Raman intensity ratio near zero suggested that cementum or dentin was exposed, and calculus removed.

  1. Photosynthetic properties of spring geophytes assessed by chlorophyll fluorescence analysis.

    Science.gov (United States)

    Recchia, Irene; Sparla, Francesca; Pupillo, Paolo

    2017-09-01

    Since spring ephemerals are credited to be all "sun" species with unusually elevate photosynthesis, in contrast to shade-tolerant trees and understory geophytes with a long aboveground cycle, we examined the photosynthetic efficiency of 6 woody species, 9 long-cycle geophytes, and 8 spring ephemeral geophytes using blue flashes of increasing energy with the Imaging PAM fluorometer. Several parameters were obtained: quantum yield of electron transport (ΦETR) or of PSII (ΦPSII), maximum measured photosynthesis rate (ETRhv), maximum extrapolated rate of photosynthesis (ETRem), half-saturating photon flux density (KPAR), and in some cases photochemical (qP) and non-photochemical quenching (NPQ). Results confirm the ecological consistency of the three plant groups, with internal differences. Woody species have low ETRem and KPAR values with good ΦETR; long-cycle herbs have low ETRem and ΦETR and moderate KPAR values; spring ephemerals have elevate ΦETR, ETRem and KPAR values. The mean ETRem of ephemerals of 91 μmol m(-2) s(-1) exceeds that of long-cycle herbs 2.9-fold and woody species 4.8-fold, and corresponds to 19 μmol CO2 m(-2) s(-1) by assuming an ETR/ΦCO2 ratio of 4.7. Highest photosynthesis rates and KPAR were exhibited by five ephemerals (Eranthis, Erythronium, Narcissus, Scilla, Tulipa) with peak ETRem values equivalent to ∼40 μmol CO2 m(-2) s(-1) or ∼60 μmol CO2 (g Chl)(-1) s(-1) ("sun" species). According to a new, fluorescence based heliophily index, all trees and five long-cycle herbs were definitely "shade" species, while four long-cycle herbs and three ephemerals were intermediate shade-tolerant. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. A BIOSENSOR USING COUPLED PLASMON WAVEGUIDE RESONANCE COMBINED WITH HYPERSPECTRAL FLUORESCENCE ANALYSIS

    Directory of Open Access Journals (Sweden)

    CHAN DU

    2014-01-01

    Full Text Available We developed a biosensor that is capable for simultaneous surface plasmon resonance (SPR sensing and hyperspectral fluorescence analysis in this paper. A symmetrical metal-dielectric slab scheme is employed for the excitation of coupled plasmon waveguide resonance (CPWR in the present work. Resonance between surface plasmon mode and the guided waveguide mode generates narrower full width half-maximum of the reflective curves which leads to increased precision for the determination of refractive index over conventional SPR sensors. In addition, CPWR also offers longer surface propagation depths and higher surface electric field strengths that enable the excitation of fluorescence with hyperspectral technique to maintain an appreciable signal-to-noise ratio. The refractive index information obtained from SPR sensing and the chemical properties obtained through hyperspectral fluorescence analysis confirm each other to exclude false-positive or false-negative cases. The sensor provides a comprehensive understanding of the biological events on the sensor chips.

  3. Fluorescence measurements for evaluating the application of multivariate analysis techniques to optically thick environments.

    Energy Technology Data Exchange (ETDEWEB)

    Reichardt, Thomas A.; Timlin, Jerilyn Ann; Jones, Howland D. T.; Sickafoose, Shane M.; Schmitt, Randal L.

    2010-09-01

    Laser-induced fluorescence measurements of cuvette-contained laser dye mixtures are made for evaluation of multivariate analysis techniques to optically thick environments. Nine mixtures of Coumarin 500 and Rhodamine 610 are analyzed, as well as the pure dyes. For each sample, the cuvette is positioned on a two-axis translation stage to allow the interrogation at different spatial locations, allowing the examination of both primary (absorption of the laser light) and secondary (absorption of the fluorescence) inner filter effects. In addition to these expected inner filter effects, we find evidence that a portion of the absorbed fluorescence is re-emitted. A total of 688 spectra are acquired for the evaluation of multivariate analysis approaches to account for nonlinear effects.

  4. “Pharmacognostical, SEM and XRF profile of the leaves of Artocarpus heterophyllus Lam. (Moraceae – A contribution to combat the NTD

    Directory of Open Access Journals (Sweden)

    K Periyanayagam

    2013-05-01

    Full Text Available Objective: To study in detail the micromorphology including Scanning Electron Microscopy and phyto, physicochemical analysis along with determination of trace elements by X-Ray Fluorescence spectrometer of the leaves of Artocarpus heterophyllus family-Moraceae which possesses various bioactive components and many traditional and pharmacologically validated uses in the treatment of many diseases including NTD. Methods: Macroscopy, microscopy including SEM, physicochemical analysis, preliminary phytochemical screening, XRF and other WHO recommended parameters for standardizations were performed. Results: Leaves are Obovate elliptic – elliptic, alternate 5-25cm, Width 4-12 cm broad. Dark green with entire margin, cuspidate apex and symmetrical base with ridge and furrowed petiole. Microscopic evaluation revealed the presence of anomocytic stomata in lower epidermis and apostomatic upper epidermis, unicellular trichomes which are arised from thick walled circular, lignified ring of ten radially elongated epidermal rosette cells, xylem vessels, phloem, fibres. SEM of midrib showed many folded appearance.No diagnostic feature and new kind of microcostituents not previously recognized and apparently simple structure which may be extremly complex was observed.         Identification of inorganic minerals of the leaves of A.heterophyllus by XRF showed the presence of minerals Calcium (39.4%, Potassium (29.6%, Magnesium (2.06%, Manganese (0.13%, chlorine (2%, Iron (0.99%. Vein islet numbers, vein termination numbers, stomatal number, stomatal index and other physico chemical tests like ash values, loss on drying, extractive values were determined. Preliminary phytochemical screening showed the presence of sterols, tannins, proteins and aminoacids, flavonoids, terpenoids, mucilage, saponin, carbohydrates and absence of alkaloids, fixed and volatile oil. Conclusion: The microscopic using histological identification, microscopic constants and other

  5. Evaluation of X-ray fluorescence spectroscopy as a method for the rapid and direct determination of sodium in cheese.

    Science.gov (United States)

    Stankey, J A; Akbulut, C; Romero, J E; Govindasamy-Lucey, S

    2015-08-01

    Cheese manufacturers indirectly determine Na in cheese by analysis of Cl using the Volhard method, assuming that all Cl came from NaCl. This method overestimates the actual Na content in cheeses when Na replacers (e.g., KCl) are used. A direct and rapid method for Na detection is needed. X-ray fluorescence spectroscopy (XRF), a mineral analysis technique used in the mining industry, was investigated as an alternative method of Na detection in cheese. An XRF method for the detection of Na in cheese was developed and compared with inductively coupled plasma optical emission spectroscopy (ICP-OES; the reference method for Na in cheese) and Cl analyzer. Sodium quantification was performed by multi-point calibration with cheese standards spiked with NaCl ranging from 0 to 4% Na (wt/wt). The Na concentration of each of the cheese standards (discs: 30mm×7mm) was quantified by the 3 methods. A single laboratory method validation was performed; linearity, precision, limit of detection, and limit of quantification were determined. An additional calibration graph was created using cheese standards made from natural or process cheeses manufactured with different ratios of Na:K. Both Na and K calibration curves were linear for the cheese standards. Sodium was quantified in a variety of commercial cheese samples. The Na data obtained by XRF were in agreement with those from ICP-OES and Cl analyzer for most commercial natural cheeses. The XRF method did not accurately determine Na concentration for several process cheese samples, compared with ICP-OES, likely due to the use of unknown types of Na-based emulsifying salts (ES). When a calibration curve was created for process cheese with the specific types of ES used for this cheese, Na content was successfully predicted in the samples. For natural cheeses, the limit of detection and limit of quantification for Na that can be determined with an acceptable level of repeatability, precision, and trueness was 82 and 246mg/100g of

  6. In situ investigation of the surface silvering of late Roman coins by combined use of high energy broad-beam and low energy micro-beam X-ray fluorescence techniques

    Energy Technology Data Exchange (ETDEWEB)

    Romano, F.P., E-mail: romanop@lns.infn.it [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); LNS, INFN, Via S. Sofia 62, 95123 Catania (Italy); Garraffo, S. [ITABC, CNR, Via Salaria km 29.300, 00016 Monterotondo, Roma (Italy); Pappalardo, L. [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); LNS, INFN, Via S. Sofia 62, 95123 Catania (Italy); Rizzo, F. [LNS, INFN, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, 95123 Catania (Italy)

    2012-07-15

    The compositional analysis of archeological metals performed with the X-ray Fluorescence technique (XRF) provides information on the ancient technology. One of the most interesting case-study concerns the techniques used by Romans for silvering the surface of coins. Different metallurgical processes have been suggested in previous studies. Recently the investigation has been addressed to the mercury-silvering and to its possible use in the mass-production of coins minted during the late period (after 294 AD). In the present paper the non-destructive investigation of the silvering process used for manufacturing the Roman nummi - the important typology of coin introduced by Diocletian in his monetary reform - is approached by the combined use of the standard X-Ray Fluorescence (XRF) and the low energy micro-X-Ray Fluorescence (LE-{mu}XRF) portable methods. The research was focused on the systematic determination of the mercury presence in a large number of samples and on its correlation with silver in the surface of the coins. 1041 Roman nummi belonging to the Misurata Treasure were analyzed in situ, at the Leptis Magna Museum (Al Khums, Libya). The treasure, composed of about 108 thousand silvered coins, gives the unique opportunity to study the Roman coinage in a wide interval of time (about 40 years in the period 294-333 AD) and in almost all the imperial mints operating in the Roman world. - Highlights: Black-Right-Pointing-Pointer Custom-building of a high energy broad-beam and a low energy micro-beam XRF Black-Right-Pointing-Pointer In situ analysis of the silvering methods in late Roman nummi with plated surfaces Black-Right-Pointing-Pointer The broad-beam XRF was applied for the detection of mercury traces in the coin alloy. Black-Right-Pointing-Pointer The low energy micro-XRF was used to scan the surface patina of the coins. Black-Right-Pointing-Pointer The correlation between mercury and silver at the coin surface was evidenced.

  7. Comparison of three-dimensional fluorescence analysis methods for predicting formation of trihalomethanes and haloacetic acids

    Institute of Scientific and Technical Information of China (English)

    Nicolás M.Peleato; Robert C.Andrews

    2015-01-01

    This work investigated the application of several fluorescence excitation-emission matrix analysis methods as natural organic matter (NOM) indicators for use in predicting the formation of trihalomethanes (THMs) and haloacetic acids (HAAs).Waters from four different sources (two rivers and two lakes) were subjected to jar testing followed by 24 hr disinfection by-product formation tests using chlorine.NOM was quantified using three common measures:dissolved organic carbon,ultraviolet absorbance at 254 nm,and specific ultraviolet absorbance as well as by principal component analysis,peak picking,and parallel factor analysis of fluorescence spectra.Based on multi-linear modeling of THMs and HAAs,principle component (PC) scores resulted in the lowest mean squared prediction error of cross-folded test sets (THMs:43.7 (μg/L)2,HAAs:233.3 (μg/L)2).Inclusion of principle components representative of protein-like material significantly decreased prediction error for both THMs and HAAs.Parallel factor analysis did not identify a protein-like component and resulted in prediction errors similar to traditional NOM surrogates as well as fluorescence peak picking.These results support the value of fluorescence excitation-emission matrix-principal component analysis as a suitable NOM indicator in predicting the formation of THMs and HAAs for the water sources studied.

  8. Use of portable X-ray fluorescence spectrometry for environmental quality assessment of peri-urban agriculture.

    Science.gov (United States)

    Weindorf, David C; Zhu, Yuanda; Chakraborty, Somsubhra; Bakr, Noura; Huang, Biao

    2012-01-01

    Urban expansion into traditional agricultural lands has augmented the potential for heavy metal contamination of soils. This study examined the utility of field portable X-ray fluorescence (PXRF) spectrometry for evaluating the environmental quality of sugarcane fields near two industrial complexes in Louisiana, USA. Results indicated that PXRF provided quality results of heavy metal levels comparable to traditional laboratory analysis. When coupled with global positioning system technology, the use of PXRF allows for on-site interpolation of heavy metal levels in a matter of minutes. Field portable XRF was shown to be an effective tool for rapid assessment of heavy metals in soils of peri-urban agricultural areas.

  9. In situ elemental characterisation of marine microplastics by portable XRF.

    Science.gov (United States)

    Turner, Andrew

    2017-08-02

    The performance of a portable x-ray fluorescence spectrometer configured in a test stand and coupled to a laptop has been evaluated for the determination of various elements (including Br, Cd, Cl, Cr, Cu, Fe, Pb and Zn) in beached microplastics. Under laboratory conditions, analysis of samples that covered the 3-mm x-ray beam returned concentrations that, on average, were within 20% of concentrations determined by ICP following acid digestion. Analysis of progressively smaller offcuts (to microplastics counted for 60s each could be processed per hour. Advantages of immediate measurements include the development of an iterative study strategy, rapid compliance-evaluation, and identification of specific materials for further characterisation or study in the laboratory. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Calculation of desired X-ray collection angle on XRF analyzer designed by Monte Carlo method%基于蒙特卡罗方法的XRF探测器立体角分析

    Institute of Scientific and Technical Information of China (English)

    刘合凡; 葛良全; 谢希成; 赵剑锟; 罗耀耀

    2015-01-01

    为研究探测器立体角在X射线荧光(X-ray fluorescence, XRF)分析仪的设计对测量结果的影响,运用蒙特卡罗方法对XRF仪进行建模。结果表明,探测器脉冲计数随着探测器与样品之间距离的增大指数衰减;随着探测器立体角的增大,特征峰计数非线性增大,源峰探测效率指数递减;探测器本征探测效率与探测器立体角无关。本文研究方法和结论可为一些XRF仪的设计提供参考。%Background: The designing of the X-ray fluorescence (XRF) analyzer’s geometric layouts need to be considered, such as ‘detector to specimen’ distance, ‘detector to source’ distance, ‘source to specimen’ distance. The desired X-ray collection angle is one of the important factors of the detection performance. However, the experience geometric layouts have been unable to meet every XRF analyzer designing, because the performance of the excitation source or the detector is getting better, sample processing technology is much more advanced, and so on.Purpose:The aim is to study the impact of the desired X-ray collection angle on XRF analyzer designing, and provide a technical guidance on methodologies for XRF analyzer designing.Methods: In this paper, we build the XRF analyzer models by the Monte Carlo method and analyze the impacts of the desired X-ray collection angle on XRF analyzer designing.Results: Kinds of factors with the desired X-ray collection angle are analyzed, such as Cu’s X-ray characteristic fluorescence peak counts, the ‘detector axis to specimen’ distance, the Cu’s ‘peak to source’ ratio. Conclusions: With the increasing of distance between the detector and the specimen, the detector’s pulse counts satisfy an exponential decay law. With the desired X-ray collection angle increasing, the Cu’s X-ray characteristic fluorescence peak counts increase linearly. With the desired X-ray collection angle increasing, the ‘peak to source’ ratio decays

  11. X-ray fluorescence analysis study. Final report, December 1, 1970-December 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Kneip, T J; Laurer, G R

    1978-01-01

    This report has described the most significant experiments and the results obtained, during the development of a system for the detection and measurement of Pb in blood using radioisotope-excited x-ray fluorescence analysis, over the contract period. Briefly, the report described: detector selection; source selection; source-sample-detector geometry; sample preparation; system calibration; and separation technique. (PSB)

  12. Fluorescence analysis of ubiquinone and its application in quality control of medical supplies

    Science.gov (United States)

    Timofeeva, Elvira O.; Gorbunova, Elena V.; Chertov, Aleksandr N.

    2017-02-01

    The presence of antioxidant issues such as redox potential imbalance in human body is a very important question for modern clinical diagnostics. Implementation of fluorescence analysis into optical diagnostics of such wide distributed in a human body antioxidant as ubiquinone is one of the steps for development of the device with a view to clinical diagnostics of redox potential. Recording of fluorescence was carried out with spectrometer using UV irradiation source with thin band (max at 287 and 330 nm) as a background radiation. Concentrations of ubiquinone from 0.25 to 2.5 mmol/l in explored samples were used for investigation. Recording data was processed using correlation analysis and differential analytical technique. The fourth derivative spectrum of fluorescence spectrum provided the basis for a multicomponent analysis of the solutions. As a technique in clinical diagnostics fluorescence analysis with processing method including differential spectrophotometry, it is step forward towards redox potential calculation and quality control in pharmacy for better health care.

  13. Radiochemical Analysis by High Sensitivity Micro X-Ray Fluorescence Detection

    Energy Technology Data Exchange (ETDEWEB)

    Ning Gao

    2006-05-12

    The primary objective of the project was to develop a novel dual-optic x-ray fluorescence instrument capable of doing radiochemical analysis of high-level radioactive wastes at DOE sites such as Savannah River Site and Hanford Site.

  14. Fluorescence fluctuation analysis of mixed chromophores from a line-scanning hyperspectral imaging system

    Science.gov (United States)

    Davis, Ryan W.; Aaron, Jesse S.; Rempe, Susan L.; Timlin, Jerilyn A.

    2010-02-01

    Fluorescence fluctuation analysis of dilute biomolecules can provide a powerful method for fast and accurate determination of diffusion dynamics, local concentrations, and aggregation states in complex environments. However, spectral overlap among multiple exogenous and endogenous fluorescent species, photobleaching, and background inhomogeneities can compromise quantitative accuracy and constrain useful biological implementation of this analytical strategy in real systems. In order to better understand these limitations and expand the utility of fluctuation correlation methods, spatiotemporal fluorescence correlation analysis was performed on spectrally resolved line scanned images of modeled and real data from mixed fluorescent nanospheres in a synthetic gel matrix. It was found that collecting images at a pixel sampling regime optimal for spectral imaging provides a method for calibration and subsequent temporal correlation analysis which is insensitive to spectral mixing, spatial inhomogeneity, and photobleaching. In these analyses, preprocessing with multivariate curve resolution (MCR) provided the local concentrations of each spectral component in the images, thus facilitating correlation analysis of each component individually. This approach allowed quantitative removal of background signals and showed dramatically improved quantitative results compared to a hypothetical system employing idealized filters and multi-parameter fitting routines.

  15. Positive fluorescent selection permits precise, rapid, and in-depth overexpression analysis in plant protoplasts.

    Science.gov (United States)

    Bargmann, Bastiaan O R; Birnbaum, Kenneth D

    2009-03-01

    Transient genetic modification of plant protoplasts is a straightforward and rapid technique for the study of numerous aspects of plant biology. Recent studies in metazoan systems have utilized cell-based assays to interrogate signal transduction pathways using high-throughput methods. Plant biologists could benefit from new tools that expand the use of cell culture for large-scale analysis of gene function. We have developed a system that employs fluorescent positive selection in combination with flow cytometric analysis and fluorescence-activated cell sorting to isolate responses in the transformed protoplasts exclusively. The system overcomes the drawback that transfected protoplast suspensions are often a heterogeneous mix of cells that have and have not been successfully transformed. This Gateway-compatible system enables high-throughput screening of genetic circuitry using overexpression. The incorporation of a red fluorescent protein selection marker enables combined utilization with widely available green fluorescent protein (GFP) tools. For instance, such a dual labeling approach allows cytometric analysis of GFP reporter gene activation expressly in the transformed cells or fluorescence-activated cell sorting-mediated isolation and downstream examination of overexpression effects in a specific GFP-marked cell population. Here, as an example, novel uses of this system are applied to the study of auxin signaling, exploiting the red fluorescent protein/GFP dual labeling capability. In response to manipulation of the auxin response network through overexpression of dominant negative auxin signaling components, we quantify effects on auxin-responsive DR5::GFP reporter gene activation as well as profile genome-wide transcriptional changes specifically in cells expressing a root epidermal marker.

  16. Development of the calibration transfer procedures for the XRF analyser AF-20

    CERN Document Server

    Kowalska, E

    2001-01-01

    Two standardization techniques; Direct (DS) and Picewise Direct Standardization (PDS) were applied to multivariate models developed using x-ray spectra. The data were obtained for the determination of Ca and fe in flying ash from brown coal using low resolution XRF analysis. The analyser AF-20 was used with an argon proportional counter and a Cd-109 radioisotope source. Number and comparison of samples from the calibration set were selected. Root mean square error of prediction (RMSEPr) was used as a criterion for assessment of the standardization quality. The best performance was obtained for the PDS method using 5 samples chosen with the leverage method. The RMSEPr value was 4 times lower for Ca determination and 2 times lower for Fe compared with the results without standardization. Software package was designed for fast computation of the standardization transform. The program can be used when the instrument parameters have changed as well as for calibration of the new instrument.

  17. Tempeh Waste as a Natural, Economical Carbon and Nutrient Source: ED-XRF and NCS Study

    Directory of Open Access Journals (Sweden)

    SITI KHODIJAH CHAERUN

    2009-09-01

    Full Text Available The purpose of this study was to determine the elemental composition of three types of waste from tempeh production. They are soybean hull “tempeh waste” after dehulling soybeans, tempeh wastewater after soaking dehulled soybeans in water for 24 h, and tempeh wastewater after boiling dehulled soybeans in water for 30 min. By using ED-XRF analyzer, it was revealed that tempeh waste contained Mg, Si, P, S, K, Ca, Mn, Fe, and Zn. The highest elemental content was K, followed by Ca, P, and Mg. NCS analysis showed that tempeh waste was composed of C, N, and S with C/N ratio of 11.20. The present study provides evidence that both tempeh waste and wastewater are rich in carbon and nutrient contents, thus their potential for both inorganic and organic nutrient and carbon sources for microbial growth in bioremediation or as natural NPK fertilizers is promising.

  18. Analysis of Cell Movement by Simultaneous Quantification of Local Membrane Displacement and Fluorescent Intensities Using Quimp2

    NARCIS (Netherlands)

    Bosgraaf, Leonard; van Haastert, Peter J. M.; Bretschneider, Till

    The use of fluorescent markers in living cells has increased dramatically in the recent years. The quantitative analysis of the images requires specific analysis software. Previously, the program Quimp was launched for quantitating fluorescent intensities at the membrane or the cortex of the cell.

  19. Detecting cervical cancer progression through extracted intrinsic fluorescence and principal component analysis

    Science.gov (United States)

    Devi, Seema; Panigrahi, Prasanta K.; Pradhan, Asima

    2014-12-01

    Intrinsic fluorescence spectra of the human normal, cervical intraepithelial neoplasia 1 (CIN1), CIN2, and cervical cancer tissue have been extracted by effectively combining the measured polarized fluorescence and polarized elastic scattering spectra. The efficacy of principal component analysis (PCA) to disentangle the collective behavior from smaller correlated clusters in a dimensionally reduced space in conjunction with the intrinsic fluorescence is examined. This combination unambiguously reveals the biochemical changes occurring with the progression of the disease. The differing activities of the dominant fluorophores, collagen, nicotinamide adenine dinucleotide, flavins, and porphyrin of different grades of precancers are clearly identified through a careful examination of the sectorial behavior of the dominant eigenvectors of PCA. To further classify the different grades, the Mahalanobis distance has been calculated using the scores of selected principal components.

  20. Molecular understanding of copper and iron interaction with alpha-synuclein by fluorescence analysis.

    Science.gov (United States)

    Bharathi; Rao, K S J

    2008-07-01

    Alpha-synuclein aggregation is a hallmark pathological feature in Parkinson's disease (PD). The conversion of alpha-synuclein from a soluble monomer to an insoluble fibril may underlie the neurodegeneration associated with PD. Redox-active metal ions such as iron (Fe) and copper (Cu) are known to enhance alpha-synuclein fibrillogenesis. In the present investigation, we analyzed the binding efficiency of Cu and Fe to alpha-synuclein by fluorescence studies. It is interesting to note that Cu and Fe showed differential binding pattern toward alpha-synuclein (wild type and A30P, A53T, and E46K mutant forms) as revealed by intrinsic tyrosine fluorescence, thioflavin-T fluorescence, 1-anilino-8-naphthalenesulfonate-binding studies, and scatchard plot analysis. The experimental data might prove useful in understanding the hierarchy of metals binding to alpha-synuclein and its role in neurodegeneration.

