WorldWideScience

Sample records for fluidic dye ring

  1. Micro-Fluidic Dye Ring Laser - Experimental Tuning of the Wavelength and Numerical Simulation of the Cavity Modes

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Balslev, Søren; Mortensen, Niels Asger

    2006-01-01

    We demonstrate wavelength tuning of a micro-fluidic dye ring laser. Wavelength tunability is obtained by controlling the liquid dye concentration. The device performance is modelled by FEM simulations supporting a ray-tracing view.......We demonstrate wavelength tuning of a micro-fluidic dye ring laser. Wavelength tunability is obtained by controlling the liquid dye concentration. The device performance is modelled by FEM simulations supporting a ray-tracing view....

  2. Diffusion dynamics in micro-fluidic dye lasers

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Balslev, Søren; Mortensen, Niels Asger

    2007-01-01

    We have investigated the bleaching dynamics that occur in opto-fluidic dye lasers, where the liquid laser dye in a channel is locally bleached due to optical pumping. Our studies suggest that for micro-fluidic devices, the dye bleaching may be compensated through diffusion of dye molecules alone....... By relying on diffusion rather than convection to generate the necessary dye replenishment, our observation potentially allows for a significant simplification of opto-fluidic dye laser device layouts, omitting the need for cumbersome and costly external fluidic handling or on-chip micro-fluidic pumping...

  3. Micro-Cavity Fluidic Dye Laser

    DEFF Research Database (Denmark)

    Helbo, Bjarne; Kristensen, Anders; Menon, Aric Kumaran

    2003-01-01

    We have successfully designed, fabricated and characterized a micro-cavity fluidic dye laser with metallic mirrors, which can be integrated with polymer based lab-on-a-chip microsystems without further processing steps. A simple rate-equation model is used to predict the average pumping power...... threshold for lasing as function of cavity-mirror reflectance, laser dye concentration and cavity length. The laser device is characterized using the laser dye Rhodamine 6G dissolved in ethanol. Lasing is observed, and the influence of dye concentration is investigated....

  4. Investigation of the dye concentration influence on the lasing wavelength and threshold for a micro-fluidic dye laser

    DEFF Research Database (Denmark)

    Helbo, Bjarne; Kragh, Søren; Kjeldsen, B.G.

    2003-01-01

    We investigate a micro-fluidic dye laser, which can be integrated with polymer-based lab-on-a-chip microsystems without further processing steps. A simple rate-equation model is used to predict the lasing threshold. The laser device is characterised using the laser dye Rhodamine 6G dissolved...... in ethanol, and the influence of dye concentration on the lasing wavelength and threshold is investigated. The experiments confirm the predictions of the rate-equation model, that lasing can be achieved in the 10 mum long laser cavity with moderate concentrations of Rhodamine 6G in ethanol, starting from 5 x...

  5. Fluidic optics

    Science.gov (United States)

    Whitesides, George M.; Tang, Sindy K. Y.

    2006-09-01

    Fluidic optics is a new class of optical system with real-time tunability and reconfigurability enabled by the introduction of fluidic components into the optical path. We describe the design, fabrication, operation of a number of fluidic optical systems, and focus on three devices, liquid-core/liquid-cladding (L2) waveguides, microfluidic dye lasers, and diffraction gratings based on flowing, crystalline lattices of bubbles, to demonstrate the integration of microfluidics and optics. We fabricate these devices in poly(dimethylsiloxane) (PDMS) with soft-lithographic techniques. They are simple to construct, and readily integrable with microanalytical or lab-on-a-chip systems.

  6. High-power single-mode cw dye ring laser

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, H W; Stein, L; Froelich, D; Fugger, B; Welling, H [Technische Univ. Hannover (Germany, F.R.). Inst. fuer Angewandte Physik

    1977-12-01

    Due to spatial hole burning, standing-wave dye lasers require a large amount of selectivity inside the cavity for single-mode operation. The output power of these lasers is limited by losses caused by the frequency selecting elements. In a travelling-wave laser, on the other hand, spatial hole burning does not exist, thereby eliminating the need for high selectivity. A travelling-wave cw dye laser was realized by unidirectional operation of a ring laser, yielding single mode output powers of 1.2 W at 595 nm and of 55 mW in the UV-region with intracavity frequency doubling.

  7. Fluidic sampling

    International Nuclear Information System (INIS)

    Houck, E.D.

    1992-01-01

    This paper covers the development of the fluidic sampler and its testing in a fluidic transfer system. The major findings of this paper are as follows. Fluidic jet samples can dependably produce unbiased samples of acceptable volume. The fluidic transfer system with a fluidic sampler in-line will transfer water to a net lift of 37.2--39.9 feet at an average ratio of 0.02--0.05 gpm (77--192 cc/min). The fluidic sample system circulation rate compares very favorably with the normal 0.016--0.026 gpm (60--100 cc/min) circulation rate that is commonly produced for this lift and solution with the jet-assisted airlift sample system that is normally used at ICPP. The volume of the sample taken with a fluidic sampler is dependant on the motive pressure to the fluidic sampler, the sample bottle size and on the fluidic sampler jet characteristics. The fluidic sampler should be supplied with fluid having the motive pressure of the 140--150 percent of the peak vacuum producing motive pressure for the jet in the sampler. Fluidic transfer systems should be operated by emptying a full pumping chamber to nearly empty or empty during the pumping cycle, this maximizes the solution transfer rate

  8. ULTRAVIOLET TRANSITIONS IN EUROPIUM STUDIED WITH A FREQUENCY-DOUBLED CW RING DYE-LASER

    NARCIS (Netherlands)

    Eliel, E.R.; Hogervorst, W.; van Leeuwen, K.A.H.; Post, B.H.

    1981-01-01

    High resolution laser spectroscopy has been applied to the study of three ultraviolet transitions in Europium at λ = 294.8, 295.1 and 295.8 nm. The tunable narrowband UV has been generated by intracavity frequency doubling in a cw ring dye laser using a temperate tuned, Brewster angled ADA crystal.

  9. Fluidic pumps

    International Nuclear Information System (INIS)

    Priestman, G.H.

    1990-01-01

    A fluidic pump has primary and secondary vessels connected by a pipe, a displacement vessel having liquid to be delivered through a pipe via a rectifier provided with a feed tank. A drive unit delivers pressure fluid to a line to raise liquid and compress trapped gas or liquid in the space, including the pipe between the liquids in the two vessels and thus drive liquid out of the displacement vessel. The driving gas is therefore separated by the barrier liquid and the trapped gas or liquid from the liquid to be pumped which liquid could be e.g. radioactive. (author)

  10. Does the position of the electron-donating nitrogen atom in the ring system influence the efficiency of a dye-sensitized solar cell? A computational study.

    Science.gov (United States)

    Biswas, Abul Kalam; Barik, Sunirmal; Das, Amitava; Ganguly, Bishwajit

    2016-06-01

    We have reported a number of new metal-free organic dyes (2-6) that have cyclic asymmetric benzotripyrrole derivatives as donor groups with peripheral nitrogen atoms in the ring, fluorine and thiophene groups as π-spacers, and a cyanoacrylic acid acceptor group. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations were employed to examine the influence of the position of the donor nitrogen atom and π-conjugation on solar cell performance. The calculated electron-injection driving force (ΔG inject), electron-regeneration driving force (ΔG regen), light-harvesting efficiency (LHE), dipole moment (μ normal), and number of electrons transferred (∆q) indicate that dyes 3, 4, and 6 have significantly higher efficiencies than reference dye 1, which exhibits high efficiency. We also extended our comparison to some other reported dyes, 7-9, which have a donor nitrogen atom in the middle of the ring system. The computed results suggest that dye 6 possesses a higher incident photon to current conversion efficiency (IPCE) than reported dyes 7-9. Thus, the use of donor groups with peripheral nitrogen atoms appears to lead to more efficient dyes than those in which the nitrogen atom is present in the middle of the donor ring system. Graphical Abstract The locations of the nitrogen atoms in the donor groups in the designed dye molecules have an important influence on DSSC efficiency.

  11. Synthesis and Evaluation of Changes Induced by Solvent and Substituent in Electronic Absorption Spectra of New Azo Disperse Dyes Containig Barbiturate Ring

    Directory of Open Access Journals (Sweden)

    Hooshang Hamidian

    2013-01-01

    Full Text Available Six azo disperse dyes were prepared by diazotizing 4-amino hippuric acid and coupled with barbituric acid and 2-thiobarbituric acid. Then, the products were reacted with aromatic aldehyde, sodium acetate, and acetic anhydride, and oxazolone derivatives were formed. Characterization of the dyes was carried out by using UV-Vis, FT-IR, 1H NMR and 13C NMR, and mass spectroscopic techniques. The solvatochromic behavior of azo disperse dyes was evaluated in various solvents. The effects of substituents of aromatic aldehyde, barbiturate, and thiobarbiturate ring on the color of dyes were investigated.

  12. Synthesis of water-soluble, ring-substituted squaraine dyes and their evaluation as fluorescent probes and labels

    Energy Technology Data Exchange (ETDEWEB)

    Tatarets, Anatoliy L. [SSI ' Institute for Single Crystals' of the National Academy of Sciences of Ukraine, 60 Lenin Ave., Kharkov 61001 (Ukraine); Fedyunyayeva, Irina A. [SSI ' Institute for Single Crystals' of the National Academy of Sciences of Ukraine, 60 Lenin Ave., Kharkov 61001 (Ukraine); Dyubko, Tatyana S. [SSI ' Institute for Single Crystals' of the National Academy of Sciences of Ukraine, 60 Lenin Ave., Kharkov 61001 (Ukraine); Povrozin, Yevgeniy A. [SSI ' Institute for Single Crystals' of the National Academy of Sciences of Ukraine, 60 Lenin Ave., Kharkov 61001 (Ukraine); Doroshenko, Andrey O. [Institute of Chemistry, V.N. Karazin National University, 4 Svobody Sq., Kharkov 61077 (Ukraine); Terpetschnig, Ewald A. [SETA BioMedicals, LLC, 2014 Silver Ct East, Urbana, IL 61801 (United States) and ISS, Inc., 1602 Newton Drive, Champaign, IL 61822 (United States)]. E-mail: ewaldte@juno.com; Patsenker, Leonid D. [SSI ' Institute for Single Crystals' of the National Academy of Sciences of Ukraine, 60 Lenin Ave., Kharkov 61001 (Ukraine); SETA BioMedicals, LLC, 2014 Silver Ct East, Urbana, IL 61801 (United States)

    2006-06-16

    A series of ring-substituted squaraines absorbing and emitting in the red and NIR spectral region was synthesized and their spectral and photophysical properties (quantum yields, fluorescence lifetimes) and photostabilities were measured and compared to Cy5, a commonly used fluorescent label. The absorption maxima in aqueous media were found to be between 628 and 667 nm and the emission maxima are between 642 and 685 nm. Squaraine dyes exhibit high extinction coefficients (163,000-265,000 M{sup -1} cm{sup -1}) and lower quantum yields (2-7%) in aqueous buffer but high quantum yields (up to 45%) and long fluorescence lifetimes (up to 3.3 ns) in presence of BSA. Dicyanomethylene- and thio-substituted squaraines exhibit an additional absorption around 400 nm with extinction coefficients between 21,500 and 44,500 M{sup -1} cm{sup -1}. These dyes are excitable not only with red but also with blue diode lasers or light emitting diodes. Due to the favourable spectral and photophysical properties these dyes can be used as fluorescent probes and labels for intensity- and fluorescence lifetime-based biomedical applications.

  13. Synthesis of water-soluble, ring-substituted squaraine dyes and their evaluation as fluorescent probes and labels

    International Nuclear Information System (INIS)

    Tatarets, Anatoliy L.; Fedyunyayeva, Irina A.; Dyubko, Tatyana S.; Povrozin, Yevgeniy A.; Doroshenko, Andrey O.; Terpetschnig, Ewald A.; Patsenker, Leonid D.

    2006-01-01

    A series of ring-substituted squaraines absorbing and emitting in the red and NIR spectral region was synthesized and their spectral and photophysical properties (quantum yields, fluorescence lifetimes) and photostabilities were measured and compared to Cy5, a commonly used fluorescent label. The absorption maxima in aqueous media were found to be between 628 and 667 nm and the emission maxima are between 642 and 685 nm. Squaraine dyes exhibit high extinction coefficients (163,000-265,000 M -1 cm -1 ) and lower quantum yields (2-7%) in aqueous buffer but high quantum yields (up to 45%) and long fluorescence lifetimes (up to 3.3 ns) in presence of BSA. Dicyanomethylene- and thio-substituted squaraines exhibit an additional absorption around 400 nm with extinction coefficients between 21,500 and 44,500 M -1 cm -1 . These dyes are excitable not only with red but also with blue diode lasers or light emitting diodes. Due to the favourable spectral and photophysical properties these dyes can be used as fluorescent probes and labels for intensity- and fluorescence lifetime-based biomedical applications

  14. FLUIDIC AC AMPLIFIERS.

    Science.gov (United States)

    Several fluidic tuned AC Amplifiers were designed and tested. Interstage tuning and feedback designs are considered. Good results were obtained...corresponding Q’s as high as 12. Element designs and test results of one, two, and three stage amplifiers are presented. AC Modulated Carrier Systems

  15. Fluidic pumping system

    International Nuclear Information System (INIS)

    Wilson, P.D.

    1995-01-01

    A fluidic pumping system comprises two charge vessels which communicate with a liquid inlet and a liquid outlet through a fluidic bridge rectifier. A pressurising and depressurising arrangement for alternately pressurising and depressurising the charge vessels comprises a chamber containing a piston and being in communication with the charge vessels. Drive means not mechanically connected to the piston are provided for causing reciprocatory movement of the piston. Movement of the piston in one direction causes pressurisation of one charge vessel to discharge a liquid therefrom through the liquid outlet. Simultaneously, the other charge vessel is depressurised to draw liquid from the liquid inlet into the depressurised charge vessel. Preferably, the drive means for the piston comprises an external solenoid winding at each end of a horizontally arranged chamber. Alternatively, the chamber may be vertically disposed with an external solenoid winding at the upper end of the chamber to effect upward movement of the piston, the piston then falling under gravity upon de-energisation of the winding. (UK)

  16. MEMS fluidic actuator

    Science.gov (United States)

    Kholwadwala, Deepesh K [Albuquerque, NM; Johnston, Gabriel A [Trophy Club, TX; Rohrer, Brandon R [Albuquerque, NM; Galambos, Paul C [Albuquerque, NM; Okandan, Murat [Albuquerque, NM

    2007-07-24

    The present invention comprises a novel, lightweight, massively parallel device comprising microelectromechanical (MEMS) fluidic actuators, to reconfigure the profile, of a surface. Each microfluidic actuator comprises an independent bladder that can act as both a sensor and an actuator. A MEMS sensor, and a MEMS valve within each microfluidic actuator, operate cooperatively to monitor the fluid within each bladder, and regulate the flow of the fluid entering and exiting each bladder. When adjacently spaced in a array, microfluidic actuators can create arbitrary surface profiles in response to a change in the operating environment of the surface. In an embodiment of the invention, the profile of an airfoil is controlled by independent extension and contraction of a plurality of actuators, that operate to displace a compliant cover.

  17. Exploring the relevance of thiophene rings as bridge unit in acceptor-bridge-donor dyes on self-aggregation and performance in DSSCs.

    Science.gov (United States)

    Zarate, Ximena; Saavedra-Torres, Mario; Rodriguez-Serrano, Angela; Gomez, Tatiana; Schott, Eduardo

    2018-04-30

    The possibility of dye charge recombination in DSSCs remains a challenge for the field. This consists of: (a) back-transfer from the TiO 2 to the oxidized dye and (b) intermolecular electron transfer between dyes. The latter is attributed to dye aggregation due to dimeric conformations. This leads to poor electron injection which decreases the photocurrent conversion efficiency. Most organic sensitizers are characterized by an Acceptor-Bridge-Donor (A-Bridge-D) arrangement that is commonly employed to provide charge separation and, therefore, lowering the unwanted back-transfer. Here, we address the intermolecular electron transfer by studying the dimerization and photovoltaic performance of a group of A-Bridge-D structured dyes. Specifically, eight famous sulfur containing π-bridges were analyzed (A and D remained fixed). Through quantum mechanical and molecular dynamics approaches, it was found that the formation of weakly stabilized dimers is allowed. The dyes with covalently bonded and fused thiophene rings as Bridges, 6d and 7d as well as 8d with a fluorene, would present high aggregation and, therefore, high probability of recombination processes. Conversely, using TiO 2 cluster and surface models, delineated the shortest bridges to improve the adsorption energy and the stability of the system. Finally, the elongation of the bridge up to 2 and 3 units and their photovoltaic parameters were studied. These results showed that all the sensitizers are able to provide similar photocurrent outcomes, regardless of whether the bridge is elongated. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Compressible flow in fluidic oscillators

    Science.gov (United States)

    Graff, Emilio; Hirsch, Damian; Gharib, Mory

    2013-11-01

    We present qualitative observations on the internal flow characteristics of fluidic oscillator geometries commonly referred to as sweeping jets in active flow control applications. We also discuss the effect of the geometry on the output jet in conditions from startup to supersonic exit velocity. Supported by the Boeing Company.

  19. Fusion-bonded fluidic interconnects

    NARCIS (Netherlands)

    Fazal, I.; Elwenspoek, Michael Curt

    2008-01-01

    A new approach to realize fluidic interconnects based on the fusion bonding of glass tubes with silicon is presented. Fusion bond strength analyses have been carried out. Experiments with plain silicon wafers and coated with silicon oxide and silicon nitride are performed. The obtained results are

  20. Fusion-bonded fluidic interconnects

    International Nuclear Information System (INIS)

    Fazal, I; Elwenspoek, M C

    2008-01-01

    A new approach to realize fluidic interconnects based on the fusion bonding of glass tubes with silicon is presented. Fusion bond strength analyses have been carried out. Experiments with plain silicon wafers and coated with silicon oxide and silicon nitride are performed. The obtained results are discussed in terms of the homogeneity and strength of fusion bond. High pressure testing shows that the bond strength is large enough for most applications of fluidic interconnects. The bond strength for 525 µm thick silicon, with glass tubes having an outer diameter of 6 mm and with a wall thickness of 2 mm, is more than 60 bars after annealing at a temperature of 800 °C

  1. Dielectric Elastomers for Fluidic and Biomedical Applications

    Science.gov (United States)

    McCoul, David James

    Dielectric elastomers have demonstrated tremendous potential as high-strain electromechanical transducers for a myriad of novel applications across all engineering disciplines. Because their soft, viscoelastic mechanical properties are similar to those of living tissues, dielectric elastomers have garnered a strong foothold in a plethora of biomedical and biomimetic applications. Dielectric elastomers consist of a sheet of stretched rubber, or elastomer, coated on both sides with compliant electrode materials; application of a voltage generates an electrostatic pressure that deforms the elastomer. They can function as soft generators, sensors, or actuators, and this last function is the focus of this dissertation. Many design configurations are possible, such as stacks, minimum energy structures, interpenetrating polymer networks, shape memory dielectric elastomers, and others; dielectric elastomers are already being applied to many fields of biomedicine. The first part of the original research presented in this dissertation details a PDMS microfluidic system paired with a dielectric elastomer stack actuator of anisotropically prestrained VHB(TM) 4910 (3M(TM)) and single-walled carbon nanotubes. These electroactive microfluidic devices demonstrated active increases in microchannel width when 3 and 4 kV were applied. Fluorescence microscopy also indicated an accompanying increase in channel depth with actuation. The cross-sectional area strains at 3 and 4 kV were approximately 2.9% and 7.4%, respectively. The device was then interfaced with a syringe pump, and the pressure was measured upstream. Linear pressure-flow plots were developed, which showed decreasing fluidic resistance with actuation, from 0.192 psi/(microL/min) at 0 kV, to 0.160 and 0.157 psi/(microL/min) at 3 and 4 kV, respectively. This corresponds to an ~18% drop in fluidic resistance at 4 kV. Active de-clogging was tested in situ with the device by introducing ~50 microm diameter PDMS microbeads and

  2. Fluidic delivery of homogeneous solutions through carbon tube bundles

    International Nuclear Information System (INIS)

    Srikar, R; Yarin, A L; Megaridis, C M

    2009-01-01

    A wide array of technological applications requires localized high-rate delivery of dissolved compounds (in particular, biological ones), which can be achieved by forcing the solutions or suspensions of such compounds through nano or microtubes and their bundled assemblies. Using a water-soluble compound, the fluorescent dye Rhodamine 610 chloride, frequently used as a model drug release compound, it is shown that deposit buildup on the inner walls of the delivery channels and its adverse consequences pose a severe challenge to implementing pressure-driven long-term fluidic delivery through nano and microcapillaries, even in the case of such homogeneous solutions. Pressure-driven delivery (3-6 bar) of homogeneous dye solutions through macroscopically-long (∼1 cm) carbon nano and microtubes with inner diameters in the range 100 nm-1 μm and their bundled parallel assemblies is studied experimentally and theoretically. It is shown that the flow delivery gradually shifts from fast convection-dominated (unobstructed) to slow jammed convection, and ultimately to diffusion-limited transport through a porous deposit. The jamming/clogging phenomena appear to be rather generic: they were observed in a wide concentration range for two fluorescent dyes in carbon nano and microtubes, as well as in comparable transparent glass microcapillaries. The aim of the present work is to study the physics of jamming, rather than the chemical reasons for the affinity of dye molecules to the tube walls.

  3. High-frequency fluidic oscillator

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2015-01-01

    Roč. 234, October (2015), s. 158-167 ISSN 0924-4247 R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : pulsating flow * jet * fluidics Subject RIV: BK - Fluid Dynamics Impact factor: 2.201, year: 2015 http://www.sciencedirect.com/science/article/pii/S0924424715301114/pdfft?md5=42ec4f6f3180151913ceade1e4625d74&pid=1-s2.0-S0924424715301114-main.pdf

  4. Separation control with fluidic oscillators in water

    Science.gov (United States)

    Schmidt, H.-J.; Woszidlo, R.; Nayeri, C. N.; Paschereit, C. O.

    2017-08-01

    The present study assesses the applicability of fluidic oscillators for separation control in water. The first part of this work evaluates the properties of the fluidic oscillators including frequency, cavitation effects, and exerted thrust. Derived from the governing internal dynamics, the oscillation frequency is found to scale directly with the jet's exit velocity and the size of the fluidic oscillator independent of the working fluid. Frequency data from various experiments collapse onto a single curve. The occurrence of cavitation is examined by visual inspection and hydrophone measurements. The oscillation frequency is not affected by cavitation because it does not occur inside the oscillators. The spectral information obtained with the hydrophone provide a reliable indicator for the onset of cavitation at the exit. The performance of the fluidic oscillators for separation control on a bluff body does not seem to be affected by the presence of cavitation. The thrust exerted by an array of fluidic oscillators with water as the working fluid is measured to be even larger than theoretically estimated values. The second part of the presented work compares the performance of fluidic oscillators for separation control in water with previous results in air. The array of fluidic oscillators is installed into the rear end of a bluff body model. The drag improvements based on force balance measurements agree well with previous wind tunnel experiments on the same model. The flow field is examined by pressure measurements and with particle image velocimetry. Similar performance and flow field characteristics are observed in both water and air.

  5. Fluidics platform and method for sample preparation

    Science.gov (United States)

    Benner, Henry W.; Dzenitis, John M.

    2016-06-21

    Provided herein are fluidics platforms and related methods for performing integrated sample collection and solid-phase extraction of a target component of the sample all in one tube. The fluidics platform comprises a pump, particles for solid-phase extraction and a particle-holding means. The method comprises contacting the sample with one or more reagents in a pump, coupling a particle-holding means to the pump and expelling the waste out of the pump while the particle-holding means retains the particles inside the pump. The fluidics platform and methods herein described allow solid-phase extraction without pipetting and centrifugation.

  6. Fluidic-Based Virtual Aerosurface Shaping

    National Research Council Canada - National Science Library

    Glezer, Ari

    2004-01-01

    Recent work on a novel approach to the control of the aerodynamic performance of lifting surfaces by fluidic modification of their apparent aerodynamic shape, or virtual aerosurface shaping is reviewed...

  7. Fractal modeling of fluidic leakage through metal sealing surfaces

    Science.gov (United States)

    Zhang, Qiang; Chen, Xiaoqian; Huang, Yiyong; Chen, Yong

    2018-04-01

    This paper investigates the fluidic leak rate through metal sealing surfaces by developing fractal models for the contact process and leakage process. An improved model is established to describe the seal-contact interface of two metal rough surface. The contact model divides the deformed regions by classifying the asperities of different characteristic lengths into the elastic, elastic-plastic and plastic regimes. Using the improved contact model, the leakage channel under the contact surface is mathematically modeled based on the fractal theory. The leakage model obtains the leak rate using the fluid transport theory in porous media, considering that the pores-forming percolation channels can be treated as a combination of filled tortuous capillaries. The effects of fractal structure, surface material and gasket size on the contact process and leakage process are analyzed through numerical simulations for sealed ring gaskets.

  8. Fluidic Elements based on Coanda Effect

    Directory of Open Access Journals (Sweden)

    Constantin OLIVOTTO

    2010-12-01

    Full Text Available This paper contains first some definitions and classifications regarding the fluidic elements. Thegeneral current status is presented, nominating the main specific elements based on the Coanda effect developedspecially in Romania. In particularly the development of an original bistable element using industrial compressedair at industrial pressure supply is presented. The function of this element is based on the controlled attachmentof the main jet at a curved wall through the Coanda effect. The methods used for particular calculation andexperiments are nominated. The main application of these elements was to develop a specific execution element:a fluidic step–by-step motor based on the Coanda effect.

  9. Fluidic interconnections for microfluidic systems: A new integrated fluidic interconnection allowing plug 'n' play functionality

    DEFF Research Database (Denmark)

    Perozziello, Gerardo; Bundgaard, Frederik; Geschke, Oliver

    2008-01-01

    A crucial challenge in packaging of microsystems is microfluidic interconnections. These have to seal the ports of the system, and have to provide the appropriate interface to other devices or the external environment. Integrated fluidic interconnections appear to be a good solution for interconn...... external metal ferrules and the system. Theoretical calculations are made to dimension and model the integrated fluidic interconnection. Leakage tests are performed on the interconnections, in order to experimentally confirm the model, and detect its limits....

  10. Fluidic load control for wind turbines blades

    NARCIS (Netherlands)

    Boeije, C.S.; Vries, de H.; Cleine, I.; Emden, van E.; Zwart, G.G.M.; Stobbe, H.; Hirschberg, A.; Hoeijmakers, H.W.M.; Maureen Hand, xx

    2009-01-01

    This paper describes the initial steps into the investigation of the possibility of reducing fatigue loads on wind turbine blades by the application of fluidic jets. This investigation involves static pressure measurements as well as numerical simulations for a non-rotating NACA-0018 airfoil. The

  11. Water based fluidic radio frequency metamaterials

    Science.gov (United States)

    Cai, Xiaobing; Zhao, Shaolin; Hu, Mingjun; Xiao, Junfeng; Zhang, Naibo; Yang, Jun

    2017-11-01

    Electromagnetic metamaterials offer great flexibility for wave manipulation and enable exceptional functionality design, ranging from negative refraction, anomalous reflection, super-resolution imaging, transformation optics to cloaking, etc. However, demonstration of metamaterials with unprecedented functionalities is still challenging and costly due to the structural complexity or special material properties. Here, we demonstrate for the first time the versatile fluidic radio frequency metamaterials with negative refraction using a water-embedded and metal-coated 3D architecture. Effective medium analysis confirms that metallic frames create an evanescent environment while simultaneously water cylinders produce negative permeability under Mie resonance. The water-metal coupled 3D architectures and the accessory devices for measurement are fabricated by 3D printing with post electroless deposition. Our study also reveals the great potential of fluidic metamaterials and versatility of the 3D printing process in rapid prototyping of customized metamaterials.

  12. APR1400 Fluidic Device Sensitivity Test

    International Nuclear Information System (INIS)

    Choi, Nam Hyun; Chu, In Cheol; Min, Kyong Ho; Song, Chul Hwa

    2005-12-01

    In the safety injection tank at the emergency core cooling system of APR1400, a new safety design feature, passive fluidic device is equipped which includes no active driving system. It is essential to evaluate the new design feature with various experiments. For this reason, three categories of sensitivity tests have been performed in the present study. As the first sensitivity experiment, the effect of the height of the stand pipe was investigated. The second sensitivity test was conducted with removing the insert plate gasket to examine its effect. The effect of the expansion of the control nozzle width was ascertained from the third sensitivity test. The results of each test showed that the passive fluidic device which will be equipped in the SIT tank of APR1400 has great integrity and repeatability

  13. Fluidic electrodynamics: Approach to electromagnetic propulsion

    International Nuclear Information System (INIS)

    Martins, Alexandre A.; Pinheiro, Mario J.

    2009-01-01

    We report on a new methodological approach to electrodynamics based on a fluidic viewpoint. We develop a systematic approach establishing analogies between physical magnitudes and isomorphism (structure-preserving mappings) between systems of equations. This methodological approach allows us to give a general expression for the hydromotive force, thus re-obtaining the Navier-Stokes equation departing from the appropriate electromotive force. From this ground we offer a fluidic approach to different kinds of issues with interest in propulsion, e.g., the force exerted by a charged particle on a body carrying current; the magnetic force between two parallel currents; the Magnus's force. It is shown how the intermingle between the fluid vector fields and electromagnetic fields leads to new insights on their dynamics. The new concepts introduced in this work suggest possible applications to electromagnetic (EM) propulsion devices and the mastery of the principles of producing electric fields of required configuration in plasma medium.

  14. Impinging jets controlled by fluidic input signal

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Trávníček, Zdeněk; Peszyński, K.

    2016-01-01

    Roč. 249, October (2016), s. 85-92 ISSN 0924-4247 R&D Projects: GA ČR GA13-23046S; GA ČR GA14-08888S Institutional support: RVO:61388998 Keywords : fluidics * jets * impinging jets * coanda effect Subject RIV: BK - Fluid Dynamics Impact factor: 2.499, year: 2016 http://www.sciencedirect.com/science/article/pii/S0924424716303880

  15. A Recipe for Soft Fluidic Elastomer Robots.

    Science.gov (United States)

    Marchese, Andrew D; Katzschmann, Robert K; Rus, Daniela

    2015-03-01

    This work provides approaches to designing and fabricating soft fluidic elastomer robots. That is, three viable actuator morphologies composed entirely from soft silicone rubber are explored, and these morphologies are differentiated by their internal channel structure, namely, ribbed, cylindrical, and pleated. Additionally, three distinct casting-based fabrication processes are explored: lamination-based casting, retractable-pin-based casting, and lost-wax-based casting. Furthermore, two ways of fabricating a multiple DOF robot are explored: casting the complete robot as a whole and casting single degree of freedom (DOF) segments with subsequent concatenation. We experimentally validate each soft actuator morphology and fabrication process by creating multiple physical soft robot prototypes.

  16. Synthesis of azo pyridone dyes

    Directory of Open Access Journals (Sweden)

    Mijin Dušan Ž.

    2011-01-01

    Full Text Available Over 50% of all colorants which are used nowdays are azo dyes and pigments, and among them arylazo pyridone dyes (and pigments have became of interest in last several decades due to the high molar extinction coefficient, and the medium to high light and wet fastness properties. They find application generally as disperse dyes. The importance of disperse dyes increased in the 1970s and 1980s due to the use of polyester and nylon as the main synthetic fibers. Also, disperse dyes were used rapidly since 1970 in inks for the heat-transfer printing of polyester. The main synthetic route for the preparation of azo dyes is coupling reaction between an aromatic diazo compound and a coupling component. Of all dyes manufactured, about 60% are produced by this reaction. Arylazo pyridone dyes can be prepared from pyridone moiety as a coupling component, where substituent can be on nitrogen, and diazonim salts which can be derived from different substituted anilines or other heterocyclic derivatives. In addition, arylazo dyes containing pyridone ring can be prepared from arylazo diketones or arylazo ketoesters (obtained by coupling β-diketones or β-ketoesters with diazonim salts by condensation with cyanoacetamide. Disazo dyes can be prepared by tetrazotizing a dianiline and coupling it with a pyridone or by diazotizing aniline and coupling it with a dipyridone. Trisazo dyes can be also prepared by diazotizing of aniline and coupling it with a tripyridone or by hexazotizing a trianiline and coupling it with a pyridone. The main goal of this paper is to give a brief review on the synthesis of arylazo pyridone dyes due to the lack of such reviews. In addition, some properties of arylazo pyridone dyes as light fastness and azo-hydrazon tautomerism are disccused.

  17. Laser Dyes

    Indian Academy of Sciences (India)

    amplification or generation of coherent light waves in the UV,. VIS, and near IR region. .... ciency in most flashlamp pumped dye lasers. It is used as reference dye .... have led to superior laser dyes with increased photostabilities. For instance ...

  18. DNA Assembly in 3D Printed Fluidics.

    Directory of Open Access Journals (Sweden)

    William G Patrick

    Full Text Available The process of connecting genetic parts-DNA assembly-is a foundational technology for synthetic biology. Microfluidics present an attractive solution for minimizing use of costly reagents, enabling multiplexed reactions, and automating protocols by integrating multiple protocol steps. However, microfluidics fabrication and operation can be expensive and requires expertise, limiting access to the technology. With advances in commodity digital fabrication tools, it is now possible to directly print fluidic devices and supporting hardware. 3D printed micro- and millifluidic devices are inexpensive, easy to make and quick to produce. We demonstrate Golden Gate DNA assembly in 3D-printed fluidics with reaction volumes as small as 490 nL, channel widths as fine as 220 microns, and per unit part costs ranging from $0.61 to $5.71. A 3D-printed syringe pump with an accompanying programmable software interface was designed and fabricated to operate the devices. Quick turnaround and inexpensive materials allowed for rapid exploration of device parameters, demonstrating a manufacturing paradigm for designing and fabricating hardware for synthetic biology.

  19. Measurement of microchannel fluidic resistance with a standard voltage meter

    International Nuclear Information System (INIS)

    Godwin, Leah A.; Deal, Kennon S.; Hoepfner, Lauren D.; Jackson, Louis A.; Easley, Christopher J.

    2013-01-01

    Highlights: ► Standard voltage meter used to measure fluidic resistance. ► Manual measurement takes a few seconds, akin to electrical resistance measurements. ► Measurement error is reduced compared to other approaches. ► Amenable to dynamic measurement of fluidic resistance. - Abstract: A simplified method for measuring the fluidic resistance (R fluidic ) of microfluidic channels is presented, in which the electrical resistance (R elec ) of a channel filled with a conductivity standard solution can be measured and directly correlated to R fluidic using a simple equation. Although a slight correction factor could be applied in this system to improve accuracy, results showed that a standard voltage meter could be used without calibration to determine R fluidic to within 12% error. Results accurate to within 2% were obtained when a geometric correction factor was applied using these particular channels. When compared to standard flow rate measurements, such as meniscus tracking in outlet tubing, this approach provided a more straightforward alternative and resulted in lower measurement error. The method was validated using 9 different fluidic resistance values (from ∼40 to 600 kPa s mm −3 ) and over 30 separately fabricated microfluidic devices. Furthermore, since the method is analogous to resistance measurements with a voltage meter in electrical circuits, dynamic R fluidic measurements were possible in more complex microfluidic designs. Microchannel R elec was shown to dynamically mimic pressure waveforms applied to a membrane in a variable microfluidic resistor. The variable resistor was then used to dynamically control aqueous-in-oil droplet sizes and spacing, providing a unique and convenient control system for droplet-generating devices. This conductivity-based method for fluidic resistance measurement is thus a useful tool for static or real-time characterization of microfluidic systems.

  20. Fabrication of resonant micro cantilevers with integrated transparent fluidic channel

    DEFF Research Database (Denmark)

    Khan, Faheem; Schmid, Silvan; Davis, Zachary James

    2011-01-01

    Microfabricated cantilevers are proving their potential as excellent tools for analysis applications. In this paper, we describe the design, fabrication and testing of resonant micro cantilevers with integrated transparent fluidic channels. The cantilevers have been devised to measure the density...

  1. Pulsatile fluidic pump demonstration and predictive model application

    International Nuclear Information System (INIS)

    Morgan, J.G.; Holland, W.D.

    1986-04-01

    Pulsatile fluidic pumps were developed as a remotely controlled method of transferring or mixing feed solutions. A test in the Integrated Equipment Test facility demonstrated the performance of a critically safe geometry pump suitable for use in a 0.1-ton/d heavy metal (HM) fuel reprocessing plant. A predictive model was developed to calculate output flows under a wide range of external system conditions. Predictive and experimental flow rates are compared for both submerged and unsubmerged fluidic pump cases

  2. Fluidic control of reactor flow—Pressure drop matching

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2009-01-01

    Roč. 87, č. 6A (2009), s. 817-832 ISSN 0263-8762 R&D Projects: GA AV ČR IAA200760705; GA ČR GA101/07/1499 Institutional research plan: CEZ:AV0Z20760514 Keywords : fluidics * matching of fluidic devices * dissipance Subject RIV: BK - Fluid Dynamics Impact factor: 1.223, year: 2009 http://www.sciencedirect.com/science

  3. Microbubble generator excited by fluidic oscillator's third harmonic frequency

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2014-01-01

    Roč. 92, č. 9 (2014), s. 1603-1615 ISSN 0263-8762 R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : fluidic oscillator * microbubble generation * fluidic feedback loop Subject RIV: BK - Fluid Dynamics Impact factor: 2.348, year: 2014 http://dx.doi.org/10.1016/j.cherd.2013.12.004

  4. Ring Theory

    CERN Document Server

    Jara, Pascual; Torrecillas, Blas

    1988-01-01

    The papers in this proceedings volume are selected research papers in different areas of ring theory, including graded rings, differential operator rings, K-theory of noetherian rings, torsion theory, regular rings, cohomology of algebras, local cohomology of noncommutative rings. The book will be important for mathematicians active in research in ring theory.

  5. Integration of fluidic jet actuators in composite structures

    Science.gov (United States)

    Schueller, Martin; Lipowski, Mathias; Schirmer, Eckart; Walther, Marco; Otto, Thomas; Geßner, Thomas; Kroll, Lothar

    2015-04-01

    Fluidic Actuated Flow Control (FAFC) has been introduced as a technology that influences the boundary layer by actively blowing air through slots or holes in the aircraft skin or wind turbine rotor blade. Modern wing structures are or will be manufactured using composite materials. In these state of the art systems, AFC actuators are integrated in a hybrid approach. The new idea is to directly integrate the active fluidic elements (such as SJAs and PJAs) and their components in the structure of the airfoil. Consequently, the integration of such fluidic devices must fit the manufacturing process and the material properties of the composite structure. The challenge is to integrate temperature-sensitive active elements and to realize fluidic cavities at the same time. The transducer elements will be provided for the manufacturing steps using roll-to-roll processes. The fluidic parts of the actuators will be manufactured using the MuCell® process that provides on the one hand the defined reproduction of the fluidic structures and, on the other hand, a high light weight index. Based on the first design concept, a demonstrator was developed in order to proof the design approach. The output velocity on the exit was measured using a hot-wire anemometer.

  6. Phononic fluidics: acoustically activated droplet manipulations

    Science.gov (United States)

    Reboud, Julien; Wilson, Rab; Bourquin, Yannyk; Zhang, Yi; Neale, Steven L.; Cooper, Jonathan M.

    2011-02-01

    Microfluidic systems have faced challenges in handling real samples and the chip interconnection to other instruments. Here we present a simple interface, where surface acoustic waves (SAWs) from a piezoelectric device are coupled into a disposable acoustically responsive microfluidic chip. By manipulating droplets, SAW technologies have already shown their potential in microfluidics, but it has been limited by the need to rely upon mixed signal generation at multiple interdigitated electrode transducers (IDTs) and the problematic resulting reflections, to allow complex fluid operations. Here, a silicon chip was patterned with phononic structures, engineering the acoustic field by using a full band-gap. It was simply coupled to a piezoelectric LiNbO3 wafer, propagating the SAW, via a thin film of water. Contrary to the use of unstructured superstrates, phononic metamaterials allowed precise spatial control of the acoustic energy and hence its interaction with the liquids placed on the surface of the chip, as demonstrated by simulations. We further show that the acoustic frequency influences the interaction between the SAW and the phononic lattice, providing a route to programme complex fluidic manipulation onto the disposable chip. The centrifugation of cells from a blood sample is presented as a more practical demonstration of the potential of phononic crystals to realize diagnostic systems.

  7. Measurement of microchannel fluidic resistance with a standard voltage meter.

    Science.gov (United States)

    Godwin, Leah A; Deal, Kennon S; Hoepfner, Lauren D; Jackson, Louis A; Easley, Christopher J

    2013-01-03

    A simplified method for measuring the fluidic resistance (R(fluidic)) of microfluidic channels is presented, in which the electrical resistance (R(elec)) of a channel filled with a conductivity standard solution can be measured and directly correlated to R(fluidic) using a simple equation. Although a slight correction factor could be applied in this system to improve accuracy, results showed that a standard voltage meter could be used without calibration to determine R(fluidic) to within 12% error. Results accurate to within 2% were obtained when a geometric correction factor was applied using these particular channels. When compared to standard flow rate measurements, such as meniscus tracking in outlet tubing, this approach provided a more straightforward alternative and resulted in lower measurement error. The method was validated using 9 different fluidic resistance values (from ∼40 to 600kPa smm(-3)) and over 30 separately fabricated microfluidic devices. Furthermore, since the method is analogous to resistance measurements with a voltage meter in electrical circuits, dynamic R(fluidic) measurements were possible in more complex microfluidic designs. Microchannel R(elec) was shown to dynamically mimic pressure waveforms applied to a membrane in a variable microfluidic resistor. The variable resistor was then used to dynamically control aqueous-in-oil droplet sizes and spacing, providing a unique and convenient control system for droplet-generating devices. This conductivity-based method for fluidic resistance measurement is thus a useful tool for static or real-time characterization of microfluidic systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. A characteristic analysis of the fluidic muscle cylinder

    Science.gov (United States)

    Kim, Dong-Soo; Bae, Sang-Kyu; Hong, Sung-In

    2005-12-01

    The fluidic muscle cylinder consists of an air bellows tube, flanges and lock nuts. It's features are softness of material and motion, simplicity of structure, low production cost and high power efficiency. Recently, unlikely the pneumatic cylinder, the fluidic muscle cylinder without air leakage, stick slip, friction, and seal was developed as a new concept actuator. It has the characteristics such as light weight, low price, high response, durable design, long life, high power, high contraction, which is innovative product fulfilling RT(Robot Technology) which is one of the nation-leading next generation strategy technologies 6T as well as cleanness technology. The application fields of the fluidic muscle cylinder are so various like fatigue tester, brake, accelerator, high technology testing device such as driving simulator, precise position, velocity, intelligent servo actuator under special environment such as load controlling system, and intelligent robot. In this study, we carried out the finite element modeling and analysis about the main design variables such as contraction ration and force, diameter increment of fluidic muscle cylinder. On the basis of finite element analysis, the prototype of fluidic muscle cylinder was manufactured and tested. Finally, we compared the results between the test and the finite element analysis.

  9. Integrated electronics and fluidic MEMS for bioengineering

    Science.gov (United States)

    Fok, Ho Him Raymond

    Microelectromechanical systems (MEMS) and microelectronics have become enabling technologies for many research areas. This dissertation presents the use of fluidic MEMS and microelectronics for bioengineering applications. In particular, the versatility of MEMS and microelectronics is highlighted by the presentation of two different applications, one for in-vitro study of nano-scale dynamics during cell division and one for in-vivo monitoring of biological activities at the cellular level. The first application of an integrated system discussed in this dissertation is to utilize fluidic MEMS for studying dynamics in the mitotic spindle, which could lead to better chemotherapeutic treatments for cancer patients. Previous work has developed the use of electrokinetic phenomena on the surface of a glass-based platform to assemble microtubules, the building blocks of mitotic spindles. Nevertheless, there are two important limitations of this type of platform. First, an unconventional microfabrication process is necessary for the glass-based platform, which limits the utility of this platform. In order to overcome this limitation, in this dissertation a convenient microfluidic system is fabricated using a negative photoresist called SU-8. The fabrication process for the SU-8-based system is compatible with other fabrication techniques used in developing microelectronics, and this compatibility is essential for integrating electronics for studying dynamics in the mitotic spindle. The second limitation of the previously-developed glass-based platform is its lack of bio-compatibility. For example, microtubules strongly interact with the surface of the glass-based platform, thereby hindering the study of dynamics in the mitotic spindle. This dissertation presents a novel approach for assembling microtubules away from the surface of the platform, and a fabrication process is developed to assemble microtubules between two self-aligned thin film electrodes on thick SU-8

  10. Quasi-static analysis and control of planer and spatial bending fluidic actuator

    OpenAIRE

    Chang, Benjamin Che-Ming

    2011-01-01

    This work presents a novel silicone-based millimetre scale bending fluidic actuator. Two designs of the bending fluidic actuator are studied: a planer actuator that bends about one axis; and a spatial actuator able to bend about two orthogonal axes. The unique parallel micro-channel design of the fluidic actuators enables operation at low working pressures, while at the same time having a very limited thickness expansion during pressurization. The fluidic actuators can be easily scaled to des...

  11. Fluidics platform and method for sample preparation and analysis

    Science.gov (United States)

    Benner, W. Henry; Dzenitis, John M.; Bennet, William J.; Baker, Brian R.

    2014-08-19

    Herein provided are fluidics platform and method for sample preparation and analysis. The fluidics platform is capable of analyzing DNA from blood samples using amplification assays such as polymerase-chain-reaction assays and loop-mediated-isothermal-amplification assays. The fluidics platform can also be used for other types of assays and analyzes. In some embodiments, a sample in a sealed tube can be inserted directly. The following isolation, detection, and analyzes can be performed without a user's intervention. The disclosed platform may also comprises a sample preparation system with a magnetic actuator, a heater, and an air-drying mechanism, and fluid manipulation processes for extraction, washing, elution, assay assembly, assay detection, and cleaning after reactions and between samples.

  12. Research of Dielectric Breakdown Micro fluidic Sampling Chip

    International Nuclear Information System (INIS)

    Jiang, F.; Lei, Y.; Yu, J.

    2013-01-01

    Micro fluidic chip is mainly driven electrically by external electrode and array electrode, but there are certain disadvantages in both of ways, which affect the promotion and application of micro fluidic technology. This paper discusses a scheme that uses the conductive solution in a microchannel made by PDMS, replacing electrodes and the way of dielectric breakdown to achieve microfluidic chip driver. It could reduce the driving voltage and simplify the chip production process. To prove the feasibility of this method, we produced a micro fluidic chip used in PDMS material with the lithography technology and experimented it. The results showed that using the dielectric breakdown to achieve microfluidic chip driver is feasible, and it has certain application prospect.

  13. Numerical Studies of a Fluidic Diverter for Flow Control

    Science.gov (United States)

    Gokoglu, Suleyman A.; Kuczmarski, Maria A.; Culley, Dennis E.; Raghu, Surya

    2009-01-01

    The internal flow structure in a specific fluidic diverter is studied over a range from low subsonic to sonic inlet conditions by a time-dependent numerical analysis. The understanding will aid in the development of fluidic diverters with minimum pressure losses and advanced designs of flow control actuators. The velocity, temperature and pressure fields are calculated for subsonic conditions and the self-induced oscillatory behavior of the flow is successfully predicted. The results of our numerical studies have excellent agreement with our experimental measurements of oscillation frequencies. The acoustic speed in the gaseous medium is determined to be a key factor for up to sonic conditions in governing the mechanism of initiating the oscillations as well as determining its frequency. The feasibility of employing plasma actuation with a minimal perturbation level is demonstrated in steady-state calculations to also produce oscillation frequencies of our own choosing instead of being dependent on the fixed-geometry fluidic device.

  14. Dampers, fluidics and the failsafe fallacy [fire protection

    International Nuclear Information System (INIS)

    Dann, M.; Hodgson, T.

    1989-01-01

    The fire protection practices adopted at nuclear power stations generally follow the well established principles used throughout industry. Unfortunately, there is one particular area - the interaction with heating, ventilation and air conditioning (HVAC) services - where nuclear power stations pose a seemingly insoluble conflict: that between the need to contain and the need to ventilate. Now, however, solid state fire dampers using power fluidics may promise a solution. One of the key characteristics of a fluidic device is that it is 'solid state', i.e. it has no moving parts. Because of this, its inherent reliability is orders of magnitude greater than a mechanical device. (U.K.)

  15. New Fluidic-Oscillator Concept for Flow-Separation Control

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Zhong, S.; Rasheed, F.

    2013-01-01

    Roč. 51, č. 2 (2013), s. 397-405 ISSN 0001-1452 R&D Projects: GA ČR(CZ) GCP101/11/J019; GA TA ČR TA02020795; GA ČR GA13-23046S Institutional research plan: CEZ:AV0Z20760514 Institutional support: RVO:61388998 Keywords : fluidics * fluidic oscillator * resonator Subject RIV: BK - Fluid Dynamics Impact factor: 1.165, year: 2013 http://arc.aiaa.org/doi/abs/10.2514/1.J051791?journalCode=aiaaj

  16. Comparison of cumulative dissipated energy delivered by active-fluidic pressure control phacoemulsification system versus gravity-fluidics.

    Science.gov (United States)

    Gonzalez-Salinas, Roberto; Garza-Leon, Manuel; Saenz-de-Viteri, Manuel; Solis-S, Juan C; Gulias-Cañizo, Rosario; Quiroz-Mercado, Hugo

    2017-08-22

    To compare the cumulative dissipated energy (CDE), aspiration time and estimated aspiration fluid utilized during phacoemulsification cataract surgery using two phacoemulsification systems . A total of 164 consecutive eyes of 164 patients undergoing cataract surgery, 82 in the active-fluidics group and 82 in the gravity-fluidics group were enrolled in this study. Cataracts graded NII to NIII using LOCS II were included. Each subject was randomly assigned to one of the two platforms with a specific configuration: the active-fluidics Centurion ® phacoemulsification system or the gravity-fluidics Infiniti ® Vision System. CDE, aspiration time (AT) and the mean estimated aspiration fluid (EAF) were registered and compared. A mean age of 68.3 ± 9.8 years was found (range 57-92 years), and no significant difference was evident between both groups. A positive correlation between the CDE values obtained by both platforms was verified (r = 0.271, R 2  = 0.073, P = 0.013). Similarly, a significant correlation was evidenced for the EAF (r = 0.334, R 2  = 0.112, P = 0.046) and AT values (r = 0.156, R 2  = 0.024, P = 0.161). A statistically significantly lower CDE count, aspiration time and estimated fluid were obtained using the active-fluidics configuration when compared to the gravity-fluidics configuration by 19.29, 12.10 and 9.29%, respectively (P = 0.001, P Infiniti ® IP system for NII and NIII cataracts.

  17. Radiolysis of anthraquinone dyes in aqueous solutions

    International Nuclear Information System (INIS)

    Vysotskaya, N.A.; Bortun, L.N.; Ogurtsov, N.A.; Migdalovich, E.A.; Revina, A.A.; Volodko, V.V.; AN SSSR, Moscow. Inst. Ehlektrokhimii)

    1986-01-01

    The commercial anthraquinone dyes (Dark Blue, Light Blue, Green) in aqueous solutions were shown to be decoloured and degrade under the action of ionizing radiation. The degree of decolouration and degradation of aromatic rings was found to increase in presence of oxygen. Hydroxyl radicals were shown to play the key role in the degradation of the dyes under irradiation. The radiolysis intermediate products were studied using the pulse radiolysis technique. (author)

  18. Rapid development of paper-based fluidic diagnostic devices

    CSIR Research Space (South Africa)

    Smith, S

    2014-11-01

    Full Text Available We present a method for rapid and low-cost development of microfluidic diagnostic devices using paper-based techniques. Specifically, the implementation of fluidic flow paths and electronics on paper are demonstrated, with the goal of producing...

  19. Continuous fabrication of polymeric vesicles and nanotubes with fluidic channe

    NARCIS (Netherlands)

    Peng, F.; Deng, N.-N.; Tu, Y.; van Hest, J.C.M.; Wilson, D.A.

    2017-01-01

    Fluidic channels were employed to induce the self-assembly of poly(ethylene glycol)-b-polystyrene into polymeric vesicles and nanotubes. The laminar flow in the device enables controlled diffusion of two miscible liquids at the phase boundary, leading to the formation of homogeneous polymeric

  20. CFD Analysis of the Safety Injection Tank and Fluidic Device

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Oan; Nietiadi, Yohanes Setiawan; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of); Addad, Yacine [KUSTAR, Abu Dhabi (United Arab Emirates)

    2016-05-15

    One of the most important components in the ECCS is the safety injection tank (SIT). Inside the SIT, a fluidic device is installed, which passively controls the mass flow of the safety injection and eliminates the need for low pressure safety injection pumps. As more passive safety mechanisms are being pursued, it has become more important to understand flow structure and the loss mechanism within the fluidic device. Current computational fluid dynamics (CFD) calculations have had limited success in predicting the fluid flow accurately. This study proposes to find a more exact result using CFD and more realistic modeling to predict the performance during accident scenarios more accurately. The safety injection tank with fluidic device was analyzed thoroughly using CFD. The preliminary calculation used 60,000 meshes for the initial test calculation. The results fit the experimental results surprisingly despite its coarse grid. Nonetheless, the mesh resolution was increased to capture the vortex in the fluidic device precisely. Once a detailed CFD computation is finished, a small-scale experiment will be conducted for the given conditions. Using the experimental results and the CFD model, physical models can be improved to fit the results more accurately.

  1. Dynamics of fluidic devices with applications to rotor pitch links

    Science.gov (United States)

    Scarborough, Lloyd H., III

    Coupling a Fluidic Flexible Matrix Composite (F2MC) to an air-pressurized fluid port produces a fundamentally new class of tunable vibration isolator. This fluidlastic device provides significant vibration reduction at an isolation frequency that can be tuned over a broad frequency range. The material properties and geometry of the F2MC element, as well as the port inertance, determine the isolation frequency. A unique feature of this device is that the port inertance depends on pressure so the isolation frequency can be adjusted by changing the air pressure. For constant port inertance, the isolation frequency is largely independent of the isolated mass so the device is robust to changes in load. A nonlinear model is developed to predict isolator length and port inertance. The model is linearized and the frequency response calculated. Experiments agree with theory, demonstrating a tunable isolation range from 9 Hz to 36 Hz and transmitted force reductions of up to 60 dB at the isolation frequency. Replacing rigid pitch links on rotorcraft with coupled fluidic devices has the potential to reduce the aerodynamic blade loads transmitted through the pitch links to the swashplate. Analytical models of two fluidic devices coupled with three different fluidic circuits are derived. These passive fluidlastic systems are tuned, by varying the fluid inertances and capacitances of each fluidic circuit, to reduce the transmitted pitch-link loads. The different circuit designs result in transmitted pitch link loads reduction at up to three main rotor harmonics. The simulation results show loads reduction at the targeted out-of-phase and in-phase harmonics of up to 88% and 93%, respectively. Experimental validation of two of the fluidic circuits demonstrates loads reduction of up to 89% at the out-of-phase isolation frequencies and up to 81% at the in-phase isolation frequencies. Replacing rigid pitch links on rotorcraft with fluidic pitch links changes the blade torsional

  2. Black rings

    International Nuclear Information System (INIS)

    Emparan, Roberto; Reall, Harvey S

    2006-01-01

    A black ring is a five-dimensional black hole with an event horizon of topology S 1 x S 2 . We provide an introduction to the description of black rings in general relativity and string theory. Novel aspects of the presentation include a new approach to constructing black ring coordinates and a critical review of black ring microscopics. (topical review)

  3. White Ring; White ring

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, H.; Yuzawa, H. [Nikken Sekkei Ltd., Osaka (Japan)

    1998-01-05

    White Ring is a citizen`s gymnasium used for figure skating and short track speed skating games of 18th Winter Olympic Games in 1998. White Ring is composed of a main-arena and a sub-arena. For the main-arena with an area 41mtimes66m, an ice link can be made by disengaging the potable floor and by flowing brine in the bridged polystyrene pipes embedded in the concrete floor. Due to the fortunate groundwater in this site, well water is used for the outside air treatment energy in 63% during heating and in 35% during cooling. Ammonia is used as a cooling medium for refrigerating facility. For the heating of audience area in the large space, heat load from the outside is reduced by enhancing the heat insulation performance of the roof of arena. The audience seats are locally heated using heaters. For the White Ring, high quality environment is realized for games through various functions of the large-scale roof of the large space. Success of the big event was expected. 15 figs., 4 tabs.

  4. Nano-dyeing

    Directory of Open Access Journals (Sweden)

    Ning Cui-Juan

    2016-01-01

    Full Text Available Dyeing nanofibers is a frontier of both modern textile engineering and nanotechnology. This paper suggest a feasible method for dyeing nanofibers with a natural red (Roselle Calyx by bubble electrospinning. Reactive dye (Red S3B and acid dye (Red 2B were also used in the experiment for comparison. The dyeing process was finished during the spinning process.

  5. pH-Sensitive Hydrogel for Micro-Fluidic Valve

    Directory of Open Access Journals (Sweden)

    Zhengzhi Yang

    2012-07-01

    Full Text Available The deformation behavior of a pH-sensitive hydrogel micro-fluidic valve system is investigated using inhomogeneous gel deformation theory, in which the fluid-structure interaction (FSI of the gel solid and fluid flow in the pipe is considered. We use a finite element method with a well adopted hydrogel constitutive equation, which is coded in commercial software, ABAQUS, to simulate the hydrogel valve swelling deformation, while FLUENT is adopted to model the fluid flow in the pipe of the hydrogel valve system. The study demonstrates that FSI significantly affects the gel swelling deformed shapes, fluid flow pressure and velocity patterns. FSI has to be considered in the study on fluid flow regulated by hydrogel microfluidic valve. The study provides a more accurate and adoptable model for future design of new pH-sensitive hydrogel valves, and also gives a useful guideline for further studies on hydrogel fluidic applications.

  6. Microfluidic hubs, systems, and methods for interface fluidic modules

    Science.gov (United States)

    Bartsch, Michael S; Claudnic, Mark R; Kim, Hanyoup; Patel, Kamlesh D; Renzi, Ronald F; Van De Vreugde, James L

    2015-01-27

    Embodiments of microfluidic hubs and systems are described that may be used to connect fluidic modules. A space between surfaces may be set by fixtures described herein. In some examples a fixture may set substrate-to-substrate spacing based on a distance between registration surfaces on which the respective substrates rest. Fluidic interfaces are described, including examples where fluid conduits (e.g. capillaries) extend into the fixture to the space between surfaces. Droplets of fluid may be introduced to and/or removed from microfluidic hubs described herein, and fluid actuators may be used to move droplets within the space between surfaces. Continuous flow modules may be integrated with the hubs in some examples.

