WorldWideScience

Sample records for fluid volume control

  1. Mechanisms controlling the volume of pleural fluid and extravascular lung water

    Directory of Open Access Journals (Sweden)

    G. Miserocchi

    2009-12-01

    Full Text Available Pleural and interstitial lung fluid volumes are strictly controlled and maintained at the minimum thanks to the ability of lymphatics to match the increase in filtration rate. In the pleural cavity, fluid accumulation is easily accommodated by retraction of lung and chest wall (high compliance of the pleural space; the increase of lymph flow per unit increase in pleural fluid volume is high due to the great extension of the parietal lymphatic. However, for the lung interstitium, the increase in lymph flow to match increased filtration does not need to be so great. In fact, increased filtration only causes a minor increase in extravascular water volume (<10% due to a marked increase in interstitial pulmonary pressure (low compliance of the extracellular matrix which, in turn, buffers further filtration. Accordingly, a less extended lymphatic network is needed. The efficiency of lymphatic control is achieved through a high lymphatic conductance in the pleural fluid and through a low interstitial compliance for the lung interstitium. Fluid volume in both compartments is so strictly controlled that it is difficult to detect initial deviations from the physiological state; thus, a great physiological advantage turns to be a disadvantage on a clinical basis as it prevents an early diagnosis of developing disease.

  2. Cardiovascular and fluid volume control in humans in space

    DEFF Research Database (Denmark)

    Norsk, Peter

    2005-01-01

    on this complex interaction, because it is the only way to completely abolish the effects of gravity over longer periods. Results from space have been unexpected, because astronauts exhibit a fluid and sodium retaining state with activation of the sympathetic nervous system, which subjects during simulations...... by head-down bed rest do not. Therefore, the concept as to how weightlessness affects the cardiovascular system and modulates regulation of body fluids should be revised and new simulation models developed. Knowledge as to how gravity and weightlessness modulate integrated fluid volume control...

  3. Fluid control structures in microfluidic devices

    Science.gov (United States)

    Mathies, Richard A.; Grover, William H.; Skelley, Alison; Lagally, Eric; Liu, Chung N.

    2017-05-09

    Methods and apparatus for implementing microfluidic analysis devices are provided. A monolithic elastomer membrane associated with an integrated pneumatic manifold allows the placement and actuation of a variety of fluid control structures, such as structures for pumping, isolating, mixing, routing, merging, splitting, preparing, and storing volumes of fluid. The fluid control structures can be used to implement a variety of sample introduction, preparation, processing, and storage techniques.

  4. The Voronoi volume and molecular representation of molar volume: equilibrium simple fluids.

    Science.gov (United States)

    Hunjan, Jagtar Singh; Eu, Byung Chan

    2010-04-07

    The Voronoi volume of simple fluids was previously made use of in connection with volume transport phenomena in nonequilibrium simple fluids. To investigate volume transport phenomena, it is important to develop a method to compute the Voronoi volume of fluids in nonequilibrium. In this work, as a first step to this goal, we investigate the equilibrium limit of the nonequilibrium Voronoi volume together with its attendant related molar (molal) and specific volumes. It is proved that the equilibrium Voronoi volume is equivalent to the molar (molal) volume. The latter, in turn, is proved equivalent to the specific volume. This chain of equivalences provides an alternative procedure of computing the equilibrium Voronoi volume from the molar volume/specific volume. We also show approximate methods of computing the Voronoi and molar volumes from the information on the pair correlation function. These methods may be employed for their quick estimation, but also provide some aspects of the fluid structure and its relation to the Voronoi volume. The Voronoi volume obtained from computer simulations is fitted to a function of temperature and pressure in the region above the triple point but below the critical point. Since the fitting function is given in terms of reduced variables for the Lennard-Jones (LJ) model and the kindred volumes (i.e., specific and molar volumes) are in essence equivalent to the equation of state, the formula obtained is a reduced equation state for simple fluids obeying the LJ model potential in the range of temperature and pressure examined and hence can be used for other simple fluids.

  5. Effect of Volume of Fluid Resuscitation on Metabolic Normalization in Children Presenting in Diabetic Ketoacidosis: A Randomized Controlled Trial.

    Science.gov (United States)

    Bakes, Katherine; Haukoos, Jason S; Deakyne, Sara J; Hopkins, Emily; Easter, Josh; McFann, Kim; Brent, Alison; Rewers, Arleta

    2016-04-01

    The optimal rate of fluid administration in pediatric diabetic ketoacidosis (DKA) is unknown. Our aim was to determine whether the volume of fluid administration in children with DKA influences the rate of metabolic normalization. We performed a randomized controlled trial conducted in a tertiary pediatric emergency department from December 2007 until June 2010. The primary outcome was time to metabolic normalization; secondary outcomes were time to bicarbonate normalization, pH normalization, overall length of hospital treatment, and adverse outcomes. Children between 0 and 18 years of age were eligible if they had type 1 diabetes mellitus and DKA. Patients were randomized to receive intravenous (IV) fluid at low volume (10 mL/kg bolus + 1.25 × maintenance rate) or high volume (20 mL/kg bolus + 1.5 × maintenance rate) (n = 25 in each). After adjusting for initial differences in bicarbonate levels, time to metabolic normalization was significantly faster in the higher-volume infusion group compared to the low-volume infusion group (hazard ratio [HR] = 2.0; 95% confidence interval [CI] 1.0-3.9; p = 0.04). Higher-volume IV fluid infusion appeared to hasten, to a greater extent, normalization of pH (HR = 2.5; 95% CI 1.2-5.0; p = 0.01) than normalization of serum bicarbonate (HR = 1.2; 95% CI 0.6-2.3; p = 0.6). The length of hospital treatment HR (0.8; 95% CI 0.4-1.5; p = 0.5) and time to discharge HR (0.8; 95% CI 0.4-1.5; p = 0.5) did not differ between treatment groups. Higher-volume fluid infusion in the treatment of pediatric DKA patients significantly shortened metabolic normalization time, but did not change overall length of hospital treatment. ClinicalTrials.gov ID NCT01701557. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Control volume based hydrocephalus research

    Science.gov (United States)

    Cohen, Benjamin; Voorhees, Abram; Wei, Timothy

    2008-11-01

    Hydrocephalus is a disease involving excess amounts of cerebral spinal fluid (CSF) in the brain. Recent research has shown correlations to pulsatility of blood flow through the brain. However, the problem to date has presented as too complex for much more than statistical analysis and understanding. This talk will highlight progress on developing a fundamental control volume approach to studying hydrocephalus. The specific goals are to select physiologically control volume(s), develop conservation equations along with the experimental capabilities to accurately quantify terms in those equations. To this end, an in vitro phantom is used as a simplified model of the human brain. The phantom's design consists of a rigid container filled with a compressible gel. The gel has a hollow spherical cavity representing a ventricle and a cylindrical passage representing the aquaducts. A computer controlled piston pump supplies pulsatile volume fluctuations into and out of the flow phantom. MRI is used to measure fluid velocity, and volume change as functions of time. Independent pressure measurements and flow rate measurements are used to calibrate the MRI data. These data are used as a framework for future work with live patients.

  7. Computer simulation of preflight blood volume reduction as a countermeasure to fluid shifts in space flight

    Science.gov (United States)

    Simanonok, K. E.; Srinivasan, R.; Charles, J. B.

    1992-01-01

    Fluid shifts in weightlessness may cause a central volume expansion, activating reflexes to reduce the blood volume. Computer simulation was used to test the hypothesis that preadaptation of the blood volume prior to exposure to weightlessness could counteract the central volume expansion due to fluid shifts and thereby attenuate the circulatory and renal responses resulting in large losses of fluid from body water compartments. The Guyton Model of Fluid, Electrolyte, and Circulatory Regulation was modified to simulate the six degree head down tilt that is frequently use as an experimental analog of weightlessness in bedrest studies. Simulation results show that preadaptation of the blood volume by a procedure resembling a blood donation immediately before head down bedrest is beneficial in damping the physiologic responses to fluid shifts and reducing body fluid losses. After ten hours of head down tilt, blood volume after preadaptation is higher than control for 20 to 30 days of bedrest. Preadaptation also produces potentially beneficial higher extracellular volume and total body water for 20 to 30 days of bedrest.

  8. Infusion volume control and calculation using metronome and drop counter based intravenous infusion therapy helper.

    Science.gov (United States)

    Park, Kyungnam; Lee, Jangyoung; Kim, Soo-Young; Kim, Jinwoo; Kim, Insoo; Choi, Seung Pill; Jeong, Sikyung; Hong, Sungyoup

    2013-06-01

    This study assessed the method of fluid infusion control using an IntraVenous Infusion Controller (IVIC). Four methods of infusion control (dial flow controller, IV set without correction, IV set with correction and IVIC correction) were used to measure the volume of each technique at two infusion rates. The infused fluid volume with a dial flow controller was significantly larger than other methods. The infused fluid volume was significantly smaller with an IV set without correction over time. Regarding the concordance correlation coefficient (CCC) of infused fluid volume in relation to a target volume, IVIC correction was shown to have the highest level of agreement. The flow rate measured in check mode showed a good agreement with the volume of collected fluid after passing through the IV system. Thus, an IVIC could assist in providing an accurate infusion control. © 2013 Wiley Publishing Asia Pty Ltd.

  9. [Estimation of volume of pleural fluid and its impact on spirometrical parameters].

    Science.gov (United States)

    Karwat, Krzysztof; Przybyłowski, Tadeusz; Bielicki, Piotr; Hildebrand, Katarzyna; Nowacka-Mazurek, Magdalena; Nasiłowski, Jacek; Rubinsztajn, Renata; Chazan, Ryszarda

    2014-03-01

    In the course of various diseases, there is an accumulation of fluid in the pleural cavities. Pleural fluid accumulation causes thoracic volume expansion and reduction of volume lungs, leading to formation of restrictive disorders. The aim of the study was to estimate the volume of pleural fluid by ultrasonography and to search for the relationship between pleural fluid volume and spirometrical parameters. The study involved 46 patients (26 men, 20 women) aged 65.7 +/- 14 years with pleural effusions who underwent thoracentesis. Thoracentesis was preceded by ultrasonography of the pleura, spirometry test and plethysmography. The volume of the pleural fluid was calculated with the Goecke' and Schwerk' (GS) or Padykuła (P) equations. The obtained values were compared with the actual evacuated volume. The median volume of the removed pleural fluid was 950 ml. Both underestimated the evacuated volume (the median volume 539 ml for GS and 648 ml for P, respectively). Pleural fluid removal resulted in a statistically significant improvement in VC (increase 0.20 +/- 0.35 ; p Pleural fluid removal causes a significant improvement in lung function parameters. The analyzed equations for fluid volume calculation do not correlate with the actual volume.

  10. Waste-aware fluid volume assignment for flow-based microfluidic biochips

    DEFF Research Database (Denmark)

    Schneider, Alexander Rüdiger; Pop, Paul; Madsen, Jan

    2017-01-01

    complex Fluidic Units (FUs) such as switches, micropumps, mixers and separators can be constructed. When running a biochemical application on a FBMB, fluid volumes are dispensed from input reservoirs and used by the FUs. Given a biochemical application and a biochip, we are interested in determining...... the fluid volume assignment for each operation of the application, such that the FUs volume requirements are satisfied, while over- and underflow are avoided and the total volume of fluid used is minimized. We propose an algorithm for this fluid assignment problem. Compared to previous work, our method...

  11. Systems and methods for the detection of low-level harmful substances in a large volume of fluid

    Science.gov (United States)

    Carpenter, Michael V.; Roybal, Lyle G.; Lindquist, Alan; Gallardo, Vincente

    2016-03-15

    A method and device for the detection of low-level harmful substances in a large volume of fluid comprising using a concentrator system to produce a retentate and analyzing the retentate for the presence of at least one harmful substance. The concentrator system performs a method comprising pumping at least 10 liters of fluid from a sample source through a filter. While pumping, the concentrator system diverts retentate from the filter into a container. The concentrator system also recirculates at least part of the retentate in the container again through the filter. The concentrator system controls the speed of the pump with a control system thereby maintaining a fluid pressure less than 25 psi during the pumping of the fluid; monitors the quantity of retentate within the container with a control system, and maintains a reduced volume level of retentate and a target volume of retentate.

  12. Mechanistic Fluid Transport Model to Estimate Gastrointestinal Fluid Volume and Its Dynamic Change Over Time.

    Science.gov (United States)

    Yu, Alex; Jackson, Trachette; Tsume, Yasuhiro; Koenigsknecht, Mark; Wysocki, Jeffrey; Marciani, Luca; Amidon, Gordon L; Frances, Ann; Baker, Jason R; Hasler, William; Wen, Bo; Pai, Amit; Sun, Duxin

    2017-11-01

    Gastrointestinal (GI) fluid volume and its dynamic change are integral to study drug disintegration, dissolution, transit, and absorption. However, key questions regarding the local volume and its absorption, secretion, and transit remain unanswered. The dynamic fluid compartment absorption and transit (DFCAT) model is proposed to estimate in vivo GI volume and GI fluid transport based on magnetic resonance imaging (MRI) quantified fluid volume. The model was validated using GI local concentration of phenol red in human GI tract, which was directly measured by human GI intubation study after oral dosing of non-absorbable phenol red. The measured local GI concentration of phenol red ranged from 0.05 to 168 μg/mL (stomach), to 563 μg/mL (duodenum), to 202 μg/mL (proximal jejunum), and to 478 μg/mL (distal jejunum). The DFCAT model characterized observed MRI fluid volume and its dynamic changes from 275 to 46.5 mL in stomach (from 0 to 30 min) with mucus layer volume of 40 mL. The volumes of the 30 small intestine compartments were characterized by a max of 14.98 mL to a min of 0.26 mL (0-120 min) and a mucus layer volume of 5 mL per compartment. Regional fluid volumes over 0 to 120 min ranged from 5.6 to 20.38 mL in the proximal small intestine, 36.4 to 44.08 mL in distal small intestine, and from 42 to 64.46 mL in total small intestine. The DFCAT model can be applied to predict drug dissolution and absorption in the human GI tract with future improvements.

  13. Agarwood Waste as A New Fluid Loss Control Agent in Water-based Drilling Fluid

    Directory of Open Access Journals (Sweden)

    Azlinda Azizi

    2013-10-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 Agarwood has been used widely in various ways, including traditional medicine and art. The usage of agarwood has grown broader in modern times include in therapeutic medicines and perfumery. In this paper the agarwood waste has been explored to be used as a fluid loss control agent to control fluid loss without affecting the drilling fluid rheological properties which are density, pH, viscosity, yield point and gel strength. Agarwood waste was used as an additive in the drilling fluid system due to its unique characteristic. Rheological and filtration measurements were performed on the formulated water-based drilling fluid. Formulations of a base solution of fresh water, sodium hydroxide, bentonite, barite, and xanthan gum were presented. The performance of the agarwood waste as the fluid loss control agent was compared with based fluid formulation and water-based drilling fluid with treating with conventional fluid loss control agent (starch. The filtrate volume of drilling fluid with agarwood waste was about 13 ml while for drilling fluid with conventional fluid loss control agent, starch gave 12 ml of filtrate volume after undergoing filtration test by using LPLT filter press. The performance of drilling fluid with agarwood was efficient as drilling fluid with starch. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso

  14. SOLA-VOF, 2-D Transient Hydrodynamic Using Fractional Volume of Fluid Method

    International Nuclear Information System (INIS)

    Nichols, B.D.; Hirt, C.W.; Hotchkiss, R.S.

    1991-01-01

    1 - Description of problem or function: SOLA-VOF is a program for the solution of two-dimensional transient fluid flow with free boundaries, based on the concept of a fractional volume of fluid (VOF). Its basic mode of operation is for single fluid calculations having multiple free surfaces. However, SOLA-VOF can also be used for calculations involving two fluids separated by a sharp interface. In either case, the fluids may be treated as incompressible or as having limited compressibility. Surface tension forces with wall adhesion are permitted in both cases. Internal obstacles may be defined by blocking out any desired combination of cells in the mesh, which is composed of rectangular cells of variable size. 2 - Method of solution: The basis of the SOLA-VOF method is the fractional volume of fluid scheme for tracking free boundaries. In this technique, a function F(x,y,t) is defined whose value is unity at any point occupied by fluid and zero elsewhere. When averaged over the cells of a computational mesh, the average value of F in a cell is equal to the fractional volume of the cell occupied by fluid. In particular, a unit value of F corresponds to a cell full of fluid, whereas a zero value indicates that the cell contains no fluid. Cells with F values between zero and one contain a free surface. SOLA-VOF uses an Eulerian mesh of rectangular cells having variable sizes. The fluid equations solved are the finite difference approximations of the Navier-Stokes equations. 3 - Restrictions on the complexity of the problem: The setting of array dimensions is controlled through PARAMETER statements

  15. Blood volume-monitored regulation of ultrafiltration in fluid-overloaded hemodialysis patients: study protocol for a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Hecking Manfred

    2012-06-01

    Full Text Available Abstract Background Data generated with the body composition monitor (BCM, Fresenius show, based on bioimpedance technology, that chronic fluid overload in hemodialysis patients is associated with poor survival. However, removing excess fluid by lowering dry weight can be accompanied by intradialytic and postdialytic complications. Here, we aim at testing the hypothesis that, in comparison to conventional hemodialysis, blood volume-monitored regulation of ultrafiltration and dialysate conductivity (UCR and/or regulation of ultrafiltration and temperature (UTR will decrease complications when ultrafiltration volumes are systematically increased in fluid-overloaded hemodialysis patients. Methods/design BCM measurements yield results on fluid overload (in liters, relative to extracellular water (ECW. In this prospective, multicenter, triple-arm, parallel-group, crossover, randomized, controlled clinical trial, we use BCM measurements, routinely introduced in our three maintenance hemodialysis centers shortly prior to the start of the study, to recruit sixty hemodialysis patients with fluid overload (defined as ≥15% ECW. Patients are randomized 1:1:1 into UCR, UTR and conventional hemodialysis groups. BCM-determined, ‘final’ dry weight is set to normohydration weight −7% of ECW postdialysis, and reached by reducing the previous dry weight, in steps of 0.1 kg per 10 kg body weight, during 12 hemodialysis sessions (one study phase. In case of intradialytic complications, dry weight reduction is decreased, according to a prespecified algorithm. A comparison of intra- and post-dialytic complications among study groups constitutes the primary endpoint. In addition, we will assess relative weight reduction, changes in residual renal function, quality of life measures, and predialysis levels of various laboratory parameters including C-reactive protein, troponin T, and N-terminal pro-B-type natriuretic peptide, before and after the first study

  16. Control volume based hydrocephalus research; analysis of human data

    Science.gov (United States)

    Cohen, Benjamin; Wei, Timothy; Voorhees, Abram; Madsen, Joseph; Anor, Tomer

    2010-11-01

    Hydrocephalus is a neuropathophysiological disorder primarily diagnosed by increased cerebrospinal fluid volume and pressure within the brain. To date, utilization of clinical measurements have been limited to understanding of the relative amplitude and timing of flow, volume and pressure waveforms; qualitative approaches without a clear framework for meaningful quantitative comparison. Pressure volume models and electric circuit analogs enforce volume conservation principles in terms of pressure. Control volume analysis, through the integral mass and momentum conservation equations, ensures that pressure and volume are accounted for using first principles fluid physics. This approach is able to directly incorporate the diverse measurements obtained by clinicians into a simple, direct and robust mechanics based framework. Clinical data obtained for analysis are discussed along with data processing techniques used to extract terms in the conservation equation. Control volume analysis provides a non-invasive, physics-based approach to extracting pressure information from magnetic resonance velocity data that cannot be measured directly by pressure instrumentation.

  17. Accurate fluid force measurement based on control surface integration

    Science.gov (United States)

    Lentink, David

    2018-01-01

    Nonintrusive 3D fluid force measurements are still challenging to conduct accurately for freely moving animals, vehicles, and deforming objects. Two techniques, 3D particle image velocimetry (PIV) and a new technique, the aerodynamic force platform (AFP), address this. Both rely on the control volume integral for momentum; whereas PIV requires numerical integration of flow fields, the AFP performs the integration mechanically based on rigid walls that form the control surface. The accuracy of both PIV and AFP measurements based on the control surface integration is thought to hinge on determining the unsteady body force associated with the acceleration of the volume of displaced fluid. Here, I introduce a set of non-dimensional error ratios to show which fluid and body parameters make the error negligible. The unsteady body force is insignificant in all conditions where the average density of the body is much greater than the density of the fluid, e.g., in gas. Whenever a strongly deforming body experiences significant buoyancy and acceleration, the error is significant. Remarkably, this error can be entirely corrected for with an exact factor provided that the body has a sufficiently homogenous density or acceleration distribution, which is common in liquids. The correction factor for omitting the unsteady body force, {{{ {ρ f}} {1 - {ρ f} ( {{ρ b}+{ρ f}} )}.{( {{{{ρ }}b}+{ρ f}} )}}} , depends only on the fluid, {ρ f}, and body, {{ρ }}b, density. Whereas these straightforward solutions work even at the liquid-gas interface in a significant number of cases, they do not work for generalized bodies undergoing buoyancy in combination with appreciable body density inhomogeneity, volume change (PIV), or volume rate-of-change (PIV and AFP). In these less common cases, the 3D body shape needs to be measured and resolved in time and space to estimate the unsteady body force. The analysis shows that accounting for the unsteady body force is straightforward to non

  18. Elevated interstitial fluid volume in rat soleus muscles by hindlimb unweighting

    DEFF Research Database (Denmark)

    Kandarian, S C; Boushel, Robert Christopher; Schulte, Lars

    1991-01-01

    ) by tail suspension. Soleus muscles were studied after 28 days and compared with those from five age-matched control (C) rats. Interstitial fluid volume ([3H]inulin space) and maximum tetanic tension (Po) were measured in vitro at 25 degrees C. Soleus muscles atrophied 58% because of unweighting (C = 147...

  19. Control volume based hydrocephalus research; a phantom study

    Science.gov (United States)

    Cohen, Benjamin; Voorhees, Abram; Madsen, Joseph; Wei, Timothy

    2009-11-01

    Hydrocephalus is a complex spectrum of neurophysiological disorders involving perturbation of the intracranial contents; primarily increased intraventricular cerebrospinal fluid (CSF) volume and intracranial pressure are observed. CSF dynamics are highly coupled to the cerebral blood flows and pressures as well as the mechanical properties of the brain. Hydrocephalus, as such, is a very complex biological problem. We propose integral control volume analysis as a method of tracking these important interactions using mass and momentum conservation principles. As a first step in applying this methodology in humans, an in vitro phantom is used as a simplified model of the intracranial space. The phantom's design consists of a rigid container filled with a compressible gel. Within the gel a hollow spherical cavity represents the ventricular system and a cylindrical passage represents the spinal canal. A computer controlled piston pump supplies sinusoidal volume fluctuations into and out of the flow phantom. MRI is used to measure fluid velocity and volume change as functions of time. Independent pressure measurements and momentum flow rate measurements are used to calibrate the MRI data. These data are used as a framework for future work with live patients and normal individuals. Flow and pressure measurements on the flow phantom will be presented through the control volume framework.

  20. Fluid structure interaction due to fluid communications between fluid volumes. Application to seismic behaviour of F.B.R. vessels

    International Nuclear Information System (INIS)

    Durandet, E.; Gibert, R.J.; Gantenbein, F.

    1988-01-01

    The internal structures of a pool-type breeder reactor are mainly axisymmetric shells separated by fluid volumes which are connected one to another by small communications. Unfortunately, the communications destroy the axisymmetry of the problem and a correct modelisation by finite element method generally need a lot of small elements compared to the size of the standard mesh of the fluid volumes. To overcome these difficulties, an equivalent axisymmetric element based on a local tridimensional solution in the vicinity of the fluid communication is defined and will be described in the paper. This special fluid element is characterized by an equivalent length and annular cross-section. The second part of the paper is devoted to the application to an horizontal seismic calculation of breeder reactor

  1. Cellwise conservative unsplit advection for the volume of fluid method

    DEFF Research Database (Denmark)

    Comminal, Raphaël; Spangenberg, Jon; Hattel, Jesper Henri

    2015-01-01

    We present a cellwise conservative unsplit (CCU) advection scheme for the volume of fluid method (VOF) in 2D. Contrary to other schemes based on explicit calculations of the flux balances, the CCU advection adopts a cellwise approach where the pre-images of the control volumes are traced......-overlapping donating regions and pre-images with conforming edges to their neighbors, resulting in the conservativeness and the boundedness (liquid volume fraction inside the interval [0, 1]) of the CCU advection scheme. Finally, the update of the liquid volume fractions is computed from the intersections of the pre......-image polygons with the reconstructed interfaces. The CCU scheme is tested on several benchmark tests for the VOF advection, together with the standard piecewise linear interface calculation (PLIC). The geometrical errors of the CCU compare favorably with other unsplit VOF-PLIC schemes. Finally, potential...

  2. Preferential effects of low volume versus high volume replacement with crystalloid fluid in a hemorrhagic shock model in pigs.

    Science.gov (United States)

    Ponschab, Martin; Schöchl, Herbert; Keibl, Claudia; Fischer, Henrik; Redl, Heinz; Schlimp, Christoph J

    2015-10-06

    Fluid resuscitation is a core stone of hemorrhagic shock therapy, and crystalloid fluids seem to be associated with lower mortality compared to colloids. However, as redistribution starts within minutes, it has been suggested to replace blood loss with a minimum of a three-fold amount of crystalloids. The hypothesis was that in comparison to high volume (HV), a lower crystalloid volume (LV) achieves a favorable coagulation profile and exerts sufficient haemodynamics in the acute phase of resuscitation. In 24 anaesthetized pigs, controlled arterial blood loss of 50 % of the estimated blood volume was either (n = 12) replaced with a LV (one-fold) or a HV (three-fold) volume of a balanced, acetated crystalloid solution at room temperature. Hemodynamic parameters, dilution effects and coagulation profile by standard coagulation tests and thromboelastometry at baseline and after resuscitation were determined in both groups. LV resuscitation increased MAP significantly less compared to the HV, 61 ± 7 vs. 82 ± 14 mmHg (p controlled blood loss, a one fold LV crystalloid replacement strategy is sufficient to adequately raise blood pressure up to a mean arterial pressure >50 mm Hg. The concept of damage control resuscitation (DCR) with permissive hypotension may be better met by using LV as compared to a three fold HV resuscitation strategy. High volume administration of an acetated balanced crystalloid does not lead to hyperchloraemic acidosis, but may negatively influence clinical parameters, such as higher blood pressure, lower body temperature and impaired coagulation parameters, which could potentially increase bleeding after trauma. Replacement of acute blood loss with just an equal amount of an acetated balanced crystalloid appears to be the preferential treatment strategy in the acute phase after controlled bleeding.

  3. Understanding the heterogeneity in volume overload and fluid distribution in decompensated heart failure is key to optimal volume management: role for blood volume quantitation.

    Science.gov (United States)

    Miller, Wayne L; Mullan, Brian P

    2014-06-01

    This study sought to quantitate total blood volume (TBV) in patients hospitalized for decompensated chronic heart failure (DCHF) and to determine the extent of volume overload, and the magnitude and distribution of blood volume and body water changes following diuretic therapy. The accurate assessment and management of volume overload in patients with DCHF remains problematic. TBV was measured by a radiolabeled-albumin dilution technique with intravascular volume, pre-to-post-diuretic therapy, evaluated at hospital admission and at discharge. Change in body weight in relation to quantitated TBV was used to determine interstitial volume contribution to total fluid loss. Twenty-six patients were prospectively evaluated. Two patients had normal TBV at admission. Twenty-four patients were hypervolemic with TBV (7.4 ± 1.6 liters) increased by +39 ± 22% (range, +9.5% to +107%) above the expected normal volume. With diuresis, TBV decreased marginally (+30 ± 16%). Body weight declined by 6.9 ± 5.2 kg, and fluid intake/fluid output was a net negative 8.4 ± 5.2 liters. Interstitial compartment fluid loss was calculated at 6.2 ± 4.0 liters, accounting for 85 ± 15% of the total fluid reduction. TBV analysis demonstrated a wide range in the extent of intravascular overload. Dismissal measurements revealed marginally reduced intravascular volume post-diuretic therapy despite large reductions in body weight. Mobilization of interstitial fluid to the intravascular compartment with diuresis accounted for this disparity. Intravascular volume, however, remained increased at dismissal. The extent, composition, and distribution of volume overload are highly variable in DCHF, and this variability needs to be taken into account in the approach to individualized therapy. TBV quantitation, particularly serial measurements, can facilitate informed volume management with respect to a goal of treating to euvolemia. Copyright © 2014 American College of Cardiology Foundation. Published

  4. Model for the radionuclide measurement of ascitic fluid volumes

    International Nuclear Information System (INIS)

    Kaplan, W.D.; Davis, M.A.; Uren, R.F.; Wisotsky, T.; LaTegola, M.

    1978-01-01

    Technetium-99m phytate colloids formed in vitro and in vivo were examined as radioindicators for estimation of the volume of third-space fluid in an ovarian ascites model using C3HeB/FeJ mice. In double-label experiments, the accuracy of the colloids for dilution analysis was found to be equal or superior to that of I-125 HSA. Sampling times 3 to 5 min after intraperitoneal administration were found to produce the best volume estimates. Four needle-stopcock assemblies inserted sequentially into the quadrants of the peritoneal cavity were used for administration and sampling of the radioindicators. The stopcocks could be closed to prevent leakage of ascitic fluid during the procedure. In contrast to radiolabeled albumin, Tc-99m phytate colloids have clinical use for simultaneous imaging of radiotracer migration to assess potential occlusion of diaphragmatic lymphatics by neoplastic cells, and for dilution analysis to estimate volume of ascitic fluid

  5. Variant of a volume-of-fluid method for surface tension-dominant two ...

    Indian Academy of Sciences (India)

    2013-12-27

    Dec 27, 2013 ... face tension-dominant two-phase flows are explained. ... for one particular fluid inside a cell as its material volume divided by the total ... the reconstructed interface and the velocity field, and the final part ..... Welch S W J and Wilson J 2000 A volume of fluid based method for fluid flows with phase change. J.

  6. Higher vs. lower fluid volume for septic shock

    DEFF Research Database (Denmark)

    Smith, Søren H; Perner, Anders

    2012-01-01

    .4 (2.2-5.5) vs. 2.0 (1.6-3.0) mmol l-1, P vs. 54 (45-67), P = 0.73), sequential organ failure assessment (SOFA) score (11 (9-13) vs. 11 (9-13), P = 0.78) and 90-day mortality (48 vs...... volumes. Characteristics between these groups were compared using non-parametric and Chi-square statistics. RESULTS: The 164 included patients received median 4.0 l (IQR 2.3-6.3) of fluid during the first day of septic shock. Patients receiving higher volumes (> 4.0 l) on day 1 had higher p-lactate (3....... 53%, P = 0.27) did not differ between groups. The 95 patients who still had shock on day 3 had received 7.5 l (4.3 - 10.8) of fluid by the end of day 3. Patients receiving higher volumes (> 7.5 l) had higher p-lactate (2.6 (1.7-3.4) vs. 1.9 (1.6-2.4) mmol l-1, P

  7. Second-order accurate volume-of-fluid algorithms for tracking material interfaces

    International Nuclear Information System (INIS)

    Pilliod, James Edward; Puckett, Elbridge Gerry

    2004-01-01

    We introduce two new volume-of-fluid interface reconstruction algorithms and compare the accuracy of these algorithms to four other widely used volume-of-fluid interface reconstruction algorithms. We find that when the interface is smooth (e.g., continuous with two continuous derivatives) the new methods are second-order accurate and the other algorithms are first-order accurate. We propose a design criteria for a volume-of-fluid interface reconstruction algorithm to be second-order accurate. Namely, that it reproduce lines in two space dimensions or planes in three space dimensions exactly. We also introduce a second-order, unsplit, volume-of-fluid advection algorithm that is based on a second-order, finite difference method for scalar conservation laws due to Bell, Dawson and Shubin. We test this advection algorithm by modeling several different interface shapes propagating in two simple incompressible flows and compare the results with the standard second-order, operator-split advection algorithm. Although both methods are second-order accurate when the interface is smooth, we find that the unsplit algorithm exhibits noticeably better resolution in regions where the interface has discontinuous derivatives, such as at corners

  8. Fluid control valves

    International Nuclear Information System (INIS)

    Rankin, J.

    1980-01-01

    A fluid control valve is described in which it is not necessary to insert a hand or a tool into the housing to remove the valve seat. Such a valve is particularly suitable for the control of radioactive fluids since maintenance by remote control is possible. (UK)

  9. Residual limb fluid volume change and volume accommodation: Relationships to activity and self-report outcomes in people with trans-tibial amputation.

    Science.gov (United States)

    Sanders, Joan E; Youngblood, Robert T; Hafner, Brian J; Ciol, Marcia A; Allyn, Katheryn J; Gardner, David; Cagle, John C; Redd, Christian B; Dietrich, Colin R

    2018-02-01

    Fluctuations in limb volume degrade prosthesis fit and require users to accommodate changes using management strategies, such as donning and doffing prosthetic socks. To examine how activities and self-report outcomes relate to daily changes in residual limb fluid volume and volume accommodation. Standardized, two-part laboratory protocol with an interim observational period. Participants were classified as "accommodators" or "non-accommodators," based on self-report prosthetic sock use. Participants' residual limb fluid volume change was measured using a custom bioimpedance analyzer and a standardized in-laboratory activity protocol. Self-report health outcomes were assessed with the Socket Comfort Score and Prosthesis Evaluation Questionnaire. Activity was monitored while participants left the laboratory for at least 3 h. They then returned to repeat the bioimpedance test protocol. Twenty-nine people were enrolled. Morning-to-afternoon percent limb fluid volume change per hour was not strongly correlated to percent time weight-bearing or to self-report outcomes. As a group, non-accommodators ( n = 15) spent more time with their prosthesis doffed and reported better outcomes than accommodators. Factors other than time weight-bearing may contribute to morning-to-afternoon limb fluid volume changes and reported satisfaction with the prosthesis among trans-tibial prosthesis users. Temporary doffing may be a more effective and satisfying accommodation method than sock addition. Clinical relevance Practitioners should be mindful that daily limb fluid volume change and prosthesis satisfaction are not dictated exclusively by activity. Temporarily doffing the prosthesis may slow daily limb fluid volume loss and should be investigated as an alternative strategy to sock addition.

  10. Gastric Fluid Volume Change After Oral Rehydration Solution Intake in Morbidly Obese and Normal Controls: A Magnetic Resonance Imaging-Based Analysis.

    Science.gov (United States)

    Shiraishi, Toshie; Kurosaki, Dai; Nakamura, Mitsuyo; Yazaki, Taiji; Kobinata, Satomi; Seki, Yosuke; Kasama, Kazunori; Taniguchi, Hideki

    2017-04-01

    Although preoperative fluid intake 2 hours before anesthesia is generally considered safe, there are concerns about delayed gastric emptying in obese subjects. In this study, the gastric fluid volume (GFV) change in morbidly obese subjects was investigated after ingesting an oral rehydration solution (ORS) and then compared with that in nonobese subjects. GFV change over time after the ingestion of 500 mL of ORS containing 2.5% carbohydrate (OS-1) was measured in 10 morbidly obese subjects (body mass index [BMI], >35) scheduled for bariatric surgery and 10 nonobese (BMI, 19-24) using magnetic resonance imaging. After 9 hours of fasting, magnetic resonance imaging scans were performed at preingestion, 0 min (just after ingestion), and every 30 minutes up to 120 minutes. GFV values were compared between morbidly obese and control groups and also between preingestion and postingestion time points. The morbidly obese group had a significantly higher body weight and BMI than the control group (mean body weight and BMI in morbidly obese, 129.6 kg and 46.3 kg/m, respectively; control, 59.5 kg and 21.6 kg/m, respectively). GFV was significantly higher in the morbidly obese subjects compared with the control group at preingestion (73 ± 30.8 mL vs 31 ± 19.9 mL, P = .001) and at 0 minutes after ingestion (561 ± 30.8 mL vs 486 ± 42.8 mL; P < .001). GFV declined rapidly in both groups and reached fasting baseline levels by 120 minutes (morbidly obese, 50 ± 29.5 mL; control, 30 ± 11.6 mL). A significant correlation was observed between preingestion residual GFV and body weight (r = .66; P = .001). Morbidly obese subjects have a higher residual gastric volume after 9 hours of fasting compared with subjects with a normal BMI. However, no differences were observed in gastric emptying after ORS ingestion in the 2 populations, and GFVs reached baseline within 2 hours after ORS ingestion. Further studies are required to confirm whether the preoperative fasting and fluid

  11. Determination of gas volume trapped in a closed fluid system

    Science.gov (United States)

    Hunter, W. F.; Jolley, J. E.

    1971-01-01

    Technique involves extracting known volume of fluid and measuring system before and after extraction, volume of entrapped gas is then computed. Formula derived from ideal gas laws is basis of this method. Technique is applicable to thermodynamic cycles and hydraulic systems.

  12. The effect of intraocular gas and fluid volumes on intraocular pressure.

    Science.gov (United States)

    Simone, J N; Whitacre, M M

    1990-02-01

    Large increases in the intraocular pressure (IOP) of postoperative gas-containing eyes may require the removal of gas or fluid to reduce the IOP to the normal range. Application of the ideal gas law to Friedenwald's equation provides a mathematical model of the relationship between IOP, intraocular gas and fluid volumes, and the coefficient of scleral rigidity. This mathematic model shows that removal of a given volume of gas or fluid produces an identical decrease in IOP and that the more gas an eye contains, the greater the volume reduction necessary to reduce the pressure. Application of the model shows that the effective coefficient of scleral rigidity is low (mean K, 0.0021) in eyes with elevated IOP that have undergone vitrectomy and retinal cryopexy and very low (mean K, 0.0013) in eyes with elevated IOP that have undergone placement of a scleral buckle and band. By using the appropriate mean coefficient of rigidity, the volume of material to be aspirated to produce a given decrease in IOP can be predicted with clinically useful accuracy.

  13. Initial 12-h operative fluid volume is an independent risk factor for pleural effusion after hepatectomy.

    Science.gov (United States)

    Cheng, Xiang; Wu, Jia-Wei; Sun, Ping; Song, Zi-Fang; Zheng, Qi-Chang

    2016-12-01

    Pleural effusion after hepatectomy is associated with significant morbidity and prolonged hospital stays. Several studies have addressed the risk factors for postoperative pleural effusion. However, there are no researches concerning the role of the initial 12-h operative fluid volume. The aim of this study was to evaluate whether the initial 12-h operative fluid volume during liver resection is an independent risk factor for pleural effusion after hepatectomy. In this study, we retrospectively analyzed clinical data of 470 patients consecutively undergoing elective hepatectomy between January 2011 and December 2012. We prospectively collected and retrospectively analyzed baseline and clinical data, including preoperative, intraoperative, and postoperative variables. Univariate and multivariate analyses were carried out to identify whether the initial 12-h operative fluid volume was an independent risk factor for pleural effusion after hepatectomy. The multivariate analysis identified 2 independent risk factors for pleural effusion: operative time [odds ratio (OR)=10.2] and initial 12-h operative fluid volume (OR=1.0003). Threshold effect analyses revealed that the initial 12 h operative fluid volume was positively correlated with the incidence of pleural effusion when the initial 12-h operative fluid volume exceeded 4636 mL. We conclude that the initial 12-h operative fluid volume during liver resection and operative time are independent risk factors for pleural effusion after hepatectomy. Perioperative intravenous fluids should be restricted properly.

  14. Acute extracellular fluid volume changes increase ileocolonic resistance to saline flow in anesthetized dogs

    Directory of Open Access Journals (Sweden)

    Santiago Jr. A.T.

    1997-01-01

    Full Text Available We determined the effect of acute extracellular fluid volume changes on saline flow through 4 gut segments (ileocolonic, ileal, ileocolonic sphincter and proximal colon, perfused at constant pressure in anesthetized dogs. Two different experimental protocols were used: hypervolemia (iv saline infusion, 0.9% NaCl, 20 ml/min, volume up to 5% body weight and controlled hemorrhage (up to a 50% drop in mean arterial pressure. Mean ileocolonic flow (N = 6 was gradually and significantly decreased during the expansion (17.1%, P<0.05 and expanded (44.9%, P<0.05 periods while mean ileal flow (N = 7 was significantly decreased only during the expanded period (38%, P<0.05. Mean colonic flow (N = 7 was decreased during expansion (12%, P<0.05 but returned to control levels during the expanded period. Mean ileocolonic sphincter flow (N = 6 was not significantly modified. Mean ileocolonic flow (N = 10 was also decreased after hemorrhage (retracted period by 17% (P<0.05, but saline flow was not modified in the other separate circuits (N = 6, 5 and 4 for ileal, ileocolonic sphincter and colonic groups, respectively. The expansion effect was blocked by atropine (0.5 mg/kg, iv both on the ileocolonic (N = 6 and ileal (N = 5 circuits. Acute extracellular fluid volume retraction and expansion increased the lower gastrointestinal resistances to saline flow. These effects, which could physiologically decrease the liquid volume being supplied to the colon, are possible mechanisms activated to acutely balance liquid volume deficit and excess.

  15. Associations of Hospital and Patient Characteristics with Fluid Resuscitation Volumes in Patients with Severe Sepsis

    DEFF Research Database (Denmark)

    Hjortrup, Peter Buhl; Haase, Nicolai; Wetterslev, Jørn

    2016-01-01

    PURPOSE: Fluid resuscitation is a key intervention in patients with sepsis and circulatory impairment. The recommendations for continued fluid therapy in sepsis are vague, which may result in differences in clinical practice. We aimed to evaluate associations between hospital and patient characte....... The data indicate variations in clinical practice not explained by patient characteristics emphasizing the need for RCTs assessing fluid resuscitation volumes fluid in patients with sepsis.......PURPOSE: Fluid resuscitation is a key intervention in patients with sepsis and circulatory impairment. The recommendations for continued fluid therapy in sepsis are vague, which may result in differences in clinical practice. We aimed to evaluate associations between hospital and patient...... characteristics and fluid resuscitation volumes in ICU patients with severe sepsis. METHODS: We explored the 6S trial database of ICU patients with severe sepsis needing fluid resuscitation randomised to hydroxyethyl starch 130/0.42 vs. Ringer's acetate. Our primary outcome measure was fluid resuscitation volume...

  16. Closed-loop feedback control for microfluidic systems through automated capacitive fluid height sensing.

    Science.gov (United States)

    Soenksen, L R; Kassis, T; Noh, M; Griffith, L G; Trumper, D L

    2018-03-13

    Precise fluid height sensing in open-channel microfluidics has long been a desirable feature for a wide range of applications. However, performing accurate measurements of the fluid level in small-scale reservoirs (sensor contact needs to be avoided. In particular, gravity-driven systems used in several microfluidic applications to establish pressure gradients and impose flow remain open-loop and largely unmonitored due to these sensing limitations. Here we present an optimized self-shielded coplanar capacitive sensor design and automated control system to provide submillimeter fluid-height resolution (∼250 μm) and control of small-scale open reservoirs without the need for direct fluid contact. Results from testing and validation of our optimized sensor and system also suggest that accurate fluid height information can be used to robustly characterize, calibrate and dynamically control a range of microfluidic systems with complex pumping mechanisms, even in cell culture conditions. Capacitive sensing technology provides a scalable and cost-effective way to enable continuous monitoring and closed-loop feedback control of fluid volumes in small-scale gravity-dominated wells in a variety of microfluidic applications.

  17. Effects of fluid communications between fluid volumes on the seismic behaviour of nuclear breeder reactor internals

    International Nuclear Information System (INIS)

    Durandet, E.; Gibert, R.J.

    1987-01-01

    The internal structures of a breeder reactor as SUPERPHENIX are mainly axisymmetrial shells separated by fluid volumes which are connected by small communications holes. These communications can destroy the axisymmetry of the problem and their effects on the inertial terms due to the fluid are important. An equivalent axisymmetrical element based on a local tridimensional solution in the vicinity of the fluid communication is defined. An axisymmetrical modelization using this type of element is built in order to calculate the horizontal seismic behaviour of the reactor internals. The effect due to three typical fluid communications are studied and compared. (orig.)

  18. Whole-body fluid distribution in humans during dehydration and recovery, before and after humid-heat acclimation induced using controlled hyperthermia.

    Science.gov (United States)

    Patterson, M J; Stocks, J M; Taylor, N A S

    2014-04-01

    This experiment was designed to test the hypothesis that the plasma volume is not selectively defended during exercise- and heat-induced dehydration following humid-heat acclimation. Eight physically active males were heat acclimated (39.8 °C, relative humidity 59.2%) using 17 days of controlled hyperthermia (core temperature: 38.5 °C). Inter-compartmental fluid losses and movements were tracked (radioisotopes and Evans blue dye) during progressive dehydration (cycling) in these same conditions and also during a resting recovery without fluid replacement (28 °C), before (day 1), during (day 8) and after heat acclimation (day 22). On days 8 and 22, there were significant increases in total body water, interstitial fluid and plasma volume (P 0.05). The baseline plasma volume remained expanded throughout: 43.4 [±2.6 (day 1)], 49.1 [±2.4 (day 8); P recovery, plasma volume restoration commenced, with the intracellular fluid contribution becoming more pronounced as acclimation progressed. It is concluded that the plasma volume was not defended more vigorously following humid-heat acclimation. Indeed, a greater fluid loss may well underlie the mechanisms for enhancing plasma volume recovery when heat acclimation is induced using the controlled-hyperthermia technique. © 2013 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  19. The yield of different pleural fluid volumes for Mycobacterium tuberculosis culture.

    Science.gov (United States)

    von Groote-Bidlingmaier, Florian; Koegelenberg, Coenraad Frederik; Bolliger, Chris T; Chung, Pui Khi; Rautenbach, Cornelia; Wasserman, Elizabeth; Bernasconi, Maurizio; Friedrich, Sven Olaf; Diacon, Andreas Henri

    2013-03-01

    We prospectively compared the culture yields of two pleural fluid volumes (5 and 100 ml) inoculated in liquid culture medium in 77 patients of whom 58 (75.3%) were diagnosed with pleural tuberculosis. The overall fluid culture yield was high (60.3% of cases with pleural tuberculosis). The larger volume had a faster time to positivity (329 vs 376 h, p=0.055) but its yield was not significantly higher (53.5% vs 50%; p=0.75). HIV-positive patients were more likely to have positive cultures (78.9% vs 51.5%; p=0.002).

  20. Fluid dynamics theoretical and computational approaches

    CERN Document Server

    Warsi, ZUA

    2005-01-01

    Important Nomenclature Kinematics of Fluid Motion Introduction to Continuum Motion Fluid Particles Inertial Coordinate Frames Motion of a Continuum The Time Derivatives Velocity and Acceleration Steady and Nonsteady Flow Trajectories of Fluid Particles and Streamlines Material Volume and Surface Relation between Elemental Volumes Kinematic Formulas of Euler and Reynolds Control Volume and Surface Kinematics of Deformation Kinematics of Vorticity and Circulation References Problems The Conservation Laws and the Kinetics of Flow Fluid Density and the Conservation of Mass Prin

  1. Goal-directed fluid optimization based on stroke volume variation and cardiac index during one-lung ventilation in patients undergoing thoracoscopy lobectomy operations: a pilot study

    Directory of Open Access Journals (Sweden)

    Jian Zhang

    2013-07-01

    Full Text Available OBJECTIVES: This pilot study was designed to utilize stroke volume variation and cardiac index to ensure fluid optimization during one-lung ventilation in patients undergoing thoracoscopic lobectomies. METHODS: Eighty patients undergoing thoracoscopic lobectomy were randomized into either a goal-directed therapy group or a control group. In the goal-directed therapy group, the stroke volume variation was controlled at 10%±1%, and the cardiac index was controlled at a minimum of 2.5 L.min-1.m-2. In the control group, the MAP was maintained at between 65 mm Hg and 90 mm Hg, heart rate was maintained at between 60 BPM and 100 BPM, and urinary output was greater than 0.5 mL/kg-1/h-1. The hemodynamic variables, arterial blood gas analyses, total administered fluid volume and side effects were recorded. RESULTS: The PaO2/FiO2-ratio before the end of one-lung ventilation in the goal-directed therapy group was significantly higher than that of the control group, but there were no differences between the goal-directed therapy group and the control group for the PaO2/FiO2-ratio or other arterial blood gas analysis indices prior to anesthesia. The extubation time was significantly earlier in the goal-directed therapy group, but there was no difference in the length of hospital stay. Patients in the control group had greater urine volumes, and they were given greater colloid and overall fluid volumes. Nausea and vomiting were significantly reduced in the goal-directed therapy group. CONCLUSION: The results of this study demonstrated that an optimization protocol, based on stroke volume variation and cardiac index obtained with a FloTrac/Vigileo device, increased the PaO2/FiO2-ratio and reduced the overall fluid volume, intubation time and postoperative complications (nausea and vomiting in thoracic surgery patients requiring one-lung ventilation.

  2. The effect of type and volume of fluid hydration on labor duration of nulliparous women: a randomized controlled trial.

    Science.gov (United States)

    Garmi, Gali; Zuarez-Easton, Sivan; Zafran, Noah; Ohel, Iris; Berkovich, Ilanit; Salim, Raed

    2017-06-01

    Type and volume of fluid administered for intrapartum maintenance had been reported to differently affect labor length, delivery mode, and cord artery pH and glucose level. We aimed to compare the effect of three different fluid regimens on labor duration. In a randomized trial, healthy nulliparous in labor were randomized into one of three intravenous fluid regimens: group 1, the reference group, lactated Ringer's solution infused at a rate of 125 mL/h; group 2, lactated Ringer's solution infused at a rate of 250 mL/h; group 3, 0.9% saline solution boosted with 5% glucose, infused at a rate of 125 mL/h. The primary outcome was labor length from enrollment until delivery. Between December 2010 and July 2015, 300 women were randomized to one of the three groups. Demographic and baseline obstetric characteristics were comparable between the groups. There was no significant difference in the time from enrollment to delivery (p = 0.62). Furthermore, there were no significant differences in second stage duration (p = 0.73), mode of delivery (p = 0.21), cord artery pH and glucose level between the groups. Increasing the intravenous volume of lactated Ringer's solution or substituting to fluid containing 5% glucose solution does not affect labor length. ClinicalTrials.gov, http://www.clinicaltrials.gov , NCT01242293.

  3. The volume of fluid method in spherical coordinates

    NARCIS (Netherlands)

    Janse, A.M.C.; Janse, A.M.C.; Dijk, P.E.; Kuipers, J.A.M.

    2000-01-01

    The volume of fluid (VOF) method is a numerical technique to track the developing free surfaces of liquids in motion. This method can, for example, be applied to compute the liquid flow patterns in a rotating cone reactor. For this application a spherical coordinate system is most suited. The novel

  4. Effect of fluid loading on left ventricular volume and stroke volume variability in patients with end-stage renal disease: a pilot study

    Science.gov (United States)

    Kanda, Hirotsugu; Hirasaki, Yuji; Iida, Takafumi; Kanao-Kanda, Megumi; Toyama, Yuki; Kunisawa, Takayuki; Iwasaki, Hiroshi

    2015-01-01

    Purpose The aim of this study was to investigate fluid loading-induced changes in left ventricular end-diastolic volume (LVEDV) and stroke volume variability (SVV) in patients with end-stage renal disease (ESRD) using real-time three-dimensional transesophageal echocardiography and the Vigileo-FloTrac system. Patients and methods After obtaining ethics committee approval and informed consent, 28 patients undergoing peripheral vascular procedures were studied. Fourteen patients with ESRD on hemodialysis (HD) were assigned to the HD group and 14 patients without ESRD were assigned to the control group. Institutional standardized general anesthesia was provided in both groups. SVV was measured using the Vigileo-FloTrac system. Simultaneously, a full-volume three-dimensional transesophageal echocardiography dataset was acquired to measure LVEDV, left ventricular end-systolic volume, and left ventricular ejection fraction. Measurements were obtained before and after loading 500 mL hydroxyethyl starch over 30 minutes in both groups. Results In the control group, intravenous colloid infusion was associated with a significant decrease in SVV (13.8%±2.6% to 6.5%±2.6%, P<0.001) and a significant increase in LVEDV (83.6±23.4 mL to 96.1±28.8 mL, P<0.001). While SVV significantly decreased after infusion in the HD group (16.2%±6.0% to 6.2%±2.8%, P<0.001), there was no significant change in LVEDV. Conclusion Our preliminary data suggest that fluid responsiveness can be assessed not by LVEDV but also by SVV due to underlying cardiovascular pathophysiology in patients with ESRD. PMID:26527879

  5. A volume of fluid method based on multidimensional advection and spline interface reconstruction

    International Nuclear Information System (INIS)

    Lopez, J.; Hernandez, J.; Gomez, P.; Faura, F.

    2004-01-01

    A new volume of fluid method for tracking two-dimensional interfaces is presented. The method involves a multidimensional advection algorithm based on the use of edge-matched flux polygons to integrate the volume fraction evolution equation, and a spline-based reconstruction algorithm. The accuracy and efficiency of the proposed method are analyzed using different tests, and the results are compared with those obtained recently by other authors. Despite its simplicity, the proposed method represents a significant improvement, and compares favorably with other volume of fluid methods as regards the accuracy and efficiency of both the advection and reconstruction steps

  6. [Effect of different volumes of fluid resuscitation on hemorrhagic shock with pulmonary edema at high altitude in the unacclimated rat].

    Science.gov (United States)

    Liu, Liang-ming; Hu, De-yao; Liu, Jian-cang; Li, Ping; Liu, Hou-dong; Xiao, Nan; Zhou, Xue-wu; Tian, Kun-lun; Huo, Xiao-ping; Shi, Quan-gui; He, Yan-mei; Yin, Zuo-ming

    2003-05-01

    To study the effects of different volumes of fluid resuscitation on hemorrhagic shock with pulmonary edema at high altitude in the unacclimated rat. One hundred and twenty-six SD rats transported to Lasa, Tibet, 3 760 meters above the sea level, were anesthetized one week later with sodium pentobarbital (30 mg/kg, intraperitoneal). Hemorrhagic shock with pulmonary edema model was induced by hemorrhage (50 mm Hg for 1 hour, 1 mmHg=0.133 kPa) plus intravenous injection of oleic acid (50 microl/kg). Experiments were then conducted in two parts. Sixty-three rats in part I were equally divided into nine groups (n=7): normal control, hemorrhagic shock control, hemorrhagic shock with pulmonary edema (HSPE) without fluid infusion, HSPE plus infusing lactated Ringer's solution (LR) with 0.5-, 1-, 1.5-, 2- or 3- fold volume shed blood, and 1 volume of LR plus mannitol (10 ml/kg). Hemodynamic parameters including mean arterial blood pressure (MAP), left intraventricular systolic pressure (LVSP) and the maximal change rate of intraventricular pressure rise or decline (+/- dp/dt max) were observed at 15, 30, 60 and 120 minutes after infusion, blood gases were measured at 30 and 120 minutes after infusion and the water content of lung and brain was determined at 120 minutes after infusion. In part II, additional 63 rats were used to observe the effect of different volumes of fluid resuscitation on survival time of HSPE rats. 0.5 volume of LR infusion significantly improved MAP, LVSP and +/- dp/dt max, prolonged the survival time of HSPE animals (all P<0.01), while it did not increase the water content of lung and brain and had no marked influence on blood gases. One volume of LR infusion slightly improved hemodynamic parameters, prolonged the survival time and increased the water content of lung. More than 1 volume of LR infusion including 1.5-, 2- and 3- fold volume LR deteriorated the hemodynamic parameters and decreased the survival time of shocked animal, meanwhile they

  7. A SUB-GRID VOLUME-OF-FLUIDS (VOF) MODEL FOR MIXING IN RESOLVED SCALE AND IN UNRESOLVED SCALE COMPUTATIONS

    International Nuclear Information System (INIS)

    Vold, Erik L.; Scannapieco, Tony J.

    2007-01-01

    A sub-grid mix model based on a volume-of-fluids (VOF) representation is described for computational simulations of the transient mixing between reactive fluids, in which the atomically mixed components enter into the reactivity. The multi-fluid model allows each fluid species to have independent values for density, energy, pressure and temperature, as well as independent velocities and volume fractions. Fluid volume fractions are further divided into mix components to represent their 'mixedness' for more accurate prediction of reactivity. Time dependent conversion from unmixed volume fractions (denoted cf) to atomically mixed (af) fluids by diffusive processes is represented in resolved scale simulations with the volume fractions (cf, af mix). In unresolved scale simulations, the transition to atomically mixed materials begins with a conversion from unmixed material to a sub-grid volume fraction (pf). This fraction represents the unresolved small scales in the fluids, heterogeneously mixed by turbulent or multi-phase mixing processes, and this fraction then proceeds in a second step to the atomically mixed fraction by diffusion (cf, pf, af mix). Species velocities are evaluated with a species drift flux, ρ i u di = ρ i (u i -u), used to describe the fluid mixing sources in several closure options. A simple example of mixing fluids during 'interfacial deceleration mixing with a small amount of diffusion illustrates the generation of atomically mixed fluids in two cases, for resolved scale simulations and for unresolved scale simulations. Application to reactive mixing, including Inertial Confinement Fusion (ICF), is planned for future work.

  8. Is There Volume Transmission Along Extracellular Fluid Pathways Corresponding to the Acupuncture Meridians?

    Directory of Open Access Journals (Sweden)

    Weibo Zhang

    2017-02-01

    Full Text Available Volume transmission is a new major communication signaling via extracellular fluid (interstitial fluid pathways. It was proposed by the current authors that such pathways can explain the meridian phenomena and acupuncture effects. To investigate whether meridian-like structures exist in fish body and operate via volume transmission in extracellular fluid pathways, we injected alcian blue (AB under anesthesia into Gephyrocharax melanocheir, which has a translucent body. The migration of AB could be seen directly and was recorded by a digital camera. The fish was then embedded and cut transversely to observe the position of tracks in three dimensions. Eight longitudinal threadlike blue tracks were recognized on the fish. The positions of these threadlike tracks were similar to meridians on the human body. Transverse sections showed that these tracks distributed to different layers of distinct subcutaneous loose connective tissues and intermuscular septa. Lymphatic vessels were sometimes associated with the extracellular blue tracks where the migration of AB occurred. Extracellular fluid pathways were found on fish through their transport of AB. These pathways operating via volume transmission appeared to be similar in positions and functions to the acupuncture meridians in Chinese medicine.

  9. Amylase, lipase, and volume of drainage fluid in gastrectomy for the early detection of complications caused by pancreatic leakage.

    Science.gov (United States)

    Seo, Kyung Won; Yoon, Ki Young; Lee, Sang Ho; Shin, Yeon Myung; Choi, Kyung Hyun; Hwang, Hyun Yong

    2011-12-01

    Pancreatic leakage is a serious complication of gastrectomy due to stomach cancer. Therefore, we analyzed amylase and lipase concentrations in blood and drainage fluid, and evaluated the volume of drainage fluid to discern their usefulness as markers for the early detection of serious pancreatic leakage requiring reoperation after gastrectomy. From January 2001 to December 2007, we retrospectively analyzed data from 24,072 patient samples. We divided patients into two groups; 1) complications with pancreatic leakage (CG), and 2) no complications associated with pancreatic leakage (NCG). Values of amylase and lipase in the blood and drainage fluid, volume of the drainage fluid, and relationships among the volumes, amylase values, and lipase values in the drainage fluid were evaluated, respectively in the two groups. The mean amylase values of CG were significantly higher than those of NCG in blood and drainage fluid (P < 0.05). For lipase, statistically significant differences were observed in drainage fluid (P < 0.05). The mean volume (standard deviation) of the drained fluid through the tube between CG (n = 22) and NCG (n = 236) on postoperative day 1 were 368.41 (266.25) and 299.26 (300.28), respectively. There were no statistically significant differences between the groups (P = 0.298). There was a correlation between the amylase and lipase values in the drainage fluid (r = 0.812, P = 0.000). Among postoperative amylase and lipase values in blood and drainage fluid, and the volume of drainage fluid, the amylase in drainage fluid was better differentiated between CG and NCG than other markers. The volume of the drainage fluid did not differ significantly between groups.

  10. Balance point characterization of interstitial fluid volume regulation.

    Science.gov (United States)

    Dongaonkar, R M; Laine, G A; Stewart, R H; Quick, C M

    2009-07-01

    The individual processes involved in interstitial fluid volume and protein regulation (microvascular filtration, lymphatic return, and interstitial storage) are relatively simple, yet their interaction is exceedingly complex. There is a notable lack of a first-order, algebraic formula that relates interstitial fluid pressure and protein to critical parameters commonly used to characterize the movement of interstitial fluid and protein. Therefore, the purpose of the present study is to develop a simple, transparent, and general algebraic approach that predicts interstitial fluid pressure (P(i)) and protein concentrations (C(i)) that takes into consideration all three processes. Eight standard equations characterizing fluid and protein flux were solved simultaneously to yield algebraic equations for P(i) and C(i) as functions of parameters characterizing microvascular, interstitial, and lymphatic function. Equilibrium values of P(i) and C(i) arise as balance points from the graphical intersection of transmicrovascular and lymph flows (analogous to Guyton's classical cardiac output-venous return curves). This approach goes beyond describing interstitial fluid balance in terms of conservation of mass by introducing the concept of inflow and outflow resistances. Algebraic solutions demonstrate that P(i) and C(i) result from a ratio of the microvascular filtration coefficient (1/inflow resistance) and effective lymphatic resistance (outflow resistance), and P(i) is unaffected by interstitial compliance. These simple algebraic solutions predict P(i) and C(i) that are consistent with reported measurements. The present work therefore presents a simple, transparent, and general balance point characterization of interstitial fluid balance resulting from the interaction of microvascular, interstitial, and lymphatic function.

  11. The Use of Limited Fluid Resuscitation and Blood Pressure-Controlling Drugs in the Treatment of Acute Upper Gastrointestinal Hemorrhage Concomitant with Hemorrhagic Shock.

    Science.gov (United States)

    Lu, Bo; Li, Mao-Qin; Li, Jia-Qiong

    2015-06-01

    The aim of this study was to evaluate the usefulness of the limited fluid resuscitation regimen combined with blood pressure-controlling drugs in treating acute upper gastrointestinal hemorrhage concomitant with hemorrhagic shock. A total of 51 patients were enrolled and divided into a group that received traditional fluid resuscitation group (conventional group, 24 patients) and a limited fluid resuscitation group (study group, 27 patients). Before and after resuscitation, the blood lactate, base excess, and hemoglobin values, as well as the volume of fluid resuscitation and resuscitation time were examined. Compared with conventional group, study group had significantly better values of blood lactate, base excess, and hemoglobin (all p controlling drugs effectivelyxxx maintains blood perfusion of vital organs, improves whole body perfusion indicators, reduces the volume of fluid resuscitation, and achieves better bleeding control and resuscitation effectiveness.

  12. Graphene nanoplatelets as high-performance filtration control material in water-based drilling fluids

    Science.gov (United States)

    Ridha, Syahrir; Ibrahim, Arif; Shahari, Radzi; Fonna, Syarizal

    2018-05-01

    The main objective of this work is to evaluate the effectiveness of graphene nanoplatelets (GNP) as filtration control materials in water based drilling fluids. Three (3) general samples of water based drilling fluids were prepared including basic potassium chloride (KCl) drilling fluids, nanosilica (NS) drilling fluids and GNP drilling fluids. Several concentrations of NS and GNP were dispersed in controlled formulations of water based drilling fluids. Standard API filtration tests were carried out for comparison purposes as well as High Temperature High Pressure (HTHP) filtration tests at 150 °F (∼66 °C), 250 °F (∼121 °C) and 350 °F (∼177 °C) at a fixed 500 (∼3.45MPa) psi to study the filtration trend as a function of temperature. Mud cake samples from several tests were selectively chosen and analyzed under Field Emission Scanning Electron Microscope (FESEM) for its morphology. Results from this work show that nanoparticle concentrations play a factor in filtration ability of colloid materials in water based drilling fluids when studied at elevated temperature. Low temperature filtration, however, shows only small differences in volume in all the drilling fluid samples. 0.1 ppb concentrations of GNP reduced the fluid loss of 350 °F by 4.6 mL as compared to the similar concentration of NS drilling fluids.