  1. Analysis of archaeological ceramics by total-reflection X-ray fluorescence: Quantitative approaches

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Ruiz, R. [Servicio Interdepartamental de Investigacion, Facultad de Ciencias, Universidad Autonoma de Madrid, Modulo C-9, Laboratorio de TXRF, Crta. Colmenar, Km 15, Cantoblanco, E-28049, Madrid (Spain)], E-mail: ramon.fernandez@uam.es; Garcia-Heras, M. [Grupo de Arqueometria de Vidrios y Materiales Ceramicos, Instituto de Historia, Centro de Ciencias Humanas y Sociales, CSIC, C/ Albasanz, 26-28, 28037 Madrid (Spain)

    2008-09-15

    This paper reports the quantitative methodologies developed for the compositional characterization of archaeological ceramics by total-reflection X-ray fluorescence at two levels. A first quantitative level which comprises an acid leaching procedure, and a second selective level, which seeks to increase the number of detectable elements by eliminating the iron present in the acid leaching procedure. Total-reflection X-ray fluorescence spectrometry has been compared, at a quantitative level, with Instrumental Neutron Activation Analysis in order to test its applicability to the study of this kind of materials. The combination of a solid chemical homogenization procedure previously reported with the quantitative methodologies here presented allows the total-reflection X-ray fluorescence to analyze 29 elements with acceptable analytical recoveries and accuracies.

  2. Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications.

    Science.gov (United States)

    Murchie, E H; Lawson, T

    2013-10-01

    Chlorophyll fluorescence is a non-invasive measurement of photosystem II (PSII) activity and is a commonly used technique in plant physiology. The sensitivity of PSII activity to abiotic and biotic factors has made this a key technique not only for understanding the photosynthetic mechanisms but also as a broader indicator of how plants respond to environmental change. This, along with low cost and ease of collecting data, has resulted in the appearance of a large array of instrument types for measurement and calculated parameters which can be bewildering for the new user. Moreover, its accessibility can lead to misuse and misinterpretation when the underlying photosynthetic processes are not fully appreciated. This review is timely because it sits at a point of renewed interest in chlorophyll fluorescence where fast measurements of photosynthetic performance are now required for crop improvement purposes. Here we help the researcher make choices in terms of protocols using the equipment and expertise available, especially for field measurements. We start with a basic overview of the principles of fluorescence analysis and provide advice on best practice for taking pulse amplitude-modulated measurements. We also discuss a number of emerging techniques for contemporary crop and ecology research, where we see continual development and application of analytical techniques to meet the new challenges that have arisen in recent years. We end the review by briefly discussing the emerging area of monitoring fluorescence, chlorophyll fluorescence imaging, field phenotyping, and remote sensing of crops for yield and biomass enhancement.

  3. Tools for the quantitative analysis of sedimentation boundaries detected by fluorescence optical analytical ultracentrifugation.

    Directory of Open Access Journals (Sweden)

    Huaying Zhao

    Full Text Available Fluorescence optical detection in sedimentation velocity analytical ultracentrifugation allows the study of macromolecules at nanomolar concentrations and below. This has significant promise, for example, for the study of systems of high-affinity protein interactions. Here we describe adaptations of the direct boundary modeling analysis approach implemented in the software SEDFIT that were developed to accommodate unique characteristics of the confocal fluorescence detection system. These include spatial gradients of signal intensity due to scanner movements out of the plane of rotation, temporal intensity drifts due to instability of the laser and fluorophores, and masking of the finite excitation and detection cone by the sample holder. In an extensive series of experiments with enhanced green fluorescent protein ranging from low nanomolar to low micromolar concentrations, we show that the experimental data provide sufficient information to determine the parameters required for first-order approximation of the impact of these effects on the recorded data. Systematic deviations of fluorescence optical sedimentation velocity data analyzed using conventional sedimentation models developed for absorbance and interference optics are largely removed after these adaptations, resulting in excellent fits that highlight the high precision of fluorescence sedimentation velocity data, thus allowing a more detailed quantitative interpretation of the signal boundaries that is otherwise not possible for this system.

  4. Assessment of chemical analyses by means of portable XRF in the Roman mortars of Complutum archaeological site (Spain)

    Science.gov (United States)

    Ergenç, Duygu; Freire, David; Fort, Rafael

    2016-04-01

    The chemical characterization of lime mortars used in Roman period has a great significance and plays a key role in the acquisition of knowledge with respect to construction technology, raw materials and, accordingly, in its conservation works. When it comes to cultural heritage studies, sampling is always complicated since the minimum damage is the primary concern. The use of non-destructive techniques and direct measurements with portable devices reduce the amount of samples and time consumed in analyses, consequently it could be stated that such techniques are extremely useful in conservation and restoration works. In this study, the portable XRF device was used to determine the composition of chemical elements which compose the Roman lime mortars in the archaeological site of Complutum, Alcalá de Henares (Madrid, Spain) which is listed as a World Heritage Site by UNESCO since 1998. Portable XRF devices have some detection limits below the ones of the laboratory equipment that are immovable and require sampling. In order to correlate the results, sampling and grinding were initially done to prepare the powders for the laboratory XRF analysis with the following elements: Si, Al, Fe, Ca, Mg, K, Ti, Nb, Zr, Sr, Rb, Pb, Zn and Cr. The analyses of the powdered samples were conducted with the laboratory equipment PHILIPS Magix Pro (PW-2440) from the Centre of Scientific Instrumentation CIC in the University of Granada, and the results were compared to the results gathered with X Ray Florescence (EDTRX) THERMO NITON model XL3T from the Petrophysics Laboratory Geosciences Institute IGEO (CSIC-UCM). Analyses were performed on the surfaces of the samples -without any previous preparation-, and on the powdered samples to compare the variations between both traditional XRF analyses and the portable XRF. A good correlation was found among the results obtained by the laboratory equipment, the portable device as well as the surface measurements. The results of this study

  5. Elemental concentration analysis in the brain of young and old Wistar rats by total reflection X-ray fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Serpa, Renata F.B.; Jesus, Edgar F.O. de; Lopes, Ricardo T. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Nuclear Instrumentation Lab.]. E-mail: renata@lin.ufrj.br; Anjos, Marcelino J. dos [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Physics Inst.]. E-mail: marcelin@lin.ufrj.br; Carmo, Maria G.T. do [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Nutrition Inst.; Rocha, Monica S. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Dept. of Basics and Clinic Pharmacy; Moreira, Silvana [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Civil Engineering Dept.; Martinez, Ana M.B. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Dept. of Histology and Embryology

    2007-07-01

    It is well known that aging is associated with neurobehavioral deficits. The aging process of human brain is characterized by progressive neuronal loss. Furthermore, certain brain areas are more vulnerable to neuronal degeneration than others, reflecting an altered resistance to stress of the tissue itself and/or the lack of adequate immunological defense mechanisms in these regions. About the elemental levels in the brain, it is known that the excess ou deficiency of some elements are toxic for human healthy, being also related to several neurodegenerative diseases. In this way, the main goal of this work was to determine the elemental concentration in the hippocampus of young and old male (n = 10) and female (n = 10) Wistar rats by total reflection X-ray fluorescence spectrometry with synchrotron radiation (SR-TXRF). These measurements were carried out at XRF beam line at Light Synchrotron Brazilian Laboratory, Campinas, Brazil. About the results, we could observe that Al, Fe, Cu, Zn and Br levels were higher in the hippocampus of the old female rats than the young ones. On the other hand, only Cu levels were higher in the hippocampus of the old male rats than the young ones. Therefore, the aging of the hippocampus of the female rats can be characterized by an accumulate for Al, Fe, Cu, Zn and Br. The excess in these elements levels are also associated with several neurodegenerative disorders, such as Alzheimer' disease, Parkinson's disease and Huntington's disease. (author)

  6. pyFRET: A Python Library for Single Molecule Fluorescence Data Analysis

    OpenAIRE

    Murphy, Rebecca R.; Jackson, Sophie E.; Klenerman, David

    2014-01-01

    Single molecule F\\"orster resonance energy transfer (smFRET) is a powerful experimental technique for studying the properties of individual biological molecules in solution. However, as adoption of smFRET techniques becomes more widespread, the lack of available software, whether open source or commercial, for data analysis, is becoming a significant issue. Here, we present pyFRET, an open source Python package for the analysis of data from single-molecule fluorescence experiments from freely...

  7. Measurement of Three-Dimensional Dipole Orientation of a Single Fluorescent Nanoemitter by Emission Polarization Analysis

    OpenAIRE

    Lethiec, Clotilde; Laverdant, Julien; Vallon, Henri; Javaux, Clémentine; Dubertret, Benoît; Frigerio, Jean-Marc; Schwob, Catherine; Coolen, Laurent; Maître, Agnès

    2014-01-01

    International audience; We demonstrate theoretically and experimentally that the three-dimensional orientation of a single fluorescent nanoemitter can be determined by polarization analysis of the emitted light (while excitation polarization analysis provides only the in-plane orientation). The determination of the emitter orientation by polarimetry requires a theoretical description, including the objective numerical aperture, the 1D or 2D nature of the emitting dipole, and the environment c...

  8. Single particle fluorescence burst analysis of epsin induced membrane fission.

    Science.gov (United States)

    Brooks, Arielle; Shoup, Daniel; Kustigian, Lauren; Puchalla, Jason; Carr, Chavela M; Rye, Hays S

    2015-01-01

    Vital cellular processes, from cell growth to synaptic transmission, rely on membrane-bounded carriers and vesicles to transport molecular cargo to and from specific intracellular compartments throughout the cell. Compartment-specific proteins are required for the final step, membrane fission, which releases the transport carrier from the intracellular compartment. The role of fission proteins, especially at intracellular locations and in non-neuronal cells, while informed by the dynamin-1 paradigm, remains to be resolved. In this study, we introduce a highly sensitive approach for the identification and analysis of membrane fission machinery, called burst analysis spectroscopy (BAS). BAS is a single particle, free-solution approach, well suited for quantitative measurements of membrane dynamics. Here, we use BAS to analyze membrane fission induced by the potent, fission-active ENTH domain of epsin. Using this method, we obtained temperature-dependent, time-resolved measurements of liposome size and concentration changes, even at sub-micromolar concentration of the epsin ENTH domain. We also uncovered, at 37°C, fission activity for the full-length epsin protein, supporting the argument that the membrane-fission activity observed with the ENTH domain represents a native function of the full-length epsin protein.

  9. On the distribution and bonding environment of Zn and Fe in glasses containing electric arc furnace dust: a mu-XAFS and mu-XRF study.

    Science.gov (United States)

    Pinakidou, F; Katsikini, M; Paloura, E C; Kavouras, P; Kehagias, Th; Komninou, Ph; Karakostas, Th; Erko, A

    2007-04-02

    We apply synchrotron radiation assisted X-ray fluorescence (SR-XRF), SR-XRF mapping as well as micro- and conventional X-ray absorption fine structure (mu-XAFS and XAFS) spectroscopies in order to study the bonding environment of Fe and Zn in vitrified samples that contain electric arc furnace dust from metal processing industries. The samples are studied in the as-cast state as well as after annealing at 900 degrees C. The SR-XRF results demonstrate that annealing does not induce any significant changes in the distribution of either Fe or Zn, in both the as-cast and annealed glasses. The mu-XAFS spectra recorded at the Fe-K and Zn-K edges reveal that the structural role of both Fe and Zn remains unaffected by the annealing procedure. More specifically, Fe forms both FeO(6) and FeO(4) polyhedra, i.e. acts as an intermediate oxide while Zn occupies tetrahedral sites.

  10. Portable XRF as a valuable device for preliminary in situ pigment investigation of wooden inventory in the Trski Vrh Church in Croatia

    Energy Technology Data Exchange (ETDEWEB)

    Desnica, V. [R. Boskovic Institute, Zagreb (Croatia); Academy of Fine Arts, Laboratory for Science and Technology in Art, Department for Conservation and Restoration, Zagreb (Croatia); Skaric, K.; Mudronja, D.; Pavlicic, M.; Peranic, I. [Croatian Conservation Institute, Zagreb (Croatia); Jembrih-Simbuerger, D.; Schreiner, M. [Academy of Fine Arts, Institute of Science and Technology in Art, Vienna (Austria); Fazinic, S.; Jaksic, M. [R. Boskovic Institute, Zagreb (Croatia)

    2008-07-15

    The aim of this work was the investigation of pigments from the painted wooden inventory of the pilgrimage church of Saint Mary of Jerusalem in Trski Vrh - one of the most beautiful late-baroque sacral ensembles in Croatia. Being an object of high relevance for the national cultural heritage, an extensive research on the wooden polychromy was undertaken in order to work out a proposal for a conservation treatment. It consists mainly of two painted and gilded layers (the original one from the 18th century and a later one from 1903), partly overpainted during periodic conservation treatments in the past. The approach was to carry out extensive preliminary in situ pigment investigations using a portable XRF (X-ray fluorescence) device, and only the problems not resolved by this method on site were further analyzed using sophisticated laboratory equipment. Therefore, the XRF results acted as a valuable guideline for subsequent targeted sampling actions, thus minimizing the sampling damage. Important questions not answered by XRF (identification of organic pigments, ultramarine, etc.) were subsequently resolved using additional ex situ laboratory methods, primarily {mu}-PIXE (particle-induced X-ray emission) at the nuclear microprobe of the Rudjer Boskovic accelerator facility as well as {mu}-Raman spectroscopy at the Institute of the Academy of Fine Arts in Vienna. It is shown that by the combination of these often complementary methods a thorough characterization of each pigment can be obtained, allowing for a proper strategy of the conservation treatment. (orig.)

  11. A Spectral Analysis of Laser Induced Fluorescence of Iodine

    CERN Document Server

    Bayram, S B

    2015-01-01

    When optically excited, iodine absorbs in the 490- to 650-nm visible region of the spectrum and, after radiative relaxation, it displays an emission spectrum of discrete vibrational bands at moderate resolution. This makes laser-induced fuorescence spectrum of molecular iodine especially suitable to study the energy structure of homonuclear diatomic molecules at room temperature. In this spirit, we present a rather straightforward and inexpensive experimental setup and the associated spectral analysis which provides an excellent exercise of applied quantum mechanics fit for advanced laboratory courses. The students would be required to assign spectral lines, fill a Deslandres table, process the data to estimate the harmonic and anharmonic characteristics of the ground vibronic state involved in the radiative transitions, and thenceforth calculate a set of molecular constants and discuss a model of molecular vibrator.

  12. MicroXRF tomographic visualization of zinc and iron in the zebrafish embryo at the onset of the hatching period

    Energy Technology Data Exchange (ETDEWEB)

    Bourassa, Daisy; Gleber, Sophie-Charlotte; Vogt, Stefan; Shin, Chong Hyun; Fahrni, Christoph J.

    2016-01-01

    Transition metals such as zinc, copper, and iron play key roles in cellular proliferation, cell differentiation, growth, and development. Over the past decade, advances in synchrotron X-ray fluorescence instrumentation presented new opportunities for the three-dimensional mapping of trace metal distributions within intact specimens. Taking advantage of microXRF tomography, we visualized the 3D distribution of zinc and iron in a zebrafish embryo at the onset of the hatching period. The reconstructed volumetric data revealed distinct differences in the elemental distributions, with zinc predominantly localized to the yolk and yolk extension, and iron to various regions of the brain as well as the myotome extending along the dorsal side of the embryo. The data set complements an earlier tomographic study of an embryo at the pharyngula stage (24 hpf), thus offering new insights into the trace metal distribution at key stages of embryonic development.

  13. TRACE ANALYSIS OF FLUORESCEIN-DERIVATIZED PHENOXY ACID HERBICIDES BY MICELLAR ELECTROKINETIC CHROMATOGRAPHY WITH LASER-INDUCTED FLUORESCENCE DETECTION

    Science.gov (United States)

    Micellar electrokinetic chromatography (MEKC) with laser-induced fluorescence (LIF) detection was used for the trace analysis of phenoxy acid herbicides. Capillary electrophoresis (CE) with LIF detection, which has not previously been used for pesticide analysis, overcomes the po...

  14. Chronological analysis with fluorescent timer reveals unique features of newly generated β-cells.

    Science.gov (United States)

    Miyatsuka, Takeshi; Matsuoka, Taka-aki; Sasaki, Shugo; Kubo, Fumiyo; Shimomura, Iichiro; Watada, Hirotaka; German, Michael S; Hara, Manami

    2014-10-01

    Although numerous studies have uncovered the molecular mechanisms regulating pancreas development, it remains to be clarified how β-cells arise from progenitors and how recently specified β-cells are different from preexisting β-cells. To address these questions, we developed a mouse model in which the insulin 1 promoter drives DsRed-E5 Timer fluorescence that shifts its spectrum over time. In transgenic embryos, green fluorescent β-cells were readily detected by FACS and could be distinguished from mature β-cells only until postnatal day 0, suggesting that β-cell neogenesis occurs exclusively during embryogenesis. Transcriptome analysis with green fluorescent cells sorted by FACS demonstrated that newly differentiated β-cells highly expressed progenitor markers, such as Sox9, Neurog3, and Pax4, showing the progenitor-like features of newborn β-cells. Flow cytometric analysis of cell cycle dynamics showed that green fluorescent cells were mostly quiescent, and differentiated β-cells were mitotically active. Thus, the precise temporal resolution of this model enables us to dissect the unique features of newly specified insulin-producing cells, which could enhance our understanding of β-cell neogenesis for future cell therapy. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  15. Quantitative analysis results of CE-1 X-ray fluorescence spectrometer ground base experiment

    Institute of Scientific and Technical Information of China (English)

    CUI Xing-Zhu; GAO Min; YANG Jia-Wei; WANG Huan-Yu; ZHANG Cheng-Mo; CHEN Yong; ZHANG Jia-Yu; PENG Wen-Xi; CAO Xue-Lei; LIANG Xiao-Hua; WANG Jin-Zhou

    2008-01-01

    As the nearest celestial body to the earth, the moon has become a hot spot again in astronomy field recently. The element analysis is a much important subject in many lunar projects. Remote X-ray spectrometry plays an important role in the geochemical exploration of the solar bodies. Because of th equasi-vacuum atmosphere on the moon, which has no absorption of X-ray, the X-ray fluorescence analysis is an effective way to determine the elemental abundance of lunar surface. The CE-1 X-ray fluorescence spectrometer (CE-1/XFS) aims to map the major elemental compositions on the lunar surface. This paper describes a method for quantitative analysis of elemental compositions. A series of ground base experiments are done to examine the capability of XFS. The obtained results, which show a reasonable agreement with the certified values at a 30% uncertainty level for major elements, are presented.

  16. Analysis of stainless steel samples by energy dispersive X-ray fluorescence (EDXRF) spectrometry

    Indian Academy of Sciences (India)

    M K Tiwari; A K Singh; K J S Sawhney

    2001-12-01

    A simple method for the analysis of stainless steel samples is presented which is based on radioisotope excited energy dispersive X-ray fluorescence (EDXRF) spectrometry and does not require any type-standards. Both absorption and enhancement effects have been taken into account in the fundamental parameter method for quantitative analysis and an iterative approach is followed for calculation of concentrations in steel samples. Non-linear least square fitting (NL-LSF) procedures have been used to determine accurately the fluorescent peak intensities. The method has been tested by analysing several CRM standard reference samples and 304 and 316 steel samples assuming as unknown. The EDXRF results have also been compared with the results of analysis of same samples by vacuum emission spark spectrometry (VES). Obtained values for concentration in steel samples match quite well with their certified values.

  17. Measurement of L X-ray fluorescence cross-sections for 74W at excitation energies 12, 14, 15 and 16.5 keV with synchrotron radiation

    Science.gov (United States)

    Kumar, R.; Rani, A.; Singh, R. M.; Tiwari, M. K.; Singh, A. K.

    2017-02-01

    Ll, Lα, Lβ and Lγ1 X-ray fluorescence cross-sections for 74W have been measured at excitation energies of 12, 14, 15 and 16.5 keV using synchrotron radiations. A Peltier cooled Vortex solid state detector (SII Nano Technology, USA) with an energy resolution of 138 eV at 5.96 keV X-rays was employed for analysis. The experimental results were compared with the theoretical estimates of Krause (1979), Campbell (2003) and Puri et al. (1993) and also compared with existing experimental results (Barrea and Bonzi, 2001b) of L XRF cross sections at the excitation energy of 12 and 14 keV. Present results were found to be closer to the Puri's data in comparison to existing experimental results. For the first time, to our knowledge, L XRF cross section for 74W at energies 15 and 16.5 keV are also being reported here.

  18. Characterisation of dissolved organic matter fluorescence properties by PARAFAC analysis and thermal quenching.

    Science.gov (United States)

    Carstea, Elfrida M; Baker, Andy; Bieroza, Magdalena; Reynolds, Darren M; Bridgeman, John

    2014-09-15

    The fluorescence intensity of dissolved organic matter (DOM) in aqueous samples is known to be highly influenced by temperature. Although several studies have demonstrated the effect of thermal quenching on the fluorescence of DOM, no research has been undertaken to assess the effects of temperature by combining fluorescence excitation - emission matrices (EEM) and parallel factor analysis (PARAFAC) modelling. This study further extends previous research on thermal quenching by evaluating the impact of temperature on the fluorescence of DOM from a wide range of environmental samples, in the range 20 °C - 0 °C. Fluorescence intensity increased linearly with respect to temperature decrease at all temperatures down to 0 °C. Results showed that temperature affected the PARAFAC components associated with humic-like and tryptophan-like components of DOM differently, depending on the water type. The terrestrial humic-like components, C1 and C2 presented the highest thermal quenching in rural water samples and the lowest in urban water samples, while C3, the tryptophan-like component, and C4, a reprocessed humic-like component, showed opposite results. These results were attributed to the availability and abundance of the components or to the degree of exposure to the heat source. The variable thermal quenching of the humic-like components also indicated that although the PARAFAC model generated the same components across sites, the DOM composition of each component differed between them. This study has shown that thermal quenching can provide additional information on the characteristics and composition of DOM and highlighted the importance of correcting fluorescence data collected in situ.

  19. Gut fluorescence analysis of barnacle larvae: An approach to quantify the ingested food

    Science.gov (United States)

    Gaonkar, Chetan A.; Anil, Arga Chandrashekar

    2012-10-01

    Gut fluorescence analysis can provide a snapshot of ingested food and has been employed in feeding studies of various organisms. In this study we standardised the gut fluorescence method using laboratory-reared barnacle larvae (Balanus amphitrite) fed with mono-algal diet Chaetoceros calcitrans, a unicellular diatom at a cell concentration of 2 × 105 cells ml-1. The gut fluorescence of IV-VI instar nauplii was found to be 370(±12) ng chlorophyll a larva-1 and in faecal pellets it was 224(±63) ng chlorophyll a larva-1. A phaeopigment concentration in larval gut was found to be 311(±13) ng larva-1 and in faecal pellets it was 172(±61) ng larva-1. The study also analysed larval samples collected from the field during different seasons from a tropical environment influenced by monsoons (Dona Paula bay, Goa, west coast of India), with characteristic temporal variations in phytoplankton abundance and diversity. Gut fluorescence of larvae obtained during the post-monsoon season was consistently higher when compared to the pre-monsoon season, suggesting the predominance of autotrophic forms in the larval gut during the post-monsoon season. Whereas, the low gut fluorescence obtained during the pre-monsoon season indicated the ingestion of food sources other than autotrophs. Such differences observed in the feeding behaviour of larvae could be due to differential availability of food for the larvae during different seasons and indicate the capability of larvae to feed on wide range of food sources. This study shows the value of the fluorescence method in feeding studies of planktotrophic organisms and in the evaluation of ecosystem dynamics.