  7. Development of a continuous-flow fluidic pump

    International Nuclear Information System (INIS)

    Robinson, S.M.

    1985-08-01

    A study was made of a fluidic pump which utilizes gas pistons, a venturi-like reverse-flow-diverter, and a planar Y-type flow junction to produce a continuous flow of liquid from a system containing no moving parts. The study included an evaluation of the system performance and of methods for controlling the stability of the fluidic system. A mathematical model of the system was developed for steady-state operation using accepted theories of fluid mechanics. Although more elaborate models are needed for detailed design and optimization of specific systems, the model determined some of the main factors controlling the system performance and will be used in the development of more accurate models. 49 refs., 39 figs., 9 tabs

  8. Transient Characteristics of a Fluidic Device for Circulatory Jet Flow.

    Science.gov (United States)

    Phan, Hoa Thanh; Dinh, Thien Xuan; Bui, Phong Nhu; Dau, Van Thanh

    2018-03-13

    In this paper, we report on the design, simulation, and experimental analysis of a miniaturized device that can generate multiple circulated jet flows. The device is actuated by a lead zirconate titanate (PZT) diaphragm. The flows in the device were studied using three-dimensional transient numerical simulation with the programmable open source OpenFOAM and was comparable to the experimental result. Each flow is verified by two hotwires mounted at two positions inside each consisting chamber. The experiment confirmed that the flow was successfully created, and it demonstrated good agreement with the simulation. In addition, a prospective application of the device as an angular rate sensor is also demonstrated. The device is robust, is minimal in size, and can contribute to the development of multi-axis fluidic inertial sensors, fluidic amplifiers, gas mixing, coupling, and analysis.

  9. Optimum design of A fluidic micro-oscillator

    International Nuclear Information System (INIS)

    Noh, Yoojeong; Youn, Sungkie; Kim, Moonuhn

    2002-01-01

    A fluidic micro-oscillator is used to control a linear tool as generating an oscillating fluid jet at its two output ports. The linear tool is a linear actuator that transforms the fluidic energy into mechanical energy via a double acting piston placed in linear actuator housing. Together the two devices form a dynamic microsystem that can be used in medical application. In this paper, we intend to optimize the geometry of the fluidic micro-oscillator. A basic oscillator design is varied in terms of supply nozzle geometry, length of the feedback channels, wall angle, control port width and etc. It was found that characteristics parameters such as frequency, volume flow and output pressure depends strongly on above mentioned design parameters. According to above the observations, we can determine an object function and design variables. Since we eventually have to maximize force to drive and steer a cutting tool, the output pressure difference is chosen as an object function and nozzle width, feedback channel, control port width, distance between splitter and nozzle can be chosen as the design variables. As a result of such design optimization, we can obtain the maximum force. At this time we maximize the output pressure difference using shape optimization

  10. Vortex rings

    CERN Document Server

    Akhmetov, D G

    2009-01-01

    This text on vortex rings covers their theoretical foundation, systematic investigations, and practical applications such as the extinction of fires at gushing oil wells. It pays special attention to the formation and motion of turbulent vortex rings.

  11. FLUIDICS: THE ANSWER TO PROBLEMS OF HANDLING HAZARDOUS FLUIDS – A SURVEY

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2012-01-01

    Roč. 2, č. 2 (2012), s. 167-183 ISSN 2041-9031 R&D Projects: GA ČR(CZ) GCP101/11/J019; GA TA ČR TA02020795 Institutional research plan: CEZ:AV0Z20760514 Keywords : fluidic pumps * fluidics * fluidic valves Subject RIV: BK - Fluid Dynamics http://journals.witpress.com/journals.asp?iID=78#papers

  12. Hair dye poisoning

    Science.gov (United States)

    Hair tint poisoning ... Different types of hair dye contain different harmful ingredients. The harmful ingredients in permanent dyes are: Naphthylamine Other aromatic amino compounds Phenylenediamines Toluene ...

  13. Packaged integrated opto-fluidic solution for harmful fluid analysis

    Science.gov (United States)

    Allenet, T.; Bucci, D.; Geoffray, F.; Canto, F.; Couston, L.; Jardinier, E.; Broquin, J.-E.

    2016-02-01

    Advances in nuclear fuel reprocessing have led to a surging need for novel chemical analysis tools. In this paper, we present a packaged lab-on-chip approach with co-integration of optical and micro-fluidic functions on a glass substrate as a solution. A chip was built and packaged to obtain light/fluid interaction in order for the entire device to make spectral measurements using the photo spectroscopy absorption principle. The interaction between the analyte solution and light takes place at the boundary between a waveguide and a fluid micro-channel thanks to the evanescent part of the waveguide's guided mode that propagates into the fluid. The waveguide was obtained via ion exchange on a glass wafer. The input and the output of the waveguides were pigtailed with standard single mode optical fibers. The micro-scale fluid channel was elaborated with a lithography procedure and hydrofluoric acid wet etching resulting in a 150+/-8 μm deep channel. The channel was designed with fluidic accesses, in order for the chip to be compatible with commercial fluidic interfaces/chip mounts. This allows for analyte fluid in external capillaries to be pumped into the device through micro-pipes, hence resulting in a fully packaged chip. In order to produce this co-integrated structure, two substrates were bonded. A study of direct glass wafer-to-wafer molecular bonding was carried-out to improve detector sturdiness and durability and put forward a bonding protocol with a bonding surface energy of γ>2.0 J.m-2. Detector viability was shown by obtaining optical mode measurements and detecting traces of 1.2 M neodymium (Nd) solute in 12+/-1 μL of 0.01 M and pH 2 nitric acid (HNO3) solvent by obtaining an absorption peak specific to neodymium at 795 nm.

  14. Configurations of Fluidic Actuators for Generation of Hybrid-Synthetic Jets

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2007-01-01

    Roč. 138, - (2007), s. 213-220 ISSN 0924-4247 R&D Projects: GA ČR GA101/07/1499 Institutional research plan: CEZ:AV0Z20760514 Keywords : synthetic jets * fluidics * fluidic alternators Subject RIV: BK - Fluid Dynamics Impact factor: 1.348, year: 2007

  15. Anaerobic azo dye reduction

    OpenAIRE

    Zee, van der, F.P.

    2002-01-01

    Azo dyes, aromatic moieties linked together by azo (-N=N-) chromophores, represent the largest class of dyes used in textile-processing and other industries. The release of these compounds into the environment is undesirable, not only because of their colour, but also because many azo dyes and their breakdown products are toxic and/or mutagenic to life. To remove azo dyes from wastewater, a biological treatment strategy based on anaerobic reduction of the azo dye...

  16. Variable recruitment fluidic artificial muscles: modeling and experiments

    International Nuclear Information System (INIS)

    Bryant, Matthew; Meller, Michael A; Garcia, Ephrahim

    2014-01-01

    We investigate taking advantage of the lightweight, compliant nature of fluidic artificial muscles to create variable recruitment actuators in the form of artificial muscle bundles. Several actuator elements at different diameter scales are packaged to act as a single actuator device. The actuator elements of the bundle can be connected to the fluidic control circuit so that different groups of actuator elements, much like individual muscle fibers, can be activated independently depending on the required force output and motion. This novel actuation concept allows us to save energy by effectively impedance matching the active size of the actuators on the fly based on the instantaneous required load. This design also allows a single bundled actuator to operate in substantially different force regimes, which could be valuable for robots that need to perform a wide variety of tasks and interact safely with humans. This paper proposes, models and analyzes the actuation efficiency of this actuator concept. The analysis shows that variable recruitment operation can create an actuator that reduces throttling valve losses to operate more efficiently over a broader range of its force–strain operating space. We also present preliminary results of the design, fabrication and experimental characterization of three such bioinspired variable recruitment actuator prototypes. (paper)

  17. Rheostatic control of tryptic digestion in a microscale fluidic system

    International Nuclear Information System (INIS)

    Percy, Andrew J.; Schriemer, David C.

    2010-01-01

    Integrated fluidic systems that unite bottom-up and top-down proteomic approaches have the potential to deliver complete protein characterization. To circumvent fraction collection, as is conducted in current blended approaches, a technique to regulate digestion efficiency in a flow-through system is required. The present study examined the concept of regulating tryptic digestion in an immobilized enzyme reactor (IMER), incorporating mixed solvent systems for digestion acceleration. Using ovalbumin, cytochrome c, and myoglobin as protein standards, we demonstrate that tryptic digestion can be efficiently regulated between complete digestion and no digestion extremes by oscillating between 45 and 0% acetonitrile in the fluid stream. Solvent composition was tuned using programmable solvent waveforms in a closed system consisting of the IMER, a sample delivery stream, a dual gradient pumping system and a mass spectrometer. Operation in this rheostatic digestion mode provides access to novel peptide mass maps (due to substrate unfolding hysteresis) as well as the intact protein, in a reproducible and stable fashion. Although cycle times were on the order of 90 s for testing purposes, we show that regulated digestion is sufficiently rapid to be limited by solvent switching efficiency and kinetics of substrate unfolding/folding. Thus, regulated digestion should be useful in blending bottom-up and top-down proteomics in a single closed fluidic system.

  18. Fluidic Sampler. Tanks Focus Area. OST Reference No. 2007

    International Nuclear Information System (INIS)

    1999-01-01

    Problem Definition; Millions of gallons of radioactive and hazardous wastes are stored in underground tanks across the U.S. Department of Energy (DOE) complex. To manage this waste, tank operators need safe, cost-effective methods for mixing tank material, transferring tank waste between tanks, and collecting samples. Samples must be collected at different depths within storage tanks containing various kinds of waste including salt, sludge, and supernatant. With current or baseline methods, a grab sampler or a core sampler is inserted into the tank, waste is maneuvered into the sample chamber, and the sample is withdrawn from the tank. The mixing pumps in the tank, which are required to keep the contents homogeneous, must be shut down before and during sampling to prevent airborne releases. These methods are expensive, require substantial hands-on labor, increase the risk of worker exposure to radiation, and often produce nonrepresentative and unreproducible samples. How It Works: The Fluidic Sampler manufactured by AEA Technology Engineering Services, Inc., enables tank sampling to be done remotely with the mixing pumps in operation. Remote operation minimizes the risk of exposure to personnel and the possibility of spills, reducing associated costs. Sampling while the tank contents are being agitated yields consistently homogeneous, representative samples and facilitates more efficient feed preparation and evaluation of the tank contents. The above-tank portion of the Fluidic Sampler and the replacement plug and pipework that insert through the tank top are shown.

  19. Application of fluidic lens technology to an adaptive holographic optical element see-through autophoropter

    Science.gov (United States)

    Chancy, Carl H.

    A device for performing an objective eye exam has been developed to automatically determine ophthalmic prescriptions. The closed loop fluidic auto-phoropter has been designed, modeled, fabricated and tested for the automatic measurement and correction of a patient's prescriptions. The adaptive phoropter is designed through the combination of a spherical-powered fluidic lens and two cylindrical fluidic lenses that are orientated 45o relative to each other. In addition, the system incorporates Shack-Hartmann wavefront sensing technology to identify the eye's wavefront error and corresponding prescription. Using the wavefront error information, the fluidic auto-phoropter nulls the eye's lower order wavefront error by applying the appropriate volumes to the fluidic lenses. The combination of the Shack-Hartmann wavefront sensor the fluidic auto-phoropter allows for the identification and control of spherical refractive error, as well as cylinder error and axis; thus, creating a truly automated refractometer and corrective system. The fluidic auto-phoropter is capable of correcting defocus error ranging from -20D to 20D and astigmatism from -10D to 10D. The transmissive see-through design allows for the observation of natural scenes through the system at varying object planes with no additional imaging optics in the patient's line of sight. In this research, two generations of the fluidic auto-phoropter are designed and tested; the first generation uses traditional glass optics for the measurement channel. The second generation of the fluidic auto-phoropter takes advantage of the progress in the development of holographic optical elements (HOEs) to replace all the traditional glass optics. The addition of the HOEs has enabled the development of a more compact, inexpensive and easily reproducible system without compromising its performance. Additionally, the fluidic lenses were tested during a National Aeronautics Space Administration (NASA) parabolic flight campaign, to

  20. Tunable Microfluidic Dye Laser

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Helbo, Bjarne; Kutter, Jörg Peter

    2003-01-01

    We present a tunable microfluidic dye laser fabricated in SU-8. The tunability is enabled by integrating a microfluidic diffusion mixer with an existing microfluidic dye laser design by Helbo et al. By controlling the relative flows in the mixer between a dye solution and a solvent......, the concentration of dye in the laser cavity can be adjusted, allowing the wavelength to be tuned. Wavelength tuning controlled by the dye concentration was demonstrated with macroscopic dye lasers already in 1971, but this principle only becomes practically applicable by the use of microfluidic mixing...

  1. ring system

    African Journals Online (AJOL)

    1,3,2-DIAZABORACYCLOALKANE. RING SYSTEM. Negussie Retta" and Robert H. Neilson. 'Department of Chemistry, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia. Department of Chemistry, Texas Christian University.

  2. Chemistry of Natural Dyes

    Indian Academy of Sciences (India)

    scientific principles, and the interaction between the dye and the dyed material is ... Dyes are classified based on their structure, source, method of application .... the right source that gives not only beautiful tones, but colourfast shades as well.

  3. Diffusion driven optofluidic dye lasers encapsulated into polymer chips

    DEFF Research Database (Denmark)

    Wienhold, Tobias; Breithaupt, Felix; Vannahme, Christoph

    2012-01-01

    Lab-on-a-chip systems made of polymers are promising for the integration of active optical elements, enabling e.g. on-chip excitation of fluorescent markers or spectroscopy. In this work we present diffusion operation of tunable optofluidic dye lasers in a polymer foil. We demonstrate that these ......Lab-on-a-chip systems made of polymers are promising for the integration of active optical elements, enabling e.g. on-chip excitation of fluorescent markers or spectroscopy. In this work we present diffusion operation of tunable optofluidic dye lasers in a polymer foil. We demonstrate...... that these first order distributed feedback lasers can be operated for more than 90 min at a pulse repetition rate of 2 Hz without fluidic pumping. Ultra-high output pulse energies of more than 10 μJ and laser thresholds of 2 μJ are achieved for resonator lengths of 3 mm. By introducing comparatively large on......-chip dye solution reservoirs, the required exchange of dye molecules is accomplished solely by diffusion. Polymer chips the size of a microscope cover slip (18 × 18 mm2) were fabricated in batches on a wafer using a commercially available polymer (TOPAS® Cyclic Olefin Copolymer). Thermal imprinting...

  4. Planetary Rings

    Science.gov (United States)

    Nicholson, P. D.

    2001-11-01

    A revolution in the studies in planetary rings studies occurred in the period 1977--1981, with the serendipitous discovery of the narrow, dark rings of Uranus, the first Voyager images of the tenuous jovian ring system, and the many spectacular images returned during the twin Voyager flybys of Saturn. In subsequent years, ground-based stellar occultations, HST observations, and the Voyager flybys of Uranus (1986) and Neptune (1989), as well as a handful of Galileo images, provided much additional information. Along with the completely unsuspected wealth of detail these observations revealed came an unwelcome problem: are the rings ancient or are we privileged to live at a special time in history? The answer to this still-vexing question may lie in the complex gravitational interactions recent studies have revealed between the rings and their retinues of attendant satellites. Among the four known ring systems, we see elegant examples of Lindblad and corotation resonances (first invoked in the context of galactic disks), electromagnetic resonances, spiral density waves and bending waves, narrow ringlets which exhibit internal modes due to collective instabilities, sharp-edged gaps maintained via tidal torques from embedded moonlets, and tenuous dust belts created by meteoroid impact onto parent bodies. Perhaps most puzzling is Saturn's multi-stranded, clumpy F ring, which continues to defy a simple explanation 20 years after it was first glimpsed in grainy images taken by Pioneer 11. Voyager and HST images reveal a complex, probably chaotic, dynamical interaction between unseen parent bodies within this ring and its two shepherd satellites, Pandora and Prometheus. The work described here reflects contributions by Joe Burns, Jeff Cuzzi, Luke Dones, Dick French, Peter Goldreich, Colleen McGhee, Carolyn Porco, Mark Showalter, and Bruno Sicardy, as well as those of the author. This research has been supported by NASA's Planetary Geology and Geophysics program and the

  5. uv dye lasers

    International Nuclear Information System (INIS)

    Abakumov, G.A.; Fadeev, V.V.; Khokhlov, R.V.; Simonov, A.P.

    1975-01-01

    The most important property of visible dye lasers, that is, continuous wavelength tuning, stimulated the search for dyes capable to lase in uv. They were found in 1968. Now the need for tunable uv lasers for applications in spectroscopy, photochemistry, isotope separation, remote air and sea probing, etc. is clearly seen. A review of some recent advances in uv dye lasers is reviewed

  6. Sub-micrometer fluidic channel for measuring photon emitting entities

    Science.gov (United States)

    Stavis, Samuel M; Edel, Joshua B; Samiee, Kevan T; Craighead, Harold G

    2014-11-18

    A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.

  7. Quantum dot conjugates in a sub-micrometer fluidic channel

    Science.gov (United States)

    Stavis, Samuel M.; Edel, Joshua B.; Samiee, Kevan T.; Craighead, Harold G.

    2010-04-13

    A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.

  8. Performance characteristics of a continuous-flow fluidic pump

    International Nuclear Information System (INIS)

    Robinson, S.M.; Counce, R.M.; Smith, G.V.

    1987-01-01

    The fluidic pump is a type of positive-displacement pump in which basic fluid mechanics phenomena are utilized to eliminate valves and other moving parts that are exposed to the fluid being transferred. The version described in this article is powered by gas pressure serving as gas pistons and is virtually maintenance-free. It utilizes two displacement vessels and is designed to produce a steady and continuous liquid flow. This type of pump may be very useful for the transfer of radioactive or hazardous liquids where mechanical maintenance may be difficult or exposure of personnel to the fluid is undesirable. This paper presents experimental and model-predicted characteristics of such systems. The effects of several geometric parameters and operating conditions on the performance of the pump are briefly discussed

  9. Quantum dot conjugates in a sub-micrometer fluidic channel

    Science.gov (United States)

    Stavis, Samuel M [Ithaca, NY; Edel, Joshua B [Brookline, MA; Samiee, Kevan T [Ithaca, NY; Craighead, Harold G [Ithaca, NY

    2008-07-29

    A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.

  10. Fluidic Manufacture of Star-Shaped Gold Nanoparticles.

    Science.gov (United States)

    Silvestri, Alessandro; Lay, Luigi; Psaro, Rinaldo; Polito, Laura; Evangelisti, Claudio

    2017-07-21

    Star-shaped gold nanoparticles (StarAuNPs) are extremely attractive nanomaterials, characterized by localized surface plasmon resonance which could be potentially employed in a large number of applications. However, the lack of a reliable and reproducible synthetic protocols for the production of StarAuNPs is the major limitation to their spreading. For the first time, here we present a robust protocol to manufacture reproducible StarAuNPs by exploiting a fluidic approach. Star-shaped AuNPs have been synthesized by means of a seed-less protocol, employing ascorbic acid as reducing agent at room temperature. Moreover, the versatility of the bench-top microfluidic protocol has been exploited to afford hydrophilic, hydrophobic and solid-supported engineered StarAuNPs, by avoiding intermediate NP purifications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Hybrid Macro-Micro Fluidics System for a Chip-Based Biosensor

    National Research Council Canada - National Science Library

    Tamanaha, C. R; Whitman, L. J; Colton, R.J

    2002-01-01

    We describe the engineering of a hybrid fluidics platform for a chip-based biosensor system that combines high-performance microfluidics components with powerful, yet compact, millimeter-scale pump and valve actuators...

  12. Design and fabrication of a micro fluidic circuit for the separation of micron sized particles

    CSIR Research Space (South Africa)

    Khumalo, F

    2009-07-01

    Full Text Available The development of a micro fluidic circuit for the separation of micro particles is being investigated. There are a wide range of available separation techniques such as acoustic, laminar flow, split flow, optical trapping and centrifugal forces...

  13. Hair dye contact allergy

    DEFF Research Database (Denmark)

    Søsted, Heidi; Rastogi, Suresh Chandra; Andersen, Klaus Ejner

    2004-01-01

    Colouring of hair can cause severe allergic contact dermatitis. The most frequently reported hair dye allergens are p-phenylenediamine (PPD) and toluene-2,5-diamine, which are included in, respectively, the patch test standard series and the hairdressers series. The aim of the present study...... was to identify dye precursors and couplers in hair dyeing products causing clinical hair dye dermatitis and to compare the data with the contents of these compounds in a randomly selected set of similar products. The patient material comprised 9 cases of characteristic clinical allergic hair dye reaction, where...... exposure history and patch testing had identified a specific hair dye product as the cause of the reaction. The 9 products used by the patients were subjected to chemical analysis. 8 hair dye products contained toluene-2,5-diamine (0.18 to 0.98%). PPD (0.27%) was found in 1 product, and m-aminophenol (0...

  14. Storage Rings

    International Nuclear Information System (INIS)

    Fischer, W.

    2010-01-01

    Storage rings are circular machines that store particle beams at a constant energy. Beams are stored in rings without acceleration for a number of reasons (Tab. 1). Storage rings are used in high-energy, nuclear, atomic, and molecular physics, as well as for experiments in chemistry, material and life sciences. Parameters for storage rings such as particle species, energy, beam intensity, beam size, and store time vary widely depending on the application. The beam must be injected into a storage ring but may not be extracted (Fig. 1). Accelerator rings such as synchrotrons are used as storage rings before and after acceleration. Particles stored in rings include electrons and positrons; muons; protons and anti-protons; neutrons; light and heavy, positive and negative, atomic ions of various charge states; molecular and cluster ions, and neutral polar molecules. Spin polarized beams of electrons, positrons, and protons were stored. The kinetic energy of the stored particles ranges from 10 -6 eV to 3.5 x 10 12 eV (LHC, 7 x 10 12 eV planned), the number of stored particles from one (ESR) to 1015 (ISR). To store beam in rings requires bending (dipoles) and transverse focusing (quadrupoles). Higher order multipoles are used to correct chromatic aberrations, to suppress instabilities, and to compensate for nonlinear field errors of dipoles and quadrupoles. Magnetic multipole functions can be combined in magnets. Beams are stored bunched with radio frequency systems, and unbunched. The magnetic lattice and radio frequency system are designed to ensure the stability of transverse and longitudinal motion. New technologies allow for better storage rings. With strong focusing the beam pipe dimensions became much smaller than previously possible. For a given circumference superconducting magnets make higher energies possible, and superconducting radio frequency systems allow for efficient replenishment of synchrotron radiation losses of large current electron or positron beams

  15. Electrospun dye-doped fiber networks: lasing emission from randomly distributed cavities

    DEFF Research Database (Denmark)

    Krammer, Sarah; Vannahme, Christoph; Smith, Cameron

    2015-01-01

    Dye-doped polymer fiber networks fabricated with electrospinning exhibit comb-like laser emission. We identify randomly distributed ring resonators being responsible for lasing emission by making use of spatially resolved spectroscopy. Numerical simulations confirm this result quantitatively....

  16. Micro fluidic System for Culturing and Monitoring of Neuronal Cells and Tissue

    DEFF Research Database (Denmark)

    Bakmand, Tanya; Waagepetersen, Helle S.

    The aim of this Ph.D. project was to combine experience within cell and tissue culturing, electrochemistry and microfabrication in order to develop an in vivo-like fluidic culturing platform, challenging the traditional culturing methods. The first goal was to develope a fluidic system for cultur...... with mass production. The last part of this thesis also includes perspectives on how to expand the latest designed device to facilitate culturing of tissue and co-culturing of cells....

  17. 3D printed fluidics with embedded analytic functionality for automated reaction optimisation

    OpenAIRE

    Andrew J. Capel; Andrew Wright; Matthew J. Harding; George W. Weaver; Yuqi Li; Russell A. Harris; Steve Edmondson; Ruth D. Goodridge; Steven D. R. Christie

    2017-01-01

    Additive manufacturing or ‘3D printing’ is being developed as a novel manufacturing process for the production of bespoke micro and milli-scale fluidic devices. When coupled with online monitoring and optimisation software, this offers an advanced, customised method for performing automated chemical synthesis. This paper reports the use of two additive manufacturing processes, stereolithography and selective laser melting, to create multi-functional fluidic devices with embedded reaction moni...

  18. Topological rings

    CERN Document Server

    Warner, S

    1993-01-01

    This text brings the reader to the frontiers of current research in topological rings. The exercises illustrate many results and theorems while a comprehensive bibliography is also included. The book is aimed at those readers acquainted with some very basic point-set topology and algebra, as normally presented in semester courses at the beginning graduate level or even at the advanced undergraduate level. Familiarity with Hausdorff, metric, compact and locally compact spaces and basic properties of continuous functions, also with groups, rings, fields, vector spaces and modules, and with Zorn''s Lemma, is also expected.

  19. Ring accelerators

    International Nuclear Information System (INIS)

    Gisler, G.; Faehl, R.

    1983-01-01

    We present two-dimensional simulations in (r-z) and r-theta) cylinderical geometries of imploding-liner-driven accelerators of rings of charged particles. We address issues of azimuthal and longitudinal stability of the rings. We discuss self-trapping designs in which beam injection and extraction is aided by means of external cusp fields. Our simulations are done with the 2-1/2-D particle-in-cell plasma simulation code CLINER, which combines collisionless, electromagnetic PIC capabilities with a quasi-MHD finite element package

  20. Ring interferometry

    CERN Document Server

    Malykin, Grigorii B; Zhurov, Alexei

    2013-01-01

    This monograph is devoted to the creation of a comprehensive formalism for quantitative description of polarized modes' linear interaction in modern single-mode optic fibers. The theory of random connections between polarized modes, developed in the monograph, allows calculations of the zero shift deviations for a fiber ring interferometer. The monograph addresses also the

  1. Measuring of nonlinearity of dye doped liquid crystals using of self phase modulation effect

    International Nuclear Information System (INIS)

    Abedi, M.; Jafari, A.; Tajalli, H.

    2007-01-01

    Self phase modulation in dye doped liquid crystals has investigated and the nonlinearity of dye doped liquid crystals is measured by this effect. The Self phase modulation effect can be used for producing optical micro rings that have many applications in photonics and laser industries.

  2. Synthesis and Optical Properties of Trioxatriangulenium Dyes with One and Two Peripheral Amino Substituents

    DEFF Research Database (Denmark)

    Sørensen, Thomas Just; Laursen, Bo Wegge

    2010-01-01

    -substituted triphenylmethylium (TPM) compounds by aromatic nucleophilic substitution with secondary amines and subsequent intramolecular ring closure. The optical properties of the new triangulenium dyes and their TPM precursors were investigated and compared to those of known TPM and xanthenium dyes. The optical properties...

  3. An Evaluation of Power Fluidics Mixing and Pumping for Application in the Single Shell Tank (SST) Retrieval Program

    International Nuclear Information System (INIS)

    CRASS, D.W.

    2001-01-01

    This document is being released for information only. It provides an explanation of fluidics pumping and mixing technology and explores the feasibility of using fluidics technology for the retrieval of S102. It concludes that there are no obvious flaws that would prevent deploying the technology and recommends further development of fluidics technology as a retrieval option. The configuration described herein does not represent the basis for project definition

  4. Geometrical and fluidic tuning of periodically modulated thin metal films

    DEFF Research Database (Denmark)

    Gilardi, Giovanni; Xiao, Sanshui; Beccherelli, Romeo

    2012-01-01

    We numerically demonstrate near-zero transmission of light through two-dimensional arrays of isolated gold rings. The analysis of the device as an optofluidic sensor is presented to demonstrate the tuning of the device in relation to variations of volume and refractive index of an isotropic fluid...... positioned over the structure. We also evaluate the performance of the device with respect to geometrical parameters of the rings....

  5. WATERLESS DYEING [REVIEW

    Directory of Open Access Journals (Sweden)

    DEVRENT Nalan

    2015-05-01

    Full Text Available The textile industry is believed to be one of the biggest consumers of water. Water consumption and exhaustion in dyeing textile materials in conventional methods is an important environmental problem. The cost of waste water treatment will cause a prominent problem in the future as it does today. Increasing consideration of ecologic consequences of industrial processes as well as legislation enforcing the avoidance of environmental problems have caused a reorientation of thinking and promoted projects for replacement of conventional technologies. One of these new technologies is dyeing in supercritical fluids. Dyeing with supercritical carbon dioxide is a favourable concept considering the value of water as a natural resource and the cost of waste water treatment. This dyeing method offers many advantages over conventional aqueous dyeing: During this dyeing process no water is used, therefore there is no waste water problem, no other chemicals are required; the carbon dioxide can be recycled; the dystuff which is not adsorbed on the substrate can be collected and reused; The necessary energy consumption in this process is relatively lower than is needed to heat water in conventional methods of dyeing. Due to unnecessary of drying process, it helps to save both energy and time; and dyeing cycle is shorter compared with traditional methods. In addition carbon dioxide is non-toxic and non-flammable. Supercritical fluid, supercritical dyeing, disperse dyestuffs, solid-fluid equilibrium

  6. Performance Verification for Safety Injection Tank with Fluidic Device

    International Nuclear Information System (INIS)

    Yune, Seok Jeong; Kim, Da Yong

    2014-01-01

    In LBLOCA, the SITs of a conventional nuclear power plant deliver excessive cooling water to the reactor vessel causing the water to flow into the containment atmosphere. In an effort to make it more efficient, Fluidic Device (FD) is installed inside a SIT of Advanced Power Reactor 1400 (APR 1400). FD, a complete passive controller which doesn't require actuating power, controls injection flow rates which are susceptible to a change in the flow resistance inside a vortex chamber of FD. When SIT Emergency Core Cooling (ECC) water level is above the top of the stand pipe, the water enters the vortex chamber through both the top of the stand pipe and the control ports resulting in injection of the water at a large flow rate. When the water level drops below the top of the stand pipe, the water only enters the vortex chamber through the control ports resulting in vortex formation in the vortex chamber and a relatively small flow injection. Performance verification of SIT shall be carried out because SITs play an integral role to mitigate accidents. In this paper, the performance verification method of SIT with FD is presented. In this paper, the equations for calculation of flow resistance coefficient (K) are induced to evaluate on-site performance of APR 1400 SIT with FD. Then, the equations are applied to the performance verification of SIT with FD and good results are obtained

  7. Fluidic Vectoring of a Planar Incompressible Jet Flow

    Science.gov (United States)

    Mendez, Miguel Alfonso; Scelzo, Maria Teresa; Enache, Adriana; Buchlin, Jean-Marie

    2018-06-01

    This paper presents an experimental, a numerical and a theoretical analysis of the performances of a fluidic vectoring device for controlling the direction of a turbulent, bi-dimensional and low Mach number (incompressible) jet flow. The investigated design is the co-flow secondary injection with Coanda surface, which allows for vectoring angles up to 25° with no need of moving mechanical parts. A simple empirical model of the vectoring process is presented and validated via experimental and numerical data. The experiments consist of flow visualization and image processing for the automatic detection of the jet centerline; the numerical simulations are carried out solving the Unsteady Reynolds Average Navier- Stokes (URANS) closed with the k - ω SST turbulence model, using the PisoFoam solver from OpenFOAM. The experimental validation on three different geometrical configurations has shown that the model is capable of providing a fast and reliable evaluation of the device performance as a function of the operating conditions.

  8. Fluidic actuators for active flow control on airframe

    Science.gov (United States)

    Schueller, M.; Weigel, P.; Lipowski, M.; Meyer, M.; Schlösser, P.; Bauer, M.

    2016-04-01

    One objective of the European Projects AFLoNext and Clean Sky 2 is to apply Active Flow Control (AFC) on the airframe in critical aerodynamic areas such as the engine/wing junction or the outer wing region for being able to locally improve the aerodynamics in certain flight conditions. At the engine/wing junction, AFC is applied to alleviate or even eliminate flow separation at low speeds and high angle of attacks likely to be associated with the integration of underwing- mounted Ultra High Bypass Ratio (UHBR) engines and the necessary slat-cut-outs. At the outer wing region, AFC can be used to allow more aggressive future wing designs with improved performance. A relevant part of the work on AFC concepts for airframe application is the development of suitable actuators. Fluidic Actuated Flow Control (FAFC) has been introduced as a Flow Control Technology that influences the boundary layer by actively blowing air through slots or holes out of the aircraft skin. FAFC actuators can be classified by their Net Mass Flux and accordingly divided into ZNMF (Zero Net Mass Flux) and NZNMF (Non Zero Net-Mass-Flux) actuators. In the frame of both projects, both types of the FAFC actuator concepts are addressed. In this paper, the objectives of AFC on the airframe is presented and the actuators that are used within the project are discussed.

  9. Dye Sensitizers for Photodynamic Therapy

    Directory of Open Access Journals (Sweden)

    Harold S. Freeman

    2013-03-01

    Full Text Available Photofrin® was first approved in the 1990s as a sensitizer for use in treating cancer via photodynamic therapy (PDT. Since then a wide variety of dye sensitizers have been developed and a few have been approved for PDT treatment of skin and organ cancers and skin diseases such as acne vulgaris. Porphyrinoid derivatives and precursors have been the most successful in producing requisite singlet oxygen, with Photofrin® still remaining the most efficient sensitizer (quantum yield = 0.89 and having broad food and drug administration (FDA approval for treatment of multiple cancer types. Other porphyrinoid compounds that have received approval from US FDA and regulatory authorities in other countries include benzoporphyrin derivative monoacid ring A (BPD-MA, meta-tetra(hydroxyphenylchlorin (m-THPC, N-aspartyl chlorin e6 (NPe6, and precursors to endogenous protoporphyrin IX (PpIX: 1,5-aminolevulinic acid (ALA, methyl aminolevulinate (MAL, hexaminolevulinate (HAL. Although no non-porphyrin sensitizer has been approved for PDT applications, a small number of anthraquinone, phenothiazine, xanthene, cyanine, and curcuminoid sensitizers are under consideration and some are being evaluated in clinical trials. This review focuses on the nature of PDT, dye sensitizers that have been approved for use in PDT, and compounds that have entered or completed clinical trials as PDT sensitizers.

  10. Phenothiazine-Based Dyes in Solar Cell Technology

    Directory of Open Access Journals (Sweden)

    Andrei Bejan

    2017-12-01

    Full Text Available Phenothiazine is a fused heterocyclic ring with strong electron-donating character which makes it an important building block for designing organic materials for solar cells applications. The present paper reviews the most recent achievements of phenothiazine-based compounds as dyes in solar cells, with special emphasis on the structure – performance relationship.

  11. Anaerobic azo dye reduction

    NARCIS (Netherlands)

    Zee, van der F.P.

    2002-01-01

    Azo dyes, aromatic moieties linked together by azo (-N=N-) chromophores, represent the largest class of dyes used in textile-processing and other industries. The release of these compounds into the environment is undesirable, not only because of their colour, but also

  12. for aqueous dye lasers

    Indian Academy of Sciences (India)

    2014-02-12

    Feb 12, 2014 ... inclusion complex of RhB with the container molecule cucurbit[7]uril (CB[7]). Keywords. Temperature-dependent fluorescence; Rhodamine B; cucurbit[7]uril; host–guest complex; dye laser. PACS Nos 36.20.kd; 83.60.pq; 87.64.kv. 1. Introduction. Rhodamine B (RhB) is an efficient and photostable laser dye ...

  13. Extraction of dye

    African Journals Online (AJOL)

    Dyes of natural origins are great for color appreciation as any variation in the concentration of dye, mordant, type of water, soil and climate give variations in ... Grey scale and blue dyed silk were used for color fastness rating. ..... Down to Earth.

  14. Fluidic origami cellular structure -- combining the plant nastic movements with paper folding art

    Science.gov (United States)

    Li, Suyi; Wang, K. W.

    2015-04-01

    By combining the physical principles behind the nastic plant movements and the rich designs of paper folding art, we propose a new class of multi-functional adaptive structure called fluidic origami cellular structure. The basic elements of this structure are fluid filled origami "cells", made by connecting two compatible Miura-Ori stripes along their crease lines. These cells are assembled seamlessly into a three dimensional topology, and their internal fluid pressure or volume are strategically controlled just like in plants for nastic movements. Because of the unique geometry of the Miura-Ori, the relationships among origami folding, internal fluid properties, and the crease bending are intricate and highly nonlinear. Fluidic origami can exploit such relationships to provide multiple adaptive functions concurrently and effectively. For example, it can achieve actuation or morphing by actively changing the internal fluid volume, and stillness tuning by constraining the fluid volume. Fluidic origami can also be bistable because of the nonlinear correlation between folding and crease material bending, and such bistable character can be altered significantly by fluid pressurization. These functions are natural and essential companions with respect to each other, so that fluidic origami can holistically exhibit many attractive characteristics of plants and deliver rapid and efficient actuation/morphing while maintaining a high structural stillness. The purpose of this paper is to introduce the design and working principles of the fluidic origami, as well as to explore and demonstrate its performance potential.

  15. Manufacture of micro fluidic devices by laser welding using thermal transfer printing techniques

    Science.gov (United States)

    Klein, R.; Klein, K. F.; Tobisch, T.; Thoelken, D.; Belz, M.

    2016-03-01

    Micro-fluidic devices are widely used today in the areas of medical diagnostics and drug research, as well as for applications within the process, electronics and chemical industry. Microliters of fluids or single cell to cell interactions can be conveniently analyzed with such devices using fluorescence imaging, phase contrast microscopy or spectroscopic techniques. Typical micro-fluidic devices consist of a thermoplastic base component with chambers and channels covered by a hermetic fluid and gas tight sealed lid component. Both components are usually from the same or similar thermoplastic material. Different mechanical, adhesive or thermal joining processes can be used to assemble base component and lid. Today, laser beam welding shows the potential to become a novel manufacturing opportunity for midsize and large scale production of micro-fluidic devices resulting in excellent processing quality by localized heat input and low thermal stress to the device during processing. For laser welding, optical absorption of the resin and laser wavelength has to be matched for proper joining. This paper will focus on a new approach to prepare micro-fluidic channels in such devices using a thermal transfer printing process, where an optical absorbing layer absorbs the laser energy. Advantages of this process will be discussed in combination with laser welding of optical transparent micro-fluidic devices.

  16. A micro-fluidic study of whole blood behaviour on PMMA topographical nanostructures

    Directory of Open Access Journals (Sweden)

    Tsud Nataliya

    2008-02-01

    Full Text Available Abstract Background Polymers are attractive materials for both biomedical engineering and cardiovascular applications. Although nano-topography has been found to influence cell behaviour, no established method exists to understand and evaluate the effects of nano-topography on polymer-blood interaction. Results We optimized a micro-fluidic set-up to study the interaction of whole blood with nano-structured polymer surfaces under flow conditions. Micro-fluidic chips were coated with polymethylmethacrylate films and structured by polymer demixing. Surface feature size varied from 40 nm to 400 nm and feature height from 5 nm to 50 nm. Whole blood flow rate through the micro-fluidic channels, platelet adhesion and von Willebrand factor and fibrinogen adsorption onto the structured polymer films were investigated. Whole blood flow rate through the micro-fluidic channels was found to decrease with increasing average surface feature size. Adhesion and spreading of platelets from whole blood and von Willebrand factor adsorption from platelet poor plasma were enhanced on the structured surfaces with larger feature, while fibrinogen adsorption followed the opposite trend. Conclusion We investigated whole blood behaviour and plasma protein adsorption on nano-structured polymer materials under flow conditions using a micro-fluidic set-up. We speculate that surface nano-topography of polymer films influences primarily plasma protein adsorption, which results in the control of platelet adhesion and thrombus formation.

  17. Solenoid Driven Pressure Valve System: Toward Versatile Fluidic Control in Paper Microfluidics.

    Science.gov (United States)

    Kim, Taehoon H; Hahn, Young Ki; Lee, Jungmin; van Noort, Danny; Kim, Minseok S

    2018-02-20

    As paper-based diagnostics has become predominantly driven by more advanced microfluidic technology, many of the research efforts are still focused on developing reliable and versatile fluidic control devices, apart from improving sensitivity and reproducibility. In this work, we introduce a novel and robust paper fluidic control system enabling versatile fluidic control. The system comprises a linear push-pull solenoid and an Arduino Uno microcontroller. The precisely controlled pressure exerted on the paper stops the flow. We first determined the stroke distance of the solenoid to obtain a constant pressure while examining the fluidic time delay as a function of the pressure. Results showed that strips of grade 1 chromatography paper had superior reproducibility in fluid transport. Next, we characterized the reproducibility of the fluidic velocity which depends on the type and grade of paper used. As such, we were able to control the flow velocity on the paper and also achieve a complete stop of flow with a pressure over 2.0 MPa. Notably, after the actuation of the pressure driven valve (PDV), the previously pressed area regained its original flow properties. This means that, even on a previously pressed area, multiple valve operations can be successfully conducted. To the best of our knowledge, this is the first demonstration of an active and repetitive valve operation in paper microfluidics. As a proof of concept, we have chosen to perform a multistep detection system in the form of an enzyme-linked immunosorbent assay with mouse IgG as the target analyte.

  18. Translational velocity oscillations of piston generated vortex rings

    Science.gov (United States)

    Kumar, Manoj; Arakeri, J. H.; Shankar, P. N.

    1995-11-01

    Experimental results are presented that show that the translational velocities of piston generated vortex rings often undergo oscillations, similar to those recently discovered for drop generated rings. An attempt has been made to minimize uncertainties by utilizing both dye and hydrogen bubbles for visualization and carefully repeating measurements on the same ring and on different realizations under the same nominal piston conditions. The results unambiguously show that under most conditions, both for laminar and turbulent rings and for rings generated from pipes and orifices, the oscillations are present. The present results, together with the earlier results on drop generated rings, give support to the view that translational velocity oscillations are probably an inherent feature of translating vortex ring fields.

  19. Novel organic dyes based on phenyl-substituted benzimidazole for dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Saltan, Gözde Murat [Department of Chemistry, Faculty of Arts and Science, Celal Bayar University, Yunus Emre, 45140 Manisa (Turkey); Dinçalp, Haluk, E-mail: haluk.dincalp@cbu.edu.tr [Department of Chemistry, Faculty of Arts and Science, Celal Bayar University, Yunus Emre, 45140 Manisa (Turkey); Kıran, Merve; Zafer, Ceylan [Solar Energy Institute, Ege University, Bornova, 35100 Izmir (Turkey); Erbaş, Seçil Çelik [Celal Bayar University, Materials Engineering Department, Faculty of Engineering, Yunus Emre, 45140 Manisa (Turkey)

    2015-08-01

    Two new sensitizers derived from benzimidazole core for dye-sensitized solar cell (DSSC) applications were designed and synthesized as D–π–A structures, in which two phenyl-substituted benzimidazole group, a phenyl ring and a cyanoacrylic acid were used as the electron donor, π-conjugated linkage and the electron acceptor, respectively. Effect of methoxy- and N,N-dimetylamino- moieties attached to the phenyl groups of benzimidazole were investigated by means of optical and photovoltaic measurements. The compounds exhibit broad absorption maximum at 387 nm with the tail extending up to 500 nm on TiO{sub 2}-coated thin film. The longer wavelength absorption band around 360 nm and the much longer decay components could be attributed to the existence of charge transfer state of the dyes in solutions. DSSC device fabricated by using methoxy substituted dye (BI5a) as a sensitizer shows much better incident photon-to-current conversion efficiency (IPCE) of 64% giving cell efficiency of 2.68%. - Graphical abstract: Display Omitted - Highlights: • Long decay times suggest the delayed fluorescence caused by the existence of ICT. • The best solar energy conversion efficiency was obtained for BI5a dye (2.68%). • More fluorescent BI5a dye gives higher photocurrent generation.

  20. Novel organic dyes based on phenyl-substituted benzimidazole for dye sensitized solar cells

    International Nuclear Information System (INIS)

    Saltan, Gözde Murat; Dinçalp, Haluk; Kıran, Merve; Zafer, Ceylan; Erbaş, Seçil Çelik

    2015-01-01

    Two new sensitizers derived from benzimidazole core for dye-sensitized solar cell (DSSC) applications were designed and synthesized as D–π–A structures, in which two phenyl-substituted benzimidazole group, a phenyl ring and a cyanoacrylic acid were used as the electron donor, π-conjugated linkage and the electron acceptor, respectively. Effect of methoxy- and N,N-dimetylamino- moieties attached to the phenyl groups of benzimidazole were investigated by means of optical and photovoltaic measurements. The compounds exhibit broad absorption maximum at 387 nm with the tail extending up to 500 nm on TiO 2 -coated thin film. The longer wavelength absorption band around 360 nm and the much longer decay components could be attributed to the existence of charge transfer state of the dyes in solutions. DSSC device fabricated by using methoxy substituted dye (BI5a) as a sensitizer shows much better incident photon-to-current conversion efficiency (IPCE) of 64% giving cell efficiency of 2.68%. - Graphical abstract: Display Omitted - Highlights: • Long decay times suggest the delayed fluorescence caused by the existence of ICT. • The best solar energy conversion efficiency was obtained for BI5a dye (2.68%). • More fluorescent BI5a dye gives higher photocurrent generation

  1. Determining DfT Hardware by VHDL-AMS Fault Simulation for Biological Micro-Electronic Fluidic Arrays

    NARCIS (Netherlands)

    Kerkhoff, Hans G.; Zhang, X.; Liu, H.; Richardson, A.; Nouet, P.; Azais, F.

    2005-01-01

    The interest of microelectronic fluidic arrays for biomedical applications, like DNA determination, is rapidly increasing. In order to evaluate these systems in terms of required Design-for-Test structures, fault simulations in both fluidic and electronic domains are necessary. VHDL-AMS can be used

  2. Direct thermal dyes

    Science.gov (United States)

    Ehlinger, Edward

    1990-07-01

    Direct thermal dyes are members of a class of compounds referred to in the imaging industry as color formers or leuco dyes. The oldest members of that class have simple triarylmethane structures, and have been employed for years in various dyeing applications. More complex triarylmethane compounds, such as phthalides and fluorans, are now used in various imaging systems to produce color. Color is derived from all of these compounds via the same mechanism, on a molecular level. That is, an event of activation produces a highly resonating cationic system whose interaction with incident light produces reflected light of a specific color. The activation event in the case of a direct thermal system is the creation of a melt on the paper involving dye and an acidic developer. The three major performance parameters in a thermal system are background color, image density, and image stability. The three major dye physical parameters affecting thermal performance are chemical constituency, purity, and particle size. Those dyes having the best combination of characteristics which can also be manufactured economically dominate the marketplace. Manufacturing high performance dyes for the thermal market involves multi-step, convergent reaction sequences performed on large scale. Intermediates must be manufactured at the right time, and at the right quality to be useful.

  3. Dyes for displays

    Science.gov (United States)

    Claussen, U.

    1984-01-01

    The improvement of contrast and visibility of LCD by two different means was undertaken. The two methods are: (1) development of fluorescent dyes to increase the visibility of fluorescent activated displays (FLAD); and (2) development of dichroic dyes to increase the contrast of displays. This work was done in close cooperation with the electronic industry, where the newly synthesized dyes were tested. The targets for the chemical synthesis were selected with the help of computer model calculations. A marketable range of dyes was developed. Since the interest of the electronic industries concerning FLAD was low, the investigations were stopped. Dichroic dyes, especially black mixtures with good light fastness, order parameter, and solubility in nematic phases were developed. The application of these dyes is restricted to indoor use because of an increase of viscosity below -10 C. Applications on a technical scale, e.g., for the automotive industry, will be possible if the displays work at temperatures down to -40 C. This problem requires a complex optimization of the dye/nematic phase system.

  4. Dyeing of Polyester with Disperse Dyes: Part 2. Synthesis and Dyeing Characteristics of Some Azo Disperse Dyes for Polyester Fabrics

    Directory of Open Access Journals (Sweden)

    Alya M. Al-Etaibi

    2016-06-01

    Full Text Available The goal of this study was to utilize carrier for accelerating the rate of dyeing not only to enhance dyeing of polyester fabrics dyed with disperse dyes 3a,b, but also to save energy. Both the color strength expressed as dye uptake and the fastness properties of the dyed fabrics were evaluated.

  5. Automated micro fluidic system for PCR applications in the monitoring of drinking water quality

    International Nuclear Information System (INIS)

    Soria Soria, E.; Yanez Amoros, A.; Murtula Corbi, R.; Catalan Cuenca, V.; Martin-Cisneros, C. S.; Ymbern, O.; Alonso-Chamorro, J.

    2009-01-01

    Microbiological laboratories present a growing interest in automated, simple and user-friendly methodologies able to perform simultaneous analysis of a high amount of samples. Analytical tools based on micro-fluidic could play an important role in this field. In this work, the development of an automated micro fluidic system for PCR applications and aimed to monitoring of drinking water quality is presented. The device will be able to determine, simultaneously, fecal pollution indicators and water-transmitted pathogens. Further-more, complemented with DNA pre-concentration and extraction modules, the device would present a highly integrated solution for microbiological diagnostic laboratories. (Author) 13 refs.

  6. Kayser-Fleischer Rings

    Science.gov (United States)

    ... Support Contacts Lab Tracker/Copper Calculator Stories Programs & Research ... About Everything you need to know about Wilson Disease Kayser-Fleischer Rings Definition Kayser-Fleischer Ring: Clinical sign. Brownish-yellow ring visible around the corneo- ...

  7. Centrifugal micro-fluidic platform for radiochemistry: Potentialities for the chemical analysis of nuclear spent fuels

    International Nuclear Information System (INIS)

    Bruchet, Anthony; Mariet, Clarisse; Taniga, Velan; Descroix, Stephanie; Malaquin, Laurent; Goutelard, Florence

    2013-01-01

    The use of a centrifugal micro-fluidic platform is for the first time reported as an alternative to classical chromatographic procedures for radiochemistry. The original design of the micro-fluidic platform has been thought to fasten and simplify the prototyping process with the use of a circular platform integrating four rectangular microchips made of thermoplastic. The microchips, dedicated to anion-exchange chromatographic separations, integrate a localized monolithic stationary phase as well as injection and collection reservoirs. The results presented here were obtained with a simplified simulated nuclear spent fuel sample composed of non-radioactive isotopes of Europium and Uranium, in proportion usually found for uranium oxide nuclear spent fuel. While keeping the analytical results consistent with the conventional procedure (extraction yield for Europium of ∼97%), the use of the centrifugal micro-fluidic platform allowed to reduce the volume of liquid needed by a factor of ∼250. Thanks to their unique 'easy-to-use' features, centrifugal micro-fluidic platforms are potential successful candidates for the down-scaling of chromatographic separation of radioactive samples (automation, multiplexing, easy integration in glove-boxes environment and low cost of maintenance). (authors)

  8. Accurate and versatile multivariable arbitrary piecewise model regression of nonlinear fluidic muscle behavior

    NARCIS (Netherlands)

    Veale, A.J.; Xie, Sheng Quan; Anderson, Iain Alexander

    2017-01-01

    Wearable exoskeletons and soft robots require actuators with muscle-like compliance. These actuators can benefit from the robust and effective interaction that biological muscles' compliance enables them to have in the uncertainty of the real world. Fluidic muscles are compliant but difficult to

  9. Fabrication of fluidic devices with 30 nm nanochannels by direct imprinting

    DEFF Research Database (Denmark)

    Cuesta, Irene Fernandez; Palmarelli, Anna Laura; Liang, Xiaogan

    2011-01-01

    In this work, we propose an innovative approach to the fabrication of a complete micro/nano fluidic system, based on direct nanoimprint lithography. The fabricated device consists of nanochannels connected to U-shaped microchannels by triangular tapered inlets, and has four large reservoirs for l...

  10. Customizable 3D Printed 'Plug and Play' Millifluidic Devices for Programmable Fluidics.

    Science.gov (United States)

    Tsuda, Soichiro; Jaffery, Hussain; Doran, David; Hezwani, Mohammad; Robbins, Phillip J; Yoshida, Mari; Cronin, Leroy

    2015-01-01

    Three dimensional (3D) printing is actively sought after in recent years as a promising novel technology to construct complex objects, which scope spans from nano- to over millimeter scale. Previously we utilized Fused deposition modeling (FDM)-based 3D printer to construct complex 3D chemical fluidic systems, and here we demonstrate the construction of 3D milli-fluidic structures for programmable liquid handling and control of biological samples. Basic fluidic operation devices, such as water-in-oil (W/O) droplet generators for producing compartmentalized mono-disperse droplets, sensor-integrated chamber for online monitoring of cellular growth, are presented. In addition, chemical surface treatment techniques are used to construct valve-based flow selector for liquid flow control and inter-connectable modular devices for networking fluidic parts. As such this work paves the way for complex operations, such as mixing, flow control, and monitoring of reaction / cell culture progress can be carried out by constructing both passive and active components in 3D printed structures, which designs can be shared online so that anyone with 3D printers can reproduce them by themselves.

  11. Customizable 3D Printed 'Plug and Play' Millifluidic Devices for Programmable Fluidics.

    Directory of Open Access Journals (Sweden)

    Soichiro Tsuda

    Full Text Available Three dimensional (3D printing is actively sought after in recent years as a promising novel technology to construct complex objects, which scope spans from nano- to over millimeter scale. Previously we utilized Fused deposition modeling (FDM-based 3D printer to construct complex 3D chemical fluidic systems, and here we demonstrate the construction of 3D milli-fluidic structures for programmable liquid handling and control of biological samples. Basic fluidic operation devices, such as water-in-oil (W/O droplet generators for producing compartmentalized mono-disperse droplets, sensor-integrated chamber for online monitoring of cellular growth, are presented. In addition, chemical surface treatment techniques are used to construct valve-based flow selector for liquid flow control and inter-connectable modular devices for networking fluidic parts. As such this work paves the way for complex operations, such as mixing, flow control, and monitoring of reaction / cell culture progress can be carried out by constructing both passive and active components in 3D printed structures, which designs can be shared online so that anyone with 3D printers can reproduce them by themselves.

  12. Integrated optics nano-opto-fluidic sensor based on whispering gallery modes for picoliter volume refractometry

    NARCIS (Netherlands)

    Gilardi, G.; Beccherelli, R.

    2013-01-01

    We propose and numerically investigate an integrated optics refractometric nano-opto-fluidic sensor based on whispering gallery modes in sapphire microspheres. A measurand fluid is injected in a micromachined reservoir defined in between the microsphere and an optical waveguide. The wavelength shift

  13. No-moving-part electro/fluidic transducer based on plasma discharge effect

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Šonský, Jiří

    2015-01-01

    Roč. 232, August (2015), s. 20-29 ISSN 0924-4247 R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : transducer * fluidic * plasma discharge Subject RIV: BK - Fluid Dynamics Impact factor: 2.201, year: 2015 http://www.sciencedirect.com/science/article/pii/S092442471500206X

  14. Fluidic origami with embedded pressure dependent multi-stability: a plant inspired innovation.

    Science.gov (United States)

    Li, Suyi; Wang, K W

    2015-10-06

    Inspired by the impulsive movements in plants, this research investigates the physics of a novel fluidic origami concept for its pressure-dependent multi-stability. In this innovation, fluid-filled tubular cells are synthesized by integrating different Miura-Ori sheets into a three-dimensional topological system, where the internal pressures are strategically controlled similar to the motor cells in plants. Fluidic origami incorporates two crucial physiological features observed in nature: one is distributed, pressurized cellular organization, and the other is embedded multi-stability. For a single fluidic origami cell, two stable folding configurations can coexist due to the nonlinear relationships among folding, crease material deformation and internal volume change. When multiple origami cells are integrated, additional multi-stability characteristics could occur via the interactions between pressurized cells. Changes in the fluid pressure can tailor the existence and shapes of these stable folding configurations. As a result, fluidic origami can switch between being mono-stable, bistable and multi-stable with pressure control, and provide a rapid 'snap-through' type of shape change based on the similar principles as in plants. The outcomes of this research could lead to the development of new adaptive materials or structures, and provide insights for future plant physiology studies at the cellular level. © 2015 The Author(s).

  15. Development of fluidic device in SIT for Korean Next Generation Reactor I

    International Nuclear Information System (INIS)

    Cho, Bong Hyun; Lee, Joon; Bae, Yoon Young; Park, Jong Kyun

    1999-07-01

    The KNGR is to install a Fluidic Device at the bottom of the inner space of the SIT (Safety Injection Tank) to control the flow rate of safety injection coolant from SIT during LBLOCA. During the past two years, a scale model test to obtain the required flow characteristics of the device under the KNGR specific conditions has been performed using the experience and existing facility of AEA Technology (UK) with appropriate modifications. The performance verification test is to be performed this year to obtain optimum characteristics and design data of full size fluidic device. The purpose of the model test was to check the feasibility of developing the device and to produce a generic flow characteristic data. The test was performed in approximately 1/7 scale in terms of flow rate with full height and pressure. This report presents the details of system performance requirements for the device, design procedure for the fluidic device to be used, test facility and test method. The time dependent flow, pressure and Euler number are presented as characteristics curves and the most stable and the most effective flow control characteristic parameters were recommended through the evaluation. A method to predict the size of the fluidic device is presented. And a sizing algorithm, which can be used to conveniently determine the major geometric data of the device for various operating conditions, and a FORTRAN program to produce the prediction of performance curves have been developed. (author). 32 refs., 15 tabs., 47 figs

  16. Rapid prototyping tools and methods for all-Topas (R) cyclic olefin copolymer fluidic microsystems

    DEFF Research Database (Denmark)

    Bundgaard, Frederik; Perozziello, Gerardo; Geschke, Oliver

    2006-01-01

    , good machinability, and good optical properties. A number of different processes for rapid and low-cost prototyping of all-Topas microfluidic systems, made with desktop machinery, are presented. Among the processes are micromilling of fluidic structures with a width down to 25 p,m and sealing...

  17. Micro Machining of Injection Mold Inserts for Fluidic Channel of Polymeric Biochips

    Directory of Open Access Journals (Sweden)

    Myeong-Woo Cho

    2007-08-01

    Full Text Available Recently, the polymeric micro-fluidic biochip, often called LOC (lab-on-a-chip, has been focused as a cheap, rapid and simplified method to replace the existing biochemical laboratory works. It becomes possible to form miniaturized lab functionalities on a chip with the development of MEMS technologies. The micro-fluidic chips contain many micro-channels for the flow of sample and reagents, mixing, and detection tasks. Typical substrate materials for the chip are glass and polymers. Typical techniques for micro-fluidic chip fabrication are utilizing various micro pattern forming methods, such as wet-etching, micro-contact printing, and hot-embossing, micro injection molding, LIGA, and micro powder blasting processes, etc. In this study, to establish the basis of the micro pattern fabrication and mass production of polymeric micro-fluidic chips using injection molding process, micro machining method was applied to form micro-channels on the LOC molds. In the research, a series of machining experiments using micro end-mills were performed to determine optimum machining conditions to improve surface roughness and shape accuracy of designed simplified micro-channels. Obtained conditions were used to machine required mold inserts for micro-channels using micro end-mills. Test injection processes using machined molds and COC polymer were performed, and then the results were investigated.