  13. The use of LiDCO based fluid management in patients undergoing hip fracture surgery under spinal anaesthesia: Neck of femur optimisation therapy - targeted stroke volume (NOTTS: study protocol for a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Moran Chris G

    2011-09-01

    Full Text Available Abstract Background Approximately 70,000 patients/year undergo surgery for repair of a fractured hip in the United Kingdom. This is associated with 30-day mortality of 9% and survivors have a considerable length of acute hospital stay postoperatively (median 26 days. Use of oesophageal Doppler monitoring to guide intra-operative fluid administration in hip fracture repair has previously been associated with a reduction in hospital stay of 4-5 days. Most hip fracture surgery is now performed under spinal anaesthesia. Oesophageal Doppler monitoring may be unreliable in the presence of spinal anaesthesia and most patients would not tolerate the probes. An alternative method of guiding fluid administration (minimally-invasive arterial pulse contour analysis has been shown to reduce length of stay in high-risk surgical patients but has never been studied in hip fracture surgery. Methods Single-centre randomised controlled parallel group trial. Randomisation by website using computer generated concealed tables. Setting: University hospital in UK. Participants: 128 patients with acute primary hip fracture listed for operative repair under spinal anaesthesia and aged > 65 years. Intervention: Stroke volume guided intra-operative fluid management. Continuous measurement of SV recorded by a calibrated cardiac output monitor (LiDCOplus. Maintenance fluid and 250 ml colloid boluses given to achieve sustained 10% increases in stroke volume. Control group: fluid administration at the responsible (blinded anaesthetist's discretion. The intervention terminates at the end of the surgical procedure and post-operative fluid management is at the responsible anaesthetist's discretion. Primary outcome: length of acute hospital stay is determined by a blinded team of clinicians. Secondary outcomes include number of complications and total cost of care. Funding NIHR/RfPB: PB-PG-0407-13073. Trial registration number Trial registration: Current Controlled Trials ISRCTN

  14. Development of a theoretical framework for analyzing cerebrospinal fluid dynamics

    Directory of Open Access Journals (Sweden)

    Vedel Søren

    2009-09-01

    Full Text Available Abstract Background To date hydrocephalus researchers acknowledge the need for rigorous but utilitarian fluid mechanics understanding and methodologies in studying normal and hydrocephalic intracranial dynamics. Pressure volume models and electric circuit analogs introduced pressure into volume conservation; but control volume analysis enforces independent conditions on pressure and volume. Previously, utilization of clinical measurements has been limited to understanding of the relative amplitude and timing of flow, volume and pressure waveforms; qualitative approaches without a clear framework for meaningful quantitative comparison. Methods Control volume analysis is presented to introduce the reader to the theoretical background of this foundational fluid mechanics technique for application to general control volumes. This approach is able to directly incorporate the diverse measurements obtained by clinicians to better elucidate intracranial dynamics and progression to disorder. Results Several examples of meaningful intracranial control volumes and the particular measurement sets needed for the analysis are discussed. Conclusion Control volume analysis provides a framework to guide the type and location of measurements and also a way to interpret the resulting data within a fundamental fluid physics analysis.

  15. ALE finite volume method for free-surface Bingham plastic fluids with general curvilinear coordinates

    International Nuclear Information System (INIS)

    Nagai, Katsuaki; Ushijima, Satoru

    2010-01-01

    A numerical prediction method has been proposed to predict Bingham plastic fluids with free-surface in a two-dimensional container. Since the linear relationships between stress tensors and strain rate tensors are not assumed for non-Newtonian fluids, the liquid motions are described with Cauchy momentum equations rather than Navier-Stokes equations. The profile of a liquid surface is represented with the two-dimensional curvilinear coordinates which are represented in each computational step on the basis of the arbitrary Lagrangian-Eulerian (ALE) method. Since the volumes of the fluid cells are transiently changed in the physical space, the geometric conservation law is applied to the finite volume discretizations. As a result, it has been shown that the present method enables us to predict reasonably the Bingham plastic fluids with free-surface in a container.

  16. ALE finite volume method for free-surface Bingham plastic fluids with general curvilinear coordinates

    Science.gov (United States)

    Nagai, Katsuaki; Ushijima, Satoru

    2010-06-01

    A numerical prediction method has been proposed to predict Bingham plastic fluids with free-surface in a two-dimensional container. Since the linear relationships between stress tensors and strain rate tensors are not assumed for non-Newtonian fluids, the liquid motions are described with Cauchy momentum equations rather than Navier-Stokes equations. The profile of a liquid surface is represented with the two-dimensional curvilinear coordinates which are represented in each computational step on the basis of the arbitrary Lagrangian-Eulerian (ALE) method. Since the volumes of the fluid cells are transiently changed in the physical space, the geometric conservation law is applied to the finite volume discretizations. As a result, it has been shown that the present method enables us to predict reasonably the Bingham plastic fluids with free-surface in a container.

  17. Measurement of synovial fluid volume using urea.

    Science.gov (United States)

    Kraus, V B; Stabler, T V; Kong, S Y; Varju, G; McDaniel, G

    2007-10-01

    To examine the utility of using urea concentrations for determining Synovial Fluid (SF) joint volume in effused and non-effused joints. Knee joint SF was aspirated from 159 human study participants with symptomatic osteoarthritis of at least one knee either directly (165 knees) or by lavage (110 knees). Serum was obtained immediately prior to SF aspiration. Participants were asked to rate individual knee pain, aching or stiffness. SF and serum urea levels were determined using a specific enzymatic method run on an automated CMA600 analyzer. Cell counts were performed on direct SF aspirates when volume permitted. The formula for calculating SF joint volume was as follows: V(j)=C(D)(V(I))/(C-C(D)) with V(j)=volume of SF in entire joint, C(D)=concentration of urea in diluted (lavage) SF, V(I)=volume of saline injected into joint, and C=concentration of urea in undiluted (neat) SF derived below where C=0.897(C(S)) and C(s)=concentration of urea in serum. There was an excellent correlation (r(2)=0.8588) between SF and serum urea in the direct aspirates with a ratio of 0.897 (SF/serum). Neither urea levels nor the SF/serum ratio showed any correlation with Kellgren Lawrence (KL) grade, or cell count. While urea levels increased with age there was no change in the ratio. Intraarticular SF volumes calculated for the lavaged knees ranged from 0.555 to 71.71ml with a median volume of 3.048ml. There was no correlation of SF volume to KL grade but there was a positive correlation (P=0.001) between SF volume and self-reported individual knee pain. Our urea results for direct aspirates indicate an equilibrium state between serum and SF with regard to the water fraction. This equilibrium exists regardless of disease status (KL grade), inflammation (cell count), or age, making it possible to calculate intraarticular volume of lavaged joints based upon this urea method. Most of the joint volumes we calculated fell within the previously reported range for normal knees of 0.5-4.0ml

  18. Water volume quantitation using nuclear magnetic resonance imaging: application to cerebrospinal fluid

    International Nuclear Information System (INIS)

    Lecouffe, P.; Huglo, D.; Dubois, P.; Rousseau, J.; Marchandise, X.

    1990-01-01

    Quantitation in proton NMR imaging is applied to cerebrospinal fluid (CSF). Total intracranial CSF volume was measured from Condon's method: CSF signal was compared with distilled water standard signal in a single sagittal thick slice. Brain signal was reduced to minimum using a 5000/360/400 sequence. Software constraints did not permit easy implementing on imager and uniformity correction was performed on a microcomputer. Accuracy was better than 4%. Total intracranial CSF was found between 91 and 164 ml in 5 healthy volunteers. Extraventricular CSF quantitation appears very improved by this method, but planimetric methods seem better in order to quantify ventricular CSF. This technique is compared to total lung water measurement from proton density according to Mac Lennan's method. Water volume quantitation confirms ability of NMR imaging to quantify biologic parameters but image defects have to be known by strict quality control [fr

  19. [State of the art in fluid and volume therapy : A user-friendly staged concept].

    Science.gov (United States)

    Rehm, M; Hulde, N; Kammerer, T; Meidert, A S; Hofmann-Kiefer, K

    2017-03-01

    Adequate fluid therapy is highly important for the perioperative outcome of our patients. Both, hypovolemia and hypervolemia can lead to an increase in perioperative complications and can impair the outcome. Therefore, perioperative infusion therapy should be target-oriented. The main target is to maintain the patient's preoperative normovolemia by using a sophisticated, rational infusion strategy.Perioperative fluid losses should be discriminated from volume losses (surgical blood loss or interstitial volume losses containing protein). Fluid losses as urine or perspiratio insensibilis (0.5-1.0 ml/kg/h) should be replaced by balanced crystalloids in a ratio of 1:1. Volume therapy step 1: Blood loss up to a maximum value of 20% of the patient's blood volume should be replaced by balanced crystalloids in a ratio of 4(-5):1. Volume therapy step 2: Higher blood losses should be treated by using iso-oncotic, preferential balanced colloids in a ratio of 1:1. For this purpose hydroxyethyl starch can also be used perioperatively if there is no respective contraindication, such as sepsis, burn injuries, critically ill patients, renal impairment or renal replacement therapy, and severe coagulopathy. Volume therapy step 3: If there is an indication for red cell concentrates or coagulation factors, a differentiated application of blood and blood products should be performed.

  20. Regulation of extracellular fluid volume and renal function

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik Sahl

    2011-01-01

    Normal fluid homoeostasis includes dynamic shifts in water, crystalloids, and proteins between the various compartments of the body (1–3). The fluid dynamics are controlled by refined mechanisms that include water and solute intake, renal handling, haemodynamic/oncotic forces, and neurohumoral...

  1. Control of chemical usage in drilling fluid formulations to minimize discharge to the environment

    International Nuclear Information System (INIS)

    Geehan, T.; Forbes, D.M.; Moore, D.J.

    1991-01-01

    A reduction in the environmental footprint from drilling operations can best be addressed by minimizing the sources of that footprint. One of the principal sources of possible environmental damage is drilling fluid and drill solid discharge. The toxicity as measured by acute and/or sub-chronic testing regimes depends on the composition of the drilling fluid/drill solids slurry. The trend within the drilling fluids industry has been to direct its attention to finding drilling fluid products which alone and in combination are considered to be non-toxic as determined by required testing procedures. This paper goes on to describe a parallel approach in which the total volume of chemicals discharged (whether considered toxic or benign) is reduced. Both approaches can be considered complimentary. The reduction in volume/mass of discharge is achieved by increased monitoring of both drilling fluid properties, composition and solids control operational efficiency. Additionally the increased monitoring allows less complicated formulations to be used to produce the desired drilling fluid properties; as specified by the mud programme. The need for more complete rigsite monitoring packages, will become more important as oilbased muds are replaced by waterbased mud for difficult drilling situations with stricter environmental regulations on discharge of drilling waste. The paper also outlines how the optimization of the drilling fluid operation was linked to a reduction in drilling fluid costs at the same time maintaining drilling efficiency

  2. Topology as fluid geometry two-dimensional spaces, volume 2

    CERN Document Server

    Cannon, James W

    2017-01-01

    This is the second of a three volume collection devoted to the geometry, topology, and curvature of 2-dimensional spaces. The collection provides a guided tour through a wide range of topics by one of the twentieth century's masters of geometric topology. The books are accessible to college and graduate students and provide perspective and insight to mathematicians at all levels who are interested in geometry and topology. The second volume deals with the topology of 2-dimensional spaces. The attempts encountered in Volume 1 to understand length and area in the plane lead to examples most easily described by the methods of topology (fluid geometry): finite curves of infinite length, 1-dimensional curves of positive area, space-filling curves (Peano curves), 0-dimensional subsets of the plane through which no straight path can pass (Cantor sets), etc. Volume 2 describes such sets. All of the standard topological results about 2-dimensional spaces are then proved, such as the Fundamental Theorem of Algebra (two...

  3. Fluid flow control system

    International Nuclear Information System (INIS)

    Rion, Jacky.

    1982-01-01

    Fluid flow control system featuring a series of grids placed perpendicular to the fluid flow direction, characterized by the fact that it is formed of a stack of identical and continuous grids, each of which consists of identical meshes forming a flat lattice. The said meshes are offset from one grid to the next. This system applies in particular to flow control of the coolant flowing at the foot of an assembly of a liquid metal cooled nuclear reactor [fr

  4. Fluid Volume Expansion and Depletion in Hemodialysis Patients Lack Association with Clinical Parameters

    Directory of Open Access Journals (Sweden)

    Sylvia Kalainy

    2015-12-01

    Full Text Available Background: Achievement of normal volume status is crucial in hemodialysis (HD, since both volume expansion and volume contraction have been associated with adverse outcome and events. Objectives: The objectives of this study are to assess the prevalence of fluid volume expansion and depletion and to identify the best clinical parameter or set of parameters that can predict fluid volume expansion in HD patients. Design: This study is cross-sectional. Setting: This study was conducted in three hemodialysis units. Patients: In this study, there are 194 HD patients. Methods: Volume status was assessed by multifrequency bio-impedance spectroscopy (The Body Composition Monitor, Fresenius prior to the mid-week HD session. Results: Of all patients, 48 % ( n = 94 were volume-expanded and 9 % of patients were volume-depleted ( n = 17. Interdialytic weight gain was not different between hypovolemic, normovolemic, and hypervolemic patients. Fifty percent of the volume-expanded patients were hypertensive. Paradoxical hypertension was very common (31 % of all patients; its incidence was not different between patient groups. Intradialytic hypotension was relatively common and was more frequent among hypovolemic patients. Multivariate regression analysis identified only four predictors for volume expansion (edema, lower BMI, higher SBP, and smoking. None of these parameters displayed both a good sensitivity and specificity. Limitations: The volume assessment was performed once. Conclusions: The study indicates that volume expansion is highly prevalent in HD population and could not be identified using clinical parameters alone. No clinical parameters were identified that could reliably predict volume status. This study shows that bio-impedance can assist to determine volume status. Volume status, in turn, is not related to intradialytic weight gain and is unable to explain the high incidence of paradoxical hypertension.

  5. Introduction to thermal and fluid engineering

    CERN Document Server

    Kraus, Allan D; Aziz, Abdul; Ghajar, Afshin J

    2011-01-01

    The Thermal/Fluid Sciences: Introductory ConceptsThermodynamicsFluid MechanicsHeat TransferEngineered Systems and ProductsHistorical DevelopmentThe Thermal/Fluid Sciences and the EnvironmentThermodynamics: Preliminary Concepts and DefinitionsThe Study of ThermodynamicsSome DefinitionsDimensions and UnitsDensity and Related PropertiesPressureTemperature and the Zeroth Law of ThermodynamicsProblem-Solving MethodologyEnergy and the First Law of ThermodynamicsKinetic, Potential, and Internal EnergyWorkHeatThe First Law of ThermodynamicsThe Energy Balance for Closed SystemsThe Ideal Gas ModelIdeal Gas Enthalpy and Specific HeatsProcesses of an Ideal GasProperties of Pure, Simple Compressible SubstancesThe State PostulateP-v-T RelationshipsThermodynamic Property DataThe T-s and h-s DiagramsReal Gas BehaviorEquations of StateThe Polytropic Process for an Ideal GasControl Volume Mass and Energy Analysis The Control VolumeConservation of MassConservation of Energy for a Control VolumeSpecific Heats of Incompressible S...

  6. Fluid mechanics experiments in oscillatory flow. Volume 1

    International Nuclear Information System (INIS)

    Seume, J.; Friedman, G.; Simon, T.W.

    1992-03-01

    Results of a fluid mechanics measurement program is oscillating flow within a circular duct are present. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re max , Re W , and A R , embody the velocity amplitude, frequency of oscillation and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters which included operating points of all Stirling engines. Next, a case was studied with values of these parameters that are representative of the heat exchanger tubes in the heater section of NASA's Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radical components of ensemble-averaged velocity and rms-velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and in reverse, were identified and sufficient data was gathered to propose the transition mechanism. Models of laminar and turbulent boundary layers were used to process the data into wall coordinates and to evaluate skin friction coefficients. Such data aids in validating computational models and is useful in comparing oscillatory flow characteristics to those of fully-developed steady flow. Data were taken with a contoured entry to each end of the test section and with flush square inlets so that the effects of test section inlet geometry on transition and turbulence are documented. The following is presented in two-volumes. Volume I contains the text of the report including figures and supporting appendices. Volume II contains data reduction program listings and tabulated data (including its graphical presentation)

  7. Dehydration and fluid volume kinetics before major open abdominal surgery.

    Science.gov (United States)

    Hahn, R G; Bahlmann, H; Nilsson, L

    2014-11-01

    Assessment of dehydration in the preoperative setting is of potential clinical value. The present study uses urine analysis and plasma volume kinetics, which have both been validated against induced changes in body water in volunteers, to study the incidence and severity of dehydration before open abdominal surgery begins. Thirty patients (mean age 64 years) had their urine analysed before major elective open abdominal surgery for colour, specific weight, osmolality and creatinine. The results were scored and the mean taken to represent a 'dehydration index'. Thereafter, the patients received an infusion of 5 ml/kg of Ringer's acetate intravenously for over 15 min. Blood was sampled for 70 min and the blood haemoglobin concentration used to estimate the plasma volume kinetics. Distribution of fluid occurred more slowly (P dehydrated as compared with euhydrated patients. The dehydration index indicated that the fluid deficit in these patients corresponded to 2.5% of the body weight, whereas the deficit in the others was 1%. In contrast, the 11 patients who later developed postoperative nausea and vomiting had a very short elimination half-life, only 9 min (median, P dehydration before major surgery was modest as evidenced both by urine sampling and volume kinetic analysis. © 2014 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  8. Mild hypothermia attenuates changes in respiratory system mechanics and modifies cytokine concentration in bronchoalveolar lavage fluid during low lung volume ventilation.

    Science.gov (United States)

    Dostál, P; Senkeřík, M; Pařízková, R; Bareš, D; Zivný, P; Zivná, H; Cerný, V

    2010-01-01

    Hypothermia was shown to attenuate ventilator-induced lung injury due to large tidal volumes. It is unclear if the protective effect of hypothermia is maintained under less injurious mechanical ventilation in animals without previous lung injury. Tracheostomized rats were randomly allocated to non-ventilated group (group C) or ventilated groups of normothermia (group N) and mild hypothermia (group H). After two hours of mechanical ventilation with inspiratory fraction of oxygen 1.0, respiratory rate 60 min(-1), tidal volume 10 ml x kg(-1), positive end-expiratory pressure (PEEP) 2 cm H2O or immediately after tracheostomy in non-ventilated animals inspiratory pressures were recorded, rats were sacrificed, pressure-volume (PV) curve of respiratory system constructed, bronchoalveolar lavage (BAL) fluid and aortic blood samples obtained. Group N animals exhibited a higher rise in peak inspiratory pressures in comparison to group H animals. Shift of the PV curve to right, higher total protein and interleukin-6 levels in BAL fluid were observed in normothermia animals in comparison with hypothermia animals and non-ventilated controls. Tumor necrosis factor-alpha was lower in the hypothermia group in comparison with normothermia and non-ventilated groups. Mild hypothermia attenuated changes in respiratory system mechanics and modified cytokine concentration in bronchoalveolar lavage fluid during low lung volume ventilation in animals without previous lung injury.

  9. Bubble formation in shear-thinning fluids: Laser image measurement and a novel correlation for detached volume

    Directory of Open Access Journals (Sweden)

    Fan Wenyuan

    2017-01-01

    Full Text Available A laser image system has been established to quantify the characteristics of growing bubbles in quiescent shear-thinning fluids. Bubble formation mechanism was investigated by comparing the evolutions of bubble instantaneous shape, volume and surface area in two shear-thinning liquids with those in Newtonian liquid. The effects of solution mass concentration, gas chamber volume and orifice diameter on bubble detachment volume are discussed. By dimensional analysis, a single bubble volume detached within a moderate gas flowrate range was developed as a function of Reynolds number ,Re, Weber number, We, and gas chamber number, Vc, based on the orifice diameter. The results reveal that the generated bubble presents a slim shape due to the shear-thinning effect of the fluid. Bubble detachment volume increases with the solution mass concentration, gas chamber volume and orifice diameter. The results predicted by the present correlation agree better with the experimental data than the previous ones within the range of this paper.

  10. Modelling dynamic liquid-gas systems: Extensions to the volume-of-fluid solver

    CSIR Research Space (South Africa)

    Heyns, Johan A

    2013-06-01

    Full Text Available This study presents the extension of the volume-of-fluid solver, interFoam, for improved accuracy and efficiency when modelling dynamic liquid-gas systems. Examples of these include the transportation of liquids, such as in the case of fuel carried...

  11. Effect of fluid loading with normal saline and 6% hydroxyethyl starch on stroke volume variability and left ventricular volume

    Directory of Open Access Journals (Sweden)

    Kanda H

    2015-09-01

    Full Text Available Hirotsugu Kanda,1 Yuji Hirasaki,2 Takafumi Iida,1 Megumi Kanao,1 Yuki Toyama,1 Takayuki Kunisawa,1 Hiroshi Iwasaki,11Department of Anesthesiology and Critical Care Medicine, Asahikawa Medical University, Asahikawa, 2Department of Anatomy, The Jikei University Graduate School of Medicine, Tokyo, JapanPurpose: The aim of this clinical trial was to investigate changes in stroke volume variability (SVV and left ventricular end-diastolic volume (LVEDV after a fluid bolus of crystalloid or colloid using real-time three-dimensional transesophageal echocardiography (3D-TEE and the Vigileo-FloTrac™ system.Materials and methods: After obtaining Institutional Review Board approval, and informed consent from the research participants, 22 patients undergoing scheduled peripheral vascular bypass surgery were enrolled in the study. The patients were randomly assigned to receive 500 mL of hydroxyethyl starch (HES; HES group, n=11 or normal saline (Saline group, n=11 for fluid replacement therapy. SVV was measured using the Vigileo-FloTrac system. LVEDV, stroke volume, and cardiac output were measured by 3D-TEE. The measurements were performed over 30 minutes before and after the fluid bolus in both groups.Results: SVV significantly decreased after fluid bolus in both groups (HES group, 14.7%±2.6% to 6.9%±2.7%, P<0.001; Saline group, 14.3%±3.9% to 8.8%±3.1%, P<0.001. LVEDV significantly increased after fluid loading in the HES group (87.1±24.0 mL to 99.9±27.2 mL, P<0.001, whereas no significant change was detected in the Saline group (88.8±17.3 mL to 91.4±17.6 mL, P>0.05. Stroke volume significantly increased after infusion in the HES group (50.6±12.5 mL to 61.6±19.1 mL, P<0.01 but not in the Saline group (51.6±13.4 mL to 54.1±12.8 mL, P>0.05. Cardiac output measured by 3D-TEE significantly increased in the HES group (3.5±1.1 L/min to 3.9±1.3 L/min, P<0.05, whereas no significant change was seen in the Saline group (3.4±1.1 L/min to 3.3±1.0 L

  12. Extravascular Lung Water Does Not Increase in Hypovolemic Patients after a Fluid-Loading Protocol Guided by the Stroke Volume Variation

    Directory of Open Access Journals (Sweden)

    Carlos Ferrando

    2012-01-01

    Full Text Available Introduction. Circulatory failure secondary to hypovolemia is a common situation in critical care patients. Volume replacement is the first option for the treatment of hypovolemia. A possible complication of volume loading is pulmonary edema, quantified at the bedside by the measurement of extravascular lung water index (ELWI. ELWI predicts progression to acute lung injury (ALI in patients with risk factors for developing it. The aim of this study was to assess whether fluid loading guided by the stroke volume variation (SVV, in patients presumed to be hypovolemic, increased ELWI or not. Methods. Prospective study of 17 consecutive postoperative, fully mechanically ventilated patients diagnosed with circulatory failure secondary to presumed hypovolemia were included. Cardiac index (CI, ELWI, SVV, and global end-diastolic volume index (GEDI were determined using the transpulmonary thermodilution technique during the first 12 hours after fluid loading. Volume replacement was done with a strict hemodynamic protocol. Results. Fluid loading produced a significant increase in CI and a decrease in SVV. ELWI did not increase. No correlation was found between the amount of fluids administered and the change in ELWI. Conclusion. Fluid loading guided by SVV in hypovolemic and fully mechanically ventilated patients in sinus rhythm does not increase ELWI.

  13. Numerical simulation of bubble deformation in magnetic fluids by finite volume method

    International Nuclear Information System (INIS)

    Yamasaki, Haruhiko; Yamaguchi, Hiroshi

    2017-01-01

    Bubble deformation in magnetic fluids under magnetic field is investigated numerically by an interface capturing method. The numerical method consists of a coupled level-set and VOF (Volume of Fluid) method, combined with conservation CIP (Constrained Interpolation Profile) method with the self-correcting procedure. In the present study considering actual physical properties of magnetic fluid, bubble deformation under given uniform magnetic field is analyzed for internal magnetic field passing through a magnetic gaseous and liquid phase interface. The numerical results explain the mechanism of bubble deformation under presence of given magnetic field. - Highlights: • A magnetic field analysis is developed to simulate the bubble dynamics in magnetic fluid with two-phase interface. • The elongation of bubble increased with increasing magnetic flux intensities due to strong magnetic normal force. • Proposed technique explains the bubble dynamics, taking into account of the continuity of the magnetic flux density.

  14. Controlled capillary assembly of magnetic Janus Particles at fluid-fluid interfaces

    NARCIS (Netherlands)

    Xie, Q.; Davies, G.B.; Harting, J.D.R.

    2016-01-01

    Capillary interactions can be used to direct assembly of particles adsorbed at fluid-fluid interfaces. Precisely controlling the magnitude and direction of capillary interactions to assemble particles into favoured structures for materials science purposes is desirable but challenging. In this

  15. Unmasking a sustained negative effect of SGLT2 inhibition on body fluid volume in the rat.

    Science.gov (United States)

    Masuda, Takahiro; Watanabe, Yuko; Fukuda, Keiko; Watanabe, Minami; Onishi, Akira; Ohara, Ken; Imai, Toshimi; Koepsell, Hermann; Muto, Shigeaki; Vallon, Volker; Nagata, Daisuke

    2018-05-23

    The chronic intrinsic diuretic and natriuretic tone of sodium-glucose cotransporter 2 (SGLT2) inhibitors is incompletely understood, because their effect on body fluid volume (BFV) has not been fully evaluated and because they often increase food and fluid intake at the same time. Here we first compared the effect of the SGLT2 inhibitor ipragliflozin (Ipra, 0.01% in diet for 8 weeks) and vehicle (Veh) in Spontaneously Diabetic Torii rat, a non-obese type 2 diabetic model, and non-diabetic Sprague-Dawley rats. In non-diabetic rats, Ipra increased urinary excretion of Na+ (UNaV) and fluid (UV) associated with increased food and fluid intake. Diabetes increased these 4 parameters, but Ipra had no further effect; probably due to its antihyperglycemic effect, such that glucosuria and as a consequence food and fluid intake were unchanged. Fluid balance and BFV, determined by bioimpedance spectroscopy, were similar among the 4 groups. To study the impact of food and fluid intake, non-diabetic rats were treated for 7 days with Veh, Ipra or Ipra+pair-feeding+pair-drinking (Pair-Ipra). Pair-Ipra maintained a small increase in UV and UNaV versus Veh despite similar food and fluid intake. Pair-Ipra induced a negative fluid balance and decreased BFV, while Ipra or Veh had no significant effect compared with basal values. In conclusion, SGLT2 inhibition induces a sustained diuretic and natriuretic tone. Homeostatic mechanisms are activated to stabilize body fluid volume, including compensatory increases in fluid and food intake.

  16. Viscosity Prediction for Petroleum Fluids Using Free Volume Theory and PC-SAFT

    Science.gov (United States)

    Khoshnamvand, Younes; Assareh, Mehdi

    2018-04-01

    In this study, free volume theory ( FVT) in combination with perturbed-chain statistical associating fluid theory is implemented for viscosity prediction of petroleum reservoir fluids containing ill-defined components such as cuts and plus fractions. FVT has three adjustable parameters for each component to calculate viscosity. These three parameters for petroleum cuts (especially plus fractions) are not available. In this work, these parameters are determined for different petroleum fractions. A model as a function of molecular weight and specific gravity is developed using 22 real reservoir fluid samples with API grades in the range of 22 to 45. Afterward, the proposed model accuracy in comparison with the accuracy of De la Porte et al. with reference to experimental data is presented. The presented model is used for six real samples in an evaluation step, and the results are compared with available experimental data and the method of De la Porte et al. Finally, the method of Lohrenz et al. and the method of Pedersen et al. as two common industrial methods for viscosity calculation are compared with the proposed approach. The absolute average deviation was 9.7 % for free volume theory method, 15.4 % for Lohrenz et al., and 22.16 for Pedersen et al.

  17. Special issue: Terrestrial fluids, earthquakes and volcanoes: The Hiroshi Wakita volume I

    Science.gov (United States)

    Perez, Nemesio M.; King, Chi-Yu; Gurrieri, Sergio; McGee, Kenneth A.

    2006-01-01

    Terrestrial Fluids, Earthquakes and Volcanoes: The Hiroshi Wakita Volume I is a special publication to honor Professor Hiroshi Wakita for his scientific contributions. This volume consists of 17 original papers dealing with various aspects of the role of terrestrial fluids in earthquake and volcanic processes, which reflect Prof. Wakita’s wide scope of research interests.Professor Wakita co-founded the Laboratory for Earthquake Chemistry in 1978 and served as its director from 1988 until his retirement from the university in 1997. He has made the laboratory a leading world center for studying earthquakes and volcanic activities by means of geochemical and hydrological methods. Together with his research team and a number of foreign guest researchers that he attracted, he has made many significant contributions in the above-mentioned scientific fields of interest. This achievement is a testimony to not only his scientific talent, but also his enthusiasm, his open mindedness, and his drive in obtaining both human and financial support.

  18. The Effects of Intravenous Hydration on Amniotic Fluid Volume and Pregnancy Outcomes in Women with Term Pregnancy and Oligohydramnios: A Randomized Clinical Trial

    Directory of Open Access Journals (Sweden)

    Mahnaz Shahnazi

    2012-08-01

    Full Text Available Introduction: Amniotic fluid is an important factor in the prediction of fetal survival. The aim of this research was to evaluate the effects of intravenous hydration of mothers on amniotic fluid volume and in turn on pregnancy outcomes. Methods: The current single blind controlled clinical trial was conducted on 20 pregnant mothers with amniot-ic fluid index of lower or equal to 5 cm and gestational age of 37-41 weeks. The subjects were divided into two groups of case and control through simple random sampling. Am-niotic fluid index was measured in all participants. The case group received one liter of isotonic saline during 30 minutes by the bolus method. Reevaluations of amniotic fluid index in both groups were made 90 minutes after baseline measurement. Independent t-test and paired t-test were used to compare the two groups and mean amniotic fluid in-dex before and after treatment, respectively. Results: Hydration of mothers significantly increased the amniotic fluid index in the case group (mean change: 1.5 cm; 95%CI: 0.46 - 2.64; P = 0.01. The mean change of amniotic fluid index in the control group did not significantly increase (P = 0.06. The elevation of amniotic fluid index in the hydra-tion group (32% was significantly higher than the control group (1% (P = 0.03. Conclusion: In this study intravenous hydration increased amniotic fluid index of mothers with term pregnancy and oligohydramnios. Since it caused no complications for the moth-er and the fetus, it can be used as an effective method in management of oligohydramnios.

  19. Diagnostic accuracy of the defining characteristics of the excessive fluid volume diagnosis in hemodialysis patients

    Directory of Open Access Journals (Sweden)

    Maria Isabel da Conceição Dias Fernandes

    2015-12-01

    Full Text Available Objective: to evaluate the accuracy of the defining characteristics of the excess fluid volume nursing diagnosis of NANDA International, in patients undergoing hemodialysis. Method: this was a study of diagnostic accuracy, with a cross-sectional design, performed in two stages. The first, involving 100 patients from a dialysis clinic and a university hospital in northeastern Brazil, investigated the presence and absence of the defining characteristics of excess fluid volume. In the second step, these characteristics were evaluated by diagnostic nurses, who judged the presence or absence of the diagnosis. To analyze the measures of accuracy, sensitivity, specificity, and positive and negative predictive values were calculated. Approval was given by the Research Ethics Committee under authorization No. 148.428. Results: the most sensitive indicator was edema and most specific were pulmonary congestion, adventitious breath sounds and restlessness. Conclusion: the more accurate defining characteristics, considered valid for the diagnostic inference of excess fluid volume in patients undergoing hemodialysis were edema, pulmonary congestion, adventitious breath sounds and restlessness. Thus, in the presence of these, the nurse may safely assume the presence of the diagnosis studied.

  20. Magnetic fluid axisymmetric volume on a horizontal plane near a vertical line conductor in case of non-wetting

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradova, A.S., E-mail: vinogradova.msu@gmail.com; Turkov, V.A.; Naletova, V.A.

    2017-06-01

    Static shapes of a magnetic fluid axisymmetric volume on a horizontal plane in the magnetic field of a vertical line conductor are studied theoretically in case of non-wetting while the current is slowly changing in a quasi-static manner. The possibility of the fluid shape hysteresis for a cyclic increase and decrease of the current and of spasmodic changes at certain values of the current is investigated. - Highlights: • Magnetic fluid on a horizontal plane near a line conductor is studied theoretically. • For fixed current and volume various static shapes are obtained. • Spasmodic and hysteresis phenomena are found.

  1. Control system for fluid heated steam generator

    Science.gov (United States)

    Boland, J.F.; Koenig, J.F.

    1984-05-29

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  2. Pulmonary tissue volume, cardiac output, and diffusing capacity in sustained microgravity

    Science.gov (United States)

    Verbanck, S.; Larsson, H.; Linnarsson, D.; Prisk, G. K.; West, J. B.; Paiva, M.

    1997-01-01

    In microgravity (microG) humans have marked changes in body fluids, with a combination of an overall fluid loss and a redistribution of fluids in the cranial direction. We investigated whether interstitial pulmonary edema develops as a result of a headward fluid shift or whether pulmonary tissue fluid volume is reduced as a result of the overall loss of body fluid. We measured pulmonary tissue volume (Vti), capillary blood flow, and diffusing capacity in four subjects before, during, and after 10 days of exposure to microG during spaceflight. Measurements were made by rebreathing a gas mixture containing small amounts of acetylene, carbon monoxide, and argon. Measurements made early in flight in two subjects showed no change in Vti despite large increases in stroke volume (40%) and diffusing capacity (13%) consistent with increased pulmonary capillary blood volume. Late in-flight measurements in four subjects showed a 25% reduction in Vti compared with preflight controls (P volume, to the extent that it was no longer significantly different from preflight control. Diffusing capacity remained elevated (11%; P pulmonary perfusion and pulmonary capillary blood volume, interstitial pulmonary edema does not result from exposure to microG.

  3. Measurement of average density and relative volumes in a dispersed two-phase fluid

    Science.gov (United States)

    Sreepada, Sastry R.; Rippel, Robert R.

    1992-01-01

    An apparatus and a method are disclosed for measuring the average density and relative volumes in an essentially transparent, dispersed two-phase fluid. A laser beam with a diameter no greater than 1% of the diameter of the bubbles, droplets, or particles of the dispersed phase is directed onto a diffraction grating. A single-order component of the diffracted beam is directed through the two-phase fluid and its refraction is measured. Preferably, the refracted beam exiting the fluid is incident upon a optical filter with linearly varing optical density and the intensity of the filtered beam is measured. The invention can be combined with other laser-based measurement systems, e.g., laser doppler anemometry.

  4. Boundary control of fluid flow through porous media

    DEFF Research Database (Denmark)

    Hasan, Agus; Foss, Bjarne; Sagatun, Svein Ivar

    2010-01-01

    The flow of fluids through porous media can be described by the Boussinesq’s equation with mixed boundary conditions; a Neumann’s boundary condition and a nonlinear boundary condition. The nonlinear boundary condition provides a means to control the fluid flow through porous media. In this paper,......, some stabilizing controllers are constructed for various cases using Lyapunov design.......The flow of fluids through porous media can be described by the Boussinesq’s equation with mixed boundary conditions; a Neumann’s boundary condition and a nonlinear boundary condition. The nonlinear boundary condition provides a means to control the fluid flow through porous media. In this paper...

  5. A Finite-Volume computational mechanics framework for multi-physics coupled fluid-stress problems

    International Nuclear Information System (INIS)

    Bailey, C; Cross, M.; Pericleous, K.

    1998-01-01

    Where there is a strong interaction between fluid flow, heat transfer and stress induced deformation, it may not be sufficient to solve each problem separately (i.e. fluid vs. stress, using different techniques or even different computer codes). This may be acceptable where the interaction is static, but less so, if it is dynamic. It is desirable for this reason to develop software that can accommodate both requirements (i.e. that of fluid flow and that of solid mechanics) in a seamless environment. This is accomplished in the University of Greenwich code PHYSICA, which solves both the fluid flow problem and the stress-strain equations in a unified Finite-Volume environment, using an unstructured computational mesh that can deform dynamically. Example applications are given of the work of the group in the metals casting process (where thermal stresses cause elasto- visco-plastic distortion)

  6. Numerical solution of viscous and viscoelastic fluids flow through the branching channel by finite volume scheme

    Science.gov (United States)

    Keslerová, Radka; Trdlička, David

    2015-09-01

    This work deals with the numerical modelling of steady flows of incompressible viscous and viscoelastic fluids through the three dimensional channel with T-junction. The fundamental system of equations is the system of generalized Navier-Stokes equations for incompressible fluids. This system is based on the system of balance laws of mass and momentum for incompressible fluids. Two different mathematical models for the stress tensor are used for simulation of Newtonian and Oldroyd-B fluids flow. Numerical solution of the described models is based on cetral finite volume method using explicit Runge-Kutta time integration.

  7. Hydroxyethyl starch 130/0.4 versus modified fluid gelatin for volume expansion in cardiac surgery patients: the effects on perioperative bleeding and transfusion needs

    NARCIS (Netherlands)

    van der Linden, Philippe J.; de Hert, Stefan G.; Deraedt, Dirk; Cromheecke, Stefanie; de Decker, Koen; de Paep, Rudi; Rodrigus, Inez; Daper, Anne; Trenchant, Anne

    2005-01-01

    In this prospective, randomized, open controlled study we compared the effects on net red blood cell loss of 6% hydroxyethyl starch 130/0.4 (HES: n = 64) and 3% modified fluid gelatin (GEL: n = 68) administered for intravascular volume management in patients undergoing coronary surgery. Blood losses

  8. Maintenance fluid therapy and fluid creep impose more significant fluid, sodium, and chloride burdens than resuscitation fluids in critically ill patients: a retrospective study in a tertiary mixed ICU population.

    Science.gov (United States)

    Van Regenmortel, Niels; Verbrugghe, Walter; Roelant, Ella; Van den Wyngaert, Tim; Jorens, Philippe G

    2018-04-01

    Research on intravenous fluid therapy and its side effects, volume, sodium, and chloride overload, has focused almost exclusively on the resuscitation setting. We aimed to quantify all fluid sources in the ICU and assess fluid creep, the hidden and unintentional volume administered as a vehicle for medication or electrolytes. We precisely recorded the volume, sodium, and chloride burdens imposed by every fluid source administered to 14,654 patients during the cumulative 103,098 days they resided in our 45-bed tertiary ICU and simulated the impact of important strategic fluid choices on patients' chloride burdens. In septic patients, we assessed the impact of the different fluid sources on cumulative fluid balance, an established marker of morbidity. Maintenance and replacement fluids accounted for 24.7% of the mean daily total fluid volume, thereby far exceeding resuscitation fluids (6.5%) and were the most important sources of sodium and chloride. Fluid creep represented a striking 32.6% of the mean daily total fluid volume [median 645 mL (IQR 308-1039 mL)]. Chloride levels can be more effectively reduced by adopting a hypotonic maintenance strategy [a daily difference in chloride burden of 30.8 mmol (95% CI 30.5-31.1)] than a balanced resuscitation strategy [daily difference 3.0 mmol (95% CI 2.9-3.1)]. In septic patients, non-resuscitation fluids had a larger absolute impact on cumulative fluid balance than did resuscitation fluids. Inadvertent daily volume, sodium, and chloride loading should be avoided when prescribing maintenance fluids in view of the vast amounts of fluid creep. This is especially important when adopting an isotonic maintenance strategy.

  9. Amniotic fluid volume: Rapid MR-based assessment at 28-32 weeks gestation

    Energy Technology Data Exchange (ETDEWEB)

    Hilliard, N.J.; Hawkes, R.; Patterson, A.J.; Graves, M.J.; Priest, A.N.; Hunter, S.; Set, P.A.; Lomas, D.J. [Cambridge University Hospitals NHS Foundation Trust, Department of Radiology, Cambridge (United Kingdom); Lees, C. [Imperial College Healthcare NHS Trust, Department of Obstetrics and Fetal Medicine, London (United Kingdom)

    2016-10-15

    This work evaluates rapid magnetic resonance projection hydrography (PH) based amniotic fluid volume (AFV) estimates against established routine ultrasound single deepest vertical pocket (SDVP) and amniotic fluid index (AFI) measurements, in utero at 28-32 weeks gestation. Manual multi-section planimetry (MSP) based measurement of AFV is used as a proxy reference standard. Thirty-five women with a healthy singleton pregnancy (20-41 years) attending routine antenatal ultrasound were recruited. SDVP and AFI were measured using ultrasound, with same day MRI assessing AFV with PH and MSP. The relationships between the respective techniques were assessed using linear regression analysis and Bland-Altman method comparison statistics. When comparing estimated AFV, a highly significant relationship was observed between PH and the reference standard MSP (R{sup 2} = 0.802, p < 0.001). For the US measurements, SDVP measurement related most closely to amniotic fluid volume, (R{sup 2} = 0.470, p < 0.001), with AFI demonstrating a weaker relationship (R{sup 2} = 0.208, p = 0.007). This study shows that rapid MRI based PH measurement is a better predictor of AFV, relating more closely to our proxy standard than established US techniques. Although larger validation studies across a range of gestational ages are required this approach could form part of MR fetal assessment, particularly where poly- or oligohydramnios is suspected. (orig.)

  10. Amniotic fluid volume: Rapid MR-based assessment at 28-32 weeks gestation

    International Nuclear Information System (INIS)

    Hilliard, N.J.; Hawkes, R.; Patterson, A.J.; Graves, M.J.; Priest, A.N.; Hunter, S.; Set, P.A.; Lomas, D.J.; Lees, C.

    2016-01-01

    This work evaluates rapid magnetic resonance projection hydrography (PH) based amniotic fluid volume (AFV) estimates against established routine ultrasound single deepest vertical pocket (SDVP) and amniotic fluid index (AFI) measurements, in utero at 28-32 weeks gestation. Manual multi-section planimetry (MSP) based measurement of AFV is used as a proxy reference standard. Thirty-five women with a healthy singleton pregnancy (20-41 years) attending routine antenatal ultrasound were recruited. SDVP and AFI were measured using ultrasound, with same day MRI assessing AFV with PH and MSP. The relationships between the respective techniques were assessed using linear regression analysis and Bland-Altman method comparison statistics. When comparing estimated AFV, a highly significant relationship was observed between PH and the reference standard MSP (R"2 = 0.802, p < 0.001). For the US measurements, SDVP measurement related most closely to amniotic fluid volume, (R"2 = 0.470, p < 0.001), with AFI demonstrating a weaker relationship (R"2 = 0.208, p = 0.007). This study shows that rapid MRI based PH measurement is a better predictor of AFV, relating more closely to our proxy standard than established US techniques. Although larger validation studies across a range of gestational ages are required this approach could form part of MR fetal assessment, particularly where poly- or oligohydramnios is suspected. (orig.)

  11. Mechanisms underlying the volume regulation of interstitial fluid by capillaries: a simulation study

    Directory of Open Access Journals (Sweden)

    Yukiko Himeno

    2016-03-01

    Conclusion: Mathematical analyses revealed that the system of the capillary is stable near the equilibrium point at steady state and normal physiological capillary pressure. The time course of the tissue-volume change was determined by two kinetic mechanisms: rapid fluid exchange and slow protein fluxes.

  12. Reviews on Physically Based Controllable Fluid Animation

    Directory of Open Access Journals (Sweden)

    Pizzanu Kanongchaiyos

    2010-04-01

    Full Text Available In computer graphics animation, animation tools are required for fluid-like motions which are controllable by users or animator, since applying the techniques to commercial animations such as advertisement and film. Many developments have been proposed to model controllable fluid simulation with the need in realistic motion, robustness, adaptation, and support more required control model. Physically based models for different states of substances have been applied in general in order to permit animators to almost effortlessly create interesting, realistic, and sensible animation of natural phenomena such as water flow, smoke spread, etc. In this paper, we introduce the methods for simulation based on physical model and the techniques for control the flow of fluid, especially focus on particle based method. We then discuss the existing control methods within three performances; control ability, realism, and computation time. Finally, we give a brief of the current and trend of the research areas.

  13. Optimizing the multimodal approach to pancreatic cyst fluid diagnosis: developing a volume-based triage protocol.

    Science.gov (United States)

    Chai, Siaw Ming; Herba, Karl; Kumarasinghe, M Priyanthi; de Boer, W Bastiaan; Amanuel, Benhur; Grieu-Iacopetta, Fabienne; Lim, Ee Mun; Segarajasingam, Dev; Yusoff, Ian; Choo, Chris; Frost, Felicity

    2013-02-01

    The objective of this study was to develop a triage algorithm to optimize diagnostic yield from cytology, carcinoembryonic antigen (CEA), and v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) testing on different components of a single pancreatic cyst fluid specimen. The authors also sought to determine whether cell block supernatant was suitable for CEA and KRAS testing. Fifty-four pancreatic cysts were triaged according to a volume-dependent protocol to generate fluid (neat and supernatant) and cell block specimens for cytology, comparative CEA, and KRAS testing. Follow-up histology, diagnostic cytology, or a combined clinicopathologic interpretation was recorded as the final diagnosis. There were 26 mucinous cystic lesions and 28 nonmucinous cystic lesions with volumes ranging from 0.3 mL to 55 mL. Testing different components of the specimens (cell block, neat, and/or supernatant) enabled all laboratory investigations to be performed on 50 of 54 cyst fluids (92.6%). Interpretive concordance was observed in 17 of 17 cases (100%) and in 35 of 40 cases (87.5%) that had multiple components tested for CEA and KRAS mutations, respectively. An elevated CEA level (>192 ng/mL) was the most sensitive test for the detection of a mucinous cystic lesion (62.5%) versus KRAS mutation (56%) and "positive" cytology (61.5%). KRAS mutations were identified in 2 of 25 mucinous cystic lesions (8%) in which cytology and CEA levels were not contributory. A volume-based protocol using different components of the specimen was able to optimize diagnostic yield in pancreatic cyst fluids. KRAS mutation testing increased diagnostic yield when combined with cytology and CEA analysis. The current results demonstrated that supernatant is comparable to neat fluid and cell block material for CEA and KRAS testing. Copyright © 2012 American Cancer Society.

  14. Gastric pH and residual volume after 1 and 2 h fasting time for clear fluids in children†.

    Science.gov (United States)

    Schmidt, A R; Buehler, P; Seglias, L; Stark, T; Brotschi, B; Renner, T; Sabandal, C; Klaghofer, R; Weiss, M; Schmitz, A

    2015-03-01

    Current guidelines suggest a fasting time of 2 h for clear fluids, which is often exceeded in clinical practice, leading to discomfort, dehydration and stressful anaesthesia induction to patients, especially in the paediatric population. Shorter fluid fasting might be a strategy to improve patient comfort but has not been investigated yet. This prospective clinical trial compares gastric pH and residual volume after 1 vs 2 h of preoperative clear fluid fasting. Children (1-16 yr, ASA I or II) undergoing elective procedures in general anaesthesia requiring tracheal intubation were randomized into group A with 60 min or B with 120 min preoperative clear fluid fasting. To determine gastric pH and residual volume, the gastric content was sampled in supine, left and right lateral patient position using an oro-gastric tube after intubation. Data are median (interquartile range) for group A or B (PPatient characteristic data were similar between the two groups, except for gender (46/33 males in group A/B; P=0.02). Despite significantly shorter fasting times for clear fluids in group A compared with group B (76/136 min; P<0.001), no significant difference was observed regarding gastric pH [1.43 (1.30-1.56)/1.44 (1.29-1.68), P=0.66] or residual volume [0.43 (0.21-0.84)/0.46 (0.19-0.78) ml kg(-1), P=0.47]. One hour clear fluid fasting does not alter gastric pH or residual volume significantly compared with 2 h fasting. The study was approved by the local ethics committee (KEK-ZH-Nr. 2011-0034) and registered with ClinicalTrials.gov (NCT01516775). © The Author 2014. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. A numerical model of two-phase flow at the micro-scale using the volume-of-fluid method

    Science.gov (United States)

    Shams, Mosayeb; Raeini, Ali Q.; Blunt, Martin J.; Bijeljic, Branko

    2018-03-01

    This study presents a simple and robust numerical scheme to model two-phase flow in porous media where capillary forces dominate over viscous effects. The volume-of-fluid method is employed to capture the fluid-fluid interface whose dynamics is explicitly described based on a finite volume discretization of the Navier-Stokes equations. Interfacial forces are calculated directly on reconstructed interface elements such that the total curvature is preserved. The computed interfacial forces are explicitly added to the Navier-Stokes equations using a sharp formulation which effectively eliminates spurious currents. The stability and accuracy of the implemented scheme is validated on several two- and three-dimensional test cases, which indicate the capability of the method to model two-phase flow processes at the micro-scale. In particular we show how the co-current flow of two viscous fluids leads to greatly enhanced flow conductance for the wetting phase in corners of the pore space, compared to a case where the non-wetting phase is an inviscid gas.

  16. A finite volume procedure for fluid flow, heat transfer and solid-body stress analysis

    KAUST Repository

    Jagad, P. I.; Puranik, B. P.; Date, A. W.

    2018-01-01

    A unified cell-centered unstructured mesh finite volume procedure is presented for fluid flow, heat transfer and solid-body stress analysis. An in-house procedure (A. W. Date, Solution of Transport Equations on Unstructured Meshes with Cell

  17. Fluid Vessel Quantity using Non-Invasive PZT Technology Flight Volume Measurements Under Zero G Analysis

    Science.gov (United States)

    Garofalo, Anthony A.

    2013-01-01

    The purpose of the project is to perform analysis of data using the Systems Engineering Educational Discovery (SEED) program data from 2011 and 2012 Fluid Vessel Quantity using Non-Invasive PZT Technology flight volume measurements under Zero G conditions (parabolic Plane flight data). Also experimental planning and lab work for future sub-orbital experiments to use the NASA PZT technology for fluid volume measurement. Along with conducting data analysis of flight data, I also did a variety of other tasks. I provided the lab with detailed technical drawings, experimented with 3d printers, made changes to the liquid nitrogen skid schematics, and learned how to weld. I also programmed microcontrollers to interact with various sensors and helped with other things going on around the lab.

  18. Concept of planetary gear system to control fluid mixture ratio

    Science.gov (United States)

    Mcgroarty, J. D.

    1966-01-01

    Mechanical device senses and corrects for fluid flow departures from the selected flow ratio of two fluids. This system has been considered for control of rocket engine propellant mixture control but could find use wherever control of the flow ratio of any two fluids is desired.

  19. 1993 Proceedings volume 1--Contamination control; symposium on minienvironments; symposium on biocontamination control

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Volume 1 contains the proceedings from three symposia. Contamination Control includes the following topics: Atmospheric pressure ionization mass spectroscopy (APIMS) applications; APIMS development; contamination control in cleanroom air; defect reduction in semiconductor processes; contamination control in the aerospace industry; filtration of gases; ultrapure chemical and DI water; filtration of chemicals; wafer cleaning/trace contaminant effects; wafer cleaning techniques; detection of particles in UHP fluids; detection of surface particles; modeling contamination; detection of surface organics; modeling, particle transport, deposition, and removal; and detection of surface metallics. Symposium on Minienvironments includes the following: design of minienvironments; robotics and I/O transport; testing, methods, and standards. The Symposium on Biocontamination Control includes the following: microbial CC facility requirements in pharmaceutical, biological, and medical device manufacture; cleaning and disinfecting methods and devices for bio CC; biocontamination control devices, methodology, and standards, airborne and surface microbial monitoring methods and devices; and regulatory issues in bio CC--present and future. All papers within the scope of the Energy Data Base have been processed separately for inclusion on the data base

  20. A simple method of injecting tumescent fluid for liposuction

    Directory of Open Access Journals (Sweden)

    Arindam Sarkar

    2011-01-01

    Full Text Available Injection of tumescent fluid is essential to obtain a painless and relatively bloodless liposuction. There are many methods of injecting the tumescent fluid like power pumps, syringes and pressure cuffs. Our method consists of applying air pressure within the plastic transfusion fluid bottle by pricking with a wide bore needle and connecting it to a sphygmomanometer balloon pump. By inflation of the balloon pump and thus increasing pressure inside the plastic bottle, the rate and volume of infusion can be controlled. By applying the cuff outside the bottle the visibility inside is impaired and the bottle gets collapsed preventing a continued pressure and thereby impairing both the quantity as well as the rate of infusion. Power pumps are expensive. This method is inexpensive, infused volume of fluid being visible and the rate of infusion controllable.

  1. Microscale fluid transport using optically controlled marangoni effect

    Science.gov (United States)

    Thundat, Thomas G [Knoxville, TN; Passian, Ali [Knoxville, TN; Farahi, Rubye H [Oak Ridge, TN

    2011-05-10

    Low energy light illumination and either a doped semiconductor surface or a surface-plasmon supporting surface are used in combination for manipulating a fluid on the surface in the absence of any applied electric fields or flow channels. Precise control of fluid flow is achieved by applying focused or tightly collimated low energy light to the surface-fluid interface. In the first embodiment, with an appropriate dopant level in the semiconductor substrate, optically excited charge carriers are made to move to the surface when illuminated. In a second embodiment, with a thin-film noble metal surface on a dispersive substrate, optically excited surface plasmons are created for fluid manipulation. This electrode-less optical control of the Marangoni effect provides re-configurable manipulations of fluid flow, thereby paving the way for reprogrammable microfluidic devices.

  2. CFDLIB05, Computational Fluid Dynamics Library

    International Nuclear Information System (INIS)

    Kashiwa, B.A.; Padial, N.T.; Rauenzahn, R.M.; VanderHeyden, W.B.

    2007-01-01

    1 - Description of program or function: CFDLib05 is the Los Alamos Computational Fluid Dynamics Library. This is a collection of hydro-codes using a common data structure and a common numerical method, for problems ranging from single-field, incompressible flow, to multi-species, multi-field, compressible flow. The data structure is multi-block, with a so-called structured grid in each block. The numerical method is a Finite-Volume scheme employing a state vector that is fully cell-centered. This means that the integral form of the conversation laws is solved on the physical domain that is represented by a mesh of control volumes. The typical control volume is an arbitrary quadrilateral in 2D and an arbitrary hexahedron in 3D. The Finite-Volume scheme is for time-unsteady flow and remains well coupled by means of time and space centered fluxes; if a steady state solution is required, the problem is integrated forward in time until the user is satisfied that the state is stationary. 2 - Methods: Cells-centered Implicit Continuous-fluid Eulerian (ICE) method

  3. Euler's fluid equations: Optimal control vs optimization

    International Nuclear Information System (INIS)

    Holm, Darryl D.

    2009-01-01

    An optimization method used in image-processing (metamorphosis) is found to imply Euler's equations for incompressible flow of an inviscid fluid, without requiring that the Lagrangian particle labels exactly follow the flow lines of the Eulerian velocity vector field. Thus, an optimal control problem and an optimization problem for incompressible ideal fluid flow both yield the same Euler fluid equations, although their Lagrangian parcel dynamics are different. This is a result of the gauge freedom in the definition of the fluid pressure for an incompressible flow, in combination with the symmetry of fluid dynamics under relabeling of their Lagrangian coordinates. Similar ideas are also illustrated for SO(N) rigid body motion.

  4. Squeeze behavior of magnetorheological fluids under constant volume and uniform magnetic field

    International Nuclear Information System (INIS)

    Guo, Chaoyang; Gong, Xinglong; Xuan, Shouhu; Yan, Qifan; Ruan, Xiaohui

    2013-01-01

    In this work the experimental investigation of magnetorheological fluids in squeeze mode has been carried out under constant volume with a self-developed device. The magnetorheological fluids were forced to move in all directions in a horizontal plane as the two flat surfaces came together. A pair of Helmholtz coils was used to generate a uniform magnetic field in the compression gap. The normal forces within the gap were systematically studied for different magnetic field, squeeze velocity, particle concentration, viscosity of carrier fluid and initial gap distance. Two regions of behavior were obtained from the normal force versus gap distance curve: elastic deformation and plastic flow. A power law fitting was appropriate for the relation between the normal force and the gap in the plastic flow. The index of the power law was smaller than that predicted by the continuum theory, possibly due to the squeeze strengthening effect and the sealing effect. (paper)

  5. Fluid logic control circuit operates nutator actuator motor

    Science.gov (United States)

    1966-01-01

    Fluid logic control circuit operates a pneumatic nutator actuator motor. It has no moving parts and consists of connected fluid interaction devices. The operation of this circuit demonstrates the ability of fluid interaction devices to operate in a complex combination of series and parallel logic sequence.

  6. The volume of fluid injected into the tissue expander and the tissue expansion

    Directory of Open Access Journals (Sweden)

    Mahmood Omranifard

    2014-01-01

    Full Text Available Background: Replacement of the lost tissue is the major concerns of the plastic surgeons. Expanded area should be coherent with the surrounding tissue. Tissue expansion technique is the reforming methods the skin tissue scarcities. Several methods for tissue expansion are available; including usage of silicon balloon and injecting fluid into the tissue expander. Materials and Methods: In a clinical trial study, 35 patients, with burn scars, in the face, skull and neck area were studied. We provided a tissue expander device with capacities of 125, 250 and 350cc. Fluid was injected inside the device, 3 consecutive weeks with 1-week interval. After 3 months the device was set out and the tissue expansion was measured using a transparent board and the results were analyzed. Multiple regression was done by SPSS 20 to analyze the data. Results: Regression model showed Skin expansion was positively correlated with the volume of the injected fluid. For each centimeter square of skin expansion, about 6-8 ml of fluid must be injected. Conclusion: Correction of skin defects resulting from burning scar is possible using tissue expanders. The tissue expansion is correlated with the amount of the injected fluid.

  7. A control volume based finite difference method for solving the equilibrium equations in terms of displacements

    DEFF Research Database (Denmark)

    Hattel, Jesper; Hansen, Preben

    1995-01-01

    This paper presents a novel control volume based FD method for solving the equilibrium equations in terms of displacements, i.e. the generalized Navier equations. The method is based on the widely used cv-FDM solution of heat conduction and fluid flow problems involving a staggered grid formulati....... The resulting linear algebraic equations are solved by line-Gauss-Seidel....

  8. Time response model of ER fluids for precision control of motors

    Energy Technology Data Exchange (ETDEWEB)

    Koyanagi, Ken' ichi [Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama (Japan)], E-mail: koyanagi@pu-toyama.ac.jp

    2009-02-01

    For improvement of control performance or new control demands of mechatronics devices using particle type ER fluids, it will be needed to further investigate a response time of the fluids. It is commonly said around 5-mili seconds, however, the formula structure of that delay has not been clear. This study aims to develop a functional damper (attenuators), that can control its viscous characteristics in real time using ER fluids as its working fluid. ER dampers are useful to accomplish high precision positioning not to prevent high speed movement of the motor. To realize the functional damper that can be manipulated according to situations or tasks, the modeling and control of ER fluids are necessary. This paper investigates time delay affects of ER fluids and makes an in-depth dynamic model of the fluid by utilizing simulation and experiment. The mathematical model has a dead-time and first ordered delays of the fluid and the high voltage amplifier for the fluid.

  9. EFFECT OF THE VOLUME OF FLUID INGESTED ON URINE CONCENTRATING ABILITY DURING PROLONGED HEAVY EXERCISE IN A HOT ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Hidenori Otani

    2013-03-01

    Full Text Available This study examined the effect of the volume of fluid ingested on urine concentrating ability during prolonged heavy exercise in a hot environment at low levels of dehydration. Seven healthy males performed 105 min of intermittent cycle exercise at 70% maximum oxygen uptake (32°C, 60% relative humidity while receiving no fluid ingestion (NF, voluntary fluid ingestion (VF, partial fluid ingestion equivalent to one-half of body mass loss (PF, and full fluid ingestion equivalent to body mass loss (FF. Fluid (5°C, 3.4% carbohydrate, 10.5 mmol·L-1 sodium was ingested just before commencing exercise and at 15, 33, 51, 69, and 87 min of exercise, and the total amount of fluid ingested in PF and FF was divided into six equal volumes. During exercise, body mass loss was 2.2 ± 0.2, 1.1 ± 0.5, 1.1 ± 0.2, and 0.1 ± 0.2% in NF, VF, PF, and FF, respectively, whereas total sweat loss was about 2% of body mass in each trial. Subjects in VF ingested 719 ± 240 ml of fluid during exercise; the volume of fluid ingested was 1.1 ± 0.4% of body mass. Creatinine clearance was significantly higher and free water clearance was significantly lower in FF than in NF during exercise. Urine flow rate during exercise decreased significantly in NF. There were significant decreases in creatinine and osmolar clearance and was a significant increase in free water clearance during exercise in NF and VF. Creatinine clearance decreased significantly and free water clearance increased significantly during exercise in PF. There was no statistical change in urinary indices of renal function during exercise in FF. The findings suggest that full fluid ingestion equivalent to body mass loss has attenuated the decline in urine concentrating ability during prolonged heavy exercise in a hot environment at low levels of dehydration.

  10. Technology for Space Station Evolution. Volume 3: EVA/Manned Systems/Fluid Management System

    Science.gov (United States)

    1990-01-01

    NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on technology for space station evolution 16-19 Jan. 1990 in Dallas, Texas. The purpose of this workshop was to collect and clarify Space Station Freedom technology requirements for evolution and to describe technologies that can potentially fill those requirements. These proceedings are organized into an Executive Summary and Overview and five volumes containing the Technology Discipline Presentations. Volume 3 consists of the technology discipline sections for Extravehicular Activity/Manned Systems and the Fluid Management System. For each technology discipline, there is a Level 3 subsystem description, along with the papers.

  11. Cerebrospinal fluid volume measurements in hydrocephalic rats.

    Science.gov (United States)

    Basati, Sukhraaj; Desai, Bhargav; Alaraj, Ali; Charbel, Fady; Linninger, Andreas

    2012-10-01

    Object Experimental data about the evolution of intracranial volume and pressure in cases of hydrocephalus are limited due to the lack of available monitoring techniques. In this study, the authors validate intracranial CSF volume measurements within the lateral ventricle, while simultaneously using impedance sensors and pressure transducers in hydrocephalic animals. Methods A volume sensor was fabricated and connected to a catheter that was used as a shunt to withdraw CSF. In vitro bench-top calibration experiments were created to provide data for the animal experiments and to validate the sensors. To validate the measurement technique in a physiological system, hydrocephalus was induced in weanling rats by kaolin injection into the cisterna magna. At 28 days after induction, the sensor was implanted into the lateral ventricles. After sealing the skull using dental cement, an acute CSF drainage/infusion protocol consisting of 4 sequential phases was performed with a pump. Implant location was confirmed via radiography using intraventricular iohexol contrast administration. Results Controlled CSF shunting in vivo with hydrocephalic rats resulted in precise and accurate sensor measurements (r = 0.98). Shunting resulted in a 17.3% maximum measurement error between measured volume and actual volume as assessed by a Bland-Altman plot. A secondary outcome confirmed that both ventricular volume and intracranial pressure decreased during CSF shunting and increased during infusion. Ventricular enlargement consistent with successful hydrocephalus induction was confirmed using imaging, as well as postmortem. These results indicate that volume monitoring is feasible for clinical cases of hydrocephalus. Conclusions This work marks a departure from traditional shunting systems currently used to treat hydrocephalus. The overall clinical application is to provide alternative monitoring and treatment options for patients. Future work includes development and testing of a chronic

  12. Fluid mechanics experiments in oscillatory flow. Volume 1: Report

    Science.gov (United States)

    Seume, J.; Friedman, G.; Simon, T. W.

    1992-01-01

    Results of a fluid mechanics measurement program in oscillating flow within a circular duct are presented. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re(sub max), Re(sub w), and A(sub R), embody the velocity amplitude, frequency of oscillation and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters which included operating points of all Stirling engines. Next, a case was studied with values of these parameters that are representative of the heat exchanger tubes in the heater section of NASA's Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radial components of ensemble-averaged velocity and rms-velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and its reverse, were identified and sufficient data was gathered to propose the transition mechanism. Models of laminar and turbulent boundary layers were used to process the data into wall coordinates and to evaluate skin friction coefficients. Such data aids in validating computational models and is useful in comparing oscillatory flow characteristics to those of fully-developed steady flow. Data were taken with a contoured entry to each end of the test section and with flush square inlets so that the effects of test section inlet geometry on transition and turbulence are documented. Volume 1 contains the text of the report including figures and supporting appendices. Volume 2 contains data reduction program listings and tabulated data (including its graphical presentation).

  13. Fluid Statics and Archimedes

    Indian Academy of Sciences (India)

    librium of a vertical slice fluid (Figure Id) of height H and again using the fact .... same fluid having the same shape and same volume as the body. This fluid volume .... example, can be caused by the heating of air near the ground by the sun ...

  14. The thermodynamic quantity minimized in steady heat and fluid flow processes: A control volume approach

    International Nuclear Information System (INIS)

    Sahin, Ahmet Z.

    2012-01-01

    Highlights: ► The optimality in both heat and fluid flow systems has been investigated. ► A new thermodynamic property has been introduced. ► The second law of thermodynamics was extended to present the temheat balance that included the temheat destruction. ► The principle of temheat destruction minimization was introduced. ► It is shown that the rate of total temheat destruction is minimized in steady heat conduction and fluid flow problems. - Abstract: Heat transfer and fluid flow processes exhibit similarities as they occur naturally and are governed by the same type of differential equations. Natural phenomena occur always in an optimum way. In this paper, the natural optimality that exists in the heat transfer and fluid flow processes is investigated. In this regard, heat transfer and fluid flow problems are treated as optimization problems. We discovered a thermodynamic quantity that is optimized during the steady heat transfer and fluid flow processes. Consequently, a new thermodynamic property, the so called temheat, is introduced using the second law of thermodynamics and the definition of entropy. It is shown, through several examples, that overall temheat destruction is always minimized in steady heat and fluid flow processes. The principle of temheat destruction minimization that is based on the temheat balance equation provides a better insight to understand how the natural flow processes take place.

