Bi-orthogonality conditions for power flow analysis in fluid-loaded elastic cylindrical shells
DEFF Research Database (Denmark)
Ledet, Lasse; Sorokin, Sergey V.; Larsen, Jan Balle
2015-01-01
The paper addresses the classical problem of time-harmonic forced vibrations of a fluid-loaded cylindrical shell considered as a multi-modal waveguide carrying infinitely many waves. Firstly, a modal method for formulation of Green’s matrix is derived by means of modal decomposition. The method...
Buckling Optimization of Thick Stiffened Cylindrical Shell
Directory of Open Access Journals (Sweden)
Qasim Hassan Bader
2016-03-01
Full Text Available In this work the critical pressure due to buckling was calculated numerically by using ANSYS15 for both stiffened and un-stiffened cylinder for various locations and installing types , strengthening of the cylinder causes a more significant increase in buckling pressures than non reinforced cylinder . The optimum design of structure was done by using the ASYS15 program; in this step the number of design variables 21 DVs. These variables are Independent variables that directly affect. The design variables represented the thickness of the cylinder and( height and width of 10 stiffeners. State variables (SVs, these variables are dependent variables that change as a result of changing the DVs and are necessary to constrain the design. The objective function is the one variable in the optimization that needs to be minimized. In this case the state variable is critical pressure (CP and the objective function is the total (volume of the structure. The optimum weight of the structure with reasonable required conditions for multi types of structure was found. The result shows the best location of stiffener at internal side with circumferential direction. In this case the critical pressure can be increased about 18.6% and the total weight of the structure decreases to 15.8%.
Prediction of Vibrational Behavior of Grid-Stiffened Cylindrical Shells
Directory of Open Access Journals (Sweden)
G. H. Rahimi
2014-01-01
Full Text Available A unified analytical approach is applied to investigate the vibrational behavior of grid-stiffened cylindrical shells with different boundary conditions. A smeared method is employed to superimpose the stiffness contribution of the stiffeners with those of shell in order to obtain the equivalent stiffness parameters of the whole panel. Theoretical formulation is established based on Sanders’ thin shell theory. The modal forms are assumed to have the axial dependency in the form of Fourier series whose derivatives are legitimized using Stoke's transformation. A 3D finite element model is also built using ABAQUS software which takes into consideration the exact geometric configuration of the stiffeners and the shell. The achievements from the two types of analyses are compared with each other and good agreement has been obtained. The Influences of variations in shell geometrical parameters, boundary condition, and changes in the cross stiffeners angle on the natural frequencies are studied. The results obtained are novel and can be used as a benchmark for further studies. The simplicity and the capability of the present method are also discussed.
Sohn, Jung Woo; Jeon, Juncheol; Choi, Seung-Bok
2014-10-01
Vibration control performance of the ring-stiffened cylindrical shell structure is experimentally evaluated in this work. In order to achieve high control performance, advanced flexible piezoelectric actuator whose commercial name is Macro-Fiber Composite (MFC) is adapted to the shell structure. Governing equation is derived by finite element method and dynamic characteristics are investigated from the modal analysis results. Ring-stiffened cylindrical shell structure is then manufactured and modal test is conducted to verify modal analysis results. An optimal controller is designed and experimentally realized to the proposed shell structure system. Vibration control performance is experimentally evaluated in time domain and verified by simulated control results.
Buckling of eccentrically stringer-stiffened cylindrical panels under axial compression
Sobel, L. H.; Agarwal, B. L.
1976-01-01
The paper presents numerical results, based on Donnell shell theory, for the axial compressive buckling loads for eccentrically stringer-stiffened circular cylindrical panels, in a study of the effect of boundary conditions and panel width on the buckling load. The two cases of inside and outside stiffeners were considered. The complete cylinder buckling load was reached only for panels under classical simply supported boundary conditions. The prevention of circumferential displacement is found to be the most important in-plane boundary condition from the point of view of increasing the buckling load. Clamping is found more effective in increasing the buckling loads of panels with free circumferential edge displacement than of panels with zero edge displacement. When panel width is equal to or greater than 180 deg, the panel buckling loads are within 10% of the complete cylinder load for all cases except one simply supported panel with outside stringers. Buckling loads were higher for outside stringers, except for very narrow panels that are restrained against circumferential edge displacement. Eccentricity effects are generally similar for clamped and simply supported panels with the same in-plane boundary conditions.
Topological optimization of opening fence brackets on ring-stiffened cylindrical shell
Directory of Open Access Journals (Sweden)
SONG Xiaofei
2018-02-01
Full Text Available [Objectives] Stress concentration is prone to take place at connections between the opening fence and ring ribs of a ring-stiffened cylindrical shell under external pressure. [Methods] In this paper, a topological optimization method for the brackets that connect the fence to the ring ribs is proposed in order to effectively reduce the local high stress in the brackets. The sub-model technique is used to analyze the stress of the connecting brackets. In the design, the connection brackets are used as design variables and the stress of the shell, fence and ribs are used as constraints. The maximum stress of the bracket is minimized as the objective function. The topology optimization results are engineered to obtain the final form of the brackets. [Results] The calculation results show that brackets of which the panel is partially widened can effectively reduce the stress concentration position of the opening fence transverse offset if the side of the bracket away from the longitudinal section is longer; the opening fence is offset relative to the brackets, and the symmetrical design of the brackets is feasible. [Conclusions] This research provides a reference for similar structural design.
Agarwal, B. L.; Sobel, L. H.
1976-01-01
This work presents optimum designs for unstiffened, hat stringer-stiffened and honeycomb sandwich cylinders under axial compression. Optimization results for graphite-epoxy cylinders show about a 50 percent weight savings over corresponding optimized aluminum cylinders for a wide loading range. The inclusion of minimum gage considerations results in a significant weight penalty, especially for a lightly loaded cylinder. Effects of employing a smeared stiffener buckling theory in the optimization program are investigated through comparison of results obtained from a more accurate branched shell buckling computer code. It was found that the stiffener cross-sectional deformations, which are usually ignored in smeared stiffener theory, result in about a 30 percent lower buckling load for the graphite-epoxy hat stiffened cylinder.
Waves on fluid-loaded shells and their resonance frequency spectrum
DEFF Research Database (Denmark)
Bao, X.L.; Uberall, H.; Raju, P.K.
2005-01-01
Technical requirements for elastic (metal) cylindrical shells include the knowledge of their natural frequency spectrum. These shells may be empty and fluid-immersed, or fluid-filled in an ambient medium of air, or doubly fluid-loaded inside and out. They may support circumferential waves......, or axially propagating waves both in the shell material, and in the fluid loading. Previous results by Bao et al. (J. Acoust. Soc. Am. 105 (1999) 2704) were obtained for the circumferential-wave dispersion curves on doubly loaded aluminum shells; the present study extends this to fluid-filled shells in air....... For practical applications, steel shells are most important and we have here obtained corresponding results for these. To find the natural frequencies of cylindrical shells, one may invoke the principle of phase matching where resonating standing waves are formed around the circumference, or in the axial...
Harper, David William (Inventor)
2017-01-01
A structural support having fractal-stiffening and method of fabricating the support is presented where an optimized location of at least three nodes is predetermined prior to fabricating the structural support where a first set of webs is formed on one side of the support and joined to the nodes to form a first pocket region. A second set of webs is formed within the first pocket region forming a second pocket region where the height of the first set of webs extending orthogonally from the side of the support is greater than the second set of webs extending orthogonally from the support.
Carbon fiber reinforced hierarchical orthogrid stiffened cylinder: Fabrication and testing
Wu, Hao; Lai, Changlian; Sun, Fangfang; Li, Ming; Ji, Bin; Wei, Weiyi; Liu, Debo; Zhang, Xi; Fan, Hualin
2018-04-01
To get strong, stiff and light cylindrical shell, carbon fiber reinforced hierarchical orthogrid stiffened cylinders are designed and fabricated. The cylinder is stiffened by two-scale orthogrid. The primary orthogrid has thick and high ribs and contains several sub-orthogrid cells whose rib is much thinner and lower. The primary orthogrid stiffens the bending rigidity of the cylinder to resist the global instability while the sub-orthogrid stiffens the bending rigidity of the skin enclosed by the primary orthogrid to resist local buckling. The cylinder is fabricated by filament winding method based on a silicone rubber mandrel with hierarchical grooves. Axial compression tests are performed to reveal the failure modes. With hierarchical stiffeners, the cylinder fails at skin fracture and has high specific strength. The cylinder will fail at end crushing if the end of the cylinder is not thickened. Global instability and local buckling are well restricted by the hierarchical stiffeners.
Analysis of a Fluid-Loaded Thick Plate
National Research Council Canada - National Science Library
Hull, Andrew
2002-01-01
The physics of a thick plate with fluid loading on both sides provides the theoretical basis for insertion loss and echo reduction tests, both of which are typically used to determine how efficiently...
The stability and dynamic behaviour of fluid-loaded structures
CSIR Research Space (South Africa)
Suliman, Ridhwaan
2015-07-01
Full Text Available ECCOMAS Young Investigators Conference 6th GACM Colloquium, July 20–23, 2015, Aachen, Germany The stability and dynamic behaviour of fluid-loaded structures R. Suliman, N. Peake Abstract. The deformation of slender elastic structures due...
Design aids for stiffened composite shells with cutouts
Sahoo, Sarmila
2017-01-01
This book focuses on the free vibrations of graphite-epoxy laminated composite stiffened shells with cutout both in terms of the natural frequencies and mode shapes. The dynamic analysis of shell structures, which may have complex geometry and arbitrary loading and boundary conditions, is solved efficiently by the finite element method, even including cutouts in shells. The results may be readily used by practicing engineers dealing with stiffened composite shells with cutouts. Several shell forms viz. cylindrical shell, hypar shell, conoidal shell, spherical shell, saddle shell, hyperbolic paraboloidal shell and elliptic paraboloidal shell are considered in the book. The dynamic characteristics of stiffened composite shells with cutout are described in terms of the natural frequency and mode shapes. The size of the cutouts and their positions with respect to the shell centre are varied for different edge constraints of cross-ply and angle-ply laminated composite shells. The effects of these parametric variat...
Jaunky, Navin; Knight, Norman F., Jr.; Ambur, Damodar R.
1995-01-01
A smeared stiffener theory for stiffened panels is presented that includes skin-stiffener interaction effects. The neutral surface profile of the skin-stiffener combination is developed analytically using the minimum potential energy principle and statics conditions. The skin-stiffener interaction is accounted for by computing the stiffness due to the stiffener and the skin in the skin-stiffener region about the neutral axis at the stiffener. Buckling load results for axially stiffened, orthogrid, and general grid-stiffened panels are obtained using the smeared stiffness combined with a Rayleigh-Ritz method and are compared with results from detailed finite element analyses.
Dynamic Analysis of a Rigid Body Mounting System with Flexible Foundation Subject to Fluid Loading
Directory of Open Access Journals (Sweden)
J.S. Tao
2001-01-01
Full Text Available This paper presents an investigation of the force transmission from a rigid body mounting system to a flexible foundation with light and heavy fluid loading under the force and moment excitation. The analytical expression has been derived in which the flexible foundation effects are incorporated into a revised system stiffness matrix that is derived from the receptance matrix at mounting points. A typical case with a thin infinite plate as the foundation has been studied with the point and transfer receptances theoretically and numerically analysed in the case of light and heavy fluid loading. The results show that, compared with the rigid foundation, the force transmission is reduced and system natural frequencies are shifted. The detailed analysis demonstrates that the force reduction and frequency shifting are more obvious at low frequencies where the receptance value is significant. The study is also carried out to compare the transfer receptances from different waves in plate as it couples with water with the objective to simplify the calculation of receptance. It is found that, in the low frequency and after a short distance from driving point, the transfer receptance calculation for the heavy fluid loading can be simplified by only accounting the contribution from free wave which may easily be evaluated from the point receptance in air. It implies the plate response under heavy fluid loading could be directly derived from that with light fluid loading.
Aeroelastic Wingbox Stiffener Topology Optimization
Stanford, Bret K.
2017-01-01
This work considers an aeroelastic wingbox model seeded with run-out blade stiffeners along the skins. Topology optimization is conducted within the shell webs of the stiffeners, in order to add cutouts and holes for mass reduction. This optimization is done with a global-local approach in order to moderate the computational cost: aeroelastic loads are computed at the wing-level, but the topology and sizing optimization is conducted at the panel-level. Each panel is optimized separately under stress, buckling, and adjacency constraints, and periodically reassembled to update the trimmed aeroelastic loads. The resulting topology is baselined against a design with standard full-depth solid stiffener blades, and found to weigh 7.43% less.
Cooper, B G; Lawson, T B; Snyder, B D; Grinstaff, M W
2017-07-01
Osteoarthritis (OA) is associated with increased articular cartilage hydraulic permeability and decreased maintenance of high interstitial fluid load support (IFLS) during articulation, resulting in increased friction on the cartilage solid matrix. This study assesses frictional response following in situ synthesis of an interpenetrating polymer network (IPN) designed to mimic glycosaminoglycans (GAGs) depleted during OA. Cylindrical osteochondral explants containing various interpenetrating polymer concentrations were subjected to a torsional friction test under unconfined creep compression. Time-varying coefficient of friction, compressive engineering strain, and normalized strain values (ε/ε eq ) were calculated and analyzed. The polymer network reduced friction coefficient over the duration of the friction test, with statistically significantly reduced friction coefficients (95% confidence interval 14-34% reduced) at equilibrium compressive strain upon completion of the test (P = 0.015). A positive trend was observed relating polymer network concentration with magnitude of friction reduction compared to non-treated tissue. The cartilage-interpenetrating polymer treatment improves lubrication by augmenting the biphasic tissue's interstitial fluid phase, and additionally improves the friction dissipation of the tissue's solid matrix. This technique demonstrates potential as a therapy to augment tribological function of articular cartilage. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
static analysis of circular cylindrical shell under hydrostatic and ring ...
African Journals Online (AJOL)
DEPT OF AGRICULTURAL ENGINEERING
University of Nigeria, Nsukka. ABSTRACT. Analysis of circular cylindrical shell under the action of hydrostatic and stiffening ring forces is ... The economy or feasibility of many modern constructions necessitates lightweight, thin- ... concerned with the analysis of circular cylindri- cal shell subjected to hydrostatic pressure in.
The experimental evaluation of the dynamics of fluid-loaded microplates
International Nuclear Information System (INIS)
Wu, Zhangming; Wright, Mike T; Ma, Xianghong
2010-01-01
An experimental testing system for the study of the dynamic behavior of fluid-loaded rectangular micromachined silicon plates is designed and presented in this paper. In this experimental system, the base-excitation technique combined with pseudo-random signal and cross-correlation analysis is applied to test fluid-loaded microstructures. Theoretical model is also derived to reveal the mechanism of such an experimental system in the application of testing fluid-loaded microstructures. The dynamic experiments cover a series of testings of various microplates with different boundary conditions and dimensions, both in air and immersed in water. This paper is the first that demonstrates the ability and performances of base excitation in the application of dynamic testing of microstructures that involves a natural fluid environment. Traditional modal analysis approaches are used to evaluate natural frequencies, modal damping and mode shapes from the experimental data. The obtained experimental results are discussed and compared with theoretical predictions. This research experimentally determines the dynamic characteristics of the fluid-loaded silicon microplates, which can contribute to the design of plate-based microsystems. The experimental system and testing approaches presented in this paper can be widely applied to the investigation of the dynamics of microstructures and nanostructures.
Buckling localization in a cylindrical panel under axial compression
DEFF Research Database (Denmark)
Tvergaard, Viggo; Needleman, A.
2000-01-01
Localization of an initially periodic buckling pattern is investigated for an axially compressed elastic-plastic cylindrical panel of the type occurring between axial stiffeners on cylindrical shells. The phenomenon of buckling localization and its analogy with plastic flow localization in tensile...... test specimens is discussed in general. For the cylindrical panel, it is shown that buckling localization develops shortly after a maximum load has been attained, and this occurs for a purely elastic panel as well as for elastic-plastic panels. In a case where localization occurs after a load maximum...
Stiffened Composite Fuselage Barrel Optimization
Movva, R. G.; Mittal, A.; Agrawal, K.; Upadhyay, C. S.
2012-07-01
In a typical commercial transport aircraft, Stiffened skin panels and frames contribute around 40% of the fuselage weight. In the current study a stiffened composite fuselage skin panel optimization engine is developed for optimization of the layups of composite panels and stringers using Genetic Algorithm (GA). The skin and stringers of the fuselage section are optimized for the strength and the stability requirements. The selection of the GA parameters considered for the optimization is arrived by performing case studies on selected problems. The optimization engine facilitates in carrying out trade studies for selection of the optimum ply layup and material combination for the configuration being analyzed. The optimization process is applied on a sample model and the results are presented.
DEFF Research Database (Denmark)
Wemmelund, Kristian Borup; Ringgård, Viktor Kromann; Vistisen, Simon Tilma
2017-01-01
BACKGROUND: Pleural effusion (PLE) may lead to low blood pressure and reduced cardiac output. Low blood pressure and reduced cardiac output are often treated with fluid loading and vasopressors. This study aimed to determine the impact of fluid loading and norepinephrine infusion on physiologic......, n = 12), norepinephrine infusion (0.01, 0.03, 0.05, 0.1, 0.2 and 0.3 μg/kg/min (15 min each, n = 12)) or control (n = 6). Main outcome was left ventricular preload measured as left ventricular end-diastolic area. Secondary endpoints included contractility and afterload as well as global measures...... of circulation. All endpoints were assessed with echocardiography and invasive pressure-flow measurements. RESULTS: PLE decreased left ventricular end-diastolic area, mean arterial pressure and cardiac output (p values infusion (0.05 μg/kg/min) restored...
Buckling optimization of steering stiffeners for grid-stiffened composite structures
Wang, D.; Abdalla, M.M.
2015-01-01
Grid-stiffened composite structures, where the skin is stiffened by a lattice of stiffeners, not only allow for significant reduction in structural weight but are also competitive in terms of structural stability and damage tolerance compared with sandwich composite structures. As the development of
Research on torsional friction behavior and fluid load support of PVA/HA composite hydrogel.
Chen, Kai; Zhang, Dekun; Yang, Xuehui; Cui, Xiaotong; Zhang, Xin; Wang, Qingliang
2016-09-01
Hydrogels have been extensively studied for use as synthetic articular cartilage. This study aimed to investigate (1) the torsional friction contact state and the transformation mechanism of PVA/HA composite hydrogel against CoCrMo femoral head and (2) effects of load and torsional angle on torsional friction behavior. The finite element method was used to study fluid load support of PVA/HA composite hydrogel. Results show fluid loss increases gradually of PVA/HA composite hydrogel with torsional friction time, leading to fluid load support decreases. The contact state changes from full slip state to stick-slip mixed state. As the load increases, friction coefficient and adhesion zone increase gradually. As the torsional angle increases, friction coefficient and slip trend of the contact interface increase, resulting in the increase of the slip zone and the reduction of the adhesion zone. Fluid loss increases of PVA/HA composite hydrogel as the load and the torsional angle increase, which causes the decrease of fluid load support and the increase of friction coefficient. Copyright © 2016 Elsevier Ltd. All rights reserved.
On the origin of stiffening in biopolymers
van der Giessen, E.; Koeman, T.; van Dillen, T.; Onck, P.R.; Fratzl, P; Landis, WJ; Wang, R; Silver, FH
2005-01-01
Strain stiffening of protein networks is explored by means of a finite strain analysis of a two-dimensional network model of cross-linked semiflexible filaments. The results show that stiffening is caused by non-affine network rearrangements that govern a transition from a bending dominated response
Wemmelund, Kristian Borup; Ringgård, Viktor Kromann; Vistisen, Simon Tilma; Hyldebrandt, Janus Adler; Sloth, Erik; Juhl-Olsen, Peter
2017-09-11
Pleural effusion (PLE) may lead to low blood pressure and reduced cardiac output. Low blood pressure and reduced cardiac output are often treated with fluid loading and vasopressors. This study aimed to determine the impact of fluid loading and norepinephrine infusion on physiologic determinants of cardiac function obtained by ultrasonography during PLE. In this randomised, blinded, controlled laboratory study, 30 piglets (21.9 ± 1.3 kg) had bilateral PLE (75 mL/kg) induced. Subsequently, the piglets were randomised to intervention as follows: fluid loading (80 mL/kg/h for 1.5 h, n = 12), norepinephrine infusion (0.01, 0.03, 0.05, 0.1, 0.2 and 0.3 μg/kg/min (15 min each, n = 12)) or control (n = 6). Main outcome was left ventricular preload measured as left ventricular end-diastolic area. Secondary endpoints included contractility and afterload as well as global measures of circulation. All endpoints were assessed with echocardiography and invasive pressure-flow measurements. PLE decreased left ventricular end-diastolic area, mean arterial pressure and cardiac output (p values 0.05) to baseline. Left ventricular contractility increased with norepinephrine infusion (p = 0.002), but was not affected by fluid loading (p = 0.903). Afterload increased in both active groups (p values > 0.001). Overall, inferior vena cava distensibility remained unchanged during intervention (p values ≥ 0.085). Evacuation of PLE caused numerical increases in left ventricular end-diastolic area, but only significantly so in controls (p = 0.006). PLE significantly reduced left ventricular preload. Both fluid and norepinephrine treatment reverted this effect and normalised global haemodynamic parameters. Inferior vena cava distensibility remained unchanged. The haemodynamic significance of PLE may be underestimated during fluid or norepinephrine administration, potentially masking the presence of PLE.
Elastic buckling analysis of corroded stiffened plates with irregular ...
Indian Academy of Sciences (India)
reduced by as much as 12% for the interaction of plate-web-torsional buckling mode, and by 2% for column buckling. Keywords. Corrosion; irregular surfaces; stiffened panel; interaction of buckling modes. 1. Introduction. Stiffened plate, where thin plate stiffened with welded longitudinal stiffeners and transverse.
Effects of Joint Stiffening on the Dynamic Response of Frames ...
African Journals Online (AJOL)
Effects of Joint Stiffening on the Dynamic Response of Frames. ... This work established that natural frequency increases with increase in joint stiffening while joint displacement decreases with increase in joint stiffening and that joint stiffening allows substantial reduction in moments which leads to economic design of ...
Lovejoy, Andrew E.; Hilburger, Mark W.; Chunchu, Prasad B.
2010-01-01
A design study was conducted to investigate the effect shell buckling knockdown factor (SBKF), internal pressure and aluminum alloy material selection on the structural weight of stiffened cylindrical shells. Two structural optimization codes were used for the design study to determine the optimum minimum-weight design for a series of design cases, and included an in-house developed genetic algorithm (GA) code and PANDA2. Each design case specified a unique set of geometry, material, knockdown factor combinations and loads. The resulting designs were examined and compared to determine the effects of SBKF, internal pressure and material selection on the acreage design weight and controlling failure mode. This design study shows that use of less conservative SBKF values, including internal pressure, and proper selection of material alloy can result in significant weight savings for stiffened cylinders. In particular, buckling-critical cylinders with integrally machined stiffener construction can benefit from the use of thicker plate material that enables taller stiffeners, even when the stiffness, strength and density properties of these materials appear to be inferior.
Manufacturing Theory for Advanced Grid Stiffened Structures
National Research Council Canada - National Science Library
Huybrechts, Steven M; Meink, Troy E; Wegner, Peter M; Ganley, Jeff M
2002-01-01
Lattices of rigidly connected ribs, known as advanced grid stiffened (AGS) structures, have many advantages over traditional construction methods, which use panels, sandwich cores and/or expensive frameworks...
Dispersion of axially symmetric waves in fluid-filled cylindrical shells
DEFF Research Database (Denmark)
Bao, X.L.; Überall, H.; Raju, P. K.
2000-01-01
Acoustic waves normally incident on an elastic cylindrical shell can cause the excitation of circumferential elastic waves on the shell. These shells may be empty and fluid immersed, or fluid filled in an ambient medium of air, or doubly fluid loaded inside and out. Circumferential waves on such ......Acoustic waves normally incident on an elastic cylindrical shell can cause the excitation of circumferential elastic waves on the shell. These shells may be empty and fluid immersed, or fluid filled in an ambient medium of air, or doubly fluid loaded inside and out. Circumferential waves......, 317 (1972)]. We have extended the work of Kumar to the case of fluid-filled aluminum shells and steel shells imbedded in air. These cases demonstrate the existence of circumferential waves traveling in the filler fluid, exhibiting a certain simplicity of the dispersion curves of these waves...
Stiffening solids with liquid inclusions
Style, Robert W.; Boltyanskiy, Rostislav; Allen, Benjamin; Jensen, Katharine E.; Foote, Henry P.; Wettlaufer, John S.; Dufresne, Eric R.
2015-01-01
From bone and wood to concrete and carbon fibre, composites are ubiquitous natural and synthetic materials. Eshelby’s inclusion theory describes how macroscopic stress fields couple to isolated microscopic inclusions, allowing prediction of a composite’s bulk mechanical properties from a knowledge of its microstructure. It has been extended to describe a wide variety of phenomena from solid fracture to cell adhesion. Here, we show experimentally and theoretically that Eshelby’s theory breaks down for small liquid inclusions in a soft solid. In this limit, an isolated droplet’s deformation is strongly size-dependent, with the smallest droplets mimicking the behaviour of solid inclusions. Furthermore, in opposition to the predictions of conventional composite theory, we find that finite concentrations of small liquid inclusions enhance the stiffness of soft solids. A straightforward extension of Eshelby’s theory, accounting for the surface tension of the solid-liquid interface, explains our experimental observations. The counterintuitive stiffening of solids by fluid inclusions is expected whenever inclusion radii are smaller than an elastocapillary length, given by the ratio of the surface tension to Young’s modulus of the solid matrix. These results suggest that surface tension can be a simple and effective mechanism to cloak the far-field elastic signature of inclusions.
Buckling Analysis of Grid-Stiffened Composite Shells
Wang, D.; Abdalla, M.M.
2014-01-01
There is a renewed interest in grid-stiffened composite structures; they are not only competitive with conventional stiffened constructions and sandwich shells in terms of weight but also enjoy superior damage tolerance properties. In this paper, both global and local structural instabilities are investigated for grid-stiffened composite panels using homogenization theory. Characteristic cell configurations with periodic boundary constraints are employed for orthogrid- and isogrid-stiffened s...
Buckling localization in a cylindrical panel under axial compression
DEFF Research Database (Denmark)
Tvergaard, Viggo; Needleman, A.
2000-01-01
Localization of an initially periodic buckling pattern is investigated for an axially compressed elastic-plastic cylindrical panel of the type occurring between axial stiffeners on cylindrical shells. The phenomenon of buckling localization and its analogy with plastic flow localization in tensile...... test specimens is discussed in general. For the cylindrical panel, it is shown that buckling localization develops shortly after a maximum load has been attained, and this occurs for a purely elastic panel as well as for elastic-plastic panels. In a case where localization occurs after a load maximum......, but where subsequently the load starts to increase again, it is found that near the local load minimum, the buckling pattern switches back to a periodic type of pattern. The inelastic material behavior of the panel is described in terms of J(2) corner theory, which avoids the sometimes unrealistically high...
Damage tolerant evaluation of cracked stiffened panels under ...
Indian Academy of Sciences (India)
This paper presents the methodologies for damage tolerant evaluation of stiffened panels under fatigue loading. The two major objectives of damage tolerant evaluation, namely, the remaining life prediction and residual strength evaluation of stiffened panels have been discussed. Concentric and eccentric stiffeners have ...
Compressive Strength of Longitudinally Stiffened GRP Panels
DEFF Research Database (Denmark)
Böhme, J.; Noury, P.; Riber, Hans Jørgen
1996-01-01
A structural analysis of a cross stiffened orthotropic GRP panel subjected to uniaxial compressive loads is carried out. Analytical solutions to the buckling of such structures are proposed and validated by a finite element analysis. Both analytical and finite element approaches confirm an identi...
Directory of Open Access Journals (Sweden)
Zhong Luo
2015-02-01
Full Text Available This study investigates a method of designing a simplified cylindrical shell model. This model accurately predicts the dynamic characteristics of a prototype cylindrical shell with sealing teeth accurately. The significance of this study is that it provides an acceptable process which guides the design of test models. Firstly, an equivalent cylindrical shell with rectangular rings is designed by combining the energy equation and numerical analysis. Then the transfer matrixes of the stiffened cylindrical shell and the cylindrical shell are employed to calculate the equivalent thickness of the simplified cylindrical shell commonly used in model tests. Further, the equivalent thicknesses are normalized by introducing an average equivalent thickness. The distorted scaling laws and size applicable intervals are investigated to reduce the errors caused by the normalization. Finally, a 42CrMo cylindrical shell with sealing teeth is used as a prototype and a number 45 steel scaled-down cylindrical shell is used as a distorted test model. The accuracy of the prediction is verified by using experimental data, and the results indicate that the distorted model can predict the characteristics of the stiffened cylindrical shell prototype with good accuracy.
International Nuclear Information System (INIS)
Aravind, Athulya; Nair, Remya; Raveendran, Sreejith; Veeranarayanan, Srivani; Nagaoka, Yutaka; Fukuda, Takahiro; Hasumura, Takahashi; Morimoto, Hisao; Yoshida, Yasuhiko; Maekawa, Toru; Sakthi Kumar, D.
2013-01-01
Controlled and targeted drug delivery is an essential criterion in cancer therapy to reduce the side effects caused by non-specific drug release and toxicity. Targeted chemotherapy, sustained drug release and optical imaging have been achieved using a multifunctional nanocarrier constructed from poly (D, L-lactide-co-glycolide) nanoparticles (PLGA NPs), an anticancer drug paclitaxel (PTX), a fluorescent dye Nile red (NR), magnetic fluid (MF) and aptamers (Apt, AS1411, anti-nucleolin aptamer). The magnetic fluid and paclitaxel loaded fluorescently labeled PLGA NPs (MF-PTX-NR-PLGA NPs) were synthesized by a single-emulsion technique/solvent evaporation method using a chemical cross linker bis (sulfosuccinimidyl) suberate (BS3) to enable binding of aptamer on to the surface of the nanoparticles. Targeting aptamers were then introduced to the particles through the reaction with the cross linker to target the nucleolin receptors over expressed on the cancer cell surface. Specific binding and uptake of the aptamer conjugated magnetic fluid loaded fluorescently tagged PLGA NPs (Apt-MF-NR-PLGA NPs) to the target cancer cells induced by aptamers was observed using confocal microscopy. Cytotoxicity assay conducted in two cell lines (L929 and MCF-7) confirmed that targeted MCF-7 cancer cells were killed while control cells were unharmed. In addition, aptamer mediated delivery resulting in enhanced binding and uptake to the target cancer cells exhibited increased therapeutic effect of the drug. Moreover, these aptamer conjugated magnetic polymer vehicles apart from actively transporting drugs into specifically targeted tumor regions can also be used to induce hyperthermia or for facilitating magnetic guiding of particles to the tumor regions. - Highlights: • Aptamer escorted, theranostic biodegradable PLGA carriers were developed. • Can target cancer cells, control drug release, image and magnetically guide. • Highly specific to the targeted cancer cells thus delivering
Cowings, Patricia; Toscano, William; Winther, Sean; Martinez, Jacqueline; Dominguez, Margaret
2012-01-01
Susceptibility of healthy astronauts to orthostatic hypotension and presyncope is exacerbated upon return from spaceflight. The effect of altered gravity during space flight and planetary transition on human cardiovascular function is of critical importance to maintenance of astronaut health and safety. Hypovolemia, reduced plasma volume, is suspected to play an important role in cardiovascular deconditioning following exposure to spaceflight, which may lead to increased peripheral resistance, attenuated arterial baroreflex, and changes in cardiac function. A promising countermeasure for post-flight orthostatic intolerance is fluid loading used to restore lost plasma volume by giving crew salt tablets and water prior to re-entry. The main purpose of the proposed study is to define the temporal profile of cardiac responses to simulated 0-G conditions before and following a fluid loading countermeasure. 8 men and 8 women will be tested during 4 hour exposures at 6o head down tilt (HDT). Each subject will be given two exposures to HDT on separate days, one with and one without fluid loading (one liter of 0.9% saline solution). Stand tests (orthostatic stress) will be done before and after each HDT. Cardiac measures will be obtained with both impedance cardiography and echo ultrasound
Experimental study on behavior of GFRP stiffened panels under compression
Kankeri, Pradeep; Ganesh Mahidhar, P. K.; Prakash, S. Suriya; Ramji, M.
2015-03-01
Glass Fiber Reinforced Polymer (GFRP) materials are extensively used in the aerospace and marine industries because of their high strength and stiffness to weight ratio and excellent corrosion resistance. Stiffened panels are commonly used in aircraft wing and fuselage parts. The present study focuses on the behavior of composite stiffened panels under compressive loading. With the introduction of stiffeners to unstiffened composite plates, the structural stiffness of the panel increases resulting in higher strength and stiffness. Studies in the past have shown that the critical structural failure mode under compressive loading of a stiffened composite panel is by local buckling. The present study attempts to evaluate the mechanical behavior of composite stiffened panels under compression using blade stiffener configuration and in particular on the behavior of the skin- stiffener interface through experimental testing. A novel test fixture is developed for experimental testing of GFRP stiffened panels. A non-contact whole field strain analysis technique called digital image correlation (DIC) is used for capturing the strain and damage mechanisms. Blade stiffeners increased the strength, stiffness and reduced the out-of plane displacement at failure. The failure of both the unstiffened and stiffened panels was through local buckling rather than through material failure. DIC was able to capture the strain localization and buckling failure modes.
Elastic tripping analysis of corroded stiffeners in stiffened plate with irregular surfaces
International Nuclear Information System (INIS)
Rahbarranji, Ahmad
2014-01-01
Tripping of stiffeners is one of the buckling modes of stiffened panels which could rapidly lead to its catastrophic failure. Loss of thickness in the web and flange of stiffeners due to corrosion reduces elastic buckling strength. It is common practice to assume a uniform thickness reduction for corroded surfaces. To estimate the remaining strength of a corroded structure, a much higher level of accuracy is required since corroded surfaces are irregular. Finite element method is employed to analyze elastic tripping stress of corroded stiffeners with irregular surfaces. Comparing the results with elastic tripping stress of un-corroded stiffener, a reduction factor is introduced. It is found that for flat-bars and angle-bars the reduction factor increases by increasing corrosion loss; however, for tee-bars remains almost unchanged. Surface roughness has no significant effect on reduction of tripping Euler stress of angle-bars and flat-bars; however, it has an effect on reduction of tripping Euler stress of small flat-bars. For high values of corrosion loss, reduction of tripping Euler stress is higher in flat-bars than angle-bars. Corrosion at the mid-length or ends of flat-bars is more detrimental than full length. Corrosion at the ends of angle-bars is more detrimental than full length and mid-length.
Elastic tripping analysis of corroded stiffeners in stiffened plate with irregular surfaces
Energy Technology Data Exchange (ETDEWEB)
Rahbarranji, Ahmad [AmirKabir University of Technology, Tehran (Iran, Islamic Republic of)
2014-09-15
Tripping of stiffeners is one of the buckling modes of stiffened panels which could rapidly lead to its catastrophic failure. Loss of thickness in the web and flange of stiffeners due to corrosion reduces elastic buckling strength. It is common practice to assume a uniform thickness reduction for corroded surfaces. To estimate the remaining strength of a corroded structure, a much higher level of accuracy is required since corroded surfaces are irregular. Finite element method is employed to analyze elastic tripping stress of corroded stiffeners with irregular surfaces. Comparing the results with elastic tripping stress of un-corroded stiffener, a reduction factor is introduced. It is found that for flat-bars and angle-bars the reduction factor increases by increasing corrosion loss; however, for tee-bars remains almost unchanged. Surface roughness has no significant effect on reduction of tripping Euler stress of angle-bars and flat-bars; however, it has an effect on reduction of tripping Euler stress of small flat-bars. For high values of corrosion loss, reduction of tripping Euler stress is higher in flat-bars than angle-bars. Corrosion at the mid-length or ends of flat-bars is more detrimental than full length. Corrosion at the ends of angle-bars is more detrimental than full length and mid-length.
Directory of Open Access Journals (Sweden)
Seher Erdogan
2016-11-01
Full Text Available Aim: Pro-B type natriuretic peptide (proBNP has been defined as a volume marker in hemodialysis patients. In the present study we aimed to evaluate the role of serum proBNP levels to indicate fluid load in patients undergoing continuous renal replacement therapy (CRRT due to overhydration. Material and Method: Patients who were admitted to a tertiary 7-bed pediatric intensive care unit and underwent CRRT due to overhydration were included in the study. Results: The study was conducted with 15 girls (53.6% and 13 boys (46.4%. The mean age was 61.46±56.13 months (range, 2-183 months; the mean CRRT administration time was 20.8±14.9 hours (range, 5-60 hours; and the mean percentage of fluid extracted from the body was 8.43 ± 4.51% (range, 2.5-20%. CRRT was administered to 12 patients because of fluid overload (42.9% and to 12 (57.1% because of fluid load accompanied by uremia.. There was a statistically significant difference between body weight, urea, and creatinine levels of patients before and after treatment (p= 0.001. The mean proBNP level was 23.306 ± 13.943 pg/mL immediately before CRRT and the mean proBNP after CRRT was 22.178 ± 15.473 pg/mL. There was no statistically significant difference between the initial and final proBNP levels (p= 0.756. With the exception of serum sodium levels, there was no correlation between the final proBNP levels and body weight, urea, and creatinine (p>0.05. Similarly, there was also no correlation between initial proBNP levels and fluid load (p= 0.602 or between the percentage of extracted fluid and final proBNP levels (p= 0.155. Discussion: There was no significant correlation between the fluid load and initial proBNP levels or with the extracted fluid percentage and final proBNP levels in patients undergoing CRRT because of fluid overload.In conclusion, no appropriate marker was determined to evaluate cumulative fluid load and the extracted liquid volume.
Flexible neural interfaces with integrated stiffening shank
Energy Technology Data Exchange (ETDEWEB)
Tooker, Angela C.; Felix, Sarah H.; Pannu, Satinderpall S.; Shah, Kedar G.; Sheth, Heeral; Tolosa, Vanessa
2017-10-17
A neural interface includes a first dielectric material having at least one first opening for a first electrical conducting material, a first electrical conducting material in the first opening, and at least one first interconnection trace electrical conducting material connected to the first electrical conducting material. A stiffening shank material is located adjacent the first dielectric material, the first electrical conducting material, and the first interconnection trace electrical conducting material.
Kosztowny, Cyrus Joseph Robert
Use of carbon fiber textiles in complex manufacturing methods creates new implementations of structural components by increasing performance, lowering manufacturing costs, and making composites overall more attractive across industry. Advantages of textile composites include high area output, ease of handling during the manufacturing process, lower production costs per material used resulting from automation, and provide post-manufacturing assembly mainstreaming because significantly more complex geometries such as stiffened shell structures can be manufactured with fewer pieces. One significant challenge with using stiffened composite structures is stiffener separation under compression. Axial compression loading conditions have frequently observed catastrophic structural failure due to stiffeners separating from the shell skin. Characterizing stiffener separation behavior is often costly computationally and experimentally. The objectives of this research are to demonstrate unitized stiffened textile composite panels can be manufactured to produce quality test specimens, that existing characterization techniques applied to state-of-the-art high-performance composites provide valuable information in modeling such structures, that the unitized structure concept successfully removes stiffener separation as a primary structural failure mode, and that modeling textile material failure modes are sufficient to accurately capture postbuckling and final failure responses of the stiffened structures. The stiffened panels in this study have taken the integrally stiffened concept to an extent such that the stiffeners and skin are manufactured at the same time, as one single piece, and from the same composite textile layers. Stiffener separation is shown to be removed as a primary structural failure mode for unitized stiffened composite textile panels loaded under axial compression well into the postbuckling regime. Instead of stiffener separation, a material damaging and
Leung, Ka-Ngo [Hercules, CA
2008-04-22
A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.
Viscoelastic Analysis of Thermally Stiffening Polymer Nanocomposites
Ehlers, Andrew; Rende, Deniz; Senses, Erkan; Akcora, Pinar; Ozisik, Rahmi
Poly(ethylene oxide), PEO, filled with silica nanoparticles coated with poly(methyl methacrylate), PMMA, was shown to present thermally stiffening behavior above the glass transition temperature of both PEO and PMMA. In the current study, the viscoelastic beahvior of this nanocomposite system is investigated via nanoindenation experiments to complement on going rheological studies. Results were compared to neat polymers, PEO and PMMA, to understand the effect of coated nanoparticles. This material is based upon work supported by the National Science Foundation under Grant No. CMMI-1538730.
Buckling Analysis of Grid-Stiffened Composite Shells
Wang, D.; Abdalla, M.M.
2014-01-01
There is a renewed interest in grid-stiffened composite structures; they are not only competitive with conventional stiffened constructions and sandwich shells in terms of weight but also enjoy superior damage tolerance properties. In this paper, both global and local structural instabilities are
Elastic buckling analysis of corroded stiffened plates with irregular ...
Indian Academy of Sciences (India)
Numerical simulation is used to study the influence of corrosion damage in stiffened plates focusing on elastic buckling strength. Three-dimensional specta are used to simulate geometries of corroded surfaces and finite element method is employed for computing Euler stress of stiffened plates. The influence of corrosion ...
Elastic buckling analysis of corroded stiffened plates with irregular ...
Indian Academy of Sciences (India)
patterns, amount of corrosion loss and roughness of surface are investigated. Ratio of Euler stress of corroded stiffened plate over Euler stress of un-corroded stiffened plate is used to characterize the effects of corrosion on reduction of buckling strength. Results show that reduction of buckling strength is very sensitive to the ...
Damage tolerant evaluation of cracked stiffened panels under ...
Indian Academy of Sciences (India)
hence remaining life approach will govern the design. It is noted that residual strength increases with the increase of stiffener size. Keywords. Stiffened panels; stress intensity factor; fatigue and fracture; damage tolerant evaluation; remaining life; residual strength. 1. Introduction. Most of the structures such as nuclear ...
Ultimate strength of stiffened plates with pitting corrosion
Directory of Open Access Journals (Sweden)
Ahmad Rahbar-Ranji
2015-05-01
Full Text Available Predicting residual strength of corroded plates is of crucial importance for service life estimation of aged structures. A series of nonlinear finite element method is employed for ultimate strength analysis of stiffened plates with pitting corrosion. Influential parameters, including plate thickness, type and size of stiffeners, pit depth and degree of pitting are varied and more than 208 finite element models are analyzed. It is found that ultimate strength is reduced by increasing pit depth to thickness ratio. Thin and intermediate plates have minimum and maximum reduction of ultimate strength with stronger stiffeners, respectively. In weak stiffener, reduction of ultimate strength in thin and intermediate plates depends on DOP. Reduction of ultimate strength in thick plates depends on thickness ofplate and DOP. For intermediate plates, reduction for all stiffeners regardless of shape and size are the same.
Numerical dynamic analysis of stiffened plates under blast loading
Directory of Open Access Journals (Sweden)
H.R. Tavakoli
Full Text Available Using the general purpose finite element package Abaqus, an investigation has been carried out to examine the dynamic response of steel stiffened plates subjected to uniform blast loading. The main objective of this study is to determine the dynamic response of the stiffened plates considering the effect of stiffener configurations. Several parameters, such as boundary conditions, mesh dependency and strain rate, have been considered in this study. Special emphasis is focused on the evaluation of midpoint displacements and energy of models. The modeling techniques were described in details. The numerical results provide better insight into the effect of stiffener configurations on the nonlinear dynamic response of the stiffened plates subjected to uniform blast loading.
Thermomechanical Response Variability of Stiffened Composite Panels
Noor, Ahmed K.; Starnes, James H., Jr.; Peters, Jeanne M.
2002-01-01
A significant numerical simulation capability now exists for studying the various phenomena associated with the response, failure, and performance of multilayered composite panels and shells subjected to combined pressure, mechanical, and thermal loads. The phenomena involved cover a wide range of length scales from local to global structural response. The modeling approaches used for multilayered panels include micromechanical models, three-dimensional continuum models, quasi-three-dimensional models, and two-dimensional plate and shell models. Within each category a number of models with several levels of sophistication has evolved. The four categories are described in review papers. Despite the extensive literature cited in the afore-mentioned references, only a few studies have been reported on the effects of stiffness discontinuities, such as those associated with an abrupt stiffener termination or dropped plies, on the response of composite panel. Stiffener termination is often necessary in composite aerospace structures to satisfy detailed design requirements, and therefore an understanding and a prediction of its effect on the response and failure of composite panels are desirable. Such a prediction must take into account the fact that current measurement technology does not allow the accurate determination of the material parameters that are used in the analytical models.
Nemeth, Michael P.
2014-01-01
Nonlinear and bifurcation buckling equations for elastic, stiffened, geometrically perfect, right-circular cylindrical, anisotropic shells subjected to combined loads are presented that are based on Sanders' shell theory. Based on these equations, a three-parameter approximate Rayleigh-Ritz solution and a classical solution to the buckling problem are presented for cylinders with simply supported edges. Extensive comparisons of results obtained from these solutions with published results are also presented for a wide range of cylinder constructions. These comparisons include laminated-composite cylinders with a wide variety of shell-wall orthotropies and anisotropies. Numerous results are also given that show the discrepancies between the results obtained by using Donnell's equations and variants of Sanders' equations. For some cases, nondimensional parameters are identified and "master" curves are presented that facilitate the concise representation of results.
Heard, Walter L., Jr.; Collins, Timothy J.; Dyess, James W.; Kenner, Scott; Bush, Harold G.
1993-01-01
A concept is presented for achieving a remotely deployable truss-stiffened reflector consisting of seven integrated sandwich panels that form the reflective surface, and an integrated feed boom. The concept has potential for meeting aperture size and surface precision requirements for some high-frequency microwave remote sensing applications. The packaged reflector/feed boom configuration is a self-contained unit that can be conveniently attached to a spacecraft bus. The package has a cylindrical envelope compatible with typical launch vehicle shrouds. Dynamic behavior of a deployed configuration having a 216-inch focal length and consisting of 80-inch-diameter, two-inch-thick panels is examined through finite-element analysis. Results show that the feed boom and spacecraft bus can have a large impact on the fundamental frequency of the deployed configuration. Two candidate rib-stiffened sandwich panel configurations for this application are described, and analytical results for panel mass and stiffness are presented. Results show that the addition of only a few rib stiffeners, if sufficiently deep, can efficiently improve sandwich panel stiffness.
Tension Stiffened and Tendon Actuated Manipulator
Doggett, William R. (Inventor); Dorsey, John T. (Inventor); Ganoe, George G. (Inventor); King, Bruce D. (Inventor); Jones, Thomas C. (Inventor); Mercer, Charles D. (Inventor); Corbin, Cole K. (Inventor)
2015-01-01
A tension stiffened and tendon actuated manipulator is provided performing robotic-like movements when acquiring a payload. The manipulator design can be adapted for use in-space, lunar or other planetary installations as it is readily configurable for acquiring and precisely manipulating a payload in both a zero-g environment and in an environment with a gravity field. The manipulator includes a plurality of link arms, a hinge connecting adjacent link arms together to allow the adjacent link arms to rotate relative to each other and a cable actuation and tensioning system provided between adjacent link arms. The cable actuation and tensioning system includes a spreader arm and a plurality of driven and non-driven elements attached to the link arms and the spreader arm. At least one cable is routed around the driven and non-driven elements for actuating the hinge.
Modelling Tension Stiffening in Reinforced Concrete Structures
DEFF Research Database (Denmark)
Christiansen, Morten Bo; Nielsen, Mogens Peter
1997-01-01
Part I of the present thesis deals with crack formation in reinforced concrete and the phenomenon of tension stiffening in concrete tension rods reinforced with deformed bars.Two physical models are presented for uniaxial tension, and they are modified for application on beams subjected to pure...... predicted by the models are compared with experimental data from tests on tension rods as well as flexural beams.In the light of the simple assumptions made and the random nature of cracking, the accordance between the models and the test data is quite good.Part II of the present thesis deals...... flexure.In the first model, the yield zone model, it is assumed that the mean crack distance is a descending function of the reinforcement stress in a crack. Furthermore it is assumed that in certain zones between the cracks the concrete is carrying its full effective tensile strength, i.e. the concrete...
Sommer, David; Erath, Byron D.; Zanartu, Matias; Peterson, Sean D.
2011-11-01
Voiced speech is produced by dynamic fluid-structure interactions in the larynx. Traditionally, reduced order models of speech have relied upon simplified inviscid flow solvers to prescribe the fluid loadings that drive vocal fold motion, neglecting viscous flow effects that occur naturally in voiced speech. Viscous phenomena, such as skewing of the intraglottal jet, have the most pronounced effect on voiced speech in cases of vocal fold paralysis where one vocal fold loses some, or all, muscular control. The impact of asymmetric intraglottal flow in pathological speech is captured in a reduced order two-mass model of speech by coupling a boundary-layer estimation of the asymmetric pressures with asymmetric tissue parameters that are representative of recurrent laryngeal nerve paralysis. Nonlinear analysis identifies the emergence of irregular and chaotic vocal fold dynamics at values representative of pathological speech conditions.
Kimoto, K.; Hirose, S.
2002-05-01
This paper presents a boundary integral equation method for 3D ultrasonic scattering problems in a fluid-loaded elastic half space. Since full scale of numerical calculation using finite element or boundary element method is still very expensive, we formulate a boundary integral equation for the scattered field, which is amenable to numerical treatment. In order to solve the problem using the integral equation, however, the wave field without scattering objects, so-called free field need to be given in advance. We calculate the free field by the plane wave spectral method where the asymptotic approximation is introduced for computational efficiency. To show the efficiency of our method, scattering by a spherical cavity near fluid-solid interface is solved and the validity of the results is discussed.
Calculation of mechanical vibration frequencies of stiffened superconducting cavities
International Nuclear Information System (INIS)
Black, S.J.; Spalek, G.
1992-01-01
We calculated the frequencies of transverse and longitudinal mechanical-vibration modes of the HEPL- modified, CERN/DESY four-cell superconducting cavity, using finite-element techniques. We compared the results of these calculations, including the stiffening of the cavity with rods, with mode frequencies measured at HEPL. The correlation between data was significant. The same techniques were also used to design and optimize the stiffening scheme for the seven-cell 805-MHz superconducting cavity being developed at Los Alamos. In this report, we describe the final stiffening scheme and the results of our calculations
DEFF Research Database (Denmark)
Zhang, Jingjing; Mortensen, N. Asger
2011-01-01
We propose a cylindrical invisibility cloak achieved utilizing two dimensional split-ring resonator structured metamaterials at microwave frequencies. The cloak has spatially uniform parameters in the axial direction, and can work very well even when the cloak shell is very thin compared with the...
Directory of Open Access Journals (Sweden)
Carlos Ferrando
2012-01-01
Full Text Available Introduction. Circulatory failure secondary to hypovolemia is a common situation in critical care patients. Volume replacement is the first option for the treatment of hypovolemia. A possible complication of volume loading is pulmonary edema, quantified at the bedside by the measurement of extravascular lung water index (ELWI. ELWI predicts progression to acute lung injury (ALI in patients with risk factors for developing it. The aim of this study was to assess whether fluid loading guided by the stroke volume variation (SVV, in patients presumed to be hypovolemic, increased ELWI or not. Methods. Prospective study of 17 consecutive postoperative, fully mechanically ventilated patients diagnosed with circulatory failure secondary to presumed hypovolemia were included. Cardiac index (CI, ELWI, SVV, and global end-diastolic volume index (GEDI were determined using the transpulmonary thermodilution technique during the first 12 hours after fluid loading. Volume replacement was done with a strict hemodynamic protocol. Results. Fluid loading produced a significant increase in CI and a decrease in SVV. ELWI did not increase. No correlation was found between the amount of fluids administered and the change in ELWI. Conclusion. Fluid loading guided by SVV in hypovolemic and fully mechanically ventilated patients in sinus rhythm does not increase ELWI.
Behavior of grid-stiffened composite structures under transverse loading
Gan, Changsheng
The energy absorption characteristics and failure modes of grid-stiffened composite plates under transverse load were studied in detail. Several laboratory scale composite grid plates were fabricated by using co-mingled E-glass fiber/polypropylene matrix and carbon/nylon composites in a thermoplastic stamping process. Both experimental and finite element approaches were used to evaluate and understand the role of major failure modes on the performance of damaged grid-stiffened composite plates under transverse load. The load-deflection responses of grid-stiffened composite plates were determined and compared with those of sandwich composite plates of the same size. The failure modes of grid-stiffened composite plates under different load conditions were investigated and used as the basis for FEA models. The intrinsic strength properties of constituent composite materials were measured by using either three point bending or tensile test and were used as input data to the FEA models. Several FEA models including the major failure modes based on the experimental results were built to simulate the damage processes of grid-stiffened composite plates under transverse load. A FORTRAN subroutine was implemented within the ABAQUS code to incorporate the material failure models. Effects of damage on the modal frequencies and loss factors of grid-stiffened composite plates were also investigated experimentally. Experimental and simulation results showed that sandwich composite specimens failed catastrophically with the load dropping sharply at the displacement corresponding to initial and final failure. However, grid-stiffened composite specimens failed in a more gradual and forgiving way in a sequence of relatively small load drops. No catastrophic load drops were observed in the grid structures over the range of displacements investigated here. The SEA values of the grid composite specimens are typically higher than those of the sandwich specimens with the same boundary
Emergent Strain Stiffening in Interlocked Granular Chains
Dumont, Denis; Houze, Maurine; Rambach, Paul; Salez, Thomas; Patinet, Sylvain; Damman, Pascal
2018-02-01
Granular chain packings exhibit a striking emergent strain-stiffening behavior despite the individual looseness of the constitutive chains. Using indentation experiments on such assemblies, we measure an exponential increase in the collective resistance force F with the indentation depth z and with the square root of the number N of beads per chain. These two observations are, respectively, reminiscent of the self-amplification of friction in a capstan or in interleaved books, as well as the physics of polymers. The experimental data are well captured by a novel model based on these two ingredients. Specifically, the resistance force is found to vary according to the universal relation log F ˜μ √{N }Φ11 /8z /b , where μ is the friction coefficient between two elementary beads, b is their size, and Φ is the volume fraction of chain beads when semidiluted in a surrounding medium of unconnected beads. Our study suggests that theories normally confined to the realm of polymer physics at a molecular level can be used to explain phenomena at a macroscopic level. This class of systems enables the study of friction in complex assemblies, with practical implications for the design of new materials, the textile industry, and biology.
van der Heijden, Melanie; Verheij, Joanne; van Nieuw Amerongen, Geerten P; Groeneveld, A B Johan
2009-04-01
To compare crystalloid and colloid fluids in their effect on pulmonary edema in hypovolemic septic and nonseptic patients with or at risk for acute lung injury/acute respiratory distress syndrome. We hypothesized that 1) crystalloid loading results in more edema formation than colloid loading and 2) the differences among the types of fluid decreases at high permeability. Prospective randomized clinical trial on the effect of fluids in 24 septic and 24 nonseptic mechanically ventilated patients with clinical hypovolemia. Patients were assigned to NaCl 0.9%, gelatin 4%, hydroxyethyl starch 6%, or albumin 5% loading for 90 minutes according to changes in filling pressures. Twenty-three septic and 10 nonseptic patients had acute lung injury/acute respiratory distress syndrome (p pulmonary capillary permeability, edema, and severity of lung injury than nonseptic patients (p pulmonary leak index (PLI) for Gallium-labeled transferrin, extravascular lung water (EVLW), and lung injury score (LIS), respectively. Colloids increased plasma volume, cardiac index, and central venous pressure (CVP) more than crystalloids (p pulmonary leak index increased by median 5% (p Pulmonary edema and LIS are not affected by the type of fluid loading in the steep part of the cardiac function curve in both septic and nonseptic patients. Then, pulmonary capillary permeability may be a smaller determinant of pulmonary edema than COP and CVP. Safety factors may have prevented edema during a small filtration pressure-induced rise in pulmonary protein and thus fluid transport.