  18. Highly sensitive miniature fluidic flowmeter based on an FBG heated by Co2+-doped fiber

    NARCIS (Netherlands)

    Liu, Z.; Htein, L.; Cheng, L.K.; Martina, Q.; Jansen, R.; Tam, H.Y.

    2017-01-01

    In this paper, we present a miniature fluidic flow sensor based on a short fiber Bragg grating inscribed in a single mode fiber and heated by Co2+-doped multimode fibers. The proposed flow sensor was employed to measure the flow rates of oil and water, showing good sensitivity of 0.339 nm/(m/s) and

  19. Low voltage electroosmotic pump for high density integration into microfabricated fluidic systems

    NARCIS (Netherlands)

    Heuck, F.C.A.; Staufer, U.

    2011-01-01

    A low voltage electroosmotic (eo) pump suitable for high density integration into microfabricated fluidic systems has been developed. The high density integration of the eo pump required a small footprint as well as a specific on-chip design to ventilate the electrolyzed gases emerging at the

  20. Formation of a vertical MOSFET for charge sensing in a Si micro-fluidic channel

    International Nuclear Information System (INIS)

    Lyu, Hong-Kun; Kim, Dong-Sun; Shin, Jang-Kyoo; Choi, Pyung; Lee, Jong-Hyun; Park, Hey-Jung; Park, Chin-Sung; Lim, Geun-Bae

    2004-01-01

    We have formed a fluidic channel that can be used in micro-fluidic systems and fabricated a 3-dimensional vertical metal-oxide semiconductor field-effect transistor (vertical MOSFET) in the convex corner of a Si micro-fluidic channel by using an anisotropic tetramethyl ammonium hydroxide (TMAH) etching solution. A Au/Cr layer was used for the gate metal and might be useful for detecting charged biomolecules. The electrical characteristics of the vertical MOSFET and its operation as a chemical sensor were investigated. At V DS = -5 V and V GS = -5 V the drain current of the device was -22.5 μA and the threshold voltage was about -1.4 V. A non-planar, non-rectangular vertical MOSFET with a trapezoidal gate was transformed into an equivalent rectangularly based one by using a Schwartz-Christoffel transformation. The LEVEL1 device parameters of the vertical MOSFET were extracted from the measured electrical device characteristics and were used in the SPICE simulation for the vertical MOSFET. The measured and the simulated results for the vertical PMOSFET showed relatively good agreement. When the vertical MOSFET was dipped into a thiol DNA solution, the drain current decreased due to charged biomolecules probably being adsorbed on the gate, which indicates that a vertical MOSFET in a Si micro-fluidic channel might be useful for sensing charged biomolecules.

  1. Room temperature vortex fluidic synthesis of monodispersed amorphous proto-vaterite.

    Science.gov (United States)

    Peng, Wenhong; Chen, Xianjue; Zhu, Shenmin; Guo, Cuiping; Raston, Colin L

    2014-10-11

    Monodispersed particles of amorphous calcium carbonate (ACC) 90 to 200 nm in diameter are accessible at room temperature in ethylene glycol and water using a vortex fluidic device (VFD). The ACC material is stable for at least two weeks under ambient conditions.

  2. OH spectroscopy with frequency-doubled dye laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    ter Meulen, J J

    1979-01-01

    Discusses the excitation of the OH radical by UV radiation for the determination of the hyperfine structure of the excited states. The 307 nm UV light is obtained by doubling the frequency (in double-refraction crystals) of a tunable dye laser. Details of the laser set-up are given. The method is suitable for application to other high-resolution molecular spectroscopy experiments in the area between 200 and 400 nm. Further extensions can be expected with ring compound dyes and external doubling of the frequency.

  3. Opto-fluidics based microscopy and flow cytometry on a cell phone for blood analysis.

    Science.gov (United States)

    Zhu, Hongying; Ozcan, Aydogan

    2015-01-01

    Blood analysis is one of the most important clinical tests for medical diagnosis. Flow cytometry and optical microscopy are widely used techniques to perform blood analysis and therefore cost-effective translation of these technologies to resource limited settings is critical for various global health as well as telemedicine applications. In this chapter, we review our recent progress on the integration of imaging flow cytometry and fluorescent microscopy on a cell phone using compact, light-weight and cost-effective opto-fluidic attachments integrated onto the camera module of a smartphone. In our cell-phone based opto-fluidic imaging cytometry design, fluorescently labeled cells are delivered into the imaging area using a disposable micro-fluidic chip that is positioned above the existing camera unit of the cell phone. Battery powered light-emitting diodes (LEDs) are butt-coupled to the sides of this micro-fluidic chip without any lenses, which effectively acts as a multimode slab waveguide, where the excitation light is guided to excite the fluorescent targets within the micro-fluidic chip. Since the excitation light propagates perpendicular to the detection path, an inexpensive plastic absorption filter is able to reject most of the scattered light and create a decent dark-field background for fluorescent imaging. With this excitation geometry, the cell-phone camera can record fluorescent movies of the particles/cells as they are flowing through the microchannel. The digital frames of these fluorescent movies are then rapidly processed to quantify the count and the density of the labeled particles/cells within the solution under test. With a similar opto-fluidic design, we have recently demonstrated imaging and automated counting of stationary blood cells (e.g., labeled white blood cells or unlabeled red blood cells) loaded within a disposable cell counting chamber. We tested the performance of this cell-phone based imaging cytometry and blood analysis platform

  4. ASSOCIATIVE RINGS SOLVED AS LIE RINGS

    Directory of Open Access Journals (Sweden)

    M. B. Smirnov

    2011-01-01

    Full Text Available The paper has proved that an associative ring which is solvable of a n- class as a Lie ring has a nilpotent ideal of the nilpotent class not more than 3×10n–2  and a corresponding quotient ring satisfies an identity [[x1, x2, [x3, x4

  5. Molecular and excited state properties of isomeric scarlet disperse dyes

    Science.gov (United States)

    Lim, Jihye; Szymczyk, Malgorzata; Mehraban, Nahid; Ding, Yi; Parrillo-Chapman, Lisa; El-Shafei, Ahmed; Freeman, Harold S.

    2018-06-01

    This work was part of an investigation aimed at characterizing the molecular and excited state properties of currently available disperse dyes developed to provide stability to extensive sunlight exposures when adsorbed on poly(ethylene terephthalate) (PET) fibers. Having completed the characterization of yellow, magenta, and cyan disperse dyes for PET-based fabrics used outdoors, our attention turned to the colors designed to enhance the color gamut of a standard 4-member (cyan/yellow/magenta/black) color set. The present study pertained specifically to the characterization of commercially available scarlet dyes. In this regard, HPLC analysis showed that a scarlet product used for PET coloration was mainly a 70/30 mixture of dyes, and the use of HRMS and single crystal X-ray diffraction analyses indicated that these two dyes were azo compounds derived from isomeric pyridine-based couplers which differed in the location of the primary amino (sbnd NH2) and anilino (sbnd NHPh) groups attached to the pyridine ring. One dye structure has the sbnd NHPh group para to the azo group (Sc2), while the other has that group in the ortho position (Sc3). The presence of either ortho substituent provides photostabilization through intramolecular H-bonding with the azo moiety. Further, results from molecular modeling studies showed that the lower excited state oxidation potential of Sc3 relative to that of Sc2 allows Sc3 to function as an energy quencher for the excited state of Sc2 - through thermodynamically favorable electron transfer.

  6. Treatment of dyeing wastewater including reactive dyes (Reactive ...

    African Journals Online (AJOL)

    Fungal growth was not observed at pH 2. Maximum fungal decolourisation ocurred at pH 3 for anionic reactive dyes (RR, RBB, RB) and pH 6 for cationic MB dye. The fungal dye bioremoval was associated with the surface charge of the fungus due to electrostatic interactions. Growing R. arrhizus strain decolourised 100% of ...

  7. Hair cosmetics: dyes.

    Science.gov (United States)

    Guerra-Tapia, A; Gonzalez-Guerra, E

    2014-11-01

    Hair plays a significant role in body image, and its appearance can be changed relatively easily without resort to surgical procedures. Cosmetics and techniques have therefore been used to change hair appearance since time immemorial. The cosmetics industry has developed efficient products that can be used on healthy hair or act on concomitant diseases of the hair and scalp. Dyes embellish the hair by bleaching or coloring it briefly, for temporary periods of longer duration, or permanently, depending on the composition of a dye (oxidative or nonoxidative) and its degree of penetration of the hair shaft. The dermatologist's knowledge of dyes, their use, and their possible side effects (contact eczema, cancer, increased porosity, brittleness) can extend to an understanding of cosmetic resources that also treat hair and scalp conditions. Copyright © 2013 Elsevier España, S.L.U. and AEDV. All rights reserved.

  8. Hair Dye and Hair Relaxers

    Science.gov (United States)

    ... For Consumers Consumer Information by Audience For Women Hair Dye and Hair Relaxers Share Tweet Linkedin Pin it More sharing ... products. If you have a bad reaction to hair dyes and relaxers, you should: Stop using the ...

  9. Stirling engine piston ring

    Science.gov (United States)

    Howarth, Roy B.

    1983-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  10. Dye filled security seal

    International Nuclear Information System (INIS)

    Wilson, D.C.

    1982-01-01

    A security seal for providing an indication of unauthorized access to a sealed object includes an elongate member to be entwined in the object such that access is denied unless the member is removed. The elongate member has a hollow, pressurizable chamber extending throughout its length that is filled with a permanent dye under greater than atmospheric pressure. Attempts to cut the member and weld it together are revealed when dye flows through a rupture in the chamber wall and stains the outside surface of the member

  11. Alternative loop rings

    CERN Document Server

    Goodaire, EG; Polcino Milies, C

    1996-01-01

    For the past ten years, alternative loop rings have intrigued mathematicians from a wide cross-section of modern algebra. As a consequence, the theory of alternative loop rings has grown tremendously. One of the main developments is the complete characterization of loops which have an alternative but not associative, loop ring. Furthermore, there is a very close relationship between the algebraic structures of loop rings and of group rings over 2-groups. Another major topic of research is the study of the unit loop of the integral loop ring. Here the interaction between loop rings and group ri

  12. Development of an opto-fluidic micro-system dedicated to chemical analysis in a nuclear environment

    Energy Technology Data Exchange (ETDEWEB)

    Geoffray, F.; Canto, F.; Couston, L. [CEA, Centre de Marcoule, Nuclear Energy Division, RadioChemistry and Processes Department, SERA/LAMM, F-30207 Bagnols-sur-Ceze (France); Allenet, T.; Bucci, D.; Broquin, J.E. [IMEP-LaHC, Universite de Grenoble Alpes, UMR 5130 CNRS, Minatec-Grenoble-INP, CS 50257, 38016 Grenoble (France); Jardinier, E. [CEA, Centre de Marcoule, Nuclear Energy Division, RadioChemistry and Processes Department, SERA/LAMM, F-30207 Bagnols-sur-Ceze (France); IMEP-LaHC, Universite de Grenoble Alpes, UMR 5130 CNRS, Minatec-Grenoble-INP, CS 50257, 38016 Grenoble (France)

    2016-07-01

    Micromachining techniques enable the fabrication of innovative lab-on-a-chip. Following the trend in chemical and biological analysis, the use of microsystems also appears compelling in the nuclear industry. The volume reduction of radioactive solutions is especially attractive in order to reduce the workers radiation exposition in the context of off-line analysis in spent nuclear fuel reprocessing plants. We hence present the development of an opto-fluidic sensor combining micro-fluidic channels for fluid transportation and integrated optics for detection. With the aim of achieving automated microanalysis with reduced response time the sensor is made compatible with a commercial micro-fluidic holder. Therefore the chip is connected to computer controlled pumps and electro-valves thanks to capillary tubing. In this paper we emphasis on the fluid handling capacities of the opto-fluidic sensor. (authors)

  13. OPTIMIZATION OF DYEING PARAMETERS TO DYE COTTON WITH CARROT EXTRACTION

    Directory of Open Access Journals (Sweden)

    MIRALLES Verónica

    2017-05-01

    Full Text Available Natural dyes derived from flora and fauna are believed to be safe because of non-toxic, non-carcinogenic and biodegradable nature. Furthermore, natural dyes do not cause pollution and waste water problems. Natural dyes as well as synthetic dyes need the optimum parameters to get a good dyeing. On some occasions, It is necessary the use of mordants to increase the affinity between cellulose fiber and natural dye, but there are other conditions to optimize in the dyeing process, like time, temperature, auxiliary porducts, etc. In addition, the optimum conditions are different depends on the type of dye and the fiber nature. The aim of this work is the use of carrot extract to dye cotton fabric by exhaustion at diverse dyeing conditions. Diffferent dyeing processes were carried out to study the effect of pH condition and the temperature, using 7, 6 and 4 pH values and 95 ºC and 130ºC for an hour. As a result some images of dyed samples are shown. Moreover, to evaluate the colour of each sample CIELAB parameters are analysed obtained by reflexion spectrophotometre. The results showed that the temperature used has an important influence on the colour of the dyed sample.

  14. Microfluidic Dye Lasers

    DEFF Research Database (Denmark)

    Kristensen, Anders; Balslev, Søren; Gersborg-Hansen, Morten

    2006-01-01

    A technology for miniaturized, polymer based lasers, suitable for integration with planar waveguides and microfluidic networks is presented. The microfluidic dye laser device consists of a microfluidic channel with an embedded optical resonator. The devices are fabricated in a thin polymer film...

  15. (MTT) dye reduction assay.

    African Journals Online (AJOL)

    to inhibit proliferation of HeLa cells was determined using the 3443- dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) dye reduction assay. Extracts from roots of Agathisanthemum bojeri, Synaptolepis kirkii and Zanha africana and the leaf extract of Physalis peruviana at a concentration of 10 pg/ml inhibited cell ...

  16. Levitated droplet dye laser

    DEFF Research Database (Denmark)

    Azzouz, H.; Alkafadiji, L.; Balslev, Søren

    2006-01-01

    a high quality optical resonator. Our 750 nL lasing droplets consist of Rhodamine 6G dissolved in ethylene glycol, at a concentration of 0.02 M. The droplets are optically pumped at 532 nm light from a pulsed, frequency doubled Nd:YAG laser, and the dye laser emission is analyzed by a fixed grating...

  17. Effects on LOCA mass and energy release of the SIT Fluidic device for SKN 3 and 4

    International Nuclear Information System (INIS)

    Song, Jeung Hyo; Kim, Tae Yoon; Choi, Han Rim; Choi, Chul Jin; Seo, Jong Tae

    2003-01-01

    A fluidic device is employed for the control of safety injection tank flow during a large break loss of coolant accident in Shin Kori Nuclear power plant Unit 3 and 4. It is installed in the safety injection tank and provides two stages of safety injection tank flow injection, initially high flow injection and then low flow injection after the reactor vessel downcomer annulus full. This allows a more effective use of safety injection tank water inventory during a loss of coolant accident. However, the fluidic device may have an adverse impact on the mass and energy release during the accident. That is, the steam mass and energy release will be increased by a considerable amount because the safety injection tank low flow injection via fluidic device is not credited to condense the steam flows through intact cold legs. The increased mass and energy releases have an impact on the peak pressure and temperature of the containment. This effect of the fluidic device is analyzed on the mass and energy release and the peak pressure and temperature of the containment. The calculation has been done using the CEFLASH-4A, the FLOOD3 with some modifications for the fluidic device and the CONTEMPT-LT code. The results show that the mass and energy release and the peak pressure and temperature were considerably increased when compared with the case without the fluidic device. However, the results satisfy the required design margin

  18. Effects on LOCA mass and energy release of the SIT Fluidic device for SKN 3 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jeung Hyo; Kim, Tae Yoon; Choi, Han Rim; Choi, Chul Jin; Seo, Jong Tae [Korea Power Engineering Company, Daejon (Korea, Republic of)

    2003-07-01

    A fluidic device is employed for the control of safety injection tank flow during a large break loss of coolant accident in Shin Kori Nuclear power plant Unit 3 and 4. It is installed in the safety injection tank and provides two stages of safety injection tank flow injection, initially high flow injection and then low flow injection after the reactor vessel downcomer annulus full. This allows a more effective use of safety injection tank water inventory during a loss of coolant accident. However, the fluidic device may have an adverse impact on the mass and energy release during the accident. That is, the steam mass and energy release will be increased by a considerable amount because the safety injection tank low flow injection via fluidic device is not credited to condense the steam flows through intact cold legs. The increased mass and energy releases have an impact on the peak pressure and temperature of the containment. This effect of the fluidic device is analyzed on the mass and energy release and the peak pressure and temperature of the containment. The calculation has been done using the CEFLASH-4A, the FLOOD3 with some modifications for the fluidic device and the CONTEMPT-LT code. The results show that the mass and energy release and the peak pressure and temperature were considerably increased when compared with the case without the fluidic device. However, the results satisfy the required design margin.

  19. Review on recent and advanced applications of monoliths and related porous polymer gels in micro-fluidic devices

    International Nuclear Information System (INIS)

    Vazquez, Mercedes; Paull, Brett

    2010-01-01

    This review critically summarises recent novel and advanced achievements in the application of monolithic materials and related porous polymer gels in micro-fluidic devices appearing within the literature over the period of the last 5 years (2005-2010). The range of monolithic materials has developed rapidly over the past decade, with a diverse and highly versatile class of materials now available, with each exhibiting distinct porosities, pore sizes, and a wide variety of surface functionalities. A major advantage of these materials is their ease of preparation in micro-fluidic channels by in situ polymerisation, leading to monolithic materials being increasingly utilised for a larger variety of purposes in micro-fluidic platforms. Applications of porous polymer monoliths, silica-based monoliths and related homogeneous porous polymer gels in the preparation of separation columns, ion-permeable membranes, preconcentrators, extractors, electrospray emitters, micro-valves, electrokinetic pumps, micro-reactors and micro-mixers in micro-fluidic devices are discussed herein. Procedures used in the preparation of monolithic materials in micro-channels, as well as some practical aspects of the micro-fluidic chip fabrication are addressed. Recent analytical/bioanalytical and catalytic applications of the final micro-fluidic devices incorporating monolithic materials are also reviewed.

  20. Dye laser principles with applications

    CERN Document Server

    Duarte, Frank J; Liao, Peter F; Kelley, Paul

    1990-01-01

    A tutorial introduction to the field of dye lasers, Dye Laser Principles also serves as an up-to-date overview for those using dye lasers as research and industrial tools. A number of the issues discussed in this book are pertinent not only to dye lasers but also to lasers in general. Most of the chapters in the book contain problem sets that expand on the material covered in the chapter.Key Features* Dye lasers are among the most versatile and successful laser sources currently available in use Offering both pulsed and continuous-wave operation and tunable from the near ultraviole

  1. A GENERIC PACKAGING TECHNIQUE USING FLUIDIC ISOLATION FOR LOW-DRIFT IMPLANTABLE PRESSURE SENSORS.

    Science.gov (United States)

    Kim, A; Powell, C R; Ziaie, B

    2015-06-01

    This paper reports on a generic packaging method for reducing drift in implantable pressure sensors. The described technique uses fluidic isolation by encasing the pressure sensor in a liquid-filled medical-grade polyurethane balloon; thus, isolating it from surrounding aqueous environment that is the major source of baseline drift. In-vitro tests using commercial micromachined piezoresistive pressure sensors show an average baseline drift of 0.006 cmH 2 O/day (0.13 mmHg/month) for over 100 days of saline soak test, as compared to 0.101 cmH 2 O/day (2.23 mmHg/month) for a non-fluidic-isolated one soaked for 18 days. To our knowledge, this is the lowest reported drift for an implantable pressure sensor.

  2. Fluidic system for long-term in vitro culturing and monitoring of organotypic brain slices

    DEFF Research Database (Denmark)

    Bakmand, Tanya; Troels-Smith, Ane R.; Dimaki, Maria

    2015-01-01

    Brain slice preparations cultured in vitro have long been used as a simplified model for studying brain development, electrophysiology, neurodegeneration and neuroprotection. In this paper an open fluidic system developed for improved long term culturing of organotypic brain slices is presented....... The positive effect of continuous flow of growth medium, and thus stability of the glucose concentration and waste removal, is simulated and compared to the effect of stagnant medium that is most often used in tissue culturing. Furthermore, placement of the tissue slices in the developed device was studied...... by numerical simulations in order to optimize the nutrient distribution. The device was tested by culturing transverse hippocampal slices from 7 days old NMRI mice for a duration of 14 days. The slices were inspected visually and the slices cultured in the fluidic system appeared to have preserved...

  3. Evaluation of the threshold trimming method for micro inertial fluidic switch based on electrowetting technology

    Directory of Open Access Journals (Sweden)

    Tingting Liu

    2014-03-01

    Full Text Available The switch based on electrowetting technology has the advantages of no moving part, low contact resistance, long life and adjustable acceleration threshold. The acceleration threshold of switch can be fine-tuned by adjusting the applied voltage. This paper is focused on the electrowetting properties of switch and the influence of microchannel structural parameters, applied voltage and droplet volume on acceleration threshold. In the presence of process errors of micro inertial fluidic switch and measuring errors of droplet volume, there is a deviation between test acceleration threshold and target acceleration threshold. Considering the process errors and measuring errors, worst-case analysis is used to analyze the influence of parameter tolerance on the acceleration threshold. Under worst-case condition the total acceleration threshold tolerance caused by various errors is 9.95%. The target acceleration threshold can be achieved by fine-tuning the applied voltage. The acceleration threshold trimming method of micro inertial fluidic switch is verified.

  4. Induced fluid rotation and bistable fluidic turn-down valves (a survey

    Directory of Open Access Journals (Sweden)

    Tesař Václav

    2015-01-01

    Full Text Available Paper surveys engineering applications of an unusual fluidic principle — momentum transfer through a relatively small communicating window into a vortex chamber, where the initially stationary fluid is put into rotation. The transfer is often by shear stress acting in the window plane, but may be enhanced and perhaps even dominated by fluid flow crossing the boundary. The case of zero-time-mean fluid transport through the window has found use in experimental fluid mechanics: non-invasive measurement of wall shear stress on objects by evaluating the induced rotation in the vortex chamber. The case with the non-zero flow through the interface became the starting point in development of fluidic valves combining two otherwise mutually incompatible properties: bistability and flow turning down.

  5. Numerical Studies of a Supersonic Fluidic Diverter Actuator for Flow Control

    Science.gov (United States)

    Gokoglu, Suleyman A.; Kuczmarski, Maria A.; Culley, Dennis e.; Raghu, Surya

    2010-01-01

    The analysis of the internal flow structure and performance of a specific fluidic diverter actuator, previously studied by time-dependent numerical computations for subsonic flow, is extended to include operation with supersonic actuator exit velocities. The understanding will aid in the development of fluidic diverters with minimum pressure losses and advanced designs of flow control actuators. The self-induced oscillatory behavior of the flow is successfully predicted and the calculated oscillation frequencies with respect to flow rate have excellent agreement with our experimental measurements. The oscillation frequency increases with Mach number, but its dependence on flow rate changes from subsonic to transonic to supersonic regimes. The delay time for the initiation of oscillations depends on the flow rate and the acoustic speed in the gaseous medium for subsonic flow, but is unaffected by the flow rate for supersonic conditions

  6. Third-order nonlinear optical studies of anthraquinone dyes using a CW He–Ne laser

    International Nuclear Information System (INIS)

    Pramodini, S; Poornesh, P

    2014-01-01

    We present investigations on the third-order optical nonlinearity and optical power limiting of anthraquinone dyes. Z-scan measurements were performed using a continuous wave He–Ne laser at 633 nm wavelength as an excitation source. The nonlinear refraction studies exhibited self-defocusing behavior of the dyes. The nonlinear absorption in the dyes was dominated by a reverse saturable absorption process. Self-diffraction ring patterns were observed due to the change in refractive index and thermal lensing. Increase of the electron donating ability of the substituents resulted in enhanced values of the nonlinear optical parameters, establishing the structure–property relationship. The optical limiting study revealed that the dyes possess a lower limiting threshold and clamping level which is very important for eye and sensor protection. Hence, the dyes investigated here emerge as promising candidates for future opto-electronic and photonic device applications such as optical power limiters. (paper)

  7. Third-order nonlinear optical studies of anthraquinone dyes using a CW He-Ne laser

    Science.gov (United States)

    Pramodini, S.; Poornesh, P.

    2014-05-01

    We present investigations on the third-order optical nonlinearity and optical power limiting of anthraquinone dyes. Z-scan measurements were performed using a continuous wave He-Ne laser at 633 nm wavelength as an excitation source. The nonlinear refraction studies exhibited self-defocusing behavior of the dyes. The nonlinear absorption in the dyes was dominated by a reverse saturable absorption process. Self-diffraction ring patterns were observed due to the change in refractive index and thermal lensing. Increase of the electron donating ability of the substituents resulted in enhanced values of the nonlinear optical parameters, establishing the structure-property relationship. The optical limiting study revealed that the dyes possess a lower limiting threshold and clamping level which is very important for eye and sensor protection. Hence, the dyes investigated here emerge as promising candidates for future opto-electronic and photonic device applications such as optical power limiters.

  8. The thermal-hydraulic for the new technologies: the micro-fluidics

    International Nuclear Information System (INIS)

    Crecy, F. de; Gruss, A.; Bricard, A.; Excoffon, J.

    2000-01-01

    The micro-fluidics can be defined as the fluid flow in little canals. This scale offers a great interest for the biotechnology type. In this paper, the authors present this fluids form and detail the researches performed at the Department of Physics and Thermal-hydraulics of the CEA, in the domain of the physical properties characterization and of the numerical two-phase direct simulation. (A.L.B.)

  9. Fluidic low-frequency oscillator with vortex spin-up time delay

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Smyk, E.

    2015-01-01

    Roč. 90, April (2015), s. 6-15 ISSN 0255-2701 R&D Projects: GA ČR GA13-23046S; GA ČR GA14-08888S Institutional support: RVO:61388998 Keywords : fluidics * oscillator * vortex chamber Subject RIV: BK - Fluid Dynamics Impact factor: 2.154, year: 2015 http://www.sciencedirect.com/science/article/pii/S0255270115000252

  10. 3D printed fluidics with embedded analytic functionality for automated reaction optimisation

    Directory of Open Access Journals (Sweden)

    Andrew J. Capel

    2017-01-01

    Full Text Available Additive manufacturing or ‘3D printing’ is being developed as a novel manufacturing process for the production of bespoke micro- and milliscale fluidic devices. When coupled with online monitoring and optimisation software, this offers an advanced, customised method for performing automated chemical synthesis. This paper reports the use of two additive manufacturing processes, stereolithography and selective laser melting, to create multifunctional fluidic devices with embedded reaction monitoring capability. The selectively laser melted parts are the first published examples of multifunctional 3D printed metal fluidic devices. These devices allow high temperature and pressure chemistry to be performed in solvent systems destructive to the majority of devices manufactured via stereolithography, polymer jetting and fused deposition modelling processes previously utilised for this application. These devices were integrated with commercially available flow chemistry, chromatographic and spectroscopic analysis equipment, allowing automated online and inline optimisation of the reaction medium. This set-up allowed the optimisation of two reactions, a ketone functional group interconversion and a fused polycyclic heterocycle formation, via spectroscopic and chromatographic analysis.

  11. 3D printed fluidics with embedded analytic functionality for automated reaction optimisation

    Science.gov (United States)

    Capel, Andrew J; Wright, Andrew; Harding, Matthew J; Weaver, George W; Li, Yuqi; Harris, Russell A; Edmondson, Steve; Goodridge, Ruth D

    2017-01-01

    Additive manufacturing or ‘3D printing’ is being developed as a novel manufacturing process for the production of bespoke micro- and milliscale fluidic devices. When coupled with online monitoring and optimisation software, this offers an advanced, customised method for performing automated chemical synthesis. This paper reports the use of two additive manufacturing processes, stereolithography and selective laser melting, to create multifunctional fluidic devices with embedded reaction monitoring capability. The selectively laser melted parts are the first published examples of multifunctional 3D printed metal fluidic devices. These devices allow high temperature and pressure chemistry to be performed in solvent systems destructive to the majority of devices manufactured via stereolithography, polymer jetting and fused deposition modelling processes previously utilised for this application. These devices were integrated with commercially available flow chemistry, chromatographic and spectroscopic analysis equipment, allowing automated online and inline optimisation of the reaction medium. This set-up allowed the optimisation of two reactions, a ketone functional group interconversion and a fused polycyclic heterocycle formation, via spectroscopic and chromatographic analysis. PMID:28228852

  12. 3D printed fluidics with embedded analytic functionality for automated reaction optimisation.

    Science.gov (United States)

    Capel, Andrew J; Wright, Andrew; Harding, Matthew J; Weaver, George W; Li, Yuqi; Harris, Russell A; Edmondson, Steve; Goodridge, Ruth D; Christie, Steven D R

    2017-01-01

    Additive manufacturing or '3D printing' is being developed as a novel manufacturing process for the production of bespoke micro- and milliscale fluidic devices. When coupled with online monitoring and optimisation software, this offers an advanced, customised method for performing automated chemical synthesis. This paper reports the use of two additive manufacturing processes, stereolithography and selective laser melting, to create multifunctional fluidic devices with embedded reaction monitoring capability. The selectively laser melted parts are the first published examples of multifunctional 3D printed metal fluidic devices. These devices allow high temperature and pressure chemistry to be performed in solvent systems destructive to the majority of devices manufactured via stereolithography, polymer jetting and fused deposition modelling processes previously utilised for this application. These devices were integrated with commercially available flow chemistry, chromatographic and spectroscopic analysis equipment, allowing automated online and inline optimisation of the reaction medium. This set-up allowed the optimisation of two reactions, a ketone functional group interconversion and a fused polycyclic heterocycle formation, via spectroscopic and chromatographic analysis.

  13. Automation of column-based radiochemical separations. A comparison of fluidic, robotic, and hybrid architectures

    Energy Technology Data Exchange (ETDEWEB)

    Grate, J.W.; O' Hara, M.J.; Farawila, A.F.; Ozanich, R.M.; Owsley, S.L. [Pacific Northwest National Laboratory, Richland, WA (United States)

    2011-07-01

    Two automated systems have been developed to perform column-based radiochemical separation procedures. These new systems are compared with past fluidic column separation architectures, with emphasis on using disposable components so that no sample contacts any surface that any other sample has contacted, and setting up samples and columns in parallel for subsequent automated processing. In the first new approach, a general purpose liquid handling robot has been modified and programmed to perform anion exchange separations using 2 mL bed columns in 6 mL plastic disposable column bodies. In the second new approach, a fluidic system has been developed to deliver clean reagents through disposable manual valves to six disposable columns, with a mechanized fraction collector that positions one of four rows of six vials below the columns. The samples are delivered to each column via a manual 3-port disposable valve from disposable syringes. This second approach, a hybrid of fluidic and mechanized components, is a simpler more efficient approach for performing anion exchange procedures for the recovery and purification of plutonium from samples. The automation architectures described can also be adapted to column-based extraction chromatography separations. (orig.)

  14. Fast-responsive hydrogel as an injectable pump for rapid on-demand fluidic flow control.

    Science.gov (United States)

    Luo, Rongcong; Dinh, Ngoc-Duy; Chen, Chia-Hung

    2017-05-01

    Chemically synthesized functional hydrogels have been recognized as optimized soft pumps for on-demand fluidic regulation in micro-systems. However, the challenges regarding the slow responses of hydrogels have very much limited their application in effective fluidic flow control. In this study, a heterobifunctional crosslinker (4-hydroxybutyl acrylate)-enabled two-step hydrothermal phase separation process for preparing a highly porous hydrogel with fast response dynamics was investigated for the fabrication of novel microfluidic functional units, such as injectable valves and pumps. The cylinder-shaped hydrogel, with a diameter of 9 cm and a height of 2.5 cm at 25 °C, achieved a size reduction of approximately 70% in less than 30 s after the hydrogels were heated at 40 °C. By incorporating polypyrrole nanoparticles as photothermal transducers, a photo-responsive composite hydrogel was approached and exhibited a remotely triggerable fluidic regulation and pumping ability to generate significant flows, showing on-demand water-in-oil droplet generation by laser switching, whereby the droplet size could be tuned by adjusting the laser intensity and irradiation period with programmable manipulation.

  15. Characterization of printable cellular micro-fluidic channels for tissue engineering

    International Nuclear Information System (INIS)

    Zhang, Yahui; Chen, Howard; Ozbolat, Ibrahim T; Yu, Yin

    2013-01-01

    Tissue engineering has been a promising field of research, offering hope of bridging the gap between organ shortage and transplantation needs. However, building three-dimensional (3D) vascularized organs remains the main technological barrier to be overcome. One of the major challenges is the inclusion of a vascular network to support cell viability in terms of nutrients and oxygen perfusion. This paper introduces a new approach to the fabrication of vessel-like microfluidic channels that has the potential to be used in thick tissue or organ fabrication in the future. In this research, we investigate the manufacturability of printable micro-fluidic channels, where micro-fluidic channels support mechanical integrity as well as enable fluid transport in 3D. A pressure-assisted solid freeform fabrication platform is developed with a coaxial needle dispenser unit to print hollow hydrogel filaments. The dispensing rheology is studied, and effects of material properties on structural formation of hollow filaments are analyzed. Sample structures are printed through the developed computer-controlled system. In addition, cell viability and gene expression studies are presented in this paper. Cell viability shows that cartilage progenitor cells (CPCs) maintained their viability right after bioprinting and during prolonged in vitro culture. Real-time PCR analysis yielded a relatively higher expression of cartilage-specific genes in alginate hollow filament encapsulating CPCs, compared with monolayer cultured CPCs, which revealed that printable semi-permeable micro-fluidic channels provided an ideal environment for cell growth and function. (paper)

  16. Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics.

    Science.gov (United States)

    Lutz, Barry; Liang, Tinny; Fu, Elain; Ramachandran, Sujatha; Kauffman, Peter; Yager, Paul

    2013-07-21

    Lateral flow tests (LFTs) are an ingenious format for rapid and easy-to-use diagnostics, but they are fundamentally limited to assay chemistries that can be reduced to a single chemical step. In contrast, most laboratory diagnostic assays rely on multiple timed steps carried out by a human or a machine. Here, we use dissolvable sugar applied to paper to create programmable flow delays and present a paper network topology that uses these time delays to program automated multi-step fluidic protocols. Solutions of sucrose at different concentrations (10-70% of saturation) were added to paper strips and dried to create fluidic time delays spanning minutes to nearly an hour. A simple folding card format employing sugar delays was shown to automate a four-step fluidic process initiated by a single user activation step (folding the card); this device was used to perform a signal-amplified sandwich immunoassay for a diagnostic biomarker for malaria. The cards are capable of automating multi-step assay protocols normally used in laboratories, but in a rapid, low-cost, and easy-to-use format.

  17. Modeling and Analysis of an Opto-Fluidic Sensor for Lab-on-a-Chip Applications

    Directory of Open Access Journals (Sweden)

    Venkatesha Muniswamy

    2018-03-01

    Full Text Available In this work modeling and analysis of an integrated opto-fluidic sensor, with a focus on achievement of single mode optical confinement and continuous flow of microparticles in the microfluidic channel for lab-on-a-chip (LOC sensing application is presented. This sensor consists of integrated optical waveguides, microfluidic channel among other integrated optical components. A continuous flow of microparticles in a narrow fluidic channel is achieved by maintaining the two sealed chambers at different temperatures and by maintaining a constant pressure of 1 Pa at the centroid of narrow fluidic channel geometry. The analysis of silicon on insulator (SOI integrated optical waveguide at an infrared wavelength of 1550 nm for single mode sensing operation is presented. The optical loss is found to be 5.7 × 10−4 dB/cm with an effective index of 2.3. The model presented in this work can be effectively used to detect the nature of microparticles and continuous monitoring of pathological parameters for sensing applications.

  18. Characteristics of dye-sensitized solar cells using natural dye

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, Shoji, E-mail: furukawa@cse.kyutech.ac.j [Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-shi, Fukuoka-ken 820-8502 (Japan); Iino, Hiroshi; Iwamoto, Tomohisa; Kukita, Koudai; Yamauchi, Shoji [Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-shi, Fukuoka-ken 820-8502 (Japan)

    2009-11-30

    Dye-sensitized solar cells are expected to be used for future clean energy. Recently, most of the researchers in this field use Ruthenium complex as dye in the dye-sensitized solar cells. However, Ruthenium is a rare metal, so the cost of the Ruthenium complex is very high. In this paper, various dye-sensitized solar cells have been fabricated using natural dye, such as the dye of red-cabbage, curcumin, and red-perilla. As a result, it was found that the conversion efficiency of the solar cell fabricated using the mixture of red-cabbage and curcumin was about 0.6% (light source: halogen lamp), which was larger than that of the solar cells using one kind of dye. It was also found that the conversion efficiency was about 1.0% for the solar cell with the oxide semiconductor film fabricated using polyethylene glycol (PEG) whose molecular weight was 2,000,000 and red-cabbage dye. This indicates that the cost performance (defined by [conversion efficiency]/[cost of dye]) of the latter solar cell (dye: red-cabbage) is larger by more than 50 times than that of the solar cell using Ruthenium complex, even if the effect of the difference between the halogen lamp and the standard light source is taken into account.

  19. Rings in drugs.

    Science.gov (United States)

    Taylor, Richard D; MacCoss, Malcolm; Lawson, Alastair D G

    2014-07-24

    We have analyzed the rings, ring systems, and frameworks in drugs listed in the FDA Orange Book to understand the frequency, timelines, molecular property space, and the application of these rings in different therapeutic areas and target classes. This analysis shows that there are only 351 ring systems and 1197 frameworks in drugs that came onto the market before 2013. Furthermore, on average six new ring systems enter drug space each year and approximately 28% of new drugs contain a new ring system. Moreover, it is very unusual for a drug to contain more than one new ring system and the majority of the most frequently used ring systems (83%) were first used in drugs developed prior to 1983. These observations give insight into the chemical novelty of drugs and potentially efficient ways to assess compound libraries and develop compounds from hit identification to lead optimization and beyond.

  20. Birth Control Ring

    Science.gov (United States)

    ... Health Food & Fitness Diseases & Conditions Infections Drugs & Alcohol School & Jobs Sports Expert Answers (Q&A) Staying Safe Videos for Educators Search English Español Birth Control Ring KidsHealth / For Teens / Birth Control Ring What's ...

  1. Groups, rings, modules

    CERN Document Server

    Auslander, Maurice

    2014-01-01

    This classic monograph is geared toward advanced undergraduates and graduate students. The treatment presupposes some familiarity with sets, groups, rings, and vector spaces. The four-part approach begins with examinations of sets and maps, monoids and groups, categories, and rings. The second part explores unique factorization domains, general module theory, semisimple rings and modules, and Artinian rings. Part three's topics include localization and tensor products, principal ideal domains, and applications of fundamental theorem. The fourth and final part covers algebraic field extensions

  2. Performance Analysis of a Fluidic Axial Oscillation Tool for Friction Reduction with the Absence of a Throttling Plate

    Directory of Open Access Journals (Sweden)

    Xinxin Zhang

    2017-04-01

    Full Text Available An axial oscillation tool is proved to be effective in solving problems associated with high friction and torque in the sliding drilling of a complex well. The fluidic axial oscillation tool, based on an output-fed bistable fluidic oscillator, is a type of axial oscillation tool which has become increasingly popular in recent years. The aim of this paper is to analyze the dynamic flow behavior of a fluidic axial oscillation tool with the absence of a throttling plate in order to evaluate its overall performance. In particular, the differences between the original design with a throttling plate and the current default design are profoundly analyzed, and an improvement is expected to be recorded for the latter. A commercial computational fluid dynamics code, Fluent, was used to predict the pressure drop and oscillation frequency of a fluidic axial oscillation tool. The results of the numerical simulations agree well with corresponding experimental results. A sufficient pressure pulse amplitude with a low pressure drop is desired in this study. Therefore, a relative pulse amplitude of pressure drop and displacement are introduced in our study. A comparison analysis between the two designs with and without a throttling plate indicates that when the supply flow rate is relatively low or higher than a certain value, the fluidic axial oscillation tool with a throttling plate exhibits a better performance; otherwise, the fluidic axial oscillation tool without a throttling plate seems to be a preferred alternative. In most of the operating circumstances in terms of the supply flow rate and pressure drop, the fluidic axial oscillation tool performs better than the original design.

  3. Dye lasers in atomic spectroscopy

    International Nuclear Information System (INIS)

    Lange, W.; Luther, J.; Steudel, A.

    1974-01-01

    The properties of dye lasers which are relevant to atomic spectroscopy are discussed. Several experiments made possible by tunable dye lasers are discussed. Applications of high spectral density dye lasers are covered in areas such as absorption spectroscopy, fluorescence spectroscopy, photoionization and photodetachment, and two- and multi-photon processes. Applications which take advantage of the narrow bandwidth of tunable dye lasers are discussed, including saturation spectroscopy, fluorescence line narrowing, classic absorption and fluorescence spectroscopy, nonoptical detection of optical resonances, heterodyne spectroscopy, and nonlinear coherent resonant phenomena. (26 figures, 180 references) (U.S.)

  4. Eddy current inspection of stationary blade rings

    International Nuclear Information System (INIS)

    Krzywosz, K.J.; Hastings, S.N.

    1994-01-01

    Stationary turbine blade rings in a US power plant have experienced chloride-induced cracking. Failure analysis determined two types of cracking mechanisms: corrosion fatigue cracking confined to the leading edge of the outer shroud; and stress corrosion cracking present all over the blade surface. Fluorescent dye penetrant is typically used to detect and size cracks. However, it requires cleaning the blade rings by sandblasting to obtain reliable inspection results. Sand blasting in turn requires sealing the lower half of the turbine housing to prevent sand from contaminating the rest of the power plant components. Furthermore, both the penetrant examination and the removal of the sand are time consuming and costly. An alternative NDE technique is desirable which requires no pre-cleaning of the blade and a quick go/no-go inspection with the capability of estimating the crack length. This paper presents an innovative eddy current technique which meets the desired objectives by incorporating the use of specially designed contoured scanners equipped with an array of pancake coils. A set of eddy current pancake coils housed in three different scanners is used to manually scan and inspect the convex side of the stationary blade rings. The pancake coils are operated in a transmit/receive mode using two separate eddy current instruments. This paper presents the inspection concept, including scanner and probe designs, and test results from the various stages of multiple blade rings

  5. DFT Study of the Structure, Reactivity, Natural Bond Orbital and Hyperpolarizability of Thiazole Azo Dyes

    Directory of Open Access Journals (Sweden)

    Osman I. Osman

    2017-02-01

    Full Text Available The structure, reactivity, natural bond orbital (NBO, linear and nonlinear optical (NLO properties of three thiazole azo dyes (A, B and C were monitored by applying B3LYP, CAM-B3LYP and ωB97XD functionals with 6-311++G** and aug-cc-pvdz basis sets. The geometrical parameters,dipolemoments,HOMO-LUMO(highest occupied molecular orbital,lowest unoccupied molecular orbital energy gaps, absorption wavelengths and total hyperpolarizabilities were investigated in carbon tetrachloride (CCl4 chloroform (CHCl3, dichloromethane (CH2Cl2 and dimethlysulphoxide (DMSO. The donor methoxyphenyl group deviates from planarity with the thiazole azo moiety by ca. 38◦; while the acceptor dicyanovinyl, indandione and dicyanovinylindanone groups diverge by ca. 6◦. The HOMOs for the three dyes are identical. They spread over the methoxyphenyl donor moiety, the thiazole and benzene rings as π-bonding orbitals. The LUMOs are shaped up by the nature of the acceptor moieties. The LUMOs of the A, B and C dyes extend over the indandione, malononitrile and dicyanovinylindanone acceptor moieties, respectively, as π-antibonding orbitals. The HOMO-LUMO splittings showed that Dye C is much more reactive than dyes A and B. Compared to dyes A and B, Dye C yielded a longer maximum absorption wavelength because of the stabilization of its LUMOs relative to those of the other two. The three dyes show solvatochromism accompanied by significant increases in hyperpolarizability. The enhancement of the total hyperpolarizability of C compared to those of A and B is due to the cumulative action of the long π-conjugation of the indanone ring and the stronger electron-withdrawing ability of the dicyanovinyl moiety that form the dicyanovinylindanone acceptor group. These findings are facilitated by a natural bond orbital (NBO technique. The very high total hyperpolarizabilities of the three dyes define their potent nonlinear optical (NLO behaviour.

  6. Dye Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Di Wei

    2010-03-01

    Full Text Available Dye sensitized solar cell (DSSC is the only solar cell that can offer both the flexibility and transparency. Its efficiency is comparable to amorphous silicon solar cells but with a much lower cost. This review not only covers the fundamentals of DSSC but also the related cutting-edge research and its development for industrial applications. Most recent research topics on DSSC, for example, applications of nanostructured TiO2, ZnO electrodes, ionic liquid electrolytes, carbon nanotubes, graphene and solid state DSSC have all been included and discussed.

  7. Dye solar cell research

    CSIR Research Space (South Africa)

    Cummings, F

    2009-11-01

    Full Text Available Cummings Energy and Processes Materials Science and Manufacturing Council for Scientific and Industrial Research P.O. Box 395 Pretoria 0001, South Africa 27 November 2009 CONTENT head2rightBackground head2rightCSIR Dye Solar Cell Research head2... rightCollaborations and Links © CSIR 2007 www.csir.co.za head2rightAcknowledgements BACKGROUND head2rightSA is dry: Annual rainfall average of 450 mm compared with a world average of 860 mm head2rightOn upside, we have some...

  8. CW organic dye laser

    International Nuclear Information System (INIS)

    Tuccio, S.A.; Peterson, O.G.

    1975-01-01

    A method and apparatus for producing continuous emission from a lasing medium comprising organic dye molecules in solution are described. Continuous emission is accomplished by flowing the medium through a focused optical cavity while simultaneously producing a population inversion in that portion of the medium flowing in close proximity to the focal point of the cavity. The population inversion is produced by pumping the medium longitudinally, along the optical axis of the cavity, preferably by the focused output of a continuous-wave argon laser. Sufficient thermal energy is continuously dissipated from the medium to maintain the optical homogeneity thereof at or above the quality required for continuous emission

  9. Impact of fluidic agitation on human pluripotent stem cells in stirred suspension culture.

    Science.gov (United States)

    Nampe, Daniel; Joshi, Ronak; Keller, Kevin; Zur Nieden, Nicole I; Tsutsui, Hideaki

    2017-09-01

    The success of human pluripotent stem cells (hPSCs) as a source of future cell therapies hinges, in part, on the availability of a robust and scalable culture system that can readily produce a clinically relevant number of cells and their derivatives. Stirred suspension culture has been identified as one such promising platform due to its ease of use, scalability, and widespread use in the pharmaceutical industry (e.g., CHO cell-based production of therapeutic proteins) among others. However, culture of undifferentiated hPSCs in stirred suspension is a relatively new development within the past several years, and little is known beyond empirically optimized culture parameters. In particular, detailed characterizations of different agitation rates and their influence on the propagation of hPSCs are often not reported in the literature. In the current study, we systematically investigated various agitation rates to characterize their impact on cell yield, viability, and the maintenance of pluripotency. Additionally, we closely examined the distribution of cell aggregates and how the observed culture outcomes are attributed to their size distribution. Overall, our results showed that moderate agitation maximized the propagation of hPSCs to approximately 38-fold over 7 days by keeping the cell aggregates below the critical size, beyond which the cells are impacted by the diffusion limit, while limiting cell death caused by excessive fluidic forces. Furthermore, we observed that fluidic agitation could regulate not only cell aggregation, but also expression of some key signaling proteins in hPSCs. This indicates a new possibility to guide stem cell fate determination by fluidic agitation in stirred suspension cultures. Biotechnol. Bioeng. 2017;114: 2109-2120. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Induced movement of the magnetic beads and DNA-based dumbbell in a micro fluidic channel

    Science.gov (United States)

    Babić, B.; Ghai, R.; Dimitrov, K.

    2007-12-01

    We have explored controlled movement of magnetic beads and a dumbbell structure composed of DNA, a magnetic and a non-magnetic bead in a micro fluidic channel. Movement of the beads and dumbbells is simulated assuming that a net force is described as a superposition between the magnetic and hydrodynamic drag forces. Trajectories of beads and dumbbells are observed with optical light microscopy. The experimentally measured data show a good agreement with the simulations. This dynamical approach offers the prospect to stretch the DNA within the dumbbell and investigate its conformational changes. Further on, we demonstrate that short sonication can reduce multiple attachments of DNA to the beads.

  11. A High-Voltage SOI CMOS Exciter Chip for a Programmable Fluidic Processor System.

    Science.gov (United States)

    Current, K W; Yuk, K; McConaghy, C; Gascoyne, P R C; Schwartz, J A; Vykoukal, J V; Andrews, C

    2007-06-01

    A high-voltage (HV) integrated circuit has been demonstrated to transport fluidic droplet samples on programmable paths across the array of driving electrodes on its hydrophobically coated surface. This exciter chip is the engine for dielectrophoresis (DEP)-based micro-fluidic lab-on-a-chip systems, creating field excitations that inject and move fluidic droplets onto and about the manipulation surface. The architecture of this chip is expandable to arrays of N X N identical HV electrode driver circuits and electrodes. The exciter chip is programmable in several senses. The routes of multiple droplets may be set arbitrarily within the bounds of the electrode array. The electrode excitation waveform voltage amplitude, phase, and frequency may be adjusted based on the system configuration and the signal required to manipulate a particular fluid droplet composition. The voltage amplitude of the electrode excitation waveform can be set from the minimum logic level up to the maximum limit of the breakdown voltage of the fabrication technology. The frequency of the electrode excitation waveform can also be set independently of its voltage, up to a maximum depending upon the type of droplets that must be driven. The exciter chip can be coated and its oxide surface used as the droplet manipulation surface or it can be used with a top-mounted, enclosed fluidic chamber consisting of a variety of materials. The HV capability of the exciter chip allows the generated DEP forces to penetrate into the enclosed chamber region and an adjustable voltage amplitude can accommodate a variety of chamber floor thicknesses. This demonstration exciter chip has a 32 x 32 array of nominally 100 V electrode drivers that are individually programmable at each time point in the procedure to either of two phases: 0deg and 180deg with respect to the reference clock. For this demonstration chip, while operating the electrodes with a 100-V peak-to-peak periodic waveform, the maximum HV electrode

  12. Design and fabrication of a micro PZT cantilever array actuator for applications in fluidic systems

    DEFF Research Database (Denmark)

    Kim, H.; In, C.; Yoon, Gil Ho

    2005-01-01

    In this article, a micro cantilever array actuated by PZT films is designed and fabricated for micro fluidic systems. The design features for maximizing tip deflections and minimizing fluid leakage are described. The governing equation of the composite PZT cantilever is derived and the actuating......, dielectric constant, and dielectric loss. Tip deflections of 12 mu m at 5 V are measured, which agreed well with the predicted value. The 18 mu l/s leakage rate of air was observed at a pressure difference of 1000 Pa. Micro cooler is introduced, and its possible application to micro compressor is discussed....

  13. A capability study of micro moulding for nano fluidic system manufacture

    DEFF Research Database (Denmark)

    Calaon, Matteo; Hansen, Hans Nørgaard; Tosello, Guido

    2013-01-01

    With the present paper the authors analysed process capability of ultra-precision moulding used for producing nano crosses with the same critical channels dimensions of a nano fluidic system for optical mapping of genomic length DNA. The process variation focused on product tolerances is quantified...... through AFM measurements. Uncertainty assessment of measurements on polymer objects is described and quality control results of sub-micro injection moulded crosses are shown in respect of the tolerance range specified by the end user as limit value for functional design....

  14. An experimental study of the flow characteristics of fluidic device in a passive safety injection tank

    International Nuclear Information System (INIS)

    Cho, Seok; Song, Chul Hwa; Won, Suon Yeon; Min, Kyong Ho; Chung, Moon Ki

    1998-01-01

    It is considered to adopt passive safety injection tank (SIT) as a enhanced safety feature in KNGR. Passive SIT employs a vortex chamber as a fluidic device, which control injection flow rate passively by the variation of flow resistance produced by vortex intensity within the vortex chamber. To investigate the flow characteristics of the vortex chamber many tests have been carried out by using small-scale test facility. In this report the effects of geometric parameters of vortex chamber on discharge flow characteristics and the velocity measurement result of flow field, measured by PIV, are presented and discussed. (author). 25 refs., 11 tabs., 31 figs

  15. Use of dyes in cariology.

    Science.gov (United States)

    van de Rijke, J W

    1991-04-01

    The property of dyes to enhance contrast by their colour can be used in clinical dentistry and in investigations in vitro or in vivo. They have been used for indication of affected dental tissues, improvement of diagnostic methods, enhancement of patient awareness and information about specific processes. The development of particular dye systems, aimed at clinical application, is often laborious because of toxic effects, lack of specificity, irreversible staining or difficulties with removal of the dye. Clinically used dyes are often visually observed, which means a qualitative assessment of the staining, while quantification of the staining, if performed at all, is confined mostly to laboratory experiments. In this paper the application of dyes, arranged according to their specific purpose in cariology, is discussed, and a brief historical overview is given of the development of two particular dye applications for which commercial dye systems are now available. If certain requirements are met, dyes can be of great help in detection and quantification when used with several diagnostic methods.

  16. Token Ring Project

    Directory of Open Access Journals (Sweden)

    Adela Ionescu

    2007-01-01

    Full Text Available Ring topology is a simple configuration used to connect processes that communicate among themselves. A number of network standards such as token ring, token bus, and FDDI are based on the ring connectivity. This article will develop an implementation of a ring of processes that communicate among themselves via pipe links. The processes are nodes in the ring. Each process reads from its standard input and writes in its standard output. N-1 process redirects the its standard output to a standard input of the process through a pipe. When the ring-structure is designed, the project can be extended to simulate networks or to implement algorithms for mutual exclusion

  17. Token ring technology report

    CERN Document Server

    2013-01-01

    Please note this is a Short Discount publication. This report provides an overview of the IBM Token-Ring technology and products built by IBM and compatible vendors. It consists of two sections: 1. A summary of the design trade-offs for the IBM Token-Ring. 2. A summary of the products of the major token-ring compatible vendors broken down by adapters and components, wiring systems, testing, and new chip technology.

  18. Radioactive gold ring dermatitis

    International Nuclear Information System (INIS)

    Miller, R.A.; Aldrich, J.E.

    1990-01-01

    A superficial squamous cell carcinoma developed in a woman who wore a radioactive gold ring for more than 30 years. Only part of the ring was radioactive. Radiation dose measurements indicated that the dose to basal skin layer was 2.4 Gy (240 rad) per week. If it is assumed that the woman continually wore her wedding ring for 37 years since purchase, she would have received a maximum dose of approximately 4600 Gy

  19. Understanding effects of chemical structure on azo dye decolorization characteristics by Aeromonas hydrophila

    Energy Technology Data Exchange (ETDEWEB)

    Hsueh, Chung-Chuan [Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 260, Taiwan (China); Chen, Bor-Yann, E-mail: bychen@niu.edu.tw [Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 260, Taiwan (China); Yen, Chia-Yi [Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 260, Taiwan (China)

    2009-08-15

    This novel comparative study tended to disclose how the molecular structures present in seven azo dyes including two types of azo dyes (i.e., naphthol type azo dyes - Reactive Black 5 (RB 5), Reactive Blue 171 (RB 171), Reactive Green 19 (RG19), Reactive Red 198 (RR198), Reactive Red 141 (RR141) and non-naphthol type azo dyes - Direct Yellow 86 (DY86), Reactive Yellow 84 (RY84)) affected color removal capability of Aeromonas hydrophila. Generally speaking, the decolorization rate of naphthol type azo dye with hydroxyl group at ortho to azo bond was faster than that of non-naphthol type azo dye without hydroxyl group, except of RG19. The azo dyes with electron-withdrawing groups (e.g., sulfo group in RR198, RB5 and RR141) would be easier to be decolorized than the azo dyes with the electron-releasing groups (e.g., -NH-triazine in RB171 and RG19). In addition, the azo dyes containing more electron-withdrawing groups (e.g., RR198, RB5 and RR141) showed significantly faster rate of decolorization. The azo dyes with electron-withdrawing groups (e.g., sulfo group) at para and ortho to azo bond (e.g., RR198, RB5 and RR141) could be more preferred for color removal than those at meta (e.g., DY86 and RY84). The former azo dyes with para and ortho sulfo group provided more effective resonance effects to withdraw electrons from azo bond, causing azo dyes to be highly electrophilic for faster rates of reductive biodecolorization. However, since the ortho substituent caused steric hindrance near azo linkage(s), azo dyes with para substituent could be more favorable (e.g., SO{sub 2}(CH{sub 2}){sub 2}SO{sub 4}{sup -} in RR198 and RB5) than those with ortho substituent (e.g., sulfo group at RR141) for decolorization. Thus, the ranking of the position for the electron-withdrawing substituent in azo dyes to escalate decolorization was para > ortho > meta. This study suggested that both the positions of substituents on the aromatic ring and the electronic characteristics of

  20. Physics of quantum rings

    International Nuclear Information System (INIS)

    Fomin, Vladimir M.

    2014-01-01

    Presents the new class of materials of quantum rings. Provides an elemental basis for low-cost high-performance devices promising for electronics, optoelectronics, spintronics and quantum information processing. Explains the physical properties of quantum rings to cover a gap in scientific literature. Presents the application of most advanced nanoengineering and nanocharacterization techniques. This book deals with a new class of materials, quantum rings. Innovative recent advances in experimental and theoretical physics of quantum rings are based on the most advanced state-of-the-art fabrication and characterization techniques as well as theoretical methods. The experimental efforts allow to obtain a new class of semiconductor quantum rings formed by capping self-organized quantum dots grown by molecular beam epitaxy. Novel optical and magnetic properties of quantum rings are associated with non-trivial topologies at the nanoscale. An adequate characterization of quantum rings is possible on the basis of modern characterization methods of nanostructures, such as Scanning Tunneling Microscopy. A high level of complexity is demonstrated to be needed for a dedicated theoretical model to adequately represent the specific features of quantum rings. The findings presented in this book contribute to develop low-cost high-performance electronic, spintronic, optoelectronic and information processing devices based on quantum rings.