  15. Effect of pre-donation fluid intake on fluid shift from interstitial to intravascular compartment in blood donors.

    Science.gov (United States)

    Deepika, Chenna; Murugesan, Mohandoss; Shastry, Shamee

    2018-02-01

    Fluid shifts from interstitial to intravascular space during blood donation helps in compensating the lost blood volume. We aimed to determine the volume of fluid shift following donation in donors with and without pre-donation fluid intake. We studied the fluid shift in 325 blood donors prospectively. Donors were divided in groups- with no fluid intake (GI) and either water (GII) or oral rehydrating fluids (GIII) before donation. Fluid shift following donation was calculated based on the difference between the pre and post donation blood volume. The influence of oral fluid intake, age, gender and body mass index (BMI) on volume of fluid shift was analyzed. The fluid shift was significant between donors without fluids (GI: 127 ± 81 ml) and donors with fluid intake (GII & III: 96 ± 45 ml) (p donation. As per our observation, the oral fluids before donation might not contribute to increase in fluid shift in blood donors after donation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Linking rigid multibody systems via controllable thin fluid films

    DEFF Research Database (Denmark)

    Estupinan, Edgar Alberto; Santos, Ilmar

    2009-01-01

    , this paper gives a theoretical contribution to the combined fields of fluid–structure interaction and vibration control. The methodology is applied to a reciprocating linear compressor, where the dynamics of the mechanical components are described with help of multibody dynamics. The crank is linked......This work deals with the mathematical modelling of multibody systems interconnected via thin fluid films. The dynamics of the fluid films can be actively controlled by means of different types of actuators, allowing significant vibration reduction of the system components. In this framework...... to the rotor via a thin fluid film, where the hydrodynamic pressure is described by the Reynolds equation, which is modified to accommodate the controllable lubrication conditions. The fluid film forces are coupled to the set of nonlinear equations that describes the dynamics of the reciprocating linear...

  17. Stroke volume variation compared with pulse pressure variation and cardiac index changes for prediction of fluid responsiveness in mechanically ventilated patients

    Directory of Open Access Journals (Sweden)

    Randa Aly Soliman

    2015-04-01

    Conclusions: Baseline stroke volume variation ⩾8.15% predicted fluid responsiveness in mechanically ventilated patients with acute circulatory failure. The study also confirmed the ability of pulse pressure variation to predict fluid responsiveness.

  18. Molecular representation of molar domain (volume), evolution equations, and linear constitutive relations for volume transport.

    Science.gov (United States)

    Eu, Byung Chan

    2008-09-07

    In the traditional theories of irreversible thermodynamics and fluid mechanics, the specific volume and molar volume have been interchangeably used for pure fluids, but in this work we show that they should be distinguished from each other and given distinctive statistical mechanical representations. In this paper, we present a general formula for the statistical mechanical representation of molecular domain (volume or space) by using the Voronoi volume and its mean value that may be regarded as molar domain (volume) and also the statistical mechanical representation of volume flux. By using their statistical mechanical formulas, the evolution equations of volume transport are derived from the generalized Boltzmann equation of fluids. Approximate solutions of the evolution equations of volume transport provides kinetic theory formulas for the molecular domain, the constitutive equations for molar domain (volume) and volume flux, and the dissipation of energy associated with volume transport. Together with the constitutive equation for the mean velocity of the fluid obtained in a previous paper, the evolution equations for volume transport not only shed a fresh light on, and insight into, irreversible phenomena in fluids but also can be applied to study fluid flow problems in a manner hitherto unavailable in fluid dynamics and irreversible thermodynamics. Their roles in the generalized hydrodynamics will be considered in the sequel.

  19. Simulation of biological flow and transport in complex geometries using embedded boundary/volume-of-fluid methods

    International Nuclear Information System (INIS)

    Trebotich, David

    2007-01-01

    We have developed a simulation capability to model multiscale flow and transport in complex biological systems based on algorithms and software infrastructure developed under the SciDAC APDEC CET. The foundation of this work is a new hybrid fluid-particle method for modeling polymer fluids in irregular microscale geometries that enables long-time simulation of validation experiments. Both continuum viscoelastic and discrete particle representations have been used to model the constitutive behavior of polymer fluids. Complex flow environment geometries are represented on Cartesian grids using an implicit function. Direct simulation of flow in the irregular geometry is then possible using embedded boundary/volume-of-fluid methods without loss of geometric detail. This capability has been used to simulate biological flows in a variety of application geometries including biomedical microdevices, anatomical structures and porous media

  20. Control procedure for fluid kicks in hydrocarbons wells

    Energy Technology Data Exchange (ETDEWEB)

    Gavignet, A

    1989-02-10

    This invention is a control procedure of the fluids inflows coming from an underground formation during a drill. These inflows happen when a drill reaches a permeable area containing a high pressure fluid. The latter will engulf into the well which may cause a catastrophic eruption, if nothing is done. Therefore is it necessary to know as soon as possible the physical nature of the fluids inflows. The proposed method consists in calculating the fluids characteristic through the measure of the pressures and debits of injection and return of the drilling mud.

  1. Evaluation of stroke volume variation obtained by arterial pulse contour analysis to predict fluid responsiveness intraoperatively.

    Science.gov (United States)

    Lahner, D; Kabon, B; Marschalek, C; Chiari, A; Pestel, G; Kaider, A; Fleischmann, E; Hetz, H

    2009-09-01

    Fluid management guided by oesophageal Doppler monitor has been reported to improve perioperative outcome. Stroke volume variation (SVV) is considered a reliable clinical predictor of fluid responsiveness. Consequently, the aim of the present trial was to evaluate the accuracy of SVV determined by arterial pulse contour (APCO) analysis, using the FloTrac/Vigileo system, to predict fluid responsiveness as measured by the oesophageal Doppler. Patients undergoing major abdominal surgery received intraoperative fluid management guided by oesophageal Doppler monitoring. Fluid boluses of 250 ml each were administered in case of a decrease in corrected flow time (FTc) to 10%. The ability of SVV to predict fluid responsiveness was assessed by calculation of the area under the receiver operating characteristic (ROC) curve. Twenty patients received 67 fluid boluses. Fifty-two of the 67 fluid boluses administered resulted in fluid responsiveness. SVV achieved an area under the ROC curve of 0.512 [confidence interval (CI) 0.32-0.70]. A cut-off point for fluid responsiveness was found for SVV > or =8.5% (sensitivity: 77%; specificity: 43%; positive predictive value: 84%; and negative predictive value: 33%). This prospective, interventional observer-blinded study demonstrates that SVV obtained by APCO, using the FloTrac/Vigileo system, is not a reliable predictor of fluid responsiveness in the setting of major abdominal surgery.

  2. Flow rate control in pressure-programmed capillary supercritical fluid chromatography

    NARCIS (Netherlands)

    Janssen, J.G.M.; Rijks, J.A.; Cramers, C.A.M.G.

    1990-01-01

    A versatile and simple system is described that allows variation of the column flow rate in open-tubular capillary supercritical fluid chromatography using both on-column and postcolumn detection. The system is based on column-effluent splitting in a low-dead-volume T piece at the column exit just

  3. Quantitative estimation of a ratio of intracranial cerebrospinal fluid volume to brain volume based on segmentation of CT images in patients with extra-axial hematoma.

    Science.gov (United States)

    Nguyen, Ha Son; Patel, Mohit; Li, Luyuan; Kurpad, Shekar; Mueller, Wade

    2017-02-01

    Background Diminishing volume of intracranial cerebrospinal fluid (CSF) in patients with space-occupying masses have been attributed to unfavorable outcome associated with reduction of cerebral perfusion pressure and subsequent brain ischemia. Objective The objective of this article is to employ a ratio of CSF volume to brain volume for longitudinal assessment of space-volume relationships in patients with extra-axial hematoma and to determine variability of the ratio among patients with different types and stages of hematoma. Patients and methods In our retrospective study, we reviewed 113 patients with surgical extra-axial hematomas. We included 28 patients (age 61.7 +/- 17.7 years; 19 males, nine females) with an acute epidural hematoma (EDH) ( n = 5) and subacute/chronic subdural hematoma (SDH) ( n = 23). We excluded 85 patients, in order, due to acute SDH ( n = 76), concurrent intraparenchymal pathology ( n = 6), and bilateral pathology ( n = 3). Noncontrast CT images of the head were obtained using a CT scanner (2004 GE LightSpeed VCT CT system, tube voltage 140 kVp, tube current 310 mA, 5 mm section thickness) preoperatively, postoperatively (3.8 ± 5.8 hours from surgery), and at follow-up clinic visit (48.2 ± 27.7 days after surgery). Each CT scan was loaded into an OsiriX (Pixmeo, Switzerland) workstation to segment pixels based on radiodensity properties measured in Hounsfield units (HU). Based on HU values from -30 to 100, brain, CSF spaces, vascular structures, hematoma, and/or postsurgical fluid were segregated from bony structures, and subsequently hematoma and/or postsurgical fluid were manually selected and removed from the images. The remaining images represented overall brain volume-containing only CSF spaces, vascular structures, and brain parenchyma. Thereafter, the ratio between the total number of voxels representing CSF volume (based on values between 0 and 15 HU) to the total number of voxels

  4. Cardiac output-based fluid optimization for kidney transplant recipients: a proof-of-concept trial.

    Science.gov (United States)

    Corbella, Davide; Toppin, Patrick Jason; Ghanekar, Anand; Ayach, Nour; Schiff, Jeffery; Van Rensburg, Adrian; McCluskey, Stuart A

    2018-04-10

    Intravenous fluid management for deceased donor kidney transplantation is an important, modifiable risk factor for delayed graft function (DGF). The primary objective of this study was to determine if goal-directed fluid therapy using esophageal Doppler monitoring (EDM) to optimize stroke volume (SV) would alter the amount of fluid given. This randomized, proof-of-concept trial enrolled 50 deceased donor renal transplant recipients. Data collected included patient characteristics, fluid administration, hemodynamics, and complications. The EDM was used to optimize SV in the EDM group. In the control group, fluid management followed the current standard of practice. The groups were compared for the primary outcome of total intraoperative fluid administered. There was no difference in the mean (standard deviation) volume of intraoperative fluid administered to the 24 control and 26 EDM patients [2,307 (750) mL vs 2,675 (842) mL, respectively; mean difference, 368 mL; 95% confidence interval (CI), - 87 to + 823; P = 0.11]. The incidence of complications in the control and EDM groups was similar (15/24 vs 17/26, respectively; P = 0.99), as was the incidence of delayed graft failure (8/24 vs 11/26, respectively; P = 0.36). Goal-directed fluid therapy did not alter the volume of fluid administered or the incidence of complications. This proof-of-concept trial provides needed data for conducting a larger trial to determine the influence of fluid therapy on the incidence in DGF in deceased donor kidney transplantation. www.clinicaltrials.gov (NCT02512731). Registered 31 July 2015.

  5. State of the art in fluid and volume therapy : A user-friendly staged concept. English version.

    Science.gov (United States)

    Rehm, M; Hulde, N; Kammerer, T; Meidert, A S; Hofmann-Kiefer, K

    2017-04-10

    Adequate intraoperative infusion therapy is essential for the perioperative outcome of a patient. Both hypo- and hypervolemia can lead to an increased rate of perioperative complications and to a worse outcome. Perioperative infusion therapy should therefore be needs-based. The primary objective is the maintenance of preoperative normovolemia using a rational infusion strategy. Perioperative fluid losses should be differentiated from volume losses due to surgical bleeding or protein losses into the interstitial space. Fluid loss via urine excretion or insensible perspiration (0.5-1.0 ml/kg/h) should be replaced with balanced, isooncotic, crystalloid infusion solutions in a ratio of 1:1. Volume therapy stage 1: intraoperative volume losses up to a blood loss corresponding to 20% of the patient's total blood volume are compensated for by balanced crystalloids in a ratio of 4-5:1. Stage 2: blood losses exceeding this level are to be treated with isooncotic colloids (preferably balanced) in a 1:1 ratio. In this regard taking into consideration the contraindications, e. g., sepsis, burns, critical illness (usually patients in the intensive care unit), impaired renal function or renal replacement therapy, intracranial hemorrhage, or severe coagulopathy, artificial colloids such as hydroxyethyl starch (HES) can be used perioperatively for volume replacement. Stage 3: if an allogeneic blood transfusion is indicated, blood and blood products are applied in a differentiated manner.

  6. Fluid circulation control device

    International Nuclear Information System (INIS)

    Benard, Henri; Henocque, Jean.

    1982-01-01

    Horizontal fluid circulation control device, of the type having a pivoting flap. This device is intended for being fitted in the pipes of hydraulic installation, particularly in a bleed and venting system of a nuclear power station shifting radioactive or contaminated liquids. The characteristic of this device is the cut-out at the top of the flap to allow the air contained in the pipes to flow freely [fr

  7. Spaceflight-Induced Visual Impairment and Globe Deformations in Astronauts Are Linked to Orbital Cerebrospinal Fluid Volume Increase.

    Science.gov (United States)

    Alperin, Noam; Bagci, Ahmet M

    2018-01-01

    Most of the astronauts onboard the International Space Station (ISS) develop visual impairment and ocular structural changes that are not fully reversible upon return to earth. Current understanding assumes that the so-called visual impairments/intracranial pressure (VIIP) syndrome is caused by cephalad vascular fluid shift. This study assesses the roles of cerebrospinal fluid (CSF) and intracranial pressure (ICP) in VIIP. Seventeen astronauts, 9 who flew a short-duration mission on the space shuttle (14.1 days [SD 1.6]) and 7 who flew a long-duration mission on the ISS (188 days [SD 22]) underwent MRI of the brain and orbits to assess the pre-to-post spaceflight changes in four categories: VIIP severity measures: globe flattening and nerve protrusion; orbital and ventricular CSF volumes; cortical gray and white matter volumes; and MR-derived ICP (MRICP). Significant pre-to-post-flight increase in globe flattening and optic nerve protrusion occurred only in the long-duration cohort (0.031 [SD 0.019] vs -0.001 [SD 0.006], and 0.025 [SD 0.013] vs 0.001 [SD 0.006]; p < 0.00002 respectively). The increased globe deformations were associated with significant increases in orbital and ventricular CSF volumes, but not with increased tissue vascular fluid content. Additionally, a moderate increase in MRICP of 6 mmHg was observed in only two ISS astronauts with large ocular structure changes. These findings are evidence for the primary role of CSF and a lesser role for intracranial cephalad fluid-shift in the formation of VIIP. VIIP is caused by a prolonged increase in orbital CSF spaces that compress the globes' posterior pole, even without a large increase in ICP.

  8. Conservative and bounded volume-of-fluid advection on unstructured grids

    Science.gov (United States)

    Ivey, Christopher B.; Moin, Parviz

    2017-12-01

    This paper presents a novel Eulerian-Lagrangian piecewise-linear interface calculation (PLIC) volume-of-fluid (VOF) advection method, which is three-dimensional, unsplit, and discretely conservative and bounded. The approach is developed with reference to a collocated node-based finite-volume two-phase flow solver that utilizes the median-dual mesh constructed from non-convex polyhedra. The proposed advection algorithm satisfies conservation and boundedness of the liquid volume fraction irrespective of the underlying flux polyhedron geometry, which differs from contemporary unsplit VOF schemes that prescribe topologically complicated flux polyhedron geometries in efforts to satisfy conservation. Instead of prescribing complicated flux-polyhedron geometries, which are prone to topological failures, our VOF advection scheme, the non-intersecting flux polyhedron advection (NIFPA) method, builds the flux polyhedron iteratively such that its intersection with neighboring flux polyhedra, and any other unavailable volume, is empty and its total volume matches the calculated flux volume. During each iteration, a candidate nominal flux polyhedron is extruded using an iteration dependent scalar. The candidate is subsequently intersected with the volume guaranteed available to it at the time of the flux calculation to generate the candidate flux polyhedron. The difference in the volume of the candidate flux polyhedron and the actual flux volume is used to calculate extrusion during the next iteration. The choice in nominal flux polyhedron impacts the cost and accuracy of the scheme; however, it does not impact the methods underlying conservation and boundedness. As such, various robust nominal flux polyhedron are proposed and tested using canonical periodic kinematic test cases: Zalesak's disk and two- and three-dimensional deformation. The tests are conducted on the median duals of a quadrilateral and triangular primal mesh, in two-dimensions, and on the median duals of a

  9. Fluid mechanics experiments in oscillatory flow. Volume 2: Tabulated data

    Science.gov (United States)

    Seume, J.; Friedman, G.; Simon, T. W.

    1992-01-01

    Results of a fluid mechanics measurement program in oscillating flow within a circular duct are presented. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re sub max, Re sub w, and A sub R, embody the velocity amplitude, frequency of oscillation, and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters that are representative of the heat exchanger tubes in the heater section of NASA's Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radial components of ensemble-averaged velocity and rms velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and its reverse, were identified and sufficient data was gathered to propose the transition mechanism. Volume 2 contains data reduction program listings and tabulated data (including its graphics).

  10. The coupled effect of fiber volume fraction and void fraction on hydraulic fluid absorption of quartz/BMI laminates

    Science.gov (United States)

    Hurdelbrink, Keith R.; Anderson, Jacob P.; Siddique, Zahed; Altan, M. Cengiz

    2016-03-01

    Bismaleimide (BMI) resin with quartz (AQ581) fiber reinforcement is a composite material frequently used in aerospace applications, such as engine cowlings and radomes. Various composite components used in aircrafts are exposed to different types of hydraulic fluids, which may lead to anomalous absorption behavior over the service life of the composite. Accurate predictive models for absorption of liquid penetrants are particularly important as the composite components are often exposed to long-term degradation due to absorbed moisture, hydraulic fluids, or similar liquid penetrants. Microstructural features such as fiber volume fraction and void fraction can have a significant effect on the absorption behavior of fiber-reinforced composites. In this paper, hydraulic fluid absorption characteristics of quartz/BMI laminates fabricated from prepregs preconditioned at different relative humidity and subsequently cured at different pressures are presented. The composite samples are immersed into hydraulic fluid at room temperature, and were not subjected to any prior degradation. To generate process-induced microvoids, prepregs were conditioned in an environmental chamber at 2% or 99% relative humidity at room temperature for a period of 24 hours prior to laminate fabrication. To alter the fiber volume fraction, the laminates were fabricated at cure pressures of 68.9 kPa (10 psi) or 482.6 kPa (70 psi) via a hot-press. The laminates are shown to have different levels of microvoids and fiber volume fractions, which were observed to affect the absorption dynamics considerably and exhibited clear non-Fickian behavior. A one-dimensional hindered diffusion model (HDM) was shown to be successful in predicting the hydraulic fluid absorption. Model prediction indicates that as the fabrication pressure increased from 68.9 kPa to 482.6 kPa, the maximum fluid content (M∞) decreased from 8.0% wt. to 1.0% wt. The degree of non-Fickian behavior, measured by hindrance coefficient (

  11. Fluid mechanics in fluids at rest.

    Science.gov (United States)

    Brenner, Howard

    2012-07-01

    Using readily available experimental thermophoretic particle-velocity data it is shown, contrary to current teachings, that for the case of compressible flows independent dye- and particle-tracer velocity measurements of the local fluid velocity at a point in a flowing fluid do not generally result in the same fluid velocity measure. Rather, tracer-velocity equality holds only for incompressible flows. For compressible fluids, each type of tracer is shown to monitor a fundamentally different fluid velocity, with (i) a dye (or any other such molecular-tagging scheme) measuring the fluid's mass velocity v appearing in the continuity equation and (ii) a small, physicochemically and thermally inert, macroscopic (i.e., non-Brownian), solid particle measuring the fluid's volume velocity v(v). The term "compressibility" as used here includes not only pressure effects on density, but also temperature effects thereon. (For example, owing to a liquid's generally nonzero isobaric coefficient of thermal expansion, nonisothermal liquid flows are to be regarded as compressible despite the general perception of liquids as being incompressible.) Recognition of the fact that two independent fluid velocities, mass- and volume-based, are formally required to model continuum fluid behavior impacts on the foundations of contemporary (monovelocity) fluid mechanics. Included therein are the Navier-Stokes-Fourier equations, which are now seen to apply only to incompressible fluids (a fact well-known, empirically, to experimental gas kineticists). The findings of a difference in tracer velocities heralds the introduction into fluid mechanics of a general bipartite theory of fluid mechanics, bivelocity hydrodynamics [Brenner, Int. J. Eng. Sci. 54, 67 (2012)], differing from conventional hydrodynamics in situations entailing compressible flows and reducing to conventional hydrodynamics when the flow is incompressible, while being applicable to both liquids and gases.

  12. Goal-directed fluid therapy: stroke volume optimisation and cardiac dimensions in supine healthy humans

    DEFF Research Database (Denmark)

    Jans, O.; Tollund, C.; Bundgaard-Nielsen, M.

    2008-01-01

    BACKGROUND: Based on maximisation of cardiac stroke volume (SV), peri-operative individualised goal-directed fluid therapy improves patient outcome. It remains, however, unknown how fluid therapy by this strategy relates to filling of the heart during supine rest as reference for the anaesthetised...... by thoracic electrical admittance, central venous oxygenation and pressure, and arterial plasma atrial natriuretic peptide. Also, muscle and brain oxygenation were assessed by near infrared spectroscopy (n=7). RESULTS: The HUT reduced the mentioned indices of CBV, the end-diastolic dimensions of the heart...... therapy is that when a maximal SV is established for patients, cardiac pre-load is comparable to that of supine healthy subjects Udgivelsesdato: 2008/4...

  13. Annual review of fluid mechanics. Volume 23

    International Nuclear Information System (INIS)

    Lumley, J.L.; Van Dyke, M.; Reed, H.L.

    1991-01-01

    Recent advances in theoretical, experimental, and computational fluid mechanics are discussed in a collection of annual review essays. Topics addressed include Lagrangian ocean studies, drag reduction in nature, the hydraulics of rotating strait and sill flow, analytical methods for the development of Reynolds-stress closures in turbulence, and exact solutions of the Navier-Stokes equations. Consideration is given to the theory of hurricanes, flow phenomena in CVD of thin films, particle-imaging techniques for experimental fluid mechanics, symmetry and symmetry-breaking bifurcations in fluid dynamics, turbulent mixing in stratified fluids, numerical simulation of transition in wall-bounded shear flows, fractals and multifractals in fluid turbulence, and coherent motions in the turbulent boundary layer

  14. Curvature computation in volume-of-fluid method based on point-cloud sampling

    Science.gov (United States)

    Kassar, Bruno B. M.; Carneiro, João N. E.; Nieckele, Angela O.

    2018-01-01

    This work proposes a novel approach to compute interface curvature in multiphase flow simulation based on Volume of Fluid (VOF) method. It is well documented in the literature that curvature and normal vector computation in VOF may lack accuracy mainly due to abrupt changes in the volume fraction field across the interfaces. This may cause deterioration on the interface tension forces estimates, often resulting in inaccurate results for interface tension dominated flows. Many techniques have been presented over the last years in order to enhance accuracy in normal vectors and curvature estimates including height functions, parabolic fitting of the volume fraction, reconstructing distance functions, coupling Level Set method with VOF, convolving the volume fraction field with smoothing kernels among others. We propose a novel technique based on a representation of the interface by a cloud of points. The curvatures and the interface normal vectors are computed geometrically at each point of the cloud and projected onto the Eulerian grid in a Front-Tracking manner. Results are compared to benchmark data and significant reduction on spurious currents as well as improvement in the pressure jump are observed. The method was developed in the open source suite OpenFOAM® extending its standard VOF implementation, the interFoam solver.

  15. Fluid transport in reaction induced fractures

    Science.gov (United States)

    Ulven, Ole Ivar; Sun, WaiChing; Malthe-Sørenssen, Anders

    2015-04-01

    The process of fracture formation due to a volume increasing chemical reaction has been studied in a variety of different settings, e.g. weathering of dolerites by Røyne et al. te{royne}, serpentinization and carbonation of peridotite by Rudge et al. te{rudge} and replacement reactions in silica-poor igneous rocks by Jamtveit et al. te{jamtveit}. It is generally assumed that fracture formation will increase the net permeability of the rock, and thus increase the reactant transport rate and subsequently the total rate of material conversion, as summarised by Kelemen et al. te{kelemen}. Ulven et al. te{ulven_1} have shown that for fluid-mediated processes the ratio between chemical reaction rate and fluid transport rate in bulk rock controls the fracture pattern formed, and Ulven et al. te{ulven_2} have shown that instantaneous fluid transport in fractures lead to a significant increase in the total rate of the volume expanding process. However, instantaneous fluid transport in fractures is clearly an overestimate, and achievable fluid transport rates in fractures have apparently not been studied in any detail. Fractures cutting through an entire domain might experience relatively fast advective reactant transport, whereas dead-end fractures will be limited to diffusion of reactants in the fluid, internal fluid mixing in the fracture or capillary flow into newly formed fractures. Understanding the feedback process between fracture formation and permeability changes is essential in assessing industrial scale CO2 sequestration in ultramafic rock, but little is seemingly known about how large the permeability change will be in reaction-induced fracturing. In this work, we study the feedback between fracture formation during volume expansion and fluid transport in different fracture settings. We combine a discrete element model (DEM) describing a volume expanding process and the related fracture formation with different models that describe the fluid transport in the

  16. A comparison of volume control and pressure-regulated volume control ventilation in acute respiratory failure

    OpenAIRE

    Guldager, Henrik; Nielsen, Soeren L; Carl, Peder; Soerensen, Mogens B

    1997-01-01

    Background: The aim of this study was to test the hypothesis that a new mode of ventilation (pressure-regulated volume control; PRVC) is associated with improvements in respiratory mechanics and outcome when compared with conventional volume control (VC) ventilation in patients with acute respiratory failure. We conducted a randomised, prospective, open, cross over trial on 44 patients with acute respiratory failure in the general intensive care unit of a university hospital. After a stabiliz...

  17. Fluid Mechanics.

    Science.gov (United States)

    Drazin, Philip

    1987-01-01

    Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)

  18. Position feedback control of a nonmagnetic body levitated in magnetic fluid

    International Nuclear Information System (INIS)

    Lee, J H; Nam, Y J; Park, M K; Yamane, R

    2009-01-01

    This paper is concerned with the position feedback control of a magnetic fluid actuator which is characterized by the passive levitation of a nonmagnetic body immersed in a magnetic fluid under magnetic fields. First of all, the magnetic fluid actuator is designed based on the ferrohydrostatic relation. After manufacturing the actuator, its static and dynamic characteristics are investigated experimentally. With the aid of the dynamic governing relation obtained experimentally and the proportional-derivative controller, the position tracking control of the actuator is carried out both theoretically and experimentally. As a result, the applicability of the proposed magnetic fluid actuator to various engineering devices is verified.

  19. A high-force controllable MR fluid damper–liquid spring suspension system

    International Nuclear Information System (INIS)

    Raja, Pramod; Wang, Xiaojie; Gordaninejad, Faramarz

    2014-01-01

    The goal of the present research is to investigate the feasibility of incorporating a liquid spring in a semi-active suspension system for use in heavy off-road vehicles. A compact compressible magneto-rheological (MR) fluid damper–liquid spring (CMRFD–LS) with high spring rate is designed, developed and tested. Compressible MR fluids with liquid spring and variable damping characteristics are used. These fluids can offer unique functions in reducing the volume/weight of vehicle struts and improving vehicle dynamic stability and safety. The proposed device consists of a cylinder and piston–rod arrangement with an internal annular MR fluid valve. The internal pressures in the chambers on either side of the piston develop the spring force, while the pressure difference across the MR valve produces the damping force, when the fluid flows through the MR valve. Harmonic characterization of the CMRFD–LS is performed and the force–displacement results are presented. A fluid-mechanics based model is also developed to predict the performance of the system at different operating conditions and compared to the experimental results. Good agreement between the experimental results and theoretical predictions has been achieved. (paper)

  20. The finite volume method in computational fluid dynamics an advanced introduction with OpenFOAM and Matlab

    CERN Document Server

    Moukalled, F; Darwish, M

    2016-01-01

    This textbook explores both the theoretical foundation of the Finite Volume Method (FVM) and its applications in Computational Fluid Dynamics (CFD). Readers will discover a thorough explanation of the FVM numerics and algorithms used for the simulation of incompressible and compressible fluid flows, along with a detailed examination of the components needed for the development of a collocated unstructured pressure-based CFD solver. Two particular CFD codes are explored. The first is uFVM, a three-dimensional unstructured pressure-based finite volume academic CFD code, implemented within Matlab. The second is OpenFOAM®, an open source framework used in the development of a range of CFD programs for the simulation of industrial scale flow problems. With over 220 figures, numerous examples and more than one hundred exercise on FVM numerics, programming, and applications, this textbook is suitable for use in an introductory course on the FVM, in an advanced course on numerics, and as a reference for CFD programm...

  1. [Evaluation of tidal volume delivered by ventilators during volume-controlled ventilation].

    Science.gov (United States)

    Zhou, Juan; Yan, Yong; Cao, Desen

    2014-12-01

    To study the ways which ensure the delivery of enough tidal volume to patients under various conditions close to the demand of the physician. The volume control ventilation model was chosen, and the simulation lung type was active servo lung ASL 5000 or Michigan lung 1601. The air resistance, air compliance and lung type in simulation lungs were set. The tidal volume was obtained from flow analyzer PF 300. At the same tidal volume, the displaying values of tidal volume of E5, Servo i, Evital 4, and Evital XL ventilators with different lung types of patient, compliance of gas piping, leakage, gas types, etc. were evaluated. With the same setting tidal volume of a same ventilator, the tidal volume delivered to patients was different with different lung types of patient, compliance of gas piping, leakage, gas types, etc. Reducing compliance and increasing resistance of the patient lungs caused high peak airway pressure, the tidal volume was lost in gas piping, and the tidal volume be delivered to the patient lungs was decreased. If the ventilator did not compensate to leakage, the tidal volume delivered to the patient lungs was decreased. When the setting gas type of ventilator did not coincide with that applying to the patient, the tidal volume be delivered to the patient lungs might be different with the setting tidal volume of ventilator. To ensure the delivery of enough tidal volume to patients close to the demand of the physician, containable factors such as the compliance of gas piping, leakage, and gas types should be controlled.

  2. CISM Course on Rotating Fluids

    CERN Document Server

    1992-01-01

    The volume presents a comprehensive overview of rotation effects on fluid behavior, emphasizing non-linear processes. The subject is introduced by giving a range of examples of rotating fluids encountered in geophysics and engineering. This is then followed by a discussion of the relevant scales and parameters of rotating flow, and an introduction to geostrophic balance and vorticity concepts. There are few books on rotating fluids and this volume is, therefore, a welcome addition. It is the first volume which contains a unified view of turbulence in rotating fluids, instability and vortex dynamics. Some aspects of wave motions covered here are not found elsewhere.

  3. Fault geometry and fluid-rock reaction: Combined controls on mineralization in the Xinli gold deposit, Jiaodong Peninsula, China

    Science.gov (United States)

    Yang, Lin; Zhao, Rui; Wang, Qingfei; Liu, Xuefei; Carranza, Emmanuel John M.

    2018-06-01

    The structures and fluid-rock reaction in the Xinli gold deposit, Jiaodong Peninsula, were investigated to further understand their combined controls on the development of permeability associated with ore-forming fluid migration. Orebodies in this deposit are hosted by the moderately SE-to S-dipping Sanshandao-Cangshang fault (SCF). Variations in both dip direction and dip angle along the SCF plane produced fault bends, which controlled the fluid accumulation and ore-shoot formation. Gold mineralizations occurred in early gold-quartz-pyrite and late gold-quartz-polymetallic sulphide stages following pervasive sericitization and silicification alterations. Theoretical calculation indicates that sericitization caused 8-57% volume decrease resulting in the development/enlargement of voids, further increase of grain-scale permeability, and resultant precipitation of the early gold-quartz-pyrite pods, which destroyed permeability. The rock softening produced by alterations promoted activities of SCF secondary faults and formation of new fractures, which rebuilt the permeability and controlled the late gold-quartz-polymetallic sulfide veins. Quantitative studies on permeability distributions show that the southwestern and northeastern bend areas with similar alteration and mineralization have persistent and anti-persistent permeability networks, respectively. These were likely caused by different processes of rebuilding permeability due to different stress states resulting from changes in fault geometry.

  4. Prediction of quantitative intrathoracic fluid volume to diagnose pulmonary oedema using LabVIEW.

    Science.gov (United States)

    Urooj, Shabana; Khan, M; Ansari, A Q; Lay-Ekuakille, Aimé; Salhan, Ashok K

    2012-01-01

    Pulmonary oedema is a life-threatening disease that requires special attention in the area of research and clinical diagnosis. Computer-based techniques are rarely used to quantify the intrathoracic fluid volume (IFV) for diagnostic purposes. This paper discusses a software program developed to detect and diagnose pulmonary oedema using LabVIEW. The software runs on anthropometric dimensions and physiological parameters, mainly transthoracic electrical impedance (TEI). This technique is accurate and faster than existing manual techniques. The LabVIEW software was used to compute the parameters required to quantify IFV. An equation relating per cent control and IFV was obtained. The results of predicted TEI and measured TEI were compared with previously reported data to validate the developed program. It was found that the predicted values of TEI obtained from the computer-based technique were much closer to the measured values of TEI. Six new subjects were enrolled to measure and predict transthoracic impedance and hence to quantify IFV. A similar difference was also observed in the measured and predicted values of TEI for the new subjects.

  5. [Extracellular fluid, plasma and interstitial volume in cirrhotic patients without clinical edema or ascites].

    Science.gov (United States)

    Noguera Viñas, E C; Hames, W; Mothe, G; Barrionuevo, M P

    1989-01-01

    Extracellular fluid volume (E.C.F.) and plasma volume (P.V.), were measured with sodium sulfate labeled with 35I and 131I human serum albumin, respectively, by the dilution technique in control subjects and in cirrhotic patients without clinical ascites or edema, renal or hepatic failure, gastrointestinal bleeding or diuretics. Results are expressed as mean +/- DS in both ml/m2 and ml/kg. In normal subjects E.C.F. (n = 8) was 7,533 +/- 817 ml/m2 (201.3 +/- 182 ml/kg), P.V. (n = 11) 1,767 +/- 337 ml/m2 (47.2 +/- 9.3 ml/kg), and interstitial fluid (I.S.F.) (n = 7) 5,758 +/- 851 ml/m2 (Table 2). In cirrhotic patients E.C.F. (n = 11) was 10,318 +/- 2,980 ml/m2 (261.7 +/- 76.8 ml/kg), P.V. (n = 12) 2,649 +/- 558 ml/m2 (67.7 +/- 15.6 ml/kg) and I.S.F. (n = 11) 7,866 +/- 2,987 ml/m2 (Table 3). Cirrhotic patients compared with normal subjects have hypervolemia due to a significant E.C.F. and P.V. expansion (p less than 0.02 and less than 0.001 respectively) (Fig. 1). Reasons for E.C.F. and P.V. abnormalities in cirrhotic patients may reflect urinary sodium retention related to portal hipertension which stimulates aldosterone release or enhanced renal tubular sensitivity to the hormone. However, it is also possible that these patients, in the presence of hypoalbuminemia (Table 1), have no clinical edema or ascites due to increased glomerular filtration, suppressed release of vasopressin, increased natriuretic factor, and urinary prostaglandin excretion, in response to the intravascular expansion, all of which increased solute and water delivery to the distal nephron and improved renal water excretion. We conclude that in our clinical experience cirrhotic patients without ascites or edema have hypervolemia because of a disturbance in E.C.F.

  6. Active Robust Control of Elastic Blade Element Containing Magnetorheological Fluid

    Science.gov (United States)

    Sivrioglu, Selim; Cakmak Bolat, Fevzi

    2018-03-01

    This research study proposes a new active control structure to suppress vibrations of a small-scale wind turbine blade filled with magnetorheological (MR) fluid and actuated by an electromagnet. The aluminum blade structure is manufactured using the airfoil with SH3055 code number which is designed for use on small wind turbines. An interaction model between MR fluid and the electromagnetic actuator is derived. A norm based multi-objective H2/H∞ controller is designed using the model of the elastic blade element. The H2/H∞ controller is experimentally realized under the impact and steady state aerodynamic load conditions. The results of experiments show that the MR fluid is effective for suppressing vibrations of the blade structure.

  7. Euler's fluid equations: Optimal control vs optimization

    Energy Technology Data Exchange (ETDEWEB)

    Holm, Darryl D., E-mail: d.holm@ic.ac.u [Department of Mathematics, Imperial College London, SW7 2AZ (United Kingdom)

    2009-11-23

    An optimization method used in image-processing (metamorphosis) is found to imply Euler's equations for incompressible flow of an inviscid fluid, without requiring that the Lagrangian particle labels exactly follow the flow lines of the Eulerian velocity vector field. Thus, an optimal control problem and an optimization problem for incompressible ideal fluid flow both yield the same Euler fluid equations, although their Lagrangian parcel dynamics are different. This is a result of the gauge freedom in the definition of the fluid pressure for an incompressible flow, in combination with the symmetry of fluid dynamics under relabeling of their Lagrangian coordinates. Similar ideas are also illustrated for SO(N) rigid body motion.

  8. 3rd Symposium on Fluid-Structure-Sound Interactions and Control

    CERN Document Server

    Lucey, AD; Liu, Yang; Huang, Lixi

    2016-01-01

    These proceedings primarily focus on advances in the theory, experiments, and numerical simulations of turbulence in the contexts of flow-induced vibration and noise, as well as their control. Fluid-related structural vibration and noise problems are often encountered in many engineering fields, increasingly making them a cause for concern. The FSSIC conference, held on 5-9 July 2015 in Perth, featured prominent keynote speakers such as John Kim, Nigel Peake, Song Fu and Colin Hansen, as well as talks on a broad range of topics: turbulence, fluid-structure interaction, fluid-related noise and the control/management aspects of these research areas, many of which are clearly interdisciplinary in nature. It provided a forum for academics, scientists and engineers working in all branches of Fluid-Structure-Sound Interactions and Control (FSSIC) to exchange and share the latest developments, ideas and advances, bringing them together researchers from East and West to push forward the frontiers of FSSIC, ensuring t...

  9. Apparatus and Methods for Fluid Storage and Delivery

    Science.gov (United States)

    Parazynski, Scott E. (Inventor); Bue, Grant C. (Inventor); Schaefbauer, Mark E. (Inventor); Urban, Kase C. (Inventor)

    2014-01-01

    An apparatus and method for storing and delivering fluid to a person comprises, in at least one specific embodiment, a fluid reservoir having an internal volume therein with an opening disposed through a first wall or a second wall of the fluid reservoir and located toward a first end of the fluid reservoir. A first portion of a tube can be exterior to the fluid reservoir and a second portion of the tube can be disposed through the opening and within the internal volume. At least one insulation layer can be disposed about the exterior of the first wall of the fluid reservoir. The second wall of the fluid reservoir can be configured for transferring heat from or to the internal volume or from the person. At least one baffle is disposed within the internal volume and connected to the first wall and the second wall of the fluid reservoir.

  10. Performance of V-type Stirling-cycle refrigerator for different working fluids

    Energy Technology Data Exchange (ETDEWEB)

    Tekin, Yusuf; Ataer, Omer Ercan [Erciyes University, Engineering Faculty, Mechanical Engineering Department, Melikgazi, 38 039 Kayseri (Turkey)

    2010-01-15

    The thermodynamic analysis of a V-type Stirling-cycle Refrigerator (VSR) is performed for air, hydrogen and helium as the working fluid and the performance of the VSR is investigated. The V-type Stirling-cycle refrigerator consists of expansion and compression spaces, cooler, heater and regenerator, and it is assumed that the control volumes are subjected to a periodic mass flow. The basic equations of the VSR are derived for per unit crank angle, so time does not appear in the equations. A computer program is prepared in FORTRAN, and the basic equations are solved iteratively. The mass, temperature and density of working fluid in each control volume are calculated for different charge pressures, engine speeds, and for fixed heater and cooler surface temperatures. The work, instantaneous pressure and the COP of the VSR are calculated. The results are obtained for different working fluids, and given by diagrams. (author)

  11. Ramses-GPU: Second order MUSCL-Handcock finite volume fluid solver

    Science.gov (United States)

    Kestener, Pierre

    2017-10-01

    RamsesGPU is a reimplementation of RAMSES (ascl:1011.007) which drops the adaptive mesh refinement (AMR) features to optimize 3D uniform grid algorithms for modern graphics processor units (GPU) to provide an efficient software package for astrophysics applications that do not need AMR features but do require a very large number of integration time steps. RamsesGPU provides an very efficient C++/CUDA/MPI software implementation of a second order MUSCL-Handcock finite volume fluid solver for compressible hydrodynamics as a magnetohydrodynamics solver based on the constraint transport technique. Other useful modules includes static gravity, dissipative terms (viscosity, resistivity), and forcing source term for turbulence studies, and special care was taken to enhance parallel input/output performance by using state-of-the-art libraries such as HDF5 and parallel-netcdf.

  12. A Finite-Volume approach for compressible single- and two-phase flows in flexible pipelines with fluid-structure interaction

    Science.gov (United States)

    Daude, F.; Galon, P.

    2018-06-01

    A Finite-Volume scheme for the numerical computations of compressible single- and two-phase flows in flexible pipelines is proposed based on an approximate Godunov-type approach. The spatial discretization is here obtained using the HLLC scheme. In addition, the numerical treatment of abrupt changes in area and network including several pipelines connected at junctions is also considered. The proposed approach is based on the integral form of the governing equations making it possible to tackle general equations of state. A coupled approach for the resolution of fluid-structure interaction of compressible fluid flowing in flexible pipes is considered. The structural problem is solved using Euler-Bernoulli beam finite elements. The present Finite-Volume method is applied to ideal gas and two-phase steam-water based on the Homogeneous Equilibrium Model (HEM) in conjunction with a tabulated equation of state in order to demonstrate its ability to tackle general equations of state. The extensive application of the scheme for both shock tube and other transient flow problems demonstrates its capability to resolve such problems accurately and robustly. Finally, the proposed 1-D fluid-structure interaction model appears to be computationally efficient.

  13. Modeling and control of magnetorheological fluid dampers using neural networks

    Science.gov (United States)

    Wang, D. H.; Liao, W. H.

    2005-02-01

    Due to the inherent nonlinear nature of magnetorheological (MR) fluid dampers, one of the challenging aspects for utilizing these devices to achieve high system performance is the development of accurate models and control algorithms that can take advantage of their unique characteristics. In this paper, the direct identification and inverse dynamic modeling for MR fluid dampers using feedforward and recurrent neural networks are studied. The trained direct identification neural network model can be used to predict the damping force of the MR fluid damper on line, on the basis of the dynamic responses across the MR fluid damper and the command voltage, and the inverse dynamic neural network model can be used to generate the command voltage according to the desired damping force through supervised learning. The architectures and the learning methods of the dynamic neural network models and inverse neural network models for MR fluid dampers are presented, and some simulation results are discussed. Finally, the trained neural network models are applied to predict and control the damping force of the MR fluid damper. Moreover, validation methods for the neural network models developed are proposed and used to evaluate their performance. Validation results with different data sets indicate that the proposed direct identification dynamic model using the recurrent neural network can be used to predict the damping force accurately and the inverse identification dynamic model using the recurrent neural network can act as a damper controller to generate the command voltage when the MR fluid damper is used in a semi-active mode.

  14. Fluid management of hypernatraemic dehydration to prevent cerebral oedema: a retrospective case control study of 97 children in China.

    Science.gov (United States)

    Fang, Chengqing; Mao, Jianhua; Dai, Yuwen; Xia, Yonghui; Fu, Haidong; Chen, Yifang; Wang, Yaping; Liu, Aimin

    2010-06-01

    To compare the fluid management of hypernatraemic dehydration in acute gastroenteritis in those who developed cerebral oedema (cases) versus those who did not (controls). A retrospective study of 97 cases of hypernatraemic dehydration at a tertiary children's hospital in China over five years, in which rehydration regimes of 49 children who developed cerebral oedema were compared with 48 children who made an uneventful recovery. Risk factors for cerebral oedema (vs. no cerebral oedema) were an initial fluid bolus (29/49 vs. 15/48, P=0.006), the mean rate of bolus infusion (14.7+/-2.2 vs. 10.8+/-1.4 mL/kg/hr, Pdehydration were too rapid a rate of rehydration, an initial fluid bolus to rapidly expand plasma volume and the severity of the hypernatraemia. Thus, we conclude that a uniformly slow rate of rehydration is the best way of preventing cerebral oedema.

  15. Review of fluid and control technology of hydraulic wind turbines

    Institute of Scientific and Technical Information of China (English)

    Maolin CAI; Yixuan WANG; Zongxia JIAO; Yan SHI

    2017-01-01

    This study examines the development of the fluid and control technology of hydraulic wind turbines.The current state of hydraulic wind turbines as a new technology is described,and its basic fluid model and typical control method are expounded by comparing various study results.Finally,the advantages of hydraulic wind turbines are enumerated.Hydraulic wind turbines are expected to become the main development direction of wind turbines.

  16. Review of fluid and control technology of hydraulic wind turbines

    Science.gov (United States)

    Cai, Maolin; Wang, Yixuan; Jiao, Zongxia; Shi, Yan

    2017-09-01

    This study examines the development of the fluid and control technology of hydraulic wind turbines. The current state of hydraulic wind turbines as a new technology is described, and its basic fluid model and typical control method are expounded by comparing various study results. Finally, the advantages of hydraulic wind turbines are enumerated. Hydraulic wind turbines are expected to become the main development direction of wind turbines.

  17. The position control of a capsule filled with magnetic fluid

    International Nuclear Information System (INIS)

    Rhee, E.J.; Park, M.K.; Yamane, R.; Oshima, S.

    2002-01-01

    In this paper, in order to establish the technique of a nozzle-flapper system of a servo valve using magnetic fluid in hydraulic system, a governing equation regarding the levitation of a capsule filled with magnetic fluid is formulated. Using PID control, an experiment for the position control of a capsule was performed. The experimental results were compared with the simulation results found by the governing equation

  18. Research into the Physiology of Cerebrospinal Fluid Reaches a New Horizon: Intimate Exchange between Cerebrospinal Fluid and Interstitial Fluid May Contribute to Maintenance of Homeostasis in the Central Nervous System.

    Science.gov (United States)

    Matsumae, Mitsunori; Sato, Osamu; Hirayama, Akihiro; Hayashi, Naokazu; Takizawa, Ken; Atsumi, Hideki; Sorimachi, Takatoshi

    2016-07-15

    Cerebrospinal fluid (CSF) plays an essential role in maintaining the homeostasis of the central nervous system. The functions of CSF include: (1) buoyancy of the brain, spinal cord, and nerves; (2) volume adjustment in the cranial cavity; (3) nutrient transport; (4) protein or peptide transport; (5) brain volume regulation through osmoregulation; (6) buffering effect against external forces; (7) signal transduction; (8) drug transport; (9) immune system control; (10) elimination of metabolites and unnecessary substances; and finally (11) cooling of heat generated by neural activity. For CSF to fully mediate these functions, fluid-like movement in the ventricles and subarachnoid space is necessary. Furthermore, the relationship between the behaviors of CSF and interstitial fluid in the brain and spinal cord is important. In this review, we will present classical studies on CSF circulation from its discovery over 2,000 years ago, and will subsequently introduce functions that were recently discovered such as CSF production and absorption, water molecule movement in the interstitial space, exchange between interstitial fluid and CSF, and drainage of CSF and interstitial fluid into both the venous and the lymphatic systems. Finally, we will summarize future challenges in research. This review includes articles published up to February 2016.

  19. Do new anesthesia ventilators deliver small tidal volumes accurately during volume-controlled ventilation?

    Science.gov (United States)

    Bachiller, Patricia R; McDonough, Joseph M; Feldman, Jeffrey M

    2008-05-01

    During mechanical ventilation of infants and neonates, small changes in tidal volume may lead to hypo- or hyperventilation, barotrauma, or volutrauma. Partly because breathing circuit compliance and fresh gas flow affect tidal volume delivery by traditional anesthesia ventilators in volume-controlled ventilation (VCV) mode, pressure-controlled ventilation (PCV) using a circle breathing system has become a common approach to minimizing the risk of mechanical ventilation for small patients, although delivered tidal volume is not assured during PCV. A new generation of anesthesia machine ventilators addresses the problems of VCV by adjusting for fresh gas flow and for the compliance of the breathing circuit. In this study, we evaluated the accuracy of new anesthesia ventilators to deliver small tidal volumes. Four anesthesia ventilator systems were evaluated to determine the accuracy of volume delivery to the airway during VCV at tidal volume settings of 100, 200, and 500 mL under different conditions of breathing circuit compliance (fully extended and fully contracted circuits) and lung compliance. A mechanical test lung (adult and infant) was used to simulate lung compliances ranging from 0.0025 to 0.03 L/cm H(2)O. Volumes and pressures were measured using a calibrated screen pneumotachograph and custom software. We tested the Smartvent 7900, Avance, and Aisys anesthesia ventilator systems (GE Healthcare, Madison, WI) and the Apollo anesthesia ventilator (Draeger Medical, Telford, PA). The Smartvent 7900 and Avance ventilators use inspiratory flow sensors to control the volume delivered, whereas the Aisys and Apollo ventilators compensate for the compliance of the circuit. We found that the anesthesia ventilators that use compliance compensation (Aisys and Apollo) accurately delivered both large and small tidal volumes to the airway of the test lung under conditions of normal and low lung compliance during VCV (ranging from 95.5% to 106.2% of the set tidal volume

  20. Gray-white matter and cerebrospinal fluid volume differences in children with Specific Language Impairment and/or Reading Disability.

    Science.gov (United States)

    Girbau-Massana, Dolors; Garcia-Marti, Gracian; Marti-Bonmati, Luis; Schwartz, Richard G

    2014-04-01

    We studied gray-white matter and cerebrospinal fluid (CSF) alterations that may be critical for language, through an optimized voxel-based morphometry evaluation in children with Specific Language Impairment (SLI), compared to Typical Language Development (TLD). Ten children with SLI (8;5-10;9) and 14 children with TLD (8;2-11;8) participated. They received a comprehensive language and reading test battery. We also analyzed a subgroup of six children with SLI+RD (Reading Disability). Brain images from 3-Tesla MRIs were analyzed with intelligence, age, gender, and total intracranial volume as covariates. Children with SLI or SLI+RD exhibited a significant lower overall gray matter volume than children with TLD. Particularly, children with SLI showed a significantly lower volume of gray matter compared to children with TLD in the right postcentral parietal gyrus (BA4), and left and right medial occipital gyri (BA19). The group with SLI also exhibited a significantly greater volume of gray matter in the right superior occipital gyrus (BA19), which may reflect a brain reorganization to compensate for their lower volumes at medial occipital gyri. Children with SLI+RD, compared to children with TLD, showed a significantly lower volume of: (a) gray matter in the right postcentral parietal gyrus; and (b) white matter in the right inferior longitudinal fasciculus (RILF), which interconnects the temporal and occipital lobes. Children with TLD exhibited a significantly lower CSF volume than children with SLI and children with SLI+RD respectively, who had somewhat smaller volumes of gray matter allowing for more CSF volume. The significant lower gray matter volume at the right postcentral parietal gyrus and greater cerebrospinal fluid volume may prove to be unique markers for SLI. We discuss the association of poor knowledge/visual representations and language input to brain development. Our comorbid study showed that a significant lower volume of white matter in the right

  1. Cavitation and gas-liquid flow in fluid machinery and devices. FED-Volume 190

    International Nuclear Information System (INIS)

    O'Hern, T.J.; Kim, J.H.; Morgan, W.B.; Furuya, O.

    1994-01-01

    Cavitation and gas-liquid two-phase flow have remained important areas in many industrial applications and constantly provided challenges for academic researchers and industrial practitioners alike. Cavitation and two-phase flow commonly occur in fluid machinery such as pumps, propellers, and fluid devices such as orifices, valves, and diffusers. Cavitation not only degrades the performance of these machines and devices but deteriorates the materials. Gas-liquid two-phase flow has also been known to degrade the performance of pumps and propellers and can often induce an instability. The industrial applications of cavitation and two-phase flow can be found in power plants, ship propellers, hydrofoils, and aerospace equipment, to name but a few. The papers presented in this volume reflect the variety and richness of cavitation and gas-liquid two-phase flow in various flow transporting components and the increasing role they play in modern and conventional technologies. Separate abstracts were prepared for 35 papers in this book

  2. Fluid overload in the ICU: evaluation and management.

    Science.gov (United States)

    Claure-Del Granado, Rolando; Mehta, Ravindra L

    2016-08-02

    Fluid overload is frequently found in acute kidney injury patients in critical care units. Recent studies have shown the relationship of fluid overload with adverse outcomes; hence, manage and optimization of fluid balance becomes a central component of the management of critically ill patients. In critically ill patients, in order to restore cardiac output, systemic blood pressure and renal perfusion an adequate fluid resuscitation is essential. Achieving an appropriate level of volume management requires knowledge of the underlying pathophysiology, evaluation of volume status, and selection of appropriate solution for volume repletion, and maintenance and modulation of the tissue perfusion. Numerous recent studies have established a correlation between fluid overload and mortality in critically ill patients. Fluid overload recognition and assessment requires an accurate documentation of intakes and outputs; yet, there is a wide difference in how it is evaluated, reviewed and utilized. Accurate volume status evaluation is essential for appropriate therapy since errors of volume evaluation can result in either in lack of essential treatment or unnecessary fluid administration, and both scenarios are associated with increased mortality. There are several methods to evaluate fluid status; however, most of the tests currently used are fairly inaccurate. Diuretics, especially loop diuretics, remain a valid therapeutic alternative. Fluid overload refractory to medical therapy requires the application of extracorporeal therapies. In critically ill patients, fluid overload is related to increased mortality and also lead to several complications like pulmonary edema, cardiac failure, delayed wound healing, tissue breakdown, and impaired bowel function. Therefore, the evaluation of volume status is crucial in the early management of critically ill patients. Diuretics are frequently used as an initial therapy; however, due to their limited effectiveness the use of continuous

  3. Comparison of cardiac output optimization with an automated closed-loop goal-directed fluid therapy versus non standardized manual fluid administration during elective abdominal surgery: first prospective randomized controlled trial.

    Science.gov (United States)

    Lilot, Marc; Bellon, Amandine; Gueugnon, Marine; Laplace, Marie-Christine; Baffeleuf, Bruno; Hacquard, Pauline; Barthomeuf, Felicie; Parent, Camille; Tran, Thomas; Soubirou, Jean-Luc; Robinson, Philip; Bouvet, Lionel; Vassal, Olivia; Lehot, Jean-Jacques; Piriou, Vincent

    2018-01-27

    An intraoperative automated closed-loop system for goal-directed fluid therapy has been successfully tested in silico, in vivo and in a clinical case-control matching. This trial compared intraoperative cardiac output (CO) in patients managed with this closed-loop system versus usual practice in an academic medical center. The closed-loop system was connected to a CO monitoring system and delivered automated colloid fluid boluses. Moderate to high-risk abdominal surgical patients were randomized either to the closed-loop or the manual group. Intraoperative final CO was the primary endpoint. Secondary endpoints were intraoperative overall mean cardiac index (CI), increase from initial to final CI, intraoperative fluid volume and postoperative outcomes. From January 2014 to November 2015, 46 patients were randomized. There was a lower initial CI (2.06 vs. 2.51 l min -1 m -2 , p = 0.042) in the closed-loop compared to the control group. No difference in final CO and in overall mean intraoperative CI was observed between groups. A significant relative increase from initial to final CI values was observed in the closed-loop but not the control group (+ 28.6%, p = 0.006 vs. + 1.2%, p = 0.843). No difference was found for intraoperative fluid management and postoperative outcomes between groups. There was no significant impact on the primary study endpoint, but this was found in a context of unexpected lower initial CI in the closed-loop group.Trial registry number ID-RCB/EudraCT: 2013-A00770-45. ClinicalTrials.gov Identifier NCT01950845, date of registration: 17 September 2013.

  4. Teaching Thermal Hydraulics & Numerical Methods: An Introductory Control Volume Primer

    Energy Technology Data Exchange (ETDEWEB)

    D. S. Lucas

    2004-10-01

    A graduate level course for Thermal Hydraulics (T/H) was taught through Idaho State University in the spring of 2004. A numerical approach was taken for the content of this course since the students were employed at the Idaho National Laboratory and had been users of T/H codes. The majority of the students had expressed an interest in learning about the Courant Limit, mass error, semi-implicit and implicit numerical integration schemes in the context of a computer code. Since no introductory text was found the author developed notes taught from his own research and courses taught for Westinghouse on the subject. The course started with a primer on control volume methods and the construction of a Homogeneous Equilibrium Model (HEM) (T/H) code. The primer was valuable for giving the students the basics behind such codes and their evolution to more complex codes for Thermal Hydraulics and Computational Fluid Dynamics (CFD). The course covered additional material including the Finite Element Method and non-equilibrium (T/H). The control volume primer and the construction of a three-equation (mass, momentum and energy) HEM code are the subject of this paper . The Fortran version of the code covered in this paper is elementary compared to its descendants. The steam tables used are less accurate than the available commercial version written in C Coupled to a Graphical User Interface (GUI). The Fortran version and input files can be downloaded at www.microfusionlab.com.

  5. Complex fluid network optimization and control integrative design based on nonlinear dynamic model

    International Nuclear Information System (INIS)

    Sui, Jinxue; Yang, Li; Hu, Yunan

    2016-01-01

    In view of distribution according to complex fluid network’s needs, this paper proposed one optimization computation method of the nonlinear programming mathematical model based on genetic algorithm. The simulation result shows that the overall energy consumption of the optimized fluid network has a decrease obviously. The control model of the fluid network is established based on nonlinear dynamics. We design the control law based on feedback linearization, take the optimal value by genetic algorithm as the simulation data, can also solve the branch resistance under the optimal value. These resistances can provide technical support and reference for fluid network design and construction, so can realize complex fluid network optimization and control integration design.

  6. Volume transmission of beta-endorphin via the cerebrospinal fluid; a review

    Directory of Open Access Journals (Sweden)

    Veening Jan G

    2012-08-01

    Full Text Available Abstract There is increasing evidence that non-synaptic communication by volume transmission in the flowing CSF plays an important role in neural mechanisms, especially for extending the duration of behavioral effects. In the present review, we explore the mechanisms involved in the behavioral and physiological effects of β-endorphin (β-END, especially those involving the cerebrospinal fluid (CSF, as a message transport system to reach distant brain areas. The major source of β-END are the pro-opio-melano-cortin (POMC neurons, located in the arcuate hypothalamic nucleus (ARH, bordering the 3rd ventricle. In addition, numerous varicose β-END-immunoreactive fibers are situated close to the ventricular surfaces. In the present paper we surveyed the evidence that volume transmission via the CSF can be considered as an option for messages to reach remote brain areas. Some of the points discussed in the present review are: release mechanisms of β-END, independence of peripheral versus central levels, central β-END migration over considerable distances, behavioral effects of β-END depend on location of ventricular administration, and abundance of mu and delta opioid receptors in the periventricular regions of the brain.

  7. Energy dissipation in a finite volume of magnetic fluid

    Energy Technology Data Exchange (ETDEWEB)

    Bashtovoi, V.; Motsar, A.; Reks, A., E-mail: alexfx20@yandex.ru

    2017-06-01

    This study is devoted to investigation of energy dissipation processes which happen in a magnetic fluid drop with compound magnet during its motion in cylindrical non magnetic container. The possibility of energy dissipation control by means of electromagnetic field is examined. It's found that a change of magnetic field of compound magnet can lead to both increase and decrease of oscillation decay time and relative damping factor can be varied in a range of ±35%.

  8. The fluid dynamics of climate

    CERN Document Server

    Palazzi, Elisa; Fraedrich, Klaus

    2016-01-01

    This volume provides an overview of the fluid aspects of the climate system, focusing on basic aspects as well as recent research developments. It will bring together contributions from diverse fields of the physical, mathematical and engineering sciences. The volume will be useful to doctorate students, postdocs and researchers working on different aspects of atmospheric, oceanic and environmental fluid dynamics. It will also be of interest to researchers interested in quantitatively understanding how fluid dynamics can be applied to the climate system, and to climate scientists willing to gain a deeper insight into the fluid mechanics underlying climate processes.

  9. Development of a compressive surface capturing formulation for modelling free-surface flow by using the volume-of-fluid approach

    CSIR Research Space (South Africa)

    Heyns, Johan A

    2012-06-01

    Full Text Available combines a blended higher resolution scheme with the addition of an artificial compressive term to the volume-of-fluid equation. This reduces the numerical smearing of the interface associated with explicit higher resolution schemes while limiting...

  10. Fluid Shifts

    Science.gov (United States)

    Stenger, M. B.; Hargens, A. R.; Dulchavsky, S. A.; Arbeille, P.; Danielson, R. W.; Ebert, D. J.; Garcia, K. M.; Johnston, S. L.; Laurie, S. S.; Lee, S. M. C.; hide

    2017-01-01

    pulsatility); (5) ocular measures (optical coherence tomography; intraocular pressure; 2-dimensional ultrasound including optic nerve sheath diameter, globe flattening, and retina-choroid thickness; Doppler ultrasound of ophthalmic and retinal arteries and veins); (6) cardiac variables by ultrasound (inferior vena cava, tricuspid flow and tissue Doppler, pulmonic valve, stroke volume, right heart dimensions and function, four-chamber views); and (7) ICP measures (tympanic membrane displacement, otoacoustic emissions). Pre- and post-flight, acute head-down tilt will induce cephalad fluid shifts, whereas lower body negative pressure will oppose these shifts. Controlled Mueller maneuvers will manipulate cardiovascular variables. Through interventions applied before, during, and after flight, we intend to fully evaluate the relationship between fluid shifts and the VIIP syndrome. Discussion. Ten subjects have consented to participate in this experiment, including the recent One-Year Mission crewmembers, who have recently completed R plus180 testing; all other subjects have completed pre-flight testing. Preliminary results from the One-Year Mission crewmembers will be presented, including measures of ocular structure and function, vascular dimensions, fluid distribution, and non-invasive estimates of intracranial pressure.

  11. Volume-of-fluid simulations in microfluidic T-junction devices: Influence of viscosity ratio on droplet size

    Science.gov (United States)

    Nekouei, Mehdi; Vanapalli, Siva A.

    2017-03-01

    We used volume-of-fluid (VOF) method to perform three-dimensional numerical simulations of droplet formation of Newtonian fluids in microfluidic T-junction devices. To evaluate the performance of the VOF method we examined the regimes of drop formation and determined droplet size as a function of system parameters. Comparison of the simulation results with four sets of experimental data from the literature showed good agreement, validating the VOF method. Motivated by the lack of adequate studies investigating the influence of viscosity ratio (λ) on the generated droplet size, we mapped the dependence of drop volume on capillary number (0.001 1. In addition, we find that at a given capillary number, the size of droplets does not vary appreciably when λ 1. We develop an analytical model for predicting the droplet size that includes a viscosity-dependent breakup time for the dispersed phase. This improved model successfully predicts the effects of the viscosity ratio observed in simulations. Results from this study are useful for the design of lab-on-chip technologies and manufacture of microfluidic emulsions, where there is a need to know how system parameters influence the droplet size.

  12. Effect of Rehydration Fluid Osmolality on Plasma Volume and Vasopressin in Resting Dehydrated Men

    Science.gov (United States)

    Geelen, Ghislaine; Greenleaf, J. E.; Keil, L. C.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    Elevated plasma vasopressin concentration [PVP], which may act as a dipsogen, decreases promptly following the ingestion of fluids in many mammals including humans. The purpose for this study was to determine whether fluids of varied electrolyte and carbohydrate composition and osmolality (Osm] would modify post-drinking decreases in [PVP] which could be attributed to interaction with plasma volume (PV)- or fluid-electrolyte interactive hormones. Five men (23-41 yr, 78.0 +/- SD 8.2 kg), water deprived for 24 h, drank six fluids (12 ml/kg, at 16.5C in 4.0-6.2 min): water (30 m0sm/kg), NaCl (70 mOsm/kg), NaCl + NaCitrate (270 mOsm/kg), NaCl + 9.7% glucose (650 mOsm/kg), and two commercial drinks containing various ionic and carbohydrate contents (380 and 390 mOsm/kg). Blood (20 ml/sample) was drawn at -5 min before and at +3, +9, +15, +30, and +70 min after drinking. Heart rate, blood pressures, and plasma renin activity, {Na+], [K+], [Osm], aldosterone, atrial natriuretic peptide, and epinephrine concentrations were unchanged after drinking. Post-drinking [PVP] decreased from 1.7 - 3.7 pg/ml within 3 min with all fluids independently of their composition, [Osm], or delta PV; with maximal depression to 0.1-0.7 pg/ml (p<0.05) by 15 min. The continued [PVP] depression with all fluids from 15 to 70 min was accompanied by unchanged plasma (Osm] but 1.8-7.6% increases (p<0.05) in PV with 3) fluids (2 commercial and NaCitrate) and no change with the others. Percent changes in mean [PVP] and plasma norepinephrine concentrations [PNE] at 15 min correlated -0.70 (P<0.10) suggesting that about half the variability in [PVP I I depression was associated with [PNE]. Thus, part of the mechanism for post-drinking [PVP] depression may involve a drinking stimulated norepinephrine (neural) factor.