International Nuclear Information System (INIS)
Hsu, Y-S; Hwang, Y-F; Huang, J H
2008-01-01
This paper presents an exploratory study of using external fluid loading on a vibrating tube for measuring the suspended sediment concentration (SSC) in bodies of water such as rivers and reservoirs. This new measuring concept provides an opportunity for an automated on-site monitoring of the conditions in a body of water by taking the fluid sample instantaneously in the area surrounding the vibrating tube. The physical properties of the fluid sample are those of the fluid that naturally flows around the tube, and are more representative of those of the water with SSC to be measured. The theoretical analysis presented in this paper shows that the resonance frequencies of an immersed vibrating tube change significantly with mass density variations that normally occur in bodies of water with suspended sediment. These changes are sensitive enough to have a possible 1% resolution of the measured fluid density. The signal processing issues are discussed, and a schematic of a conceptual measuring setup is proposed. Based on the theoretical analyses and other measurement issues presented in the paper, using the loading by external fluid on a vibrating tube is feasible for measuring the SSC in water bodies
Cup Cylindrical Waveguide Antenna
Acosta, Roberto J.; Darby, William G.; Kory, Carol L.; Lambert, Kevin M.; Breen, Daniel P.
2008-01-01
The cup cylindrical waveguide antenna (CCWA) is a short backfire microwave antenna capable of simultaneously supporting the transmission or reception of two distinct signals having opposite circular polarizations. Short backfire antennas are widely used in mobile/satellite communications, tracking, telemetry, and wireless local area networks because of their compactness and excellent radiation characteristics. A typical prior short backfire antenna contains a half-wavelength dipole excitation element for linear polarization or crossed half-wavelength dipole elements for circular polarization. In order to achieve simultaneous dual circular polarization, it would be necessary to integrate, into the antenna feed structure, a network of hybrid components, which would introduce significant losses. The CCWA embodies an alternate approach that entails relatively low losses and affords the additional advantage of compactness. The CCWA includes a circular cylindrical cup, a circular disk subreflector, and a circular waveguide that serves as the excitation element. The components that make it possible to obtain simultaneous dual circular polarization are integrated into the circular waveguide. These components are a sixpost polarizer and an orthomode transducer (OMT) with two orthogonal coaxial ports. The overall length of the OMT and polarizer (for the nominal middle design frequency of 2.25 GHz) is about 11 in. (approximately equal to 28 cm), whereas the length of a commercially available OMT and polarizer for the same frequency is about 32 in. (approximately equal to 81 cm).
Design of steel cylindrical tanks
Hlastec, Jan
2012-01-01
The thesis deals with the area of steel shell structures. Presented is the design process of steel cylindrical tanks using Eurocode standards. I dealt with the plastic limit states and stability limit state of steel shell structures. A program for the calculation of cylindrical steel tanks for the limit state of strength and stability is made in Matlab. The focus of this work is on understanding the design process of cylindrical steel tanks and creating a computer program in Matlab. Create...
Geerts, Bart
2011-01-01
Patients in the intensive care unit (ICU) and in the peri-operative phase are dependent on physicians and nurses for their fluid intake. Volume status optimization is required to maximize oxygen delivery to vital organs. Unnecessary fluid administration can, however, lead to general and pulmonary
Dynamic self-stiffening in liquid crystal elastomers
Agrawal, Aditya; Chipara, Alin C.; Shamoo, Yousif; Patra, Prabir K.; Carey, Brent J.; Ajayan, Pulickel M.; Chapman, Walter G.; Verduzco, Rafael
2013-04-01
Biological tissues have the remarkable ability to remodel and repair in response to disease, injury and mechanical stresses. Synthetic materials lack the complexity of biological tissues, and man-made materials that respond to external stresses through a permanent increase in stiffness are uncommon. Here we report that polydomain nematic liquid crystal elastomers increase in stiffness by up to 90% when subjected to a low-amplitude (5%), repetitive (dynamic) compression. Elastomer stiffening is influenced by liquid crystal content, the presence of a nematic liquid crystal phase and the use of a dynamic as opposed to static deformation. Through rheological and X-ray diffraction measurements, stiffening can be attributed to a mobile nematic director, which rotates in response to dynamic compression. Stiffening under dynamic compression has not been previously observed in liquid crystal elastomers and may be useful for the development of self-healing materials or for the development of biocompatible, adaptive materials for tissue replacement.
Dynamic Stability of Structures: Application to Frames, Cylindrical Shells and Other Systems.
1982-02-01
13. 1.11 2.2 I .2 BiI~~11.62-i IIg MICROCOPY RESOLUTION TESI CHART NATI, NAt HI t, ’,IA I A W th . - A AFWAL-TR-81-3155 DYNAMIC STABILITY OF STRUCTURES...are demonstrated through several structural configurations, such as eccentri- cally loaded simple two- bar frames, geometrically imperfect, thin...IWO- BAR FRAMES UNDER SUDDENLY APPLIED LOADS. 7 III. STIFFENED AND UNSTIFFENED, IMPERFECT CYLINDRICAL SHELLS 27 UNDER SUDDENLY APPLIED LOADS. The
Cowings, Patricia; Toscano, William; Kanis, Dionisios; Gebreyesus, Fiyore
2013-01-01
Susceptibility of healthy astronauts to orthostatic hypotension and presyncope is exacerbated upon return from spaceflight. Hypo-volemia is suspected to play an important role in cardiovascular deconditioning following exposure to spaceflight, which may lead to increased peripheral resistance, attenuated arterial baroreflex, and changes in cardiac function. The effect of altered gravity during space flight and planetary transition on human cardiovascular function is of critical importance to maintenance of astronaut health and safety. A promising countermeasure for post-flight orthostatic intolerance is fluid loading used to restore loss fluid volume by giving crew salt tablets and water prior to re-entry. Eight men and eight women will be tested during two, 6-hour exposures to 6o HDT: 1) fluid loading, 2) no fluid loading. Before and immediately after each HDT, subjects will perform a stand test to assess their orthostatic tolerance. Physiological measures (e.g., ECG, blood pressure, peripheral blood volume) will be continuously monitored while echocardiography measures are recorded at 30-minute intervals during HDT and stand tests. Preliminary results (N=4) clearly show individual differences in responses to this countermeasure and the time course of physiological changes induced by HDT.
Stage Cylindrical Immersive Display
Abramyan, Lucy; Norris, Jeffrey S.; Powell, Mark W.; Mittman, David S.; Shams, Khawaja S.
2011-01-01
Panoramic images with a wide field of view intend to provide a better understanding of an environment by placing objects of the environment on one seamless image. However, understanding the sizes and relative positions of the objects in a panorama is not intuitive and prone to errors because the field of view is unnatural to human perception. Scientists are often faced with the difficult task of interpreting the sizes and relative positions of objects in an environment when viewing an image of the environment on computer monitors or prints. A panorama can display an object that appears to be to the right of the viewer when it is, in fact, behind the viewer. This misinterpretation can be very costly, especially when the environment is remote and/or only accessible by unmanned vehicles. A 270 cylindrical display has been developed that surrounds the viewer with carefully calibrated panoramic imagery that correctly engages their natural kinesthetic senses and provides a more accurate awareness of the environment. The cylindrical immersive display offers a more natural window to the environment than a standard cubic CAVE (Cave Automatic Virtual Environment), and the geometry allows multiple collocated users to simultaneously view data and share important decision-making tasks. A CAVE is an immersive virtual reality environment that allows one or more users to absorb themselves in a virtual environment. A common CAVE setup is a room-sized cube where the cube sides act as projection planes. By nature, all cubic CAVEs face a problem with edge matching at edges and corners of the display. Modern immersive displays have found ways to minimize seams by creating very tight edges, and rely on the user to ignore the seam. One significant deficiency of flat-walled CAVEs is that the sense of orientation and perspective within the scene is broken across adjacent walls. On any single wall, parallel lines properly converge at their vanishing point as they should, and the sense of
Damage tolerant evaluation of cracked stiffened panels under ...
Indian Academy of Sciences (India)
Wood & Howard (1975) discussed the significant fac- tors leading to the development of damage tolerance criteria and illustrated the role of fracture mechanics in the analysis and testing aspects necessary to satisfy these requirements. Swift. (1984) conducted fracture analysis of cracked stiffened structure based on ...
Sensitivity analysis on ultimate strength of aluminium stiffened panels
DEFF Research Database (Denmark)
Rigo, P.; Sarghiuta, R.; Estefen, S.
2003-01-01
This paper presents the results of an extensive sensitivity analysis carried out by the Committee III.1 "Ultimate Strength" of ISSC?2003 in the framework of a benchmark on the ultimate strength of aluminium stiffened panels. Previously, different benchmarks were presented by ISSC committees on ul...
Strain stiffening and stress heterogeneities in sheared collagen networks
Urbach, Jeffrey
2014-03-01
Disordered networks of stiff or semi-flexible filaments display unusual mechanical properties, including dramatic stiffening when sheared, but little is known about the spatial distribution of stresses. This talk will introduce the technique of Boundary Stress Microscopy, which adapts the approach of traction force microscopy to rheological measurements in order to quantify the non-uniform surface stresses in sheared soft materials. Our results on networks of the biopolymer collagen, a major component of the extracellular matrix, show stress variations over length scales much larger than the network mesh size. We find that the heterogeneity increases with strain stiffening, with stresses at high strains exceeding average stresses by an order of magnitude. The strain stiffening behavior over a wide range of mesh sizes can be parameterized by a single characteristic strain and associated stress, which describes both the strain stiffening regime and network yielding. The characteristic stress is approximately proportional to network density, but the peak stress at both the characteristic strain and at yielding are remarkably insensitive to concentration. These results show the power of Boundary Stress Microscopy to reveal the nature of stress propagation in disordered soft materials, which is critical for understanding many important mechanical properties, including the ultimate strength of a material and the nature of appropriate microscopic constitutive equations. Supported by the AFOSR (FA9550-10-1-0473) and the NSF (DMR-0804782).
Reduction of initial stress stiffening by topology optimization
DEFF Research Database (Denmark)
Philippine, M. A.; Sigmund, Ole; Rebeiz, G. M.
2012-01-01
Topology optimization is a rigorous method of obtaining non-intuitive designs. We use it to obtain a capacitive RF switch that stiffens little in response to an increase of the in-plane biaxial stresses that typically develop during MEMS fabrication. The actuation voltage is closely related to th...
FE analysis of unstiffened and stiffened corrugated panels subjected to blast loading
Energy Technology Data Exchange (ETDEWEB)
Wijaya, Christian; Kim, Byung Tak [Pukyong National University, Busan (Korea, Republic of)
2011-12-15
This paper presents the results of a dynamic analysis on unstiffened and stiffened corrugated panels subjected to hydrocarbon explosion. A parametric study is also conducted on simplified models of the stiffened corrugated panels considering the effect of stiffeners on the compressive flange under different loading levels. The 1/2 symmetry of corrugated panels is modeled. This numerical study is performed using NX Nastran version 7.5. The unstiffened panel produces localized buckling at the center of corrugation and large permanent deformation by increasing the peak pressure. The stiffened panels suppress the structural response, and the vee stiffeners are structurally more effective than the round ones.
Flexural-torsional buckling analysis of angle-bar stiffened plates
Energy Technology Data Exchange (ETDEWEB)
Ahmad, Rahbar Ranji [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)
2015-09-15
The interaction of flexural-torsional buckling modes is critical for stiffened plates with asymmetric stiffeners. However, this interaction is ignored in all design rules because it is complex to characterize. In the literature, the presence of an attached plate is ignored, and stiffened plate is treated as an ordinary asymmetric beam. In the flexural buckling mode, stiffener and the attached plate buckle together; in the torsional buckling mode, the attached plate cannot freely rotate with stiffener. Basic equations of the flexural-torsional buckling modes are deduced based on hybrid beam concept and a new strain distribution assumption for sideway bending of stiffeners. Elastic buckling stresses of different angle-bar stiffened plates are calculated and compared with those generated by the Finite element method (FEM) and those available in the literature. The present method has better agreements with FEM.
Analysis and test of superplastically formed titanium hat-stiffened panels under compression
Davis, Randall C.; Royster, Dick M.; Bales, Thomas T.
1987-01-01
Four hat-stiffened titanium panels with two different stiffener configurations were fabricated by superplastic forming/weld brazing and tested under a moderately heavy compressive load. The panels had the same overall dimensions but differed in the shape of the hat-stiffener webs; three panels had stiffeners with flat webs and the other panel had stiffeners with beaded webs. Analysis indicated that the local buckling strain of the flat stiffener web was considerably lower than the general panel buckling strain or cap buckling strain. The analysis also showed that beading the webs of the hat stiffeners removed them as the critical element for local buckling and improved the buckling strain of the panels. The analytical extensional stiffness and failure loads compared very well with experimental results.
Multidisciplinary Optimization and Damage Tolerance of Stiffened Structures
Jrad, Mohamed
THE structural optimization of a cantilever aircraft wing with curvilinear spars and ribs and stiffeners is described. For the optimization of a complex wing, a common strategy is to divide the optimization procedure into two subsystems: the global wing optimization which optimizes the geometry of spars, ribs and wing skins; and the local panel optimization which optimizes the design variables of local panels bordered by spars and ribs. The stiffeners are placed on the local panels to increase the stiffness and buckling resistance. During the local panel optimization, the stress information is taken from the global model as a displacement boundary condition on the panel edges using the so-called "Global-Local Approach". Particle swarm optimization is used in the integration of global/local optimization to optimize the SpaRibs. Parallel computing approach has been developed in the Python programming language to reduce the CPU time. The license cycle-check method and memory self-adjustment method are two approaches that have been applied in the parallel framework in order to optimize the use of the resources by reducing the license and memory limitations and making the code robust. The integrated global-local optimization approach has been applied to subsonic NASA common research model (CRM) wing, which proves the methodology's application scaling with medium fidelity FEM analysis. The structural weight of the wing has been reduced by 42% and the parallel implementation allowed a reduction in the CPU time by 89%. The aforementioned Global-Local Approach is investigated and applied to a composite panel with crack at its center. Because of composite laminates' heterogeneity, an accurate analysis of these requires very high time and storage space. A possible alternative to reduce the computational complexity is the global-local analysis which involves an approximate analysis of the whole structure followed by a detailed analysis of a significantly smaller region of
Directory of Open Access Journals (Sweden)
Kanda H
2015-09-01
Full Text Available Hirotsugu Kanda,1 Yuji Hirasaki,2 Takafumi Iida,1 Megumi Kanao,1 Yuki Toyama,1 Takayuki Kunisawa,1 Hiroshi Iwasaki,11Department of Anesthesiology and Critical Care Medicine, Asahikawa Medical University, Asahikawa, 2Department of Anatomy, The Jikei University Graduate School of Medicine, Tokyo, JapanPurpose: The aim of this clinical trial was to investigate changes in stroke volume variability (SVV and left ventricular end-diastolic volume (LVEDV after a fluid bolus of crystalloid or colloid using real-time three-dimensional transesophageal echocardiography (3D-TEE and the Vigileo-FloTrac™ system.Materials and methods: After obtaining Institutional Review Board approval, and informed consent from the research participants, 22 patients undergoing scheduled peripheral vascular bypass surgery were enrolled in the study. The patients were randomly assigned to receive 500 mL of hydroxyethyl starch (HES; HES group, n=11 or normal saline (Saline group, n=11 for fluid replacement therapy. SVV was measured using the Vigileo-FloTrac system. LVEDV, stroke volume, and cardiac output were measured by 3D-TEE. The measurements were performed over 30 minutes before and after the fluid bolus in both groups.Results: SVV significantly decreased after fluid bolus in both groups (HES group, 14.7%±2.6% to 6.9%±2.7%, P<0.001; Saline group, 14.3%±3.9% to 8.8%±3.1%, P<0.001. LVEDV significantly increased after fluid loading in the HES group (87.1±24.0 mL to 99.9±27.2 mL, P<0.001, whereas no significant change was detected in the Saline group (88.8±17.3 mL to 91.4±17.6 mL, P>0.05. Stroke volume significantly increased after infusion in the HES group (50.6±12.5 mL to 61.6±19.1 mL, P<0.01 but not in the Saline group (51.6±13.4 mL to 54.1±12.8 mL, P>0.05. Cardiac output measured by 3D-TEE significantly increased in the HES group (3.5±1.1 L/min to 3.9±1.3 L/min, P<0.05, whereas no significant change was seen in the Saline group (3.4±1.1 L/min to 3.3±1.0 L
Stiffening mechanisms in amorphous polyamide bio-nanocomposites
Energy Technology Data Exchange (ETDEWEB)
Focke, Walter W. [Institute of Applied Materials, Department of Chemical Engineering, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria (South Africa); Macheca, Afonso D. [Institute of Applied Materials, Department of Chemical Engineering, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria (South Africa); Department of Chemical Engineering, Eduardo Mondlane University, P.O. Box 257, Maputo (Mozambique); Benhamida, Aida; Kaci, Mustapha [Laboratoire des Matériaux Polymères Avancés (LMPA), Université de Bejaia 06000 (Algeria)
2016-05-18
Dimer fatty acid polyamide nanocomposites based on flake- or needle-shaped nanoparticles were prepared via melt compounding. Transmission electron microscopy showed the presence of both individually dispersed particles and particle agglomerates in the polymer matrix. Dynamic mechanical analysis suggests that three stiffening mechanisms were operating. The reinforcing effect of the high stiffness inorganic filler particles is the primary contributor. Together with the chain confinement effect, that expresses itself in an apparent increase in the glass transition temperature, this provided an adequate rationalization of the stiffness variation below Tg. However, an additional stiffening effect is indicated at temperatures above Tg. The mechanism may involve dynamic network formation based on fluctuating hydrogen bonding interactions between the polymer chains and the filler particles.
Compensatory Effect between Aortic Stiffening and Remodelling during Ageing.
Directory of Open Access Journals (Sweden)
Andrea Guala
Full Text Available The arterial tree exhibits a complex spatio-temporal wave pattern, whose healthy behaviour depends on a subtle balance between mechanical and geometrical properties. Several clinical studies demonstrated that such a balance progressively breaks down during ageing, when the aorta stiffens and remodels by increasing its diameter. These two degenerative processes however, have different impacts on the arterial wave pattern. They both tend to compensate for each other, thus reducing the detrimental effect they would have had if they had arisen individually. This remarkable compensatory mechanism is investigated by a validated multi-scale model, with the aim to elucidate how aortic stiffening and remodelling quantitatively impact the complex interplay between forward and reflected backward waves in the arterial network. We focus on the aorta and on the pressure at the ventricular-aortic interface, which epidemiological studies demonstrate to play a key role in cardiovascular diseases.
Compensatory Effect between Aortic Stiffening and Remodelling during Ageing.
Guala, Andrea; Camporeale, Carlo; Ridolfi, Luca
2015-01-01
The arterial tree exhibits a complex spatio-temporal wave pattern, whose healthy behaviour depends on a subtle balance between mechanical and geometrical properties. Several clinical studies demonstrated that such a balance progressively breaks down during ageing, when the aorta stiffens and remodels by increasing its diameter. These two degenerative processes however, have different impacts on the arterial wave pattern. They both tend to compensate for each other, thus reducing the detrimental effect they would have had if they had arisen individually. This remarkable compensatory mechanism is investigated by a validated multi-scale model, with the aim to elucidate how aortic stiffening and remodelling quantitatively impact the complex interplay between forward and reflected backward waves in the arterial network. We focus on the aorta and on the pressure at the ventricular-aortic interface, which epidemiological studies demonstrate to play a key role in cardiovascular diseases.
Numerical analysis of stiffener for hybrid drive unite
Directory of Open Access Journals (Sweden)
Jakubovičová Lenka
2018-01-01
Full Text Available The matter of this article is a stress-strain analysis of hybrid drive prototype unit connected directly to convention Concrete Transit Mixer Gearbox. The unite was developed with intention to do field test on existing convection machines with possibility to use existing interfaces. The hybrid drive unit consists from electric and hydrostatic motor connected through addition mechanical transmission gearbox. The question is if today standard interface is good enough or need additional support a “stiffener”. Two engineering design were analysed. The first one includes using the stiffener to fixate the construction of hybrid drive unite connected to the planetary gear. The second one is without the stiffener. For strain-stress analysis, a finite element software ANSYS Workbench was used.
Tensile behavior and tension stiffening of reinforced concrete
Energy Technology Data Exchange (ETDEWEB)
Choun, Young Sun; Seo, Jeong Moon
2001-03-01
For the ultimate behavior analysis of containment buildings under severe accident conditions, a clear understanding of tensile behaviors of plain and reinforced concrete is necessary. Nonlinear models for tensile behaviors of concrete are also needed. This report describe following items: tensile behaviors of plain concrete, test results of reinforced concrete panels in uniaxial and biaxial tension, tension stiffening. The tensile behaviors of reinforced concrete are significantly influenced by the properties of concrete and reinforcing steel. Thus, for a more reliable evaluation of tensile behavior and ultimate pressure capacity of a reinforced or prestressed concrete containment building, an advanced concrete model which can be considered rebar-concrete interaction effects should be developed. In additions, a crack behavior analysis method and tension stiffening models, which are based on fracture mechanics, should be developed. The model should be based on the various test data from specimens considering material and sectional properties of the containment building.
Guideline for Forming Stiffened Panels by Using the Electromagnetic Forces
Directory of Open Access Journals (Sweden)
Jinqiang Tan
2016-11-01
Full Text Available Electromagnetic forming (EMF, as a high-speed forming technology by applying the electromagnetic forces to manufacture sheet or tube metal parts, has many potential advantages, such as contact-free and resistance to buckling and springback. In this study, EMF is applied to form several panels with stiffened ribs. The distributions and variations of the electromagnetic force, the velocity and the forming height during the EMF process of the bi-directional panel with gird ribs are obtained by numerical simulations, and are analyzed via the comparison to those with the flat panel (non-stiffened and two uni-directional panels (only with X-direction or Y-direction ribs. It is found that the electromagnetic body force loads simultaneously in the ribs and the webs, and the deformation of the panels is mainly driven by the force in the ribs. The distribution of force in the grid-rib panel can be found as the superposition of the two uni-directional stiffened panels. The velocity distribution for the grid-rib panel is primarily affected by the X-directional ribs, then the Y-directional ribs, and the variation of the velocity are influenced by the force distribution primarily and secondly the inertial effect. Mutual influence of deformation exists between the region undergoing deformation and the deformed or underformed free ends. It is useful to improve forming uniformity via a second discharge at the same position. Comparison between EMF and the brake forming with a stiffened panel shows that the former has more advantages in reducing the defects of springback and buckling.
Universal strain stiffening in biological gels and tissues
Storm, Cornelis; Pastore, Jennifer; Mackintosh, Fred; Lubensky, Tom; Janmey, Paul
2003-03-01
Unlike most synthetic materials, many biological materials get stiffer as they are deformed. This nonlinear elastic response, critical for physiologic function of tissues such as the blood vessel wall, has been documented since at least the 19th century but the molecular structure and the design principles responsible for it are unknown. In various systems, different hypotheses ranging from complex multiphase structures to tensegrity models have been proposed to explain strain-stiffening in biological gels and tissues, and in these cases the specific viscoelastic properties depend critically on the detailed assembly and geometry of the highly ordered material. In this presentation we show that a much simpler molecular theory accounts for the most dramatic forms of strain stiffening found in a wide range of molecularly distinct biopolymer gels ranging from purified cytoskeletal and extracellular matrix gels to intact tissues such as the mesentery. The theory shows that the physics of semi flexible chains arranged in an open crosslinked meshwork invariably stiffen at low strains independent of the need for a specific architecture or multiple elements with different intrinsic stiffness. These findings explain why stiff polymers are chosen over more flexibler ones in tissues where only a limited range of deformation is appropriate.
The Noble-Abel Stiffened-Gas equation of state
Le Métayer, Olivier; Saurel, Richard
2016-04-01
Hyperbolic two-phase flow models have shown excellent ability for the resolution of a wide range of applications ranging from interfacial flows to fluid mixtures with several velocities. These models account for waves propagation (acoustic and convective) and consist in hyperbolic systems of partial differential equations. In this context, each phase is compressible and needs an appropriate convex equation of state (EOS). The EOS must be simple enough for intensive computations as well as boundary conditions treatment. It must also be accurate, this being challenging with respect to simplicity. In the present approach, each fluid is governed by a novel EOS named "Noble Abel stiffened gas," this formulation being a significant improvement of the popular "Stiffened Gas (SG)" EOS. It is a combination of the so-called "Noble-Abel" and "stiffened gas" equations of state that adds repulsive effects to the SG formulation. The determination of the various thermodynamic functions and associated coefficients is the aim of this article. We first use thermodynamic considerations to determine the different state functions such as the specific internal energy, enthalpy, and entropy. Then we propose to determine the associated coefficients for a liquid in the presence of its vapor. The EOS parameters are determined from experimental saturation curves. Some examples of liquid-vapor fluids are examined and associated parameters are computed with the help of the present method. Comparisons between analytical and experimental saturation curves show very good agreement for wide ranges of temperature for both liquid and vapor.
Electrostatic stiffening and induced persistence length for coassembled molecular bottlebrushes
Storm, Ingeborg M.; Stuart, Martien A. Cohen; de Vries, Renko; Leermakers, Frans A. M.
2018-03-01
A self-consistent field analysis for tunable contributions to the persistence length of isolated semiflexible polymer chains including electrostatically driven coassembled deoxyribonucleic acid (DNA) bottlebrushes is presented. When a chain is charged, i.e., for polyelectrolytes, there is, in addition to an intrinsic rigidity, an electrostatic stiffening effect, because the electric double layer resists bending. For molecular bottlebrushes, there is an induced contribution due to the grafts. We explore cases beyond the classical phantom main-chain approximation and elaborate molecularly more realistic models where the backbone has a finite volume, which is necessary for treating coassembled bottlebrushes. We find that the way in which the linear charge density or the grafting density is regulated is important. Typically, the stiffening effect is reduced when there is freedom for these quantities to adapt to the curvature stresses. Electrostatically driven coassembled bottlebrushes, however, are relatively stiff because the chains have a low tendency to escape from the compressed regions and the electrostatic binding force is largest in the convex part. For coassembled bottlebrushes, the induced persistence length is a nonmonotonic function of the polymer concentration: For low polymer concentrations, the stiffening grows quadratically with coverage; for semidilute polymer concentrations, the brush chains retract and regain their Gaussian size. When doing so, they lose their induced persistence length contribution. Our results correlate well with observed physical characteristics of electrostatically driven coassembled DNA-bioengineered protein-polymer bottlebrushes.
An interface controlled dynamic stiffening in polymer nanocomposites
Senses, Erkan; Akcora, Pinar
2013-03-01
Tunable interfaces between inorganic and organic phases determine the mechanical behavior of responsive and adaptive composites. We present that bonding/debonding of chains on nanoparticles can be modulated with extensive periodic strains. Mechanical response of an attractive model polymer composite, poly(methyl methacrylate) filled with silica nanoparticles of sizes 13 nm and 56 nm, is monitored in series of deformation-resting experiments allowing us to tune the interfacial strength of polymer. We show that this deformation process exhibit unusual stiffening of composites as the matrix polymer is bound to the surface stronger on removal of strain. Mechanical response during the recovery together with SANS and FTIR analysis of the composites at different states of deformation reveal that this behavior arises from enhancement in the entanglement of chains at interfaces. We studied the effects of strain amplitude, confinement parameter (ID/2Rg) and resting time and found that the stiffening is manifest only after large strains. This behavior offers an `on demand' reinforcement properties to polymer nanocomposites, implying that the composites with attractive interfaces can self-stiffen as needed.
Fracture Analysis of the FAA/NASA Wide Stiffened Panels
Seshadri, B. R.; Newman, J. C., Jr.; Dawicke, D. S.; Young, R. D.
1999-01-01
This paper presents the fracture analyses conducted on the FAA/NASA stiffened and unstiffened panels using the STAGS (STructural Analysis of General Shells) code with the critical crack-tip-opening angle (CTOA) fracture criterion. The STAGS code with the "plane-strain" core option was used in all analyses. Previous analyses of wide, flat panels have shown that the high-constraint conditions around a crack front, like plane strain, has to be modeled in order for the critical CTOA fracture criterion to predict wide panel failures from small laboratory tests. In the present study, the critical CTOA value was determined from a wide (unstiffened) panel with anti-buckling guides. The plane-strain core size was estimated from previous fracture analyses and was equal to about the sheet thickness. Rivet flexibility and stiffener failure was based on methods and criteria, like that currently used in industry. STAGS and the CTOA criterion were used to predict load-against-crack extension for the wide panels with a single crack and multiple-site damage cracking at many adjacent rivet holes. Analyses were able to predict stable crack growth and residual strength within a few percent (5%) of stiffened panel tests results but over predicted the buckling failure load on an unstiffened panel with a single crack by 10%.
Local buckling and crippling of composite stiffener sections
Bonanni, David L.; Johnson, Eric R.; Starnes, James H., Jr.
1988-01-01
Local buckling, postbuckling, and crippling (failure) of channel, zee, and I- and J-section stiffeners made of AS4/3502 graphite-epoxy unidirectional tape are studied by experiment and analysis. Thirty-six stiffener specimens were tested statically to failure in axial compression as intermediate length columns. Web width is 1.25 inches for all specimens, and the flange width-to-thickness ratio ranges from 7 to 28 for the specimens tested. The radius of the stiffener corners is either 0.125 or 0.250 inches. A sixteen-ply orthotropic layup, an eight-ply quasi-isotropic layup, and a sixteen-ply quasi-isotropic layup are examined. Geometrically nonlinear analyses of five specimens were performed with the STAGS finite element code. Analytical results are compared to experimental data. Inplane stresses from STAGS are used to conduct a plane stress failure analysis of these specimens. Also, the development of interlaminar stress equations from equilibrium for classical laminated plate theory is presented. An algorithm to compute high order displacement derivatives required by these equations based on the Discrete Fourier Transform (DFT) is discussed.
International Nuclear Information System (INIS)
Kim, H.; Ryue, J.
2014-01-01
In this study, the vibration characteristics and sound radiation of strip plates with finite width and infinite length are investigated numerically in order to analyze the vibration and sound radiation of structures consisting of many stiffened and double-layered plates. The waveguide finite element approach, which is effective for waveguide structures, is applied as a numerical scheme. The sound power and radiation efficiencies for an unstiffened plate are calculated numerically via coupling boundary elements to the WFEs. Longitudinal stiffeners and additional upper plates are included in the plate model to investigate the effect of stiffeners and an upper plate on sound power and radiation efficiency. In this study, it is found that the stiffeners contribute differently to plate vibration and sound radiation, and that the radiation efficiencies of the stiffened and double plates are larger than those of the unstiffened plate due to the presence of the stiffeners.
Manikandan, P.; Balaji, S.; Sukumar, S.; Sivakumar, M.
2017-06-01
This paper presents the strength and behaviour of web stiffened cold formed steel channel column with various types of edge stiffener under axial compression. An accurate finite element model is developed to simulate the tests results of the proposed section. The finite element model is verified by the test results and good correlation is achieved. The failure modes local, distortional, flexural buckling as well as the interaction between these modes is found in this study. The column strength predicted from the parametric study is compared with the nominal strength calculated by using the direct strength method for cold formed steel members. The reliability of this method is evaluated and suitable modification factor is proposed.
1943-01-01
This report summarizes the work that has been carried on in the experimental investigation of the problem of the general instability of stiffened metal cylinders subjected to combined bending and torsion at the C.I.T. This part of the investigation included tests on 26 sheet-covered specimens. An interaction curve for the case of combined bending and torsion is presented. The results of tests of 17 specimens subjected to pure torsion are also given.
Baisch, F.; Heer, M.; Beck, L.; Blomqvist, C. G.; Kropp, J.; Schulz, H.; Hillebrecht, A.; Meyer, M.
1991-01-01
In an international collaborative project six normal male subjects were studied before, during and after 10 days 6 degrees HDT. Fluid intake was controlled at 40 ml/(kgbw day). Urine volume and body weight were determined daily. Fluid loading and LBNP were performed in all three phases of the study. Body weight diminished by 2.6% because of fluid loss. Blood volume diminished by 13%. The responses to fluid loading were similar in the three phases of the study. Sixty minutes after end of infusion only 5.5% of the infused saline remained in the intravascular compartment. Excess interstitial fluid was eliminated in the next 24 hs but a negative balance was recorded also in the following day. The compliance of the lower limbs expressed as the rate of limb volume change/unit LBNP change was increased at the end of the HDT phase and during the post HDT phase. The set point of intravascular volume was defended, as shown by the response to FL. HDT increased the compliance of the lower limbs.
Analytical and numerical analysis of a “springback-forming” process dedicated to stiffened panels
Ait ali, Mohamed El Amine; Guines, Dominique; Leotoing, Lionel; Ragneau, Eric
2015-01-01
International audience; The aim of this article is to present and to analyze the capabilities of a process named “springback-forming”, dedicated to stiffened panels such asairplane’s fuselage panels. The principle of this forming process is to apply a tension on the stiffener, before the assembly stage with the sheet in a flatconfiguration using fasteners, adhesives, or a welding process... the bending of the structure is then achieved by springback energy of the stiffener when its tension is...
DEFF Research Database (Denmark)
Enevoldsen, Majken; Henneberg, K-A; Jensen, J A
2011-01-01
Cigarette smoking is the leading self-inflicted risk factor for cardiovascular diseases; it causes arterial stiffening with serious sequelea including atherosclerosis and abdominal aortic aneurysms. This work presents a new interpretation of arterial stiffening caused by smoking based on data...... published for rat pulmonary arteries. A structurally motivated "four fiber family" constitutive relation was used to fit the available biaxial data and associated best-fit values of material parameters were estimated using multivariate nonlinear regression. Results suggested that arterial stiffening caused...
The influence of stiffeners on axial crushing of glass-fabric-reinforced epoxy composite shells
Directory of Open Access Journals (Sweden)
A. Vasanthanathan
2017-01-01
Full Text Available A generic static and impact experimental procedure has been developed in this work aimed at improving the stability of glass fabric reinforced epoxy shell structures by bonding with axial stiffeners. Crashworthy structures fabricated from composite laminate with stiffeners would offer energy absorption superior to metallic structures under compressive loading situations. An experimental material characterisation of the glass fabric reinforced epoxy composite under uni-axial tension has been carried out in this study. This work provides a numerical simulation procedure to describe the static and dynamic response of unstiffened glass fabric reinforced epoxy composite shell (without stiffeners and stiffened glass fabric reinforced epoxy composite shell (with axial stiffeners under static and impact loading using the Finite Element Method. The finite element calculation for the present study was made with ANSYS®-LS-DYNA® software. Based upon the experimental and numerical investigations, it has been asserted that glass fabric reinforced epoxy shells stiffened with GFRP stiffeners are better than unstiffened glass fabric reinforced epoxy shell and glass fabric reinforced epoxy shell stiffened with aluminium stiffeners. The failure surfaces of the glass fabric reinforced epoxy composite shell structures tested under impact were examined by SEM.
Filling of charged cylindrical capillaries
Das, S.; Chanda, Sourayon; Eijkel, Jan C.T.; Tas, Niels Roelof; Chakraborty, Suman; Mitra, Sushanta K.
2014-01-01
We provide an analytical model to describe the filling dynamics of horizontal cylindrical capillaries having charged walls. The presence of surface charge leads to two distinct effects: It leads to a retarding electrical force on the liquid column and also causes a reduced viscous drag force because
Optics Demonstrations Using Cylindrical Lenses
Ivanov, Dragia; Nikolov, Stefan
2015-01-01
In this paper we consider the main properties of cylindrical lenses and propose several demonstrational experiments that can be performed with them. Specifically we use simple glasses full of water to demonstrate some basic geometrical optics principles and phenomena. We also present some less standard experiments that can be performed with such…
Dismantling OPAL's cylindrical magnet core
Laurent Guiraud
2001-01-01
Lifting a handling device for dismounting the pressure bells, which are inside the cylindrical magnet coil on the central section of OPAL, on the right part of the photo. OPAL was a detector on the LEP accelerator, which ran from 1989 to 2000.
Homotheties of cylindrically symmetric static spacetimes
International Nuclear Information System (INIS)
Qadir, A.; Ziad, M.; Sharif, M.
1998-08-01
In this note we consider the homotheties of cylindrically symmetric static spacetimes. We find that we can provide a complete list of all metrics that admit non-trivial homothetic motions and are cylindrically symmetric static. (author)
Consequences of Simultaneous Local and Overall Buckling in Stiffened Panels
Ghosh, Biswarup
2003-01-01
In this thesis improved expressions for elastic local plate buckling and overall panel buckling of uniaxially compressed T-stiffened panels are developed and validated with 55 ABAQUS eigenvalue buckling analyses of a wide range of typical panel geometries. These two expressions are equated to derive a new expression for the rigidity ratio (EIx/Db)CO that uniquely identifies Â¡Â°crossoverÂ¡Â± panels Â¨C those for which local and overall buckling stresses are the same. The new expression for (E...
Reduction of initial stress stiffening by topology optimization
DEFF Research Database (Denmark)
Philippine, M. A.; Sigmund, Ole; Rebeiz, G. M.
2012-01-01
Topology optimization is a rigorous method of obtaining non-intuitive designs. We use it to obtain a capacitive RF switch that stiffens little in response to an increase of the in-plane biaxial stresses that typically develop during MEMS fabrication. The actuation voltage is closely related...... to the membrane's stiffness, and is more stable for a stress insensitive switch. We employ the Solid Isotropic Material with Penalization (SIMP) method with the Method of Moving Asymptotes (MMA) and a robust formulation to minimize the ratio between the compliance at a low stress level and that at a high stress...
Experimental Investigation of Tension Stiffening in RC Ties
Directory of Open Access Journals (Sweden)
Aleksandr Sokolov
2016-01-01
Full Text Available The increasing application of high-performance materials in civil engineering led to the development of reinforced concrete (RC structures with reduced cross sections and increased spans. In such structures serviceability limit state often becomes the governing condition of the design. Present study investigates the deformation behaviour of high-strength RC ties reinforced with high-grade bars. Experimental investigation was carried out measuring the postcracking stiffness of the specimens at high strain levels. It was found that, despite the reduction in stiffness, a considerable part of the average tensile stresses were carried by the concrete at the advanced loading stages, thus effectively stiffening the RC member.
Implementation and efficiency of two geometric stiffening approaches
International Nuclear Information System (INIS)
Lugris, Urbano; Naya, Miguel A.; Perez, Jose A.; Cuadrado, Javier
2008-01-01
When the modeling of flexible bodies is required in multibody systems, the floating frame of reference formulations are probably the most efficient methods available. In the case of beams undergoing high speed rotations, the geometric stiffening effect can appear due to geometric nonlinearities, and it is often not captured by the aforementioned methods, since it is common to linearize the elastic forces assuming small deformations. The present work discusses the implementation of different existing methods developed to consider such geometric nonlinearities within a floating frame of reference formulation in natural coordinates, making emphasis on the relation between efficiency and accuracy of the resulting algorithms, seeking to provide practical criteria of use
Development of a Damage Quantification Model for Composite Skin-Stiffener Structures
Loendersloot, Richard; Ooijevaar, T.H.; de Boer, Andries; Akkerman, Remko; Boller, C; Janocha, H
2011-01-01
The development of a model-based approach for a damage severity assessment applied on a complex composite skin structure with stiffeners is presented in this paper. Earlier investigations on composite structures with stiffeners revealed that a vibration based structural health monitoring approach,
Models for stiffening in cross-linked biopolymer networks : A comparative study
van Dillen, T.; Onck, P. R.; Van der Giessen, E.
In a recent publication, we studied the mechanical stiffening behavior in two-dimensional (2D) cross-linked networks of semiflexible biopolymer filaments under simple shear [Onck, P.R., Koeman, T., Van Dillen, T., Van der Giessen, E., 2005. Alternative explanation of stiffening in cross-linked
Peterson, James P.; Dow, Marvin B.
1959-01-01
Six circular cylinders stiffened longitudinally by closely spaced Z-section stringers were loaded to failure in compression. The results obtained are presented and compared with available theoretical results for the buckling of orthotropic cylinders. The results indicate that the large disparity that exists between theory and experiment for unstiffened compression cylinders may be significantly smaller for stiffened cylinders.
Evaluation of tension stiffening effect on the crack width calculation of flexural RC members
Directory of Open Access Journals (Sweden)
Said M. Allam
2013-06-01
Full Text Available Building codes consider the tension stiffening when calculating the crack width of the flexural members. A simple analytical procedure is proposed for the determination of forces, stresses and strains acting on a reinforced concrete section subjected to flexure considering the concrete contribution in tension up to tensile concrete strain corresponding to the cracking strength of concrete. This analytical method gives the minimum value (lower bound of tension stiffening. Also, a commercial Finite Element Program (ABAQUS 2007 was used to perform non-linear analysis in order to evaluate the total contribution of the tensioned concrete in carrying loads which may be considered as the upper bound of tension stiffening. In addition, a comparison is carried out among the different codes using four reinforced concrete rectangular models to compare and evaluate the tension stiffening with proposed analytical lower bound tension stiffening and upper bound as obtained by ABAQUS. The models include different percentages of flexural steel ratio. The comparison revealed that the codes’ equations always consider tension stiffening lying between lower and upper bound of tension stiffening proposed in this study. Also, the study showed that the tension stiffening decreases with the increase of the percentage of the flexural reinforcement ratio.
Temperature effect on the static behaviour of adhesively-bonded metal skin to composite stiffener
Teixeira De Freitas, S.; Sinke, J.
2015-01-01
The purpose of this research is to study the effect of temperature on the static behavior of an hybrid structure consisting of adhesively bonded Fiber Metal Laminate skin to a composite stiffener. This hybrid structure was tested using stiffener pull-off tests, which is a typical set-up used to
Vibration based structural health monitoring of a composite plate with stiffeners
Loendersloot, Richard; Ooijevaar, T.H.; Warnet, Laurent; de Boer, Andries; Akkerman, Remko; Sas, P
2010-01-01
A vibration based damage identification algorithm is implemented to assess the damage of a thin-walled composite structure. The structure analysed is a skin with stiffeners, as frequently applied in aircraft components. Both experimental and numerical studies on a single composite skin--stiffener
Felix, Sarah; Shah, Kedar; George, Diana; Tolosa, Vanessa; Tooker, Angela; Sheth, Heeral; Delima, Terri; Pannu, Satinderpall
2012-01-01
Flexible polymer probes are expected to enable extended interaction with neural tissue by minimizing damage from micromotion and reducing inflammatory tissue response. However, their flexibility prevents them from being easily inserted into the tissue. This paper describes an approach for temporarily attaching a silicon stiffener with biodissolvable polyethylene glycol (PEG) so that the stiffener can be released from the probe and extracted shortly after probe placement. A novel stiffener design with wicking channels, along with flip-chip technology, enable accurate alignment of the probe to the stiffener, as well as uniform distribution of the PEG adhesive. Insertion, extraction, and electrode function were tested in both agarose gel and a rat brain. Several geometric and material parameters were tested to minimize probe displacement during stiffener extraction. We demonstrated average probe displacement of 28 ± 9 µm.
Electromagnetic Forming Rules of a Stiffened Panel with Grid Ribs
Directory of Open Access Journals (Sweden)
Jinqiang Tan
2017-12-01
Full Text Available Electromagnetic forming (EMF, a technology with advantages of contact-free force and high energy density, generally aims at forming parts by using a fixed coil and one-time discharge. In this study, multi-stage EMF is introduced to form a panel with stiffened grid ribs. The forming rules of the stiffened panel is revealed via analyzing the distribution and evolution of the simulated stress and strain in the ribs and web, where the grid-rib panels were decomposed as the flat panel and two panels with uni-directional ribs (ribs only in X direction or Y direction. It is shown that the forming depth is mainly attributed to the forces on the web, although electromagnetic force is applied on both the ribs and the web, especially, large force on the ribs. The ribs are subjected to uniaxial stress parallel to their directions, and the web is subjected to plane stress in the deformation region. Furthermore, the change of the uniaxial stress characteristic in the X-direction ribs is influenced by the electromagnetic force, reverse bend and inertial effect. The plastic deformation mainly occurs in the Y-direction ribs of the deformation region under a three-direction strain state.
Sound Radiation of Cylindrical Shells
Directory of Open Access Journals (Sweden)
B Alzahabi
2016-09-01
Full Text Available The acoustic signature of submarines is very critical in such high performance structure. Submarines are not only required to sustain very high dynamic loadings at all time, but also being able maneuver and perform their functions under sea without being detected by sonar systems. Submarines rely on low acoustic signature level to remain undetected. Reduction of sound radiation is most efficiently achieved at the design stage. Acoustic signatures may be determined by considering operational scenarios, and modal characteristics. The acoustic signature of submarines is generally of two categories; broadband which has a continuous spectrum; and a tonal noise which has discrete frequencies. The nature of sound radiation of submarine is fiction of its speed. At low speed the acoustic signature is dominated by tonal noise, while at high speed, the acoustic signature is mainly dominated by broadband noise. Submarine hulls are mainly constructed of circular cylindrical shells. Unlike that of simpler structures such as beams and plates, the modal spectrum of cylindrical shell exhibits very unique characteristics. Mode crossing, the uniqueness of modal spectrum, and the redundancy of modal constraints are just to name a few. In cylindrical shells, the lowest natural frequency is not necessarily associated with the lowest wave index. In fact, the natural frequencies do not fall in ascending order of the wave index either. Solution of the vibration problem of cylindrical shells also indicates repeated natural frequencies. These modes are referred to as double peak frequencies. Mode shapes associated with each one of the natural frequencies are usually a combination of Radial (flexural, Longitudinal (axial, and Circumferential (torsional modes. In this paper, the wave equation will be set up in terms of the pressure fluctuations, p(x, t. It will be demonstrated that the noise radiation is a fluctuating pressure wave.
Cylindrical wormholes in DGP gravity
Richarte, Martín G.
2013-01-01
We construct traversable thin-shell wormholes in the Dvali-Gabadadze-Porrati theory with cylindrical symmetry applying the cut and paste procedure to a flat black string solution of the five-dimensional vacuum Einstein field equations. In contrast to general relativity case, where thin-shell wormholes violate both weak and null energy conditions, we show that static wormholes are supported by normal matter while vacuum wormholes do not exist.
Cylindrical Piezoelectric Fiber Composite Actuators
Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.
2008-01-01
The use of piezoelectric devices has become widespread since Pierre and Jacques Curie discovered the piezoelectric effect in 1880. Examples of current applications of piezoelectric devices include ultrasonic transducers, micro-positioning devices, buzzers, strain sensors, and clocks. The invention of such lightweight, relatively inexpensive piezoceramic-fiber-composite actuators as macro fiber composite (MFC) actuators has made it possible to obtain strains and displacements greater than those that could be generated by prior actuators based on monolithic piezoceramic sheet materials. MFC actuators are flat, flexible actuators designed for bonding to structures to apply or detect strains. Bonding multiple layers of MFC actuators together could increase force capability, but not strain or displacement capability. Cylindrical piezoelectric fiber composite (CPFC) actuators have been invented as alternatives to MFC actuators for applications in which greater forces and/or strains or displacements may be required. In essence, a CPFC actuator is an MFC or other piezoceramic fiber composite actuator fabricated in a cylindrical instead of its conventional flat shape. Cylindrical is used here in the general sense, encompassing shapes that can have circular, elliptical, rectangular or other cross-sectional shapes in the planes perpendicular to their longitudinal axes.
Hilburger, Mark W.; Waters, W. Allen, Jr.; Haynie, Waddy T.; Thornburgh, Robert P
2017-01-01
Results from the testing of cylinder test article SBKF-P2-CYL-TA02 (referred to herein as TA02) are presented. TA02 is an 8-foot-diameter (96-inches), 78.0-inch-long, aluminum-lithium (Al-Li), orthogrid-stiffened cylindrical shell similar to those used in current state-of-the-art launch-vehicle structures and was designed to exhibit global buckling when subjected to combined compression and bending loads. The testing was conducted at the Marshall Space Flight Center (MSFC), February 3-6, 2009, in support of the Shell Buckling Knockdown Factor Project (SBKF). The test was used to verify the performance of a newly constructed buckling test facility at MSFC and to verify the test article design and analysis approach used by the SBKF researchers.
Absorption factor for cylindrical samples
International Nuclear Information System (INIS)
Sears, V.F.
1984-01-01
The absorption factor for the scattering of X-rays or neutrons in cylindrical samples is calculated by numerical integration for the case in which the absorption coefficients of the incident and scattered beams are not equal. An extensive table of values having an absolute accuracy of 10 -4 is given in a companion report [Sears (1983). Atomic Energy of Canada Limited, Report No. AECL-8176]. In the present paper an asymptotic expression is derived for the absorption factor which can be used with an error of less than 10 -3 for most cases of interest in both neutron inelastic scattering and neutron diffraction in crystals. (Auth.)
Resonance integral of cylindrical absorber
International Nuclear Information System (INIS)
Slipicevic, K.
1968-01-01
This paper presents the procedure for calculating effective resonance integral for cylindrical rod which enables derivation of improved spatial distribution of source neutron flux. Application of this new expression for penetration factor, simultaneously with Doppler broadening of Breight-Wigner line enabled derivation of new equation for resonance integral which is valid for the whole range of surface-volume ratio of the rod, has correct boundary conditions and gives as special, results same as Wigner and Pomeranchuk. Functions for correcting the effects of interference of potential and resonance dissipation are derived separately
Influence of Impact Damage on Carbon-Epoxy Stiffener Crippling
Jegley, Dawn C.
2010-01-01
NASA, the Air Force Research Laboratory and The Boeing Company have worked to develop new low-cost, light-weight composite structures for aircraft. A Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept has been developed which offers advantages over traditional metallic structure. In this concept a stitched carbon-epoxy material system has been developed with the potential for reducing the weight and cost of transport aircraft structure by eliminating fasteners, thereby reducing part count and labor. By adding unidirectional carbon rods to the top of stiffeners, the panel becomes more structurally efficient. This combination produces a more damage tolerant design. This document describes the results of experimentation on PRSEUS specimens loaded in unidirectional compression subjected to impact damage and loaded in fatigue and to failure. A comparison with analytical predictions for pristine and damaged specimens is included.
Experimental Behavior of Fatigued Single Stiffener PRSEUS Specimens
Jegley, Dawn C.
2009-01-01
NASA, the Air Force Research Laboratory and The Boeing Company have worked to develop new low-cost, light-weight composite structures for aircraft. A Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept has been developed which offers advantages over traditional metallic structure. In this concept a stitched carbon-epoxy material system has been developed with the potential for reducing the weight and cost of transport aircraft structure by eliminating fasteners, thereby reducing part count and labor. By adding unidirectional carbon rods to the top of stiffeners, the panel becomes more structurally efficient. This combination produces a more damage tolerant design. This document describes the results of experimentation on PRSEUS specimens loaded in unidirectional compression in fatigue and to failure.
Less is more: removing membrane attachments stiffens the RBC cytoskeleton
International Nuclear Information System (INIS)
Gov, Nir S
2007-01-01
The polymerized network of the cytoskeleton of the red-blood cell (RBC) contains different protein components that maintain its overall integrity and attachment to the lipid bilayer. One of these key components is the band 3-ankyrin complex that attaches the spectrin filaments to the fluid bilayer. Defects in this particular component result in the shape transformation called spherocytosis, through the shedding of membrane nano-vesicles. We show here that this transition and membrane shedding can be explained through the increased stiffness of the network when the band 3-ankyrin complexes are removed. ATP-induced transient dissociations lead to network softening, which offsets the stiffening to some extent, and causes increased fragility of these mutant cells, as is observed
Transverse vibration analysis of stiffened plates with elastic support
Li, Z.; Ma, N. J.; Chen, M.
2017-10-01
The transverse vibration of stiffened plates with elastic support boundary conditions is studied in this paper. First, strain energy and kinetic equations of the deck, girders and ribs are respectively established. Second, governing equations for the structure are obtained according to the theorem of conservation of energy and solved using Ritz method. According to the relationship between the motherboard and the main girder deformation coordination, the displacement function of the deck can be got based on the displacement function of the main girder. At last, finite element model is built to check the accuracy of theoretical analysis. It can found that the theoretical solution and the finite element solution have the same variation trend, and the error between the two methods is small. Theoretical analysis method is reliable, and it has certain significance for further research and engineering design.
Modal analysis of a stiffened toroidal shell sector
International Nuclear Information System (INIS)
Cerreta, R.; Di Pietro, E.; Pizzuto, A.
1987-01-01
This paper presents the results of the modal analysis of a sector of the toroidal vacuum vessel of a new experimental machine for research in the field of controlled thermonuclear fusion (FTU - Frascati Tokamak Upgrade). The vacuum vessel, one of the most critical components of the experimental device, consist of 12 stainless steel toroidal sectors, and it is designed to withstand pulsed electromagnetic loads during operation. Results of the modal analysis of the stiffened toroidal shell sector are compared and discussed with regard to the experimental data. Theoretical eigenvalues and eigenvectors have been predicted by means of ABAQUS finite element code. Experimental analysis has been carried out on a full scale model and natural frequencies have been measured. Satisfactory agreement between experimental and theoretical eigenvalues has been found
DEFF Research Database (Denmark)
Enevoldsen, Majken; Henneberg, K-A; Jensen, J A
2011-01-01
Cigarette smoking is the leading self-inflicted risk factor for cardiovascular diseases; it causes arterial stiffening with serious sequelea including atherosclerosis and abdominal aortic aneurysms. This work presents a new interpretation of arterial stiffening caused by smoking based on data...... by smoking was reflected by consistent increase in an elastin-associated parameter and moreover by marked increase in the collagen-associated parameters. That is, we suggest that arterial stiffening due to cigarette smoking appears to be isotropic, which may allow simpler phenomenological models to capture...