  20. Development of suitable plastic standards for X-ray fluorescence analysis

    Science.gov (United States)

    Mans, Christian; Hanning, Stephanie; Simons, Christoph; Wegner, Anne; Janβen, Anton; Kreyenschmidt, Martin

    2007-02-01

    For the adoption of the EU directive "Restriction on use of certain Hazardous Substances" and "Waste Electrical and Electronic Equipment" using X-ray fluorescence analysis suitable standard materials are required. Plastic standards based on acrylonitrile-butadiene-styrene terpolymer, containing the regulated elements Br, Cd, Cr, Hg and Pb were developed and produced as granulates and solid bodies. The calibration materials were not generated as a dilution from one master batch but rather the element concentrations were distributed over nine independent calibration samples. This was necessary to enable inter-elemental corrections and empirical constant mass absorption coefficients. The produced standard materials are characterized by a homogenous element distribution, which is more than sufficient for X-ray fluorescence analysis. Concentrations for all elements except for Br could be determined by Inductively Coupled Plasma Atomic Emission Spectroscopy after microwave assisted digestion. The concentration of Br was determined by use of Neutron Activation Analysis at Hahn-Meitner-Institute in Berlin, Germany. The correlation of the X-ray fluorescence analysis measurements with the values determined using Inductively Coupled Plasma Atomic Emission Spectroscopy and Neutron Activation Analysis showed a very good linearity.

  1. Integrating semantic annotation and information visualization for the analysis of multichannel fluorescence micrographs from pancreatic tissue.

    Science.gov (United States)

    Herold, Julia; Zhou, Luxian; Abouna, Sylvie; Pelengaris, Stella; Epstein, David; Khan, Michael; Nattkemper, Tim W

    2010-09-01

    The challenging problem of computational bioimage analysis receives growing attention from life sciences. Fluorescence microscopy is capable of simultaneously visualizing multiple molecules by staining with different fluorescent dyes. In the analysis of the result multichannel images, segmentation of ROIs resembles only a first step which must be followed by a second step towards the analysis of the ROI's signals in the different channels. In this paper we present a system that combines image segmentation and information visualization principles for an integrated analysis of fluorescence micrographs of tissue samples. The analysis aims at the detection and annotation of cells of the Islets of Langerhans and the whole pancreas, which is of great importance in diabetes studies and in the search for new anti-diabetes treatments. The system operates with two modules. The automatic annotation module applies supervised machine learning for cell detection and segmentation. The second information visualization module can be used for an interactive classification and visualization of cell types following the link-and-brush principle for filtering. We can compare the results obtained with our system with results obtained manually by an expert, who evaluated a set of example images three times to account for his intra-observer variance. The comparison shows that using our system the images can be evaluated with high accuracy which allows a considerable speed up of the time-consuming evaluation process.

  2. Monte Carlo simulation applied in total reflection x-ray fluorescence: Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Meira, Luiza L. C.; Inocente, Guilherme F.; Vieira, Leticia D.; Mesa, Joel [Departamento de Fisica e Biofisica - Instituto de Biociencias de Botucatu, Universidade Estadual Paulista Julio de Mesquita Filho (Brazil)

    2013-05-06

    The X-ray Fluorescence (XRF) analysis is a technique for the qualitative and quantitative determination of chemical constituents in a sample. This method is based on detection of the characteristic radiation intensities emitted by the elements of the sample, when properly excited. A variant of this technique is the Total Reflection X-ray Fluorescence (TXRF) that utilizes electromagnetic radiation as excitation source. In total reflection of X-ray, the angle of refraction of the incident beam tends to zero and the refracted beam is tangent to the sample support interface. Thus, there is a minimum angle of incidence at which no refracted beam exists and all incident radiation undergoes total reflection. In this study, we evaluated the influence of the energy variation of the beam of incident x-rays, using the MCNPX code (Monte Carlo NParticle) based on Monte Carlo method.

  3. Characterization of organophilic clay by using XRF, XRD, thermo differential and thermogravimetric analyses; Caracterizacao de argila organofilica utilizando FRX, DRX, ATD e ATG

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, B.V.; Pereira, K.R.O.; Rodrigues, M.G.F. [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Dept. de Engenharia Quimica. Programa de Pos-graduacao em Engenharia Quimica]. E-mail: biancaviana@ig.com.br; Sivino, H.C. [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Dept. de Engenharia de Materiais

    2003-07-01

    The smectite clays, also known as montmorillonites, are in its natural stage, polycationic. They are characterized by their of cationic change, the intense swelling while they are in suspension and also for they form many complexes with organic substances. Sodium smectite clays can be used in many ways, such as raw materials (with quaternary ammonium salts) for organophilic clays. In this work, we intense to obtain organophilic clay starting from an imported natural sodium clay supplied by Bentonite using the quaternary salt GENAMIN CTAC-50. The obtained materials were characterized by: X-ray fluorescence (XRF), X-ray diffraction (XRD), thermo differential and thermogravimetric analyses (ATD/ATG). (author)

  4. Quantitative X-ray fluorescence analysis of samples of less than `infinite thickness': Difficulties and possibilities

    Science.gov (United States)

    Sitko, Rafał

    2009-11-01

    X-ray fluorescence spectrometry due to its nondestructive nature is widely applied in analysis of single layers and multiple layer films (e.g. semiconductors, electrooptic and solar cell devices, coatings, corrosion and paint layers), individual particles (airborne, fly ash, gunshot residue particles, etc.), art and archeological objects (manuscripts, paintings, icons) and many others. Quantitative analysis of these materials, frequently classified as samples of less than infinite thickness (thin or intermediate-thickness samples), required applying adequate matrix correction methods taking into account complex dependence of analyte fluorescent radiation intensity on full matrix composition and sample thickness. In this article, the matrix correction methods including fundamental parameters, Monte Carlo simulations, influence coefficients algorithms and methods based on X-ray transmission measurements are reviewed. The difficulties in the analysis of single layer and multiple layer films and the accuracy of fundamental parameter methods in simultaneous determination of their thickness and composition are discussed. The quantitative analysis of individual particles and inhomogeneous and/or complex structure materials using fundamental parameter and Monte Carlo simulation methods in micro-beam X-ray fluorescence spectrometry are also reviewed. Some references are devoted to the analysis of light matrix samples, e.g. geological, environmental and biological samples, in which undetectable low-Z elements are present (so-called 'dark matrix') using backscattered fundamental parameter methods. Since the samples of less than infinite thickness are partially transparent for X-ray beams, the transmission measurements present possibilities that are unattainable for bulk samples. Thus, the emission-transmission method and also new instruments allowing measurements of the primary X-ray beam transmitted through the sample together with measurements of X-ray fluorescence

  5. FluoRender: joint freehand segmentation and visualization for many-channel fluorescence data analysis.

    Science.gov (United States)

    Wan, Yong; Otsuna, Hideo; Holman, Holly A; Bagley, Brig; Ito, Masayoshi; Lewis, A Kelsey; Colasanto, Mary; Kardon, Gabrielle; Ito, Kei; Hansen, Charles

    2017-05-26

    Image segmentation and registration techniques have enabled biologists to place large amounts of volume data from fluorescence microscopy, morphed three-dimensionally, onto a common spatial frame. Existing tools built on volume visualization pipelines for single channel or red-green-blue (RGB) channels have become inadequate for the new challenges of fluorescence microscopy. For a three-dimensional atlas of the insect nervous system, hundreds of volume channels are rendered simultaneously, whereas fluorescence intensity values from each channel need to be preserved for versatile adjustment and analysis. Although several existing tools have incorporated support of multichannel data using various strategies, the lack of a flexible design has made true many-channel visualization and analysis unavailable. The most common practice for many-channel volume data presentation is still converting and rendering pseudosurfaces, which are inaccurate for both qualitative and quantitative evaluations. Here, we present an alternative design strategy that accommodates the visualization and analysis of about 100 volume channels, each of which can be interactively adjusted, selected, and segmented using freehand tools. Our multichannel visualization includes a multilevel streaming pipeline plus a triple-buffer compositing technique. Our method also preserves original fluorescence intensity values on graphics hardware, a crucial feature that allows graphics-processing-unit (GPU)-based processing for interactive data analysis, such as freehand segmentation. We have implemented the design strategies as a thorough restructuring of our original tool, FluoRender. The redesign of FluoRender not only maintains the existing multichannel capabilities for a greatly extended number of volume channels, but also enables new analysis functions for many-channel data from emerging biomedical-imaging techniques.

  6. Quantitative genetic analysis of chlorophyll a fluorescence parameters in maize in the field environments

    Institute of Scientific and Technical Information of China (English)

    Domagojimi; Hrvoje Lepedu; Vlatka Jurkovi; Jasenka Antunovi; Vera Cesar

    2014-01-01

    Chlorophyl fluorescence transient from initial to maximum fluorescence (“P”step) throughout two intermedi-ate steps (“J”and“I”) (JIP-test) is considered a reliable early quantitative indicator of stress in plants. The JIP-test is particularly useful for crop plants when applied in variable field environments. The aim of the present study was to conduct a quantitative trait loci (QTL) analysis for nine JIP-test parameters in maize during flowering in four field environ-ments differing in weather conditions. QTL analysis and identification of putative candidate genes might help to explain the genetic relationship between photosynthesis and different field scenarios in maize plants. The JIP-test param-eters were analyzed in the intermated B73 ? Mo17 (IBM) maize population of 205 recombinant inbred lines. A set of 2,178 molecular markers across the whole maize genome was used for QTL analysis revealing 10 significant QTLs for seven JIP-test parameters, of which five were co-localized when combined over the four environments indicating polygenic inheritance and pleiotropy. Our results demonstrate that QTL analysis of chlorophyl fluorescence parameters was capable of detecting one pleiotropic locus on chromosome 7, coinciding with the gene gst23 that may be associated with efficient photosynthe-sis under different field scenarios.

  7. Visualization of molecular interactions using bimolecular fluorescence complementation analysis: characteristics of protein fragment complementation.

    Science.gov (United States)

    Kerppola, Tom K

    2009-10-01

    Investigations of the molecular processes that sustain life must include studies of these processes in their normal cellular environment. The bimolecular fluorescence complementation (BiFC) assay provides an approach for the visualization of protein interactions and modifications in living cells. This assay is based on the facilitated association of complementary fragments of a fluorescent protein that are fused to interaction partners. Complex formation by the interaction partners tethers the fluorescent protein fragments in proximity to each other, which can facilitate their association. The BiFC assay enables sensitive visualization of protein complexes with high spatial resolution. The temporal resolution of BiFC analysis is limited by the time required for fluorophore formation, as well as the stabilization of complexes by association of the fluorescent protein fragments. Many modifications and enhancements to the BiFC assay have been developed. The multicolor BiFC assay enables simultaneous visualization of multiple protein complexes in the same cell, and can be used to investigate competition among mutually exclusive interaction partners for complex formation in cells. The ubiquitin-mediated fluorescence complementation (UbFC) assay enables visualization of covalent ubiquitin family peptide conjugation to substrate proteins in cells. The BiFC assay can also be used to visualize protein binding to specific chromatin domains, as well as other molecular scaffolds in cells. BiFC analysis therefore provides a powerful approach for the visualization of a variety of processes that affect molecular proximity in living cells. The visualization of macromolecular interactions and modifications is of great importance owing to the central roles of proteins, nucleic acids and other macromolecular complexes in the regulation of cellular functions. This tutorial review describes the BiFC assay, and discusses the advantages and disadvantages of this experimental approach

  8. Analysis of conjugation of chloramphenicol and hemoglobin by fluorescence, circular dichroism and molecular modeling

    Science.gov (United States)

    Ding, Fei; Liu, Wei; Sun, Ye; Yang, Xin-Ling; Sun, Ying; Zhang, Li

    2012-01-01

    Chloramphenicol is a low cost, broad spectrum, highly active antibiotic, and widely used in the treatment of serious infections, including typhoid fever and other life-threatening infections of the central nervous system and respiratory tract. The purpose of the present study was to examine the conjugation of chloramphenicol with hemoglobin (Hb) and compared with albumin at molecular level, utilizing fluorescence, UV/vis absorption, circular dichroism (CD) as well as molecular modeling. Fluorescence data indicate that drug bind Hb generate quenching via static mechanism, this corroborates UV/vis absorption measurements that the ground state complex formation with an affinity of 10 4 M -1, and the driving forces in the Hb-drug complex are hydrophilic interactions and hydrogen bonds, as derived from computational model. The accurate binding site of drug has been identified from the analysis of fluorescence and molecular modeling, α1β2 interface of Hb was assigned to possess high-affinity for drug, which located at the β-37 Trp nearby. The structural investigation of the complexed Hb by synchronous fluorescence, UV/vis absorption, and CD observations revealed some degree of Hb structure unfolding upon complexation. Based on molecular modeling, we can draw the conclusion that the binding affinity of drug with albumin is superior, compared with Hb. These phenomena can provide salient information on the absorption, distribution, pharmacology, and toxicity of chloramphenicol and other drugs which have analogous configuration with chloramphenicol.

  9. Protein-protein interaction analysis in single microfluidic droplets using FRET and fluorescence lifetime detection.

    Science.gov (United States)

    Benz, Christian; Retzbach, Heiko; Nagl, Stefan; Belder, Detlev

    2013-07-21

    Herein, we demonstrate the feasibility of a protein-protein interaction analysis and reaction progress monitoring in microfluidic droplets using FRET and microscopic fluorescence lifetime measurements. The fabrication of microdroplet chips using soft- and photolithographic techniques is demonstrated and the resulting chips reliably generate microdroplets of 630 pL and 6.71 nL at frequencies of 7.9 and 0.75 Hz, respectively. They were used for detection of protein-protein interactions in microdroplets using a model system of Alexa Fluor 488 labelled biotinylated BSA, Alexa Fluor 594 labelled streptavidin and unlabelled chicken egg white avidin. These microchips could be used for quantitative detection of avidin and streptavidin in microdroplets in direct and competitive assay formats with nanomolar detection limits, corresponding to attomole protein amounts. Four droplets were found to be sufficient for analytical determination. Fluorescence intensity ratio and fluorescence lifetime measurements were performed and compared for microdroplet FRET determination. A competitive on-chip binding assay for determination of unlabelled avidin using fluorescence lifetime detection could be performed within 135 s only.

  10. Hybrid Microfluidic Platform for Multifactorial Analysis Based on Electrical Impedance, Refractometry, Optical Absorption and Fluorescence

    Directory of Open Access Journals (Sweden)

    Fábio M. Pereira

    2016-10-01

    Full Text Available This paper describes the development of a novel microfluidic platform for multifactorial analysis integrating four label-free detection methods: electrical impedance, refractometry, optical absorption and fluorescence. We present the rationale for the design and the details of the microfabrication of this multifactorial hybrid microfluidic chip. The structure of the platform consists of a three-dimensionally patterned polydimethylsiloxane top part attached to a bottom SU-8 epoxy-based negative photoresist part, where microelectrodes and optical fibers are incorporated to enable impedance and optical analysis. As a proof of concept, the chip functions have been tested and explored, enabling a diversity of applications: (i impedance-based identification of the size of micro beads, as well as counting and distinguishing of erythrocytes by their volume or membrane properties; (ii simultaneous determination of the refractive index and optical absorption properties of solutions; and (iii fluorescence-based bead counting.

  11. Analysis of Single-cell Gene Transcription by RNA Fluorescent In Situ Hybridization (FISH)

    DEFF Research Database (Denmark)

    Ronander, Elena; Bengtsson, Dominique C; Joergensen, Louise;

    2012-01-01

    and the consequence of differential binding on the clinical outcome of P. falciparum infections. Recently, the mutually exclusive transcription paradigm has been called into doubt by transcription assays based on individual P. falciparum transcript identification in single infected erythrocytic cells using RNA...... fluorescent in situ hybridization (FISH) analysis of var gene transcription by the parasite in individual nuclei of P. falciparum IE(1). Here, we present a detailed protocol for carrying out the RNA-FISH methodology for analysis of var gene transcription in single-nuclei of P. falciparum infected human...... erythrocytes. The method is based on the use of digoxigenin- and biotin- labeled antisense RNA probes using the TSA Plus Fluorescence Palette System(2) (Perkin Elmer), microscopic analyses and freshly selected P. falciparum IE. The in situ hybridization method can be used to monitor transcription...

  12. Fluorescence-Activated Cell Sorting Analysis of Heterotypic Cell-in-Cell Structures.

    Science.gov (United States)

    He, Meifang; Huang, Hongyan; Wang, Manna; Chen, Ang; Ning, Xiangkai; Yu, Kaitao; Li, Qihong; Li, Wen; Ma, Li; Chen, Zhaolie; Wang, Xiaoning; Sun, Qiang

    2015-04-27

    Cell-in-cell structures (CICs), characterized by the presence of one or more viable cells inside another one, were recently found important player in development, immune homeostasis and tumorigenesis etc. Incompatible with ever-increasing interests on this unique phenomenon, reliable methods available for high throughput quantification and systemic investigation are lacking. Here, we report a flow cytometry-based method for rapid analysis and sorting of heterotypic CICs formed between lymphocytes and tumor cells. In this method, cells were labeled with fluorescent dyes for fluorescence-activated cell sorting (FACS) by flow cytometry, conditions for reducing cell doublets were optimized such that high purity (>95%) of CICs could be achieved. By taking advantage of this method, we analyzed CICs formation between different cell pairs, and found that factors from both internalized effector cells and engulfing target cells affect heterotypic CICs formation. Thus, flow cytometry-based FACS analysis would serve as a high throughput method to promote systemic researches on CICs.

  13. Application of X-Ray Fluorescence Analysis in Investigations of Historical Monuments

    Directory of Open Access Journals (Sweden)

    T. Čechák

    2005-01-01

    Full Text Available Nuclear techniques and other techniques using ionising radiation represent a valuable tool in non-destructive diagnostics applied to archaeological finds and objects of arts, namely for determining the composition of materials used in the production of artefacts. X-ray fluorescence analysis, both in its energy form and in its wave dispersive form, is one of the most widespread methods using ionising radiation to study the elemental composition of materials. It is frequently used for studies of various cultural and historic relicts and objects of art. This work summarizes the authors’ experience with X-ray fluorescence analysis in investigating historical frescos namely by means of portable provide spectroscopic devices. The results of these measurements information on the composition of the pigments, enable the comparison of processes used in the fabrication of pigments by individual artists, and in many cases offer information on how to repair the damaged parts. 

  14. Direct analysis of biological samples by total reflection X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Lue M, Marco P. [Unidad de Analisis Instrumental, Departamento de Quimica y Suelos, Decanato de Agronomia, Universidad Centro-occidental Lisandro Alvarado, Apartado Postal 4076, Cabudare 3023 (Venezuela)]. E-mail: luemerumarco@yahoo.es; Hernandez-Caraballo, Edwin A. [Instituto Venezolano-Andino para la Investigacion Quimica (IVAIQUIM), Facultad de Ciencias, Universidad de los Andes, Merida 5101 (Venezuela)

    2004-08-31

    The technique of total reflection X-ray fluorescence (TXRF) is well suited for the direct analysis of biological samples due to the low matrix interferences and simultaneous multi-element nature. Nevertheless, biological organic samples are frequently analysed after digestion procedures. The direct determination of analytes requires shorter analysis time, low reactive consumption and simplifies the whole analysis process. On the other hand, the biological/clinical samples are often available in minimal amounts and routine studies require the analysis of large number of samples. To overcome the difficulties associated with the analysis of organic samples, particularly of solid ones, different procedures of sample preparation and calibration to approach the direct analysis have been evaluated: (1) slurry sampling, (2) Compton peak standardization, (3) in situ microwave digestion, (4) in situ chemical modification and (5) direct analysis with internal standardization. Examples of analytical methods developed by our research group are discussed. Some of them have not been previously published, illustrating alternative strategies for coping with various problems that may be encountered in the direct analysis by total reflection X-ray fluorescence spectrometry.

  15. The Mapping X-Ray Fluorescence Spectrometer (mapx)

    Science.gov (United States)

    Blake, D. F.; Sarrazin, P.; Bristow, T.; Downs, R. T.; Gailhanou, M.; Marchis, F.; Ming, D. W.; Morris, R. V.; Sole, V. A.; Thompson, K.; Walter, P.; Wilson, M.; Yen, A. S.; Webb, S.

    2016-12-01

    MapX will provide elemental imaging at ≤100 µm spatial resolution over 2.5 X 2.5 cm areas, yielding elemental chemistry at or below the scale length where many relict physical, chemical, and biological features can be imaged and interpreted in ancient rocks. MapX is a full-frame spectroscopic imager positioned on soil or regolith with touch sensors. During an analysis, an X-ray source (tube or radioisotope) bombards the sample surface with X-rays or α-particles / γ-rays, resulting in sample X-ray Fluorescence (XRF). Fluoresced X-rays pass through an X-ray lens (X-ray µ-Pore Optic, "MPO") that projects a spatially resolved image of the X-rays onto a CCD. The CCD is operated in single photon counting mode so that the positions and energies of individual photons are retained. In a single analysis, several thousand frames are stored and processed. A MapX experiment provides elemental maps having a spatial resolution of ≤100 µm and quantitative XRF spectra from Regions of Interest (ROI) 2 cm ≤ x ≤ 100 µm. ROI are compared with known rock and mineral compositions to extrapolate the data to rock types and putative mineralogies. The MapX geometry is being refined with ray-tracing simulations and with synchrotron experiments at SLAC. Source requirements are being determined through Monte Carlo modeling and experiment using XMIMSIM [1], GEANT4 [2] and PyMca [3] and a dedicated XRF test fixture. A flow-down of requirements for both tube and radioisotope sources is being developed from these experiments. In addition to Mars lander and rover missions, MapX could be used for landed science on other airless bodies (Phobos/Deimos, Comet nucleus, asteroids, the Earth's moon, and the icy satellites of the outer planets, including Europa. [1] Schoonjans, T. et al.(2012). Spectrachim. Acta Part B, 70, 10-23. [2] Agostinelli, S. et al. (2003). Nucl. Instr. and Methods in Phys. Research A, 506, 250-303. [3] V.A. Solé et al. (2007). Spectrochim. Acta Part B, 62, 63-68.

  16. Fourier transform infrared and fluorescence spectroscopy for analysis of vegetable oils

    Directory of Open Access Journals (Sweden)

    Nigri S.

    2013-09-01

    Full Text Available Fourier transform infrared (FTIR and fluorescence spectroscopy, combined with chemometric approaches have been developed to analysis of extra virgin olive oil adulterated with pomace olive oil. The measurements were made on pure vegetable oils: extra virgin oil, pomace olive oil and that adulterated with varying concentration of pomace olive oil. Today, the application of FTIR spectroscopy has increased in food studied, and particularly has become a powerful analytical tool in the study of edible oils and fats. The spectral regions where the variations were observed chosen for developing models and cross validation was used. The synchronous fluorescence spectrometry takes advantage of the hardware capability to vary both the excitation and emission wavelengths during the analysis with constant wavelength difference is maintained between the two. The region between 300 and 400 nm is attributed to the tocopherols and phenols, the derivatives of vitamin E are associated with the region 400–600 nm and the bands in the region of 600–700 nm are attributed to the chlorophyll and peophytin pigments. The results presented in this study suggest that FTIR and fluorescence may be a useful tool for analysis and detecting adulteration of extra virgin olive oil with pomace oil.

  17. Classification and calibration of organic matter fluorescence data with multiway analysis methods and artificial neural networks: an operational tool for improved drinking water treatment

    OpenAIRE

    Bieroza, Magdalena; Baker, Andy; Bridgeman, John

    2010-01-01

    Fluorescence spectroscopy enables fast and sensitive analysis of environmental samples containing various organic matter constituents. However, to retrieve valuable information from fluorescence spectra, robust techniques for data analysis should be employed. Here, different multivariate analysis methods and artificial neural networks (ANNs) were applied for decomposition and calibration of fluorescence excitation–emission matrices (EEMs). This is the first paper summarizing the application o...