  13. Numerical investigation on lateral migration and lift force of single bubble in simple shear flow in low viscosity fluid using volume of fluid method

    International Nuclear Information System (INIS)

    Zhongchun, Li; Xiaoming, Song; Shengyao, Jiang; Jiyang, Yu

    2014-01-01

    Highlights: • A VOF simulation of bubble in low viscosity fluid was conducted. • Lift force in different viscosity fluid had different lateral migration characteristics. • Bubble with different size migrated to different direction. • Shear stress triggered the bubble deformation process and the bubble deformation came along with the oscillation behaviors. - Abstract: Two phase flow systems have been widely used in industrial engineering. Phase distribution characteristics are vital to the safety operation and optimization design of two phase flow systems. Lift force has been known as perpendicular to the bubbles’ moving direction, which is one of the mechanisms of interfacial momentum transfer. While most widely used lift force correlations, such as the correlation of Tomiyama et al. (2002), were obtained by experimentally tracking single bubble trajectories in high viscosity glycerol–water mixture, the applicability of these models into low viscosity fluid, such as water in nuclear engineering system, needs to be further evaluated. In the present paper, bubble in low viscosity fluid in shear flow was investigated in a full 3D numerical simulation and the volume of fluid (VOF) method was applied to capture the interface. The fluid parameter: fluid viscosity, bubble parameter: diameter and external flow parameters: shear stress magnitude and liquid velocity were examined. Comparing with bubble in high viscosity shear flow and bubble in low viscosity still flow, relative large bubble in low viscosity shear flow keep an oscillation way towards the moving wall and experienced a shape deformation process. The oscillation amplitude increased as the viscosity of fluid decreased. Small bubble migrated to the static wall in a line with larger migration velocity than that in high viscosity fluid and no deformation occurred. The shear stress triggered the oscillation behaviors while it had no direct influence with the behavior. The liquid velocity had no effect on

  14. Noninvasive pulse pressure variation and stroke volume variation to predict fluid responsiveness at multiple thresholds : a prospective observational study

    NARCIS (Netherlands)

    Vos, Jaap Jan; Poterman, Marieke; Papineau Salm, Pieternel; Van Amsterdam, Kai; Struys, Michel M. R. F.; Scheeren, Thomas W. L.; Kalmar, Alain F.

    2015-01-01

    Pulse pressure variation (PPV) and stroke volume variation (SVV) are dynamic preload variables that can be measured noninvasively to assess fluid responsiveness (FR) in anesthetized patients with mechanical ventilation. Few studies have examined the effectiveness of predicting FR according to the

  15. Numerical study of shear thickening fluid with discrete particles embedded in a base fluid

    Directory of Open Access Journals (Sweden)

    W Zhu

    2016-09-01

    Full Text Available The Shear Thickening Fluid (STF is a dilatant material, which displays non-Newtonian characteristics in its unique ability to transit from a low viscosity fluid to a high viscosity fluid. The research performed investigates the STF behavior by modeling and simulation of the interaction between the base flow and embedded rigid particles when subjected to shear stress. The model considered the Lagrangian description of the rigid particles and the Eulerian description of fluid flow. The numerical analysis investigated key parameters such as applied flow acceleration, particle distribution and arrangement, volume concentration of particles, particle size, shape and their behavior in a Newtonian and non-Newtonian fluid base. The fluid-particle interaction model showed that the arrangement, size, shape and volume concentration of the particles had a significant effect on the behavior of the STF. Although non-conclusive, the addition of particles in non-Newtonian fluids showed a promising trend of improved shear thickening effects at high shear strain rates.

  16. Computational Fluid Dynamics

    International Nuclear Information System (INIS)

    Myeong, Hyeon Guk

    1999-06-01

    This book deals with computational fluid dynamics with basic and history of numerical fluid dynamics, introduction of finite volume method using one-dimensional heat conduction equation, solution of two-dimensional heat conduction equation, solution of Navier-Stokes equation, fluid with heat transport, turbulent flow and turbulent model, Navier-Stokes solution by generalized coordinate system such as coordinate conversion, conversion of basic equation, program and example of calculation, application of abnormal problem and high speed solution of numerical fluid dynamics.

  17. Diagnosis of drowning using post-mortem computed tomography based on the volume and density of fluid accumulation in the maxillary and sphenoid sinuses.

    Science.gov (United States)

    Kawasumi, Yusuke; Kawabata, Tomoyoshi; Sugai, Yusuke; Usui, Akihito; Hosokai, Yoshiyuki; Sato, Miho; Saito, Haruo; Ishibashi, Tadashi; Hayashizaki, Yoshie; Funayama, Masato

    2013-10-01

    Recent studies have reported that drowning victims frequently have fluid accumulation in the paranasal sinuses, most notably the maxillary and sphenoid sinuses. However, in our previous study, many non-drowning victims also had fluid accumulation in the sinuses. Therefore, we evaluated the qualitative difference in fluid accumulation between drowning and non-drowning cases in the present study. Thirty-eight drowning and 73 non-drowning cases were investigated retrospectively. The fluid volume and density of each case were calculated using a DICOM workstation. The drowning cases were compared with the non-drowning cases using the Mann-Whitney U-test because the data showed non-normal distribution. The median fluid volume was 1.82 (range 0.02-11.7) ml in the drowning cases and 0.49 (0.03-8.7) ml in the non-drowning cases, and the median fluid density was 22 (-14 to 66) and 39 (-65 to 77) HU, respectively. Both volume and density differed significantly between the drowning and non-drowning cases (p=0.001, p=0.0007). Regarding cut-off levels in the ROC analysis, the points on the ROC curve closest (0, 1) were 1.03ml (sensitivity 68%, specificity 68%, PPV 53%, NPV 81%) and 27.5 HU (61%, 70%, 51%, 77%). The Youden indices were 1.03ml and 37.8 HU (84%, 51%, 47%, 86%). When the cut-off level was set at 1.03ml and 27.5HU, the sensitivity was 42%, specificity 45%, PPV 29% and NPV 60%. When the cut-off level was set at 1.03ml and 37.8HU, sensitivity was 58%, specificity 32%, PPV 31% and NPV 59%. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Total volume and composition of fluid intake and mortality in older women: a cohort study

    Science.gov (United States)

    Lim, Wai H; Wong, Germaine; Lewis, Joshua R; Lok, Charmaine E; Polkinghorne, Kevan R; Hodgson, Jonathan; Lim, Ee M; Prince, Richard L

    2017-01-01

    Objectives The health benefits of ‘drinking at least 8 glasses of water a day” in healthy individuals are largely unproven. We aimed to examine the relationship between total fluid and the sources of fluid consumption, risk of rapid renal decline, cardiovascular disease (CVD) mortality and all-cause mortality in elderly women. Design, setting and participants We conducted a longitudinal analysis of a population-based cohort study of 1055 women aged ≥70 years residing in Australia. Main outcome measures The associations between total daily fluid intake (defined as total volume of beverage excluding alcohol and milk) and the types of fluid (water, black tea, coffee, milk and other fluids) measured as cups per day and rapid renal decline, CVD and all-cause mortality were assessed using adjusted logistic and Cox regression analyses. Results Over a follow-up period of 10 years, 70 (6.6%) experienced rapid renal decline and 362 (34.4%) died, of which 142 (13.5%) deaths were attributed to CVD. The median (IQR) intake of total fluid was 10.4 (8.5–12.5) cups per day, with water (median (IQR) 4 (2–6) cups per day) and black tea (median (IQR) 3 (1–4) cups per day) being the most frequent type of fluid consumed. Every cup per day higher intake of black tea was associated with adjusted HRs of 0.90 (95% CI 0.81 to 0.99) and 0.92 (95% CI 0.86 to 0.98) for CVD mortality and all-cause mortality, respectively. There were no associations between black tea intake and rapid renal decline, or between the quantity or type of other fluids, including water intake, and any clinical outcomes. Conclusions Habitual higher intake of black tea may potentially improve long-term health outcomes, independent of treating traditional CVD risk factors, but validation of our study findings is essential. PMID:28341683

  19. Finite volume multigrid method of the planar contraction flow of a viscoelastic fluid

    Science.gov (United States)

    Moatssime, H. Al; Esselaoui, D.; Hakim, A.; Raghay, S.

    2001-08-01

    This paper reports on a numerical algorithm for the steady flow of viscoelastic fluid. The conservative and constitutive equations are solved using the finite volume method (FVM) with a hybrid scheme for the velocities and first-order upwind approximation for the viscoelastic stress. A non-uniform staggered grid system is used. The iterative SIMPLE algorithm is employed to relax the coupled momentum and continuity equations. The non-linear algebraic equations over the flow domain are solved iteratively by the symmetrical coupled Gauss-Seidel (SCGS) method. In both, the full approximation storage (FAS) multigrid algorithm is used. An Oldroyd-B fluid model was selected for the calculation. Results are reported for planar 4:1 abrupt contraction at various Weissenberg numbers. The solutions are found to be stable and smooth. The solutions show that at high Weissenberg number the domain must be long enough. The convergence of the method has been verified with grid refinement. All the calculations have been performed on a PC equipped with a Pentium III processor at 550 MHz. Copyright

  20. Application of volume of fluid method for simulation of a droplet impacting a fiber

    Directory of Open Access Journals (Sweden)

    M. Khalili

    2016-06-01

    Full Text Available In the present work, impact of a Newtonian drop on horizontal thin fibers with circular cross section is simulated in 2D views. The numerical simulations of the phenomena are carried out using volume of fluid (VOF method for tracking the free surface motion. Impacting of a Newtonian droplet on a circular thin fiber (350μm radius investigated numerically. The main focus of this simulation is to acquire threshold radius and velocity of a drop which is entirely captured by the fiber. The model agrees well with the experiments and demonstrates the threshold radius decreased generally with the increase of impact velocity. In other words, for velocity larger than threshold velocity of capture perhaps only a small portion of fluid is stuck on the solid and the rest of the drop is ejected for impact velocity smaller than critical velocity the drop is totally captured. This threshold velocity has been determined when the impact is centered.

  1. A pragmatic multi-centre randomised controlled trial of fluid loading in high-risk surgical patients undergoing major elective surgery--the FOCCUS study.

    Science.gov (United States)

    Cuthbertson, Brian H; Campbell, Marion K; Stott, Stephen A; Elders, Andrew; Hernández, Rodolfo; Boyers, Dwayne; Norrie, John; Kinsella, John; Brittenden, Julie; Cook, Jonathan; Rae, Daniela; Cotton, Seonaidh C; Alcorn, David; Addison, Jennifer; Grant, Adrian

    2011-01-01

    Fluid strategies may impact on patient outcomes in major elective surgery. We aimed to study the effectiveness and cost-effectiveness of pre-operative fluid loading in high-risk surgical patients undergoing major elective surgery. This was a pragmatic, non-blinded, multi-centre, randomised, controlled trial. We sought to recruit 128 consecutive high-risk surgical patients undergoing major abdominal surgery. The patients underwent pre-operative fluid loading with 25 ml/kg of Ringer's solution in the six hours before surgery. The control group had no pre-operative fluid loading. The primary outcome was the number of hospital days after surgery with cost-effectiveness as a secondary outcome. A total of 111 patients were recruited within the study time frame in agreement with the funder. The median pre-operative fluid loading volume was 1,875 ml (IQR 1,375 to 2,025) in the fluid group compared to 0 (IQR 0 to 0) in controls with days in hospital after surgery 12.2 (SD 11.5) days compared to 17.4 (SD 20.0) and an adjusted mean difference of 5.5 days (median 2.2 days; 95% CI -0.44 to 11.44; P = 0.07). There was a reduction in adverse events in the fluid intervention group (P = 0.048) and no increase in fluid based complications. The intervention was less costly and more effective (adjusted average cost saving: £2,047; adjusted average gain in benefit: 0.0431 quality adjusted life year (QALY)) and has a high probability of being cost-effective. Pre-operative intravenous fluid loading leads to a non-significant reduction in hospital length of stay after high-risk major surgery and is likely to be cost-effective. Confirmatory work is required to determine whether these effects are reproducible, and to confirm whether this simple intervention could allow more cost-effective delivery of care. Prospective Clinical Trials, ISRCTN32188676.

  2. Teaching Thermal Hydraulics and Numerical Methods: An Introductory Control Volume Primer

    International Nuclear Information System (INIS)

    D. S. Lucas

    2004-01-01

    A graduate level course for Thermal Hydraulics (T/H) was taught through Idaho State University in the spring of 2004. A numerical approach was taken for the content of this course since the students were employed at the Idaho National Laboratory and had been users of T/H codes. The majority of the students had expressed an interest in learning about the Courant Limit, mass error, semi-implicit and implicit numerical integration schemes in the context of a computer code. Since no introductory text was found the author developed notes taught from his own research and courses taught for Westinghouse on the subject. The course started with a primer on control volume methods and the construction of a Homogeneous Equilibrium Model (HEM) (T/H) code. The primer was valuable for giving the students the basics behind such codes and their evolution to more complex codes for Thermal Hydraulics and Computational Fluid Dynamics (CFD). The course covered additional material including the Finite Element Method and non-equilibrium (T/H). The control volume primer and the construction of a three-equation (mass, momentum and energy) HEM code are the subject of this paper . The Fortran version of the code covered in this paper is elementary compared to its descendants. The steam tables used are less accurate than the available commercial version written in C Coupled to a Graphical User Interface (GUI). The Fortran version and input files can be downloaded at www.microfusionlab.com

  3. A two-phase debris-flow model that includes coupled evolution of volume fractions, granular dilatancy, and pore-fluid pressure

    Science.gov (United States)

    George, David L.; Iverson, Richard M.

    2011-01-01

    Pore-fluid pressure plays a crucial role in debris flows because it counteracts normal stresses at grain contacts and thereby reduces intergranular friction. Pore-pressure feedback accompanying debris deformation is particularly important during the onset of debrisflow motion, when it can dramatically influence the balance of forces governing downslope acceleration. We consider further effects of this feedback by formulating a new, depth-averaged mathematical model that simulates coupled evolution of granular dilatancy, solid and fluid volume fractions, pore-fluid pressure, and flow depth and velocity during all stages of debris-flow motion. To illustrate implications of the model, we use a finite-volume method to compute one-dimensional motion of a debris flow descending a rigid, uniformly inclined slope, and we compare model predictions with data obtained in large-scale experiments at the USGS debris-flow flume. Predictions for the first 1 s of motion show that increasing pore pressures (due to debris contraction) cause liquefaction that enhances flow acceleration. As acceleration continues, however, debris dilation causes dissipation of pore pressures, and this dissipation helps stabilize debris-flow motion. Our numerical predictions of this process match experimental data reasonably well, but predictions might be improved by accounting for the effects of grain-size segregation.

  4. GASFLOW: A Computational Fluid Dynamics Code for Gases, Aerosols, and Combustion, Volume 2: User's Manual

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, B. D.; Mueller, C.; Necker, G. A.; Travis, J. R.; Spore, J. W.; Lam, K. L.; Royl, P.; Wilson, T. L.

    1998-10-01

    Los Alamos National Laboratory (LANL) and Forschungszentrum Karlsruhe (FzK) are developing GASFLOW, a three-dimensional (3D) fluid dynamics field code as a best-estimate tool to characterize local phenomena within a flow field. Examples of 3D phenomena include circulation patterns; flow stratification; hydrogen distribution mixing and stratification; combustion and flame propagation; effects of noncondensable gas distribution on local condensation and evaporation; and aerosol entrainment, transport, and deposition. An analysis with GASFLOW will result in a prediction of the gas composition and discrete particle distribution in space and time throughout the facility and the resulting pressure and temperature loadings on the walls and internal structures with or without combustion. A major application of GASFLOW is for predicting the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containment and other facilities. It has been applied to situations involving transporting and distributing combustible gas mixtures. It has been used to study gas dynamic behavior in low-speed, buoyancy-driven flows, as well as sonic flows or diffusion dominated flows; and during chemically reacting flows, including deflagrations. The effects of controlling such mixtures by safety systems can be analyzed. The code version described in this manual is designated GASFLOW 2.1, which combines previous versions of the United States Nuclear Regulatory Commission code HMS (for Hydrogen Mixing Studies) and the Department of Energy and FzK versions of GASFLOW. The code was written in standard Fortran 90. This manual comprises three volumes. Volume I describes the governing physical equations and computational model. Volume II describes how to use the code to set up a model geometry, specify gas species and material properties, define initial and boundary conditions, and specify different outputs, especially graphical displays. Sample problems are included. Volume III

  5. An energy stable evolution method for simulating two-phase equilibria of multi-component fluids at constant moles, volume and temperature

    KAUST Repository

    Kou, Jisheng; Sun, Shuyu; Wang, Xiuhua

    2016-01-01

    In this paper, we propose an energy-stable evolution method for the calculation of the phase equilibria under given volume, temperature, and moles (VT-flash). An evolution model for describing the dynamics of two-phase fluid system is based on Fick

  6. Application of volume-weighted skew-upwind differencing to thermal and fluid mixing in the cold leg and downcomer of a PWR

    International Nuclear Information System (INIS)

    Chen, F.F.; Miao, C.C.; Chen, B.C.J.; Domanus, H.M.; Lyczkowski, R.W.; Sha, W.T.

    1983-01-01

    Upwind differencing has been the most common numerical scheme used in computational fluid flow and heat transfer in past years. However, the numerical diffusion induced by the use of upwind differencing can be significant in problems involving thermal mixing. Thermal and fluid mixing in a pressurized water reactor during high pressurized coolant injection is a typical example where numerical diffusion is significant. An improved volume-weighted skew-upwind differencing is used here to reduce numerical diffusion without overshooting or undershooting which is the major defect of original skew-upwind differencing proposed by Raithby. The basic concept of volume-weighted skew-upwind differencing is shown. Computations were performed using COMMIX-1B, an extended version of the COMMIX-1A. The experiment analyzed here is test No. 1 of the SAI experiment

  7. Impact of volume and surface processes on the pre-ionization of dielectric barrier discharges: advanced diagnostics and fluid modeling

    Science.gov (United States)

    Nemschokmichal, Sebastian; Tschiersch, Robert; Höft, Hans; Wild, Robert; Bogaczyk, Marc; Becker, Markus M.; Loffhagen, Detlef; Stollenwerk, Lars; Kettlitz, Manfred; Brandenburg, Ronny; Meichsner, Jürgen

    2018-05-01

    The phenomenology and breakdown mechanism of dielectric barrier discharges are strongly determined by volume and surface memory effects. In particular, the pre-ionization provided by residual species in the volume or surface charges on the dielectrics influences the breakdown behavior of filamentary and diffuse discharges. This was investigated by advanced diagnostics such as streak camera imaging, laser photodetachment of negative ions and laser photodesorption of electrons from dielectric surfaces in correlation with 1D fluid modeling. The streak camera images show that an increasing number of residual charges in the volume changes the microdischarge breakdown in air-like gas mixtures from a cathode-directed streamer to a simultaneous propagation of cathode- and anode-directed streamers. In contrast, seed electrons are important for the pre-ionization if the density of residual charges in the volume is low. One source of seed electrons are negative ions, whose density exceeds the electron density during the pre-phase of diffuse helium-oxygen barrier discharges as indicated by the laser photodetachment experiments. Electrons desorbed from the cathodic dielectric have an even larger influence. They induce a transition from the glow-like to the Townsend-like discharge mode in nominally pure helium. Apart from analyzing the importance of the pre-ionization for the breakdown mechanism, the opportunities for manipulating the lateral structure and discharge modes are discussed. For this purpose, the intensity and diameter of a diffuse discharge in helium are controlled by an illuminated semiconducting barrier. Contribution to the Topical Issue "Fundamentals of Complex Plasmas", edited by Jürgen Meichsner, Michael Bonitz, Holger Fehske, Alexander Piel.

  8. Computational fluid dynamics study of viscous fingering in supercritical fluid chromatography.

    Science.gov (United States)

    Subraveti, Sai Gokul; Nikrityuk, Petr; Rajendran, Arvind

    2018-01-26

    Axi-symmetric numerical simulations are carried out to study the dynamics of a plug introduced through a mixed-stream injection in supercritical fluid chromatographic columns. The computational fluid dynamics model developed in this work takes into account both the hydrodynamics and adsorption equilibria to describe the phenomena of viscous fingering and plug effect that contribute to peak distortions in mixed-stream injections. The model was implemented into commercial computational fluid dynamics software using user-defined functions. The simulations describe the propagation of both the solute and modifier highlighting the interplay between the hydrodynamics and plug effect. The simulated peaks showed good agreement with experimental data published in the literature involving different injection volumes (5 μL, 50 μL, 1 mL and 2 mL) of flurbiprofen on Chiralpak AD-H column using a mobile phase of CO 2 and methanol. The study demonstrates that while viscous fingering is the main source of peak distortions for large-volume injections (1 mL and 2 mL) it has negligible impact on small-volume injections (5 μL and 50 μL). Band broadening in small-volume injections arise mainly due to the plug effect. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  9. The effect of the volume fraction and viscosity on the compression and tension behavior of the cobalt-ferrite magneto-rheological fluids

    Directory of Open Access Journals (Sweden)

    H. Shokrollahi

    2016-03-01

    Full Text Available The purpose of this work is to investigate the effects of the volume fraction and bimodal distribution of solid particles on the compression and tension behavior of the Co-ferrite-based magneto-rheological fluids (MRFs containing silicon oil as a carrier. Hence, Co-ferrite particles (CoFe2O4 with two various sizes were synthesized by the chemical co-precipitation method and mixed so as to prepare the bimodal MRF. The X-Ray Diffraction (XRD analysis, Fourier Transform Infrared Spectroscopy (FTIR, Laser Particle Size Analysis (LPSA and Vibrating Sample Magnetometer (VSM were conducted to examine the structural and magnetic properties, respectively. The results indicated that the increase of the volume fraction has a direct increasing influence on the values of the compression and tension strengths of fluids. In addition, the compression and tension strengths of the mixed MRF sample (1.274 and 0.647 MPa containing 60 and 550 nm samples were higher than those of the MRF sample with the same volume fraction and uniform particle size of 550 nm.

  10. Squeeze strengthening of magnetorheological fluids using mixed mode operation

    Science.gov (United States)

    Becnel, A. C.; Sherman, S. G.; Hu, W.; Wereley, N. M.

    2015-05-01

    This research details a novel method of increasing the shear yield stress of magnetorheological fluids by combining shear and squeeze modes of operation to manipulate particle chain structures, so-called squeeze strengthening. Using a custom built Searle cell magnetorheometer, which is a model device emulating a rotary magnetorheological energy absorber (MREA), the contribution of squeeze strengthening to the total controllable yield force is experimentally investigated. Using an eccentric rotating inner cylinder, characterization data from large (1 mm) and small (0.25 mm) nominal gap geometries are compared to investigate the squeeze strengthening effect. Details of the experimental setup and method are presented, and a hybrid model is used to explain experimental trends. This study demonstrates that it is feasible, utilizing squeeze strengthening to increase yield stress, to either (1) design a rotary MREA of a given volume to achieve higher energy absorption density (energy absorbed normalized by active fluid volume), or (2) reduce the volume of a given rotary MREA to achieve the same energy absorption density.

  11. A meta-analysis of randomized controlled trials of low-volume polyethylene glycol plus ascorbic acid versus standard-volume polyethylene glycol solution as bowel preparations for colonoscopy.

    Directory of Open Access Journals (Sweden)

    Qingsong Xie

    Full Text Available BACKGROUND: Standard-volume polyethylene glycol (PEG gut lavage solutions are safe and effective, but they require the consumption of large volumes of fluid. A new lower-volume solution of PEG plus ascorbic acid has been used recently as a preparation for colonoscopy. AIM: A meta-analysis was performed to compare the performance of low-volume PEG plus ascorbic acid with standard-volume PEG as bowel preparation for colonoscopy. STUDY: Electronic and manual searches were performed to identify randomized controlled trials (RCTs that compared the performance of low-volume PEG plus ascorbic acid with standard-volume PEG as bowel preparation for colonoscopy. After a methodological quality assessment and data extraction, the pooled estimates of bowel preparation efficacy during bowel cleansing, compliance with preparation, willingness to repeat the same preparation, and the side effects were calculated. We calculated pooled estimates of odds ratios (OR by fixed- and/or random-effects models. We also assessed heterogeneity among studies and the publication bias. RESULTS: Eleven RCTs were identified for analysis. The pooled OR for preparation efficacy during bowel cleansing and for compliance with preparation for low-volume PEG plus ascorbic acid were 1.08 (95% CI = 0.98-1.28, P = 0.34 and 2.23 (95% CI = 1.67-2.98, P<0.00001, respectively, compared with those for standard-volume PEG. The side effects of vomiting and nausea for low-volume PEG plus ascorbic acid were reduced relative to standard-volume PEG. There was no significant publication bias, according to a funnel plot. CONCLUSIONS: Low-volume PEG plus ascorbic acid gut lavage achieved non-inferior efficacy for bowel cleansing, is more acceptable to patients, and has fewer side effects than standard-volume PEG as a bowel preparation method for colonoscopy.

  12. 3D mapping of cerebrospinal fluid local volume changes in patients with hydrocephalus treated by surgery: preliminary study

    International Nuclear Information System (INIS)

    Hodel, Jerome; Besson, Pierre; Pruvo, Jean-Pierre; Leclerc, Xavier; Rahmouni, Alain; Grandjacques, Benedicte; Luciani, Alain; Petit, Eric; Lebret, Alain; Outteryck, Olivier; Benadjaoud, Mohamed Amine; Maraval, Anne; Decq, Philippe

    2014-01-01

    To develop automated deformation modelling for the assessment of cerebrospinal fluid (CSF) local volume changes in patients with hydrocephalus treated by surgery. Ventricular and subarachnoid CSF volume changes were mapped by calculating the Jacobian determinant of the deformation fields obtained after non-linear registration of pre- and postoperative images. A total of 31 consecutive patients, 15 with communicating hydrocephalus (CH) and 16 with non-communicating hydrocephalus (NCH), were investigated before and after surgery using a 3D SPACE (sampling perfection with application optimised contrast using different flip-angle evolution) sequence. Two readers assessed CSF volume changes using 3D colour-encoded maps. The Evans index and postoperative volume changes of the lateral ventricles and sylvian fissures were quantified and statistically compared. Before surgery, sylvian fissure and brain ventricle volume differed significantly between CH and NCH (P = 0.001 and P = 0.025, respectively). After surgery, 3D colour-encoded maps allowed for the visual recognition of the CSF volume changes in all patients. The amounts of ventricle volume loss of CH and NCH patients were not significantly different (P = 0.30), whereas readjustment of the sylvian fissure volume was conflicting in CH and NCH patients (P < 0.001). The Evans index correlated with ventricle volume in NCH patients. 3D mapping of CSF volume changes is feasible providing a quantitative follow-up of patients with hydrocephalus. (orig.)

  13. 3D mapping of cerebrospinal fluid local volume changes in patients with hydrocephalus treated by surgery: preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Hodel, Jerome [Hopital Roger Salengro, Department of Neuroradiology, Lille (France); Hopital Roger Salengro, Service de Neuroradiologie, Lille (France); Besson, Pierre; Pruvo, Jean-Pierre; Leclerc, Xavier [Hopital Roger Salengro, Department of Neuroradiology, Lille (France); Rahmouni, Alain; Grandjacques, Benedicte; Luciani, Alain [Hopital Henri Mondor, Department of Radiology, Creteil (France); Petit, Eric; Lebret, Alain [Signals Images and Intelligent Systems Laboratory, Creteil (France); Outteryck, Olivier [Hopital Roger Salengro, Department of Neurology, Lille (France); Benadjaoud, Mohamed Amine [Radiation Epidemiology Team, CESP, Centre for Research in Epidemiology and Population Health U1018, Villejuif (France); Maraval, Anne [Hopital Henri Mondor, Department of Neuroradiology, Creteil (France); Decq, Philippe [Hopital Henri Mondor, Department of Neurosurgery, Creteil (France)

    2014-01-15

    To develop automated deformation modelling for the assessment of cerebrospinal fluid (CSF) local volume changes in patients with hydrocephalus treated by surgery. Ventricular and subarachnoid CSF volume changes were mapped by calculating the Jacobian determinant of the deformation fields obtained after non-linear registration of pre- and postoperative images. A total of 31 consecutive patients, 15 with communicating hydrocephalus (CH) and 16 with non-communicating hydrocephalus (NCH), were investigated before and after surgery using a 3D SPACE (sampling perfection with application optimised contrast using different flip-angle evolution) sequence. Two readers assessed CSF volume changes using 3D colour-encoded maps. The Evans index and postoperative volume changes of the lateral ventricles and sylvian fissures were quantified and statistically compared. Before surgery, sylvian fissure and brain ventricle volume differed significantly between CH and NCH (P = 0.001 and P = 0.025, respectively). After surgery, 3D colour-encoded maps allowed for the visual recognition of the CSF volume changes in all patients. The amounts of ventricle volume loss of CH and NCH patients were not significantly different (P = 0.30), whereas readjustment of the sylvian fissure volume was conflicting in CH and NCH patients (P < 0.001). The Evans index correlated with ventricle volume in NCH patients. 3D mapping of CSF volume changes is feasible providing a quantitative follow-up of patients with hydrocephalus. (orig.)

  14. Device for regulating and controlling of fluid pressure

    International Nuclear Information System (INIS)

    Andrews, H.N.; Singleton, N.R.; Frisch, E.; Stein, P.C.

    1972-01-01

    A pressure regulating valve for high pressures, suitable for PWR pressurisers, is based on controlled leakage. The valve may also function as a safety valve. The valve and seat surfaces are machined such that an annular space is formed towards the inner edge, and into this space cold fluid may be injected, thus preventing crud deposition and hindering steam formation. Fluid also leaks into the annular space between two bellows, which exert a closing force on the valve, in addition to the closing force provided by springs, whose force is adjustable by means of a screw arrangement. (JIW)

  15. Fluid dynamics transactions

    CERN Document Server

    Fiszdon, W

    1965-01-01

    Fluid Dynamics Transactions, Volume 2 compiles 46 papers on fluid dynamics, a subdiscipline of fluid mechanics that deals with fluid flow. The topics discussed in this book include developments in interference theory for aeronautical applications; diffusion from sources in a turbulent boundary layer; unsteady motion of a finite wing span in a compressible medium; and wall pressure covariance and comparison with experiment. The certain classes of non-stationary axially symmetric flows in magneto-gas-dynamics; description of the phenomenon of secondary flows in curved channels by means of co

  16. Fluid-driven reciprocating apparatus and valving for controlling same

    Science.gov (United States)

    Whitehead, John C.; Toews, Hans G.

    1993-01-01

    A control valve assembly for alternately actuating a pair of fluid-driven free-piston devices by using fluid pressure communication therebetween. Each control valve is switched by a pressure signal depending on the state of its counterpart's piston. The communication logic is arranged to provide overlap of the forward strokes of the pistons, so that at least one of the pair will always be pressurized. Thus, uninterrupted pumping of liquid is made possible from a pair of free-piston pumps. In addition, the speed and frequency of piston stroking is entirely dependent on the mechanical power load applied. In the case of a pair of pumps, this enables liquid delivery at a substantially constant pressure over the full range of flow rates, from zero to maximum flow. One embodiment of the invention utilized two pairs of fluid-driven free-piston devices whereby a bipropellant liquid propulsion system may be operated, so as to provide continuous flow of both fuel and oxidizer liquids when used in rocket applications, for example.

  17. Numerical Cerebrospinal System Modeling in Fluid-Structure Interaction.

    Science.gov (United States)

    Garnotel, Simon; Salmon, Stéphanie; Balédent, Olivier

    2018-01-01

    Cerebrospinal fluid (CSF) stroke volume in the aqueduct is widely used to evaluate CSF dynamics disorders. In a healthy population, aqueduct stroke volume represents around 10% of the spinal stroke volume while intracranial subarachnoid space stroke volume represents 90%. The amplitude of the CSF oscillations through the different compartments of the cerebrospinal system is a function of the geometry and the compliances of each compartment, but we suspect that it could also be impacted be the cardiac cycle frequency. To study this CSF distribution, we have developed a numerical model of the cerebrospinal system taking into account cerebral ventricles, intracranial subarachnoid spaces, spinal canal and brain tissue in fluid-structure interactions. A numerical fluid-structure interaction model is implemented using a finite-element method library to model the cerebrospinal system and its interaction with the brain based on fluid mechanics equations and linear elasticity equations coupled in a monolithic formulation. The model geometry, simplified in a first approach, is designed in accordance with realistic volume ratios of the different compartments: a thin tube is used to mimic the high flow resistance of the aqueduct. CSF velocity and pressure and brain displacements are obtained as simulation results, and CSF flow and stroke volume are calculated from these results. Simulation results show a significant variability of aqueduct stroke volume and intracranial subarachnoid space stroke volume in the physiological range of cardiac frequencies. Fluid-structure interactions are numerous in the cerebrospinal system and difficult to understand in the rigid skull. The presented model highlights significant variations of stroke volumes under cardiac frequency variations only.

  18. Image registration with auto-mapped control volumes

    International Nuclear Information System (INIS)

    Schreibmann, Eduard; Xing Lei

    2006-01-01

    Many image registration algorithms rely on the use of homologous control points on the two input image sets to be registered. In reality, the interactive identification of the control points on both images is tedious, difficult, and often a source of error. We propose a two-step algorithm to automatically identify homologous regions that are used as a priori information during the image registration procedure. First, a number of small control volumes having distinct anatomical features are identified on the model image in a somewhat arbitrary fashion. Instead of attempting to find their correspondences in the reference image through user interaction, in the proposed method, each of the control regions is mapped to the corresponding part of the reference image by using an automated image registration algorithm. A normalized cross-correlation (NCC) function or mutual information was used as the auto-mapping metric and a limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS) was employed to optimize the function to find the optimal mapping. For rigid registration, the transformation parameters of the system are obtained by averaging that derived from the individual control volumes. In our deformable calculation, the mapped control volumes are treated as the nodes or control points with known positions on the two images. If the number of control volumes is not enough to cover the whole image to be registered, additional nodes are placed on the model image and then located on the reference image in a manner similar to the conventional BSpline deformable calculation. For deformable registration, the established correspondence by the auto-mapped control volumes provides valuable guidance for the registration calculation and greatly reduces the dimensionality of the problem. The performance of the two-step registrations was applied to three rigid registration cases (two PET-CT registrations and a brain MRI-CT registration) and one deformable registration of

  19. Lower vs. higher fluid volumes in sepsis-protocol for a systematic review with meta-analysis

    DEFF Research Database (Denmark)

    Meyhoff, T S; Møller, M H; Hjortrup, P B

    2017-01-01

    sequential analysis of randomised clinical trials comparing different strategies to obtain separation in fluid volumes or balances during resuscitation of adult patients with sepsis. We will systematically search the Cochrane Library, MEDLINE, EMBASE, Science Citation Index, BIOSIS and Epistemonikos...... for relevant literature. We will follow the recommendations by the Cochrane Collaboration and the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statement. The risk of systematic errors (bias) and random errors will be assessed, and the overall quality of evidence will be evaluated...

  20. The coupling of fluids, dynamics, and controls on advanced architecture computers

    Science.gov (United States)

    Atwood, Christopher

    1995-01-01

    This grant provided for the demonstration of coupled controls, body dynamics, and fluids computations in a workstation cluster environment; and an investigation of the impact of peer-peer communication on flow solver performance and robustness. The findings of these investigations were documented in the conference articles.The attached publication, 'Towards Distributed Fluids/Controls Simulations', documents the solution and scaling of the coupled Navier-Stokes, Euler rigid-body dynamics, and state feedback control equations for a two-dimensional canard-wing. The poor scaling shown was due to serialized grid connectivity computation and Ethernet bandwidth limits. The scaling of a peer-to-peer communication flow code on an IBM SP-2 was also shown. The scaling of the code on the switched fabric-linked nodes was good, with a 2.4 percent loss due to communication of intergrid boundary point information. The code performance on 30 worker nodes was 1.7 (mu)s/point/iteration, or a factor of three over a Cray C-90 head. The attached paper, 'Nonlinear Fluid Computations in a Distributed Environment', documents the effect of several computational rate enhancing methods on convergence. For the cases shown, the highest throughput was achieved using boundary updates at each step, with the manager process performing communication tasks only. Constrained domain decomposition of the implicit fluid equations did not degrade the convergence rate or final solution. The scaling of a coupled body/fluid dynamics problem on an Ethernet-linked cluster was also shown.

  1. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy.

    Science.gov (United States)

    Woodcock, T E; Woodcock, T M

    2012-03-01

    I.V. fluid therapy does not result in the extracellular volume distribution expected from Starling's original model of semi-permeable capillaries subject to hydrostatic and oncotic pressure gradients within the extracellular fluid. Fluid therapy to support the circulation relies on applying a physiological paradigm that better explains clinical and research observations. The revised Starling equation based on recent research considers the contributions of the endothelial glycocalyx layer (EGL), the endothelial basement membrane, and the extracellular matrix. The characteristics of capillaries in various tissues are reviewed and some clinical corollaries considered. The oncotic pressure difference across the EGL opposes, but does not reverse, the filtration rate (the 'no absorption' rule) and is an important feature of the revised paradigm and highlights the limitations of attempting to prevent or treat oedema by transfusing colloids. Filtered fluid returns to the circulation as lymph. The EGL excludes larger molecules and occupies a substantial volume of the intravascular space and therefore requires a new interpretation of dilution studies of blood volume and the speculation that protection or restoration of the EGL might be an important therapeutic goal. An explanation for the phenomenon of context sensitivity of fluid volume kinetics is offered, and the proposal that crystalloid resuscitation from low capillary pressures is rational. Any potential advantage of plasma or plasma substitutes over crystalloids for volume expansion only manifests itself at higher capillary pressures.

  2. Theoretical investigation of the extinction coefficient of magnetic fluid

    Energy Technology Data Exchange (ETDEWEB)

    Fang Xiaopeng; Xuan Yimin, E-mail: ymxuan@mail.njust.edu.cn; Li Qiang [Nanjing University of Science and Technology, School of Energy and Power Engineering (China)

    2013-05-15

    A new theoretical approach for calculating the extinction coefficient of magnetic fluid is proposed, which is based on molecular dynamics (MD) simulation and T-matrix method. By means of this approach, the influence of particle diameter, particle volume fraction, and external magnetic filed on the extinction coefficient of magnetic fluid is investigated. The results show that the extinction coefficient of the magnetic fluid linearly increases with increase in the particle volume fraction. For a given particle volume fraction, the extinction coefficient increases with increase in the particle diameter which varies from 5 to 20 nm. When a uniform external magnetic filed is applied to the magnetic fluid, the extinction coefficient of the magnetic fluid presents an anisotropic feature. These results agree well with the reported experimental results. The proposed approach is applicable to investigating the optical properties of magnetic fluids.

  3. Valving for controlling a fluid-driven reciprocating apparatus

    Science.gov (United States)

    Whitehead, John C.

    1995-01-01

    A pair of control valve assemblies for alternately actuating a pair of fluid-driven free-piston devices by using fluid pressure communication therebetween. Each control valve assembly is switched by a pressure signal depending on the state of its counterpart's piston. The communication logic is arranged to provide overlap of the forward strokes of the pistons, so that at least one of the pair will always be pressurized. Thus, uninterrupted pumping of liquid is made possible from a pair of free-piston pumps. In addition, the speed and frequency of piston stroking is entirely dependent on the mechanical power load applied. In the case of a pair of pumps, this enables liquid delivery at a substantially constant pressure over the full range of flow rates, from zero to maximum flow. Each of the valve assemblies uses an intake-exhaust valve and a signal valve with the signal valve of one pump being connected to be pressure responsive to the piston of the opposite cylinder or pump.

  4. Forced excitation and active control for the measurement of fluid-elastic forces

    International Nuclear Information System (INIS)

    Caillaud, Sebastien

    1999-01-01

    The action of a fluid flow on a tubes bundle is commonly decomposed into a random turbulent excitation and a fluid-elastic excitation. The fluid-elastic forces which are coupled to the tubes movement can be experimentally determined from an analysis of the vibratory response of the structure excited by turbulent forces. For low flow velocities, the turbulent excitation can be insufficient to make the tube significantly vibrate and to permit a correct vibratory analysis. On the opposite side, the structure can become unstable for high flow velocities: the fluid-elastic forces make the fluid-structure damping system fall towards zero. Two experimental methods are proposed in order to extend the considered flow rate. An additional excitation force allows to increase the tube vibration level for improving the signal-noise ratio at low velocities. When the tube is submitted to fluid-elastic instability, an artificial damping contribution by active control allows to stabilize it. Methods are implemented on a flexible tube inserted into rigid tubes bundle water and water-air transverse flows. Two actuator technologies are used: an electromagnetic exciter and piezoelectric actuators. The additional excitation method shows that the fluid-elastic forces remain insignificant at low velocity single phase flow. With the active control method, it is possible to carry out tests beyond the fluid-elastic instability. In two-phase flow, the stabilization of the structure is observed for low vacuum rates. The obtained new results are analyzed with the literature expected results in terms of fluid-elastic coupling and turbulent excitation. (author) [fr

  5. Management of cerebrospinal fluid leakage after anterior decompression for ossification of posterior longitudinal ligament in the thoracic spine: the utilization of a volume-controlled pseudomeningocele.

    Science.gov (United States)

    Cho, Ji Young; Chan, Chee Keong; Lee, Sang-Ho; Choi, Won-Chul; Maeng, Dae Hyeon; Lee, Ho-Yeon

    2012-06-01

    Retrospective review To determine the efficacy of management of cerebrospinal fluid (CSF) leakage after the anterior thoracic approach. CSF leakage after incidental durotomy commonly occurs after anterior thoracic ossification of posterior longitudinal ligament (OPLL) surgery. Pseudomeningocele will invariably form under such circumstances. Among them, uncontrolled CSF leakage with a fistulous condition is problematic. As a solution, we have managed these durotomies with chest drains alone without any CSF drainage by the concept of a "volume-controlled pseudomeningocele." Between 2001 and 2009, CSF leakage occurred in 26 patients (37.7%) of the total 69 patients who underwent anterior decompression for thoracic OPLL. In the initial 11 cases, subarachnoid drainage was utilized as an augmentive measure in combination with chest tube drainage in the postoperative period (group A). In the subsequent 15 cases, the durotomy was managed in a similar manner but in the absence of any subarachnoid drainage (group B). Various parameters such as the duration of postoperative hospital stay, clinical outcome score, drainage output, resolution of CSF leakage, complications, and additional surgery performed were analyzed and compared between the 2 groups. A resolution of the CSF leakage grading system was also proposed for the residual pseudomeningocele that formed in each group. There were statistically no significant differences in the outcome parameters between the 2 groups and also in patients with grade I or grade II residual pseudomeningocele of the new grading system. Two complications occurred in group A. No reexploration for persistent CSF leakage was required in both groups. CSF leakage managed with controlled chest tube drainage can produce a comparable result with those with additional subarachnoid drainage when watertight dural repair is impossible. The concept of controlled pseudomeningocele may be a useful and practical technique for the treatment of CSF leakage

  6. Fluid Mechanics of Wing Adaptation for Separation Control

    Science.gov (United States)

    Chandrasekhara, M. S.; Wilder, M. C.; Carr, L. W.; Davis, Sanford S. (Technical Monitor)

    1997-01-01

    The unsteady fluid mechanics associated with use of a dynamically deforming leading edge airfoil for achieving compressible flow separation control has been experimentally studied. Changing the leading edge curvature at rapid rates dramatically alters the flow vorticity dynamics which is responsible for the many effects observed in the flow.

  7. Fluid injection and induced seismicity

    Science.gov (United States)

    Kendall, Michael; Verdon, James

    2016-04-01

    The link between fluid injection, or extraction, and induced seismicity has been observed in reservoirs for many decades. In fact spatial mapping of low magnitude events is routinely used to estimate a stimulated reservoir volume. However, the link between subsurface fluid injection and larger felt seismicity is less clear and has attracted recent interest with a dramatic increase in earthquakes associated with the disposal of oilfield waste fluids. In a few cases, hydraulic fracturing has also been linked to induced seismicity. Much can be learned from past case-studies of induced seismicity so that we can better understand the risks posed. Here we examine 12 case examples and consider in particular controls on maximum event size, lateral event distributions, and event depths. Our results suggest that injection volume is a better control on maximum magnitude than past, natural seismicity in a region. This might, however, simply reflect the lack of baseline monitoring and/or long-term seismic records in certain regions. To address this in the UK, the British Geological Survey is leading the deployment of monitoring arrays in prospective shale gas areas in Lancashire and Yorkshire. In most cases, seismicity is generally located in close vicinity to the injection site. However, in some cases, the nearest events are up to 5km from the injection point. This gives an indication of the minimum radius of influence of such fluid injection projects. The most distant events are never more than 20km from the injection point, perhaps implying a maximum radius of influence. Some events are located in the target reservoir, but most occur below the injection depth. In fact, most events lie in the crystalline basement underlying the sedimentary rocks. This suggests that induced seismicity may not pose a leakage risk for fluid migration back to the surface, as it does not impact caprock integrity. A useful application for microseismic data is to try and forecast induced seismicity

  8. A mixed Fourier–Galerkin–finite-volume method to solve the fluid dynamics equations in cylindrical geometries

    International Nuclear Information System (INIS)

    Núñez, Jóse; Ramos, Eduardo; Lopez, Juan M

    2012-01-01

    We describe a hybrid method based on the combined use of the Fourier Galerkin and finite-volume techniques to solve the fluid dynamics equations in cylindrical geometries. A Fourier expansion is used in the angular direction, partially translating the problem to the Fourier space and then solving the resulting equations using a finite-volume technique. We also describe an algorithm required to solve the coupled mass and momentum conservation equations similar to a pressure-correction SIMPLE method that is adapted for the present formulation. Using the Fourier–Galerkin method for the azimuthal direction has two advantages. Firstly, it has a high-order approximation of the partial derivatives in the angular direction, and secondly, it naturally satisfies the azimuthal periodic boundary conditions. Also, using the finite-volume method in the r and z directions allows one to handle boundary conditions with discontinuities in those directions. It is important to remark that with this method, the resulting linear system of equations are band-diagonal, leading to fast and efficient solvers. The benefits of the mixed method are illustrated with example problems. (paper)

  9. Goal-Directed Fluid Therapy Based on Stroke Volume Variation in Patients Undergoing Major Spine Surgery in the Prone Position: A Cohort Study.

    Science.gov (United States)

    Bacchin, Maria Renata; Ceria, Chiara Marta; Giannone, Sandra; Ghisi, Daniela; Stagni, Gaetano; Greggi, Tiziana; Bonarelli, Stefano

    2016-09-15

    A retrospective observational study. The aim of this study was to test whether a goal-directed fluid therapy (GDFT) protocol, based on stroke volume variation (SVV), applied in major spine surgery performed in the prone position, would be effective in reducing peri-operative red blood cells transfusions. Recent literature shows that optimizing perioperative fluid therapy is associated with lower complication rates and faster recovery. Data from 23 patients who underwent posterior spine arthrodesis surgery and whose intraoperative fluid administration were managed with the GDFT protocol were retrospectively collected and compared with data from 23 matched controls who underwent the same surgical procedure in the same timeframe, and who received a liberal intraoperative fluid therapy. Patients in the GDFT group received less units of transfused red blood cells (primary endpoint) in the intra (0 vs. 2.0, P = 0.0 4) and postoperative period (2.0 vs. 4.0, P = 0.003). They also received a lower amount of intraoperative crystalloids, had fewer blood losses, and lower intraoperative peak lactate. In the postoperative period, patients in the GDFT group had fewer pulmonary complications and blood losses from surgical drains, needed less blood product transfusions, had a shorter intensive care unit stay, and a faster return of bowel function. We found no difference in the total length of stay among the two groups. Our study shows that application of a GDFT based on SVV in major spine surgery is feasible and can lead to reduced blood losses and transfusions, better postoperative respiratory performance, shorter ICU stay, and faster return of bowel function. 3.

  10. The plant cytoskeleton controls regulatory volume increase.

    Science.gov (United States)

    Liu, Qiong; Qiao, Fei; Ismail, Ahmed; Chang, Xiaoli; Nick, Peter

    2013-09-01

    The ability to adjust cell volume is required for the adaptation to osmotic stress. Plant protoplasts can swell within seconds in response to hypoosmotic shock suggesting that membrane material is released from internal stores. Since the stability of plant membranes depends on submembraneous actin, we asked, whether this regulatory volume control depends on the cytoskeleton. As system we used two cell lines from grapevine which differ in their osmotic tolerance and observed that the cytoskeleton responded differently in these two cell lines. To quantify the ability for regulatory volume control, we used hydraulic conductivity (Lp) as readout and demonstrated a role of the cytoskeleton in protoplast swelling. Chelation of calcium, inhibition of calcium channels, or manipulation of membrane fluidity, did not significantly alter Lp, whereas direct manipulation of the cytoskeleton via specific chemical reagents, or indirectly, through the bacterial elicitor Harpin or activation of phospholipase D, was effective. By optochemical engineering of actin using a caged form of the phytohormone auxin we can break the symmetry of actin organisation resulting in a localised deformation of cell shape indicative of a locally increased Lp. We interpret our findings in terms of a model, where the submembraneous cytoskeleton controls the release of intracellular membrane stores during regulatory volume change. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. INFLUENCE OF AMNIOTIC FLUID INDEX ON FOETAL OUTCOME

    Directory of Open Access Journals (Sweden)

    Raja Lakshmi

    2015-03-01

    Full Text Available BACKGROUND AND OBJECTIVE: In these days of smaller families and the obstetrician having to share the onus of giving a healthy child capable of independent existence as well as to ensure that the population is limited for further progress of this developing country, the estimation o f foetal maturity assumes greatest practical importance. As means to achieving the end, estimates of foetal maturity have been done by various clinical and laboratory methods of which assessment of amniotic fluid index assumes importance. The objective is to study the correlation of amniotic fluid index on foetal outcome at term gestation . MATERIALS AND METHODS: The study was carried out on two hundred antenatal women who attended the institute of obstetrics and gynaecology at a Government Hospital for Wome n and Children in Visakhapatnam from Jan 2014 to Jan 2015. It is a comparative prospective study comparing 100 cases of Oligohydramnios (amniotic fluid index 5 cm as control group. RESU LTS : Perinatal outcome was inferred by noting the various parameters and Statistical Analysis was done by applying the chisquare (x2 test and the value of probability was taken . CONCLUSION: The goal of antepartum fetal surveillance is to identify the fetu s at increased risk. Amniotic fluid volume has been proved as an indirect measure of feto - placental function and hence the estimation of amniotic fluid volume assists the obstetrician in risk assessment

  12. Computational fluid dynamics model of avian tracheal temperature control as a model for extant and extinct animals.

    Science.gov (United States)

    Sverdlova, N S; Arkali, F; Witzel, U; Perry, S F

    2013-10-01

    Respiratory evaporative cooling is an important mechanism of temperature control in bird. A computational simulation of the breathing cycle, heat and water loss in anatomical avian trachea/air sac model has not previously been conducted. We report a first attempt to simulate a breathing cycle in a three-dimensional model of avian trachea and air sacs (domestic fowl) using transient computational fluid dynamics. The airflow in the trachea of the model is evoked by changing the volume of the air sacs based on the measured tidal volume and inspiratory/expiratory times for the domestic fowl. We compare flow parameters and heat transfer results with in vivo data and with our previously reported results for a two-dimensional model. The total respiratory heat loss corresponds to about 13-19% of the starvation metabolic rate of domestic fowl. The present study can lend insight into a possible thermoregulatory function in species with long necks and/or a very long trachea, as found in swans and birds of paradise. Assuming the structure of the sauropod dinosaur respiratory system was close to avian, the simulation of the respiratory temperature control (using convective and evaporative cooling) in the extensively experimentally studied domestic fowl may also help in making simulations of respiratory heat control in these extinct animals. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. On the effect of standard PFEM remeshing on volume conservation in free-surface fluid flow problems

    Science.gov (United States)

    Franci, Alessandro; Cremonesi, Massimiliano

    2017-07-01

    The aim of this work is to analyze the remeshing procedure used in the particle finite element method (PFEM) and to investigate how this operation may affect the numerical results. The PFEM remeshing algorithm combines the Delaunay triangulation and the Alpha Shape method to guarantee a good quality of the Lagrangian mesh also in large deformation processes. However, this strategy may lead to local variations of the topology that may cause an artificial change of the global volume. The issue of volume conservation is here studied in detail. An accurate description of all the situations that may induce a volume variation during the PFEM regeneration of the mesh is provided. Moreover, the crucial role of the parameter α used in the Alpha Shape method is highlighted and a range of values of α for which the differences between the numerical results are negligible, is found. Furthermore, it is shown that the variation of volume induced by the remeshing reduces by refining the mesh. This check of convergence is of paramount importance for the reliability of the PFEM. The study is carried out for 2D free-surface fluid dynamics problems, however the conclusions can be extended to 3D and to all those problems characterized by significant variations of internal and external boundaries.

  14. Thallium pulmonary scintigraphy. Relationship to pulmonary fluid volumes during left atrial hypertension and the acute release of pressure

    International Nuclear Information System (INIS)

    Slutsky, R.A.

    1984-01-01

    To evaluate the relationship between thallium-201 lung activity and pulmonary fluid volumes, we compared thallium pulmonary scintigrams with measures of intravascular (PBV), extravascular (EVLW) and total lung water (TLW) during gradual left atrial (LA) hypertension and then serially after the acute release of pressure. The study group was composed of nine mongrel dogs who were each studied at seven levels of elevated LA pressure, and then every 15 minutes for 2 hours after the acute release of pressure. During LA pressure (congestion phase) elevation, lung counts (normalized for myocardial activity), correlated best with TLW (r . .91), rather than PBV (r . .84) or EVLW (r . .81). After the release of pressure (recovery phase), lung counts correlated well with EVLW (r . .92) and TLW (r . .82), but not with PBV (r . .28). Postmortem lung counts from 197 separate lung sections correlated well with the corresponding wet weight/dry weight ratio from that section (r . .81). Thus, we conclude that changes in pulmonary thallium emissions during cardiogenic pulmonary edema relate to corresponding changes in pulmonary fluid volumes. During congestion, the confounding effects of nonlinear increases in EVLW and PBV make thallium emissions more a marker of TLW than either the intravascular or extravascular pulmonary fluid compartment. After pressure release, PBV immediately returns to normal, at which time EVLW and pulmonary emissions correlate closely. These latter data, more applicable to postexercise stress thallium data, lend support to the hypothesis that elevated pulmonary emissions during postexercise thallium scintigrams reflect elevations in EVLW that develop during exercise

  15. Electrophilic acid gas-reactive fluid, proppant, and process for enhanced fracturing and recovery of energy producing materials

    Science.gov (United States)

    Fernandez, Carlos A.; Heldebrant, David J.; Bonneville, Alain; Jung, Hun Bok; Carroll, Kenneth C.

    2018-01-23

    An electrophilic acid gas-reactive fracturing fluid, proppant, and process are detailed. The fluid expands in volume to provide rapid and controlled increases in pressure that enhances fracturing in subterranean bedrock for recovery of energy-producing materials. The proppant stabilizes fracture openings in the bedrock to enhance recovery of energy-producing materials.

  16. Fluid Overload and Cumulative Thoracostomy Output Are Associated With Surgical Site Infection After Pediatric Cardiothoracic Surgery.

    Science.gov (United States)

    Sochet, Anthony A; Nyhan, Aoibhinn; Spaeder, Michael C; Cartron, Alexander M; Song, Xiaoyan; Klugman, Darren; Brown, Anna T

    2017-08-01

    To determine the impact of cumulative, postoperative thoracostomy output, amount of bolus IV fluids and peak fluid overload on the incidence and odds of developing a deep surgical site infection following pediatric cardiothoracic surgery. A single-center, nested, retrospective, matched case-control study. A 26-bed cardiac ICU in a 303-bed tertiary care pediatric hospital. Cases with deep surgical site infection following cardiothoracic surgery were identified retrospectively from January 2010 through December 2013 and individually matched to controls at a ratio of 1:2 by age, gender, Risk Adjustment for Congenital Heart Surgery score, Society of Thoracic Surgeons-European Association for Cardiothoracic Surgery category, primary cardiac diagnosis, and procedure. None. Twelve cases with deep surgical site infection were identified and matched to 24 controls without detectable differences in perioperative clinical characteristics. Deep surgical site infection cases had larger thoracostomy output and bolus IV fluid volumes at 6, 24, and 48 hours postoperatively compared with controls. For every 1 mL/kg of thoracostomy output, the odds of developing a deep surgical site infection increase by 13%. By receiver operative characteristic curve analysis, a cutoff of 49 mL/kg of thoracostomy output at 48 hours best discriminates the development of deep surgical site infection (sensitivity 83%, specificity 83%). Peak fluid overload was greater in cases than matched controls (12.5% vs 6%; p operative characteristic curve analysis, a threshold value of 10% peak fluid overload was observed to identify deep surgical site infection (sensitivity 67%, specificity 79%). Conditional logistic regression of peak fluid overload greater than 10% on the development of deep surgical site infection yielded an odds ratio of 9.4 (95% CI, 2-46.2). Increased postoperative peak fluid overload and cumulative thoracostomy output were associated with deep surgical site infection after pediatric

  17. Evaluation of the use of automatic exposure control and automatic tube potential selection in low-dose cerebrospinal fluid shunt head CT

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Adam N.; Bagade, Swapnil; Chatterjee, Arindam; Hicks, Brandon; McKinstry, Robert C. [Barnes Jewish Hospital, Mallinckrodt Institute of Radiology, St. Louis, MO (United States); Washington University School of Medicine, St. Louis, MO (United States); Vyhmeister, Ross [Washington University School of Medicine, St. Louis, MO (United States); Ramirez-Giraldo, Juan Carlos [Siemens Healthcare, Malvern, PA (United States)

    2015-03-17

    Cerebrospinal fluid shunts are primarily used for the treatment of hydrocephalus. Shunt complications may necessitate multiple non-contrast head CT scans resulting in potentially high levels of radiation dose starting at an early age. A new head CT protocol using automatic exposure control and automated tube potential selection has been implemented at our institution to reduce radiation exposure. The purpose of this study was to evaluate the reduction in radiation dose achieved by this protocol compared with a protocol with fixed parameters. A retrospective sample of 60 non-contrast head CT scans assessing for cerebrospinal fluid shunt malfunction was identified, 30 of which were performed with each protocol. The radiation doses of the two protocols were compared using the volume CT dose index and dose length product. The diagnostic acceptability and quality of each scan were evaluated by three independent readers. The new protocol lowered the average volume CT dose index from 15.2 to 9.2 mGy representing a 39 % reduction (P < 0.01; 95 % CI 35-44 %) and lowered the dose length product from 259.5 to 151.2 mGy/cm representing a 42 % reduction (P < 0.01; 95 % CI 34-50 %). The new protocol produced diagnostically acceptable scans with comparable image quality to the fixed parameter protocol. A pediatric shunt non-contrast head CT protocol using automatic exposure control and automated tube potential selection reduced patient radiation dose compared with a fixed parameter protocol while producing diagnostic images of comparable quality. (orig.)

  18. Smart fast blood counting of trace volumes of body fluids from various mammalian species using a compact custom-built microscope cytometer (Conference Presentation)

    Science.gov (United States)

    Smith, Zachary J.; Gao, Tingjuan; Lin, Tzu-Yin; Carrade-Holt, Danielle; Lane, Stephen M.; Matthews, Dennis L.; Dwyre, Denis M.; Wachsmann-Hogiu, Sebastian

    2016-03-01

    Cell counting in human body fluids such as blood, urine, and CSF is a critical step in the diagnostic process for many diseases. Current automated methods for cell counting are based on flow cytometry systems. However, these automated methods are bulky, costly, require significant user expertise, and are not well suited to counting cells in fluids other than blood. Therefore, their use is limited to large central laboratories that process enough volume of blood to recoup the significant capital investment these instruments require. We present in this talk a combination of a (1) low-cost microscope system, (2) simple sample preparation method, and (3) fully automated analysis designed for providing cell counts in blood and body fluids. We show results on both humans and companion and farm animals, showing that accurate red cell, white cell, and platelet counts, as well as hemoglobin concentration, can be accurately obtained in blood, as well as a 3-part white cell differential in human samples. We can also accurately count red and white cells in body fluids with a limit of detection ~3 orders of magnitude smaller than current automated instruments. This method uses less than 1 microliter of blood, and less than 5 microliters of body fluids to make its measurements, making it highly compatible with finger-stick style collections, as well as appropriate for small animals such as laboratory mice where larger volume blood collections are dangerous to the animal's health.

  19. Annual review of fluid mechanics. Volume 22

    International Nuclear Information System (INIS)

    Lumley, J.L.; Van Dyke, M.; Reed, H.L.

    1990-01-01

    Topics presented include rapid granular flows, issues in viscoelastic fluid mechanics, wave loads on offshore structures, boundary layers in the general ocean circulation, parametrically forced surface waves, wave-mean flow interactions in the equatorial ocean, and local and global instabilities in spatially developing flows. Also presented are aerodynamics of human-powered flight, aerothermodynamics and transition in high-speed wind tunnels at NASA-Langley, wakes behind blunt bodies, and mixing, chaotic advection, and turbulence. Also addressed are the history of the Reynolds number, panel methods in computational fluid dynamics, numerical multipole and boundary integral equation techniques in Stokes flow, plasma turbulence, optical rheometry, and viscous-flow paradoxes

  20. Pressure-controlled drainage of cerebrospinal fluid: clinical experience with a new type of ventricular catheter (Ventcontrol MTC)and an integrated Piezo-resistive sensor at its tip: technical note.

    Science.gov (United States)

    Piek, J; Raes, P

    1996-01-01

    We described a new ventricular catheter that is the combination of a "classic" ventricular catheter with a piezo-resistive transducer at its tip. The device allows parallel recordings of intraventricular fluid pressure via a chip and a fluid-filled external transducer, drainage of cerebrospinal fluid from the ventricle or injection of fluid into the ventricle with simultaneous monitoring of intracranial pressure, and recording of brain tissue pressure in cases of misplacement or dislocation of the ventricular catheter or in cases of progressively narrowing ventricles caused by brain edema. Clinical tests in various situations at different pressure ranges (total recording time, 1356 h in 13 patients) gave excellent correlations of both pressures. Application of the device is especially indicated in clinical situations in which pressure-controlled drainage is desirable, occlusion of ventricular bolts is likely, or pressure-volume tests are needed.

  1. GASFLOW: A Computational Fluid Dynamics Code for Gases, Aerosols, and Combustion, Volume 1: Theory and Computational Model

    International Nuclear Information System (INIS)

    Nichols, B.D.; Mueller, C.; Necker, G.A.; Travis, J.R.; Spore, J.W.; Lam, K.L.; Royl, P.; Redlinger, R.; Wilson, T.L.

    1998-01-01

    Los Alamos National Laboratory (LANL) and Forschungszentrum Karlsruhe (FzK) are developing GASFLOW, a three-dimensional (3D) fluid dynamics field code as a best-estimate tool to characterize local phenomena within a flow field. Examples of 3D phenomena include circulation patterns; flow stratification; hydrogen distribution mixing and stratification; combustion and flame propagation; effects of noncondensable gas distribution on local condensation and evaporation; and aerosol entrainment, transport, and deposition. An analysis with GASFLOW will result in a prediction of the gas composition and discrete particle distribution in space and time throughout the facility and the resulting pressure and temperature loadings on the walls and internal structures with or without combustion. A major application of GASFLOW is for predicting the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containments and other facilities. It has been applied to situations involving transporting and distributing combustible gas mixtures. It has been used to study gas dynamic behavior (1) in low-speed, buoyancy-driven flows, as well as sonic flows or diffusion dominated flows; and (2) during chemically reacting flows, including deflagrations. The effects of controlling such mixtures by safety systems can be analyzed. The code version described in this manual is designated GASFLOW 2.1, which combines previous versions of the United States Nuclear Regulatory Commission code HMS (for Hydrogen Mixing Studies) and the Department of Energy and FzK versions of GASFLOW. The code was written in standard Fortran 90. This manual comprises three volumes. Volume I describes the governing physical equations and computational model. Volume II describes how to use the code to set up a model geometry, specify gas species and material properties, define initial and boundary conditions, and specify different outputs, especially graphical displays. Sample problems are included

  2. Flow rate measurement in a volume

    Energy Technology Data Exchange (ETDEWEB)

    Galvez, Cristhian

    2018-04-17

    A system for measuring flow rate within a volume includes one or more transmission devices that transmit one or more signals through fluid contained within the volume. The volume may be bounded, at least in part, by an outer structure and by an object at least partially contained within the outer structure. A transmission device located at a first location of the outer structure transmits a first signal to a second location of the outer structure. A second signal is transmitted through the fluid from the second location to a third location of the outer structure. The flow rate of the fluid within the volume may be determined based, at least in part, on the time of flight of both the first signal and the second signal.

  3. New Directions in Mathematical Fluid Mechanics

    CERN Document Server

    Fursikov, Andrei V

    2010-01-01

    The scientific interests of Professor A.V. Kazhikhov were fundamentally devoted to Mathematical Fluid Mechanics, where he achieved outstanding results that had, and still have, a significant influence on this field. This volume, dedicated to the memory of A.V. Kazhikhov, presents the latest contributions from renowned world specialists in a number of new important directions of Mathematical Physics, mostly of Mathematical Fluid Mechanics, and, more generally, in the field of nonlinear partial differential equations. These results are mostly related to boundary value problems and to control problems for the Navier-Stokes equations, and for equations of heat convection. Other important topics include non-equilibrium processes, Poisson-Boltzmann equations, dynamics of elastic body, and related problems of function theory and nonlinear analysis.

  4. Generalized Fluid System Simulation Program (GFSSP) - Version 6

    Science.gov (United States)

    Majumdar, Alok; LeClair, Andre; Moore, Ric; Schallhorn, Paul

    2015-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors, flow control valves and external body forces such as gravity and centrifugal. The thermo-fluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids, and 24 different resistance/source options are provided for modeling momentum sources or sinks in the branches. Users can introduce new physics, non-linear and time-dependent boundary conditions through user-subroutine.

  5. 3D Volumetric Analysis of Fluid Inclusions Using Confocal Microscopy

    Science.gov (United States)

    Proussevitch, A.; Mulukutla, G.; Sahagian, D.; Bodnar, B.