Madan, Ram C.; Shuart, Mark J.
1990-01-01
Blade-stiffened, compression-loaded cover panels were designed, manufactured, analyzed, and tested. All panels were fabricated from IM6/1808I interleafed graphite-epoxy. An orthotropic blade stiffener and an orthotropic skin were selected to satisfy the design requirements for an advanced aircraft configuration. All specimens were impact damaged prior to testing. Experimental results were obtained for three- and five-stiffener panels. Analytical results described interlaminar forces caused by impact and predicted specimen residual strength. The analytical results compared reasonably with the experimental results for residual strength of the specimens.
DEFF Research Database (Denmark)
Enevoldsen, Marie Sand; Henneberg, Kaj-Åge; Jensen, Jørgen Arendt
2011-01-01
Cigarette smoking is the leading self-inflicted risk factor for cardiovascular diseases; it causes arterial stiffening with serious sequelea including atherosclerosis and abdominal aortic aneurysms. This work presents a new interpretation of arterial stiffening caused by smoking based on data...... published for rat pulmonary arteries. A structurally motivated ‘‘four fiber family’’ constitutive relation was used to fit the available biaxial data and associated best-fit values of material parameters were estimated using multivariate nonlinear regression. Results suggested that arterial stiffening...
Models of cylindrical bubble pulsation.
Ilinskii, Yurii A; Zabolotskaya, Evgenia A; Hay, Todd A; Hamilton, Mark F
2012-09-01
Three models are considered for describing the dynamics of a pulsating cylindrical bubble. A linear solution is derived for a cylindrical bubble in an infinite compressible liquid. The solution accounts for losses due to viscosity, heat conduction, and acoustic radiation. It reveals that radiation is the dominant loss mechanism, and that it is 22 times greater than for a spherical bubble of the same radius. The predicted resonance frequency provides a basis of comparison for limiting forms of other models. The second model considered is a commonly used equation in Rayleigh-Plesset form that requires an incompressible liquid to be finite in extent in order for bubble pulsation to occur. The radial extent of the liquid becomes a fitting parameter, and it is found that considerably different values of the parameter are required for modeling inertial motion versus acoustical oscillations. The third model was developed by V. K. Kedrinskii [Hydrodynamics of Explosion (Springer, New York, 2005), pp. 23-26] in the form of the Gilmore equation for compressible liquids of infinite extent. While the correct resonance frequency and loss factor are not recovered from this model in the linear approximation, it provides reasonable agreement with observations of inertial motion.
CT doses in cylindrical phantoms
International Nuclear Information System (INIS)
Atherton, J.V.; Huda, W.
1995-01-01
A single CT scan of thickness T in a cylindrical phantom produces a three-dimensional dose distribution, which depends primarily on the photon energy spectrum, the x-ray beam shaping filter and the size and composition of the irradiated phantom. Monte Carlo simulations employing monoenergetic photons were employed to investigate the effect of each of these factors on phantom dose distributions. The fractional energies scattered, imparted and transmitted through the CT phantom were calculated. A dose index (D(r)), which is a function of phantom radius r, was computed. Phantom materials investigated included lung, fat, water, soft tissue, acrylic and bone with calculations performed for head (160 mm diameter) and body (320 mm diameter) phantoms. All dose and energy imparted data generated for CT phantoms were normalized using an 'in air' dose (D air ), which is defined as the axial dose (in acrylic) at the isocentre in the absence of any phantom. Results obtained show how CT parameters impact on doses in cylindrical phantoms. These dosimetry data are likely to be useful to estimate energy imparted to phantoms (and patients) undergoing CT examinations. (author)
Directory of Open Access Journals (Sweden)
Baihua Yuan
2017-01-01
Full Text Available This work presents a vibroacoustic response model for a fluid-loaded, simply supported rectangular plate covered by a composite acoustic coating consisting of damping and decoupling layers. The model treated the damping layer and base plate as a unified whole under pure bending moments and the decoupling layer as a three-dimensional, isotropic, linear elastic solid. The validity of the model was verified by both numerical analysis and experiments and was shown to accurately extend previous studies that were limited to a plate covered by a single damping or decoupling layer with an evaluation confined solely to numerical analysis. The trends of the numerical and experimental results are generally consistent, with some differences due to the influences of water pressure and the frequency dependence of the material parameters, which are not taken into account by the numerical analysis. Both experimental and numerical results consistently show that the radiated noise reduction effect of the composite coating is superior to that of single-type coatings, which is attributed to the fact that the composite coating combines the merits of both the high vibration suppression performance of the damping layer and the superior vibration isolation performance of the decoupling layer.
Energy Technology Data Exchange (ETDEWEB)
Chen, Zhaoting; Wang, Rong Hui; Chen, Li; Dong, Chung Uang [School of Civil Engineering and Transportation, South China University of Technology, Guangzhou (China)
2016-08-15
This article investigated the strongly nonlinear free vibration of four edges simply supported stiffened plates with geometric imperfections. The von Karman nonlinear strain-displacement relationships are applied. The nonlinear vibration of stiffened plate is reduced to a one-degree-of-freedom nonlinear system by assuming mode shapes. The Multiple scales Lindstedt-Poincare method (MSLP) and Modified Lindstedt-Poincare method (MLP) are used to solve the governing equations of vibration. Numerical examples for stiffened plates with different initial geometric imperfections are presented in order to discuss the influences to the strongly nonlinear free vibration of the stiffened plate. The results showed that: the frequency ratio reduced as the initial geometric imperfections of plate increased, which showed that the increase of the initial geometric imperfections of plate can lead to the decrease of nonlinear effect; by comparing the results calculated by MSLP method, using MS method to study strongly nonlinear vibration can lead to serious mistakes.
Improvements of the smearing technique for cross-stiffened thin rectangular plates
DEFF Research Database (Denmark)
Luan, Yu; Ohlrich, Mogens; Jacobsen, Finn
2011-01-01
New developments in the simplified smearing technique for modeling vibrations of cross-stiffened, thin rectangular plates are presented. The computationally efficient smearing technique has been known for many years, but so far the accuracy of, say, predicted natural frequencies has been inadequate...... in this paper. The improved smearing technique results in better accuracy for predicted natural frequencies of flat stiffened plates, as demonstrated for both simply supported and clamped boundary conditions. The improved prediction accuracy is demonstrated by comparing results from a numerical model based...... improvement concerns the orientation of the stiffeners. The original smearing technique presupposes that the stiffeners are parallel to the edges of the plate, but simple considerations make it possible to relax this requirement. To test the validity of the resulting technique a series of plates are examined...
Out-of-autoclave manufacturing of a stiffened thermoplastic carbon fibre PEEK panel
Flanagan, M.; Goggins, J.; Doyle, A.; Weafer, B.; Ward, M.; Bizeul, M.; Canavan, R.; O'Bradaigh, C.; Doyle, K.; Harrison, N.
2017-10-01
Out-of-Autoclave manufacturing methods, specifically Automated Tape Placement (ATP) and induction welding, used in the fabrication of a stiffened thermoplastic demonstrator panel, are presented in this study. The demonstrator panel consists of two stiffeners induction welded to a flat skin, to form a typical load bearing aerospace sub-component. The skin of the panel is manufactured from uni-directional Carbon Fibre (CF) Polyetheretherkeytone (PEEK) using laser assisted Automated Tape Placement (ATP) and the stiffeners are press formed from woven CF-PEEK. The stiffeners are fusion bonded to the skin using a continuous induction welding process. A susceptor material is used at the interface to ensure the required heating is concentrated at the weldline. Microscopy was used to examine the manufactured coupons for defects. Destructive testing was carried out to evaluate the strength of the overall assembly. The work shows that assemblies manufactured using continuous induction welding and ATP are suitable for load bearing aerospace applications.
Zhou, Yuan-Qi; Zhan, Li-Hua
2016-05-01
Composite stiffened-structure consists of the skin and stringer has been widely used in aircraft fuselage and wings. The main purpose of the article is to detect the composite material reinforced structure accurately and explore the relationship between defect formation and structural elements or curing process. Based on ultrasonic phased array inspection technology, the regularity of defects in the manufacture of composite materials are obtained, the correlation model between actual defects and nondestructive testing are established. The article find that the forming quality of deltoid area in T-stiffened structure is obviously improved by pre-curing, the defects of hat-stiffened structure are affected by the mandrel. The results show that the ultrasonic phased array inspection technology can be an effectively way for the detection of composite stiffened-structures, which become an important means to control the defects of composite and improve the quality of the product.
Computationally efficient analysis and optimisation of stiffened thin-walled panels in shear
CSIR Research Space (South Africa)
Viljoen, A
2005-05-01
Full Text Available The computationally efficient analysis and optimum design of the buckling of stiffened, thin-walled shear panels in aircraft structures is discussed. Namely, the postbuckling behaviour of these panels is assessed using the iterative procedure...
Ultimate uniaxial compressive strength of stiffened panel with opening under lateral pressure
Directory of Open Access Journals (Sweden)
Chang-Li Yu
2015-03-01
Full Text Available This paper concentrated on the ultimate uniaxial compressive strength of stiffened panel with opening under lateral load and also studied the design-oriented formulae. For this purpose, three series of well executed experiments on longitudinal stiffened panel with rectangular opening subjected to the combined load have been selected as test models. The finite element analysis package, ABAQUS, is used for simulation with considering the large elasticplastic deflection behavior of stiffened panels. The feasibility of the numerical procedure is verified by a good agreement of experimental results and numerical results. More cases studies are executed employing nonlinear finite element method to analyze the influence of design variables on the ultimate strength of stiffened panel with opening under combined pressure. Based on data, two design formulae corresponding to different opening types are fitted, and accuracy of them is illustrated to demonstrate that they could be applied to basic design of practical engineering structure.
Test/semi-empirical analysis of a carbon/epoxy fabric stiffened panel
Spier, E. E.; Anderson, J. A.
1990-01-01
The purpose of this work-in-progress is to present a semi-empirical analysis method developed to predict the buckling and crippling loads of carbon/epoxy fabric blade stiffened panels in compression. This is a hand analysis method comprised of well known, accepted techniques, logical engineering judgements, and experimental data that results in conservative solutions. In order to verify this method, a stiffened panel was fabricated and tested. Both the best and analysis results are presented.
Exact anisotropic polytropic cylindrical solutions
Sharif, M.; Sadiq, Sobia
2018-03-01
In this paper, we study anisotropic compact stars with static cylindrically symmetric anisotropic matter distribution satisfying polytropic equation of state. We formulate the field equations as well as the corresponding mass function for the particular form of gravitational potential z(x)=(1+bx)^{η } (η =1, 2, 3) and explore exact solutions of the field equations for different values of the polytropic index. The values of arbitrary constants are determined by taking mass and radius of compact star (Her X-1). We find that resulting solutions show viable behavior of physical parameters (density, radial as well as tangential pressure, anisotropy) and satisfy the stability condition. It is concluded that physically acceptable solutions exist only for η =1, 2.
Analysis of the dynamic stability of collar-stiffened pipes conveying fluid
Aldraihem, Osama J.
2007-03-01
The dynamic stability of a collar-stiffened pipe conveying fluid was examined by using the Euler-Bernoulli beam theory. The pipe considered consists of identical substructures, or cells, connected in an identical fashion. Each substructure, or cell, comprises a uniform pipe segment and a collar. A finite element model was developed to predict the dynamic stability of the stiffened pipe under the action of the flowing fluid. Stability maps were obtained for clamped-free collar-stiffened pipes of various design parameters. The design parameters included the arrangement and the geometry of the identical cells. The stability maps demonstrated that the collar-stiffened pipe exhibits unique stability characteristics when compared to a uniform pipe. It was found that the stable region in the stability map enlarges for the collar-stiffened pipe when compared to a uniform pipe. To give clearer insight into the pipe dynamic behavior, the dynamic response and eigenvalue branches were presented for a number of collar-stiffened pipes.
Insertion of Flexible Neural Probes Using Rigid Stiffeners Attached with Biodissolvable Adhesive
Felix, Sarah H.; Shah, Kedar G.; Tolosa, Vanessa M.; Sheth, Heeral J.; Tooker, Angela C.; Delima, Terri L.; Jadhav, Shantanu P.; Frank, Loren M.; Pannu, Satinderpall S.
2013-01-01
Microelectrode arrays for neural interface devices that are made of biocompatible thin-film polymer are expected to have extended functional lifetime because the flexible material may minimize adverse tissue response caused by micromotion. However, their flexibility prevents them from being accurately inserted into neural tissue. This article demonstrates a method to temporarily attach a flexible microelectrode probe to a rigid stiffener using biodissolvable polyethylene glycol (PEG) to facilitate precise, surgical insertion of the probe. A unique stiffener design allows for uniform distribution of the PEG adhesive along the length of the probe. Flip-chip bonding, a common tool used in microelectronics packaging, enables accurate and repeatable alignment and attachment of the probe to the stiffener. The probe and stiffener are surgically implanted together, then the PEG is allowed to dissolve so that the stiffener can be extracted leaving the probe in place. Finally, an in vitro test method is used to evaluate stiffener extraction in an agarose gel model of brain tissue. This approach to implantation has proven particularly advantageous for longer flexible probes (>3 mm). It also provides a feasible method to implant dual-sided flexible probes. To date, the technique has been used to obtain various in vivo recording data from the rat cortex. PMID:24121443
On cylindrical near-field scanning techniques
DEFF Research Database (Denmark)
Appel-Hansen, Jørgen
1980-01-01
The agreement between the coupling equations obtained in the literature by using the reciprocity theorem and the scattering matrix formulation is demonstrated. The field is expanded in cylindrical vector wave functions and the addition theorem for these functions is used. The communication may...... serve as a tutorial introduction to the cylindrical scanning techniques....
Behavior of Frame-Stiffened Composite Panels with Damage
Jegley, Dawn C.
2013-01-01
NASA, the Air Force Research Laboratory and The Boeing Company have worked to develop new low-cost, light-weight composite structures for aircraft. A Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept has been developed which offers advantages over traditional metallic structures. In this concept, a stitched carbon-epoxy material system has been developed with the potential for reducing the weight and cost of transport aircraft structure by eliminating fasteners, thereby reducing part count and labor. Stitching and the use of thin skins with rod-stiffeners to move loading away from the morevulnerable outer surface produces a structurally efficient, damage tolerant design. This study focuses on the behavior of PRSEUS panels loaded in the frame direction and subjected to severe damage in the form of a severed central frame in a three-frame panel. Experimental results for a pristine two-frame panel and analytical predictions for pristine two-frame and three-frame panels as well as damaged three-frame panels are described.
Extraordinary Indentation Strain Stiffening Produces Superhard Tungsten Nitrides
Lu, Cheng; Li, Quan; Ma, Yanming; Chen, Changfeng
2017-09-01
Transition-metal light-element compounds are a class of designer materials tailored to be a new generation of superhard solids, but indentation strain softening has hitherto limited their intrinsic load-invariant hardness to well below the 40 GPa threshold commonly set for superhard materials. Here we report findings from first-principles calculations that two tungsten nitrides, hP4-WN and hP 6 -WN2 , exhibit extraordinary strain stiffening that produces remarkably enhanced indentation strengths exceeding 40 GPa, raising exciting prospects of realizing the long-sought nontraditional superhard solids. Calculations show that hP4-WN is metallic both at equilibrium and under indentation, marking it as the first known intrinsic superhard metal. An x-ray diffraction pattern analysis indicates the presence of hP4-WN in a recently synthesized specimen. We elucidate the intricate bonding and stress response mechanisms for the identified structural strengthening, and the insights may help advance rational design and discovery of additional novel superhard materials.
Design Optimization of Stiffened Panels with Postbuckling Constraints
Guerdal, Zafer; Ragon, Scott
1999-01-01
The funding provided by the grant is used to complete the final stages of the development of a geometrically nonlinear analysis and design capability for the static response of compressively loaded prismatic plate structures. The analysis is based on the nonlinear finite strip method and is applicable for structures, such as stiffened panels or box columns, that can be modeled as assemblages of finite length plate strips. In an effort to reduce the computational cost of the nonlinear finite strip method, thus making it suitable for use in the design optimization environment, reduced basis techniques as described in various references by Noor are used in conjunction with the finite strip method. In addition, an efficient scheme for tracing the nonlinear equilibrium paths through highly nonlinear response curves was implemented. The new scheme, which is referred to as the normal flow algorithm, is based on homotopy methods, and is capable of negotiating highly nonlinear limit point instabilities with a reduced computational cost compared to the popular Ricks/Wempner and Chrisfield algorithms.
Circulating immature osteoprogenitor cells and arterial stiffening in postmenopausal osteoporosis.
Pirro, M; Schillaci, G; Mannarino, M R; Scarponi, A M; Manfredelli, M R; Callarelli, L; Leli, C; Fabbriciani, G; Helou, R S; Bagaglia, F; Mannarino, E
2011-09-01
An increased number of circulating osteoprogenitor cells (OPCs) expressing bone-related proteins and the stem cell marker CD34 have been identified in women with postmenopausal osteoporosis, who also have stiffer arteries than nonosteoporotic subjects. We investigated whether an increased number of circulating OPCs underlies the association of osteoporosis with arterial stiffness. The number of circulating OPCs was quantified by FACS analysis in 120 postmenopausal women with or without osteoporosis. OPCs were defined as CD34+/alkaline phosphatase(AP)+ or CD34+/osteocalcin(OCN)+ cells. Participants underwent cardiovascular risk factor assessment, measurement of bone mineral density (BMD), and aortic pulse wave velocity (aPWV) as a measure of arterial stiffness. Osteoporotic women had higher aPWV (9.8 ± 2.8 vs 8.5 ± 1.9 m/s, p = 0.005) and levels of CD34+/AP+ and CD34+/OCN+ cells than nonosteoporotic controls [1045 n/mL (487-2300) vs 510 n/mL (202-940), p osteoporosis an increased availability of circulating osteoprogenitor cells has a detrimental influence on arterial compliance, which may in part explain the association between osteoporosis and arterial stiffening. Copyright © 2010 Elsevier B.V. All rights reserved.
Generalized asymptotic expansions for coupled wavenumbers in fluid-filled cylindrical shells
Kunte, M. V.; Sarkar, Abhijit; Sonti, Venkata R.
2010-12-01
Analytical expressions are found for the coupled wavenumbers in an infinite fluid-filled cylindrical shell using the asymptotic methods. These expressions are valid for any general circumferential order ( n). The shallow shell theory (which is more accurate at higher frequencies) is used to model the cylinder. Initially, the in vacuo shell is dealt with and asymptotic expressions are derived for the shell wavenumbers in the high- and the low-frequency regimes. Next, the fluid-filled shell is considered. Defining a relevant fluid-loading parameter μ, we find solutions for the limiting cases of small and large μ. Wherever relevant, a frequency scaling parameter along with some ingenuity is used to arrive at an elegant asymptotic expression. In all cases, Poisson's ratio ν is used as an expansion variable. The asymptotic results are compared with numerical solutions of the dispersion equation and the dispersion relation obtained by using the more general Donnell-Mushtari shell theory ( in vacuo and fluid-filled). A good match is obtained. Hence, the contribution of this work lies in the extension of the existing literature to include arbitrary circumferential orders ( n).
Directory of Open Access Journals (Sweden)
Xu Bian
2015-09-01
Full Text Available This paper proposes a continuous leakage location method based on the ultrasonic array sensor, which is specific to continuous gas leakage in a pressure container with an integral stiffener. This method collects the ultrasonic signals generated from the leakage hole through the piezoelectric ultrasonic sensor array, and analyzes the space-time correlation of every collected signal in the array. Meanwhile, it combines with the method of frequency compensation and superposition in time domain (SITD, based on the acoustic characteristics of the stiffener, to obtain a high-accuracy location result on the stiffener wall. According to the experimental results, the method successfully solves the orientation problem concerning continuous ultrasonic signals generated from leakage sources, and acquires high accuracy location information on the leakage source using a combination of multiple sets of orienting results. The mean value of location absolute error is 13.51 mm on the one-square-meter plate with an integral stiffener (4 mm width; 20 mm height; 197 mm spacing, and the maximum location absolute error is generally within a ±25 mm interval.
Analysis of Composite Panel-Stiffener Debonding Using a Shell/3D Modeling Technique
Krueger, Ronald; Ratcliffe, James; Minguet, Pierre J.
2007-01-01
Interlaminar fracture mechanics has proven useful for characterizing the onset of delaminations in composites and has been used successfully primarily to investigate onset in fracture toughness specimens and laboratory size coupon type specimens. Future acceptance of the methodology by industry and certification authorities, however, requires the successful demonstration of the methodology on the structural level. For this purpose, a panel was selected that is reinforced with stiffeners. Shear loading causes the panel to buckle, and the resulting out-of-plane deformations initiate skin/stiffener separation at the location of an embedded defect. A small section of the stiffener foot, web and noodle as well as the panel skin in the vicinity of the delamination front were modeled with a local 3D solid model. Across the width of the stiffener foot, the mixedmode strain energy release rates were calculated using the virtual crack closure technique. A failure index was calculated by correlating the results with a mixed-mode failure criterion of the graphite/epoxy material. Computed failure indices were compared to corresponding results where the entire web was modeled with shell elements and only a small section of the stiffener foot and panel were modeled locally with solid elements. Including the stiffener web in the local 3D solid model increased the computed failure index. Further including the noodle and transition radius in the local 3D solid model changed the local distribution across the width. The magnitude of the failure index decreased with increasing transition radius and noodle area. For the transition radii modeled, the material properties used for the noodle area had a negligible effect on the results. The results of this study are intended to be used as a guide for conducting finite element and fracture mechanics analyses of delamination and debonding in complex structures such as integrally stiffened panels.
International Nuclear Information System (INIS)
Daraji, A H; Hale, J M
2014-01-01
This study concerns new investigation of active vibration reduction of a stiffened plate bonded with discrete sensor/actuator pairs located optimally using genetic algorithms based on a developed finite element modeling. An isotropic plate element stiffened by a number of beam elements on its edges and having a piezoelectric sensor and actuator pair bonded to its surfaces is modeled using the finite element method and Hamilton’s principle, taking into account the effects of piezoelectric mass, stiffness and electromechanical coupling. The modeling is based on the first order shear deformation theory taking into account the effects of bending, membrane and shear deformation for the plate, the stiffening beam and the piezoelectric patches. A Matlab finite element program has been built for the stiffened plate model and verified with ANSYS and also experimentally. Optimal placement of ten piezoelectric sensor/actuator pairs and optimal feedback gain for active vibration reduction are investigated for a plate stiffened by two beams arranged in the form of a cross. The genetic algorithm was set up for optimization of sensor/actuator placement and feedback gain based on the minimization of the optimal linear quadratic index as an objective function to suppress the first six modes of vibration. Comparison study is presented for active vibration reduction of a square cantilever plate stiffened by crossed beams with two sensor/actuator configurations: firstly, ten piezoelectric sensor/actuator pairs are located in optimal positions; secondly, a piezoelectric layer of single sensor/actuator pair covering the whole of the stiffened plate as a SISO system. (paper)
Intrinsic cylindrical and spherical waves
International Nuclear Information System (INIS)
Ludlow, I K
2008-01-01
Intrinsic waveforms associated with cylindrical and spherical Bessel functions are obtained by eliminating the factors responsible for the inverse radius and inverse square radius laws of wave power per unit area of wavefront. The resulting expressions are Riccati-Bessel functions for both cases and these can be written in terms of amplitude and phase functions of order v and wave variable z. When z is real, it is shown that a spatial phase angle of the intrinsic wave can be defined and this, together with its amplitude function, is systematically investigated for a range of fixed orders and varying z. The derivatives of Riccati-Bessel functions are also examined. All the component functions exhibit different behaviour in the near field depending on the order being less than, equal to or greater than 1/2. Plots of the phase angle can be used to display the locations of the zeros of the general Riccati-Bessel functions and lead to new relations concerning the ordering of the real zeros of Bessel functions and the occurrence of multiple zeros when the argument of the Bessel function is fixed
Vibration isolation design for periodically stiffened shells by the wave finite element method
Hong, Jie; He, Xueqing; Zhang, Dayi; Zhang, Bing; Ma, Yanhong
2018-04-01
Periodically stiffened shell structures are widely used due to their excellent specific strength, in particular for aeronautical and astronautical components. This paper presents an improved Wave Finite Element Method (FEM) that can be employed to predict the band-gap characteristics of stiffened shell structures efficiently. An aero-engine casing, which is a typical periodically stiffened shell structure, was employed to verify the validation and efficiency of the Wave FEM. Good agreement has been found between the Wave FEM and the classical FEM for different boundary conditions. One effective wave selection method based on the Wave FEM has thus been put forward to filter the radial modes of a shell structure. Furthermore, an optimisation strategy by the combination of the Wave FEM and genetic algorithm was presented for periodically stiffened shell structures. The optimal out-of-plane band gap and the mass of the whole structure can be achieved by the optimisation strategy under an aerodynamic load. Results also indicate that geometric parameters of stiffeners can be properly selected that the out-of-plane vibration attenuates significantly in the frequency band of interest. This study can provide valuable references for designing the band gaps of vibration isolation.
Improvement and evaluation of polymer-matrix composite panels with hat stiffeners
Directory of Open Access Journals (Sweden)
Li S. J.
2016-01-01
Full Text Available Hat-stiffened composite panels fabricated by co-curing technologies are widely used in the fuselage panel due to the good structural stability and high efficiency of axial load transferring. The bonding capability between the stiffener and skin is a primary criterion to assess the co-curing quality. In this paper, two reinforcement technologies of filling filler in the triangle region and adding split-stopping tape between the stiffener and skin were employed to improve the bonding capability. Effect of filler and split-stopping tape on the interface strength was analyzed, and the optimal size range of the filler and split-stopping tape were obtained. To improve the universality of application for the two reinforcement techniques, the filling coefficient of 0.62~0.77 and the split-stopping tape width coefficient of 0.56~0.67 were obtained by calculation. Results of the study can be used to develop other kinds of stiffened panels and will ultimately lead to optimized skin/stiffener designs.
Naini, Jeevan Kumar; P, Ramesh Babu
2016-08-01
Modern, aero structures are predominantly of curved construction characterized by a skin and stiffeners. The latest generation of large passenger aircraft also uses mostly composite material in their primary structure and there is trend towards the utilization of bonding of subcomponents. The presence of delamination is a major problem in composite laminated panels and so, it is of great concern to both the academic and aeronautical industrial worlds Indeed delamination can strongly affect the material strength and, sometimes, can cause their breaking up in service. A Pre-damaged configuration is loaded to study the delamination location and mode for delamination initiation and propagation. A parametric study is conducted to investigate the effect of the location of the delamination propagation when delamination is embedded inbetween plies of the skin-stiffener interface, with the cases i) delamination located at front and inbetween plies of the skin-stiffener interface ii) delamination located in middle and inbetween plies of the skin-stiffener interface iii) delamination located at the end and inbetween plies of the skin- stiffener interface. Further the influence of the location of the delamination on load carrying capacity of the panel is investigated. The effect of location of debonds on crack growth and collapse behavior is analyzed using analysis tool. An analysis tool is applied that includes an approach for predicting interlaminar damage initiation and interlaminar damage growth as well as in-plane damage mechanisms to predict the design of defect free panel.
Cylindrical-shaped nanotube field effect transistor
Hussain, Muhammad Mustafa
2015-12-29
A cylindrical-shaped nanotube FET may be manufactured on silicon (Si) substrates as a ring etched into a gate stack and filled with semiconductor material. An inner gate electrode couples to a region of the gate stack inside the inner circumference of the ring. An outer gate electrode couples to a region of the gate stack outside the outer circumference of the ring. The multi-gate cylindrical-shaped nanotube FET operates in volume inversion for ring widths below 15 nanometers. The cylindrical-shaped nanotube FET demonstrates better short channel effect (SCE) mitigation and higher performance (I.sub.on/I.sub.off) than conventional transistor devices. The cylindrical-shaped nanotube FET may also be manufactured with higher yields and cheaper costs than conventional transistors.
Radon progeny distribution in cylindrical diffusion chambers
International Nuclear Information System (INIS)
Pressyanov, Dobromir S.
2008-01-01
An algorithm to model the diffusion of radioactive decay chain atoms is presented. Exact mathematical solutions in cylindrical geometry are given. They are used to obtain expressions for the concentrations of 222 Rn progeny atoms in the volume and deposited on the wall surface in cylindrical diffusion chambers. The dependence of volume fractions of 222 Rn progeny and chamber sensitivity on the coefficient of diffusion of 222 Rn progeny atoms in air is modeled.
Magnetized target fusion in cylindrical geometry
Energy Technology Data Exchange (ETDEWEB)
Basko, M.M. E-mail: basko@vitep5.itep.ru; Churazov, M.D.; Kemp, A.; Meyer-ter-Vehn, J
2001-05-21
General ignition conditions for magnetized target fusion (MTF) in cylindrical geometry are formulated. To attain an MTF ignition state, the deuterium-tritium fuel must be compressed in the regime of self-sustained magnetized implosion (SSMI). We analyze the general conditions and optimal parameter values required for initiating such a regime, and demonstrate that the SSMI regime can already be realized in cylindrical implosions driven by {approx}100 kJ beams of fast ions.
Cylindrical spirals in human skeletal muscle.
Carpenter, S; Karpati, G; Robitaille, Y; Melmed, C
1979-01-01
Muscle biopsies from two patients revealed that numerous type 2 fibers contained large abnormal areas filled with cylindrical spirals. The cytochemical profile of these cylindrical spirals was sufficiently characteristic that they could be distinguished from tubular aggregates. Their electron microscopic appearance was unmistakable. Their origin and significance are uncertain. The diverse nature of the patients' conditions (cramps and malignancy, and an unusual form of spinocerebellar degeneration) indicate that these abnormal structures are not disease specific.
Cylindrical geometry for proportional and drift chambers
International Nuclear Information System (INIS)
Sadoulet, B.
1975-06-01
For experiments performed around storage rings such as e + e - rings or the ISR pp rings, cylindrical wire chambers are very attractive. They surround the beam pipe completely without any dead region in the azimuth, and fit well with the geometry of events where particles are more or less spherically produced. Unfortunately, cylindrical proportional or drift chambers are difficult to make. Problems are discussed and two approaches to fabricating the cathodes are discussed. (WHK)
Shockwave Interaction with a Cylindrical Structure
Mulligan, Phillip
2017-06-01
An increased understanding of the shockwave interaction with a cylindrical structure is the foundation for developing a method to explosively seal a pipe similar to the Deepwater Horizon accident in the Gulf of Mexico. Shockwave interactions with a cylindrical structure have been a reoccurring focus of energetics research. Some of the most notable contributions of non-destructive tests are described in ``The Effects of Nuclear Weapons'' (Glasstone, 1962). The work presented by Glasstone examines shockwave interaction from a 20-megaton bomb with a cylindrical structure. However, the data is limited to a peak overpressure of less than 25 psi, requiring several miles between the structure and the charge. The research presented in the following paper expands on the work Glasstone described by examining the shockwaves from 90, 180, and 270-gram C-4 charges interacting with a 6-inch diameter cylindrical structure positioned 52-inches from the center of the charge. The three charge weights that were tested in this research generated a peak overpressures of approximately 15, 25, and 40 psi, respectively. This research examines the peak pressure and total impulse from each charge acting on the cylindrical structure as well as the formation of vortices on the ``backside'' of the cylinder surface. This paper describes the methodology and findings of this study as well as examines the causality and implications of its results on our understanding of the shockwave interaction with a cylindrical structure.
Influence of cracks and pitting corrosion on residual ultimate strength of stiffened plates
Directory of Open Access Journals (Sweden)
ZHANG Jing
2018-02-01
Full Text Available [Objectives] Ships and offshore platforms serve in the harsh sea environment for a long time. Cracks and pitting corrosion will occur in such a structure and the damage will affect its ultimate strength.[Methods] To investigate the influence of cracks and pitting corrosion on ultimate bearing capacity, the ultimate strength of a structure under axial compression is studied by using a nonlinear finite element. The mesh size of a stiffened plate with cracks and pitting corrosion is first discussed. Then the influence of the relative positions of cracks and pitting corrosion, number of corrosion points and crack length impact on the residual ultimate strength of damaged stiffened plates is discussed via a series of calculations.[Results] The results indicate that the increase in crack length and pitting corrosion significantly decreases the ultimate strength of a stiffened plate. [Conclusions] This provides a useful reference for designing and maintaining ships and offshore structures in their life cycles.
Design of hat-stiffened composite panels loaded in axial compression
Paul, T. K.; Sinha, P. K.
An integrated step-by-step analysis procedure for the design of axially compressed stiffened composite panels is outlined. The analysis makes use of the effective width concept. A computer code, BUSTCOP, is developed incorporating various aspects of buckling such as skin buckling, stiffener crippling and column buckling. Other salient features of the computer code include capabilities for generation of data based on micromechanics theories and hygrothermal analysis, and for prediction of strength failure. Parametric studies carried out on a hat-stiffened structural element indicate that, for all practical purposes, composite panels exhibit higher structural efficiency. Some hybrid laminates with outer layers made of aluminum alloy also show great promise for flight vehicle structural applications.
DEFF Research Database (Denmark)
Thomsen, Jon Juel
2003-01-01
theories, each providing valuable insight. One of these is capable of predicting the vertical string lift due to stiffening in terms of simple expressions, with results that agree very well with experimental measurements for a wide range of conditions. It appears that resonance effects cannot be ignored...... for demonstrating and measuring the stiffening effect in a simple setting, in the form of a horizontal piano string subjected to longitudinal high-frequency excitation at the clamped base and free at the other end. A simplest possible theoretical model is set up and analyzed using a hierarchy of three approximating......, as was done in a few related studies¿¿unless the system has very low modal density or heavy damping; thus first-order consideration to resonance effects is included. Using the specific example with experimental support to put confidence on the proposed theory, expressions for predicting the stiffening effect...
Directory of Open Access Journals (Sweden)
Cho Dae Seung
2015-04-01
Full Text Available Thin and thick plates, plates with holes, stiffened panels and stiffened panels with holes are primary structural members in almost all fields of engineering: civil, mechanical, aerospace, naval, ocean etc. In this paper, a simple and efficient procedure for the free vibration analysis of such elements is presented. It is based on the assumed mode method and can handle different plate thickness, various shapes and sizes of holes, different framing sizes and types as well as different combinations of boundary conditions. Natural frequencies and modes are determined by solving an eigenvalue problem of a multi-degree-of-freedom system matrix equation derived by using Lagrange’s equations. Mindlin theory is applied for a plate and Timoshenko beam theory for stiffeners. The applicability of the method in the design procedure is illustrated with several numerical examples obtained by the in-house developed code VAPS. Very good agreement with standard commercial finite element software is achieved.
Lamb Wave Interaction with Adhesively Bonded Stiffeners and Disbonds Using 3D Vibrometry
Directory of Open Access Journals (Sweden)
Ryan Marks
2016-01-01
Full Text Available There are many advantages to adhesively bonding stiffeners onto aircraft structures rather than using traditional mechanical fastening methods. However there is a lack of confidence of the structural integrity of adhesively bonded joints over time. Acousto-ultrasonic Lamb waves have shown great potential in structural health monitoring applications in both metallic and composite structures. This paper presents an experimental investigation of the use of acousto-ultrasonic Lamb waves for the monitoring of adhesively bonded joints in metallic structures using 3D scanning laser vibrometry. Two stiffened panels were manufactured, one with an intentional disbonded region. Lamb wave interaction with the healthy and disbonded stiffeners was investigated at three excitation frequencies. A windowed root-mean-squared technique was applied to quantify where Lamb wave energy was reflected, attenuated and transmitted across the structure enabling the size and shape of the defect to be visualised which was verified by traditional ultrasonic inspection techniques.
Rudd, Michelle T.; Hilburger, Mark W.; Lovejoy, Andrew E.; Lindell, Michael C.; Gardner, Nathaniel W.; Schultz, Marc R.
2018-01-01
The NASA Engineering Safety Center (NESC) Shell Buckling Knockdown Factor Project (SBKF) was established in 2007 by the NESC with the primary objective to develop analysis-based buckling design factors and guidelines for metallic and composite launch-vehicle structures.1 A secondary objective of the project is to advance technologies that have the potential to increase the structural efficiency of launch-vehicles. The SBKF Project has determined that weld-land stiffness discontinuities can significantly reduce the buckling load of a cylinder. In addition, the welding process can introduce localized geometric imperfections that can further exacerbate the inherent buckling imperfection sensitivity of the cylinder. Therefore, single-piece barrel fabrication technologies can improve structural efficiency by eliminating these weld-land issues. As part of this effort, SBKF partnered with the Advanced Materials and Processing Branch (AMPB) at NASA Langley Research Center (LaRC), the Mechanical and Fabrication Branch at NASA Marshall Space Flight Center (MSFC), and ATI Forged Products to design and fabricate an 8-ft-diameter orthogrid-stiffened seamless metallic cylinder. The cylinder was subjected to seven subcritical load sequences (load levels that are not intended to induce test article buckling or material failure) and one load sequence to failure. The purpose of this test effort was to demonstrate the potential benefits of building cylindrical structures with no weld lands using the flow-formed manufacturing process. This seamless barrel is the ninth 8-ft-diameter metallic barrel and the first single-piece metallic structure to be tested under this program.
Directory of Open Access Journals (Sweden)
Rolando Chacón
Full Text Available In this paper, the behavior of the intertwined shear and patch loading mechanisms in transversally stiffened steel plate girders is described. The phenomenological insight depicted in this paper shows the influence of the web thickness and the flange yield strength as well as the influence of the transverse stiffeners on the stress distribution, the critical loads and on the equilibrium path of this particular type of loading. A previously validated numerical model is used systematically as a simulation tool. Stress-, strain-, force- and displacement fields are exploited for the sake of inferring and idealizing the most valuable features of the depicted mechanical model.
Application of dynamic stiffness method in numerical free vibration analysis of stiffened plates
Directory of Open Access Journals (Sweden)
Damnjanović Emilija
2017-01-01
Full Text Available The free vibration analysis of stiffened plate assemblies has been performed in this paper by using the dynamic stiffness method. Rectangular Mindlin plate dynamic stiffness element has been formulated. Using the rotation matrices, dynamic stiffness matrices of single plates have been derived in global coordinate system. The global dynamic stiffness matrix of plate assembly has been derived by using similar assembly procedure as in the finite element method. The natural frequencies of stiffened plate assemblies with different boundary conditions have been computed and validated against the results obtained by using the commercial software package Abaqus. High accuracy of the results has been demonstrated.
Signorini Cylindrical Waves and Shannon Wavelets
Directory of Open Access Journals (Sweden)
Carlo Cattani
2012-01-01
Full Text Available Hyperelastic materials based on Signorini’s strain energy density are studied by using Shannon wavelets. Cylindrical waves propagating in a nonlinear elastic material from the circular cylindrical cavity along the radius are analyzed in the following by focusing both on the main nonlinear effects and on the method of solution for the corresponding nonlinear differential equation. Cylindrical waves’ solution of the resulting equations can be easily represented in terms of this family of wavelets. It will be shown that Hankel functions can be linked with Shannon wavelets, so that wavelets can have some physical meaning being a good approximation of cylindrical waves. The nonlinearity is introduced by Signorini elastic energy density and corresponds to the quadratic nonlinearity relative to displacements. The configuration state of elastic medium is defined through cylindrical coordinates but the deformation is considered as functionally depending only on the radial coordinate. The physical and geometrical nonlinearities arising from the wave propagation are discussed from the point of view of wavelet analysis.
Prediction of flow induced sound and vibration of periodically stiffened plates.
Maxit, Laurent; Denis, Vivien
2013-01-01
Stiffened structures excited by the turbulent boundary layer (TBL) occur very frequently in engineering applications; for instance, in the wings of airplanes or the pressure hulls of submarines. To improve knowledge of the interaction between stiffened structures and TBL, this paper deals with the modeling of infinite periodically stiffened plates excited by TBL. The mathematical formulation of the problem is well-established in the literature. The originality of the present work relies on the use of a wavenumber-point reciprocity technique for evaluating the response of the plate to convected harmonic pressure waves. It follows a methodology for estimating the vibro-acoustic response of the plate excited by the TBL from the wall pressure spectrum and its displacements in the wavenumber space due to point excitations located at the receiving positions. The computing process can be reduced to the numerical integration of an analytical expression in the case of a periodically stiffened plate. An application to a naval test case highlights the effect of Bloch-Floquet waves on the vibrations of the plate and its radiated pressure in the fluid.
Zhou, Haian; Wang, Xiaoming; Wu, Huayong; Meng, Jianbing
2017-10-01
The vibroacoustic response and sound absorption performance of a structure composed of multilayer plates and one rigid back wall are theoretically analyzed. In this structure, all plates are two-dimensional, microperforated, and periodically rib-stiffened. To investigate such a structural system, semianalytical models of one-layer and multilayer plate structures considering the vibration effects are first developed. Then approaches of the space harmonic method and Fourier transforms are applied to a one-layer plate, and finally the cascade connection method is utilized for a multilayer plate structure. Based on fundamental acoustic formulas, the vibroacoustic responses of microperforated stiffened plates are expressed as functions of a series of harmonic amplitudes of plate displacement, which are then solved by employing the numerical truncation method. Applying the inverse Fourier transform, wave propagation, and linear addition properties, the equations of the sound pressures and absorption coefficients for the one-layer and multilayer stiffened plates in physical space are finally derived. Using numerical examples, the effects of the most important physical parameters—for example, the perforation ratio of the plate, sound incident angles, and periodical rib spacing—on sound absorption performance are examined. Numerical results indicate that the sound absorption performance of the studied structure is effectively enhanced by the flexural vibration of the plate in water. Finally, the proposed approaches are validated by comparing the results of stiffened plates of the present work with solutions from previous studies.
Zhang, Xiangyang; Li, Yong; Van Hoa, Suong; Xiao, Jun; Chu, Qiyi
2018-02-01
Skin/stiffener debonding has been a longstanding concern for the users of stiffened composite panels in long-term service. Z-pinning technology is an emerging solution to reinforce the composite assembly joints. This work experimentally characterizes the progressive debonding of Z-pinned skin/stiffener interface with the skin under static bend loading. The three-stage failure process is identified as: flange edge debonding, pin/laminate debonding, and ultimate structural failure. Three different distribution patterns were compared in terms of the static debonding properties revealed the affirmative fact that locating pins in high normal stress regions, that is close to the flange edges in skin/stiffener structures, is more beneficial to utilize the full potential of Z-pinning reinforcement. The unit strip FE model was developed and demonstrated effective to analysis the effect of Z-pin distribution on the ultimate debond load. On the other hand, the evolution of fatigue cracks at Z-pinned skin/flange interface was investigated with a series of displacement-controlled fatigue bending tests and microscopic observations. Results show that Z-pinning postpones crack initiations at low displacement levels, and the remarkable crack-arresting function of pins enables the structure a prolonged fatigue life. However, pins become less effective when the maximum displacement exceeds the crack initiation level due to gradually pullout of pins.
Effect of longitudinal stiffening on bridge girder webs at incremental launching stage
Directory of Open Access Journals (Sweden)
Carlos Graciano
2015-01-01
Full Text Available Patch loading is a predominant load case at incremental bridge launching. Bridge girder webs are frequently provided with longitudinal stiffeners to increase in-service shear and bending strength, and its effect has been included in design codes. However, no straightforward rules are given to account for the influence of such stiffeners on improving the patch loading resistance. This paper presents a review of some available formulae found in the literature to estimate the girder ultimate strength including the provisions of the European, American and Colombian design codes. Additionally, a nonlinear finite element analysis is conducted on three case studies related to actual launched bridges. The case studies are also used to study the influence of the longitudinal stiffener and girder depth on the girder capacity. Different load-displacement responses are observed depending on the girder depth. Finally, the finite element analysis shows to what extent the longitudinal stiffeners can increase the patch loading capacity of bridge girder webs during launching.
DEFF Research Database (Denmark)
Thomsen, Jon Juel
2003-01-01
for demonstrating and measuring the stiffening effect in a simple setting, in the form of a horizontal piano string subjected to longitudinal high-frequency excitation at the clamped base and free at the other end. A simplest possible theoretical model is set up and analyzed using a hierarchy of three approximating...
Vibro-Acoustic modulation based damage identification in a composite skin-stiffener structure
Ooijevaar, T.H.; Loendersloot, Richard; Rogge, M.D.; Akkerman, Remko; Tinga, Tiedo; Le Cam, V.; Mevel, L.; Schoefs, F.
2014-01-01
The vibro-acoustic modulation method is applied to a composite skin-stiffener structure to investigate the possibilities to utilise this method for damage identification in terms of detection, localisation and damage quantification. The research comprises a theoretical part and an experimental part.
Boosted cylindrical magnetized Kaluza-Klein wormhole
Hashemi, S. Sedigheh; Riazi, Nematollah
2018-02-01
In this work, we consider a vacuum solution of Kaluza-Klein theory with cylindrical symmetry. We investigate the physical properties of the solution as viewed in four dimensional spacetime, which turns out to be a stationary, cylindrical wormhole supported by a scalar field and a magnetic field oriented along the wormhole. We then apply a boost to the five dimensional solution along the extra dimension, and perform the Kaluza-Klein reduction. As a result, we show that the new solution is still a wormhole with a radial electric field and a magnetic field stretched along the wormhole throat.
Forced vibrations of rotating circular cylindrical shells
International Nuclear Information System (INIS)
Igawa, Hirotaka; Maruyama, Yoshiyuki; Endo, Mitsuru
1995-01-01
Forced vibrations of rotating circular cylindrical shells are investigated. Basic equations, including the effect of initial stress due to rotation, are formulated by the finite-element method. The characteristic relations for finite elements are derived from the energy principle by considering the finite strain. The equations of motion can be separated into quasi-static and dynamic ones, i.e., the equations in the steady rotating state and those in the vibration state. Radial concentrated impulses are considered as the external dynamic force. The transient responses of circular cylindrical shells are numerically calculated under various boundary conditions and rotating speeds. (author)
Cylindrical pressure vessel constructed of several layers
International Nuclear Information System (INIS)
Yamauchi, Takeshi.
1976-01-01
For a cylindrical pressure vessel constructed of several layers whose jacket has at least one circumferential weld joining the individual layers, it is proposed to provide this at least at the first bending line turning point (counting from the weld between the jacket and vessel floor), which the sinusoidally shaped jacket has. The section of the jacket extending in between should be made as a full wall section. The proposal is based on calculations of the bending stiffness of cylindrical jackets, which could not yet be confirmed for jackets having several layers. (UWI) [de
Scattering of spermatozoa off cylindrical pillars
Bukatin, Anton; Lushi, Enkeleida; Kantsler, Vasily
2017-11-01
The motion of micro-swimmers in structured environments, even though crucial in processes such as in vivo and in vitro egg fertilization, is still not completely understood. We combine microfluidic experiments with mathematical modeling of 3D swimming near convex surfaces to quantify the dynamics of individual sperm cells in the proximity of cylindrical pillars. Our results show that the hydrodynamic and contact forces that account for the shape asymmetry and flagellar motion, are crucial in correctly describing the dynamics observed in the experiments. Last, we discuss how the size of the cylindrical obstacles determines whether the swimmers scatter off or get trapped circling the pillar.
Micromagnetic simulations of cylindrical magnetic nanowires
Ivanov, Yurii P.
2015-05-27
This chapter reviews micromagnetic simulations of cylindrical magnetic nanowires and their ordered arrays. It starts with a description of the theoretical background of micromagnetism. The chapter discusses main magnetization reversal modes, domain wall types, and state diagrams in cylindrical nanowires of different types and sizes. The results of the hysteresis process in individual nanowires and nanowire arrays also are presented. Modeling results are compared with experimental ones. The chapter also discusses future trends in nanowire applications in relation to simulations, such as current-driven dynamics, spintronics, and spincaloritronics. The main micromagnetic programs are presented and discussed, together with the corresponding links.
Razzaq, Zia; Prasad, Venkatesh
1988-01-01
The results of a detailed investigation of the distribution of stresses in aluminum and composite panels subjected to uniform end shortening are presented. The focus problem is a rectangular panel with two longitudinal stiffeners, and an inner stiffener discontinuous at a central hole in the panel. The influence of the stiffeners on the stresses is evaluated through a two-dimensional global finite element analysis in the absence or presence of the hole. Contrary to the physical feel, it is found that the maximum stresses from the glocal analysis for both stiffened aluminum and composite panels are greater than the corresponding stresses for the unstiffened panels. The inner discontinuous stiffener causes a greater increase in stresses than the reduction provided by the two outer stiffeners. A detailed layer-by-layer study of stresses around the hole is also presented for both unstiffened and stiffened composite panels. A parallel equation solver is used for the global system of equations since the computational time is far less than that using a sequential scheme. A parallel Choleski method with up to 16 processors is used on Flex/32 Multicomputer at NASA Langley Research Center. The parallel computing results are summarized and include the computational times, speedups, bandwidths, and their inter-relationships for the panel problems. It is found that the computational time for the Choleski method decreases with a decrease in bandwidth, and better speedups result as the bandwidth increases.
Hysterectomy is associated with large artery stiffening in estrogen-deficient postmenopausal women.
Gavin, Kathleen M; Jankowski, Catherine; Kohrt, Wendy M; Stauffer, Brian L; Seals, Douglas R; Moreau, Kerrie L
2012-09-01
Hysterectomy, with or without oophorectomy, is associated with increased cardiovascular disease (CVD) risk due, in part, to an adverse CVD risk factor profile. Large artery stiffening, a biomarker of vascular aging, increases the risk for CVD. We determined whether hysterectomy with or without bilateral oophorectomy (BLO) is associated with arterial stiffening in healthy postmenopausal women. We conducted a cross-sectional study including estrogen-deficient postmenopausal women who had a hysterectomy with ovarian preservation (n = 24; mean ± SE age, 59 ± 1 y) or with BLO (n = 21; 58 ± 2 y) and had no hysterectomy/no BLO (n = 58; 58 ± 1 y). Arterial stiffness (arterial compliance and β stiffness index) was measured by ultrasonography of the carotid artery. Carotid artery compliance was lower in women with hysterectomy alone and in women with hysterectomy with BLO compared with women with no hysterectomy (0.66 ± 0.03 and 0.71 ± 0.06 vs 0.89 ± 0.03 mm/mm Hg × 10, respectively, both P menopause duration, previous menopausal hormone therapy duration, parity, waist-to-hip ratio, systolic blood pressure, and sex hormone-binding globulin, hysterectomy status remained a significant predictor of arterial compliance. These results indicate that hysterectomy status (with or without BLO) is associated with greater arterial stiffening in estrogen-deficient postmenopausal women. The greater arterial stiffening with hysterectomy was not related to an adverse CVD risk profile. Large artery stiffening may be an important mechanism by which hysterectomy increases the risk of CVD in postmenopausal women.
Directory of Open Access Journals (Sweden)
Pham Hong Cong
2016-12-01
Full Text Available This paper researches the thermal stability of eccentrically stiffened plates made of functionally graded materials (FGM with metal–ceramic–metal layers subjected to thermal load. The equilibrium and compatibility equations for the plates are derived by using the first-order shear deformation theory of plates, taking into account both the geometrical nonlinearity in the von Karman sense and initial geometrical imperfections with Pasternak type elastic foundations. By applying Galerkin method and using stress function, effects of material and geometrical properties, elastic foundations, temperature-dependent material properties, and stiffeners on the thermal stability of the eccentrically stiffened S-FGM plates in thermal environment are analyzed and discussed.
DEFF Research Database (Denmark)
Luan, Yu; Ohlrich, Mogens; Jacobsen, Finn
2011-01-01
a number of stiffened plates are combined in a complicated assembly composed of many plate panels. However, whereas the equivalent smeared plate technique is well established and recently improved for flat panels, there is no similar established technique for doubly curved stiffened shells. In this paper...... the improved smeared plate technique is combined with the equation of motion for a doubly curved thin rectangular shell, and a solution is offered for using the smearing technique for stiffened shell structures. The developed prediction technique is validated by comparing natural frequencies and mode shapes...
A cylindrical furnace for absorption spectral studies
Indian Academy of Sciences (India)
A cylindrical furnace with three heating zones, capable of providing a temperature of 1100°C, has been fabricated to enable recording of absorption spectra of high temperature species. The temperature of the furnace can be controlled to ± 1°C of the set temperature. The salient feature of this furnace is that the material ...
A strong focussing cylindrical electrostatic quadrupole
International Nuclear Information System (INIS)
Sheng Yaochang
1986-01-01
The construction and performance of small cylindrical electrostatic quadrupole, which is installed in JM-400 pulse electrostatic accelerator, are described. This electrostatic quadrupole is not only used in neutron generator, but also suitable for ion injector as well as for low energy electron accelerator
The double explosive layer cylindrical compaction method
Stuivinga, M.E.C.; Verbeek, H.J.; Carton, E.P.
1999-01-01
The standard cylindrical configuration for shock compaction is useful for the compaction of composite materials which have some plastic behavior. It can also be used to densify hard ceramics up to about 85% of the theoretical density (TMD), when low detonation velocity explosives (2-4 km s-1) are
Cylindrical solar heater for low cost housing
Energy Technology Data Exchange (ETDEWEB)
Nahar, N.M.; Malhotra, K.S.
1981-07-01
A circular cylindrical type solar water heater has been designed, developed and tested. This heater can supply 50 litres of hot water at 50/sup 0/C in winter afternoon when tap water is 15/sup 0/C. The cost of manufacturing is only Rs. 150. It can be fabricated by any village carpenter blacksmith.
Magnetic guns with cylindrical permanent magnets
DEFF Research Database (Denmark)
Vokoun, David; Beleggia, Marco; Heller, Luděk
2012-01-01
The motion of a cylindrical permanent magnet (projectile) inside a tubular permanent magnet, with both magnets magnetized axially, illustrates nicely the physical principles behind the operation of magnetic guns. The force acting upon the projectile is expressed semi-analytically as derivative...