  1. Chromatographic separation and spectro-analytical characterization of a natural African mineral dye

    Directory of Open Access Journals (Sweden)

    G.B. Adebayo

    2007-08-01

    Full Text Available Chromatographic fractionation and spectroscopic characterization of a natural African mineral dye have been carried out. The chromatographic separation of the dyes made use of column and thin layer chromatographic techniques. Some physicochemical properties of the dye including solubility in polar and non-polar solvents, pH, ash and organic contents were determined. The spectro-analytical techniques used for characterization included energy dispersive X-ray fluorescence (EDXRF, X-ray diffractometry (XRD, Optical microscopy, infrared (IR and UV-VIS spectroscopy. Four different fractions having colours yellow, grey, orange and purple were obtained from the chromatographic separation. All the fractions were found to contain aromatic nucleus based on IR and UV-VIS spectroscopic data. Other functional groups detected are Ar-NH2, -CONH2, C=C, C-C and metal-carbon chelate rings. The presence of aromatic amine in the dye provides strong evidence for its use as hair dye. The dye was found to be soluble in both aqueous and non-aqueous solvents. The pH of the dye's aqueous solution was found to be 8.6, and the ash and organic content of the raw dye were 49 % and 51 % respectively. The XRF revealed that the dye contains twenty elements with concentrations ranging from major to ultra-trace levels. The XRD also showed that the sample contains about forty-six mineral phases which include both inorganic and organic components. The maximum absorption wavelength (λmax in UV-VIS of the aqueous solution was found to be 464 nm. The optical microscopic investigation gave indication that the dyes are likely to be of the marine origin.

  2. Modeling and testing of a knitted-sleeve fluidic artificial muscle

    Science.gov (United States)

    Ball, Erick J.; Meller, Michael A.; Chipka, Jordan B.; Garcia, Ephrahim

    2016-11-01

    The knitted-sleeve fluidic muscle is similar in design to a traditional McKibben muscle, with a separate bladder and sleeve. However, in place of a braided sleeve, it uses a tubular-knit sleeve made from a thin strand of flexible but inextensible yarn. When the bladder is pressurized, the sleeve expands by letting the loops of fiber slide past each other, changing the dimensions of the rectangular cells in the stitch pattern. Ideally, the internal volume of the sleeve would reach a maximum when its length has contracted by 2/3 from its maximum length, and although this is not reachable in practice, preliminary tests show that free contraction greater than 50% is achievable. The motion relies on using a fiber with a low coefficient of friction in order to reduce hysteresis to an acceptable level. In addition to increased stroke length, potential advantages of this technique include slower force drop-off during the stroke, more useable energy in certain applications, and greater similarity to the force-length relationship of skeletal muscle. Its main limitation is its potentially greater effect from friction compared to other fluidic muscle designs.

  3. The smart Peano fluidic muscle: a low profile flexible orthosis actuator that feels pain

    Science.gov (United States)

    Veale, Allan J.; Anderson, Iain A.; Xie, Shane Q.

    2015-03-01

    Robotic orthoses have the potential to provide effective rehabilitation while overcoming the availability and cost constraints of therapists. These orthoses must be characterized by the naturally safe, reliable, and controlled motion of a human therapist's muscles. Such characteristics are only possible in the natural kingdom through the pain sensing realized by the interaction of an intelligent nervous system and muscles' embedded sensing organs. McKibben fluidic muscles or pneumatic muscle actuators (PMAs) are a popular orthosis actuator because of their inherent compliance, high force, and muscle-like load-displacement characteristics. However, the circular cross-section of PMA increases their profile. PMA are also notoriously unreliable and difficult to control, lacking the intelligent pain sensing systems of their biological muscle counterparts. Here the Peano fluidic muscle, a new low profile yet high-force soft actuator is introduced. This muscle is smart, featuring bioinspired embedded pressure and soft capacitive strain sensors. Given this pressure and strain feedback, experimental validation shows that a lumped parameter model based on the muscle geometry and material parameters can be used to predict its force for quasistatic motion with an average error of 10 - 15N. Combining this with a force threshold pain sensing algorithm sets a precedent for flexible orthosis actuation that uses embedded sensors to prevent damage to the actuator and its environment.

  4. Methodology for designing and manufacturing complex biologically inspired soft robotic fluidic actuators: prosthetic hand case study.

    Science.gov (United States)

    Thompson-Bean, E; Das, R; McDaid, A

    2016-10-31

    We present a novel methodology for the design and manufacture of complex biologically inspired soft robotic fluidic actuators. The methodology is applied to the design and manufacture of a prosthetic for the hand. Real human hands are scanned to produce a 3D model of a finger, and pneumatic networks are implemented within it to produce a biomimetic bending motion. The finger is then partitioned into material sections, and a genetic algorithm based optimization, using finite element analysis, is employed to discover the optimal material for each section. This is based on two biomimetic performance criteria. Two sets of optimizations using two material sets are performed. Promising optimized material arrangements are fabricated using two techniques to validate the optimization routine, and the fabricated and simulated results are compared. We find that the optimization is successful in producing biomimetic soft robotic fingers and that fabrication of the fingers is possible. Limitations and paths for development are discussed. This methodology can be applied for other fluidic soft robotic devices.

  5. Resealable, optically accessible, PDMS-free fluidic platform for ex vivo interrogation of pancreatic islets.

    Science.gov (United States)

    Lenguito, Giovanni; Chaimov, Deborah; Weitz, Jonathan R; Rodriguez-Diaz, Rayner; Rawal, Siddarth A K; Tamayo-Garcia, Alejandro; Caicedo, Alejandro; Stabler, Cherie L; Buchwald, Peter; Agarwal, Ashutosh

    2017-02-28

    We report the design and fabrication of a robust fluidic platform built out of inert plastic materials and micromachined features that promote optimized convective fluid transport. The platform is tested for perfusion interrogation of rodent and human pancreatic islets, dynamic secretion of hormones, concomitant live-cell imaging, and optogenetic stimulation of genetically engineered islets. A coupled quantitative fluid dynamics computational model of glucose stimulated insulin secretion and fluid dynamics was first utilized to design device geometries that are optimal for complete perfusion of three-dimensional islets, effective collection of secreted insulin, and minimization of system volumes and associated delays. Fluidic devices were then fabricated through rapid prototyping techniques, such as micromilling and laser engraving, as two interlocking parts from materials that are non-absorbent and inert. Finally, the assembly was tested for performance using both rodent and human islets with multiple assays conducted in parallel, such as dynamic perfusion, staining and optogenetics on standard microscopes, as well as for integration with commercial perfusion machines. The optimized design of convective fluid flows, use of bio-inert and non-absorbent materials, reversible assembly, manual access for loading and unloading of islets, and straightforward integration with commercial imaging and fluid handling systems proved to be critical for perfusion assay, and particularly suited for time-resolved optogenetics studies.

  6. Numerical simulations on increasing turbojet engines exhaust mixture ratio using fluidic chevrons

    Directory of Open Access Journals (Sweden)

    Adrian GRUZEA

    2017-06-01

    Full Text Available This paper refers to some aspects regarding the terms “chevron” and “fluidic chevron” and to the process of increasing the jet engines exhaust mixing rate towards achieving noise reduction. One of the noise reduction methods consists in covering the high velocity main flow with a secondary one, having a much lower velocity, similar to the turbofan engines. The fluidic chevrons try to accomplish these requirements, being used just in particular moments of the flight. This study will be based on numerical simulations carried using the commercial software ANSYS. The geometry used will the based on the micro jet engine JetCat P80, equipping the turbines laboratory from the Faculty of Aerospace Engineering. A research based on the measured geometric, gasodynamic and cinematic parameters will be carried varying the mass flow and keeping the immersion angle constant. As a result of these simulations we’ll observe the influence of the mentioned parameters on the jet’s flow field.

  7. Porous PDMS structures for the storage and release of aqueous solutions into fluidic environments.

    Science.gov (United States)

    Thurgood, Peter; Baratchi, Sara; Szydzik, Crispin; Mitchell, Arnan; Khoshmanesh, Khashayar

    2017-07-11

    Typical microfluidic systems take advantage of multiple storage reservoirs, pumps and valves for the storage, driving and release of buffers and other reagents. However, the fabrication, integration, and operation of such components can be difficult. In particular, the reliance of such components on external off-chip equipment limits their utility for creating self-sufficient, stand-alone microfluidic systems. Here, we demonstrate a porous sponge made of polydimethylsiloxane (PDMS), which is fabricated by templating microscale water droplets using a T-junction microfluidic structure. High-resolution microscopy reveals that this sponge contains a network of pores, interconnected by small holes. This unique structure enables the sponge to passively release stored solutions very slowly. Proof-of-concept experiments demonstrate that the sponge can be used for the passive release of stored solutions into narrow channels and circular well plates, with the latter used for inducing intracellular calcium signalling of immobilised endothelial cells. The release rate of stored solutions can be controlled by varying the size of interconnecting holes, which can be easily achieved by changing the flow rate of the water injected into the T-junction. We also demonstrate the active release of stored liquids into a fluidic channel upon the manual compression of the sponge. The developed PDMS sponge can be easily integrated into complex micro/macro fluidic systems and prepared with a wide array of reagents, representing a new building block for self-sufficient microfluidic systems.

  8. Proton beam writing of long, arbitrary structures for micro/nano photonics and fluidics applications

    International Nuclear Information System (INIS)

    Udalagama, Chammika; Teo, E.J.; Chan, S.F.; Kumar, V.S.; Bettiol, A.A.; Watt, F.

    2011-01-01

    The last decade has seen proton beam writing maturing into a versatile lithographic technique able to produce sub-100 nm, high aspect ratio structures with smooth side walls. However, many applications in the fields of photonics and fluidics require the fabrication of structures with high spatial resolution that extends over several centimetres. This cannot be achieved by purely magnetic or electrostatic beam scanning due to the large off-axis beam aberrations in high demagnification systems. As a result, this has limited us to producing long straight structures using a combination of beam and stage scanning. In this work we have: (1) developed an algorithm to include any arbitrary pattern into the writing process by using a more versatile combination of beam and stage scanning while (2) incorporating the use of the ubiquitous AutoCAD DXF (drawing exchange format) into the design process. We demonstrate the capability of this approach in fabricating structures such as Y-splitters, Mach-Zehnder modulators and microfluidic channels that are over several centimetres in length, in polymer. We also present optimisation of such parameters as scanning speed and scanning loops to improve on the surface roughness of the structures. This work opens up new possibilities of using CAD software in PBW for microphotonics and fluidics device fabrication.

  9. Proton beam writing of long, arbitrary structures for micro/nano photonics and fluidics applications

    Science.gov (United States)

    Udalagama, Chammika; Teo, E. J.; Chan, S. F.; Kumar, V. S.; Bettiol, A. A.; Watt, F.

    2011-10-01

    The last decade has seen proton beam writing maturing into a versatile lithographic technique able to produce sub-100 nm, high aspect ratio structures with smooth side walls. However, many applications in the fields of photonics and fluidics require the fabrication of structures with high spatial resolution that extends over several centimetres. This cannot be achieved by purely magnetic or electrostatic beam scanning due to the large off-axis beam aberrations in high demagnification systems. As a result, this has limited us to producing long straight structures using a combination of beam and stage scanning. In this work we have: (1) developed an algorithm to include any arbitrary pattern into the writing process by using a more versatile combination of beam and stage scanning while (2) incorporating the use of the ubiquitous AutoCAD DXF (drawing exchange format) into the design process. We demonstrate the capability of this approach in fabricating structures such as Y-splitters, Mach-Zehnder modulators and microfluidic channels that are over several centimetres in length, in polymer. We also present optimisation of such parameters as scanning speed and scanning loops to improve on the surface roughness of the structures. This work opens up new possibilities of using CAD software in PBW for microphotonics and fluidics device fabrication.

  10. Fabrication of Biochips with Micro Fluidic Channels by Micro End-milling and Powder Blasting

    Directory of Open Access Journals (Sweden)

    Dong Sam Park

    2008-02-01

    Full Text Available For microfabrications of biochips with micro fluidic channels, a large number of microfabrication techniques based on silicon or glass-based Micro-Electro-Mechanical System (MEMS technologies were proposed in the last decade. In recent years, for low cost and mass production, polymer-based microfabrication techniques by microinjection molding and micro hot embossing have been proposed. These techniques, which require a proper photoresist, mask, UV light exposure, developing, and electroplating as a preprocess, are considered to have some problems. In this study, we propose a new microfabrication technology which consists of micro end-milling and powder blasting. This technique could be directly applied to fabricate the metal mold without any preprocesses. The metal mold with micro-channels is machined by micro end-milling, and then, burrs generated in the end-milling process are removed by powder blasting. From the experimental results, micro end-milling combined with powder blasting could be applied effectively for fabrication of the injection mold of biochips with micro fluidic channels.

  11. Micro-fluidic module for blood cell separation for gene expression radiobiological assays

    International Nuclear Information System (INIS)

    Brengues, Muriel; Gu, Jian; Zenhausern, Frederic

    2015-01-01

    Advances in molecular techniques have improved discovery of biomarkers associated with radiation exposure. Gene expression techniques have been demonstrated as effective tools for biodosimetry, and different assay platforms with different chemistries are now available. One of the main challenges is to integrate the sample preparation processing of these assays into micro-fluidic platforms to be fully automated for point-of-care medical countermeasures in the case of a radiological event. Most of these assays follow the same workflow processing that comprises first the collection of blood samples followed by cellular and molecular sample preparation. The sample preparation is based on the specific reagents of the assay system and depends also on the different subsets of cells population and the type of biomarkers of interest. In this article, the authors present a module for isolation of white blood cells from peripheral blood as a prerequisite for automation of gene expression assays on a micro-fluidic cartridge. For each sample condition, the gene expression platform can be adapted to suit the requirements of the selected assay chemistry (authors)

  12. Fluidic Logic Used in a Systems Approach to Enable Integrated Single-cell Functional Analysis

    Directory of Open Access Journals (Sweden)

    Naveen Ramalingam

    2016-09-01

    Full Text Available The study of single cells has evolved over the past several years to include expression and genomic analysis of an increasing number of single cells. Several studies have demonstrated wide-spread variation and heterogeneity within cell populations of similar phenotype. While the characterization of these populations will likely set the foundation for our understanding of genomic- and expression-based diversity, it will not be able to link the functional differences of a single cell to its underlying genomic structure and activity. Currently, it is difficult to perturb single cells in a controlled environment, monitor and measure the response due to perturbation, and link these response measurements to downstream genomic and transcriptomic analysis. In order to address this challenge, we developed a platform to integrate and miniaturize many of the experimental steps required to study single-cell function. The heart of this platform is an elastomer-based Integrated Fluidic Circuit (IFC that uses fluidic logic to select and sequester specific single cells based on a phenotypic trait for downstream experimentation. Experiments with sequestered cells that have been performed include on-chip culture, exposure to a variety of stimulants, and post-exposure image-based response analysis, followed by preparation of the mRNA transcriptome for massively parallel sequencing analysis. The flexible system embodies experimental design and execution that enable routine functional studies of single cells.

  13. Thermo-fluidic devices and materials inspired from mass and energy transport phenomena in biological system

    Institute of Scientific and Technical Information of China (English)

    Jian XIAO; Jing LIU

    2009-01-01

    Mass and energy transport consists of one of the most significant physiological processes in nature, which guarantees many amazing biological phenomena and activ-ities. Borrowing such idea, many state-of-the-art thermo-fluidic devices and materials such as artificial kidneys, carrier erythrocyte, blood substitutes and so on have been successfully invented. Besides, new emerging technologies are still being developed. This paper is dedicated to present-ing a relatively complete review of the typical devices and materials in clinical use inspired by biological mass and energy transport mechanisms. Particularly, these artificial thermo-fluidic devices and materials will be categorized into organ transplantation, drug delivery, nutrient transport, micro operation, and power supply. Potential approaches for innovating conventional technologies were discussed, corresponding biological phenomena and physical mechan-isms were interpreted, future promising mass-and-energy-transport-based bionic devices were suggested, and prospects along this direction were pointed out. It is expected that many artificial devices based on biological mass and energy transport principle will appear to better improve vari-ous fields related to human life in the near future.

  14. Hybrid macro-micro fluidics system for a chip-based biosensor

    Science.gov (United States)

    Tamanaha, C. R.; Whitman, L. J.; Colton, R. J.

    2002-03-01

    We describe the engineering of a hybrid fluidics platform for a chip-based biosensor system that combines high-performance microfluidics components with powerful, yet compact, millimeter-scale pump and valve actuators. The microfluidics system includes channels, valveless diffuser-based pumps, and pinch-valves that are cast into a poly(dimethylsiloxane) (PDMS) membrane and packaged along with the sensor chip into a palm-sized plastic cartridge. The microfluidics are driven by pump and valve actuators contained in an external unit (with a volume ~30 cm3) that interfaces kinematically with the PDMS microelements on the cartridge. The pump actuator is a simple-lever, flexure-hinge displacement amplifier that increases the motion of a piezoelectric stack. The valve actuators are an array of cantilevers operated by shape memory alloy wires. All components can be fabricated without the need for complex lithography or micromachining, and can be used with fluids containing micron-sized particulates. Prototypes have been modeled and tested to ensure the delivery of microliter volumes of fluid and the even dispersion of reagents over the chip sensing elements. With this hybrid approach to the fluidics system, the biochemical assay benefits from the many advantages of microfluidics yet we avoid the complexity and unknown reliability of immature microactuator technologies.

  15. Mass transport enhancement in redox flow batteries with corrugated fluidic networks

    Science.gov (United States)

    Lisboa, Kleber Marques; Marschewski, Julian; Ebejer, Neil; Ruch, Patrick; Cotta, Renato Machado; Michel, Bruno; Poulikakos, Dimos

    2017-08-01

    We propose a facile, novel concept of mass transfer enhancement in flow batteries based on electrolyte guidance in rationally designed corrugated channel systems. The proposed fluidic networks employ periodic throttling of the flow to optimally deflect the electrolytes into the porous electrode, targeting enhancement of the electrolyte-electrode interaction. Theoretical analysis is conducted with channels in the form of trapezoidal waves, confirming and detailing the mass transport enhancement mechanism. In dilute concentration experiments with an alkaline quinone redox chemistry, a scaling of the limiting current with Re0.74 is identified, which compares favourably against the Re0.33 scaling typical of diffusion-limited laminar processes. Experimental IR-corrected polarization curves are presented for high concentration conditions, and a significant performance improvement is observed with the narrowing of the nozzles. The adverse effects of periodic throttling on the pumping power are compared with the benefits in terms of power density, and an improvement of up to 102% in net power density is obtained in comparison with the flow-by case employing straight parallel channels. The proposed novel concept of corrugated fluidic networks comes with facile fabrication and contributes to the improvement of the transport characteristics and overall performance of redox flow battery systems.

  16. Proton beam writing of long, arbitrary structures for micro/nano photonics and fluidics applications

    Energy Technology Data Exchange (ETDEWEB)

    Udalagama, Chammika, E-mail: chammika@nus.edu.sg [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore (NUS), 2 Science Drive 3, Singapore 117542 (Singapore); Teo, E.J. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore (NUS), 2 Science Drive 3, Singapore 117542 (Singapore); Chan, S.F. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore (NUS), 2 Science Drive 3, Singapore 117542 (Singapore); NUS Nanoscience and Nanotechnology Initiative, 2 Science Drive 3, 117542 (Singapore); Department of Chemistry, NUS, 3 Science Drive 3, 117543 (Singapore); Kumar, V.S.; Bettiol, A.A.; Watt, F. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore (NUS), 2 Science Drive 3, Singapore 117542 (Singapore)

    2011-10-15

    The last decade has seen proton beam writing maturing into a versatile lithographic technique able to produce sub-100 nm, high aspect ratio structures with smooth side walls. However, many applications in the fields of photonics and fluidics require the fabrication of structures with high spatial resolution that extends over several centimetres. This cannot be achieved by purely magnetic or electrostatic beam scanning due to the large off-axis beam aberrations in high demagnification systems. As a result, this has limited us to producing long straight structures using a combination of beam and stage scanning. In this work we have: (1) developed an algorithm to include any arbitrary pattern into the writing process by using a more versatile combination of beam and stage scanning while (2) incorporating the use of the ubiquitous AutoCAD DXF (drawing exchange format) into the design process. We demonstrate the capability of this approach in fabricating structures such as Y-splitters, Mach-Zehnder modulators and microfluidic channels that are over several centimetres in length, in polymer. We also present optimisation of such parameters as scanning speed and scanning loops to improve on the surface roughness of the structures. This work opens up new possibilities of using CAD software in PBW for microphotonics and fluidics device fabrication.

  17. Enhanced Photovoltaic Performances of Dye-Sensitized Solar Cells by Co-Sensitization of Benzothiadiazole and Squaraine-Based Dyes.

    Science.gov (United States)

    Islam, Ashraful; Akhtaruzzaman, Md; Chowdhury, Towhid H; Qin, Chuanjiang; Han, Liyuan; Bedja, Idriss M; Stalder, Romain; Schanze, Kirk S; Reynolds, John R

    2016-02-01

    Dye-sensitized solar cells (DSSCs) based on a donor-acceptor-donor oligothienylene dye containing benzothiadiazole (T4BTD-A) were cosensitized with dyes containing cis-configured squaraine rings (HSQ3 and HSQ4). The cosensitized dyes showed incident monochromatic photon-to-current conversion efficiency (IPCE) greater than 70% in the 300-850 nm wavelength region. The individual overall conversion efficiencies of the sensitizers T4BTD-A, HSQ3, and HSQ4 were 6.4%, 4.8%, and 5.8%, respectively. Improved power conversion efficiencies of 7.0% and 7.7% were observed when T4BTD-A was cosensitized with HSQ3 and HSQ4, respectively, thanks to a significant increase in current density (JSC) for the cosensitized DSSCs. Intensity-modulated photovoltage spectroscopy results showed a longer lifetime for cosensitized T4BTD-A+HSQ3 and T4BTD-A+HSQ4 compared to that of HSQ3 and HSQ4, respectively.

  18. The oxidative response and viable reaction mechanism of the textile dyes by fenton reagent

    International Nuclear Information System (INIS)

    Masooda, Q.; Hijira, T.; Sitara, M.; Sehar, M.; Sundus, A.; Mohsin, A.

    2017-01-01

    The mechanism of the degradation of the Reactive Red 239 and Reactive Blue 19 by Fenton reagent was studied by advanced oxidation process in aqueous medium. The spectroscopic technique was adopted for the measurements of dye concentration. Moreover they were determined at 540 nm and 590 nm, respectively. Kinetics of the reaction was studied under the effect of concentration of reactive dyes, concentration of oxidant were followed under pseudo first order condition and found to influence the catalytic mechanism. The pH of the medium, vibrant response of several cations and anions and influence of ionic strength on the reaction kinetics were also monitored. Physical evidences for the degradation and mineralization of the dyes were evaluated by Lime water test, Ring Test and TLC test also confirmed the degradation of dye. Inhibitory effects of dyes were observed by CO3-, HCO3-, HPO42-, Cl-, I- Al3+ and Na+. Thermodynamic activation parameters in the oxidation reaction were studied and mode of mechanism was suggested on the basic of these parameters. This study explored the safe and eco friendly degradation of the textile dyes under Pseudo first order rate constant. It was observed that Fenton assisted degradation of the dyes under controlled conditions was found to be favorable for the treatment of textile wastewater. Moreover compared to other chemical methods it is effective and harmless to the environment. (author)

  19. EBT ring physics

    International Nuclear Information System (INIS)

    Uckan, N.A.

    1980-04-01

    This workshop attempted to evaluate the status of the current experimental and theoretical understanding of hot electron ring properties. The dominant physical processes that influence ring formation, scaling, and their optimal behavior are also studied. Separate abstracts were prepared for each of the 27 included papers

  20. Development of AVLIS dye laser system

    International Nuclear Information System (INIS)

    Sugiyama, Akira; Nakayama, Tsuyoshi; Kato, Masaaki; Arisawa, Takashi

    1995-01-01

    CVL pumped single mode dye laser was performed. It was found that pressure tuning has some excellent feature in comparison to mechanical tuning in dye laser frequency control. For evaluation of dye laser amplifier, two-dimensional rate equation was proposed. Calculated data by this equation agreed with experimental data in large diameter input dye laser beam condition. (author)

  1. Treatment of dye house effluents

    International Nuclear Information System (INIS)

    Waheed, S.; Ashraf, C.M.

    1999-01-01

    Environmental considerations play an increasingly important role in processing of textiles. For textile, limits on particular substances have been and are being laid down either by law or as a result of the demands of clothing manufactures. One of the most complex areas in textile processing is textile printing and dyeing. Here, virtually all dye classes are used. In some printing processes such as reactive printing, many of products used end up in the wastewater. A study of the optimisation of wastewater treatment systems and the systematic management of water and the problems of dyeing are reviewed in this article. (author)

  2. Survery on Actual Conditions of Food Dyes

    OpenAIRE

    佐藤, ひろみ

    1981-01-01

    Many food dyes are widely used as food additives in Japan, and many investigations have been pointed the problems of safety of these food dyes used in Japanese food. There are two types of commercial food dyes, one is synthetic dyes and the other is natural dyes.Recently Japanese food is not stained so colourfully, but it is stained faintly in colour near to natural food by using of mixed synthetic dyes. On their hand, many consumers have a tendency to prefer natural food dyes because they ha...

  3. Developing and Analysing sub-10 µm Fluidic Systems with Integrated Electrodes for Pumping and Sensing in Nanotechnology Applications

    NARCIS (Netherlands)

    Heuck, F.C.A.

    2010-01-01

    In this thesis, sub-10 µm fluidic systems with integrated electrodes for pumping and sensing in nanotechnology applications were developed and analyzed. This work contributes to the development of the scanning ion pipette (SIP), a tool to investigate surface changes on the nanometer scale induced by

  4. Development of a millimetrically scaled biodiesel transesterification device that relies on droplet-based co-axial fluidics

    Science.gov (United States)

    Yeh, S. I.; Huang, Y. C.; Cheng, C. H.; Cheng, C. M.; Yang, J. T.

    2016-07-01

    In this study, we investigated a fluidic system that adheres to new concepts of energy production. To improve efficiency, cost, and ease of manufacture, a millimetrically scaled device that employs a droplet-based co-axial fluidic system was devised to complete alkali-catalyzed transesterification for biodiesel production. The large surface-to-volume ratio of the droplet-based system, and the internal circulation induced inside the moving droplets, significantly enhanced the reaction rate of immiscible liquids used here - soybean oil and methanol. This device also decreased the molar ratio between methanol and oil to near the stoichiometric coefficients of a balanced chemical equation, which enhanced the total biodiesel volume produced, and decreased the costs of purification and recovery of excess methanol. In this work, the droplet-based co-axial fluidic system performed better than other methods of continuous-flow production. We achieved an efficiency that is much greater than that of reported systems. This study demonstrated the high potential of droplet-based fluidic chips for energy production. The small energy consumption and low cost of the highly purified biodiesel transesterification system described conforms to the requirements of distributed energy (inexpensive production on a moderate scale) in the world.

  5. On the Laurent polynomial rings

    International Nuclear Information System (INIS)

    Stefanescu, D.

    1985-02-01

    We describe some properties of the Laurent polynomial rings in a finite number of indeterminates over a commutative unitary ring. We study some subrings of the Laurent polynomial rings. We finally obtain two cancellation properties. (author)

  6. Hair Dyes and Cancer Risk

    Science.gov (United States)

    ... http://www.fda.gov/aboutfda/centersoffices/officeoffoods/cfsan/default.htm . Selected References Huncharek M, Kupelnick B. Personal use of hair dyes and the risk of bladder cancer: results of a meta-analysis. ...

  7. Development of Two Color Fluorescent Imager and Integrated Fluidic System for Nanosatellite Biology Applications

    Science.gov (United States)

    Wu, Diana Terri; Ricco, Antonio Joseph; Lera, Matthew P.; Timucin, Linda R.; Parra, Macarena P.

    2012-01-01

    Nanosatellites offer frequent, low-cost space access as secondary payloads on launches of larger conventional satellites. We summarize the payload science and technology of the Microsatellite in-situ Space Technologies (MisST) nanosatellite for conducting automated biological experiments. The payload (two fused 10-cm cubes) includes 1) an integrated fluidics system that maintains organism viability and supports growth and 2) a fixed-focus imager with fluorescence and scattered-light imaging capabilities. The payload monitors temperature, pressure and relative humidity, and actively controls temperature. C. elegans (nematode, 50 m diameter x 1 mm long) was selected as a model organism due to previous space science experience, its completely sequenced genome, size, hardiness, and the variety of strains available. Three strains were chosen: two green GFP-tagged strains and one red tdTomato-tagged strain that label intestinal, nerve, and pharyngeal cells, respectively. The integrated fluidics system includes bioanalytical and reservoir modules. The former consists of four 150 L culture wells and a 4x5 mm imaging zone the latter includes two 8 mL fluid reservoirs for reagent and waste storage. The fluidic system is fabricated using multilayer polymer rapid prototyping: laser cutting, precision machining, die cutting, and pressure-sensitive adhesives it also includes eight solenoid-operated valves and one mini peristaltic pump. Young larval-state (L2) nematodes are loaded in C. elegans Maintenance Media (CeMM) in the bioanalytical module during pre-launch assembly. By the time orbit is established, the worms have grown to sufficient density to be imaged and are fed fresh CeMM. The strains are pumped sequentially into the imaging area, imaged, then pumped into waste. Reagent storage utilizes polymer bags under slight pressure to prevent bubble formation in wells or channels. The optical system images green and red fluorescence bands by excitation with blue (473 nm peak

  8. Ultrasound for low temperature dyeing of wool with acid dye.

    Science.gov (United States)

    Ferrero, F; Periolatto, M

    2012-05-01

    The possibility of reducing the temperature of conventional wool dyeing with an acid levelling dye using ultrasound was studied in order to reach exhaustion values comparable to those obtained with the standard procedure at 98 °C, obtaining dyed samples of good quality. The aim was to develop a laboratory method that could be transferred at industrial level, reducing both the energy consumption and fiber damage caused by the prolonged exposure to high temperature without the use of polluting auxiliary agents. Dyeings of wool fabrics were carried out in the temperature range between 60 °C and 80 °C using either mechanical or ultrasound agitation of the bath and coupling the two methods to compare the results. For each dyeing, the exhaustion curves of the dye bath were determined and the better results of dyeing kinetics were obtained with ultrasound coupled with mechanical stirring. Hence the corresponding half dyeing times, absorption rate constants according to Cegarra-Puente modified equation and ultrasonic efficiency were calculated in comparison with mechanical stirring alone. In the presence of ultrasound the absorption rate constants increased by at least 50%, at each temperature, confirming the synergic effect of sonication on the dyeing kinetics. Moreover the apparent activation energies were also evaluated and the positive effect of ultrasound was ascribed to the pre-exponential factor of the Arrhenius equation. It was also shown that the effect of ultrasound at 60 °C was just on the dye bath, practically unaffecting the wool fiber surface, as confirmed by the results of SEM analysis. Finally, fastness tests to rubbing and domestic laundering yielded good values for samples dyed in ultrasound assisted process even at the lower temperature. These results suggest the possibility, thanks to the use of ultrasound, to obtain a well equalized dyeing on wool working yet at 60°C, a temperature process strongly lower than 98°C, currently used in industry

  9. The effects of halide ions on the radiation-induced decoloration of azo and anthraquinone dyes in N2O-saturated aqueous solutions

    International Nuclear Information System (INIS)

    Suzuki, Nobutake; Tokunaga, Okihiro; Washino, Masamitsu

    1978-01-01

    The radiation-induced decoloration of azo and anthraquinone dyes was studied in N 2 O-saturated aqueous solutions containing halide ions. In the N 2 O-saturated solutions, the decoloration yield, G(-Dye), increased markedly upon the addition of Br - and I - , which are efficient scavengers of the OH radical. In the nitrogen-saturated solutions, however, the G(-Dye) decreased upon the addition of Br - and I - . Such an increase in the G(-Dye) upon the addition of Br - and I - in the N 2 O-saturated solutions is mainly attributable to the attacks of the halide radical anions, Br 2 - and I 2 - , on the ring structure of the dyes. On the other hand, the G(-Dye) was not changed upon the addition of Cl - in the N 2 O-saturated solution. This may be attributable to the very slow rate of the formation of Cl 2 - in a neutral solution. (auth.)

  10. Heavy ion storage rings

    International Nuclear Information System (INIS)

    Schuch, R.

    1987-01-01

    A brief overview of synchrotron storage rings for heavy ions, which are presently under construction in different accelerator laboratories is given. Ions ranging from protons up to uranium ions at MeV/nucleon energies will be injected into these rings using multiturn injection from the accelerators available or being built in these laboratories. After injection, it is planned to cool the phase space distribution of the ions by merging them with cold electron beams or laser beams, or by using stochastic cooling. Some atomic physics experiments planned for these rings are presented. 35 refs

  11. Faithfully quadratic rings

    CERN Document Server

    Dickmann, M

    2015-01-01

    In this monograph the authors extend the classical algebraic theory of quadratic forms over fields to diagonal quadratic forms with invertible entries over broad classes of commutative, unitary rings where -1 is not a sum of squares and 2 is invertible. They accomplish this by: (1) Extending the classical notion of matrix isometry of forms to a suitable notion of T-isometry, where T is a preorder of the given ring, A, or T = A^2. (2) Introducing in this context three axioms expressing simple properties of (value) representation of elements of the ring by quadratic forms, well-known to hold in

  12. The precise self-assembly of individual carbon nanotubes using magnetic capturing and fluidic alignment

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Joon S; Rust, Michael J; Do, Jaephil; Ahn, Chong H [Department of Electrical and Computer Engineering, Microsystems and BioMEMS Laboratory, University of Cincinnati, Cincinnati, OH 45221 (United States); Yun, Yeo-Heung; Schulz, Mark J [Department of Mechanical Engineering, University of Cincinnati, 45221 (United States); Shanov, Vesselin, E-mail: chong.ahn@uc.ed [Department of Chemical and Materials Engineering, University of Cincinnati, 45221 (United States)

    2009-08-12

    A new method for the self-assembly of a carbon nanotube (CNT) using magnetic capturing and fluidic alignment has been developed and characterized in this work. In this new method, the residual iron (Fe) catalyst positioned at one end of the CNT was utilized as a self-assembly driver to attract and position the CNT, while the assembled CNT was aligned by the shear force induced from the fluid flow through the assembly channel. The self-assembly procedures were successfully developed and the electrical properties of the assembled multi-walled carbon nanotube (MWNT) and single-walled carbon nanotube (SWNT) were fully characterized. The new assembly method developed in this work shows its feasibility for the precise self-assembly of parallel CNTs for electronic devices and nanobiosensors.

  13. Oil Motion Control by an Extra Pinning Structure in Electro-Fluidic Display.

    Science.gov (United States)

    Dou, Yingying; Tang, Biao; Groenewold, Jan; Li, Fahong; Yue, Qiao; Zhou, Rui; Li, Hui; Shui, Lingling; Henzen, Alex; Zhou, Guofu

    2018-04-06

    Oil motion control is the key for the optical performance of electro-fluidic displays (EFD). In this paper, we introduced an extra pinning structure (EPS) into the EFD pixel to control the oil motion inside for the first time. The pinning structure canbe fabricated together with the pixel wall by a one-step lithography process. The effect of the relative location of the EPS in pixels on the oil motion was studied by a series of optoelectronic measurements. EPS showed good control of oil rupture position. The properly located EPS effectively guided the oil contraction direction, significantly accelerated switching on process, and suppressed oil overflow, without declining in aperture ratio. An asymmetrically designed EPS off the diagonal is recommended. This study provides a novel and facile way for oil motion control within an EFD pixel in both direction and timescale.

  14. Maximizing ion current rectification in a bipolar conical nanopore fluidic diode using optimum junction location.

    Science.gov (United States)

    Singh, Kunwar Pal

    2016-10-12

    The ion current rectification has been obtained as a function of the location of a heterojunction in a bipolar conical nanopore fluidic diode for different parameters to determine the junction location for maximum ion current rectification using numerical simulations. Forward current peaks for a specific location of the junction and reverse current decreases with the junction location due to a change in ion enrichment/depletion in the pore. The optimum location of the heterojunction shifts towards the tip with base/tip diameter and surface charge density, and towards the base with the electrolyte concentration. The optimum location of the heterojunction has been approximated by an equation as a function of pore length, base/tip diameter, surface charge density and electrolyte concentration. The study is useful to design a rectifier with maximum ion current rectification for practical purposes.

  15. Integrated optics nano-opto-fluidic sensor based on whispering gallery modes for picoliter volume refractometry

    International Nuclear Information System (INIS)

    Gilardi, Giovanni; Beccherelli, Romeo

    2013-01-01

    We propose and numerically investigate an integrated optics refractometric nano-opto-fluidic sensor based on whispering gallery modes in sapphire microspheres. A measurand fluid is injected in a micromachined reservoir defined in between the microsphere and an optical waveguide. The wavelength shift due to changes in the refractive index of the measurand fluid are studied for a set of different configurations by the finite element method and a high sensitivity versus fluid volume is found. The proposed device can be tailored to work with a minimum fluid volume of 1 pl and a sensitivity up of 2000 nm/(RIU·nl). We introduce a figure of merit which quantifies the amplifying effect on the sensitivity of high quality factor resonators and allows us to compare different devices. (paper)

  16. Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot

    International Nuclear Information System (INIS)

    Onal, Cagdas D; Rus, Daniela

    2013-01-01

    Soft robotics offers the unique promise of creating inherently safe and adaptive systems. These systems bring man-made machines closer to the natural capabilities of biological systems. An important requirement to enable self-contained soft mobile robots is an on-board power source. In this paper, we present an approach to create a bio-inspired soft robotic snake that can undulate in a similar way to its biological counterpart using pressure for actuation power, without human intervention. With this approach, we develop an autonomous soft snake robot with on-board actuation, power, computation and control capabilities. The robot consists of four bidirectional fluidic elastomer actuators in series to create a traveling curvature wave from head to tail along its body. Passive wheels between segments generate the necessary frictional anisotropy for forward locomotion. It takes 14 h to build the soft robotic snake, which can attain an average locomotion speed of 19 mm s −1 . (paper)

  17. Silicon micro-fluidic cooling for NA62 GTK pixel detectors

    CERN Document Server

    Romagnoli, G; Brunel, B; Catinaccio, A; Degrange, J; Mapelli, A; Morel, M; Noel, J; Petagna, P

    2015-01-01

    Silicon micro-channel cooling is being studied for efficient thermal management in application fields such as high power computing and 3D electronic integration. This concept has been introduced in 2010 for the thermal management of silicon pixel detectors in high energy physics experiments. Combining the versatility of standard micro-fabrication processes with the high thermal efficiency typical of micro-fluidics, it is possible to produce effective thermal management devices that are well adapted to different detector configurations. The production of very thin cooling devices in silicon enables a minimization of material of the tracking sensors and eliminates mechanical stresses due to the mismatch of the coefficient of thermal expansion between detectors and cooling systems. The NA62 experiment at CERN will be the first high particle physics experiment that will install a micro-cooling system to perform the thermal management of the three detection planes of its Gigatracker pixel detector.

  18. Lab on a Biomembrane: Rapid prototyping and manipulation of 2D fluidic lipid bilayers circuits

    Science.gov (United States)

    Ainla, Alar; Gözen, Irep; Hakonen, Bodil; Jesorka, Aldo

    2013-01-01

    Lipid bilayer membranes are among the most ubiquitous structures in the living world, with intricate structural features and a multitude of biological functions. It is attractive to recreate these structures in the laboratory, as this allows mimicking and studying the properties of biomembranes and their constituents, and to specifically exploit the intrinsic two-dimensional fluidity. Even though diverse strategies for membrane fabrication have been reported, the development of related applications and technologies has been hindered by the unavailability of both versatile and simple methods. Here we report a rapid prototyping technology for two-dimensional fluidic devices, based on in-situ generated circuits of phospholipid films. In this “lab on a molecularly thin membrane”, various chemical and physical operations, such as writing, erasing, functionalization, and molecular transport, can be applied to user-defined regions of a membrane circuit. This concept is an enabling technology for research on molecular membranes and their technological use. PMID:24067786

  19. On arbitrarily graded rings

    Indian Academy of Sciences (India)

    58

    paper is devoted to the study of arbitrary rings graded through arbitrary sets. .... which recover certain multiplicative relations among the homogeneous components ... instance the case in which the grading set A is an Abelian group, where the ...

  20. The g-2 ring

    CERN Multimedia

    1974-01-01

    The precise measurement of "g-2", the anomalous magnetic moment of the muon, required a special muon storage ring with electrostatic focussing and very accurate knowledge of the magnetic bending field. For more details see under photo 7405430.

  1. Dielectric elastomer strain and pressure sensing enable reactive soft fluidic muscles

    Science.gov (United States)

    Veale, Allan J.; Anderson, Iain A.; Xie, Sheng Q.

    2016-04-01

    Wearable assistive devices are the future of rehabilitation therapy and bionic limb technologies. Traditional electric, hydraulic, and pneumatic actuators can provide the precise and powerful around-the-clock assistance that therapists cannot deliver. However, they do so in the confines of highly controlled factory environments, resulting in actuators too rigid, heavy, and immobile for wearable applications. In contrast, biological skeletal muscles have been designed and proven in the uncertainty of the real world. Bioinspired artificial muscle actuators aim to mimic the soft, slim, and self-sensing abilities of natural muscle that make them tough and intelligent. Fluidic artificial muscles are a promising wearable assistive actuation candidate, sharing the high-force, inherent compliance of their natural counterparts. Until now, they have not been able to self-sense their length, pressure, and force in an entirely soft and flexible system. Their use of rigid components has previously been a requirement for the generation of large forces, but reduces their reliability and compromises their ability to be comfortably worn. We present the unobtrusive integration of dielectric elastomer (DE) strain and pressure sensors into a soft Peano fluidic muscle, a planar alternative to the relatively bulky McKibben muscle. Characterization of these DE sensors shows they can measure the full operating range of the Peano muscle: strains of around 18% and pressures up to 400 kPa with changes in capacitance of 2.4 and 10.5 pF respectively. This is a step towards proprioceptive artificial muscles, paving the way for wearable actuation that can truly feel its environment.

  2. [Liesegang's rings resembling helminthiasis].

    Science.gov (United States)

    Zámecník, M; Riedl, I

    1996-12-01

    So called Liesegang's rings are lamellar corpuscles which develop after periodical precipitation of oversaturated solutions in gel medium. They can occur in cysts, closed cavities, inflammatory exudates and necroses. They resemble parasitic eggs, larvae or adult forms. A case of 28-year-old woman is presented with many Liesegang's rings in a stuff from dilated renal calyx. Their preliminary evaluation considered helminths, especially Dioctophyma renale.

  3. Storage ring group summary

    International Nuclear Information System (INIS)

    King, N.M.

    1980-01-01

    The Storage Ring Group set out to identify and pursue salient problems in accelerator physics for heavy ion fusion, divorced from any particular reference design concept. However, it became apparent that some basic parameter framework was required to correlate the different study topics. As the Workshop progressed, ring parameters were modified and updated. Consequently, the accompanying papers on individual topics will be found to refer to slightly varied parameters, according to the stage at which the different problems were tackled

  4. The rings of Uranus

    Science.gov (United States)

    Elliot, J. L.; Dunham, E.; Mink, D.

    1977-01-01

    A description is given of the observation of five brief occultations of the star SAO 158687 which occurred both before and after its occultation by Uranus on March 10, 1977. The events were observed with a three-channel occultation photometer, attached to a 91-cm telescope. The observations indicate that at least five rings encircle the planet Uranus. Possible reasons for the narrowness of the Uranus rings are discussed.

  5. Natural dyes as photosensitizers for dye-sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Sancun; Wu, Jihuai; Huang, Yunfang; Lin, Jianming [Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou, Fujian 362021 (China)

    2006-02-15

    The dye-sensitized solar cells (DSC) were assembled by using natural dyes extracted from black rice, capsicum, erythrina variegata flower, rosa xanthina, and kelp as sensitizers. The I{sub SC} from 1.142mA to 0.225mA, the V{sub OC} from 0.551V to 0.412V, the fill factor from 0.52 to 0.63, and P{sub max} from 58{mu}W to 327{mu}W were obtained from the DSC sensitized with natural dye extracts. In the extracts of natural fruit, leaves and flower chosen, the black rice extract performed the best photosensitized effect, which was due to the better interaction between the carbonyl and hydroxyl groups of anthocyanin molecule on black rice extract and the surface of TiO{sub 2} porous film. The blue-shift of absorption wavelength of the black rice extract in ethanol solution on TiO{sub 2} film and the blue-shift phenomenon from absorption spectrum to photoaction spectrum of DSC sensitized with black rice extract are discussed in the paper. Because of the simple preparation technique, widely available and low cheap cost natural dye as an alternative sensitizer for dye-sensitized solar cell is promising. (author)

  6. Some Aspects of Ring Theory

    CERN Document Server

    Herstein, IN

    2011-01-01

    S. Amitsur: Associative rings with identities.- I.N. Herstein: Topics in ring theory.- N. Jacobson: Representation theory of Jordan algebras.- I. Kaplansky: The theory of homological dimension.- D. Buchsbaum: Complexes in local ring theory.- P.H. Cohn: Two topics in ring theory.- A.W. Goldie: Non-commutative localisation.

  7. Photophysical studies of PET based acridinedione dyes with globular protein: Bovine serum albumin

    International Nuclear Information System (INIS)

    Rajendran, Kumaran; Perumal, Ramamurthy

    2010-01-01

    Interaction of acridinedione dyes with model transport proteins, bovine serum albumin (BSA) in aqueous solution were investigated by fluorescence spectral studies. A fluorescence enhancement was observed on the addition of BSA to photoinduced electron transfer (PET) based acridinedione dyes, which posses C 6 H 4 (p-OCH 3 ) in the 9th position of the basic acridinedione ring. On the contrary, the addition of BSA to non-PET based acridinedione dyes with methyl or phenyl substitution in the 9th position does not result in any fluorescence enhancement. The enhancement in the fluorescence intensity is attributed to the suppression of PET process through space between -OCH 3 group and the acridinedione moiety is elucidated by steady state fluorescence measurements. The fluorescence anisotropy value (r) of 0.40 reveals that the motion of the dye molecule is highly constrained and is largely confined to the rigid microenvironment of the protein molecule. The binding constant (K) was found to be in the order of 6.0x10 3 [M] -1 , which implies the existence of hydrophobic interaction between the PET based dye and BSA. Time resolved fluorescence lifetime measurements reveal that the PET based acridinedione dye preferably binds in the hydrophobic interior of BSA.

  8. Ring correlations in random networks.

    Science.gov (United States)

    Sadjadi, Mahdi; Thorpe, M F

    2016-12-01

    We examine the correlations between rings in random network glasses in two dimensions as a function of their separation. Initially, we use the topological separation (measured by the number of intervening rings), but this leads to pseudo-long-range correlations due to a lack of topological charge neutrality in the shells surrounding a central ring. This effect is associated with the noncircular nature of the shells. It is, therefore, necessary to use the geometrical distance between ring centers. Hence we find a generalization of the Aboav-Weaire law out to larger distances, with the correlations between rings decaying away when two rings are more than about three rings apart.

  9. Mapping Ring Particle Cooling across Saturn's Rings with Cassini CIRS

    Science.gov (United States)

    Brooks, Shawn M.; Spilker, L. J.; Edgington, S. G.; Pilorz, S. H.; Deau, E.

    2010-10-01

    Previous studies have shown that the rings' thermal inertia, a measure of their response to changes in the thermal environment, varies from ring to ring. Thermal inertia can provide insight into the physical structure of Saturn's ring particles and their regoliths. Low thermal inertia and quick temperature responses are suggestive of ring particles that have more porous or fluffy regoliths or that are riddled with cracks. Solid, coherent particles can be expected to have higher thermal inertias (Ferrari et al. 2005). Cassini's Composite Infrared Spectrometer has recorded millions of spectra of Saturn's rings since its arrival at Saturn in 2004 (personal communication, M. Segura). CIRS records far infrared radiation between 10 and 600 cm-1 (16.7 and 1000 µm) at focal plane 1 (FP1), which has a field of view of 3.9 mrad. Thermal emission from Saturn's rings peaks in this wavelength range. FP1 spectra can be used to infer ring temperatures. By tracking how ring temperatures vary, we can determine the thermal inertia of the rings. In this work we focus on CIRS observations of the shadowed portion of Saturn's rings. The thermal budget of the rings is dominated by the solar radiation absorbed by its constituent particles. When ring particles enter Saturn's shadow this source of energy is abruptly cut off. As a result, ring particles cool as they traverse Saturn's shadow. From these shadow observations we can create cooling curves at specific locations across the rings. We will show that the rings' cooling curves and thus their thermal inertia vary not only from ring to ring, but by location within the individual rings. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Copyright 2010 California Institute of Technology. Government sponsorship acknowledged.

  10. The Rings of Saturn

    Science.gov (United States)

    Cuzzi, J. N.; Filacchione, G.; Marouf, E. A.

    2018-03-01

    One could become an expert on Saturn's iconic rings pretty easily in the early 1970s, as very little was known about them beyond the distinction between the A, B, and C rings, and the Cassini Division or "gap" between rings A and B (Alexander, 1962; Bobrov, 1970). Water ice was discovered spectroscopically on the ring particle surfaces, and radar and microwave emission observations proved that the particles must be centimeters to meters in size, consisting primarily, not just superficially, of water ice (Pollack, 1975). While a 2:1 orbital resonance with Mimas had long been suspected of having something to do with the Cassini Division, computers of the time were unable to model the subtle dynamical effects that we now know to dominate ring structure. This innocent state of affairs was exploded by the Voyager 1 and 2 encounters in 1980 and 1981. Spectacular images revealed filigree structure and odd regional color variations, and exquisitely detailed radial profiles of fluctuating particle abundance were obtained from the first stellar and radio occultations, having resolution almost at the scale of single particles. Voyager-era understanding was reviewed by Cuzzi et al. (1984) and Esposito et al. (1984). While the Voyager data kept ring scientists busy for decades, planning which led to the monumentally successful NASA-ESA-ASI Cassini mission, which arrived in 2004, had been under way even before Voyager got to Saturn. A review of pre-Cassini knowledge of Saturn's Rings can be found in Orton et al. (2009). This chapter will build on recent topical and process-specific reviews that treat the gamut of ring phenomena and its underlying physics in considerable detail (Colwell et al., 2009; Cuzzi et al., 2009; Horányi et al., 2009; Schmidt et al., 2009; Esposito, 2010; Tiscareno, 2013b; Esposito, 2014). We will follow and extend the general organization of Cuzzi et al. (2010), the most recent general discussion of Saturn's rings. For brevity and the benefit of the

  11. BERKELEY: ALS ring

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-06-15

    Everybody at Lawrence Berkeley Laboratory's Center for Beam Physics is pleased with the rapid progress in commissioning LBL's Advanced Light Source (ALS) electron storage ring, the foundation for this third-generation synchrotron radiation facility. Designed for a maximum current of 400 mA, the ALS storage ring reached 407 mA just 24 days after storing the first beam on 16 March. ALS construction as a US Department of Energy (DOE) national user facility to provide high-brightness vacuum ultra-violet and soft x-ray radiation began in October 1987. One technical requirement marking project completion was to accumulate a 50-mA current in the storage ring. The ALS passed this milestone on 24 March, a week ahead of the official deadline. Once injected, the electron beam decays quasi-exponentially primarily because of interactions with residual gas molecules in the storage-ring vacuum chamber. Eventually, when the pressure in the vacuum chamber with beam decreases toward the expected operating level of 1 nano Torr, it will only be necessary to refill the storage ring at intervals of four to eight hours. At present the vacuum is improving rapidly as surfaces are irradiated (scrubbed) by the synchrotron radiation itself. At 100 mA, beam lifetime was about one hour (9 April)

  12. Compressible Vortex Ring

    Science.gov (United States)

    Elavarasan, Ramasamy; Arakeri, Jayawant; Krothapalli, Anjaneyulu

    1999-11-01

    The interaction of a high-speed vortex ring with a shock wave is one of the fundamental issues as it is a source of sound in supersonic jets. The complex flow field induced by the vortex alters the propagation of the shock wave greatly. In order to understand the process, a compressible vortex ring is studied in detail using Particle Image Velocimetry (PIV) and shadowgraphic techniques. The high-speed vortex ring is generated from a shock tube and the shock wave, which precedes the vortex, is reflected back by a plate and made to interact with the vortex. The shadowgraph images indicate that the reflected shock front is influenced by the non-uniform flow induced by the vortex and is decelerated while passing through the vortex. It appears that after the interaction the shock is "split" into two. The PIV measurements provided clear picture about the evolution of the vortex at different time interval. The centerline velocity traces show the maximum velocity to be around 350 m/s. The velocity field, unlike in incompressible rings, contains contributions from both the shock and the vortex ring. The velocity distribution across the vortex core, core diameter and circulation are also calculated from the PIV data.

  13. BERKELEY: ALS ring

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Everybody at Lawrence Berkeley Laboratory's Center for Beam Physics is pleased with the rapid progress in commissioning LBL's Advanced Light Source (ALS) electron storage ring, the foundation for this third-generation synchrotron radiation facility. Designed for a maximum current of 400 mA, the ALS storage ring reached 407 mA just 24 days after storing the first beam on 16 March. ALS construction as a US Department of Energy (DOE) national user facility to provide high-brightness vacuum ultra-violet and soft x-ray radiation began in October 1987. One technical requirement marking project completion was to accumulate a 50-mA current in the storage ring. The ALS passed this milestone on 24 March, a week ahead of the official deadline. Once injected, the electron beam decays quasi-exponentially primarily because of interactions with residual gas molecules in the storage-ring vacuum chamber. Eventually, when the pressure in the vacuum chamber with beam decreases toward the expected operating level of 1 nano Torr, it will only be necessary to refill the storage ring at intervals of four to eight hours. At present the vacuum is improving rapidly as surfaces are irradiated (scrubbed) by the synchrotron radiation itself. At 100 mA, beam lifetime was about one hour (9 April)

  14. Numerical investigation of a vortex ring impinging on a coaxial aperture

    Science.gov (United States)

    Hu, Jiacheng; Peterson, Sean D.

    2017-11-01

    Recent advancements in smart materials have sparked an interest in the development of small scale fluidic energy harvesters for powering distributed applications in aquatic environments, where coherent vortex structures are prevalent. Thus, it is crucial to investigate the interaction of viscous vortices in the proximity of a thin plate (a common harvester configuration). Hence, the present study systematically examines the interaction of a vortex ring impinging on an infinitesimally thin wall with a coaxially aligned annular aperture. The rigid aperture serves as an axisymmetric counterpart of the thin plate, and the vortex ring represents a typical coherent vortex structure. The results indicate that the vortex dynamics can be categorized into two regimes based on the aperture to ring radius ratio (Rr). The rebound regime (Rr = 0.9 , and an increase in the vortex ring impulse is observed for 1.0 energy harvesting strategy in vortex impact configurations. This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant (RGPIN-05778) and Alexander Graham Bell Canada Graduate Scholarship (CGS-D).

  15. Almost ring theory

    CERN Document Server

    2003-01-01

    This book develops thorough and complete foundations for the method of almost etale extensions, which is at the basis of Faltings' approach to p-adic Hodge theory. The central notion is that of an "almost ring". Almost rings are the commutative unitary monoids in a tensor category obtained as a quotient V-Mod/S of the category V-Mod of modules over a fixed ring V; the subcategory S consists of all modules annihilated by a fixed ideal m of V, satisfying certain natural conditions. The reader is assumed to be familiar with general categorical notions, some basic commutative algebra and some advanced homological algebra (derived categories, simplicial methods). Apart from these general prerequisites, the text is as self-contained as possible. One novel feature of the book - compared with Faltings' earlier treatment - is the systematic exploitation of the cotangent complex, especially for the study of deformations of almost algebras.

  16. Large-area fluidic assembly of single-walled carbon nanotubes through dip-coating and directional evaporation

    Science.gov (United States)

    Kim, Pilnam; Kang, Tae June

    2017-12-01

    We present a simple and scalable fluidic-assembly approach, in which bundles of single-walled carbon nanotubes (SWCNTs) are selectively aligned and deposited by directionally controlled dip-coating and solvent evaporation processes. The patterned surface with alternating regions of hydrophobic polydimethyl siloxane (PDMS) (height 100 nm) strips and hydrophilic SiO2 substrate was withdrawn vertically at a constant speed ( 3 mm/min) from a solution bath containing SWCNTs ( 0.1 mg/ml), allowing for directional evaporation and subsequent selective deposition of nanotube bundles along the edges of horizontally aligned PDMS strips. In addition, the fluidic assembly was applied to fabricate a field effect transistor (FET) with highly oriented SWCNTs, which demonstrate significantly higher current density as well as high turn-off ratio (T/O ratio 100) as compared to that with randomly distributed carbon nanotube bundles (T/O ratio <10).

  17. Feasibility of solar-pumped dye lasers

    Science.gov (United States)

    Lee, Ja H.; Kim, Kyung C.; Kim, Kyong H.

    1987-01-01

    Dye laser gains were measured at various pump-beam irradiances on a dye cell in order to evaluate the feasibility of solar pumping. Rhodamine 6G dye was considered as a candidate for the solar-pumped laser because of its high utilization of the solar spectrum and high quantum efficiency. Measurements show that a solar concentration of 20,000 is required to reach the threshold of the dye.

  18. Natural dyes versus lysochrome dyes in cheiloscopy: A comparative evaluation.

    Science.gov (United States)

    Singh, Narendra Nath; Brave, V R; Khanna, Shally

    2010-01-01

    Cheiloscopy is the study of lip prints. Lip prints are genotypically determined and are unique, and stable. At the site of crime, lip prints can be either visible or latent. To develop lip prints for study purpose various chemicals such as lysochrome dyes, fluorescent dyes, etc. are available which are very expensive. Vermilion (Sindoor used by married Indian women) and indigo dye (fabric whitener) are readily available, naturally derived, and cost-effective reagents available in India. To compare the efficacy of sudan black, vermilion, and indigo in developing visible and latent lip prints made on bone china cup, satin fabric, and cotton fabric. Out of 45 Volunteers 15 lip prints were made on bone China cup 15 lip prints on Satin fabric and 15 on Cotton fabric. Sudan black, vermilion and indigo were applied on visible and latent lip prints and graded as good (+,+), fair (+), and poor (-) and statistically evaluated. The vermilion and indigo dye gives comparable results to that of sudan black for developing visible and latent lip prints.