    2009-05-01

    Fluid inclusions preserve valuable information regarding hydrothermal, metamorphic, and magmatic processes. The molar quantities of liquid and gaseous components in the inclusions can be estimated from their volumetric measurements at room temperatures combined with knowledge of the PVTX properties of the fluid and homogenization temperatures. Thus, accurate measurements of inclusion volumes and their two phase components are critical. One of the greatest advantages of the Laser Scanning Confocal Microscopy (LSCM) in application to fluid inclsion analsyis is that it is affordable for large numbers of samples, given the appropriate software analysis tools and methodology. Our present work is directed toward developing those tools and methods. For the last decade LSCM has been considered as a potential method for inclusion volume measurements. Nevertheless, the adequate and accurate measurement by LSCM has not yet been successful for fluid inclusions containing non-fluorescing fluids due to many technical challenges in image analysis despite the fact that the cost of collecting raw LSCM imagery has dramatically decreased in recent years. These problems mostly relate to image analysis methodology and software tools that are needed for pre-processing and image segmentation, which enable solid, liquid and gaseous components to be delineated. Other challenges involve image quality and contrast, which is controlled by fluorescence of the material (most aqueous fluid inclusions do not fluoresce at the appropriate laser wavelengths), material optical properties, and application of transmitted and/or reflected confocal illumination. In this work we have identified the key problems of image analysis and propose some potential solutions. For instance, we found that better contrast of pseudo-confocal transmitted light images could be overlayed with poor-contrast true-confocal reflected light images within the same stack of z-ordered slices. This approach allows one to narrow

  6. Asymptotic stability of steady compressible fluids

    CERN Document Server

    Padula, Mariarosaria

    2011-01-01

    This volume introduces a systematic approach to the solution of some mathematical problems that arise in the study of the hyperbolic-parabolic systems of equations that govern the motions of thermodynamic fluids. It is intended for a wide audience of theoretical and applied mathematicians with an interest in compressible flow, capillarity theory, and control theory. The focus is particularly on recent results concerning nonlinear asymptotic stability, which are independent of assumptions about the smallness of the initial data. Of particular interest is the loss of control that sometimes results when steady flows of compressible fluids are upset by large disturbances. The main ideas are illustrated in the context of three different physical problems: (i) A barotropic viscous gas in a fixed domain with compact boundary. The domain may be either an exterior domain or a bounded domain, and the boundary may be either impermeable or porous. (ii) An isothermal viscous gas in a domain with free boundaries. (iii) A h...

  7. Control of weakly conductive fluids by near wall Lorentz forces

    Energy Technology Data Exchange (ETDEWEB)

    Hinze, M. [Technische Univ. Dresden (Germany). Inst. fuer Numerische Mathematik

    2007-07-01

    In this work optimal and model-predictive control approaches for control of weakly conductive fluids are developed. The flow around the circular cylinder at low Reynolds numbers serves as prototyping application. Control by near-wall Lorentz forces gains either to suppress the formation of the von Karman Vortex Street, or to reduce the drag. Besides a concise mathematical modelling numerical examples are presented which highlight the scope of the presented control approaches. (orig.)

  8. Extended two-fluid model for simulating magneto-rheological fluid flows

    International Nuclear Information System (INIS)

    Shivaram, A C

    2011-01-01

    The current practice of designing magneto-rheological (MR) fluid-based devices is, to a large extent, based on simple phenomenological models like the Bingham model. Though useful for initial force or torque estimation and sizing, these models lack the capability to predict performance degradation due to changes in the particle volume fraction distribution. The present work demonstrates the use of the two-fluid model for predicting the particle volume fraction distribution inside a device in the absence of a field and proposes a novel modeling scheme which can simulate the fluid flow in the presence of a field. This modeling scheme can be used to (a) visualize flow patterns inside a device under various operating conditions, (b) predict the spatial distribution of particles inside a device after multiple operating cycles, (c) assist in estimating the extent of performance degradation due to non-uniform particle distribution and (d) enable testing of various design strategies to mitigate such performance issues using simulations. This is illustrated through numerical examples of a few case studies of typical MR device configurations

  9. An energy stable evolution method for simulating two-phase equilibria of multi-component fluids at constant moles, volume and temperature

    KAUST Repository

    Kou, Jisheng

    2016-02-25

    In this paper, we propose an energy-stable evolution method for the calculation of the phase equilibria under given volume, temperature, and moles (VT-flash). An evolution model for describing the dynamics of two-phase fluid system is based on Fick’s law of diffusion for multi-component fluids and the Peng-Robinson equation of state. The mobility is obtained from diffusion coefficients by relating the gradient of chemical potential to the gradient of molar density. The evolution equation for moles of each component is derived using the discretization of diffusion equations, while the volume evolution equation is constructed based on the mechanical mechanism and the Peng-Robinson equation of state. It is proven that the proposed evolution system can well model the VT-flash problem, and moreover, it possesses the property of total energy decay. By using the Euler time scheme to discretize this evolution system, we develop an energy stable algorithm with an adaptive choice strategy of time steps, which allows us to calculate the suitable time step size to guarantee the physical properties of moles and volumes, including positivity, maximum limits, and correct definition of the Helmhotz free energy function. The proposed evolution method is also proven to be energy-stable under the proposed time step choice. Numerical examples are tested to demonstrate efficiency and robustness of the proposed method.

  10. A finite volume procedure for fluid flow, heat transfer and solid-body stress analysis

    KAUST Repository

    Jagad, P. I.

    2018-04-12

    A unified cell-centered unstructured mesh finite volume procedure is presented for fluid flow, heat transfer and solid-body stress analysis. An in-house procedure (A. W. Date, Solution of Transport Equations on Unstructured Meshes with Cell-Centered Colocated Variables. Part I: Discretization, International Journal of Heat and Mass Transfer, vol. 48 (6), 1117-1127, 2005) is extended to include the solid-body stress analysis. The transport terms for a cell-face are evaluated in a structured grid-like manner. The Cartesian gradients at the center of each cell-face are evaluated using the coordinate transformation relations. The accuracy of the procedure is demonstrated by solving several benchmark problems involving different boundary conditions, source terms, and types of loading.

  11. Appropriate fluid regimens to prevent bronchopulmonary dysplasia.

    Science.gov (United States)

    Tammela, O K

    1995-01-01

    Pulmonary oedema is an important problem in premature neonates with surfactant deficiency because of fluid accumulation in the lung interstitium and reduced urine output. Some retrospective reports suggest that excessive early hydration might increase the risk of bronchopulmonary dysplasia (BPD). Only three prospective studies evaluating low or conventional fluid administration regimens to very low birth weight infants have been published. According to their results no significant differences in the incidence of BPD have been shown. However, fluid restriction seems to improve the outcome of the infants because of decreased incidence of haemodynamically significant patent ductus arteriosus, necrotizing enterocolitis, pulmonary air leaks and decreased mortality. The appropriate amount of sodium in the intravenous fluids during the first days of life needs further evaluation. In tiny infants with birth weights from 500 to 800g intensive monitoring of fluid balance is essential to control the extremely high fluid losses due to evaporation. Undernutrition is a risk factor of BPD and therefore it is important to start parenteral nutrition early. The benefit of the use of colloids as volume expanders is controversial. According to some retrospective reports there might be an association with increased use of colloidal fluids during the first days of life and the development of BPD. Early excessive fluid administration might constitute a potential risk for low birth weight infants with hyaline membrane disease.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Fluids and diuretics for acute ureteric colic.

    Science.gov (United States)

    Worster, Andrew S; Bhanich Supapol, Wendy

    2012-02-15

    Acute ureteric colic is commonly associated with severe and debilitating pain. Theoretically, increasing fluid flow through the affected kidney might expedite stone passage, thereby improving symptoms more quickly. The efficacy and safety of interventions such as high volume intravenous (IV) or oral fluids and diuretics aimed at expediting ureteric stone passage is, however, uncertain. To look at the benefits and harms of diuretics and high volume (above maintenance) IV or oral fluid therapy for treating adult patients presenting with uncomplicated acute ureteric colic. We searched the Cochrane Renal Group's specialised register (3 January 2012). Previously we searched the Cochrane Central Register of Controlled Trials (CENTRAL The Cochrane Library), MEDLINE (from 1966), EMBASE (from 1980) and handsearched reference lists of nephrology and urology textbooks, review articles, relevant studies, and abstracts from nephrology scientific meetings. All randomised controlled trials (RCTs) and quasi-RCTs (including the first period of randomised cross-over studies) looking at diuretics or high volume IV or oral fluids for treating uncomplicated acute ureteric colic in adult patients presenting to the emergency department for the first time during that episode were included. Two authors independently assessed study quality and extracted data. Statistical analyses were performed using the random-effects model for multiple studies of the same outcomes, otherwise the fixed-effect model was used. Results were expressed as risk ratios (RR) for dichotomous outcomes or as mean differences (MD) for continuous data with 95% confidence intervals (CI). Two studies (enrolling 118 participants) examined the association between intense hydration and ureteric colic outcomes. There was no significant difference in pain at six hours (1 study, 60 participants: RR 1.06, 95% CI 0.71 to 1.57), surgical stone removal (1 study, 60 participants: RR 1.20, 95% CI 0.41 to 3.51) or manipulation by

  13. Contamination Control and Monitoring of Tap Water as Fluid in Industrial Tap Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1998-01-01

    Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems.......Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems....

  14. A combined volume-of-fluid method and low-Mach-number approach for DNS of evaporating droplets in turbulence

    Science.gov (United States)

    Dodd, Michael; Ferrante, Antonino

    2017-11-01

    Our objective is to perform DNS of finite-size droplets that are evaporating in isotropic turbulence. This requires fully resolving the process of momentum, heat, and mass transfer between the droplets and surrounding gas. We developed a combined volume-of-fluid (VOF) method and low-Mach-number approach to simulate this flow. The two main novelties of the method are: (i) the VOF algorithm captures the motion of the liquid gas interface in the presence of mass transfer due to evaporation and condensation without requiring a projection step for the liquid velocity, and (ii) the low-Mach-number approach allows for local volume changes caused by phase change while the total volume of the liquid-gas system is constant. The method is verified against an analytical solution for a Stefan flow problem, and the D2 law is verified for a single droplet in quiescent gas. We also demonstrate the schemes robustness when performing DNS of an evaporating droplet in forced isotropic turbulence.

  15. Gingival crevicular fluid volume and periodontal parameters alterations after use of conventional and self-ligating brackets.

    Science.gov (United States)

    Bergamo, Ana Zn; Nelson-Filho, Paulo; Romano, Fábio L; da Silva, Raquel Ab; Saraiva, Maria Cp; da Silva, Lea Ab; Matsumoto, Mirian An

    2016-12-01

    The aim of this study was to evaluate the alterations on plaque index (PI), gingival index (GI), gingival bleeding index (GBI), and gingival crevicular fluid (GCF) volume after use of three different brackets types for 60 days. Setting Participants: The sample comprised 20 patients of both sexes aged 11-15 years (mean age: 13.3 years), with permanent dentition, adequate oral hygiene, and mild tooth crowding, overjet, and overbite. A conventional metallic bracket Gemini™, and two different brands of self-ligating brackets - In-Ovation ® R and SmartClip™ - were bonded to the maxillary incisors and canines. PI, GI, GBI scores, and GCF volume were measured before and 30 and 60 days after bonding of the brackets. Data were analysed statistically using non-parametric tests coefficient at a 5% significance level. There was no statistically significant correlation (P > 0.05) between tooth crowding, overjet, and overbite and the PI, GI, GBI scores, and GCF volume before bonding, indicating no influence of malocclusion on the clinical parameters. Regardless of the bracket design, no statistically significant difference (P > 0.05) was found for GI, GBI scores. PI and GCF volume showed a significant difference among the brackets in different periods. In pairwise comparisons a significant difference was observed when compared before with 60 days after bonding, for the teeth bonded with SmartClip™ self-ligating bracket, (PI P = 0.009; GCF volume P = 0.001). There was an increase in PI score and GCF volume 60 days after bonding of SmartClip™ self-ligating brackets, indicating the influence of bracket design on these clinical parameters.

  16. Epidural anesthesia, hypotension, and changes in intravascular volume

    DEFF Research Database (Denmark)

    Holte, Kathrine; Foss, Nicolai B; Svensén, Christer

    2004-01-01

    receiving hydroxyethyl starch. RESULTS: Plasma volume did not change per se after thoracic epidural anesthesia despite a decrease in blood pressure. Plasma volume increased with fluid administration but remained unchanged with vasopressors despite that both treatments had similar hemodynamic effects...... constant was 56 ml/min. CONCLUSIONS: Thoracic epidural anesthesia per se does not lead to changes in blood volumes despite a reduction in blood pressure. When fluid is infused, there is a dilution, and the fluid initially seems to be located centrally. Because administration of hydroxyethyl starch......BACKGROUND: The most common side effect of epidural or spinal anesthesia is hypotension with functional hypovolemia prompting fluid infusions or administration of vasopressors. Short-term studies (20 min) in patients undergoing lumbar epidural anesthesia suggest that plasma volume may increase when...

  17. Fluid balance concepts in medicine: Principles and practice

    Science.gov (United States)

    Roumelioti, Maria-Eleni; Glew, Robert H; Khitan, Zeid J; Rondon-Berrios, Helbert; Argyropoulos, Christos P; Malhotra, Deepak; Raj, Dominic S; Agaba, Emmanuel I; Rohrscheib, Mark; Murata, Glen H; Shapiro, Joseph I; Tzamaloukas, Antonios H

    2018-01-01

    The regulation of body fluid balance is a key concern in health and disease and comprises three concepts. The first concept pertains to the relationship between total body water (TBW) and total effective solute and is expressed in terms of the tonicity of the body fluids. Disturbances in tonicity are the main factor responsible for changes in cell volume, which can critically affect brain cell function and survival. Solutes distributed almost exclusively in the extracellular compartment (mainly sodium salts) and in the intracellular compartment (mainly potassium salts) contribute to tonicity, while solutes distributed in TBW have no effect on tonicity. The second body fluid balance concept relates to the regulation and measurement of abnormalities of sodium salt balance and extracellular volume. Estimation of extracellular volume is more complex and error prone than measurement of TBW. A key function of extracellular volume, which is defined as the effective arterial blood volume (EABV), is to ensure adequate perfusion of cells and organs. Other factors, including cardiac output, total and regional capacity of both arteries and veins, Starling forces in the capillaries, and gravity also affect the EABV. Collectively, these factors interact closely with extracellular volume and some of them undergo substantial changes in certain acute and chronic severe illnesses. Their changes result not only in extracellular volume expansion, but in the need for a larger extracellular volume compared with that of healthy individuals. Assessing extracellular volume in severe illness is challenging because the estimates of this volume by commonly used methods are prone to large errors in many illnesses. In addition, the optimal extracellular volume may vary from illness to illness, is only partially based on volume measurements by traditional methods, and has not been determined for each illness. Further research is needed to determine optimal extracellular volume levels in several

  18. Modified momentum exchange method for fluid-particle interactions in the lattice Boltzmann method.

    Science.gov (United States)

    Hu, Yang; Li, Decai; Shu, Shi; Niu, Xiaodong

    2015-03-01

    In this paper, a modified momentum exchange method for fluid-particle interactions is proposed based on the finite-volume lattice Boltzmann method. The idea of the improvement is to remove the restriction that the boundary points must be set as the midpoints of the grid lines or the intersection of the grid lines with the solid boundaries. The particle surface is represented by a set of arc (area) elements, and the interior fluid is used which the geometric conservation law is naturally satisfied. The interactions between fluid and arc (area) elements of particle boundary are considered using the momentum exchange method, and the mass of the fluid particles which collide with an arc (area) element is obtained by means of numerical integration in the control volume. The fluid field is corrected with the help of the smooth kernel function. Moreover, a generalized explicit time marching scheme is introduced to resolve the motion of particle in the problems with the ratio of particle density to fluid density is close to or less than 1. Finally, some numerical case studies of particle sedimentation are carried out to validate the present method. The corresponding results have a good agreement with the previous literature, which strongly demonstrates the capability of the improved method.

  19. A numerical simulation of the water vapor bubble rising in ferrofluid by volume of fluid model in the presence of a magnetic field

    Science.gov (United States)

    Shafiei Dizaji, A.; Mohammadpourfard, M.; Aminfar, H.

    2018-03-01

    Multiphase flow is one of the most complicated problems, considering the multiplicity of the related parameters, especially the external factors influences. Thus, despite the recent developments more investigations are still required. The effect of a uniform magnetic field on the hydrodynamics behavior of a two-phase flow with different magnetic permeability is presented in this article. A single water vapor bubble which is rising inside a channel filled with ferrofluid has been simulated numerically. To capture the phases interface, the Volume of Fluid (VOF) model, and to solve the governing equations, the finite volume method has been employed. Contrary to the prior anticipations, while the consisting fluids of the flow are dielectric, uniform magnetic field causes a force acting normal to the interface toward to the inside of the bubble. With respect to the applied magnetic field direction, the bubble deformation due to the magnetic force increases the bubble rising velocity. Moreover, the higher values of applied magnetic field strength and magnetic permeability ratio resulted in the further increase of the bubble rising velocity. Also it is indicated that the flow mixing and the heat transfer rate is increased by a bubble injection and applying a magnetic field. The obtained results have been concluded that the presented phenomenon with applying a magnetic field can be used to control the related characteristics of the multiphase flows. Compared to the previous studies, implementing the applicable cases using the common and actual materials and a significant reduction of the CPU time are the most remarkable advantages of the current study.

  20. Development, Verification and Validation of Parallel, Scalable Volume of Fluid CFD Program for Propulsion Applications

    Science.gov (United States)

    West, Jeff; Yang, H. Q.

    2014-01-01

    There are many instances involving liquid/gas interfaces and their dynamics in the design of liquid engine powered rockets such as the Space Launch System (SLS). Some examples of these applications are: Propellant tank draining and slosh, subcritical condition injector analysis for gas generators, preburners and thrust chambers, water deluge mitigation for launch induced environments and even solid rocket motor liquid slag dynamics. Commercially available CFD programs simulating gas/liquid interfaces using the Volume of Fluid approach are currently limited in their parallel scalability. In 2010 for instance, an internal NASA/MSFC review of three commercial tools revealed that parallel scalability was seriously compromised at 8 cpus and no additional speedup was possible after 32 cpus. Other non-interface CFD applications at the time were demonstrating useful parallel scalability up to 4,096 processors or more. Based on this review, NASA/MSFC initiated an effort to implement a Volume of Fluid implementation within the unstructured mesh, pressure-based algorithm CFD program, Loci-STREAM. After verification was achieved by comparing results to the commercial CFD program CFD-Ace+, and validation by direct comparison with data, Loci-STREAM-VoF is now the production CFD tool for propellant slosh force and slosh damping rate simulations at NASA/MSFC. On these applications, good parallel scalability has been demonstrated for problems sizes of tens of millions of cells and thousands of cpu cores. Ongoing efforts are focused on the application of Loci-STREAM-VoF to predict the transient flow patterns of water on the SLS Mobile Launch Platform in order to support the phasing of water for launch environment mitigation so that vehicle determinantal effects are not realized.

  1. Contribution of the active control to the measurement of fluid-elastic coupling strengths; Apport du controle actif pour la mesure des forces de couplage fluide-elastique

    Energy Technology Data Exchange (ETDEWEB)

    Legendre, S

    1999-06-30

    A precise dimensioning of the tubes inside a steam generator requires a better knowledge of the fluid-elastic coupling phenomena. The direct method for the determination of fluid-elastic coupling coefficients allows to explore only a reduced range of flow velocities and is unsuitable for the low velocities and for velocities close to the critical instability velocity. The active damping control method has been validated both with air and water and offers the possibility to extend the range of flow velocities using an artificial supply of damping: 50% of increase in single-phase flow conditions with measurements performed beyond the critical instability velocity, a doubling of the explored range of velocities in two-phase flow conditions. For a 25% two-phase flow, a stabilization of the damping of the coupled fluid-structure system is observed beyond the critical instability velocity. Finally, the calculation of fluid-elastic dimensionless coefficients has permitted to show the influence of the reduced velocity on the fluid-elastic coupling in two-phase flow conditions. (J.S.)

  2. Fluid Mechanics of Fish Swimming

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 1. Fluid Mechanics of Fish Swimming - Lift-based Propulsion. Jaywant H Arakeri. General Article Volume 14 Issue 1 January 2009 pp 32-46. Fulltext. Click here to view fulltext PDF. Permanent link:

  3. An integrated algorithm for hypersonic fluid-thermal-structural numerical simulation

    Science.gov (United States)

    Li, Jia-Wei; Wang, Jiang-Feng

    2018-05-01

    In this paper, a fluid-structural-thermal integrated method is presented based on finite volume method. A unified integral equations system is developed as the control equations for physical process of aero-heating and structural heat transfer. The whole physical field is discretized by using an up-wind finite volume method. To demonstrate its capability, the numerical simulation of Mach 6.47 flow over stainless steel cylinder shows a good agreement with measured values, and this method dynamically simulates the objective physical processes. Thus, the integrated algorithm proves to be efficient and reliable.

  4. A matrix-free implicit unstructured multigrid finite volume method for simulating structural dynamics and fluid structure interaction

    Science.gov (United States)

    Lv, X.; Zhao, Y.; Huang, X. Y.; Xia, G. H.; Su, X. H.

    2007-07-01

    A new three-dimensional (3D) matrix-free implicit unstructured multigrid finite volume (FV) solver for structural dynamics is presented in this paper. The solver is first validated using classical 2D and 3D cantilever problems. It is shown that very accurate predictions of the fundamental natural frequencies of the problems can be obtained by the solver with fast convergence rates. This method has been integrated into our existing FV compressible solver [X. Lv, Y. Zhao, et al., An efficient parallel/unstructured-multigrid preconditioned implicit method for simulating 3d unsteady compressible flows with moving objects, Journal of Computational Physics 215(2) (2006) 661-690] based on the immersed membrane method (IMM) [X. Lv, Y. Zhao, et al., as mentioned above]. Results for the interaction between the fluid and an immersed fixed-free cantilever are also presented to demonstrate the potential of this integrated fluid-structure interaction approach.

  5. β-trace protein as a diagnostic marker for perilymphatic fluid fistula: a prospective controlled pilot study to test a sample collection technique.

    Science.gov (United States)

    Bachmann-Harildstad, Gregor; Stenklev, Niels Christian; Myrvoll, Elin; Jablonski, Greg; Klingenberg, Olav

    2011-01-01

    The diagnosis of perilymphatic fluid (PLF) fistula is still challenging. Perilymphatic fluid fistula is one possible complication after stapedotomy or cochlear implant surgery. We have performed a prospective diagnostic pilot study to further investigate β-trace protein (β-TP) as a marker for PLF fistula. In this pilot study, we tested the sensitivity of the β-TP marker using a simple method for sample collection from the tympanic cavity. Prospective controlled diagnostic study. Two-center tertiary referral hospitals. A total of 35 adult patients undergoing ear surgery were included. Subjects were divided into 2 groups: 1) 19 patients undergoing stapedotomy were investigated for PLF fistula in samples obtained from the tympanic cavity and 2) 16 patients undergoing myringoplasty were investigated for PLF fistula in samples from the tympanic cavity. This group served as the control. Mean age +/- SD at surgery was 49.9 +/- 8.0 years in the study group and 39.69 +/- 15.47 years in the control group. β-Trace protein (prostaglandin D synthase) in tympanic cavity samples and serum samples was analyzed. The samples were collected by gradually filling the tympanic cavity with 100 to 200 μl sodium chloride and by immediately collecting a volume of 60 to 100 μl in a mucus specimen set container. The concentration of β-TP was quantified using laser nephelometry. The median β-TP in the study group was 0.8 mg/L (range, 0.05-4.5 mg/L). In the control group, the median β-TP value was 0.16 mg/L (range, 0.01-0.36 mg/L). Thirty-five percent of the values in the study group were below the highest value in the negative control group. The β-TP values of the tympanic cavity samples were significantly higher in the study group than in controls (p = 0.0001). The serum values were 0.55 +/- 0.18 and 0.53 +/- 0.11 mg/L, respectively. It may be feasible to test for PLF fistula using β-TP in samples from the tympanic cavity. Our results, however, suggest a relative low diagnostic

  6. Intraoperative Fluids and Fluid Management for Ambulatory Dental Sedation and General Anesthesia.

    Science.gov (United States)

    Saraghi, Mana

    2015-01-01

    Intravenous fluids are administered in virtually every parenteral sedation and general anesthetic. The purpose of this article is to review the physiology of body-water distribution and fluid dynamics at the vascular endothelium, evaluation of fluid status, calculation of fluid requirements, and the clinical rationale for the use of various crystalloid and colloid solutions. In the setting of elective dental outpatient procedures with minor blood loss, isotonic balanced crystalloid solutions are the fluids of choice. Colloids, on the other hand, have no use in outpatient sedation or general anesthesia for dental or minor oral surgery procedures but may have several desirable properties in long and invasive maxillofacial surgical procedures where advanced hemodynamic monitoring may assess the adequacy of intravascular volume.

  7. Prevalence, extension and characteristics of fluid-fluid levels in bone and soft tissue tumors

    Energy Technology Data Exchange (ETDEWEB)

    Dyck, P. van; Venstermans, C.; Gielen, J.; Parizel, P.M. [University Hospital Antwerp, Department of Radiology, Edegem (Belgium); Vanhoenacker, F.M. [University Hospital Antwerp, Department of Radiology, Edegem (Belgium); AZ St-Maarten, Department of Radiology, Duffel/Mechelen (Belgium); Vogel, J. [Leiden University Medical Centre, Department of Orthopedics, Leiden (Netherlands); Kroon, H.M.; Bloem, J.L. [Leiden University Medical Centre, Department of Radiology, Leiden (Netherlands); Schepper, A.M.A. de [University Hospital Antwerp, Department of Radiology, Edegem (Belgium); Leiden University Medical Centre, Department of Radiology, Leiden (Netherlands)

    2006-12-15

    The purpose of this study was to determine the prevalence, extension and signal characteristics of fluid-fluid levels in a large series of 700 bone and 700 soft tissue tumors. Out of a multi-institutional database, MRI of 700 consecutive patients with a bone tumor and MRI of 700 consecutive patients with a soft tissue neoplasm were retrospectively reviewed for the presence of fluid-fluid levels. Extension (single, multiple and proportion of the lesion occupied by fluid-fluid levels) and signal characteristics on magnetic resonance imaging of fluid-fluid levels were determined. In all patients, pathologic correlation was available. Of 700 patients with a bone tumor, 19 (10 male and 9 female; mean age, 29 years) presented with a fluid-fluid level (prevalence 2.7%). Multiple fluid-fluid levels occupying at least one half of the total volume of the lesion were found in the majority of patients. Diagnoses included aneurysmal bone cyst (ten cases), fibrous dysplasia (two cases), osteoblastoma (one case), simple bone cyst (one case), telangiectatic osteosarcoma (one case), ''brown tumor'' (one case), chondroblastoma (one case) and giant cell tumor (two cases). Of 700 patients with a soft tissue tumor, 20 (9 males and 11 females; mean age, 34 years) presented with a fluid-fluid level (prevalence 2.9%). Multiple fluid-fluid levels occupying at least one half of the total volume of the lesion were found in the majority of patients. Diagnoses included cavernous hemangioma (12 cases), synovial sarcoma (3 cases), angiosarcoma (1 case), aneurysmal bone cyst of soft tissue (1 case), myxofibrosarcoma (1 case) and high-grade sarcoma ''not otherwise specified'' (2 cases). In our series, the largest reported in the literature to the best of our knowledge, the presence of fluid-fluid levels is a rare finding with a prevalence of 2.7 and 2.9% in bone and soft tissue tumors, respectively. Fluid-fluid levels remain a non-specific finding and can

  8. Evaluation of the use of automatic exposure control and automatic tube potential selection in low-dose cerebrospinal fluid shunt head CT.

    Science.gov (United States)

    Wallace, Adam N; Vyhmeister, Ross; Bagade, Swapnil; Chatterjee, Arindam; Hicks, Brandon; Ramirez-Giraldo, Juan Carlos; McKinstry, Robert C

    2015-06-01

    Cerebrospinal fluid shunts are primarily used for the treatment of hydrocephalus. Shunt complications may necessitate multiple non-contrast head CT scans resulting in potentially high levels of radiation dose starting at an early age. A new head CT protocol using automatic exposure control and automated tube potential selection has been implemented at our institution to reduce radiation exposure. The purpose of this study was to evaluate the reduction in radiation dose achieved by this protocol compared with a protocol with fixed parameters. A retrospective sample of 60 non-contrast head CT scans assessing for cerebrospinal fluid shunt malfunction was identified, 30 of which were performed with each protocol. The radiation doses of the two protocols were compared using the volume CT dose index and dose length product. The diagnostic acceptability and quality of each scan were evaluated by three independent readers. The new protocol lowered the average volume CT dose index from 15.2 to 9.2 mGy representing a 39 % reduction (P < 0.01; 95 % CI 35-44 %) and lowered the dose length product from 259.5 to 151.2 mGy/cm representing a 42 % reduction (P < 0.01; 95 % CI 34-50 %). The new protocol produced diagnostically acceptable scans with comparable image quality to the fixed parameter protocol. A pediatric shunt non-contrast head CT protocol using automatic exposure control and automated tube potential selection reduced patient radiation dose compared with a fixed parameter protocol while producing diagnostic images of comparable quality.

  9. An optimal control method for fluid structure interaction systems via adjoint boundary pressure

    Science.gov (United States)

    Chirco, L.; Da Vià, R.; Manservisi, S.

    2017-11-01

    In recent year, in spite of the computational complexity, Fluid-structure interaction (FSI) problems have been widely studied due to their applicability in science and engineering. Fluid-structure interaction systems consist of one or more solid structures that deform by interacting with a surrounding fluid flow. FSI simulations evaluate the tensional state of the mechanical component and take into account the effects of the solid deformations on the motion of the interior fluids. The inverse FSI problem can be described as the achievement of a certain objective by changing some design parameters such as forces, boundary conditions and geometrical domain shapes. In this paper we would like to study the inverse FSI problem by using an optimal control approach. In particular we propose a pressure boundary optimal control method based on Lagrangian multipliers and adjoint variables. The objective is the minimization of a solid domain displacement matching functional obtained by finding the optimal pressure on the inlet boundary. The optimality system is derived from the first order necessary conditions by taking the Fréchet derivatives of the Lagrangian with respect to all the variables involved. The optimal solution is then obtained through a standard steepest descent algorithm applied to the optimality system. The approach presented in this work is general and could be used to assess other objective functionals and controls. In order to support the proposed approach we perform a few numerical tests where the fluid pressure on the domain inlet controls the displacement that occurs in a well defined region of the solid domain.

  10. DOE Fundamentals Handbook: Thermodynamics, Heat Transfer, and Fluid Flow, Volume 1

    International Nuclear Information System (INIS)

    1992-06-01

    The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the thermal sciences. The handbook includes information on thermodynamics and the properties of fluids; the three modes of heat transfer -- conduction, convection, and radiation; and fluid flow, and the energy relationships in fluid systems. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility fluid systems

  11. DOE Fundamentals Handbook: Thermodynamics, Heat Transfer, and Fluid Flow, Volume 3

    International Nuclear Information System (INIS)

    1992-06-01

    The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the thermal sciences. The handbook includes information on thermodynamics and the properties of fluids; the three modes of heat transfer -- conduction, convection, and radiation; and fluid flow, and the energy relationships in fluid systems. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility fluid systems

  12. DOE Fundamentals Handbook: Thermodynamics, Heat Transfer, and Fluid Flow, Volume 2

    International Nuclear Information System (INIS)

    1992-06-01

    The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the thermal sciences. The handbook includes information on thermodynamics and the properties of fluids; the three modes of heat transfer -- conduction, convection, and radiation; and fluid flow, and the energy relationships in fluid systems. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility fluid systems

  13. Bioimpedance Spectroscopy for Assessment of Volume Status in Patients before and after General Anaesthesia

    Science.gov (United States)

    Ernstbrunner, Matthäus; Kostner, Lisa; Kimberger, Oliver; Wabel, Peter; Säemann, Marcus; Markstaller, Klaus; Fleischmann, Edith; Kabon, Barbara; Hecking, Manfred

    2014-01-01

    Background Technically assisted assessment of volume status before surgery may be useful to direct intraoperative fluid administration. We therefore tested a recently developed whole-body bioimpedance spectroscopy device to determine pre- to postoperative fluid distribution. Methods Using a three-compartment physiologic tissue model, the body composition monitor (BCM, Fresenius Medical Care, Germany) measures total body fluid volume, extracellular volume, intracellular volume and fluid overload as surplus or deficit of ‘normal’ extracellular volume. BCM-measurements were performed before and after standardized general anaesthesia for gynaecological procedures (laparotomies, laparoscopies and vaginal surgeries). BCM results were blinded to the attending anaesthesiologist and data analysed using the 2-sided, paired Student’s t-test and multiple linear regression. Results In 71 females aged 45±15 years with body weight 67±13 kg and duration of anaesthesia 154±68 min, pre- to postoperative fluid overload increased from −0.7±1.1 L to 0.1±1.0 L, corresponding to −5.1±7.5% and 0.8±6.7% of normal extracellular volume, respectively (both p<0.001), after patients had received 1.9±0.9 L intravenous crystalloid fluid. Perioperative urinary excretion was 0.4±0.3 L. The increase in extracellular volume was paralleled by an increase in total body fluid volume, while intracellular volume increased only slightly and without reaching statistical significance (p = 0.15). Net perioperative fluid balance (administered fluid volume minus urinary excretion) was significantly associated with change in extracellular volume (r2 = 0.65), but was not associated with change in intracellular volume (r2 = 0.01). Conclusions Routine intraoperative fluid administration results in a significant, and clinically meaningful increase in the extracellular compartment. BCM-measurements yielded plausible results and may become useful to guide intraoperative fluid therapy in

  14. Episodic Tremor and Slip Explained by Fluid-Enhanced Microfracturing and Sealing

    Science.gov (United States)

    Bernaudin, M.; Gueydan, F.

    2018-04-01

    Episodic tremor and slow-slip events at the deep extension of plate boundary faults illuminate seismic to aseismic processes around the brittle-ductile transition. These events occur in volumes characterized by overpressurized fluids and by near failure shear stress conditions. We present a new modeling approach based on a ductile grain size-sensitive rheology with microfracturing and sealing, which provides a mechanical and field-based explanation of such phenomena. We also model pore fluid pressure variation as a function of changes in porosity/permeability and strain rate-dependent fluid pumping. The fluid-enhanced dynamic evolution of microstructures defines cycles of ductile strain localization and implies increase in pore fluid pressure. We propose that slow-slip events are ductile processes related to transient strain localization, while nonvolcanic tremor corresponds to fracturing of the whole rock at the peak of pore fluid pressure. Our model shows that the availability of fluids and the efficiency of fluid pumping control the occurrence and the P-T conditions of episodic tremor and slip.

  15. A Promising Material by Using Residue Waste from Bisphenol A Manufacturing to Prepare Fluid-Loss-Control Additive in Oil Well Drilling Fluid

    Directory of Open Access Journals (Sweden)

    Zhi-Lei Zhang

    2013-01-01

    Full Text Available The residues mixture from Bisphenol A manufacturing process was analyzed. Fourier transform infrared (FTIR spectroscopy, gas chromatography-mass spectrometry (GC-MS, and nuclear magnetic resonance (NMR were used to characterize the residues. The results indicated that the residues were complex mixture of several molecules. 3-(2-Hydroxyphenyl-1,1,3-trimethyl-2,3-dihydro-1H-inden-5-ol and phenol were the main components of the residues. The technical feasibility of using it as phenol replacement in fluid-loss-control additive production was also investigated. The fluid-loss-control capacity of the novel additive was systematically investigated. It was discovered that the well fluid-loss performance of the prepared additive can be achieved, especially at high temperature.

  16. An optimal control problem for controlling the cell volume in dehydration and rehydration process

    Energy Technology Data Exchange (ETDEWEB)

    Chenghung Huang; Tetsung Chen [National Cheng Kung Univ., Dept. of Systems and Naval Mechatronic Engineering, Tainan (Taiwan)

    2004-08-01

    An optimal control algorithm utilizing the conjugate gradient method (CGM) of minimization is applied successfully in the present study in determining the optimal boundary control function for a diffusion-limited cell model based on the desired cell volume. The validity of the present optimal control analysis is examined by means of numerical experiments. Different desired cell volume for dehydration, rehydration and their combination are given in three test cases with different weighting coefficients and the corresponding optimal control functions are determined. The results show that the optimal boundary control functions can be obtained with an arbitrary initial guess within one second CPU time on a Pentium III-600 MHz PC. (Author)

  17. Plasma Volume Expansion Resulting from Intravenous Glucose Tolerance Test

    Directory of Open Access Journals (Sweden)

    Robert G. Hahn

    2011-01-01

    Full Text Available Objective. To quantify the degree of plasma volume expansion that occurs during an intravenous glucose tolerance test (IVGTT. Methods. Twenty healthy volunteers (mean age, 28 years underwent IVGTTs in which 0.3 g/kg of glucose 30% was injected as a bolus over 1 min. Twelve blood samples were collected over 75 min. The plasma glucose and blood hemoglobin concentrations were used to calculate the volume distribution (Vd and the clearance (CL of both the exogenous glucose and the injected fluid volume. Results. The IVGTT caused a virtually instant plasma volume expansion of 10%. The half-life of the glucose averaged 15 min and the plasma volume expansion 16 min. Correction of the fluid kinetic model for osmotic effects after injection reduced CL for the infused volume by 85%, which illustrates the strength of osmosis in allocating fluid back to the intracellular fluid space. Simulations indicated that plasma volume expansion can be reduced to 60% by increasing the injection time from 1 to 5 min and reducing the glucose load from 0.3 to 0.2 g/kg. Conclusion. A regular IVGTT induced an acute plasma volume expansion that peaked at 10% despite the fact that only 50–80 mL of fluid were administered.

  18. Introduction to mathematical fluid dynamics

    CERN Document Server

    Meyer, Richard E

    2010-01-01

    An introduction to the behavior of liquids and gases, this volume provides excellent coverage of kinematics, momentum principle, Newtonian fluid, rotating fluids, compressibility, and more. It is geared toward advanced undergraduate and graduate students of mathematics and general science, and it requires a background in calculus and vector analysis. 1971 edition.

  19. Annual review of fluid mechanics. Volume 15

    International Nuclear Information System (INIS)

    Van Dyke, M.; Wehausen, J.V.; Lumley, J.L.

    1983-01-01

    A survey of experimental results and analytical techniques for modelling various flows and the behavior of flows around flown-driven machinery is presented. Attention is given to analytical models for wind flows and power extraction by horizontal axis wind turbines. The phenomena occurring in the impact of compressible fluids with a solid body are described, as are the instabilities, pattern formation, and turbulence in flames. Homogeneous turbulence is explored, theories for autorotation by falling bodies are discussed, and attention is devoted to theoretical models for magneto-atmospheric waves and their presence in solar activity. The design characteristics of low Reynolds number airfoils are explored, and numerical and fluid mechanics formulations for integrable, chaotic, and turbulent vortex motion in two-dimensional flows are reviewed. Finally, measurements and models of turbulent wall jets for engineering purposes are examined

  20. Continuous infusion of small-volume fluid resuscitation in the treatment of combined uncontrolled hemorrhagic shock and head injury

    International Nuclear Information System (INIS)

    Hayrettin, O.; Yagmur, Y.; Tas, A.; Topcu, S.; Orak, M.

    2007-01-01

    To determine the effect of continuous limited fluid resuscitation on the hemodynamic response and survival in rats in a model of uncontrolled hemorrhage shock due to Massive Splenic Injury (MSI) and Head Injury (HI). Seventy Sprague-Dawley rats were used in this study. Group 1 rats (n=10) was sham-operated. In group 2 (n=10), only Massive Splenic Injury (MSI) was performed and untreated. In group 3 (n=10), only head injury (HI) was performed and untreated. In group 4 (n=10), HI and MSI were performed and were untreated. In group 5 (n=10), HI and MSI were performed and 15 minutes later treated with 7.5% NaCl. In group 6 (n=10), HI and MSI were performed, and rats were treated with Ringer's Lactate (RL) solution. In group 7 (n=10), HI and MSI were performed, rats were treated with 0.9 % NaCl. In groups 2,4,5,6 and 7 midline incision was reopened and splenectomy was performed at 45 minutes. In group 4 rats, Mean Arterial Pressure (MAP) was decreased from 104 +- 6.1 mmHg to 75 +- 19.5 mmHg at 15 minutes; heart rate decreased from 357+- 24.9 beats/min to 321 +- 62.1 beats/min and hematocrit decreased from 46 +- 1.3 % to 43 +- 2.5 % (p<0.01). Similar early changes in MAP, heart rate and hematocrit were observed in groups 5, 6, and 7, at 15 minutes. At 45,60 and 120 minutes, in fluid resuscitated rats (group 5,6,7) MAP, heart rate and hematocrit values were measured higher than group 2 and 4 (p<0.01 for all). At 120 min. in group 6, hematocrit was higher than group 4, 5 and 7, in group 6, total blood loss after splenectomy was calculated at 20 +- 2.4% of blood volume and was the best value compared to other fluid resuscitated group 5 and 7 (28% and 27% of blood volume) (p<0.01). Mortality was lower in all fluid resuscitated groups when compared to group 3 and 4 (p< 0.05). The median survival time was again higher in fluid resuscitated groups. Continuous infusion of 7.5% NaCl, RL and 0.9 % NaCl following uncontrolled hemorrhagic shock with massive splenic injury and

  1. Orthostatic stress is necessary to maintain the dynamic range of cardiovascular control in space

    Science.gov (United States)

    Baisch, J. F.; Wolfram, G.; Beck, L.; Drummer, C.; Stormer, I.; Buckey, J.; Blomqvist, G.

    2000-01-01

    In the upright position, gravity fills the low-pressure systems of human circulation with blood and interstitial fluid in the sections below the diaphragm. Without gravity one pressure component in the vessels disappears and the relationship between hydrostatic pressure and oncotic pressure, which regulates fluid passage across the capillary endothelium in the terminal vascular bed, shifts constantly. The visible consequences of this are a puffy face and "bird" legs. The plasma volume shrinks in space and the range of cardiovascular control is reduced. When they stand up for the first time after landing, 30-50% of astronauts suffer from orthostatic intolerance. It remains unclear whether microgravity impairs cardiovascular reflexes, or whether it is the altered volume status that causes the cardiovascular instability following space flight. Lower body negative pressure was used in several space missions to stimulate the cardiovascular reflexes before, during and after a space flight. The results show that cardiovascular reflexes are maintained in microgravity. However, the astronauts' volume status changed in space, towards a volume-retracted state, as measurements of fluid-regulating hormones have shown. It can be hypothesized that the control of circulation and body fluid homeostasis in humans is adapted to their upright posture in the Earth's gravitational field. Autonomic control regulates fluid distribution to maintain the blood pressure in that posture, which most of us have to cope with for two-thirds of the day. A determined amount of interstitial volume is necessary to maintain the dynamic range of cardiovascular control in the upright posture; otherwise orthostatic intolerance may occur more often.

  2. Haemodynamic-guided fluid administration for the prevention of contrast-induced acute kidney injury: the POSEIDON randomised controlled trial.

    Science.gov (United States)

    Brar, Somjot S; Aharonian, Vicken; Mansukhani, Prakash; Moore, Naing; Shen, Albert Y-J; Jorgensen, Michael; Dua, Aman; Short, Lindsay; Kane, Kevin

    2014-05-24

    The administration of intravenous fluid remains the cornerstone treatment for the prevention of contrast-induced acute kidney injury. However, no well-defined protocols exist to guide fluid administration in this treatment. We aimed to establish the efficacy of a new fluid protocol to prevent contrast-induced acute kidney injury. In this randomised, parallel-group, comparator-controlled, single-blind phase 3 trial, we assessed the efficacy of a new fluid protocol based on the left ventricular end-diastolic pressure for the prevention of contrast-induced acute kidney injury in patients undergoing cardiac catheterisation. The primary outcome was the occurrence of contrast-induced acute kidney injury, which was defined as a greater than 25% or greater than 0·5 mg/dL increase in serum creatinine concentration. Between Oct 10, 2010, and July 17, 2012, 396 patients aged 18 years or older undergoing cardiac catheterisation with an estimated glomerular filtration rate of 60 mL/min per 1·73 m(2) or less and one or more of several risk factors (diabetes mellitus, history of congestive heart failure, hypertension, or age older than 75 years) were randomly allocated in a 1:1 ratio to left ventricular end-diastolic pressure-guided volume expansion (n=196) or the control group (n=200) who received a standard fluid administration protocol. Four computer-generated concealed randomisation schedules, each with permuted block sizes of 4, were used for randomisation, and participants were allocated to the next sequential randomisation number by sealed opaque envelopes. Patients and laboratory personnel were masked to treatment assignment, but the physicians who did the procedures were not masked. Both groups received intravenous 0·9% sodium chloride at 3 mL/kg for 1 h before cardiac catheterisation. Analyses were by intention to treat. Adverse events were assessed at 30 days and 6 months and all such events were classified by staff who were masked to treatment assignment. This

  3. Adrenal gland volume measurement in septic shock and control patients: a pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Nougaret, Stephanie; Aufort, S.; Gallix, B. [Hopital Saint Eloi, Department of Abdominal Imaging, CHU Montpellier, Montpellier, Cedex 5 (France); Jung, B.; Chanques, G.; Jaber, S. [Hopital Saint Eloi, Intensive Care Unit, Department of Critical Care and Anesthesiology: DAR B, CHU Montpellier, Montpellier, Cedex 5 (France)

    2010-10-15

    To compare adrenal gland volume in septic shock patients and control patients by using semi-automated volumetry. Adrenal gland volume and its inter-observer variability were measured with tomodensitometry using semi-automated software in 104 septic shock patients and in 40 control patients. The volumes of control and septic shock patients were compared and the relationship between volume and outcome in intensive care was studied. The mean total volume of both adrenal glands was 7.2 {+-} 2.0 cm{sup 3} in control subjects and 13.3 {+-} 4.7 cm{sup 3} for total adrenal gland volume in septic shock patients (p < 0.0001). Measurement reproducibility was excellent with a concordance correlation coefficient value of 0.87. The increasing adrenal gland volume was associated with a higher rate of survival in intensive care. The present study reports that with semi-automated software, adrenal gland volume can be measured easily and reproducibly. Adrenal gland volume was found to be nearly double in sepsis compared with control patients. The absence of increased volume during sepsis would appear to be associated with a higher rate of mortality and may represent a prognosis factor which may help the clinician to guide their strategy. (orig.)

  4. Adrenal gland volume measurement in septic shock and control patients: a pilot study

    International Nuclear Information System (INIS)

    Nougaret, Stephanie; Aufort, S.; Gallix, B.; Jung, B.; Chanques, G.; Jaber, S.

    2010-01-01

    To compare adrenal gland volume in septic shock patients and control patients by using semi-automated volumetry. Adrenal gland volume and its inter-observer variability were measured with tomodensitometry using semi-automated software in 104 septic shock patients and in 40 control patients. The volumes of control and septic shock patients were compared and the relationship between volume and outcome in intensive care was studied. The mean total volume of both adrenal glands was 7.2 ± 2.0 cm 3 in control subjects and 13.3 ± 4.7 cm 3 for total adrenal gland volume in septic shock patients (p < 0.0001). Measurement reproducibility was excellent with a concordance correlation coefficient value of 0.87. The increasing adrenal gland volume was associated with a higher rate of survival in intensive care. The present study reports that with semi-automated software, adrenal gland volume can be measured easily and reproducibly. Adrenal gland volume was found to be nearly double in sepsis compared with control patients. The absence of increased volume during sepsis would appear to be associated with a higher rate of mortality and may represent a prognosis factor which may help the clinician to guide their strategy. (orig.)

  5. Fluids in crustal deformation: Fluid flow, fluid-rock interactions, rheology, melting and resources

    Science.gov (United States)

    Lacombe, Olivier; Rolland, Yann

    2016-11-01

    Fluids exert a first-order control on the structural, petrological and rheological evolution of the continental crust. Fluids interact with rocks from the earliest stages of sedimentation and diagenesis in basins until these rocks are deformed and/or buried and metamorphosed in orogens, then possibly exhumed. Fluid-rock interactions lead to the evolution of rock physical properties and rock strength. Fractures and faults are preferred pathways for fluids, and in turn physical and chemical interactions between fluid flow and tectonic structures, such as fault zones, strongly influence the mechanical behaviour of the crust at different space and time scales. Fluid (over)pressure is associated with a variety of geological phenomena, such as seismic cycle in various P-T conditions, hydrofracturing (including formation of sub-horizontal, bedding-parallel veins), fault (re)activation or gravitational sliding of rocks, among others. Fluid (over)pressure is a governing factor for the evolution of permeability and porosity of rocks and controls the generation, maturation and migration of economic fluids like hydrocarbons or ore forming hydrothermal fluids, and is therefore a key parameter in reservoir studies and basin modeling. Fluids may also help the crust partially melt, and in turn the resulting melt may dramatically change the rheology of the crust.

  6. Ouabain-Induced Cytoplasmic Vesicles and Their Role in Cell Volume Maintenance

    Directory of Open Access Journals (Sweden)

    M. A. Russo

    2015-01-01

    Full Text Available Cellular swelling is controlled by an active mechanism of cell volume regulation driven by a Na+/K+-dependent ATPase and by aquaporins which translocate water along the osmotic gradient. Na+/K+-pump may be blocked by ouabain, a digitalic derivative, by inhibition of ATP, or by drastic ion alterations of extracellular fluid. However, it has been observed that some tissues are still able to control their volume despite the presence of ouabain, suggesting the existence of other mechanisms of cell volume control. In 1977, by correlating electron microscopy observation with ion and water composition of liver slices incubated in different metabolic conditions in the presence or absence of ouabain, we observed that hepatocytes were able to control their volume extruding water and recovering ion composition in the presence of ouabain. In particular, hepatocytes were able to sequester ions and water in intracellular vesicles and then secrete them at the bile canaliculus pole. We named this “vesicular mechanism of cell volume control.” Afterward, this mechanism has been confirmed by us and other laboratories in several mammalian tissues. This review summarizes evidences regarding this mechanism, problems that are still pending, and questions that need to be answered. Finally, we shortly review the importance of cell volume control in some human pathological conditions.

  7. Control-Volume Analysis Of Thrust-Augmenting Ejectors

    Science.gov (United States)

    Drummond, Colin K.

    1990-01-01

    New method of analysis of transient flow in thrust-augmenting ejector based on control-volume formulation of governing equations. Considered as potential elements of propulsion subsystems of short-takeoff/vertical-landing airplanes.

  8. Small-Volume Injections: Evaluation of Volume Administration Deviation From Intended Injection Volumes.

    Science.gov (United States)

    Muffly, Matthew K; Chen, Michael I; Claure, Rebecca E; Drover, David R; Efron, Bradley; Fitch, William L; Hammer, Gregory B

    2017-10-01

    In the perioperative period, anesthesiologists and postanesthesia care unit (PACU) nurses routinely prepare and administer small-volume IV injections, yet the accuracy of delivered medication volumes in this setting has not been described. In this ex vivo study, we sought to characterize the degree to which small-volume injections (≤0.5 mL) deviated from the intended injection volumes among a group of pediatric anesthesiologists and pediatric postanesthesia care unit (PACU) nurses. We hypothesized that as the intended injection volumes decreased, the deviation from those intended injection volumes would increase. Ten attending pediatric anesthesiologists and 10 pediatric PACU nurses each performed a series of 10 injections into a simulated patient IV setup. Practitioners used separate 1-mL tuberculin syringes with removable 18-gauge needles (Becton-Dickinson & Company, Franklin Lakes, NJ) to aspirate 5 different volumes (0.025, 0.05, 0.1, 0.25, and 0.5 mL) of 0.25 mM Lucifer Yellow (LY) fluorescent dye constituted in saline (Sigma Aldrich, St. Louis, MO) from a rubber-stoppered vial. Each participant then injected the specified volume of LY fluorescent dye via a 3-way stopcock into IV tubing with free-flowing 0.9% sodium chloride (10 mL/min). The injected volume of LY fluorescent dye and 0.9% sodium chloride then drained into a collection vial for laboratory analysis. Microplate fluorescence wavelength detection (Infinite M1000; Tecan, Mannedorf, Switzerland) was used to measure the fluorescence of the collected fluid. Administered injection volumes were calculated based on the fluorescence of the collected fluid using a calibration curve of known LY volumes and associated fluorescence.To determine whether deviation of the administered volumes from the intended injection volumes increased at lower injection volumes, we compared the proportional injection volume error (loge [administered volume/intended volume]) for each of the 5 injection volumes using a linear

  9. Dissertation Defense Computational Fluid Dynamics Uncertainty Analysis for Payload Fairing Spacecraft Environmental Control Systems

    Science.gov (United States)

    Groves, Curtis Edward

    2014-01-01

    Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional "validation by test only" mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions. Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in "Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations". This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics

  10. Dissertation Defense: Computational Fluid Dynamics Uncertainty Analysis for Payload Fairing Spacecraft Environmental Control Systems

    Science.gov (United States)

    Groves, Curtis Edward

    2014-01-01

    Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional validation by test only mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions.Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations. This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions

  11. Volume and density changes of biological fluids with temperature

    Science.gov (United States)

    Hinghofer-Szalkay, H.

    1985-01-01

    The thermal expansion of human blood, plasma, ultrafiltrate, and erythrocycte concentration at temperatures in the range of 4-48 C is studied. The mechanical oscillator technique which has an accuracy of 1 x 10 to the -5 th g/ml is utilized to measure fluid density. The relationship between thermal expansion, density, and temperature is analyzed. The study reveals that: (1) thermal expansion increases with increasing temperature; (2) the magnitude of the increase declines with increasing temperature; (3) thermal expansion increases with density at temperatures below 40 C; and (4) the thermal expansion of intracellular fluid is greater than that of extracellular fluid in the temperature range of 4-10 C, but it is equal at temperatures greater than or equal to 40 C.

  12. Postoperative volume balance

    DEFF Research Database (Denmark)

    Frost, H; Mortensen, C.R.; Secher, Niels H.

    2017-01-01

    In healthy humans, stroke volume (SV) and cardiac output (CO) do not increase with expansion of the central blood volume by head-down tilt or administration of fluid. Here, we exposed 85 patients to Trendelenburg's position about one hour after surgery while cardiovascular variables were determin...

  13. International Congress of Fluid Mechanics, 3rd, Cairo, Egypt, Jan. 2-4, 1990, Proceedings. Volumes 1, 2, 3, & 4

    Science.gov (United States)

    Nayfeh, A. H.; Mobarak, A.; Rayan, M. Abou

    This conference presents papers in the fields of flow separation, unsteady aerodynamics, fluid machinery, boundary-layer control and stability, grid generation, vorticity dominated flows, and turbomachinery. Also considered are propulsion, waves and sound, rotor aerodynamics, computational fluid dynamics, Euler and Navier-Stokes equations, cavitation, mixing and shear layers, mixing layers and turbulent flows, and fluid machinery and two-phase flows. Also addressed are supersonic and reacting flows, turbulent flows, and thermofluids.

  14. International Congress of Fluid Mechanics, 3rd, Cairo, Egypt, Jan. 2-4, 1990, Proceedings. Volumes 1, 2, 3, 4

    Energy Technology Data Exchange (ETDEWEB)

    Nayfeh, A.H.; Mobarak, A.; Rayan, M.A.

    1990-01-01

    This conference presents papers in the fields of flow separation, unsteady aerodynamics, fluid machinery, boundary-layer control and stability, grid generation, vorticity dominated flows, and turbomachinery. Also considered are propulsion, waves and sound, rotor aerodynamics, computational fluid dynamics, Euler and Navier-Stokes equations, cavitation, mixing and shear layers, mixing layers and turbulent flows, and fluid machinery and two-phase flows. Also addressed are supersonic and reacting flows, turbulent flows, and thermofluids.

  15. Effects of immersion water temperature on whole-body fluid distribution in humans.

    Science.gov (United States)

    Stocks, J M; Patterson, M J; Hyde, D E; Jenkins, A B; Mittleman, K D; Taylor, N A S

    2004-09-01

    In this study, we quantified acute changes in the intracellular and extracellular fluid compartments during upright neutral- and cold-water immersion. We hypothesized that, during short-term cold immersion, fluid shifts would be wholly restricted to the extracellular space. Seven males were immersed 30 days apart: control (33.3 degrees SD 0.6 degrees C); and cold (18.1 degrees SD 0.3 degrees C). Posture was controlled for 4 h prior to a 60-min seated immersion. Significant reductions in terminal oesophageal (36.9 degrees +/- 0.1 degrees -36.3 degrees +/- 0.1 degrees C) and mean skin temperatures (30.3 degrees +/- 0.3 degrees -23.0 degrees +/- 0.3 degrees C) were observed during the cold, but not the control immersion. Both immersions elicited a reduction in intracellular fluid [20.17 +/- 6.02 mL kg(-1) (control) vs. 22.72 +/- 9.90 mL kg(-1)], while total body water (TBW) remained stable. However, significant plasma volume (PV) divergence was apparent between the trials at 60 min [12.5 +/- 1.0% (control) vs. 6.1 +/- 3.1%; P cold immersion, consistent with its role in PV regulation. We observed that, regardless of the direction of the PV change, both upright immersions elicited reductions in intracellular fluid. These observations have two implications. First, one cannot assume that PV changes reflect those of the entire extracellular compartment. Second, since immersion also increases interstitial fluid pressure, fluid leaving the interstitium must have been rapidly replaced by intracellular water.

  16. Control of fluid-containing rotating rigid bodies

    CERN Document Server

    Gurchenkov, Anatoly A

    2013-01-01

    This book is devoted to the study of the dynamics of rotating bodies with cavities containing liquid. Two basic classes of motions are analyzed: rotation and libration. Cases of complete and partial filling of cavities with ideal liquid and complete filling with viscous liquid are treated. The volume presents a method for obtaining relations between angular velocities perpendicular to main rotation and external force momentums, which are treated as control. The developed models and methods of solving dynamical problems as well as numerical methods for solving problems of optimal control can be

  17. Experimental analysis of fuzzy controlled energy efficient demand controlled ventilation economizer cycle variable air volume air conditioning system

    Directory of Open Access Journals (Sweden)

    Rajagopalan Parameshwaran

    2008-01-01

    Full Text Available In the quest for energy conservative building design, there is now a great opportunity for a flexible and sophisticated air conditioning system capable of addressing better thermal comfort, indoor air quality, and energy efficiency, that are strongly desired. The variable refrigerant volume air conditioning system provides considerable energy savings, cost effectiveness and reduced space requirements. Applications of intelligent control like fuzzy logic controller, especially adapted to variable air volume air conditioning systems, have drawn more interest in recent years than classical control systems. An experimental analysis was performed to investigate the inherent operational characteristics of the combined variable refrigerant volume and variable air volume air conditioning systems under fixed ventilation, demand controlled ventilation, and combined demand controlled ventilation and economizer cycle techniques for two seasonal conditions. The test results of the variable refrigerant volume and variable air volume air conditioning system for each techniques are presented. The test results infer that the system controlled by fuzzy logic methodology and operated under the CO2 based mechanical ventilation scheme, effectively yields 37% and 56% per day of average energy-saving in summer and winter conditions, respectively. Based on the experimental results, the fuzzy based combined system can be considered to be an alternative energy efficient air conditioning scheme, having significant energy-saving potential compared to the conventional constant air volume air conditioning system.

  18. Bioimpedance spectroscopy for assessment of volume status in patients before and after general anaesthesia.

    Directory of Open Access Journals (Sweden)

    Matthäus Ernstbrunner

    Full Text Available BACKGROUND: Technically assisted assessment of volume status before surgery may be useful to direct intraoperative fluid administration. We therefore tested a recently developed whole-body bioimpedance spectroscopy device to determine pre- to postoperative fluid distribution. METHODS: Using a three-compartment physiologic tissue model, the body composition monitor (BCM, Fresenius Medical Care, Germany measures total body fluid volume, extracellular volume, intracellular volume and fluid overload as surplus or deficit of 'normal' extracellular volume. BCM-measurements were performed before and after standardized general anaesthesia for gynaecological procedures (laparotomies, laparoscopies and vaginal surgeries. BCM results were blinded to the attending anaesthesiologist and data analysed using the 2-sided, paired Student's t-test and multiple linear regression. RESULTS: In 71 females aged 45 ± 15 years with body weight 67 ± 13 kg and Duration of anesthesia 154 ± 69 minutes [corrected] duration of anaesthesia 154 ± 68 min, pre- to postoperative fluid overload increased from -0.7 ± 1.1 L to 0.1 ± 1.0 L, corresponding to -5.1 ± 7.5% and 0.8 ± 6.7% of normal extracellular volume, respectively (both p<0.001, after patients had received 1.9 ± 0.9 L intravenous crystalloid fluid. Perioperative urinary excretion was 0.3 ± 0.2 L [corrected]. The increase in extracellular volume was paralleled by an increase in total body fluid volume, while intracellular volume increased only slightly and without reaching statistical significance (p = 0.15. Net perioperative fluid balance (administered fluid volume minus urinary excretion was significantly associated with change in extracellular volume (r(2 = 0.65, but was not associated with change in intracellular volume (r(2 = 0.01. CONCLUSIONS: Routine intraoperative fluid administration results in a significant, and clinically meaningful increase in the extracellular compartment. BCM-measurements yielded

  19. Flow-Control Unit For Nitrogen And Hydrogen Gases

    Science.gov (United States)

    Chang, B. J.; Novak, D. W.

    1990-01-01

    Gas-flow-control unit installed and removed as one piece replaces system that included nine separately serviced components. Unit controls and monitors flows of nitrogen and hydrogen gases. Designed for connection via fluid-interface manifold plate, reducing number of mechanical fluid-interface connections from 18 to 1. Unit provides increasing reliability, safety, and ease of maintenance, and for reducing weight, volume, and power consumption.

  20. The "chloride theory", a unifying hypothesis for renal handling and body fluid distribution in heart failure pathophysiology.

    Science.gov (United States)

    Kataoka, Hajime

    2017-07-01

    Body fluid volume regulation is a complex process involving the interaction of various afferent (sensory) and neurohumoral efferent (effector) mechanisms. Historically, most studies focused on the body fluid dynamics in heart failure (HF) status through control of the balance of sodium, potassium, and water in the body, and maintaining arterial circulatory integrity is central to a unifying hypothesis of body fluid regulation in HF pathophysiology. The pathophysiologic background of the biochemical determinants of vascular volume in HF status, however, has not been known. I recently demonstrated that changes in vascular and red blood cell volumes are independently associated with the serum chloride concentration, but not the serum sodium concentration, during worsening HF and its recovery. Based on these observations and the established central role of chloride in the renin-angiotensin-aldosterone system, I propose a unifying hypothesis of the "chloride theory" for HF pathophysiology, which states that changes in the serum chloride concentration are the primary determinant of changes in plasma volume and the renin-angiotensin-aldosterone system under worsening HF and therapeutic resolution of worsening HF. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. 2013 AAHA/AAFP fluid therapy guidelines for dogs and cats.

    Science.gov (United States)

    Davis, Harold; Jensen, Tracey; Johnson, Anthony; Knowles, Pamela; Meyer, Robert; Rucinsky, Renee; Shafford, Heidi

    2013-01-01

    Fluid therapy is important for many medical conditions in veterinary patients. The assessment of patient history, chief complaint, physical exam findings, and indicated additional testing will determine the need for fluid therapy. Fluid selection is dictated by the patient's needs, including volume, rate, fluid composition required, and location the fluid is needed (e.g., interstitial versus intravascular). Therapy must be individualized, tailored to each patient, and constantly re-evaluated and reformulated according to changes in status. Needs may vary according to the existence of either acute or chronic conditions, patient pathology (e.g., acid-base, oncotic, electrolyte abnormalities), and comorbid conditions. All patients should be assessed for three types of fluid disturbances: changes in volume, changes in content, and/or changes in distribution. The goals of these guidelines are to assist the clinician in prioritizing goals, selecting appropriate fluids and rates of administration, and assessing patient response to therapy. These guidelines provide recommendations for fluid administration for anesthetized patients and patients with fluid disturbances.

  2. Natural convection in nano-fluids: Are the thermophoresis and Brownian motion effects significant in nano-fluid heat transfer enhancement?

    International Nuclear Information System (INIS)

    Haddad, Zoubida; Abu-Nada, Eiyad; Oztop, Hakan F.; Mataoui, Amina

    2012-01-01

    Natural convection heat transfer and fluid flow of CuO-Water nano-fluids is studied using the Rayleigh-Benard problem. A two component non-homogenous equilibrium model is used for the nano-fluid that incorporates the effects of Brownian motion and thermophoresis. Variable thermal conductivity and variable viscosity are taken into account in this work. Finite volume method is used to solve governing equations. Results are presented by streamlines, isotherms, nano-particle distribution, local and mean Nusselt numbers and nano-particle profiles at top and bottom side. Comparison of two cases as absence of Brownian and thermophoresis effects and presence of Brownian and thermophoresis effects showed that higher heat transfer is formed with the presence of Brownian and thermophoresis effect. In general, by considering the role of thermophoresis and Brownian motion, an enhancement in heat transfer is observed at any volume fraction of nano-particles. However, the enhancement is more pronounced at low volume fraction of nano-particles and the heat transfer decreases by increasing nano-particle volume fraction. On the other hand, by neglecting the role of thermophoresis and Brownian motion, deterioration in heat transfer is observed and this deterioration elevates by increasing the volume fraction of nano-particles. (authors)

  3. A comparison of volume control and pressure-regulated volume control ventilation in acute respiratory failure

    Science.gov (United States)

    Guldager, Henrik; Nielsen, Soeren L; Carl, Peder; Soerensen, Mogens B

    1997-01-01

    Background: The aim of this study was to test the hypothesis that a new mode of ventilation (pressure-regulated volume control; PRVC) is associated with improvements in respiratory mechanics and outcome when compared with conventional volume control (VC) ventilation in patients with acute respiratory failure. We conducted a randomised, prospective, open, cross over trial on 44 patients with acute respiratory failure in the general intensive care unit of a university hospital. After a stabilization period of 8 h, a cross over trial of 2 × 2 h was conducted. Apart from the PRVC/VC mode, ventilator settings were comparable. The following parameters were recorded for each patient: days on ventilator, failure in the assigned mode of ventilation (peak inspiratory pressure > 50 cmH2O) and survival. Results: In the crossover trial, peak inspiratory pressure was significantly lower using PRVC than with VC (20 cmH2O vs 24 cmH2O, P < 0.0001). No other statistically significant differences were found. Conclusions: Peak inspiratory pressure was significantly lower during PRVC ventilation than during VC ventilation, and thus PRVC may be superior to VC in certain patients. However, in this small group of patients, we could not demonstrate that PRVC improved outcome. PMID:11056699

  4. AqSo_NaCl: Computer program to calculate p-T-V-x properties in the H2O-NaCl fluid system applied to fluid inclusion research and pore fluid calculation

    Science.gov (United States)

    Bakker, Ronald J.