An investigation on cylindrical imploding turbulent mixing
International Nuclear Information System (INIS)
Liao Haidong; Yang Libin; Zhang Xilin; Ouyang Kai; Li Jun
2001-01-01
The interfacial instability experiments in cylindrically convergent geometry are performed by imploding jelly liner with high pressure gases; and instability growth were observed with high-speed framing camera. The relevant 2D numerical simulation programs were developed and their results are in good agreement with those of experiments
Antibubbles and fine cylindrical sheets of air
Beilharz, D.
2015-08-14
Drops impacting at low velocities onto a pool surface can stretch out thin hemispherical sheets of air between the drop and the pool. These air sheets can remain intact until they reach submicron thicknesses, at which point they rupture to form a myriad of microbubbles. By impacting a higher-viscosity drop onto a lower-viscosity pool, we have explored new geometries of such air films. In this way we are able to maintain stable air layers which can wrap around the entire drop to form repeatable antibubbles, i.e. spherical air layers bounded by inner and outer liquid masses. Furthermore, for the most viscous drops they enter the pool trailing a viscous thread reaching all the way to the pinch-off nozzle. The air sheet can also wrap around this thread and remain stable over an extended period of time to form a cylindrical air sheet. We study the parameter regime where these structures appear and their subsequent breakup. The stability of these thin cylindrical air sheets is inconsistent with inviscid stability theory, suggesting stabilization by lubrication forces within the submicron air layer. We use interferometry to measure the air-layer thickness versus depth along the cylindrical air sheet and around the drop. The air film is thickest above the equator of the drop, but thinner below the drop and up along the air cylinder. Based on microbubble volumes, the thickness of the cylindrical air layer becomes less than 100 nm before it ruptures.
Robotic Hand with Flexible Fingers for Grasping Cylindrical Objects
柴田, 瑞穂
2015-01-01
In this manuscript, a robotic hand for grasping a cylindrical object is proposed. This robotic hand has flexible fingers that can hold a cylindrical object during moving. We introduce a grasping strategy for a cylindrical object in terms of state transition graph. In this strategy the robotic hand picks up the cylindrical object utilizing a suction device before the hand grasp the object. We also design the flexible fingers; then, we investigate the validity of this robotic hand via several e...
Budweg, H. L.; Shin, Y. S.
1987-01-01
An experimental investigation was conducted to determine the static and dynamic responses of a specific stiffened flat plate design. The air-backed rectangular flat plates of 6061-T6 aluminum with an externally machined longitudinal narrow-flanged T-stiffener and clamped boundary conditions were subjected to static loading by water hydropump pressure and shock loading from an eight pound TNT charge detonated underwater. The dynamic test plate was instrumented to measure transient strains and free field pressure. The static test plate was instrumented to measure transient strains, plate deflection, and pressure. Emphasis was placed upon forcing static and dynamic stiffener tripping, obtaining relevant strain and pressure data, and studying the associated plate-stiffener behavior.
Cylindrical continuous martingales and stochastic integration in infinite dimensions
Veraar, M.C.; Yaroslavtsev, I.S.
2016-01-01
In this paper we define a new type of quadratic variation for cylindrical continuous local martingales on an infinite dimensional spaces. It is shown that a large class of cylindrical continuous local martingales has such a quadratic variation. For this new class of cylindrical continuous local
2016-10-01
AFRL-RQ-WP-TM-2016-0150 SLOTTED WAVEGUIDE ANTENNA STIFFENED STRUCTURES (SWASS) DEVELOPMENT FOR COMMERCIAL OFF-THE-SHELF (COTS) RADAR...WAVEGUIDE ANTENNA STIFFENED STRUCTURES (SWASS) DEVELOPMENT FOR COMMERCIAL OFF-THE-SHELF (COTS) RADAR (BRIEFING CHARTS) 5a. CONTRACT NUMBER In-house 5b...0896) 1. http://www.uasvision.com/2012/06/15/imsar-gets-24m-nano-sar-contract-for-uas-from-us-army/ 2. http://www.barnardmicrosystems.com/ UAV /features
Li, Yinhui; Zhou, Pucha; An, Feng; Liu, Yaodong; Lu, Chunxiang
2017-02-15
The self-stiffening under external dynamic strain has been observed for some artificial materials, especially for nanocomposites. However, few systematic studies have been carried out on their structural evolutions, and the effect of the types of nanofillers was unclear. In this study, we used a semicrystalline polymer, polyacrylonitrile (PAN), and various types of carbon nanomaterials including C 60 , carbon nanotube (CNT), and graphene oxide (GO). An external uniaxial dynamic strain at small amplitude of 0.2% was applied on the prepared nanocomposite films. It was observed that PAN/CNT exhibited significant self-stiffening behavior, whereas PAN/GO showed no response. Systematic characterizations were performed to determine the structural evolutions of PAN/CNT film during dynamic strain testing, and it was found that the external dynamic strain not only induced the crystallization of PAN chains but also aligned CNT along the strain direction.
Directory of Open Access Journals (Sweden)
Sarmila Sahoo
2013-01-01
Full Text Available Dynamic characteristics of stiffened composite conoidal shells with cutout are analyzed in terms of the natural frequency and mode shapes. A finite element code is developed for the purpose by combining an eight-noded curved shell element with a three-noded curved beam element. The code is validated by solving benchmark problems available in the literature and comparing the results. The size of the cutouts and their positions with respect to the shell centre are varied for different edge constraints of cross-ply and angle-ply laminated composite conoids. The effects of these parametric variations on the fundamental frequencies and mode shapes are considered in details. The results furnished here may be readily used by practicing engineers dealing with stiffened composite conoids with cutouts central or eccentric.
Numerical Simulation and Response of Stiffened Plates Subjected to Noncontact Underwater Explosion
Directory of Open Access Journals (Sweden)
Elsayed Fathallah
2014-01-01
Full Text Available A numerical simulation has been carried out to examine the response of steel plates with different arrangement of stiffeners and subjected to noncontact underwater explosion (UNDEX with different shock loads. Numerical analysis of the underwater explosion phenomena is implemented in the nonlinear finite element code ABAQUS/Explicit. The aim of this work is to enhance the dynamic response to resist UNDEX. Special emphasis is focused on the evolution of mid-point displacements. Further investigations have been performed to study the effects of including material damping and the rate-dependant material properties at different shock loads. The results indicate that stiffeners configurations and shock loads affect greatly the overall performance of steel plates and sensitive to the materials data. Also, the numerical results can be used to obtain design guidelines of floating structures to enhance resistance of underwater shock damage, since explosive tests are costly and dangerous.
Buckling optimisation of sandwich cylindrical panels
Abouhamzeh, M.; Sadighi, M.
2016-06-01
In this paper, the buckling load optimisation is performed on sandwich cylindrical panels. A finite element program is developed in MATLAB to solve the governing differential equations of the global buckling of the structure. In order to find the optimal solution, the genetic algorithm Toolbox in MATLAB is implemented. Verifications are made for both the buckling finite element code and also the results from the genetic algorithm by comparisons to the results available in literature. Sandwich cylindrical panels are optimised for the buckling strength with isotropic or orthotropic cores with different boundary conditions. Results are presented in terms of stacking sequence of fibers in the face sheets and core to face sheet thickness ratio.
Nanolaminate Membranes as Cylindrical Telescope Reflectors
Dooley, Jennifer; Dragovan, Mark; Hickey, Gregory; Lih, Shyh-Shiu Lih
2010-01-01
A document discusses a proposal to use axially stretched metal nanolaminate membranes as lightweight parabolic cylindrical reflectors in the Dual Anamorphic Reflector Telescope (DART) - a planned spaceborne telescope in which the cylindrical reflectors would be arranged to obtain a point focus. The discussion brings together a combination of concepts reported separately in several prior NASA Tech Briefs articles, the most relevant being "Nanolaminate Mirrors With Integral Figure-Control Actuators" NPO -30221, Vol. 26, No. 5 (May 2002), page 90; and "Reflectors Made From Membranes Stretched Between Beams" NPO -30571, Vol. 33, No. 10 (October 2009), page 11a. The engineering issues receiving the greatest emphasis in the instant document are (1) the change in curvature associated with the Poisson contraction of a stretched nanolaminate reflector membrane and (2) the feasibility of using patches of poly(vinylidene fluoride) on the rear membrane surface as piezoelectric actuators to correct the surface figure for the effect of Poisson contraction and other shape errors.
Determination of Coil Inductances Cylindrical Iron Nucleus
Directory of Open Access Journals (Sweden)
Azeddine Mazouz
2014-03-01
Full Text Available The paper describes the investigation and development of a structure and performance characteristics of a coil iron nucleus cylindrical (C.I.N.C. The coil iron nucleus cylindrical is a nonlinear electro radio in which the moving of the nucleus in a sense or in other causes change in inductance and can reach extreme values at the superposition of nucleus and coil centers. The variation of the inductance and the degree of freedom of movement of the nucleus can lead to a device with electromechanical conversion The aim of this paper is the determination and visualization of self inductance and mutual of the (C.I.N.C based on geometric dimensions and the displacement of the nucleus.
Cylindrically converging blast waves in air
Matsuo, H.; Nakamura, Y.
1981-07-01
Cylindrically converging shock waves are produced by utilizing the detonation of cylindrical explosive shells. The production and the propagation of shock waves are observed by framing and streak camera photographs, and the trajectory of shock propagations is determined by using an electrical ionization probing system. The effect of the quantity of explosives on the stability, or the axial symmetry, of shock fronts and on the strength of shocks produced is investigated. It has been shown that, for practical purposes, the approximation of shock trajectories by Guderley's formulas would be sufficiently acceptable in an unexpectedly wide region near the implosion center, and that the axial symmetry of the shock front is improved by increasing the quantity of explosives, and thus, strong shocks are produced by merely increasing the quantity of explosives. The reflected diverging shock seems to be very stable. Piezoelectric elements have also been used to detect reflected diverging waves.
Magnetic guns with cylindrical permanent magnets
Czech Academy of Sciences Publication Activity Database
Vokoun, David; Beleggia, M.; Heller, Luděk
2012-01-01
Roč. 324, č. 9 (2012), s. 1715-1719 ISSN 0304-8853 R&D Projects: GA ČR(CZ) GAP107/11/0391; GA AV ČR IAA100100920 Institutional research plan: CEZ:AV0Z10100520 Keywords : permanent magnet * cylindrical magnet * Earnshaw's theorem * magnet ic gun * magnet ostatic interaction Subject RIV: BM - Solid Matter Physics ; Magnet ism Impact factor: 1.826, year: 2012 http://www.sciencedirect.com/science/article/pii/S0304885311008997
Machining Thin-Walled Cylindrical Parts
Cimbak, Joe; Spagnolo, Jim; Kraus, Dan
1988-01-01
Cylindrical walls only few thousandths of inch thick machined accurately and without tears or punctures with aid of beryllium copper mandrel. Chilled so it contracts, then inserted in cylinder. As comes to room temperature, mandrel expands and fits snugly inside cylinder. Will not allow part to slide and provides solid backup to prevent deflection when part machined by grinding wheel. When machining finished, cylinder-and-mandrel assembly inserted in dry ice, mandrel contracts and removed from part.
The large cylindrical drift chamber of TASSO
International Nuclear Information System (INIS)
Boerner, H.; Fischer, H.M.; Hartmann, H.; Loehr, B.; Wollstadt, M.; Fohrmann, R.; Schmueser, P.; Cassel, D.G.; Koetz, U.; Kowalski, H.
1980-03-01
We have built and operated a large cylindrical drift chamber for the TASSO experiment at the DESY storage ring, PETRA. The chamber has a length of 3.5 m, a diameter of 2.5 m, and a total of 2340 drift cells. The cells are arranged in 15 concentric layers such that tracks can be reconstructed in three dimensions. A spatial resolution of 220 μm has been achieved for tracks of normal incidence on the drift cells. (orig.)
Constitutive modeling of human femoropopliteal artery biaxial stiffening due to aging and diabetes.
Desyatova, Anastasia; MacTaggart, Jason; Kamenskiy, Alexey
2017-12-01
Atherosclerotic obstructive disease of the femoropopliteal artery (Peripheral Arterial Disease, PAD) is notorious for high treatment failure rates. Older age and diabetes mellitus (DM) are among the major risk factors for PAD, and both are associated with increased arterial stiffness. Our goal was to develop a constitutive model describing multiaxial arterial stiffening, and use it to portray aging of normal and diabetic human femoropopliteal arteries (FPA). Fresh human FPAs (n=744) were obtained from 13-82-year-old donors. Arteries were tested using planar biaxial extension, and their behavior was modeled with a constitutive relation that included stiffening functions of age. FPA diameter, wall thickness, circumferential, and longitudinal opening angles increased with age, while longitudinal pre-stretch decreased. Diameter and circumferential opening angle did not change with age in subjects with DM. Younger FPAs were more compliant longitudinally but became more isotropic with age. Arteries with DM stiffened significantly faster in the circumferential direction than arteries without DM. Constitutive model accurately portrayed orthotropic stiffening with age of both normal and diabetic arteries. Constitutive description of FPA aging contributes to understanding of arterial pathophysiology and can help improve fidelity of computational models investigating device-artery interaction in PAD repair by providing more personalized arterial properties. We have analyzed n=744 human femoropopliteal artery (FPA) specimens using biaxial tensile testing to derive constitutive description of FPA aging in diabetic and non-diabetic subjects. The proposed model allows determination of FPA mechanical properties for subjects of any given age in the range of 13-82years. These results contribute to understanding of FPA pathophysiology and can help improve fidelity of computational models investigating device-artery interaction in peripheral arterial disease repair by providing more
Transmission loss of orthogonally rib-stiffened double-panel structures with cavity absorption.
Xin, F X; Lu, T J
2011-04-01
The transmission loss of sound through infinite orthogonally rib-stiffened double-panel structures having cavity-filling fibrous sound absorptive materials is theoretically investigated. The propagation of sound across the fibrous material is characterized using an equivalent fluid model, and the motions of the rib-stiffeners are described by including all possible vibrations, i.e., flexural displacements, bending, and torsional rotations. The effects of fluid-structure coupling are account for by enforcing velocity continuity conditions at fluid-panel interfaces. By taking full advantage of the periodic nature of the double-panel, the space-harmonic approach and virtual work principle are applied to solve the sets of resultant governing equations, which are eventually truncated as a finite system of simultaneous algebraic equations and numerically solved insofar as the solution converges. To validate the proposed model, a comparison between the present model predictions and existing numerical and experimental results for a simplified version of the double-panel structure is carried out, with overall agreement achieved. The model is subsequently employed to explore the influence of the fluid-structure coupling between fluid in the cavity and the two panels on sound transmission across the orthogonally rib-stiffened double-panel structure. Obtained results demonstrate that this fluid-structure coupling affects significantly sound transmission loss (STL) at low frequencies and cannot be ignored when the rib-stiffeners are sparsely distributed. As a highlight of this research, an integrated optimal algorithm toward lightweight, high-stiffness and superior sound insulation capability is proposed, based on which a preliminary optimal design of the double-panel structure is performed.
Effects of solvents on the early stage stiffening rate of demineralized dentin matrix.
Garcia, Fernanda C P; Otsuki, Masayuki; Pashley, David H; Tay, Franklin R; Carvalho, Ricardo M
2005-05-01
To monitor the stiffening rate of demineralized dentin matrix at the early stages after exposure to different neat solvents. Dentin beams approximately 0.8x0.7x8.0 mm were obtained from human third molars. After covering their ends with resin composite, the middle exposed length of 4.0mm (gauge-length) was demineralized in 0.5 M EDTA (pH 7.0) for 7 days. The specimens were gripped by a testing machine, pre-loaded to 10 g and cyclically stressed in tension to 5% strain, for 30 repeated cycles (total 20 min) at 0.6 mm/min while immersed in water (control). Then, water was replaced by either 100% acetone, methanol, ethanol, propanol, HEMA or air and the specimens subjected to the same cyclic protocol. The maximum apparent modulus of elasticity (E(Max)) was calculated for every cycle, plotted as a function of time and subjected to regression analysis. Stiffening rate was calculated as changes in E (min). Regression analysis examined the relationship between E and time for each solvent. Data were analyzed by one-way ANOVA and Student-Newman-Keuls test at alpha=0.05. Regression analysis showed that E increased significantly with time in all water-free solvents (R2=0.8-0.99). Stiffening rate was higher for acetone (0.9 MPa/min) and ethanol (0.8 MPa/min), intermediate for air (0.7 MPa/min), methanol (0.6 MPa/min) and propanol (0.5 MPa/min), lower for HEMA (0.2 MPa/min) and practically none for water (0.07 MPa/min) with prate of demineralized dentin matrix is both time and solvent-dependent. The ability of solvents to promptly stiffen the demineralized dentin matrix may be important in maintaining the resin-infiltrated matrix expanded during the solvent evaporation stage of resin bonding.
Sahoo, Sarmila
2013-01-01
Dynamic characteristics of stiffened composite conoidal shells with cutout are analyzed in terms of the natural frequency and mode shapes. A finite element code is developed for the purpose by combining an eight-noded curved shell element with a three-noded curved beam element. The code is validated by solving benchmark problems available in the literature and comparing the results. The size of the cutouts and their positions with respect to the shell centre are varied for different edge cons...
Cylindric-like algebras and algebraic logic
Ferenczi, Miklós; Németi, István
2013-01-01
Algebraic logic is a subject in the interface between logic, algebra and geometry, it has strong connections with category theory and combinatorics. Tarski’s quest for finding structure in logic leads to cylindric-like algebras as studied in this book, they are among the main players in Tarskian algebraic logic. Cylindric algebra theory can be viewed in many ways: as an algebraic form of definability theory, as a study of higher-dimensional relations, as an enrichment of Boolean Algebra theory, or, as logic in geometric form (“cylindric” in the name refers to geometric aspects). Cylindric-like algebras have a wide range of applications, in, e.g., natural language theory, data-base theory, stochastics, and even in relativity theory. The present volume, consisting of 18 survey papers, intends to give an overview of the main achievements and new research directions in the past 30 years, since the publication of the Henkin-Monk-Tarski monographs. It is dedicated to the memory of Leon Henkin.
Coupled Thermo-Electro-Magneto-Elastic Response of Smart Stiffened Panels
Bednarcyk, Brett A.; Yarrington, Phillip W.
2009-01-01
This report documents the procedures developed for incorporating smart laminate and panel analysis capabilities within the HyperSizer aerospace structural sizing software package. HyperSizer analyzes stiffened panels composed of arbitrary composite laminates through stiffener homogenization, or "smearing " techniques. The result is an effective constitutive equation for the stiffened panel that is suitable for use in a full vehicle-scale finite element analysis via MSC/NASTRAN. The existing thermo-elastic capabilities of HyperSizer have herein been extended to include coupled thermo-electro-magneto-elastic analysis capabilities. This represents a significant step toward realization of design tools capable of guiding the development of the next generation of smart aerospace structures. Verification results are presented that compare the developed smart HyperSizer capability with an ABAQUS piezoelectric finite element solution for a facesheet-flange combination. These results show good agreement between HyperSizer and ABAQUS, but highlight a limitation of the HyperSizer formulation in that constant electric field components are assumed.
Electric Field Stiffening Effect in c-Oriented Aluminum Nitride Piezoelectric Thin Films.
Chen, Cong; Shang, Zhengguo; Gong, Jia; Zhang, Feng; Zhou, Hong; Tang, Bin; Xu, Yi; Zhang, Chi; Yang, Ya; Mu, Xiaojing
2018-01-17
Aluminum nitride offers unique material advantages for the realization of ultrahigh-frequency acoustic devices attributed to its high ratio of stiffness to density, compatibility with harsh environments, and superior thermal properties. Although, to date, aluminum nitride thin films have been widely investigated regarding their electrical and mechanical characteristics under alternating small signal excitation, their ultrathin nature under large bias may also provide novel and useful properties. Here, we present a comprehensive investigation of electric field stiffening effect in c-oriented aluminum nitride piezoelectric thin films. By analyzing resonance characteristics in a 2.5 GHz aluminum nitride-based film bulk acoustic resonator, we demonstrate an up to 10% linear variation in the equivalent stiffness of aluminum nitride piezoelectric thin films when an electric field was applied from -150 to 150 MV/m along the c-axis. Moreover, for the first time, an atomic interaction mechanism is proposed to reveal the nature of electric field stiffening effect, suggesting that the nonlinear variation of the interatomic force induced by electric field modulation is the intrinsic reason for this phenomenon in aluminum nitride piezoelectric thin films. Our work provides vital experimental data and effective theoretical foundation for electric field stiffening effect in aluminum nitride piezoelectric thin films, indicating the huge potential in tunable ultrahigh-frequency microwave devices.
A Virtual Tool for Minimum Cost Design of a Wind Turbine Tower with Ring Stiffeners
Directory of Open Access Journals (Sweden)
Fatih Karpat
2013-07-01
Full Text Available Currently, renewable energy resources are becoming more important to reduce greenhouse gas emissions and increase energy efficiency. Researchers have focused on all components of wind turbines to increase reliability and minimize cost. In this paper, a procedure including a cost analysis method and a particle swarm optimization algorithm has been presented to efficiently design low cost steel wind turbine towers. A virtual tool is developed in MATLAB for the cost optimization of wind turbine steel towers with ring stiffeners using a particle swarm optimization algorithm. A wind turbine tower optimization problem in the literature is solved using the developed computer program. In the optimization procedure the optimization results match very well with the optimization results obtained previously. The wall thickness of the shell segments and the dimensions of the ring stiffeners are selected as the design variables, and the limits of the local buckling for the flat ring stiffeners, the local shell buckling limit, the panel ring buckling limit and the limitation of the frequency are considered the design constraints. Numerical examples are presented to understand the impacts of the design variables on the total cost of the wind turbine tower.
Effects of mean flow on transmission loss of orthogonally rib-stiffened aeroelastic plates.
Xin, F X; Lu, T J
2013-06-01
This paper investigates the sound transmission loss (STL) of aeroelastic plates reinforced by two sets of orthogonal rib-stiffeners in the presence of external mean flow. Built upon the periodicity of the structure, a comprehensive theoretical model is developed by considering the convection effect of mean flow. The rib-stiffeners are modeled by employing the Bernoulli-Euler beam theory and the torsional wave equation. While the solution for the transmission loss of the structure based on plate displacement and acoustic pressures is given in the form of space-harmonic series, the corresponding coefficients are obtained from the solution of a system of linear equations derived from the plate-beam coupling vibration governing equation and Helmholtz equation. The model predictions are validated by comparing with existing theoretical and experimental results in the absence of mean flow. A parametric study is subsequently performed to quantify the effects of mean flow as well as structure geometrical parameters upon the transmission loss. It is demonstrated that the transmission loss of periodically rib-stiffened structure is increased significantly with increasing Mach number of mean flow over a wide frequency range. The STL value for the case of sound wave incident downstream is pronouncedly larger than that associated with sound wave incident upstream.
Structural design of nuclear power plant using stiffened steel plate concrete structure
International Nuclear Information System (INIS)
Moon, Ilhwan; Kim, Sungmin; Mun, Taeyoup; Kim, Keunkyeong; Sun, Wonsang
2009-01-01
Nuclear power is an alternative energy source that is conducive to mitigate the environmental strains. The countries having nuclear power plants are encouraging research and development sector to find ways to construct safer and more economically feasible nuclear power plants. Modularization using Steel Plate Concrete(SC) structure has been proposed as a solution to these efforts. A study of structural modules using SC structure has been performed for shortening of construction period and enhancement of structural safety of NPP structures in Korea. As a result of the research, the design code and design techniques based on limit state design method has been developed. The design code has been developed through various structural tests and theoretical studies, and it has been modified by application design of SC structure for NPP buildings. The code consists of unstiffened SC wall design, stiffened SC wall design, Half-SC slab design, stud design, connection design and so on. The stiffened steel plate concrete(SSC) wall is SC structure whose steel plates with ribs are composed on both sides of the concrete wall, and this structure was developed for improved constructability and safety of SC structure. This paper explains a design application of SC structure for a sample building specially devised to reflect all of major structural properties of main buildings of APR1400. In addition, Stiffening effect of SSC structure is evaluated and structural efficiency of SSC structure is verified in comparison with that of unstiffened SC structure. (author)
Energy Technology Data Exchange (ETDEWEB)
Lee, Seung Ryong; Baek, Kyong Hee; Jung, Gyoo Sik; Huh, Jin Do; Joh, Young Duk; Rim, Hark [Kosin Medical College, Pusan (Korea, Republic of)
1997-11-01
To determine the efficacy of correction of a malfunctioning peritoneal dialysis catheter with guidewire and stiffener under fluoroscopic guidance. Between November 1994 and March 1997, we performed 15 manipulations in 12 patients in whom a dual-cuff, straight Tenckhoff peritoneal dialysis catheter had been implanted due to chronic renal failure. The causes of catheter malfunctioning were inadequate drainage of the dialysate(n=14) and painful dialysis(n=1). Under fluoroscopic guidance, adhesiolysis and repositioning of the malfunctioning catheter were performed with an Amplatz Super Stiff guidewire and the stiffener from a biliary drainage catheter. The results of procedures were categorized as either immediate or durable success, this latter being defined as adequate catheter function for at least one month after the procedure. Immediate success was achieved in 14 of 15 procedures (93%), and durable success in 7 of 15(47%). The mean duration of catheter function was 157 (range, 30 to 578) days. After manipulation, abdominal pain developed in eight patients and peritonitis in two, but with conservative treatment, these symptoms improved. The correction of a malfunctioning peritoneal dialysis catheter with guidewire and stiffener under fluoroscopic guidance is an effective means of restoring catheter function and may be an effective alternative to surgical reimplantation of the catheter, or hemodialysis.
Lamb Wave Line Sensing for Crack Detection in a Welded Stiffener
Directory of Open Access Journals (Sweden)
Yun-Kyu An
2014-07-01
Full Text Available This paper proposes a novel Lamb wave line sensing technique for crack detection in a welded stiffener. The proposed technique overcomes one of the biggest technical challenges of Lamb wave crack detection for real structure applications: crack-induced Lamb waves are often mixed with multiple reflections from complex waveguides. In particular, crack detection in a welded joint, one of the structural hot spots due to stress concentration, is accompanied by reflections from the welded joint as well as a crack. Extracting and highlighting crack-induced Lamb wave modes from Lamb wave responses measured at multi-spatial points along a single line can be accomplished through a frequency-wavenumber domain analysis. The advantages of the proposed technique enable us not only to enhance the crack detectability in the welded joint but also to minimize false alarms caused by environmental and operational variations by avoiding the direct comparison with the baseline data previously accumulated from the pristine condition of a target structure. The proposed technique is experimentally and numerically validated in vertically stiffened metallic structures, revealing that it successfully identifies and localizes subsurface cracks, regardless of the coexistence with the vertical stiffener.
Vibro-Acoustic Modulation Based Damage Identification in a Composite Skin-Stiffener Structure
Ooijevaar, T. H.; Loendersloot, R.; Rogge, M. D.; Akkerman, R.; Tinga, T.
2014-01-01
The vibro-acoustic modulation method is applied to a composite skin-stiffener structure to investigate the possibilities to utilize this method for damage identification in terms of detection, localisation and damage quantification. The research comprises a theoretical part and an experimental part. An impact load is applied to the skin-stiffener structure, resulting in a delamination underneath the stiffener. The structure is interrogated with a low frequency pump excitation and a high frequency carrier excitation. The analysis of the response in a frequency band around the carrier frequency is employed to assess the damage identification capabilities and to gain a better understanding of the modulations occurring and the underlying physical phenomena. Though vibro-acoustic is shown to be a sensitive method for damage identification, the complexity of the damage, combined with a high modal density, complicate the understanding of the relation between the physical phenomena and the modulations occurring. more research is recommended to reveal the physics behind the observations.
Prediction of Welding Deformation and Residual Stress of Stiffened Plates Based on Experiments
Bai, R. X.; Guo, Z. F.; Lei, Z. K.
2017-12-01
Thermo-elastic-plastic (TEP) method is a method that can accurately predict welding deformation and residual stresses, but the premise is to select the appropriate heat source parameters. Aiming at the two welded joints in the stiffened plate studied in this paper, the welding experiments of simple components were carried out respectively, and the corresponding welding deformation and residual stresses were measured. Based on the welding experiment, the corresponding TEP model was established, and the corresponding heat source parameters were obtained according to the experimental data. The comparison between the experimental results and the numerical results shows that the obtained heat source parameters can well predict the welding deformation and residual stress of the welded structure. And then, the obtained heat source parameters were applied to the TEP model of the stiffened plate. The prediction results show that the T-type fillet welds of the stiffened plate can reduce the angular deformation caused by the butt welds to a certain extent. In addition, we can also find that the heat of the subsequent welds can reduce the residual stresses at the completed welds. This method not only can save a lot of experimental costs and time, but also can accurately predict the welding deformation and residual stresses.
Directory of Open Access Journals (Sweden)
Yurisman
2010-11-01
Full Text Available This paper presents results of numerical and experimental study of shear link behavior, utilizing diagonal stiffener on web of steel profile to increase shear link performance in an eccentric braced frame (EBF of a steel structure system. The specimen is to examine the behavior of shear link by using diagonal stiffener on web part under static monotonic and cyclic load. The cyclic loading pattern conducted in the experiment is adjusted according to AISC loading standards 2005. Analysis was carried out using non-linear finite element method using MSC/NASTRAN software. Link was modeled as CQUAD shell element. Along the boundary of the loading area the nodal are constraint to produce only one direction loading. The length of the link in this analysis is 400mm of the steel profile of WF 200.100. Important parameters considered to effect significantly to the performance of shear link have been analyzed, namely flange and web thicknesses, , thickness and length of web stiffener, thickness of diagonal stiffener and geometric of diagonal stiffener. The behavior of shear link with diagonal web stiffener was compared with the behavior of standard link designed based on AISC 2005 criteria. Analysis results show that diagonal web stiffener is capable to increase shear link performance in terms of stiffness, strength and energy dissipation in supporting lateral load. However, differences in displacement ductility’s between shear links with diagonal stiffener and shear links based on AISC standards have not shown to be significant. Analysis results also show thickness of diagonal stiffener and geometric model of stiffener to have a significant influence on the performance of shear links. To perform validation of the numerical study, the research is followed by experimental work conducted in Structural Mechanic Laboratory Center for Industrial Engineering ITB. The Structures and Mechanics Lab rotary PAU-ITB. The experiments were carried out using three test
Analysis of a cylindrical shell vibrating in a cylindrical fluid region
International Nuclear Information System (INIS)
Chung, H.; Turula, P.; Mulcahy, T.M.; Jendrzejczyk, J.A.
1976-08-01
Analytical and experimental methods are presented for evaluating the vibration characteristics of cylindrical shells such as the thermal liner of the Fast Flux Test Facility (FFTF) reactor vessel. The NASTRAN computer program is used to calculate the natural frequencies, mode shapes, and response to a harmonic loading of a thin, circular cylindrical shell situated inside a fluid-filled rigid circular cylinder. Solutions in a vacuum are verified with an exact solution method and the SAP IV computer code. Comparisons between analysis and experiment are made, and the accuracy and utility of the fluid-solid interaction package of NASTRAN is assessed
Analysis of a cylindrical shell vibrating in a cylindrical fluid region
International Nuclear Information System (INIS)
Chung, H.; Turula, P.; Mulcahy, T.M.; Jendrezejczyk, J.A.
1981-01-01
Analytical and experimental methods are presented for evaluating the vibration characteristics of cylindrical shells such as the thermal liner of the Fast Flux Test Facility (FFTF) reactor vessel. The NASTRAN computer program is used to calculate the natural frequencies, mode shapes, and response to a harmonic loading of a thin, circular cylindrical shell situated inside a fluid-filled rigid circular cylinder. Solutions in a vacuum are verified with an exact solution method and the SAP IV computer code. Comparisons between analysis and experiment are made, and the accuracy and utility of the fluid-solid interaction package of NASTRAN is assessed. (orig.)
Motion parallax in immersive cylindrical display systems
Filliard, N.; Reymond, G.; Kemeny, A.; Berthoz, A.
2012-03-01
Motion parallax is a crucial visual cue produced by translations of the observer for the perception of depth and selfmotion. Therefore, tracking the observer viewpoint has become inevitable in immersive virtual (VR) reality systems (cylindrical screens, CAVE, head mounted displays) used e.g. in automotive industry (style reviews, architecture design, ergonomics studies) or in scientific studies of visual perception. The perception of a stable and rigid world requires that this visual cue be coherent with other extra-retinal (e.g. vestibular, kinesthetic) cues signaling ego-motion. Although world stability is never questioned in real world, rendering head coupled viewpoint in VR can lead to the perception of an illusory perception of unstable environments, unless a non-unity scale factor is applied on recorded head movements. Besides, cylindrical screens are usually used with static observers due to image distortions when rendering image for viewpoints different from a sweet spot. We developed a technique to compensate in real-time these non-linear visual distortions, in an industrial VR setup, based on a cylindrical screen projection system. Additionally, to evaluate the amount of discrepancies tolerated without perceptual distortions between visual and extraretinal cues, a "motion parallax gain" between the velocity of the observer's head and that of the virtual camera was introduced in this system. The influence of this artificial gain was measured on the gait stability of free-standing participants. Results indicate that, below unity, gains significantly alter postural control. Conversely, the influence of higher gains remains limited, suggesting a certain tolerance of observers to these conditions. Parallax gain amplification is therefore proposed as a possible solution to provide a wider exploration of space to users of immersive virtual reality systems.
Retaining Walls Made of Precast Cylindrical Valuts
Directory of Open Access Journals (Sweden)
N. Ungureanu
2005-01-01
Full Text Available Retaining walls are large category of engineering structures of multiple uses, having an essential safety ensuring role. The structural systems are varied because the situations and requirements derived from both site conditions and other criteria are varied. The paper enlarges upon retaining walls systems that use an outstanding amount of precast units and multiple cylindrical vault type structural systems supported by abutments [1], [2]. The paper proposes extending the structural system to retaining walls and develops certain specific issues. Some considerations regarding structural design are made.
Enhanced Performance of Cylindrical Hall Thrusters
International Nuclear Information System (INIS)
Raitses, Y.; Smirnov, A.; Fisch, N.J.
2007-01-01
The cylindrical thruster differs significantly in its underlying physical mechanisms from the conventional annular Hall thruster. It features high ionization efficiency, quiet operation, ion acceleration in a large volume-to-surface ratio channel, and performance comparable with the state-of-the-art conventional Hall thrusters. Very significant plume narrowing, accompanied by the increase of the energetic ion fraction and improvement of ion focusing, led to 50-60% increase of the thruster anode efficiency. These improvements were achieved by overrunning the discharge current in the magnetized thruster plasma
Cullet Manufacture Using the Cylindrical Induction Melter
International Nuclear Information System (INIS)
Miller, D. H.
2000-01-01
The base process for vitrification of the Am/Cm solution stored in F-canyon uses 25SrABS cullet as the glass former. A small portion of the cullet used in the SRTC development work was purchased from Corning while the majority was made in the 5 inch Cylindrical Induction Melter (CIM5). Task 1.01 of TTR-NMSS/SE-006, Additional Am-Cm Process Development Studies, requested that a process for the glass former (cullet) fabrication be specified. This report provides the process details for 25SrAB cullet production thereby satisfying Task 1.01
Acoustically Driven Vibrations in Cylindrical Structures
Energy Technology Data Exchange (ETDEWEB)
Chambers, David H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2013-10-11
The purpose of this investigation is to explore the interaction of acoustics and vibration in fluid-filled cylindrical structures. Our emphasis is on describing longitudinal (axial) propagation within the structure for acoustic signals that enter externally. This paper reviews the historical and theoretical treatments of the relevant phenomenon important to the propagation of these signals along pipe structures. Our specific contribution is a detailed analysis of how external acoustic signals are coupled to a free standing pipe. There have been numerous phenomena for which these analyses are applicable. They have ranged from physical property measurements, to indoor environmental noise abatement, and onto quite significant explorations of active and passive submerged structures.
Stability analysis of cylindrical Vlasov equilibria
International Nuclear Information System (INIS)
Short, R.W.
1979-01-01
A general method of stability analysis is described which may be applied to a large class of such problems, namely those which are described dynamically by the Vlasov equation, and geometrically by cylindrical symmetry. The method is presented for the simple case of the Vlasov-Poisson (electrostatic) equations, and the results are applied to a calculation of the lower-hybrid-drift instability in a plasma with a rigid rotor distribution function. The method is extended to the full Vlasov-Maxwell (electromagnetic) equations. These results are applied to a calculation of the instability of the extraordinary electromagnetic mode in a relativistic E-layer interacting with a background plasma
Fast, inexpensive, diffraction limited cylindrical microlenses
International Nuclear Information System (INIS)
Synder, J.J.; Reichert, P.
1991-01-01
We have developed a technique for fabricating fast, well corrected cylindrical microlenses. With this technique we have made a number of different microlenses with dimensions and focal lengths in the range of few hundred μm, and diffraction limited numerical apertures as high as 0.9. The microlenses are specifically designed for applications where they can increase the radiance or otherwise enhance the optical characteristics of laser diode light. The fabrication method we use is very versatile, and the microlenses produced this way would be very inexpensive in production quantities. 6 refs., 4 figs
Acoustic propagation mode in a cylindrical plasma
International Nuclear Information System (INIS)
Ishida, Yoshio; Idehara, Toshitaka; Inada, Hideyo
1975-01-01
The sound velocity in a cylindrical plasma produced by a high frequency discharge is measured by an interferometer system. The result shows that the acoustic wave guide effect does exist in a neutral gas and in a plasma. It is found that the wave propagates in the mode m=2 in a rigid boundary above the cut-off frequency fsub(c) and in the mode m=0 below fsub(c). Because the mode m=0 is identical to a plane wave, the sound velocity in free space can be evaluated exactly. In the mode m=2, the sound velocity approaches the free space value, when the frequency increases sufficiently. (auth.)
Cylindrical metamaterial-based subwavelength antenna
DEFF Research Database (Denmark)
Erentok, Aycan; Kim, Oleksiy S.; Arslanagic, Samel
2009-01-01
A subwavelength monopole antenna radiating in the presence of a truncated cylindrical shell, which has a capped top face and is made of a negative permittivity metamaterial, is analyzed numerically by a method of moments for the volume-surface integral equation oil the one hand, and a finite...... element method on the other hand. It is shown that a center-fed truncated cylinder, in contrast to an infinite cylinder, provides subwavelength resonances, thus suggesting the possibility, of having a subwavelength antenna system....
History of the small cylindrical melter
International Nuclear Information System (INIS)
Allen, T.L.; Iverson, D.C.; Plodinec, M.J.
1985-08-01
The small cylindrical melter (SCM) was designed to provide engineering data useful for operation and design of full-scale glass melters for vitrification of high-level radioactive waste. This melter was part of the research and development program for the Defense Waste Processing Facility (DWPF) at the Savannah River Plant (SRP). Extensive corrosion testing of melter materials of construction (Monofrax K3, Inconel 690), simulated radioactive waste glass characterization, and melter component development were conducted in support of the DWPF full-scale melter design. 66 figs., 14 tabs
Waves in inhomogeneous plasma of cylindrical geometry
International Nuclear Information System (INIS)
Rebut, P.H.
1966-01-01
The conductivity tensor of a hot and inhomogeneous plasma has been calculated for a cylindrical geometry using Vlasov equations. The method used consists in a perturbation method involving the first integrals of the unperturbed movement. The conductivity tensor will be particularly useful for dealing with stability problems. In the case of a cold plasma the wave equation giving the electric fields as a function of the radius is obtained. This equation shows the existence of resonant layers which lead to an absorption analogous to the Landau absorption in a hot plasma. (author) [fr
FEM Modeling of Guided Wave Behavior in Integrally Stiffened Plate Structures
National Research Council Canada - National Science Library
Martin, Steve A; Jata, Kumar V
2007-01-01
.... Guided waves can propagate great distances while experiencing low attenuation. They have been successfully used for damage detection in structures of relatively low geometric complexity such as plates and cylindrical pipes...
Forced Vibration Analysis for a FGPM Cylindrical Shell
Directory of Open Access Journals (Sweden)
Hong-Liang Dai
2013-01-01
Full Text Available This article presents an analytical study for forced vibration of a cylindrical shell which is composed of a functionally graded piezoelectric material (FGPM. The cylindrical shell is assumed to have two-constituent material distributions through the thickness of the structure, and material properties of the cylindrical shell are assumed to vary according to a power-law distribution in terms of the volume fractions for constituent materials, the exact solution for the forced vibration problem is presented. Numerical results are presented to show the effect of electric excitation, thermal load, mechanical load and volume exponent on the static and force vibration of the FGPM cylindrical shell. The goal of this investigation is to optimize the FGPM cylindrical shell in engineering, also the present solution can be used in the forced vibration analysis of cylindrical smart elements.
Functional evolution of quantum cylindrical waves
International Nuclear Information System (INIS)
Cho, Demian H J; Varadarajan, Madhavan
2006-01-01
Kuchar showed that the quantum dynamics of (one polarization) cylindrical wave solutions to vacuum general relativity is determined by those of a free axially symmetric scalar field along arbitrary axially symmetric foliations of a fixed flat (2 + 1)-dimensional spacetime. We investigate if such a dynamics can be defined unitarily within the standard Fock space quantization of the scalar field. Evolution between two arbitrary slices of an arbitrary foliation of the flat spacetime can be built out of a restricted class of evolutions (and their inverses). The restricted evolution is from an initial flat slice to an arbitrary (in general, curved) slice of the flat spacetime and can be decomposed into (i) 'time' evolution in which the spatial Minkowskian coordinates serve as spatial coordinates on the initial and the final slice, followed by (ii) the action of a spatial diffeomorphism of the final slice on the data obtained from (i). We show that although the functional evolution of (i) is unitarily implemented in the quantum theory, generic spatial diffeomorphisms of (ii) are not. Our results imply that a Tomanaga-Schwinger type functional evolution of quantum cylindrical waves is not a viable concept even though, remarkably, the more limited notion of functional evolution in Kuchar's 'half-parametrized formalism' is well defined
Note: Electrochemical etching of cylindrical nanoprobes using a vibrating electrolyte
International Nuclear Information System (INIS)
Wang, Yufeng; Zeng, Yongbin; Qu, Ningsong; Zhu, Di
2015-01-01
An electrochemical etching process using a vibrating electrolyte of potassium hydroxide to prepare tungsten cylindrical nanotips is developed. The vibrating electrolyte eases the effects of a diffusion layer and extends the etching area, which aid in the production of cylindrical nanotips. Larger amplitudes and a vibration frequency of 35 Hz are recommended for producing cylindrical nanotips. Nanotips with a tip radius of approximately 43 nm and a conical angle of arctan 0.0216 are obtained
Tang, Junhua; Pan, Xueliang; Weber, Paul A; Liu, Jun
2012-03-15
To experimentally examine the effect of increased corneal stiffness on Goldmann applanation tonometry (GAT) and Tono-Pen (Reichert, Inc., Depew, NY) measurements of intraocular pressure (IOP) in a canine eye model. Twenty globes were recovered from 10 dogs with no known diseases. For each dog, corneal stiffening was induced in one eye with glutaraldehyde/phosphate buffered saline (PBS) immersion while the other cornea was immersed in PBS only. Acoustic impedance was measured before and after treatment in all eyes. After treatment, IOP was measured by GAT and Tono-Pen at true pressures of 10, 15, 20, 30, and 40 mm Hg. The corneas were then dissected for uniaxial tensile testing. The GAT/Tono-Pen readings, corneal stiffness (measured by ultrasound and tensile tests), and corneal thickness were compared between the two groups. The correlations between GAT/Tono-Pen readings and corneal stiffness were evaluated. Acoustic impedance significantly increased after glutaraldehyde treatment (P < 0.01). Secant modulus at 1% strain was significantly higher in corneas treated with glutaradehyde/PBS than those treated with PBS only (P < 0.01). GAT and Tono-Pen readings were significantly higher at all pressure levels (P < 0.001) in the eyes with corneal stiffening. Both corneal acoustic impedance and secant modulus were significantly correlated with GAT/Tono-Pen readings at all pressure levels (P < 0.01). This study provided experimental evidence that corneal stiffening significantly increases GAT and Tono-Pen readings in canine eyes. Noninvasive ultrasound measurement of acoustic impedance may be used to evaluate corneal stiffness and improve the accuracy of clinical measurements of IOP.
Software For Design And Analysis Of Tanks And Cylindrical Shells
Luz, Paul L.; Graham, Jerry B.
1995-01-01
Skin-stringer Tank Analysis Spreadsheet System (STASS) computer program developed for use as preliminary design software tool that enables quick-turnaround design and analysis of structural domes and cylindrical barrel sections in propellant tanks or other cylindrical shells. Determines minimum required skin thicknesses for domes and cylindrical shells to withstand material failure due to applied pressures (ullage and/or hydrostatic) and runs buckling analyses on cylindrical shells and skin-stringers. Implemented as workbook program, using Microsoft Excel v4.0 on Macintosh II. Also implemented using Microsoft Excel v4.0 for Microsoft Windows v3.1 IBM PC.
DEFF Research Database (Denmark)
Lárusson, Lárus Helgi; Fischer, Gregor; Jönsson, Jeppe
2011-01-01
investigated using an image-based deformation measurement and analysis system. This allowed for detailed view of surface deformations and the implications on the resulting response of the member in tension. In this study, conventional concrete and a ductile, strain hardening cement composite, known...... as Engineered Cementitious Composite (ECC), have been combined with steel and glass fiber reinforced polymer (GFRP) reinforcement to contrast the effects of brittle and ductile cement matrices as well as elastic/plastic and elastic reinforcement on the tension stiffening process. Particular focus...... was on the deformation process and transverse crack formation in the cementitious matrix at increasing tensile strain....
Parameter survey of a rib stiffened wooden floor using sinus modes model
DEFF Research Database (Denmark)
Sjökvist, Lars-Göran; Brunskog, Jonas; Jacobsen, Finn
2008-01-01
of the sound insulation for lightweight buildings have the possibility to speed up the development of new techniques and in the end give tenants better quality of life. This study uses Fourier sinus series to calculate the vibrations on a rib stiffened plate. The beams are modelled as line forces and moments...... that reacts onto the plate vibrations. A parameter study is performed with the aim to identify the most important parameters and their behaviour. The preliminary results show that the attenuation of the system is by far most evident in the direction across the beams. The influence from the basic input...
Experimental Study on Temperature Behavior of SSC (Stiffened Steel Plate Concrete) Structures
International Nuclear Information System (INIS)
Lee, K. J.; Ham, K. W.; Park, D. S.; Kwon, K. J.
2008-01-01
SSC(Stiffened Steel plate Concrete) module method uses steel plate instead of reinforcing bar and mold in existing RC structure. Steel plate modules are fabricated in advance, installed and poured with concrete in construction field, so construction period is remarkably shortened by SC module technique. In case of existence of temperature gap between internal and external structure surface such as containment building, thermal stress is taken place and as a result of it, structural strength is deteriorated. In this study, we designed two test specimens and several tests with temperature heating were conducted to evaluate temperature behavior of SSC structures and RC structure
Hilburger, Mark W.; Waters, W. Allen, Jr.; Haynie, Waddy T.
2015-01-01
Results from the testing of cylinder test article SBKF-P2-CYLTA01 (referred to herein as TA01) are presented. The testing was conducted at the Marshall Space Flight Center (MSFC), November 19?21, 2008, in support of the Shell Buckling Knockdown Factor (SBKF) Project.i The test was used to verify the performance of a newly constructed buckling test facility at MSFC and to verify the test article design and analysis approach used by the SBKF project researchers. TA01 is an 8-foot-diameter (96-inches), 78.0-inch long, aluminum-lithium (Al-Li), orthogrid-stiffened cylindrical shell similar to those used in current state-of-the-art launch vehicle structures and was designed to exhibit global buckling when subjected to compression loads. Five different load sequences were applied to TA01 during testing and included four sub-critical load sequences, i.e., loading conditions that did not cause buckling or material failure, and one final load sequence to buckling and collapse. The sub-critical load sequences consisted of either uniform axial compression loading or combined axial compression and bending and the final load sequence subjected TA01 to uniform axial compression. Traditional displacement transducers and strain gages were used to monitor the test article response at nearly 300 locations and an advanced digital image correlation system was used to obtain low-speed and high-speed full-field displacement measurements of the outer surface of the test article. Overall, the test facility and test article performed as designed. In particular, the test facility successfully applied all desired load combinations to the test article and was able to test safely into the postbuckling range of loading, and the test article failed by global buckling. In addition, the test results correlated well with initial pretest predictions.
Plasmonic oligomers in cylindrical vector light beams
Directory of Open Access Journals (Sweden)
Mario Hentschel
2013-01-01
Full Text Available We investigate the excitation as well as propagation of magnetic modes in plasmonic nanostructures. Such structures are particularly suited for excitation with cylindrical vector beams. We study magneto-inductive coupling between adjacent nanostructures. We utilize high-resolution lithographic techniques for the preparation of complex nanostructures consisting of gold as well as aluminium. These structures are subsequently characterized by linear optical spectroscopy. The well characterized and designed structures are afterwards studied in depth by exciting them with radial and azimuthally polarized light and simultaneously measuring their plasmonic near-field behavior. Additionally, we attempt to model and simulate our results, a project which has, to the best of our knowledge, not been attempted so far.
Study of Cylindrical Honeycomb Solar Collector
Directory of Open Access Journals (Sweden)
Atish Mozumder
2014-01-01
Full Text Available We present the results of our investigation on cylindrical honeycomb solar collector. The honeycomb has been fabricated with transparent cellulose triacetate polymer sheets. Insulation characteristics of the honeycomb were studied by varying the separation between the honeycomb and the absorber plate. The optimal value of the separation was found to be 3.3 mm for which the heat transfer coefficient is 3.06 W m−2 K−1. This supports result of previous similar experiments. Further we test the honeycomb through a field experiment conducted in Delhi (28.6°N, 77°E and found that when the incident angle of the solar radiation is within 20° then the performance of the system with the honeycomb is better than the one without the honeycomb.
HOLOGRAPHIC VISUALIZATION OF CYLINDRICAL PIEZOCERAMIC TRANSDUCERS VIBRATIONS
Directory of Open Access Journals (Sweden)
R. Vasiliauskas
2013-01-01
Full Text Available The piezomaterial used in cylindrical piezoceramic transducers vibrations requiring high precision displacements indicates that accuracy depends on design and technological factors. The analyzed criteria have made possible to choose the piezomaterial for optimal mechatronic system having a maximal displacement. The experimental investigation of precision vibrosystems by means of 3D holographic visualization enables one to obtain appreciably larger amount of information about the vibrating surface in comparison with traditional methods. On the basis of the developed methodology of analyzing the experimental data derived from 3D holographic visualization and by using the experimental holography stand, we have obtained results making it possible to optimize the design of operation of the piezoceramic mechatronic system or its separate elements.
Unbalanced Cylindrical Magnetron for Accelerating Cavities Coating
Rosaz, Guillaume; Calatroni, Sergio; Sublet, Alban; Tobarelli, Mauro
2016-01-01
We report in this paper the design and qualification of a cylindrical unbalanced magnetron source. The dedicated magnetic assemblies were simulated using a finite element model. A hall-effect magnetic probe was then used to characterize those assemblies and compared to the theoretical magnet profiles. These show a good agreement between the expected and actual values. the qualification of the different magnetic assemblies was then performed by measuring the ion flux density reaching the surface of the sample to be coated using a commercial retarding field energy analyzer. The strongest unbalanced configuration shows an increase from 0.016A.cm^-2 to 0.074A.cm^-2 of the ion flux density reaching the sample surface compared to the standard balanced configuration for a pressure 5.10^-3 mbar and a plasma source power of 300W.
Cylindrically Symmetric Solution in Teleparallel Theory
Gamal, G. L. Nashed
2010-10-01
The field equations of a special class of teleparallel theory of gravitation and electromagnetic fields are applied to tetrad space having cylindrical symmetry with four unknown functions of radial coordinate r and azimuth angle θ. The vacuum stress-energy momentum tensor with one assumption concerning its specific form generates one non-trivial exact analytic solution. This solution is characterized by a constant magnetic field parameter B0. If B0 = 0, then the solution will reduce to the flat spacetime. The energy content is calculated using the superpotential given by Møller in the framework of teleparallel geometry. The energy contained in a sphere is found to be different from the pervious results.
Experimental approach for measuring cylindrical flexoelectric coefficients
Zhang, Shuwen; Liu, Kaiyuan; Wu, Tonghui; Xu, Minglong; Shen, Shengping
2017-10-01
Flexoelectricity is a property of dielectric materials by which applied strain gradients induce electric polarizations within dielectric materials. Experimental research into the tensor components of the flexoelectric coefficient is essential. In this work, an experimental approach for measurement of the flexoelectric coefficient tensor components in cylindrical coordinates is developed. Two different experimental methods are designed to obtain the two related unknown flexoelectric coefficient tensor components. Theoretical and finite element analyses are developed and simplified for each experiment, and the related designs are then tested to obtain the coupled electric polarization charges. The two unknown flexoelectric coefficient tensor components of polyvinylidene fluoride are then decoupled. This work provides an experimental method that can be used to obtain multiple unknown flexoelectric coefficient tensor components in solid dielectric materials.
Indentation of Ellipsoidal and Cylindrical Elastic Shells
Vella, Dominic
2012-10-01
Thin shells are found in nature at scales ranging from viruses to hens\\' eggs; the stiffness of such shells is essential for their function. We present the results of numerical simulations and theoretical analyses for the indentation of ellipsoidal and cylindrical elastic shells, considering both pressurized and unpressurized shells. We provide a theoretical foundation for the experimental findings of Lazarus etal. [following paper, Phys. Rev. Lett. 109, 144301 (2012)PRLTAO0031-9007] and for previous work inferring the turgor pressure of bacteria from measurements of their indentation stiffness; we also identify a new regime at large indentation. We show that the indentation stiffness of convex shells is dominated by either the mean or Gaussian curvature of the shell depending on the pressurization and indentation depth. Our results reveal how geometry rules the rigidity of shells. © 2012 American Physical Society.
Long trace profile measurements on cylindrical aspheres
International Nuclear Information System (INIS)
Takacs, P.Z.; Feng, S.C.K.; Qian, S.N.; Liu, W.M.