  19. Effect of dye structure and redox mediators on anaerobic azo and anthraquinone dye reduction

    Directory of Open Access Journals (Sweden)

    Mayara Carantino Costa

    2012-01-01

    Full Text Available We investigated the biological decolourisation of dyes with different molecular structures. The kinetic constant values (k1 achieved with azo dye Reactive Red 120 were 7.6 and 10.1 times higher in the presence of RM (redox mediators AQDS and riboflavin, respectively, than the assays lacking RM. The kinetic constant achieved with the azo dye Congo Red was 42 times higher than that obtained with the anthraquinone dye Reactive Blue 4. The effect of RM on dye reduction was more evident for azo dyes resistant to reductive processes, and ineffective for anthraquinone dyes because of the structural stability of the latter.

  20. Compact electron storage rings

    International Nuclear Information System (INIS)

    Williams, G.P.

    1987-01-01

    There have been many recent developments in the area of compact storage rings. Such rings would have critical wavelengths of typically 10 A, achieved with beam energies of several hundreds of MeV and superconducting dipole fields of around 5 Tesla. Although the primary motivation for progress in this area is that of commercial x-ray lithography, such sources might be an attractive source for college campuses to operate. They would be useful for many programs in materials science, solid state, x-ray microscopy and other biological areas. We discuss the properties of such sources and review developments around the world, primarily in the USA, japan and W. Germany

  1. The covariant chiral ring

    Energy Technology Data Exchange (ETDEWEB)

    Bourget, Antoine; Troost, Jan [Laboratoire de Physique Théorique, École Normale Supérieure, 24 rue Lhomond, 75005 Paris (France)

    2016-03-23

    We construct a covariant generating function for the spectrum of chiral primaries of symmetric orbifold conformal field theories with N=(4,4) supersymmetry in two dimensions. For seed target spaces K3 and T{sup 4}, the generating functions capture the SO(21) and SO(5) representation theoretic content of the chiral ring respectively. Via string dualities, we relate the transformation properties of the chiral ring under these isometries of the moduli space to the Lorentz covariance of perturbative string partition functions in flat space.

  2. Vortex and source rings

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre

    2017-01-01

    The velocity field, vector potential and velocity gradient of a vortex ring is derived in this chapter. The Biot-Savart law for the vector potential and velocity is expressed in a first section. Then, the flow is derived at specific locations: on the axis, near the axis and in the far field where...... the analogy to a doublet field is made. The following section derive the value of the vector potential and velocity field in the full domain. The expression for the velocity gradient is also provided since it may be relevant in a simulation with vortex particles and vortex rings. Most of this chapter...

  3. The Saturnian rings

    International Nuclear Information System (INIS)

    Alfven, H.

    1975-09-01

    The structure of the Saturnian rings is traditionally believed to be due to resonances caused by Mimas (and possibly other satellites). It is shown that both theoretical and observational evidence rule out this interpretation. The increased observational accuracy on one hand and the increased understanding of the cosmogonic processes on the other makes it possible to explain the structure of the ring system as a product of condensation from a partially corotating plasma. In certain respects the agreement between theory and observations is about 1%. (Auth.)

  4. RINGED ACCRETION DISKS: INSTABILITIES

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, D.; Stuchlík, Z., E-mail: d.pugliese.physics@gmail.com, E-mail: zdenek.stuchlik@physics.cz [Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo náměstí 13, CZ-74601 Opava (Czech Republic)

    2016-04-01

    We analyze the possibility that several instability points may be formed, due to the Paczyński mechanism of violation of mechanical equilibrium, in the orbiting matter around a supermassive Kerr black hole. We consider a recently proposed model of a ringed accretion disk, made up by several tori (rings) that can be corotating or counter-rotating relative to the Kerr attractor due to the history of the accretion process. Each torus is governed by the general relativistic hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. We prove that the number of the instability points is generally limited and depends on the dimensionless spin of the rotating attractor.

  5. Fluidic oscillator-mediated microbubble generation to provide cost effective mass transfer and mixing efficiency to the wastewater treatment plants.

    Science.gov (United States)

    Rehman, Fahad; Medley, Gareth J D; Bandulasena, Hemaka; Zimmerman, William B J

    2015-02-01

    Aeration is one of the most energy intensive processes in the waste water treatment plants and any improvement in it is likely to enhance the overall efficiency of the overall process. In the current study, a fluidic oscillator has been used to produce microbubbles in the order of 100 μm in diameter by oscillating the inlet gas stream to a pair of membrane diffusers. Volumetric mass transfer coefficient was measured for steady state flow and oscillatory flow in the range of 40-100l/min. The highest improvement of 55% was observed at the flow rates of 60, 90 and 100l/min respectively. Standard oxygen transfer rate and efficiency were also calculated. Both standard oxygen transfer rate and efficiency were found to be considerably higher under oscillatory air flow conditions compared to steady state airflow. The bubble size distributions and bubble densities were measured using an acoustic bubble spectrometer and confirmed production of monodisperse bubbles with approximately 100 μm diameters with fluidic oscillation. The higher number density of microbubbles under oscillatory flow indicated the effect of the fluidic oscillation in microbubble production. Visual observations and dissolved oxygen measurements suggested that the bubble cloud generated by the fluidic oscillator was sufficient enough to provide good mixing and to maintain uniform aerobic conditions. Overall, improved mass transfer coefficients, mixing efficiency and energy efficiency of the novel microbubble generation method could offer significant savings to the water treatment plants as well as reduction in the carbon footprint. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. A microfluidic device for simultaneous measurement of viscosity and flow rate of blood in a complex fluidic network

    OpenAIRE

    Jun Kang, Yang; Yeom, Eunseop; Lee, Sang-Joon

    2013-01-01

    Blood viscosity has been considered as one of important biophysical parameters for effectively monitoring variations in physiological and pathological conditions of circulatory disorders. Standard previous methods make it difficult to evaluate variations of blood viscosity under cardiopulmonary bypass procedures or hemodialysis. In this study, we proposed a unique microfluidic device for simultaneously measuring viscosity and flow rate of whole blood circulating in a complex fluidic network i...

  7. Quirks of dye nomenclature. 1. Evans blue.

    Science.gov (United States)

    Cooksey, C J

    2014-02-01

    The history, origin, identity, chemistry and use of Evans blue dye are described along with the first application to staining by Herbert McLean Evans in 1914. In the 1930s, the dye was marketed under the name, Evans blue dye, which was profoundly more acceptable than the ponderous chemical name.

  8. Phase-locked 3D3C-MRV measurements in a bi-stable fluidic oscillator

    Science.gov (United States)

    Wassermann, Florian; Hecker, Daniel; Jung, Bernd; Markl, Michael; Seifert, Avi; Grundmann, Sven

    2013-03-01

    In this work, the phase-resolved internal flow of a bi-stable fluidic oscillator was measured using phase-locked three-dimensional three-components magnetic resonance velocimetry (3D3C-MRV), also termed as 4D-MRV. A bi-stable fluidic oscillator converts a continuous inlet-mass flow into a jet alternating between two outlet channels and, as a consequence provides an unsteady, periodic flow. This actuator can therefore be used as flow-control actuator. Since data acquisition in a 3D volume takes up to several minutes, only a small portion of the data is acquired in each flow cycle for every time point of the flow cycle. The acquisition of the entire data set is segmented over many cycles of the periodic flow. This procedure allows to measure phase-averaged 3D3C velocity fields with a certain temporal resolution. However, the procedure requires triggering to the periodic nature of the flow. Triggering the MR scanner precisely on each flow cycle is one of the key issues discussed in this manuscript. The 4D-MRV data are compared to data measured using phase-locked laser Doppler anemometry and good agreement between the results is found. The validated 4D-MRV data is analyzed and the fluid-mechanic features and processes inside the fluidic oscillator are investigated and described, providing a detailed description of the internal jet-switching mechanism.

  9. Robust and Optimal Control of Magnetic Microparticles inside Fluidic Channels with Time-Varying Flow Rates

    Directory of Open Access Journals (Sweden)

    Islam S.M. Khalil

    2016-06-01

    Full Text Available Targeted therapy using magnetic microparticles and nanoparticles has the potential to mitigate the negative side-effects associated with conventional medical treatment. Major technological challenges still need to be addressed in order to translate these particles into in vivo applications. For example, magnetic particles need to be navigated controllably in vessels against flowing streams of body fluid. This paper describes the motion control of paramagnetic microparticles in the flowing streams of fluidic channels with time-varying flow rates (maximum flow is 35 ml.hr−1. This control is designed using a magnetic-based proportional-derivative (PD control system to compensate for the time-varying flow inside the channels (with width and depth of 2 mm and 1.5 mm, respectively. First, we achieve point-to-point motion control against and along flow rates of 4 ml.hr−1, 6 ml.hr−1, 17 ml.hr−1, and 35 ml.hr−1. The average speeds of single microparticle (with average diameter of 100 μm against flow rates of 6 ml.hr−1 and 30 ml.hr−1 are calculated to be 45 μm.s−1 and 15 μm.s−1, respectively. Second, we implement PD control with disturbance estimation and compensation. This control decreases the steady-state error by 50%, 70%, 73%, and 78% at flow rates of 4 ml.hr−1, 6 ml.hr−1, 17 ml.hr−1, and 35 ml.hr−1, respectively. Finally, we consider the problem of finding the optimal path (minimal kinetic energy between two points using calculus of variation, against the mentioned flow rates. Not only do we find that an optimal path between two collinear points with the direction of maximum flow (middle of the fluidic channel decreases the rise time of the microparticles, but we also decrease the input current that is supplied to the electromagnetic coils by minimizing the kinetic energy of the microparticles, compared to a PD control with disturbance compensation.

  10. Microvascular blood flow dynamics associated with photodynamic therapy, pulsed dye laser irradiation and combined regimens

    OpenAIRE

    Smith, TK; Choi, B; Ramirez-San-Juan, JC; Nelson, JS; Osann, K; Kelly, KM

    2006-01-01

    Background and Objectives: Previous in vitro studies demonstrated the potential utility of benzoporphyrin derivative monoacid ring A (BPD) photodynamic therapy (PDT) for vascular destruction. Moreover, the effects of PDT were enhanced when this intervention was followed immediately by pulsed dye laser (PDL) irradiation (PDT/ PDL). We further evaluate vascular effects of PDT alone, PDL alone and PDT/PDL in an in vivo rodent dorsal skinfold model. Study Design/Materials and Methods: A dorsal sk...

  11. Fusion rings and fusion ideals

    DEFF Research Database (Denmark)

    Andersen, Troels Bak

    by the so-called fusion ideals. The fusion rings of Wess-Zumino-Witten models have been widely studied and are well understood in terms of precise combinatorial descriptions and explicit generating sets of the fusion ideals. They also appear in another, more general, setting via tilting modules for quantum......This dissertation investigates fusion rings, which are Grothendieck groups of rigid, monoidal, semisimple, abelian categories. Special interest is in rational fusion rings, i.e., fusion rings which admit a finite basis, for as commutative rings they may be presented as quotients of polynomial rings...

  12. Studies on Dyeing Performance of Novel Acid Azo Dyes and Mordent Acid Azo Dyes Based on 2,4-Dihydroxybenzophenone

    Directory of Open Access Journals (Sweden)

    Bharat C. Dixit

    2009-01-01

    Full Text Available Novel acid azo and mordent acid azo dyes have been prepared by the coupling of diazo solution of different aminonaphthol sulphonic acids and aromatic amino acids with 2,4-dihydroxybenzophenone. The resultant dyes were characterized by elemental analysis as well as IR and 1H NMR spectral studies. The UV-visible spectral data have also been discussed in terms of structure property relationship. The dyeing assessments of all the dyes were evaluated on wool and silk textile fibers. The dyeing of chrome pretreated wool and silk have also been monitored. The result shows that better hue was obtained on mordented fiber. Results of bactericidal studies of chrome pretreated fibers revealed that the toxicity of mordented dyes against bacteria is fairly good. Dyeing on wool and silk fibers resulted in yellowish pink to reddish brown colourations having excellent light fastness and washing fastness.

  13. Quantitative structure-activity relationship analysis of substituted arylazo pyridone dyes in photocatalytic system: Experimental and theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Dostanić, J., E-mail: jasmina@nanosys.ihtm.bg.ac.rs [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade (Serbia); Lončarević, D. [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade (Serbia); Zlatar, M. [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade (Serbia); Vlahović, F. [University of Belgrade, Innovation center of the Faculty of Chemistry, 11000 Belgrade (Serbia); Jovanović, D.M. [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade (Serbia)

    2016-10-05

    Highlights: • Electronic effects of para substituted arylazo pyridone dyes. • Linear relationship between Hammett σ{sub p} constants and dyes photoreactivity. • The photocatalytic reactions facilitated by el.-acceptors and retarded by el.-donors. • Fukui functions to analyze the reactivity on concurrent sites within a molecule. • Hydroxyl radicals sustain attack from two reaction sites, depending on a substituent type. - Abstract: A series of arylazo pyridone dyes was synthesized by changing the type of the substituent group in the diazo moiety, ranging from strong electron-donating to strong electron-withdrawing groups. The structural and electronic properties of the investigated dyes was calculated at the M062X/6-31 + G(d,p) level of theory. The observed good linear correlations between atomic charges and Hammett σ{sub p} constants provided a basis to discuss the transmission of electronic substituent effects through a dye framework. The reactivity of synthesized dyes was tested through their decolorization efficiency in TiO{sub 2} photocatalytic system (Degussa P-25). Quantitative structure-activity relationship analysis revealed a strong correlation between reactivity of investigated dyes and Hammett substituent constants. The reaction was facilitated by electron-withdrawing groups, and retarded by electron-donating ones. Quantum mechanical calculations was used in order to describe the mechanism of the photocatalytic oxidation reactions of investigated dyes and interpret their reactivities within the framework of the Density Functional Theory (DFT). According to DFT based reactivity descriptors, i.e. Fukui functions and local softness, the active site moves from azo nitrogen atom linked to benzene ring to pyridone carbon atom linked to azo bond, going from dyes with electron-donating groups to dyes with electron-withdrawing groups.

  14. Quantitative structure-activity relationship analysis of substituted arylazo pyridone dyes in photocatalytic system: Experimental and theoretical study

    International Nuclear Information System (INIS)

    Dostanić, J.; Lončarević, D.; Zlatar, M.; Vlahović, F.; Jovanović, D.M.

    2016-01-01

    Highlights: • Electronic effects of para substituted arylazo pyridone dyes. • Linear relationship between Hammett σ_p constants and dyes photoreactivity. • The photocatalytic reactions facilitated by el.-acceptors and retarded by el.-donors. • Fukui functions to analyze the reactivity on concurrent sites within a molecule. • Hydroxyl radicals sustain attack from two reaction sites, depending on a substituent type. - Abstract: A series of arylazo pyridone dyes was synthesized by changing the type of the substituent group in the diazo moiety, ranging from strong electron-donating to strong electron-withdrawing groups. The structural and electronic properties of the investigated dyes was calculated at the M062X/6-31 + G(d,p) level of theory. The observed good linear correlations between atomic charges and Hammett σ_p constants provided a basis to discuss the transmission of electronic substituent effects through a dye framework. The reactivity of synthesized dyes was tested through their decolorization efficiency in TiO_2 photocatalytic system (Degussa P-25). Quantitative structure-activity relationship analysis revealed a strong correlation between reactivity of investigated dyes and Hammett substituent constants. The reaction was facilitated by electron-withdrawing groups, and retarded by electron-donating ones. Quantum mechanical calculations was used in order to describe the mechanism of the photocatalytic oxidation reactions of investigated dyes and interpret their reactivities within the framework of the Density Functional Theory (DFT). According to DFT based reactivity descriptors, i.e. Fukui functions and local softness, the active site moves from azo nitrogen atom linked to benzene ring to pyridone carbon atom linked to azo bond, going from dyes with electron-donating groups to dyes with electron-withdrawing groups.

  15. Flushing Ring for EDM

    Science.gov (United States)

    Earwood, L.

    1985-01-01

    Removing debris more quickly lowers cutting time. Operation, cutting oil and pressurized air supplied to ring placed around workpiece. Air forces oil through small holes and agitates oil as it flows over workpiece. High flow rate and agitation dislodge and remove debris. Electrical discharge removes material from workpiece faster.

  16. Sector ring accelerator ''RESATRON''

    International Nuclear Information System (INIS)

    Schwabe, E.

    1980-01-01

    Project of sector ring accelerator RESATRON is described. The curiosity of this accelerator is the second cycle of acceleration of the beam after stripping it on the foil. In such an accelerator heavy ions with a different ratio Z to A can be accelerated. (S.B.)

  17. Ring chromosome 13

    DEFF Research Database (Denmark)

    Brandt, C A; Hertz, Jens Michael; Petersen, M B

    1992-01-01

    A stillborn male child with anencephaly and multiple malformations was found to have the karyotype 46,XY,r(13) (p11q21.1). The breakpoint at 13q21.1, determined by high resolution banding, is the most proximal breakpoint ever reported in patients with ring chromosome 13. In situ hybridisation...

  18. SXLS storage ring design

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    X-ray lithography has emerged as a strong candidate to meet the demands of ever finer linewidths on integrated circuits, particularly for linewidths less than .25 microns. Proximity printing X-ray lithography makes use of soft X-rays to shadow print an image of a mask onto a semiconductor wafer to produce integrated circuits. To generate the required X-rays in sufficient quantities to make commercial production viable, electron storage rings have been proposed as the soft X-ray sources. Existing storage rings have been used to do the initial development work and the success of these efforts has led the lithographers to request that new rings be constructed that are dedicated to X-ray lithography. As a result of a series of workshops held at BNL [10.3] which were attended by both semiconductor and accelerator scientists, the following set of zeroth order specifications' on the light and electron beam of a storage ring for X-ray lithography were developed: critical wavelength of light: λ c = 6 to 10 angstroms, white light power: P = 0.25 to 2.5 watts/mrad, horizontal collection angle per port: θ = 10 to 50 mrad, electron beam sizes: σ x ∼ σ y y ' < 1 mrad

  19. Ring magnetron ionizer

    International Nuclear Information System (INIS)

    Alessi, J.G.

    1986-01-01

    A ring magnetron D - charge exchange ionizer has been built and tested. An H - current of 500 μA was extracted with an estimated H 0 density in the ionizer of 10 12 cm -3 . This exceeds the performance of ionizers presently in use on polarized H - sources. The ionizer will soon be tested with a polarized atomic beam

  20. Algebras, rings and modules

    CERN Document Server

    Hazewinkel, Michiel; Kirichenko, V V

    Provides both the classical aspects of the theory of groups and their representations as well as a general introduction to the modern theory of representations, including the representations of quivers and finite partially ordered sets. This volume provides the theory of semiprime Noetherian semiperfect and semidistributive rings.

  1. Lattices for antiproton rings

    International Nuclear Information System (INIS)

    Autin, B.

    1984-01-01

    After a description of the constraints imposed by the cooling of Antiprotons on the lattice of the rings, the reasons which motivate the shape and the structure of these machines are surveyed. Linear and non-linear beam optics properties are treated with a special amplification to the Antiproton Accumulator. (orig.)

  2. Propellers in Saturn's rings

    Science.gov (United States)

    Sremcevic, M.; Stewart, G. R.; Albers, N.; Esposito, L. W.

    2013-12-01

    Theoretical studies and simulations have demonstrated the effects caused by objects embedded in planetary rings. Even if the objects are too small to be directly observed, each creates a much larger gravitational imprint on the surrounding ring material. These strongly depend on the mass of the object and range from "S" like propeller-shaped structures for about 100m-sized icy bodies to the opening of circumferential gaps as in the case of the embedded moons Pan and Daphnis and their corresponding Encke and Keeler Gaps. Since the beginning of the Cassini mission many of these smaller objects (~data from Cassini Ultraviolet Imaging Spectrograph (UVIS) and Imaging Science Subsystem (ISS) experiments. We show evidence that B ring seems to harbor two distinct populations of propellers: "big" propellers covering tens of degrees in azimuth situated in the densest part of B ring, and "small" propellers in less dense inner B ring that are similar in size and shape to known A ring propellers. The population of "big" propellers is exemplified with a single object which is observed for 5 years of Cassini data. The object is seen as a very elongated bright stripe (40 degrees wide) in unlit Cassini images, and dark stripe in lit geometries. In total we report observing the feature in images at 18 different epochs between 2005 and 2010. In UVIS occultations we observe this feature as an optical depth depletion in 14 out of 93 occultation cuts at corrotating longitudes compatible with imaging data. Combining the available Cassini data we infer that the object is a partial gap located at r=112,921km embedded in the high optical depth region of the B ring. The gap moves at Kepler speed appropriate for its radial location. Radial offsets of the gap locations in UVIS occultations are consistent with an asymmetric propeller shape. The asymmetry of the observed shape is most likely a consequence of the strong surface mass density gradient, as the feature is located at an edge between

  3. FUZZY RINGS AND ITS PROPERTIES

    Directory of Open Access Journals (Sweden)

    Karyati Karyati

    2017-01-01

      One of algebraic structure that involves a binary operation is a group that is defined  an un empty set (classical with an associative binary operation, it has identity elements and each element has an inverse. In the structure of the group known as the term subgroup, normal subgroup, subgroup and factor group homomorphism and its properties. Classical algebraic structure is developed to algebraic structure fuzzy by the researchers as an example semi group fuzzy and fuzzy group after fuzzy sets is introduced by L. A. Zadeh at 1965. It is inspired of writing about semi group fuzzy and group of fuzzy, a research on the algebraic structure of the ring is held with reviewing ring fuzzy, ideal ring fuzzy, homomorphism ring fuzzy and quotient ring fuzzy with its properties. The results of this study are obtained fuzzy properties of the ring, ring ideal properties fuzzy, properties of fuzzy ring homomorphism and properties of fuzzy quotient ring by utilizing a subset of a subset level  and strong level  as well as image and pre-image homomorphism fuzzy ring.   Keywords: fuzzy ring, subset level, homomorphism fuzzy ring, fuzzy quotient ring

  4. Photoelectrochemical studies of dye-sensitized solar cells using organic dyes

    Energy Technology Data Exchange (ETDEWEB)

    Marinado, Tannia

    2009-10-15

    The dye-sensitized solar cell (DSC) is a promising efficient low-cost molecular photovoltaic device. One of the key components in DSCs is the dye, as it is responsible for the capture of sunlight. State-of-the-art DSC devices, based on ruthenium dyes, show record efficiencies of 10-12 %. During the last decade, metal-free organic dyes have been extensively explored as sensitizers for DSC application. The use of organic dyes is particularly attractive as it enables easy structural modifications, due to fairly short synthetic routes and reduced material cost. Novel dye should in addition to the light-harvesting properties also be compatible with the DSC components. In this thesis, a series of new organic dyes are investigated, both when integrated in the DSC device and as individual components. The evaluation methods consisted of different electrochemical and photoelectrochemical techniques. Whereas the light-harvesting properties of the dyes were fairly easily improved, the behavior of the dye integrated in the DSC showed less predictable photovoltaic results. The dye series studied in Papers II and IV revealed that their dye energetics limited vital electron-transfer processes, the dye regeneration (Paper II) and injection quantum yield (Paper IV). Further, in Papers III-VI, it was observed that different dye structures seemed to alter the interfacial electron recombination with the electrolyte. In addition to the dye structure sterics, some organic dyes appear to enhance the interfacial recombination, possibly due to specific dye-redox acceptor interaction (Paper V). The impact of dye sterical modifications versus the use of coadsorbent was explored in Paper VI. The dye layer properties in the presence and absence of various coadsorbents were further investigated in Paper VII. The core of this thesis is the identification of the processes and properties limiting the performance of the DSC device, aiming at an overall understanding of the compatibility between the

  5. Nanobiomimetic Active Shape Control - Fluidic and Swarm-Intelligence Embodiments for Planetary Exploration

    Science.gov (United States)

    Santoli, S.

    The concepts of Active Shape Control ( ASC ) and of Generalized Quantum Holography ( GQH ), respectively embodying a closer approach to biomimicry than the current macrophysics-based attempts at bioinspired robotic systems, and realizing a non-connectionistic, life-like kind of information processing that allows increasingly depths of mimicking of the biological structure-function solidarity, which have been formulated in physical terms in previous papers, are here further investigated for application to bioinspired flying or swimming robots for planetary exploration. It is shown that nano-to-micro integration would give the deepest level of biomimicry, and that both low and very low Reynolds number ( Re ) fluidics would involve GQH and Fiber Bundle Topology ( FBT ) for processing information at the various levels of ASC bioinspired robotics. While very low Re flows lend themselves to geometrization of microrobot dynamics and to FBT design, the general design problem is geometrized through GQH , i.e. made independent of dynamic considerations, thus allowing possible problems of semantic dyscrasias in highly complex hierarchical dynamical chains of sensing information processing actuating to be overcome. A roadmap to near- and medium-term nanostructured and nano-to-micro integration realizations is suggested.

  6. Rapid Vortex Fluidics: Continuous Flow Synthesis of Amides and Local Anesthetic Lidocaine.

    Science.gov (United States)

    Britton, Joshua; Chalker, Justin M; Raston, Colin L

    2015-07-20

    Thin film flow chemistry using a vortex fluidic device (VFD) is effective in the scalable acylation of amines under shear, with the yields of the amides dramatically enhanced relative to traditional batch techniques. The optimized monophasic flow conditions are effective in ≤80 seconds at room temperature, enabling access to structurally diverse amides, functionalized amino acids and substituted ureas on multigram scales. Amide synthesis under flow was also extended to a total synthesis of local anesthetic lidocaine, with sequential reactions carried out in two serially linked VFD units. The synthesis could also be executed in a single VFD, in which the tandem reactions involve reagent delivery at different positions along the rapidly rotating tube with in situ solvent replacement, as a molecular assembly line process. This further highlights the versatility of the VFD in organic synthesis, as does the finding of a remarkably efficient debenzylation of p-methoxybenzyl amines. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Bio-inspired online variable recruitment control of fluidic artificial muscles

    Science.gov (United States)

    Jenkins, Tyler E.; Chapman, Edward M.; Bryant, Matthew

    2016-12-01

    This paper details the creation of a hybrid variable recruitment control scheme for fluidic artificial muscle (FAM) actuators with an emphasis on maximizing system efficiency and switching control performance. Variable recruitment is the process of altering a system’s active number of actuators, allowing operation in distinct force regimes. Previously, FAM variable recruitment was only quantified with offline, manual valve switching; this study addresses the creation and characterization of novel, on-line FAM switching control algorithms. The bio-inspired algorithms are implemented in conjunction with a PID and model-based controller, and applied to a simulated plant model. Variable recruitment transition effects and chatter rejection are explored via a sensitivity analysis, allowing a system designer to weigh tradeoffs in actuator modeling, algorithm choice, and necessary hardware. Variable recruitment is further developed through simulation of a robotic arm tracking a variety of spline position inputs, requiring several levels of actuator recruitment. Switching controller performance is quantified and compared with baseline systems lacking variable recruitment. The work extends current variable recruitment knowledge by creating novel online variable recruitment control schemes, and exploring how online actuator recruitment affects system efficiency and control performance. Key topics associated with implementing a variable recruitment scheme, including the effects of modeling inaccuracies, hardware considerations, and switching transition concerns are also addressed.

  8. Hydrodynamics of Safety Injection Tank with Fluidic Device in Recent Regulation

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Young Seok; Yoo, Seung Hun [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-10-15

    Safety Injection Tank (SIT) with Fluidic Device (FD) has been used in several APR1400 nuclear power plants. It was designed to provide a longer passive safety injection than the existing accumulator to improve the safety for Large Break Loss-of-Coolant Accident (LBLOCA) by changing the injected flow through the FD and the standpipe of the SIT. As a result, high flow injection phase and the subsequent low flow one can be achieved as longer than the existing accumulator. The present paper discusses the major concerns related to SIT hydrodynamics and the directions to resolution recently concerned. Modeling of SIT/FD by total hydraulic resistances, potential of nitrogen intrusion, and effect of initial pressure of SIT testing are included. Based on the discussion, a table of the important phenomena of the SIT/FD was proposed with the relevancy of the calculation models applied. The present paper discussed the SIT hydrodynamics including the modeling of SIT/FD by total hydraulic resistances, potential of nitrogen intrusion, and effect of initial pressure of SIT testing. Also a table of the important phenomena of the SIT/FD was proposed with the relevancy of the calculation models applied. The following conclusions are obtained uncertainty due to the assumption of the total Kfactor as constant for high flow, transition phase, and low flow phase should be considered and nitrogen intrusion phenomena during the transition phase should be considered with a conservatism, especially considering the current situation of nonmeasuring the standpipe level.

  9. LES-based characterization of a suction and oscillatory blowing fluidic actuator

    Science.gov (United States)

    Kim, Jeonglae; Moin, Parviz

    2015-11-01

    Recently, a novel fluidic actuator using steady suction and oscillatory blowing was developed for control of turbulent flows. The suction and oscillatory blowing (SaOB) actuator combines steady suction and pulsed oscillatory blowing into a single device. The actuation is based upon a self-sustained mechanism of confined jets and does not require any moving parts. The control output is determined by a pressure source and the geometric details, and no additional input is needed. While its basic mechanisms have been investigated to some extent, detailed characteristics of internal turbulent flows are not well understood. In this study, internal flows of the SaOB actuator are simulated using large-eddy simulation (LES). Flow characteristics within the actuator are described in detail for a better understanding of the physical mechanisms and improving the actuator design. LES predicts the self-sustained oscillations of the turbulent jet. Switching frequency, maximum velocity at the actuator outlets, and wall pressure distribution are in good agreement with the experimental measurements. The computational results are used to develop simplified boundary conditions for numerical experiments of active flow control. Supported by the Boeing company.

  10. Hydrodynamics of Safety Injection Tank with Fluidic Device in Recent Regulation

    International Nuclear Information System (INIS)

    Bang, Young Seok; Yoo, Seung Hun

    2016-01-01

    Safety Injection Tank (SIT) with Fluidic Device (FD) has been used in several APR1400 nuclear power plants. It was designed to provide a longer passive safety injection than the existing accumulator to improve the safety for Large Break Loss-of-Coolant Accident (LBLOCA) by changing the injected flow through the FD and the standpipe of the SIT. As a result, high flow injection phase and the subsequent low flow one can be achieved as longer than the existing accumulator. The present paper discusses the major concerns related to SIT hydrodynamics and the directions to resolution recently concerned. Modeling of SIT/FD by total hydraulic resistances, potential of nitrogen intrusion, and effect of initial pressure of SIT testing are included. Based on the discussion, a table of the important phenomena of the SIT/FD was proposed with the relevancy of the calculation models applied. The present paper discussed the SIT hydrodynamics including the modeling of SIT/FD by total hydraulic resistances, potential of nitrogen intrusion, and effect of initial pressure of SIT testing. Also a table of the important phenomena of the SIT/FD was proposed with the relevancy of the calculation models applied. The following conclusions are obtained uncertainty due to the assumption of the total Kfactor as constant for high flow, transition phase, and low flow phase should be considered and nitrogen intrusion phenomena during the transition phase should be considered with a conservatism, especially considering the current situation of nonmeasuring the standpipe level

  11. The use of micro-/milli-fluidics to better understand the mechanisms behind deep venous thrombosis

    Science.gov (United States)

    Schofield, Zoe; Alexiadis, Alessio; Brill, Alexander; Nash, Gerard; Vigolo, Daniele

    2016-11-01

    Deep venous thrombosis (DVT) is a dangerous and painful condition in which blood clots form in deep veins (e.g., femoral vein). If these clots become unstable and detach from the thrombus they can be delivered to the lungs resulting in a life threatening complication called pulmonary embolism (PE). Mechanisms of clot development in veins remain unclear but researchers suspect that the specific flow patterns in veins, especially around the valve flaps, play a fundamental role. Here we show how it is now possible to mimic the current murine model by developing micro-/milli-fluidic experiments. We exploited a novel detection technique, ghost particle velocimetry (GPV), to analyse the velocity profiles for various geometries. These vary from regular microfluidics with a rectangular cross section with a range of geometries (mimicking the presence of side and back branches in veins, closed side branch and flexible valves) to a more accurate venous representation with a 3D cylindrical geometry obtained by 3D printing. In addition to the GPV experiments, we analysed the flow field developing in these geometries by using computational fluid dynamic simulations to develop a better understanding of the mechanisms behind DVT. ZS gratefully acknowledges financial support from the EPSRC through a studentship from the Sci-Phy-4-Health Centre for Doctoral Training (EP/L016346/1).

  12. Zone fluidics for measurement of octanol-water partition coefficient of drugs.

    Science.gov (United States)

    Wattanasin, Panwadee; Saetear, Phoonthawee; Wilairat, Prapin; Nacapricha, Duangjai; Teerasong, Saowapak

    2015-02-20

    A novel zone fluidics (ZF) system for the determination of the octanol-water partition coefficient (Pow) of drugs was developed. The ZF system consisted of a syringe pump with a selection valve, a holding column, a silica capillary flow-cell and an in-line spectrophotometer. Exact microliter volumes of solvents (octanol and phosphate buffer saline) and a solution of the drug, sandwiched between air segments, were sequentially loaded into the vertically aligned holding column. Distribution of the drug between the aqueous and octanol phases occurred by the oscillation movement of the syringe pump piston. Phase separation occurred due to the difference in densities. The liquid zones were then pushed into the detection flow cell. In this method, absorbance measurements in only one of the phase (octanol or aqueous) were employed, which together with the volumes of the solvents and pure drug sample, allowed the calculation of the Pow. The developed system was applied to the determination of the Pow of some common drugs. The log (Pow) values agreed well with a batch method (R(2)=0.999) and literature (R(2)=0.997). Standard deviations for intra- and inter-day analyses were both less than 0.1log unit. This ZF system provides a robust and automated method for screening of Pow values in the drug discovery process. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Nested, fixed-depth fluidic sampler supplementary testing - AEAT doc 2926-2-002

    International Nuclear Information System (INIS)

    REICH, F.R.

    1999-01-01

    This report summarizes the results of cold testing, completed by AEAT, as part of the proof-of-principle testing for a proposed nested, fixed-depth fluidic sampling system. This sampling system will provide waste samples from the PHMC feed tank to support the privatization contract with BNFL. Proof-of-principle tests were completed with 2 wt% and 10 wt% sand/water and 25 wt% kaolin clay/water simulants with a test setup that spanned the 24 ft to 57 ft height required in the feed tank. The tests demonstrated that the system could pump and sample waste materials with low and with high solids content. In addition, the tests demonstrated a need for some design upgrades to the sampling system, as there was material loss when the sample bottle was removed from the sampling needle. These were complementary tests, completed as part of an EM-50 Tank Focus Area (TFA) to develop a sampling system for validating LAW and HLW waste batches for the Privatization Contract

  14. The multi-mode modulator: A versatile fluidic device for two-dimensional gas chromatography.

    Science.gov (United States)

    Seeley, John V; Schimmel, Nicolaas E; Seeley, Stacy K

    2018-02-09

    A fluidic device called the multi-mode modulator (MMM) has been developed for use as a comprehensive two-dimensional gas chromatography (GC x GC) modulator. The MMM can be employed in a wide range of capacities including as a traditional heart-cutting device, a low duty cycle GC x GC modulator, and a full transfer GC x GC modulator. The MMM is capable of producing narrow component pulses (widths <50ms) while operating at flows compatible with high resolution chromatography. The sample path of modulated components is confined to the interior of a joining capillary. The joining capillary dimensions and the position of the columns within the joining capillary can be optimized for the selected modulation mode. Furthermore, the joining capillary can be replaced easily and inexpensively if it becomes fouled due to sample matrix components or column bleed. The principles of operation of the MMM are described and its efficacy is demonstrated as a heart-cutting device and as a GC x GC modulator. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Psychicones: Visual Traces of the Soul in Late Nineteenth-Century Fluidic Photography.

    Science.gov (United States)

    Pethes, Nicolas

    2016-07-01

    The article discusses attempts to visualise the soul on photographic plates at the end of the nineteenth century, as conducted by the French physician Hippolyte Baraduc in Paris. Although Baraduc refers to earlier experiments on fluidic photography in his book on The Human Soul (1896) and is usually mentioned as a precursor to parapsychological thought photography of the twentieth century, his work is presented as a genuine attempt at photographic soul-catching. Rather than producing mimetic representations of thoughts and imaginations, Baraduc claims to present the vital radiation of the psyche itself and therefore calls the images he produces psychicones. The article first discusses the difference between this method of soul photography and other kinds of occult media technologies of the time, emphasising the significance of its non-mimetic, abstract character: since the soul itself was considered an abstract entity, abstract traces seemed all the more convincing to the contemporary audience. Secondly, the article shows how the technological agency of photography allowed Baraduc's psychicones to be tied into related discourses in medicine and psychology. Insofar as the photographic plates displayed actual visual traces, Baraduc and his followers no longer considered hallucinations illusionary and pathological but emphasised the physical reality and normality of imagination. Yet, the greatest influence of soul photography was not on science but on art. As the third part of the paper argues, the abstract shapes on Baraduc's plates provided inspiration for contemporary avant-garde aesthetics, for example, Kandinsky's abstract paintings and the random streams of consciousness in surrealistic literature.

  16. Nested, fixed-depth fluidic sampler supplementary testing - AEAT doc 2926-2-002

    Energy Technology Data Exchange (ETDEWEB)

    REICH, F.R.

    1999-03-11

    This report summarizes the results of cold testing, completed by AEAT, as part of the proof-of-principle testing for a proposed nested, fixed-depth fluidic sampling system. This sampling system will provide waste samples from the PHMC feed tank to support the privatization contract with BNFL. Proof-of-principle tests were completed with 2 wt% and 10 wt% sand/water and 25 wt% kaolin clay/water simulants with a test setup that spanned the 24 ft to 57 ft height required in the feed tank. The tests demonstrated that the system could pump and sample waste materials with low and with high solids content. In addition, the tests demonstrated a need for some design upgrades to the sampling system, as there was material loss when the sample bottle was removed from the sampling needle. These were complementary tests, completed as part of an EM-50 Tank Focus Area (TFA) to develop a sampling system for validating LAW and HLW waste batches for the Privatization Contract.

  17. Transient dynamics of the flow around a NACA 0015 airfoil using fluidic vortex generators

    Energy Technology Data Exchange (ETDEWEB)

    Siauw, W.L. [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, ENSMA - Teleport 2, 1 Avenue Clement Ader, BP 40109, F-86961 Futuroscope Chasseneuil Cedex (France); Bonnet, J.-P., E-mail: Jean-Paul.Bonnet@univ-poitiers.f [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, CEAT, 43 rue de l' Aerodrome, F-86036 Poitiers Cedex (France); Tensi, J., E-mail: Jean.Tensi@lea.univ-poitiers.f [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, ENSMA - Teleport 2, 1 Avenue Clement Ader, BP 40109, F-86961 Futuroscope Chasseneuil Cedex (France); Cordier, L., E-mail: Laurent.Cordier@univ-poitiers.f [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, CEAT, 43 rue de l' Aerodrome, F-86036 Poitiers Cedex (France); Noack, B.R., E-mail: Bernd.Noack@univ-poitiers.f [Institut Pprime, CNRS - Universite de Poitiers - ENSMA, UPR 3346, Departement Fluides, Thermique, Combustion, CEAT, 43 rue de l' Aerodrome, F-86036 Poitiers Cedex (France); Cattafesta, L., E-mail: cattafes@ufl.ed [Florida Center for Advanced Aero-Propulsion (FCAAP), Department of Mechanical and Aerospace Engineering, University of Florida, 231 MAE-A, Gainesville, FL 32611 (United States)

    2010-06-15

    The unsteady activation or deactivation of fluidic vortex generators on a NACA 0015 airfoil is studied to understand the transient dynamics of flow separation control. The Reynolds number is high enough and the boundary layer is tripped, so the boundary layer is fully turbulent prior to separation. Conditional PIV of the airfoil wake is obtained phase-locked to the actuator trigger signal, allowing reconstruction of the transient processes. When the actuators are impulsively turned on, the velocity field in the near wake exhibit a complex transient behavior associated with the formation and shedding of a starting vortex. When actuation is stopped, a more gradual process of the separation dynamics is found. These results are in agreement with those found in the literature in comparable configurations. Proper Orthogonal Decomposition of phase-locked velocity fields reveals low-dimensional transient dynamics for the attachment and separation processes, with 98% of the fluctuation energy captured by the first four modes. The behavior is quantitatively well captured by a four-dimensional dynamical system with the corresponding mode amplitudes. Analysis of the first temporal POD modes accurately determines typical time scales for attachment and separation processes to be respectively t{sup +}=10 and 20 in conventional non-dimensional values. This study adds to experimental investigations of this scale with essential insight for the targeted closed-loop control.

  18. Engineering fluidic delays in paper-based devices using laser direct-writing.

    Science.gov (United States)

    He, P J W; Katis, I N; Eason, R W; Sones, C L

    2015-10-21

    We report the use of a new laser-based direct-write technique that allows programmable and timed fluid delivery in channels within a paper substrate which enables implementation of multi-step analytical assays. The technique is based on laser-induced photo-polymerisation, and through adjustment of the laser writing parameters such as the laser power and scan speed we can control the depth and/or the porosity of hydrophobic barriers which, when fabricated in the fluid path, produce controllable fluid delay. We have patterned these flow delaying barriers at pre-defined locations in the fluidic channels using either a continuous wave laser at 405 nm, or a pulsed laser operating at 266 nm. Using this delay patterning protocol we generated flow delays spanning from a few minutes to over half an hour. Since the channels and flow delay barriers can be written via a common laser-writing process, this is a distinct improvement over other methods that require specialist operating environments, or custom-designed equipment. This technique can therefore be used for rapid fabrication of paper-based microfluidic devices that can perform single or multistep analytical assays.

  19. Radiative characteristics of CVL pumped dye laser

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Uichi; Ishiguro, Takahide

    1987-09-01

    This paper describes the radiative characteristics of CVL pumped dye laser. It is compared YAG-SH (530 nm) with CVL (511, 578 nm) and CVL (511 nm) for pumping source. Influence of solvent in dye laser power was examined. The present experimental results show that efficiency of CVL (511 nm) pumped dye laser was most high. When the dye solution is at a standstill, the efficiency of dye laser with water and Sodium Lauryl Sulfate (S.L.S., 2 %wt.) was most high among the four kinds of solvent. In the condition of dye solution flow, the water and S.L.S. or ethylene glycol was useful solvent for dye laser.

  20. Radiative characteristics of CVL pumped dye laser

    International Nuclear Information System (INIS)

    Kubo, Uichi; Ishiguro, Takahide.

    1987-01-01

    This paper describes the radiative characteristics of CVL pumped dye laser. It is compared YAG-SH (530 nm) with CVL (511, 578 nm) and CVL (511 nm) for pumping source. Influence of solvent in dye laser power was examined. The present experimental results show that efficiency of CVL (511 nm) pumped dye laser was most high. When the dye solution is at a standstill, the efficiency of dye laser with water and Sodium Lauryl Sulfate (S.L.S., 2 %wt.) was most high among the four kinds of solvent. In the condition of dye solution flow, the water and S.L.S. or Ethylene Glycol was useful solvent for dye laser. (author)

  1. BODIPYs for Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Klfout, Hafsah; Stewart, Adam; Elkhalifa, Mahmoud; He, Hongshan

    2017-11-22

    BODIPY, abbreviation of boron-dipyrromethene, is one class of robust organic molecules that has been used widely in bioimaging, sensing, and logic gate design. Recently, BODIPY dyes have been explored for dye-sensitized solar cells (DSCs). Studies demonstrate their potential as light absorbers for the conversion of solar energy to electricity. However, their photovoltaic performance is inferior to many other dyes, including porphyrin dyes. In this review, several synthetic strategies of BODIPY dyes for DSCs and their further functionalization are described. The photophysical properties of dye molecules and their photovoltaic performances in DSCs are summarized. We aim to provide readers a clear picture of the field and expect to shed light on the next generation of BODIPY dyes for their applications in solar energy conversion.

  2. Influence of styryl dyes on blood erythrocytes

    Science.gov (United States)

    Nizomov, Negmat; Barakaeva, Mubaro; Kurtaliev, Eldar N.; Rahimov, Sherzod I.; Khakimova, Dilorom P.; Khodjayev, Gayrat; Yashchuk, Valeriy N.

    2008-08-01

    It was studied the influence of F, Sbt, Sil, Sbo monomer and homodimer Dst-5, Dst-10, Dbt-5, Dbt-10, Dil-10, Dbo-10 styryl dyes on blood erythrocytes of white rats. It was shown that the homodimer styryl dyes Dst-5, Dbt-5 and Dbo-10 decrease the erythrocytes quantity by 1.5-2 times more as compared with monomer dyes Sbt and Sbo. The main cause of dyes different action is the different oxidation degree of intracellular hemoglobin evoked by these dyes. It was established that the observed effects was connected with different penetration of these dyes through membrane of erythrocytes and with interaction of these dyes with albumin localized in membranes of cells.

  3. Inorganic glass ceramic slip rings

    Science.gov (United States)

    Glossbrenner, E. W.; Cole, S. R.

    1972-01-01

    Prototypes of slip rings have been fabricated from ceramic glass, a material which is highly resistant to deterioration due to high temperature. Slip ring assemblies were not structurally damaged by mechanical tests and performed statisfactorily for 200 hours.

  4. Uniquely Strongly Clean Group Rings

    Institute of Scientific and Technical Information of China (English)

    WANG XIU-LAN

    2012-01-01

    A ring R is called clean if every element is the sum of an idempotent and a unit,and R is called uniquely strongly clean (USC for short) if every element is uniquely the sum of an idempotent and a unit that commute.In this article,some conditions on a ring R and a group G such that RG is clean are given.It is also shown that if G is a locally finite group,then the group ring RG is USC if and only if R is USC,and G is a 2-group.The left uniquely exchange group ring,as a middle ring of the uniquely clean ring and the USC ring,does not possess this property,and so does the uniquely exchange group ring.

  5. Characteristics of a Broadband Dye Laser Using Pyrromethene and Rhodamine Dyes

    Science.gov (United States)

    Tedder, Sarah A.; Danehy, Paul M.; Wheeler, Jeffrey L.

    2011-01-01

    A broadband dye laser pumped by a frequency-doubled Nd:YAG laser with a full-width half-maximum (FWHM) from 592 to 610 nm was created for the use in a dual-pump broadband CARS system called WIDECARS. The desired broadband dye laser was generated with a mixture of Pyrromethene dyes as an oscillator gain medium and a spectral selective optic in the oscillator cavity. A mixture of Rhodamine dyes were used in the amplifier dye cell. To create this laser a study was performed to characterize the spectral behavior of broadband dye lasers created with Rhodamine dyes 590, 610, and 640, Pyrromethene dyes 597 and 650 as well as mixture of these dyes.

  6. Ring closure in actin polymers

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Supurna, E-mail: supurna@rri.res.in [Raman Research Institute, Bangalore 560080 (India); Chattopadhyay, Sebanti [Doon University, Dehradun 248001 (India)

    2017-03-18

    We present an analysis for the ring closure probability of semiflexible polymers within the pure bend Worm Like Chain (WLC) model. The ring closure probability predicted from our analysis can be tested against fluorescent actin cyclization experiments. We also discuss the effect of ring closure on bend angle fluctuations in actin polymers. - Highlights: • Ring closure of biopolymers. • Worm like chain model. • Predictions for experiments.

  7. Octane-Assisted Reverse Micellar Dyeing of Cotton with Reactive Dyes

    Directory of Open Access Journals (Sweden)

    Alan Yiu-lun Tang

    2017-12-01

    Full Text Available In this study, we investigated the computer colour matching (CCM of cotton fabrics dyed with reactive dye using the octane-assisted reverse micellar approach. The aim of this study is to evaluate the colour quality and compare the accuracy between CCM forecasting and simulated dyeing produced by conventional water-based dyeing and octane-assisted reverse micellar dyeing. First, the calibration of dyeing databases for both dyeing methods was established. Standard samples were dyed with known dye concentrations. Computer colour matching was conducted by using the colour difference formula of International Commission on Illumination (CIE L*a*b*. Experimental results revealed that the predicted concentrations were nearly the same as the expected known concentrations for both dyeing methods. This indicates that octane-assisted reverse micellar dyeing system can achieve colour matching as good as the conventional water-based dyeing system. In addition, when comparing the colour produced by the conventional water-based dyeing system and the octane-assisted reverse micellar dyeing system, the colour difference (ΔE is ≤1, which indicates that the reverse micellar dyeing system could be applied for industrial dyeing with CCM.

  8. Design of low energy ring(s)

    CERN Document Server

    Lachaize, Antoine

    During the last two years, several upgrades of the initial baseline scenario were studied with the aim of increasing the average intensity of ion beams in the accelerator chain of the Beta Beam complex. This is the reason why the Rapid Cycling Synchrotron (RCS) specifications were reconsidered many times [1], [2], [3].General considerations on the optical design were presented at the Beta Beam Task Meetings held at CERN and at Saclay in 2005 [4]. More detailed beam optics studies were performed during the next months. Lattices, RF system parameters, multi-turn injection scheme, fast extraction, closed orbit correction and chromaticity correction systems were proposed for different versions of the RCS [5], [6], [7].Finally, the RCS specifications have stabilized in November 2006 after the fourth Beta Beam Task Meeting when it was decided to fix the maximum magnetic rigidity of ion beams to 14.47 T.m (3.5 GeV equivalent proton energy) and to adopt a ring physical radius of 40 m in order to facilitate injectio...

  9. Fusion Rings for Quantum Groups

    DEFF Research Database (Denmark)

    Andersen, Henning Haahr; Stroppel, Catharina

    2012-01-01

    We study the fusion rings of tilting modules for a quantum group at a root of unity modulo the tensor ideal of negligible tilting modules. We identify them in type A with the combinatorial rings from [12] and give a similar description of the sp2n-fusion ring in terms of noncommutative symmetric...

  10. RINGED ACCRETION DISKS: EQUILIBRIUM CONFIGURATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, D.; Stuchlík, Z., E-mail: d.pugliese.physics@gmail.com, E-mail: zdenek.stuchlik@physics.cz [Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo náměstí 13, CZ-74601 Opava (Czech Republic)

    2015-12-15

    We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.

  11. Artificial evolution of coumarin dyes for dye sensitized solar cells.

    Science.gov (United States)

    Venkatraman, Vishwesh; Abburu, Sailesh; Alsberg, Bjørn Kåre

    2015-11-07

    The design and discovery of novel molecular structures with optimal properties has been an ongoing effort for materials scientists. This field has in general been dominated by experiment driven trial-and-error approaches that are often expensive and time-consuming. Here, we investigate if a de novo computational design methodology can be applied to the design of coumarin-based dye sensitizers with improved properties for use in Grätzel solar cells. To address the issue of synthetic accessibility of the designed compounds, a fragment-based assembly is employed, wherein the combination of chemical motifs (derived from the existing databases of structures) is carried out with respect to user-adaptable set of rules. Rather than using computationally intensive density functional theory (DFT)/ab initio methods to screen candidate dyes, we employ quantitative structure-property relationship (QSPR) models (calibrated from empirical data) for rapid estimation of the property of interest, which in this case is the product of short circuit current (Jsc) and open circuit voltage (Voc). Since QSPR models have limited validity, pre-determined applicability domain criteria are used to prevent unacceptable extrapolation. DFT analysis of the top-ranked structures provides supporting evidence of their potential for dye sensitized solar cell applications.

  12. COMPARATIVE STUDY OF TWO DYEING METHODS USING REACTIVE DYE

    Directory of Open Access Journals (Sweden)

    HINOJOSA Belén

    2016-05-01

    Full Text Available Environment preservation is a common worry not only for people but for companies as well. Industry is more and more concern about the necessity of developing new and more respectful processes. Dye is one of the most important processes in the textile industry but it is also considered as no too safe regarding environment issues. This process uses large amounts of water and generates big volumes of wastewater. Following this issue, new regulations and laws emerge to control the waste generated. This leads to the companies and increased costs in terms of wastewater treatments and high water consumption. In this research we compare two systems on garment finishing application, the conventional bath process and the new Ecofinish system that is able to save water and product. To compare these processes, we carried out a reactive dyeing using both systems in order to determine the quality differences in the final product. For this purpose, the samples have been tested to washing and rubbing fastness, according to UNE EN ISO 105 C10 and UNE- EN ISO 105 X12 standards, respectively. This study confirms that this system achieves water savings and reduces the wastewater produced, getting a good dyeing. This process can be considered as an alternative to the conventional one.

  13. Decolorization of dyeing wastewater in continuous photoreactors using tio2 coated glass tube media

    Directory of Open Access Journals (Sweden)

    Jutaporn Chanathaworn

    2014-02-01

    Full Text Available The present study deals with a decolorization development of malachite green (MG dyeing wastewater using TiO2 thin films coated glass tube media in photoreactor. The TiO2 photocatalyst was synthesized by three methods: TTIP sol-gel, TiO2 powder-modified sol, and TiO2 powder suspension coating on raschig ring glass tube media and was investigated crystallinity phase by SEM, XRD, and AFM. Degradation kinetics of the dyeing wastewater by photocatalytic was carried out under UV light irradiation. The Langmuir first-order model provided the best fit to the experimental data. The catalyst prepared by powder suspension technique and coated on glass tube had given the highest of decolorization kinetics and efficiency. Continuous photoreactor packed with the TiO2 coating media was designed and proven to be the high effectiveness for MG dyeing degradation and stable throughout the recyclability test. The light intensity, dye solution flow rate, and TiO2 loading were the most important parameters that response to decolorization efficiency. The optimum condition of photo decolorization of MG dye solution can be obtained from RSM model. Effectiveness of the synthesized TiO2 thin films using suspension technique and the continuous photoreactor design were obtained with a great potential to be proven for wastewater treatment at industrial scale.

  14. Biochemical study of some environmental pollutants dyes Part II: disperse dyes

    International Nuclear Information System (INIS)

    Shakra, S.; Ahmed, F.A.; Fetyan, N.A.

    2005-01-01

    This work was aimed to develop a method for removal of the dyes color from the textile wastewater that is well be much less costly than the other chemical or physical methods used. It therefore included: 1. Preparation of three disperses dyes. 2. Isolation of dyes degradable microorganisms from wastewater effluents and soil after adding 200 ppm of each dye individually. 3. Decolorisation and biodegradation of the dyes in liquid culture of the isolated bacteria (Bacillus thuringiensis). 4. Identification of the probable byproducts by different instruments. 5. Toxicity assessment of the dyes and their biodegraded products

  15. Ring Confidential Transactions

    Directory of Open Access Journals (Sweden)

    Shen Noether

    2016-12-01

    Full Text Available This article introduces a method of hiding transaction amounts in the strongly decentralized anonymous cryptocurrency Monero. Similar to Bitcoin, Monero is a cryptocurrency which is distributed through a proof-of-work “mining” process having no central party or trusted setup. The original Monero protocol was based on CryptoNote, which uses ring signatures and one-time keys to hide the destination and origin of transactions. Recently the technique of using a commitment scheme to hide the amount of a transaction has been discussed and implemented by Bitcoin Core developer Gregory Maxwell. In this article, a new type of ring signature, A Multilayered Linkable Spontaneous Anonymous Group signature is described which allows one to include a Pedersen Commitment in a ring signature. This construction results in a digital currency with hidden amounts, origins and destinations of transactions with reasonable efficiency and verifiable, trustless coin generation. The author would like to note that early drafts of this were publicized in the Monero Community and on the #bitcoin-wizards IRC channel. Blockchain hashed drafts are available showing that this work was started in Summer 2015, and completed in early October 2015. An eprint is also available at http://eprint.iacr.org/2015/1098.

  16. Integrated refractive index optical ring resonator detector for capillary electrophoresis.

    Science.gov (United States)

    Zhu, Hongying; White, Ian M; Suter, Jonathan D; Zourob, Mohammed; Fan, Xudong

    2007-02-01

    We developed a novel miniaturized and multiplexed, on-capillary, refractive index (RI) detector using liquid core optical ring resonators (LCORRs) for future development of capillary electrophoresis (CE) devices. The LCORR employs a glass capillary with a diameter of approximately 100 mum and a wall thickness of a few micrometers. The circular cross section of the capillary forms a ring resonator along which the light circulates in the form of the whispering gallery modes (WGMs). The WGM has an evanescent field extending into the capillary core and responds to the RI change due to the analyte conducted in the capillary, thus permitting label-free measurement. The resonating nature of the WGM enables repetitive light-analyte interaction, significantly enhancing the LCORR sensitivity. This LCORR architecture achieves dual use of the capillary as a sensor head and a CE fluidic channel, allowing for integrated, multiplexed, and noninvasive on-capillary detection at any location along the capillary. In this work, we used electro-osmotic flow and glycerol as a model system to demonstrate the fluid transport capability of the LCORRs. In addition, we performed flow speed measurement on the LCORR to demonstrate its flow analysis capability. Finally, using the LCORR's label-free sensing mechanism, we accurately deduced the analyte concentration in real time at a given point on the capillary. A sensitivity of 20 nm/RIU (refractive index units) was observed, leading to an RI detection limit of 10-6 RIU. The LCORR marries photonic technology with microfluidics and enables rapid on-capillary sample analysis and flow profile monitoring. The investigation in this regard will open a door to novel high-throughput CE devices and lab-on-a-chip sensors in the future.

  17. Synthesis, characterization and dyeing behavior of heterocyclic acid dyes and mordent acid dyes on wool and silk fabrics

    Directory of Open Access Journals (Sweden)

    Patel Hitendra M.

    2012-01-01

    Full Text Available Novel heterocyclic acid and mordent acid dyes were synthesized by the coupling of diazonium salt solution of different aromatic amines with 2- butyl-3-(4-hydroxybenzoylbenzofuran. The resulting heterocyclic acid dyes were characterized by spectral techniques, i.e., elemental analysis, IR, 1HNMR, 13C-NMR spectral studies and UV- visible spectroscopy. The dyeing performance of all the heterocyclic acid dyes was evaluated on wool and silk fabrics. The dyeing of chrome pre treated wool and silk fabrics showed better hues on mordented fabrics. Dyeing of wool and silk fabrics resulted in pinkish blue to red shades with very good depth and levelness. The dyed fabrics showed excellent to very good light, washing, perspiration, sublimation and rubbing fastness.

  18. Fate of Colored Smoke Dyes

    Science.gov (United States)

    1992-01-01

    4.13] have been applied to their estimation. This approach has the advantages of sensitivity and of not requiring high purity and known structures...Chrom absorbance detector, and an Alltech Econosil C-18 (10 micrometer) column (4.6 mm X 25 cm with guard column). The mobile phase, HPLC-grade methanol...water partition coefficient or vice versa. The HPLC method is of similar precision and has the advantage that known structure and purity of the dye are

  19. Broad band exciplex dye lasers

    International Nuclear Information System (INIS)

    Dienes, A.; Shank, C.V.; Trozzolo, A.M.