    2018-06-01

    The program AqSo_NaCl has been developed to calculate pressure - molar volume - temperature - composition (p-V-T-x) properties, enthalpy, and heat capacity of the binary H2O-NaCl system. The algorithms are designed in BASIC within the Xojo programming environment, and can be operated as stand-alone project with Macintosh-, Windows-, and Unix-based operating systems. A series of ten self-instructive interfaces (modules) are developed to calculate fluid inclusion properties and pore fluid properties. The modules may be used to calculate properties of pure NaCl, the halite-liquidus, the halite-vapourus, dew-point and bubble-point curves (liquid-vapour), critical point, and SLV solid-liquid-vapour curves at temperatures above 0.1 °C (with halite) and below 0.1 °C (with ice or hydrohalite). Isochores of homogeneous fluids and unmixed fluids in a closed system can be calculated and exported to a.txt file. Isochores calculated for fluid inclusions can be corrected according to the volumetric properties of quartz. Microthermometric data, i.e. dissolution temperatures and homogenization temperatures, can be used to calculated bulk fluid properties of fluid inclusions. Alternatively, in the absence of total homogenization temperature the volume fraction of the liquid phase in fluid inclusions can be used to obtain bulk properties.

  5. Non-Invasive Electromagnetic Skin Patch Sensor to Measure Intracranial Fluid–Volume Shifts

    Directory of Open Access Journals (Sweden)

    Jacob Griffith

    2018-03-01

    Full Text Available Elevated intracranial fluid volume can drive intracranial pressure increases, which can potentially result in numerous neurological complications or death. This study’s focus was to develop a passive skin patch sensor for the head that would non-invasively measure cranial fluid volume shifts. The sensor consists of a single baseline component configured into a rectangular planar spiral with a self-resonant frequency response when impinged upon by external radio frequency sweeps. Fluid volume changes (10 mL increments were detected through cranial bone using the sensor on a dry human skull model. Preliminary human tests utilized two sensors to determine feasibility of detecting fluid volume shifts in the complex environment of the human body. The correlation between fluid volume changes and shifts in the first resonance frequency using the dry human skull was classified as a second order polynomial with R2 = 0.97. During preliminary and secondary human tests, a ≈24 MHz and an average of ≈45.07 MHz shifts in the principal resonant frequency were measured respectively, corresponding to the induced cephalad bio-fluid shifts. This electromagnetic resonant sensor may provide a non-invasive method to monitor shifts in fluid volume and assist with medical scenarios including stroke, cerebral hemorrhage, concussion, or monitoring intracranial pressure.

  6. Automatic, accurate, and reproducible segmentation of the brain and cerebro-spinal fluid in T1-weighted volume MRI scans and its application to serial cerebral and intracranial volumetry

    Science.gov (United States)

    Lemieux, Louis

    2001-07-01

    A new fully automatic algorithm for the segmentation of the brain and cerebro-spinal fluid (CSF) from T1-weighted volume MRI scans of the head was specifically developed in the context of serial intra-cranial volumetry. The method is an extension of a previously published brain extraction algorithm. The brain mask is used as a basis for CSF segmentation based on morphological operations, automatic histogram analysis and thresholding. Brain segmentation is then obtained by iterative tracking of the brain-CSF interface. Grey matter (GM), white matter (WM) and CSF volumes are calculated based on a model of intensity probability distribution that includes partial volume effects. Accuracy was assessed using a digital phantom scan. Reproducibility was assessed by segmenting pairs of scans from 20 normal subjects scanned 8 months apart and 11 patients with epilepsy scanned 3.5 years apart. Segmentation accuracy as measured by overlap was 98% for the brain and 96% for the intra-cranial tissues. The volume errors were: total brain (TBV): -1.0%, intra-cranial (ICV):0.1%, CSF: +4.8%. For repeated scans, matching resulted in improved reproducibility. In the controls, the coefficient of reliability (CR) was 1.5% for the TVB and 1.0% for the ICV. In the patients, the Cr for the ICV was 1.2%.

  7. Method and apparatus for preventing agglomeration within fluid hydrocarbons

    International Nuclear Information System (INIS)

    Woodbridge, D.D.

    1979-01-01

    This invention relates to a process for treating a fluid hydrocarbon fuel for retarding the agglomeration between particles thereof and for retarding the growth of bacteria and fungi therein. The process includes that steps of transporting a plurality of unit volumes of said fluid hydrocarbon fuel through an irradiating location and irradiating each unit of the plurality of unit volumes at the irradiating location with either neutron or gamma radiation. An apparatus for treating the fluid hydrocarbon fuels with the nuclear radiation also is provided. The apparatus includes a generally conical central irradiating cavity which is surrounded by a spiral outer irradiating cavity. The fluid hydrocarbon fuel is transported through the cavities while being irradiated by the nuclear radiation

  8. Right ventricular function during one-lung ventilation: effects of pressure-controlled and volume-controlled ventilation.

    Science.gov (United States)

    Al Shehri, Abdullah M; El-Tahan, Mohamed R; Al Metwally, Roshdi; Qutub, Hatem; El Ghoneimy, Yasser F; Regal, Mohamed A; Zien, Haytham

    2014-08-01

    To test the effects of pressure-controlled (PCV) and volume-controlled (VCV) ventilation during one-lung ventilation (OLV) for thoracic surgery on right ventricular (RV) function. A prospective, randomized, double-blind, controlled, crossover study. A single university hospital. Fourteen pairs of consecutive patients scheduled for elective thoracotomy. Patients were assigned randomly to ventilate the dependent lung with PCV or VCV mode, each in a randomized crossover order using tidal volume of 6 mL/kg, I: E ratio 1: 2.5, positive end-expiratory pressure (PEEP) of 5 cm H2O and respiratory rate adjusted to maintain normocapnia. Intraoperative changes in RV function (systolic and early diastolic tricuspid annular velocity (TAV), end-systolic volume (ESV), end-diastolic volume (EDV) and fractional area changes (FAC)), airway pressures, compliance and oxygenation index were recorded. The use of PCV during OLV resulted in faster systolic (10.1±2.39 vs. 5.8±1.67 cm/s, respectively), diastolic TAV (9.2±1.99 vs. 4.6±1.42 cm/s, respectively) (prights reserved.

  9. Bench test evaluation of volume delivered by modern ICU ventilators during volume-controlled ventilation.

    Science.gov (United States)

    Lyazidi, Aissam; Thille, Arnaud W; Carteaux, Guillaume; Galia, Fabrice; Brochard, Laurent; Richard, Jean-Christophe M

    2010-12-01

    During volume-controlled ventilation, part of the volume delivered is compressed into the circuit. To correct for this phenomenon, modern ventilators use compensation algorithms. Humidity and temperature also influence the delivered volume. In a bench study at a research laboratory in a university hospital, we compared nine ICU ventilators equipped with compensation algorithms, one with a proximal pneumotachograph and one without compensation. Each ventilator was evaluated under normal, obstructive, and restrictive conditions of respiratory mechanics. For each condition, three tidal volumes (V (T)) were set (300, 500, and 800 ml), with and without an inspiratory pause. The insufflated volume and the volume delivered at the Y-piece were measured independently, without a humidification device, under ambient temperature and pressure and dry gas conditions. We computed the actually delivered V (T) to the lung under body temperature and pressure and saturated water vapour conditions (BTPS). For target V (T) values of 300, 500, and 800 ml, actually delivered V (T) under BTPS conditions ranged from 261 to 396 ml (-13 to +32%), from 437 to 622 ml (-13 to +24%), and from 681 to 953 ml (-15 to +19%), respectively (p ventilators.

  10. Optimization of MR fluid Yield stress using Taguchi Method and Response Surface Methodology Techniques

    Science.gov (United States)

    Mangal, S. K.; Sharma, Vivek

    2018-02-01

    Magneto rheological fluids belong to a class of smart materials whose rheological characteristics such as yield stress, viscosity etc. changes in the presence of applied magnetic field. In this paper, optimization of MR fluid constituents is obtained with on-state yield stress as response parameter. For this, 18 samples of MR fluids are prepared using L-18 Orthogonal Array. These samples are experimentally tested on a developed & fabricated electromagnet setup. It has been found that the yield stress of MR fluid mainly depends on the volume fraction of the iron particles and type of carrier fluid used in it. The optimal combination of the input parameters for the fluid are found to be as Mineral oil with a volume percentage of 67%, iron powder of 300 mesh size with a volume percentage of 32%, oleic acid with a volume percentage of 0.5% and tetra-methyl-ammonium-hydroxide with a volume percentage of 0.7%. This optimal combination of input parameters has given the on-state yield stress as 48.197 kPa numerically. An experimental confirmation test on the optimized MR fluid sample has been then carried out and the response parameter thus obtained has found matching quite well (less than 1% error) with the numerically obtained values.

  11. Unsteady force estimation using a Lagrangian drift-volume approach

    Science.gov (United States)

    McPhaden, Cameron J.; Rival, David E.

    2018-04-01

    A novel Lagrangian force estimation technique for unsteady fluid flows has been developed, using the concept of a Darwinian drift volume to measure unsteady forces on accelerating bodies. The construct of added mass in viscous flows, calculated from a series of drift volumes, is used to calculate the reaction force on an accelerating circular flat plate, containing highly-separated, vortical flow. The net displacement of fluid contained within the drift volumes is, through Darwin's drift-volume added-mass proposition, equal to the added mass of the plate and provides the reaction force of the fluid on the body. The resultant unsteady force estimates from the proposed technique are shown to align with the measured drag force associated with a rapid acceleration. The critical aspects of understanding unsteady flows, relating to peak and time-resolved forces, often lie within the acceleration phase of the motions, which are well-captured by the drift-volume approach. Therefore, this Lagrangian added-mass estimation technique opens the door to fluid-dynamic analyses in areas that, until now, were inaccessible by conventional means.

  12. Magmatic densities control erupted volumes in Icelandic volcanic systems

    Science.gov (United States)

    Hartley, Margaret; Maclennan, John

    2018-04-01

    Magmatic density and viscosity exert fundamental controls on the eruptibility of magmas. In this study, we investigate the extent to which magmatic physical properties control the eruptibility of magmas from Iceland's Northern Volcanic Zone (NVZ). By studying subaerial flows of known age and volume, we are able to directly relate erupted volumes to magmatic physical properties, a task that has been near-impossible when dealing with submarine samples dredged from mid-ocean ridges. We find a strong correlation between magmatic density and observed erupted volumes on the NVZ. Over 85% of the total volume of erupted material lies close to a density and viscosity minimum that corresponds to the composition of basalts at the arrival of plagioclase on the liquidus. These magmas are buoyant with respect to the Icelandic upper crust. However, a number of small-volume eruptions with densities greater than typical Icelandic upper crust are also found in Iceland's neovolcanic zones. We use a simple numerical model to demonstrate that the eruption of magmas with higher densities and viscosities is facilitated by the generation of overpressure in magma chambers in the lower crust and uppermost mantle. This conclusion is in agreement with petrological constraints on the depths of crystallisation under Iceland.

  13. Magmatic Densities Control Erupted Volumes in Icelandic Volcanic Systems

    Directory of Open Access Journals (Sweden)

    Margaret Hartley

    2018-04-01

    Full Text Available Magmatic density and viscosity exert fundamental controls on the eruptibility of magmas. In this study, we investigate the extent to which magmatic physical properties control the eruptibility of magmas from Iceland's Northern Volcanic Zone (NVZ. By studying subaerial flows of known age and volume, we are able to directly relate erupted volumes to magmatic physical properties, a task that has been near-impossible when dealing with submarine samples dredged from mid-ocean ridges. We find a strong correlation between magmatic density and observed erupted volumes on the NVZ. Over 85% of the total volume of erupted material lies close to a density and viscosity minimum that corresponds to the composition of basalts at the arrival of plagioclase on the liquidus. These magmas are buoyant with respect to the Icelandic upper crust. However, a number of small-volume eruptions with densities greater than typical Icelandic upper crust are also found in Iceland's neovolcanic zones. We use a simple numerical model to demonstrate that the eruption of magmas with higher densities and viscosities is facilitated by the generation of overpressure in magma chambers in the lower crust and uppermost mantle. This conclusion is in agreement with petrological constraints on the depths of crystallization under Iceland.

  14. Review of a fluid resuscitation protocol: "fluid creep" is not due to nursing error.

    Science.gov (United States)

    Faraklas, Iris; Cochran, Amalia; Saffle, Jeffrey

    2012-01-01

    Recent reviews of burn resuscitation have included the suggestion that "fluid creep" may be influenced by practitioner error. Our center uses a nursing-driven resuscitation protocol that permits titration of fluid based on hourly urine output, including the addition of colloid when patients fail to respond appropriately. The purpose of this study was to examine protocol compliance. We reviewed 140 patients (26 children) with burns of ≥20% TBSA who received protocol-directed resuscitation from 2005 to 2010. We compared each patient's actual hourly fluid infusion with that predicted by the protocol. Sixty-seven patients (48%) completed resuscitation using crystalloid alone, whereas 73 patients required colloid supplementation. Groups did not differ in age, gender, weight, or time from injury to admission. Patients requiring colloid had larger median total burns (33.0 vs 23.5% TBSA) and full-thickness burns (15.5 vs 4.5% TBSA) and more inhalation injuries (60.3 vs 28.4%; P patients had median predicted requirements of 5.4 ml/kg/%TBSA. Crystalloid-only patients required fluid volumes close to Parkland predictions (4.7 ml/kg/%TBSA), whereas patients who received colloid required more fluid than the predicted volume (7.5 ml/kg/%TBSA). However, the hourly difference between the predicted and received fluids was a median of only 1.0% (interquartile range: -6.1 to 11.1%) and did not differ between groups. Pediatric patients had greater calculated differences than adults. Crystalloid patients exhibited higher urine outputs than colloid patients until colloid was started, suggesting that early over-resuscitation did not contribute to fluid creep. Adherence to our protocol for burn shock resuscitation was excellent overall. Fluid creep exhibited by more seriously injured patients was not due to nurses' failure to follow the protocol. This review has illuminated some opportunities for practice improvement, possibly using a computerized decision support system.

  15. Periodic flow patterns of the magnetic fluid in microchannel

    International Nuclear Information System (INIS)

    Chang, C.-W.; Cheng, Y.-T.; Tsai, C.-Y.; Chien, J.-H.; Wang, P.-Y.; Chen, P.-H.

    2007-01-01

    In this study, of interests are the periodic flow patterns of the oil-based magnetic fluid in microchannels. A microfluidic chip is made of poly-dimethylsiloxane (PDMS) and contains cross-shape microchannels. The microchannels are 1000 μm in width and 200 μm in depth. A syringe pump was used to drive the fluids. Periodic flow patterns were seen and the slugs of magnetic fluid and DI water were generated. The operating factors discussed in the present work are the flow rates and the magnetic field. The frequency of generation of the slugs increases with increase in the flow rates. Besides, by settling the permanent magnet around the microchannel, the periods of the slug generation are changed. Different positions of the magnet lead to different periods for generating the slugs. By adjusting operating conditions, to control the frequency and the volume of the slugs is practical

  16. Analysis and Testing of Chain Characteristics and Rheological Properties for Magnetorheological Fluid

    Directory of Open Access Journals (Sweden)

    Song Chen

    2013-01-01

    Full Text Available Digital holographic microscopy is presented in this study, which can measure the magnetorheological (MR fluid in different volume fractions of particles and different magnetic field strengths. Based on the chain structure of magnetic particle under applied magnetic field, the relationships between shear yield stress, magnetic field, size, and volume fraction of MR fluid in two parallel discs are established. In this experiment, we choose three MR fluid samples to check the rheological properties of MR fluid and to obtain the material parameters with the test equipment of MR fluid; the conclusion is effective.

  17. Neural Control Mechanisms and Body Fluid Homeostasis

    Science.gov (United States)

    Johnson, Alan Kim

    1998-01-01

    The goal of the proposed research was to study the nature of afferent signals to the brain that reflect the status of body fluid balance and to investigate the central neural mechanisms that process this information for the activation of response systems which restore body fluid homeostasis. That is, in the face of loss of fluids from intracellular or extracellular fluid compartments, animals seek and ingest water and ionic solutions (particularly Na(+) solutions) to restore the intracellular and extracellular spaces. Over recent years, our laboratory has generated a substantial body of information indicating that: (1) a fall in systemic arterial pressure facilitates the ingestion of rehydrating solutions and (2) that the actions of brain amine systems (e.g., norepinephrine; serotonin) are critical for precise correction of fluid losses. Because both acute and chronic dehydration are associated with physiological stresses, such as exercise and sustained exposure to microgravity, the present research will aid in achieving a better understanding of how vital information is handled by the nervous system for maintenance of the body's fluid matrix which is critical for health and well-being.

  18. Resistance exercise-induced fluid shifts: change in active muscle size and plasma volume

    Science.gov (United States)

    Ploutz-Snyder, L. L.; Convertino, V. A.; Dudley, G. A.

    1995-01-01

    The purpose of this study was to test the hypothesis that the reduction in plasma volume (PV) induced by resistance exercise reflects fluid loss to the extravascular space and subsequently selective increase in cross-sectional area (CSA) of active but not inactive skeletal muscle. We compared changes in active and inactive muscle CSA and PV after barbell squat exercise. Magnetic resonance imaging (MRI) was used to quantify muscle involvement in exercise and to determine CSA of muscle groups or individual muscles [vasti (VS), adductor (Add), hamstring (Ham), and rectus femoris (RF)]. Muscle involvement in exercise was determined using exercise-induced contrast shift in spin-spin relaxation time (T2)-weighted MR images immediately postexercise. Alterations in muscle size were based on the mean CSA of individual slices. Hematocrit, hemoglobin, and Evans blue dye were used to estimate changes in PV. Muscle CSA and PV data were obtained preexercise and immediately postexercise and 15 and 45 min thereafter. A hierarchy of muscle involvement in exercise was found such that VS > Add > Ham > RF, with the Ham and RF showing essentially no involvement. CSA of the VS and Add muscle groups were increased 10 and 5%, respectively, immediately after exercise in each thigh with no changes in Ham and RF CSA. PV was decreased 22% immediately following exercise. The absolute loss of PV was correlated (r2 = 0.75) with absolute increase in muscle CSA immediately postexercise, supporting the notion that increased muscle size after resistance exercise reflects primarily fluid movement from the vascular space into active but not inactive muscle.

  19. Physics through the 1990s: Plasmas and fluids

    International Nuclear Information System (INIS)

    1986-01-01

    This survey of plasma physics and fluid physics briefly describes present activities and recent major accomplishments. It also identifies research areas that are likely to lead to advances during the next decade. Plasma physics is divided into three major areas: general plasma physics, fusion plasma confinement and heating, and space and astrophysical plasmas. Fluid physics is treated as one topic, although it is an extremely diverse research field ranging from biological fluid dynamics to ship and aircraft performance to geological fluid dynamics. Subpanels, chosen for their technical expertise and scientific breadth, reviewed each of the four areas. The entire survey was coordinated and supervised by an Executive Committee, which is also responsible for the Executive Summary of this volume. Wherever possible, input from recent Advisory Committees was used, e.g., from the Magnetic Fusion Advisory Committee, the Space Science Board, and the Astronomy Survey Committee. This volume is organized as follows: An Introduction and Executive Summary that outlines (1) major findings and recommendations; (2) significant research accomplishments during the past decade and likely areas of future research emphasis; and (3) a brief summary of present funding levels, manpower resources, and institutional involvement; and the subpanel reports constitute Fluid Physics, General Plasma Physics, Fusion Plasma Confinement and Heating, and Space and Astrophysical Plasmas. An important conclusion of this survey is that both plasma physics and fluid physics are scientifically and intellectually well developed, and both ares are broad subdisciplines of physics. We therefore recommend that future physics surveys have separate volumes on the physics of plasmas and the physics of fluids

  20. CAREM-25. Purification and volume control system

    International Nuclear Information System (INIS)

    Acosta, Eduardo; Carlevaris, Rodolfo; Patrignani, Alberto; Chocron, Mauricio; Goya, Hector E.; Ortega, Daniel A.; Ramilo, Lucia B.

    2000-01-01

    The purification and volume control system has the following main functions: water level control inside reactor pressure vessel (RPR) in all the reactor operational modes, pressure control when the reactor operates in solid state, and maintenance of radiological, physical and chemical parameters of primary water. In case of Hot Shutdown operational mode and also after Scram the system is capable of extraction of nuclear decay heat. The design of the system is in accordance with the Requirements of ANSI/ ANS 51.1; 58.11 and 56.2 standards. (author)

  1. Physical therapy applications of MR fluids and intelligent control

    Science.gov (United States)

    Dong, Shufang; Lu, Ke-Qian; Sun, J. Q.; Rudolph, Katherine

    2005-05-01

    Resistance exercise has been widely reported to have positive rehabilitation effects for patients with neuromuscular and orthopaedic conditions. This paper presents an optimal design of magneto-rheological fluid dampers for variable resistance exercise devices. Adaptive controls for regulating the resistive force or torque of the device as well as the joint motion are presented. The device provides both isometric and isokinetic strength training for various human joints.

  2. AFDM: An Advanced Fluid-Dynamics Model

    International Nuclear Information System (INIS)

    Wilhelm, D.

    1990-09-01

    This volume describes the Advanced Fluid-Dynamics Model (AFDM) for topologies, flow regimes, and interfacial areas. The objective of these models is to provide values for the interfacial areas between all components existing in a computational cell. The interfacial areas are then used to evaluate the mass, energy, and momentum transfer between the components. A new approach has been undertaken in the development of a model to convect the interfacial areas of the discontinuous velocity fields in the three-velocity-field environment of AFDM. These interfacial areas are called convectible surface areas. The continuous and discontinuous components are chosen using volume fraction and levitation criteria. This establishes so-called topologies for which the convectible surface areas can be determined. These areas are functions of space and time. Solid particulates that are limited to being discontinuous within the bulk fluid are assumed to have a constant size. The convectible surface areas are subdivided to model contacts between two discontinuous components or discontinuous components and the structure. The models have been written for the flow inside of large pools. Therefore, the structure is tracked only as a boundary to the fluid volume without having a direct influence on velocity or volume fraction distribution by means of flow regimes or boundary layer models. 17 refs., 7 tabs., 18 figs

  3. Conservative fluid management prevents age-associated ventilator induced mortality.

    Science.gov (United States)

    Herbert, Joseph A; Valentine, Michael S; Saravanan, Nivi; Schneck, Matthew B; Pidaparti, Ramana; Fowler, Alpha A; Reynolds, Angela M; Heise, Rebecca L

    2016-08-01

    Approximately 800 thousand patients require mechanical ventilation in the United States annually with an in-hospital mortality rate of over 30%. The majority of patients requiring mechanical ventilation are over the age of 65 and advanced age is known to increase the severity of ventilator-induced lung injury (VILI) and in-hospital mortality rates. However, the mechanisms which predispose aging ventilator patients to increased mortality rates are not fully understood. Ventilation with conservative fluid management decreases mortality rates in acute respiratory distress patients, but to date there has been no investigation of the effect of conservative fluid management on VILI and ventilator associated mortality rates. We hypothesized that age-associated increases in susceptibility and incidence of pulmonary edema strongly promote age-related increases in ventilator associated mortality. 2month old and 20month old male C57BL6 mice were mechanically ventilated with either high tidal volume (HVT) or low tidal volume (LVT) for up to 4h with either liberal or conservative fluid support. During ventilation, lung compliance, total lung capacity, and hysteresis curves were quantified. Following ventilation, bronchoalveolar lavage fluid was analyzed for total protein content and inflammatory cell infiltration. Wet to dry ratios were used to directly measure edema in excised lungs. Lung histology was performed to quantify alveolar barrier damage/destruction. Age matched non-ventilated mice were used as controls. At 4h, both advanced age and HVT ventilation significantly increased markers of inflammation and injury, degraded pulmonary mechanics, and decreased survival rates. Conservative fluid support significantly diminished pulmonary edema and improved pulmonary mechanics by 1h in advanced age HVT subjects. In 4h ventilations, conservative fluid support significantly diminished pulmonary edema, improved lung mechanics, and resulted in significantly lower mortality rates in

  4. A field application of nanoparticle-based invert emulsion drilling fluids

    Energy Technology Data Exchange (ETDEWEB)

    Borisov, Alexey S.; Husein, Maen, E-mail: mhusein@ucalgary.ca [University of Calgary, Department of Chemical & Petroleum Engineering (Canada); Hareland, Geir [Oklahoma State University, Department of Chemical Engineering (United States)

    2015-08-15

    Application of nanotechnology in drilling fluids for the oil and gas industry has been a focus of several recent studies. A process for the in situ synthesis of nanoparticles (NPs) into drilling fluids has been developed previously in our group and showed that calcium-based NPs (CNPs) and iron-based NPs (INPs), respectively, with concentrations of 0.5–2.0 wt% can dramatically improve filtration properties of commercial drilling fluids in a laboratory environment. In this work, a modified process for the emulsion-based synthesis of NPs on a 20 m{sup 3} volume and its subsequent full-scale field testing are presented. Comparison between NP carrier fluids prepared under controlled environment in the laboratory and those prepared on a large scale in a mixing facility revealed very little variation in the main characteristics of the drilling fluid; including the size of the solid constituents. Transmission electron microscopy photographs suggest an average CNP particle size in the carrier fluid of 51 ± 11 nm. Results from the full-scale field test showed that total mud losses while drilling with CNP-based invert emulsion were on average 27 % lower than in the case of conventional fluids. This loss prevention falls within the range observed in the laboratory.

  5. PULSE RADIOLYSIS IN SUPERCRITICAL RARE GAS FLUIDS

    International Nuclear Information System (INIS)

    HOLROYD, R.

    2007-01-01

    Recently, supercritical fluids have become quite popular in chemical and semiconductor industries for applications in chemical synthesis, extraction, separation processes, and surface cleaning. These applications are based on: the high dissolving power due to density build-up around solute molecules, and the ability to tune the conditions of a supercritical fluid, such as density and temperature, that are most suitable for a particular reaction. The rare gases also possess these properties and have the added advantage of being supercritical at room temperature. Information about the density buildup around both charged and neutral species can be obtained from fundamental studies of volume changes in the reactions of charged species in supercritical fluids. Volume changes are much larger in supercritical fluids than in ordinary solvents because of their higher compressibility. Hopefully basic studies, such as discussed here, of the behavior of charged species in supercritical gases will provide information useful for the utilization of these solvents in industrial applications

  6. Simulation based engineering in fluid flow design

    CERN Document Server

    Rao, J S

    2017-01-01

    This volume offers a tool for High Performance Computing (HPC). A brief historical background on the subject is first given. Fluid Statics dealing with Pressure in fluids at rest, Buoyancy and Basics of Thermodynamics are next presented. The Finite Volume Method, the most convenient process for HPC, is explained in one-dimensional approach to diffusion with convection and pressure velocity coupling. Adiabatic, isentropic and supersonic flows in quasi-one dimensional flows in axisymmetric nozzles is considered before applying CFD solutions. Though the theory is restricted to one-dimensional cases, three-dimensional CFD examples are also given. Lastly, nozzle flows with normal shocks are presented using turbulence models. Worked examples and exercises are given in each chapter. Fluids transport thermal energy for its conversion to kinetic energy, thus playing a major role that is central to all heat engines. With the advent of rotating machinery in the 20th century, Fluid Engineering was developed in the form o...

  7. Modeling and Control of Magnetic Fluid Deformable Mirrors for Adaptive Optics Systems

    CERN Document Server

    Wu, Zhizheng; Ben Amara, Foued

    2013-01-01

    Modeling and Control of Magnetic Fluid Deformable Mirrors for Adaptive Optics Systems presents a novel design of wavefront correctors based on magnetic fluid deformable mirrors (MFDM) as well as corresponding control algorithms. The presented wavefront correctors are characterized by their linear, dynamic response. Various mirror surface shape control algorithms are presented along with experimental evaluations of the performance of the resulting adaptive optics systems. Adaptive optics (AO) systems are used in various fields of application to enhance the performance of optical systems, such as imaging, laser, free space optical communication systems, etc. This book is intended for undergraduate and graduate students, professors, engineers, scientists and researchers working on the design of adaptive optics systems and their various emerging fields of application. Zhizheng Wu is an associate professor at Shanghai University, China. Azhar Iqbal is a research associate at the University of Toronto, Canada. Foue...

  8. Fullerol ionic fluids

    KAUST Repository

    Fernandes, Nikhil

    2010-01-01

    We report for the first time an ionic fluid based on hydroxylated fullerenes (fullerols). The ionic fluid was synthesized by neutralizing the fully protonated fullerol with an amine terminated polyethylene/polypropylene oxide oligomer (Jeffamine®). The ionic fluid was compared to a control synthesized by mixing the partially protonated form (sodium form) of the fullerols with the same oligomeric amine in the same ratio as in the ionic fluids (20 wt% fullerol). In the fullerol fluid the ionic bonding significantly perturbs the thermal transitions and melting/crystallization behavior of the amine. In contrast, both the normalized heat of fusion and crystallization of the amine in the control are similar to those of the neat amine consistent with a physical mixture of the fullerols/amine with minimal interactions. In addition to differences in thermal behavior, the fullerol ionic fluid exhibits a complex viscoelastic behavior intermediate between the neat Jeffamine® (liquid-like) and the control (solid-like). © 2010 The Royal Society of Chemistry.

  9. Fullerol ionic fluids

    Science.gov (United States)

    Fernandes, Nikhil; Dallas, Panagiotis; Rodriguez, Robert; Bourlinos, Athanasios B.; Georgakilas, Vasilios; Giannelis, Emmanuel P.

    2010-09-01

    We report for the first time an ionic fluid based on hydroxylated fullerenes (fullerols). The ionic fluid was synthesized by neutralizing the fully protonated fullerol with an amine terminated polyethylene/polypropylene oxide oligomer (Jeffamine®). The ionic fluid was compared to a control synthesized by mixing the partially protonated form (sodium form) of the fullerols with the same oligomeric amine in the same ratio as in the ionic fluids (20 wt% fullerol). In the fullerol fluid the ionic bonding significantly perturbs the thermal transitions and melting/crystallization behavior of the amine. In contrast, both the normalized heat of fusion and crystallization of the amine in the control are similar to those of the neat amine consistent with a physical mixture of the fullerols/amine with minimal interactions. In addition to differences in thermal behavior, the fullerol ionic fluid exhibits a complex viscoelastic behavior intermediate between the neat Jeffamine® (liquid-like) and the control (solid-like).

  10. Effectiveness of Nitrous Oxide as a Liquid Injection Thrust Vector Control Fluid, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Nitrous Oxide is proposed as an energetic liquid injection thrust vector control fluid for vehicle attitude control during dynamic vehicle maneuvers. Pulled from the...

  11. Design of Accumulators and Liquid/Gas Charging of Single Phase Mechanically Pumped Fluid Loop Heat Rejection Systems

    Science.gov (United States)

    Bhandari, Pradeep; Dudik, Brenda; Birur, Gajanana; Karlmann, Paul; Bame, David; Mastropietro, A. J.

    2012-01-01

    For single phase mechanically pumped fluid loops used for thermal control of spacecraft, a gas charged accumulator is typically used to modulate pressures within the loop. This is needed to accommodate changes in the working fluid volume due to changes in the operating temperatures as the spacecraft encounters varying thermal environments during its mission. Overall, the three key requirements on the accumulator to maintain an appropriate pressure range throughout the mission are: accommodation of the volume change of the fluid due to temperature changes, avoidance of pump cavitation and prevention of boiling in the liquid. The sizing and design of such an accumulator requires very careful and accurate accounting of temperature distribution within each element of the working fluid for the entire range of conditions expected, accurate knowledge of volume of each fluid element, assessment of corresponding pressures needed to avoid boiling in the liquid, as well as the pressures needed to avoid cavitation in the pump. The appropriate liquid and accumulator strokes required to accommodate the liquid volume change, as well as the appropriate gas volumes, require proper sizing to ensure that the correct pressure range is maintained during the mission. Additionally, a very careful assessment of the process for charging both the gas side and the liquid side of the accumulator is required to properly position the bellows and pressurize the system to a level commensurate with requirements. To achieve the accurate sizing of the accumulator and the charging of the system, sophisticated EXCEL based spreadsheets were developed to rapidly come up with an accumulator design and the corresponding charging parameters. These spreadsheets have proven to be computationally fast and accurate tools for this purpose. This paper will describe the entire process of designing and charging the system, using a case study of the Mars Science Laboratory (MSL) fluid loops, which is en route to

  12. Androgen action via testicular arteriole smooth muscle cells is important for Leydig cell function, vasomotion and testicular fluid dynamics.

    Directory of Open Access Journals (Sweden)

    Michelle Welsh

    2010-10-01

    Full Text Available Regulation of blood flow through the testicular microvasculature by vasomotion is thought to be important for normal testis function as it regulates interstitial fluid (IF dynamics which is an important intra-testicular transport medium. Androgens control vasomotion, but how they exert these effects remains unclear. One possibility is by signalling via androgen receptors (AR expressed in testicular arteriole smooth muscle cells. To investigate this and determine the overall importance of this mechanism in testis function, we generated a blood vessel smooth muscle cell-specific AR knockout mouse (SMARKO. Gross reproductive development was normal in SMARKO mice but testis weight was reduced in adulthood compared to control littermates; this reduction was not due to any changes in germ cell volume or to deficits in testosterone, LH or FSH concentrations and did not cause infertility. However, seminiferous tubule lumen volume was reduced in adult SMARKO males while interstitial volume was increased, perhaps indicating altered fluid dynamics; this was associated with compensated Leydig cell failure. Vasomotion was impaired in adult SMARKO males, though overall testis blood flow was normal and there was an increase in the overall blood vessel volume per testis in adult SMARKOs. In conclusion, these results indicate that ablating arteriole smooth muscle AR does not grossly alter spermatogenesis or affect male fertility but does subtly impair Leydig cell function and testicular fluid exchange, possibly by locally regulating microvascular blood flow within the testis.

  13. Three-dimensional blade coating of complex fluid

    Science.gov (United States)

    Singh, Vachitar; Grimaldi, Emma; Sauret, Alban; Dressaire, Emilie

    2015-11-01

    The application of a layer of non-newtonian fluid on a solid substrate is an important industrial problem involved in polymer or paint coatings, and an everyday life challenge when it comes to spreading peanut butter on a toast. Most experimental and theoretical work has focused on the two-dimensional situation, i.e. the scraping of a fixed blade on a moving substrate to turn a thick layer of liquid into a thin coat. However the spreading of a finite volume of non-newtonian fluid using a blade has received less attention, despite significant practical and fundamental implications. In this study, we investigate experimentally the spreading of a finite volume of a model non-newtonian fluid, carbopol, initially deposited against the fixed blade. As the substrate is translated at constant speed, we characterize the dynamics of spreading and the final shape of the coated layer. We measure and rationalize the influence of the liquid volume, the height and orientation of the blade, and the speed of the substrate on the spreading.

  14. Fuzzy Control of Tidal volume, Respiration number and Pressure value

    OpenAIRE

    Hasan Guler; Fikret Ata

    2010-01-01

    In this study, control of tidal volume, respiration number and pressure value which are arrived to patient at mechanical ventilator device which is used in intensive care units were performed with fuzzy logic controller. The aim of this system is to reduce workload of aneshesiologist. By calculating tidal volume, respiration number and pressure value, the error Pe(k) between reference pressure value (Pref) and pressure of gas given ill person (Phasta) and error change rate ;#948;Pe(k) were co...

  15. Fluid resuscitation practices in cardiac surgery patients in the USA: a survey of health care providers

    Directory of Open Access Journals (Sweden)

    Solomon Aronson

    2017-10-01

    Full Text Available Abstract Background Fluid resuscitation during cardiac surgery is common with significant variability in clinical practice. Our goal was to investigate current practice patterns of fluid volume expansion in patients undergoing cardiac surgeries in the USA. Methods We conducted a cross-sectional online survey of 124 cardiothoracic surgeons, cardiovascular anesthesiologists, and perfusionists. Survey questions were designed to assess clinical decision-making patterns of intravenous (IV fluid utilization in cardiovascular surgery for five types of patients who need volume expansion: (1 patients undergoing cardiopulmonary bypass (CPB without bleeding, (2 patients undergoing CPB with bleeding, (3 patients undergoing acute normovolemic hemodilution (ANH, (4 patients requiring extracorporeal membrane oxygenation (ECMO or use of a ventricular assist device (VAD, and (5 patients undergoing either off-pump coronary artery bypass graft (OPCABG surgery or transcatheter aortic valve replacement (TAVR. First-choice fluid used in fluid boluses for these five patient types was requested. Descriptive statistics were performed using Kruskal-Wallis test and follow-up tests, including t tests, to evaluate differences among respondent groups. Results The most commonly preferred indicators of volume status were blood pressure, urine output, cardiac output, central venous pressure, and heart rate. The first choice of fluid for patients needing volume expansion during CPB without bleeding was crystalloids, whereas 5% albumin was the most preferred first choice of fluid for bleeding patients. For volume expansion during ECMO or VAD, the respondents were equally likely to prefer 5% albumin or crystalloids as a first choice of IV fluid, with 5% albumin being the most frequently used adjunct fluid to crystalloids. Surgeons, as a group, more often chose starches as an adjunct fluid to crystalloids for patients needing volume expansion during CPB without bleeding. Surgeons

  16. Orthostatic leg blood volume changes assessed by near-infrared spectroscopy

    DEFF Research Database (Denmark)

    Truijen, J; Kim, Y S; Krediet, C T P

    2012-01-01

    posture, volume accumulation in small blood vessels contributes significantly to the total fluid volume accumulated in the legs. Considering that near-infrared spectroscopy (NIRS) tracks postural blood volume changes within the small blood vessels of the lower leg, we evaluated the NIRS-determined changes......-linear accumulation of blood volume in the small vessels of the leg, with an initial fast phase followed by a more gradual increase at least partly contributing to the relocation of fluid during orthostatic stress....

  17. Extracellular fluid volume expansion and third space sequestration at the site of small bowel anastomoses.

    Science.gov (United States)

    Chan, S T; Kapadia, C R; Johnson, A W; Radcliffe, A G; Dudley, H A

    1983-01-01

    Intestinal surgery is usually associated with the parenteral administration of sodium and water, sometimes in amounts considerably in excess of excretory capacity. We have studied the effect of this situation on the water content of the gut at and 5 cm from a single-layer end-to-end anastomosis in the rabbit. Water content was measured by desiccation. One group of animals (group 1) did not receive intravenous therapy. The second group (group 2) received 5 ml kg-1 h-1 of Hartmann's solution during the operative period and thereafter to a total volume of 200 ml by 48 h. In group 1 there was a 5-10 per cent increase in tissue weight both at the anastomotic site and at 5 cm (P less than 0.01, Mann-Whitney U test) on the first 3 days. Thereafter, water content at the anastomosis persisted, but resolved in normal gut. In group 2 a further 5 per cent increase in weight over group 1 occurred (P less than 0.01), persistent at the anastomotic site over 5 days, though resolving elsewhere after 2 days. Extracellular fluid volume expansion exaggerates an anatomical third space present in the region of an anastomosis. At the suture line, oedema so induced is persistent and could be deleterious.

  18. Application of Oral Fluid Assays in Support of Mumps, Rubella and Varicella Control Programs

    Directory of Open Access Journals (Sweden)

    Peter A. C. Maple

    2015-12-01

    Full Text Available Detection of specific viral antibody or nucleic acid produced by infection or immunization, using oral fluid samples, offers increased potential for wider population uptake compared to blood sampling. This methodology is well established for the control of HIV and measles infections, but can also be applied to the control of other vaccine preventable infections, and this review describes the application of oral fluid assays in support of mumps, rubella and varicella national immunization programs. In England and Wales individuals with suspected mumps or rubella, based on clinical presentation, can have an oral fluid swab sample taken for case confirmation. Universal varicella immunization of children has led to a drastic reduction of chickenpox in those countries where it is used; however, in England and Wales such a policy has not been instigated. Consequently, in England and Wales most children have had chickenpox by age 10 years; however, small, but significant, numbers of adults remain susceptible. Targeted varicella zoster virus (VZV immunization of susceptible adolescents offers the potential to reduce the pool of susceptible adults and oral fluid determination of VZV immunity in adolescents is a potential means of identifying susceptible individuals in need of VZV vaccination. The main application of oral fluid testing is in those circumstances where blood sampling is deemed not necessary, or is undesirable, and when the documented sensitivity and specificity of the oral fluid assay methodology to be used is considered sufficient for the purpose intended.

  19. ATHENA code manual. Volume 1. Code structure, system models, and solution methods

    International Nuclear Information System (INIS)

    Carlson, K.E.; Roth, P.A.; Ransom, V.H.

    1986-09-01

    The ATHENA (Advanced Thermal Hydraulic Energy Network Analyzer) code has been developed to perform transient simulation of the thermal hydraulic systems which may be found in fusion reactors, space reactors, and other advanced systems. A generic modeling approach is utilized which permits as much of a particular system to be modeled as necessary. Control system and secondary system components are included to permit modeling of a complete facility. Several working fluids are available to be used in one or more interacting loops. Different loops may have different fluids with thermal connections between loops. The modeling theory and associated numerical schemes are documented in Volume I in order to acquaint the user with the modeling base and thus aid effective use of the code. The second volume contains detailed instructions for input data preparation

  20. The relationship between nocturnal polyuria and the distribution of body fluid: assessment by bioelectric impedance analysis.

    Science.gov (United States)

    Torimoto, Kazumasa; Hirayama, Akihide; Samma, Shoji; Yoshida, Katsunori; Fujimoto, Kiyohide; Hirao, Yoshihiko

    2009-01-01

    Increased nocturnal urinary volume is closely associated with nocturia. We investigated the relationship between nocturnal polyuria and the variation of body fluid distribution during the daytime using bioelectric impedance analysis. A total of 34 men older than 60 years were enrolled in this study. A frequency volume chart was recorded. Nocturnal polyuria was defined as a nocturnal urine volume per 24-hour production of greater than 0.35 (the nocturnal polyuria index). Bioelectric impedance analysis was performed 4 times daily at 8 and 11 a.m., and 5 and 9 p.m. using an InBody S20 body composition analyzer (BioSpace, Seoul, Korea). A significant difference was found in mean +/- SEM 24-hour urine production per fat-free mass between the groups with and without nocturnal polyuria (17.8 +/- 1.4 vs 7.7 +/- 0.9 ml/kg). The increase in fluid in the legs compared with the volume at 8 a.m. was significantly larger at 5 p.m., while there was no difference in the arms or trunk. Nocturnal urine volume significantly correlated with the difference in fluid volume in the legs (r = 0.527, p = 0.0019) and extracellular fluid volume (r = 0.3844, p = 0.0248) between the volumes at 8 a.m. and 9 p.m. Overproduction of urine per fat-free mass leads to nocturnal polyuria. Extracellular fluid accumulates as edema in the legs during the day in patients with nocturnal polyuria. The volume of accumulated extracellular fluid correlates with nocturnal urine volume. We suggest that leg edema is the source of nocturnal urine volume and decreasing edema may cure nocturnal polyuria.

  1. Pediatric Acute Respiratory Distress Sydnrome : Fluid Management in the PICU

    NARCIS (Netherlands)

    Ingelse, SA; Wösten-van Asperen, RM; Lemson, J; Daams, JG; Bem, R.A.; van Woensel, JB

    2016-01-01

    The administration of an appropriate volume of intravenous fluids, while avoiding fluid overload, is a major challenge in the pediatric intensive care unit. Despite our efforts, fluid overload is a very common clinical observation in critically ill children, in particular in those with pediatric

  2. Pediatric Acute Respiratory Distress Syndrome: Fluid Management in the PICU

    NARCIS (Netherlands)

    Ingelse, Sarah A.; Wösten-van Asperen, Roelie M.; Lemson, Joris; Daams, Joost G.; Bem, Reinout A.; van Woensel, Job B.

    2016-01-01

    The administration of an appropriate volume of intravenous fluids, while avoiding fluid overload, is a major challenge in the pediatric intensive care unit. Despite our efforts, fluid overload is a very common clinical observation in critically ill children, in particular in those with pediatric

  3. A novel two-way-controllable magneto-rheological fluid damper

    International Nuclear Information System (INIS)

    Aydar, Gokhan; Wang, Xiaojie; Gordaninejad, Faramarz

    2010-01-01

    In this paper, a disc type, radial flow-mode magneto-rheological (MR) fluid damper comprising a permanent magnet and an electromagnet is designed, built and tested. The proposed MR fluid damper has an MR valve with which two-way controllability through cancellation or enhancement of the magnetic field is obtained. This added feature provides damping forces less than or greater than that of a passive viscous original equipment manufacturer damper. A three-dimensional electromagnetic finite element analysis has been performed to realize this unique function in the proposed design. Experimental and theoretical studies have been conducted in order to demonstrate that this new design can provide softer damping properties by cancelling the effect of the permanent magnet, while at the same time enhancing the field effect, resulting in a harder damping device. Softer and harder damping refer to decrease and increase in the damping, respectively

  4. The Taylor-Proudman column in a rapidly-rotating compressible fluid I. energy transports

    International Nuclear Information System (INIS)

    Park, Jun Sang

    2014-01-01

    A theoretical study is made of the steady flow of a compressible fluid in a rapidly rotating finite cylinder. Flow is generated by imposing mechanical and/or thermal disturbances at the rotating endwall disks. Both the Ekman and Rossby numbers are small. An examination is made of the energy budget for a control volume in the Ekman boundary layer. A combination of physical variables, which is termed the energy flux content, consisting of temperature and modified angular momentum, emerges to be relevant. The distinguishing features of a compressible fluid, in contrast to those of an incompressible fluid, are noted. A plausible argument is given to explain the difficulty in achieving the Taylor-Proudman column in a compressible rotating fluid. For the Taylor-Proudman column to be sustained, in the interior, it is shown that the net energy transport between the solid disk wall and the interior fluid should vanish. Physical rationalizations are facilitated by resorting to the concept of the afore-stated energy flux content.

  5. Design and control of a hybrid mount featuring a magnetorheological fluid and a piezostack

    International Nuclear Information System (INIS)

    Han, Young-Min; Choi, Sang-Min; Choi, Seung-Bok; Lee, Ho-Guen

    2011-01-01

    In this study, a hybrid mount featuring a magnetorheological (MR) fluid and a piezostack is devised to reduce vibrations occuring in dynamic systems which are operated in a wide frequency range. An MR fluid is adopted to improve isolation performance at resonant low frequencies, whereas a piezostack actuator is adopted for performance improvement at non-resonant high frequencies. As a first step, a passive rubber part is manufactured and its dynamic characteristics are experimentally evaluated. By adopting the MR fluid and the piezostack, semi-active and active actuating mechanisms are devised and their mathematical models are derived. In particular, the magnetic circuit for MR operation is optimally designed via finite element analysis. After evaluating the dynamic characteristics of the manufactured MR device and inertial piezostack actuator, the proposed hybrid mount is then established by integrating them with the rubber part. Subsequently, a vibration control system is constructed using the proposed hybrid mount, and a sliding mode controller (SMC) is designed to attenuate the vibrations transmitted from the base excitation. Control performances of the proposed mount are experimentally evaluated in time and frequency domains

  6. Combining discrete equations method and upwind downwind-controlled splitting for non-reacting and reacting two-fluid computations

    International Nuclear Information System (INIS)

    Tang, K.

    2012-01-01

    When numerically investigating multiphase phenomena during severe accidents in a reactor system, characteristic lengths of the multi-fluid zone (non-reactive and reactive) are found to be much smaller than the volume of the reactor containment, which makes the direct modeling of the configuration hardly achievable. Alternatively, we propose to consider the physical multiphase mixture zone as an infinitely thin interface. Then, the reactive Riemann solver is inserted into the Reactive Discrete Equations Method (RDEM) to compute high speed combustion waves represented by discontinuous interfaces. An anti-diffusive approach is also coupled with RDEM to accurately simulate reactive interfaces. Increased robustness and efficiency when computing both multiphase interfaces and reacting flows are achieved thanks to an original upwind downwind-controlled splitting method (UDCS). UDCS is capable of accurately solving interfaces on multi-dimensional unstructured meshes, including reacting fronts for both deflagration and detonation configurations. (author)

  7. Outbreak of Serratia marcescens postsurgical bloodstream infection due to contaminated intravenous pain control fluids.

    Science.gov (United States)

    Chiang, Ping-Cherng; Wu, Tsu-Lan; Kuo, An-Jing; Huang, Yhu-Chering; Chung, Ting-Ying; Lin, Chun-Sui; Leu, Hsieh-Shong; Su, Lin-Hui

    2013-09-01

    Serratia marcescens is an important nosocomial pathogen causing significant outbreaks. Here we report an outbreak of bloodstream infection caused by S. marcescens at a 3500-bed hospital in Taiwan. The effective cooperative efforts of both laboratory personnel and infection control practitioners (ICPs) jointly contributed to the total control of the outbreak. A sudden increase in the isolation of S. marcescens from blood cultures was noted in the Clinical Microbiology Laboratory. The information was passed to the ICPs and an investigation was initiated. Pulsed-field gel electrophoresis was used to study the relationships among the isolates. Pulsotype A was identified in 43 (82.7%) of the 52 blood isolates studied. They were isolated from 52 patients distributed across 22 wards that were surveyed by seven ICPs. All patients had undergone surgery before the infection, and fentanyl-containing intravenous fluids were used for pain control in 43 of them. Isolates from 42 belonged to pulsotype A. Three S. marcescens isolates, all from fentanyl-containing fluids and demonstrating pulsotype A, were identified from 251 environmental cultures. All fentanyl-containing fluids that were in use were withdrawn and the outbreak was stopped. The outbreak of S. marcescens bloodstream infection apparently occurred through the use of fentanyl-containing fluids contaminated by a pulsotype A S. marcescens. Copyright © 2013 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  8. CRITICALITY CURVES FOR PLUTONIUM HYDRAULIC FLUID MIXTURES

    International Nuclear Information System (INIS)

    WITTEKIND WD

    2007-01-01

    This Calculation Note performs and documents MCNP criticality calculations for plutonium (100% 239 Pu) hydraulic fluid mixtures. Spherical geometry was used for these generalized criticality safety calculations and three geometries of neutron reflection are: (sm b ullet)bare, (sm b ullet)1 inch of hydraulic fluid, or (sm b ullet)12 inches of hydraulic fluid. This document shows the critical volume and critical mass for various concentrations of plutonium in hydraulic fluid. Between 1 and 2 gallons of hydraulic fluid were discovered in the bottom of HA-23S. This HA-23S hydraulic fluid was reported by engineering to be Fyrquel 220. The hydraulic fluid in GLovebox HA-23S is Fyrquel 220 which contains phosphorus. Critical spherical geometry in air is calculated with 0 in., 1 in., or 12 inches hydraulic fluid reflection

  9. Structural studies of fluid mercury using synchrotron radiation at SPring-8

    International Nuclear Information System (INIS)

    Hong Xinguo; Tamura, K.

    2003-01-01

    With the volume expansion by heating up toward the critical point, typical liquid metal mercury undergoes metal-nonmetal transition (M-NM) at a density around 9 g/cm 3 . To study the structure changes of fluid Hg during volume expansion, we have carried out X-ray diffraction measurements for expanded fluid mercury in a wide density region from liquid to dense vapour region using synchrotron radiation at SPring-8. We have succeeded in developing a new high-pressure vessel, up to 1700 degree C under 2000 bar and with 7 scattering windows for energy-dispersive X-ray diffraction (EDXD) measurements under high temperature and high pressure. It was found that the reliability of the structure factors, S(k), and the accuracy of the pair distribution functions, g(r), are much better. Reliable relations of the coordination number and the correlation distance with the density of fluid Hg were obtained. Structural model of volume expansion of fluid Hg is proposed based on our new results. Structural changes with decreasing density are discussed in relation to the M-NM transition in fluid Hg

  10. Steady State Stokes Flow Interpolation for Fluid Control

    DEFF Research Database (Denmark)

    Bhatacharya, Haimasree; Nielsen, Michael Bang; Bridson, Robert

    2012-01-01

    — suffer from a common problem. They fail to capture the rotational components of the velocity field, although extrapolation in the normal direction does consider the tangential component. We address this problem by casting the interpolation as a steady state Stokes flow. This type of flow captures......Fluid control methods often require surface velocities interpolated throughout the interior of a shape to use the velocity as a feedback force or as a boundary condition. Prior methods for interpolation in computer graphics — velocity extrapolation in the normal direction and potential flow...

  11. Recovery after exercise in the heat--factors influencing fluid intake

    Science.gov (United States)

    Mack, G. W.

    1998-01-01

    The restoration of body fluid balance following dehydration induced by exercise will occur through regulatory responses which stimulate ingestion of water and sodium ions. A number of different afferent signalling systems are necessary to generate appropriate thirst or sodium appetite. The primary sensory information of naturally occurring thirst is derived from receptors sensing cell volume and the volume of the extracellular fluid compartment. Sensory information from the oropharyngeal region is also an important determinant of thirst. The interaction of these various afferent signalling systems within the central nervous system determines the extent of fluid replacement following dehydration.

  12. Hydrothermal analysis in engineering using control volume finite element method

    CERN Document Server

    Sheikholeslami, Mohsen

    2015-01-01

    Control volume finite element methods (CVFEM) bridge the gap between finite difference and finite element methods, using the advantages of both methods for simulation of multi-physics problems in complex geometries. In Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method, CVFEM is covered in detail and applied to key areas of thermal engineering. Examples, exercises, and extensive references are used to show the use of the technique to model key engineering problems such as heat transfer in nanofluids (to enhance performance and compactness of energy systems),

  13. The order and volume fill rates in inventory control systems

    DEFF Research Database (Denmark)

    Thorstenson, Anders; Larsen, Christian

    2011-01-01

    This paper differentiates between an order (line) fill rate and a volume fill rate and specifies their performance for different inventory control systems. When the focus is on filling complete customer orders rather than total quantities the order fill rate would be the preferred service level...... measure. The main result shows how the order and volume fill rates are related in magnitude. Earlier results derived for a single-item, single-stage, continuous review inventory system with backordering and constant lead times controlled by a base-stock policy are extended in different directions...

  14. Teaching Thermal Hydraulics & Numerical Methods: An Introductory Control Volume Primer

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, D.S.

    2004-10-03

    This paper covers the basics of the implementation of the control volume method in the context of the Homogeneous Equilibrium Model (HEM)(T/H) code using the conservation equations of mass, momentum, and energy. This primer uses the advection equation as a template. The discussion will cover the basic equations of the control volume portion of the course in the primer, which includes the advection equation, numerical methods, along with the implementation of the various equations via FORTRAN into computer programs and the final result for a three equation HEM code and its validation.

  15. A mixed markers and volume-of-fluid method for the reconstruction and advection of interfaces in two-phase and free-boundary flows

    International Nuclear Information System (INIS)

    Aulisa, Eugenio; Manservisi, Sandro; Scardovelli, Ruben

    2003-01-01

    In this work we present a new mixed markers and volume-of-fluid (VOF) algorithm for the reconstruction and advection of interfaces in the two-dimensional space. The interface is described by using both the volume fraction function C, as in VOF methods, and surface markers, which locate the interface within the computational cells. The C field and the markers are advected by following the streamlines. New markers are determined by computing the intersections of the advected interface with the grid lines, then other markers are added inside each cut cell to conserve the volume fraction C. A smooth motion of the interface is obtained, typical of the marker approach, with a good volume conservation, as in standard VOF methods. In this article we consider a few typical two-dimensional tests and compare the results of the mixed algorithm with those obtained with VOF methods. Translations, rotations and vortex tests are performed showing that many problems of the VOF technique can be solved and a good accuracy in the geometrical motion and mass conservation can be achieved

  16. Contribution of the active control to the measurement of fluid-elastic coupling strengths

    International Nuclear Information System (INIS)

    Legendre, S.

    1999-01-01

    A precise dimensioning of the tubes inside a steam generator requires a better knowledge of the fluid-elastic coupling phenomena. The direct method for the determination of fluid-elastic coupling coefficients allows to explore only a reduced range of flow velocities and is unsuitable for the low velocities and for velocities close to the critical instability velocity. The active damping control method has been validated both with air and water and offers the possibility to extend the range of flow velocities using an artificial supply of damping: 50% of increase in single-phase flow conditions with measurements performed beyond the critical instability velocity, a doubling of the explored range of velocities in two-phase flow conditions. For a 25% two-phase flow, a stabilization of the damping of the coupled fluid-structure system is observed beyond the critical instability velocity. Finally, the calculation of fluid-elastic dimensionless coefficients has permitted to show the influence of the reduced velocity on the fluid-elastic coupling in two-phase flow conditions. (J.S.)

  17. A robust and efficient finite volume scheme for the discretization of diffusive flux on extremely skewed meshes in complex geometries

    Science.gov (United States)

    Traoré, Philippe; Ahipo, Yves Marcel; Louste, Christophe

    2009-08-01

    In this paper an improved finite volume scheme to discretize diffusive flux on a non-orthogonal mesh is proposed. This approach, based on an iterative technique initially suggested by Khosla [P.K. Khosla, S.G. Rubin, A diagonally dominant second-order accurate implicit scheme, Computers and Fluids 2 (1974) 207-209] and known as deferred correction, has been intensively utilized by Muzaferija [S. Muzaferija, Adaptative finite volume method for flow prediction using unstructured meshes and multigrid approach, Ph.D. Thesis, Imperial College, 1994] and later Fergizer and Peric [J.H. Fergizer, M. Peric, Computational Methods for Fluid Dynamics, Springer, 2002] to deal with the non-orthogonality of the control volumes. Using a more suitable decomposition of the normal gradient, our scheme gives accurate solutions in geometries where the basic idea of Muzaferija fails. First the performances of both schemes are compared for a Poisson problem solved in quadrangular domains where control volumes are increasingly skewed in order to test their robustness and efficiency. It is shown that convergence properties and the accuracy order of the solution are not degraded even on extremely skewed mesh. Next, the very stable behavior of the method is successfully demonstrated on a randomly distorted grid as well as on an anisotropically distorted one. Finally we compare the solution obtained for quadrilateral control volumes to the ones obtained with a finite element code and with an unstructured version of our finite volume code for triangular control volumes. No differences can be observed between the different solutions, which demonstrates the effectiveness of our approach.

  18. Microfluidic device and method for focusing, segmenting, and dispensing of a fluid stream

    Science.gov (United States)

    Jacobson, Stephen C [Knoxville, TN; Ramsey, J Michael [Knoxville, TN

    2008-09-09

    A microfluidic device and method for forming and dispensing minute volume segments of a material are described. In accordance with the present invention, a microfluidic device and method are provided for spatially confining the material in a focusing element. The device is also adapted for segmenting the confined material into minute volume segments, and dispensing a volume segment to a waste or collection channel. The device further includes means for driving the respective streams of sample and focusing fluids through respective channels into a chamber, such that the focusing fluid streams spatially confine the sample material. The device may also include additional means for driving a minute volume segment of the spatially confined sample material into a collection channel in fluid communication with the waste reservoir.

  19. Syrthes thermal code and Estet or N3S fluid mechanics codes coupling; Couplage du code de thermique Syrthes et des codes de mecanique des fluides N3S et ou Estet

    Energy Technology Data Exchange (ETDEWEB)

    Peniguel, C [Electricite de France (EDF), 78 - Chatou (France). Direction des Etudes et Recherches; Rupp, I [SIMULOG, 78 - Guyancourt (France)

    1997-06-01

    EDF has developed numerical codes for modeling the conductive, radiative and convective thermal transfers and their couplings in complex industrial configurations: the convection in a fluid is solved by Estet in finite volumes or N3S in finite elements, the conduction is solved by Syrthes and the wall-to-wall thermal radiation is modelled by Syrthes with the help of a radiosity method. Syrthes controls the different heat exchanges which may occur between fluid and solid domains, using an explicit iterative method. An extension of Syrthes has been developed in order to allow the consideration of configurations where several fluid codes operate simultaneously, using ``message passing`` tools such as PVM (Parallel Virtual Machine) and the Calcium code coupler developed at EDF. Application examples are given

  20. Weak Convergence and Fluid Limits in Optimal Time-to-Empty Queueing Control Problems

    Energy Technology Data Exchange (ETDEWEB)

    Day, Martin V., E-mail: day@math.vt.edu [Virginia Tech, Department of Mathematics (United States)

    2011-12-15

    We consider a class of controlled queue length processes, in which the control allocates each server's effort among the several classes of customers requiring its service. Served customers are routed through the network according to (prescribed) routing probabilities. In the fluid rescaling, X{sup n}(t) = 1/nX(nt) , we consider the optimal control problem of minimizing the integral of an undiscounted positive running cost until the first time that X{sup n}=0. Our main result uses weak convergence ideas to show that the optimal value functions V{sup n} of the stochastic control problems for X{sup n}(t) converge (as n{yields}{infinity}) to the optimal value V of a control problem for the limiting fluid process. This requires certain equicontinuity and boundedness hypotheses on (V{sup n}). We observe that these are essentially the same hypotheses that would be needed for the Barles-Perthame approach in terms of semicontinuous viscosity solutions. Sufficient conditions for these equicontinuity and boundedness properties are briefly discussed.

  1. Alternatives for Jet Engine Control. Volume 1: Modelling and Control Design with Jet Engine Data

    Science.gov (United States)

    Sain, M. K.

    1985-01-01

    This document compiles a comprehensive list of publications supported by, or related to, National Aeronautics and Space Administration Grant NSG-3048, entitled "Alternatives for Jet Engine Control". Dr. Kurt Seldner was the original Technical Officer for the grant, at Lewis Research Center. Dr. Bruce Lehtinen was the final Technical Officer. At the University of Notre Dame, Drs. Michael K. Sain and R. Jeffrey Leake were the original Project Directors, with Dr. Sain becoming the final Project Director. Publications cover work over a ten-year period. The Final Report is divided into two parts. Volume i, "Modelling and Control Design with Jet Engine Data", follows in this report. Volume 2, "Modelling and Control Design with Tensors", has been bound separately.

  2. Numerical study of magnetic field effect on nano-fluid forced convection in a channel

    Energy Technology Data Exchange (ETDEWEB)

    Heidary, H., E-mail: Heidary_ha@aut.ac.ir [Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of); Hosseini, R. [Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of); Pirmohammadi, M., E-mail: Pirmohamadi@pardisiau.ac.ir [Department of Mechanical Engineering, Pardis Branch, Islamic Azad University, Pardis New City, Tehran (Iran, Islamic Republic of); Kermani, M.J. [Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of)

    2015-01-15

    In this study heat transfer and fluid flow analysis in a straight channel utilizing nano-fluid is numerically studied, while flow field is under magnetic field. Usage of nano-particles in base fluid and also applying magnetic field transverse to fluid velocity are two ways recommended in this paper to enhance heat exchange in straight duct. The fluid temperature at the channel inlet (T{sub in}) is taken less than that of the walls (T{sub w}). With assuming thermal equilibrium state of both the fluid phase and nano-particles and ignoring the slip velocity between the phases, single phase approach is used for modeling of nano-fluid. The governing equations are numerically solved in the domain by the control volume approach based on the SIMPLE technique. Numerical studies are performed over a range of Reynolds number, nano-fluid volume fraction and Hartmann number. The influence of these parameters is investigated on the local and average Nusselt numbers. Computations show excellent agreement with the literature. From this study, it is concluded that heat transfer in channels can enhance up to 75% due to the presence of nano-particles and magnetic field in channels. In industrial applications for cooling or heating purposes, the recommended ways in this paper, can provide helpful guidelines to the manufacturers to enhance efficiencies without heat exchanger area increase. - Highlights: • Addition of 10% nano-particles (copper here) can enhance the heat exchange by 26%. • Presence of magnetic field with Ha=30 in pure fluid can enhance the heat exchange by 50%. • Presence of magnetic field and nanofluid with Ha=30 and ϕ=0.1, can enhance the heat exchange by 76%. • Increasing Re{sub H} from 50 to 1000, the average Nu number can increase by a factor of ≈3.

  3. Essentials of fluid dynamics with applications to hydraulics, aeronautics, meteorology and other subjets

    CERN Document Server

    Prandtl, Ludwig

    1953-01-01

    Equilibrium of liquids and gases ; kinematics : dynamics of frictionless fluids ; motion of viscous fluids : turbulence : fluid resistance : practical applications ; flow with appreciable volume changes (dynamics of gases) ; miscellaneous topics.