1988-01-01
A new long-trace optical profiling instrument is now in operation at Brookhaven National Laboratory measuring surface figure and macro-roughness on large optical components, principally long cylindrical mirrors for use in synchrotron radiation beam lines. The non-contact measurement technique is based upon a pencil-beam interferometer system The optical head is mounted on a linear air bearing slide and has a free travel range of nearly one meter. The authors are able to sample surface spatial periods between 1 mm (the laser beam diameter) and 1 m. The input slope data is converted to surface height by a Fourier filtering technique. A number of optical components have been measured with the instrument. Results are presented for fused silica cylinders 900 mm and 600 mm in length and for a fused silica toroid and several electrodes nickel-plated paraboloids
Neutron refraction by cylindrical metal wires
International Nuclear Information System (INIS)
Plomp, J.; Barker, J.G.; Haan, V.O. de; Bouwman, W.G.; Well, A.A. van
2007-01-01
Undesired Small-Angle Neutron Scattering (SANS) from interior features of an object can be minimised by reducing the sample thickness. However, refraction effects produced by the exterior shape of the object depend upon the scattering cross-section and not on the thickness of the object. In the field of polarised neutrons a wire coil is often used to manipulate the polarisation vector of the neutron. In this paper, we show that the cylindrical shape of the wire together with the refractive index introduces an angular distribution in the neutron beam. This can be observed in instrumentation sensitive to SANS. We show results measured on three different SANS instruments: Ultra Small-Angle Neutrons Scattering (USANS), Spin-Echo Small-Angle Neutron Scattering (SESANS) and a Time-of-Flight (TOF) SESANS. These results are all in good agreement with the theory of refraction
Neutron refraction by cylindrical metal wires
Energy Technology Data Exchange (ETDEWEB)
Plomp, J. [Faculty of Applied Sciences, Delft University of Technology, Delft (Netherlands)]. E-mail: j.plomp@tudelft.nl; Barker, J.G. [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Haan, V.O. de [Faculty of Applied Sciences, Delft University of Technology, Delft (Netherlands); Bouwman, W.G. [Faculty of Applied Sciences, Delft University of Technology, Delft (Netherlands); Well, A.A. van [Faculty of Applied Sciences, Delft University of Technology, Delft (Netherlands)
2007-05-01
Undesired Small-Angle Neutron Scattering (SANS) from interior features of an object can be minimised by reducing the sample thickness. However, refraction effects produced by the exterior shape of the object depend upon the scattering cross-section and not on the thickness of the object. In the field of polarised neutrons a wire coil is often used to manipulate the polarisation vector of the neutron. In this paper, we show that the cylindrical shape of the wire together with the refractive index introduces an angular distribution in the neutron beam. This can be observed in instrumentation sensitive to SANS. We show results measured on three different SANS instruments: Ultra Small-Angle Neutrons Scattering (USANS), Spin-Echo Small-Angle Neutron Scattering (SESANS) and a Time-of-Flight (TOF) SESANS. These results are all in good agreement with the theory of refraction.
Confined detonations with cylindrical and spherical symmetry
International Nuclear Information System (INIS)
Linan, A.; Lecuona, A.
1979-01-01
An imploding spherical or cylindrical detonation, starting in the interface of the detonantion with an external inert media, used as a reflector, creates on it a strong shock wave moving outward from the interface. An initially weak shock wave appears in the detonated media that travels toward the center, and it could reach the detonation wave, enforcing it in its process of implosion. To describe the fluid field, the Euler s equations are solved by means of expansions valid for the early stages of the process. Isentropic of the type P/pγ-K for the detonated and compressed inert media are used. For liquid or solid reflectors a more appropriate equation is used. (Author) 8 refs
Svalbonas, V.; Levine, H.
1975-01-01
The theoretical analysis background for the STARS-2P nonlinear inelastic program is discussed. The theory involved is amenable for the analysis of large deflection inelastic behavior in axisymmetric shells of revolution subjected to axisymmetric loadings. The analysis is capable of considering such effects as those involved in nonproportional and cyclic loading conditions. The following are also discussed: orthotropic nonlinear kinematic hardening theory; shell wall cross sections and discrete ring stiffeners; the coupled axisymmetric large deflection elasto-plastic torsion problem; and the provision for the inelastic treatment of smeared stiffeners, isogrid, and waffle wall constructions.
Tran, Minh Tu; Nguyen, Van Loi; Trinh, Anh Tuan
2017-06-01
In this paper, the analytical solution for static and vibration analysis the cross-ply laminated composite doubly curved shell panels with stiffeners resting on Winkler-Pasternak elastic foundation is presented. Based on the first-order shear deformation theory, using the smeared stiffeners technique, the motion equations are derived by applying the Hamilton's principle. The Navier's solution for shell panel with the simply supported boundary condition at all edges is presented. The accuracy of the present results is compared with those in the existing literature and shows good achievement. The effects of the number of stiffeners, stiffener's height-to-width ratio, and number of layers of cross-ply laminated composite shell panels on the fundamental frequencies and deflections of stiffened shell with and without the elastic foundation are investigated.
Buckling Response of a Large-Scale, Seamless, Orthogrid-Stiffened Metallic Cylinder
Rudd, Michelle Tillotson; Hilburger, Mark W.; Lovejoy, Andrew E.; Lindell, Michael C.; Gardner, Nathaniel W.; Schultz, Marc R.
2018-01-01
Results from the buckling test of a compression-loaded 8-ft-diameter seamless (i.e., without manufacturing joints), orthogrid-stiffened metallic cylinder are presented. This test was used to assess the buckling response and imperfection sensitivity characteristics of a seamless cylinder. In addition, the test article and test served as a technology demonstration to show the application of the flow forming manufacturing process to build more efficient buckling-critical structures by eliminating the welded joints that are traditionally used in the manufacturing of large metallic barrels. Pretest predictions of the cylinder buckling response were obtained using a finite-element model that included measured geometric imperfections. The buckling load predicted using this model was 697,000 lb, and the test article buckled at 743,000 lb (6% higher). After the test, the model was revised to account for measured variations in skin and stiffener geometry, nonuniform loading, and material properties. The revised model predicted a buckling load of 754,000 lb, which is within 1.5% of the tested buckling load. In addition, it was determined that the load carrying capability of the seamless cylinder is approximately 28% greater than a corresponding cylinder with welded joints.
Chromatin stiffening underlies enhanced locus mobility after DNA damage in budding yeast.
Herbert, Sébastien; Brion, Alice; Arbona, Jean-Michel; Lelek, Mickaël; Veillet, Adeline; Lelandais, Benoît; Parmar, Jyotsana; Fernández, Fabiola García; Almayrac, Etienne; Khalil, Yasmine; Birgy, Eleonore; Fabre, Emmanuelle; Zimmer, Christophe
2017-09-01
DNA double-strand breaks (DSBs) induce a cellular response that involves histone modifications and chromatin remodeling at the damaged site and increases chromosome dynamics both locally at the damaged site and globally in the nucleus. In parallel, it has become clear that the spatial organization and dynamics of chromosomes can be largely explained by the statistical properties of tethered, but randomly moving, polymer chains, characterized mainly by their rigidity and compaction. How these properties of chromatin are affected during DNA damage remains, however, unclear. Here, we use live cell microscopy to track chromatin loci and measure distances between loci on yeast chromosome IV in thousands of cells, in the presence or absence of genotoxic stress. We confirm that DSBs result in enhanced chromatin subdiffusion and show that intrachromosomal distances increase with DNA damage all along the chromosome. Our data can be explained by an increase in chromatin rigidity, but not by chromatin decondensation or centromeric untethering only. We provide evidence that chromatin stiffening is mediated in part by histone H2A phosphorylation. Our results support a genome-wide stiffening of the chromatin fiber as a consequence of DNA damage and as a novel mechanism underlying increased chromatin mobility. © 2017 The Authors.
Coupled dilaton and electromagnetic field in cylindrically symmetric ...
Indian Academy of Sciences (India)
Nature of circular geodesics is also studied in the presence of dilaton field in the cylindrically symmetric spacetime. Keywords. Dilaton field; general relativity; cylindrically symmetric spacetime. PACS Nos 04.50+h; .... For economy of space we skip all details of the intermediate steps and give the final expressions of the ...
Magnetization curves for non-elliptic cylindrical samples in a ...
Indian Academy of Sciences (India)
Using recent results for the surface current density on cylindrical surfaces of arbitrary cross-section producing uniform interior magnetic ﬁeld and an assumed set of ﬂux-fronts, solutions of Bean's critical state model for cylindrical samples with non-elliptic cross-section are presented. Magnetization hysteresis loops for two ...
Magnetization curves for general cylindrical samples in a transverse ...
Indian Academy of Sciences (India)
Using the recent results for the surface current density on cylindrical surfaces of arbitrary cross-section producing uniform interior magnetic ﬁeld we propose a method for obtaining solutions of Bean's critical state model for general cylindrical samples. The method uses the technique of conformal mapping to express the ...
Settling of a cylindrical particle in a stagnant fluid
DEFF Research Database (Denmark)
Sørensen, Henrik; Rosendahl, Lasse; Yin, Chungen
The objective of this work is to collect data and develop models for cylindrical particles which could be used in numerical multiphase flow modeling. Trajectories of cylindrical particles settling in stagnant water are filmed from two directions in order to derive detailed information on their mo...
Magnetization curves for non-elliptic cylindrical samples in a ...
Indian Academy of Sciences (India)
Abstract. Using recent results for the surface current density on cylindrical surfaces of arbitrary cross-section producing uniform interior magnetic field and an assumed set of flux-fronts, solutions of Bean's critical state model for cylindrical samples with non-elliptic cross-section are presented. Magnetization hysteresis loops ...
Cylindrical and spherical dust-acoustic wave modulations in dusty ...
Indian Academy of Sciences (India)
The nonlinear wave modulation of planar and non-planar (cylindrical and spherical) dust-acoustic waves (DAW) propagating in dusty plasmas, in the presence of non-extensive distributions for ions and electrons is investigated. By employing multiple scales technique, a cylindrically and spherically modified nonlinear ...
Development of the Cylindrical Wire Electrical Discharge Machining Process.
Energy Technology Data Exchange (ETDEWEB)
McSpadden, SB
2002-01-22
Results of applying the wire Electrical Discharge Machining (EDM) process to generate precise cylindrical forms on hard, difficult-to-machine materials are presented. A precise, flexible, and corrosion-resistant underwater rotary spindle was designed and added to a conventional two-axis wire EDM machine to enable the generation of free-form cylindrical geometries. A detailed spindle error analysis identifies the major source of error at different frequency. The mathematical model for the material removal of cylindrical wire EDM process is derived. Experiments were conducted to explore the maximum material removal rate for cylindrical and 2D wire EDM of carbide and brass work-materials. Compared to the 2D wire EDM, higher maximum material removal rates may be achieved in the cylindrical wire EDM. This study also investigates the surface integrity and roundness of parts created by the cylindrical wire EDM process. For carbide parts, an arithmetic average surface roughness and roundness as low as 0.68 and 1.7 {micro}m, respectively, can be achieved. Surfaces of the cylindrical EDM parts were examined using Scanning Electron Microscopy (SEM) to identify the craters, sub-surface recast layers and heat-affected zones under various process parameters. This study has demonstrated that the cylindrical wire EDM process parameters can be adjusted to achieve either high material removal rate or good surface integrity.
Cylindrical and spherical dust-acoustic wave modulations in dusty ...
Indian Academy of Sciences (India)
Abstract. The nonlinear wave modulation of planar and non-planar (cylindrical and spherical) dust-acoustic waves (DAW) propagating in dusty plasmas, in the presence of non-extensive distribu- tions for ions and electrons is investigated. By employing multiple scales technique, a cylindrically and spherically modified ...
Phase transition properties of a cylindrical ferroelectric nanowire
Indian Academy of Sciences (India)
Wang Ying and Yang Xiong cylindrical ferroelectric nanowire, one problem with the ... [25–28]. Wang et al used the effective-field theory with correlations for studying the dynamic properties of phase diagrams in a cylindrical ..... [10] D R Tilly and B Zekš, Solid State Commun. 49, 823 (1984). [11] D Schwenk, F Fishman and F ...
Analysis of radial vibrations of poroelastic circular cylindrical shells ...
African Journals Online (AJOL)
DR OKE
vanished, the considered problem reduces to the problem of radial vibrations of fluid-filled poroelastic circular cylindrical shell. (2). When the .... the volume change of the solid to that of liquid. ..... When the outer fluid density is zero, that is, ρof = 0 then the poroelastic cylindrical shell immersed in an acoustic medium will.
Ingestion of six cylindrical and four button batteries
DEFF Research Database (Denmark)
Nielsen, Simon U; Rasmussen, Morten; Hoegberg, Lotte C G
2010-01-01
We report a suicidal ingestion of six cylindrical and four button batteries, in combination with overdosed prescription medicine and smoking of cannabis.......We report a suicidal ingestion of six cylindrical and four button batteries, in combination with overdosed prescription medicine and smoking of cannabis....
Converging cylindrical shocks in ideal magnetohydrodynamics
International Nuclear Information System (INIS)
Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, R.
2014-01-01
We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R=√(μ 0 /p 0 ) I/(2 π) where I is the current, μ 0 is the permeability, and p 0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field
Converging cylindrical shocks in ideal magnetohydrodynamics
Pullin, D. I.
2014-09-01
We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R = √μ0/p0 I/(2π) where I is the current, μ0 is the permeability, and p0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field then
Parametric Investigation of Miniaturized Cylindrical and Annular Hall Thrusters
International Nuclear Information System (INIS)
Smirnov, A.; Raitses, Y.; Fisch, N.J.
2002-01-01
Conventional annular Hall thrusters become inefficient when scaled to low power. An alternative approach, a 2.6-cm miniaturized cylindrical Hall thruster with a cusp-type magnetic field distribution, was developed and studied. Its performance was compared to that of a conventional annular thruster of the same dimensions. The cylindrical thruster exhibits discharge characteristics similar to those of the annular thruster, but it has a much higher propellant ionization efficiency. Significantly, a large fraction of multi-charged xenon ions might be present in the outgoing ion flux generated by the cylindrical thruster. The operation of the cylindrical thruster is quieter than that of the annular thruster. The characteristic peak in the discharge current fluctuation spectrum at 50-60 kHz appears to be due to ionization instabilities. In the power range 50-300 W, the cylindrical and annular thrusters have comparable efficiencies (15-32%) and thrusts (2.5-12 mN). For the annular configuration, a voltage less than 200 V was not sufficient to sustain the discharge at low propellant flow rates. The cylindrical thruster can operate at voltages lower than 200 V, which suggests that a cylindrical thruster can be designed to operate at even smaller power
Arbitrarily elliptical-cylindrical invisible cloaking
International Nuclear Information System (INIS)
Jiang Weixiang; Cui Tiejun; Yu Guanxia; Lin Xianqi; Cheng Qiang; Chin, J Y
2008-01-01
Based on the idea of coordinate transformation (Pendry, Schurig and Smith 2006 Science 312 1780), arbitrarily elliptical-cylindrical cloaks are proposed and designed. The elliptical cloak, which is composed of inhomogeneous anisotropic metamaterials in an elliptical-shell region, will deflect incoming electromagnetic (EM) waves and guide them to propagate around the inner elliptical region. Such EM waves will return to their original propagation directions without distorting the waves outside the elliptical cloak. General formulations of the inhomogeneous and anisotropic permittivity and permeability tensors are derived for arbitrarily elliptical axis ratio k, which can also be used for the circular cloak when k = 1. Hence the elliptical cloaks can make a large range of objects invisible, from round objects (when k approaches 1) to long and thin objects (when k is either very large or very small). We also show that the material parameters in elliptical cloaking are singular at only two points, instead of on the whole inner circle for circular cloaking, which are much easier to be realized in actual applications. Full-wave simulations are given to validate the arbitrarily elliptical cloaking
Cylindrical isentropic compression by ultrahigh magnetic field
Gu, Zhuowei; Luo, Hao; Zhang, Hengdi; Zhao, Shichao; Tang, Xiaosong; Tong, Yanjin; Song, Zhenfei; Tan, Fuli; Zhao, Jianheng; Sun, Chengwei
2014-05-01
The cylindrical isentropic compression by ultrahigh magnetic field (MC-1) is a kind of unique high energy density technique. It has characters like ultrahigh pressure and low temperature rising, and would have widely used in areas like high pressure physics, new material synthesis and ultrahigh magnetic field physics. The Institute of Fluid Physics, Chinese Academy of Engineering Physics (IFP, CAEP) has begun the experiment since 2011 and a primary experimental device had been set-up. In the experiments, a seed magnetic field of 5 Tesla were set-up first and compressed by a stainless steel liner which is driven by high explosive initiated synchronously. The internal diameter of the liner is 97 mm, and its thickness is 1.5 mm. The movement of liner was recorded optically and a typical turnaround phenomenon was observed. From the photography results the liner was compressed smoothly and evenly and its average velocity was about 5-6 km/s. In the experiment a axial magnetic field of over 1400 Tesla has been recorded. The MC-1 process was numerical simulated by 1D MHD code MC11D and the simulations are in accord with the experiments.
Technology Selections for Cylindrical Compact Fabrication
Energy Technology Data Exchange (ETDEWEB)
Jeffrey A. Phillips
2010-10-01
A variety of process approaches are available and have been used historically for manufacture of cylindrical fuel compacts. The jet milling, fluid bed overcoating, and hot press compacting approach being adopted in the U.S. AGR Fuel Development Program for scale-up of the compacting process involves significant paradigm shifts from historical approaches. New methods are being pursued because of distinct advantages in simplicity, yield, and elimination of process mixed waste. Recent advances in jet milling technology allow simplified dry matrix powder preparation. The matrix preparation method is well matched with patented fluid bed powder overcoating technology recently developed for the pharmaceutical industry and directly usable for high density fuel particle matrix overcoating. High density overcoating places fuel particles as close as possible to their final position in the compact and is matched with hot press compacting which fully fluidizes matrix resin to achieve die fill at low compacting pressures and without matrix end caps. Overall the revised methodology provides a simpler process that should provide very high yields, improve homogeneity, further reduce defect fractions, eliminate intermediate grading and QC steps, and allow further increases in fuel packing fractions.
Electron emitter pulsed-type cylindrical IEC
International Nuclear Information System (INIS)
Miley, G.H.; Gu, Y.; Stubbers, R.; Zich, R.; Anderl, R.; Hartwell, J.
1997-01-01
A cylindrical version of the single grid Inertial Electrostatic Confinement (IEC) device (termed the C-device) has been developed for use as a 2.5-MeV D-D fusion neutron source for neutron activation analysis. The C-device employs a hollow-tube type cathode with similar anodes backed up by ''reflector'' dishes. The resulting discharge differs from a conventional hollow cathode discharge, by creating an explicit ion beam which is ''pinched'' in the cathode region. Resulting fusion reactions generate ∼10 6 neutron/s. A pulsed version is under development for applications requiring higher fluxes. Several pulsing techniques are under study, including an electron emitter (e-emitter) assisted discharge in a thorated tungsten wire emitter located behind a slotted area in the reflector dishes. Pulsing is initiated after establishing a low power steady-state discharge by pulsing the e-emitter current using a capacitor switch type circuit. The resulting electron jet, coupled with the discharge by the biased slot array, creates a strong pulse in the pinched ion beam. The pulse length/repetition rate are controlled by the e-emitter pulse circuit. Typical parameters in present studies are ∼30micros, 10Hz and 1-amp ion current. Corresponding neutron measurements are an In-foil type activation counter for time averaged rates. Results for a wide variety of operating conditions are presented
Cylindrical Hall Thrusters with Permanent Magnets
International Nuclear Information System (INIS)
Raitses, Yevgeny; Merino, Enrique; Fisch, Nathaniel J.
2010-01-01
The use of permanent magnets instead of electromagnet coils for low power Hall thrusters can offer a significant reduction of both the total electric power consumption and the thruster mass. Two permanent magnet versions of the miniaturized cylindrical Hall thruster (CHT) of different overall dimensions were operated in the power range of 50W-300 W. The discharge and plasma plume measurements revealed that the CHT thrusters with permanent magnets and electromagnet coils operate rather differently. In particular, the angular ion current density distribution from the permanent magnet thrusters has an unusual halo shape, with a majority of high energy ions flowing at large angles with respect to the thruster centerline. Differences in the magnetic field topology outside the thruster channel and in the vicinity of the channel exit are likely responsible for the differences in the plume characteristics measured for the CHTs with electromagnets and permanent magnets. It is shown that the presence of the reversing-direction or cusp-type magnetic field configuration inside the thruster channel without a strong axial magnetic field outside the thruster channel does not lead to the halo plasma plume from the CHT.
On Hydrodynamic Instabilities in Cylindrical Geometry
Proano, Erik; Rollin, Bertrand
2017-11-01
Recent research has suggested that hydrodynamic instabilities induced mixing is one of the last major hurdles toward achieving optimum conditions for ignition in confined fusion approaches for energy production. We leave aside the complexities of multiple interacting physics that lead to a fusion target ignition to be able to focus on understanding the development of these hydrodynamic instabilities, namely Richtmyer-Meshkov and Rayleigh-Taylor, in the context of a converging geometry. The problem is reformulated into the cleaner case of a cylindrical shock wave imploding onto a pocket of Sulfur Hexafluoride immersed in air. This numerical experiment aims at characterizing qualitatively and quantitatively the relation between the instabilities initial conditions and their development until late time. Starting from carefully designed single- and multimode disturbances at the initial density interface, our simulations track the evolution of the mixing layer through successive occurrences of the Richtmyer-Meshkov and Rayleigh-Taylor instabilities. Evolution of the mixing zone width and growth rate are presented for selected initial conditions, along with a quantification of mixing. Also, the effect of the converging shock strength is discussed.
Electromagnetic Cylindrical Transparent Devices with Irregular Cross Section
Directory of Open Access Journals (Sweden)
C. Yang
2010-04-01
Full Text Available Electromagnetic transparent device is very important for antenna protection. In this paper, the material parameters for the cylindrical transparent devices with arbitrary cross section are developed based on the coordinate transformation. The equivalent two-dimensional (2D transparent devices under TE plane and cylindrical wave irradiation is designed and studied by full-wave simulation, respectively. It shows that although the incident waves are distorted in the transformation region apparently, they return to the original wavefronts when passing through the device. All theoretical and numerical results validate the material parameters for the cylindrical transparent devices with arbitrary cross section we developed.
Vibrational analysis of submerged cylindrical shells based on elastic foundations
International Nuclear Information System (INIS)
Shah, A.G.; Naeem, M.N.
2014-01-01
In this study a vibration analysis was performed of an isotropic cylindrical shell submerged in fluid, resting on Winkler and Pasternak elastic foundations for simply supported boundary condition. Love's thin shell theory was exploited for strain- and curvature- displacement relationship. Shell problem was solved by using wave propagation approach. Influence of fluid and Winkler as well as Pasternak elastic foundations were studied on the natural frequencies of submerged isotropic cylindrical shells. Results were validated by comparing with the existing results in literature. Vibration, Submerged cylindrical shell, Love's thin shell theory, Wave propagation method, Winkler and Pasternak foundations. (author)
Dynamic Softening or Stiffening a Supramolecular Hydrogel by Ultraviolet or Near-Infrared Light.
Zheng, Zhao; Hu, Jingjing; Wang, Hui; Huang, Junlin; Yu, Yihua; Zhang, Qiang; Cheng, Yiyun
2017-07-26
The development of light-responsive hydrogels that exhibit switchable size and mechanical properties with temporal and spatial resolution is of great importance in many fields. However, it remains challenging to prepare smart hydrogels that dramatically change their properties in response to both ultraviolet (UV) and near-infrared (NIR) lights. Here, we designed a dual-light responsive supramolecular gel by integrating UV light-switchable host-guest recognition, temperature responsiveness, and NIR photothermal ability in the gel. The gel could rapidly self-heal and is capable of both softening and stiffening controlled by UV and NIR lights, respectively. Besides stiffness modulation, the bending direction of the gel can be controlled by UV or NIR light irradiation. The smart gel makes it possible to generate dynamic materials that respond to both UV and NIR lights and represents a useful tool that might be used to modulate cellular microenvironments with spatiotemporal resolution.
Self-healing of sandwich structures with a grid stiffened shape memory polymer syntactic foam core
John, Manu; Li, Guoqiang
2010-07-01
In this paper, a new sandwich with an orthogrid stiffened shape memory polymer (SMP) based syntactic foam core was proposed, fabricated, programmed, impacted, healed (sealed), and compression tested, for the purposes of healing impact damage repeatedly and almost autonomously. Two prestrain levels (3% and 20%), two impact energy levels (30.0 and 53.3 J), and two recovery (healing) conditions (2D confined and 3D confined) were employed in this paper. Up to seven impact-healing cycles were conducted. Macroscopic and microscopic damage-healing observation and analysis were implemented. Residual strength was evaluated using an anti-buckling compression test fixture. It was found that the healing efficiency was over 100% for almost all the impact-healing cycles; programming using 20% prestrain led to higher residual strength than that with 3% prestrain; 3D confined recovery resulted in higher residual strength than 2D confined recovery; and as the impact energy increased, the healing efficiency slightly decreased.
Lin, Shih-Yung; Hoffman, Eric K.; Domack, Marcia S.
2007-01-01
2-D thermo-mechanical model developed to characterize distortion and residual stresses in integral structure produced by DMD. Demonstrated as a tool to guide experimental development of DMD fabrication process for aero structures. Distortion and residual stresses are local to deposit. Most distortion develops during deposition of the first few layers; Little change in distortion or residual stresses after fifth deposit layer Most of distortion is localized just beneath the build. Thicker build plates and the use of build lands results in greatest decrease in levels of distortion. Pre-straining shown to reduce distortion. Difficult to implement, particularly for complex stiffener arrays. Clamp position has complex effect on distortion and stresses. Overall distortion reduced with decreasing clamp clearance. Larger clamp clearances induce bending. Use of pre-heat and active cooling show minor influence on panel distortion. Generate changes in thermal gradients in the build plate.
Sound absorption of a rib-stiffened plate covered by anechoic coatings.
Fu, Xinyi; Jin, Zhongkun; Yin, Yao; Liu, Bilong
2015-03-01
Underwater vehicles are often equipped with anechoic coatings to absorb the sound waves of active sonar and attenuate the noise emitted from the vessels. Rubber layers with periodically distributed air cavities are widely used as anechoic coatings. In this paper, the sound absorption of anechoic coatings embedded with doubly periodic cavities and backed with periodically rib-stiffened plates is investigated using a finite element method (FEM) with Bloch-periodic boundary conditions. Numerical results given by the FEM are compared with those of a simplified transfer impedance approach to explain the shifting of the main absorption peak. Further a simplified FEM approach, which reduces calculation time significantly and maintains the reasonable accuracy, is proposed for a comparison. The results indicate that the plate and the ribs can have significant impacts on the absorption performance of anechoic coatings, especially at low frequencies.
Hildreth, Kerry L; Kohrt, Wendy M; Moreau, Kerrie L
2014-06-01
It is unclear how changes in ovarian hormones during the menopausal transition contribute to age-associated arterial stiffening. We sought to evaluate differences in arterial stiffness and the role of oxidative stress across the stages of the menopausal transition in healthy women. Arterial stiffness (carotid artery compliance and ultrasound) was measured during immediate infusions of saline (control) and ascorbic acid (experimental model to immediately decrease oxidative stress) in 97 healthy women (22-70 y) classified as premenopausal (n = 24; mean [SD] age, 33 [7] y), early perimenopausal (n = 21; 49 [3] y) or late perimenopausal (n = 21; 50 [4] y), or postmenopausal (n = 31; 57 [5] y). Basal carotid artery compliance was different among the groups (P menopausal transition in healthy women. This seems to be mediated, in part, by oxidative stress, particularly during the late perimenopausal and postmenopausal periods. It remains uncertain whether this is specifically caused by loss of ovarian function or aging.
Influence of MSD crack pattern on the residual strength of flat stiffened sheets
Nilsson, K.-F.
A parameter study of the residual strength for a multiple site damaged (MSD) stiffened sheet is presented. The analysis is based on an elastic-plastic fracture analysis using the yield-strip model for interaction between a lead crack and the smaller MSD cracks. Two crack growth criteria, one with a pronounced crack growth resistance and one with no crack growth resistance and five different MSD crack patterns, are analysed for different sizes of the lead crack and the smaller MSD cracks. The analysis indicates that the residual strength reduction depends on all these parameters and that MSD may totally erode the crack arrest capability of a tear strap. Another important outcome is that for certain combinations also very small MSD cracks may induce a significant residual strength reduction.
Chameleon-like elastomers with molecularly encoded strain-adaptive stiffening and coloration
Vatankhah-Varnosfaderani, Mohammad; Keith, Andrew N.; Cong, Yidan; Liang, Heyi; Rosenthal, Martin; Sztucki, Michael; Clair, Charles; Magonov, Sergei; Ivanov, Dimitri A.; Dobrynin, Andrey V.; Sheiko, Sergei S.
2018-03-01
Active camouflage is widely recognized as a soft-tissue feature, and yet the ability to integrate adaptive coloration and tissuelike mechanical properties into synthetic materials remains elusive. We provide a solution to this problem by uniting these functions in moldable elastomers through the self-assembly of linear-bottlebrush-linear triblock copolymers. Microphase separation of the architecturally distinct blocks results in physically cross-linked networks that display vibrant color, extreme softness, and intense strain stiffening on par with that of skin tissue. Each of these functional properties is regulated by the structure of one macromolecule, without the need for chemical cross-linking or additives. These materials remain stable under conditions characteristic of internal bodily environments and under ambient conditions, neither swelling in bodily fluids nor drying when exposed to air.
Jeevan Kumar, N.; Ramesh Babu, P.
2018-02-01
In recent years carbon fibre-reinforced polymers (CFRP) emerged its increasing demand in aerospace engineering. Due to their high specific strength to weight ratio, these composites offer more characteristics and considerable advantages compared to metals. Metals, unlike composites, offer plasticity effects to evade high stress concentrations during postbuckling. Under compressive load, composite structures show a wide range of damage mechanisms where a set of damage modes combined together might lead to the eventual structural collapse. Crack is one of the most critical damages in fiber composites, which are being employed in primary aircraft structures. A parametric study is conducted to investigate the arrest mechanism of the delamination or crack growth with installation of multiple fasteners when the delamination is embedded in between the skin and stiffener interface.
Numerical Investigation on Cold-Formed Steel Lipped Channel Columns with Intermediate Web Stiffeners
Manikandan, P.; Arun, N.
2016-03-01
This work describes finite element simulation into the ultimate strength and buckling behaviour of cold-formed steel lipped channel columns with intermediate web stiffeners subjected to axial compression. Numerical simulation is performed by using finite element analysis software ANSYS. A reliable finite element model is used for the parametric study of effects of cross section geometries on the ultimate strength and buckling behaviour of cold-formed steel columns are investigated. All the section geometries in this study also satisfied the limitations given for pre-qualified sections in direct strength method. The cross sectional dimensions, section properties and length of the specimen are obtained by using CUFSM software. The ultimate strength predicted by the finite element analysis are compared with the strength calculated using the current direct strength method specifications for cold-formed steel structures, suitable design recommendations are proposed.
Nonlinear Dynamic Behavior of Impact Damage in a Composite Skin-Stiffener Structure
Ooijevaar, T. H.; Rogge, M. D.; Loendersloot, R.; Warnet, L.; Akkerman, R.; deBoer, A.
2013-01-01
One of the key issues in composite structures for aircraft applications is the early identification of damage. Often, service induced damage does not involve visible plastic deformation, but internal matrix related damage, like delaminations. A wide range of technologies, comprising global vibration and local wave propagation methods can be employed for health monitoring purposes. Traditional low frequency modal analysis based methods are linear methods. The effectiveness of these methods is often limited since they rely on a stationary and linear approximation of the system. The nonlinear interaction between a low frequency wave field and a local impact induced skin-stiffener failure is experimentally demonstrated in this paper. The different mechanisms that are responsible for the nonlinearities (opening, closing and contact) of the distorted harmonic waveforms are separated with the help of phase portraits. A basic analytical model is employed to support the observations.
Methylprednisolone stiffens aortas in lipopolysaccharide-induced chronic inflammation in rats.
Directory of Open Access Journals (Sweden)
Ya-Hui Ko
Full Text Available INTRODUCTION: Glucocorticoids are commonly used as therapeutic agents in many acute and chronic inflammatory and auto-immune diseases. The current study investigated the effects of methylprednisolone (a synthetic glucocorticoid on aortic distensibility and vascular resistance in lipopolysaccharide-induced chronic inflammation in male Wistar rats. METHODS: Chronic inflammation was induced by implanting a subcutaneous slow-release ALZET osmotic pump (1 mg kg(-1 day(-1 lipopolysaccharide for either 2 or 4 weeks. Arterial wave transit time (τ was derived to describe the elastic properties of aortas using the impulse response function of the filtered aortic input impedance spectra. RESULTS: Long-term lipopolysaccharide challenge enhanced the expression of advanced glycation end products (AGEs in the aortas. Lipopolysaccharide also upregulated the inducible form of nitric oxide synthase to produce high levels of nitric oxide (NO, which resulted in vasodilation, as evidenced by the fall in total peripheral resistance (Rp . However, lipopolysaccharide challenge did not influence the elastic properties of aortas, as shown by the unaltered τ. The NO-mediated vascular relaxation may counterbalance the AGEs-induced arterial stiffening so that the aortic distensibility remained unaltered. Treating lipopolysaccharide-challenged rats with methylprednisolone prevented peripheral vasodilation because of its ability to increase Rp . However, methylprednisolone produced an increase in aorta stiffness, as manifested by the significant decline in τ. The diminished aortic distensibility by methylprednisolone paralleled a significant reduction in NO plasma levels, in the absence of any significant changes in AGEs content. CONCLUSION: Methylprednisolone stiffens aortas and elastic arteries in lipopolysaccharide-induced chronic inflammation in rats, for NO activity may be dominant as a counteraction of AGEs.
Titin-based stiffening of muscle fibers in Ehlers-Danlos Syndrome
Energy Technology Data Exchange (ETDEWEB)
Ottenheijm, Coen A.C.; Voermans, Nicol C.; Hudson, Bryan D.; Irving, Thomas; Stienen, Ger J.M.; van Engelen, Baziel G.; Granzier, Henk (IIT); (Radboud); (Ariz); (Vrije)
2012-05-09
Tenascin-X (TNX) is an extracellular matrix glycoprotein whose absence leads to Ehlers-Danlos Syndrome (EDS). TNX-deficient EDS patients present with joint hypermobility and muscle weakness attributable to increased compliance of the extracellular matrix. We hypothesized that in response to the increased compliance of the extracellular matrix in TNX-deficient EDS patients, intracellular adaptations take place in the elastic properties of the giant muscle protein titin. We performed extensive single muscle fiber mechanical studies to determine active and passive properties in TNX-deficient EDS patients. Gel-electrophoresis, Western blotting, and microarray studies were used to evaluate titin expression and phosphorylation. X-ray diffraction was used to measure myofilament lattice spacing. Passive tension of muscle fibers from TNX-deficient EDS patients was markedly increased. Myofilament extraction experiments indicated that the increased passive tension is attributable to changes in the properties of the sarcomeric protein titin. Transcript and protein data indicated no changes in titin isoform expression. Instead, differences in posttranslational modifications within titin's elastic region were found. In patients, active tension was not different at maximal activation level, but at submaximal activation level it was augmented attributable to increased calcium sensitivity. This increased calcium sensitivity might be attributable to stiffer titin molecules. In response to the increased compliance of the extracellular matrix in muscle of TNX-deficient EDS patients, a marked intracellular stiffening occurs of the giant protein titin. The stiffening of titin partly compensates for the muscle weakness in these patients by augmenting submaximal active tension generation.
Lala, Radu Ioan; Darabantiu, Dan; Pilat, Luminita; Puschita, Maria
2016-02-01
Heart failure is accompanied by abnormalities in ventricular-vascular interaction due to increased myocardial and arterial stiffness. Galectin-3 is a recently discovered biomarker that plays an important role in myocardial and vascular fibrosis and heart failure progression. The aim of this study was to determine whether galectin-3 is correlated with arterial stiffening markers and impaired ventricular-arterial coupling in decompensated heart failure patients. A total of 79 inpatients with acute decompensated heart failure were evaluated. Serum galectin-3 was determined at baseline, and during admission, transthoracic echocardiography and measurements of vascular indices by Doppler ultrasonography were performed. Elevated pulse wave velocity and low arterial carotid distensibility are associated with heart failure in patients with preserved ejection fraction (p = 0.04, p = 0.009). Pulse wave velocity, carotid distensibility and Young's modulus did not correlate with serum galectin-3 levels. Conversely, raised galectin-3 levels correlated with an increased ventricular-arterial coupling ratio (Ea/Elv) p = 0.047, OR = 1.9, 95% CI (1.0‑3.6). Increased galectin-3 levels were associated with lower rates of left ventricular pressure rise in early systole (dp/dt) (p=0.018) and raised pulmonary artery pressure (p = 0.046). High galectin-3 levels (p = 0.038, HR = 3.07) and arterial pulmonary pressure (p = 0.007, HR = 1.06) were found to be independent risk factors for all-cause mortality and readmissions. This study showed no significant correlation between serum galectin-3 levels and arterial stiffening markers. Instead, high galectin-3 levels predicted impaired ventricular-arterial coupling. Galectin-3 may be predictive of raised pulmonary artery pressures. Elevated galectin-3 levels correlate with severe systolic dysfunction and together with pulmonary hypertension are independent markers of outcome.
External Cylindrical Nozzle with Controlled Vacuum
Directory of Open Access Journals (Sweden)
V. N. Pil'gunov
2015-01-01
Full Text Available There is a developed design of the external cylindrical nozzle with a vacuum camera. The paper studies the nozzle controllability of flow rate via regulated connection of the evacuated chamber to the atmosphere through an air throttle. Working capacity of the nozzle with inlet round or triangular orifice are researched. The gap is provided in the nozzle design between the external wall of the inlet orifice and the end face of the straight case in the nozzle case. The presented mathematical model of the nozzle with the evacuated chamber allows us to estimate the expected vacuum amount in the compressed section of a stream and maximum permissible absolute pressure at the inlet orifice. The paper gives experimental characteristics of the fluid flow process through the nozzle for different values of internal diameter of a straight case and an extent of its end face remoteness from an external wall of the inlet orifice. It estimates how geometry of nozzle constructive elements influences on the volume flow rate. It is established that the nozzle capacity significantly depends on the shape of inlet orifice. Triangular orifice nozzles steadily work in the mode of completely filled flow area of the straight case at much more amounts of the limit pressure of the flow. Vacuum depth in the evacuated chamber also depends on the shape of inlet orifice: the greatest vacuum is reached in a nozzle with the triangular orifice which 1.5 times exceeds the greatest vacuum with the round orifice. Possibility to control nozzle capacity through the regulated connection of the evacuated chamber to the atmosphere was experimentally estimated, thus depth of flow rate regulation of the nozzle with a triangular orifice was 45% in comparison with 10% regulation depth of the nozzle with a round orifice. Depth of regulation calculated by a mathematical model appeared to be much more. The paper presents experimental dependences of the flow coefficients of nozzle input orifice
Stationary Cylindrically Symmetric Solution Approaching Einstein's Cosmological Solution
Iftime, M. D.
2001-01-01
Here we describe a stationary cylindrically symmetric solution of Einstein's equation with matter consisting of a positive cosmological and rotating dust term. The solution approaches Einstein static universe solution.
Friction Compensation in the Upsetting of Cylindrical Test Specimens
DEFF Research Database (Denmark)
Christiansen, Peter; Martins, P. A. F.; Bay, Niels Oluf
2016-01-01
This manuscript presents a combined numerical andexperimental methodology for determining the stress-straincurve of metallic materials from the measurements of forceand displacement obtained in the axial compression of cylindrical test specimens with friction between the specimens and the platens...... model or combined friction models are utilized .Experimental results obtained from cylindrical and Rastegaev test specimens with different lubricants combined with the experimental determination of friction by means of ring compression tests allows compensating the effect of friction...
On cylindrically converging shock waves shaped by obstacles
Energy Technology Data Exchange (ETDEWEB)
Eliasson, V; Henshaw, W D; Appelo, D
2007-07-16
Motivated by recent experiments, numerical simulations were performed of cylindrically converging shock waves. The converging shocks impinged upon a set of zero to sixteen regularly space obstacles. For more than two obstacles the resulting diffracted shock fronts formed polygonal shaped patterns near the point of focus. The maximum pressure and temperature as a function of number of obstacles were studied. The self-similar behavior of cylindrical, triangular and square-shaped shocks were also investigated.
The magnetic properties of the hollow cylindrical ideal remanence magnet
Bjørk, R.
2016-01-01
We consider the magnetic properties of the hollow cylindrical ideal remanence magnet. This magnet is the cylindrical permanent magnet that generates a uniform field in the cylinder bore, using the least amount of magnetic energy to do so. The remanence distribution of this magnet is derived and the generated field is compared to that of a Halbach cylinder of equal dimensions. The ideal remanence magnet is shown in most cases to generate a significantly lower field than the equivalent Halbach ...
Micropatterning on cylindrical surfaces via electrochemical etching using laser masking
International Nuclear Information System (INIS)
Cho, Chull Hee; Shin, Hong Shik; Chu, Chong Nam
2014-01-01
Highlights: • Various micropatterns were fabricated on the cylindrical surface of a stainless steel shaft. • Selective electrochemical dissolution was achieved via a series process of laser masking and electrochemical etching. • Laser masking characteristics on the non-planar surface were investigated. • A uniform mask layer was formed on the cylindrical surface via synchronized laser line scanning with a rotary system. • The characteristics of electrochemical etching on the non-planar surface were investigated. - Abstract: This paper proposes a method of selective electrochemical dissolution on the cylindrical surfaces of stainless steel shafts. Selective electrochemical dissolution was achieved via electrochemical etching using laser masking. A micropatterned recast layer was formed on the surface via ytterbium-doped pulsed fiber laser irradiation. The micropatterned recast layer could be used as a mask layer during the electrochemical etching process. Laser masking condition to form adequate mask layer on the planar surface for etching cannot be used directly on the non-planar surface. Laser masking condition changes depending on the morphological surface. The laser masking characteristics were investigated in order to form a uniform mask layer on the cylindrical surface. To minimize factors causing non-uniformity in the mask layer on the cylindrical surface, synchronized laser line scanning with a rotary system was applied during the laser masking process. Electrochemical etching characteristics were also investigated to achieve deeper etched depth, without collapsing the recast layer. Consequently, through a series process of laser masking and electrochemical etching, various micropatternings were successfully performed on the cylindrical surfaces
Theory and modeling of cylindrical thermo-acoustic transduction
Energy Technology Data Exchange (ETDEWEB)
Tong, Lihong, E-mail: lhtong@ecjtu.edu.cn [School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, Jiangxi (China); Lim, C.W. [Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR (China); Zhao, Xiushao; Geng, Daxing [School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, Jiangxi (China)
2016-06-03
Models both for solid and thinfilm-solid cylindrical thermo-acoustic transductions are proposed and the corresponding acoustic pressure solutions are obtained. The acoustic pressure for an individual carbon nanotube (CNT) as a function of input power is investigated analytically and it is verified by comparing with the published experimental data. Further numerical analysis on the acoustic pressure response and characteristics for varying input frequency and distance are also examined both for solid and thinfilm-solid cylindrical thermo-acoustic transductions. Through detailed theoretical and numerical studies on the acoustic pressure solution for thinfilm-solid cylindrical transduction, it is concluded that a solid with smaller thermal conductivity favors to improve the acoustic performance. In general, the proposed models are applicable to a variety of cylindrical thermo-acoustic devices performing in different gaseous media. - Highlights: • Theory and modeling both for solid and thinfilm-solid cylindrical thermo-acoustic transductions are proposed. • The modeling is verified by comparing with the published experimental data. • Acoustic response characteristics of cylindrical thermo-acoustic transductions are predicted by the proposed model.
Energy Technology Data Exchange (ETDEWEB)
Modak, Partha; Hossain, M. Jamil, E-mail: jamil917@gmail.com; Ahmed, S. Reaz [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000 (Bangladesh)
2016-07-12
An accurate stress analysis has been carried out to investigate the suitability of a hybrid balanced laminate as a structural material for thick composite beams with axial stiffeners. Three different balanced laminates composed of dissimilar ply material as well as fiber orientations are considered for a thick beam on simple supports with stiffened lateral ends. A displacement potential based elasticity approach is used to obtain the numerical solution of the corresponding elastic fields. The overall laminate stresses as well as individual ply stresses are analysed mainly in the perspective of laminate hybridization. Both the fiber material and ply angle of individual laminas are found to play dominant roles in defining the design stresses of the present composite beam.
Poe, C. C., Jr.
1973-01-01
A linear elastic stress analysis was made of a centrally cracked sheet stiffened by riveted, uniformly spaced and sized stringers. The stress intensity factor for the sheet and the load concentration factor for the most highly loaded stringer were determined for various numbers of broken stringers. A broken stringer causes the stress intensity factor to be very high when the crack tip is near the broken stringer, but causes little effect when the crack tip extends beyond several intact stringers. A broken stringer also causes an increase in the load concentration factor of the adjacent stringers. The calculated residual strengths and fatigue-crack-growth lives of a stiffened aluminum sheet with a broken stringer were only slightly less than a sheet with all intact stringers, and were still much higher than those of an unstiffened sheet.
Nettles, A. T.
2011-01-01
In this study, a direct comparison of the compression-after-impact (CAI) strength of impact-damaged, hat-stiffened and honeycomb sandwich structure for launch vehicle use was made. The specimens used consisted of small substructure designed to carry a line load of approx..3,000 lb/in. Damage was inflicted upon the specimens via drop weight impact. Infrared thermography was used to examine the extent of planar damage in the specimens. The specimens were prepared for compression testing to obtain residual compression strength versus damage severity curves. Results show that when weight of the structure is factored in, both types of structure had about the same CAI strength for a given damage level. The main difference was that the hat-stiffened specimens exhibited a multiphase failure whereas the honeycomb sandwich structure failed catastrophically.
Validation of the ULSAP Closed-Form Method for Ultimate Strength Analysis of Cross-Stiffened Panels
Dippold, Samuel Mark
2005-01-01
This thesis presents the results of 67 ABAQUS elasto-plastic Riks ultimate strength analyses of cross-stiffened panels. These panels cover a wide range of typical geometries. Uniaxial compression is applied to the panels, and in some cases combined with lateral pressure. For eight of the panels full-scale experimental results are available, and these verified the accuracy of the ABAQUS results. The 67 ABAQUS results were then compared to the ultimate strength predictions from the computer...
Stiffeners in variational-difference method for calculating shells with complex geometry
Directory of Open Access Journals (Sweden)
Ivanov Vyacheslav Nikolaevich
2014-05-01
Full Text Available We have already considered an introduction of reinforcements in the variational-difference method (VDM of shells analysis with complex shape. At the moment only ribbed shells of revolution and shallow shells can be calculated with the help of developed analytical and finite-difference methods. Ribbed shells of arbitrary shape can be calculated only using the finite element method (FEM. However there are problems, when using FEM, which are absent in finite- and variational-difference methods: rigid body motion; conforming trial functions; parameterization of a surface; independent stress strain state. In this regard stiffeners are entered in VDM. VDM is based on the Lagrange principle - the principle of minimum total potential energy. Stress-strain state of ribs is described by the Kirchhoff-Clebsch theory of curvilinear bars: tension, bending and torsion of ribs are taken into account. Stress-strain state of shells is described by the Kirchhoff-Love theory of thin elastic shells. A position of points of the middle surface is defined by curvilinear orthogonal coordinates α, β. Curved ribs are situated along coordinate lines. Strain energy of ribs is added into the strain energy to account for ribs. A matrix form of strain energy of ribs is formed similar to a matrix form of the strain energy of the shell. A matrix of geometrical characteristics of a rib is formed from components of matrices of geometric characteristics of a shell. A matrix of mechanical characteristics of a rib contains rib’s eccentricity and geometrical characteristics of a rib’s section. Derivatives of displacements in the strain vector are replaced with finite-difference relations after the middle surface of a shell gets covered with a grid (grid lines coincide with the coordinate lines of principal curvatures. By this case the total potential energy functional becomes a function of strain nodal displacements. Partial derivatives of unknown nodal displacements are
Jagdale, Vijay Narayan
Demand for deployable MAVs and UAVs with wings designed to reduce aircraft storage volume led to the development of a bendable wing concept at the University of Florida (UF). The wing shows an ability to load stiffen in the flight load direction, still remaining compliant in the opposite direction, enabling UAV storage inside smaller packing volumes. From the design prospective, when the wing shape parameters are treated as design variables, the performance requirements : high aerodynamic efficiency, structural stability under aggressive flight loads and desired compliant nature to prevent breaking while stored, in general conflict with each other. Creep deformation induced by long term storage and its effect on the wing flight characteristics are additional considerations. Experimental characterization of candidate bendable UAV wings is performed in order to demonstrate and understand aerodynamic and structural behavior of the bendable load stiffened wing under flight loads and while the wings are stored inside a canister for long duration, in the process identifying some important wing shape parameters. A multidisciplinary, multiobjective design optimization approach is utilized for conceptual design of a 24 inch span and 7 inch root chord bendable wing. Aerodynamic performance of the wing is studied using an extended vortex lattice method based Athena Vortex Lattice (AVL) program. An arc length method based nonlinear FEA routine in ABAQUS is used to evaluate the structural performance of the wing and to determine maximum flying velocity that the wing can withstand without buckling or failing under aggressive flight loads. An analytical approach is used to study the stresses developed in the composite wing during storage and Tsai-Wu criterion is used to check failure of the composite wing due to the rolling stresses to determine minimum safe storage diameter. Multidisciplinary wing shape and layup optimization is performed using an elitist non-dominated sorting
Young, Richard D.; Rouse, Marshall; Ambur, Damodar R.; Starnes, James H., Jr.
1999-01-01
The results of residual strength pressure tests and nonlinear analyses of stringer- and frame-stiffened aluminum fuselage panels with longitudinal cracks are presented. Two types of damage are considered: a longitudinal crack located midway between stringers, and a longitudinal crack adjacent to a stringer and along a row of fasteners in a lap joint that has multiple-site damage (MSD). In both cases, the longitudinal crack is centered on a severed frame. The panels are subjected to internal pressure plus axial tension loads. The axial tension loads are equivalent to a bulkhead pressure load. Nonlinear elastic-plastic residual strength analyses of the fuselage panels are conducted using a finite element program and the crack-tip-opening-angle (CTOA) fracture criterion. Predicted crack growth and residual strength results from nonlinear analyses of the stiffened fuselage panels are compared with experimental measurements and observations. Both the test and analysis results indicate that the presence of MSD affects crack growth stability and reduces the residual strength of stiffened fuselage shells with long cracks.
Novel spherical hohlraum with cylindrical laser entrance holes and shields
Lan, Ke; Zheng, Wudi
2014-09-01
Our recent works [K. Lan et al., Phys. Plasmas 21, 010704 (2014); K. Lan et al., Phys. Plasmas 21, 052704 (2014)] have shown that the octahedral spherical hohlraums are superior to the cylindrical hohlraums in both higher symmetry during the capsule implosion and lower backscatter without supplementary technology. However, both the coupling efficiency from the drive laser energy to the capsule and the capsule symmetry decrease remarkably when larger laser entrance holes (LEHs) are used. In addition, the laser beams injected at angles > 45° transport close to the hohlraum wall, thus the wall blowoff causes the LEH to close faster and results in strong laser plasma interactions inside the spherical hohlraums. In this letter, we propose a novel octahedral hohlraum with LEH shields and cylindrical LEHs to alleviate these problems. From our theoretical study, with the LEH shields, the laser coupling efficiency is significantly increased and the capsule symmetry is remarkably improved in the spherical hohlraums. The cylindrical LEHs take advantage of the cylindrical hohlraum near the LEH and mitigate the influence of the blowoff on laser transport inside a spherical hohlraum. The cylindrical LEHs can also be applied to the rugby and elliptical hohlraums.
The decrease of cylindrical pempek quality during boiling
Karneta, R.; Gultom, N. F.
2017-09-01
The research objective was to study the effects of temperature and formulation on quality of pempek lenjer during boiling. Treatments in this study were four levels of pempek formulation and five levels of temperature. Data was processed by using analysis of variance (Anova). If test results showed that samples were significantly different or highly significantly different, then further test was conducted by using Honestly Significant Different. The results showed that chemical analysis showed that fish dominant formula of cylindrical pempek had higher water content, protein content, lipid content and ash content than that of tapioca starch dominant formula, but it had lower carbohydrate content and fibre content than that of tapioca starch dominant formula.The higher the temperature at center point of cylindrical pempek, the lower the chemical quality of cylindrical pempek. The effect of formula on physical quality of cylindrical pempek showed that tapioca starch dominant formula had more rubbery texture, more neutral pH and brighter color than that of fish dominant formula.The temperature change had no significant effect on texture and pH of cylindrical pempek, but it had significant effect on lightness, intensity and chromatic color especially after exceeding optimum time of boiling.
Novel spherical hohlraum with cylindrical laser entrance holes and shields
International Nuclear Information System (INIS)
Lan, Ke; Zheng, Wudi
2014-01-01
Our recent works [K. Lan et al., Phys. Plasmas 21, 010704 (2014); K. Lan et al., Phys. Plasmas 21, 052704 (2014)] have shown that the octahedral spherical hohlraums are superior to the cylindrical hohlraums in both higher symmetry during the capsule implosion and lower backscatter without supplementary technology. However, both the coupling efficiency from the drive laser energy to the capsule and the capsule symmetry decrease remarkably when larger laser entrance holes (LEHs) are used. In addition, the laser beams injected at angles > 45° transport close to the hohlraum wall, thus the wall blowoff causes the LEH to close faster and results in strong laser plasma interactions inside the spherical hohlraums. In this letter, we propose a novel octahedral hohlraum with LEH shields and cylindrical LEHs to alleviate these problems. From our theoretical study, with the LEH shields, the laser coupling efficiency is significantly increased and the capsule symmetry is remarkably improved in the spherical hohlraums. The cylindrical LEHs take advantage of the cylindrical hohlraum near the LEH and mitigate the influence of the blowoff on laser transport inside a spherical hohlraum. The cylindrical LEHs can also be applied to the rugby and elliptical hohlraums
Novel spherical hohlraum with cylindrical laser entrance holes and shields
Energy Technology Data Exchange (ETDEWEB)
Lan, Ke [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Zheng, Wudi [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)
2014-09-15
Our recent works [K. Lan et al., Phys. Plasmas 21, 010704 (2014); K. Lan et al., Phys. Plasmas 21, 052704 (2014)] have shown that the octahedral spherical hohlraums are superior to the cylindrical hohlraums in both higher symmetry during the capsule implosion and lower backscatter without supplementary technology. However, both the coupling efficiency from the drive laser energy to the capsule and the capsule symmetry decrease remarkably when larger laser entrance holes (LEHs) are used. In addition, the laser beams injected at angles > 45° transport close to the hohlraum wall, thus the wall blowoff causes the LEH to close faster and results in strong laser plasma interactions inside the spherical hohlraums. In this letter, we propose a novel octahedral hohlraum with LEH shields and cylindrical LEHs to alleviate these problems. From our theoretical study, with the LEH shields, the laser coupling efficiency is significantly increased and the capsule symmetry is remarkably improved in the spherical hohlraums. The cylindrical LEHs take advantage of the cylindrical hohlraum near the LEH and mitigate the influence of the blowoff on laser transport inside a spherical hohlraum. The cylindrical LEHs can also be applied to the rugby and elliptical hohlraums.