  18. Detecting thermal phase transitions in corneal stroma by fluorescence micro-imaging analysis

    Science.gov (United States)

    Matteini, P.; Rossi, F.; Ratto, F.; Bruno, I.; Nesi, P.; Pini, R.

    2008-02-01

    Thermal modifications induced in corneal stroma were investigated by the use of fluorescence microscopy. Freshly extracted porcine corneas were immersed for 5 minutes in a water bath at temperatures in the 35-90°C range and stored in formalin. The samples were then sliced in 200-μm-thick transversal sections and analyzed under a stereomicroscope to assess corneal shrinkage. Fluorescence images of the thermally treated corneal samples were acquired using a slow-scan cooled CCD camera, after staining the slices with Indocyanine Green (ICG) fluorescent dye which allowed to detect fluorescence signal from the whole tissue. All measurements were performed using an inverted epifluorescence microscope equipped with a mercury lamp. The thermally-induced modifications to the corneal specimens were evaluated by studying the grey level distribution in the fluorescence images. For each acquired image, Discrete Fourier Transform (DFT) and entropy analyses were performed. The spatial distribution of DFT absolute value indicated the spatial orientation of the lamellar planes, while entropy was used to study the image texture, correlated to the stromal structural transitions. As a result, it was possible to indicate a temperature threshold value (62°C) for high thermal damage, resulting in a disorganization of the lamellar planes and in full agreement with the measured temperature for corneal shrinkage onset. Analysis of the image entropy evidenced five strong modifications in stromal architecture at temperatures of ~45°C, 53°C, 57°C, 66°C, 75°C. The proposed procedure proved to be an effective micro-imaging method capable of detecting subtle changes in corneal tissue subjected to thermal treatment.

  19. A new methodology for fluorescence analysis of composite resins used in anterior direct restorations.

    Science.gov (United States)

    de Lima, Liliane Motta; Abreu, Jessica Dantas; Cohen-Carneiro, Flavia; Regalado, Diego Ferreira; Pontes, Danielson Guedes

    2015-01-01

    The aim of this study was to use a new methodology to evaluate the fluorescence of composite resins for direct restorations. Microhybrid (group 1, Amelogen; group 2, Opallis; group 3, Filtek Z250) and nanohybrid (group 4, Filtek Z350 XT; group 5, Brilliant NG; group 6, Evolu-X) composite resins were analyzed in this study. A prefabricated matrix was used to prepare 60 specimens of 7.0 × 3.0 mm (n = 10 per group); the composite resin discs were prepared in 2 increments (1.5 mm each) and photocured for 20 seconds. To establish a control group of natural teeth, 10 maxillary central incisor crowns were horizontally sectioned to create 10 discs of dentin and enamel tissues with the same dimensions as the composite resin specimens. The specimens were placed in a box with ultraviolet light, and photographs were taken. Aperture 3.0 software was used to quantify the central portion of the image of each specimen in shades of red (R), green (G), and blue (B) of the RGB color space. The brighter the B shade in the evaluated area of the image, the greater the fluorescence shown by the specimen. One-way analysis of variance revealed significant differences between the groups. The fluorescence achieved in group 1 was statistically similar to that of the control group and significantly different from those of the other groups (Bonferroni test). Groups 3 and 4 had the lowest fluorescence values, which were significantly different from those of the other groups. According to the results of this study, neither the size nor the amount of inorganic particles in the evaluated composite resin materials predicts if the material will exhibit good fluorescence.

  20. Development of heavy mineral and heavy element database of soil sediments in Japan using synchrotron radiation X-ray powder diffraction and high-energy (116 keV) X-ray fluorescence analysis: 1. Case study of Kofu and Chiba region.

    Science.gov (United States)

    Bong, Willy Shun Kai; Nakai, Izumi; Furuya, Shunsuke; Suzuki, Hiroko; Abe, Yoshinari; Osaka, Keiichi; Matsumoto, Takuya; Itou, Masayoshi; Imai, Noboru; Ninomiya, Toshio

    2012-07-10

    We have started the construction of a nationwide forensic soil sediment database for Japan based on the heavy mineral and trace heavy element compositions of stream sediments collected at 3024 points all over Japan obtained by high-resolution synchrotron X-ray powder diffraction (SR-XRD) and high-energy synchrotron X-ray fluorescence analysis (HE-SR-XRF). In this study, the performance of both techniques was demonstrated by analyzing soil sediments from two different geological regions, the Kofu and Chiba regions in Kanto province, to construct database that can be applied in the future to provenance analysis of soil evidence from a crime scene. The sediments from the quaternary volcanic lithology of the Chiba region were found to be dominated by heavy minerals of volcanic origin - orthopyroxene, clinopyroxene, and amphibole, and the REEs (rare earth elements) within the region showed similar geochemical behavior. On the other hand, four distinct heavy mineral groups were identified in the sediments of the Kofu region, where there is a great variety of underlying bedrock, and the geochemical behavior of the REEs in the sediments also varied accordingly to their geological origins. As such, our study shows that high-resolution SR-XRD data can provide information on the spatial distribution patterns of heavy minerals in stream sediments, playing an important role in determining their likely geographical origin. Meanwhile, the highly sensitive HE-SR-XRF data allow us to study the geochemical behavior of trace heavy elements, especially the REEs in the sediments, providing additional support to further constrain the likely geographical origin of the sediments determined by heavy minerals.

  1. XRF map identification problems based on a PDE electrodeposition model

    Science.gov (United States)

    Sgura, Ivonne; Bozzini, Benedetto

    2017-04-01

    In this paper we focus on the following map identification problem (MIP): given a morphochemical reaction–diffusion (RD) PDE system modeling an electrodepostion process, we look for a time t *, belonging to the transient dynamics and a set of parameters \\mathbf{p} , such that the PDE solution, for the morphology h≤ft(x,y,{{t}\\ast};\\mathbf{p}\\right) and for the chemistry θ ≤ft(x,y,{{t}\\ast};\\mathbf{p}\\right) approximates a given experimental map M *. Towards this aim, we introduce a numerical algorithm using singular value decomposition (SVD) and Frobenius norm to give a measure of error distance between experimental maps for h and θ and simulated solutions of the RD-PDE system on a fixed time integration interval. The technique proposed allows quantitative use of microspectroscopy images, such as XRF maps. Specifically, in this work we have modelled the morphology and manganese distributions of nanostructured components of innovative batteries and we have followed their changes resulting from ageing under operating conditions. The availability of quantitative information on space-time evolution of active materials in terms of model parameters will allow dramatic improvements in knowledge-based optimization of battery fabrication and operation.

  2. XPS-XRF hybrid metrology enabling FDSOI process

    Science.gov (United States)

    Hossain, Mainul; Subramanian, Ganesh; Triyoso, Dina; Wahl, Jeremy; Mcardle, Timothy; Vaid, Alok; Bello, A. F.; Lee, Wei Ti; Klare, Mark; Kwan, Michael; Pois, Heath; Wang, Ying; Larson, Tom

    2016-03-01

    Planar fully-depleted silicon-on-insulator (FDSOI) technology potentially offers comparable transistor performance as FinFETs. pFET FDOSI devices are based on a silicon germanium (cSiGe) layer on top of a buried oxide (BOX). Ndoped interfacial layer (IL), high-k (HfO2) layer and the metal gate stacks are then successively built on top of the SiGe layer. In-line metrology is critical in precisely monitoring the thickness and composition of the gate stack and associated underlying layers in order to achieve desired process control. However, any single in-line metrology technique is insufficient to obtain the thickness of IL, high-k, cSiGe layers in addition to Ge% and N-dose in one single measurement. A hybrid approach is therefore needed that combines the capabilities of more than one measurement technique to extract multiple parameters in a given film stack. This paper will discuss the approaches, challenges, and results associated with the first-in-industry implementation of XPS-XRF hybrid metrology for simultaneous detection of high-k thickness, IL thickness, N-dose, cSiGe thickness and %Ge, all in one signal measurement on a FDSOI substrate in a manufacturing fab. Strong correlation to electrical data for one or more of these measured parameters will also be presented, establishing the reliability of this technique.

  3. Dosimetry study for a new in vivo X-ray fluorescence (XRF) bone lead measurement system

    Science.gov (United States)

    Nie, Huiling; Chettle, David; Luo, Liqiang; O'Meara, Joanne

    2007-10-01

    A new 109Cd γ-ray induced bone lead measurement system has been developed to reduce the minimum detectable limit (MDL) of the system. The system consists of four 16 mm diameter detectors. It requires a stronger source compared to the "conventional" system. A dosimetry study has been performed to estimate the dose delivered by this system. The study was carried out by using human-equivalent phantoms. Three sets of phantoms were made to estimate the dose delivered to three age groups: 5-year old, 10-year old and adults. Three approaches have been applied to evaluate the dose: calculations, Monte Carlo (MC) simulations, and experiments. Experimental results and analytical calculations were used to validate MC simulation. The experiments were performed by placing Panasonic UD-803AS TLDs at different places in phantoms that representing different organs. Due to the difficulty of obtaining the organ dose and the whole body dose solely by experiments and traditional calculations, the equivalent dose and effective dose were calculated by MC simulations. The result showed that the doses delivered to the organs other than the targeted lower leg are negligibly small. The total effective doses to the three age groups are 8.45/9.37 μSv (female/male), 4.20 μSv, and 0.26 μSv for 5-year old, 10-year old and adult, respectively. An approval to conduct human measurements on this system has been received from the Research Ethics Board based on this research.

  4. Nuclear Import Analysis of Two Different Fluorescent Marker Proteins into Hepatocyte Cell Lines (HuH-7 Cell

    Directory of Open Access Journals (Sweden)

    Aris Haryanto

    2015-10-01

    Full Text Available The application of fluorescent proteins as expression markers and protein fusion partners has provedimmensely valuable for resolving the organization of biological events in living cells. EGFP and DsRed2 arecommonly fluorescent marker protein which is used for biotechnology and cell biology research. The presentstudy was designed to identify the expression vector that suitable to ligate with DNA encoding HBV coreprotein for intracellular localization study in hepatocyte cell, which were expressed as fusion proteins. We alsocompared and quantified the expressed fluorescent protein which predominantly localized in the cellcompartment. The results indicated that DsRed2 shown as less than ideal for intracellular localization study ofthan EGFP, because of its tetrameric structure of the fluorescent protein and when fused to a protein of interest,the fusion protein often forms aggregates in the living cells. In contrast, EGFP fluorescent protein shown a muchhigher proportion of cytoplasmic localization, thus being more suitable for analysis of intracellular localizationthan DsRed2 fluorescent protein. EGFP fluorescent protein is also capable to produce a strong green fluorescencewhen excited by blue light, without any exogenously added substrate or cofactor, events inside living cell canthus be visualized in a non-invasive way. Based on our present quantitative data and some reasons above shownthat EGFP is more suitable than DsRed2 as a fluorescent marker protein for intracellular localization study intoHuH-7 cell.Keywords: EGFP, DsRed2 fluorescent protein , HuH-7 cell, HBV, intracellular localization

  5. Cell flow analysis with a two-photon fluorescence fiber probe

    Science.gov (United States)

    Chang, Yu-Chung; Ye, Jing Yong; Thomas, Thommey P.; Baker, James R., Jr.; Norris, Theodore B.

    2010-11-01

    We report the use of a sensitive double-clad fiber (DCF) probe for in situ cell flow velocity measurements and cell analysis by means of two-photon excited fluorescence correlation spectroscopy (FCS). We have demonstrated the feasibility to use this fiber probe for in vivo two-photon flow cytometry previously. However, because of the viscosity of blood and the non-uniform flow nature in vivo, it is problematic to use the detected cell numbers to estimate the sampled blood volume. To precisely calibrate the sampled blood volume, it is necessary to conduct real time flow velocity measurement. We propose to use FCS technique to measure the flow velocity. The ability to measure the flow velocities of labeled cells in whole blood has been demonstrated. Our two-photon fluorescence fiber probe has the ability to monitor multiple fluorescent biomarkers simultaneously. We demonstrate that we can distinguish differently labeled cells by their distinct features on the correlation curves. The ability to conduct in situ cell flow analysis using the fiber probe may be useful in disease diagnosis or further comprehension of the circulation system.

  6. Multifunctional optofluidic lab-on-chip platform for Raman and fluorescence spectroscopic microfluidic analysis.

    Science.gov (United States)

    Persichetti, G; Grimaldi, I A; Testa, G; Bernini, R

    2017-07-25

    A multifunctional lab-on-a-chip platform for spectroscopic analysis of liquid samples based on an optofluidic jet waveguide is reported. The optofluidic detection scheme is achieved through the total internal reflection arising in a liquid jet of only 150 μm diameter, leading to highly efficient signal excitation and collection. This results in an optofluidic chip with an alignment-free spectroscopic detection scheme, which avoids any background from the sample container. This platform has been designed for multiwavelength fluorescence and Raman spectroscopy. The chip integrates a recirculation system that reduces the required sample volume. The evaluation of the device performance has been accomplished by means of fluorescence measurements performed on eosin Y in water solutions, achieving a limit of detection of 33 pM. The sensor has been applied in Raman spectroscopy of water-ethanol solutions, leading to a limit of detection of 0.18%. As additional application, analysis of riboflavin using fluorescence detection demonstrates the possibility of detecting this vitamin at the 560 pM level (0.21 ng l(-1)). Although measurements have been performed by means of a compact and low-cost spectrometer, in both cases the micro-jet optofluidic chip achieved similar performances if not better than high-end benchtop based laboratory equipment. This approach paves the way towards portable lab-on-a-chip devices for high sensitivity environmental and biochemical sensing, using optical spectroscopy.

  7. Two and three-color fluorescence flow cytometric analysis of immunoidentified viable bacteria.

    Science.gov (United States)

    Barbesti, S; Citterio, S; Labra, M; Baroni, M D; Neri, M G; Sgorbati, S

    2000-07-01

    Traditional culture methods well established in the past and still in use are not able to detect the environmental microorganisms that exist in a viable but not culturable state. A number of different fluorescence-based assays have been developed over the past decade to detect and identify viable bacteria in the environment. We have developed a simple and rapid method for measuring the number and viability of immunolabeled bacteria by means of a two/three color fluorescence flow cytometric analysis. After washing, cultured bacteria in suspension were labeled with a rabbit polyclonal antibody recognizing the wall lipopolysaccharide complex. A secondary biotinylated anti-rabbit polyclonal antibody was added allowing the cells to be labeled with the streptavidin R-phycoerythrin-Cyanine 5 (RPE-Cy5) fluorochrome. Before flow cytometric analysis, bacterial suspensions were stained with SYBR Green I and propidium iodide which stain all of the cells and the non viable ones, respectively. With the appropriate filter sets of both Bryte-HS (Bio-Rad, Hercules, CA) and FACScan (Becton Dickinson, San Jose, CA) flow cytometers, the measurement of separated green (SYBR Green I), orange-red (propidium iodide), and far red (RPE-Cy5) fluorescence was possible, allowing the enumeration of viable immunodetected bacteria. The entire protocol is completed in less than 3 h, offering numerous possibilities for rapid and precise analyses in sanitary, industrial, and environmental microbiology. Copyright 2000 Wiley-Liss, Inc.

  8. X-ray fluorescence analysis of ancient and medieval brass artifacts from south Moravia

    Energy Technology Data Exchange (ETDEWEB)

    Hlozek, M. [Methodical Centre of Conservation-Technical Museum in Brno, Purkynova 105, 612 00 Brno (Czech Republic); Komoroczy, B. [Institute of Archeology of the Academy of Science of the Czech Republic, Kralovopolska 147, 612 00 Brno (Czech Republic); Trojek, T., E-mail: tomas.trojek@fjfi.cvut.cz [Department of Dosimetry and Application of Ionizing Radiation, Czech Technical University in Prague, Brehova 7, 115 19 Praha 1 (Czech Republic)

    2012-07-15

    This paper deals with an investigation of archeological finds using X-ray fluorescence analysis and microanalysis. The main aim of the investigation was to prove the production of brass in the South Moravian Region (part of the Czech Republic) in former times. The probable brass production technology is described. Various objects dating back to Antiquity and to the Middle Ages were investigated using two X-ray fluorescence systems, and the results of the analyses are discussed. The measurements showed, e.g., that fragments of Roman scale armor and a belt fitting dating back to Antiquity were made of brass. Brass was also identified on the surfaces of various ancient and medieval molds and melting pots. - Highlights: Black-Right-Pointing-Pointer Semiquantitative X-ray fluorescence analysis of archeological finds. Black-Right-Pointing-Pointer Two different gilding techniques of a brass belt terminal found in Brno. Black-Right-Pointing-Pointer Use of brass before the Great Moravian period. Black-Right-Pointing-Pointer Evidence of brass casting in the 12th century in Brno.

  9. Beer analysis by synchrotron radiation total reflection X-ray fluorescence (SR-TXRF)

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Silvana [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo. Dept. de Recursos Hidricos]. E-mail: silvana@fec.unicamp.br; Vives, Ana Elisa S. de [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara D' Oeste, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo]. E-mail: aesvives@unimep.br; Nascimento Filho, Virgilio F. [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Instrumentacao Nuclear]. E-mail: virgilio@cena.usp.br; Zucchi, Orgheda L.D.A. [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas de Ribeirao Preto]. E-mail: olzucchi@fcfrp.usp.br

    2005-07-01

    In this work the concentrations of P, S, Cl, K, Ca, Mn, Fe, Zn and Br in twenty-nine brands of national and international beers were determined by Synchrotron Radiation Total Reflection X-Ray Fluorescence analysis (SR-TXRF). The results were compared with the limits established by the Brazilian Legislation and the nutritive values established by National Agricultural Library (NAL). The measurements were performed at the X-ray Fluorescence Beamline at Synchrotron Light Source Laboratory, in Campinas, Sao Paulo, Brazil, using a polychromatic beam for excitation. A small volume of 5 {mu}L of sample beers containing just an internal standard, used to correct geometry effects, were analyzed without any pre-treatment. The measuring time was 100 s and the detection limits obtained varied from 1{mu}g.L{sup -1} for Mn and Fe to 15{mu}g.L{sup -1} for P. (author)

  10. Enhanced green fluorescent protein expression in Pleurotus ostreatus for in vivo analysis of fungal laccase promoters.

    Science.gov (United States)

    Amore, Antonella; Honda, Yoichi; Faraco, Vincenza

    2012-10-01

    The laccase family of Pleurotus ostreatus has been widely characterized, and studies of the genes coding for laccase isoenzymes in P. ostreatus have so far led to the identification of four different genes and the corresponding cDNAs, poxc, pox1, poxa1b and poxa3. Analyses of P. ostreatus laccase promoters poxc, pox1, poxa1b and poxa3 have allowed identification of several putative response elements, and sequences of metal-responsive elements involved in the formation of complexes with fungal proteins have been identified in poxc and poxa1b promoters. In this work, development of a system for in vivo analysis of P. ostreatus laccase promoter poxc by enhanced green fluorescent protein expression is performed, based on a poly ethylene glycol-mediated procedure for fungal transformation. A quantitative measurement of fluorescence expressed in P. ostreatus transformants is hereby reported for the first time for this fungus.

  11. Early- to Mid-Holocene environmental and climate changes in the southern Baltic lowland using XRF scanning data

    Science.gov (United States)

    Tjallingii, Rik; Ott, Florian; Dräger, Nadine; Kramkowski, Mateusz; Slowinski, Michal; Brauer, Achim

    2016-04-01

    The ICLEA project includes several annually laminated (varved) lake records from the southern Baltic lowlands for detailed climatic and environmental reconstructions. Continuous geochemical records have been obtained by XRF scanning and reveal the dominant depositional processes of the German lake Tiefer See and the Polish lakes Głęboczek, Czechowskie and Jelonek. Each lake record has been independently dated by means of varve counting, AMS 14C dating and tephrochronology. The unprecedented age control allows accurate age correlation of individual lake records even over large distances. The detailed stratigraphy is used in combination with micro-XRF core scanning records to link depositional variability with past environmental and climatic changes. However, in each lake the major sedimentological transitions are reflected by different geochemical elements due to the different depositional conditions. Here we present a statistical concept for XRF core scanning data to evaluate the timing and frequency of the most prominent sedimentological transitions of the Early to Mid Holocene. Preliminary results reveal that depositional conditions prevail over relatively long periods (102-103 yrs) between the Younger Dryas and ~6000 yrs. The sedimentological transitions during this period are associated to regional climatic changes in the southern Baltic lowlands during this period. After ~6000 yrs BP, depositional conditions vary at a much higher frequency (10-102 yrs), which are associated with a stronger local and lake internal environmental variability. Ongoing research focuses on a multi-proxy approach to further constrain possible links between depositional changes recorded in these varved lacustrine sediments with Early- to Mid-Holocene climatic and environmental variations. This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution Analysis - ICLEA - of the Helmholtz Association.

  12. Application of direct peak analysis to energy dispersive x-ray fluorescence spectra

    Energy Technology Data Exchange (ETDEWEB)

    Nielson, K.K.

    1977-07-01

    A modified Covell method for direct peak analysis has been applied to energy dispersive x-ray fluorescence spectra. The method is background independent and is well-suited to computerized data reduction. It provides acceptable precision, minimizes errors from instrumental gain shift, and permits peak overlap correction. Peak overlap errors exhibit both positive and negative nodes as a function of peak separation distance, and are corrected using concentration ratios determined from thin, single-element standards. Peak precisions and overlaps are evaluated as a function of window width to aid in width selection. Least-square polynomial smoothing prior to peak analysis significantly improves peak area precisions without significantly affecting their accuracies.

  13. A systems-theory approach to the analysis of multiexponential fluorescence decay.

    Science.gov (United States)

    Eisenfeld, J; Ford, C C

    1979-04-01

    A mathematical model of the fluorescence decay experiment based on linear systems theory is presented. The model suggests an experimental technique that increases the probability of correctly determining the decay constants of a multicomponent system. The use of moment methods for data analysis improves accuracy by combining information obtained from several discrete experiments. Examples are presented to show that the analysis of a three component system composed of known standards is improved as the number of experimental determinations is increased from one to four. The discrete measurements are made by changing the excitation and emission wavelengths.

  14. Automatic scatter detection in fluorescence landscapes by means of spherical principal component analysis

    DEFF Research Database (Denmark)

    Kotwa, Ewelina Katarzyna; Jørgensen, Bo Munk; Brockhoff, Per B.;

    2013-01-01

    In this paper, we introduce a new method, based on spherical principal component analysis (S‐PCA), for the identification of Rayleigh and Raman scatters in fluorescence excitation–emission data. These scatters should be found and eliminated as a prestep before fitting parallel factor analysis...... this drawback, we implement the fast S‐PCA in the scatter identification routine. Moreover, an additional pattern interpolation step that complements the method, based on robust regression, will be applied. In this way, substantial time savings are gained, and the user's engagement is restricted to a minimum...

  15. Evaluation of a new optic-enabled portable X-ray fluorescence spectrometry instrument for measuring toxic metals/metalloids in consumer goods and cultural products

    Science.gov (United States)

    Guimarães, Diana; Praamsma, Meredith L.; Parsons, Patrick J.