  4. Properties of forced convection experimental with silicon carbide based nano-fluids

    Science.gov (United States)

    Soanker, Abhinay

    With the advent of nanotechnology, many fields of Engineering and Science took a leap to the next level of advancements. The broad scope of nanotechnology initiated many studies of heat transfer and thermal engineering. Nano-fluids are one such technology and can be thought of as engineered colloidal fluids with nano-sized colloidal particles. There are different types of nano-fluids based on the colloidal particle and base fluids. Nano-fluids can primarily be categorized into metallic, ceramics, oxide, magnetic and carbon based. The present work is a part of investigation of the thermal and rheological properties of ceramic based nano-fluids. alpha-Silicon Carbide based nano-fluid with Ethylene Glycol and water mixture 50-50% volume concentration was used as the base fluid here. This work is divided into three parts; Theoretical modelling of effective thermal conductivity (ETC) of colloidal fluids, study of Thermal and Rheological properties of alpha-SiC nano-fluids, and determining the Heat Transfer properties of alpha-SiC nano-fluids. In the first part of this work, a theoretical model for effective thermal conductivity (ETC) of static based colloidal fluids was formulated based on the particle size, shape (spherical), thermal conductivity of base fluid and that of the colloidal particle, along with the particle distribution pattern in the fluid. A MATLAB program is generated to calculate the details of this model. The model is specifically derived for least and maximum ETC enhancement possible and thereby the lower and upper bounds was determined. In addition, ETC is also calculated for uniform colloidal distribution pattern. Effect of volume concentration on ETC was studied. No effect of particle size was observed for particle sizes below a certain value. Results of this model were compared with Wiener bounds and Hashin- Shtrikman bounds. The second part of this work is a study of thermal and rheological properties of alpha-Silicon Carbide based nano-fluids

  5. The diagnostic role of cervico-vaginal fluid interleukins-1α in endometriosis: A case-control study

    Directory of Open Access Journals (Sweden)

    Farahnaz Mardanian

    2014-01-01

    Full Text Available Background: Endometriosis is a chronic and progressive gynecological disorder and is manifest by dysmenorrhea and a major cause of infertility and chronic pelvic pain. The study was designed to compare the value of cervico-vaginal fluid of interleukin-1α (IL-1α in patients with and without endometriosis. Materials and Methods: Fifty women were assessed in this case control study. The case group included 25 patients with endometriosis. The control group included 25 women without any evidence of endometriosis or any other genital disease. Endometriosis was confirmed by laparoscopy and histopathological examination. Cervico-vaginal fluid samples were obtained from patients during the follicular phase and preup surgery to assess the levels of IL-1α in cervico-vaginal fluid. The level of IL-1α was assessed using commercially available Avi Bionhuman Enzyme-Linked Immunosorbent Assay kits (FIN-01720, Vantaa, Finland for IL-1α. Receiver-operator curve analysis was used to estimate the power of IL-1α to distinguish subjects with endometriosis from controls. Results: The cervico-vaginal fluid level of IL-1α in cases was 210.44 ± 40.11 pg/mL and in controls was 54.28 ± 25.73 pg/mL, the differences between two groups was statistically significant (P < 0.0001. The cut-off point for cervico-vaginal fluid IL-1 for endometriosis was 105 pg/mL, with a sensitivity of 100% (95% confidence interval [CI]: 86.2-100, and specificity of 100% (95% CI: 86.2-100. Conclusion: Results show a significant increase in the cervico-vaginal fluid levels of IL-1α, in women with endometriosis, that it can be a useful marker in the diagnosis of endometriosis.

  6. Depressed left ventricular performance. Response to volume infusion in patients with sepsis and septic shock

    International Nuclear Information System (INIS)

    Ognibene, F.P.; Parker, M.M.; Natanson, C.; Shelhamer, J.H.; Parrillo, J.E.

    1988-01-01

    Volume infusion, to increase preload and to enhance ventricular performance, is accepted as initial management of septic shock. Recent evidence has demonstrated depressed myocardial function in human septic shock. We analyzed left ventricular performance during volume infusion using serial data from simultaneously obtained pulmonary artery catheter hemodynamic measurements and radionuclide cineangiography. Critically ill control subjects (n = 14), patients with sepsis but without shock (n = 21), and patients with septic shock (n = 21) had prevolume infusion hemodynamic measurements determined and received statistically similar volumes of fluid resulting in similar increases in pulmonary capillary wedge pressure. There was a strong trend (p = 0.004) toward less of a change in left ventricular stroke work index (LVSWI) after volume infusion in patients with sepsis and septic shock compared with control subjects. The LVSWI response after volume infusion was significantly less in patients with septic shock when compared with critically ill control subjects (p less than 0.05). These data demonstrate significantly altered ventricular performance, as measured by LVSWI, in response to volume infusion in patients with septic shock

  7. Optimum solar collector fluid flow rates

    DEFF Research Database (Denmark)

    Furbo, Simon; Shah, Louise Jivan

    1996-01-01

    Experiments showed that by means of a standard electronically controlled pump, type UPE 2000 from Grundfos it is possible to control the flow rate in a solar collector loop in such a way that the flow rate is strongly influenced by the temperature of the solar collector fluid passing the pump....... The flow rate is increasing for increasing temperature.The flow rate at the high temperature level is typically 70 % greater than the flow rate at the low temperature level.Further, the energy consumption for the electronically controlled pump in a solar heating system will be somewhat smaller than...... the energy consumption of a normal ciculation pump in the solar heating system.Calculations showed that the highest thermal performances for small SDHW systems based on mantle tanks with constant volume flow rates in the solar collector loops are achieved if the flow rate is situated in the interval from 0...

  8. Brain washing : Transport of cerebral extracellular fluids and solutes

    NARCIS (Netherlands)

    Bedussi, B.

    2017-01-01

    Regulation of extracellular volume and fluid composition provides a robust microenvironment for brain cells. In peripheral tissue, fluid surplus and solutes are removed from the interstitium via drainage into lymphatic channels. Since the central nervous system lacks a proper lymphatic vasculature,

  9. Future Communication, Computing, Control and Management Volume 1

    CERN Document Server

    2012-01-01

    This volume contains revised and extended research articles written by prominent researchers participating in the ICF4C 2011 conference. 2011 International Conference on Future Communication, Computing, Control and Management (ICF4C 2011) has been held on December 16-17, 2011, Phuket, Thailand. Topics covered include intelligent computing, network management, wireless networks, telecommunication, power engineering, control engineering, Signal and Image Processing, Machine Learning, Control Systems and Applications, The book will offer the states of arts of tremendous advances in Computing, Communication, Control, and Management and also serve as an excellent reference work for researchers and graduate students working on Computing, Communication, Control, and Management Research.

  10. Future Communication, Computing, Control and Management Volume 2

    CERN Document Server

    2012-01-01

    This volume contains revised and extended research articles written by prominent researchers participating in the ICF4C 2011 conference. 2011 International Conference on Future Communication, Computing, Control and Management (ICF4C 2011) has been held on December 16-17, 2011, Phuket, Thailand. Topics covered include intelligent computing, network management, wireless networks, telecommunication, power engineering, control engineering, Signal and Image Processing, Machine Learning, Control Systems and Applications, The book will offer the states of arts of tremendous advances in Computing, Communication, Control, and Management and also serve as an excellent reference work for researchers and graduate students working on Computing, Communication, Control, and Management Research.

  11. Future Computing, Communication, Control and Management Volume 2

    CERN Document Server

    2012-01-01

    This volume contains revised and extended research articles written by prominent researchers participating in the ICF4C 2011 conference. 2011 International Conference on Future Communication, Computing, Control and Management (ICF4C 2011) has been held on December 16-17, 2011, Phuket, Thailand. Topics covered include intelligent computing, network management, wireless networks, telecommunication, power engineering, control engineering, Signal and Image Processing, Machine Learning, Control Systems and Applications, The book will offer the states of arts of tremendous advances in Computing, Communication, Control, and Management and also serve as an excellent reference work for researchers and graduate students working on Computing, Communication, Control, and Management Research.

  12. Flow dynamics of volume-heated boiling pools

    International Nuclear Information System (INIS)

    Ginsberg, T.; Jones, O.C.; Chen, J.C.

    1979-01-01

    Safety analyses of fast breeder reactors require understanding of the two-phase fluid dynamic and heat transfer characteristics of volume-heated boiling pool systems. Design of direct contact three-phase boilers, of practical interest in the chemical industries also requires understanding of the fundamental two-phase flow and heat transfer behavior of volume boiling systems. Several experiments have been recently reported relevant to the boundary heat-loss mechanisms of boiling pool systems. Considerably less is known about the two-phase fluid dynamic behavior of such systems. This paper describes an experimental investigation of the steady-state flow dynamics of volume-heated boiling pool systems

  13. Fluid distribution kinetics during cardiopulmonary bypass

    Directory of Open Access Journals (Sweden)

    Mattias Törnudd

    2014-08-01

    Full Text Available OBJECTIVE: The purpose of this study was to examine the isovolumetric distribution kinetics of crystalloid fluid during cardiopulmonary bypass. METHODS: Ten patients undergoing coronary artery bypass grafting participated in this prospective observational study. The blood hemoglobin and the serum albumin and sodium concentrations were measured repeatedly during the distribution of priming solution (Ringer's acetate 1470 ml and mannitol 15% 200 ml and initial cardioplegia. The rate of crystalloid fluid distribution was calculated based on 3-min Hb changes. The preoperative blood volume was extrapolated from the marked hemodilution occurring during the onset of cardiopulmonary bypass. Clinicaltrials.gov: NCT01115166. RESULTS: The distribution half-time of Ringer's acetate averaged 8 minutes, corresponding to a transcapillary escape rate of 0.38 ml/kg/min. The intravascular albumin mass increased by 5.4% according to mass balance calculations. The preoperative blood volume, as extrapolated from the drop in hemoglobin concentration by 32% (mean at the beginning of cardiopulmonary bypass, was 0.6-1.2 L less than that estimated by anthropometric methods (p<0.02. The mass balance of sodium indicated a translocation from the intracellular to the extracellular fluid space in 8 of the 10 patients, with a median volume of 236 ml. CONCLUSIONS: The distribution half-time of Ringer's solution during isovolumetric cardiopulmonary bypass was 8 minutes, which is the same as for crystalloid fluid infusions in healthy subjects. The intravascular albumin mass increased. Most patients were hypovolemic prior to the start of anesthesia. Intracellular edema did not occur.

  14. Towards a sharp-interface volume-of-fluid methodology for modeling evaporation

    Science.gov (United States)

    Pathak, Ashish; Raessi, Mehdi

    2017-11-01

    In modeling evaporation, the diffuse-interface (one-domain) formulation yields inaccurate results. Recent efforts approaching the problem via a sharp-interface (two-domain) formulation have shown significant improvements. The reasons behind their better performance are discussed in the present work. All available sharp-interface methods, however, exclusively employ the level-set. In the present work, we develop a sharp-interface evaporation model in a volume-of-fluid (VOF) framework in order to leverage its mass-conserving property as well as its ability to handle large topographical changes. We start with a critical review of the assumptions underlying the mathematical equations governing evaporation. For example, it is shown that the assumption of incompressibility can only be applied in special circumstances. The famous D2 law used for benchmarking is valid exclusively to steady-state test problems. Transient is present over significant lifetime of a micron-size droplet. Therefore, a 1D spherical fully transient model is developed to provide a benchmark transient solution. Finally, a 3D Cartesian Navier-Stokes evaporation solver is developed. Some preliminary validation test-cases are presented for static and moving drop evaporation. This material is based upon work supported by the Department of Energy, Office of Energy Efficiency and Renewable Energy and the Department of Defense, Tank and Automotive Research, Development, and Engineering Center, under Award Number DEEE0007292.

  15. Spinning fluids in general relativity: a variational formulation

    International Nuclear Information System (INIS)

    Oliveira, H.P. de; Salim, J.M.

    1990-01-01

    In this paper we present a variational formulation for spinning fluids in General Relativity. In our model each volume element of the fluid has rigid microstructure. We deduce a symmetrical energy-moment tensor where there is an explicit contribution of kinetic spin energy to the total energy. (author)

  16. Fluid therapy in neurotrauma: basic and clinical concepts

    Directory of Open Access Journals (Sweden)

    Hernando Raphael Alvis-Miranda

    2014-01-01

    Full Text Available The patient with head trauma is a challenge for the emergency physician and for the neurosurgeon. Currently traumatic brain injury constitutes a public health problem. Knowledge of the various therapeutic strategies to provide support in the prehospital and perioperative are essential for optimal care. Rapid infusion of large volumes of crystalloids to restore blood volume and blood pressure quickly is now the standard treatment for patients with combined TBI and HS The fluid in patients with brain and especially in the carrier of brain injury is a critical topic; we present a review of the literature about the history, physiology of current fluid preparations, and a discussion regard the use of fluid therapy in traumatic brain injury and decompressive craniectomy.http://dx.doi.org/10.7175/rhc.v5i1.636

  17. Fluid Mechanics of the Vascular Basement Membrane in the Brain

    Science.gov (United States)

    Coloma, Mikhail; Hui, Jonathan; Chiarot, Paul; Huang, Peter; Carare, Roxana; McLeod, Kenneth; Schaffer, David

    2013-11-01

    Beta-amyloid is a normal product of brain metabolic function and is found within the interstitial fluid of the brain. Failure of the clearance of beta-amyloid from the aging brain leads to its accumulation within the walls of arteries and to Alzheimer's disease. The vascular basement membrane (VBM) within the walls of cerebral arteries surrounds the spirally arranged smooth muscle cells and represents an essential pathway for removal of beta-amyloid from the brain. This process fails with the stiffening of arterial walls associated with aging. In this study we hypothesize that the deformation of the VBM associated with arterial pulsations drives the interstitial fluid to drain in the direction opposite of the arterial blood flow. This hypothesis is theoretically investigated by modeling the VBM as a thin, coaxial, fluid-filled porous medium surrounding a periodically deforming cylindrical tube. Flow and boundary conditions required to achieve such a backward clearance are derived through a control volume analysis of mass, momentum, and energy.

  18. The accuracy of MRI-determined synovial membrane and joint effusion volumes in arthritis. A comparison of pre- and post-aspiration volumes

    DEFF Research Database (Denmark)

    Østergaard, Mikkel; Stoltenberg, M; Henriksen, O

    1995-01-01

    Magnetic resonance imaging (MRI) of 18 knees of patients with arthritis was performed before and immediately after arthrocentesis. Pre- and post-aspiration volumes were calculated by adding the outlined areas of synovium/effusion from a continuous series of gadolinium-DTPA-enhanced 5 mm transversal...... T1-weighted MR-images. The difference between MRI-determined and syringe-determined volumes of aspirated joint fluid was 0-7 ml, median 2 ml, corresponding to 0-18%, median 7%, of the pre-aspiration effusion volume. Synovial membrane volumes, determined before and after arthrocentesis varied 0-10 ml......, median 3 ml (0-17%, median 7%). No significant systematic misinterpretation of the borderline between joint fluid and synovium was found. We conclude that effusion volumes and in all probability also synovial membrane volumes, can be determined by MRI with a maximal analytical error of approximately 20...

  19. Control of optical transport parameters of 'porous medium – supercritical fluid' systems

    Energy Technology Data Exchange (ETDEWEB)

    Zimnyakov, D A; Ushakova, O V; Yuvchenko, S A [Yuri Gagarin State Technical University of Saratov, Saratov (Russian Federation); Bagratashvili, V N [M. V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2015-11-30

    The possibility of controlling optical transport parameters (in particular, transport scattering coefficient) of porous systems based on polymer fibres, saturated with carbon dioxide in different phase states (gaseous, liquid and supercritical) has been experimentally studied. An increase in the pressure of the saturating medium leads to a rise of its refractive index and, correspondingly, the diffuse-transmission coefficient of the system due to the decrease in the transport scattering coefficient. It is shown that, in the case of subcritical saturating carbon dioxide, the small-angle diffuse transmission of probed porous layers at pressures close to the saturated vapour pressure is determined by the effect of capillary condensation in pores. The immersion effect in 'porous medium – supercritical fluid' systems, where the fluid pressure is used as a control parameter, is considered. The results of reconstructing the values of transport scattering coefficient of probed layers for different refractive indices of a saturating fluid are presented. (radiation scattering)

  20. Design of a micro-irrigation system based on the control volume method

    Directory of Open Access Journals (Sweden)

    Chasseriaux G.

    2006-01-01

    Full Text Available A micro-irrigation system design based on control volume method using the back step procedure is presented in this study. The proposed numerical method is simple and consists of delimiting an elementary volume of the lateral equipped with an emitter, called « control volume » on which the conservation equations of the fl uid hydrodynamicʼs are applied. Control volume method is an iterative method to calculate velocity and pressure step by step throughout the micro-irrigation network based on an assumed pressure at the end of the line. A simple microcomputer program was used for the calculation and the convergence was very fast. When the average water requirement of plants was estimated, it is easy to choose the sum of the average emitter discharge as the total average fl ow rate of the network. The design consists of exploring an economical and effi cient network to deliver uniformly the input fl ow rate for all emitters. This program permitted the design of a large complex network of thousands of emitters very quickly. Three subroutine programs calculate velocity and pressure at a lateral pipe and submain pipe. The control volume method has already been tested for lateral design, the results from which were validated by other methods as fi nite element method, so it permits to determine the optimal design for such micro-irrigation network

  1. A study of unsteady physiological magneto-fluid flow and heat transfer through a finite length channel by peristaltic pumping.

    Science.gov (United States)

    Tripathi, Dharmendra; Bég, O Anwar

    2012-08-01

    Magnetohydrodynamic peristaltic flows arise in controlled magnetic drug targeting, hybrid haemodynamic pumps and biomagnetic phenomena interacting with the human digestive system. Motivated by the objective of improving an understanding of the complex fluid dynamics in such flows, we consider in the present article the transient magneto-fluid flow and heat transfer through a finite length channel by peristaltic pumping. Reynolds number is small enough and the wavelength to diameter ratio is large enough to negate inertial effects. Analytical solutions for temperature field, axial velocity, transverse velocity, pressure gradient, local wall shear stress, volume flowrate and averaged volume flowrate are obtained. The effects of the transverse magnetic field, Grashof number and thermal conductivity on the flow patterns induced by peristaltic waves (sinusoidal propagation along the length of channel) are studied using graphical plots. The present study identifies that greater pressure is required to propel the magneto-fluid by peristaltic pumping in comparison to a non-conducting Newtonian fluid, whereas, a lower pressure is required if heat transfer is effective. The analytical solutions further provide an important benchmark for future numerical simulations.

  2. Evidence of improved fluid management in patients receiving haemodialysis following a self-affirmation theory-based intervention: A randomised controlled trial.

    Science.gov (United States)

    Wileman, Vari; Chilcot, Joseph; Armitage, Christopher J; Farrington, Ken; Wellsted, David M; Norton, Sam; Davenport, Andrew; Franklin, Gail; Da Silva Gane, Maria; Horne, Robert; Almond, Mike

    2016-01-01

    Haemodialysis patients are at risk of serious health complications; yet, treatment non-adherence remains high. Warnings about health risks associated with non-adherence may trigger defensive reactions. We studied whether an intervention based on self-affirmation theory reduced resistance to health-risk information and improved fluid treatment adherence. In a cluster randomised controlled trial, 91 patients either self-affirmed or completed a matched control task before reading about the health-risks associated with inadequate fluid control. Patients' perceptions of the health-risk information, intention and self-efficacy to control fluid were assessed immediately after presentation of health-risk information. Interdialytic weight gain (IDWG), excess fluid removed during haemodialysis, is a clinical measure of fluid treatment adherence. IDWG data were collected up to 12 months post-intervention. Self-affirmed patients had significantly reduced IDWG levels over 12 months. However, contrary to predictions derived from self-affirmation theory, self-affirmed participants and controls did not differ in their evaluation of the health-risk information, intention to control fluid or self-efficacy. A low-cost, high-reach health intervention based on self-affirmation theory was shown to reduce IDWG over a 12-month period, but the mechanism by which this apparent behaviour change occurred is uncertain. Further work is still required to identify mediators of the observed effects.

  3. A Novel CO2-Responsive Viscoelastic Amphiphilic Surfactant Fluid for Fracking in Enhanced Oil/Gas Recovery

    Science.gov (United States)

    Zhong, L.; Wu, X.; Dai, C.

    2017-12-01

    Over the past decade, the rapid rise of unconventional shale gas and tight sandstone oil development through horizontal drilling and high volume hydraulic fracturing has expanded the extraction of hydrocarbon resources. Hydraulic fracturing fluids play very important roles in enhanced oil/gas recovery. However, damage to the reservoir rock and environmental contamination caused by hydraulic fracturing flowback fluids has raised serious concerns. The development of reservoir rock friendly and environmental benign fracturing fluids is in immediate demand. Studies to improve properties of hydraulic fracturing fluids have found that viscoelastic surfactant (VES) fracturing fluid can increase the productivity of gas/oil and be efficiently extracted after fracturing. Compared to conventional polymer fracturing fluid, VES fracturing fluid has many advantages, such as few components, easy preparation, good proppant transport capacity, low damage to cracks and formations, and environment friendly. In this work, we are developing a novel CO2-responsive VES fracking fluid that can readily be reused. This fluid has a gelling-breaking process that can be easily controlled by the presence of CO2 and its pressure. We synthesized erucamidopropyl dimethylamine (EA) as a thickening agent for hydraulic fracturing fluid. The influence of temperature, presence of CO2 and pressure on the viscoelastic behavior of this fluid was then investigated through rheological measurements. The fracturing fluid performance and recycle property were lastly studied using core flooding tests. We expect this fluid finds applications not only in enhanced oil/gas recovery, but also in areas such as controlling groundwater pollution and microfluidics.

  4. A randomized controlled trial of long term effect of BCM guided fluid management in MHD patients (BOCOMO study: rationales and study design

    Directory of Open Access Journals (Sweden)

    Liu Li

    2012-09-01

    Full Text Available Abstract Background Bioimpedance analysis (BIA has been reported as helpful in identifying hypervolemia. Observation data showed that hypervolemic maintenance hemodialysis (MHD patients identified using BIA methods have higher mortality risk. However, it is not known if BIA-guided fluid management can improve MHD patients’ survival. The objectives of the BOCOMO study are to evaluate the outcome of BIA guided fluid management compared with standard care. Methods This is a multicenter, prospective, randomized, controlled trial. More than 1300 participants from 16 clinical sites will be included in the study. The enrolment period will last 6 months, and minimum length of follow-up will be 36 months. MHD patients aged between 18 years and 80 years who have been on MHD for at least 3 months and meet eligibility criteria will be invited to participate in the study. Participants will be randomized to BIA arm or control arm in a 1:1 ratio. A portable whole body bioimpedance spectroscopy device (BCM—Fresenius Medical Care D GmbH will be used for BIA measurement at baseline for both arms of the study. In the BIA arm, additional BCM measurements will be performed every 2 months. The primary intent-to-treat analysis will compare outcomes for a composite endpoint of death, acute myocardial infarction, stroke or incident peripheral arterial occlusive disease between groups. Secondary endpoints will include left ventricular wall thickness, blood pressure, medications, and incidence and length of hospitalization. Discussions Previous results regarding the benefit of strict fluid control are conflicting due to small sample sizes and unstable dry weight estimating methods. To our knowledge this is the first large-scale, multicentre, prospective, randomized controlled trial to assess whether BIS-guided volume management improves outcomes of MHD patients. The endpoints of the BOCOMO study are of utmost importance to health care providers. In order to obtain

  5. International Conference on Mathematical Fluid Dynamics

    CERN Document Server

    Suzuki, Yukihito

    2016-01-01

    This volume presents original papers ranging from an experimental study on cavitation jets to an up-to-date mathematical analysis of the Navier-Stokes equations for free boundary problems, reflecting topics featured at the International Conference on Mathematical Fluid Dynamics, Present and Future, held 11–14 November 2014 at Waseda University in Tokyo. The contributions address subjects in one- and two-phase fluid flows, including cavitation, liquid crystal flows, plasma flows, and blood flows. Written by internationally respected experts, these papers highlight the connections between mathematical, experimental, and computational fluid dynamics. The book is aimed at a wide readership in mathematics and engineering, including researchers and graduate students interested in mathematical fluid dynamics.

  6. Disease Control After Reduced Volume Conformal and Intensity Modulated Radiation Therapy for Childhood Craniopharyngioma

    Energy Technology Data Exchange (ETDEWEB)

    Merchant, Thomas E., E-mail: thomas.merchant@stjude.org [St Jude Children' s Research Hospital, Radiological Sciences, Memphis, Tennessee (United States); Kun, Larry E.; Hua, Chia-Ho [St Jude Children' s Research Hospital, Radiological Sciences, Memphis, Tennessee (United States); Wu, Shengjie; Xiong, Xiaoping [St Jude Children' s Research Hospital, Biostatistics, Memphis, Tennessee (United States); Sanford, Robert A.; Boop, Frederick A. [Semmes Murphey Neurologic and Spine Institute, Neurosurgery, Memphis, Tennessee (United States)

    2013-03-15

    Purpose: To estimate the rate of disease control after conformal radiation therapy using reduced clinical target volume (CTV) margins and to determine factors that predict for tumor progression. Methods and Materials: Eighty-eight children (median age, 8.5 years; range, 3.2-17.6 years) received conformal or intensity modulated radiation therapy between 1998 and 2009. The study group included those prospectively treated from 1998 to 2003, using a 10-mm CTV, defined as the margin surrounding the solid and cystic tumor targeted to receive the prescription dose of 54 Gy. The CTV margin was subsequently reduced after 2003, yielding 2 groups of patients: those treated with a CTV margin greater than 5 mm (n=26) and those treated with a CTV margin less than or equal to 5 mm (n=62). Disease progression was estimated on the basis of additional variables including sex, race, extent of resection, tumor interventions, target volume margins, and frequency of weekly surveillance magnetic resonance (MR) imaging during radiation therapy. Median follow-up was 5 years. Results: There was no difference between progression-free survival rates based on CTV margins (>5 mm vs ≤5 mm) at 5 years (88.1% ± 6.3% vs 96.2% ± 4.4% [P=.6386]). There were no differences based on planning target volume (PTV) margins (or combined CTV plus PTV margins). The PTV was systematically reduced from 5 to 3 mm during the time period of the study. Factors predictive of superior progression-free survival included Caucasian race (P=.0175), no requirement for cerebrospinal fluid shunting (P=.0066), and number of surveillance imaging studies during treatment (P=.0216). Patients whose treatment protocol included a higher number of weekly surveillance MR imaging evaluations had a lower rate of tumor progression. Conclusions: These results suggest that targeted volume reductions for radiation therapy using smaller margins are feasible and safe but require careful monitoring. We are currently investigating

  7. Fullerol ionic fluids

    KAUST Repository

    Fernandes, Nikhil; Dallas, Panagiotis; Rodriguez, Robert; Bourlinos, Athanasios B.; Georgakilas, Vasilios; Giannelis, Emmanuel P.

    2010-01-01

    ®). The ionic fluid was compared to a control synthesized by mixing the partially protonated form (sodium form) of the fullerols with the same oligomeric amine in the same ratio as in the ionic fluids (20 wt% fullerol). In the fullerol fluid the ionic bonding

  8. Quantifying normal ankle joint volume: An anatomic study

    Directory of Open Access Journals (Sweden)

    Draeger Reid

    2009-01-01

    Full Text Available Background: Many therapeutic and diagnostic modalities such as intraarticular injections, arthrography and ankle arthroscopy require introduction of fluid into the ankle joint. Little data are currently available in the literature regarding the maximal volume of normal, nonpathologic, human ankle joints. The purpose of this study was to measure the volume of normal human ankle joints. Materials and Methods: A fluoroscopic guided needle was passed into nine cadaveric adult ankle joints. The needle was connected to an intracompartmental pressure measurement device. A radiopaque dye was introduced into the joint in 2 mL boluses, while pressure measurements were recorded. Fluid was injected into the joint until three consecutive pressure measurements were similar, signifying a maximal joint volume. Results: The mean maximum ankle joint volume was 20.9 ± 4.9 mL (range, 16-30 mL. The mean ankle joint pressure at maximum volume was 142.2 ± 13.8 mm Hg (range, 122-166 mm Hg. Two of the nine samples showed evidence of fluid tracking into the synovial sheath of the flexor hallucis longus tendon. Conclusion: Maximal normal ankle joint volume was found to vary between 16-30 mL. This study ascertains the communication between the ankle joint and the flexor hallucis longus tendon sheath. Exceeding maximal ankle joint volume suggested by this study during therapeutic injections, arthrography, or arthroscopy could potentially damage the joint.

  9. Fluid responsiveness predicted by transcutaneous partial pressure of oxygen in patients with circulatory failure: a prospective study.

    Science.gov (United States)

    Xu, Jingyuan; Peng, Xiao; Pan, Chun; Cai, Shixia; Zhang, Xiwen; Xue, Ming; Yang, Yi; Qiu, Haibo

    2017-12-01

    Significant effort has been devoted to defining parameters for predicting fluid responsiveness. Our goal was to study the feasibility of predicting fluid responsiveness by transcutaneous partial pressure of oxygen (PtcO 2 ) in the critically ill patients. This was a single-center prospective study conducted in the intensive care unit of a tertiary care teaching hospital. Shock patients who presented with at least one clinical sign of inadequate tissue perfusion, defined as systolic blood pressure 40 mmHg in previously hypertensive patients or the need for vasopressive drugs; urine output 4 mmol/l, for less than 24 h in the absence of a contraindication for fluids were eligible to participate in the study. PtcO 2 was continuously recorded before and during a passive leg raising (PLR) test, and then before and after a 250 ml rapid saline infusion in 10 min. Fluid responsiveness is defined as a change in the stroke volume ≥10% after 250 ml of volume infusion. Thirty-four patients were included, and 14 responded to volume expansion. In the responders, the mean arterial pressure, central venous pressure, cardiac output, stroke volume and PtcO 2 increased significantly, while the heart rate decreased significantly by both PLR and volume expansion. Changes in the stroke volume induced either by PLR or volume expansion were significantly greater in responders than in non-responders. The correlation between the changes in PtcO 2 and stroke volume induced by volume expansion was significant. Volume expansion induced an increase in the PtcO 2 of 14% and PLR induced an increase in PtcO 2 of 13% predicted fluid responsiveness. This study suggested the changes in PtcO 2 induced by volume expansion and a PLR test predicted fluid responsiveness in critically ill patients. Trial registration NCT02083757.

  10. Studies concerning average volume flow and waterpacking anomalies in thermal-hydraulics codes

    International Nuclear Information System (INIS)

    Lyczkowski, R.W.; Ching, J.T.; Mecham, D.C.

    1977-01-01

    One-dimensional hydrodynamic codes have been observed to exhibit anomalous behavior in the form of non-physical pressure oscillations and spikes. It is our experience that sometimes this anomaloous behavior can result in mass depletion, steam table failure and in severe cases, problem abortion. In addition, these non-physical pressure spikes can result in long running times when small time steps are needed in an attempt to cope with anomalous solution behavior. The source of these pressure spikes has been conjectured to be caused by nonuniform enthalpy distribution or wave reflection off the closed end of a pipe or abrupt changes in pressure history when the fluid changes from subcooled to two-phase conditions. It is demonstrated in this paper that many of the faults can be attributed to inadequate modeling of the average volume flow and the sharp fluid density front crossing a junction. General corrective models are difficult to devise since the causes of the problems touch on the very theoretical bases of the differential field equations and associated solution scheme. For example, the fluid homogeneity assumption and the numerical extrapolation scheme have placed severe restrictions on the capability of a code to adequately model certain physical phenomena involving fluid discontinuities. The need for accurate junction and local properties to describe phenomena internal to a control volume often points to additional lengthy computations that are difficult to justify in terms of computational efficiency. Corrective models that are economical to implement and use are developed. When incorporated into the one-dimensional, homogeneous transient thermal-hydraulic analysis computer code, RELAP4, they help mitigate many of the code's difficulties related to average volume flow and water-packing anomalies. An average volume flow model and a critical density model are presented. Computational improvements due to these models are also demonstrated

  11. High call volume at poison control centers: identification and implications for communication.

    Science.gov (United States)

    Caravati, E M; Latimer, S; Reblin, M; Bennett, H K W; Cummins, M R; Crouch, B I; Ellington, L

    2012-09-01

    High volume surges in health care are uncommon and unpredictable events. Their impact on health system performance and capacity is difficult to study. To identify time periods that exhibited very busy conditions at a poison control center and to determine whether cases and communication during high volume call periods are different from cases during low volume periods. Call data from a US poison control center over twelve consecutive months was collected via a call logger and an electronic case database (Toxicall®).Variables evaluated for high call volume conditions were: (1) call duration; (2) number of cases; and (3) number of calls per staff member per 30 minute period. Statistical analyses identified peak periods as busier than 99% of all other 30 minute time periods and low volume periods as slower than 70% of all other 30 minute periods. Case and communication characteristics of high volume and low volume calls were compared using logistic regression. A total of 65,364 incoming calls occurred over 12 months. One hundred high call volume and 4885 low call volume 30 minute periods were identified. High volume periods were more common between 1500 and 2300 hours and during the winter months. Coded verbal communication data were evaluated for 42 high volume and 296 low volume calls. The mean (standard deviation) call length of these calls during high volume and low volume periods was 3 minutes 27 seconds (1 minute 46 seconds) and 3 minutes 57 seconds (2 minutes 11 seconds), respectively. Regression analyses revealed a trend for fewer overall verbal statements and fewer staff questions during peak periods, but no other significant differences for staff-caller communication behaviors were found. Peak activity for poison center call volume can be identified by statistical modeling. Calls during high volume periods were similar to low volume calls. Communication was more concise yet staff was able to maintain a good rapport with callers during busy call periods

  12. Numerical analysis and experiment research on fluid orbital performance of vane type propellant management device

    International Nuclear Information System (INIS)

    Hu, Q; Li, Y; Pan, H L; Liu, J T; Zhuang, B T

    2015-01-01

    Vane type propellant management device (PMD) is one of the key components of the vane-type surface tension tank (STT), and its fluid orbital performance directly determines the STT's success or failure. In present paper, numerical analysis and microgravity experiment study on fluid orbital performance of a vane type PMD were carried out. By using two-phase flow model of volume of fluid (VOF), fluid flow characteristics in the tank with the vane type PMD were numerically calculated, and the rules of fluid transfer and distribution were gotten. A abbreviate model test system of the vane type PMD is established and microgravity drop tower tests were performed, then fluid management and transmission rules of the vane type PMD were obtained under microgravity environment. The analysis and tests results show that the vane type PMD has good and initiative fluid orbital management ability and meets the demands of fluid orbital extrusion in the vane type STT. The results offer valuable guidance for the design and optimization of the new generation of vane type PMD, and also provide a new approach for fluid management and control in space environment

  13. Methods and models for accelerating dynamic simulation of fluid power circuits

    Energy Technology Data Exchange (ETDEWEB)

    Aaman, R.

    2011-07-01

    The objective of this dissertation is to improve the dynamic simulation of fluid power circuits. A fluid power circuit is a typical way to implement power transmission in mobile working machines, e.g. cranes, excavators etc. Dynamic simulation is an essential tool in developing controllability and energy-efficient solutions for mobile machines. Efficient dynamic simulation is the basic requirement for the real-time simulation. In the real-time simulation of fluid power circuits there exist numerical problems due to the software and methods used for modelling and integration. A simulation model of a fluid power circuit is typically created using differential and algebraic equations. Efficient numerical methods are required since differential equations must be solved in real time. Unfortunately, simulation software packages offer only a limited selection of numerical solvers. Numerical problems cause noise to the results, which in many cases leads the simulation run to fail. Mathematically the fluid power circuit models are stiff systems of ordinary differential equations. Numerical solution of the stiff systems can be improved by two alternative approaches. The first is to develop numerical solvers suitable for solving stiff systems. The second is to decrease the model stiffness itself by introducing models and algorithms that either decrease the highest eigenvalues or neglect them by introducing steady-state solutions of the stiff parts of the models. The thesis proposes novel methods using the latter approach. The study aims to develop practical methods usable in dynamic simulation of fluid power circuits using explicit fixed-step integration algorithms. In this thesis, two mechanisms which make the system stiff are studied. These are the pressure drop approaching zero in the turbulent orifice model and the volume approaching zero in the equation of pressure build-up. These are the critical areas to which alternative methods for modelling and numerical simulation

  14. Hydration, Fluid Intake, and Related Urine Biomarkers among Male College Students in Cangzhou, China: A Cross-Sectional Study—Applications for Assessing Fluid Intake and Adequate Water Intake

    Directory of Open Access Journals (Sweden)

    Na Zhang

    2017-05-01

    Full Text Available The objectives of this study were to assess the associations between fluid intake and urine biomarkers and to determine daily total fluid intake for assessing hydration status for male college students. A total of 68 male college students aged 18–25 years recruited from Cangzhou, China completed a 7-day cross-sectional study. From day 1 to day 7; all subjects were asked to complete a self-administered 7-day 24-h fluid intake record. The foods eaten by subjects were weighed and 24-h urine was collected for three consecutive days on the last three consecutive days. On the sixth day, urine osmolality, specific gravity (USG, pH, and concentrations of potassium, sodium, and chloride was determined. Subjects were divided into optimal hydration, middle hydration, and hypohydration groups according to their 24-h urine osmolality. Strong relationships were found between daily total fluid intake and 24-h urine biomarkers, especially for 24-h urine volume (r = 0.76; p < 0.0001 and osmolality (r = 0.76; p < 0.0001. The percentage of the variances in daily total fluid intake (R2 explained by PLS (partial least squares model with seven urinary biomarkers was 68.9%; two urine biomarkers—24-h urine volume and osmolality—were identified as possible key predictors. The daily total fluid intake for assessing optimal hydration was 2582 mL, while the daily total fluid intake for assessing hypohydration was 2502 mL. Differences in fluid intake and urine biomarkers were found among male college students with different hydration status. A strong relationship existed between urine biomarkers and fluid intake. A PLS model identified that key variables for assessing daily total fluid intake were 24-h urine volume and osmolality. It was feasibility to use total fluid intake to judge hydration status.

  15. Piezooptic behavior of certain fluids

    International Nuclear Information System (INIS)

    Weiss, J.D.

    1985-01-01

    In this paper we present an analysis of pressure--volume data for certain optical fluids, which characterizes them by two parameters: their bulk moduli and the pressure derivative of their bulk moduli, both evaluated at zero pressure. We then relate their refractive-index changes to density and pressure using this analysis and the Lorentz-Lorenz equation with a density-dependent polarizability. An example of the use of such fluids in a fiber-optic pressure gauge being developed at Sandia is also discussed

  16. Fluid Intelligence as a Mediator of the Relationship between Executive Control and Balanced Time Perspective.

    Science.gov (United States)

    Zajenkowski, Marcin; Stolarski, Maciej; Witowska, Joanna; Maciantowicz, Oliwia; Łowicki, Paweł

    2016-01-01

    This study examined the cognitive foundations of the balanced time perspective (BTP) proposed by Zimbardo and Boyd (1999). Although BTP is defined as the mental ability to switch effectively between different temporal perspectives, its connection with cognitive functioning has not yet been established. We addressed this by exploring the relationships between time perspectives and both fluid intelligence (measured with Raven's and Cattell's tests) and executive control (Go/No-go and anti-saccade tasks). An investigation conducted among Polish adults ( N = 233) revealed that more balanced TP profile was associated with higher fluid intelligence, and higher executive control. Moreover, we found that the relationship between executive control and BTP was completely mediated by fluid intelligence with the effect size (the ratio of the indirect effect to the total effect) of 0.75, which suggests that cognitive abilities play an important role in adoption of temporal balance. The findings have relevance to time perspective theory as they provide valuable insight into the mechanisms involved in assigning human experience to certain time frames.

  17. Comparison of actual tidal volume in neonatal lung model volume control ventilation using three ventilators.

    Science.gov (United States)

    Toyama, H; Endo, Y; Ejima, Y; Matsubara, M; Kurosawa, S

    2011-07-01

    In neonates, small changes in tidal volumes (V(T)) may lead to complications. Previous studies have shown a significant difference between ventilator-measured tidal volume and tidal volume delivered (actual V(T)). We evaluated the accuracy of three different ventilators to deliver small V(T) during volume-controlled ventilation. We tested Servo 300, 840 ventilator and Evita 4 Neoflow ventilators with lung models simulating normal and injured neonatal lung compliance models. Gas volume delivered from the ventilator into the test circuit (V(TV)) and actual V(T) to the test lung were measured using Ventrak respiration monitors at set V(T) (30 ml). The gas volume increase of the breathing circuit was then calculated. Tidal volumes of the SV300 and PB840 in both lung models were similar to the set V(T) and the actual tidal volumes in the injured model (20.7 ml and 19.8 ml, respectively) were significantly less than that in the normal model (27.4 ml and 23.4 ml). PB840 with circuit compliance compensation could not improve the actual V(T). V(TV) of the EV4N in the normal and the injured models (37.8 ml and 46.6 ml) were markedly increased compared with set V(T), and actual V(T) were similar to set V(T) in the normal and injured model (30.2 ml and 31.9 ml, respectively). EV4N measuring V(T) close to the lung could match actual V(T) to almost the same value as the set V(T) however the gas volume of the breathing circuit was increased. If an accurate value for the patient's actual V(T) is needed, this V(T) must be measured by a sensor located between the Y-piece and the tracheal tube.

  18. A moving control volume method for smooth computation of hydrodynamic forces and torques on immersed bodies

    Science.gov (United States)

    Nangia, Nishant; Patankar, Neelesh A.; Bhalla, Amneet P. S.

    2017-11-01

    Fictitious domain methods for simulating fluid-structure interaction (FSI) have been gaining popularity in the past few decades because of their robustness in handling arbitrarily moving bodies. Often the transient net hydrodynamic forces and torques on the body are desired quantities for these types of simulations. In past studies using immersed boundary (IB) methods, force measurements are contaminated with spurious oscillations due to evaluation of possibly discontinuous spatial velocity of pressure gradients within or on the surface of the body. Based on an application of the Reynolds transport theorem, we present a moving control volume (CV) approach to computing the net forces and torques on a moving body immersed in a fluid. The approach is shown to be accurate for a wide array of FSI problems, including flow past stationary and moving objects, Stokes flow, and high Reynolds number free-swimming. The approach only requires far-field (smooth) velocity and pressure information, thereby suppressing spurious force oscillations and eliminating the need for any filtering. The proposed moving CV method is not limited to a specific IB method and is straightforward to implement within an existing parallel FSI simulation software. This work is supported by NSF (Award Numbers SI2-SSI-1450374, SI2-SSI-1450327, and DGE-1324585), the US Department of Energy, Office of Science, ASCR (Award Number DE-AC02-05CH11231), and NIH (Award Number HL117163).

  19. Ubbelohde viscometer measurement of water-based Fe{sub 3}O{sub 4} magnetic fluid prepared by coprecipitation

    Energy Technology Data Exchange (ETDEWEB)

    Gu, H. [School of Physics and Electronic Engineering, Changshu Institute of Technology, Changshu 215500 (China); Tang, X. [College of Chemistry, Chemical Engineering and Materials Science and Key Laboratory of Organic Synthesis of Jiangsu Province, Soochow University, SIP, Suzhou 215123 (China); Hong, R.Y., E-mail: rhong@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science and Key Laboratory of Organic Synthesis of Jiangsu Province, Soochow University, SIP, Suzhou 215123 (China); College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002 (China); Feng, W.G. [Suzhou Nanocomp Inc., Suzhou New District, Suzhou 215011 (China); Xie, H.D.; Chen, D.X. [Suzhou YouNuo Plastic Industry Co., Ltd., Suzhou 215021 (China); Badami, D. [Department of Chemical Engineering, University of Waterloo, Waterloo, Canada ON N2L 3G1 (Canada)

    2013-12-15

    Fe{sub 3}O{sub 4} nanoparticles were prepared by co-precipitation and coated by sodium dodecyl benzene sulfonate (SDBS) to obtain water-based magnetic fluid. The viscosity of the magnetic fluid was measured using an Ubbelohde viscometer. The effects of magnetic particles volume fraction, surfactant mass fraction and temperature on the viscosity were studied. Experimental results showed that the magnetic fluid with low magnetic particle volume fraction behaved as a Newtonian fluid and the viscosity of the magnetic fluid increased with an increase of the suspended magnetic particles volume fraction. The experimental data was compared with the results of a theoretically derived equation. The viscosity of the magnetic fluid also increased with an increase in surfactant mass portion, while it decreased with increasing temperature. Moreover, the viscosity increased with increasing the magnetic field intensity. Increasing the temperature and the surfactant mass fraction weakened the influence of the magnetic field on the viscosity of the magnetic fluid. - Highlights: • Fe{sub 3}O{sub 4} nanoparticles were prepared using co-precipitation and coated by sodium dodecyl benzene sulfonate to obtain water-based magnetic fluid. • The viscosity of different magnetic fluids was measured using an Ubbelohde viscometer. • The effects of magnetic particles volume fraction, surfactant mass fraction and temperature on the viscosity of magnetic fluids were studied.

  20. Overview of the use of refrigerating fluids in thermodynamical machines; Panorama de l`utilisation des fluides frigorigenes dans les machines thermodynamiques

    Energy Technology Data Exchange (ETDEWEB)

    Bernier, J. [Syrec SA (France)

    1996-12-31

    The R-22 refrigerant has been used as a substitute of chlorofluorocarbons in refrigerating machineries but its use will become prohibited very soon. This paper raises the problem of its replacement by other HFC or natural fluids. The problem of natural fluids like ammonia or propane concerns their toxicity, flammability and explosion risk. If a regulation about the greenhouse effect is defined, the performance of the installation will be the decisive parameter for the choice of a refrigerant. R-22 fluid has multiple applications from air-conditioning systems to freezing tunnels and the most suitable substitutes will be different from one application to the other. The different criteria that influence the choice of a refrigerating fluid are: the condensation pressure, the delivery temperature, the compressor volume efficiency, the volume refrigerating power, the coefficient of performance, the variation of vaporization temperature, the global greenhouse effect, the toxicity, flammability and explosive character. A comparison between several fluids has been performed with a single-stage airtight compressor of 10 m{sup 3}/h, at a 40 deg. C constant condensation temperature, a 5 deg. C overheating and a 3 deg. C under-cooling. (J.S.) 6 refs.

  1. A Numerical Study of Mesh Adaptivity in Multiphase Flows with Non-Newtonian Fluids

    Science.gov (United States)

    Percival, James; Pavlidis, Dimitrios; Xie, Zhihua; Alberini, Federico; Simmons, Mark; Pain, Christopher; Matar, Omar

    2014-11-01

    We present an investigation into the computational efficiency benefits of dynamic mesh adaptivity in the numerical simulation of transient multiphase fluid flow problems involving Non-Newtonian fluids. Such fluids appear in a range of industrial applications, from printing inks to toothpastes and introduce new challenges for mesh adaptivity due to the additional ``memory'' of viscoelastic fluids. Nevertheless, the multiscale nature of these flows implies huge potential benefits for a successful implementation. The study is performed using the open source package Fluidity, which couples an unstructured mesh control volume finite element solver for the multiphase Navier-Stokes equations to a dynamic anisotropic mesh adaptivity algorithm, based on estimated solution interpolation error criteria, and conservative mesh-to-mesh interpolation routine. The code is applied to problems involving rheologies ranging from simple Newtonian to shear-thinning to viscoelastic materials and verified against experimental data for various industrial and microfluidic flows. This work was undertaken as part of the EPSRC MEMPHIS programme grant EP/K003976/1.

  2. Difference gel electrophoresis (DiGE) identifies differentially expressed proteins in endoscopically-collected pancreatic fluid

    Science.gov (United States)

    Paulo, Joao A.; Lee, Linda S.; Banks, Peter A.; Steen, Hanno; Conwell, Darwin L.

    2012-01-01

    Alterations in the pancreatic fluid proteome of individuals with chronic pancreatitis may offer insights into the development and progression of the disease. The endoscopic pancreas function test (ePFT) can safely collect large volumes of pancreatic fluid that are potentially amenable to proteomic analyses using difference gel electrophoresis (DiGE) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Pancreatic fluid was collected endoscopically using the ePFT method following secretin stimulation from three individuals with severe chronic pancreatitis and three chronic abdominal pain controls. The fluid was processed to minimize protein degradation and the protein profiles of each cohort, as determined by DiGE and LC-MS/MS, were compared. This DiGE-LC-MS/MS analysis reveals proteins that are differentially expressed in chronic pancreatitis compared to chronic abdominal pain controls. Proteins with higher abundance in pancreatic fluid from chronic pancreatitis individuals include: actin, desmoplankin, alpha-1-antitrypsin, SNC73, and serotransferrin. Those of relatively lower abundance include carboxypeptidase B, lipase, alpha-1-antichymotrypsin, alpha-2-macroglobulin, Arp2/3 subunit 4, glyceraldehyde-3-phosphate dehydrogenase, and protein disulfide isomerase. Endoscopic collection (ePFT) in tandem with DiGE-LC-MS/MS is a suitable approach for pancreatic fluid proteome analysis, however, further optimization of our protocol, as outlined herein, may improve proteome coverage in future analyses. PMID:21792986

  3. On-Chip Enucleation of Bovine Oocytes using Microrobot-Assisted Flow-Speed Control

    Directory of Open Access Journals (Sweden)

    Akihiko Ichikawa

    2013-06-01

    Full Text Available In this study, we developed a microfluidic chip with a magnetically driven microrobot for oocyte enucleation. A microfluidic system was specially designed for enucleation, and the microrobot actively controls the local flow-speed distribution in the microfluidic chip. The microrobot can adjust fluid resistances in a channel and can open or close the channel to control the flow distribution. Analytical modeling was conducted to control the fluid speed distribution using the microrobot, and the model was experimentally validated. The novelties of the developed microfluidic system are as follows: (1 the cutting speed improved significantly owing to the local fluid flow control; (2 the cutting volume of the oocyte can be adjusted so that the oocyte undergoes less damage; and (3 the nucleus can be removed properly using the combination of a microrobot and hydrodynamic forces. Using this device, we achieved a minimally invasive enucleation process. The average enucleation time was 2.5 s and the average removal volume ratio was 20%. The proposed new system has the advantages of better operation speed, greater cutting precision, and potential for repeatable enucleation.

  4. Stress strain modelling of casting processes in the framework of the control volume method

    DEFF Research Database (Denmark)

    Hattel, Jesper; Andersen, Søren; Thorborg, Jesper

    1998-01-01

    Realistic computer simulations of casting processes call for the solution of both thermal, fluid-flow and stress/strain related problems. The multitude of the influencing parameters, and their non-linear, transient and temperature dependent nature, make the calculations complex. Therefore the nee......, the present model is based on the mainly decoupled representation of the thermal, mechanical and microstructural processes. Examples of industrial applications, such as predicting residual deformations in castings and stress levels in die casting dies, are presented...... for fast, flexible, multidimensional numerical methods is obvious. The basis of the deformation and stress/strain calculation is a transient heat transfer analysis including solidification. This paper presents an approach where the stress/strain and the heat transfer analysis uses the same computational...... domain, which is highly convenient. The basis of the method is the control volume finite difference approach on structured meshes. The basic assumptions of the method are shortly reviewed and discussed. As for other methods which aim at application oriented analysis of casting deformations and stresses...

  5. Investigation of the Capture of Magnetic Particles From High-Viscosity Fluids Using Permanent Magnets.

    Science.gov (United States)

    Garraud, Alexandra; Velez, Camilo; Shah, Yash; Garraud, Nicolas; Kozissnik, Bettina; Yarmola, Elena G; Allen, Kyle D; Dobson, Jon; Arnold, David P

    2016-02-01

    This paper investigates the practicality of using a small, permanent magnet to capture magnetic particles out of high-viscosity biological fluids, such as synovial fluid. Numerical simulations are used to predict the trajectory of magnetic particles toward the permanent magnet. The simulations are used to determine a "collection volume" with a time-dependent size and shape, which determines the number of particles that can be captured from the fluid in a given amount of time. The viscosity of the fluid strongly influences the velocity of the magnetic particles toward the magnet, hence, the collection volume after a given time. In regards to the design of the magnet, the overall size is shown to most strongly influence the collection volume in comparison to the magnet shape or aspect ratio. Numerical results showed good agreement with in vitro experimental magnetic collection results. In the long term, this paper aims to facilitate optimization of the collection of magnetic particle-biomarker conjugates from high-viscosity biological fluids without the need to remove the fluid from a patient.

  6. Lean Production Control at a High-Variety, Low-Volume Parts Manufacturer

    NARCIS (Netherlands)

    Bokhorst, Jos A. C.; Slomp, Jannes

    2010-01-01

    Eaton Electric General Supplies, a parts manufacturing unit that supplies parts for Eaton's electrical business unit, implemented several lean control elements in its high-variety, low-volume production units. These control elements include a constant work-in-process mechanism to limit and control

  7. Stormwater Volume Control to Prevent Increases in Lake Flooding and Dam Failure Risk

    Science.gov (United States)

    Potter, K. W.

    2017-12-01

    Urban expansion is not often considered a major factor contributing to dam failure. But if urbanization occurs without mitigation of the hydrologic impacts, the risk of dam failure will increase. Of particular concern are increases in the volume of storm runoff resulting from increases in the extent of impervious surfaces. Storm runoff volumes are not regulated for much the U.S, and where they are, the required control is commonly less than 100%. Unmitigated increases in runoff volume due to urbanization can pose a risk to dams. A recent technical advisory committee of Dane County has recommended that the county require 100% control of stormwater volumes for new developments. The primary motivation was to prevent increases in the water levels in the Yahara Lakes, slowly draining lakes that are highly sensitive to runoff volume. The recommendations included the use of "volume trading" to achieve efficient compliance. Such recommendations should be considered for other slowly draining lakes, including those created by artificial structures.

  8. Torque Control of a Rehabilitation Teaching Robot Using Magneto-Rheological Fluid Clutches

    Science.gov (United States)

    Hakogi, Hokuto; Ohaba, Motoyoshi; Kuramochi, Naimu; Yano, Hidenori

    A new robot that makes use of MR-fluid clutches for simulating torque is proposed to provide an appropriate device for training physical therapy students in knee-joint rehabilitation. The feeling of torque provided by the robot is expected to correspond to the torque performance obtained by physical therapy experts in a clinical setting. The torque required for knee-joint rehabilitation, which is a function of the rotational angle and the rotational angular velocity of a knee movement, is modeled using a mechanical system composed of typical spring-mass-damper elements. The robot consists of two MR-fluid clutches, two induction motors, and a feedback control system. In the torque experiments, output torque is controlled using the spring and damper coefficients separately. The values of these coefficients are determined experimentally. The experimental results show that the robot would be suitable for training physical therapy students to experience similar torque feelings as needed in a clinical situation.

  9. Formula for Calculating Maintenance Fluid Volumes in Low Birth

    African Journals Online (AJOL)

    TNHJOURNALPH

    2007-08-14

    Aug 14, 2007 ... different fluid prescriptions, so urine output should not ..... easier (than Tables) to commit to memory. Because ... recall/remember. ... Question 1: What will be the maintenance ... Answer: Using the formula 20(R+A-W) ml kg-1.

  10. Numerical study of coupled fluid-structure interaction for combustion system

    NARCIS (Netherlands)

    Khatir, Z.; Pozarlik, Artur Krzysztof; Cooper, R.K.; Watterson, J.W.; Kok, Jacobus B.W.

    2007-01-01

    The computation of fluid–structure interaction (FSI) problems requires solving simultaneously the coupled fluid and structure equations. A partitioned approach using a volume spline solution procedure is applied for the coupling of fluid dynamics and structural dynamics codes. For comparative study,

  11. Magnetic bead manipulation in a sub-microliter fluid volume applicable for biosensing

    NARCIS (Netherlands)

    Derks, R.J.S.; Wimberger-Friedl, R.; Prins, M.W.J.; Dietzel, A.H.

    2007-01-01

    Magnetic actuation principles using superparamagnetic beads suspended in a fluid are studied in this paper. An exptl. setup contg. a submicroliter fluid vol. surrounded by four miniaturized electromagnets was designed and fabricated. On the basis of optical velocity measurements, the induced

  12. Smooth and robust solutions for Dirichlet boundary control of fluid-solid conjugate heat transfer problems

    KAUST Repository

    Yan, Yan

    2015-01-01

    We study a new optimization scheme that generates smooth and robust solutions for Dirichlet velocity boundary control (DVBC) of conjugate heat transfer (CHT) processes. The solutions to the DVBC of the incompressible Navier-Stokes equations are typically nonsmooth, due to the regularity degradation of the boundary stress in the adjoint Navier-Stokes equations. This nonsmoothness is inherited by the solutions to the DVBC of CHT processes, since the CHT process couples the Navier-Stokes equations of fluid motion with the convection-diffusion equations of fluid-solid thermal interaction. Our objective in the CHT boundary control problem is to select optimally the fluid inflow profile that minimizes an objective function that involves the sum of the mismatch between the temperature distribution in the fluid system and a prescribed temperature profile and the cost of the control.Our strategy to resolve the nonsmoothness of the boundary control solution is based on two features, namely, the objective function with a regularization term on the gradient of the control profile on both the continuous and the discrete levels, and the optimization scheme with either explicit or implicit smoothing effects, such as the smoothed Steepest Descent and the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) methods. Our strategy to achieve the robustness of the solution process is based on combining the smoothed optimization scheme with the numerical continuation technique on the regularization parameters in the objective function. In the section of numerical studies, we present two suites of experiments. In the first one, we demonstrate the feasibility and effectiveness of our numerical schemes in recovering the boundary control profile of the standard case of a Poiseuille flow. In the second one, we illustrate the robustness of our optimization schemes via solving more challenging DVBC problems for both the channel flow and the flow past a square cylinder, which use initial

  13. Multivariable Real-Time Control of Viscosity Curve for a Continuous Production Process of a Non-Newtonian Fluid

    Directory of Open Access Journals (Sweden)

    Roberto Mei

    2018-01-01

    Full Text Available The application of a multivariable predictive controller to the mixing process for the production of a non-Newtonian fluid is discussed in this work. A data-driven model has been developed to describe the dynamic behaviour of the rheological properties of the fluid as a function of the operating conditions using experimental data collected in a pilot plant. The developed model provides a realistic process representation and it is used to test and verify the multivariable controller, which has been designed to maintain viscosity curves of the non-Newtonian fluid within a given region of the viscosity-vs-shear rate plane in presence of process disturbances occurring in the mixing process.

  14. Development of a theoretical framework for analyzing cerebrospinal fluid dynamics

    DEFF Research Database (Denmark)

    Cohen, Benjamin; Voorhees, Abram; Vedel, Søren

    2009-01-01

    Background: To date hydrocephalus researchers acknowledge the need for rigorous but utilitarian fluid mechanics understanding and methodologies in studying normal and hydrocephalic intracranial dynamics. Pressure volume models and electric circuit analogs introduced pressure into volume conservat...

  15. Magnetic particle translation as a surrogate measure for synovial fluid mechanics.

    Science.gov (United States)

    Shah, Yash Y; Maldonado-Camargo, Lorena; Patel, Neal S; Biedrzycki, Adam H; Yarmola, Elena G; Dobson, Jon; Rinaldi, Carlos; Allen, Kyle D

    2017-07-26

    The mechanics of synovial fluid vary with disease progression, but are difficult to quantify quickly in a clinical setting due to small sample volumes. In this study, a novel technique to measure synovial fluid mechanics using magnetic nanoparticles is introduced. Briefly, microspheres embedded with superparamagnetic iron oxide nanoparticles, termed magnetic particles, are distributed through a 100μL synovial fluid sample. Then, a permanent magnet inside a protective sheath is inserted into the synovial fluid sample. Magnetic particles translate toward the permanent magnet and the percentage of magnetic particles collected by the magnet in a given time can be related to synovial fluid viscosity. To validate this relationship, magnetic particle translation was demonstrated in three phases. First, magnetic particle translation was assessed in glycerol solutions with known viscosities, demonstrating that as fluid viscosity increased, magnetic particle translation decreased. Next, the relationship between magnetic particle translation and synovial fluid viscosity was assessed using bovine synovial fluid that was progressively degenerated via ultrasonication. Here, particle collection in a given amount of time increased as fluid degenerated, demonstrating that the relationship between particle collection and fluid mechanics holds in non-Newtonian synovial fluid. Finally, magnetic particle translation was used to assess differences between healthy and OA affected joints in equine synovial fluid. Here, particle collection in a given time was higher in OA joints relative to healthy horses (pfluid mechanics in limited volumes of synovial fluid sample. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Are tidal volume measurements in neonatal pressure-controlled ventilation accurate?

    Science.gov (United States)

    Chow, Lily C; Vanderhal, Andre; Raber, Jorge; Sola, Augusto

    2002-09-01

    Bedside pulmonary mechanics monitors (PMM) have become useful in ventilatory management in neonates. These monitors are used more frequently due to recent improvements in data-processing capabilities. PMM devices are often part of the ventilator or are separate units. The accuracy and reliability of these systems have not been carefully evaluated. We compared a single ventilatory parameter, tidal volume (V(t)), as measured by several systems. We looked at two freestanding PMMs: the Ventrak Respiratory Monitoring System (Novametrix, Wallingford, CT) and the Bicore CP-100 Neonatal Pulmonary Monitor (Allied Health Care Products, Riverside, CA), and three ventilators with built-in PMM: the VIP Bird Ventilator (Bird Products Corp., Palm Springs, CA), Siemens Servo 300A (Siemens-Elema AB, Solna, Sweden), and Drager Babylog 8000 (Drager, Inc., Chantilly, VA). A calibrated syringe (Hans Rudolph, Inc., Kansas City, MO) was used to deliver tidal volumes of 4, 10, and 20 mL to each ventilator system coupled with a freestanding PMM. After achieving steady state, six consecutive V(t) readings were taken simultaneously from the freestanding PMM and each ventilator. In a second portion of the bench study, we used pressure-control ventilation and measured exhaled tidal volume (V(te)) while ventilating a Bear Test Lung with the same three ventilators. We adjusted peak inspiratory pressure (PIP) under controlled conditions to achieve the three different targeted tidal volumes on the paired freestanding PMM. Again, six V(te) measurements were recorded for each tidal volume. Means and standard deviations were calculated.The percentage difference in measurement of V(t) delivered by calibrated syringe varied greatly, with the greatest discrepancy seen in the smallest tidal volumes, by up to 28%. In pressure control mode, V(te) as measured by the Siemens was significantly overestimated by 20-95%, with the biggest discrepancy at the smallest V(te), particularly when paired with the Bicore

  17. Controlling fugitive dust emissions in material handling operations

    Energy Technology Data Exchange (ETDEWEB)

    Tooker, G E

    1992-05-01

    The primary mechanism of fugitive dust generation in bulk material handling transfer operations is by dispersion of dust in turbulent air induced to flow with falling or projected material streams. This paper returns to basic theories of particle dynamics and fluid mechanics to quantify the dust generating mechanism by rational analysis. Calculations involving fluid mechanisms are made easier by the availability of the personal computer and the many math manipulating programs. Rational analysis is much more cost effective when estimating collection air volumes to control fugitive emissions; especially in enclosed material handling transfers transporting large volumes of dusty material. Example calculations, using a typical enclosed conveyor-to-conveyor transfer operation are presented to illustrate and highlight the key parameters that determine the magnitude of induced air flow that must be controlled. The methods presented in this paper for estimating collection air volumes apply only enclosed material handling transfers, exhausted to a dust collector. Since some assistance to the control of dust emissions must be given by the material handling transfer chute design, a discussion of good transfer chute design practice is presented. 4 refs., 2 figs., 2 tabs.

  18. The order and volume fill rates in inventory control systems

    DEFF Research Database (Denmark)

    Thorstenson, Anders; Larsen, Christian

    2014-01-01

    This paper differentiates between an order (line) fill rate and a volume fill rate and specifies their performance for different inventory control systems. When the focus is on filling complete customer orders rather than total demanded quantity the order fill rate would be the preferred service...... level measure. The main result shows how the order and volume fill rates are related in magnitude. Earlier results derived for a single-item, single-stage, continuous review inventory system with backordering and constant lead times controlled by a base-stock policy are extended in different directions...... extensions consider more general inventory control review policies with backordering, as well as some relations between service measures. A particularly important result in the paper concerns an alternative service measure, the customer order fill rate, and shows how this measure always exceeds the other two...

  19. Tracking Regional Tissue Volume and Function Change in Lung Using Image Registration

    Directory of Open Access Journals (Sweden)

    Kunlin Cao

    2012-01-01

    Full Text Available We have previously demonstrated the 24-hour redistribution and reabsorption of bronchoalveolar lavage (BAL fluid delivered to the lung during a bronchoscopic procedure in normal volunteers. In this work we utilize image-matching procedures to correlate fluid redistribution and reabsorption to changes in regional lung function. Lung CT datasets from six human subjects were used in this study. Each subject was scanned at four time points before and after BAL procedure. Image registration was performed to align images at different time points and different inflation levels. The resulting dense displacement fields were utilized to track tissue volume changes and reveal deformation patterns of local parenchymal tissue quantitatively. The registration accuracy was assessed by measuring landmark matching errors, which were on the order of 1 mm. The results show that quantitative-assessed fluid volume agreed well with bronchoscopist-reported unretrieved BAL volume in the whole lungs (squared linear correlation coefficient was 0.81. The average difference of lung tissue volume at baseline and after 24 hours was around 2%, which indicates that BAL fluid in the lungs was almost absorbed after 24 hours. Regional lung-function changes correlated with the presence of BAL fluid, and regional function returned to baseline as the fluid was reabsorbed.