    1975-01-01

    The disclosure is concerned with exciplex dye lasers, i.e., lasers in which the emitting species is a complex formed only from a constituent in an electronically excited state. Noting that an exciplex laser, favorable from the standpoint of broad tunability, results from a broad shift in the peak emission wavelength for the exciplex relative to the unreacted species, a desirable class resulting in such broad shift is described. Preferred classes of laser media utilizing specified resonant molecules are set forth. (auth)

  20. Dataset on analysis of dyeing property of natural dye from Thespesia populnea bark on different fabrics

    Directory of Open Access Journals (Sweden)

    Kuchekar Mohini

    2018-02-01

    Full Text Available The natural dyes separated from plants are of gaining interest as substitutes for synthetic dyes in food and cosmetics. Thespesia populnea (T. populnea is widely grown plant and used in the treatment of various diseases. This study was aimed to separate natural dye from T. populnea bark and analysis of its dyeing property on different fabrics. In this investigation pharmacognostic study was carried out. The pharmacognostic study includes morphological study, microscopical examination, proximate analysis along with the phytochemical study. The dyeing of different fabric was done with a natural dye extracted from T. populnea bark. The fabrics like cotton, butter crep, polymer, chiken, lone, ulene and tarakasa were dye with plant extract. The various evaluation parameters were studied. It includes effect of washing with water, effect of soap, effect of sunlight, effect of alum, effect of Cupric sulphate, microscopical study of fabrics and visual analysis of dyeing by common people were studied. In results, natural dye isolated from T. populnea bark could be used for dyeing fabrics with good fastness properties. The studies reveals that, the dyeing property of fabrics after washing with water and soap, exposed to sunlight does not get affected. It was observed that cotton and tarakasa stains better as compared with other fabrics. It was concluded that the ethanolic extract having good dyeing property. Keywords: Plant, Thespesia populnea, Bark, Natural dye, Fabrics

  1. Fusion Rings for Quantum Groups

    DEFF Research Database (Denmark)

    Andersen, Henning Haahr; Stroppel, Catharina

    2014-01-01

    We study the fusion rings of tilting modules for a quantum group at a root of unity modulo the tensor ideal of negligible tilting modules. We identify them in type A with the combinatorial rings from Korff, C., Stroppel, C.: The sl(ˆn)k-WZNW fusion ring: a combinato-rial construction...... and a realisation as quotient of quantum cohomology. Adv. Math. 225(1), 200–268, (2010) and give a similar description of the sp2n-fusion ring in terms of non-commutative symmetric functions. Moreover we give a presentation of all fusion rings in classical types as quotients of polynomial rings. Finally we also...... compute the fusion rings for type G2....

  2. Designing deoxidation inhibiting encapsulation of metal oxide nanostructures for fluidic and biological applications

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Moumita, E-mail: ghoshiisc@gmail.com [Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012 (India); Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012 (India); IV. Institute of Physics, Georg-August-Universität-Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); III. Institute of Physics – Biophysics and Complex Systems, Georg-August-Universität-Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Ghosh, Siddharth [III. Institute of Physics – Biophysics and Complex Systems, Georg-August-Universität-Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Seibt, Michael [IV. Institute of Physics, Georg-August-Universität-Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Schaap, Iwan A.T. [III. Institute of Physics – Biophysics and Complex Systems, Georg-August-Universität-Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Schmidt, Christoph F. [III. Institute of Physics – Biophysics and Complex Systems, Georg-August-Universität-Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Mohan Rao, G. [Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012 (India)

    2016-12-30

    Graphical abstract: To retain atomic structure and morphology of ZnO nanostructures (caused by deoxidation of ZnO) in water/bio-fluids, we propose and demonstrate a robust and inexpensive encapsulation technique using bio-compatible non-ionic surfactant. - Highlights: • Aqueous solutions of ZnO nanorods with and without surfactant are prepared. • With time ZnO nanorods show structural deterioration in different aqueous solutions. • Crystallinity of ZnO nanorods in absence of aqueous solution remain unaffected. • Encapsulation of bio-compatible surfactant in alchohol avoid ZnO deoxidation. • Crystallinity and structure of ZnO nanorods after encapsulation remain unaffected. - Abstract: Due to their photoluminescence, metal oxide nanostructures such as ZnO nanostructures are promising candidates in biomedical imaging, drug delivery and bio-sensing. To apply them as label for bio-imaging, it is important to study their structural stability in a bio-fluidic environment. We have explored the effect of water, the main constituent of biological solutions, on ZnO nanostructures with scanning electron microscopy (SEM) and photoluminescence (PL) studies which show ZnO nanorod degeneration in water. In addition, we propose and investigate a robust and inexpensive method to encapsulate these nanostructures (without structural degradation) using bio-compatible non-ionic surfactant in non-aqueous medium, which was not reported earlier. This new finding is an immediate interest to the broad audience of researchers working in biophysics, sensing and actuation, drug delivery, food and cosmetics technology, etc.

  3. Fabrication and characterisation of fluidic based memristor sensor for liquid with hydroxyl group

    Directory of Open Access Journals (Sweden)

    Nor Shahanim Mohamad Hadis

    2017-06-01

    Full Text Available Two types of memristor sensor were fabricated using two different TiO2 deposition methods of sputtering and sol-gel spin coating. The surface morphology of the sensors and the behaviour of the sensors were analysed by using scanning electron microscopy with energy dispersive x-ray system and I-V characterisation system respectively. The sensors were applied with liquid with hydroxyl group to check the capability of this sensor in sensing different concentration of hydroxyl ion inside the liquid. For that purpose, d-glucose liquid with four concentrations of 10mM, 20mM, 30mM and 40mM were chosen. The liquids dispensed onto the TiO2 surface to act as sensing material. The TiO2 surface was initially covered with polydimethylsiloxane to control the liquid. The sensing capability of the sensors was determined via the current-voltage measurement and off-on resistance ratio. The sensitivity of the sensors was analysed from the off-on resistance ratio analysis. Type II memristor sensor which was fabricated using sol-gel spin coating technique recorded high sensitivity of 120.65 (mM−1, while Type I sensor fabricated using the sputtering technique recorded low sensitivity of 0.035 (mM−1. However, SEM-EDX image illustrated that the sputtering technique produced more uniform TiO2 thin film than sol-gel spin coating technique with larger atomic number of oxygen through the sol-gel spin coating technique. This indicates Type II sensor that has large number of oxygen atom produced more reaction with hydroxyl ion inside the liquid. While, Type I sensor produced less reaction compared with Type II and thus produced smaller off-on resistance ratio. Keywords: Fluidic based memristor, Hydroxyl ion, I-V characteristics, Off-on resistance ratio

  4. An SOI CMOS-Based Multi-Sensor MEMS Chip for Fluidic Applications.

    Science.gov (United States)

    Mansoor, Mohtashim; Haneef, Ibraheem; Akhtar, Suhail; Rafiq, Muhammad Aftab; De Luca, Andrea; Ali, Syed Zeeshan; Udrea, Florin

    2016-11-04

    An SOI CMOS multi-sensor MEMS chip, which can simultaneously measure temperature, pressure and flow rate, has been reported. The multi-sensor chip has been designed keeping in view the requirements of researchers interested in experimental fluid dynamics. The chip contains ten thermodiodes (temperature sensors), a piezoresistive-type pressure sensor and nine hot film-based flow rate sensors fabricated within the oxide layer of the SOI wafers. The silicon dioxide layers with embedded sensors are relieved from the substrate as membranes with the help of a single DRIE step after chip fabrication from a commercial CMOS foundry. Very dense sensor packing per unit area of the chip has been enabled by using technologies/processes like SOI, CMOS and DRIE. Independent apparatuses were used for the characterization of each sensor. With a drive current of 10 µA-0.1 µA, the thermodiodes exhibited sensitivities of 1.41 mV/°C-1.79 mV/°C in the range 20-300 °C. The sensitivity of the pressure sensor was 0.0686 mV/(V excit kPa) with a non-linearity of 0.25% between 0 and 69 kPa above ambient pressure. Packaged in a micro-channel, the flow rate sensor has a linearized sensitivity of 17.3 mV/(L/min) -0.1 in the tested range of 0-4.7 L/min. The multi-sensor chip can be used for simultaneous measurement of fluid pressure, temperature and flow rate in fluidic experiments and aerospace/automotive/biomedical/process industries.

  5. An SOI CMOS-Based Multi-Sensor MEMS Chip for Fluidic Applications †

    Science.gov (United States)

    Mansoor, Mohtashim; Haneef, Ibraheem; Akhtar, Suhail; Rafiq, Muhammad Aftab; De Luca, Andrea; Ali, Syed Zeeshan; Udrea, Florin

    2016-01-01

    An SOI CMOS multi-sensor MEMS chip, which can simultaneously measure temperature, pressure and flow rate, has been reported. The multi-sensor chip has been designed keeping in view the requirements of researchers interested in experimental fluid dynamics. The chip contains ten thermodiodes (temperature sensors), a piezoresistive-type pressure sensor and nine hot film-based flow rate sensors fabricated within the oxide layer of the SOI wafers. The silicon dioxide layers with embedded sensors are relieved from the substrate as membranes with the help of a single DRIE step after chip fabrication from a commercial CMOS foundry. Very dense sensor packing per unit area of the chip has been enabled by using technologies/processes like SOI, CMOS and DRIE. Independent apparatuses were used for the characterization of each sensor. With a drive current of 10 µA–0.1 µA, the thermodiodes exhibited sensitivities of 1.41 mV/°C–1.79 mV/°C in the range 20–300 °C. The sensitivity of the pressure sensor was 0.0686 mV/(Vexcit kPa) with a non-linearity of 0.25% between 0 and 69 kPa above ambient pressure. Packaged in a micro-channel, the flow rate sensor has a linearized sensitivity of 17.3 mV/(L/min)−0.1 in the tested range of 0–4.7 L/min. The multi-sensor chip can be used for simultaneous measurement of fluid pressure, temperature and flow rate in fluidic experiments and aerospace/automotive/biomedical/process industries. PMID:27827904

  6. Surface Tension Directed Fluidic Self-Assembly of Semiconductor Chips across Length Scales and Material Boundaries

    Directory of Open Access Journals (Sweden)

    Shantonu Biswas

    2016-03-01

    Full Text Available This publication provides an overview and discusses some challenges of surface tension directed fluidic self-assembly of semiconductor chips which are transported in a liquid medium. The discussion is limited to surface tension directed self-assembly where the capture, alignment, and electrical connection process is driven by the surface free energy of molten solder bumps where the authors have made a contribution. The general context is to develop a massively parallel and scalable assembly process to overcome some of the limitations of current robotic pick and place and serial wire bonding concepts. The following parts will be discussed: (2 Single-step assembly of LED arrays containing a repetition of a single component type; (3 Multi-step assembly of more than one component type adding a sequence and geometrical shape confinement to the basic concept to build more complex structures; demonstrators contain (3.1 self-packaging surface mount devices, and (3.2 multi-chip assemblies with unique angular orientation. Subsequently, measures are discussed (4 to enable the assembly of microscopic chips (10 μm–1 mm; a different transport method is introduced; demonstrators include the assembly of photovoltaic modules containing microscopic silicon tiles. Finally, (5 the extension to enable large area assembly is presented; a first reel-to-reel assembly machine is realized; the machine is applied to the field of solid state lighting and the emerging field of stretchable electronics which requires the assembly and electrical connection of semiconductor devices over exceedingly large area substrates.

  7. Synthesis and characterization of reactive dye-cassava mesocarp ...

    African Journals Online (AJOL)

    The synthesis of triazine based reactive dyes was carried out. The resultant dyes were characterized by thin layers chromatography, molecular weight, infrared and ultra- violet spectroscopy, and used in dyeing cassava mesocarp to produce dye modified cellulosic substrates. The dyed substrates were tested for dye fixation, ...

  8. Dye removal from textile wastewater using bioadsorbent

    International Nuclear Information System (INIS)

    Gardazi, S.M.H.

    2014-01-01

    Textile industries throughout the world produce huge quantities of dyes and pigments annually. Effluents from textile industries are dye wastewater, and disposal of these wastes to freshwater bodies causes damage to the environment. Among the treatment technologies, adsorption is an attractive and viable option, provided that the sorbent is inexpensive and readily available for use. In this study, a typical basic dye, methylene blue, in wastewater was treated using Melia azedarach sawdust. The effects of contact time, adsorbent amount and particle size were investigated on the removal efficiency of adsorbent for methylene blue. Complete removal of the dye were attained at higher adsorbent dose of 3 g/L with 50 mg/L initial dye concentration. The maximum adsorption was at 240 minutes, whereas more than 90% removal with 105 meu m particle size of 1 g/L adsorbent for same initial dye concentration. The experimental data best fits with 2 Langmuir adsorption isotherm (R= 0.991). (author)

  9. Biological wastewater treatment of azo dyes

    Energy Technology Data Exchange (ETDEWEB)

    Shaul, G.M.; Dempsey, C.R.; Dostal, K.A. (Environmental Protection Agency, Cincinnati, OH (USA))

    1988-09-01

    EPA Water Engineering Research Laboratory, Office of Research and Development, undertook a study to determine the fate of specific water soluble azo dye compounds in the activated sludge process (ASP). The study was approached by dosing the feed to the pilot ASP systems with various water soluble azo dyes and by monitoring each dye compound through the system, analyzing both liquid and sludge samples. The fate of the parent dye compound was assessed via mass balance calculations. These data could determine if the compound was removed by adsorption, apparent biodegradation, or not removed at all. The paper presents results for 18 dye compounds tested from June 1985 through August 1987. The study was conducted at EPAs Test and Evaluation Facility in Cincinnati, Ohio. The objective of this study was to determine the partitioning of water soluble azo dyes in the ASP.

  10. Tree Rings: Timekeepers of the Past.

    Science.gov (United States)

    Phipps, R. L.; McGowan, J.

    One of a series of general interest publications on science issues, this booklet describes the uses of tree rings in historical and biological recordkeeping. Separate sections cover the following topics: dating of tree rings, dating with tree rings, tree ring formation, tree ring identification, sample collections, tree ring cross dating, tree…

  11. Panchromatic Response in Solid-State Dye-Sensitized Solar Cells Containing Phosphorescent Energy Relay Dyes

    KAUST Repository

    Yum, Jun-Ho; Hardin, Brianâ E.; Moon, Soo-Jin; Baranoff, Etienne; Nà ¼ esch, Frank; McGehee, Michaelâ D.; Grà ¤ tzel, Michael; Nazeeruddin, Mohammadâ K.

    2009-01-01

    Running relay: Incorporating an energyrelay dye (ERD) into the hole transporter of a dye-sensitized solar cell increased power-conversion efficiency by 29% by extending light harvesting into the blue region. In the operating mechanism (see picture

  12. Time dependent – density functional theory characterization of organic dyes for dye-sensitized solar cells

    KAUST Repository

    Hilal, Rifaat; Aziz, Saadullah G.; Osman, Osman I.; Bredas, Jean-Luc

    2017-01-01

    We aim at providing better insight into the parameters that govern the intramolecular charge transfer (ICT) and photo-injection processes in dyes for dye-sensitised solar cells (DSSC). Density functional theory (DFT) and time-dependent DFT (TD

  13. Incorporating Multiple Energy Relay Dyes in Liquid Dye-Sensitized Solar Cells

    KAUST Repository

    Yum, Jun-Ho; Hardin, Brian E.; Hoke, Eric T.; Baranoff, Etienne; Zakeeruddin, Shaik M.; Nazeeruddin, Mohammad K.; Torres, Tomas; McGehee, Michael D.; Grä tzel, Michael

    2011-01-01

    Panchromatic response is essential to increase the light-harvesting efficiency in solar conversion systems. Herein we show increased light harvesting from using multiple energy relay dyes inside dye-sensitized solar cells. Additional photoresponse

  14. Increased light harvesting in dye-sensitized solar cells with energy relay dyes

    KAUST Repository

    Hardin, Brian E.; Hoke, Eric T.; Armstrong, Paul B.; Yum, Jun-Ho; Comte, Pascal; Torres, Tomá s; Fré chet, Jean M. J.; Nazeeruddin, Md Khaja; Grä tzel, Michael; McGehee, Michael D.

    2009-01-01

    Conventional dye-sensitized solar cells have excellent charge collection efficiencies, high open-circuit voltages and good fill factors. However, dye-sensitized solar cells do not completely absorb all of the photons from the visible and near

  15. Increased light harvesting in dye-sensitized solar cells with energy relay dyes

    KAUST Repository

    Hardin, Brian E.

    2009-06-21

    Conventional dye-sensitized solar cells have excellent charge collection efficiencies, high open-circuit voltages and good fill factors. However, dye-sensitized solar cells do not completely absorb all of the photons from the visible and near-infrared domain and consequently have lower short-circuit photocurrent densities than inorganic photovoltaic devices. Here, we present a new design where high-energy photons are absorbed by highly photoluminescent chromophores unattached to the titania and undergo Förster resonant energy transfer to the sensitizing dye. This novel architecture allows for broader spectral absorption, an increase in dye loading, and relaxes the design requirements for the sensitizing dye. We demonstrate a 26% increase in power conversion efficiency when using an energy relay dye (PTCDI) with an organic sensitizing dye (TT1). We estimate the average excitation transfer efficiency in this system to be at least 47%. This system offers a viable pathway to develop more efficient dye-sensitized solar cells.

  16. Sample handling in surface sensitive chemical and biological sensing: a practical review of basic fluidics and analyte transport.

    Science.gov (United States)

    Orgovan, Norbert; Patko, Daniel; Hos, Csaba; Kurunczi, Sándor; Szabó, Bálint; Ramsden, Jeremy J; Horvath, Robert

    2014-09-01

    This paper gives an overview of the advantages and associated caveats of the most common sample handling methods in surface-sensitive chemical and biological sensing. We summarize the basic theoretical and practical considerations one faces when designing and assembling the fluidic part of the sensor devices. The influence of analyte size, the use of closed and flow-through cuvettes, the importance of flow rate, tubing length and diameter, bubble traps, pressure-driven pumping, cuvette dead volumes, and sample injection systems are all discussed. Typical application areas of particular arrangements are also highlighted, such as the monitoring of cellular adhesion, biomolecule adsorption-desorption and ligand-receptor affinity binding. Our work is a practical review in the sense that for every sample handling arrangement considered we present our own experimental data and critically review our experience with the given arrangement. In the experimental part we focus on sample handling in optical waveguide lightmode spectroscopy (OWLS) measurements, but the present study is equally applicable for other biosensing technologies in which an analyte in solution is captured at a surface and its presence is monitored. Explicit attention is given to features that are expected to play an increasingly decisive role in determining the reliability of (bio)chemical sensing measurements, such as analyte transport to the sensor surface; the distorting influence of dead volumes in the fluidic system; and the appropriate sample handling of cell suspensions (e.g. their quasi-simultaneous deposition). At the appropriate places, biological aspects closely related to fluidics (e.g. cellular mechanotransduction, competitive adsorption, blood flow in veins) are also discussed, particularly with regard to their models used in biosensing. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Hair dye poisoning and the developing world

    Directory of Open Access Journals (Sweden)

    Sampathkumar Krishnaswamy

    2009-01-01

    Full Text Available Hair dye poisoning has been emerging as one of the important causes of intentional self harm in the developing world. Hair dyes contain paraphenylene-diamine and a host of other chemicals that can cause rhabdomyolysis, laryngeal edema, severe metabolic acidosis and acute renal failure. Intervention at the right time has been shown to improve the outcome. In this article, we review the various manifestations, clinical features and treatment modalities for hair dye poisoning.

  18. An Oxidase-Based Electrochemical Fluidic Sensor with High-Sensitivity and Low-Interference by On-Chip Oxygen Manipulation

    Directory of Open Access Journals (Sweden)

    Chang-Soo Kim

    2012-06-01

    Full Text Available Utilizing a simple fluidic structure, we demonstrate the improved performance of oxidase-based enzymatic biosensors. Electrolysis of water is utilized to generate bubbles to manipulate the oxygen microenvironment close to the biosensor in a fluidic channel. For the proper enzyme reactions to occur, a simple mechanical procedure of manipulating bubbles was developed to maximize the oxygen level while minimizing the pH change after electrolysis. The sensors show improved sensitivities based on the oxygen dependency of enzyme reaction. In addition, this oxygen-rich operation minimizes the ratio of electrochemical interference signal by ascorbic acid during sensor operation (i.e., amperometric detection of hydrogen peroxide. Although creatinine sensors have been used as the model system in this study, this method is applicable to many other biosensors that can use oxidase enzymes (e.g., glucose, alcohol, phenol, etc. to implement a viable component for in-line fluidic sensor systems.

  19. SOR-ring failure

    International Nuclear Information System (INIS)

    Kitamura, Hideo

    1981-01-01

    It was in the autumn of 1976 that the SOR-ring (synchrotron radiation storage ring) has commenced the regular operation. Since then, the period when the operation was interrupted due to the failures of SOR-ring itself is in total about 8 weeks. Failures and accidents have occurred most in the vacuum system. Those failure experiences are described on the vacuum, electromagnet, radio-frequency acceleration and beam transport systems with their interrupted periods. The eleven failures in the vacuum system have been reported, such as bellows breakage in a heating-evacuating period, leakage from the bellows of straight-through valves (made in U.S.A. and Japan), and leakage from the joint flange of the vacuum system. The longest interruption was 5 weeks due to the failure of a domestically manufactured straight-through valve. The failures of the electromagnet system involve the breakage in a cooling water system, short circuit of a winding in the Q magnet power transformer, blow of a fuse protecting the deflection magnet power source by the current less than the rating, and others. The failures of the RF acceleration system include the breakage of an output electronic tube the breakage of a cavity ceramic, RF voltage fluctuation due to the contact deterioration at a cavity electrode, and the failure of grid bias power source. It is necessary to select the highly reliable components for the vacuum system because the vacuum system failures require longer time for recovery, and very likely to induce secondary and tertiary failures. (Wakatsuki, Y.)

  20. Engineering task plan for development, fabrication, and deployment of nested, fixed depth fluidic sampling and at-tank analysis systems

    International Nuclear Information System (INIS)

    REICH, F.R.

    1999-01-01

    An engineering task plan was developed that presents the resources, responsibilities, and schedules for the development, test, and deployment of the nested, fixed-depth fluidic sampling and at-tank analysis system. The sampling system, deployed in the privatization contract double-shell tank feed tank, will provide waste samples for assuring the readiness of the tank for shipment to the privatization contractor for vitrification. The at-tank analysis system will provide ''real-time'' assessments of the sampled wastes' chemical and physical properties. These systems support the Hanford Phase 1B Privatization Contract

  1. Proton storage rings

    International Nuclear Information System (INIS)

    Rau, R.R.

    1978-04-01

    A discussion is given of proton storage ring beam dynamic characteristics. Topics considered include: (1) beam energy; (2) beam luminosity; (3) limits on beam current; (4) beam site; (5) crossing angle; (6) beam--beam interaction; (7) longitudinal instability; (8) effects of scattering processes; (9) beam production; and (10) high magnetic fields. Much of the discussion is related to the design parameters of ISABELLE, a 400 x 400 GeV proton---proton intersecting storage accelerator to be built at Brookhaven National Laboratory

  2. Ring-constrained Join

    DEFF Research Database (Denmark)

    Yiu, Man Lung; Karras, Panagiotis; Mamoulis, Nikos

    2008-01-01

    . This new operation has important applications in decision support, e.g., placing recycling stations at fair locations between restaurants and residential complexes. Clearly, RCJ is defined based on a geometric constraint but not on distances between points. Thus, our operation is fundamentally different......We introduce a novel spatial join operator, the ring-constrained join (RCJ). Given two sets P and Q of spatial points, the result of RCJ consists of pairs (p, q) (where p ε P, q ε Q) satisfying an intuitive geometric constraint: the smallest circle enclosing p and q contains no other points in P, Q...

  3. Femtoslicing in Storage Rings

    CERN Document Server

    Khan, Shaukat

    2005-01-01

    The generation of ultrashort synchrotron radiation pulses by laser-induced energy modulation of electrons and their subsequent transverse displacement, now dubbed "femtoslicing," was demonstrated at the Advanced Light Source in Berkeley. More recently, a femtoslicing user facility was commissioned at the BESSY storage ring in Berlin, and another project is in progress at the Swiss Light Source. The paper reviews the principle of femtoslicing, its merits and shortcomings, as well as the variations of its technical implementation. Various diagnostics techniques to detect successful laser-electron interaction are discussed and experimental results are presented.

  4. Viscosity of ring polymer melts

    KAUST Repository

    Pasquino, Rossana

    2013-10-15

    We have measured the linear rheology of critically purified ring polyisoprenes, polystyrenes, and polyethyleneoxides of different molar masses. The ratio of the zero-shear viscosities of linear polymer melts η0,linear to their ring counterparts η0,ring at isofrictional conditions is discussed as a function of the number of entanglements Z. In the unentangled regime η0,linear/η 0,ring is virtually constant, consistent with the earlier data, atomistic simulations, and the theoretical expectation η0,linear/ η0,ring = 2. In the entanglement regime, the Z-dependence of ring viscosity is much weaker than that of linear polymers, in qualitative agreement with predictions from scaling theory and simulations. The power-law extracted from the available experimental data in the rather limited range 1 < Z < 20, η0,linear/η0,ring ∼ Z 1.2±0.3, is weaker than the scaling prediction (η0,linear/η0,ring ∼ Z 1.6±0.3) and the simulations (η0,linear/ η0,ring ∼ Z2.0±0.3). Nevertheless, the present collection of state-of-the-art experimental data unambiguously demonstrates that rings exhibit a universal trend clearly departing from that of their linear counterparts, and hence it represents a major step toward resolving a 30-year-old problem. © 2013 American Chemical Society.

  5. Viscosity of ring polymer melts

    KAUST Repository

    Pasquino, Rossana; Vasilakopoulos, Thodoris C.; Jeong, Youncheol; Lee, Hyojoon; Rogers, Simon A.; Sakellariou, Georgios; Allgaier, Jü rgen B.; Takano, Atsushi; Brá s, Ana Rita E; Chang, Taihyun; Gooß en, Sebastian; Pyckhout-Hintzen, Wim; Wischnewski, Andreas; Hadjichristidis, Nikolaos; Richter, Dieter R.; Rubinstein, Michael H.; Vlassopoulos, Dimitris

    2013-01-01

    We have measured the linear rheology of critically purified ring polyisoprenes, polystyrenes, and polyethyleneoxides of different molar masses. The ratio of the zero-shear viscosities of linear polymer melts η0,linear to their ring counterparts η0,ring at isofrictional conditions is discussed as a function of the number of entanglements Z. In the unentangled regime η0,linear/η 0,ring is virtually constant, consistent with the earlier data, atomistic simulations, and the theoretical expectation η0,linear/ η0,ring = 2. In the entanglement regime, the Z-dependence of ring viscosity is much weaker than that of linear polymers, in qualitative agreement with predictions from scaling theory and simulations. The power-law extracted from the available experimental data in the rather limited range 1 < Z < 20, η0,linear/η0,ring ∼ Z 1.2±0.3, is weaker than the scaling prediction (η0,linear/η0,ring ∼ Z 1.6±0.3) and the simulations (η0,linear/ η0,ring ∼ Z2.0±0.3). Nevertheless, the present collection of state-of-the-art experimental data unambiguously demonstrates that rings exhibit a universal trend clearly departing from that of their linear counterparts, and hence it represents a major step toward resolving a 30-year-old problem. © 2013 American Chemical Society.

  6. Solubilization of Hydrophobic Dyes in Surfactant Solutions

    Directory of Open Access Journals (Sweden)

    Ali Reza Tehrani-Bagha

    2013-02-01

    Full Text Available In this paper, the use of surfactants for solubilization of hydrophobic organic dyes (mainly solvent and disperse dyes has been reviewed. The effect of parameters such as the chemical structures of the surfactant and the dye, addition of salt and of polyelectrolytes, pH, and temperature on dye solubilization has been discussed. Surfactant self-assemble into micelles in aqueous solution and below the concentration where this occurs—the critical micelle concentration (CMC—there is no solubilization. Above the CMC, the amount of solubilized dye increases linearly with the increase in surfactant concentration. It is demonstrated that different surfactants work best for different dyes. In general, nonionic surfactants have higher solubilization power than anionic and cationic surfactants. It is likely that the reason for the good performance of nonionic surfactants is that they allow dyes to be accommodated not only in the inner, hydrocarbon part of the micelle but also in the headgroup shell. It is demonstrated that the location of a dye in a surfactant micelle can be assessed from the absorption spectrum of the dye-containing micellar solution.

  7. Alpha - Skew Pi - Armendariz Rings

    Directory of Open Access Journals (Sweden)

    Areej M Abduldaim

    2018-03-01

    Full Text Available In this article we introduce a new concept called Alpha-skew Pi-Armendariz rings (Alpha - S Pi - ARas a generalization of the notion of Alpha-skew Armendariz rings.Another important goal behind studying this class of rings is to employ it in order to design a modern algorithm of an identification scheme according to the evolution of using modern algebra in the applications of the field of cryptography.We investigate general properties of this concept and give examples for illustration. Furthermore, this paperstudy the relationship between this concept and some previous notions related to Alpha-skew Armendariz rings. It clearly presents that every weak Alpha-skew Armendariz ring is Alpha-skew Pi-Armendariz (Alpha-S Pi-AR. Also, thisarticle showsthat the concepts of Alpha-skew Armendariz rings and Alpha-skew Pi- Armendariz rings are equivalent in case R is 2-primal and semiprime ring.Moreover, this paper proves for a semicommutative Alpha-compatible ringR that if R[x;Alpha] is nil-Armendariz, thenR is an Alpha-S Pi-AR. In addition, if R is an Alpha - S Pi -AR, 2-primal and semiprime ring, then N(R[x;Alpha]=N(R[x;Alpha]. Finally, we look forwardthat Alpha-skew Pi-Armendariz rings (Alpha-S Pi-ARbe more effect (due to their properties in the field of cryptography than Pi-Armendariz rings, weak Armendariz rings and others.For these properties and characterizations of the introduced concept Alpha-S Pi-AR, we aspire to design a novel algorithm of an identification scheme.

  8. Ultrasonic assisted dyeing: dyeing of acrylic fabrics C.I. Astrazon Basic Red 5BL 200%.

    Science.gov (United States)

    Kamel, M M; Helmy, H M; Mashaly, H M; Kafafy, H H

    2010-01-01

    The dyeing of acrylic fabrics using C.I. Astrazon Basic Red 5BL 200% has been studied with both conventional and ultrasonic techniques. The effect of dye concentration, dye bath pH, ultrasonic power, dyeing time and temperature were studied and the resulting shades obtained by dyeing with both techniques were compared. Colour strength values obtained were found to be higher with ultrasonic than with conventional heating. The results of fastness properties of the dyed fabrics were studied. X-ray and Scanning Electron Microscope SEM were carried out on dyed samples using both methods of dyeing to find out an explanation for the better dyeability of acrylic fabrics with (US) method. Dyeing kinetics of acrylic fabrics using C.I. Astrazon Basic Red 5BL 200% using conventional and ultrasonic conditions were compared. The time/dye-uptake isotherms are revealing the enhanced dye-uptake in the second phase of dyeing. The values of dyeing rate constant, half-time of dyeing and standard affinity and ultrasonic efficiency have been calculated and discussed.

  9. High Excitation Transfer Efficiency from Energy Relay Dyes in Dye-Sensitized Solar Cells

    KAUST Repository

    Hardin, Brian E.; Yum, Jun-Ho; Hoke, Eric T.; Jun, Young Chul; Péchy, Peter; Torres, Tomás; Brongersma, Mark L.; Nazeeruddin, Md. Khaja; Grätzel, Michael; McGehee, Michael D.

    2010-01-01

    The energy relay dye, 4-(Dicyanomethylene)-2-methyl-6-(4- dimethylaminostyryl)-4H-pyran (DCM), was used with a near-infrared sensitizing dye, TT1, to increase the overall power conversion efficiency of a dye-sensitized solar cell (DSC) from 3

  10. Photostability of low cost dye-sensitized solar cells based on natural and synthetic dyes

    Science.gov (United States)

    Abdou, E. M.; Hafez, H. S.; Bakir, E.; Abdel-Mottaleb, M. S. A.

    2013-11-01

    This paper deals with the use of some natural pigments as well as synthetic dyes to act as sensitizers in dye-sensitized solar cells (DSSCs). Anthocyanin dye extracted from rosella (Hibiscus sabdariffa L.) flowers, the commercially available textile dye Remazole Red RB-133 (RR) and merocyanin-like dye based on 7-methyl coumarin are tested. The photostability of the three dyes is investigated under UV-Vis light exposure. The results show a relatively high stability of the three dyes. Moreover, the photostability of the solid dyes is studied over the TiO2 film electrodes. A very low decolorization rates are recorded as; rate constants k = 1.6, 2.1 and 1.9 × 10-3 min-1 for anthocyanin, RR and coumarin dyes, respectively. The stability results favor selecting anthocyanin as a promising sensitizer candidate in DSSCs based on natural products. Dyes-sensitized solar cells are fabricated and their conversion efficiency (η) is 0.27%, 0.14% and 0.001% for the anthocyanin, RR and coumarin dyes, respectively. Moreover, stability tests of the sealed cells based on anthocyanin and RR dyes are done under continuous light exposure of 100 mW cm-2, reveals highly stable DSSCs.

  11. Acid-base indicator properties of dyes from local plants I: Dyes from ...

    African Journals Online (AJOL)

    DR. MIKE HORSFALL

    Acid-base indicator properties of dyes from local plants I: Dyes from Basella alba. (Indian spinach) and ... solution, which change colour immediately after the equivalence point has .... The pH ranges over which the dyes change colour were ...

  12. DECOLORIZATION OF AZO DYES AND MINERALIZATION OF PHENANTHRENE BY TRAMETES SP. AS03 ISOLATED FROM INDONESIAN MANGROVE FOREST

    Directory of Open Access Journals (Sweden)

    Asep Hidayat

    2014-04-01

    Full Text Available Textile industry contributes the most disposals of synthetic dyes, and about 40% of textile dyes has been generating high amount of colored wastewater. Polycyclic aromatic hydrocarbons (PAHs, such as phenanthrene, is a group of organic compounds, that structurally comprised of two or more benzene rings, which persist in air, water, and soil. The organic pollutants of dyes and PAHs have adversely effects the food chain and are potentially toxic, mutagenic, and carcinogenic to the environment. The objective of this research is to screen and investigate the potential fungus from mangrove forest to degrade azo dyes and phenanthrene.  In this study, fungi were collected from mangrove forest in Riau Province – Sumatra – Indonesia. Previously, Trametes sp. AS03 is one of the fungi isolated from mangrove forest in Riau Province, that was able to decolorize Remazol Brilliant Blue R (RBBR. The capability of Trametes sp. AS03 to decolorize four azo dyes, Remazol B. Violet (V5, Levafix Orange E3GA (Or64, Levafix B. Red E-6BA (R159, and Sumifix S. Scarlet 2GF (R222, were further evaluated. The result shows that Trametes sp. AS03 decolorized 91, 60, 48, and 31 of V5, R222, R159, and Or64, respectively. By showing its capability to decolorize some of the dyes, Trametes sp. AS03 was used to break down phenanthrene. AS03 degraded more than 70% of phenanthrene in 15 days.

  13. NRL ion ring program

    International Nuclear Information System (INIS)

    Kapetanakos, C.A.; Golden, J.; Drobot, A.; Mahaffey, R.A.; Marsh, S.J.; Pasour, J.A.

    1977-01-01

    An experiment is under way to form a storng proton ring using the 200 ka, 1.2 MeV, 50 nsec hollow proton beam recently generated at NRL. The 5 m long magnetic field configuration consists of a magnetic cusp, a compressing magnetic field, a gate field and a magnetic mirror. The midplane value of the magnetic mirror is such that the major radius of the ring will be about 10 cm. The degree of field reversal that will be achieved with 5 x 10 16 protons per pulse from the existing beam depends upon the field reversal is possible with the 600 kA proton beam that would be generated from the low inductance coaxial triode coupled to the upgraded Gamble II generator. The propagation and trapping of an intense proton beam in the experimental magnetic field configuration is investigated numerically. The results show that the self magnetic has a very pronounced effect on the dynamics of the gyrating protons

  14. Flexible ring seal

    International Nuclear Information System (INIS)

    Abbes, Claude; Gournier, Andre; Rouaud, Christian; Villepoix, Raymond de.

    1976-01-01

    The invention concerns a flexible metal ring seal, able to ensure a perfect seal between two bearings due to the crushing and elastic deformation properties akin to similar properties in elastomers. Various designs of seal of this kind are already known, particularly a seal made of a core formed by a helical wire spring with close-wound turns and with high axial compression ratio, closed on itself and having the shape of an annulus. This wire ring is surrounded by at least one envelope having at rest the shape of a toroidal surface of which the generating circle does not close on itself. In a particular design mode, the seal in question can include, around the internal spring, two envelopes of which one in contact with the spring is composed of a low ductility elastic metal, such as mild steel or stainless steel and the other is, on the contrary, made of a malleable metal, such as copper or nickel. The first envelope evenly distributes the partial crushing of the spring, when the seal is tightened, on the second envelope which closely fits the two surfaces between which the seal operates. The stress-crushing curve characteristic of the seal comprises two separate parts, the first with a relatively sharp slope corresponds to the start of the seal compression phase, enabling at least some of these curves to reach the requisite seal threshold very quickly, then, beyond this, a second part, practically flat, where the stress is appreciably constant for a wide operating bracket [fr

  15. Advanced fluidic handling and use of two-phase flow for high throughput structural investigation of proteins on a microfluidic sample preparation platform

    DEFF Research Database (Denmark)

    Lafleur, Josiane P.; Snakenborg, Detlef; Møller, M.

    2010-01-01

    Research on the structure of proteins can bring forth a wealth of information about biological function and can be used to better understand the processes in living cells. This paper reports a new microfluidic sample preparation system for the structural investigation of proteins by Small Angle X......-ray Scattering (SAXS). The system includes hardware and software features for precise fluidic control, synchrotron beamline control, UV absorbance measurements and automated data analysis. The precise fluidic handling capabilities are used to transport and precisely position samples as small as 500 n...

  16. Aerobic decolourization of two reactive azo dyes under varying ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-02-01

    Feb 1, 2010 ... Azo dyes generally resist aerobic microbial degra- dation, only organisms with specialized azo dye reducing enzymes were found to degrade azo dyes under fully aerobic ... textile mill, in sterile plastic bottles. Isolation of ...

  17. Magnetization of two coupled rings

    International Nuclear Information System (INIS)

    Avishai, Y; Luck, J M

    2009-01-01

    We investigate the persistent currents and magnetization of a mesoscopic system consisting of two clean metallic rings sharing a single contact point in a magnetic field. Many novel features with respect to the single-ring geometry are underlined, including the explicit dependence of wavefunctions on the Aharonov-Bohm fluxes, the complex pattern of two-fold and three-fold degeneracies, the key role of length and flux commensurability, and in the case of commensurate ring lengths the occurrence of idle levels which do not carry any current. Spin-orbit interactions, induced by the electric fields of charged wires threading the rings, give rise to a peculiar version of the Aharonov-Casher effect where, unlike for a single ring, spin is not conserved. Remarkably enough, this can only be realized when the Aharonov-Bohm fluxes in both rings are neither integer nor half-integer multiples of the flux quantum

  18. Dye Sensitized Solar Cell, DSSC

    Directory of Open Access Journals (Sweden)

    Pongsatorn Amornpitoksuk

    2003-07-01

    Full Text Available A dye sensitized solar cell is a new type of solar cell. The operating system of this solar cell type is similar to plant’s photosynthesis process. The sensitizer is available for absorption light and transfer electrons to nanocrystalline metal oxide semiconductor. The ruthenium(II complexes with polypyridyl ligands are usually used as the sensitizers in solar cell. At the present time, the complex of [Ru(2,2',2'’-(COOH3- terpy(NCS3] is the most efficient sensitizer. The total photon to current conversion efficiency was approximately 10% at AM = 1.5.

  19. Split ring containment attachment device

    International Nuclear Information System (INIS)

    Sammel, A.G.

    1996-01-01

    A containment attachment device is described for operatively connecting a glovebag to plastic sheeting covering hazardous material. The device includes an inner split ring member connected on one end to a middle ring member wherein the free end of the split ring member is inserted through a slit in the plastic sheeting to captively engage a generally circular portion of the plastic sheeting. A collar potion having an outer ring portion is provided with fastening means for securing the device together wherein the glovebag is operatively connected to the collar portion. 5 figs

  20. Radar imaging of Saturn's rings

    Science.gov (United States)

    Nicholson, Philip D.; French, Richard G.; Campbell, Donald B.; Margot, Jean-Luc; Nolan, Michael C.; Black, Gregory J.; Salo, Heikki J.

    2005-09-01

    We present delay-Doppler images of Saturn's rings based on radar observations made at Arecibo Observatory between 1999 and 2003, at a wavelength of 12.6 cm and at ring opening angles of 20.1°⩽|B|⩽26.7°. The average radar cross-section of the A ring is ˜77% relative to that of the B ring, while a stringent upper limit of 3% is placed on the cross-section of the C ring and 9% on that of the Cassini Division. These results are consistent with those obtained by Ostro et al. [1982, Icarus 49, 367-381] from radar observations at |B|=21.4°, but provide higher resolution maps of the rings' reflectivity profile. The average cross-section of the A and B rings, normalized by their projected unblocked area, is found to have decreased from 1.25±0.31 to 0.74±0.19 as the rings have opened up, while the circular polarization ratio has increased from 0.64±0.06 to 0.77±0.06. The steep decrease in cross-section is at variance with previous radar measurements [Ostro et al., 1980, Icarus 41, 381-388], and neither this nor the polarization variations are easily understood within the framework of either classical, many-particle-thick or monolayer ring models. One possible explanation involves vertical size segregation in the rings, whereby observations at larger elevation angles which see deeper into the rings preferentially see the larger particles concentrated near the rings' mid-plane. These larger particles may be less reflective and/or rougher and thus more depolarizing than the smaller ones. Images from all four years show a strong m=2 azimuthal asymmetry in the reflectivity of the A ring, with an amplitude of ±20% and minima at longitudes of 67±4° and 247±4° from the sub-Earth point. We attribute the asymmetry to the presence of gravitational wakes in the A ring as invoked by Colombo et al. [1976, Nature 264, 344-345] to explain the similar asymmetry long seen at optical wavelengths. A simple radiative transfer model suggests that the enhancement of the azimuthal

  1. Magnetic ring for stripping enhancement

    International Nuclear Information System (INIS)

    Selph, F.

    1992-10-01

    A ring designed to recycle ions through a stripping medium offers the possibility for increasing output of the desired charge state by up to 4x. This could be a very important component of a Radioactive Nuclear Beam Facility. In order for such a ring to work effectively it must satisfy certain design conditions. These include achromaticity at the stripper, a dispersed region for an extraction magnet, and a number of first and higher order optics constraints which are necessary to insure that the beam emittance is not degraded unduly by the ring. An example is given of a candidate design of a stripping ring

  2. Saturn's Rings Edge-on

    Science.gov (United States)

    1995-01-01

    In one of nature's most dramatic examples of 'now-you see-them, now-you-don't', NASA's Hubble Space Telescope captured Saturn on May 22, 1995 as the planet's magnificent ring system turned edge-on. This ring-plane crossing occurs approximately every 15 years when the Earth passes through Saturn's ring plane.For comparison, the top picture was taken by Hubble on December 1, 1994 and shows the rings in a more familiar configuration for Earth observers.The bottom picture was taken shortly before the ring plane crossing. The rings do not disappear completely because the edge of the rings reflects sunlight. The dark band across the middle of Saturn is the shadow of the rings cast on the planet (the Sun is almost 3 degrees above the ring plane.) The bright stripe directly above the ring shadow is caused by sunlight reflected off the rings onto Saturn's atmosphere. Two of Saturn's icy moons are visible as tiny starlike objects in or near the ring plane. They are, from left to right, Tethys (slightly above the ring plane) and Dione.This observation will be used to determine the time of ring-plane crossing and the thickness of the main rings and to search for as yet undiscovered satellites. Knowledge of the exact time of ring-plane crossing will lead to an improved determination of the rate at which Saturn 'wobbles' about its axis (polar precession).Both pictures were taken with Hubble's Wide Field Planetary Camera 2. The top image was taken in visible light. Saturn's disk appears different in the bottom image because a narrowband filter (which only lets through light that is not absorbed by methane gas in Saturn's atmosphere) was used to reduce the bright glare of the planet. Though Saturn is approximately 900 million miles away, Hubble can see details as small as 450 miles across.The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.This image and other images and

  3. Acceleration of magnetized plasma rings

    International Nuclear Information System (INIS)

    Hartman, D.; Eddleman, J.; Hammer, J.H.

    1982-01-01

    One scheme is considered, acceleration of a ring between coaxial electrodes by a B/sub theta/ field as in a coaxial rail-gun. If the electrodes are conical, a ring accelerated towards the apex of the cone undergoes self-similar compression (focussing) during acceleration. Because the allowable acceleration force F/sub a/ = kappa U/sub m//R (kappa - 2 , the accelerating distance for conical electrodes is considerably shortened over that required for coaxial electrodes. In either case however, since the accelerating flux can expand as the ring moves, most of the accelerating field energy can be converted into kinetic energy of the ring leading to high efficiency

  4. Ground Movement in SSRL Ring

    International Nuclear Information System (INIS)

    Sunikumar, Nikita

    2011-01-01

    Users of the Stanford Synchrotron Radiation Lightsource (SSRL) are being affected by diurnal motion of the synchrotron's storage ring, which undergoes structural changes due to outdoor temperature fluctuations. In order to minimize the effects of diurnal temperature fluctuations, especially on the vertical motion of the ring floor, scientists at SSRL tried three approaches: painting the storage ring white, covering the asphalt in the middle of the ring with highly reflective Mylar and installing Mylar on a portion of the ring roof and walls. Vertical motion in the storage ring is measured by a Hydrostatic Leveling System (HLS), which calculates the relative height of water in a pipe that extends around the ring. The 24-hr amplitude of the floor motion was determined using spectral analysis of HLS data, and the ratio of this amplitude before and after each experiment was used to quantitatively determine the efficacy of each approach. The results of this analysis showed that the Mylar did not have any significant effect on floor motion, although the whitewash project did yield a reduction in overall HLS variation of 15 percent. However, further analysis showed that the reduction can largely be attributed to a few local changes rather than an overall reduction in floor motion around the ring. Future work will consist of identifying and selectively insulating these local regions in order to find the driving force behind diurnal floor motion in the storage ring.

  5. ring og refleksion

    DEFF Research Database (Denmark)

    Wahlgren, B.; Rattleff, Pernille; Høyrup, S.

    State of the art inden for forskning om læring på arbejdspladsen samt gennemgang af læringsteori og refleksionsbegrebet hos Dewey, Dreyfus, Schön, Argyris, Kolb, Jarvis, Mezirow og Brookfield. Afsluttes med diskussion af syntetiseret model for læring på arbejdspladsen.......State of the art inden for forskning om læring på arbejdspladsen samt gennemgang af læringsteori og refleksionsbegrebet hos Dewey, Dreyfus, Schön, Argyris, Kolb, Jarvis, Mezirow og Brookfield. Afsluttes med diskussion af syntetiseret model for læring på arbejdspladsen....

  6. Incorporating Multiple Energy Relay Dyes in Liquid Dye-Sensitized Solar Cells

    KAUST Repository

    Yum, Jun-Ho

    2011-01-05

    Panchromatic response is essential to increase the light-harvesting efficiency in solar conversion systems. Herein we show increased light harvesting from using multiple energy relay dyes inside dye-sensitized solar cells. Additional photoresponse from 400-590 nm matching the optical window of the zinc phthalocyanine sensitizer was observed due to Förster resonance energy transfer (FRET) from the two energy relay dyes to the sensitizing dye. The complementary absorption spectra of the energy relay dyes and high excitation transfer efficiencies result in a 35% increase in photovoltaic performance. © 2011 Wiley-VCH Verlag GmbH& Co. KGaA.

  7. Detached-Eddy Simulation of a Fluidic Device for a Prediction of Pressure Loss Characteristics in a Low Flow Mode

    International Nuclear Information System (INIS)

    Lim, Sang Gyu; Lee, Suk Ho; Kim, Han Gon

    2010-01-01

    The Advanced Power Reactor 1400(APR1400) adopts a passive flow controller in Safety Injection Tanks (SITs) as one of Advanced Design Features (ADFs). This device, called a 'Fluidic Device (FD)', controls the flow rate of safety injection water in a passive manner. A flow control mechanism varies the flow resistance in the vortex chamber corresponding to the SIT water level hence the flow rate can be adjusted by the specific flow resistance in a specific flow regime. A full-scale test was performed and the test results met the design requirement of APR1400. To enhance the performance of the FD more effectively, a series of CFD analysis were implemented and remedy of design modification was proposed on the basis of a series of CFD analysis. The results of CFD analysis showed that total discharge time of the fluidic device is to be increased by enhancing the K-factor in consequence of changing the control nozzle angle. However, a tendency of a pressure loss was under-estimated as a limitation of turbulence models such as Reynolds Averaged Navier- Stokes (RANS) models compared to the experimental data. This paper shows that pressure loss characteristics of the FD can be predicted using a Detached-Eddy Simulation (DES) turbulence model, which can provide valuable flow characteristics far exceeding RANS simulations

  8. Polymer Coatings in 3D-Printed Fluidic Device Channels for Improved Cellular Adherence Prior to Electrical Lysis.

    Science.gov (United States)

    Gross, Bethany C; Anderson, Kari B; Meisel, Jayda E; McNitt, Megan I; Spence, Dana M

    2015-06-16

    This paper describes the design and fabrication of a polyjet-based three-dimensional (3D)-printed fluidic device where poly(dimethylsiloxane) (PDMS) or polystyrene (PS) were used to coat the sides of a fluidic channel within the device to promote adhesion of an immobilized cell layer. The device was designed using computer-aided design software and converted into an .STL file prior to printing. The rigid, transparent material used in the printing process provides an optically transparent path to visualize endothelial cell adherence and supports integration of removable electrodes for electrical cell lysis in a specified portion of the channel (1 mm width × 0.8 mm height × 2 mm length). Through manipulation of channel geometry, a low-voltage power source (500 V max) was used to selectively lyse adhered endothelial cells in a tapered region of the channel. Cell viability was maintained on the device over a 5 day period (98% viable), though cell coverage decreased after day 4 with static media delivery. Optimal lysis potentials were obtained for the two fabricated device geometries, and selective cell clearance was achieved with cell lysis efficiencies of 94 and 96%. The bottleneck of unknown surface properties from proprietary resin use in fabricating 3D-printed materials is overcome through techniques to incorporate PDMS and PS.

  9. Fabrication, sensation and control of fluidic elastomer actuators and their application towards hand orthotics and prosthetics

    Science.gov (United States)

    Zhao, Huichan

    Due to their continuous and natural motion, fluidic elastomer actuators (FEAs) have shown potential in a range of robotic applications including prosthetics and orthotics. Despite their advantages and rapid developments, robots using these actuators still have several challenging issues to be addressed. First, the reliable production of low cost and complex actuators that can apply high forces is necessary, yet none of existing fabrication methods are both easy to implement and of high force output. Next, compliant or stretchable sensors that can be embedded into their bodies for sophisticated functions are required, however, many of these sensors suffer from hysteresis, fabrication complexity, chemical safety and environmental instability, and material incompatibility with soft actuators. Finally, feedback control for FEAs is necessary to achieve better performance, but most soft robots are still "open-loop". In this dissertation, I intend to help solve the above issues and drive the applications of soft robotics towards hand orthotics and prosthetics. First, I adapt rotational casting as a new manufacturing method for soft actuators. I present a cuboid soft actuator that can generate a force of >25 N at its tip, a near ten-fold increase over similar actuators previously reported. Next, I propose a soft orthotic finger with position control enabled via embedded optical fiber. I monitor both the static and dynamic states via the optical sensor and achieve the prescribed curvatures accurately and with stability by a gain-scheduled proportional-integral-derivative controller. Then I develop the soft orthotic fingers into a low-cost, closed-loop controlled, soft orthotic glove that can be worn by a typical human hand and helpful for grasping light objects, while also providing finger position control. I achieve motion control with inexpensive, binary pneumatic switches controlled by a simple finite-state-machine. Finally, I report the first use of stretchable optical

  10. Cyclopenta[b]naphthalene cyanoacrylate dyes: synthesis and evaluation as fluorescent molecular rotors.

    Science.gov (United States)

    Kocsis, Laura S; Elbel, Kristyna M; Hardigree, Billie A; Brummond, Kay M; Haidekker, Mark A; Theodorakis, Emmanuel A

    2015-03-14

    We describe the design, synthesis and fluorescent profile of a family of environment-sensitive dyes in which a dimethylamino (donor) group is conjugated to a cyanoacrylate (acceptor) unit via a cyclopenta[b]naphthalene ring system. This assembly satisfies the typical D-π-A motif of a fluorescent molecular rotor and exhibits solvatochromic and viscosity-sensitive fluorescence emission. The central naphthalene ring system of these dyes was synthesized via a novel intramolecular dehydrogenative dehydro-Diels-Alder (IDDDA) reaction that permits incorporation of the donor and acceptor groups in variable positions around the aromatic core. A bathochromic shift of excitation and emission peaks was observed with increasing solvent polarity but the dyes exhibited a complex emission pattern with a second red emission band when dissolved in nonpolar solvents. Consistent with other known molecular rotors, the emission intensity increased with increasing viscosity. Interestingly, closer spatial proximity between the donor and the acceptor groups led to decreased viscosity sensitivity combined with an increased quantum yield. This observation indicates that structural hindrance of intramolecular rotation dominates when the donor and acceptor groups are in close proximity. The examined compounds give insight into how excited state intramolecular rotation can be influenced by both the solvent and the chemical structure.

  11. Mineralization and biodegradability enhancement of Methyl Orange dye by an effective advanced oxidation process

    International Nuclear Information System (INIS)

    Paul Guin, Jhimli; Bhardwaj, Y.K.; Varshney, Lalit

    2017-01-01

    An effective process for the oxidation of Methyl Orange dye (MO) was determined by comparing the mineralization efficiency between two advanced oxidation processes (AOPs) viz., ozonolysis and gamma radiolysis in presence and absence of an added inorganic salt potassium persulfate (K_2S_2O_8). The effects of various operating parameters such as ozone flow rate and reaction temperature were optimized to achieve the best possible mineralization extent of MO by ozonolysis. The mineralization efficiency of MO was significantly enhanced during gamma radiolysis in presence of K_2S_2O_8 (γ+K_2S_2O_8) compared to in absence of K_2S_2O_8. The presence of methyl group at the amine of phenyl ring assisted the mineralization of dye during γ+K_2S_2O_8. The oxygen-equivalent chemical-oxidation capacities (OCC) of ozonolysis and γ+K_2S_2O_8 for 75% mineralization of the dye solution were calculated as 7.008 and 0.0336 kg equiv. O_2 m"−"3, respectively which signifies that γ+K_2S_2O_8 can be explored as an effective AOP. The non-biodegradable MO dye solution became biodegradable even after the dose of 0.5 kGy during γ+K_2S_2O_8 compared to 1 kGy in absence of K_2S_2O_8. The study concludes that a lower dose γ+K_2S_2O_8 could be one of the efficient pretreatment steps before undergoing biological degradation of dye solution. - Highlights: • Systematic investigation was performed for the treatment of Methyl Orange dye solution. • AOPs investigated were ozonolysis and gamma radiolysis. • The OCC and % mineralizations of the AOPs were compared. • Gamma radiolysis in presence of K_2S_2O_8 was found as most effective AOP.

  12. Rotating ring-ring electrode theory and experiment

    NARCIS (Netherlands)

    Kuiken, H.K.; Bakkers, E.P.A.M.; Ligthart, H.; Kellyb, J.J.

    2000-01-01

    A model is presented for the rotating ring-ring electrode. Although the electrode is defined by four characteristic lengths, it is shown that the collection efficiency depends on only two dimensionless parameters. A simple relationship between these and the corresponding parameters for the rotating

  13. The Rotating Ring-Ring Electrode. Theory and Experiment

    NARCIS (Netherlands)

    Kuiken, H.K.; Bakkers, E.P.A.M.; Ligthart, H.; Kelly, J.J.

    2000-01-01

    A model is presented for the rotating ring-ring electrode. Although the electrode is defined by four characteristic lengths, it is shown that the collection efficiency depends on only two dimensionless parameters. A simple relationship between these and the corresponding parameters for the rotating

  14. Characteristics of dye Rhoeo spathacea in dye sensitizer solar cell (DSSC)

    Science.gov (United States)

    Sumardiasih, Sri; Obina, Wilfrida M.; Cari; Supriyanto, Agus; Septiawan, Trio Y.; Khairuddin

    2017-01-01

    Dye-sensitized solar cell (DSSC) is a device that converts solar energy into electrical energy. The magnitude of the efficiency of DSSC is mainly based on the amount of dye absorbed by the surface of TiO2. In this work, used natural dye extracted from leaves Rhoeo spathacea. The dye partially used to immerse of TiO2 as working electrodes, and the rest are directly mixed TiO2 paste to obtain dye titanium dioxide.The paste TiO2 and dye titanium dioxide coated onto the fluorine-doped tin oxide (FTO) glass plate by spin coating method. The absorbance spectra of the dye, dye titanium dioxide and TiO2 were obtained by UV-Vis spectroscopy. The conductivity of the dye, dye titanium dioxide, and TiO2 was measured by two point probe El-Kahfi 100. The DSSC based on dye titanium dioxide that stirring for 5 hours the highest efficiency of 0,0520 % whereas those based on TiO2 immersed for 36 hours showed achieved 0,0501 % obtained from I-V characterization.