    2016-08-01

    X-ray fluorescence spectrometry (XRF) is a rapid, non-destructive multi-elemental analytical technique used for determining elemental contents ranging from percent down to the μg/g level. Although detection limits are much higher for XRF compared to other laboratory-based methods, such as inductively coupled plasma mass spectrometry (ICP-MS), ICP-optical emission spectrometry (OES) and atomic absorption spectrometry (AAS), its portability and ease of use make it a valuable tool, especially for field-based studies. A growing necessity to monitor human exposure to toxic metals and metalloids in consumer goods, cultural products, foods and other sample types while performing the analysis in situ has led to several important developments in portable XRF technology. In this study, a new portable XRF analyzer based on the use of doubly curved crystal optics (HD Mobile®) was evaluated for detecting toxic elements in foods, medicines, cosmetics and spices used in many Asian communities. Two models of the HD Mobile® (a pre-production and a final production unit) were investigated. Performance parameters including accuracy, precision and detection limits were characterized in a laboratory setting using certified reference materials (CRMs) and standard solutions. Bias estimates for key elements of public health significance such as As, Cd, Hg and Pb ranged from - 10% to 11% for the pre-production, and - 14% to 16% for the final production model. Five archived public health samples including herbal medicine products, ethnic spices and cosmetic products were analyzed using both XRF instruments. There was good agreement between the pre-production and final production models for the four key elements, such that the data were judged to be fit-for-purpose for the majority of samples analyzed. Detection of the four key elements of interest using the HD Mobile® was confirmed using archived samples for which ICP-OES data were available based on digested sample materials. The HD

  16. Fluorescence spectral analysis for the discrimination of complex, similar mixtures with the aid of chemometrics.

    Science.gov (United States)

    Ni, Yongnian; Lai, Yanhua; Kokot, Serge

    2012-07-01

    An analytical method for the classification of complex real-world samples was researched and developed with the use of excitation-emission fluorescence matrix (EEFM) spectroscopy, using the medicinal herbs, Rhizoma corydalis decumbentis (RCD) and Rhizoma corydalis (RC) as example samples. The data set was obtained from various authentic RCD-A and RC-A, adulterated AD, and commercial RCD-C and RC-C samples. The spectra (range: λ(ex) = 215∼395 nm and λ(em) = 290∼560 nm), arranged in two- and three-way data matrix formats, were processed using principal component analysis (PCA) and parallel factor analysis (PARAFAC) to produce two-dimensional component-by-component plots for qualitative data classification. The RCD-A and RC-A object groups were clearly discriminated, but the AD and the RCD-C as well as RC-C samples were less well separated. PARAFAC analysis produced somewhat better discrimination, and loadings plots revealed the presence of the marker compound Protopine-a strongly fluorescing substance-as well as at least two other unidentified fluorescent components. Classification performance of the common K-nearest neighbors (KNN) and linear discrimination analysis (LDA) methods was relatively poor when compared with that of the back propagation- and radial basis function-artificial neural networks (BP-ANN and RBF-ANN) models on the basis of two- and three-way formatted data. The best results were obtained with the three-way fingerprints and the RBF-ANN model. Subsequently, the quality of the commercial samples (RCD-C and RC-C) was classified on the best optimized RBF-ANN model. Thus, EEFM spectroscopy, which provides three-way measured data, is potentially a powerful analytical technique for the analysis of complex real-world substances provided the classification is performed by the RBF-ANN or similar ANN methods.

  17. [Application of the racial algorithm in energy dispersive X-ray fluorescence overlapped spectrum analysis].

    Science.gov (United States)

    Zeng, Guo-Qiang; Luo, Yao-Yao; Ge, Liang-Quan; Zhang, Qing-Xian; Gu, Yi; Cheng, Feng

    2014-02-01

    In the energy dispersive X-ray fluorescence spectrum analysis, scintillation detector such as NaI (Tl) detector usually has a low energy resolution at around 8%. The low energy resolution causes problems in spectral data analysis especially in the high background and low counts condition, it is very limited to strip the overlapped spectrum, and the more overlapping the peaks are, the more difficult to peel the peaks, and the qualitative and quantitative analysis can't be carried out because we can't recognize the peak address and peak area. Based on genetic algorithm and immune algorithm, we build a new racial algorithm which uses the Euclidean distance as the judgment of evolution, the maximum relative error as the iterative criterion to be put into overlapped spectrum analysis, then we use the Gaussian function to simulate different overlapping degrees of the spectrum, and the racial algorithm is used in overlapped peak separation and full spectrum simulation, the peak address deviation is in +/- 3 channels, the peak area deviation is no more than 5%, and it is proven that this method has a good effect in energy dispersive X-ray fluorescence overlapped spectrum analysis.

  18. Chemical Environment Effects on K[beta]/K[alpha] Intensity Ratio: An X-Ray Fluorescence Experiment on Periodic Trends

    Science.gov (United States)

    Durham, Chaney R.; Chase, Jeffery M.; Nivens, Delana A.; Baird, William H.; Padgett, Clifford W.

    2011-01-01

    X-ray fluorescence (XRF) data from an energy-dispersive XRF instrument were used to investigate the chlorine K[alpha] and K[beta] peaks in several group 1 salts. The ratio of the peak intensity is sensitive to the local chemical environment of the chlorine atoms studied in this experiment and it shows a periodic trend for these salts. (Contains 1…

  19. Moonlight receptor of the "1-h-midge" Clunio marinus studied by micro-XRF

    Science.gov (United States)

    Falkenberg, G.; Fleissner, Ge; Neumann, D.; Wellenreuther, G.; Alraun, P.; Fleissner, Gue

    2013-10-01

    Melanin is a pigment widely occurring in animals, plants, fungi and algae. It does not only colour skin, hair and eyes but serves mainly as photoprotectant and prevents overload with minerals induced by inflammations, infections and degenerative diseases. Therefore, the mechanisms underlying melanisation gained increasing interest in the field of biomedical research and clinic. So far, the processes of melanogenesis are only partly analysed, nearly nothing is known on a putative switch between melanins of different types. Here we offer a model organism to study these mechanisms as part of a naturally cycling change of transparency of the retinal shielding pigment. A marine midge, Clunio marinus, living in coastal regions, underlies a complex timing of its development by solar and lunar climatic periodicities, which synchronise biological clocks. The question was how the animals can discriminate changing sunlight from moonlight intensities. For the first time, we could show a "moonlight window" in the larval ocelli of this midge, and propose a hypothesis on the underlying mechanisms. Driven by a lunar clock the image forming ocelli become transparent and convert during moonlit nights to a sensitive photometer, which can record the dynamics of environmental light. High resolution X-ray fluorescence (XRF) measurements of the distribution of trace minerals in single melanosomes combined with their fine structural details in various states of the lunar cycle provide a first insight into the enzymatic pathways for the generation of a dark melanin (like eumelanin) and a light coloured melanin (like phaeomelanin). Essential advantage of this approach is the spatial and temporal resolution of the metals associated with melanisation processes, which could never before be demonstrated in these details. The data may stimulate further research projects in biomedicine.

  20. Field-portable-XRF reveals the ubiquity of antimony in plastic consumer products.

    Science.gov (United States)

    Turner, Andrew; Filella, Montserrat

    2017-02-09

    Very little systematic information exists on the occurrence and concentrations of antimony (Sb) in consumer products. In this study, a Niton XL3t field-portable-X-ray fluorescence (FP-XRF) spectrometer was deployed in situ and in the laboratory to provide quantitative information on Sb dissipated in plastic items and fixtures (including rubber, textile and foamed materials) from the domestic, school, vehicular and office settings. The metalloid was detected in 18% of over 800 measurements performed, with concentrations ranging from about 60 to 60,000μgg(-1). The highest concentrations were encountered in white, electronic casings and in association with similar concentrations of Br, consistent with the use of antimony oxides (e.g. Sb2O3) as synergistic flame retardants. Concentrations above 1000μgg(-1), and with or without Br, were also encountered in paints, piping and hosing, adhesives, whiteboards, Christmas decorations, Lego blocks, document carriers, garden furniture, upholstered products and interior panels of private motor vehicles. Lower concentrations of Sb were encountered in a wide variety of items but its presence (without Br) in food tray packaging, single-use drinks bottles, straws and small toys were of greatest concern from a human health perspective. While the latter observations are consistent with the use of antimony compounds as catalysts in the production of polyethylene terephthalate, co-association of Sb and Br in many products not requiring flame retardancy suggests that electronic casings are widely recycled. Further research is required into the mobility of Sb when dissipated in new, recycled and aged polymeric materials.

  1. Heavy-metal contamination of soils in Saxony/Germany by foundry fumes and low-cost rapid analyses of contaminated soils by XRF

    Science.gov (United States)

    Mucke, D.

    2012-04-01

    Heavy-metal contamination of soils in Saxony/Germany by foundry fumes and low-cost rapid analysis of contaminated soils by XRF Dieter Mucke, Rolf Kumann, Sebastian Baldauf GEOMONTAN Gesellschaft für Geologie und Bergbau mbH&Co.KG, Muldentalstrasse 56, 09603 Rothenfurth, Saxony/Germany For hundreds of years in the Ore Mountains between Bohemia and Saxony silver and other ores are produced and smelted. Sulphide- and sulpharsenide-ores needed to be roasted first. In doing so the sulphide sulphur was oxidised under formation of sulphur dioxide SO2 and arsenide conversed into elemental arsenic and arsenide trioxide As2O3 respectively. Also the metals lead, cadmium and zinc are components of hut smokes, in the field of nickel foundries also nickel. The contents of soils basically reflect the geogenic conditions, which are caused by decomposition- and relocation-effects of the mineralisations, in the area of foundries also with influences by with the hut smokes anthropogenic mobilised elements. The Saxonian Agency for Environment and Geology drafted in 1992 a Soil Investigation Program with the aim of investigation of the contamination of Saxonian soils with arsenic and toxic heavy metals. In order of this Agency GEOMONTAN investigated 1164 measuring points in the grid 4 * 4 km.soil profiles and extracted soil samples for analysis. In the result of the laboratory examinations the Agency edited the "Soil atlas of the Free State of Saxony". 27 elements, pH and PAK are shown in detailed maps and allow in whole Saxony the first assessment of the contamination of soils with arsenic and toxic heavy metals. Each of the investigated soil profiles represent an area of 16 km2. Already by the different use of the districts (agricultural, industrial, urban) restricts representative values. GEOMONTAN in the meantime used at the exploration of a copper deposit in Brandenburg/Germany with approx. 50,000 single tests at drill cores a very fast low-cost method: the X Ray fluorescence

  2. Discovering vanished paints and naturally formed gold nanoparticles on 2800 years old phoenician ivories using SR-FF-microXRF with the color X-ray camera.

    Science.gov (United States)

    Reiche, Ina; Müller, Katharina; Albéric, Marie; Scharf, Oliver; Wähning, Andrea; Bjeoumikhov, Aniouar; Radtke, Martin; Simon, Rolf

    2013-06-18

    Phoenician ivory objects (8(th) century B.C., Syria) from the collections of the Badisches Landesmuseum, Karlsruhe, Germany, have been studied with full field X-ray fluorescence microimaging, using synchrotron radiation (SR-FF-microXRF). The innovative Color X-ray Camera (CXC), a full-field detection device (SLcam), was used at the X-ray fluorescence beamline of the ANKA synchrotron facility (ANKA-FLUO, KIT, Karlsruhe, Germany) to noninvasively study trace metal distributions at the surface of the archeological ivory objects. The outstanding strength of the imaging technique with the CXC is the capability to record the full XRF spectrum with a spatial resolution of 48 μm on a zone of a size of 11.9 × 12.3 mm(2) (264 × 264 pixels). For each analyzed region, 69696 spectra were simultaneously recorded. The principal elements detected are P, Ca, and Sr, coming from the ivory material itself; Cu, characteristic of pigments; Fe and Pb, representing sediments or pigments; Mn, revealing deposited soil minerals; Ti, indicating restoration processes or correlated with Fe sediment traces; and Au, linked to a former gilding. This provides essential information for the assessment of the original appearance of the ivory carvings. The determined elemental maps specific of possible pigments are superimposed on one another to visualize their respective distributions and reconstruct the original polychromy and gilding. Reliable hypotheses for the reconstruction of the original polychromy of the carved ivories are postulated on this basis.

  3. Auxin conjugated to fluorescent dyes--a tool for the analysis of auxin transport pathways.

    Science.gov (United States)

    Sokołowska, K; Kizińska, J; Szewczuk, Z; Banasiak, A

    2014-09-01

    Auxin is a small molecule involved in most processes related to plant growth and development. Its effect usually depends on the distribution in tissues and the formation of concentration gradients. Until now there has been no tool for the direct tracking of auxin transport at the cellular and tissue level; therefore the majority of studies have been based on various indirect methods. However, due to their various restrictions, relatively little is known about the relationship between various pathways of auxin transport and specific developmental processes. We present a new research tool: fluorescently labelled auxin in the form of a conjugate with two different fluorescent tracers, FITC and RITC, which allows direct observation of auxin transport in plant tissues. Chemical analysis and biological tests have shown that our conjugates have auxin-like biological activity and transport; therefore they can be used in all experimental systems as an alternative to IAA. In addition, the conjugates are a universal tool that can be applied in studies of all plant groups and species. The conjugation procedure presented in this paper can be adapted to other fluorescent dyes, which are constantly being improved. In our opinion, the conjugates greatly expand the possibilities of research concerning the role of auxin and its transport in different developmental processes in plants.

  4. Fluorescent multiplex linkage analysis and carrier detection for Duchenne/Becker muscular dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, L.S.; Hoffman, E.P. (Univ. of Pittsburgh Schoool of Medicine, Pittsburgh, PA (United States)); Tarleton, J. (Self Memorial Hospital, Greenwood, SC (United States)); Popovich, B. (Children' s Hosptial and Health Center, San Diego, CA (United States)); Seltzer, W.K. (Univ. of Colorado Health Sciences Center, Denver, CO (United States))

    1992-10-01

    The authors have developed a fast and accurate PCR-based linkage and carrier detection protocol for families of Duchenne muscular dystrophy (DMD)/Becker muscular dystrophy (BMD) patients with or without detectable deletions of the dystrophin gene, using fluorescent PCR products analyzed on an automated sequencer. When a deletion is found in the affected male DMD/BMD patient by standard multiplex PCR, fluorescently labeled primers specific for the deleted and nondeleted exon(s) are used to amplify the DNA of at-risk female relatives by using multiplex PCR at low cycle number (20 cycles). The products are then quantitatively analyzed on an automatic sequencer to determine whether they are heterozygous for the deletion and thus are carriers. As a confirmation of the deletion data, and in cases in which a deletion is not found in the proband, fluorescent multiplex PCR linkage is done by using four previously described polymorphic dinucleotide sequences. The four (CA)[sub n] repeats are located throughout the dystrophin gene, making the analysis highly informative and accurate. The authors present the successful application of this protocol in families who proved refractory to more traditional analyses. 22 refs., 3 figs.

  5. Analysis of plasma membrane integrity by fluorescent detection of Tl(+) uptake.

    Science.gov (United States)

    Bowman, Angela M; Nesin, Olena M; Pakhomova, Olga N; Pakhomov, Andrei G

    2010-07-01

    The exclusion of polar dyes by healthy cells is widely employed as a simple and reliable test for cell membrane integrity. However, commonly used dyes (propidium, Yo-Pro-1, trypan blue) cannot detect membrane defects which are smaller than the dye molecule itself, such as nanopores that form by exposure to ultrashort electric pulses (USEPs). Instead, here we demonstrate that opening of nanopores can be efficiently detected and studied by fluorescent measurement of Tl(+) uptake. Various mammalian cells (CHO, GH3, NG108), loaded with a Tl(+)-sensitive fluorophore FluxOR and subjected to USEPs in a Tl(+)-containing bath buffer, displayed an immediate (within Tl(+) by 600-ns USEP was at 1-2 kV/cm, and the rate of Tl(+) uptake increased linearly with increasing the electric field. The lack of concurrent entry of larger dye molecules suggested that the size of nanopores is less than 1-1.5 nm. Tested ion channel inhibitors as well as removal of the extracellular Ca(2+) did not block the USEP effect. Addition of a Tl(+)-containing buffer within less than 10 min after USEP also caused a fluorescence surge, which confirms the minutes-long lifetime of nanopores. Overall, the technique of fluorescent detection of Tl(+) uptake proved highly effective, noninvasive and sensitive for visualization and analysis of membrane defects which are too small for conventional dye uptake detection methods.

  6. Light emitting diode, photodiode-based fluorescence detection system for DNA analysis with microchip electrophoresis.

    Science.gov (United States)

    Hall, Gordon H; Glerum, D Moira; Backhouse, Christopher J

    2016-02-01

    Electrophoretic separation of fluorescently end-labeled DNA after a PCR serves as a gold standard in genetic diagnostics. Because of their size and cost, instruments for this type of analysis have had limited market uptake, particularly for point-of-care applications. This might be changed through a higher level of system integration and lower instrument costs that can be realized through the use of LEDs for excitation and photodiodes for detection--if they provide sufficient sensitivity. Here, we demonstrate an optimized microchip electrophoresis instrument using polymeric fluidic chips with fluorescence detection of end-labeled DNA with a LOD of 0.15 nM of Alexa Fluor 532. This represents orders of magnitude improvement over previously reported instruments of this type. We demonstrate the system with an electrophoretic separation of two PCR products and their respective primers. We believe that this is the first LED-induced fluorescence microchip electrophoresis system with photodiode-based detection that could be used for standard applications of PCR and electrophoresis.

  7. Integration of the robotized borate fusion technique with XRF analysis within the context of the ferroalloy industry%自动化硼酸盐熔融与X-射线荧光光谱分析组合技术在铁合金工业中的应用

    Institute of Scientific and Technical Information of China (English)

    B(E)RUB(E) Luc; RIVARD Sébastien; BOUCHARD Mathieu

    2012-01-01

    铁合金是高附加值的金属,在用作钢铁行业的原材料时,铁合金可以调节钢的最终成分并赋予其物理和化学性质.在炼钢过程中,精确控制铁合金加入量可以降低成本,另外,铁 合金中的杂质又可能影响钢的性能.铁合金正确的表征是必要的,因为这对钢的生产质量以及钢铁生产企业的经济效益有重大影响.在种类繁多的铁合金中,采用硼酸盐熔融制备样品并用X-射线荧光光谱测定主次及一些微量元素是非常有效、广为人知的方法,有着很好的准确度和精度.多种高性能的熔融仪器可被集成rFUSION自动熔融系统,该系统的熔融片制备可实现独立操作而不用人工介入.对于生产来说,rFUSION自动熔融系统可以提高并且稳定分析速度,确保分析结果的质量不会因生产率而降低.另外,因为采用有效的标准化设计、rFUSION熔融系统还可以确保熔融过程的标准化,使结果有很好的一致性和均匀性.%Ferroalloys are high added-value materials used as raw materials in the steel industry for adjusting the final composition of steel and providing its physical and chemical properties. A precise management of the quantities of ferroalloys added in the steel making process leads to significant savings. Moreover, impurities in ferroalloys can affect the properties of steel. Proper characterization of ferroalloys is necessary since it has significant impacts on the quality of steel production, along With major financial consequences for steel manufacturing companies. Sample preparation by borate fusion, coupled with XRF analysis, is an effective and renowned technique for accurate and precise determination of major, minor and some trace elements in a wide range of ferroalloys. High performance fusion instruments can be integrated into the rFUSION robotized system, allowing fused disks preparation to run independently and without manual intervention. In regard to production, the

  8. Oblique fluorescence in a MARS scanner with a CdTe-Medipix3RX

    Science.gov (United States)

    Vanden Broeke, L.; Atharifard, A.; Goulter, B. P.; Healy, J. L.; Ramyar, M.; Panta, R. K.; Anjomrouz, M.; Shamshad, M.; Largeau, A.; Mueller, K.; Walsh, M. F.; Aamir, R.; Smithies, D. J.; Doesburg, R.; Rajendran, K.; de Ruiter, N. J. A.; Knight, D.; Chernoglazov, A.; Mandalika, H.; Bateman, C. J.; Bell, S. T.; Butler, A. P. H.; Butler, P. H.

    2016-12-01

    The latest version of the MARS small bore scanner makes use of the Medipix3RX ASIC, bonded to a CdTe or CZT semi-conductor layer, to count x-ray photons and create a spectroscopic CT data set. The MARS imaging chain uses the energy-resolved 2D transmission images to construct quantitative 3D spectral and material images. To improve the spectral performance of the imaging system it is important that the energy response of the detector is well calibrated. A common methodology for energy calibration is to use x-ray fluorescence (XRF), due to its effective monochromatic nature. Oblique (off-axis) XRF can be measured in situ in the MARS small bore scanner. A monoatomic foil is placed in front of the x-ray source and off-axis XRF is measured. A key issue is identifying near optimal measurement positions that maximize the XRF signal while minimizing transmitted and scattered x-rays from the primary beam. This work shows the development of a theoretical model that is able to identify where in the detector plane XRF is maximum. We present: (1) a theoretical model that calculates the XRF photon distribution across the detector plane produced from illuminated foils attached to the scanner's filter bar; (2) preliminary experimental measurements of the XRF distribution outside of the main beam taken with a CdTe-Medipix3RX detector; and (3) a comparison between the model and experiment. The main motivation behind creating this model is to identify the region in the detector plane outside of the main beam where XRF is at a maximum. This provides the optimum detector location for measuring a monochromatic XRF source with minimal polychromatic contamination for its use in per-pixel energy calibration of Medipix3RX detectors in MARS scanners.

  9. Fluorescence depolarization analysis of thermal phase transition in DPPC and DMPG aqueous dispersions

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Amando Siuiti, E-mail: amandosi@ffclrp.usp.br; Rodrigues, Ana Paula; Moreira Pazin, Wallance; Berardi Barioni, Marina

    2015-02-15

    We performed an overall analysis of steady state, kinetic and dynamical parameters of phospholipids labeled with 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD), to investigate the structural changes accompanying the phase transition of dimyristoyl phosphatidylglycerol (DMPG) vesicles, under low and high ionic strength conditions. For comparison, we also performed experiments on dimyristoyl phosphatidylcholine (DPPC) vesicles, which exhibit a well-defined thermal phase transition. Fluorescence parameters alone (lifetime, pre-exponential factor, rotational correlation times, and initial anisotropy) do not describe the thermal behavior of the vesicles. Combination of intensity decay and anisotropy decay data allows the calculation of mean anisotropy values, and among the several parameters obtained from time-resolved measurements, the main contribution to the mean anisotropy comes from the residual anisotropy, obtained as the limit value at long times. The results of calculations were comparable to the steady state measurements, and allowed the observation of the dependence between the thermal phase transition in DMPG and the ionic strength of the medium. The presence of NaCl affects the lipid packing leading to structural constraints onto the probes that are systematically higher than those observed in low ionic strength. In low ionic strength the long rotational correlation time of the NBD-PE (NBD-phosphatidylethanolamine) probe presents peculiar behavior, showing transient changes along the broad gel–fluid transition, that occurs parallel to the modifications in the scattering intensity. - Highlights: • Time-resolved data were combined to calculate mean values of fluorescence anisotropy. • Fluorescence structural parameters describe lipid vesicles thermal phase transition. • Calculated fluorescence anisotropy describes ionic strength effects in DMPG bilayers.

  10. Proteomic Analysis of Bovine Pregnancy-specific Serum Proteins by 2D Fluorescence Difference Gel Electrophoresis

    Directory of Open Access Journals (Sweden)

    Jae Eun Lee

    2015-06-01

    Full Text Available Two dimensional-fluorescence difference gel electrophoresis (2D DIGE is an emerging technique for comparative proteomics, which improves the reproducibility and reliability of differential protein expression analysis between samples. The purpose of this study was to investigate bovine pregnancy-specific proteins in the proteome between bovine pregnant and non-pregnant serum using DIGE technique. Serums of 2 pregnant Holstein dairy cattle at day 21 after artificial insemination and those of 2 non-pregnant were used in this study. The pre-electrophoretic labeling of pregnant and non-pregnant serum proteins were mixed with Cy3 and Cy5 fluorescent dyes, respectively, and an internal standard was labeled with Cy2. Labeled proteins with Cy2, Cy3, and Cy5 were separated together in a single gel, and then were detected by fluorescence image analyzer. The 2D DIGE method using fluorescence CyDye DIGE flour had higher sensitivity than conventional 2D gel electrophoresis, and showed reproducible results. Approximately 1,500 protein spots were detected by 2D DIGE. Several proteins showed a more than 1.5-fold up and down regulation between non-pregnant and pregnant serum proteins. The differentially expressed proteins were identified by MALDI-TOF mass spectrometer. A total 16 protein spots were detected to regulate differentially in the pregnant serum, among which 7 spots were up-regulated proteins such as conglutinin precursor, modified bovine fibrinogen and IgG1, and 6 spots were down-regulated proteins such as hemoglobin, complement component 3, bovine fibrinogen and IgG2a three spots were not identified. The identified proteins demonstrate that early pregnant bovine serum may have several pregnancy-specific proteins, and these could be a valuable information for the development of pregnancy-diagnostic markers in early pregnancy bovine serum.