Sensitivity optimization in whispering gallery mode optical cylindrical biosensors
Khozeymeh, F.; Razaghi, M.
2018-01-01
Whispering-gallery-mode resonances propagated in cylindrical resonators have two angular and radial orders of l and i. In this work, the higher radial order whispering-gallery-mode resonances, (i = 1 ‑ 4), at a fixed l are examined. The sensitivity of theses resonances is analysed as a function of the structural parameters of the cylindrical resonator like different radii and refractive index of composed material of the resonator. A practical application where cylindrical resonators are used for the measurement of glucose concentration in water is presented as a biosensor demonstrator. We calculate the wavelength shifts of the WG1-4, in several glucose/water solutions, with concentrations spanning from 0.0% to 9.0.% (weight/weight). Improved sensitivity can be achieved using multi-WGM cylindrical resonators with radius of R = 100 μm and resonator composed material of MgF 2 with refractive index of nc = 1.38. Also the effect of polarization on sensitivity is considered for all four WGMs. The best sensitivity of 83.07 nm/RIU for the fourth WGM with transverse magnetic polarization, is reported. These results propose optimized parameters aimed to fast designing of cylindrical resonators as optical biosensors, where both the sensitivity and the geometries can be optimized.
Directory of Open Access Journals (Sweden)
GholamReza Havaei
2015-09-01
Full Text Available Reinforced concrete reservoirs (RCR have been used extensively in municipal and industrial facilities for several decades. The design of these structures requires that attention be given not only to strength requirements, but to serviceability requirements as well. These types of structures will be square, round, and oval reinforced concrete structures which may be above, below, or partially below ground. The main challenge is to design concrete liquid containing structures which will resist the extremes of seasonal temperature changes, a variety of loading conditions, and remain liquid tight for useful life of 50 to 60 years. In this study, optimization is performed by particle swarm algorithm basd on structural design. Firstly by structural analysis all range of shell thickness and areas of rebar find. In the second step by parameter identification system interchange algorithm, source code which developed in particle swarm algorithm by MATLAB software linked to analysis software. Therefore best and optimized thicknesses and total area of bars for each element find. Lastly with circumferential stiffeners structure optimize and show 19% decrease in weight of rebar, 20% decrease in volume of concrete, and 13% minimum cost reduction in construction procedure compared with conventional 10,000 m3 RCR structures.
Energy expenditure associated with softening and stiffening of echinoderm connective tissue.
Motokawa, Tatsuo; Sato, Eriko; Umeyama, Kenichi
2012-04-01
Catch connective tissue of echinoderms at rest (in the standard state) either stiffens or softens in response to different kinds of stimulation. The energy consumption associated with the changes was estimated by measurement of the oxygen consumption rate (VO(2)) in three types of connective tissues-echinoid catch apparatus (CA), holothuroid body-wall dermis (HD), and asteroid body-wall dermis (AD). Mechanical stimulation by repetitive compression (10%-15% strain), which increased viscosity measured by creep tests, was employed for inducing the stiff state. Noradrenaline (10(-3) mol l(-1)), which decreased viscosity of CA, and static 80% compressive strain, which decreased viscosity of HD, were used to induce the soft state in the respective tissues. The VO(2) (in μl/g/h) values of the standard state were 2.91 (CA), 1.41 (HD), and 0.56 (AD), which were less than 1/4 of the VO(2) of the resting body-wall muscle of the starfish. The VO(2) of the stiff state was about 1.5 times greater than that of the standard state in all types of connective tissues. The VO(2) of the soft state was 3.4 (CA)-9.1 (HD) times greater than that of the standard state. The economical nature of catch connective tissue in posture maintenance is discussed.
Directory of Open Access Journals (Sweden)
N. M. L. Huq
2012-01-01
Full Text Available A mathematical model is developed for the analytical solution to elastic filed in a deep stiffened cantilever beam of laminated composite under mixed boundary conditions. The two displacement parameters associated with the two-dimensional elasticity problems are defined in terms of a single displacement potential function such that one of the equilibrium equations is satisfied automatically. This reduces the problem to the solution of a single fourth-order partial differential equation, which is solved in terms of Fourier series. To present some numerical results, cantilever beams of glass/epoxy cross-ply and angle-ply laminated composites are considered and different components of stress and displacement at different sections of the beam are presented. The effects of laminate stacking sequence and ply-angle of the cross-ply and angle-ply composite beams, respectively, on the elastic field are analyzed. The numerical results justify that the present mathematical model is simple whereas capable to generate exact results of elastic field in a cantilever beam even at the critical regions of supports and loadings.
Rotation Capacity of Bolted Flush End-Plate Stiffened Beam-to-Column Connection
Ostrowski, Krzysztof; Kozłowski, Aleksander
2017-06-01
One of the flexibility parameters of semi-rigid joints is rotation capacity. Plastic rotation capacity is especially important in plastic design of framed structures. Current design codes, including Eurocode 3, do not posses procedures enabling designers to obtain value of rotation capacity. In the paper the calculation procedure of the rotation capacity for stiffened bolted flush end-plate beam-to-column connections has been proposed. Theory of experiment design was applied with the use of Hartley's PS/DS-P:Ha3 plan. The analysis was performed with the use of finite element method (ANSYS), based on the numerical experiment plan. The determination of maximal rotation angle was carried out with the use of regression analysis. The main variables analyzed in parametric study were: pitch of the bolt "w" (120-180 mm), the distance between the bolt axis and the beam upper edge cg1 (50-90 mm) and the thickness of the end-plate tp (10-20 mm). Power function was proposed to describe available rotation capacity of the joint. Influence of the particular components on the rotation capacity was also investigated. In the paper a general procedure for determination of rotation capacity was proposed.
Enzyme Induced Stiffening of Nanoparticle-Hydrogel Composites with Structural Color.
Ayyub, Omar B; Kofinas, Peter
2015-08-25
The passive monitoring of biological environments by soft materials has a variety of nanobiotechnology applications; however, invoking distinct transitions in geometric, mechanical or optical properties remains a prevalent design challenge. We demonstrate here that close-packed nanoparticle-hydrogel composites can progress through a substantial shift in such properties by the use of a chemical-to-physical cross-link transition mediated by the catalytic activity of different proteases. Catalytic cleavage of the original hydrogel network structure initiates the self-assembled formation of a secondary, physically cross-linked network, causing a 1200% increase in storage modulus. Furthermore, this unique mechanism can be fabricated as a 3D photonic crystal with broad (∼240 nm), visible responses to the targeted enzymes. Moreover, the material provided threshold responses, requiring a certain extent of proteolytic activity before the transition occurred. This allowed for the fabrication of Boolean logic gates (OR and AND), which responded to a specific assortment of proteases. Ultimately, this mechanism enables the design of stimuli-responsive hydrogels, which can proceed through a secondary network formation, after an energetic barrier has been breached. Protease responsive hydrogel nanocomposites, described here, could offer avenues in degradation-stiffening and collapsing materials for a variety of biomaterial applications.
International Nuclear Information System (INIS)
Sobey, A.J.; Blake, J.I.R.; Shenoi, R.A.
2013-01-01
Composite materials are often utilised for their high strength to weight ratio, excellent corrosion resistance, etc. but are also characterised by variabilities and uncertainties in their mechanical properties owing to the material make-up, process and fabrication techniques. It is essential that modelling techniques continue to be developed to take account of these variabilities and uncertainties and as more complicated structures are developed it is important to have rapid assessment methods to determine the reliability of these structures. Grillage analysis methods have been previously used for assessment of tophat stiffened composite structures using simple failure criteria. As new criteria are introduced, such as by the World Wide Failure Exercise, the response of more complex topologies must be introduced. This paper therefore assesses the reliability of composite grillages using Navier grillage method incorporating up to date failure criteria. An example, taken from boatbuilding, is used to show the results of using these more complex assessment methods showing that it is of high importance to use the correct assessment criteria.
Directory of Open Access Journals (Sweden)
Nils Hersch
2013-01-01
Cardiomyocytes are responsible for the permanent blood flow by coordinated heart contractions. This vital function is accomplished over a long period of time with almost the same performance, although heart properties, as its elasticity, change drastically upon aging or as a result of diseases like myocardial infarction. In this paper we have analyzed late rat embryonic heart muscle cells' morphology, sarcomere/costamere formation and force generation patterns on substrates of various elasticities ranging from ∼1 to 500 kPa, which covers physiological and pathological heart stiffnesses. Furthermore, adhesion behaviour, as well as single myofibril/sarcomere contraction patterns, was characterized with high spatial resolution in the range of physiological stiffnesses (15 kPa to 90 kPa. Here, sarcomere units generate an almost stable contraction of ∼4%. On stiffened substrates the contraction amplitude remains stable, which in turn leads to increased force levels allowing cells to adapt almost instantaneously to changing environmental stiffness. Furthermore, our data strongly indicate specific adhesion to flat substrates via both costameric and focal adhesions. The general appearance of the contractile and adhesion apparatus remains almost unaffected by substrate stiffness.
Effect of High-Fat Diet upon Inflammatory Markers and Aortic Stiffening in Mice
Directory of Open Access Journals (Sweden)
Andre Bento Chaves Santana
2014-01-01
Full Text Available Changes in lifestyle such as increase in high-fat food consumption are an important cause for vascular diseases. The present study aimed to investigate the involvement of ACE and TGF-β in the aorta stiffness induced by high-fat diet. C57BL/6 male mice were divided in two groups according to their diet for 8 weeks: standard diet (ST and high-fat diet (HF. At the end of the protocol, body weight gain, adipose tissue content, serum lipids and glucose levels, and aorta morphometric and biochemical measurements were performed. Analysis of collagen fibers by picrosirius staining of aorta slices showed that HF diet promoted increase of thin (55% and thick (100% collagen fibers deposition and concomitant disorganization of these fibers orientations in the aorta vascular wall (50%. To unravel the mechanism involved, myeloperoxidase (MPO and angiotensin I converting enzyme (ACE were evaluated by protein expression and enzyme activity. HF diet increased MPO (90% and ACE (28% activities, as well as protein expression of ACE. TGF-β was also increased in aorta tissue of HF diet mice after 8 weeks. Altogether, we have observed that the HF diet-induced aortic stiffening may be associated with increased oxidative stress damage and activation of the RAS in vascular tissue.
Experiments of cylindrical isentropic compression by ultrahigh magnetic field
Gu, Zhuowei; Zhou, Zhongyu; Zhang, Chunbo; Tang, Xiaosong; Tong, Yanjin; Zhao, Jianheng; Sun, Chengwei
2015-09-01
The high Explosive Magnetic Flux Implosion Compression Generator (EMFICG) is a kind of unique high energy density dynamic technique with characters like ultrahigh pressure and low temperature rising and could be suitable as a tool of cylindrical isentropic compression. The Institute of Fluid Physics, Chinese Academy of Engineering Physics (IFP, CAEP) have developed EMFICG technique and realized cylindrical isentropic compression. In the experiments, a seed magnetic field of 5-6 Tesla were built first and compressed by a stainless steel liner which is driven by high explosive. The inner free surface velocity of sample was measured by PDV. The isentropic compression of a copper sample was verified and the isentropic pressure is over 100 GPa. The cylindrical isentropic compression process has been numerical simulated by 1D MHD code and the simulation results were compared with the experiments. Compared with the transitional X-ray flash radiograph measurement, this method will probably promote the data accuracy.
Experiments of cylindrical isentropic compression by ultrahigh magnetic field
Directory of Open Access Journals (Sweden)
Gu Zhuowei
2015-01-01
Full Text Available The high Explosive Magnetic Flux Implosion Compression Generator (EMFICG is a kind of unique high energy density dynamic technique with characters like ultrahigh pressure and low temperature rising and could be suitable as a tool of cylindrical isentropic compression. The Institute of Fluid Physics, Chinese Academy of Engineering Physics (IFP, CAEP have developed EMFICG technique and realized cylindrical isentropic compression. In the experiments, a seed magnetic field of 5–6 Tesla were built first and compressed by a stainless steel liner which is driven by high explosive. The inner free surface velocity of sample was measured by PDV. The isentropic compression of a copper sample was verified and the isentropic pressure is over 100 GPa. The cylindrical isentropic compression process has been numerical simulated by 1D MHD code and the simulation results were compared with the experiments. Compared with the transitional X-ray flash radiograph measurement, this method will probably promote the data accuracy.
Magnetostatic interactions in cylindrical nanostructures with non-uniform magnetization
Energy Technology Data Exchange (ETDEWEB)
Suarez, O.J. [Departamento de Fisica, Universidad Tecnica Federico Santa Maria, Casilla 110-V, Valparaiso (Chile); Perez, L.M. [Departamento de Fisica y Matematica Aplicada, Universidad de Navarra, 31080 Pamplona (Spain); Laroze, D., E-mail: david.laroze@gmail.com [Max Planck Institute for Polymer Research, D 55021 Mainz (Germany); Instituto de Alta Investigacion, Universidad de Tarapaca, Casilla 7D, Arica (Chile); Altbir, D. [Departamento de Fisica and Center for the Development of Nanoscience and Nanotechnology, Universidad de Santiago de Chile, Av. Ecuador 3493, Santiago (Chile)
2012-05-15
Cylindrical magnetic nanostructures, like nanowires or nanotubes, should be used for the new generation of magnetic devices. Therefore, the investigation of inter-element interaction is an intense area of research. In this paper we investigated cylindrical nanostructures with non-uniform magnetization field. We focus on particles with a periodic magnetization function and using Fourier series we reduced the problem to a single integral expression. Analytical expressions for both, the self and the interaction magnetostatic energy, are given. These expressions are used to analyze multisegmented tubes, as a function of the number of segments and the distance between particles. - Highlights: Black-Right-Pointing-Pointer Magnetic cylindrical nanoparticles like nanowires or nanotubes. Black-Right-Pointing-Pointer Magnetostatic interaction between particles. Black-Right-Pointing-Pointer Non-uniform magnetization states.
Evanescent channels and scattering in cylindrical nanowire heterostructures
Racec, P. N.; Racec, E. R.; Neidhardt, H.
2009-04-01
We investigate the scattering phenomena produced by a general finite-range nonseparable potential in a multichannel two-probe cylindrical nanowire heterostructure. The multichannel current scattering matrix is efficiently computed using the R -matrix formalism extended for cylindrical coordinates. Considering the contribution of the evanescent channels to the scattering matrix, we are able to put in evidence the specific dips in the tunneling coefficient in the case of an attractive potential. The cylindrical symmetry cancels the “selection rules” known for Cartesian coordinates. If the attractive potential is superposed over a nonuniform potential along the nanowire then resonant transmission peaks appear. We can characterize them quantitatively through the poles of the current scattering matrix. Detailed maps of the localization probability density sustain the physical interpretation of the resonances (dips and peaks). Our formalism is applied to a variety of model systems such as a quantum dot, a core/shell quantum ring, or a double barrier embedded into the nanocylinder.
Komar fluxes of circularly polarized light beams and cylindrical metrics
Lynden-Bell, D.; Bičák, J.
2017-11-01
The mass per unit length of a cylindrical system can be found from its external metric as can its angular momentum. Can the fluxes of energy, momentum, and angular momentum along the cylinder also be so found? We derive the metric of a beam of circularly polarized electromagnetic radiation from the Einstein-Maxwell equations. We show how the uniform plane wave solutions miss the angular momentum carried by the wave. We study the energy, momentum, angular momentum, and their fluxes along the cylinder both for this beam and in general. The three Killing vectors of any stationary cylindrical system give three Komar flux vectors which in turn give six conserved fluxes. We elucidate Komar's mysterious factor 2 by evaluating Komar integrals for systems that have no trace to their stress tensors. The Tolman-Komar formula gives twice the energy for such systems which also have twice the gravity. For other cylindrical systems their formula gives correct results.
The magnetic properties of the hollow cylindrical ideal remanence magnet
DEFF Research Database (Denmark)
Bjørk, Rasmus
2016-01-01
We consider the magnetic properties of the hollow cylindrical ideal remanence magnet. This magnet is the cylindrical permanent magnet that generates a uniform field in the cylinder bore, using the least amount of magnetic energy to do so. The remanence distribution of this magnet is derived...... and the generated field is compared to that of a Halbach cylinder of equal dimensions. The ideal remanence magnet is shown in most cases to generate a significantly lower field than the equivalent Halbach cylinder, although the field is generated with higher efficiency. The most efficient Halbach cylinder is shown...... to generate a field exactly twice as large as the equivalent ideal remanence magnet....
A novel design for a small retractable cylindrical mirror analyzer
International Nuclear Information System (INIS)
McIlroy, D.N.; Dowben, P.A.; Knop, A.; Ruehl, E.
1995-01-01
In this paper we will review the performance of a ''miniature'' single pass cylindrical mirror analyzer (CMA) which we have used successfully in a variety of experiments. The underlying premise behind this CMA design was to minimize spatial requirements while maintaining an acceptable level of instrumental resolution. While we are presenting the results of a single pass cylindrical mirror analyzer, improvements on the present design, such as going to a double pass design, will undoubtedly improve the instrumental resolution. copyright 1995 American Vacuum Society
The Levitating Buddha: Constructing a Realistic Cylindrical Mirror Pseudo Image
Caussat, María Alicia; Rabal, Héctor; Muramatsu, Mikiya
2006-10-01
There are several interesting experiments involving image formation that can be easily implemented using mirrored foil, a very inexpensive material. When the foil is somewhat bent by holding its opposite edges and slightly pulling them together, cylindrical surfaces are generated. They behave as cylindrical mirrors, and circular or elliptical cross sections can be made. A project that can be easily built with the mirror foil is the generation of a pseudo image that is so compelling in its apparent reality that it can easily be taken to be the object itself.
Two-dimensional collapse calculations of cylindrical clouds
International Nuclear Information System (INIS)
Bastien, P.; Mitalas, R.
1979-01-01
A two-dimensional hydrodynamic computer code has been extensively modified and expanded to study the collapse of non-rotating interstellar clouds. The physics and the numerical methods involved are discussed. The results are presented and discussed in terms of the Jeans number. The critical Jeans number for collapse of non-rotating cylindrical clouds whose length is the same as their diameter is 1.00. No evidence for fragmentation has been found for these clouds, but fragmentation seems quite likely for more elongated cylindrical clouds. (author)
Confined and interface phonons in combined cylindrical nanoheterosystem
Directory of Open Access Journals (Sweden)
O.M.Makhanets
2006-01-01
Full Text Available The spectra of all types of phonons existing in a complicated combined nanoheterosystem consisting of three cylindrical quantum dots embedded into the cylindrical quantum wire placed into vacuum are studied within the dielectric continuum model. It is shown that there are confined optical (LO and interface phonons of two types: top surface optical (TSO and side surface optical (SSO modes of vibration in such a nanosystem. The dependences of phonon energies on the quasiwave numbers and geometrical parameters of quantum dots are investigated and analysed.
Orbital trajectory of an acoustic bubble in a cylindrical resonator.
Desjouy, Cyril; Labelle, Pauline; Gilles, Bruno; Bera, Jean-Christophe; Inserra, Claude
2013-09-01
Acoustic cavitation-induced microbubbles in a cylindrical resonator filled with water tend to concentrate into ring patterns due to the cylindrical geometry of the system. The shape of these ring patterns is directly linked to the Bjerknes force distribution in the resonator. Experimental observations showed that cavitation bubbles located in the vicinity of this ring may exhibit a spiraling behavior around the pressure nodal line. This spiraling phenomenon is numerically studied, the conditions for which a single cavitation bubble follows an orbital trajectory are established, and the influences of the acoustic pressure amplitude and the initial bubble radius are investigated.
Gravitational collapse of a cylindrical null shell in vacuum
Directory of Open Access Journals (Sweden)
S. Khakshournia
2008-03-01
Full Text Available Barrabès-Israel null shell formalism is used to study the gravitational collapse of a thin cylindrical null shell in vacuum. In general the lightlike matter shell whose history coincides with a null hypersurface is characterized by a surface energy density. In addition, a gravitational impulsive wave is present on this null hypersurface whose generators admit both the shear and expansion. In the case of imposing the cylindrical flatness the surface energy-momentum tensor of the matter shell on the null hypersurface vanishes and the null hyper- surface is just the history of the gravitational wave .
Energy corrections in pulsed neutron measurements for cylindrical geometry
International Nuclear Information System (INIS)
Drozdowicz, K.; Woznicka, U.
1982-01-01
A solution of the thermal neutron diffusion equation for a two-region concentric cylindrical system, with a constant neutron flux in the inner medium assumed, is given. The velocity-averaged dynamic parameters for thermal neutrons are used in the method. The corrections due to the diffusion cooling are introduced into the dynamic material buckling and into the velocity distribution of the thermal neutron flux. Detailed relations obtained for a hydrogenous moderator are given. Results of the measurements of the thermal neutron macroscopic absorption cross-sections for the samples in the two-region cylindrical systems are presented. (author)
A winning strategy for 3 x n Cylindrical Hex
DEFF Research Database (Denmark)
Huneke, S. C.; Hayward, R.; Toft, Bjarne
2014-01-01
For Cylindrical Hex on a board with circumference 3, we give a winning strategy for the end-to-end player. This is the first known winning strategy for odd circumference at least 3, answering a question of David Gale. (C) 2014 Elsevier B.V. All rights reserved.......For Cylindrical Hex on a board with circumference 3, we give a winning strategy for the end-to-end player. This is the first known winning strategy for odd circumference at least 3, answering a question of David Gale. (C) 2014 Elsevier B.V. All rights reserved....
Experiments on cylindrically converging blast waves in atmospheric air
Matsuo, Hideo; Nakamura, Yuichi
1980-06-01
Cylindrically converging blast waves have been produced in normal atmospheric conditions by the detonation of the explosives, pentaerythritoltetranitrate, (PETN), over cylindrical surfaces. The shocks generated in this way are so strong that the fronts propagating through the air become luminous of themselves. The production and the propagation of the shocks have been monitored with a framing camera and a streak camera, and the time-space relations of the shock propagations have been determined using an electrical ionization probing system. The results have shown that the trajectory of the shock fronts near the axis of the cylinder can be approximately represented by the Guderley's formula.
Plastic collapse pressure of cylindrical vessels containing longitudinal surface cracks
Energy Technology Data Exchange (ETDEWEB)
Zarrabi, K. [New South Wales Univ., Sydney, NSW (Australia). Sch. of Mech. and Mfg. Eng.; Zhang, H. [New South Wales Univ., Sydney, NSW (Australia). Sch. of Mech. and Mfg. Eng.; Nhim, K. [New South Wales Univ., Sydney, NSW (Australia). Sch. of Mech. and Mfg. Eng.
1997-05-01
Based on nonlinear finite element analysis, the plastic collapse pressures of cylindrical vessels with longitudinal surface cracks are computed. A general formula of plastic collapse pressure of such structures are given and compared with the literature solutions. The results of the present study could be applied for the integrity assessments, failure analyses, remanent life assessment, and licence extensions of the vessels. (orig.)
Flow-induced vibrations of circular cylindrical structures
International Nuclear Information System (INIS)
Chen, S.
1977-06-01
The problems of flow-induced vibrations of circular cylindrical structures are reviewed. First, the general method of analysis and classification of structural responses are presented. Then, the presentation is broken up along the lines with stationary fluid, parallel flow, and cross flow. Finally, design considerations and future research needs are pointed out. 234 references
Magnetic forces between arrays of cylindrical permanent magnets
DEFF Research Database (Denmark)
Vokoun, D.; Tomassetti, G.; Beleggia, Marco
2011-01-01
procedures. Here, we introduce analytical expressions for calculating the attraction force between two arrays of cylindrical permanent magnets and compare the predictions with experimental data obtained from force measurements with NdFeB magnets. We show that the difference between predicted and measured...
Formation of vortex breakdown in conical–cylindrical cavities
International Nuclear Information System (INIS)
Martins, Diego Alves de Moro; Souza, Francisco José de; Salvo, Ricardo de Vasconcelos
2014-01-01
Highlights: • Rotating flows in conical–cylindrical cavities were simulated via an in-house code using unstructured meshes. • The vortex breakdown phenomenon was verified in the geometries analyzed. • The influence of Stewartson and Bödewadt layers was observed in the vortex breakdown formation. • A curve of stability and number of breakdowns was obtained as a function of Reynolds number. • Spiral vortex breakdown was observed in some situations. - Abstract: Numerical simulations in confined rotating flows were performed in this work, in order to verify and characterize the formation of the vortex breakdown phenomenon. Cylindrical and conical–cylindrical geometries, both closed, were used in the simulations. The rotating flow is induced by the bottom wall, which rotates at constant angular velocity. Firstly the numerical results were compared to experimental results available in references, with the purpose to verify the capacity of the computational code to predict the vortex breakdown phenomenon. Further, several simulations varying the parameters which govern the characteristics of the flows analyzed in this work, i.e., the Reynolds number and the aspect ratio, were performed. In these simulations, the limits for the transitional regime and the vortex breakdown formation were verified. Steady and transient cases, with and without turbulence modeling, were simulated. In general, some aspects of the process of vortex breakdown in conical–cylindrical geometries were observed to be different from that in cylinders
A cylindrical drift chamber with azimuthal and axial position readout
Energy Technology Data Exchange (ETDEWEB)
Bar-Yam, Z.; Cummings, J.P.; Dowd, J.P.; Eugenio, P.; Hayek, M.; Kern, W.; King, E.; Shenhav, N.; Chung, S.U.; Hackenburg, R.W.; Olchanski, C.; Weygand, D.P.; Willutzki, H.J.; Brabson, B.B.; Crittenden, R.R.; Dzierba, A.R.; Gunter, J.; Lindenbusch, R.; Rust, D.R.; Scott, E.; Smith, P.T.; Sulanke, T.; Teige, S.; Denisov, S.; Dushkin, A.; Kochetkov, V.; Lipaev, V.; Popov, A.; Shein, I.; Soldatov, A.; Anoshina, E.V.; Bodyagin, V.A.; Demianov, A.I.; Gribushin, A.M.; Kodolova, O.L.; Korotkikh, V.L.; Kostin, M.A.; Ostrovidov, A.I.; Sarycheva, L.I.; Sinev, N.B.; Vardanyan, I.N.; Yershov, A.A.; Adams, T.; Bishop, J.M.; Cason, N.M.; Sanjari, A.H.; LoSecco, J.M.; Manak, J.J.; Shephard, W.D.; Stienike, D.L.; Taegar, S.A.; Thompson, D.R.; Brown, D.S.; Pedlar, T.; Seth, K.K.; Wise, J.; Zhao, D.; Adams, G.S.; Napolitano, J.; Nozar, M.; Smith, J.A.; Witkowski, M. [Massachusetts Univ., North Dartmouth, MA (United States)]|[Brookhaven National Laboratory, Upton, L.I., NY 11973 (United States)]|[Indiana University, Bloomington, IN 47405 (United States)]|[Institute for High Energy Physics, Protvino (Russian Federation)]|[Institute of Nuclear Physics, Moscow State University, Moscow (Russian Federation)]|[University of Notre Dame, Notre Dame, IN 46556 (United States)]|[Northwestern University, Evanston, IL 60208 (United States)]|[Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)
1997-02-21
A cylindrical multiwire drift chamber with axial charge-division has been constructed and used in experiment E852 at Brookhaven National Laboratory. It serves as a trigger element and as a tracking device for recoil protons in {pi}{sup -}p interactions. We describe the chamber`s design considerations, details of its construction, electronics, and performance characteristics. (orig.).
Theory of precipitation effects on dead cylindrical fuels
Michael A. Fosberg
1972-01-01
Numerical and analytical solutions of the Fickian diffusion equation were used to determine the effects of precipitation on dead cylindrical forest fuels. The analytical solution provided a physical framework. The numerical solutions were then used to refine the analytical solution through a similarity argument. The theoretical solutions predicted realistic rates of...
Damping analysis of cylindrical composite structures with enhanced viscoelastic properties
DEFF Research Database (Denmark)
Kliem, Mathias; Høgsberg, Jan Becker; Vanwalleghem, Joachim
2018-01-01
is forced to deform in shear mode. Thus, the vibration energy is dissipated as low grade frictional heat. This paper documents the eﬃciency of passive constrained layer damping treatments for low frequency vibrations of cylindrical composite specimens made of glass ﬁbre-reinforced plastics. Diﬀerent cross...
3D impurity inspection of cylindrical transparent containers
DEFF Research Database (Denmark)
Kragh, Mikkel Fly; Bjerge, Kim; Ahrendt, Peter
2016-01-01
This paper presents a method for automatically detecting and three-dimensionally positioning particles based on sequences of 2D images of rotating cylindrical transparent containers. The method can be used in the manufacturing industry by distinguishing between particles residing inside or outsid...
Rotating cylindrically symmetric Kaluza-Klein fluid model
Indian Academy of Sciences (India)
Several relativistic cylindrically symmetric, non-static, inhomogeneous KK fluid models admitting dimensional reduction have been reported by Patel and Dadhich [2,3]. After Godel [4] gave relativistic model of a rotating dust universe, the study of rotating fluids in the context of general relativity received considerable attention ...
Effect of bimodularity on frequency response of cylindrical panels ...
Indian Academy of Sciences (India)
M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22
time domain approach is successfully used for the forced vibration analysis of bimodular cylindrical panels. The effect of ... The transient response of bimodular rectangular plates is studied by ... been proposed to find frequency response of bimodular material laminated panels by Khan et al (2009b). The application of the ...
Magnetization curves for non-elliptic cylindrical samples in a ...
Indian Academy of Sciences (India)
Using recent results for the surface current density on cylindrical surfaces of arbitrary cross-section producing ... The critical state model (CSM) involving just one parameter, the critical current density,. В, was proposed by Bean ..... 0 in the current-free region of the sample, using parallel flux-contours. However, in this case В ...
Multigroup calculation of antisymmetric neutron distributions in a cylindrical cell
International Nuclear Information System (INIS)
Boyarinov, V.F.
1987-01-01
The authors construct a model for the neutron distribution in a multizone cylindrical reactor lattice with coaxial zones using the neutron diffusion equation and multigroup theory. The operator-splitting method is used to separate the spatial and energy variables and the surface-pseudosource method is used to solve the spatial aspects of the problem
Sloshing effect on the dynamic behavior of horizontal cylindrical shells
International Nuclear Information System (INIS)
Lakis, A.A.; Bursuc, G.; Toorani, M.H.
2009-01-01
The present study investigates the effect of free surface motion of a fluid on the dynamic behavior of thin-walled cylindrical shells. This paper outlines a semi-analytical approach to dynamic analysis of a fluid-filled horizontal cylindrical shell taking into account free surface motion; sloshing. The aim of the method is to provide a general approach that can be used for both analysis and synthesis of fluid/structure interaction problems in horizontal cylindrical shells focusing on the dynamic interaction between a flexible structure and incompressible and inviscid flow. The approach is very general; it allows dynamic analysis of both uniform and non-uniform cylindrical shells and considers the fluid forces and includes the sloshing effect exerted on the structure. The hybrid method developed in this work incorporates a combination of the classic finite element approach and thin shell theory to determine the specific displacement functions. Mass and stiffness matrices of the shell are determined by precise analytical integration. A potential function is applied to develop the dynamic pressure due to the fluid. The kinetic and potential energies are evaluated for a range of fluid heights to find the influence of the fluid on the dynamic responses of the structure. The influence of physical and geometrical parameters on the fluid-structure system has been considered in the numerical solutions. When these results are compared with corresponding results available in the literature, both theoretical and experimental, very good agreement is obtained.
Cylindrically symmetric cosmological model in the presence of bulk ...
Indian Academy of Sciences (India)
Cylindrically symmetric non-static space–time is investigated in the presence of bulk stress given by Landau and Lifshitz. To get a solution, a supplementary condition between metric potentials is used. The viscosity coefficient of the bulk viscous fluid is assumed to be a power function of mass density whereas the coefficient ...
Static Solutions of Einstein's Equations with Cylindrical Symmetry
Trendafilova, C. S.; Fulling, S. A.
2011-01-01
In analogy with the standard derivation of the Schwarzschild solution, we find all static, cylindrically symmetric solutions of the Einstein field equations for vacuum. These include not only the well-known cone solution, which is locally flat, but others in which the metric coefficients are powers of the radial coordinate and the spacetime is…
Rotating cylindrically symmetric Kaluza-Klein fluid model
Indian Academy of Sciences (India)
Kaluza-Klein ﬁeld equations for stationary cylindrically symmetric ﬂuid models in standard Einstein theory are formulated and a set of physically viable solutions is reported. This set is believed to be the ﬁrst such Kaluza-Klein solutions and it includes the Kaluza-Klein counterpart of Davidson's solution describing spacetime ...
Rotating cylindrically symmetric Kaluza-Klein fluid model
Indian Academy of Sciences (India)
Abstract. Kaluza-Klein field equations for stationary cylindrically symmetric fluid models in stan- dard Einstein theory are formulated and a set of physically viable solutions is reported. This set is believed to be the first such Kaluza-Klein solutions and it includes the Kaluza-Klein counterpart of. Davidson's solution describing ...
Analysis of radial vibrations of poroelastic circular cylindrical shells ...
African Journals Online (AJOL)
Waves propagating in radial direction of a poroelastic circular cylinder are termed as radial vibrations. Radial vibrations of poroelastic circular cylindrical shell of infinite extent immersed in an inviscid elastic fluid are examined employing Biot's theory. Biot's model consists of an elastic matrix permeated by a network of ...
Simulation of cylindrical Pierce diodes with radial flow
International Nuclear Information System (INIS)
Alves, M.V.; Gnavi, G.; Gratton, F.T.; Buenos Aires Univ.
1996-01-01
In this paper we study the electron instability and the non linear behaviour of cylindrical Pierce's diodes by particle simulation. We ignore here the ion contribution (ions are fixed at a 1/r density and given a very large mass) to give perspicuity to the electron dynamics, and to facilitate comparison with existing theory. (author). 8 refs., 10 figs
Cylindrical and spherical dust-acoustic wave modulations in dusty ...
Indian Academy of Sciences (India)
Cylindrical and dust-acoustic wave modulations in dusty plasmas. PQ is required for wave amplitude (modulational) stability. On the other hand, a positive sign of PQ allows for a random perturbation to grow and may thus lead to wave collapse or blow-up. To investigate the stability profile, we have determined in various ...
Coupled dilaton and electromagnetic field in cylindrically symmetric ...
Indian Academy of Sciences (India)
An exact solution is obtained for coupled dilaton and electromagnetic ﬁeld in a cylindrically symmetric spacetime where an axial magnetic ﬁeld as well as a radial electric ﬁeld both are present. Depending on the choice of the arbitrary constants our solution reduces either to dilatonic gravity with pure electric ﬁeld or to that ...
Effect of bimodularity on frequency response of cylindrical panels ...
Indian Academy of Sciences (India)
M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22
Doong J L, Fung C P 1988 Vibration and buckling of bimodulus laminated plates according to a higher-order plate theory. J. Sound Vib. 125: 325–339. Khan K, Patel B P, Nath Y 2007 Free vibration of bimodulus laminated angle-ply cylindrical panels,. Proceedings of the 4th International Conference on Theoritical, Applied, ...
An approximate solution for spherical and cylindrical piston problem
Indian Academy of Sciences (India)
the growth and decay of shock strengths for spherical and cylindrical pistons starting from a non-zero ... conditions at an appropriate level, a new theory of shock dynamics (NTSD) has been proposed (Ravindran and ..... sive, its packing density etc. which are not included in our mathematical formulation, it may explain the ...
Cylindrically symmetric cosmological model in the presence of bulk ...
Indian Academy of Sciences (India)
2016-09-06
Sep 6, 2016 ... coefficient of shear viscosity is considered as proportional to the scale of expansion in the model. Also some physical and geometrical properties of the model are discussed. Keywords. Cylindrically symmetric space–time; viscous fluid; variable cosmological constant. PACS Nos 98.80.Es; 04.20.jb; 04.20.−q.
Surface waves in a cylindrical borehole through partially-saturated ...
Indian Academy of Sciences (India)
M D Sharma
published online 14 February 2018. Propagation of surface waves is discussed in a cylindrical borehole through a liquid-saturated porous solid of infinite extent. ...... 1992). In the dictionary of exploration geophysics, pseudo-Rayleigh waves are identified as the ground roll, which is a particular type of surface wave that.
Magnetoresistance of cylindrical nanowires with artificial pinning site
Vidal, Enrique Vilanova
2015-05-01
New concepts of magnetic memory devices are exploiting the movement of data bits by current induced domain wall motion. This concept has been widely explored with rectangular nanowires (NWs) or stripes both theoretically and experimentally [1]. In the case of cylindrical NWs not much progress has been made on the experimental side, despite its promising advantages like the absence of Walker breakdown [2].
Electron cyclotron resonance heating in a short cylindrical plasma ...
Indian Academy of Sciences (India)
Abstract. Electron cyclotron resonance (ECR) plasma is produced and studied in a small cylindrical system. Microwave power is delivered by a CW magnetron at 2.45 GHz in TE10 mode and launched radially to have extraordinary (X) wave in plasma. The axial magnetic field required for ECR in the system is such that the ...
Magnetization curves for general cylindrical samples in a transverse ...
Indian Academy of Sciences (India)
complexity associated with the task of determining and studying the movement of the flux- front as the flux ... a volume current density causing the flux-front to move by an appropriate amount. Since the flux-front does ... Let us consider an infinite cylindrical sample with its axis along the z-axis and its cross- section bounded ...
Electron cyclotron resonance heating in a short cylindrical plasma ...
Indian Academy of Sciences (India)
Electron cyclotron resonance (ECR) plasma is produced and studied in a small cylindrical system. Microwave power is delivered by a CW magnetron at 2.45 GHz in TE10 mode and launched radially to have extraordinary (X) wave in plasma. The axial magnetic field required for ECR in the system is such that the first two ...
Development of a cylindrical gas-fired furnace for reycling ...
African Journals Online (AJOL)
This study presents the development of a cylindrical gas-fired furnace, which could be used for recycling aluminum in small-scale foundries in Nigeria. The crucible, combustion chamber, suspension shaft and bearings were appropriately sized. The furnace chamber was 410 mm high and 510 mm diameter and had a ...
On the dynamic buckling of stochastically imperfect finite cylindrical ...
African Journals Online (AJOL)
The dynamic buckling load of stochastically imperfect finite right circular cylindrical shells subjected to step loading is determined by means of regular perturbation procedures .The imperfection is assumed to be a Gaussian random function of position and consequently is homogeneous. The result obtained is implicit in the ...
Experimental investigations on buckling of cylindrical shells under ...
Indian Academy of Sciences (India)
This paper presents experimental studies on buckling of cylindrical shell models under axial and transverse shear loads. Tests are carried out using an experimental facility specially designed, fabricated and installed, with provision for in-situ measurement of the initial geometric imperfections. The shell models are made by ...
On the dynamic buckling of lightly damped cylindrical shells ...
African Journals Online (AJOL)
The dynamic buckling load of finite imperfect, lightly but viscously damped cylindrical shells subjected to a periodic load, is determined using the technique of multiple scaling (two-timing) regular perturbation analysis. The geometric imperfection, assumed deterministic, are also assumed small and are expanded in a double ...
Factor XIII stiffens fibrin clots by causing fiber compaction.
Kurniawan, N A; Grimbergen, J; Koopman, J; Koenderink, G H
2014-10-01
Factor XIII-induced cross-linking has long been associated with the ability of fibrin blood clots to resist mechanical deformation, but how FXIII can directly modulate clot stiffness is unknown. We hypothesized that FXIII affects the self-assembly of fibrin fibers by altering the lateral association between protofibrils. To test this hypothesis, we studied the cross-linking kinetics and the structural evolution of the fibers and clots during the formation of plasma-derived and recombinant fibrins by using light scattering, and the response of the clots to mechanical stresses by using rheology. We show that the lateral aggregation of fibrin protofibrils initially results in the formation of floppy fibril bundles, which then compact to form tight and more rigid fibers. The first stage is reflected in a fast (10 min) increase in clot stiffness, whereas the compaction phase is characterized by a slow (hours) development of clot stiffness. Inhibition of FXIII completely abrogates the slow compaction. FXIII strongly increases the linear elastic modulus of the clots, but does not affect the non-linear response at large deformations. We propose a multiscale structural model whereby FXIII-mediated cross-linking tightens the coupling between the protofibrils within a fibrin fiber, thus making the fiber stiffer and less porous. At small strains, fiber stiffening enhances clot stiffness, because the clot response is governed by the entropic elasticity of the fibers, but once the clot is sufficiently stressed, the modulus is independent of protofibril coupling, because clot stiffness is governed by individual protofibril stretching. © 2014 International Society on Thrombosis and Haemostasis.
Huntley, Andrew H; Srbely, John Z; Zettel, John L
2015-02-01
Dysequilibrium of cervicogenic origin can result from pain and injury to cervical paraspinal tissues post-whiplash; however, the specific physiological mechanisms still remain unclear. Central sensitization is a neuradaptive process which has been clinically associated with conditions of chronic pain and hypersensitivity. Strong links have been demonstrated between pain hypersensitivity and postural deficits post-whiplash; however, the precise mechanisms are still poorly understood. The purpose of this study was to explore the mechanisms of cervicogenic disequilibrium by investigating the effect of experimentally induced central sensitization in the cervical spine on postural stability in young healthy adults. Sixteen healthy young adults (7 males (22.6±1.13 years) and 9 females (22±2.69 years)) performed 30-s full-tandem stance trials on an AMTI force plate under normal and centrally sensitized conditions. The primary outcome variables included the standard deviation of the center of pressure (COP) position in medio-lateral (M-L) and antero-posterior (A-P) directions; sway range of the COP in M-L and A-P directions and the mean power frequency (MPF) of the COP and horizontal ground shear forces. Variability and sway range of the COP decreased with experimental induction of central sensitization, accompanied by an increase in MPF of COP displacement in both M-L and A-P directions, suggesting an increase in postural stiffening post-sensitization versus non-sensitized controls. Future studies need to further explore this relationship in clinical (whiplash, chronic pain) populations. Copyright © 2015 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Yuko Gando
2017-06-01
Full Text Available Purpose: Having a low level of physical fitness, especially cardiorespiratory fitness, appears to accelerate age-related aortic stiffening. Whereas, some studies have reported that trunk flexibility is a component of physical fitness, it is also negatively associated with arterial stiffening independent of cardiorespiratory fitness in cross-sectional studies. However, no long-term longitudinal study has determined whether poor trunk flexibility accelerates the progression of age-related aortic stiffening. We examined trunk flexibility and aortic stiffness progression in a 5-year longitudinal study.Methods and Results: A total of 305 apparently healthy men and women participated in this study (49.6 ± 9.5 years of age. Trunk flexibility was measured using a sit-and-reach test. Aortic stiffness was assessed using carotid-femoral pulse wave velocity (cfPWV at baseline and after 5 years. Analysis of covariance (ANCOVA was used to assess the association of the annual rate of cfPWV across flexibility levels (low, middle, high. There were no significant differences in baseline cfPWV among the three groups (835 ± 164, 853 ± 140, 855 ± 2.68 cm/s; P = 0.577. Annual ΔcfPWV was significantly higher in the low-flexibility group than in the high-flexibility group (P = 0.009. ANCOVA revealed an inverse relationship between flexibility level and annual ΔcfPWV (14.41 ± 2.73, 9.79 ± 2.59, 2.62 ± 2.68 cm/s/year; P for trend = 0.011. Multiple regression analysis revealed that baseline sit and reach (β = −0.12, −0.70 to −0.01 was independently correlated with ΔcfPWV following adjustment for baseline peak oxygen uptake, age, sex, body fat, heart rate, and cfPWV. The 5-year change in cfPWV was not significantly correlated with 5-year change in sit-and-reach performance (P = 0.859.Conclusion: Poor trunk flexibility is associated with greater progression of age-related aortic stiffening in healthy adults. However, we failed to confirm a significant
Obesity-induced vascular dysfunction and arterial stiffening requires endothelial cell arginase 1.
Bhatta, Anil; Yao, Lin; Xu, Zhimin; Toque, Haroldo A; Chen, Jijun; Atawia, Reem T; Fouda, Abdelrahman Y; Bagi, Zsolt; Lucas, Rudolf; Caldwell, Ruth B; Caldwell, Robert W
2017-11-01
Elevation of arginase activity has been linked to vascular dysfunction in diabetes and hypertension by a mechanism involving decreased nitric oxide (NO) bioavailability due to L-arginine depletion. Excessive arginase activity also can drive L-arginine metabolism towards the production of ornithine, polyamines, and proline, promoting proliferation of vascular smooth muscle cells and collagen formation, leading to perivascular fibrosis. We hypothesized that there is a specific involvement of arginase 1 expression within the vascular endothelial cells in this pathology. To test this proposition, we used models of type 2 diabetes and metabolic syndrome. Studies were performed using wild type (WT), endothelial-specific arginase 1 knockout (EC-A1-/-) and littermate controls(A1con) mice fed high fat-high sucrose (HFHS) or normal diet (ND) for 6 months and isolated vessels exposed to palmitate-high glucose (PA/HG) media. Some WT mice or isolated vessels were treated with an arginase inhibitor, ABH [2-(S)-amino-6-boronohexanoic acid. In WT mice, the HFHS diet promoted increases in body weight, fasting blood glucose, and post-prandial insulin levels along with arterial stiffening and fibrosis, elevated blood pressure, decreased plasma levels of L-arginine, and elevated L-ornithine. The HFHS diet or PA/HG treatment also induced increases in vascular arginase activity along with oxidative stress, reduced vascular NO levels, and impaired endothelial-dependent vasorelaxation. All of these effects except obesity and hypercholesterolemia were prevented or significantly reduced by endothelial-specific deletion of arginase 1 or ABH treatment. Vascular dysfunctions in diet-induced obesity are prevented by deletion of arginase 1 in vascular endothelial cells or arginase inhibition. These findings indicate that upregulation of arginase 1 expression/activity in vascular endothelial cells has an integral role in diet-induced cardiovascular dysfunction and metabolic syndrome. Published
A network model of correlated growth of tissue stiffening in pulmonary fibrosis
Oliveira, Cláudio L. N.; Bates, Jason H. T.; Suki, Béla
2014-06-01
During the progression of pulmonary fibrosis, initially isolated regions of high stiffness form and grow in the lung tissue due to collagen deposition by fibroblast cells. We have previously shown that ongoing collagen deposition may not lead to significant increases in the bulk modulus of the lung until these local remodeled regions have become sufficiently numerous and extensive to percolate in a continuous path across the entire tissue (Bates et al 2007 Am. J. Respir. Crit. Care Med. 176 617). This model, however, did not include the possibility of spatially correlated deposition of collagen. In the present study, we investigate whether spatial correlations influence the bulk modulus in a two-dimensional elastic network model of lung tissue. Random collagen deposition at a single site is modeled by increasing the elastic constant of the spring at that site by a factor of 100. By contrast, correlated collagen deposition is represented by stiffening the springs encountered along a random walk starting from some initial spring, the rationale being that excess collagen deposition is more likely in the vicinity of an already stiff region. A combination of random and correlated deposition is modeled by performing random walks of length N from randomly selected initial sites, the balance between the two processes being determined by N. We found that the dependence of bulk modulus, B(N,c), on both N and the fraction of stiff springs, c, can be described by a strikingly simple set of empirical equations. For c0.8, B(N,c) is linear in c and independent of N, such that B(N,c)=100\\;{{B}_{0}}-100{{a}_{III}}(1-c){{B}_{0}}, where {{a}_{III}}=2.857. For small concentrations, the physiologically most relevant regime, the forces in the network springs are distributed according to a power law. When c = 0.3, the exponent of this power law increases from -4.5, when N = 1, and saturates to about -2, as N increases above 40. These results suggest that the spatial correlation of
Fem Formulation of Heat Transfer in Cylindrical Porous Medium
Azeem; Khaleed, H. M. T.; Soudagar, Manzoor Elahi M.
2017-08-01
Heat transfer in porous medium can be derived from the fundamental laws of flow in porous region ass given by Henry Darcy. The fluid flow and energy transport inside the porous medium can be described with the help of momentum and energy equations. The heat transfer in cylindrical porous medium differs from its counterpart in radial and axial coordinates. The present work is focused to discuss the finite element formulation of heat transfer in cylindrical porous medium. The basic partial differential equations are derived using Darcy law which is the converted into a set of algebraic equations with the help of finite element method. The resulting equations are solved by matrix method for two solution variables involved in the coupled equations.
Convergence models for cylindrical caverns and the resulting ground subsidence
Energy Technology Data Exchange (ETDEWEB)
Haupt, W.; Sroka, A.; Schober, F.
1983-02-01
The authors studied the effects of different convergence characteristics on surface soil response for the case of narrow, cylindrical caverns. Maximum ground subsidence - a parameter of major importance in this type of cavern - was calculated for different convergence models. The models were established without considering the laws of rock mechanics and rheology. As a result, two limiting convergence models were obtained that describe an interval of expectation into which all other models fit. This means that ground movements over cylindrical caverns can be calculated ''on the safe side'', correlating the trough resulting on the surface with the convergence characterisitcs of the cavern. Among other applications, the method thus permits monitoring of caverns.
Acoustic length correction of closed cylindrical side-branched tube
Ji, Z. L.
2005-05-01
A numerical approach based on the three-dimensional boundary element method (BEM) is developed to determine the acoustic length correction of closed cylindrical side-branched tube mounted perpendicular to a cylindrical main pipe. The effects of Helmholtz number and finite length of side-branched tube on the acoustic length correction are examined, and a curve-fitting expression is provided for the acoustically long side-branched tube. For a pipe-mounted concentric Helmholtz resonator, the transmission loss and resonance frequency are predicted by using the 3-D BEM and the corrected 1-D analytical approach to assess the accuracy and applicability of the latter, as well as to illustrate the importance of acoustic length correction for an accurate prediction of resonance frequency of the pipe-mounted resonator.
Response of cylindrical steel shell under seismic loading
International Nuclear Information System (INIS)
Tariq, M.; Amin, K.M.
2003-01-01
The seismic response of a cylindrical shell is simulated using the finite element method, and by spectral analysis. For this purpose the fundamental frequency of the cylinder is first calculated and compared with a published result. The mode shapes are also calculated which are later used for spectral analysis. The boundary nodes of the shell are displaced periodically according to a predetermined function of time by employing the acceleration time history of the El Centro earthquake to simulate the seismic loading. However, to conduct spectral analysis, the displacements are first transformed from the time domain to frequency domain using the Fast Fourier transformation. This spectral data is then used to obtain the actual displacement in the first mode under the given seismic loading. The techniques employed here can be used for cylindrical shell structures like rotor of a gas centrifuge, besides other structures that are subjected to seismic loading, besides in other time dependent loading conditions, for example rocket motor vibrations. (author)
Microinstabilities in a radially contracting inhomogeneous cylindrical plasma slab
International Nuclear Information System (INIS)
Deutsch, R.; Kaeppeler, H.J.
1980-07-01
In order to study the development of microinstabilities in a collapsing cylindrical plasma sheath, corresponding to the situations in a z-pinch or a plasma focus, the dispersion relation for electromagnetic perturbations is derived with the aid of a newly established slab-model for an inhomogeneous, radially contracting plasma. In contrast to previously used slab-models, the orientation of the electric field is in direction of the cylinder axis and the azimuthal magnetic field is induced by the current flowing through the cylindrical plasma slab. The Vlasov equation is used together with the Krook collision term in order to include the influence of collisions. The results of this theory presented in this report will be used to calculate the growth of drift instabilities in the compression phase of a plasma focus, and shall serve as a basis for further development of a more general dispersion relation including runaway-effects. (orig.)
The transmission probability method in one-dimensional cylindrical geometry
International Nuclear Information System (INIS)
Rubin, I.E.
1983-01-01
The collision probability method widely used in solving the problems of neutron transpopt in a reactor cell is reliable for simple cells with small number of zones. The increase of the number of zones and also taking into account the anisotropy of scattering greatly increase the scope of calculations. In order to reduce the time of calculation the transmission probability method is suggested to be used for flux calculation in one-dimensional cylindrical geometry taking into account the scattering anisotropy. The efficiency of the suggested method is verified using the one-group calculations for cylindrical cells. The use of the transmission probability method allows to present completely angular and spatial dependences is neutrons distributions without the increase in the scope of calculations. The method is especially effective in solving the multi-group problems
On the dynamics of cylindrical z-pinch
International Nuclear Information System (INIS)
Solov'ev, L.S.
1984-01-01
The stationary configurations of cylindrical plasma flow in the framework of two-liquid relativistic electromagnetic gas dynamics (REMG)) and nonlinear radial oscillations of the plasma cylinder with longitudinal current in the framework of classical monoliquid MGD are considered. It is shown that at sufficiently high conductivity Z-pinch is stable relative to one-dimensional radial perturbations and its motion represents respectively nonlinear radial oscillations. In case of a rather low conductivity or low particle concentration there is in cross section a stability also in relation to the development of sausage type instability. The performed investigations of cylindrical equilibrium and radial oscillations give a qualitative representation on plasma behaviour in Z-pinch at the initial stage of it compression and expansion as well as on motion in an average plane of the developing sausage type instability
A Multi-Dimensional Magnetohydrodynamic Code in Cylindrical Geometry
Ryu, Dongsu; Yun, Hong Sik; Cheo, Seung-Urn
1995-10-01
We describe the implementation of a multi-dimensional numerical code to solve the equations for ideal magnetohydrodynamics(MHD) in cylindrical geometry. It is based on an explicit finite difference scheme on an Eulerian grid, calld the Total Variation Diminishing (TVD) scheme, which is a second-order accurate extension of the Roe-type upwind scheme. Multiple spatial dimensions are treated through a Strang-type operator splitting. Curvature and source terms are included in a way to insure the formal accuracy of the code to be second order. The constraint of a divergence-free magnetic field is enforced exactly by adding a correction, which involves solving a Poisson equation. The Fourier Analysis and Cyclic Reduction (FACR) method is employed to solve it. Results from a set of tests show that the code handles flows in cylindrical geometry successfully and resolves strong shocks within two to four computational cells. The advantages and limitations of the code are discussed.