  15. Characteristics of dye Rhoeo spathacea in dye sensitizer solar cell (DSSC)

    International Nuclear Information System (INIS)

    Sumardiasih, Sri; Obina, Wilfrida M.; Cari; Supriyanto, Agus; Septiawan, Trio Y.; Khairuddin

    2017-01-01

    Dye-sensitized solar cell (DSSC) is a device that converts solar energy into electrical energy. The magnitude of the efficiency of DSSC is mainly based on the amount of dye absorbed by the surface of TiO 2 . In this work, used natural dye extracted from leaves Rhoeo spathacea. The dye partially used to immerse of TiO 2 as working electrodes, and the rest are directly mixed TiO 2 paste to obtain dye titanium dioxide.The paste TiO 2 and dye titanium dioxide coated onto the fluorine-doped tin oxide (FTO) glass plate by spin coating method. The absorbance spectra of the dye, dye titanium dioxide and TiO 2 were obtained by UV-Vis spectroscopy. The conductivity of the dye, dye titanium dioxide, and TiO 2 was measured by two point probe El-Kahfi 100. The DSSC based on dye titanium dioxide that stirring for 5 hours the highest efficiency of 0,0520 % whereas those based on TiO 2 immersed for 36 hours showed achieved 0,0501 % obtained from I-V characterization. (paper)

  16. Theoretical study of indoline dyes for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Ham, Ho Wan; Kim, Young Sik

    2010-01-01

    Indoline dye sensitizers were designed and studied theoretically to increase molar extinction coefficients in the visible to near infrared region for solar-cell devices. To gain insight into dye sensitizers' structural, electronic, and optical properties, DFT/TDDFT calculations were performed on a series of dye sensitizers derived from the D149. The good agreement between the experimental and TDDFT calculated absorption spectra of the D149 sensitizer allowed us to provide a detailed assessment of the main spectral features of a series of dye sensitizers. Increase in the conjugation length resulted in a more red-shifted spectral response and less positive oxidation potential than that of the D149. The dye with the dimethylfluorene group showed stronger absorption bands due to a large dipole moment. The calculated dipoles for the dye series correlate well with the observed strong absorption bands of the electronic spectra. These results provided useful clues for the molecular engineering of efficient organic dye sensitizers.

  17. High Excitation Transfer Efficiency from Energy Relay Dyes in Dye-Sensitized Solar Cells

    KAUST Repository

    Hardin, Brian E.

    2010-08-11

    The energy relay dye, 4-(Dicyanomethylene)-2-methyl-6-(4- dimethylaminostyryl)-4H-pyran (DCM), was used with a near-infrared sensitizing dye, TT1, to increase the overall power conversion efficiency of a dye-sensitized solar cell (DSC) from 3.5% to 4.5%. The unattached DCM dyes exhibit an average excitation transfer efficiency (EÌ?TE) of 96% inside TT1-covered, mesostructured TiO2 films. Further performance increases were limited by the solubility of DCM in an acetonitrile based electrolyte. This demonstration shows that energy relay dyes can be efficiently implemented in optimized dye-sensitized solar cells, but also highlights the need to design highly soluble energy relay dyes with high molar extinction coefficients. © 2010 American Chemical Society.

  18. Low-threshold conical microcavity dye lasers

    DEFF Research Database (Denmark)

    Grossmann, Tobias; Schleede, Simone; Hauser, Mario

    2010-01-01

    element simulations confirm that lasing occurs in whispering gallery modes which corresponds well to the measured multimode laser-emission. The effect of dye concentration on lasing threshold and lasing wavelength is investigated and can be explained using a standard dye laser model....

  19. Damping rings for CLIC

    CERN Document Server

    Jowett, John M; Zimmermann, Frank; Owen, H

    2001-01-01

    The Compact Linear Colider (CLIC) is designed to operate at 3 TeV centre-of-mass energy with a total luminosity of 10^35 cm^-2 s^-1. The overall system design leads to extremely demanding requirements on the bunch trains injected into the main libac at frequency of 100 Hz. In particular, the emittances of the intense bunches have to be about an order of magnitude smaller than presently achieved. We describe our approach to finding a damping ring design capable of meeting these requirements. Besides lattice design, emittance and damping rate considerations, a number of scattering and instability effects have to be incorporated into the optimisation of parameters. Among these, intra-bem scattering and the electron cloud effect are two of the most significant.

  20. Does the sun ring

    International Nuclear Information System (INIS)

    Isaak, G.R.

    1978-01-01

    The work of various groups, which have been investigating the possibility of measuring the periodicities of solar oscillations in an attempt to test theoretical models of the sun, is reported. In particular the observation of small velocity oscillations of the surface layers of the sun that permits the measurement of the sound waves (or phonons) in the solar atmosphere, is discussed. Oscillations with periods of 2.65 h, 58 and 40 min and amplitudes of 2.7, 0.8 and 0.7 ms -1 respectively are reported. Support for a periodicity at about 2.65 h from a number of other groups using other measuring techniques are considered. It is felt that the most probable interpretation of the observed solar oscillations is that the sun is a resonator which is ringing. (UK)

  1. Tunability of optofluidic distributed feedback dye lasers

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Kristensen, Anders

    2007-01-01

    We investigate the tunability of optofluidic distributed feedback (DFB) dye lasers. The lasers rely on light-confinement in a nano-structured polymer film where an array of nanofluidic channels constitutes a third order Bragg grating DFB laser resonator with a central phase-shift. The lasers...... are operated by filling the DFB laser resonator with a dye solution by capillary action and optical pumping with a frequency doubled Nd: YAG laser. The low reflection order of the DFB laser resonator yields low out-of-plane scattering losses as well as a large free spectral range (FSR), and low threshold...... fluences down to similar to 7 mu J/mm2 are observed. The large FSR facilitates wavelength tuning over the full gain spectrum of the chosen laser dye and we demonstrate 45 nm tunability using a single laser dye by changing the grating period and dye solution refractive index. The lasers are straight...

  2. How Jupiter's Ring Was Discovered.

    Science.gov (United States)

    Elliot, James; Kerr, Richard

    1985-01-01

    "Rings" (by astronomer James Elliot and science writer Richard Kerr) is a nontechnical book about the discovery and exploration of ring systems from the time of Galileo to the era of the Voyager spacecraft. One of this book's chapters is presented. (JN)

  3. Pyrimidine-pyridine ring interconversion

    NARCIS (Netherlands)

    Plas, van der H.C.

    2003-01-01

    This chapter discusses the pyrimidine-to-pyridine ring transformation and pyridine-to-pyrimidine ring transformation. In nucleophile-induced pyrimidine-to-pyridine rearrangements, two types of reactions can be distinguished depending on the structure of the nucleophile: (1) reactions in which the

  4. Thermorewritable card by using dyes; Senryo wo mochiita kakikae kanona card

    Energy Technology Data Exchange (ETDEWEB)

    Muto, Y.

    1998-06-01

    Described herein are thermorewritable cards which use dyes. Rewritable cards, mainly used for membership and point cards, are themselves used repeatedly and required to be rewritable repeatedly for information they carry. The dyes and developers used for the conventional heat- and pressure-sensitive papers are colorless, leuco-dye precursors and acidic compounds with a phenolic hydroxyl group or the like. They transfer electrons to each other, opening the lactone ring of the dye precursor to develop the color. Developing and erasing the color are reversible chemical reactions, where the color is developed under heat and maintained by quenching. For erasing the color, it is heated and then slowly cooled to separate the precursor and developer phases from each other. A printer (thermal head) is required for developing and erasing a color. Durability under various conditions is another requirement of the card; it must be adaptable to weather conditions and resistant to sweat. The new thermorewritable card is protected from various adverse effects on its chemical reactions, and made as durable as the conventional cards. 3 refs., 5 figs., 1 tab.

  5. Binomial Rings: Axiomatisation, Transfer and Classification

    OpenAIRE

    Xantcha, Qimh Richey

    2011-01-01

    Hall's binomial rings, rings with binomial coefficients, are given an axiomatisation and proved identical to the numerical rings studied by Ekedahl. The Binomial Transfer Principle is established, enabling combinatorial proofs of algebraical identities. The finitely generated binomial rings are completely classified. An application to modules over binomial rings is given.

  6. Ionization cooling ring for muons

    Directory of Open Access Journals (Sweden)

    R. Palmer

    2005-06-01

    Full Text Available Practical ionization cooling rings could lead to lower cost or improved performance in neutrino factory or muon collider designs. The ring modeled here uses realistic three-dimensional fields. The performance of the ring compares favorably with the linear cooling channel used in the second U.S. Neutrino Factory Study. The normalized 6D emittance of an ideal ring is decreased by a factor of approximately 240, compared with a factor of only 15 for the linear channel. We also examine such real-world effects as windows on the absorbers and rf cavities and leaving empty lattice cells for injection and extraction. For realistic conditions the ring decreases the normalized 6D emittance by a factor of 49.

  7. Fabrication and characterization of mixed dye: Natural and synthetic organic dye

    Science.gov (United States)

    Richhariya, Geetam; Kumar, Anil

    2018-05-01

    Mixed dye from hibiscus sabdariffa and eosin Y was employed in the fabrication of dye sensitized solar cell (DSSC). Nanostructured mesoporous film was prepared from the titanium dioxide (TiO2). The energy conversion efficiency of hibiscus, eosin Y and mixed dye was obtained as 0.41%, 1.53% and 2.02% respectively. Mixed DSSC has shown improvement in the performance of the cell as compared to hibiscus and eosin Y dye due to addition of synthetic organic dye. This illustrates the effect of synthetic organic dyes in performance enhancement of natural dyes. It has been credited to the improved absorption of light mainly in higher energy state (λ = 440-560 nm) when two dyes were employed simultaneously as was obvious from the absorption spectra of dyes adsorbed onto TiO2 electrode. The cell with TiO2 electrode sensitized by mixed dye gives short circuit current density (Jsc) = 4.01 mA/cm2, open circuit voltage (Voc) = 0.67 V, fill factor (FF) = 0.60 and energy conversion efficiency (η) of 2.02%.

  8. Evaluation of ring impedance of the Photon Factory storage ring

    International Nuclear Information System (INIS)

    Kiuchi, T.; Izawa, M.; Tokumoto, S.; Hori, Y.; Sakanaka, S.; Kobayashi, M.; Kobayakawa, H.

    1992-05-01

    The loss parameters of the ducts in the Photon Factory (PF) storage ring were evaluated using the wire method and the code TBCI. Both the measurement and the calculation were done for a different bunch length (σ) ranging from 23 to 80 ps. The PF ring impedance was estimated to be |Z/n|=3.2 Ω using the broadband impedance model. The major contribution to the impedance comes from the bellows and the gate valve sections. Improvements of these components will lower the ring impedance by half. (author)

  9. Ultrasound-assisted dyeing of cellulose acetate.

    Science.gov (United States)

    Udrescu, C; Ferrero, F; Periolatto, M

    2014-07-01

    The possibility of reducing the use of auxiliaries in conventional cellulose acetate dyeing with Disperse Red 50 using ultrasound technique was studied as an alternative to the standard procedure. Dyeing of cellulose acetate yarn was carried out by using either mechanical agitation alone, with and without auxiliaries, or coupling mechanical and ultrasound agitation in the bath where the temperature range was maintained between 60 and 80 °C. The best results of dyeing kinetics were obtained with ultrasound coupled with mechanical agitation without auxiliaries (90% of bath exhaustion value at 80 °C). Hence the corresponding half dyeing times, absorption rate constants according to Cegarra-Puente modified equation and ultrasound efficiency were calculated confirming the synergic effect of sonication on the dyeing kinetics. Moreover the apparent activation energies were also evaluated and the positive effect of ultrasound added to mechanical agitation was evidenced by the lower value (48 kJ/mol) in comparison with 112 and 169 kJ/mol for mechanical stirring alone with auxiliaries and without, respectively. Finally, the fastness tests gave good values for samples dyed with ultrasound technique even without auxiliaries. Moreover color measurements on dyed yarns showed that the color yield obtained by ultrasound-assisted dyeing at 80 °C of cellulose acetate without using additional chemicals into the dye bath reached the same value yielded by mechanical agitation, but with remarkably shorter time. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Photochemistry of triarylmethane dyes bound to proteins

    Science.gov (United States)

    Indig, Guilherme L.

    1996-04-01

    Triarylmethanes represent a class of cationic dyes whose potential as photosensitizers for use in photodynamic therapy of neoplastic diseases has never been comprehensively evaluated. Here, the laser-induced photodecomposition of three triarylmethane dyes, crystal violet, ethyl violet, and malachite green, non-covalently bound to bovine serum albumin (a model biological target) was investigated. Upon laser excitation at 532 nm, the bleaching of the corresponding dye-protein molecular complexes follows spectroscopic patterns that suggest the formation of reduced forms of the dyes as major reaction photoproducts. That implies that an electron or hydrogen atom transfer from the protein to the dye's moiety within the guest-host complex is the first step of the photobleaching process. Since the availability of dissolved molecular oxygen was not identified as a limiting factor for the phototransformations to occur, these dyes can be seen as potential phototherapeutic agents for use in hypoxic areas of tumors. These triarylmethane dyes strongly absorb at relatively long wavelengths (absorption maximum around 600 nm; (epsilon) max approximately equals 105 M-1 cm-1), and only minor changes in their absorption characteristics are observed upon binding to the protein. However the binding event leads to a remarkable increase in their fluorescence quantum yield and photoreactivity.

  11. A microfluidic device for simultaneous measurement of viscosity and flow rate of blood in a complex fluidic network.

    Science.gov (United States)

    Jun Kang, Yang; Yeom, Eunseop; Lee, Sang-Joon

    2013-01-01

    Blood viscosity has been considered as one of important biophysical parameters for effectively monitoring variations in physiological and pathological conditions of circulatory disorders. Standard previous methods make it difficult to evaluate variations of blood viscosity under cardiopulmonary bypass procedures or hemodialysis. In this study, we proposed a unique microfluidic device for simultaneously measuring viscosity and flow rate of whole blood circulating in a complex fluidic network including a rat, a reservoir, a pinch valve, and a peristaltic pump. To demonstrate the proposed method, a twin-shaped microfluidic device, which is composed of two half-circular chambers, two side channels with multiple indicating channels, and one bridge channel, was carefully designed. Based on the microfluidic device, three sequential flow controls were applied to identify viscosity and flow rate of blood, with label-free and sensorless detection. The half-circular chamber was employed to achieve mechanical membrane compliance for flow stabilization in the microfluidic device. To quantify the effect of flow stabilization on flow fluctuations, a formula of pulsation index (PI) was analytically derived using a discrete fluidic circuit model. Using the PI formula, the time constant contributed by the half-circular chamber is estimated to be 8 s. Furthermore, flow fluctuations resulting from the peristaltic pumps are completely removed, especially under periodic flow conditions within short periods (T viscosity with respect to varying flow rate conditions [(a) known blood flow rate via a syringe pump, (b) unknown blood flow rate via a peristaltic pump]. As a result, the flow rate and viscosity of blood can be simultaneously measured with satisfactory accuracy. In addition, the proposed method was successfully applied to identify the viscosity of rat blood, which circulates in a complex fluidic network. These observations confirm that the proposed method can be used for

  12. Tinkering at the main-ring lattice

    Energy Technology Data Exchange (ETDEWEB)

    Ohnuma, S.

    1982-08-23

    To improve production of usable antiprotons using the proton beam from the main ring and the lossless injection of cooled antiprotons into the main ring, modifications of the main ring lattice are recommended.

  13. Is the bell ringing?

    CERN Multimedia

    Francesco Poppi

    2010-01-01

    During the Nobel prize-winning UA1 experiment, scientists in the control room used to ring a bell if a particularly interesting event had occurred. Today, the “CMS Exotica hotline” routine produces a daily report that lists the exotic events that were recorded the day before.   Display of an event selected by the Exotica routine. Take just a very small fraction of the available data (max. 5%); define the events that you want to keep and set the parameters accordingly; run the Exotica routine and only look at the very few images that the system has selected for you. This is the recipe that a small team of CMS researchers has developed to identify the signals coming from possible new physics processes. “This approach does not replace the accurate data analysis on the whole set of data. However, it is a very fast and effective way to focus on just a few events that are potentially very interesting”, explains Maurizio Pierini (CERN), who developed the...

  14. Moving ring reactor 'Karin-1'

    International Nuclear Information System (INIS)

    1983-12-01

    The conceptual design of a moving ring reactor ''Karin-1'' has been carried out to advance fusion system design, to clarify the research and development problems, and to decide their priority. In order to attain these objectives, a D-T reactor with tritium breeding blanket is designed, a commercial reactor with net power output of 500 MWe is designed, the compatibility of plasma physics with fusion engineering is demonstrated, and some other guideline is indicated. A moving ring reactor is composed mainly of three parts. In the first formation section, a plasma ring is formed and heated up to ignition temperature. The plasma ring of compact torus is transported from the formation section through the next burning section to generate fusion power. Then the plasma ring moves into the last recovery section, and the energy and particles of the plasma ring are recovered. The outline of a moving ring reactor ''Karin-1'' is described. As a candidate material for the first wall, SiC was adopted to reduce the MHD effect and to minimize the interaction with neutrons and charged particles. The thin metal lining was applied to the SiC surface to solve the problem of the compatibility with lithium blanket. Plasma physics, the engineering aspect and the items of research and development are described. (Kako, I.)

  15. Bleaching and diffusion dynamics in optofluidic dye lasers

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Balslev, Søren; Mortensen, Asger

    2007-01-01

    The authors have investigated the bleaching dynamics that occur in optofluidic dye lasers where the liquid laser dye in a microfluidic channel is locally bleached due to optical pumping. They find that for microfluidic devices, the dye bleaching may be compensated through diffusion of dye molecules...

  16. Supramolecular hair dyes: a new application of cocrystallization

    DEFF Research Database (Denmark)

    Delori, Amit; Urquhart, Andrew; Oswald, Iain D. H.

    2016-01-01

    The manuscript presents the first report of hair dyes of various colors formed by cocrystallization. Unlike the most popular oxidative hair dye (OHD) products, these dyes are NH3 free and do not require H2O2 as a color developer. The importance of these new hair dyes products is further enhanced...

  17. Contact allergy to common ingredients in hair dyes

    DEFF Research Database (Denmark)

    Søsted, Heidi; Rustemeyer, Thomas; Gonçalo, Margarida

    2013-01-01

    p-Phenylenediamine (PPD) is the primary patch test screening agent for hair dye contact allergy, and approximately 100 different hair dye chemicals are allowed.......p-Phenylenediamine (PPD) is the primary patch test screening agent for hair dye contact allergy, and approximately 100 different hair dye chemicals are allowed....

  18. Quirks of dye nomenclature. 5. Rhodamines.

    Science.gov (United States)

    Cooksey, C J

    2016-01-01

    Rhodamines were first produced in the late 19(th) century, when they constituted a new class of synthetic dyes. These compounds since have been used to color many things including cosmetics, inks, textiles, and in some countries, food products. Certain rhodamine dyes also have been used to stain biological specimens and currently are widely used as fluorescent probes for mitochondria in living cells. The early history and current biological applications are sketched briefly and an account of the ambiguities, complications and confusions concerning dye identification and nomenclature are discussed.

  19. Simulations of longitudinally pumped dye laser amplifier

    International Nuclear Information System (INIS)

    Takehisa, Kiwamu; Takemori, Satoshi

    1995-01-01

    Simulations of a copper laser pumped dye laser amplifier and new designs of the longitudinally pumped dye laser amplifier are presented. The simulations take the consideration of the amplified spontaneous emission (ASE). The new designs utilize a center-hole reflector instead of a dichroic mirror. The simulation results indicate that the poor spatial overlap between the pump beam and the dye beam in the transverse pumping not only reduces the laser output power, but also generates ASE strongly. The results also indicate that the longitudinal pumping is as efficient as the transverse pumping. (author)

  20. Hypersensitivity to contrast media and dyes.

    Science.gov (United States)

    Brockow, Knut; Sánchez-Borges, Mario

    2014-08-01

    This article updates current knowledge on hypersensitivity reactions to diagnostic contrast media and dyes. After application of a single iodinated radiocontrast medium (RCM), gadolinium-based contrast medium, fluorescein, or a blue dye, a hypersensitivity reaction is not a common finding; however, because of the high and still increasing frequency of those procedures, patients who have experienced severe reactions are nevertheless frequently encountered in allergy departments. Evidence on allergologic testing and management is best for iodinated RCM, limited for blue dyes, and insufficient for fluorescein. Skin tests can be helpful in the diagnosis of patients with hypersensitivity reactions to these compounds. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Quantum Fourier Transform Over Galois Rings

    OpenAIRE

    Zhang, Yong

    2009-01-01

    Galois rings are regarded as "building blocks" of a finite commutative ring with identity. There have been many papers on classical error correction codes over Galois rings published. As an important warm-up before exploring quantum algorithms and quantum error correction codes over Galois rings, we study the quantum Fourier transform (QFT) over Galois rings and prove it can be efficiently preformed on a quantum computer. The properties of the QFT over Galois rings lead to the quantum algorit...

  2. Polarized particles in storage rings

    International Nuclear Information System (INIS)

    Derbenev, Ya.S.; Kondratenko, A.M.; Serednyakov, S.I.; Skrinskij, A.N.; Tumajkin, G.M.; Shatunov, Yu.M.

    1977-01-01

    Experiments with polarized beams on the VEPP-2M and SPEAK storage rings are described. Possible methods of producing polarized particle beams in storage rings as well as method of polarization monitoring are counted. Considered are the processes of radiation polarization of electrons and positrons. It is shown, that to preserve radiation polarization the introduction of regions with a strong sign-variable magnetic field is recommended. Methods of polarization measurement are counted. It is suggested for high energies to use dependence of synchrotron radiation power on transverse polarization of electrons and positrons. Examples of using polarizability of colliding beams in storage rings are presented

  3. Researches on the Piston Ring

    Science.gov (United States)

    Ehihara, Keikiti

    1944-01-01

    In internal combustion engines, steam engines, air compressors, and so forth, the piston ring plays an important role. Especially, the recent development of Diesel engines which require a high compression pressure for their working, makes, nowadays, the packing action of the piston ring far more important than ever. Though a number of papers have been published in regard to researches on the problem of the piston ring, none has yet dealt with an exact measurement of pressure exerted on the cylinder wall at any given point of the ring. The only paper that can be traced on this subject so far is Mr. Nakagawa's report on the determination of the relative distribution of pressure on the cylinder wall, but the measuring method adopted therein appears to need further consideration. No exact idea has yet been obtained as to how the obturation of gas between the piston and cylinder, the frictional resistance of the piston, and the wear of the cylinder wall are affected by the intensity and the distribution of the radial pressure of the piston ring. Consequently, the author has endeavored, by employing an apparatus of his own invention, to get an exact determination of the pressure distribution of the piston ring. By means of a newly devised ring tester, to which piezoelectricity of quartz was applied, the distribution of the radial pressure of many sample rings on the market was accurately determined. Since many famous piston rings show very irregular pressure distribution, the author investigated and achieved a manufacturing process of the piston ring which will exert uniform pressure on the cylinder wall. Temperature effects on the configuration and on the mean spring power have also been studied. Further, the tests were performed to ascertain how the gas tightness of the piston ring may be affected by the number or spring power. The researches as to the frictional resistance between the piston ring and the cylinder wall were carried out, too. The procedure of study, and

  4. Soft Congruence Relations over Rings

    Science.gov (United States)

    Xin, Xiaolong; Li, Wenting

    2014-01-01

    Molodtsov introduced the concept of soft sets, which can be seen as a new mathematical tool for dealing with uncertainty. In this paper, we initiate the study of soft congruence relations by using the soft set theory. The notions of soft quotient rings, generalized soft ideals and generalized soft quotient rings, are introduced, and several related properties are investigated. Also, we obtain a one-to-one correspondence between soft congruence relations and idealistic soft rings and a one-to-one correspondence between soft congruence relations and soft ideals. In particular, the first, second, and third soft isomorphism theorems are established, respectively. PMID:24949493

  5. Distributively generated matrix near rings

    International Nuclear Information System (INIS)

    Abbasi, S.J.

    1993-04-01

    It is known that if R is a near ring with identity then (I,+) is abelian if (I + ,+) is abelian and (I,+) is abelian if (I*,+) is abelian [S.J. Abbasi, J.D.P. Meldrum, 1991]. This paper extends these results. We show that if R is a distributively generated near ring with identity then (I,+) is included in Z(R), the center of R, if (I + ,+) is included in Z(M n (R)), the center of matrix near ring M n (R). Furthermore (I,+) is included in Z(R) if (I*,+) is included in Z(M n (R)). (author). 5 refs

  6. SMARANDACHE NON-ASSOCIATIVE RINGS

    OpenAIRE

    Vasantha, Kandasamy

    2002-01-01

    An associative ring is just realized or built using reals or complex; finite or infinite by defining two binary operations on it. But on the contrary when we want to define or study or even introduce a non-associative ring we need two separate algebraic structures say a commutative ring with 1 (or a field) together with a loop or a groupoid or a vector space or a linear algebra. The two non-associative well-known algebras viz. Lie algebras and Jordan algebras are mainly built using a vecto...

  7. A bladder-free, non-fluidic, conductive McKibben artificial muscle operated electro-thermally

    Science.gov (United States)

    Sangian, Danial; Foroughi, Javad; Farajikhah, Syamak; Naficy, Sina; Spinks, Geoffrey M.

    2017-01-01

    Fluidic McKibben artificial muscles that operate pneumatically or hydraulically provide excellent performance, but require bulky pumps/compressors, valves and connecting lines. Use of a pressure generating material, such as thermally expanding paraffin wax, can eliminate the need for these pumps and associated infrastructure. Here we further develop this concept by introducing the first bladderless McKibben muscle wherein molten paraffin is contained by surface tension within a tailored braid. Incorporation of electrically conductive wires in the braid allows for convenient Joule heating of the paraffin. The muscle is light (0.14 g) with a diameter of 1.4 mm and is capable of generating a tensile stress of 50 kPa (0.039 N) in 20 s. The maximum contraction strain of 10% (7.6 kPa given load) was achieved in 60 s with an applied electrical power of 0.35 W.

  8. A mathematical model for surface roughness of fluidic channels produced by grinding aided electrochemical discharge machining (G-ECDM

    Directory of Open Access Journals (Sweden)

    Ladeesh V. G.

    2017-01-01

    Full Text Available Grinding aided electrochemical discharge machining is a hybrid technique, which combines the grinding action of an abrasive tool and thermal effects of electrochemical discharges to remove material from the workpiece for producing complex contours. The present study focuses on developing fluidic channels on borosilicate glass using G-ECDM and attempts to develop a mathematical model for surface roughness of the machined channel. Preliminary experiments are conducted to study the effect of machining parameters on surface roughness. Voltage, duty factor, frequency and tool feed rate are identified as the significant factors for controlling surface roughness of the channels produced by G-ECDM. A mathematical model was developed for surface roughness by considering the grinding action and thermal effects of electrochemical discharges in material removal. Experiments are conducted to validate the model and the results obtained are in good agreement with that predicted by the model.

  9. A High-Voltage Integrated Circuit Engine for a Dielectrophoresis-based Programmable Micro-Fluidic Processor

    Science.gov (United States)

    Current, K. Wayne; Yuk, Kelvin; McConaghy, Charles; Gascoyne, Peter R. C.; Schwartz, Jon A.; Vykoukal, Jody V.; Andrews, Craig

    2010-01-01

    A high-voltage (HV) integrated circuit has been demonstrated to transport droplets on programmable paths across its coated surface. This chip is the engine for a dielectrophoresis (DEP)-based micro-fluidic lab-on-a-chip system. This chip creates DEP forces that move and help inject droplets. Electrode excitation voltage and frequency are variable. With the electrodes driven with a 100V peak-to-peak periodic waveform, the maximum high-voltage electrode waveform frequency is about 200Hz. Data communication rate is variable up to 250kHz. This demonstration chip has a 32×32 array of nominally 100V electrode drivers. It is fabricated in a 130V SOI CMOS fabrication technology, dissipates a maximum of 1.87W, and is about 10.4 mm × 8.2 mm. PMID:23989241

  10. Label-free tracking of single extracellular vesicles in a nano-fluidic optical fiber (Conference Presentation)

    Science.gov (United States)

    van der Pol, Edwin; Weidlich, Stefan; Lahini, Yoav; Coumans, Frank A. W.; Sturk, Auguste; Nieuwland, Rienk; Schmidt, Markus A.; Faez, Sanli; van Leeuwen, Ton G.

    2016-03-01

    Background: Extracellular vesicles, such as exosomes, are abundantly present in human body fluids. Since the size, concentration and composition of these vesicles change during disease, vesicles have promising clinical applications, including cancer diagnosis. However, since ~70% of the vesicles have a diameter <70 nm, detection of single vesicles remains challenging. Thus far, vesicles <70 nm have only be studied by techniques that require the vesicles to be adhered to a surface. Consequently, the majority of vesicles have never been studied in their physiological environment. We present a novel label-free optical technique to track single vesicles <70 nm in suspension. Method: Urinary vesicles were contained within a single-mode light-guiding silica fiber containing a 600 nm nano-fluidic channel. Light from a diode laser (660 nm wavelength) was coupled to the fiber, resulting in a strongly confined optical mode in the nano-fluidic channel, which continuously illuminated the freely diffusing vesicles inside the channel. The elastic light scattering from the vesicles, in the direction orthogonal to the fiber axis, was collected using a microscope objective (NA=0.95) and imaged with a home-built microscope. Results: We have tracked single urinary vesicles as small as 35 nm by elastic light scattering. Please note that vesicles are low-refractive index (n<1.4) particles, which we confirmed by combining data on thermal diffusion and light scattering cross section. Conclusions: For the first time, we have studied vesicles <70 nm freely diffusing in suspension. The ease-of-use and performance of this technique support its potential for vesicle-based clinical applications.

  11. Topology optimisation of micro fluidic mixers considering fluid-structure interactions with a coupled Lattice Boltzmann algorithm

    Science.gov (United States)

    Munk, David J.; Kipouros, Timoleon; Vio, Gareth A.; Steven, Grant P.; Parks, Geoffrey T.

    2017-11-01

    Recently, the study of micro fluidic devices has gained much interest in various fields from biology to engineering. In the constant development cycle, the need to optimise the topology of the interior of these devices, where there are two or more optimality criteria, is always present. In this work, twin physical situations, whereby optimal fluid mixing in the form of vorticity maximisation is accompanied by the requirement that the casing in which the mixing takes place has the best structural performance in terms of the greatest specific stiffness, are considered. In the steady state of mixing this also means that the stresses in the casing are as uniform as possible, thus giving a desired operating life with minimum weight. The ultimate aim of this research is to couple two key disciplines, fluids and structures, into a topology optimisation framework, which shows fast convergence for multidisciplinary optimisation problems. This is achieved by developing a bi-directional evolutionary structural optimisation algorithm that is directly coupled to the Lattice Boltzmann method, used for simulating the flow in the micro fluidic device, for the objectives of minimum compliance and maximum vorticity. The needs for the exploration of larger design spaces and to produce innovative designs make meta-heuristic algorithms, such as genetic algorithms, particle swarms and Tabu Searches, less efficient for this task. The multidisciplinary topology optimisation framework presented in this article is shown to increase the stiffness of the structure from the datum case and produce physically acceptable designs. Furthermore, the topology optimisation method outperforms a Tabu Search algorithm in designing the baffle to maximise the mixing of the two fluids.

  12. Sap Flux Scaled Transpiration in Ring-porous Tree Species: Assumptions, Pitfalls and Calibration

    Science.gov (United States)

    Bush, S. E.; Hultine, K. R.; Ehleringer, J. R.

    2008-12-01

    Thermal dissipation probes for measuring sap flow (Granier-type) at the whole tree and stand level are routinely used in forest ecology and site water balance studies. While the original empirical relationship used to calculate sap flow was reported as independent of wood anatomy (ring-porous, diffuse-porous, tracheid), it has been suggested that potentially large errors in sap flow calculations may occur when using the original calibration for ring-porous species, due to large radial trends in sap velocity and/or shallow sapwood depth. Despite these concerns, sap flux measurements have rarely been calibrated in ring-porous taxa. We used a simple technique to calibrate thermal dissipation sap flux measurements on ring-porous trees in the lab. Calibration measurements were conducted on five ring-porous species in the Salt Lake City, USA metropolitan area including Quercus gambelii (Gambel oak), Gleditsia triacanthos (Honey locust), Elaeagnus angustifolia (Russian olive), Sophora japonica (Japanese pagoda), and Celtis occidentalis (Common hackberry). Six stems per species of approximately 1 m in length were instrumented with heat dissipation probes to measure sap flux concurrently with gravimetric measurements of water flow through each stem. Safranin dye was pulled through the stems following flow rate measurements to determine sapwood area. As expected, nearly all the conducting sapwood area was limited to regions within the current year growth rings. Consequently, we found that the original Granier equation underestimated sap flux density for all species considered. Our results indicate that the use of thermal dissipation probes for measuring sap flow in ring-porous species should be independently calibrated, particularly when species- specific calibration data are not available. Ring-porous taxa are widely distributed and represent an important component of the regional water budgets of many temperate regions. Our results are important for evaluating plant water

  13. DFT Studies on the electronic structures of indoline dyes for dye-sensitized solar cells

    Directory of Open Access Journals (Sweden)

    JIE XU

    2010-02-01

    Full Text Available A series of indoline dyes with promising efficiency for dye-sensitized solar cells (DSSCs were studied using the density functional theory at the B3LYP/6-31g (d level. The ground-state geometries, electronic structures and absorption spectra of these dyes are reported. The calculated results indicate that the energy levels of the HOMOs and LUMOs of these dyes are advantageous for electron injection. Their intense and broad absorption bands as well as favorable excited-state energy levels are key factor for their outstanding efficiencies in DSSCs.

  14. Dyeing behaviour of gamma irradiated cotton fabric using Lawson dye extracted from henna leaves (Lawsonia inermis)

    International Nuclear Information System (INIS)

    Rehman, Fazal-ur; Adeel, Shahid; Qaiser, Summia; Ahmad Bhatti, Ijaz; Shahid, Muhammad; Zuber, Mohammad

    2012-01-01

    Dyeing behavior of gamma irradiated cotton fabric using Lawson dye extracted from henna leaves has been investigated. Cotton and dye powder are irradiated to different absorbed doses of 2, 4, 6, 8 and 10 kGy using Cs-137 gamma irradiator. The dyeing parameters such as dyeing time, electrolyte (salt) concentration and mordant concentrations using copper and iron as mordants are optimized. Dyeing is performed using un-irradiated and irradiated cotton with dye solutions and their color strength values are evaluated in CIE Lab system using Spectraflash –SF650. Methods suggested by International Standard Organization (ISO) have been employed to investigate the colourfastness properties such as colourfastness to light, washing and rubbing of irradiated dyed fabric. It is found that gamma ray treatment of cotton dyed with extracts of henna leaves has significantly improved the color strength as well as enhanced the rating of fastness properties. - Highlights: ► The optimum absorbed dose obtained for surface modification of cotton (RC) is 8 kGy. ► Irradiation has enhanced antioxidant, anti bacterial and hemolytic activities. ► Optimum dyeing conditions are 60 min dyeing time and 8 g/L salt concentration. ► At optimum conditions, color strength and fastness properties are enhanced.

  15. Industrial scale salt-free reactive dyeing of cationized cotton fabric with different reactive dye chemistry.

    Science.gov (United States)

    Nallathambi, Arivithamani; Venkateshwarapuram Rengaswami, Giri Dev

    2017-10-15

    Dyeing of knitted cotton goods in the industry has been mostly with reactive dyes. Handling of salt laden coloured effluent arising out of dyeing process is one of the prime concerns of the industry. Cationization of cotton is one of the effective alternative to overcome the above problem. But for cationization to be successful at industrial scale it has to be carried out by exhaust process and should be adoptable for the various dye chemistries currently practiced in the industry. Hence, in the present work, industrial level exhaust method of cationization process was carried out with concentration of 40g/L and 80g/L. The fabrics were dyed with dyes of three different dye chemistry and assessed for its dyeing performance without the addition of salt. Dye shades ranging from medium to extra dark shades were produced without the addition of salt. This study will provide industries the recipe that can be adopted for cationized cotton fabric for the widely used reactive dyes at industrial level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Dye-sensitized solar cells using natural dyes as sensitizers from Malaysia local fruit `Buah Mertajam'

    Science.gov (United States)

    Hambali, N. A. M. Ahmad; Roshidah, N.; Hashim, M. Norhafiz; Mohamad, I. S.; Saad, N. Hidayah; Norizan, M. N.

    2015-05-01

    We experimentally demonstrate the high conversion efficiency, low cost, green technology and easy to fabricate dye-sensitized solar cells (DSSCs) using natural anthocyanin dyes as sensitizers. The DSSCs was fabricated by using natural anthocyanin dyes which were extracted from different parts of the plants inclusive `Buah Mertajam', `Buah Keriang Dot', `Bunga Geti', Hibiscus, Red Spinach and Henna. The natural anthocyanin dyes that found in flower, leaves and fruits were extracted by the simple procedures. This anthocyanin dye is used to replace the expensive chemical synthetic dyes due to its ability to effectively attach into the surface of Titanium dioxide (TiO2). A natural anthocyanin dyes molecule adsorbs to each particle of the TiO2 and acts as the absorber of the visible light. A natural anthocyanin dye from Buah Mertajam shows the best performance with the conversion efficiency of 5.948% and fill factor of 0.708 followed by natural anthocyanin dyes from `Buah Keriang Dot', `Bunga Geti', Hibiscus, Red Spinach and Henna. Buah Mertajam or scientifically known as eriglossum rubiginosum is a local Malaysia fruit.

  17. Polymerization of novel methacrylated anthraquinone dyes

    Directory of Open Access Journals (Sweden)

    Christian Dollendorf

    2013-02-01

    Full Text Available A new series of polymerizable methacrylated anthraquinone dyes has been synthesized by nucleophilic aromatic substitution reactions and subsequent methacrylation. Thereby, green 5,8-bis(4-(2-methacryloxyethylphenylamino-1,4-dihydroxyanthraquinone (2, blue 1,4-bis(4-((2-methacryloxyethyloxyphenylaminoanthraquinone (6 and red 1-((2-methacryloxy-1,1-dimethylethylaminoanthraquinone (12, as well as 1-((1,3-dimethacryloxy-2-methylpropan-2-ylaminoanthraquinone (15 were obtained. By mixing of these brilliant dyes in different ratios and concentrations, a broad color spectrum can be generated. After methacrylation, the monomeric dyes can be covalently emplaced into several copolymers. Due to two polymerizable functionalities, they can act as cross-linking agents. Thus, diffusion out of the polymer can be avoided, which increases the physiological compatibility and makes the dyes promising compounds for medical applications, such as iris implants.

  18. Computer control of pulsed tunable dye lasers

    International Nuclear Information System (INIS)

    Thattey, S.S.; Dongare, A.S.; Suri, B.M.; Nair, L.G.

    1992-01-01

    Pulsed tunable dye lasers are being used extensively for spectroscopic and photo-chemical experiments, and a system for acquisition and spectral analysis of a volume of data generated will be quite useful. The development of a system for wavelength tuning and control of tunable dye lasers and an acquisition system for spectral data generated in experiments with these lasers are described. With this system, it is possible to control the tuning of three lasers, and acquire data in four channels, simultaneously. It is possible to arrive at the desired dye laser wavelength with a reproducibility of ± 0.012 cm -1 , which is within the absorption width (atomic interaction) caused by pulsed dye lasers of linewidth 0.08 cm -1 . The spectroscopic data generated can be analyzed for spectral identification within absolute accuracy ± 0.012 cm -1 . (author). 6 refs., 11 figs

  19. Prototype moving-ring reactor

    International Nuclear Information System (INIS)

    Smith, A.C. Jr.; Ashworth, C.P.; Abreu, K.E.

    1982-01-01

    We have completed a design of the Prototype Moving-Ring Reactor. The fusion fuel is confined in current-carrying rings of magnetically-field-reversed plasma (Compact Toroids). The plasma rings, formed by a coaxial plasma gun, undergo adiabatic magnetic compression to ignition temperature while they are being injected into the reactor's burner section. The cylindrical burner chamber is divided into three burn stations. Separator coils and a slight axial guide field gradient are used to shuttle the ignited toroids rapidly from one burn station to the next, pausing for 1/3 of the total burn time at each station. D-T- 3 He ice pellets refuel the rings at a rate which maintains constant radiated power

  20. Autumn study on storage rings

    CERN Multimedia

    1974-01-01

    The first two weeks of October have seen storage ring people from accelerator Laboratories throughout the world at CERN to study the fundamental problems of very high energy protonproton colliding beam machines.

  1. Minimal Gromov-Witten rings

    International Nuclear Information System (INIS)

    Przyjalkowski, V V

    2008-01-01

    We construct an abstract theory of Gromov-Witten invariants of genus 0 for quantum minimal Fano varieties (a minimal class of varieties which is natural from the quantum cohomological viewpoint). Namely, we consider the minimal Gromov-Witten ring: a commutative algebra whose generators and relations are of the form used in the Gromov-Witten theory of Fano varieties (of unspecified dimension). The Gromov-Witten theory of any quantum minimal variety is a homomorphism from this ring to C. We prove an abstract reconstruction theorem which says that this ring is isomorphic to the free commutative ring generated by 'prime two-pointed invariants'. We also find solutions of the differential equation of type DN for a Fano variety of dimension N in terms of the generating series of one-pointed Gromov-Witten invariants

  2. Cosmic rings from colliding galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Mitton, S

    1976-11-18

    Research on two ring galaxies has led to the proposal of an interaction model to account for the rings. It is envisaged that this class of galaxy is created when a compact galaxy crashes through the disc of a spiral galaxy. The results of a spectroscopic investigation of the galaxy known as the Cartwheel and of another ring galaxy 11 NZ 4 are discussed. The general picture of ring galaxies which emerges from these studies of a massive starry nucleus with a necklace of emitting gas and some spokes and along the spin axis of the wheel a small companion galaxy that is devoid of interstellar gas. An explanation of these properties is considered.

  3. Ring lasers - a brief history

    Science.gov (United States)

    Klein, Tony

    2017-10-01

    Used these days in inertial navigation, ring lasers are also used in recording the tiniest variations in the Earth's spin, as well in detecting earthquakes and even the drift of continents. How did it all begin?

  4. Green dyeing process of modified cotton fibres using natural dyes extracted from Tamarix aphylla (L.) Karst. leaves.

    Science.gov (United States)

    Baaka, Noureddine; Mahfoudhi, Adel; Haddar, Wafa; Mhenni, Mohamed Farouk; Mighri, Zine

    2017-01-01

    This research work involves an eco-friendly dyeing process of modified cotton with the aqueous extract of Tamarix aphylla leaves. During this process, the dyeing step was carried out on modified cotton by several cationising agents in order to improve its dyeability. The influence of the main dyeing conditions (dye bath pH, dyeing time, dyeing temperature, salt addition) on the performances of this dyeing process were studied. The dyeing performances of this process were appreciated by measuring the colour yield (K/S) and the fastness properties of the dyed samples. The effect of mordant type with different mordanting methods on dyeing quality was also studied. The results showed that mordanting gave deeper shades and enhanced fastness properties. In addition, environmental indicators (BOD 5 , COD and COD/BOD 5 ) were used to describe potential improvements in the biodegradability of the dyebath wastewater. Further, HPLC was used to identify the major phenolic compounds in the extracted dye.

  5. Modeling the efficiency of Förster resonant energy transfer from energy relay dyes in dye-sensitized solar cells

    KAUST Repository

    Hoke, Eric T.

    2010-02-11

    Förster resonant energy transfer can improve the spectral breadth, absorption and energy conversion efficiency of dye sensitized solar cells. In this design, unattached relay dyes absorb the high energy photons and transfer the excitation to sensitizing dye molecules by Förster resonant energy transfer. We use an analytic theory to calculate the excitation transfer efficiency from the relay dye to the sensitizing dye accounting for dynamic quenching and relay dye diffusion. We present calculations for pores of cylindrical and spherical geometry and examine the effects of the Förster radius, the pore size, sensitizing dye surface concentration, collisional quenching rate, and relay dye lifetime. We find that the excitation transfer efficiency can easily exceed 90% for appropriately chosen dyes and propose two different strategies for selecting dyes to achieve record power conversion efficiencies. © 2010 Optical Society of America.

  6. Ring insertions as light sources

    International Nuclear Information System (INIS)

    Green, G.K.

    1975-01-01

    Bending magnets can be inserted in the long straight sections of electron storage rings to produce synchrotron radiation. If the design is carefully proportioned, the bending magnets create only a small perturbation of the properties of the ring. The resulting spectra have favorable optical properties as sources for spectroscopy and diffraction studies. The characteristics of the source are discussed, and the geometrical requirements of the magnets are presented

  7. Collector ring project at FAIR

    International Nuclear Information System (INIS)

    Dolinskii, A; Blell, U; Dimopoulou, C; Gorda, O; Leibrock, H; Litvinov, S; Laier, U; Schurig, I; Weinrich, U; Berkaev, D; Koop, I; Starostenko, A; Shatunov, P

    2015-01-01

    The collector ring is a dedicated ring for fast cooling of ions coming from separators at the FAIR project. To accommodate optimal technical solutions, a structure of a magnet lattice was recently reviewed and modified. Consequently, more appropriate technical solutions for the main magnets could be adopted. A general layout and design of the present machine is shown. The demanding extraction schemes have been detailed and open design issues were completed. (paper)

  8. Synlig læring

    DEFF Research Database (Denmark)

    Brandsen, Mads

    2017-01-01

    Introduktionen af John Hatties synlig læring i den danske skoleverden møder stadig meget kritik. Mange lærere og pædagoger oplever synlig læring som en tornado, der vil opsuge og ødelægge deres særlige danske udgave af den kontinentale dannelsestænkning, didaktik og pædagogik. Spørgsmålet er om...

  9. The circular RFQ storage ring

    International Nuclear Information System (INIS)

    Ruggiero, A.G.

    1998-01-01

    This paper presents a novel idea of storage ring for the accumulation of intense beams of light and heavy ions at low energy. The new concept is a natural development of the combined features used in a conventional storage ring and an ion trap, and is basically a linear RFQ bend on itself. In summary the advantages are: smaller beam dimensions, higher beam intensity, and a more compact storage device

  10. The Circular RFQ Storage Ring

    International Nuclear Information System (INIS)

    Ruggiero, A. G.

    1999-01-01

    This paper presents a novel idea of storage ring for the accumulation of intense beams of light and heavy ions at low energy. The new concept is a natural development of the combined features of conventional storage rings and ion traps, and is basically a linear RFQ bent on itself. The advantages are: smaller beam dimensions, higher beam intensity, and a more compact storage device

  11. Electrically charged dilatonic black rings

    International Nuclear Information System (INIS)

    Kunduri, Hari K.; Lucietti, James

    2005-01-01

    In this Letter we present (electrically) charged dilatonic black ring solutions of the Einstein-Maxwell-dilaton theory in five dimensions and we consider their physical properties. These solutions are static and as in the neutral case possess a conical singularity. We show how one may remove the conical singularity by application of a Harrison transformation, which physically corresponds to supporting the charged ring with an electric field. Finally, we discuss the slowly rotating case for arbitrary dilaton coupling

  12. Low emittance electron storage rings

    Science.gov (United States)

    Levichev, E. B.

    2018-01-01

    Low-emittance electron (positron) beams are essential for synchrotron light sources, linear collider damping rings, and circular Crab Waist colliders. In this review, the principles and methods of emittance minimization are discussed, prospects for developing relativistic electron storage rings with small beam phase volume are assessed, and problems related to emittance minimization are examined together with their possible solutions. The special features and engineering implementation aspects of various facilities are briefly reviewed.

  13. Resonance capture and Saturn's rings

    International Nuclear Information System (INIS)

    Patterson, C.W.

    1986-05-01

    We have assigned the resonances apparently responsible for the stabilization of the Saturn's shepherd satellites and for the substructure seen in the F-ring and the ringlets in the C-ring. We show that Saturn's narrow ringlets have a substructure determined by three-body resonances with Saturn's ringmoons and the sun. We believe such resonances have important implications to satellite formation. 17 refs., 1 fig., 1 tab

  14. Phytoremediation in education: textile dye teaching experiments.

    Science.gov (United States)

    Ibbini, Jwan H; Davis, Lawrence C; Erickson, Larry E

    2009-07-01

    Phytoremediation, the use of plants to clean up contaminated soil and water, has a wide range of applications and advantages, and can be extended to scientific education. Phytoremediation of textile dyes can be used as a scientific experiment or demonstration in teaching laboratories of middle school, high school and college students. In the experiments that we developed, students were involved in a hands-on activity where they were able to learn about phytoremediation concepts. Experiments were set up with 20-40 mg L(-1) dye solutions of different colors. Students can be involved in the set up process and may be involved in the experimental design. In its simplest forms, they use two-week-old sunflower seedlings and place them into a test tube of known volume of dye solution. Color change and/or dye disappearance can be monitored by visual comparison or with a spectrophotometer. Intensity and extent of the lab work depends on student's educational level, and time constraints. Among the many dyes tested, Evan's Blue proved to be the most readily decolorized azo dye. Results could be observed within 1-2 hours. From our experience, dye phytoremediation experiments are suitable and easy to understand by both college and middle school students. These experiments help visual learners, as students compare the color of the dye solution before and after the plant application. In general, simple phytoremediation experiments of this kind can be introduced in many classes including biology, biochemistry and ecological engineering. This paper presents success stories of teaching phytoremediation to middle school and college students.

  15. Stability of the elderberry dye in vodkas

    International Nuclear Information System (INIS)

    Pizlo, A.; Jankowska, D.

    2001-01-01

    The effect of light, pH, strength of vodkas and by-products on Sambucus nigra pigments stability was tested in this paper. The elderberry dye was unstable in vodkas during light action in general. It was stated that low strength of vodkas and high pH effected an increase of the vodkas colour stability. The presence of vitamin C caused discolouring effect on elderberry dye but chockeberry distillate effected an increase of the vodkas colour stability

  16. Decolorization of six synthetic dyes by fungi

    OpenAIRE

    Hartikainen, E. Samuel; Miettinen, Otto; Hatakka, Annele; Kähkönen, Mika A.

    2016-01-01

    To find out ability of fourteen basidiomycetes and four ascomycetes strains to grow in the presence of synthetic colour dyes and to degrade them, fungi were cultivated on the malt agar plates containing 0.5 g kg-1 dye, either Remazol Brilliant Blue R, Remazol Brilliant Yellow GL, Remazol Brilliant Orange 3 R, Reactive Blue 4, Remazol Brilliant Red F3B or Reactive Black 5. Fungi representing basidiomycetes were Phlebia radiata (FBCC 43), Tremella encephala (FBCC 1145), Dichomitus squalens (FBC...

  17. Energy spectra of quantum rings.

    Science.gov (United States)

    Fuhrer, A; Lüscher, S; Ihn, T; Heinzel, T; Ensslin, K; Wegscheider, W; Bichler, M

    2001-10-25

    Quantum mechanical experiments in ring geometries have long fascinated physicists. Open rings connected to leads, for example, allow the observation of the Aharonov-Bohm effect, one of the best examples of quantum mechanical phase coherence. The phase coherence of electrons travelling through a quantum dot embedded in one arm of an open ring has also been demonstrated. The energy spectra of closed rings have only recently been studied by optical spectroscopy. The prediction that they allow persistent current has been explored in various experiments. Here we report magnetotransport experiments on closed rings in the Coulomb blockade regime. Our experiments show that a microscopic understanding of energy levels, so far limited to few-electron quantum dots, can be extended to a many-electron system. A semiclassical interpretation of our results indicates that electron motion in the rings is governed by regular rather than chaotic motion, an unexplored regime in many-electron quantum dots. This opens a way to experiments where even more complex structures can be investigated at a quantum mechanical level.

  18. Treatment of dyeing drainage by radiation

    International Nuclear Information System (INIS)

    Shimokawa, Toshinari; Sawai, Takeshi

    1985-01-01

    Decolorization of artificial dyeing drainage and sewage by radiation treatment. Artifical dyeing drainage was prepared from water, polyvinyl alcohol, starch, urea and several kinds of inorganic salts, and artificial sewage, from water, peptone, broth, urea and several kinds of inorganic salts. The above mentioned sample liquors of artificial dyeing drainage and sewage were exposed to γ-radiation of 5 kCi of 60 Co source by aerating through a ball filter. Absorption spectra, total organic carbon (TOC) and chemical oxygen demand (COD) were determined after irradiation to evaluate radiation treatment effect. With the experimental data obtained, it was clarified that absorbance, COD and TOC was decreased with the increase of absorbed dose. Decoloring was made effectively and about 95 % of bleaching ratio was obtained at 5 kGy of radiation. COD was decreased also by irradiation rather slower decreasing rate than that of decolorization, and TOC decrease was very slow at the initial stage of radiation but 40 % of TOC was decomposed by 10 kGy radiation. Dye of chemically stable structure was found more resistant to radiation decolorization. Decomposition efficiency was found less for dyes in the artificial sewage but secondary treated sewage showed no adverse effect. With the obtained understandings, a tentative scheme was planned for the radiation decolorization of dyeing drainage after aeration treatment. (Takagi, S.)

  19. Degradation of textile dyes by cyanobacteria.

    Science.gov (United States)

    Dellamatrice, Priscila Maria; Silva-Stenico, Maria Estela; Moraes, Luiz Alberto Beraldo de; Fiore, Marli Fátima; Monteiro, Regina Teresa Rosim

    Dyes are recalcitrant compounds that resist conventional biological treatments. The degradation of three textile dyes (Indigo, RBBR and Sulphur Black), and the dye-containing liquid effluent and solid waste from the Municipal Treatment Station, Americana, São Paulo, Brazil, by the cyanobacteria Anabaena flos-aquae UTCC64, Phormidium autumnale UTEX1580 and Synechococcus sp. PCC7942 was evaluated. The dye degradation efficiency of the cyanobacteria was compared with anaerobic and anaerobic-aerobic systems in terms of discolouration and toxicity evaluations. The discoloration was evaluated by absorption spectroscopy. Toxicity was measured using the organisms Hydra attenuata, the alga Selenastrum capricornutum and lettuce seeds. The three cyanobacteria showed the potential to remediate textile effluent by removing the colour and reducing the toxicity. However, the growth of cyanobacteria on sludge was slow and discoloration was not efficient. The cyanobacteria P. autumnale UTEX1580 was the only strain that completely degraded the indigo dye. An evaluation of the mutagenicity potential was performed by use of the micronucleus assay using Allium sp. No mutagenicity was observed after the treatment. Two metabolites were produced during the degradation, anthranilic acid and isatin, but toxicity did not increase after the treatment. The cyanobacteria showed the ability to degrade the dyes present in a textile effluent; therefore, they can be used in a tertiary treatment of effluents with recalcitrant compounds. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  20. Smart photovoltaics based on dye-sensitized solar cells using photochromic spiropyran derivatives as photosensitizers

    International Nuclear Information System (INIS)

    Ma, Shengbo; Ting, Hungkit; Ma, Yingzhuang; Zheng, Lingling; Zhang, Miwei; Xiao, Lixin; Chen, Zhijian

    2015-01-01

    In this paper, smart photovoltaic (SPV) devices, integrating both functions of solar cells and smart windows, was fabricated based on dye-sensitized solar cells using photochromic spiropyran derivatives SIBT as photosensitizers. SPV devices have self-regulated power conversion efficiency (PCE) and light transmission responding to the incident spectra due to the photoisomerization of SIBT. SIBT isomerize from closed-ring form to open-ring form under UV illumination, accompanied with enhanced visible light absorption and electron delocalization. Therefore, increased PCE and absorption in SPV devices were observed under UV treatment and the devices can be restored gradually to the initial status when kept in dark. The SPV devices have self-regulation of PCE and sunlight transmission responding to the changing sun spectra in different times of a day, providing a proper energy usage and a better sun-shading

  1. Smart photovoltaics based on dye-sensitized solar cells using photochromic spiropyran derivatives as photosensitizers

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Shengbo; Ting, Hungkit; Ma, Yingzhuang; Zheng, Lingling; Zhang, Miwei [State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Xiao, Lixin, E-mail: zjchen@pku.edu.cn, E-mail: lxxiao@pku.edu.cn; Chen, Zhijian, E-mail: zjchen@pku.edu.cn, E-mail: lxxiao@pku.edu.cn [State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Haixi Collaborative Innovation Center for New Display Devices and Systems Integration, Fuzhou University, Fuzhou 350002 (China)

    2015-05-15

    In this paper, smart photovoltaic (SPV) devices, integrating both functions of solar cells and smart windows, was fabricated based on dye-sensitized solar cells using photochromic spiropyran derivatives SIBT as photosensitizers. SPV devices have self-regulated power conversion efficiency (PCE) and light transmission responding to the incident spectra due to the photoisomerization of SIBT. SIBT isomerize from closed-ring form to open-ring form under UV illumination, accompanied with enhanced visible light absorption and electron delocalization. Therefore, increased PCE and absorption in SPV devices were observed under UV treatment and the devices can be restored gradually to the initial status when kept in dark. The SPV devices have self-regulation of PCE and sunlight transmission responding to the changing sun spectra in different times of a day, providing a proper energy usage and a better sun-shading.

  2. Chlorine disinfection of dye wastewater: Implications for a commercial azo dye mixture

    Energy Technology Data Exchange (ETDEWEB)

    Vacchi, Francine Inforcato; Albuquerque, Anjaina Fernandes; Vendemiatti, Josiane Aparecida; Morales, Daniel Alexandre [Faculdade de Tecnologia, Universidade Estadual de Campinas, Limeira, SP, 13484-332 (Brazil); Ormond, Alexandra B.; Freeman, Harold S. [Department of Textile Engineering, Chemistry, and Science, North Carolina State University, Raleigh, NC 27695-8301 (United States); Zocolo, Guilherme Juliao; Zanoni, Maria Valnice Boldrin [Departamento de Quimica Analitica, Universidade Estadual Paulista Julio de Mesquita Filho, Instituto de Quimica de Araraquara, Araraquara, SP 14801-970 (Brazil); Umbuzeiro, Gisela, E-mail: giselau@ft.unicamp.br [Faculdade de Tecnologia, Universidade Estadual de Campinas, Limeira, SP, 13484-332 (Brazil)

    2013-01-01

    Azo dyes, the most widely used family of synthetic dyes, are often employed as colorants in areas such as textiles, plastics, foods/drugs/cosmetics, and electronics. Following their use in industrial applications, azo dyes have been found in effluents and various receiving waters. Chemical treatment of effluents containing azo dyes includes disinfection using chlorine, which can generate compounds of varying eco/genotoxicity. Among the widely known commercial azo dyes for synthetic fibers is C.I. Disperse Red 1. While this dye is known to exist as a complex mixture, reports of eco/genotoxicity involve the purified form. Bearing in mind the potential for adverse synergistic effects arising from exposures to chemical mixtures, the aim of the present study was to characterize the components of commercial Disperse Red 1 and its chlorine-mediated decoloration products and to evaluate their ecotoxicity and mutagenicity. In conducting the present study, Disperse Red 1 was treated with chlorine gas, and the solution obtained was analyzed with the aid of LC-ESI-MS/MS to identify the components present, and then evaluated for ecotoxicity and mutagenicity, using Daphnia similis and Salmonella/microsome assays, respectively. The results of this study indicated that chlorination of Disperse Red 1 produced four chlorinated aromatic compounds as the main products and that the degradation products were more ecotoxic than the parent dye. These results suggest that a disinfection process using chlorine should be avoided for effluents containing hydrophobic azo dyes such commercial Disperse Red 1. -- Highlights: Black-Right-Pointing-Pointer Aqueous solutions of Disperse Red 1 were treated with chlorine. Black-Right-Pointing-Pointer The chlorination products of Disperse Red 1 were identified using LC-ESI-MS/MS. Black-Right-Pointing-Pointer Daphnia and Salmonella/microsome were employed for eco/genotoxicity testing. Black-Right-Pointing-Pointer The chlorinated dye was more mutagenic

  3. Optical properties of natural dyes on the dye-sensitized solar cells (DSSC) performance

    International Nuclear Information System (INIS)

    Pratiwi, D. D.; Nurosyid, F.; Supriyanto, A.; Suryana, R.