  11. Proteomic Analysis of Bovine Pregnancy-specific Serum Proteins by 2D Fluorescence Difference Gel Electrophoresis

    Science.gov (United States)

    Lee, Jae Eun; Lee, Jae Young; Kim, Hong Rye; Shin, Hyun Young; Lin, Tao; Jin, Dong Il

    2015-01-01

    Two dimensional-fluorescence difference gel electrophoresis (2D DIGE) is an emerging technique for comparative proteomics, which improves the reproducibility and reliability of differential protein expression analysis between samples. The purpose of this study was to investigate bovine pregnancy-specific proteins in the proteome between bovine pregnant and non-pregnant serum using DIGE technique. Serums of 2 pregnant Holstein dairy cattle at day 21 after artificial insemination and those of 2 non-pregnant were used in this study. The pre-electrophoretic labeling of pregnant and non-pregnant serum proteins were mixed with Cy3 and Cy5 fluorescent dyes, respectively, and an internal standard was labeled with Cy2. Labeled proteins with Cy2, Cy3, and Cy5 were separated together in a single gel, and then were detected by fluorescence image analyzer. The 2D DIGE method using fluorescence CyDye DIGE flour had higher sensitivity than conventional 2D gel electrophoresis, and showed reproducible results. Approximately 1,500 protein spots were detected by 2D DIGE. Several proteins showed a more than 1.5-fold up and down regulation between non-pregnant and pregnant serum proteins. The differentially expressed proteins were identified by MALDI-TOF mass spectrometer. A total 16 protein spots were detected to regulate differentially in the pregnant serum, among which 7 spots were up-regulated proteins such as conglutinin precursor, modified bovine fibrinogen and IgG1, and 6 spots were down-regulated proteins such as hemoglobin, complement component 3, bovine fibrinogen and IgG2a three spots were not identified. The identified proteins demonstrate that early pregnant bovine serum may have several pregnancy-specific proteins, and these could be a valuable information for the development of pregnancy-diagnostic markers in early pregnancy bovine serum. PMID:25925056

  12. Rapid biocompatibility analysis of materials via in vivo fluorescence imaging of mouse models.

    Directory of Open Access Journals (Sweden)

    Kaitlin M Bratlie

    Full Text Available BACKGROUND: Many materials are unsuitable for medical use because of poor biocompatibility. Recently, advances in the high throughput synthesis of biomaterials has significantly increased the number of potential biomaterials, however current biocompatibility analysis methods are slow and require histological analysis. METHODOLOGY/PRINCIPAL FINDINGS: Here we develop rapid, non-invasive methods for in vivo quantification of the inflammatory response to implanted biomaterials. Materials were placed subcutaneously in an array format and monitored for host responses as per ISO 10993-6: 2001. Host cell activity in response to these materials was imaged kinetically, in vivo using fluorescent whole animal imaging. Data captured using whole animal imaging displayed similar temporal trends in cellular recruitment of phagocytes to the biomaterials compared to histological analysis. CONCLUSIONS/SIGNIFICANCE: Histological analysis similarity validates this technique as a novel, rapid approach for screening biocompatibility of implanted materials. Through this technique there exists the possibility to rapidly screen large libraries of polymers in vivo.

  13. pyFRET: A Python Library for Single Molecule Fluorescence Data Analysis

    CERN Document Server

    Murphy, Rebecca R; Klenerman, David

    2014-01-01

    Single molecule F\\"orster resonance energy transfer (smFRET) is a powerful experimental technique for studying the properties of individual biological molecules in solution. However, as adoption of smFRET techniques becomes more widespread, the lack of available software, whether open source or commercial, for data analysis, is becoming a significant issue. Here, we present pyFRET, an open source Python package for the analysis of data from single-molecule fluorescence experiments from freely diffusing biomolecules. The package provides methods for the complete analysis of a smFRET dataset, from burst selection and denoising, through data visualisation and model fitting. We provide support for both continuous excitation and alternating laser excitation (ALEX) data analysis. pyFRET is available as a package downloadable from the Python Package Index (PyPI) under the open source three-clause BSD licence, together with links to extensive documentation and tutorials, including example usage and test data. Additio...

  14. Motion Analysis of Live Objects by Super-Resolution Fluorescence Microscopy

    Directory of Open Access Journals (Sweden)

    Chunyan Yao

    2012-01-01

    Full Text Available Motion analysis plays an important role in studing activities or behaviors of live objects in medicine, biotechnology, chemistry, physics, spectroscopy, nanotechnology, enzymology, and biological engineering. This paper briefly reviews the developments in this area mostly in the recent three years, especially for cellular analysis in fluorescence microscopy. The topic has received much attention with the increasing demands in biomedical applications. The tasks of motion analysis include detection and tracking of objects, as well as analysis of motion behavior, living activity, events, motion statistics, and so forth. In the last decades, hundreds of papers have been published in this research topic. They cover a wide area, such as investigation of cell, cancer, virus, sperm, microbe, karyogram, and so forth. These contributions are summarized in this review. Developed methods and practical examples are also introduced. The review is useful to people in the related field for easy referral of the state of the art.

  15. Towards Environmental Microbial Analysis with Deep UV fluorescence and Raman Spectroscopy

    Science.gov (United States)

    Wanger, G.; Bhartia, R.; Orphan, V. J.; Rowe, A. R.

    2015-12-01

    The study of microbes from the environment is often facilitated by the fixation of samples prior to analyses in the laboratory. Samples not appropriately preserved can show dramatic changes e.g. unwanted growth, loss of biomass and sample degradation between collection and analysis. To move Deep-UV Raman analyses from model lab organisms to environmental samples the effect of preservation must be evaluated. Deep UV Raman and Fluorescence (i.e. excitation culture. The fluorescence signal is typically 3-4 orders of magnitude more intense than the Raman signal and enables rapid location of bacteria on a surface and crudely split them into categories. However it suffers from broad spectral features making discrete classification of bacteria problematic. While a far weaker phenomenon, the chemical specificity of Raman spectroscopy has been shown capable of discriminating between different bacterial species and has even shown spectral variation in same species under differing growth conditions or growth stages and has even been used to measure microbial activity by measuring the incorporation of stable isotope labeled substrates. Typically these analyses are carried out on well-studied, lab-grown model organisms and while relatively easy, these analyses are performed on cells grow under non-environmentally relevant conditions using rich media types not often found in nature. Here we show the effect on the Raman and fluorescence signal (248 nm Deep-UV excitation) from E. coli and other bacteria, grown in more nutrient limited environments, and fixed/preserved in ethanol, PFA and formalin. These fixatives not only preserve the cells for spectroscopic analysis but are compatible with many common techniques that can be used for further characterization of environmental microbial samples. Ethanol appears to heavily degrade the signals from both Raman and fluorescence while formalin and PFA do not. Our ultimate goal is to create an analytical "pipeline" using the Deep UV

  16. Using Fluorescence PCR Analysis For Gene Diagnosis and Carrier Detection of Chinese Wilson's Disease

    Institute of Scientific and Technical Information of China (English)

    Liang Xiuling; Huang Fan; Xu Pinyi

    2000-01-01

    Objective To develop a noval gene diagnostic method for detecting the high frequency spot of gene mutation in Chinese Wilson's disease by using the most advanced fluorescence PCR in order to make an early diagnosis and carrier detection. Methods 66 Chinese WD patients from 58 families had typical nanifestations of WD, and significant low levels of serum ceruioplasmin (CP), low levels of serum copper., high levels of urine copper. 55 family members (parents 33 and siblings 22) from 42 families of 58 WD families were normal phenotype with normal levels of CP. 30 in patients suffering from acute cerebrovascular disease, vertigo and headache had no blood relationship to be the control group. We got 5ml blood from each object to collect DNA, and designed two fluorcscent gene probes to hybridize with thc normal and mutant sequence of Arg778Leu respectively. The content of probe hybridization was concordant with the fluoresccin which was released during PCR process. The homozygote, heterozygote of WD and normal were identified by thc results of fluorescence PCR and through analysis we obtained the mutation rate of Arg778Leu. After that we selected 3 random samples (2 from WD patients, I from control group) for direct DNA sequencing in exon 8 of WD gencto testify the accuracy of fluorescence PCR. Results Among 66 Chinese WD patients, homozygous for mutation of Arg778Leu had been found in 5 cases and compound heterozygous found in 21 cases. and the mutation rate of Arg778Leu in our study was totally 39.4%. Of 55 normal phenotype family members. 12 individuals incluing parents 7 and siblings 5 were detected as heterozyous in which 11 (7 parents and 4 siblings) had been confirmed as WD gene carriers but not pre-symptomatic patients according to the throughtout examination and the normal CP. There were no mutation of Arg778Leu in all 30 control cases. Thc results of direct DNA sequencing of 3 at random samples were consilient to those results detected by fluorescence PCR

  17. Radioisotope-excited x-ray fluorescence analysis and its application to geochemical exploration in Greenland

    Energy Technology Data Exchange (ETDEWEB)

    Kunzendorf, H.

    1973-05-01

    The principles of x-ray fluorescence are briefly described. In particular, two methods of radioisotope x-ray fluorescence analysis are discussed: (a) radioisotope x-ray fluorescence analysis by means of portble apparatus incorporating scintillation or proportional counters and balanced differential x-ray filters, and (b) radioisotope x-ray fluorescence spectrometry by means of Si(Li) or Ge(Li) semiconductor detectors. For a portable radioisotope x-ray fluorescence analyzer calibration curves were established for Cr, Ni, Cu, Zn, Zr, Nb, Mo, La + Ce, and Pb in rock powders, Ti, Zr, and Nb in plane cut rock surfaces, and Zr, Nb, and La + Ce in rock outcrops. Detection limits found from calibration data were 0.3% Cr, 0.06% Ni, 0.14% Cu, 0.14% Zn, 0.04% Zr, 0.07% Nb, 0.03% Mo, 0.02% La + Ce, and 0.1% Pb in rock powders, 0.07% Ti, 0.4% Zr, and 0.1% Nb in cut rock surfaces, and 0.14% Zr, 0.15% Nb, and 0.16% La + Ce in rock outcrops. Values for the accuracy and the precision of these analyses are given. Special investigations include the dependence of the analytical result on the grain size of the sample material and experiments regarding the critical sample weight, Si(Li) and Ge(Li) x-ray spectrometers for the analysis of rock samples were described. Two methods of x-ray spectrum reduction carried out by means of a 32K computer were investigated: simple channel-by-channel integration and leastsquares fitting. Calibration data on rock powders yielded for the Si(Li) x-ray spectrometer (1 mCi/sup 109/Cd for excitation of characteristic x-rays) 25 ppm Rb, 110 ppm Sr, 69 ppm Zr, 206 ppm Nb, and 172 ppm Mo as detection limits for the analysis of rock powders. For plane cut rock surfaces and the Ge(Li) x-ray spectrometer (10 mCi/sup 241/Am for excitation purposel detection limits of 400 ppm Ce and 180 ppm Nb were obtained. The influence of interferences on the analytical result such as overlapping of x- ray peaks, absorption of x-rays in the sample and grain-size effects are

  18. Toward a three-dimensional vision of the different compositions and the stratigraphy of the painting L'Homme blesse by G. Courbet: coupling SEM-EDX and confocal micro-XRF

    Energy Technology Data Exchange (ETDEWEB)

    Reiche, Ina [Universite Paris 06 - Sorbonne Universites, Laboratoire d' Archeologie Moleculaire et Structurale, UMR 8220 CNRS UPMC, Paris (France); National Museums in Berlin-Prussian Cultural Heritage Foundation, Rathgen Research Laboratory, Berlin (Germany); Mueller, Katharina [Universite Paris 06 - Sorbonne Universites, Laboratoire d' Archeologie Moleculaire et Structurale, UMR 8220 CNRS UPMC, Paris (France); Mysak, Erin [Centre de Recherche et de Restauration des Musees de France (C2RMF), Paris (France); Harvard Art Museums, Straus Center for Conservation and Technical Studies, Cambridge, MA (United States); Yale University, Institute for the Preservation of Cultural Heritage, New Haven, CT (United States); Eveno, Myriam; Mottin, Bruno [Centre de Recherche et de Restauration des Musees de France (C2RMF), Paris (France)

    2015-11-15

    Examination of Gustave Courbet's L'Homme blesse (Musee d'Orsay, Paris), a painting with three successive compositions on a single canvas, was undertaken with scanning electron microscopy coupled with an energy-dispersive X-ray analyzing system (SEM-EDX) on cross sections taken in the 1970s at the Laboratoire de Recherche de Musees de France, Paris and confocal X-ray fluorescence spectroscopy (CXRF) analysis adjacent to the sample locations of the three previously removed cross sections. Recent developments of in situ techniques such as CXRF have enabled investigation of the chemical composition of complicated paint layering without sampling. Here, we compare depth profiling by CXRF analysis with SEM-EDX data from cross sections with the goal of understanding how well CXRF data represent such a complicated paint stratigraphy. Beyond suggesting the paint palettes for Courbet's three compositions, this new data provide insight into the complex paint layer stratigraphy of eight or more layers and serve as the basis for interpreting further analyses by scanning XRF and CXRF of additional areas of interest on the painting. Data from these additional locations will be discussed in a forthcoming paper. (orig.)

  19. Picoliter solution deposition for total reflection X-ray fluorescence analysis of semiconductor samples

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, Chris M., E-mail: chris.sparks@svtc.co [Analytical Services, SVTC Technologies, Austin, TX 78741 (United States); Fittschen, Ursula E.A. [Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Institute of Inorganic and Applied Chemistry, University of Hamburg, 20146 Hamburg (Germany); Havrilla, George J. [Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2010-09-15

    A deposition system capable of delivering picoliter quantities of solution in programmable arrays was investigated as a method for sample preparation for total reflection X-ray fluorescence (TXRF) spectroscopy. Arrays of trace metals in solution were deposited on Si wafers. The array deposits provide a capability of depositing closely spaced (100 {mu}m or less), typically 5-20 {mu}m diameter droplets in an area that can be matched to the analysis spot of the TXRF detector. The dried depositions were physically characterized and the effect of deposition type and matrix on the TXRF signal was investigated.

  20. X-Ray fluorescence analysis of trace elements in fruit juice

    Science.gov (United States)

    Bao, Sheng-Xiang; Wang, Zhi-Hong; Liu, Jing-Song

    1999-12-01

    X-Ray fluorescence spectrometry is applied to the determination of trace elements in fruit juice characterized by a high content of sugar and other soluble solid substances. Samples are prepared by evaporation, carbonization and pressing into discs. The synthesis of standards is described in detail. All element concentrations are directly estimated from linear calibration curves obtained without any matrix correction. The results of the analysis are in good agreement with those given by inductively coupled plasma-atomic emission spectrometry and atomic absorption spectrometry techniques.

  1. Detection of orange juice frauds using front-face fluorescence spectroscopy and Independent Components Analysis.

    Science.gov (United States)

    Ammari, Faten; Redjdal, Lamia; Rutledge, Douglas N

    2015-02-01

    The aim of this study was to find simple objective analytical methods to assess the adulteration of orange juice by grapefruit juice. The adulterations by addition of grapefruit juice were studied by 3D-front-face fluorescence spectroscopy followed by Independent Components Analysis (ICA) and by classical methods such as free radical scavenging activity and total flavonoid content. The results of this study clearly indicate that frauds by adding grapefruit juice to orange juice can be detected at percentages as low as 1%.

  2. Fluorescence method for enzyme analysis which couples aromatic amines with aromatic aldehydes

    Science.gov (United States)

    Smith, R.E.; Dolbeare, F.A.

    1980-10-21

    Analysis of proteinases is accomplished using conventional amino acid containing aromatic amine substrates. Aromatic amines such as 4-methoxy-2-naphthylamine (4M2NA), 2-naphthylamine, aminoisophthalic acid dimethyl ester, p-nitroaniline, 4-methoxy-1-aminofluorene and coumarin derivatives resulting from enzymatic hydrolysis of the substrate couples with aromatic aldehydes such as 5-nitrosalicylaldehyde (5-NSA), benzaldehyde and p-nitrobenzaldehyde to produce Schiff-base complexes which are water insoluble. Certain Schiff-base complexes produce a shift from blue to orange-red (visible) fluorescence. Such complexes are useful in the assay of enzymes. No Drawings

  3. Fluorescence method for enzyme analysis which couples aromatic amines with aromatic aldehydes

    Science.gov (United States)

    Smith, Robert E.; Dolbeare, Frank A.

    1979-01-01

    Analysis of proteinases is accomplished using conventional amino acid containing aromatic amine substrates. Aromatic amines such as 4-methoxy-2-naphthylamine (4M2NA), 2-naphthylamine, aminoisophthalic acid dimethyl ester, p-nitroaniline, 5-methoxy-1-aminofluorene and coumarin derivatives resulting from enzymatic hydrolysis of the substrate couples with aromatic aldehydes such as 5-nitrosalicylaldehyde (5-NSA), benzaldehyde and p-nitrobenzaldehyde to produce Schiff-base complexes which are water insoluble. Certain Schiff-base complexes produce a shift from blue to orange-red (visible) fluorescence. Such complexes are useful in the assay of enzymes.

  4. A new chromosome fluorescence banding technique combining DAPI staining with image analysis in plants.

    Science.gov (United States)

    Liu, Jing Yu; She, Chao Wen; Hu, Zhong Li; Xiong, Zhi Yong; Liu, Li Hua; Song, Yun Chun

    2004-08-01

    In this study, a new chromosome fluorescence banding technique was developed in plants. The technique combined 4',6-diamidino-2-phenylindole (DAPI) staining with software analysis including three-dimensional imaging after deconvolution. Clear multiple and adjacent DAPI bands like G-bands were obtained by this technique in the tested species including Hordeum vulgare L., Oryza officinalis, Wall & Watt, Triticum aestivum L., Lilium brownii, Brown, and Vicia faba L. During mitotic metaphase, the numbers of bands for the haploid genomes of these species were about 185, 141, 309, 456 and 194, respectively. Reproducibility analysis demonstrated that banding patterns within a species were stable at the same mitotic stage and they could be used for identifying specific chromosomes and chromosome regions. The band number fluctuated: the earlier the mitotic stage, the greater the number of bands. The technique enables genes to be mapped onto specific band regions of the chromosomes by only one fluorescence in situ hybridisation (FISH) step with no chemical banding treatments. In this study, the 45S and 5S rDNAs of some tested species were located on specific band regions of specific chromosomes and they were all positioned at the interbands with the new technique. Because no chemical banding treatment was used, the banding patterns displayed by the technique should reflect the natural conformational features of chromatin. Thus it could be expected that this technique should be suitable for all eukaryotes and would have widespread utility in chromosomal structure analysis and physical mapping of genes.

  5. Complexation of serum albumins and triton X-100: Quenching of tryptophan fluorescence and analysis of the rotational diffusion of complexes

    Science.gov (United States)

    Vlasova, I. M.; Vlasov, A. A.; Saletskii, A. M.

    2016-07-01

    The polarized and nonpolarized fluorescence of bovine serum albumin and human serum albumin in Triton X-100 solutions is studied at different pH values. Analysis of the constants of fluorescence quenching for BSA and HSA after adding Triton X-100 and the hydrodynamic radii of BSA/HSA-detergent complexes show that the most effective complexation between both serum albumins and Triton X-100 occurs at pH 5.0, which lies near the isoelectric points of the proteins. Complexation between albumin and Triton X-100 affects the fluorescence of the Trp-214 residing in the hydrophobic pockets of both BSA and HSA.

  6. Educational X-ray experiments and XRF measurements with a modified, mobile system adapted for characterization of Cultural Heritage objects

    Energy Technology Data Exchange (ETDEWEB)

    Sianoudis, Ioannis [Technological Educational Institute (TEI) of Athens, Dept. of Physics Chemistry and Material Technology, Egaleo (Greece); Drakaki, Eleni [Physics Dept., NTUA, Athens (Greece); Hein, Anno [Institute of Materials Science, N.C.S.R. Demokritos, Aghia Paraskevi (Greece)

    2009-07-01

    It is common to use valuable, sophisticated equipment, that has been acquired for other use, to be modified, adapted and developed for the needs of additional educational experiments, with greater didactic effectuality. We have developed a system, composed of parts from a portable system for XRF spectroscopy, aiming at: i) the formation of familiar and conventional laboratory exercises, like the verification of Moseley's law, Compton's law and Lambert-Beer's law; ii) the calibration with reference materials of the XRF experimental system, to be applied for accurate measurements of the elemental composition of objects of cultural interest. After the calibration of the experimental setup, indicative measurements of metal objects are shown, in order to discuss their spectra and their qualitative and quantitative analysis. The system and the applied experiments are designed as an educational package of laboratory exercises for students in physical sciences and especially adapted for the education of students who will work with Cultural Heritage, such as conservation scientists and archaeometrists.

  7. New approach to primary mass composition analysis with simultaneous use of ground and fluorescence detectors data

    CERN Document Server

    Yushkov, A; Aramo, C; Guarino, F; D'Urso, D; Valore, L

    2009-01-01

    We study the possibility to reconstruct primary mass composition with the use of combinations of basic shower characteristics, measured in hybrid experiments, such as depth of shower maximum from fluorescence side and signal in water Cherenkov tanks or in plastic scintillators from the ground side. To optimize discrimination performance of shower observables combinations we apply Fisher's discriminant analysis and give statistical estimates of separation of the obtained distributions on Fisher variables for proton and iron primaries. At the final stage we apply Multiparametric Topological Analysis to these distributions to extract composition from prepared mixtures with known fractions of showers from different primary particles. It is shown, that due to high sensitivity of water tanks to muons, combination of signal in them with $\\xmax$ looks especially promising for mass composition analysis, provided the energy is determined from longitudinal shower profile.