Gamma ray absorption of cylindrical fissile material with dual shields
International Nuclear Information System (INIS)
Wu Chenyan; Cheng Yiying; Huang Yongyi; Lu Fuquan; Yang Fujia
2005-01-01
This work analyzed the gamma ray attenuation effect from the self-absorption and shield attenuation perspectively. An exact mathematical equation was given for the geometric factor of the cylindrical fissile material with dual shields. In addition, several approximation approaches suitable for real situation were discussed, especially in the radial and axial directions of the cylinders, since the G-factors have simple forms. Then the space distribution patterns of the G-factor were analyzed based on numerical result and effective ways to solved the geometric information of the cylindrical fissile material, the radii and the heights, were deduced. This method was checked and verified by numerical calculation. Because of the efficiency of the method, it is ideal for application in real situations, such as nuclear safeguards, which demands speed of detection and accuracy of geometric analysis. (authors)
Design algorithm for generatrix profile of cylindrical crowned rollers
Directory of Open Access Journals (Sweden)
Creţu Spiridon
2017-01-01
Full Text Available The cross-section of roller profile controls the pressure distribution in the contact area and radically affects the roller bearings basic dynamic load rating and rating lives. Today the most used roller profiles are the logarithmic profile and cylindrical-crowned (ZB profile. The logarithmic profile has a continuous evolution with no discontinuities till the intersection with the end fillet while ZB profile has two more discontinuities at the intersections points between the crowning circle and straight line generatrix. Using a semianalytical method, a numerical study has been carried out to find the optimum ZB profile for rollers incorporated in cylindrical rollers bearings. The basic reference rating life (L10_r has been used as optimization criterion.
Dynamics of cylindrical domain walls in smectic C liquid crystals
International Nuclear Information System (INIS)
Stewart, I W; Wigham, E J
2009-01-01
An analysis of the dynamics of cylindrical domain walls in planar aligned samples of smectic C liquid crystals is presented. A circular magnetic field, induced by an electric current, drives a time-dependent reorientation of the corresponding radially dependent director field. Nonlinear approximations to the relevant nonlinear dynamic equation, derived from smectic continuum theory, are solved in a comoving coordinated frame: exact solutions are found for a π-wall and numerical solutions are calculated for π/2-walls. Each calculation begins with an assumed initial state for the director that is a prescribed cylindrical domain wall. Such an initial wall will proceed to expand or contract as its central core propagates radially inwards or outwards, depending on the boundary conditions for the director, the elastic constants, the magnitude of the field and the sign of the magnetic anisotropy of the liquid crystal
Shielding and Radiation Characteristics of Cylindrical Layered Bianisotropic Structures
Directory of Open Access Journals (Sweden)
A. Toscano
2005-12-01
Full Text Available In this paper we propose an analytical study in the spectral domainof cylindrical layered structures filled with general bianisotropicmedia and fed by a 3D electric source. The integrated structure ischaracterized in terms of transmission matrices leading to anequivalent circuit representation of the whole multilayered structure.Within the framework of this two-port formalism, we present a newcontribution to the computation of the Green's function arising in theanalysis of multilayered conformal integrated antennas loaded withgeneral bianisotropic materials. We also propose an analytical study ofthe shielding effectiveness of general bianisotropic materials locatedin multilayered, cylindrical configuration. The expression of theshielded fields sustained both by plane wave and arbitrary sources isobtained in a closed analytical form. Numerical results are alsopresented showing effects of electromagnetic parameters on radiationpattern, matching properties and radar cross section of the integratedstructure.
Cylindrization of a PWR core for neutronic calculations
International Nuclear Information System (INIS)
Santos, Rubens Souza dos
2005-01-01
In this work we propose a core cylindrization, starting from a PWR core configuration, through the use of an algorithm that becomes the process automated in the program, independent of the discretization. This approach overcomes the problem stemmed from the use of the neutron transport theory on the core boundary, in addition with the singularities associated with the presence of corners on the outer fuel element core of, existents in the light water reactors (LWR). The algorithm was implemented in a computational program used to identification of the control rod drop accident in a typical PWR core. The results showed that the algorithm presented consistent results comparing with an production code, for a problem with uniform properties. In our conclusions, we suggest, for future works, for analyzing the effect on mesh sizes for the Cylindrical geometry, and to compare the transport theory calculations versus diffusion theory, for the boundary conditions with corners, for typical PWR cores. (author)
Evolution of bulk strain solitons in cylindrical inhomogeneous shells
Energy Technology Data Exchange (ETDEWEB)
Shvartz, A., E-mail: andrew.shvartz@mail.ioffe.ru; Samsonov, A.; Dreiden, G.; Semenova, I. [Ioffe Institute, 26 Politekhnicheskaya, St Petersburg 194021 (Russian Federation)
2015-10-28
Bulk strain solitary waves in nonlinearly elastic thin-walled cylindrical shells with variable geometrical and physical parameters are studied, and equation for the longitudinal strain component with the variable coefficients is derived. A conservative finite difference scheme is proposed, and the results of numerical simulation of the strain soliton evolution in a shell with the abrupt variations of cross section and physical properties of the material are presented.
Analytic, high β, flux conserving equilibria for cylindrical tokamaks
International Nuclear Information System (INIS)
Sigmar, D.J.; Vahala, G.
1978-01-01
Using Grad's theory of generalized differential equations, the temporal evolution from low to high β due to ''adiabatic'' and nonadiabatic (i.e., neutral beam injection) heating of a cylindrical tokamak plasma with circular cross section and peaked current profiles is calculated analytically. The influence of shaping the initial safety factor profile and the beam deposition profile and the effect of minor radius compression on the equilibrium is analyzed
Effective thermoelastic properties of composites with periodicity in cylindrical coordinates
Chatzigeorgiou, George
2012-09-01
The aim of this work is to study composites that present cylindrical periodicity in the microstructure. The effective thermomechanical properties of these composites are identified using a modified version of the asymptotic expansion homogenization method, which accounts for unit cells with shell shape. The microscale response is also shown. Several numerical examples demonstrate the use of the proposed approach, which is validated by other micromechanics methods. © 2012 Elsevier Ltd. All rights reserved.
Theory of semicollisional drift-interchange modes in cylindrical plasmas
International Nuclear Information System (INIS)
Hahm, T.S.; Chen, L.
1985-01-01
Resistive interchange instabilities in cylindrical plasmas are studied, including the effects of electron diamagnetic drift, perpendicular resistivity, and plasma compression. The analyses are pertinent to the semicollisional regime where the effective ion gyro-radius is larger than the resistive layer width. Both analytical and numerical results show that the modes can be completely stabilized by the perpendicular plasma transport. Ion sound effects, meanwhile, are found to be negligible in the semicollisional regime
Characteristics of the low power cylindrical anode layer ion source
International Nuclear Information System (INIS)
Zhao Jie; Tang Deli; Cheng Changming; Geng Shaofei
2009-01-01
A low power cylindrical anode layer ion source and its working characteristic, and the beam distribution are introduced. This ion source has two working states, emanative state and collimated state, and the normal parameters of this system are: working voltage 200-1200 V, discharge current 0.1-1.4A, air pressure 1.9 x 10 -2 -1.7 x 10 -1 Pa, gas flow 5-20 sccm. (authors)
Charged cylindrical polytropes with generalized polytropic equation of state
Energy Technology Data Exchange (ETDEWEB)
Azam, M. [University of Education, Division of Science and Technology, Lahore (Pakistan); Mardan, S.A.; Noureen, I.; Rehman, M.A. [University of the Management and Technology, Department of Mathematics, Lahore (Pakistan)
2016-09-15
We study the general formalism of polytropes in the relativistic regime with generalized polytropic equations of state in the vicinity of cylindrical symmetry. We take a charged anisotropic fluid distribution of matter with a conformally flat condition for the development of a general framework of the polytropes. We discuss the stability of the model by the Whittaker formula and conclude that one of the models developed is physically viable. (orig.)
Finite Amplitude Electron Plasma Waves in a Cylindrical Waveguide
DEFF Research Database (Denmark)
Juul Rasmussen, Jens
1978-01-01
The nonlinear behaviour of the electron plasma wave propagating in a cylindrical plasma waveguide immersed in an infinite axial magnetic field is investigated using the Krylov-Bogoliubov-Mitropolsky perturbation method, by means of which is deduced the nonlinear Schrodinger equation governing....... It is further shown that an oscillatory solution of the Korteweg-de Vries equation, which is derived in the small wavenumber region, satisfies the small wavenumber limit of the nonlinear Schrodinger equation...
Fiber Optic Magnetometers Using Planar And Cylindrical Magnetostrictive Transducers
Bucholtz, F.; Yurek, A. M.; Koo, K. P.; Dandridge, A.
1987-04-01
Fiber optic magnetometers which require high sensitivity at low frequencies (dc-10 Hz) rely on the nonlinear magnetostriction of materials such as amorphous metallic glass alloys. Typically, fiber is bonded to a magnetostrictive sample to convert strain in the sample to phase shift in a fiber interferometer. We present the results of measurements of the frequency dependence and dc and ac magnetic field sensitivity of both planar and cylindrical transducing elements, and discuss the practical advantages and disadvan-tages of each configuration.
Analytic, high β, flux conserving equilibria for cylindrical tokamaks
International Nuclear Information System (INIS)
Sigmar, D.J.; Vahala, G.
1978-09-01
Using Grad's theory of generalized differential equations, the temporal evolution from low to high β due to ''adiabatic'' and nonadiabatic (i.e., neutral beam injection) heating of a cylindrical tokamak plasma with circular cross section and peaked current profiles is calculated analytically. The influence of shaping the initial safety factor profile and the beam deposition profile and the effect of minor radius compression on the equilibrium is analyzed
Novel cylindrical probe for measuring ion temperature in magnetized plasmas
Czech Academy of Sciences Publication Activity Database
Tierens, W.; Komm, Michael; Stöckel, Jan; Van Oost, G.
2010-01-01
Roč. 50, č. 9 (2010), s. 841-846 ISSN 0863-1042 R&D Projects: GA ČR GA202/07/0044 Institutional research plan: CEZ:AV0Z20430508 Keywords : PIC * particle-in-cell * simulation * ion temperature * cylindrical probe * STP * segmented tunnel probe * non-thermal plasma Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.006, year: 2010 http://onlinelibrary.wiley.com/doi/10.1002/ctpp.201010143/abstract
Determining the Temperature Profile in a Cylindrical Sample
Clayton, J. C.
1986-01-01
Power-series solution extrapolates from axial temperature profile. Thermal profile in homogeneous axisymmetric body determined throughout body if axial temperature profile known at any radius. New theory developed as aid in research on growth of mercury cadmium telluride for infrared detectors. In particular, applicable to Bridgman-Stockbarger growth, in which round cylindrical ampoule of molten ternary semiconductor is solidified directionally, from one end to other.
Stability of cylindrical plasma in the Bessel function model
International Nuclear Information System (INIS)
Yamagishi, T.; Gimblett, C.G.
1988-01-01
The stability of free boundary ideal and tearing modes in a cylindrical plasma is studied by examining the discontinuity (Δ') of the helical flux function given by the force free Bessel function model at the singular surface. The m = O and m = 1 free boundary tearing modes become strongly unstable when the singular surface is just inside the plasma boundary for a wide range of longitudinal wave numbers. (author)
An approximate solution for spherical and cylindrical piston problem
Indian Academy of Sciences (India)
presents an example of a flow field in which the flow behind the shock front is highly non-uniform due to ... The unsteady flow of an ideal gas with constant specific heats for spherical or cylindrical symmetry is given ... where &Y uY p are the density, velocity and the pressure of the gas, is the ratio of specific heats; tY r are the ...
DEVELOPMENT OF DEFORMATION STRIPS WHILE STRETCHING OF CYLINDRICAL SAMPLES
Directory of Open Access Journals (Sweden)
Y. V. Vasilevich
2011-01-01
Full Text Available Deformation strips have been experimentally revealed and described while stretching of cylindrical samples by means of computer thermography. It has been established that temperature of shift strip surface grows smoothly up to the stage of crack origin in material defect. Sharp growth of surface temperature occurs when tensile stresses reach tensile strength. Change in surface temperature occurs wavy after destruction (while cooling the sample. Processes of material destruction origin and development characterize temperature changes in deformation strips.
Stripe-PZT Sensor-Based Baseline-Free Crack Diagnosis in a Structure with a Welded Stiffener
Directory of Open Access Journals (Sweden)
Yun-Kyu An
2016-09-01
Full Text Available This paper proposes a stripe-PZT sensor-based baseline-free crack diagnosis technique in the heat affected zone (HAZ of a structure with a welded stiffener. The proposed technique enables one to identify and localize a crack in the HAZ using only current data measured using a stripe-PZT sensor. The use of the stripe-PZT sensor makes it possible to significantly improve the applicability to real structures and minimize man-made errors associated with the installation process by embedding multiple piezoelectric sensors onto a printed circuit board. Moreover, a new frequency-wavenumber analysis-based baseline-free crack diagnosis algorithm minimizes false alarms caused by environmental variations by avoiding simple comparison with the baseline data accumulated from the pristine condition of a target structure. The proposed technique is numerically as well as experimentally validated using a plate-like structure with a welded stiffener, reveling that it successfully identifies and localizes a crack in HAZ.
Jones, Stephanie L; Henry, Sharon M; Raasch, Christine C; Hitt, Juvena R; Bunn, Janice Y
2012-02-01
There is increasing evidence that individuals with non-specific low back pain (LBP) have altered movement coordination. However, the relationship of this neuromotor impairment to recurrent pain episodes is unknown. To assess coordination while minimizing the confounding influences of pain we characterized automatic postural responses to multi-directional support surface translations in individuals with a history of LBP who were not in an active episode of their pain. Twenty subjects with and 21 subjects without non-specific LBP stood on a platform that was translated unexpectedly in 12 directions. Net joint torques of the ankles, knees, hips, and trunk in the frontal and sagittal planes as well as surface electromyographs of 12 lower leg and trunk muscles were compared across perturbation directions to determine if individuals with LBP responded using a trunk stiffening strategy. Individuals with LBP demonstrated reduced peak trunk torques, and enhanced activation of the trunk and ankle muscle responses following perturbations. These results suggest that individuals with LBP use a strategy of trunk stiffening achieved through co-activation of trunk musculature, aided by enhanced distal responses, to respond to unexpected support surface perturbations. Notably, these neuromotor alterations persisted between active pain periods and could represent either movement patterns that have developed in response to pain or could reflect underlying impairments that may contribute to recurrent episodes of LBP. Copyright © 2011 Elsevier Ltd. All rights reserved.
Chai, Dongyul; Juhasz, Tibor; Brown, Donald J.; Jester, James V.
2013-03-01
In this study we test the hypothesis that nonlinear optical (NLO) multiphoton photoactivation of riboflavin using a focused femtosecond (FS) laser light can be used to induce cross-linking (CXL) and mechanically stiffen collagen as a potential clinical therapy for the treatment of keratoconus and corneal ectasia. Riboflavin-soaked, compressed collagen hydrogels are cross-linked using a FS laser tuned to 760 nm and set to either 100 mW (NLO CXL I) or 150 mW (NLO CXL II) of laser power. FS pulses are focused into the hydrogel using a 0.75 NA objective lens, and the hydrogel is three-dimensionally scanned. Measurement of hydrogel stiffness by indentation testing show that the calculated elastic modulus (E) values are significantly increased over twofold following NLO CXL I and II compared with baseline values (P0.05). This data suggests that NLO CXL has a comparable effect to conventional UVA CXL in mechanically stiffening collagen and may provide a safe and effective approach to localize CXL at different regions and depths within the cornea.
Yu, Xudong; Fan, Zheng; Puliyakote, Sreedhar; Castaings, Michel
2018-03-01
Structural health monitoring (SHM) using ultrasonic guided waves has proven to be attractive for the identification of damage in composite plate-like structures, due to its realization of both significant propagation distances and reasonable sensitivity to defects. However, topographical features such as bends, lap joints, and bonded stiffeners are often encountered in these structures, and they are susceptible to various types of defects as a consequence of stress concentration and cyclic loading during the service life. Therefore, the health condition of such features has to be assessed effectively to ensure the safe operation of the entire structure. This paper proposes a novel feature guided wave (FGW) based SHM strategy, in which proper FGWs are exploited as a screening tool to rapidly interrogate the representative stiffener-adhesive bond-composite skin assembly. An array of sensors permanently attached to the vicinity of the feature is used to capture scattered waves from the localized damage occurring in the bond line. This technique is combined with an imaging approach, and the damage reconstruction is achieved by the synthetic focusing algorithm using these scattered signals. The proposed SHM scheme is implemented in both the 3D finite element simulation and the experiment, and the results are in good agreement, demonstrating the feasibility of such SHM strategy.
Chain-Based Communication in Cylindrical Underwater Wireless Sensor Networks
Javaid, Nadeem; Jafri, Mohsin Raza; Khan, Zahoor Ali; Alrajeh, Nabil; Imran, Muhammad; Vasilakos, Athanasios
2015-01-01
Appropriate network design is very significant for Underwater Wireless Sensor Networks (UWSNs). Application-oriented UWSNs are planned to achieve certain objectives. Therefore, there is always a demand for efficient data routing schemes, which can fulfill certain requirements of application-oriented UWSNs. These networks can be of any shape, i.e., rectangular, cylindrical or square. In this paper, we propose chain-based routing schemes for application-oriented cylindrical networks and also formulate mathematical models to find a global optimum path for data transmission. In the first scheme, we devise four interconnected chains of sensor nodes to perform data communication. In the second scheme, we propose routing scheme in which two chains of sensor nodes are interconnected, whereas in third scheme single-chain based routing is done in cylindrical networks. After finding local optimum paths in separate chains, we find global optimum paths through their interconnection. Moreover, we develop a computational model for the analysis of end-to-end delay. We compare the performance of the above three proposed schemes with that of Power Efficient Gathering System in Sensor Information Systems (PEGASIS) and Congestion adjusted PEGASIS (C-PEGASIS). Simulation results show that our proposed 4-chain based scheme performs better than the other selected schemes in terms of network lifetime, end-to-end delay, path loss, transmission loss, and packet sending rate. PMID:25658394
Research on cylindrical indexing cam’s unilateral machining
Directory of Open Access Journals (Sweden)
Junhua Chen
2015-08-01
Full Text Available The cylindrical cam ridge of the indexer is a spatial curved surface, which is difficult to design and machine. The cylindrical cam has some defects after machining because conventional machining methods have inaccuracies. This article aims at proposing a precise way to machine an indexing cam, using basic motion analysis and analytic geometry approach. Analytical methodology is first applied in the cam’s motion analysis, to obtain an error-free cam follower’s trajectory formula, and then separate the continuous trajectory curve by thousandth resolution, to create a three-dimensional discrete trajectory curve. Planar formulae and spherical formulae can be built on the loci. Based on the machine principle, the cutting cutter’s position and orientation will be taken into account. This article calculates the formula set as presented previously and obtains the ultimate cutter path coordinate value. The new error-free cutter path trajectory is called the unilateral machining trajectory. The earned results will compile into numerical control processing schedule. This processing methodology gives a convenient and precision way to manufacture a cylindrical indexing cam. Experimental results are also well supported.
Thermal modeling of cylindrical lithium ion battery during discharge cycle
International Nuclear Information System (INIS)
Jeon, Dong Hyup; Baek, Seung Man
2011-01-01
Highlights: → Transient and thermo-electric finite element analysis (FEA) of cylindrical lithium ion (Li-ion) battery was presented. → This model provides the thermal behavior of Li-ion battery during discharge cycle. → A LiCoO 2 /C battery at various discharge rates was investigated. → The contribution of heat source due to joule heating was significant at a high discharge rate. → The contribution of heat source due to entropy change was dominant at a low discharge rate. - Abstract: Transient and thermo-electric finite element analysis (FEA) of cylindrical lithium ion (Li-ion) battery was presented. The simplified model by adopting a cylindrical coordinate was employed. This model provides the thermal behavior of Li-ion battery during discharge cycle. The mathematical model solves conservation of energy considering heat generations due to both joule heating and entropy change. A LiCoO 2 /C battery at various discharge rates was investigated. The temperature profile from simulation had similar tendency with experiment. The temperature profile was decomposed with contributions of each heat sources and was presented at several discharge rates. It was found that the contribution of heat source due to joule heating was significant at a high discharge rate, whereas that due to entropy change was dominant at a low discharge rate. Also the effect of cooling condition and the LiNiCoMnO 2 /C battery were analyzed for the purpose of temperature reduction.
Chain-based communication in cylindrical underwater wireless sensor networks.
Javaid, Nadeem; Jafri, Mohsin Raza; Khan, Zahoor Ali; Alrajeh, Nabil; Imran, Muhammad; Vasilakos, Athanasios
2015-02-04
Appropriate network design is very significant for Underwater Wireless Sensor Networks (UWSNs). Application-oriented UWSNs are planned to achieve certain objectives. Therefore, there is always a demand for efficient data routing schemes, which can fulfill certain requirements of application-oriented UWSNs. These networks can be of any shape, i.e., rectangular, cylindrical or square. In this paper, we propose chain-based routing schemes for application-oriented cylindrical networks and also formulate mathematical models to find a global optimum path for data transmission. In the first scheme, we devise four interconnected chains of sensor nodes to perform data communication. In the second scheme, we propose routing scheme in which two chains of sensor nodes are interconnected, whereas in third scheme single-chain based routing is done in cylindrical networks. After finding local optimum paths in separate chains, we find global optimum paths through their interconnection. Moreover, we develop a computational model for the analysis of end-to-end delay. We compare the performance of the above three proposed schemes with that of Power Efficient Gathering System in Sensor Information Systems (PEGASIS) and Congestion adjusted PEGASIS (C-PEGASIS). Simulation results show that our proposed 4-chain based scheme performs better than the other selected schemes in terms of network lifetime, end-to-end delay, path loss, transmission loss, and packet sending rate.
A mathematical model of microalgae growth in cylindrical photobioreactor
Bakeri, Noorhadila Mohd; Jamaian, Siti Suhana
2017-08-01
Microalgae are unicellular organisms, which exist individually or in chains or groups but can be utilized in many applications. Researchers have done various efforts in order to increase the growth rate of microalgae. Microalgae have a potential as an effective tool for wastewater treatment, besides as a replacement for natural fuel such as coal and biodiesel. The growth of microalgae can be estimated by using Geider model, which this model is based on photosynthesis irradiance curve (PI-curve) and focused on flat panel photobioreactor. Therefore, in this study a mathematical model for microalgae growth in cylindrical photobioreactor is proposed based on the Geider model. The light irradiance is the crucial part that affects the growth rate of microalgae. The absorbed photon flux will be determined by calculating the average light irradiance in a cylindrical system illuminated by unidirectional parallel flux and considering the cylinder as a collection of differential parallelepipeds. Results from this study showed that the specific growth rate of microalgae increases until the constant level is achieved. Therefore, the proposed mathematical model can be used to estimate the rate of microalgae growth in cylindrical photobioreactor.
The magnetic properties of the hollow cylindrical ideal remanence magnet
Energy Technology Data Exchange (ETDEWEB)
Bjørk, R., E-mail: rabj@dtu.dk
2016-10-15
We consider the magnetic properties of the hollow cylindrical ideal remanence magnet. This magnet is the cylindrical permanent magnet that generates a uniform field in the cylinder bore, using the least amount of magnetic energy to do so. The remanence distribution of this magnet is derived and the generated field is compared to that of a Halbach cylinder of equal dimensions. The ideal remanence magnet is shown in most cases to generate a significantly lower field than the equivalent Halbach cylinder, although the field is generated with higher efficiency. The most efficient Halbach cylinder is shown to generate a field exactly twice as large as the equivalent ideal remanence magnet. - Highlights: • The ideal cylindrical magnet that produces a uniform field in the bore is examined in detail. • An ideal magnet is one that utilizes the magnets most efficiently. • The ideal magnet always produce a field lower than half of its maximum remanence. • The ideal magnet is compared to the Halbach cylinder. • The Halbach cylinder always produce a larger field than an equivalently sized ideal magnet.
The magnetic properties of the hollow cylindrical ideal remanence magnet
International Nuclear Information System (INIS)
Bjørk, R.
2016-01-01
We consider the magnetic properties of the hollow cylindrical ideal remanence magnet. This magnet is the cylindrical permanent magnet that generates a uniform field in the cylinder bore, using the least amount of magnetic energy to do so. The remanence distribution of this magnet is derived and the generated field is compared to that of a Halbach cylinder of equal dimensions. The ideal remanence magnet is shown in most cases to generate a significantly lower field than the equivalent Halbach cylinder, although the field is generated with higher efficiency. The most efficient Halbach cylinder is shown to generate a field exactly twice as large as the equivalent ideal remanence magnet. - Highlights: • The ideal cylindrical magnet that produces a uniform field in the bore is examined in detail. • An ideal magnet is one that utilizes the magnets most efficiently. • The ideal magnet always produce a field lower than half of its maximum remanence. • The ideal magnet is compared to the Halbach cylinder. • The Halbach cylinder always produce a larger field than an equivalently sized ideal magnet.
Sub-aperture stitching test of a cylindrical mirror with large aperture
Xue, Shuai; Chen, Shanyong; Shi, Feng; Lu, Jinfeng
2016-09-01
Cylindrical mirrors are key optics of high-end equipment of national defense and scientific research such as high energy laser weapons, synchrotron radiation system, etc. However, its surface error test technology develops slowly. As a result, its optical processing quality can not meet the requirements, and the developing of the associated equipment is hindered. Computer Generated-Hologram (CGH) is commonly utilized as null for testing cylindrical optics. However, since the fabrication process of CGH with large aperture is not sophisticated yet, the null test of cylindrical optics with large aperture is limited by the aperture of the CGH. Hence CGH null test combined with sub-aperture stitching method is proposed to break the limit of the aperture of CGH for testing cylindrical optics, and the design of CGH for testing cylindrical surfaces is analyzed. Besides, the misalignment aberration of cylindrical surfaces is different from that of the rotational symmetric surfaces since the special shape of cylindrical surfaces, and the existing stitching algorithm of rotational symmetric surfaces can not meet the requirements of stitching cylindrical surfaces. We therefore analyze the misalignment aberrations of cylindrical surfaces, and study the stitching algorithm for measuring cylindrical optics with large aperture. Finally we test a cylindrical mirror with large aperture to verify the validity of the proposed method.
Directory of Open Access Journals (Sweden)
Dao Van Dung
Full Text Available Abstract In this research work, an exact analytical solution for frequency characteristics of the free vibration of rotating functionally graded material (FGM truncated conical shells reinforced by eccentric FGM stringers and rings has been investigated by the displacement function method. Material properties of shell and stiffeners are assumed to be graded in the thickness direction according to a simple power law distribution. The change of spacing between stringers is considered. Using the Donnell shell theory, Leckhnisky smeared stiffeners technique and taking into account the influences of centrifugal force and Coriolis acceleration the governing equations are derived. For stiffened FGM conical shells, it is difficult that free vibration equations are a couple set of three variable coefficient partial differential equations. By suitable transformations and applying Galerkin method, this difficulty is overcome in the paper. The sixth order polynomial equation for w is obtained and it is used to analyze the frequency characteristics of rotating ES-FGM conical shells. Effects of stiffener, geometrics parameters, cone angle, vibration modes and rotating speed on frequency characteristics of the shell forward and backward wave are discussed in detail. The present approach proves to be reliable and accurate by comparing with published results available in the literature.
Investigation of carbon rod stiffeners for wing flutter mitigation on a supersonic business jet
Simmons, Frank, III
Aeroelastic issues are a primary design consideration for any supersonic aircraft wing design. Previous design configurations have determined that flutter is a phenomenon that must be considered early in the design process due to the significant impact it can have on wing and empennage structure. This is due in part to the extremely thin airfoil cross sections required. Flutter mitigation can be achieved by adding additional structural weight for increased stiffness to an airfoil section. However, in the case of supersonic aircraft, airframe weight not only directly impacts aircraft performance such as fuel consumption and payload capacity, but also has a direct impact on the strength of the sonic boom that is created and propagated to the ground. The ultimate goal of any supersonic aircraft wing design is a wing section that is extremely lightweight but with the stiffness required to delay the onset of flutter. To increase the stiffness of a supersonic wing, special materials and design configurations will be required. It was theorized that carbon rod technology could be utilized to increase the bending and torsional stiffness of a wing section with a significant weight savings over conventional design techniques. This was achieved by incorporating several carbon rods into a bundle that were bonded together with an adhesive. These carbon rod bundles were then bonded to the upper and lower surface of a full-scale outer wing section of a conceptual supersonic wing to simulate stiffeners or stringers. Two wing test articles were built incorporating the carbon rod stringer concept. The first test article oriented the carbon rod stringers parallel to the rear spar. This was similar to conventional design maximizing the wing section bending stiffness. The second test article placed the carbon rod stringers at an angle of 30° to the rear spar with the upper surface stringers opposite in direction to the lower surface stringers. By angling the carbon rod stringers, the
Cylindrical Taylor states conserving total absolute magnetic helicity
Low, B. C.; Fang, F.
2014-09-01
The Taylor state of a three-dimensional (3D) magnetic field in an upright cylindrical domain V is derived from first principles as an extremum of the total magnetic energy subject to a conserved, total absolute helicity Habs. This new helicity [Low, Phys. Plasmas 18, 052901 (2011)] is distinct from the well known classical total helicity and relative total helicity in common use to describe wholly-contained and anchored fields, respectively. A given field B, tangential along the cylindrical side of V, may be represented as a unique linear superposition of two flux systems, an axially extended system along V and a strictly transverse system carrying information on field-circulation. This specialized Chandrasekhar-Kendall representation defines Habs and permits a neat formulation of the boundary-value problem (BVP) for the Taylor state as a constant-α force-free field, treating 3D wholly-contained and anchored fields on the same conceptual basis. In this formulation, the governing equation is a scalar integro-partial differential equation (PDE). A family of series solutions for an anchored field is presented as an illustration of this class of BVPs. Past treatments of the constant-α field in 3D cylindrical geometry are based on a scalar Helmholtz PDE as the governing equation, with issues of inconsistency in the published field solutions discussed over time in the journal literature. The constant-α force-free equation reduces to a scalar Helmholtz PDE only as special cases of the 3D integro-PDE derived here. In contrast, the constant-α force-free equation and the scalar Helmholtz PDE are absolutely equivalent in the spherical domain as discussed in Appendix. This theoretical study is motivated by the investigation of the Sun's corona but the results are also relevant to laboratory plasmas.
Cylindrical plasmas generated by an annular beam of ultraviolet light
Energy Technology Data Exchange (ETDEWEB)
Thomas, D. M., E-mail: dmt107@imperial.ac.uk [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom); Allen, J. E., E-mail: John.Allen@maths.ox.ac.uk [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom); University College, University of Oxford, Oxford OX1 4BH, United Kingdom and OCIAM, Mathematical Institute, University of Oxford, Oxford OX2 6GG (United Kingdom)
2015-07-15
We investigate a cylindrical plasma system with ionization, by an annular beam of ultraviolet light, taking place only in the cylinder's outer region. In the steady state, both the outer and inner regions contain a plasma, with that in the inner region being uniform and field-free. At the interface between the two regions, there is an infinitesimal jump in ion density, the magnitude approaching zero in the quasi-neutral (λ{sub D} → 0) limit. The system offers the possibility of producing a uniform stationary plasma in the laboratory, hitherto obtained only with thermally produced alkali plasmas.
Three-dimensional global fluid simulations of cylindrical magnetized plasmas
DEFF Research Database (Denmark)
Naulin, Volker; Windisch, T.; Grulke, O.
2008-01-01
and sinks. The traditional scale separation paradigm is not applied in the simulation model to account for the important evolution of the background profiles due to the dynamics of turbulent fluctuations. Furthermore, the fluid modeling of sheath boundary conditions, which determine the plasma conditions......Plasma dynamics in cylindrical geometry, with many well diagnosed experiments in operation worldwide, is of fundamental interest. These linear machines can provide an unique testing ground for direct and detailed comparisons of numerical simulations of nonlinear plasma dynamics with experiments...
Self shielding in cylindrical fissile sources in the APNea system
International Nuclear Information System (INIS)
Hensley, D.
1997-01-01
In order for a source of fissile material to be useful as a calibration instrument, it is necessary to know not only how much fissile material is in the source but also what the effective fissile content is. Because uranium and plutonium absorb thermal neutrons so Efficiently, material in the center of a sample is shielded from the external thermal flux by the surface layers of the material. Differential dieaway measurements in the APNea System of five different sets of cylindrical fissile sources show the various self shielding effects that are routinely encountered. A method for calculating the self shielding effect is presented and its predictions are compared with the experimental results
3D Rigid Registration by Cylindrical Phase Correlation Method
Czech Academy of Sciences Publication Activity Database
Bican, Jakub; Flusser, Jan
2009-01-01
Roč. 30, č. 10 (2009), s. 914-921 ISSN 0167-8655 R&D Projects: GA MŠk 1M0572; GA ČR GA102/08/1593 Grant - others:GAUK(CZ) 48908 Institutional research plan: CEZ:AV0Z10750506 Keywords : 3D registration * correlation methods * Image registration Subject RIV: BD - Theory of Information Impact factor: 1.303, year: 2009 http://library.utia.cas.cz/separaty/2009/ZOI/bican-3d digit registration by cylindrical phase correlation method.pdf
Nonaxisymmetric radiative transfer in inhomogeneous cylindrical media with anisotropic scattering
International Nuclear Information System (INIS)
Grissa, H.; Askri, F.; Ben Salah, M.; Ben Nasrallah, S.
2008-01-01
In this paper, the control volume finite element method (CVFEM) is applied for the first time to solve nonaxisymmetric radiative transfer in inhomogeneous, emitting, absorbing and anisotropic scattering cylindrical media. Mathematical formulations as well as numerical implementation are given and the final discretized equations are based on similar meshes used for convective and conductive heat transfer in computational fluid dynamic analysis. In order to test the efficiency of the developed method, four nonaxisymmetric problems have been examined. Also, the grid dependence and the false scattering of the CVFEM are investigated and compared with the finite volume method and the discrete ordinates interpolation method
Dynamic plastic buckling of rings and cylindrical shells
International Nuclear Information System (INIS)
Jones, N.; Okawa, D.M.
1975-01-01
A theoretical analysis is developed to predict the dynamic plastic buckling of a long, impulsively loaded cylindrical shell. This theoretical work is used to examine various features of plastic buckling and to assess the importance of several approximations which previous authors have introduced in dynamic plastic buckling studies. In particular, the influence of a time-dependent circumferential membrane force, the sharpness of the peaks in the displacement and velocity amplification functions, the restrictions which are implicit when employing the Prandtl-Reuss equations in this class of problems, and the limitations due to elastic unloading are examined in some detail. (Auth.)
Controlling the Plasma Flow in the Miniaturized Cylindrical Hall Thruster
International Nuclear Information System (INIS)
Smirnov, A.; Raitses, Y.; Fisch, N.J.
2008-01-01
A substantial narrowing of the plume of the cylindrical Hall thruster (CHT) was observed upon the enhancement of the electron emission from the hollow cathode discharge, which implies the possibility for the thruster efficiency increase due to the ion beam focusing. It is demonstrated that the miniaturized CHT can be operated in the non-self-sustained regime, with the discharge current limited by the cathode electron emission. The thruster operation in this mode greatly expands the range of the plasma and discharge parameters normally accessible for the CHT.
Relaxation rates studies in an argon cylindrical plasma
International Nuclear Information System (INIS)
Hernandez, M.A.; Dengra, A.; Colomer, V.
1986-01-01
The single Langmuir probe method has been used to determine the relaxation rates of the electron density and temperature in an argon afterglow dc cylindrical plasma. The ion-electron recombination was found to be the fundamental mechanism of density decay during the early afterglow while the ambipolar diffusion controlles the density decay for later afterglow. Electron temperature cooling curves have been interpreted via electron-neutral collisons. Measurements of the electron-ion recombination and the ambipolar diffusion coefficients have been made, as well as of the electron-neutral collision frequency and the momentum transfer cross sections. Good agreement is obtained with previously published data. (author)
Cylindrical Three-Dimensional Porous Anodic Alumina Networks
Directory of Open Access Journals (Sweden)
Pedro M. Resende
2016-11-01
Full Text Available The synthesis of a conformal three-dimensional nanostructure based on porous anodic alumina with transversal nanopores on wires is herein presented. The resulting three-dimensional network exhibits the same nanostructure as that obtained on planar geometries, but with a macroscopic cylindrical geometry. The morphological analysis of the nanostructure revealed the effects of the initial defects on the aluminum surface and the mechanical strains on the integrity of the three-dimensional network. The results evidence the feasibility of obtaining 3D porous anodic alumina on non-planar aluminum substrates.
Biomedical Optoacoustic Tomograph Based on a Cylindrical Focusing PVDF Antenna
Subochev, P. V.; Postnikova, A. S.; Koval'chuk, A. V.; Turchin, I. V.
2017-08-01
We developed an optoacoustic tomograph with hand-held probe designed for optoacoustic imaging of biological tissues. The hand-held probe consists of a fiber-optic bundle for delivery of pulsed laser radiation to the studied object and a cylindrical focusing 64-element antenna for the detection of optoacoustic pulses. The capabilities of the tomograph to visualize the model blood vessels were studied experimentally using electronic and electronic-mechanical scanning. The achieved axial/lateral spatial resolution is 200/400 μm, the imaging depth is 18 mm, and the maximum B-scan acquisition rate is 10 Hz.
Dynamic characteristics of cylindrical shells considering Fluid-structure interaction
International Nuclear Information System (INIS)
Jhung, Myung Jo; Kim, Wal Tae; Ryu, Yong Ho
2009-01-01
To assure the reliability of cylinders or shells with fluid-filled annulus, it is necessary to investigate the modal characteristics considering fluid-structure interaction effect. In this study, theoretical background and several finite element models are developed for cylindrical shells with fluid-filled annulus considering fluid-structure interaction. The effect of the inclusion of the fluid-filled annulus on the natural frequencies is investigated, which frequencies are used for typical dynamic analyses such as responses spectrum, power spectral density and unit load excitation. Their response characteristics are addressed with respect to the various representations of the fluid-structure interaction effect
Solidification of subcooled gallium poured into a vertical cylindrical mold
Dubovsky, Vadim; Harary, Itay; Assis, Eli; Ziskind, Gennady; Letan, Ruth
2016-01-01
The present investigation is aimed at the solidification of subcooled liquid gallium. The gallium, in its liquid state, is contained in a cylindrical shell of copper or polypropylene, and poured into the shell, which is immersed in a cold bath. The experimental degree of subcooling varied between 5°C and 45°C. The phenomena empirically observed have been simulated in four stages: subcooling of the liquid gallium down to its nucleation temperature, a rapid transfer from nucleation to the stabl...
Cylindrical prestressed concrete pressure vessel for a nuclear power plant
International Nuclear Information System (INIS)
Horner, M.; Hodzic, A.; Haferkamp, D.
1976-01-01
A prestressed concrete pressure vessel for a HTGR is proposed which encloses, in addition to the reactor core, not only the heat-exchanging facilities but also the turbine unit. The reinforcement of the cylindrical concrete body is to be carried out with special care, it is provided for horizontal tendons, the prestressed concrete pressure vessel has a wire-winding device, while the longitudinal reinforcement is achieved by tendous guided in parallel to the vesses axes through the interspaces between the pods. (UWI) [de
Christiansen filter realized by an odd smooth cylindrical lens.
Li, Jian; Goddard, N; Xie, Kang
2010-01-01
The Christiansen filter that is realized by odd smooth cylindrical lenses is analyzed in detail. Several popular filtering functions are discussed. The corresponding lens profile functions are obtained by an inverse scattering theory, which enables the filter to synthesize a desired prescribed response function. This kind of Christiansen filter has a passband narrower than that of the traditional Christiansen filter. Three Christiansen filters centered at 545 nm with full width at half-maximum of 2 nm are synthesized, and the approach to a better suppression of halos from the main transmission peak of the filters is presented in a systematic way.
Plasticity around an Axial Surface Crack in a Cylindrical Shell
DEFF Research Database (Denmark)
Krenk, Steen
1979-01-01
field in an axially cracked cylindrical shell arising from use of classical eighth order shallow shell theory is removed when use is made of a tenth order shell theory which accounts for transverse shear deformations. Although the membrane stresses are only moderately affected, the influence...... and Ratwani,3–5 it generalises Dugdale's assumption of a concentrated yield zone in the plane of the crack but, contrary to that model, transverse shear effects are included and a continuous stress distribution is assumed in the yield zone. The inherent difficulties arising from the use of shell theory...
Yadav, Amit; Panda, Sarat Kumar; Dey, Tanish
2017-11-01
Present analysis deals with nonlinear flexural-torsional vibration and dynamic instability of thin-walled stiffener beam with open section subjected to harmonic in-plane loading. The static and dynamic components of the applied harmonic in-plane loading are assumed to vary uniformly. A set of nonlinear partial differential equations (PDEs) describing the vibration of system is derived. Using Galerkin's method, these partial differential equations are reduced into coupled Mathieu equations. The steady state response of the system is determined by solving the condition for a non-trivial solution. The principal regions of parametric resonance are determined using the method suggested by Bolotin. The numerical results are presented to investigate the effect of aspect ratios, boundary conditions and static load factor on the frequency-amplitude responses and instability regions.
Directory of Open Access Journals (Sweden)
Fadhlika Ridha
2015-02-01
Full Text Available Pada proses pembuatan pupuk di PKT-5, berbagai gas limbah berbahaya dimusnahkan dengan cara membakarnya melalui Flare, sebelum terbakar di Flare gas-gas tersebut dialirkan dan ditampung pada sebuah Vessel bertekanan atau biasa disebut Vessel High Pressure Flare Knock Out Drum. Dalam perancangan konstruksinya perlu dilakukan analisis sehingga desain dari vessel tersebut sesuai dengan yang diharapkan dan aman untuk dioperasikan. Penelitian ini dilakukan dengan mensimulasikan desain dari Vessel KO Drum menggunakan perhitungan manual sesuai 2007 ASME BPVC Section VIII Division 1 dan Software Compress 6258. Perhitungan dilakukan pada desain head, shell, saddle, nozzle, stiffener ring secara manual dan menggunakan software untuk mengetahui tegangan-tegangan yang terjadi. Selanjutnya dari kedua metode tersebut akan dibandingan hasil perhitungan manual & software.
Application of the Shell/3D Modeling Technique for the Analysis of Skin-Stiffener Debond Specimens
Krueger, Ronald; O'Brien, T. Kevin; Minguet, Pierre J.
2002-01-01
The application of a shell/3D modeling technique for the simulation of skin/stringer debond in a specimen subjected to three-point bending is demonstrated. The global structure was modeled with shell elements. A local three-dimensional model, extending to about three specimen thicknesses on either side of the delamination front was used to capture the details of the damaged section. Computed total strain energy release rates and mixed-mode ratios obtained from shell/13D simulations were in good agreement with results obtained from full solid models. The good correlations of the results demonstrated the effectiveness of the shell/3D modeling technique for the investigation of skin/stiffener separation due to delamination in the adherents.
Naumann, E. C.
1972-01-01
Vibration tests were carried out on truncated-cone shells with widely spaced ring stiffeners. The models were excited by an air shaker for LF modes and by small electrodynamic shakers for HF modes. The Novozhilov thin shell theory according to which a ring is an assembly of an arbitrary number of segments, each being a short truncated-cone shell of uniform thickness, is used in the analysis of the results. A mobile, noncontacting, displacement-sensitive sensor system developed by the author was used in the tests. Tests results are given for a free-free 60-deg cone and for a clamped-free 60-deg cone. The tests are characterized as having considerable value for the classification of prevalent multimode responses in shells of this type.
Directory of Open Access Journals (Sweden)
Pedram Masoud
2014-03-01
Full Text Available Nowadays aluminum stiffened plates are one of the major constituents of the marine structures, espe¬cially high-speed vessels. On one hand, these structures are subject to various forms of loading in the harsh sea envi¬ronment, like hydrostatic lateral pressures and in-plane compression. On the other hand, fusion welding is often used to assemble those panels. The common marine aluminum alloys in the both 5,000 and 6,000 series, however, lose a re¬markable portion of their load carrying capacity due to welding. This paper presents the results of sophisticated finite-element investigations considering both geometrical and mechanical imperfections. The tested models were those pro¬posed by the ultimate strength committee of 15th ISSC. The presented data illuminates the effects of welding on the strength of aluminum plates under above-mentioned load conditions.
Stoner, Mary Cecilia; Hehir, Austin R.; Ivanco, Marie L.; Domack, Marcia S.
2016-01-01
This cost-benefit analysis assesses the benefits of the Advanced Near Net Shape Technology (ANNST) manufacturing process for fabricating integrally stiffened cylinders. These preliminary, rough order-of-magnitude results report a 46 to 58 percent reduction in production costs and a 7-percent reduction in weight over the conventional metallic manufacturing technique used in this study for comparison. Production cost savings of 35 to 58 percent were reported over the composite manufacturing technique used in this study for comparison; however, the ANNST concept was heavier. In this study, the predicted return on investment of equipment required for the ANNST method was ten cryogenic tank barrels when compared with conventional metallic manufacturing. The ANNST method was compared with the conventional multi-piece metallic construction and composite processes for fabricating integrally stiffened cylinders. A case study compared these three alternatives for manufacturing a cylinder of specified geometry, with particular focus placed on production costs and process complexity, with cost analyses performed by the analogy and parametric methods. Furthermore, a scalability study was conducted for three tank diameters to assess the highest potential payoff of the ANNST process for manufacture of large-diameter cryogenic tanks. The analytical hierarchy process (AHP) was subsequently used with a group of selected subject matter experts to assess the value of the various benefits achieved by the ANNST method for potential stakeholders. The AHP study results revealed that decreased final cylinder mass and quality assurance were the most valued benefits of cylinder manufacturing methods, therefore emphasizing the relevance of the benefits achieved with the ANNST process for future projects.
Directory of Open Access Journals (Sweden)
Maryna Perepelyuk
Full Text Available Tissues including liver stiffen and acquire more extracellular matrix with fibrosis. The relationship between matrix content and stiffness, however, is non-linear, and stiffness is only one component of tissue mechanics. The mechanical response of tissues such as liver to physiological stresses is not well described, and models of tissue mechanics are limited. To better understand the mechanics of the normal and fibrotic rat liver, we carried out a series of studies using parallel plate rheometry, measuring the response to compressive, extensional, and shear strains. We found that the shear storage and loss moduli G' and G" and the apparent Young's moduli measured by uniaxial strain orthogonal to the shear direction increased markedly with both progressive fibrosis and increasing compression, that livers shear strain softened, and that significant increases in shear modulus with compressional stress occurred within a range consistent with increased sinusoidal pressures in liver disease. Proteoglycan content and integrin-matrix interactions were significant determinants of liver mechanics, particularly in compression. We propose a new non-linear constitutive model of the liver. A key feature of this model is that, while it assumes overall liver incompressibility, it takes into account water flow and solid phase compressibility. In sum, we report a detailed study of non-linear liver mechanics under physiological strains in the normal state, early fibrosis, and late fibrosis. We propose a constitutive model that captures compression stiffening, tension softening, and shear softening, and can be understood in terms of the cellular and matrix components of the liver.
Krueger, Ronald; Minguet, Pierre J.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
The debonding of a skin/stringer specimen subjected to tension was studied using three-dimensional volume element modeling and computational fracture mechanics. Mixed mode strain energy release rates were calculated from finite element results using the virtual crack closure technique. The simulations revealed an increase in total energy release rate in the immediate vicinity of the free edges of the specimen. Correlation of the computed mixed-mode strain energy release rates along the delamination front contour with a two-dimensional mixed-mode interlaminar fracture criterion suggested that in spite of peak total energy release rates at the free edge the delamination would not advance at the edges first. The qualitative prediction of the shape of the delamination front was confirmed by X-ray photographs of a specimen taken during testing. The good correlation between prediction based on analysis and experiment demonstrated the efficiency of a mixed-mode failure analysis for the investigation of skin/stiffener separation due to delamination in the adherents. The application of a shell/3D modeling technique for the simulation of skin/stringer debond in a specimen subjected to three-point bending is also demonstrated. The global structure was modeled with shell elements. A local three-dimensional model, extending to about three specimen thicknesses on either side of the delamination front was used to capture the details of the damaged section. Computed total strain energy release rates and mixed-mode ratios obtained from shell/3D simulations were in good agreement with results obtained from full solid models. The good correlations of the results demonstrated the effectiveness of the shell/3D modeling technique for the investigation of skin/stiffener separation due to delamination in the adherents.
Damping Analysis of Cylindrical Composite Structures with Enhanced Viscoelastic Properties
Kliem, Mathias; Høgsberg, Jan; Vanwalleghem, Joachim; Filippatos, Angelos; Hoschützky, Stefan; Fotsing, Edith-Roland; Berggreen, Christian
2018-04-01
Constrained layer damping treatments are widely used in mechanical structures to damp acoustic noise and mechanical vibrations. A viscoelastic layer is thereby applied to a structure and covered by a stiff constraining layer. When the structure vibrates in a bending mode, the viscoelastic layer is forced to deform in shear mode. Thus, the vibration energy is dissipated as low grade frictional heat. This paper documents the efficiency of passive constrained layer damping treatments for low frequency vibrations of cylindrical composite specimens made of glass fibre-reinforced plastics. Different cross section geometries with shear webs have been investigated in order to study a beneficial effect on the damping characteristics of the cylinder. The viscoelastic damping layers are placed at different locations within the composite cylinder e.g. circumferential and along the neutral plane to evaluate the location-dependent efficiency of constrained layer damping treatments. The results of the study provide a thorough understanding of constrained layer damping treatments and an improved damping design of the cylindrical composite structure. The highest damping is achieved when placing the damping layer in the neutral plane perpendicular to the bending load. The results are based on free decay tests of the composite structure.
Cylindrical diffractive lenses recorded on PVA/AA photopolymers
Fernández, R.; Gallego, S.; Márquez, A.; Navarro-Fuster, V.; Francés, J.; Neipp, C.; Beléndez, A.; Pascual, I.
2016-04-01
Photopolymers are optical recording materials appealing for many different applications such as holography, data storage, interconnectors, solar concentrations, or wave-guides fabrication. Recently the capacity of photopolymers to record diffractive optical elements (DOE's) has been investigated. Different authors have reported proposes to record DOE like fork gratings, photonics structures, lenses, sinusoidal, blazed or fork gratings. In these experiments there are different experimental set-ups and different photopolymers. In this work due to the improvement in the spatial light modulation technology together with the photopolymer science we propose a recording experimental system of DOE using a Liquid Cristal based on Silicon (LCoS) display as a master to store complex DOE like cylindrical lenses. This technology permits us an accurate control of the phase and the amplitude of the recording beam, with a very small pixel size. The main advantage of this display is that permit us to modify the DOE automatically, we use the software of the LCoS to send the voltage to each pixel In this work we use a photopolymer composed by acrylamide (AA) as polymerizable monomer and polyvinyl alcohol (PVA). We use a coverplated and index matched photopolymer to avoid the influence of the thickness variation on the transmitted light. In order to reproduce the material behaviour during polymerization, we have designed our model to simulate cylindrical lenses and used Fresnel propagation to simulate the light propagation through the DOE and analyze the focal plane and the properties of the recorded lenses.
A torquing shearing interferometer for cylindrical wire array experiments.
Pikuz, S A; Schrafel, P C; Shelkovenko, T A; Kusse, B R
2008-10-01
In standard shearing interferometry, a single probing beam passes through a perturbing medium and is then split into two beams. A linear shift results in an overlap, an interference, and a fringe pattern yielding the perturbing medium density profile. The probing beam usually needs to be larger than the perturbing medium so that part of it passes through a well separated low density region. During early time axial (end-on) views of imploding cylindrical wire arrays low density regions lie in between the high density regions that are near the initial wire positions. In addition, for end-on viewing, the probing beam diameter is limited by electrodes and is comparable to the array diameter. In this case a linear translation will not work but the overlap can be accomplished by an azimuthal rotation of one beam with respect to the other. Such a torquing shearing interferometer has been set up on the COBRA experiment to give time resolved, radial, and azimuthal electron density profiles during early time cylindrical wire array implosions.
Research on a lubricating grease print process for cylindrical cylinder
Yang, Liu; Zhang, Xuan; Wang, XianYan; Tan, XiaoYan
2017-09-01
In vehicle braking system and clutch system of transmission, there is always a kind of cylindrical component dose reciprocating motion. The main working method is the reciprocating motion between the rubber sealing parts and cylindrical parts, the main factor affects the service life of the product is the lubricating performance of the moving parts. So the lubricating performance between cylinders and rubber sealing rings is particularly important, same as the quality of the grease applies on the surface of the surface of cylinder. Traditional method of manually applying grease has some defects such as applying unevenly, applying tools like brush and cloth easily falls off and affect the cleanness of products, contact skin easily cause allergy, waste grease due to the uncontrollable of grease quantity using in applying, low efficiency of manual operation. An automatic, quantitative and high pressure applying equipment is introduced in this document to replace the traditional manually applying method, which can guarantee the applying quality of the grease which are painted on the surface of cylinder and bring economic benefits to the company.
Ultrasound cylindrical phased array for transoesophageal thermal therapy: initial studies
Energy Technology Data Exchange (ETDEWEB)
Melodelima, David [INSERM, Unite 556, 151 Cours Albert Thomas, 69424 Lyon (France); Lafon, Cyril [INSERM, Unite 556, 151 Cours Albert Thomas, 69424 Lyon (France); Prat, Frederic [Centre Hospitalier Bicetre, 78 Avenue General Leclerc, 94275 Le Kremlin Bicetre (France); Birer, Alain [INSERM, Unite 556, 151 Cours Albert Thomas, 69424 Lyon (France); Cathignol, Dominique [INSERM, Unite 556, 151 Cours Albert Thomas, 69424 Lyon (France)
2002-12-07
This work was undertaken to investigate the feasibility of constructing a cylindrical phased array composed of 64 elements spread around the periphery (OD 10.6 mm) for transoesophageal ultrasound thermotherapy. The underlying operating principle of this applicator is to rotate a plane ultrasound beam electronically. For this purpose, eight adjacent transducers were successively excited with appropriate delay times so as to generate a plane wave. The exposure direction was changed by exciting a different set of eight elements. For these feasibility studies, we used a cylindrical prototype (OD 10.6 mm) composed of 16 elementary transducers distributed over a quarter of the cylinder, all operating at 4.55 MHz. The active part was mechanically reinforced by a rigid damper structure behind the transducers. It was shown that an ultrasound field similar to that emitted by a plane transducer could be generated. Ex vivo experiments on pig's liver demonstrated that the ultrasound beam could be accurately rotated to generate sector-based lesions to a suitable depth (up to 19 mm). Throughout these experiments, exposures lasting 20 s were delivered at an acoustic intensity of 17 W cm{sup -2}. By varying the power from exposure to exposure, the depth of the lesion at different angles could be controlled.