    2016-01-01

    This study reported several natural dyes for application in dye-sensitized solar cells (DSSC). This study aims was to determine the effect of optical absorption properties of natural dyes on efficiency of DSSC. The sandwich structure of DSSC consist of TiO 2 as working electrode, carbon layer as counter electrode, natural dyes as photosensitizer, and electrolyte as electron transfer media. The natural dyes used in this experiment were extracted from dragon fruit anthocyanin, mangosteen peels anthocyanin, and red cabbage anthocyanin. The absorbance of dyes solutions and the adsorption of the dye on the surface of TiO 2 were characterized using UV-Vis spectrophotometer, the quantum efficiency versus wavelength was characterized using incident photon-to-current efficiency (IPCE) measurement system, and the efficiency of DSSC was calculated using I-V meter. UV-Vis characteristic curves showed that wavelength absorption of anthocyanin dye of red cabbage was 450 - 580 nm, anthocyanin of mangosteen peels was 400 - 480 nm, and anthocyanin of dragon fruit was 400 - 650 nm. Absorption spectra of the dye adsorption on the surface of TiO 2 which was resulted in the highest absorbance of red cabbage anthocyanin. IPCE characteristic curves with anthocyanin dye of red cabbage, mangosteen peels anthocyanin, and dragon fruit anthocyanin resulted quantum efficiency of 0.058%; 0.047%; and 0.043%, respectively at wavelength maximum about 430 nm. I-V characteristic curves with anthocyanin dye of red cabbage, mangosteen peels anthocyanin, and dragon fruit anthocyanin resulted efficiency of 0.054%; 0.042%; and 0.024%, respectively. (paper)

  4. Chlorine disinfection of dye wastewater: Implications for a commercial azo dye mixture

    International Nuclear Information System (INIS)

    Vacchi, Francine Inforçato; Albuquerque, Anjaina Fernandes; Vendemiatti, Josiane Aparecida; Morales, Daniel Alexandre; Ormond, Alexandra B.; Freeman, Harold S.; Zocolo, Guilherme Julião; Zanoni, Maria Valnice Boldrin; Umbuzeiro, Gisela

    2013-01-01

    Azo dyes, the most widely used family of synthetic dyes, are often employed as colorants in areas such as textiles, plastics, foods/drugs/cosmetics, and electronics. Following their use in industrial applications, azo dyes have been found in effluents and various receiving waters. Chemical treatment of effluents containing azo dyes includes disinfection using chlorine, which can generate compounds of varying eco/genotoxicity. Among the widely known commercial azo dyes for synthetic fibers is C.I. Disperse Red 1. While this dye is known to exist as a complex mixture, reports of eco/genotoxicity involve the purified form. Bearing in mind the potential for adverse synergistic effects arising from exposures to chemical mixtures, the aim of the present study was to characterize the components of commercial Disperse Red 1 and its chlorine-mediated decoloration products and to evaluate their ecotoxicity and mutagenicity. In conducting the present study, Disperse Red 1 was treated with chlorine gas, and the solution obtained was analyzed with the aid of LC–ESI-MS/MS to identify the components present, and then evaluated for ecotoxicity and mutagenicity, using Daphnia similis and Salmonella/microsome assays, respectively. The results of this study indicated that chlorination of Disperse Red 1 produced four chlorinated aromatic compounds as the main products and that the degradation products were more ecotoxic than the parent dye. These results suggest that a disinfection process using chlorine should be avoided for effluents containing hydrophobic azo dyes such commercial Disperse Red 1. -- Highlights: ► Aqueous solutions of Disperse Red 1 were treated with chlorine. ► The chlorination products of Disperse Red 1 were identified using LC–ESI-MS/MS. ► Daphnia and Salmonella/microsome were employed for eco/genotoxicity testing. ► The chlorinated dye was more mutagenic than the dye itself. ► Chlorination should be avoided in effluents containing azo-dyes.

  5. Rehydrating dye sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Christian Hellert

    2017-05-01

    Full Text Available Dye sensitized solar cells (DSSCs are silicon free, simply producible solar cells. Longevity, however, is a longstanding problem for DSSCs. Due to liquid electrolytes being commonly used, evaporation of the electrolyte causes a dramatic drop in electric output as cells continue to be used unmaintained. Stopping evaporation has been tried in different ways in the past, albeit with differing degrees of success. In a recent project, a different route was chosen, exploring ways of revitalizing DSSCs after varying periods of usage. For this, we focused on rehydration of the cells using distilled water as well as the electrolyte contained in the cells. The results show a significant influence of these rehydration procedures on the solar cell efficiency. In possible applications of DSSCs in tents etc., morning dew may thus be used for rehydration of solar cells. Refillable DSSCs can also be used in tropical climates or specific types of farms and greenhouses where high humidity serves the purpose of rehydrating DSSCs.

  6. Accretion in Saturn's F Ring

    Science.gov (United States)

    Meinke, B. K.; Esposito, L. W.; Stewart, G.

    2012-12-01

    Saturn's F ring is the solar system's principal natural laboratory for direct observation of accretion and disruption processes. The ring resides in the Roche zone, where tidal disruption competes with self-gravity, which allows us to observe the lifecycle of moonlets. Just as nearby moons create structure at the B ring edge (Esposito et al. 2012) and the Keeler gap (Murray 2007), the F ring "shepherding" moons Prometheus and Pandora stir up ring material and create observably changing structures on timescales of days to decades. In fact, Beurle et al (2010) show that Prometheus makes it possible for "distended, yet gravitationally coherent clumps" to form in the F ring, and Barbara and Esposito (2002) predicted a population of ~1 km bodies in the ring. In addition to the observations over the last three decades, the Cassini Ultraviolet Imaging Spectrograph (UVIS) has detected 27 statistically significant features in 101 occultations by Saturn's F ring since July 2004. Seventeen of those 27 features are associated with clumps of ring material. Two features are opaque in occultation, which makes them candidates for solid objects, which we refer to as Moonlets. The 15 other features partially block stellar signal for 22 m to just over 3.7 km along the radial expanse of the occultation. Upon visual inspection of the occultation profile, these features resemble Icicles, thus we will refer to them as such here. The density enhancements responsible for such signal attenuations are likely due to transient clumping of material, evidence that aggregations of material are ubiquitous in the F ring. Our lengthy observing campaign reveals that Icicles are likely transient clumps, while Moonlets are possible solid objects. Optical depth is an indicator of clumping because more-densely aggregated material blocks more light; therefore, it is natural to imagine moonlets as later evolutionary stage of icicle, when looser clumps of material compact to form a feature that appears

  7. Double acting stirling engine piston ring

    Science.gov (United States)

    Howarth, Roy B.

    1986-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  8. Study for ILC Damping Ring at KEKB

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, J.W.; Fukuma, H.; Kanazawa, K.I.; Koiso, H.; Masuzawa, M.; Ohmi, Kazuhito; Ohnishi, Y.; Oide, Katsunobu; Suetsugu, Y.; Tobiyama, M.; /KEK, Tsukuba; Pivi, M.; /SLAC

    2011-11-04

    ILC damping ring consists of very low emittance electron and positron storage rings. It is necessary for ILC damping ring to study electron cloud effects in such low emittance positron ring. We propose a low emittance operation of KEKB to study the effects.

  9. Extension lifetime for dye-sensitized solar cells through multiple dye adsorption/desorption process

    Science.gov (United States)

    Chiang, Yi-Fang; Chen, Ruei-Tang; Shen, Po-Shen; Chen, Peter; Guo, Tzung-Fang

    2013-03-01

    In this study, we propose a novel concept of extending the lifetime of dye-sensitized solar cells (DSCs) and reducing the costs of re-conditioning DSCs by recycling the FTO/TiO2 substrates. The photovoltaic performances of DSCs using substrates with various cycles of dye uptake and rinse off history are tested. The results show that dye adsorption and Voc are significantly increased under multiple dye adsorption/desorption process and resulted in the improvement of power conversion efficiency. Moreover, the dyeing kinetics is faster after multiple recycling processes, which is favorable for the industrial application. With surface analysis and charge transport characteristics, we also demonstrate the optimal functionality of TiO2/dye interface for the improved Voc and efficiency. The results confirm that the improved performances are due to increased dye loading and dense packing of dye molecules. Our results are beneficial for the understanding on the extension of DSCs lifetime after long-term operation in the application of DSC modules. This approach may also be applied in the replacement of newly synthesized photosensitizes to the active cells.

  10. DYEING COTTON WITH EISENIA BICYCLIS AS NATURAL DYE USING DIFFERENT BIOMORDANTS

    Directory of Open Access Journals (Sweden)

    BONET Mª Ángeles

    2015-05-01

    Full Text Available Natural dyes are known for their use in coloring of food substrate, leather as well as natural protein fibers like wool, silk and cotton as major areas of application since pre-historic times. Nowadays, there has been revival of the growing interest on the application of natural dyes on natural fibers due to worldwide environmental consciousness. Some researchers focus their studies on the improvement of these dyes using mordants. Most works use metallic mordants like aluminum or iron are used, but some of them are hazardous. In this work we used a biomordant to solve environmental problems caused by metallic mordants. The effects of chitosan weight molecular in mordanting on the dyeing characteristics and the UV protection property were examined in this study. Chitosan mordanted Eisenia Bicyclis dyed cotton showed better dyeing characteristic and higher UV protection property compared with undyed cotton fabric. To analyze the differences of the dyeing, reflection spectrophotometer was used, evaluating the results of CIELAB color difference values and the strength color (in terms of K/S value. We conclude that the type of chitosan used affect the dyeing efficiency and the UV protection, showing different behavior between dye sample using chitosan with low or medium molecular weight.

  11. Organic dye for highly efficient solid-state dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt-Mende, L.; Bach, U.; Humphry-Baker, R.; Ito, S.; Graetzel, M. [Institut des Sciences et Ingenierie Chimiques (ISIC), Laboratoire de Photonique et Interfaces (LPI), Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Horiuchi, T.; Miura, H. [Technology Research Laboratory, Corporate Research Center, Mitsubishi Paper Mills Limited, 46, Wadai, Tsukuba City, Ibaraki 300-4247 (Japan); Uchida, S. [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 1-1 Katahira 2-chome, Aoba-ku, Sendai 980-8577 (Japan)

    2005-04-04

    The feasibility of solid-state dye-sensitized solar cells as a low-cost alternative to amorphous silicon cells is demonstrated. Such a cell with a record efficiency of over 4 % under simulated sunlight is reported, made possible by using a new organic metal-free indoline dye as the sensitizer with high absorption coefficient. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  12. Isolation and screening of azo dye decolorizing bacterial isolates from dye-contaminated textile wastewater

    Directory of Open Access Journals (Sweden)

    Shahid Mahmood

    2011-04-01

    Full Text Available Azo dyes are released into wastewater streams without any pretreatment and pollute water and soilenvironments. To prevent contamination of our vulnerable resources, removal of these dye pollutants is of greatimportance. For this purpose, wastewater samples were collected from dye-contaminated sites of Faisalabad. About200 bacterial isolates were isolated through enrichment and then tested for their potential to remove RemazolBlack-B azo dye in liquid medium. Five bacterial isolates capable of degrading Remazol Black-B azo dye efficientlywere screened through experimentation on modified mineral salt medium. Isolate SS1 (collected from wastewater ofSupreme Textile Industry was able to completely remove the Remazol Black-B dye from the liquid medium in 18 h.Further, the isolate showed the best performance at the dye concentration of 100 mg L-1 medium (pH 7 and attemperature 35oC. Similarly, yeast extract proved to be the best carbon source for decolorization purpose. Theresults imply that the isolate SS1 could be used for the removal of the reactive dyes from textile effluents.

  13. Manipulation of vortex rings for flow control

    International Nuclear Information System (INIS)

    Toyoda, Kuniaki; Hiramoto, Riho

    2009-01-01

    This paper reviews the dynamics of vortex rings and the control of flow by the manipulation of vortex rings. Vortex rings play key roles in many flows; hence, the understanding of the dynamics of vortex rings is crucial for scientists and engineers dealing with flow phenomena. We describe the structures and motions of vortex rings in circular and noncircular jets, which are typical examples of flows evolving into vortex rings. For circular jets the mechanism of evolving, merging and breakdown of vortex rings is described, and for noncircular jets the dynamics of three-dimensional deformation and interaction of noncircular vortex rings under the effect of self- and mutual induction is discussed. The application of vortex-ring manipulation to the control of various flows is reviewed with successful examples, based on the relationship between the vortex ring dynamics and the flow properties. (invited paper)

  14. Structure and dynamics of ringed galaxies

    International Nuclear Information System (INIS)

    Buta, R.J.

    1984-01-01

    In many spiral and SO galaxies, single or multiple ring structures are visible in the disk. These inner rings (r), outer rings (R), and nuclear rings (nr) were investigated by means of morphology, photometry, and spectroscopy in order to provide basic data on a long neglected phenomenon. The metric properties of each ring are investigated and found to correlate with the structure of the parent galaxy. When properly calibrated, inner rings in barred (SB) systems can be used as geometric extragalactic distance indicators to distances in excess of 100 Mpc. Other statistics are presented that confirm previous indications that the rings have preferred shapes, relative sizes, and orientations with respect to bars. A survey is made of the less homogeneous non-barred (SA) ringed systems, and the causes of the inhomogeneity are isolated. It is shown that rings can be identified in multiple-ring SA systems that are exactly analogous to those in barred spirals

  15. Bioremediation of coractive blue dye by using Pseudomonas spp. isolated from the textile dye wastewater

    Science.gov (United States)

    Sunar, N. M.; Mon, Z. K.; Rahim, N. A.; Leman, A. M.; Airish, N. A. M.; Khalid, A.; Ali, R.; Zaidi, E.; Azhar, A. T. S.

    2018-04-01

    Wastewater released from the textile industry contains variety substances, mainly dyes that contains a high concentration of color and organic. In this study the potential for bacterial decolorization of coractive blue dye was examined that isolated from textile wastewater. The optimum conditions were determined for pH, temperature and initial concentration of the dye. The bacteria isolated was Pseudomonas spp. The selected bacterium shows high decolorization in static condition at an optimum of pH 7.0. The Pseudomonas spp. could decolorize coractive blue dye by 70% within 24 h under static condition, with the optimum of pH 7.0. Decolorization was confirmed by using UV-VIS spectrophotometer. This present study suggests the potential of Pseudomonas spp. as an approach in sustainable bioremediation that provide an efficient method for decolorizing coractive blue dye.

  16. Pure subrings of the rings

    International Nuclear Information System (INIS)

    Tsarev, Andrei V

    2009-01-01

    Pure subrings of finite rank in the Z-adic completion of the ring of integers and in its homomorphic images are considered. Certain properties of these rings are studied (existence of an identity element, decomposability into a direct sum of essentially indecomposable ideals, condition for embeddability into a csp-ring, etc.). Additive groups of these rings and conditions under which these rings are subrings of algebraic number fields are described. Bibliography: 12 titles.

  17. Primitivity and weak distributivity in near rings and matrix near rings

    International Nuclear Information System (INIS)

    Abbasi, S.J.

    1993-08-01

    This paper shows the structure of matrix near ring constructed over a weakly distributive and primative near ring. It is proved that a weakly distributive primitive near ring is a ring and the matrix near rings constructed over it is also a bag. (author). 14 refs

  18. Ring wormholes via duality rotations

    Directory of Open Access Journals (Sweden)

    Gary W. Gibbons

    2016-09-01

    Full Text Available We apply duality rotations and complex transformations to the Schwarzschild metric to obtain wormhole geometries with two asymptotically flat regions connected by a throat. In the simplest case these are the well-known wormholes supported by phantom scalar field. Further duality rotations remove the scalar field to yield less well known vacuum metrics of the oblate Zipoy–Voorhees–Weyl class, which describe ring wormholes. The ring encircles the wormhole throat and can have any radius, whereas its tension is always negative and should be less than −c4/4G. If the tension reaches the maximal value, the geometry becomes exactly flat, but the topology remains non-trivial and corresponds to two copies of Minkowski space glued together along the disk encircled by the ring. The geodesics are straight lines, and those which traverse the ring get to the other universe. The ring therefore literally produces a hole in space. Such wormholes could perhaps be created by negative energies concentrated in toroidal volumes, for example by vacuum fluctuations.

  19. HYPERAUTOFLUORESCENT RING IN AUTOIMMUNE RETINOPATHY

    Science.gov (United States)

    LIMA, LUIZ H.; GREENBERG, JONATHAN P.; GREENSTEIN, VIVIENNE C.; SMITH, R. THEODORE; SALLUM, JULIANA M. F.; THIRKILL, CHARLES; YANNUZZI, LAWRENCE A.; TSANG, STEPHEN H.

    2015-01-01

    Purpose To report the presence of a hyperautofluorescent ring and corresponding spectral-domain optical coherence tomography (SD-OCT) features seen in patients with autoimmune retinopathy. Methods All eyes were evaluated by funduscopic examination, full-fleld electroretinography, fundus autofluorescence, and SD-OCT. Further confirmation of the diagnosis was obtained with immunoblot and immunohistochemistry testing of the patient’s serum. Humphrey visual fields and microperimetry were also performed. Results Funduscopic examination showed atrophic retinal pigment epithelium (RPE) associated with retinal artery narrowing but without pigment deposits. The scotopic and photopic full-field electroretinograms were nondetectable in three patients and showed a cone–rod pattern of dysfunction in one patient. Fundus autofluorescence revealed a hyperautofluorescent ring in the parafoveal region, and the corresponding SD-OCT demonstrated loss of the photoreceptor inner segment–outer segment junction with thinning of the outer nuclear layer from the region of the hyperautofluorescent ring toward the retinal periphery. The retinal layers were generally intact within the hyperautofluorescent ring, although the inner segment–outer segment junction was disrupted, and the outer nuclear layer and photoreceptor outer segment layer were thinned. Conclusion This case series revealed the structure of the hyperautofluorescent ring in autoimmune retinopathy using SD-OCT. Fundus autofluorescence and SD-OCT may aid in the diagnosis of autoimmune retinopathy and may serve as a tool to monitor its progression. PMID:22218149

  20. Chromed Leather Dyeing Peculiarities when Deliming with Peracetic Acid

    OpenAIRE

    Kęstutis BELEŠKA; Virgilijus VALEIKA; Justa ŠIRVAITYTĖ; Violeta VALEIKIENĖ

    2013-01-01

    The research was aimed to investigate the influence of deliming with peracetic acid on leather dyeing kinetics. Hydrophobic C.I. Acid Red 213 and hydrophilic C.I. Acid Red 423 dyes were used. Sorption of dye depends on hydrophobicity/hydrophility of dye and dyeing temperature. Equilibrium of process is reached faster using hydrophobic C.I. Acid Red 213 at 45 ºC. However, both control and experimental leather fibres adsorb more hydrophilic dye C.I. Acid Red 423 and this fact does not depend on...

  1. The effect of dendrimer on cotton dyeability with direct dyes

    Directory of Open Access Journals (Sweden)

    Khakzar Bafrooei F.

    2014-01-01

    Full Text Available Pretreatment of cotton fabric with poly(propylene imine dendrimer enhanced its colour strength using C.I. Direct Red 81 and C.I. Direct Blue 78. Application of this dendrimer and the direct dye simultaneously on cotton fabric by the exhaust and the continuous dyeing method were studied; slight improvements in the dyeing results were obtained. Pretreatment of the cotton fabric with dendrimer in an emulsion form using the pad-dry method followed by continuous dyeing markedly increased the colour strength. In addition, level dyeing was obtained, and no negative effects on the fastness properties of the dyes used were observed.

  2. The effect of NCS- on the radiation-induced decoloration of azo and anthraquinone dyes in N2O-saturated aqueous solutions

    International Nuclear Information System (INIS)

    Suzuki, Nobutake; Hotta, Hiroshi

    1977-01-01

    The radiation-induced decoloration of azo and anthraquinone dyes was studied in N 2 O-saturated aqueous solutions containing NCS - . In the N 2 O-saturated solutions, the decoloration yield, G(-Dye), increased markedly upon the addition of NCS - , which is an efficient scavenger of the OH radical-that is, from 1.46 up to 2.10 for Acid Red 265 and from 0.51 up to 1.51 for Acid Blue 40 upon the addition of 1 mM NCS - . In the nitrogen-saturated solutions, however, the G(-Dye) decreased upon the addition of NCS - . It is concluded that the increase in the G(-Dye) upon the addition of NCS - in the N 2 O-saturated solutions is mainly attributable to the attack of the radical anion (NCS) 2 - on the ring structure of the dyes. This radical anion is formed through the following path: NCS - +OH → NCS+OH - and NCS+NCS - reversible (NCS) 2 - . At low NCS - concentrations, the G(-Dye) decreased for Acid Red 265 and increased for Acid Blue 40. This may be attributable to the larger reactivity of (NCS) 2 - on Acid Blue 40 than on Acid Red 265. (auth.)

  3. The thermal-hydraulic for the new technologies: the micro-fluidics; La thermohydraulique au service des nouvelles technologies: la microfluidique

    Energy Technology Data Exchange (ETDEWEB)

    Crecy, F. de; Gruss, A.; Bricard, A.; Excoffon, J

    2000-07-01

    The micro-fluidics can be defined as the fluid flow in little canals. This scale offers a great interest for the biotechnology type. In this paper, the authors present this fluids form and detail the researches performed at the Department of Physics and Thermal-hydraulics of the CEA, in the domain of the physical properties characterization and of the numerical two-phase direct simulation. (A.L.B.)

  4. Preparation and Testing of Impedance-based Fluidic Biochips with RTgill-W1 Cells for Rapid Evaluation of Drinking Water Samples for Toxicity

    Science.gov (United States)

    2016-03-07

    109 | e53555 | Page 1 of 8 Video Article Preparation and Testing of Impedance-based Fluidic Biochips with RTgill-W1 Cells for Rapid Evaluation of...www.jove.com/ video /53555 DOI: doi:10.3791/53555 Keywords: Environmental Sciences, Issue 109, Fish cells, impedance, sensors, biochip, water toxicity...sensitivity to cholinesterase-inhibiting pesticides . Applications for this toxicity detector are for rapid field-portable testing of drinking water

  5. CMB lensing and giant rings

    Energy Technology Data Exchange (ETDEWEB)

    Rathaus, Ben; Itzhaki, Nissan, E-mail: nitzhaki@post.tau.ac.il, E-mail: ben.rathaus@gmail.com [Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel-Aviv University, Ramat-Aviv, 69978 (Israel)

    2012-05-01

    We study the CMB lensing signature of a pre-inationary particle (PIP), assuming it is responsible for the giant rings anomaly that was found recently in the WMAP data. Simulating Planck-like data we find that generically the CMB lensing signal to noise ratio associated with such a PIP is quite small and it would be difficult to cross correlate the temperature giant rings with the CMB lensing signal. However, if the pre-inationary particle is also responsible for the bulk flow measured from the local large scale structure, which happens to point roughly at the same direction as the giant rings, then the CMB lensing signal to noise ratio is fairly significant.

  6. Proton storage ring summer workshop

    International Nuclear Information System (INIS)

    Lawrence, G.P.; Cooper, R.K.

    1977-10-01

    During the week of August 16, 1976 a Workshop was held at the Los Alamos Scientific Laboratory (LASL) on the Proton Storage Ring (PSR) for the Weapons Neutron Research Facility (WNRF). Written contributions were solicited from each of the participants in the Workshop, and the contributions that were received are presented. The papers do not represent polished or necessarily complete work, but rather represent ''first cuts'' at their respective areas. Topics covered include: (1) background information on the storage ring; (2) WNRF design; (3) rf transient during filling; (4) rf capture; (5) beam bunch compression; (6) transverse space charge limits; (7) transverse resistive instability in the PSR; (8) longitudinal resistive instability; (9) synchrotron frequency splitting; (10) E Quintus Unum--off resonance; (11) first harmonic bunching in the storage ring; (12) kicker considerations; (13) beam extraction; (14) ferrite kicker magnets; and (15) E Quintus Unum: a possible ejection scheme

  7. New Main Ring control system

    International Nuclear Information System (INIS)

    Seino, K.; Anderson, L.; Ducar, R.; Franck, A.; Gomilar, J.; Hendricks, B.; Smedinghoff, J.

    1990-03-01

    The Fermilab Main Ring control system has been operational for over sixteen years. Aging and obsolescence of the equipment make the maintenance difficult. Since the advent of the Tevatron, considerable upgrades have been made to the controls of all the Fermilab accelerators except the Main Ring. Modernization of the equipment and standardization of the hardware and software have thus become inevitable. The Tevatron CAMAC serial system has been chosen as a basic foundation in order to make the Main Ring control system compatible with the rest of the accelerator complex. New hardware pieces including intelligent CAMAC modules have been designed to satisfy unique requirements. Fiber optic cable and repeaters have been installed in order to accommodate new channel requirements onto the already saturated communication medium system. 8 refs., 2 figs

  8. Physical and chemical investigations on natural dyes

    Science.gov (United States)

    Acquaviva, S.; D'Anna, E.; de Giorgi, M. L.; Della Patria, A.; Baraldi, P.

    2010-09-01

    Natural dyes have been used extensively in the past for many purposes, such us to colour fibers and to produce inks, watercolours and paints, but their use declined rapidly after the discovery of synthetic colours. Nowadays we witness a renewed interest, as natural dyes are neither toxic nor polluting. In this work, physical and chemical properties of four selected dyes, namely red (Madder), yellow (Weld and Turmeric) and blue (Woad) colours, produced by means of traditional techniques at the Museo dei Colori Naturali (Lamoli, Italy), have been investigated. The chromatic properties have been studied through the reflectance spectroscopy, a non-invasive technique for the characterisation of chromaticity. Reflection spectra both from powders and egg-yolk tempera models have been acquired to provide the typical features of the dyes in the UV-vis spectral range. Moreover, to assess the feasibility of laser cleaning procedures, tempera layers were investigated after irradiation with an excimer laser. Micro Raman spectroscopy, Scanning Electron Microscopy and Energy Dispersive X-Ray analyses have complemented the survey, returning compositional and morphological information as well. Efforts have been made to give scientific feedback to the production processes and to support the research activity in the restoration of the artworks where these dyes were employed.

  9. Tree rings and radiocarbon calibration

    International Nuclear Information System (INIS)

    Barbetti, M.

    1999-01-01

    Only a few kinds of trees in Australia and Southeast Asia are known to have growth rings that are both distinct and annual. Those that do are therefore extremely important to climatic and isotope studies. In western Tasmania, extensive work with Huon pine (Lagarostrobos franklinii) has shown that many living trees are more than 1,000 years old, and that their ring widths are sensitive to temperature, rainfall and cloud cover (Buckley et al. 1997). At the Stanley River there is a forest of living (and recently felled) trees which we have sampled and measured. There are also thousands of subfossil Huon pine logs, buried at depths less than 5 metres in an area of floodplain extending over a distance of more than a kilometre with a width of tens of metres. Some of these logs have been buried for 50,000 years or more, but most of them belong to the period between 15,000 years and the present. In previous expeditions in the 1980s and 1990s, we excavated and sampled about 350 logs (Barbetti et al. 1995; Nanson et al. 1995). By measuring the ring-width patterns, and matching them between logs and living trees, we have constructed a tree-ring dated chronology from 571 BC to AD 1992. We have also built a 4254-ring floating chronology (placed by radiocarbon at ca. 3580 to 7830 years ago), and an earlier 1268-ring chronology (ca. 7,580 to 8,850 years ago). There are many individuals, or pairs of logs which match and together span several centuries, at 9,000 years ago and beyond

  10. Adiabatic compression of ion rings

    International Nuclear Information System (INIS)

    Larrabee, D.A.; Lovelace, R.V.

    1982-01-01

    A study has been made of the compression of collisionless ion rings in an increasing external magnetic field, B/sub e/ = zB/sub e/(t), by numerically implementing a previously developed kinetic theory of ring compression. The theory is general in that there is no limitation on the ring geometry or the compression ratio, lambdaequivalentB/sub e/ (final)/B/sub e/ (initial)> or =1. However, the motion of a single particle in an equilibrium is assumed to be completely characterized by its energy H and canonical angular momentum P/sub theta/ with the absence of a third constant of the motion. The present computational work assumes that plasma currents are negligible, as is appropriate for a low-temperature collisional plasma. For a variety of initial ring geometries and initial distribution functions (having a single value of P/sub theta/), it is found that the parameters for ''fat'', small aspect ratio rings follow general scaling laws over a large range of compression ratios, 1 3 : The ring radius varies as lambda/sup -1/2/; the average single particle energy as lambda/sup 0.72/; the root mean square energy spread as lambda/sup 1.1/; and the total current as lambda/sup 0.79/. The field reversal parameter is found to saturate at values typically between 2 and 3. For large compression ratios the current density is found to ''hollow out''. This hollowing tends to improve the interchange stability of an embedded low β plasma. The implications of these scaling laws for fusion reactor systems are discussed

  11. Recent results of the investigation of a micro-fluidic sampling chip and sampling system for hot cell aqueous processing streams

    International Nuclear Information System (INIS)

    Tripp, J.; Smith, T.; Law, J.

    2013-01-01

    A Fuel Cycle Research and Development project has investigated an innovative sampling method that could evolve into the next generation sampling and analysis system for metallic elements present in aqueous processing streams. Initially sampling technologies were evaluated and micro-fluidic sampling chip technology was selected and tested. A conceptual design for a fully automated microcapillary-based system was completed and a robotic automated sampling system was fabricated. The mechanical and sampling operation of the completed sampling system was investigated. Different sampling volumes have been tested. It appears that the 10 μl volume has produced data that had much smaller relative standard deviations than the 2 μl volume. In addition, the production of a less expensive, mass produced sampling chip was investigated to avoid chip reuse thus increasing sampling reproducibility/accuracy. The micro-fluidic-based robotic sampling system's mechanical elements were tested to ensure analytical reproducibility and the optimum robotic handling of micro-fluidic sampling chips. (authors)

  12. Chromed Leather Dyeing Peculiarities when Deliming with Peracetic Acid

    Directory of Open Access Journals (Sweden)

    Kęstutis BELEŠKA

    2013-05-01

    Full Text Available The research was aimed to investigate the influence of deliming with peracetic acid on leather dyeing kinetics. Hydrophobic C.I. Acid Red 213 and hydrophilic C.I. Acid Red 423 dyes were used. Sorption of dye depends on hydrophobicity/hydrophility of dye and dyeing temperature. Equilibrium of process is reached faster using hydrophobic C.I. Acid Red 213 at 45 ºC. However, both control and experimental leather fibres adsorb more hydrophilic dye C.I. Acid Red 423 and this fact does not depend on temperature. The diffusion coefficient of dye C.I. Acid Red 423 calculated according to Weisz model is higher when dyeing conventional leather. The change of deliming method has influence on chromed leather dyeing but this influence is not significant. The adsorption ability of control leather fibres at 30 ºC and 45 ºC is higher using both dyes as compared to the dyeing the experimental one. The increase of dyeing temperature increases the adsorption ability independently on the sort of leather fibres. Such dependence of the adsorption ability on the temperature shows that hydrophobic action and van der Waals forces prevail between dye and fibres during dyeing process. The Gibbs energy changes show that adsorption of both dyes by leather fibres independently on their sort is a spontaneous process. The affinity of both dyes to conventional leather fibres is higher comparing with experimental one. The change of enthalpy is positive in all cases, and it means that the driving force of the dyeing is the change of entropy.DOI: http://dx.doi.org/10.5755/j01.ms.19.2.4431

  13. Radiation Degradation of some Commercial Dyes in Wastewater

    International Nuclear Information System (INIS)

    Dessouki, A.M.; Abdel-Aal, S.E.

    1999-01-01

    The degradation Kinetic due to irradiation of aqueous solutions of some commercial dyes, (Reactive Blue Brilliant, Reactive Yellow and Basic Blue 9 Dye (Methylene Blue 2 B), was studied. Factors affecting radiolysis of the dye such as dye concentration, irradiation dose, dose rate and ph of the solutions were studied. The effects of different additives such as nitrogen oxygen, hydrogen peroxide and sodium hypochlorite on the degradation process were investigated. The effect of irradiation dose on the different dye solutions at various concentrations, showed that the Reactive Yellow G. was very sensitive to gamma radiation. The effect of the ph of the dye solutions proved to very according type of the dye. Synergistic treatment of the dye solutions by irradiation and conventional method showed that saturation of the dye solutions with nitrogen did not enhance the radiation degradation of the dyes, while addition of oxygen resulted in a remarkable enhancement of the degradation of the dyes. Also, the addition of sodium hypochlorite (5%) and the oxidation by hydrogen peroxide resulted in more radiation degradation, Also, adsorption of the dyes onto Ga and some ion exchangers showed that Ga has the highest adsorption capacity. Radiation degradation of the toxic dye pollutants and their removal from wastewater down to concentrations not exceeding the maximum permissible concentration (Mpc) according to international standards, proved to be better than conventional methods of purification alone

  14. Estimation of the basicity of the donor strength of terminal groups in cationic polymethine dyes

    Science.gov (United States)

    Kachkovsky, Alexey; Obernikhina, Nataliya; Prostota, Yaroslav; Naumenko, Antonina; Melnyk, Dmitriy; Yashchuk, Valeriy

    2018-02-01

    The well-known conception of the basicity of the terminal groups in the cationic polymethine dyes showing their donor properties is examined (considered) in detail. The various approachs are proposed to quantitative quantum-chemical estimation of a donor strength of the terminal groups in cationic polymethine dyes: shift of the frontier levels upon introducing terminal residues in comparison with unsybstituted polymethine cation; transferring of the electron density from the terminal groups to the polymethine chain and hence manifested itself as a redistribution of total positive charge between molecular fragments; changes of the charge alternation at carbon atoms along the chain. All approach correlate between them and agree with the concept of the basicity as a capability of terminal heterocycles to show its donor properties in the polymethine dyes. The results of the fulfilled calculations of numerous examples are presented; the proposed parameters point correctly the tendency in the change donor strength upon varying of the chemical constitution: the dimension of cycle, introducing of various heteroatoms, linear or angular annelating by benzene ring; as well as direct to take into consideration the existence of local levels.

  15. Evaluation of the photodynamic activity of Xanthene Dyes on Artemia salina described by chemometric approaches

    Directory of Open Access Journals (Sweden)

    Diogo S. Pellosi

    2013-10-01

    Full Text Available The development of drugs for photodynamic therapy (PDT is an important area of research due to their growing use in medical applications. Therefore, it is important to develop new bioassay methods for PDT photosensitizers that are inexpensive, easy to handle and highly sensitive to environmental conditions. Xanthene dyes (fluorescein, rose bengal B, erythrosine B and eosin Y with LED light sources were investigated using Artemia salina as a bioindicator of photodynamic activity. In this study, three factors were investigated: (i photosensitizers concentration, (ii the LED irradiation time and (iii the waiting time between the addition of the photosensitizers and the beginning of the irradiation. To analyze the photo-killing of A. salina, it was employed a 23 full factorial design. The death of A. salina was related to dye structure and the interaction between the irradiation time and the photosensitizers concentration. About 60% of crustaceans death was obtained using rose bengal B, which presentes the highest quantum yield of singlet oxygen due to the number of iodide substituents in the xanthenes ring. The proposed bioassay using A. salina, xanthene dyes and LED irradiation was found suitable for quantitative PDT drug evaluation.

  16. Superconducting proton ring for PETRA

    International Nuclear Information System (INIS)

    Baynham, E.

    1979-01-01

    A powerful new facility for colliding beam physics could be provided by adding a proton storage ring in the range of several hundred GeV to the electron-positron storage ring PETRA at DESY. This can be achieved in an economic way utilizing the PETRA tunnel and taking advantage of the higher magnetic fields of superconducting magnets which would be placed above or below the PETRA magnets. A central field of 4 Tesla in the bending magnets corresponds to a proton energy of 225 GeV. (orig.)

  17. The Cryogenic Storage Ring CSR

    OpenAIRE

    von Hahn, Robert; Becker, Arno; Berg, Felix; Blaum, Klaus; Breitenfeldt, Christian; Fadil, Hisham; Fellenberger, Florian; Froese, Michael; George, Sebastian; Göck, Jürgen; Grieser, Manfred; Grussie, Florian; Guerin, Elisabeth A.; Heber, Oded; Herwig, Philipp

    2016-01-01

    An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion a...

  18. Supersymmetric rings in field theory

    International Nuclear Information System (INIS)

    Blanco-Pillado, Jose J.; Redi, Michele

    2006-01-01

    We study the dynamics of BPS string-like objects obtained by lifting monopole and dyon solutions of N = 2 Super-Yang-Mills theory to five dimensions. We present exact traveling wave solutions which preserve half of the supersymmetries. Upon compactification this leads to macroscopic BPS rings in four dimensions in field theory. Due to the fact that the strings effectively move in six dimensions the same procedure can also be used to obtain rings in five dimensions by using the hidden dimension

  19. Damping ring designs and issues

    International Nuclear Information System (INIS)

    Wolski, Andrzej; Decking, Winfried

    2003-01-01

    The luminosity performance of a future linear collider (LC) will depend critically on the performance of the damping rings. The design luminosities of the current LC proposals require rings with very short damping times, large acceptance, low equilibrium emittance and high beam intensity. We discuss the design strategies for lattices achieving the goals of dynamical stability, examine the challenges for alignment and coupling correction, and consider a variety of collective effects that threaten to limit beam quality. We put the design goals in context by referring to the experience of operating facilities, and outline the further research and development that is needed

  20. Laparoscopic appendicectomy using endo-ring applicator and fallope rings

    International Nuclear Information System (INIS)

    Ali, Iyoob V; Maliekkal, Joji I

    2009-01-01

    Wider adoption of laparoscopic appendicectomy (LA) is limited by problems in securing the appendiceal base as well as the cost and the duration compared with the open procedure. The objective of this study was to assess the feasibility and efficacy of a new method for securing the appendiceal base in LA, so as to make the entire procedure simpler and cheaper, and hence, more popular. Twenty-five patients who were candidates for appendicectomy (emergency as well as elective) and willing for the laparoscopic procedure were selected for this study. Ports used were 10 mm at the umbilicus, 5 mm at the lower right iliac fossa, and 10 mm at the left iliac fossa. Extremely friable, ruptured, or turgid organs of diameters larger than 8 mm were excluded from the study. The mesoappendix was divided close to the appendix by diathermy. Fallope rings were applied to the appendiceal base using a special ring applicator, and the appendix was divided and extracted through the lumen of the applicator. The procedure was successful in 23 (92%) cases, and the mean duration of the procedure was 20 minutes (15-32 minutes). There were no procedural complications seen during a median follow-up of two weeks. The equipment and rings were cheaper when compared with that of the standard methods of securing the base of the appendix. LA using fallope rings is a safe, simple, easy-to-learn, and economically viable method. (author)

  1. Quantum dot-dye hybrid systems for energy transfer applications

    International Nuclear Information System (INIS)

    Ren, Ting

    2010-01-01

    In this thesis, we focus on the preparation of energy transfer-based quantum dot (QD)-dye hybrid systems. Two kinds of QD-dye hybrid systems have been successfully synthesized: QD-silica-dye and QD-dye hybrid systems. In the QD-silica-dye hybrid system, multishell CdSe/CdS/ZnS QDs were adsorbed onto monodisperse Stoeber silica particles with an outer silica shell of thickness 2-24 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the total sensitized acceptor emission, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of QDs with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with Monte-Carlo simulations, and by control experiments confirming attractive interactions between QDs and Texas Red freely dissolved in solution. New QD-dye hybrid system consisting of multishell QDs and organic perylene dyes have been synthesized. We developed a versatile approach to assemble extraordinarily stable QD-dye hybrids, which uses dicarboxylate anchors to bind rylene dyes to QD. This system yields a good basis to study the energy transfer between QD and dye because of its simple and compact design: there is no third kind of molecule linking QD and dye; no spacer; and the affinity of the functional group to the QD surface is strong. The FRET signal was measured for these complexes as a function of both dye to QD ratio and center-to-center distance between QD and dye by controlling number of covered ZnS layers. Data showed that fluorescence resonance energy transfer (FRET) was the dominant mechanism of the energy transfer in our QD-dye hybrid system. FRET efficiency can be controlled by not only adjusting the number of dyes on the QD surface or the QD to dye distance, but also properly choosing different dye and QD components. Due to the strong stability, our QD-dye

  2. Quantum dot-dye hybrid systems for energy transfer applications

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Ting

    2010-07-01

    In this thesis, we focus on the preparation of energy transfer-based quantum dot (QD)-dye hybrid systems. Two kinds of QD-dye hybrid systems have been successfully synthesized: QD-silica-dye and QD-dye hybrid systems. In the QD-silica-dye hybrid system, multishell CdSe/CdS/ZnS QDs were adsorbed onto monodisperse Stoeber silica particles with an outer silica shell of thickness 2-24 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the total sensitized acceptor emission, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of QDs with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with Monte-Carlo simulations, and by control experiments confirming attractive interactions between QDs and Texas Red freely dissolved in solution. New QD-dye hybrid system consisting of multishell QDs and organic perylene dyes have been synthesized. We developed a versatile approach to assemble extraordinarily stable QD-dye hybrids, which uses dicarboxylate anchors to bind rylene dyes to QD. This system yields a good basis to study the energy transfer between QD and dye because of its simple and compact design: there is no third kind of molecule linking QD and dye; no spacer; and the affinity of the functional group to the QD surface is strong. The FRET signal was measured for these complexes as a function of both dye to QD ratio and center-to-center distance between QD and dye by controlling number of covered ZnS layers. Data showed that fluorescence resonance energy transfer (FRET) was the dominant mechanism of the energy transfer in our QD-dye hybrid system. FRET efficiency can be controlled by not only adjusting the number of dyes on the QD surface or the QD to dye distance, but also properly choosing different dye and QD components. Due to the strong stability, our QD-dye

  3. Design of an optical and micro-fluidic sensor for concentration measurement by photo-thermal effect

    International Nuclear Information System (INIS)

    Schimpf, A.

    2011-01-01

    This work has been done in the context of fuel reprocessing in the nuclear industry. In fact, the handling of nuclear waste is one of the major issues in the nuclear industry. Its implications reach from economical to political to ecological dimensions. Since used nuclear fuel consists of 97% of recyclable substances, many countries have chosen to reprocess used fuel, not only for economical reasons but also to limit the quantity of nuclear waste. The most widely employed extraction technique is the PUREX process where the used fuel is diluted in nitric acid. The recyclable compounds can then be extracted by solvent techniques. Such processes need to be monitored crucially. However, nowadays, the process supervision is carried out by manually sampling the radioactive effluents and analyzing them in external laboratories. Not only prone to potential risks, this approach is little responsive and produces radio-toxic samples that cannot be reintroduced in the nuclear fuel cycle. In this study, we therefore present the developpement of a micro-fluidic glass sensor, based on the detection of a photothermal effect induced in the sample fluid. Micro-fluidic allows fluid handling on a microliter-scale and can therefore significantly reduce the sample volume and thereby the radio-toxicity of the analyzed fluids. Photothermal spectrometry is well suited for small-scale sample analysis since its sensitivity does not rely on the length of optical interaction with the analyte. The photothermal effect is a local refractive index variation due to the absorption of photons by the analyte species which are contained in the sample. On the sensor chip, the index refraction change is being sensed by an integrated Young interferometer made by ion-exchange in glass. The probed volume in the channel was (33.5± 3.5) pl. The interferometric system can sense refractive index changes as low as Δn(min)=7.5*10 -6 , allowing to detect a minimum concentration of cobalt(II) in ethanol c

  4. Effect of Mixing Dyes and Solvent in Electrolyte Toward Characterization of Dye Sensitized Solar Cell Using Natural Dyes as The Sensitizer

    Science.gov (United States)

    Puspitasari, Nurrisma; Nurul Amalia, Silviyanti S.; Yudoyono, Gatut; Endarko

    2017-07-01

    Dye Sensitized Solar Cell (DSSC) using natural dyes (chlorophyll, curcumin from turmeric extract, and anthocyanin from mangosteen extract) have been successfully fabricated for determining the effect of variation natural dyes, mixing dyes and acetonitrile in electrolyte toward characterization of DSSC. DSSC consists of five parts namely ITO (Indium Tin Oxide) as a substrate; TiO2 as semiconductor materials; natural dyes as an electron donor; electrolyte as electron transfer; and carbon as a catalyst that can convert light energy into electric energy. Two types of gel electrolyte based on PEG that mixed with liquid electrolyte have utilized for analyzing the lifetime of DSSC. Type I used distilled water as a solvent whilst type II used acetonitrile as a solvent with addition of concentration of KI and iodine. The main purpose of study was to investigate influence of solvent in electrolyte, variation of natural dyes and mixing dyes toward an efficiency that resulted by DSSC. The result showed that electrolyte type II is generally better than type I with efficiency 0,0556 and 0,0456 %, respectively. An efficiency values which resulted from a variation of mixed three natural dyes showed the greatest efficiency compared to mixed two natural dyes and one dye, with an efficiency value can be achieved at 0,0194 % for chlorophyll; 0,111 % for turmeric; 0,0105 % for mangosteen; 0,0244% (mangosteen and chlorophyll); 0,0117 % (turmeric and mangosteen); 0,0158 % (turmeric and chlorophyll); and 0.0566 % (mixed three natural dyes).

  5. Synthesis, characterization and dyeing assessment of novel acid azo dyes and mordent acid azo dyes based on 2-hydroxy-4-methoxybenzophenone on wool and silk fabrics

    Directory of Open Access Journals (Sweden)

    DHIRUBHAI J. DESAI

    2010-05-01

    Full Text Available Novel acid mono azo and mordent acid mono azo dyes were synthesised by the coupling of diazonium salt solution of different aromatic amines with 2-hydroxy-4-methoxybenzophenone. The resulting dyes were characterized by spectral techniques, i.e., elemental analysis, IR, 1H-NMR and UV–visible spectroscopy. The dyeing performance of all the dyes was evaluated on wool and silk fabrics. The dyeing of chrome pre-treated wool and silk fabrics showed better hues on mordented fabrics. Dyeing of wool and silk fabrics resulted in pinkish blue to red shades with very good depth and levelness. The dyed fabrics showed excellent to very good light, washing, perspiration, sublimation and rubbing fastness. The results of antibacterial studies of chrome pre-treated fabrics revealed that the toxicity of mordented dyes against Escherichia coli, Staphylococcus aureus, Salmonella typhi, Bacillus subtilis bacteria was fairly good.

  6. Plasma dye coating as straightforward and widely applicable procedure for dye immobilization on polymeric materials.

    Science.gov (United States)

    De Smet, Lieselot; Vancoillie, Gertjan; Minshall, Peter; Lava, Kathleen; Steyaert, Iline; Schoolaert, Ella; Van De Walle, Elke; Dubruel, Peter; De Clerck, Karen; Hoogenboom, Richard

    2018-03-16

    Here, we introduce a novel concept for the fabrication of colored materials with significantly reduced dye leaching through covalent immobilization of the desired dye using plasma-generated surface radicals. This plasma dye coating (PDC) procedure immobilizes a pre-adsorbed layer of a dye functionalized with a radical sensitive group on the surface through radical addition caused by a short plasma treatment. The non-specific nature of the plasma-generated surface radicals allows for a wide variety of dyes including azobenzenes and sulfonphthaleins, functionalized with radical sensitive groups to avoid significant dye degradation, to be combined with various materials including PP, PE, PA6, cellulose, and PTFE. The wide applicability, low consumption of dye, relatively short procedure time, and the possibility of continuous PDC using an atmospheric plasma reactor make this procedure economically interesting for various applications ranging from simple coloring of a material to the fabrication of chromic sensor fabrics as demonstrated by preparing a range of halochromic materials.

  7. In-situ Decolorization of Residual Dye Effluent in Textile Jet Dyeing Machine by Ozone

    Directory of Open Access Journals (Sweden)

    Irfan Ahmed Shaikh

    2014-12-01

    Full Text Available In this study, a new idea of decolourization was investigated in which residual dyeing effluent from textile dyeing process was treated using O3 in the same machine where it was generated. The novelty comes from the idea of doing dyeing and treatment simultaneously. At the completion of dyeing process, O3 gas was injected directly into the machine to remove colour and COD from the wastewater. To evaluate the effectiveness of new method, pilot-scale studies were performed, and decolourization of residual dyeing effluents containing C.I. Reactive Orange 7, C.I. Reactive Blue 19, and C.I. Reactive Black 5 was carried out in specially built textile jet dyeing machine. The results showed that almost 100% colour removal and 90% COD reduction were achieved when process conditions such as pH, dye concentration (mg/L, ozone production rate (g/hr, and temperature were optimized. The study concludes that new method has a great potential to eliminate the need of a separate end-of-the-pipe wastewater treatment system, thus offering an on-site and cost-effective solution.

  8. Quirks of dye nomenclature. 6. Malachite green.

    Science.gov (United States)

    Cooksey, C J

    2016-08-01

    Malachite green was discovered independently by two researchers in Germany in the 19(th) century and found immediate employment as a dye and a pigment. Subsequently, other uses, such as staining biological specimens, emerged. A much later application was the control of fungal and protozoan infections in fish, for which the dye remains popular, although illegal in many countries owing to a variety of toxicity problems. In solution, malachite green can exist as five different species depending on the pH. The location of the positive charge of the colored cation on a carbon atom or a nitrogen atom is still debated. The original names of this dye, and their origins, are briefly surveyed.

  9. Effectiveness of dye sensitised solar cell under low light condition using wide band dye

    Energy Technology Data Exchange (ETDEWEB)

    Sahmer, Ahmad Zahrin, E-mail: ahmadzsahmer@gmail.com; Mohamed, Norani Muti, E-mail: noranimuti-mohamed@petronas.com.my; Zaine, Siti Nur Azella, E-mail: ct.azella@gmail.com [Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2015-07-22

    Dye sensistised solar cell (DSC) based on nanocrystalline TiO{sub 2} has the potential to be used in indoor consumer power application. In realizing this, the DSC must be optimized to generate power under low lighting condition and under wider visible light range. The use of wide band dye N749 which has a wider spectrum sensitivity increases the photon conversion to electron between the visible light spectrums of 390nm to 700nm. This paper reports the study on the effectiveness of the dye solar cell with N749 dye under low light condition in generating usable power which can be used for indoor consumer application. The DSC was fabricated using fluorine doped tin oxide (FTO) glass with screen printing method and the deposited TiO{sub 2} film was sintered at 500°C. The TiO{sub 2} coated FTO glass was then soaked in the N749 dye, assembled into test cell, and tested under the standard test condition at irradiance of 1000 W/m{sup 2} with AM1.5 solar soaker. The use of the 43T mesh for the dual pass screen printing TiO{sub 2} paste gives a uniform TiO{sub 2} film layer of 16 µm. The low light condition was simulated using 1/3 filtered irradiance with the solar soaker. The fabricated DSC test cell with the N749 dye was found to have a higher efficiency of 6.491% under low light condition compared to the N719 dye. Under the standard test condition at 1 sun the N749 test cell efficiency is 4.55%. The increases in efficiency is attributed to the wider spectral capture of photon of the DSC with N749 dye. Furthermore, the use of N749 dye is more effective under low light condition as the V{sub OC} decrement is less significant compared to the latter.

  10. Excimer Pumped Pulsed Tunable Dye Laser

    Science.gov (United States)

    Littman, Michael G.

    1988-06-01

    It has been recently shown and reported for the first time at this meeting, that Excimer pumping of a single-mode, short-cavity, grazing-incidence, longitudinally-pumped pulsed dye laser is feasible. In this paper the key concepts upon which this latest development is based are presented and are in a somewhat unusual form. This manuscript describes five specific dye laser examples. The five examples represent a progression from the simplest type of dye laser to the single-mode version mentioned above. The examples thus serve as a tutorial introduction to potential users of dye lasers. The article is organized into five sections or STEPS, each of which describes a different pulsed dye laser. Since the subtle points about dye lasers are best appreciated only after one actually attempts to build a working model, a PROCEDURES category is included in which details about the construction of the particular form of laser are given. As one reads through this category, think of it as looking over the shoulder of the laser builder. The NOTES category which follows is a brief but essential discussion explaining why various components and procedures are used, as well as how laser performance specifications are obtained. This subsection can he viewed as a discussion with the laser builder concerning the reasons for specific actions and choices made in the assembly of the example laser. The last category contains COMMENTS which provide additional related information pertaining to the example laser that goes beyond the earlier annotated discussion. If you like, these are the narrator's comments. At the end of the article, after the five sequential forms of the laser have been presented, there is a brief summation.

  11. Photophysical and laser characteristics of pyrromethene 567 dye ...

    Indian Academy of Sciences (India)

    Narrow-band laser performance of alcohol solutions of pyrromethene 567 ... curves of each dye solution were obtained by scanning the wavelength of the dye ... solutions, using ethanol and methanol solvents, are summarized in table 1.

  12. Novel Tunable Dye Laser for Lidar Detection, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A tunable dye laser for Lidar detection will be fabricated based on the innovative dye-doped Holographic Polymer Dispersed Liquid Crystals (HPDLC) technology. The...

  13. Determination of 8 Synthetic Food Dyes by Solid Phase Extraction ...

    African Journals Online (AJOL)

    Keywords: Synthetic colors, Food, Fruit flavored drinks, Solid phase extraction, RP-HPLC. Tropical Journal of ..... food dyes by thin-layer chromatography-fast atom bombardment ... food dyes in soft drinks containing natural pigments by.

  14. Unconsumed precursors and couplers after formation of oxidative hair dyes

    DEFF Research Database (Denmark)

    Rastogi, Suresh Chandra; Søsted, Heidi; Johansen, Jeanne Duus

    2006-01-01

    Contact allergy to hair dye ingredients, especially precursors and couplers, is a well-known entity among consumers having hair colouring done at home or at a hairdresser. The aim of the present investigation was to estimate consumer exposure to some selected precursors (p-phenylenediamine, toluene......-2,5-diamine) and couplers (3-aminophenol, 4-aminophenol, resorcinol) of oxidative hair dyes during and after hair dyeing. Concentrations of unconsumed precursors and couplers in 8 hair dye formulations for non-professional use were investigated, under the conditions reflecting hair dyeing. Oxidative...... hair dye formation in the absence of hair was investigated using 6 products, and 2 products were used for experimental hair dyeing. In both presence and absence of hair, significant amounts of unconsumed precursors and couplers remained in the hair dye formulations after final colour development. Thus...

  15. Optofluidic third order distributed feedback dye laser

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Kristensen, Anders

    2006-01-01

    which has a refractive index lower than that of the polymer. In combination with a third order DFB grating, formed by the array of nanofluidic channels, this yields a low threshold for lasing. The laser is straightforward to integrate on lab-on-a-chip microsystems where coherent, tunable light......This letter describes the design and operation of a polymer-based third order distributed feedback (DFB) microfluidic dye laser. The device relies on light confinement in a nanostructured polymer film where an array of nanofluidic channels is filled by capillary action with a liquid dye solution...

  16. Examination techniques for non-magnetic rings

    International Nuclear Information System (INIS)

    Metala, M.J.; Kilpatrick, N.L.; Frank, W.W.

    1990-01-01

    Until the introduction of 18Mn18Cr rings a few years ago, most non-magnetic steel rings for generator rotors were made from 18Mn5Cr alloy steel, which is highly susceptible to stress corrosion cracking in the presence of water. This, the latest in a series of papers on the subject of non-magnetic rings by the authors' company, provides a discussion of nondestructive examination of 18Mn5Cr rings for stress corrosion distress. With rings on the rotor, fluorescent penetrant, ultrasonic and special visual techniques are applied. With rings off the rotor, the fluorescent penetrant technique is used, with and without stress enhancement

  17. Dye linked conjugated homopolymers: using conjugated polymer electroluminescence to optically pump porphyrin-dye emission

    DEFF Research Database (Denmark)

    Nielsen, K.T.; Spanggaard, H.; Krebs, Frederik C

    2004-01-01

    . Electroluminescent devices of the homopolymer itself and of the zinc-porphyrin containing polymer were prepared and the nature of the electroluminescence was characterized. The homopolymer segments were found to optically pump the emission of the zinc-porphyrin dye moities. The homopolymer exhibits blue......Zinc-porphyrin dye molecules were incorporated into the backbone of a conjugated polymer material by a method, which allowed for the incorporation of only one zinc-porphyrin dye molecule into the backbone of each conjugated polymer molecule. The electronic properties of the homopolymer were...

  18. Ring diagrams and phase transitions

    International Nuclear Information System (INIS)

    Takahashi, K.

    1986-01-01

    Ring diagrams at finite temperatures carry most infrared-singular parts among Feynman diagrams. Their effect to effective potentials are in general so significant that one must incorporate them as well as 1-loop diagrams. The author expresses these circumstances in some examples of supercooled phase transitions

  19. WR stars with ring nebulae

    International Nuclear Information System (INIS)

    Tutukov, A.

    1982-01-01

    It is shown that most of usually apparently single nitrogen WR stars with ring emission nebulae around them (WN + Neb) are a probable product of the evolution of a massive close binary with initial masses of components exceeding approximately 20 solar masses. (Auth.)

  20. Alignment for new Subaru ring

    International Nuclear Information System (INIS)

    Zhang, Ch.; Matsui, S.; Hashimoto, S.

    1999-01-01

    The New SUBARU is a synchrotron light source being constructed at the SPring-8 site. The main facility is a 1.5 GeV electron storage ring that provides light beam in the region from VUV to soft X-ray using SPring-8's 1 GeV linac as an injector. The ring, with a circumference of about 119 meters, is composed of six bending cells. Each bending cell has two normal dipoles of 34 degree and one inverse dipole of -8 degree. The ring has six straight sections: two very long straight sections for a 11-m long undulator and an optical klystron, four short straight sections for a 2.3-m undulator, a super-conducting wiggler, rf cavity and injection, etc. The magnets of the storage ring are composed of 12 dipoles (BMs), 6 invert dipoles (BIs), 56 quadrupoles and 44 sextupoles, etc. For the magnet alignment, positions of the dipoles (the BMs and BIs) are determined by network survey method. The multipoles, which are mounted on girders between the dipoles, are aligned with a laser-CCD camera system. This article presents the methodology used to position the different components and particularly to assure the precise alignment of the multipoles. (authors)