  8. Quantitative fluorescence loss in photobleaching for analysis of protein transport and aggregation

    Directory of Open Access Journals (Sweden)

    Wüstner Daniel

    2012-11-01

    Full Text Available Abstract Background Fluorescence loss in photobleaching (FLIP is a widely used imaging technique, which provides information about protein dynamics in various cellular regions. In FLIP, a small cellular region is repeatedly illuminated by an intense laser pulse, while images are taken with reduced laser power with a time lag between the bleaches. Despite its popularity, tools are lacking for quantitative analysis of FLIP experiments. Typically, the user defines regions of interest (ROIs for further analysis which is subjective and does not allow for comparing different cells and experimental settings. Results We present two complementary methods to detect and quantify protein transport and aggregation in living cells from FLIP image series. In the first approach, a stretched exponential (StrExp function is fitted to fluorescence loss (FL inside and outside the bleached region. We show by reaction–diffusion simulations, that the StrExp function can describe both, binding/barrier–limited and diffusion-limited FL kinetics. By pixel-wise regression of that function to FL kinetics of enhanced green fluorescent protein (eGFP, we determined in a user-unbiased manner from which cellular regions eGFP can be replenished in the bleached area. Spatial variation in the parameters calculated from the StrExp function allow for detecting diffusion barriers for eGFP in the nucleus and cytoplasm of living cells. Polyglutamine (polyQ disease proteins like mutant huntingtin (mtHtt can form large aggregates called inclusion bodies (IB’s. The second method combines single particle tracking with multi-compartment modelling of FL kinetics in moving IB’s to determine exchange rates of eGFP-tagged mtHtt protein (eGFP-mtHtt between aggregates and the cytoplasm. This method is self-calibrating since it relates the FL inside and outside the bleached regions. It makes it therefore possible to compare release kinetics of eGFP-mtHtt between different cells and

  9. Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer

    Directory of Open Access Journals (Sweden)

    Vendula Pospichalova

    2015-03-01

    Full Text Available Flow cytometry is a powerful method, which is widely used for high-throughput quantitative and qualitative analysis of cells. However, its straightforward applicability for extracellular vesicles (EVs and mainly exosomes is hampered by several challenges, reflecting mostly the small size of these vesicles (exosomes: ~80–200 nm, microvesicles: ~200–1,000 nm, their polydispersity, and low refractive index. The current best and most widely used protocol for beads-free flow cytometry of exosomes uses ultracentrifugation (UC coupled with floatation in sucrose gradient for their isolation, labeling with lipophilic dye PKH67 and antibodies, and an optimized version of commercial high-end cytometer for analysis. However, this approach requires an experienced flow cytometer operator capable of manual hardware adjustments and calibration of the cytometer. Here, we provide a novel and fast approach for quantification and characterization of both exosomes and microvesicles isolated from cell culture media as well as from more complex human samples (ascites of ovarian cancer patients suitable for multiuser labs by using a flow cytometer especially designed for small particles, which can be used without adjustments prior to data acquisition. EVs can be fluorescently labeled with protein-(Carboxyfluoresceinsuccinimidyl ester, CFSE and/or lipid- (FM specific dyes, without the necessity of removing the unbound fluorescent dye by UC, which further facilitates and speeds up the characterization of microvesicles and exosomes using flow cytometry. In addition, double labeling with protein- and lipid-specific dyes enables separation of EVs from common contaminants of EV preparations, such as protein aggregates or micelles formed by unbound lipophilic styryl dyes, thus not leading to overestimation of EV numbers. Moreover, our protocol is compatible with antibody labeling using fluorescently conjugated primary antibodies. The presented methodology opens the

  10. Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer.

    Science.gov (United States)

    Pospichalova, Vendula; Svoboda, Jan; Dave, Zankruti; Kotrbova, Anna; Kaiser, Karol; Klemova, Dobromila; Ilkovics, Ladislav; Hampl, Ales; Crha, Igor; Jandakova, Eva; Minar, Lubos; Weinberger, Vit; Bryja, Vitezslav

    2015-01-01

    Flow cytometry is a powerful method, which is widely used for high-throughput quantitative and qualitative analysis of cells. However, its straightforward applicability for extracellular vesicles (EVs) and mainly exosomes is hampered by several challenges, reflecting mostly the small size of these vesicles (exosomes: ~80-200 nm, microvesicles: ~200-1,000 nm), their polydispersity, and low refractive index. The current best and most widely used protocol for beads-free flow cytometry of exosomes uses ultracentrifugation (UC) coupled with floatation in sucrose gradient for their isolation, labeling with lipophilic dye PKH67 and antibodies, and an optimized version of commercial high-end cytometer for analysis. However, this approach requires an experienced flow cytometer operator capable of manual hardware adjustments and calibration of the cytometer. Here, we provide a novel and fast approach for quantification and characterization of both exosomes and microvesicles isolated from cell culture media as well as from more complex human samples (ascites of ovarian cancer patients) suitable for multiuser labs by using a flow cytometer especially designed for small particles, which can be used without adjustments prior to data acquisition. EVs can be fluorescently labeled with protein-(Carboxyfluoresceinsuccinimidyl ester, CFSE) and/or lipid- (FM) specific dyes, without the necessity of removing the unbound fluorescent dye by UC, which further facilitates and speeds up the characterization of microvesicles and exosomes using flow cytometry. In addition, double labeling with protein- and lipid-specific dyes enables separation of EVs from common contaminants of EV preparations, such as protein aggregates or micelles formed by unbound lipophilic styryl dyes, thus not leading to overestimation of EV numbers. Moreover, our protocol is compatible with antibody labeling using fluorescently conjugated primary antibodies. The presented methodology opens the possibility for routine

  11. [Application of PARAFAC method and 3-D fluorescence spectra in petroleum pollutant measurement and analysis].

    Science.gov (United States)

    Pan, Zhao; Wang, Yu-tian; Shao, Xiao-qing; Wu, Xi-jun; Yang, Li-li

    2012-03-01

    A method for identification and concentration measurement of petroleum pollutant by combining three-dimensional (3-D) fluorescence spectra with parallel factor analysis (PARAFAC) was proposed. The main emphasis of research was the measurement of coexisting different kinds of petroleum. The CCl4 solutions of a 0# diesel sample, a 97# gasoline sample, and a kerosene sample were used as measurement objects. The condition of multiple petroleum coexistence was simulated by petroleum solutions with different mixed ratios. The character of PARAFAC in complex mixture coexisting system analysis was studied. The spectra of three kinds of solutions and the spectra of gasoline-diesel mixed samples, diesel-kerosene mixed samples, and gas oline-diesel mixed with small counts of kerosene interference samples were analyzed respectively. The core consistency diagnostic method and residual sum of squares method were applied to calculate the number of factors in PARAFAC. In gasoline-diesel experiment, gasoline or diesel can be identified and measured as a whole respectively by 2-factors parallel factors analysis. In diesel-kerosene experiment, 2-factors parallel factors analysis can only obtain the characters of diesel, and the 3rd factor is needed to separate the kerosene spectral character from the mixture spectrum. When small counts of kerosene exist in gasoline-diesel solution, gasoline and diesel still can be identified and measured as principal components by a 2-factors parallel factor analysis, and the effect of interference on qualitative analysis is not significant. The experiment verified that the PARAFAC method can obtain characteristic spectrum of each kind of petroleum, and the concentration of petroleum in solutions can be predicted simultaneously, with recoveries shown in the paper. The results showed the possibility of petroleum pollutant identification and concentration measurement based on the 3-D fluorescence spectra and PARAFAC.

  12. Automated Aflatoxin Analysis Using Inline Reusable Immunoaffinity Column Cleanup and LC-Fluorescence Detection.

    Science.gov (United States)

    Rhemrev, Ria; Pazdanska, Monika; Marley, Elaine; Biselli, Scarlett; Staiger, Simone

    2015-01-01

    A novel reusable immunoaffinity cartridge containing monoclonal antibodies to aflatoxins coupled to a pressure resistant polymer has been developed. The cartridge is used in conjunction with a handling system inline to LC with fluorescence detection to provide fully automated aflatoxin analysis for routine monitoring of a variety of food matrixes. The handling system selects an immunoaffinity cartridge from a tray and automatically applies the sample extract. The cartridge is washed, then aflatoxins B1, B2, G1, and G2 are eluted and transferred inline to the LC system for quantitative analysis using fluorescence detection with postcolumn derivatization using a KOBRA® cell. Each immunoaffinity cartridge can be used up to 15 times without loss in performance, offering increased sample throughput and reduced costs compared to conventional manual sample preparation and cleanup. The system was validated in two independent laboratories using samples of peanuts and maize spiked at 2, 8, and 40 μg/kg total aflatoxins, and paprika, nutmeg, and dried figs spiked at 5, 20, and 100 μg/kg total aflatoxins. Recoveries exceeded 80% for both aflatoxin B1 and total aflatoxins. The between-day repeatability ranged from 2.1 to 9.6% for aflatoxin B1 for the six levels and five matrixes. Satisfactory Z-scores were obtained with this automated system when used for participation in proficiency testing (FAPAS®) for samples of chilli powder and hazelnut paste containing aflatoxins.

  13. A filter microplate assay for quantitative analysis of DNA binding proteins using fluorescent DNA.

    Science.gov (United States)

    Yang, William C; Swartz, James R

    2011-08-15

    We present a rapid method for quantifying the apparent DNA binding affinity and capacity of recombinant transcription factors (TFs). We capture His6-tagged TFs using nickel-nitrilotriacetic acid (Ni-NTA) agarose and incubate the immobilized TFs with fluorescently labeled cognate DNA probes. After washing, the strength of the fluorescence signal indicates the extent of DNA binding. The assay was validated using two pluripotency-regulating TFs: SOX2 and NANOG. Using competitive binding analysis with nonlabeled competitor DNA, we show that SOX2 and NANOG specifically bind to their consensus sequences. We also determined the apparent affinity of SOX2 and NANOG for their consensus sequences to be 54.2±9 and 44.0±6nM, respectively, in approximate agreement with literature values. Our assay does not require radioactivity, but radioactively labeling the TFs enables the measurement of absolute amounts of immobilized SOX2 and NANOG and, hence, a DNA-to-protein binding ratio. SOX2 possesses a 0.95 DNA-to-protein binding ratio, whereas NANOG possesses a 0.44 ratio, suggesting that most of the SOX2 and approximately half of the NANOG are competent for DNA binding. Alternatively, the NANOG dimer may be capable of binding only one DNA target. This flexible DNA binding assay enables the analysis of crude or purified samples with or without radioactivity.

  14. Principal component analysis of dynamic fluorescence images for diagnosis of diabetic vasculopathy

    Science.gov (United States)

    Seo, Jihye; An, Yuri; Lee, Jungsul; Ku, Taeyun; Kang, Yujung; Ahn, Chulwoo; Choi, Chulhee

    2016-04-01

    Indocyanine green (ICG) fluorescence imaging has been clinically used for noninvasive visualizations of vascular structures. We have previously developed a diagnostic system based on dynamic ICG fluorescence imaging for sensitive detection of vascular disorders. However, because high-dimensional raw data were used, the analysis of the ICG dynamics proved difficult. We used principal component analysis (PCA) in this study to extract important elements without significant loss of information. We examined ICG spatiotemporal profiles and identified critical features related to vascular disorders. PCA time courses of the first three components showed a distinct pattern in diabetic patients. Among the major components, the second principal component (PC2) represented arterial-like features. The explained variance of PC2 in diabetic patients was significantly lower than in normal controls. To visualize the spatial pattern of PCs, pixels were mapped with red, green, and blue channels. The PC2 score showed an inverse pattern between normal controls and diabetic patients. We propose that PC2 can be used as a representative bioimaging marker for the screening of vascular diseases. It may also be useful in simple extractions of arterial-like features.

  15. Open Source High Content Analysis Utilizing Automated Fluorescence Lifetime Imaging Microscopy.

    Science.gov (United States)

    Görlitz, Frederik; Kelly, Douglas J; Warren, Sean C; Alibhai, Dominic; West, Lucien; Kumar, Sunil; Alexandrov, Yuriy; Munro, Ian; Garcia, Edwin; McGinty, James; Talbot, Clifford; Serwa, Remigiusz A; Thinon, Emmanuelle; da Paola, Vincenzo; Murray, Edward J; Stuhmeier, Frank; Neil, Mark A A; Tate, Edward W; Dunsby, Christopher; French, Paul M W

    2017-01-18

    We present an open source high content analysis instrument utilizing automated fluorescence lifetime imaging (FLIM) for assaying protein interactions using Förster resonance energy transfer (FRET) based readouts of fixed or live cells in multiwell plates. This provides a means to screen for cell signaling processes read out using intramolecular FRET biosensors or intermolecular FRET of protein interactions such as oligomerization or heterodimerization, which can be used to identify binding partners. We describe here the functionality of this automated multiwell plate FLIM instrumentation and present exemplar data from our studies of HIV Gag protein oligomerization and a time course of a FRET biosensor in live cells. A detailed description of the practical implementation is then provided with reference to a list of hardware components and a description of the open source data acquisition software written in µManager. The application of FLIMfit, an open source MATLAB-based client for the OMERO platform, to analyze arrays of multiwell plate FLIM data is also presented. The protocols for imaging fixed and live cells are outlined and a demonstration of an automated multiwell plate FLIM experiment using cells expressing fluorescent protein-based FRET constructs is presented. This is complemented by a walk-through of the data analysis for this specific FLIM FRET data set.

  16. X-ray fluorescence spectrometry analysis of mining related samples; Semiquantitative Roentgenfluoreszenzanalyse an bergbaurelevanten Proben

    Energy Technology Data Exchange (ETDEWEB)

    Leinert, P. [Lausitzer Analytik GmbH, Schwarze Pumpe (Germany)

    1997-09-01

    In many industries, especially in mining it is necessary to analyse occurring production process materials of unknown composition and of carious matrices in a short time. The determination of main components is very important, but also minor components and traces can be of interest for instance in pollution determination or the environmental investigation. The X-ray fluorescence spectrometry is a suitable method for fast analyse of a wide range of elements. This article gives a short and simplified description of the measuring principle and a overview about some international, German and ASTM-standards. It is described, how the standardless X-ray fluorescence analysis with the UniQuant system was used for a fast analysis of various mining related samples. The full english text is available from Lausitzer Analytik GmbH, An der Heide, 03139 Schwarze Pumpe/Germany. (orig.) [Deutsch] Anhand ausgewaehlter Beispiele aus dem Bergbaubereich konnte unter Verwendung von UniQuant die schnelle und preiswerte Analytik an Einzelproben verschiedenster Matrix demonstriert werden. Dabei wurden wegen der vielfach unbekannten etwaigen Zusammensetzung zunaechst nur die (vermuteten) Hauptkomponenten betrachtet. Die Ergebnisse belegen die Eignung der semiquantitativen Roentgenfluoreszenzanalyse zur Loesung der anstehenden Problemstellungen. Bei den genannten Vorteilen duerfen bestimmte Nachteile nicht unerwaehnt bleiben (ungenuegende Beruecksichtigung von Korngroessen- und Stoerelementeinfluessen, kurze Analysenzeit bedeutet kurzes Vermessen jeder einzelnen Elementlinie usw.). Oft koennen nur `Groessenordnungen` wiedergegeben werden, was besonders fuer nur in Spuren vorhandene Elemente zutrifft. (orig.)

  17. Improved maximum entropy method for the analysis of fluorescence spectroscopy data: evaluating zero-time shift and assessing its effect on the determination of fluorescence lifetimes.

    Science.gov (United States)

    Esposito, Rosario; Mensitieri, Giuseppe; de Nicola, Sergio

    2015-12-21

    A new algorithm based on the Maximum Entropy Method (MEM) is proposed for recovering both the lifetime distribution and the zero-time shift from time-resolved fluorescence decay intensities. The developed algorithm allows the analysis of complex time decays through an iterative scheme based on entropy maximization and the Brent method to determine the minimum of the reduced chi-squared value as a function of the zero-time shift. The accuracy of this algorithm has been assessed through comparisons with simulated fluorescence decays both of multi-exponential and broad lifetime distributions for different values of the zero-time shift. The method is capable of recovering the zero-time shift with an accuracy greater than 0.2% over a time range of 2000 ps. The center and the width of the lifetime distributions are retrieved with relative discrepancies that are lower than 0.1% and 1% for the multi-exponential and continuous lifetime distributions, respectively. The MEM algorithm is experimentally validated by applying the method to fluorescence measurements of the time decays of the flavin adenine dinucleotide (FAD).

  18. The reasons for the color green fluorite Mehmandooye cover using UV spectroscopy and XRF results

    Science.gov (United States)

    Pirzadeh, Sara; Zahiri, Reza

    2016-04-01

    Fluorite mineral or fluorine with chemical formula CaF2 is most important mineralfluor in nature. This mineral crystallization to colors yellow, green, pink, blue, purple, colorless and sometimes black andin cubic system crystallized.assemi transparent and glass with polished.fluoritethe purity include 48/9% fluoreand 51/9% calcium. How the creation colors in minerals different greatly indebted to Kurt Nassau research from Bell Labs, Murray Hill, New Jersey.almostall the mechanisms that cause color in minerals, are the result of the interaction of light waves with the electrons The main factors affecting the color generation include the following: 1)the presence of a constructive element inherent (essential ingredient mineral composition) 2)The presence of a minor impurities (such a element as involved in latticesolid solution) 3) appearancedefects in the crystal structure 4) There are some physical boundaries with distances very small and delicate, like blades out of the solution (which may be the play of colors or Chatvyansy) 5) Mixing mechanical impurities dispersed in a host mineral Based on the results of the analysis, XRF and UV spectrum and also based on the results of ICP, because the color green fluorite examined, the focus color (F_center) and also the presence of some elementsintermediate (such as Y (yttrium). [1] Bill, H., Calas, G. Color centres associated rare earth ions and the origin of coloration in natural fluorites// PhysChem Min, (1978), v 3, pp. 117-131.

  19. Quantitative analysis of Cu and Co adsorbed on fish bones via laser-induced breakdown spectroscopy

    Science.gov (United States)

    Rezk, R. A.; Galmed, A. H.; Abdelkreem, M.; Ghany, N. A. Abdel; Harith, M. A.

    2016-09-01

    In the present work, laser-induced breakdown spectroscopy (LIBS) has been applied for qualitative and quantitative analysis of heavy metals adsorbed by fish bones. Fish bones were used as a natural and low cost heavy metal sorbent (mainly Cu and Co) from synthetic wastewater. The removal efficiency of the adsorbent was studied as a function of initial metal concentration and pH value. Optimal experimental conditions were evaluated for improving the sensitivity of LIBS technique through parametric dependence studies. Furthermore, calibration curves were constructed based on X-ray fluorescence (XRF) analysis technique, whereas, the limits of detection (LOD) for Cu and Co were calculated. The results were validated by comparing LIBS data with those obtained by XRF spectrometry. The results of the two techniques are strongly correlated which verified the feasibility of using LIBS to detect traces of heavy metals adsorbed from wastewater by fish bones. This study reflects the potential of using LIBS in environmental applications.

  20. Soil examination for a forensic trace evidence laboratory - Part 2: Elemental analysis.

    Science.gov (United States)

    Woods, Brenda; Paul Kirkbride, K; Lennard, Chris; Robertson, James

    2014-12-01

    Laser-induced breakdown spectroscopy (LIBS), X-ray fluorescence spectroscopy (XRF) and scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX) are compared in terms of their discrimination power when applied to Australian soil specimens. SEM/EDX and XRF are frequently used in forensic laboratories for the elemental analysis of paint and glass, and for miscellaneous examinations. LIBS is an emerging technique for forensic applications, with a number of researchers promoting its use for the elemental profiling of glass fragments. In this study, 29 soil specimens were analysed, with 12 specimens coming from the Canberra area and the remaining 17 specimens from other sites around Australia. As very good discrimination results were obtained for each of the analytical methods, any of these elemental analysis techniques, available in a trace evidence laboratory, could be used as part of a wider examination protocol to differentiate soil specimens.

  1. Fragments analysis of Marajoara pubic covers using a portable system of X-ray fluorescence and multivariate statistics

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Renato [Instituto Federal de Educacao, Ciencia e Tecnologia do Rio de Janeiro (CPAR/IFRJ), RJ (Brazil). Curso de Licenciatura em Matematica; Calza, Cristiane Ferreira; Lopes, Ricardo Tadeu [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil); Rabello, Angela; Lima, Tania [Museu Nacional (MN/UFRJ), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Full text: In this work it was characterized the elemental composition of 102 fragments of Marajoara pubic covers, belonging to the National Museum collection, using EDXRF and multivariate statistics analysis. The objective was to identify possible groups of samples that presented similar characteristics. This information will be useful in the development of a systematic classification of these artifacts. Provenance studies of ancient ceramics are based on the assumption that pottery produced from a specific clay will present a similar chemical composition, which will distinguish them from pottery produced from a different clay. In this way, the pottery is assigned to particular production groups, which are then correlated with their respective origins. EDXRF measurements were carried out with a portable system, developed in the Nuclear Instrumentation Laboratory, consisting of an X-ray tube Oxford TF3005 with tungsten (W) anode, operating at 25 kV and 100 {mu}A, and a Si-PIN XR-100CR detector from Amptek. In each one of the 102 fragments, six points were analyzed (three in the front part and three in the reverse) with an acquisition time of 600 s and a beam collimation of 2 mm. The spectra were processed and analyzed using the software QXAS-AXIL from IAEA. PCA was applied to the XRF results revealing a clear cluster separation to the samples. (author)

  2. Monitoring laboratory-scale bioventing using synchronous scan fluorescence spectroscopy: analysis of the vapor phase.

    Science.gov (United States)

    Bachman, J; Kanan, S M; Patterson, H H

    2001-01-01

    Bioventing is an improved method of soil remediation that is being used with increasing frequency. In this paper, we refine techniques to measure the progress of petroleum hydrocarbon decomposition by monitoring vapor phase composition with synchronous scan fluorescence spectroscopy (SSFS). Analysis of the vapor phase has advantages compared to standard extraction techniques that require extensive sample handling and clean up. For comparison, hydrocarbon contamination in the soil was measured by analysis of Soxhlet extractions with gas chromatography-mass spectrometry (GC-MS). Comparison of the GC-MS and SSFS data showed that changes in hydrocarbon composition measured in the vapor phase provide an accurate measure of decomposition reactions taking place in the soil.

  3. Spatiotemporal analysis of endocytosis and membrane distribution of fluorescent sterols in living cells

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Faergeman, Nils J

    2008-01-01

    Distribution and dynamics of cholesterol in the plasma membrane as well as internalization pathways for sterol from the cell surface are of great cell biological interest. Here, UV-sensitive wide field microscopy of the intrinsically fluorescent sterols, dehydroergosterol (DHE) and cholestatrienol...... (CTL) combined with advanced image analysis were used to study spatiotemporal sterol distribution in living macrophages, adipocytes and fibroblasts. Sterol endocytosis was directly visualized by time-lapse imaging and noise-robust tracking revealing confined motion of DHE containing vesicles in close...... proximity to the cell membrane. Spatial surface intensity patterns of DHE as well as that of the lipid marker DiIC12 being assessed by statistical image analysis persisted over several minutes in cells having a constant overall curvature. Sites of sterol endocytosis appeared indistinguishable from other...

  4. Trace element distribution in human teeth by x-ray fluorescence spectrometry and multivariate statistical analysis

    CERN Document Server

    Oprea, Cristiana; Gustova, Marina V; Oprea, Ioan A; Buzguta, Violeta L

    2014-01-01

    X-ray fluorescence spectrometry (XRFS) was used as a multielement method of evaluation of individual whole human tooth or tooth tissues for their amounts of trace elements. Measurements were carried out on human enamel, dentine, and dental cementum, and some differences in tooth matrix composition were noted. In addition, the elemental concentrations determined in teeth from subjects of different ages, nutritional states, professions and gender, living under various environmental conditions and dietary habits, were included in a comparison by multivariate statistical analysis (MVSA) methods. By factor analysis it was established that inorganic components of human teeth varied consistently with their source in the tissue, with more in such tissue from females than in that from males, and more in tooth incisor than in tooth molar.

  5. Quantitative Imaging of Cell-Permeable Magnetic Resonance Contrast Agents Using X-Ray Fluorescence

    Directory of Open Access Journals (Sweden)

    Paul J. Endres

    2006-10-01

    Full Text Available The inability to transduce cellular membranes is a limitation of current magnetic resonance imaging probes used in biologic and clinical settings. This constraint confines contrast agents to extracellular and vascular regions of the body, drastically reducing their viability for investigating processes and cycles in developmental biology. Conversely, a contrast agent with the ability to permeate cell membranes could be used in visualizing cell patterning, cell fate mapping, gene therapy, and, eventually, noninvasive cancer diagnosis. Therefore, we describe the synthesis and quantitative imaging of four contrast agents with the capability to cross cell membranes in sufficient quantity for detection. Each agent is based on the conjugation of a Gd(III chelator with a cellular transduction moiety. Specifically, we coupled Gd(III–diethylenetriaminepentaacetic acid DTPA and Gd(III–1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid with an 8–amino acid polyarginine oligomer and an amphipathic stilbene molecule, 4-amino-4'-(N,N-dimethylaminostilbene. The imaging modality that provided the best sensitivity and spatial resolution for direct detection of the contrast agents is synchrotron radiation x-ray fluorescence (SR-XRF. Unlike optical microscopy, SR-XRF provides two-dimensional images with resolution 103 better than 153Gd gamma counting, without altering the agent by organic fluorophore conjugation. The transduction efficiency of the intracellular agents was evaluated by T1 analysis and inductively coupled plasma mass spectrometry to determine the efficacy of each chelate-transporter combination.