Micro-photonic cylindrical waveguide based protein biosensor
International Nuclear Information System (INIS)
Padigi, Sudhaprasanna Kumar; Asante, Kofi; Kovvuri, Vijay Sekhar Reddy; Reddy, Ravi Kiran Kondama; Rosa, Andres La; Prasad, Shalini
2006-01-01
In this paper we experimentally demonstrate the fabrication and operation of a rapidly prototyped optical cylindrical micro-waveguide based biosensor. This device works on the principle of variation to the light intensity and path of coupled input light due to the binding of protein bio-molecules onto the micro-waveguide surface as a method of physical transduction. The variation to the coupled light intensity and path is dependent on the nature of the bio-molecule and the density of the bio-molecules. This technique has been used to identify protein biomarkers for inflammation and thrombosis, namely myeloperoxidase (MPO) and C-reactive protein (CRP). The detection limit that has been demonstrated is pg ml -1 . The detection speed is of the order of seconds from the time of injection of the bio-molecule. The optical signature that is obtained to identify a protein bio-molecule is entirely dependent on the nature of adsorption of the bio-molecule on to the cylindrical cavity surfaces. This in turn is dependent on the protein conformation and the surface charge of the bio-molecules. Hence a specific protein bio-molecule generates a unique optical identifier based on the nature of binding/adsorption to the cavity surface. This physical phenomenon is exploited to identify individual proteins. This technique is a demonstration of detection of nano-scale protein bio-molecules using the optical biosensor technique with unprecedented sensitivity
Time-dependent patterns in quasivertical cylindrical binary convection
Alonso, Arantxa; Mercader, Isabel; Batiste, Oriol
2018-02-01
This paper reports on numerical investigations of the effect of a slight inclination α on pattern formation in a shallow vertical cylindrical cell heated from below for binary mixtures with a positive value of the Soret coefficient. By using direct numerical simulation of the three-dimensional Boussinesq equations with Soret effect in cylindrical geometry, we show that a slight inclination of the cell in the range α ≈0.036 rad =2∘ strongly influences pattern selection. The large-scale shear flow (LSSF) induced by the small tilt of gravity overcomes the squarelike arrangements observed in noninclined cylinders in the Soret regime, stratifies the fluid along the direction of inclination, and produces an enhanced separation of the two components of the mixture. The competition between shear effects and horizontal and vertical buoyancy alters significantly the dynamics observed in noninclined convection. Additional unexpected time-dependent patterns coexist with the basic LSSF. We focus on an unsual periodic state recently discovered in an experiment, the so-called superhighway convection state (SHC), in which ascending and descending regions of fluid move in opposite directions. We provide numerical confirmation that Boussinesq Navier-Stokes equations with standard boundary conditions contain the essential ingredients that allow for the existence of such a state. Also, we obtain a persistent heteroclinic structure where regular oscillations between a SHC pattern and a state of nearly stationary longitudinal rolls take place. We characterize numerically these time-dependent patterns and investigate the dynamics around the threshold of convection.
Transurethral canine prostatectomy with a cylindrically diffusing fiber
Cromeens, Douglas M.; Johnson, Douglas E.; Price, Roger E.
1994-09-01
In this study, visual laser ablation of the prostate (VLAP) was performed on eight mongrel dogs utilizing a cylindrically diffusing fiber attached to a 1.06 neodymium:YAG (Nd:YAG) laser. All dogs received one continuous dose totaling 15,000 J (25 W for 10 min) applied from the vesical neck to the colliculus seminalis. There was no visible hemorrhage from the lasing intraoperatively in any dog. Postoperative recovery was uneventful with no dog experiencing urinary incontinence and only one incident of dysuria with urinary retention during their observation period. Gross and histopathologic examinations of serial sections of the prostate were performed from 2 hours to 7 weeks postoperatively and demonstrated a consistent spherical zone of destruction 2.9 cm (average) in diameter. We believe the simplified fiber placement and complete lack of postoperative complications in this small group of dogs suggest that the cylindrically diffusing fiber offers significant advantage over laterally deflecting fibers for transurethral prostatectomies in the dog.
An Analytical Solution for Cylindrical Concrete Tank on Deformable Soil
Directory of Open Access Journals (Sweden)
Shirish Vichare
2010-07-01
Full Text Available Cylindrical concrete tanks are commonly used in wastewater treatment plants. These are usually clarifier tanks. Design codes of practice provide methods to calculate design forces in the wall and raft of such tanks. These methods neglect self-weight of tank material and assume extreme, namely ‘fixed’ and ‘hinged’ conditions for the wall bottom. However, when founded on deformable soil, the actual condition at the wall bottom is neither fixed nor hinged. Further, the self-weight of the tank wall does affect the design forces. Thus, it is required to offer better insight of the combined effect of deformable soil and bottom raft stiffness on the design forces induced in such cylindrical concrete tanks. A systematic analytical method based on fundamental equations of shells is presented in this paper. Important observations on variation of design forces across the wall and the raft with different soil conditions are given. Set of commonly used tanks, are analysed using equations developed in the paper and are appended at the end.
Nanoparticle-wall collision in a laminar cylindrical liquid jet.
Xu, Xuefeng; Luo, Jianbin; Guo, Dan
2011-07-15
Although nanoparticle impacts on a solid surface always occur in natural or engineering processes and cause extensive investigations, less works have been reported on the nanoparticle-wall collisions in a liquid. In present paper, by considering the inertial effect and the Brownian motion of nanoparticles, a theoretical model was established for calculating the collision frequency between the nanoparticles and the solid surface in a laminar cylindrical liquid jet impacting normally on the solid surface. The analysis showed that the collision frequency grows as the square root of the impacting speed for low impacting speed regime in which the Brownian motion is predominant, whereas increases as the second power of the impacting speed for high impacting speed regime in which the inertial effect is predominant. Meanwhile, an observation system for nanoparticle-wall collisions in a laminar cylindrical liquid jet has been developed. The adsorption of the nanoparticles on the solid surface after collision has also been observed. Because of their lower attractive energy with the solid surface, these adsorbed nanoparticles are easier to be removed by the hydrodynamic force of the impacting liquid than that deposited on a dry surface. Copyright © 2011 Elsevier Inc. All rights reserved.
Free vibration of finite cylindrical shells by the variational method
International Nuclear Information System (INIS)
Campen, D.H. van; Huetink, J.
1975-01-01
The calculation of the free vibrations of circular cylindrical shells of finite length has been of engineer's interest for a long time. The motive for the present calculations originates from a particular type of construction at the inlet of a sodium heated superheater with helix heating bundle for SNR-Kalkar. The variational analysis is based on a modified energy functional for cylindrical shells, proposed by Koiter and resulting in Morley's equilibrium equations. As usual, the dispacement amplitude is assumed to be distributed harmonically in the circumferential direction of the shell. Following the method of Gontkevich, the dependence between the displacements of the shell middle surface and the axial shell co-ordinate is expressed approximately by a set of eigenfunctions of a free vibrating beam satisfying the desired boundary conditions. Substitution of this displacement expression into the virtual work equation for the complete shell leads to a characteristic equation determining the natural frequencies. The calculations are carried out for a clamped-clamped and a clamped-free cylinder. A comparison is given between the above numerical results and experimental and theoretical results from literature. In addition, the influence of surrounding fluid mass on the above frequencies is analysed for a clamped-clamped shell. The solution for the velocity potential used in this case differs from the solutions used in literature until now in that not only travelling waves in the axial direction are considered. (Auth.)
Nonlinear Vibration and Mode Shapes of FG Cylindrical Shells
Directory of Open Access Journals (Sweden)
Saeed Mahmoudkhani
Full Text Available Abstract The nonlinear vibration and normal mode shapes of FG cylindrical shells are investigated using an efficient analytical method. The equations of motion of the shell are based on the Donnell’s non-linear shallow-shell, and the material is assumed to be gradually changed across the thickness according to the simple power law. The solution is provided by first discretizing the equations of motion using the multi-mode Galerkin’s method. The nonlinear normal mode of the system is then extracted using the invariant manifold approach and employed to decouple the discretized equations. The homotopy analysis method is finally used to determine the nonlinear frequency. Numerical results are presented for the backbone curves of FG cylindrical shells, nonlinear mode shapes and also the nonlinear invariant modal surfaces. The volume fraction index and the geometric properties of the shell are found to be effective on the type of nonlinear behavior and also the nonlinear mode shapes of the shell. The circumferential half-wave numbers of the nonlinear mode shapes are found to change with time especially in a thinner cylinder.
Induced Charge Fluctuations in Semiconductor Detectors with a Cylindrical Geometry
Samedov, Victor V.
2018-01-01
Now, compound semiconductors are very appealing for hard X-ray room-temperature detectors for medical and astrophysical applications. Despite the attractive properties of compound semiconductors, such as high atomic number, high density, wide band gap, low chemical reactivity and long-term stability, poor hole and electron mobility-lifetime products degrade the energy resolution of these detectors. The main objective of the present study is in development of a mathematical model of the process of the charge induction in a cylindrical geometry with accounting for the charge carrier trapping. The formulae for the moments of the distribution function of the induced charge and the formulae for the mean amplitude and the variance of the signal at the output of the semiconductor detector with a cylindrical geometry were derived. It was shown that the power series expansions of the detector amplitude and the variance in terms of the inverse bias voltage allow determining the Fano factor, electron mobility lifetime product, and the nonuniformity level of the trap density of the semiconductor material.
Rotation, inversion and perversion in anisotropic elastic cylindrical tubes and membranes
Goriely, A.
2013-03-06
Cylindrical tubes and membranes are universal structural elements found in biology and engineering over a wide range of scales.Working in the framework of nonlinear elasticity, we consider the possible deformations of elastic cylindrical shells reinforced by one or two families of fibres. We consider both small and large deformations and the reduction from thick cylindrical shells (tubes) to thin shells (cylindrical membranes). In particular, a number of universal parameter regimes can be identified where the response behaviour of the cylinder is qualitatively different. This include the possibility of inversion of twist or axial strain when the cylinder is subject to internal pressure. Copyright © The Royal Society 2013.
Directory of Open Access Journals (Sweden)
Chi-Chieh Huang
2014-06-01
Full Text Available We present a wide-angle, broad-spectrum cylindrical lens based on reflections from an array of three-dimensional, high-aspect-ratio micro-mirrors fabricated on a cylindrical elastomeric substrate, functionally inspired by natural reflecting superposition compound eyes. Our device can perform one-dimensional focusing and beam-shaping comparable to conventional refraction-based cylindrical lenses, while avoiding chromatic aberration. The focal length of our cylindrical lens is 1.035 mm, suitable for micro-optical systems. Moreover, it demonstrates a wide field of view of 152° without distortion, as well as modest spherical aberrations. Our work could be applied to diverse applications including laser diode collimation, barcode scanning, holography, digital projection display, microlens arrays, and optical microscopy.
Response of an electrostatic probe for a right cylindrical spacer
DEFF Research Database (Denmark)
Rerup, T; Crichton, George C; McAllister, Iain Wilson
1994-01-01
During the last decade many experimental studies of surface charge phenomena have been undertaken employing right cylindrical spacers. Measurement of the surface charge was performed using small electrostatic field probes to scan across the dielectric surface. Charges are electrostatically induced...... on the sensor plate by the ambient surface charge, and hence as the probe is moved parallel to the surface the potential of the sensor plate changes. The probe sensor-plate potential is thus the parameter of interest as this parameter can be related in a quantitative manner to the surface charge density....... In the present study, the influence of the spacer geometry upon the λ-function is examined. This knowledge allows the response of the probe with reference to detection sensitivity and spatial selectivity to be considered. Such probe characteristics enable general conclusions to be reached about...
Axial segregation in spherical and cylindrical rotating tumblers
Directory of Open Access Journals (Sweden)
D’Ortona Umberto
2017-01-01
Full Text Available Monodisperse and bidisperse granular flows are studied in rotating tumblers using DEM. In spherical tumblers, flowing particles’ trajectories do not follow straight lines but are curved. At the same time particles near the surface drift toward the pole, inducing two global recirculation cells. Combined with radial segregation, drift and curvature compete to impose the axial segregation pattern: Small-Large-Small (SLS or Large-Small-Large (LSL. Fill level, rotation speed and wall roughness influence drift and curvature, and modify the resulting segregation pattern. In cylindrical tumblers, equivalent recirculation cells occur next to the end walls. A second pair of recirculation cells with a weak drift in the opposite direction appears at the center for long enough tumblers. Unlike the sphere case, curvature and drift in the primary cells combine to push large particles toward the end walls, explaining why large particle bands appear at the end walls for axial segregation in cylinder.
DOA Estimation of Cylindrical Conformal Array Based on Geometric Algebra
Directory of Open Access Journals (Sweden)
Minjie Wu
2016-01-01
Full Text Available Due to the variable curvature of the conformal carrier, the pattern of each element has a different direction. The traditional method of analyzing the conformal array is to use the Euler rotation angle and its matrix representation. However, it is computationally demanding especially for irregular array structures. In this paper, we present a novel algorithm by combining the geometric algebra with Multiple Signal Classification (MUSIC, termed as GA-MUSIC, to solve the direction of arrival (DOA for cylindrical conformal array. And on this basis, we derive the pattern and array manifold. Compared with the existing algorithms, our proposed one avoids the cumbersome matrix transformations and largely decreases the computational complexity. The simulation results verify the effectiveness of the proposed method.
CYBPET: a cylindrical PET system for breast imaging
International Nuclear Information System (INIS)
Karimian, A.; Thompson, C.J.; Sarkar, S.; Raisali, G.; Pani, R.; Davilu, H.; Sardari, D.
2005-01-01
We propose a Cylindrical Breast PET (CYBPET) system for breast imaging with patients in the prone position. An individual pendulous breast is covered by thin plastic to provide reduced pressure fixation and surrounded by the crystals inside the CYBPET ring. Each breast is imaged separately. The rest of the body is shielded properly to minimize the contribution of scattered photons from the other breast and the rest of the body. To compare the CYBPET with whole-body PET (WB-PET) the simulations of CYBPET and a WB-PET (GE-Advance) for a 10 mm tumor inside the breast with a lesion to background (breast) activity concentration of 6 to 1 were made. The noise effective count rate (NECR) of CYBPET is about twice that of WB-PET at activity concentrations less than 3.1 μCi/cc. The spatial resolution of CYBPET is better by 25% than the WB-PET
Proton radiography of cylindrical laser-driven implosions
Energy Technology Data Exchange (ETDEWEB)
Volpe, L; Jafer, R [Universita di Milano-Bicocca (Italy); Vauzour, B; Nicolai, Ph; Santos, J J; Dorchies, F; Fourment, C; Hulin, S; Regan, C [CELIA, Universite de Bordeaux, CNRS, CEA, F33405 (France); Perez, F; Baton, S [LULI, Ecole Polytechnique-CNRS-UPMC, 91128 Palaiseau Cedex (France); Lancaster, K; Galimberti, M; Heathcote, R; Tolley, M; Spindloe, Ch [RAL, STFC (United Kingdom); Nazarov, W [St. Andrews University (United Kingdom); Koester, P; Labate, L; Gizzi, L A [INO-CNR, Pisa (Italy)
2011-03-15
We report on the results of a recent experiment at the Rutherford Appleton Laboratory investigating fast electron propagation in cylindrically compressed targets; a subject of interest for fast ignition. This experiment was performed within the framework of the road map of HiPER (the European High Power laser Energy Research facility Project). Protons accelerated by a ps-laser pulse are used to radiograph a 220 {mu}m diameter, imploded with {approx}200 J of laser light (1 ns {lambda} = 0.53 {mu}m) in four symmetrically incident beams. Results are also compared with those from hard x-ray radiography. Detailed comparison with 2D radiation hydrodyamics simulations is performed with the aid of a Monte Carlo code adapted to describe plasma effects. Finally, a simple analytical model is developed to estimate the performance of proton radiography for given implosion conditions. (brief communication)
Hydrodynamic analysis of laser-driven cylindrical implosions
Ramis, R.
2013-08-01
Three-dimensional hydrodynamic simulations are performed to study laser-driven cylindrical implosions in the context of experiments (F. Perez et al., Plasma Phys. Controlled Fusion 51, 124035 (2009)) carried out at the Rutherford Appleton Laboratory in the framework of the HiPER project. The analysis is carried out by using the 3D version of the hydrocode MULTI (R. Ramis et al., Comput. Phys. Commun. 49, 475-505 (1988)). The influence of the main laser parameters on implosion performance and symmetry is consistently studied and compared with the results of 2D analysis. Furthermore, the effects of uncertainties in laser irradiation (pointing, focusing, power balance, and time jitter) on implosion performance (average peak density and temperature) are studied by means of statistical analysis.
Fast-electron transport in cylindrically laser-compressed matter
Perez, F.; Koenig, M.; Batani, D.; Baton, S. D.; Beg, F. N.; Benedetti, C.; Brambrink, E.; Chawla, S.; Dorchies, F.; Fourment, C.; Galimberti, M.; Gizzi, L. A.; Heathcote, R.; Higginson, D. P.; Hulin, S.; Jafer, R.; Koester, P.; Labate, L.; Lancaster, K.; Mac Kinnon, A. J.; McPhee, A. G.; Nazarov, W.; Nicolai, P.; Pasley, J.; Ravasio, A.; Richetta, M.; Santos, J. J.; Sgattoni, A.; Spindloe, C.; Vauzour, B.; Volpe, L.
2009-12-01
Experimental and theoretical results of relativistic electron transport in cylindrically compressed matter are presented. This experiment, which is a part of the HiPER roadmap, was achieved on the VULCAN laser facility (UK) using four long pulses beams (~4 × 50 J, 1 ns, at 0.53 µm) to compress a hollow plastic cylinder filled with plastic foam of three different densities (0.1, 0.3 and 1 g cm-3). 2D simulations predict a density of 2-5 g cm-3 and a plasma temperature up to 100 eV at maximum compression. A short pulse (10 ps, 160 J) beam generated fast electrons that propagate through the compressed matter by irradiating a nickel foil at an intensity of 5 × 1018 W cm-2. X-ray spectrometer and imagers were implemented in order to estimate the compressed plasma conditions and to infer the hot electron characteristics. Results are discussed and compared with simulations.
Proton radiography of cylindrical laser-driven implosions
Volpe, L.; Jafer, R.; Vauzour, B.; Nicolai, Ph; Santos, J. J.; Dorchies, F.; Fourment, C.; Hulin, S.; Regan, C.; Perez, F.; Baton, S.; Lancaster, K.; Galimberti, M.; Heathcote, R.; Tolley, M.; Spindloe, Ch; Nazarov, W.; Koester, P.; Labate, L.; Gizzi, L. A.; Benedetti, C.; Sgattoni, A.; Richetta, M.; Pasley, J.; Beg, F. N.; Chawla, S.; Higginson, D. P.; MacPhee, A. G.; Batani, D.
2011-03-01
We report on the results of a recent experiment at the Rutherford Appleton Laboratory investigating fast electron propagation in cylindrically compressed targets; a subject of interest for fast ignition. This experiment was performed within the framework of the road map of HiPER (the European High Power laser Energy Research facility Project). Protons accelerated by a ps-laser pulse are used to radiograph a 220 µm diameter, imploded with ~200 J of laser light (1 ns λ = 0.53 µm) in four symmetrically incident beams. Results are also compared with those from hard x-ray radiography. Detailed comparison with 2D radiation hydrodyamics simulations is performed with the aid of a Monte Carlo code adapted to describe plasma effects. Finally, a simple analytical model is developed to estimate the performance of proton radiography for given implosion conditions.
Proton Radiography of a Laser-Driven Cylindrical Implosion
Jafer, R.; Volpe, L.; Batani, D.; Koenig, M.; Baton, S.; Brambrink, E.; Perez, F.; Dorchies, F.; Santos, J. J.; Fourment, C.; Hulin, S.; Nicolai, P.; Vauzour, B.; Lancaster, K.; Galimberti, M.; Heathcote, R.; Tolley, M.; Spindloe, Ch.; Koester, P.; Labate, L.; Gizzi, L.; Benedetti, C.; Sgattoni, A.; Richetta, M.; Pasley, J.; Beg, F.; Chawla, S.; Higginson, D.; MacKinnon, A.; McPhee, A.; Kwon, Duck-Hee; Ree, Yongjoo
2010-02-01
A recent experiment was performed at the Rutherford Appleton Laboratory (UK) to study fast electron propagation in cylindrically compressed targets, a subject of interest for fast ignition. This experiment was performed in the framework of the experimental road map of the Hiper project (the European High Power laser Energy Research facility Project). In this experiment, protons accelerated by a pecosecond laser pulse have been used to radiograph a 220 μm-diameter, 20 μm-wall cylinder filled with 0.1 g/cc foam, imploded with ˜200 J of green laser light in 4 symmetrically incident beams of pulse length 1 ns. Point projection proton backlighting was used to measure the compression degree as well as the stagnation time. Results were compared to those from hard X-ray radiography. Finally, Monte Carlo simulations of proton propagation in the cold and in the compressed targets allowed a detailed comparison with 2D numerical hydro simulations.
Hydrodynamic analysis of laser-driven cylindrical implosions
Energy Technology Data Exchange (ETDEWEB)
Ramis, R. [E.T.S.I. Aeronáuticos, Universidad Politécnica de Madrid (Spain)
2013-08-15
Three-dimensional hydrodynamic simulations are performed to study laser-driven cylindrical implosions in the context of experiments (F. Perez et al., Plasma Phys. Controlled Fusion 51, 124035 (2009)) carried out at the Rutherford Appleton Laboratory in the framework of the HiPER project. The analysis is carried out by using the 3D version of the hydrocode MULTI (R. Ramis et al., Comput. Phys. Commun. 49, 475-505 (1988)). The influence of the main laser parameters on implosion performance and symmetry is consistently studied and compared with the results of 2D analysis. Furthermore, the effects of uncertainties in laser irradiation (pointing, focusing, power balance, and time jitter) on implosion performance (average peak density and temperature) are studied by means of statistical analysis.
On the boundary conditions in cylindrical cell approximation
International Nuclear Information System (INIS)
Altiparmakov, D.V.
1980-01-01
A solution of the integral transport equation for an arbitrary boundary condition is obtained by solving the integral transport equation for homogeneous (vacuum) boundary condition and using the neutron balance condition. An effective boundary condition satisfying the zero gradient of the neutron flux on the cell boundary is assumed. The numerical solution is obtained by using a pointwise approximation based on a polynomial flux approximation. Disadvantage factor calculations of the Thie lattice cells are carried out. Comparisons are performed with the results obtained for the actual cells by two-dimensional methods as well as their cylindrical approximations applying various boundary conditions. It is obvious from the results shown here that the proposed boundary condition has advantages in respect to others. The errors introduced by the proposed boundary condition are of the lower order in respect to the inaccuracy of the existing transport methods. Thus, the applications of the two-dimensional methods for regular lattice calculations is unnecessary. (author)
Stability of the cylindrical shell of variable curvature
Marguerre, Karl
1951-01-01
This report is a first attempt to devise a calculation method for representing the buckling behavior of cylindrical shells of variable curvature. The problem occurs, for instance, in dimensioning wing noses, the stability of which is decisively influenced by the variability of curvature. The calculation is made possible by simplifying the stability equations (permissible for the shell of small curvature) and by assuming that the curvature 1/R as a function of the arc lengths can be represented by a very few Fourier terms. The formulas for the special case of an ellipse-like half oval with an axis ratio 1/3 ?= e ?= 1 under compression in longitudinal direction,shear, and a combination of shear and compression were evaluated. However, the results can also be applied approximately to an unsymmetrical oval-shell segment under compression, shear, and bending so that the numerical values contained in the diagrams 10 to 12 represent directly dimensioning data for the wing nose.
Generalized reorientation cross section for cylindrically symmetric velocity distributions
International Nuclear Information System (INIS)
Generalized reorientation cross sections are derived for the case of atom--molecule collisions where the molecules initially have a velocity distribution cylindrically symmetric about an axis in the laboratory reference frame. This spatial ordering of the velocity can come about, for instance, by exciting molecular electronic states with a light source whose linewidth is much narrower than the Doppler-broadened absorption line. A simple kinetic theory can be set up in terms of state multipoles that are not completely irreducible; the resulting reorientation cross sections are only slightly more complex than the cross sections occurring in a spherically symmetric velocity field. Two approximations are investigated: a McGuire--Kouri m/sub j/-conserving model and a semiclassical model where the orientation of the rotation plane is conserved. The import of the generalized cross sections for several types of experiment and the applicability of the approximate models are discussed
Rayleigh-Taylor instability of cylindrical jets with radial motion
Energy Technology Data Exchange (ETDEWEB)
Chen, Xiang M. [GE Nuclear, Wilmington, NC (United States); Schrock, V.E.; Peterson, P.F. [Univ. of California, Berkeley, CA (United States)
1995-09-01
Rayleigh-Taylor instability of an interface between fluids with different densities subjected to accelleration normal to itself has interested researchers for almost a century. The classic analyses of a flat interface by Rayleigh and Taylor have shown that this type of instability depends on the direction of acceleration and the density differences of the two fluids. Plesset later analyzed the stability of a spherically symmetric flows (and a spherical interface) and concluded that the instability also depends on the velocity of the interface as well as the direction and magnitude of radial acceleration. The instability induced by radial motion in cylindrical systems seems to have been neglected by previous researchers. This paper analyzes the Rayleigh-Taylor type of the spherical case, the radial velocity also plays an important role. As an application, the example of a liquid jet surface in an Inertial Confinement Fusion (ICF) reactor design is analyzed.
Plasticity around an Axial Surface Crack in a Cylindrical Shell
DEFF Research Database (Denmark)
Krenk, Steen
1979-01-01
field in an axially cracked cylindrical shell arising from use of classical eighth order shallow shell theory is removed when use is made of a tenth order shell theory which accounts for transverse shear deformations. Although the membrane stresses are only moderately affected, the influence...... and Ratwani,3–5 it generalises Dugdale's assumption of a concentrated yield zone in the plane of the crack but, contrary to that model, transverse shear effects are included and a continuous stress distribution is assumed in the yield zone. The inherent difficulties arising from the use of shell theory...... of the yield zone. The model is used to analyse published test data on surface cracked pressurised pipes. The analysis consists in COD evaluation and estimate of failure as a consequence of plastic instability. A method is proposed which deals with the problem by simultaneous analysis of a number of cracks...
MODIF-a code for completely reflected cylindrical reactors
International Nuclear Information System (INIS)
Gaafar, M.; Mechail, I.; Tadrus, S.
1981-01-01
MODIF-Code is a computer program for calculating the reflector saving, material buckling, and effective multiplication constant of completely reflected cylindrical reactors. The calculational method is based on a modified iterative algorithm which has been deduced from the general analytical solution of the two group diffusion equations. The code has been written in FORTRAN language suited for the ICL-1906 computer facility at Cairo University. The computer time required to solve a problem of actual reactor is less than 1 minute. The problem converges within five iteration steps. The accuracy in determining the effective multiplication constant lies within +-10 -5 . The code has been applied to the case of UA-RR-1 reactor, the results confirm the validity and accuracy of the calculational method
Wave motion in a thick cylindrical rod undergoing longitudinal impact
Czech Academy of Sciences Publication Activity Database
Červ, Jan; Adámek, V.; Valeš, František; Gabriel, Dušan; Plešek, Jiří
2016-01-01
Roč. 66, November (2016), s. 88-105 ISSN 0165-2125 R&D Projects: GA ČR(CZ) GAP101/12/2315; GA TA ČR(CZ) TH01010772 Institutional support: RVO:61388998 Keywords : elastic waves * impact * thick cylindrical rod * analytical solution * semi-analytical solution Subject RIV: BI - Acoustics Impact factor: 1.575, year: 2016 http://ac.els-cdn.com/S0165212516300427/1-s2.0-S0165212516300427-main.pdf?_tid=d91eee02-7a55-11e6-8c02-00000aab0f6c&acdnat=1473842161_c56543aaec31b7e091ab47d3fb38f361
Laminar forced convection in a cylindrical collinear ohmic sterilizer
Directory of Open Access Journals (Sweden)
Pesso Tommaso
2017-01-01
Full Text Available The present work deals with a thermo-fluid analysis of a collinear cylindrical ohmic heater in laminar flow. The geometry of interest is a circular electrically insulated glass pipe with two electrodes at the pipe ends. For this application, since the electrical conductivity of a liquid food depends strongly on the temperature, the thermal analysis of an ohmic heater requires the simultaneous solution of the electric and thermal fields. In the present work the analysis involves decoupling the previous fields by means of an iterative procedure. The thermal field has been calculated using an analytical solution, which leads to fast calculations for the temperature distribution in the heater. Some considerations of practical interest for the design are also given.
Thermo-electrochemical instrumentation of cylindrical Li-ion cells
McTurk, Euan; Amietszajew, Tazdin; Fleming, Joe; Bhagat, Rohit
2018-03-01
The performance evaluation and optimisation of commercially available lithium-ion cells is typically based upon their full cell potential and surface temperature measurements, despite these parameters not being fully representative of the electrochemical processes taking place in the core of the cell or at each electrode. Several methods were devised to obtain the cell core temperature and electrode-specific potential profiles of cylindrical Li-ion cells. Optical fibres with Bragg Gratings were found to produce reliable core temperature data, while their small mechanical profile allowed for low-impact instrumentation method. A pure metallic lithium reference electrode insertion method was identified, avoiding interference with other elements of the cell while ensuring good contact, enabling in-situ observations of the per-electrode electrochemical responses. Our thermo-electrochemical instrumentation technique has enabled us to collect unprecedented cell data, and has subsequently been used in advanced studies exploring the real-world performance limits of commercial cells.
Behaviour of large cylindrical drift chambers in a superconducting solenoid
International Nuclear Information System (INIS)
Boer, W. de; Fues, W.; Grindhammer, G.; Kotthaus, R.; Lierl, H.; Moss, L.
1980-04-01
We describe the construction and behaviour of a set of cylindrical drift chambers operating inside a superconducting solenoid with a central magnetic field of 1.3 T. The chambers are part of the 4 π detector CELLO at the e + e - storage ring PETRA in Hamburg. The chambers were designed without field shaping to keep them as simple as possible. In order to parametrize accurately the nonlinear space-time relation, we used a computer simulation of the drift process in inhomogenous electric and magnetic fields. With such a parametrization we achieved a resolution of 210 μm, averaged over the whole drift cell and angles of incidence up to 30 0 . (orig.)
The Einstein field equations for cylindrically symmetric elastic configurations
Energy Technology Data Exchange (ETDEWEB)
Brito, I; Vaz, E G L R [Departamento de Matematica e Aplicacoes, Universidade do Minho, 4800-058 Guimaraes (Portugal); Carot, J, E-mail: ireneb@math.uminho.pt, E-mail: jcarot@uib.cat, E-mail: evaz@math.uminho.pt [Departament de Fisica, Universitat de les Illes Balears, Cra Valdemossa pk 7.5, E-07122 Palma (Spain)
2011-09-22
In the context of relativistic elasticity it is interesting to study axially symmetric space-times due to their significance in modeling neutron stars and other astrophysical systems of interest. To approach this problem, here, a particular class of these space-times is considered. A cylindrically symmetric elastic space-time configuration is studied, where the material metric is taken to be flat. The components of the energy-momentum tensor for elastic matter are written in terms of the invariants of the strain tensor, here chosen to be the eigenvalues of the pulled-back material metric. The Einstein field equations are presented and a condition confirming the existence of a constitutive function is obtained. This condition leads to special cases, in one of which a new system for the metric functions and an expression for the constitutive function are deduced. The new system depends on a particular function, which builds up the constitutive equation.
A binary electrolyte model of a cylindrical alkaline cell
Kriegsmann, J. J.; Cheh, H. Y.
A cylindrical alkaline cell is modeled as a binary electrolyte system by assuming the direct electrochemical formation of ZnO in the anode. Justifications for replacing the dissolution-precipitation mechanism are provided. Compared to the original model, the binary electrolyte model has a more understandable model formulation, more consistent physical property data, and greater flexibility in certain instances. The binary electrolyte model predicts a longer cell life and higher operating voltage than the ternary electrolyte model for the test case discharge rate. There are no numerical difficulties associated with the zincate ion in the binary electrolyte model, because this species is not considered. The characteristics and advantages of the simplified anode behavior are discussed. An application of the binary electrolyte model is included.
Rolling dielectric elastomer actuator with bulged cylindrical shape
International Nuclear Information System (INIS)
Potz, Marco; Artusi, Matteo; Soleimani, Maryam; Menon, Carlo; Cocuzza, Silvio; Debei, Stefano
2010-01-01
This note presents preliminary investigations on the design and development of a rolling dielectric elastomer actuator (rDEA) with a bulged cylindrical shape. The actuator is based on an inflated silicone-based hollow cylinder consisting of a series of dielectric elastomer actuator sectors. The electrical activation of the sectors changes the shape of the rDEA; the induced geometrical change causes a variation of the position of the rDEA's centre of gravity and a consequent initiation of rolling of the rDEA. This paper presents a simplified parametric analytical model which is used to simulate the quasi-static behaviour of the rDEA. A testing procedure is used to assess the potential rolling performance of the rDEA prototypes. (technical note)
Circumferential buckling instability of a growing cylindrical tube
Moulton, D.E.
2011-03-01
A cylindrical elastic tube under uniform radial external pressure will buckle circumferentially to a non-circular cross-section at a critical pressure. The buckling represents an instability of the inner or outer edge of the tube. This is a common phenomenon in biological tissues, where it is referred to as mucosal folding. Here, we investigate this buckling instability in a growing elastic tube. A change in thickness due to growth can have a dramatic impact on circumferential buckling, both in the critical pressure and the buckling pattern. We consider both single- and bi-layer tubes and multiple boundary conditions. We highlight the competition between geometric effects, i.e. the change in tube dimensions, and mechanical effects, i.e. the effect of residual stress, due to differential growth. This competition can lead to non-intuitive results, such as a tube growing to be thinner and yet buckle at a higher pressure. © 2011 Elsevier Ltd. All rights reserved.
Attenuation correction factors for cylindrical, disc and box geometry
International Nuclear Information System (INIS)
Agarwal, Chhavi; Poi, Sanhita; Mhatre, Amol; Goswami, A.; Gathibandhe, M.
2009-01-01
In the present study, attenuation correction factors have been experimentally determined for samples having cylindrical, disc and box geometry and compared with the attenuation correction factors calculated by Hybrid Monte Carlo (HMC) method [ C. Agarwal, S. Poi, A. Goswami, M. Gathibandhe, R.A. Agrawal, Nucl. Instr. and. Meth. A 597 (2008) 198] and with the near-field and far-field formulations available in literature. It has been observed that the near-field formulae, although said to be applicable at close sample-detector geometry, does not work at very close sample-detector configuration. The advantage of the HMC method is that it is found to be valid for all sample-detector geometries.
Imaging for Borehole Wall by a Cylindrical Linear Phased Array
International Nuclear Information System (INIS)
Bi-Xing, Zhang; Fang-Fang, Shi; Xian-Mei, Wu; Jun-Jie, Gong; Cheng-Guang, Zhang
2010-01-01
A new ultrasonic cylindrical linear phased array (CLPA) transducer is designed and fabricated for the borehole wall imaging in petroleum logging based on the previous theoretical researches. First, the CLPA transducer, which is made up of numbers of the piezoelectric elements distributed on the surface of a cylinder uniformly, is designed and fabricated. By transmitting and receiving acoustic waves with 16 active elements and using different groups of the elements under the control of the electric system, the CLPA can scan all areas of the borehole wall dynamically and rapidly without a traditional mechanism around the borehole axis. Then, the theoretical and experimental investigations are conducted in detail for the borehole wall scanning and imaging by the steel pipe and casing borehole with defects distributed in different shapes and directions. It is shown by experiments that the CLPA transducer has good focusing characteristic and good resolution for the borehole wall imaging in acoustic logging
Rotating solitary wave at the wall of a cylindrical container
Amaouche, Mustapha
2013-04-30
This paper deals with the theoretical modeling of a rotating solitary surface wave that was observed during water drainage from a cylindrical reservoir, when shallow water conditions were reached. It represents an improvement of our previous study, where the radial flow perturbation was neglected. This assumption led to the classical planar Korteweg–de Vries equation for the wall wave profile, which did not account for the rotational character of the base flow. The present formulation is based on a less restricting condition and consequently corrects the last shortcoming. Now the influence of the background flow appears in the wave characteristics. The theory provides a better physical depiction of the unique experiment by predicting fairly well the wave profile at least in the first half of its lifetime and estimating the speed of the observed wave with good accuracy.
Preparation of microcellular foam in cylindrical metal targets
International Nuclear Information System (INIS)
Apen, P.G.; Armstrong, S.V.; Moore, J.E.; Espinoza, B.F.; Gurule, V.; Gobby, P.L.; Williams, J.M.
1992-01-01
The preparation of microcellular foam in cylindrical gold targets is described. The goal cylinders were fabricated by electroplating gold onto a silicon bronze mandrel and leaching the mandrel with concentrated nitric acid. After several rinsing and cleaning steps, the cylinders were filled with a solution containing trimethylolpropanetriacrylate (TMPTA). Low density, microcellular polymeric foam was prepared by in situ photopolymerization of the TMPTA solution. Foam preparation was extremely sensitive to metal ion contaminants. In particular, copper ions left behind from the leaching process inhibit polymerization and must be removed in order to obtain uniform, non-shrinking foams. A study on the effects of potential contaminants and polymerization inhibitors on TMPTA photopolymerization is presented. In addition, a procedure for the effective leaching and cleaning of gold cylinders is described
Hydrodynamic analysis of laser-driven cylindrical implosions
International Nuclear Information System (INIS)
Ramis, R.
2013-01-01
Three-dimensional hydrodynamic simulations are performed to study laser-driven cylindrical implosions in the context of experiments (F. Perez et al., Plasma Phys. Controlled Fusion 51, 124035 (2009)) carried out at the Rutherford Appleton Laboratory in the framework of the HiPER project. The analysis is carried out by using the 3D version of the hydrocode MULTI (R. Ramis et al., Comput. Phys. Commun. 49, 475-505 (1988)). The influence of the main laser parameters on implosion performance and symmetry is consistently studied and compared with the results of 2D analysis. Furthermore, the effects of uncertainties in laser irradiation (pointing, focusing, power balance, and time jitter) on implosion performance (average peak density and temperature) are studied by means of statistical analysis
NUMERICAL SIMULATION OF MAGNETIC FIELD STRUCTURE IN CYLINDRICAL FILM SCREEN
Directory of Open Access Journals (Sweden)
G. F. Gromyko
2016-01-01
Full Text Available A numerical method for solving the boundary value problem for a nonlinear magnetostatic equation describing the external magnetostatic field penetration through the cylindrical film coating is developed. A mathematical model of the shielding problem based on the use of the boundary conditions of the third kind on the film surface is studied. The nonlinear dependence of the film magnetic permeability on magnetic field conforms with experimental data. The distribution of the magnetic field strength in the film layer and the magnetic permeability of the film material depending on the magnitude of the external magnetic field strength are investigated numerically.
The Comparative Analysis of Hydrodynamic Pressures in Cylindrical Tanks
Directory of Open Access Journals (Sweden)
Butnaru Bogdan Alexandru
2016-09-01
Full Text Available This article presents a comparative study of the values of hydrodynamic pressure and their resultants occurred during the seismic action using P100-1/2013 technical rules and the relations defined in the papers: [1], [3], [5] and the Romanian standard [2] SR EN 1998-4 (silos, tanks and pipelines, which is implemented in Romania. Two cylindrical tanks placed in the same seismic zone have been chosen, with the same amount of storage (about 5000 m3, but of different geometries, to illustrate the influence of hydrodynamic pressures on the construction size (long and short wall behavior as a function of ratio of the fluid height on the cylinder radius and ratio of corner period on the eigenperiod of the fluid mass. Also in the analyses, in order to evaluate the hydrodynamic convective pressure both the fundamental period of oscillation of the fluid mass and the first ten periods of oscillation were used.
Pulling cylindrical particles using a soft-nonparaxial tractor beam
DEFF Research Database (Denmark)
Novitsky, Andrey; Ding, Weiqiang; Wang, Maoyan
2017-01-01
In order to pull objects towards the light source a single tractor beam inevitably needs to be strongly nonparaxial. This stringent requirement makes such a tractor beam somewhat hypothetical. Here we reveal that the cylindrical shape of dielectric particles can effectively mitigate...... the nonparaxiality requirements, reducing the incidence angle of the partial plane waves of the light beam down to 45 degrees and even to 30 degrees for respectively dipole and dipole-quadrupole objects. The optical pulling force attributed to the interaction of magnetic dipole and magnetic quadrupole moments...... of dielectric cylinders occurs due to the TE rather than TM polarization. Therefore, the polarization state of the incident beam can be utilized as an external control for switching between the pushing and pulling forces. The results have application values towards optical micromanipulation, transportation...
Buckling of a thin rod under cylindrical constraint
Miller, Jay; Su, Tianxiang; Wicks, Nathan; Pabon, Jahir; Bertoldi, Katia; Reis, Pedro
2013-03-01
We investigate the buckling and post-buckling behavior of a thin elastic rod, under cylindrical constraint, with distributed loading. Our precision model experiments consist of injecting a custom-fabricated rod into a transparent glass pipe. Under imposed velocity (leading to frictional axial loading), a portion of the initially straight rod first buckles into a sinusoidal mode and eventually undergoes a secondary instability into a helical configuration. The buckling and post-buckling behavior is found to be highly dependent on the system's geometry, namely the injected rod length and the aspect ratio of the rod to pipe diameter, as well as material parameters. We quantify the critical loads for this sequence of instabilities, contrast our results with numerical experiments and rationalize the observed behavior through scaling arguments.
Elliptic-cylindrical analytical flux-rope model for ICMEs
Nieves-Chinchilla, T.; Linton, M.; Hidalgo, M. A. U.; Vourlidas, A.
2016-12-01
We present an analytical flux-rope model for realistic magnetic structures embedded in Interplanetary Coronal Mass Ejections. The framework of this model was established by Nieves-Chinchilla et al. (2016) with the circular-cylindrical analytical flux rope model and under the concept developed by Hidalgo et al. (2002). Elliptic-cylindrical geometry establishes the first-grade of complexity of a series of models. The model attempts to describe the magnetic flux rope topology with distorted cross-section as a possible consequence of the interaction with the solar wind. In this model, the flux rope is completely described in the non-euclidean geometry. The Maxwell equations are solved using tensor calculus consistently with the geometry chosen, invariance along the axial component, and with the only assumption of no radial current density. The model is generalized in terms of the radial dependence of the poloidal current density component and axial current density component. The misalignment between current density and magnetic field is studied in detail for the individual cases of different pairs of indexes for the axial and poloidal current density components. This theoretical analysis provides a map of the force distribution inside of the flux-rope. The reconstruction technique has been adapted to the model and compared with in situ ICME set of events with different in situ signatures. The successful result is limited to some cases with clear in-situ signatures of distortion. However, the model adds a piece in the puzzle of the physical-analytical representation of these magnetic structures. Other effects such as axial curvature, expansion and/or interaction could be incorporated in the future to fully understand the magnetic structure. Finally, the mathematical formulation of this model opens the door to the next model: toroidal flux rope analytical model.
Secondary extinction and diffraction behaviors in cylindrical crystals.
Hu, Hua-Chen
2003-07-01
The X-ray and neutron diffraction properties in absorbing cylindrical crystals are systematically explored within the framework of transfer equations and the kinematic diffraction approximation. The calculated power ratio distribution, the integrated reflection power ratio and the secondary-extinction factor y( micro ) are expressed as functions of the Bragg angle theta(B), the reduced radius sigma(0)rho = tau(0) and the ratio of absorption coefficient to diffraction cross section micro /sigma(0) = xi(0). Numerical solutions were obtained for all theta(B) (0-90 degrees ) and samples with tau(0) from 0 to 30, and xi(0) from 0 to 25. The relationship between the power ratio distribution curves, the integrated reflection power ratio and the diffraction geometry of cylindrical crystals is obtained for the first time and analyzed in detail. A dip was found in the curve of the extinction factor y( micro ) against tau(0) for given theta(B) and xi(0), and the position of this minimum shifts toward smaller tau(0) with increasing xi(0) or theta(B). A large decrease of y( micro ) with decreasing theta(B) at low angle appears when micro rho > 3.5 and 25 > xi(0) > 0.2. The rate of change of y( micro ) in this region increases with tau(0). All of this will be important for the refinement of diffraction data. The influence of different kinds of mosaic distributions on the integrated reflection power ratio and the extinction factor was also studied. The transmission coefficients A(*) were calculated using two different methods, and an inaccuracy of these numbers in Vol. II of International Tables for X-ray Crystallography (1972) in the range theta(B) or = 15 was found by comparison.
A 55 cm{sup 2} cylindrical silicon drift detector
Energy Technology Data Exchange (ETDEWEB)
Holl, P. [Brookhaven National Lab., Upton, NY (United States); Rehak, P. [Brookhaven National Lab., Upton, NY (United States); Ceretto, F. [Max-Planck-Institute for Nuclear Physics, Heidelberg (Germany); Faschingbauer, U. [Max-Planck-Institute for Nuclear Physics, Heidelberg (Germany); Wurm, J.P. [Max-Planck-Institute for Nuclear Physics, Heidelberg (Germany); Castoldi, A. [Universita degli Studi di Milano, Departimento di Fisica, Via Celoria 16, 20133 Milano (Italy); Gatti, E. [Politecnico di Milano, Piazza L. da Vinci, I-20133 Milano (Italy)
1996-08-01
AZTEC, a large area cylindrical silicon drift detector was designed, produced and tested. AZTEC will be the building block of the NA45 and WA98 micro vertex detectors at CERN. Two AZTEC detectors are placed down stream from the target to measure trajectories of charged particles produced in the forward direction. The active area of AZTEC is practically the full usable surface of a 100 mm diameter wafer. The electrons drift radially from the center towards the outside. The sensing anodes are located at a radius of 42 mm. The center of the wafer is cut out and forms a passage for the noninteracting beam. With a minimal radius for this hole the active region of the drift detector starts at an inner radius of 3.1 mm. Any larger radius can be selected if necessary. With this geometry and a typical operating voltage the maximum drift time is less than 4 {mu}s. Due to constrains in the mask layout the readout region and field electrodes are designed along the 360 sides of a symmetric polygon. All structures on one surface of the wafer are rotated by 0.5 with respect to the other surface. In the middle plane of the detector, where the electrons are mostly transported, the effective geometry is close to a smoothed polygon with 720 sides, cancelling practically all effects of the non-perfect cylindrical symmetry. The radial position of fast charged particles is measured by the electron drift time within the detector. The drift velocity can be monitored by 48 injection points at three different radii. The azimuthal angle is measured by the 360 readout anodes. Each anode is subdivided into five segments, which are interlaced with the neighbouring anodes. By this methode the azimuthal resolution is improved and corresponds to a 720 channel read out. (orig.).
Diffusion of graphite. The effect of cylindrical canals
International Nuclear Information System (INIS)
Carle, R.; Clouet d'Orval, C.; Martelly, J.; Mazancourt, T. de; Sagot, M.; Lattes, R.; Teste du Bailler, A.
1957-01-01
Experiments on thermal neutron diffusion in the graphite used as moderator in the pile G1 have been carried out. The object of these experiments is to determine: - the intrinsic quality of this graphite, characterised by its diffusion length L or its Laplacian 1/L 2 - the effect of the canals, which modifies anisotropically the macroscopic diffusion equation and is characterized by two principal diffusion regions (or two principal Laplacian), valid respectively for the diffusion in the direction of the canals and in a perpendicular direction. In order to determine them two experiments are necessary, in which the second derivatives of the flux in relation to the space coordinates are very different. These experiments form the object of the first two parts. Part 1: Diffusion along the axis of a flux coming from the pile source, and limited radially by a quasi cylindrical screen of cadmium bars. This screen, or Faraday cage is designed to give to the thermal flux produced the same radius of extrapolation to zero as that of the pile source. The determination of L (with the graphite full) has been made under the same conditions. The measurements have been interpreted in two ways. The influence of the brackets holding the detectors is discussed. Part 2: Radial diffusion in the graphite surrounding the 'long' cylindrical pile. This is well described by a sum of Bessel functions. Part 3: Results (valid for d = 1.61 t = 17 deg. C). For the graphite without cavity L = 52.7 ± 0.4 cm. The effect of the canals on the diffusion area and its anisotropy are in excellent agreement with the theory of Behrens: L(parallel) = 64.6 cm and L(perpendicular) 62.2 cm. Appendix: Theory of the Faraday cage. (author) [fr
Ion implantation planar in targets with semi-cylindrical grooves
International Nuclear Information System (INIS)
Filiz, Y.; Demokan, O.
2002-01-01
The experimental and numerical investigations suggest that the ion-matrix phase of the sheath evolution plays a crucial role in determining the ion flux to the target surfaces . It can easily be realized that conformal mapping of the target's surface by the sheath is questionable, or even inapplicable in the case of surfaces with fine irregularities or this continuities. The theoretical analysis of such cases is evidently quite complicated. On the other hand, most actual targets fall into this category, and hence, the understanding of the corresponding sheath behavior remains vital for accomplishing uniform implantation. The ion- matrix sheaths have been treated analytically by Conrad for planar, cylindrical and spherical targets successfully. Similar y, Sheridan and Zang et al. have investigated the ion matrix sheath in cylindrical bores, without and with axial electrodes, respectively. All these works assumed targets with infinite areas or length, Zeng et al. and Kwok et al. have started studying implantation into grooves, by carrying out simulations for the inner and outer races of bearings, which are modeled as semi- cylinders of infinite length. Finally, Demokan has presented the first analytic treatment of on matrix sheaths in two- dimensions, by considering targets with rectangular grooves of infinite length, representing a broad range of industrial items. In this work, ion-matrix sheath near infinite length are theoretically analysed. Understanding the sheath formation near such targets is essential for achieving successful ion implantation on the surfaces of a broad range of industrial products, including all types of bearings. The potential profiles both inside and outside the groove are derived and the consequent ion velocity higher plasma densities may improve the uniformity of implantation on the surfaces of such grooves. Furthermore, the sheath edge deformation due to the grooves, the variation of the angle of incidence on the surface of the groove
Effect of Light Conducting Cylindrical Inserts on Gingival Microleakage
Directory of Open Access Journals (Sweden)
SM. Moazzami
2007-03-01
Full Text Available Objective: Microleakage in the gingival floor of class II composite restorations can compromise the marginal adaptation of the filling material to the cavity edges. The aim of this study was to evaluate the effect of light conducting cylindrical inserts in decreasing the microleakage of the gingival floor in cavities 1mm below the CEJ.Materials and Methods: Eighty maxillary first molars were randomly divided into eight groups according to use of glass inserts, type of resin (Coltene unfilled resin versus Scotchbond multi purpose and filling technique (one-unit versus incremental. Proximal class II cavities were prepared in all samples with the gingival floor one millimeter below the CEJ. Etched and silan-treated glass inserts were made from 2mm cylindrical bioglass material and cavities were restored according to research protocol. The samples were subjected to 2500 thermal cycles (5-55oC, immersed in 0.5% basic fuchsin solution, embedded in epoxy resin and cut centrally and laterally (buccally or lingually in a mesiodistal direction. Microleakage was scored and collected data were statistically analyzed using Kruskal-Wallis and Mann-Whitney tests.Results: Minimal dye penetration was observed in the group that employed the incre-mental technique along with Scotchbond, with or without glass inserts. A significant difference was observed between the eight groups. In addition the use of the incremental technique and glass inserts had a significant effect on the microleakage of lateral and central sections, respectively. Application of dentin bonding agent signifi-cantly affected both sections.Conclusion: Glass inserts were effective in decreasing cervical microleakage of class II cavities restored with composite resin.
Naumann, E. C.; Catherines, D. S.; Walton, W. C., Jr.
1971-01-01
Experimental and analytical investigations of the vibratory behavior of ring-stiffened truncated-cone shells are described. Vibration tests were conducted on 60 deg conical shells having up to four ring stiffeners and for free-free and clamped-free edge constraints and 9 deg conical shells, for two thicknesses, each with two angle rings and for free-free, free-clamped, and clamped-clamped edge constraints. The analytical method is based on linear thin shell theory, employing the Rayleigh-Ritz method. Discrete rings are represented as composed of one or more segments, each of which is a short truncated-cone shell of uniform thickness. Equations of constraint are used to join a ring and shell along a circumferential line connection. Excellent agreement was obtained for comparisons of experimental and calculated frequencies.
Some applications of NASTRAN to the buckling of thin cylindrical shells with cutouts
Williams, J. G.; Starnes, J. H., Jr.
1972-01-01
The buckling of isotropic and waffle-stiffened circular cylinders with and without cutouts was studied using NASTRAN's Rigid Format 5 for the case of axial compressive loading. The results obtained for the cylinders without cutouts are compared with available reference solutions. The results for the isotropic cylinders containing a single circular cutout with selected radii are compared with available experimental data. For the waffle-stiffened cyclinder, the effect of two diametrically opposed rectangular cutouts was studied. A DMAP alter sequence was used to permit the necessary application of different prebuckling and buckling boundary conditions. Advantage was taken of available symmetry planes to formulate equivalent NASTRAN model segments which reduced the associated computational cost of performing the analyses. Limitations of the applicability of NASTRAN for the solution of problems with nonlinear characteristics are discussed.
Current-driven internal kink modes in cylindrical and helicoidal discharges
International Nuclear Information System (INIS)
Edery, D.; Laval, G.; Pellat, R.; Soule, J.L.
1976-01-01
The stability of the internal m=1 kink mode is shown to be very sensitive to small distortions of a circular cylindrical equilibrium. Cylindrical and helicoidal m=2 distortions are destabilizing. Triangular m=3 and quadrangular m=4 distortions provide a means of stabilizing the internal kink moode
Nonlinear Rayleigh–Taylor instability of the cylindrical fluid flow with ...
Indian Academy of Sciences (India)
2016-07-07
Jul 7, 2016 ... The nonlinear Rayleigh–Taylor stability of the cylindrical interface between the vapour and liquid phases of a fluid is studied. The phases enclosed between two cylindrical surfaces coaxial with mass and heat transfer is derived from nonlinear Ginzburg–Landau equation. The F-expansion method is used to ...