  6. Total reflection X-ray fluorescence analysis of pollen as an indicator for atmospheric pollution*1

    Science.gov (United States)

    Pepponi, G.; Lazzeri, P.; Coghe, N.; Bersani, M.; Gottardini, E.; Cristofolini, F.; Clauser, G.; Torboli, A.

    2004-08-01

    The viability of pollen is affected by environmental pollution and its use as a bio-indicator is proposed. Such effects can be observed and quantified by biological tests. However, a more accurate identification of the agents affecting the viability is required in order to validate the biological assay for environmental monitoring. The chemical analysis of pollen is meant to ascertain the existence of a correlation between its reduced biological functions and the presence of pollutants. Moreover, such biological systems act as accumulators and allow the detection and quantification of species present in the environment at low concentrations. Total reflection X-ray fluorescence analysis (TXRF) has been chosen for the investigation due to its high sensitivity, multielement capability and wide dynamic range. Corylus avellana L. (hazel) pollen has been collected in areas with different anthropic impact in the province of Trento, Italy. For the TXRF measurements, a liquid sample is needed, especially if a quantitative analysis is required. In the present work, the analysis after a microwave digestion has been compared with the analysis of a suspension of the pollen samples. In both cases, an internal standard has been used for the quantification. The concentrations of 17 elements ranging from Al to Pb have been determined in 13 samples. Analysis of the suspensions showed to be comparable to that of digested samples in terms of spectral quality, but the latter preparation method gave better reproducibility. Sub-ppm lowest limits of detection were obtained for iron and heavier elements detected.

  7. Combined analysis of intracellular calcium with dual excitation fluorescence photometry and imaging

    Science.gov (United States)

    Uttenweiler, Dietmar; Wojciechowski, Reinhold; Makabe, Makoto; Veigel, Claudia; Fink, Rainer H.

    1995-10-01

    We have developed an integrated microscopy system combining fast dual-excitation fluorescence photometry and digital image analysis with high spatial resolution, based mainly on standard components. With the combination of these well-established techniques in one setup it is possible to monitor intracellular calcium with both sufficiently high temporal and high spatial resolution on the same preparation for many biological applications. Our system consists of a commercially available dual-excitation photometric system, an attached ICCD camera, and a frame grabber board. With this integrated setup one can easily switch between the fast photometric mode and the imaging mode. We used the system to record Fura-2 calcium images (340/380 nm ratios), which were correlated with the faster spot measurements and were analyzed by means of image processing. As an example for its application we reconstructed caffeine-induced calcium transient released from the sarcoplasmic reticulum of isolated and permeabilized skeletal muscle fiber preparations. Such a combined technique will also be important for cellular studies using other fluorescence indicators. Additionally, the described system has an external trigger facility that enables combination with other cell physiological methods, e.g., electrophysiological techniques.

  8. Fluorescence Resonance Energy Transfer Analysis of Bid Activation in Living Cells during Ultraviolet-induced Apoptosis

    Institute of Scientific and Technical Information of China (English)

    Yinyuan WU; Da XING; Lei LIU; Tongsheng CHEN; Wei R. CHEN

    2007-01-01

    Ultraviolet (UV) irradiation is a DNA-damaging agent that triggers apoptosis through both the membrane death receptor and mitochondrial apoptotic signaling pathways. Bid, a pro-apoptotic Bcl-2family member, is important in most cell types to apoptosis in response to DNA damage. In this study, a recombinant plasmid, YFP-Bid-CFP, comprised of yellow and cyan fluorescent protein and a full length Bid,was used as a fluorescence resonance energy transfer analysis (FRET) probe. Using the FRET technique based on YFP-Bid-CFP, we found that Bid activation was initiated at 9±1 h after UV irradiation, and the average duration of the activation was 75± 10 min. Bid activation coincided with a collapse of the mitochondrial membrane potential with an average duration of 50±10 min. When cells were pretreated with Z-IETD-fmk(caspase-8 specific inhibitor) the process of Bid activation was completely inhibited, but the apoptosis was only partially affected. Z-DEVD-fmk (caspase-3 inhibitor) and Z-FA-fmk (non asp specific inhibitor) did not block Bid activation. Furthermore, the endogenous Bid activation with or without Z-IETD-fmk in response to UV irradiation was confirmed by Western blotting. In summary, using the FRET technique, we observed the dynamics of Bid activation during UV-induced apoptosis and found that it was a caspase-8 dependent event.

  9. Development of a total reflection X-ray fluorescence spectrometer for ultra-trace element analysis

    Indian Academy of Sciences (India)

    M K Tiwari; B Gowrishankar; V K Raghuvanshi; R V Nandedkar; K J S Sawhney

    2002-10-01

    A simple and fairly inexpensive total reflection X-ray fluorescence (TXRF) spectrometer has been designed, constructed and realized. The spectrometer is capable of ultra-trace multielement analysis as well as performs surface characterization of thin films. The TXRF setup comprises of an X-ray generator, a slitcollimator arrangement, a monochromator/cutoff-stage, a sample reflector stage and an X-ray detection system. The glancing angle of incidence on the two reflectors is implemented using a sine-bar mechanism that enables precise angle adjustments. An energy dispersive detector and a GM counter are employed for measuring respectively the fluorescence intensities and the direct X-ray beam intensity. A Cu-target X-ray generator with its line focus window is used as an excitation source. The spectrometer is quite portable with its compact design and use of a peltier cooled solid state detector for energy dispersive detection. Alignment and characterization of the TXRF system has been performed and the minimum detection limits for various elements have been determined to be in the range of 100 pg to 5 ng even at low X-ray generator powers of 30 kV, 5 mA. The capability of the TXRF system developed for thin film characterization is also demonstrated.

  10. Scanning protein analysis of electrofocusing gels using X-ray fluorescence.

    Science.gov (United States)

    Matsuyama, Satoshi; Matsunaga, Akihiro; Sakamoto, Shinichi; Iida, Yutaka; Suzuki, Yoshinari; Ishizaka, Yukihito; Yamauchi, Kazuto; Ishikawa, Tetsuya; Shimura, Mari

    2013-05-01

    Recently, "metallomics," in addition to genomics and proteomics, has become a focus as a novel approach to identify sensitive fluctuations in homeostasis that accompany metabolic processes, such as stress responses, differentiation, and proliferation. Cellular elements and associated protein behavior provide important clues for understanding cellular and disease mechanism(s). It is important to develop a system for measuring the native status of the protein. In this study, we developed an original freeze-dried electrofocusing native gel over polyimide film (native-gel film) for scanning protein analysis using synchrotron radiation excited X-ray fluorescence (SPAX). To our knowledge, this is the first report detailing the successful mapping of metal-associated proteins of electrofocusing gels using X-ray fluorescence. SPAX can provide detection sensitivity equivalent to that of LA-ICP-MS. In addition to this increased sensitivity, SPAX has the potential to be combined with other X-ray spectroscopies. Our system is useful for further applications in proteomics investigating cellular element-associated protein behaviors and disease mechanisms.

  11. Characterizing the interaction between uranyl ion and fulvic acid using regional integration analysis (RIA) and fluorescence quenching.

    Science.gov (United States)

    Zhu, Bingqi; Ryan, David K

    2016-03-01

    The development of chemometric methods has substantially improved the quantitative usefulness of the fluorescence excitation-emission matrix (EEM) in the analysis of dissolved organic matter (DOM). In this study, Regional Integration Analysis (RIA) was used to quantitatively interpret EEMs and assess fluorescence quenching behavior in order to study the binding between uranyl ion and fulvic acid. Three fulvic acids including soil fulvic acid (SFA), Oyster River fulvic acid (ORFA) and Suwannee River fulvic acid (SRFA) were used and investigated by the spectroscopic techniques. The EEM spectra obtained were divided into five regions according to fluorescence structural features and two distinct peaks were observed in region III and region V. Fluorescence quenching analysis was conducted for these two regions with the stability constants, ligand concentrations and residual fluorescence values calculated using the Ryan-Weber model. Results indicated a relatively strong binding ability between uranyl ion and fulvic acid samples at low pH (log K value varies from 4.11 to 4.67 at pH 3.50). Fluorophores in region III showed a higher binding ability with fewer binding sites than in region V. Stability constants followed the order, SFA > ORFA > SRFA, while ligand concentrations followed the reverse order, SRFA > ORFA > SFA. A comparison between RIA and Parallel Factor Analysis (PARAFAC) data treatment methods was also performed and good agreement between these two methods (less than 4% difference in log K values) demonstrates the reliability of the RIA method in this study.

  12. A Novel Real-time Fluorescence Mutant-allele-specific Amplification Method for Rapid Single Nucleotide Polymorphism Analysis

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Current methods for single nucleotide polymorphism (SNP) analysis are timeconsuming and complicated. We aimed at development of one-step real-time fluorescence mutant-allele-specific amplification (MASA) method for rapid SNP analysis. The method is a marriage of two technologies: MASA primers for target DNA and a double-stranded DNA-selective fluorescent dye, SYBR Green I. Genotypes are separated according to the different threshold cycles of the wild-type and mutant primers. K-ras oncogene was used as a target to validate the feasibility of the method. The experimental results showed that the different genotypes can be clearly discriminated by the assay. The real-time fluorescence MASA method will have an enormous potential for fast and reliable SNP analysis due to its simplicity and low cost.

  13. Analysis of green fluorescent protein bioluminescence in vivo and in vitro using a glow discharge

    Science.gov (United States)

    Hernández, L.; Mandujano, L. A.; Cuevas, J.; Reyes, P. G.; Osorio-González, D.

    2015-03-01

    The discovery of fluorescent proteins has been a revolution in cell biology and related sciences because of their many applications, mainly emphasizing their use as cellular markers. The green fluorescent protein (GFP) is one of the most used as it requires no cofactors to generate fluorescence and retains this property into any organism when it is expressed by recombinant DNA techniques, which is a great advantage. In this work, we analyze the emission spectra of recombinant green fluorescent protein in vivo and in vitro exposed to a glow discharge plasma of nitrogen in order to relate electron temperature to fluorescence intensity.

  14. Project Title: Radiochemical Analysis by High Sensitivity Dual-Optic Micro X-ray Fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Havrilla, George J.; Gao, Ning

    2003-06-01

    A novel dual-optic micro X-ray fluorescence instrument will be developed to do radiochemical analysis of high-level radioactive wastes at DOE sites such as Savannah River Site and Hanford. This concept incorporates new X-ray optical elements such as monolithic polycapillaries, which focus X-rays. The polycapillary optic can be used to focus X-rays emitted by the X-ray tube thereby increasing the X-ray flux on the sample over 1000 times. The polycapillary optic will also be used to collect the X-rays from the excitation site. This will effectively screen the radiation background from the radioactive species in the specimen. This dual-optic approach significantly reduces the background and increases the analyte signal thereby increasing the sensitivity of the analysis. This dual-capillary design is essentially a confocal (having the same foci) design, i.e. the detected X-rays are only emitted from the overlap of the two focal spots. This increases spatial resolution and reduce s background. The integration of the X-ray optics increases the signal-to-noise and thereby increases the sensitivity of the analysis for low-level analytes. This work will address a key need for radiochemical analysis of high-level waste using a non-destructive, multi-element, and rapid method in a radiation environment. There is significant potential that this instrumentation could be capable of on-line analysis for process waste stream characterization at DOE sites.

  15. Radiochemical Analysis by High Sensitivity Dual-Optic Micro X-ray Fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Havrilla, George J.; Gao, Ning

    2004-06-01

    A novel dual-optic micro X-ray fluorescence instrument will be developed to do radiochemical analysis of high-level radioactive wastes at DOE sites such as Savannah River Site and Hanford. This concept incorporates new X-ray optical elements such as monolithic polycapillaries, which focus X-rays. The polycapillary optic can be used to focus X-rays emitted by the X-ray tube thereby increasing the X-ray flux on the sample over 1000 times. The polycapillary optic will also be used to collect the X-rays from the excitation site. This will effectively screen the radiation background from the radioactive species in the specimen. This dual-optic approach significantly reduces the background and increases the analyte signal thereby increasing the sensitivity of the analysis. This dual-capillary design is essentially a confocal (having the same foci) design, i.e. the detected X-rays are only emitted from the overlap of the two focal spots. This increases spatial resolution and reduces background. The integration of the X-ray optics increases the signal-to-noise and thereby increases the sensitivity of the analysis for low-level analytes. This work will address a key need for radiochemical analysis of high-level waste using a non-destructive, multi-element, and rapid method in a radiation environment. There is significant potential that this instrumentation could be capable of on-line analysis for process waste stream characterization at DOE sites.

  16. Rapid detection of toxic metals in non-crushed oyster shells by portable X-ray fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Chou Ju, E-mail: Ju.Chou@selu.ed [Department of Chemistry and Physics, Southeastern Louisiana University, Hammond, LA 70402 (United States); Clement, Garret; Bursavich, Bradley; Elbers, Don [Department of Chemistry and Physics, Southeastern Louisiana University, Hammond, LA 70402 (United States); Cao Baobao; Zhou Weilie [Advanced Material Research Institute, University of New Orleans, New Orleans, LA 70148 (United States)

    2010-06-15

    The aim of this study was the multi-elemental detection of toxic metals such as lead (Pb) in non-crushed oyster shells by using a portable X-ray fluorescence (XRF) spectrometer. A rapid, simultaneous multi-element analytical methodology for non-crushed oyster shells has been developed using a portable XRF which provides a quick, quantitative, non-destructive, and cost-effective mean for assessment of oyster shell contamination from Pb. Pb contamination in oyster shells was further confirmed by scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS). The results indicated that Pb is distributed in-homogeneously in contaminated shells. Oyster shells have a lamellar structure that could contribute to the high accumulation of Pb on oyster shells. - A rapid, simultaneous multi-element analytical methodology for non-crushed oyster shells has been developed using XRF and contamination of lead on oyster shells was confirmed by XRF and SEM-EDS.

  17. Application of XRF spectrometry to the study of pigments in glazed ceramic pots

    Energy Technology Data Exchange (ETDEWEB)

    Nuevo, M.J., E-mail: maria@unex.e [Department of Physics, University of Extremadura, E-06071 Badajoz (Spain); Martin Sanchez, A. [Department of Physics, University of Extremadura, E-06071 Badajoz (Spain)

    2011-03-15

    Non-destructive techniques for analysis of components of a sample are very useful, and indeed essential, when the samples are unique, such as works of art, including not only pieces exhibited and preserved in museums, but also archaeological structures belonging to a historical and cultural heritage. X-ray fluorescence analysis is a suitable technique for these kinds of pieces and objects that must neither be damaged nor moved. In this work, an X-ray fluorescence spectrometer (XRFS), assembled at the University of Extremadura (Badajoz, Spain), has been applied to the study of pigments in the decorative paints of modern ceramics of known and unknown origins.

  18. Metals determination in wood treated by synchrotron radiation X-ray fluorescence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vives, Ana Elisa Sirito de [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara D' Oeste, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo]. E-mail: aesvives@unimep.br; Silva, Richard Maximiliano da Cunha [Centro de Energia Nuclear na Agricultura, Piracicaba, SP (Brazil)]. E-mail: maxcunha@cena.usp.br; Medeiros, Jean Gabriel da Silva; Tomazello Filho, Mario [Sao Paulo Univ., Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz]. E-mail: jeangm@esalq.usp.br; mtomazel@esalq.usp.br; Moreira, Silvana [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo]. E-mail: Silvana@fec.unicamp.br; Zucchi, Orgheda Luiza Araujo Domingues [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas]. E-mail: olzucchi@fcfrp.usp.br; Barroso, Regina Cely [Universidade do Estado, Rio de Janeiro, RJ (Brazil)]. E-mail: cely@uerj.br

    2005-07-01

    The paper describes the use of X-Ray fluorescence analysis for distribution and quantification of metals in the hardwood (Eucalyptus sp) and softwood (Pinus sp) treated with CCA (copper-chromium-arsenic). The sapwood/heartwood for hardwood sample and the growth-rings for softwood sample were analyzed. The samples were scanned in 320 mm steps in the vertical direction. For excitation of the elements a white beam synchrotron radiation of {approx} 320 x 180 mm was employed and for the X-ray detection a Si(Li) semiconductor detector. The elements K, Ca, Cr, Mn, Cu, Zn and As were determined. Fundamental parameters were used to quantify the elements concentrations. (author)

  19. Metals determination in coffee sample by total reflection X-ray fluorescence analysis (TXRF)

    Energy Technology Data Exchange (ETDEWEB)

    Vives, Ana Elisa Sirito de [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara D' Oeste, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo]. E-mail: aesvives@unimep.br; Moreira, Silvana [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo]. E-mail: Silvana@fec.unicamp.br; Brienza, Sandra Maria Boscolo [ Universidade Metodista de Piracicaba (UNIMEP), Piracicaba, SP (Brazil). Faculdade de Ciencias Matematicas, da Natureza e de Tecnologia da Informacao]. E-mail: sbrienza@unimep.br; Zucchi, Orgheda Luiza Araujo Domingues [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas]. E-mail: olzucchi@fcfrp.usp.br; Nascimento Filho, Virgilio Franco do [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil)]. E-mail: virgilio@cena.usp.br

    2005-07-01

    The objective of this study was to evaluate the inorganic concentration in five brands of coffee, three of them nationally marketed and the others of an exportation kind. The samples were prepared by infusion with deionized water. To carry out the calibration, standard solutions were prepared with different concentrations of Al, Si, K, Ca, Ti, Cr, Fe, Ni, Zn and Se. The measurements were carried out using a white beam of synchrotron radiation for excitation and a Si (Li) semiconductor detector for detection. By employing Synchrotron Radiation Total Reflection X-Ray Fluorescence Analysis (SR-TXRF) it was possible to evaluate the concentrations of P, S, Cl, K, Ca, Mn, Fe, Cu, Zn, Rb and Ba. The detection limits for 300 s counting time were in the range of 0.03 (Ca) to 30 ng.g{sup -1} (Rb), respectively. (author)

  20. A cross-reactive sensor array for the fluorescence qualitative analysis of heavy metal ions.

    Science.gov (United States)

    Kang, Huaizhi; Lin, Liping; Rong, Mingcong; Chen, Xi

    2014-11-01

    A cross-reactive sensor array using mercaptopropionic acid modified cadmium telluride (CdTe), glutathione modified CdTe, poly(methacrylic acid) modified silver nanoclusters, bovine serum albumin modified gold nanoclusters, rhodamine derivative and calcein blue as fluorescent indicators has been designed for the detection of seven heavy metal ions (Ag(+), Hg(2+), Pb(2+), Cu(2+), Cr(3+), Mn(2+) and Cd(2+)). The discriminatory capacity of the sensor array to different heavy metal ions in different pH solutions has been tested and the results have been analyzed with linear discriminant analysis. Results showed that the sensor array could be used to qualitatively analyze the selected heavy metal ions. The array performance was also evaluated in the identification of known and unknown samples and the preliminary results suggested the promising practicability of the designed sensor assay.

  1. Analysis of photographs and photo-paintings by energy-dispersive X-ray fluorescence spectroscopy

    Science.gov (United States)

    Neiva, Augusto Camara; Marcondes, Marli A.; Pinto, Herbert Prince Favero; Almeida, Paula Aline Durães

    2014-02-01

    A collection of Brazilian family photographs and photo-paintings from the beginning of the XX Century was analyzed by portable EDXRF (Energy-Dispersive X-Ray Fluorescence) spectroscopy. The spectrometer uses a Si-drift Amptek detector and an Oxford Cr-tube or an Oxford W-tube. For every region under analysis, spectra obtained with the W-tube were used to detect all the elements above Al, while the Cr-tube was used to obtain more accurate results for elements between Al and V. Thirty nine elements were identified in the photos, and the origin of the most important ones was discussed. These results can be used for cataloging, preservation and restoring procedures.

  2. Synchrotron micro-XRF and micro-XANES confirmation of the uptake and translocation of TiO₂ nanoparticles in cucumber (Cucumis sativus) plants.

    Science.gov (United States)

    Servin, Alia D; Castillo-Michel, Hiram; Hernandez-Viezcas, Jose A; Diaz, Baltazar Corral; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2012-07-17

    Advances in nanotechnology have raised concerns about possible effects of engineered nanomaterials (ENMs) in the environment, especially in terrestrial plants. In this research, the impacts of TiO(2) nanoparticles (NPs) were evaluated in hydroponically grown cucumber (Cucumis sativus) plants. Seven day old seedlings were treated with TiO(2) NPs at concentrations varying from 0 to 4000 mg L(-1). At harvest, the size of roots and shoots were measured. In addition, micro X- ray fluorescence (micro-XRF) and micro X-ray absorption spectroscopy (micro-XAS), respectively, were used to track the presence and chemical speciation of Ti within plant tissues. Results showed that at all concentrations, TiO(2) significantly increased root length (average >300%). By using micro-XRF it was found that Ti was transported from the roots to the leaf trichomes, suggesting that trichomes are possible sink or excretory system for the Ti. The micro-XANES spectra showed that the absorbed Ti was present as TiO(2) within the cucumber tissues, demonstrating that the TiO(2) NPs were not biotransformed.

  3. Distribution of selected elements in calcific human aortic valves studied by microscopy combined with SR-μXRF: influence of lipids on progression of calcification.

    Science.gov (United States)

    Lis, Grzegorz J; Czapla-Masztafiak, Joanna; Kwiatek, Wojciech M; Gajda, Mariusz; Jasek, Ewa; Jasinska, Malgorzata; Czubek, Urszula; Borchert, Manuela; Appel, Karen; Nessler, Jadwiga; Sadowski, Jerzy; Litwin, Jan A

    2014-12-01

    Calcified heart valves display a significant imbalance in tissue content of trace and essential elements. The valvular calcification is an age-related process and there are data suggesting involvement of lipids. We studied elemental composition and lipid distribution in three distinct regions of calcified human aortic valves, representing successive stages of the calcific degeneration: normal, thickened (early lesion) and calcified (late lesion), using SR-μXRF (Synchrotron Radiation Micro X-Ray Fluorescence) for elemental composition and Oil Red O (ORO) staining for demonstration of lipids. Two-dimensional SR-μXRF maps and precise point spectra were compared with histological stainings on consecutive valve sections to prove topographical localization and colocalization of the examined elements and lipids. In calcified valve areas, accumulation of calcium and phosphorus was accompanied by enhanced concentrations of strontium and zinc. Calcifications preferentially developed in lipid-rich areas of the valves. Calcium concentration ratio between lipid-rich and lipid-free areas was not age-dependent in early lesions, but showed a significant increase with age in late lesions, indicating age-dependent intensification of lipid involvement in calcification process. The results suggest that mechanisms of calcification change with progression of valve degeneration and with age.

  4. Identification of intermediate species in protein-folding by quantitative analysis of amplitudes in time-domain fluorescence spectroscopy

    Indian Academy of Sciences (India)

    Anoop M Saxena; G Krishnamoorthy; Jayant B Udgaonkar; N Periasamy

    2007-03-01

    In protein-folding studies it is often required to differentiate a system with only two-states, namely the native (N) and unfolded (U) forms of the protein present at any condition of the solvent, from a situation wherein intermediate state(s) could also be present. This differentiation of a two-state from a multi-state structural transition is non-trivial when studied by the several steady-state spectroscopic methods that are popular in protein-folding studies. In contrast to the steady-state methods, time-resolved fluorescence has the capability to reveal the presence of heterogeneity of structural forms due to the `fingerprint’ nature of fluorescence lifetimes of various forms. In this work, we establish this method by quantitative analysis of amplitudes associated with fluorescence lifetimes in multiexponential decays. First, we show that we can estimate, accurately, the relative population of species from two-component mixtures of non-interacting molecules such as fluorescent dyes, peptides and proteins. Subsequently, we demonstrate, by analysing the amplitudes of fluorescence lifetimes which are controlled by fluorescence resonance energy transfer (FRET), that the equilibrium folding-unfolding transition of the small singledomain protein barstar is not a two-step process.