  20. Neutron behavior, reactor control, and reactor heat transfer. Volume four

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Volume four covers neutron behavior (neutron absorption, how big are nuclei, neutron slowing down, neutron losses, the self-sustaining reactor), reactor control (what is controlled in a reactor, controlling neutron population, is it easy to control a reactor, range of reactor control, what happens when the fuel burns up, controlling a PWR, controlling a BWR, inherent safety of reactors), and reactor heat transfer (heat generation in a nuclear reactor, how is heat removed from a reactor core, heat transfer rate, heat transfer properties of the reactor coolant)

  1. Fluid mechanics. Vol. 2

    International Nuclear Information System (INIS)

    Truckenbrodt, E.

    1980-01-01

    The second volume contains the chapter 4 to 6. Whereas chapter 1 deals with the introduction into the mechanics of fluids and chapter 2 with the fundamental laws of fluid and thermal fluid dynamics, in chapter 3 elementary flow phenomena in fluids with constant density are treated. Chapter 4 directly continues chapter 3 and describes elementary flow phenomena in fluids with varying density. Fluid statics again is treated as a special case. If compared with the first edition the treatment of unsteady laminar flow and of pipe flow for a fluid with varying density were subject to a substantial extension. In chapter 5 rotation-free and rotating potential flows are presented together. By this means it is achieved to explain the behaviour of the multidimensional fictionless flow in closed form. A subchapter describes some related problems of potential theory like the flow along a free streamline and seepage flow through a porous medium. The boundary layer flows in chapter 6 are concerned with the flow and temperature boundary layer in laminar and turbulent flows at a fired wall. In it differential and integral methods are applied of subchapter reports on boundary layer flows without a fixed boundary, occurring e.g. in an open jet and in a wake flow. The problems of intermittence and of the Coanda effect are briefly mentioned. (orig./MH)

  2. Piston-like plugging of fuzzy-ball workover fluids for controlling and killing lost circulation of gas wells

    Directory of Open Access Journals (Sweden)

    Jinfeng Wang

    2016-01-01

    Full Text Available During well-killing operations for the workover of low-pressure gas wells, formation pressure should be balanced so as to guarantee well control safety by preventing natural gas overflow. In this paper, a laboratory evaluation was conducted with fuzzy-ball fluids as killing fluids. The results show that, the fuzzy-ball fluid, with a density of 0.5–1.5 g/cm3 and a viscosity up to 78,50,000 mPa·s at a low shear rate, realizes controllable performance and forms piston-like plugging slugs of solid-free high structural strength on natural gas wellbore after bonding. During well workover, multiple fluid column pressures were set up by injecting fuzzy-ball fluids with different densities at various rates. Owing to high structural strength of the fluids at a low shear rate, natural gas breaks through only inside the piston-like slug and cannot flow upwards to the ground, so the pathways of natural gas in the wellbore are isolated from the ground surface. Moreover, the fluid can wholly move up and down like a piston-like plug, with the change of formation pressures or the tripping of pipe strings. Like the conventional operations, the production can be restored after the workover, so long as the fluid in wellbore is cleaned by means of gas lift. In a natural gas field in NW China, where the formation pressure coefficient dropped to 0.60–0.82, three wells were fully filled with fuzzy-ball workover fluids for 7 days and another three wells were treated with the piston-like plugs of fuzzy-ball workover fluids for only 3 days. They all presented better technical results. The technology provides a new way for low-pressure gas well workover.

  3. Male mating rate is constrained by seminal fluid availability in bedbugs, Cimex lectularius.

    Directory of Open Access Journals (Sweden)

    Klaus Reinhardt

    Full Text Available Sexual selection, differences in reproductive success between individuals, continues beyond acquiring a mating partner and affects ejaculate size and composition (sperm competition. Sperm and seminal fluid have very different roles in sperm competition but both components encompass production costs for the male. Theoretical models predict that males should spend ejaculate components prudently and differently for sperm and seminal fluid but empirical evidence for independent variation of sperm number and seminal fluid volume is scarce. It is also largely unknown how sperm and seminal fluid variation affect future mating rate. In bedbugs we developed a protocol to examine the role of seminal fluids in ejaculate allocation and its effect on future male mating rate. Using age-related changes in sperm and seminal fluid volume we estimated the lowest capacity at which mating activity started. We then showed that sexually active males allocate 12% of their sperm and 19% of their seminal fluid volume per mating and predicted that males would be depleted of seminal fluid but not of sperm. We tested (and confirmed this prediction empirically. Finally, the slightly faster replenishment of seminal fluid compared to sperm did not outweigh the faster decrease during mating. Our results suggest that male mating rate can be constrained by the availability of seminal fluids. Our protocol might be applicable to a range of other organisms. We discuss the idea that economic considerations in sexual conflict research might benefit from distinguishing between costs and benefits that are ejaculate dose-dependent and those that are frequency-dependent on the mating rate per se.

  4. External gear pumps operating with non-Newtonian fluids: Modelling and experimental validation

    Science.gov (United States)

    Rituraj, Fnu; Vacca, Andrea

    2018-06-01

    External Gear Pumps are used in various industries to pump non-Newtonian viscoelastic fluids like plastics, paints, inks, etc. For both design and analysis purposes, it is often a matter of interest to understand the features of the displacing action realized by meshing of the gears and the description of the behavior of the leakages for this kind of pumps. However, very limited work can be found in literature about methodologies suitable to model such phenomena. This article describes the technique of modelling external gear pumps that operate with non-Newtonian fluids. In particular, it explains how the displacing action of the unit can be modelled using a lumped parameter approach which involves dividing fluid domain into several control volumes and internal flow connections. This work is built upon the HYGESim simulation tool, conceived by the authors' research team in the last decade, which is for the first time extended for the simulation of non-Newtonian fluids. The article also describes several comparisons between simulation results and experimental data obtained from numerous experiments performed for validation of the presented methodology. Finally, operation of external gear pump with fluids having different viscosity characteristics is discussed.

  5. Field Operations and Enforcement Manual for Air Pollution Control. Volume II: Control Technology and General Source Inspection.

    Science.gov (United States)

    Weisburd, Melvin I.

    The Field Operations and Enforcement Manual for Air Pollution Control, Volume II, explains in detail the following: technology of source control, modification of operations, particulate control equipment, sulfur dioxide removal systems for power plants, and control equipment for gases and vapors; inspection procedures for general sources, fuel…

  6. Rheology of granular flows immersed in a viscous fluid

    International Nuclear Information System (INIS)

    Amarsid, Lhassan

    2015-01-01

    We investigate the behavior of granular materials immersed in a viscous fluid by means of extensive simulations based on the Discrete Element Method for particle dynamics coupled with the Lattice Boltzmann method for the fluid. We show that, for a broad range of parameters such as shear rate, confining stress and viscosity, the internal friction coefficient and packing fraction are well described by a single 'visco-inertial' dimensionless parameter combining inertial and Stokes numbers. The frictional behavior under constant confining pressure is mapped into a viscous behavior under volume-controlled conditions, leading to the divergence of the effective normal and shear viscosities in inverse square of the distance to the critical packing fraction. The results are in excellent agreement with the experimental data of Boyer et al. (2011). The evolution of the force network in terms of connectivity and anisotropy as a function of the visco-inertial number, indicates that the increase of frictional strength is a direct consequence of structural anisotropy enhanced by both fluid viscosity and grain inertia. In view of application to a potential nuclear accident, we also study the fragmentation and flow of confined porous aggregates in a fluid under the action of local overpressures and pressure gradients as well as gravity-driven flow of immersed particles in an hourglass. (author)

  7. Thermally developed peristaltic propulsion of magnetic solid particles in biorheological fluids

    Science.gov (United States)

    Bhatti, M. M.; Zeeshan, A.; Tripathi, D.; Ellahi, R.

    2018-04-01

    In this article, effects of heat and mass transfer on MHD peristaltic motion of solid particles in a dusty fluid are investigated. The effects of nonlinear thermal radiation and Hall current are also taken into account. The relevant flow analysis is modelled for fluid phase and dust phase in wave frame by means of Casson fluid model. Computation of solutions is presented for velocity profile, temperature profile and concentration profile. The effects of all the physical parameters such as particle volume fraction, Hartmann number, Hall Effect, Prandtl number, Eckert number, Schmidt number and Soret number are discussed mathematically and graphically. It is noted that the influence of magnetic field and particle volume fraction opposes the flow. Also, the impact of particle volume fraction is quite opposite on temperature and concentration profile. This model is applicable in smart drug delivery systems and bacteria movement in urine flow through the ureter.

  8. On Electromagnetic Modulation of Flow Instabilities, Mixing and Heat Transfer in Conducting and Magnetized Fluids

    Science.gov (United States)

    Kenjeres, S.

    2016-09-01

    In the present paper we give a concise review of some recent highlights of our research dealing with electromagnetic control of flow, mixing and heat transfer of electrically conductive or magnetized fluids. We apply a combination of state-of-art numerical (DNS and LES) and experimental (PIV and LIF) techniques to provide fundamental insights into the complex phenomena of interactions between imposed (or induced) electromagnetic fields and underlying fluid flow. Our analysis covers an extensive range of working fluids, i.e. weakly- and highly-electrically-conductive, as well as magnetized fluids. These interactions are defined through the presence of different types of body forces acting per volume of fluid. A fully closed system of governing equations containing an extended set of the Navier-Stokes and a simplified set of the Maxwell equations is presented. The four characteristic examples are selected: the electromagnetic control of self-sustained jet oscillations, the electromagnetic enhancement of heat transfer in thermal convection, the wake interactions behind magnetic obstacles and finally, the thermo-magnetic convection in differentially heated cubical enclosure. The comparative assessment between experimental and numerical results is presented. It is concluded that generally good agreement between simulations and experiments is obtained for all cases considered, proving the concept of electromagnetic modulation, which can be used in numerous technological applications.

  9. Numerical investigation of fluid mud motion using a three-dimensional hydrodynamic and two-dimensional fluid mud coupling model

    Science.gov (United States)

    Yang, Xiaochen; Zhang, Qinghe; Hao, Linnan

    2015-03-01

    A water-fluid mud coupling model is developed based on the unstructured grid finite volume coastal ocean model (FVCOM) to investigate the fluid mud motion. The hydrodynamics and sediment transport of the overlying water column are solved using the original three-dimensional ocean model. A horizontal two-dimensional fluid mud model is integrated into the FVCOM model to simulate the underlying fluid mud flow. The fluid mud interacts with the water column through the sediment flux, current, and shear stress. The friction factor between the fluid mud and the bed, which is traditionally determined empirically, is derived with the assumption that the vertical distribution of shear stress below the yield surface of fluid mud is identical to that of uniform laminar flow of Newtonian fluid in the open channel. The model is validated by experimental data and reasonable agreement is found. Compared with numerical cases with fixed friction factors, the results simulated with the derived friction factor exhibit the best agreement with the experiment, which demonstrates the necessity of the derivation of the friction factor.

  10. 2nd Symposium on Fluid-Structure-Sound Interactions and Control

    CERN Document Server

    Liu, Yang; Huang, Lixi; Hodges, Dewey

    2014-01-01

    With rapid economic and industrial development in China, India and elsewhere, fluid-related structural vibration and noise problems are widely encountered in many fields, just as they are in the more developed parts of the world, causing increasingly grievous concerns. Turbulence clearly has a significant impact on many such problems. On the other hand, new opportunities are emerging with the advent of various new technologies, such as signal processing, flow visualization and diagnostics, new functional materials, sensors and actuators, etc. These have revitalized interdisciplinary research activities, and it is in this context that the 2nd symposium on fluid-structure-sound interactions and control (FSSIC) was organized. Held in Hong Kong (May 20-21, 2013) and Macau (May 22-23, 2013), the meeting brought together scientists and engineers working in all related branches from both East and West and provided them with a forum to exchange and share the latest progress, ideas and advances and to chart the fronti...

  11. The Contribution of Working Memory to Fluid Reasoning: Capacity, Control, or Both?

    Science.gov (United States)

    Chuderski, Adam; Necka, Edward

    2012-01-01

    Fluid reasoning shares a large part of its variance with working memory capacity (WMC). The literature on working memory (WM) suggests that the capacity of the focus of attention responsible for simultaneous maintenance and integration of information within WM, as well as the effectiveness of executive control exerted over WM, determines…

  12. Fluid Redistribution in Sleep Apnea: Therapeutic Implications in Edematous States

    Directory of Open Access Journals (Sweden)

    Bruno Caldin da Silva

    2018-01-01

    Full Text Available Sleep apnea (SA, a condition associated with increased cardiovascular risk, has been traditionally associated with obesity and aging. However, in patients with fluid-retaining states, such as congestive heart failure and end-stage renal disease, both prevalence and severity of SA are increased. Recently, fluid shift has been recognized to play an important role in the pathophysiology of SA, since the fluid retained in the legs during the day shifts rostrally while recumbent, leading to edema of upper airways. Such simple physics, observed even in healthy individuals, has great impact in patients with fluid overload. Correction of the excess fluid volume has risen as a potential target therapy to improve SA, by attenuation of nocturnal fluid shift. Such strategy has gained special attention, since the standard treatment for SA, the positive airway pressure, has low compliance rates among its users and has failed to reduce cardiovascular outcomes. This review focuses on the pathophysiology of edema and fluid shift, and summarizes the most relevant findings of studies that investigated the impact of treating volume overload on SA. We aim to expand horizons in the treatment of SA by calling attention to a potentially reversible condition, which is commonly underestimated in clinical practice.

  13. An increased fluid intake leads to feet swelling in 100-km ultra-marathoners - an observational field study

    Directory of Open Access Journals (Sweden)

    Cejka Caroline

    2012-04-01

    Full Text Available Abstract Background An association between fluid intake and changes in volumes of the upper and lower limb has been described in 100-km ultra-marathoners. The purpose of the present study was (i to investigate the association between fluid intake and a potential development of peripheral oedemas leading to an increase of the feet volume in 100-km ultra-marathoners and (ii to evaluate a possible association between the changes in plasma sodium concentration ([Na+] and changes in feet volume. Methods In seventy-six 100-km ultra-marathoners, body mass, plasma [Na+], haematocrit and urine specific gravity were determined pre- and post-race. Fluid intake and the changes of volume of the feet were measured where the changes of volume of the feet were estimated using plethysmography. Results Body mass decreased by 1.8 kg (2.4% (p +] increased by 1.2% (p p = 0.0005. The volume of the feet remained unchanged (p > 0.05. Plasma volume and urine specific gravity increased (p r = 0.54, p +] (r = -0.28, p = 0.0142. Running speed was negatively related to both fluid intake (r = -0.33, p = 0.0036 and the change in feet volume (r = -0.23, p = 0.0236. The change in the volume of the feet was negatively related to the change in plasma [Na+] (r = -0.26, p = 0.0227. The change in body mass was negatively related to both post-race plasma [Na+] (r = -0.28, p = 0.0129 and running speed (r = -0.34, p = 0.0028. Conclusions An increase in feet volume after a 100-km ultra-marathon was due to an increased fluid intake.

  14. Post-Exercise Rehydration Strategies: Rate of Fluid Intake and Beverage Type

    Directory of Open Access Journals (Sweden)

    María de Lourdes Mayol Soto

    2010-08-01

    Full Text Available The purpose of the present study was to investigate the effect of a high (H and a low (L rate of fluid consumption with plain water (W or a sports drink (SD on post-exercise fluid balance, and to evaluate whether the known differences between beverages depend on the fluid ingestion rate. Active male subjects (n=16 performed four trials in random order. The participants arrived to the trials euhydrated and were dehydrated to 2% of body weight (BW by cycling intermittently in a controlled climate room (30-35úC. After 30 min of rest, they ingested either W or SD in a volume equivalent to 150% of BW loss, in 45 min (high rate, R or 165 min (low rate, L. At the time point coinciding with the end of H, urine samples were collected every 30 min for four hours. BW loss was similar for all trials and resulted in a total fluid consumption of 2.48 + 0.4 l. Overall, urine output in W exceeded significantly that of SD in both rates of fluid consumption (p=0.001, but there were no differences between L and R (p=0.378. Subjects finished in negative fluid balance in all trials. It is concluded that SD resulted in better but incomplete restoration of fluid balance than W, independent of the rate of fluid consumption. Although overall fluid balance was the same with both ingestion rates (L and H, L was more comfortable to the subjects.

  15. Free surface modelling with two-fluid model and reduced numerical diffusion of the interface

    International Nuclear Information System (INIS)

    Strubelj, Luka; Tiselj, Izrok

    2008-01-01

    Full text of publication follows: The free surface flows are successfully modelled with one of existing free surface models, such as: level set method, volume of fluid method (with/without surface reconstruction), front tracking, two-fluid model (two momentum equations) with modified interphase force and others. The main disadvantage of two-fluid model used for simulations of free surface flows is numerical diffusion of the interface, which can be significantly reduced using the method presented in this paper. Several techniques for reduction of numerical diffusion of the interface have been implemented in the volume of fluid model and are based on modified numerical schemes for advection of volume fraction near the interface. The same approach could be used also for two-fluid method, but according to our experience more successful reduction of numerical diffusion of the interface can be achieved with conservative level set method. Within the conservative level set method, continuity equation for volume fraction is solved and after that the numerical diffusion of the interface is reduced in such a way that the thickness of the interface is kept constant during the simulation. Reduction of the interface diffusion can be also called interface sharpening. In present paper the two-fluid model with interface sharpening is validated on Rayleigh-Taylor instability. Under assumptions of isothermal and incompressible flow of two immiscible fluids, we simulated a system with the fluid of higher density located above the fluid of smaller density in two dimensions. Due to gravity in the system, fluid with higher density moves below the fluid with smaller density. Initial condition is not a flat interface between the fluids, but a sine wave with small amplitude, which develops into a mushroom-like structure. Mushroom-like structure in simulation of Rayleigh-Taylor instability later develops to small droplets as result of numerical dispersion of interface (interface sharpening

  16. Extension of Generalized Fluid System Simulation Program's Fluid Property Database

    Science.gov (United States)

    Patel, Kishan

    2011-01-01

    This internship focused on the development of additional capabilities for the General Fluid Systems Simulation Program (GFSSP). GFSSP is a thermo-fluid code used to evaluate system performance by a finite volume-based network analysis method. The program was developed primarily to analyze the complex internal flow of propulsion systems and is capable of solving many problems related to thermodynamics and fluid mechanics. GFSSP is integrated with thermodynamic programs that provide fluid properties for sub-cooled, superheated, and saturation states. For fluids that are not included in the thermodynamic property program, look-up property tables can be provided. The look-up property tables of the current release version can only handle sub-cooled and superheated states. The primary purpose of the internship was to extend the look-up tables to handle saturated states. This involves a) generation of a property table using REFPROP, a thermodynamic property program that is widely used, and b) modifications of the Fortran source code to read in an additional property table containing saturation data for both saturated liquid and saturated vapor states. Also, a method was implemented to calculate the thermodynamic properties of user-fluids within the saturation region, given values of pressure and enthalpy. These additions required new code to be written, and older code had to be adjusted to accommodate the new capabilities. Ultimately, the changes will lead to the incorporation of this new capability in future versions of GFSSP. This paper describes the development and validation of the new capability.

  17. Thirteenth symposium on energy engineering sciences: Proceedings. Fluid/thermal processes, systems analysis and control

    International Nuclear Information System (INIS)

    1995-01-01

    The DOE Office of Basic Energy Sciences, of which Engineering Research is a component program, is responsible for the long-term mission-oriented research in the Department. Consistent with the DOE/BES mission, the Engineering Research Program is charged with the identification, initiation, and management of fundamental research on broad, generic topics addressing energy-related engineering problems. Its stated goals are: (1) to improve and extend the body of knowledge underlying current engineering practice so as to create new options for enhancing energy savings and production, for prolonging useful life of energy-related structures and equipment, and for developing advanced manufacturing technologies and materials processing with emphasis on reducing costs with improved industrial production and performance quality; and (2) to expand the store of fundamental concepts for solving anticipated and unforeseen engineering problems in the energy technologies. The meeting covered the following areas: (1) fluid mechanics 1--fundamental properties; (2) fluid mechanics 2--two phase flow; (3) thermal processes; (4) fluid mechanics 3; (5) process analysis and control; (6) fluid mechanics 4--turbulence; (7) fluid mechanics 5--chaos; (8) materials issues; and (9) plasma processes. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  18. Thirteenth symposium on energy engineering sciences: Proceedings. Fluid/thermal processes, systems analysis and control

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The DOE Office of Basic Energy Sciences, of which Engineering Research is a component program, is responsible for the long-term mission-oriented research in the Department. Consistent with the DOE/BES mission, the Engineering Research Program is charged with the identification, initiation, and management of fundamental research on broad, generic topics addressing energy-related engineering problems. Its stated goals are: (1) to improve and extend the body of knowledge underlying current engineering practice so as to create new options for enhancing energy savings and production, for prolonging useful life of energy-related structures and equipment, and for developing advanced manufacturing technologies and materials processing with emphasis on reducing costs with improved industrial production and performance quality; and (2) to expand the store of fundamental concepts for solving anticipated and unforeseen engineering problems in the energy technologies. The meeting covered the following areas: (1) fluid mechanics 1--fundamental properties; (2) fluid mechanics 2--two phase flow; (3) thermal processes; (4) fluid mechanics 3; (5) process analysis and control; (6) fluid mechanics 4--turbulence; (7) fluid mechanics 5--chaos; (8) materials issues; and (9) plasma processes. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  19. The study of crosslinked fluid leakoff in hydraulic fracturing physical simulations

    Energy Technology Data Exchange (ETDEWEB)

    Grothe, Vinicius Perrud; Ribeiro, Paulo Roberto [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia de Petroleo; Sousa, Jose Luiz Antunes de Oliveira e [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia. Dept. de Estruturas; Fernandes, Paulo Dore [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2000-07-01

    The fluid loss plays an important role in the design and execution of hydraulic fracturing treatments. The main objectives of this work were: the study of the fluid loss associated with the propagation of hydraulic fractures generated at laboratory; and the comparison of two distinct methods for estimating leakoff coefficients - Nolte analysis and the filtrate volume vs. square root of time plot. Synthetic rock samples were used as well as crosslinked hydroxypropyl guar (HPG) fluids in different polymer concentrations. The physical simulations comprised the confinement of (0.1 x 0.1 x 0.1) m{sup 3} rock samples in a load cell for the application of an in situ stress field. Different flow rates were employed in order to investigate shear effects on the overall leakoff coefficient. Horizontal radial fractures were hydraulically induced with approximate diameters, what was accomplished by controlling the injection time. Leakoff coefficients determined by means of the pressure decline analysis were compared to coefficients obtained from static filtration tests, considering similar experimental conditions. The research results indicated that the physical simulation of hydraulic fracturing may be regarded as an useful tool for evaluating the effectiveness of fracturing fluids and that it can supply reliable estimates of fluid loss coefficients. (author)

  20. SINDA/SINFLO computer routine, volume 1, revision A. [for fluid flow system analysis

    Science.gov (United States)

    Oren, J. A.; Williams, D. R.

    1975-01-01

    The SINFLO package was developed to modify the SINDA preprocessor to accept and store the input data for fluid flow systems analysis and adding the FLOSOL user subroutine to perform the flow solution. This reduced and simplified the user input required for analysis of flow problems. A temperature calculation method, the flow-hybrid method which was developed in previous VSD thermal simulator routines, was incorporated for calculating fluid temperatures. The calculation method accuracy was improved by using fluid enthalpy rather than specific heat for the convective term of the fluid temperature equation. Subroutines and data input requirements are described along with user subroutines, flow data storage, and usage of the plot program.

  1. Medication and volume delivery by gravity-driven micro-drip intravenous infusion: potential variations during "wide-open" flow.

    Science.gov (United States)

    Pierce, Eric T; Kumar, Vikram; Zheng, Hui; Peterfreund, Robert A

    2013-03-01

    Gravity-driven micro-drip infusion sets allow control of medication dose delivery by adjusting drops per minute. When the roller clamp is fully open, flow in the drip chamber can be a continuous fluid column rather than discrete, countable, drops. We hypothesized that during this "wide-open" state, drug delivery becomes dependent on factors extrinsic to the micro-drip set and is therefore difficult to predict. We conducted laboratory experiments to characterize volume delivery under various clinically relevant conditions of wide-open flow in an in vitro laboratory model. A micro-drip infusion set, plugged into a bag of normal saline, was connected to a high-flow stopcock at the distal end. Vertically oriented IV catheters (gauges 14-22) were connected to the stopcock. The fluid meniscus height in the bag was fixed (60-120 cm) above the outflow point. The roller clamp on the infusion set was in fully open position for all experiments resulting in a continuous column of fluid in the drip chamber. Fluid volume delivered in 1 minute was measured 4 times with each condition. To model resistive effects of carrier flow, volumetric infusion pumps were used to deliver various flow rates of normal saline through a carrier IV set into which a micro-drip infusion was "piggybacked." We also compared delivery by micro-drip infusion sets from 3 manufacturers. The volume of fluid delivered by gravity-driven infusion under wide-open conditions (continuous fluid column in drip chamber) varied 2.9-fold (95% confidence interval, 2.84-2.96) depending on catheter size and fluid column height. Total model resistance of the micro-drip with stopcock and catheter varied with flow rate. Volume delivered by the piggybacked micro-drip decreased up to 29.7% ± 0.8% (mean ± SE) as the carrier flow increased from 0 to 1998 mL/min. Delivery characteristics of the micro-drip infusion sets from 3 different manufacturers were similar. Laboratory simulation of clinical situations with gravity

  2. The effects of pleural fluid drainage on respiratory function in mechanically ventilated patients after cardiac surgery.

    Science.gov (United States)

    Brims, Fraser J H; Davies, Michael G; Elia, Andy; Griffiths, Mark J D

    2015-01-01

    Pleural effusions occur commonly after cardiac surgery and the effects of drainage on gas exchange in this population are not well established. We examined pulmonary function indices following drainage of pleural effusions in cardiac surgery patients. We performed a retrospective study examining the effects of pleural fluid drainage on the lung function indices of patients recovering from cardiac surgery requiring mechanical ventilation for more than 7 days. We specifically analysed patients who had pleural fluid removed via an intercostal tube (ICT: drain group) compared with those of a control group (no effusion, no ICT). In the drain group, 52 ICTs were sited in 45 patients. The mean (SD) volume of fluid drained was 1180 (634) mL. Indices of oxygenation were significantly worse in the drain group compared with controls prior to drainage. The arterial oxygen tension (PaO2)/fractional inspired oxygen (FiO2) (P/F) ratio improved on day 1 after ICT placement (mean (SD), day 0: 31.01 (8.92) vs 37.18 (10.7); pdrain group patients were more likely to have an improved mode of ventilation on day 1 compared with controls (p=0.028). Pleural effusion after cardiac surgery may impair oxygenation. Drainage of pleural fluid is associated with a rapid and sustained improvement in oxygenation.

  3. Universal Features of the Fluid to Solid Transition for Attractive Colloidal Particles

    Science.gov (United States)

    Cipelletti, L.; Prasad, V.; Dinsmore, A.; Segre, P. N.; Weitz, D. A.; Trappe, V.

    2002-01-01

    Attractive colloidal particles can exhibit a fluid to solid phase transition if the magnitude of the attractive interaction is sufficiently large, if the volume fraction is sufficiently high, and if the applied stress is sufficiently small. The nature of this fluid to solid transition is similar for many different colloid systems, and for many different forms of interaction. The jamming phase transition captures the common features of these fluid to solid translations, by unifying the behavior as a function of the particle volume fraction, the energy of interparticle attractions, and the applied stress. This paper describes the applicability of the jamming state diagram, and highlights those regions where the fluid to solid transition is still poorly understood. It also presents new data for gelation of colloidal particles with an attractive depletion interaction, providing more insight into the origin of the fluid to solid transition.

  4. Fluid thermodynamics control thermal weakening during earthquake rupture.

    Science.gov (United States)

    Acosta, M.; Passelegue, F. X.; Schubnel, A.; Violay, M.

    2017-12-01

    Although fluids are pervasive among tectonic faults, thermo-hydro-mechanical couplings during earthquake slip remain unclear. We report full dynamic records of stick-slip events, performed on saw cut Westerly Granite samples loaded under triaxial conditions at stresses representative of the upper continental crust (σ3' 70 MPa) Three fluid pressure conditions were tested, dry, low , and high pressure (i.e. Pf=0, 1, and 25 MPa). Friction (μ) evolution recorded at 10 MHz sampling frequency showed that, for a single event, μ initially increased from its static pre-stress level, μ0 to a peak value μ p it then abruptly dropped to a minimum dynamic value μd before recovering to its residual value μr, where the fault reloaded elastically. Under dry and low fluid pressure conditions, dynamic friction (μd) was extremely low ( 0.2) and co-seismic slip (δ) was large ( 250 and 200 μm respectively) due to flash heating (FH) and melting of asperities as supported by microstructures. Conversely, at pf=25 MPa, μd was higher ( 0.45), δ was smaller ( 80 μm), and frictional melting was not found. We calculated flash temperatures at asperity contacts including heat buffering by on-fault fluid. Considering the isobaric evolution of water's thermodynamic properties with rising temperature showed that pressurized water controlled fault heating and weakening, through sharp variations of specific heat (cpw) and density (ρw) at water's phase transitions. Injecting the computed flash temperatures into slip-on-a-plane model for thermal pressurization (TP) showed that: (i) if pf was low enough so that frictional heating induced liquid/vapour phase transition, FH operated, allowing very low μd during earthquakes. (ii) Conversely, if pf was high enough that shear heating induced a sharp phase transition directly from liquid to supercritical state, an extraordinary rise in water's specific heat acted as a major energy sink inhibiting FH and limiting TP, allowing higher dynamic fault

  5. Annual review of numerical fluid mechanics and heat transfer. Volume 1

    International Nuclear Information System (INIS)

    Chawla, T.C.

    1987-01-01

    Numerical techniqes for the analysis of problems in fluid mechanics and heat transfer are discussed, reviewing the results of recent investigations. Topics addressed include thermal radiation in particulate media with dependent and independent scattering, pressure-velocity coupling in incompressiblefluid flow, new explicit methods for diffusion problems, and one-dimensional reaction-diffusion equations in combustion theory. Consideration is given to buckling flows, multidimensional radiative-transfer analysis in participating media, freezing and melting problems, and complex heat-transfer processes in heat-generating horizontal fluid layers

  6. CDIO-Concept for Enginering Education in Fluid Power, Motion Control and Mechatronic Design

    DEFF Research Database (Denmark)

    Conrad, Finn; Andersen, Torben O.; Hansen, Michael Rygaard

    2006-01-01

    of mechatronics solutions with fluid power actuators for motion control of machines and robots. The idea of CDIO-Concept is to take care of that the students are learning by doing and learning while doing when the students are active to generate new products and solutions by going through the phases from......The paper presents significant Danish experiment results of a developed CDIO-Concept and approach for active and integrated learning in today’s engineering education of MSc Degree students, and research results from using IT-Tools for CAE/CAD and dynamic modelling, simulation, analysis, and design...... to Conceive, Design, Implement and Operate related to en product design by them self in competition with others. The idea is based on the Danish implementation of a CDIO-Concept. A curriculum at Aalborg University, and Technical University of Denmark, offers courses for Motion Control, Fluid Power within...

  7. Fundamental Issues of Nano-fluid Behavior

    International Nuclear Information System (INIS)

    Williams, Wesley C.

    2006-01-01

    This paper will elucidate some of the behaviors of nano-fluids other than the abnormal conductivity enhancement, which are of importance to the experimental and engineering use of nano-fluids. Nano-fluid is the common name of any sol colloid involving nano-scale (less than 100 nm) sized particles dispersed within a base fluid. It has been shown previously that the dispersion of nano-particulate metallic oxides into water can increase thermal conductivity up to 30-40% over that of the base fluid and anomalously more than the mere weighed average of the colloid. There is a great potential for the use of nano-fluids as a way to enhance fluid/thermal energy transfer systems. Due to the recentness of nano-fluid science, there are still many issues which have not been fully investigated. This paper should act as a primer for the basic understanding of nano-fluid behavior. Particle size and colloid stability are of key importance to the functionality of nano-fluids. The pH and concentration/loading of nano-fluids can alter the size of the nano-particles and also the stability of the fluids. It will be shown through experiment and colloid theory the importance of these parameters. Furthermore, most of the existing literature uses volume percentage as the measure of particle loading, which can often be misleading. There will be discussion of this and other misleading ideas in nano-fluid science. (author)

  8. Delivery of tidal volume from four anaesthesia ventilators during volume-controlled ventilation: a bench study.

    Science.gov (United States)

    Wallon, G; Bonnet, A; Guérin, C

    2013-06-01

    Tidal volume (V(T)) must be accurately delivered by anaesthesia ventilators in the volume-controlled ventilation mode in order for lung protective ventilation to be effective. However, the impact of fresh gas flow (FGF) and lung mechanics on delivery of V(T) by the newest anaesthesia ventilators has not been reported. We measured delivered V(T) (V(TI)) from four anaesthesia ventilators (Aisys™, Flow-i™, Primus™, and Zeus™) on a pneumatic test lung set with three combinations of lung compliance (C, ml cm H2O(-1)) and resistance (R, cm H2O litre(-1) s(-2)): C60R5, C30R5, C60R20. For each CR, three FGF rates (0.5, 3, 10 litre min(-1)) were investigated at three set V(T)s (300, 500, 800 ml) and two values of PEEP (0 and 10 cm H2O). The volume error = [(V(TI) - V(Tset))/V(Tset)] ×100 was computed in body temperature and pressure-saturated conditions and compared using analysis of variance. For each CR and each set V(T), the absolute value of the volume error significantly declined from Aisys™ to Flow-i™, Zeus™, and Primus™. For C60R5, these values were 12.5% for Aisys™, 5% for Flow-i™ and Zeus™, and 0% for Primus™. With an increase in FGF, absolute values of the volume error increased only for Aisys™ and Zeus™. However, in C30R5, the volume error was minimal at mid-FGF for Aisys™. The results were similar at PEEP 10 cm H2O. Under experimental conditions, the volume error differed significantly between the four new anaesthesia ventilators tested and was influenced by FGF, although this effect may not be clinically relevant.

  9. Improving fluid registration through white matter segmentation in a twin study design

    Science.gov (United States)

    Chou, Yi-Yu; Lepore, Natasha; Brun, Caroline; Barysheva, Marina; McMahon, Katie; de Zubicaray, Greig I.; Wright, Margaret J.; Toga, Arthur W.; Thompson, Paul M.

    2010-03-01

    Robust and automatic non-rigid registration depends on many parameters that have not yet been systematically explored. Here we determined how tissue classification influences non-linear fluid registration of brain MRI. Twin data is ideal for studying this question, as volumetric correlations between corresponding brain regions that are under genetic control should be higher in monozygotic twins (MZ) who share 100% of their genes when compared to dizygotic twins (DZ) who share half their genes on average. When these substructure volumes are quantified using tensor-based morphometry, improved registration can be defined based on which method gives higher MZ twin correlations when compared to DZs, as registration errors tend to deplete these correlations. In a study of 92 subjects, higher effect sizes were found in cumulative distribution functions derived from statistical maps when performing tissue classification before fluid registration, versus fluidly registering the raw images. This gives empirical evidence in favor of pre-segmenting images for tensor-based morphometry.

  10. OFF, Open source Finite volume Fluid dynamics code: A free, high-order solver based on parallel, modular, object-oriented Fortran API

    Science.gov (United States)

    Zaghi, S.

    2014-07-01

    OFF, an open source (free software) code for performing fluid dynamics simulations, is presented. The aim of OFF is to solve, numerically, the unsteady (and steady) compressible Navier-Stokes equations of fluid dynamics by means of finite volume techniques: the research background is mainly focused on high-order (WENO) schemes for multi-fluids, multi-phase flows over complex geometries. To this purpose a highly modular, object-oriented application program interface (API) has been developed. In particular, the concepts of data encapsulation and inheritance available within Fortran language (from standard 2003) have been stressed in order to represent each fluid dynamics "entity" (e.g. the conservative variables of a finite volume, its geometry, etc…) by a single object so that a large variety of computational libraries can be easily (and efficiently) developed upon these objects. The main features of OFF can be summarized as follows: Programming LanguageOFF is written in standard (compliant) Fortran 2003; its design is highly modular in order to enhance simplicity of use and maintenance without compromising the efficiency; Parallel Frameworks Supported the development of OFF has been also targeted to maximize the computational efficiency: the code is designed to run on shared-memory multi-cores workstations and distributed-memory clusters of shared-memory nodes (supercomputers); the code's parallelization is based on Open Multiprocessing (OpenMP) and Message Passing Interface (MPI) paradigms; Usability, Maintenance and Enhancement in order to improve the usability, maintenance and enhancement of the code also the documentation has been carefully taken into account; the documentation is built upon comprehensive comments placed directly into the source files (no external documentation files needed): these comments are parsed by means of doxygen free software producing high quality html and latex documentation pages; the distributed versioning system referred as git

  11. Servo-control of water and sodium homeostasis during renal clearance measurements in conscious rats.

    Science.gov (United States)

    Thomsen, Klaus; Shirley, David G

    2007-01-01

    Servo-controlled fluid and sodium replacement during clearance studies is used in order to prevent loss of body fluid and sodium following diuretic/natriuretic procedures. However, even under control conditions, the use of this technique is sometimes associated with increases in proximal tubular fluid output (assessed by lithium clearance) and excretion rates. The present study examined the reason for these increases. The first series of experiments showed that one cause is volume overloading. This can occur if the servo system is activated from the start, i.e., during the establishment of a suitably high urine flow rate by constant infusion of hypotonic glucose solution. The second series of experiments showed that replacement of blood samples with donor blood can also lead to increases in fractional lithium excretion and accompanying increases in water and sodium excretion, a problem not seen when blood samples are replaced with the animal's own red blood cells resuspended in isotonic saline. When these pitfalls are avoided, servo-controlled sodium and fluid replacement is a reliable technique that makes it possible to study the effects of natriuretic and/or diuretic stimuli without interference from unwanted changes in extracellular volume. 2007 S. Karger AG, Basel

  12. A diffusion tensor imaging tractography algorithm based on Navier-Stokes fluid mechanics.

    Science.gov (United States)

    Hageman, Nathan S; Toga, Arthur W; Narr, Katherine L; Shattuck, David W

    2009-03-01

    We introduce a fluid mechanics based tractography method for estimating the most likely connection paths between points in diffusion tensor imaging (DTI) volumes. We customize the Navier-Stokes equations to include information from the diffusion tensor and simulate an artificial fluid flow through the DTI image volume. We then estimate the most likely connection paths between points in the DTI volume using a metric derived from the fluid velocity vector field. We validate our algorithm using digital DTI phantoms based on a helical shape. Our method segmented the structure of the phantom with less distortion than was produced using implementations of heat-based partial differential equation (PDE) and streamline based methods. In addition, our method was able to successfully segment divergent and crossing fiber geometries, closely following the ideal path through a digital helical phantom in the presence of multiple crossing tracts. To assess the performance of our algorithm on anatomical data, we applied our method to DTI volumes from normal human subjects. Our method produced paths that were consistent with both known anatomy and directionally encoded color images of the DTI dataset.

  13. Perilymph composition in scala tympani of the cochlea: influence of cerebrospinal fluid.

    Science.gov (United States)

    Hara, A; Salt, A N; Thalmann, R

    1989-11-01

    A commonly used technique to obtain cochlear perilymph for analysis has been the aspiration of samples through the round window membrane. The present study has investigated the influence of the volume withdrawn on sample composition in the guinea pig. Samples of less than 200 nl in volume taken through the round window showed relatively high glycine content, comparable to the level found in samples taken from scala vestibuli. If larger volumes are withdrawn, lower glycine levels are observed. This is consistent with cerebrospinal fluid (having a low glycine content) being drawn into scala tympani through the cochlear aqueduct and contaminating the sample. The existence of a concentration difference for glycine between scala tympani perilymph and cerebrospinal fluid suggests the physiologic communication across the cochlear aqueduct is relatively small in this species. The observation of considerable exchange between cerebrospinal fluid and perilymph, as reported in some studies, is more likely to be an artifact of the experimental procedures, rather than of physiologic significance. Alternative sampling procedures have been evaluated which allow larger volumes of uncontaminated scala tympani perilymph to be collected.

  14. Mathematical modeling for laminar flow of power law fluid in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Renato A.; Mesquita, Maximilian S. [Universidade Federal do Espirito Santo (UFES), Sao Mateus, ES (Brazil). Centro Universitario Norte do Espirito Santo. Dept. de Engenharias e Computacao

    2010-07-01

    In this paper, the macroscopic equations for laminar power-law fluid flow is obtained for a porous medium starting from traditional equations (Navier-Stokes). Then, the volume averaging is applied in traditional transport equations with the power-law fluid model. This procedure leads to macroscopic transport equations set for non-Newtonian fluid. (author)

  15. A method for treating clayless wash fluids

    Energy Technology Data Exchange (ETDEWEB)

    Deykalo, T A; Dzhumagaliyev, T N; Skvortsov, D S

    1980-02-18

    To increase the heat and salt resistance of a wash fluid, monoethanolamine processed waste of licorice production - grist in a volume of 5-8% by weight, is introduced into it as the disperse phase. The processing of the grist is conducted for 1-2 hours at 20-100/sup 0/C and the volume of the monoethanolamine is 0.05-0.1% by weight. The properties of the washing fluids treated by the grist with the introduction of 20% CaC1/sub 2/ into them were not deteriorated, while complete coagulation was achieved with its introduction into washing fluids on the basis of KMTs. Grist washing liquids do not deteriorate their own properties to a temperature of 200/sup 0/C, do not cause equipment corrosion, are inert to swelling clay rocks and with the introduction of KMTs at a temperature above 130-140/sup 0/C cause insignificant destruction of the reagent which is accompanied by a change in the color of the solutions and a drop in the degree of polymerization and viscosity.

  16. Grid Generation Techniques Utilizing the Volume Grid Manipulator

    Science.gov (United States)

    Alter, Stephen J.

    1998-01-01

    This paper presents grid generation techniques available in the Volume Grid Manipulation (VGM) code. The VGM code is designed to manipulate existing line, surface and volume grids to improve the quality of the data. It embodies an easy to read rich language of commands that enables such alterations as topology changes, grid adaption and smoothing. Additionally, the VGM code can be used to construct simplified straight lines, splines, and conic sections which are common curves used in the generation and manipulation of points, lines, surfaces and volumes (i.e., grid data). These simple geometric curves are essential in the construction of domain discretizations for computational fluid dynamic simulations. By comparison to previously established methods of generating these curves interactively, the VGM code provides control of slope continuity and grid point-to-point stretchings as well as quick changes in the controlling parameters. The VGM code offers the capability to couple the generation of these geometries with an extensive manipulation methodology in a scripting language. The scripting language allows parametric studies of a vehicle geometry to be efficiently performed to evaluate favorable trends in the design process. As examples of the powerful capabilities of the VGM code, a wake flow field domain will be appended to an existing X33 Venturestar volume grid; negative volumes resulting from grid expansions to enable flow field capture on a simple geometry, will be corrected; and geometrical changes to a vehicle component of the X33 Venturestar will be shown.

  17. Fracturing Fluid Leak-off for Deep Volcanic Rock in Zhungeer Basin: Mechanism and Control Method

    Directory of Open Access Journals (Sweden)

    Huang Bo

    2017-01-01

    Full Text Available The deep volcanic reservoir in Zhungeer Basin is buried in over 4000m depth, which is characterized by complex lithology (breccia, andesite, basalt, etc., high elastic modulus and massive natural fractures. During hydraulic fracturing, hydraulic fracture will propagate and natural fractures will be triggered by the increasing net pressure. However, the extension of fractures, especially natural fractures, would aggravate the leak-off effect of fracturing fluid, and consequently decrease the fracturing success rate. 4 out of 12 fracturing wells in the field have failed to add enough proppants due to fluid loss. In order to increase the success rate and efficiency of hydraulic fracturing for deep volcanic reservoir, based on theoretical and experimental method, the mechanism of fracturing fluid leak-off is deeply studied. We propose a dualistic proppant scheme and employ the fluid loss reducer to control the fluid leak-off in macro-fractures and micro-fractures respectively. The proposed technique remarkably improved the success rate in deep volcanic rock fracturing. It bears important theoretical value and practical significance to improve the hydraulic fracturing design for deep volcanic reservoir.

  18. Dynamics of pleural fluid effusion and chylothorax in the fetus and newborn: role of the lymphatic system.

    Science.gov (United States)

    Bellini, C; Ergaz, Z; Boccardo, F; Bellini, T; Campisi, C C; Bonioli, E; Ramenghi, L A

    2013-06-01

    Pleural fluid effusion particularly chylothorax is a relatively rare occurrence in the newborn, but when it occurs it is often life-threatening. In this article, we describe and illustrate the morphologic features of the visceral and parietal pleura including pleural lymphatics and the physiology and pathophysiology of pleural fluid balance. The role and function of the lymphatic system in controlling the volume and composition of pleural liquid are detailed and a conceptual scheme presented. Finally, the crucial role of inadequate lymphatic drainage (either functional overload from an imbalance in Starling forces or mechanical insufficiency from lymphatic dysplasia) is emphasized.

  19. Modeling Approach for Estimating Co-Produced Water Volumes and Saltwater Disposal Volumes in Oklahoma

    Science.gov (United States)

    Murray, K. E.

    2016-12-01

    Management of produced fluids has become an important issue in Oklahoma because large volumes of saltwater are co-produced with oil and gas, and disposed into saltwater disposal wells at high rates. Petroleum production increased from 2009-2015, especially in central and north-central Oklahoma where the Mississippian and Hunton zones were redeveloped using horizontal wells and dewatering techniques that have led to a disproportional increase in produced water volumes. Improved management of co-produced water, including desalination for beneficial reuse and decreased saltwater disposal volumes, is only possible if spatial and temporal trends can be defined and related to the producing zones. It is challenging to quantify the volumes of co-produced water by region or production zone because co-produced water volumes are generally not reported. Therefore, the goal of this research is to estimate co-produced water volumes for 2008-present with an approach that can be replicated as petroleum production shifts to other regions. Oil and gas production rates from subsurface zones were multiplied by ratios of H2O:oil and H2O:gas for the respective zones. Initial H2O:oil and H2O:gas ratios were adjusted/calibrated, by zone, to maximize correlation of county-scale produced H2O estimates versus saltwater disposal volumes from 2013-2015. These calibrated ratios were then used to compute saltwater disposal volumes from 2008-2012 because of apparent data gaps in reported saltwater disposal volumes during that timeframe. This research can be used to identify regions that have the greatest need for produced water treatment systems. The next step in management of produced fluids is to explore optimal energy-efficient strategies that reduce deleterious effects.

  20. Estimation of numerical uncertainty in computational fluid dynamics simulations of a passively controlled wave energy converter

    DEFF Research Database (Denmark)

    Wang, Weizhi; Wu, Minghao; Palm, Johannes

    2018-01-01

    for almost linear incident waves. First, we show that the computational fluid dynamics simulations have acceptable agreement to experimental data. We then present a verification and validation study focusing on the solution verification covering spatial and temporal discretization, iterative and domain......The wave loads and the resulting motions of floating wave energy converters are traditionally computed using linear radiation–diffraction methods. Yet for certain cases such as survival conditions, phase control and wave energy converters operating in the resonance region, more complete...... dynamics simulations have largely been overlooked in the wave energy sector. In this article, we apply formal verification and validation techniques to computational fluid dynamics simulations of a passively controlled point absorber. The phase control causes the motion response to be highly nonlinear even...

  1. Body fluid matrix evaluation on a Roche cobas 8000 system.

    Science.gov (United States)

    Owen, William E; Thatcher, Mindy L; Crabtree, Karolyn J; Greer, Ryan W; Strathmann, Frederick G; Straseski, Joely A; Genzen, Jonathan R

    2015-09-01

    Chemical analysis of body fluids is commonly requested by physicians. Because most commercial FDA-cleared clinical laboratory assays are not validated by diagnostic manufacturers for "non-serum" and "non-plasma" specimens, laboratories may need to complete additional validation studies to comply with regulatory requirements regarding body fluid testing. The objective of this report is to perform recovery studies to evaluate potential body fluid matrix interferences for commonly requested chemistry analytes. Using an IRB-approved protocol, previously collected clinical body fluid specimens (biliary/hepatic, cerebrospinal, dialysate, drain, pancreatic, pericardial, peritoneal, pleural, synovial, and vitreous) were de-identified and frozen (-20°C) until experiments were performed. Recovery studies (spiking with high concentration serum, control, and/or calibrator) were conducted using 10% spiking solution by volume; n=5 specimens per analyte/body fluid investigated. Specimens were tested on a Roche cobas 8000 system (c502, c702, e602, and ISE modules). In all 80 analyte/body fluid combinations investigated (including amylase, total bilirubin, urea nitrogen, carbohydrate antigen 19-9, carcinoembryonic antigen, cholesterol, chloride, creatinine, glucose, potassium, lactate dehydrogenase, lipase, rheumatoid factor, sodium, total protein, triglycerides, and uric acid), the average percent recovery was within predefined acceptable limits (less than ±10% from the calculated ideal recovery). The present study provides evidence against the presence of any systematic matrix interference in the analyte/body fluid combinations investigated on the Roche cobas 8000 system. Such findings support the utility of ongoing body fluid validation initiatives conducted to maintain compliance with regulatory requirements. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  2. Role of α2-adrenoceptors in the lateral parabrachial nucleus in the control of body fluid homeostasis

    International Nuclear Information System (INIS)

    Andrade, C.A.F.; Andrade-Franzé, G.M.F.; De Paula, P.M.; De Luca, L.A. Jr.; Menani, J.V.

    2014-01-01

    Central α 2 -adrenoceptors and the pontine lateral parabrachial nucleus (LPBN) are involved in the control of sodium and water intake. Bilateral injections of moxonidine (α 2 -adrenergic/imidazoline receptor agonist) or noradrenaline into the LPBN strongly increases 0.3 M NaCl intake induced by a combined treatment of furosemide plus captopril. Injection of moxonidine into the LPBN also increases hypertonic NaCl and water intake and reduces oxytocin secretion, urinary sodium, and water excreted by cell-dehydrated rats, causing a positive sodium and water balance, which suggests that moxonidine injected into the LPBN deactivates mechanisms that restrain body fluid volume expansion. Pretreatment with specific α 2 -adrenoceptor antagonists injected into the LPBN abolishes the behavioral and renal effects of moxonidine or noradrenaline injected into the same area, suggesting that these effects depend on activation of LPBN α 2 -adrenoceptors. In fluid-depleted rats, the palatability of sodium is reduced by ingestion of hypertonic NaCl, limiting intake. However, in rats treated with moxonidine injected into the LPBN, the NaCl palatability remains high, even after ingestion of significant amounts of 0.3 M NaCl. The changes in behavioral and renal responses produced by activation of α 2 -adrenoceptors in the LPBN are probably a consequence of reduction of oxytocin secretion and blockade of inhibitory signals that affect sodium palatability. In this review, a model is proposed to show how activation of α 2 -adrenoceptors in the LPBN may affect palatability and, consequently, ingestion of sodium as well as renal sodium excretion

  3. Fluid, solid and fluid-structure interaction simulations on patient-based abdominal aortic aneurysm models.

    Science.gov (United States)

    Kelly, Sinead; O'Rourke, Malachy

    2012-04-01

    This article describes the use of fluid, solid and fluid-structure interaction simulations on three patient-based abdominal aortic aneurysm geometries. All simulations were carried out using OpenFOAM, which uses the finite volume method to solve both fluid and solid equations. Initially a fluid-only simulation was carried out on a single patient-based geometry and results from this simulation were compared with experimental results. There was good qualitative and quantitative agreement between the experimental and numerical results, suggesting that OpenFOAM is capable of predicting the main features of unsteady flow through a complex patient-based abdominal aortic aneurysm geometry. The intraluminal thrombus and arterial wall were then included, and solid stress and fluid-structure interaction simulations were performed on this, and two other patient-based abdominal aortic aneurysm geometries. It was found that the solid stress simulations resulted in an under-estimation of the maximum stress by up to 5.9% when compared with the fluid-structure interaction simulations. In the fluid-structure interaction simulations, flow induced pressure within the aneurysm was found to be up to 4.8% higher than the value of peak systolic pressure imposed in the solid stress simulations, which is likely to be the cause of the variation in the stress results. In comparing the results from the initial fluid-only simulation with results from the fluid-structure interaction simulation on the same patient, it was found that wall shear stress values varied by up to 35% between the two simulation methods. It was concluded that solid stress simulations are adequate to predict the maximum stress in an aneurysm wall, while fluid-structure interaction simulations should be performed if accurate prediction of the fluid wall shear stress is necessary. Therefore, the decision to perform fluid-structure interaction simulations should be based on the particular variables of interest in a given

  4. Portable Intravenous Fluid Production Device for Ground Use

    Data.gov (United States)

    National Aeronautics and Space Administration — There are several medical conditions require the administration of intravenous (IV) fluids, but limitations of mass, volume, shelf-life, transportation, and local...

  5. Control volume based modelling of compressible flow in reciprocating machines

    DEFF Research Database (Denmark)

    Andersen, Stig Kildegård; Thomsen, Per Grove; Carlsen, Henrik

    2004-01-01

    , and multidimensional effects must be calculated using empirical correlations; correlations for steady state flow can be used as an approximation. A transformation that assumes ideal gas is presented for transforming equations for masses and energies in control volumes into the corresponding pressures and temperatures......An approach to modelling unsteady compressible flow that is primarily one dimensional is presented. The approach was developed for creating distributed models of machines with reciprocating pistons but it is not limited to this application. The approach is based on the integral form of the unsteady...... conservation laws for mass, energy, and momentum applied to a staggered mesh consisting of two overlapping strings of control volumes. Loss mechanisms can be included directly in the governing equations of models by including them as terms in the conservation laws. Heat transfer, flow friction...

  6. Management control and status reports documentation standard and Data Item Descriptions (DID). Volume of the information system life-cycle and documentation standards, volume 5

    Science.gov (United States)

    Callender, E. David; Steinbacher, Jody

    1989-01-01

    This is the fifth of five volumes on Information System Life-Cycle and Documentation Standards. This volume provides a well organized, easily used standard for management control and status reports used in monitoring and controlling the management, development, and assurance of informations systems and software, hardware, and operational procedures components, and related processes.

  7. Connection between encounter volume and diffusivity in geophysical flows

    Science.gov (United States)

    Rypina, Irina I.; Smith, Stefan G. Llewellyn; Pratt, Larry J.

    2018-04-01

    Trajectory encounter volume - the volume of fluid that passes close to a reference fluid parcel over some time interval - has been recently introduced as a measure of mixing potential of a flow. Diffusivity is the most commonly used characteristic of turbulent diffusion. We derive the analytical relationship between the encounter volume and diffusivity under the assumption of an isotropic random walk, i.e., diffusive motion, in one and two dimensions. We apply the derived formulas to produce maps of encounter volume and the corresponding diffusivity in the Gulf Stream region of the North Atlantic based on satellite altimetry, and discuss the mixing properties of Gulf Stream rings. Advantages offered by the derived formula for estimating diffusivity from oceanographic data are discussed, as well as applications to other disciplines.

  8. The Propagation of the Gravity Current of Viscoplastic Fluid

    Science.gov (United States)

    Liu, Ye

    2014-11-01

    We are studying the spreading of the viscoplastic fluid of Bingham type over a horizontal plane, using both mathematical derivation and numerical experiments. We are interested in its final shape and whether theory and numerics correspond well. There are two theories for comparison: lubrication theory from asymptotics, and slipline theory from plasticity. The numerical method we are using is based on the volume-of-fluid method, with both regularization and Augmented Lagrangian for the constitutive law of Bingham type fluid. UBC IRSN.

  9. Tutorial on Feedback Control of Flows, Part I: Stabilization of Fluid Flows in Channels and Pipes

    Directory of Open Access Journals (Sweden)

    Ole M. Aamo

    2002-07-01

    Full Text Available The field of flow control has picked up pace over the past decade or so, on the promise of real-time distributed control on turbulent scales being realizable in the near future. This promise is due to the micromachining technology that emerged in the 1980s and developed at an amazing speed through the 1990s. In lab experiments, so called micro-electro-mechanical systems (MEMS that incorporate the entire detection-decision-actuation process on a single chip, have been batch processed in large numbers and assembled into flexible skins for gluing onto body-fluid interfaces for drag reduction purposes. Control of fluid flows span a wide variety of specialities. In Part I of this tutorial, we focus on the problem of reducing drag in channel and pipe flows by stabilizing the parabolic equilibrium profile using boundary feedback control. The control strategics used for this problem include classical control, based on the Nyquist criteria, and various optimal control techniques (H2, H-Infinity, as well as applications of Lyapunov stability theory.

  10. System and technique for characterizing fluids using ultrasonic diffraction grating spectroscopy

    Science.gov (United States)

    Greenwood, Margaret S [Richland, WA

    2008-07-08

    A system for determining property of multiphase fluids based on ultrasonic diffraction grating spectroscopy includes a diffraction grating on a solid in contact with the fluid. An interrogation device delivers ultrasound through the solid and a captures a reflection spectrum from the diffraction grating. The reflection spectrum exhibits peaks whose relative size depends on the properties of the various phases of the multiphase fluid. For example, for particles in a liquid, the peaks exhibit dependence on the particle size and the particle volume fraction. Where the exact relationship is know know a priori, data from different peaks of the same reflection spectrum or data from the peaks of different spectra obtained from different diffraction gratings can be used to resolve the size and volume fraction.

  11. Effect of Gingivitis on Azithromycin Concentrations in Gingival Crevicular Fluid

    Science.gov (United States)

    Jain, Nidhi; Lai, Pin-Chuang; Walters, John D.

    2012-01-01

    Aim Macrolide antibiotics yield high concentrations in inflamed tissue, suggesting that their levels in gingival crevicular fluid (GCF) could be increased at gingivitis sites. However, the increased volume of GCF associated with gingivitis could potentially dilute macrolides. To determine whether these assumptions are correct, the bioavailability of systemically-administered azithromycin was compared in GCF from healthy and gingivitis sites. Materials and methods Experimental gingivitis was induced in one maxillary posterior sextant in nine healthy subjects. Contralateral healthy sextants served as controls. Subjects ingested 500 mg of azithromycin followed by a 250 mg dose 24 hours later. Four hours after the second dose, plaque was removed from experimental sites. GCF was collected from 8 surfaces in both the experimental and control sextants and pooled separately. GCF samples were subsequently collected on the 2nd, 3rd, 8th and 15th days and azithromycin content was determined by agar diffusion bioassay. Results On days 2 and 3, the pooled GCF volume at experimental sites was significantly higher than at control sites (P gingivitis sites and healthy sites, suggesting that the processes that regulate GCF azithromycin concentration can compensate for local inflammatory changes. PMID:22220766

  12. Lattice Boltzmann Simulations of Fluid Flow in Continental Carbonate Reservoir Rocks and in Upscaled Rock Models Generated with Multiple-Point Geostatistics

    Directory of Open Access Journals (Sweden)

    J. Soete

    2017-01-01

    Full Text Available Microcomputed tomography (μCT and Lattice Boltzmann Method (LBM simulations were applied to continental carbonates to quantify fluid flow. Fluid flow characteristics in these complex carbonates with multiscale pore networks are unique and the applied method allows studying their heterogeneity and anisotropy. 3D pore network models were introduced to single-phase flow simulations in Palabos, a software tool for particle-based modelling of classic computational fluid dynamics. In addition, permeability simulations were also performed on rock models generated with multiple-point geostatistics (MPS. This allowed assessing the applicability of MPS in upscaling high-resolution porosity patterns into large rock models that exceed the volume limitations of the μCT. Porosity and tortuosity control fluid flow in these porous media. Micro- and mesopores influence flow properties at larger scales in continental carbonates. Upscaling with MPS is therefore necessary to overcome volume-resolution problems of CT scanning equipment. The presented LBM-MPS workflow is applicable to other lithologies, comprising different pore types, shapes, and pore networks altogether. The lack of straightforward porosity-permeability relationships in complex carbonates highlights the necessity for a 3D approach. 3D fluid flow studies provide the best understanding of flow through porous media, which is of crucial importance in reservoir modelling.

  13. Method and apparatus for probing relative volume fractions

    Science.gov (United States)

    Jandrasits, Walter G.; Kikta, Thomas J.

    1998-01-01

    A relative volume fraction probe particularly for use in a multiphase fluid system includes two parallel conductive paths defining therebetween a sample zone within the system. A generating unit generates time varying electrical signals which are inserted into one of the two parallel conductive paths. A time domain reflectometer receives the time varying electrical signals returned by the second of the two parallel conductive paths and, responsive thereto, outputs a curve of impedance versus distance. An analysis unit then calculates the area under the curve, subtracts the calculated area from an area produced when the sample zone consists entirely of material of a first fluid phase, and divides this calculated difference by the difference between an area produced when the sample zone consists entirely of material of the first fluid phase and an area produced when the sample zone consists entirely of material of a second fluid phase. The result is the volume fraction.

  14. Bulk properties and near-critical behaviour of SiO2 fluid

    Science.gov (United States)

    Green, Eleanor C. R.; Artacho, Emilio; Connolly, James A. D.

    2018-06-01

    Rocky planets and satellites form through impact and accretion processes that often involve silicate fluids at extreme temperatures. First-principles molecular dynamics (FPMD) simulations have been used to investigate the bulk thermodynamic properties of SiO2 fluid at high temperatures (4000-6000 K) and low densities (500-2240 kg m-3), conditions which are relevant to protoplanetary disc condensation. Liquid SiO2 is highly networked at the upper end of this density range, but depolymerises with increasing temperature and volume, in a process characterised by the formation of oxygen-oxygen (Odbnd O) pairs. The onset of vaporisation is closely associated with the depolymerisation process, and is likely to be non-stoichiometric at high temperature, initiated via the exsolution of O2 molecules to leave a Si-enriched fluid. By 6000 K the simulated fluid is supercritical. A large anomaly in the constant-volume heat capacity occurs near the critical temperature. We present tabulated thermodynamic properties for silica fluid that reconcile observations from FPMD simulations with current knowledge of the SiO2 melting curve and experimental Hugoniot curves.

  15. Oral rehydration therapy for preoperative fluid and electrolyte management.

    Science.gov (United States)

    Taniguchi, Hideki; Sasaki, Toshio; Fujita, Hisae

    2011-01-01

    Preoperative fluid and electrolyte management is usually performed by intravenous therapy. We investigated the safety and effectiveness of oral rehydration therapy (ORT) for preoperative fluid and electrolyte management of surgical patients. The study consisted of two studies, designed as a prospective observational study. In a pilot study, 20 surgical patients consumed 1000 mL of an oral rehydration solution (ORS) until 2 h before induction of general anesthesia. Parameters such as serum electrolyte concentrations, fractional excretion of sodium (FENa) as an index of renal blood flow, volume of esophageal-pharyngeal fluid and gastric fluid (EPGF), and patient satisfaction with ORT were assessed. In a follow-up study to assess the safety of ORT, 1078 surgical patients, who consumed ORS until 2 h before induction of general anesthesia, were assessed. In the pilot study, water, electrolytes, and carbohydrate were effectively and safely supplied by ORT. The FENa value was increased at 2 h following ORT. The volume of EPGF collected following the induction of anesthesia was 5.3±5.6 mL. In the follow-up study, a small amount of vomiting occurred in one patient, and no aspiration occurred in the patients. These results suggest that ORT is a safe and effective therapy for the preoperative fluid and electrolyte management of selected surgical patients.

  16. Fluid dynamics following flow shut-off in bottle filling

    Science.gov (United States)

    Thete, Sumeet; Appathurai, Santosh; Gao, Haijing; Basaran, Osman

    2012-11-01

    Bottle filling is ubiquitous in industry. Examples include filling of bottles with shampoos and cleaners, engine oil and pharmaceuticals. In these examples, fluid flows out of a nozzle to fill bottles in an assembly line. Once the required volume of fluid has flowed out of the nozzle, the flow is shut off. However, an evolving fluid thread or string may remain suspended from the nozzle following flow shut-off and persist. This stringing phenomenon can be detrimental to a bottle filling operation because it can adversely affect line speed and filling accuracy by causing uncertainty in fill volume, product loss and undesirable marring of the bottles' exterior surfaces. The dynamics of stringing are studied numerically primarily by using the 1D, slender-jet approximation of the flow equations. A novel feature entails development and use of a new boundary condition downstream of the nozzle exit to expedite the computations. While the emphasis is on stringing of Newtonian fluids and use of 1D approximations, results will also be presented for situations where (a) the fluids are non-Newtonian and (b) the full set of equations are solved without invoking the 1D approximation. Phase diagrams will be presented that identify conditions for which stringing can be problematic.

  17. Vibration control of an artificial muscle manipulator with a magnetorheological fluid brake

    Science.gov (United States)

    Tomori, H.; Midorikawa, Y.; Nakamura, T.

    2013-02-01

    Recently, proposed applications of robots require them to contact human safely. Therefore, we focus on pneumatic rubber artificial muscle. This actuator is flexible, light, and has high-power density. However, because the artificial muscle is flexible, it vibrates when there is a high load. Therefore, we paid attention to the magnetorheological (MR) fluid. We propose a control method of the MR brake considering energy of the manipulator system. By this control method, MR brake dissipates energy leading to vibration of the manipulator. In this paper, we calculated the energy and controlled the MR brake. And, we deliberated the proposal method by simulation using the dynamic model of the manipulator, and experiment.

  18. Fluid Status in Peritoneal Dialysis Patients: The European Body Composition Monitoring (EuroBCM) Study Cohort

    Science.gov (United States)

    Van Biesen, Wim; Williams, John D.; Covic, Adrian C.; Fan, Stanley; Claes, Kathleen; Lichodziejewska-Niemierko, Monika; Verger, Christian; Steiger, Jurg; Schoder, Volker; Wabel, Peter; Gauly, Adelheid; Himmele, Rainer

    2011-01-01

    Background Euvolemia is an important adequacy parameter in peritoneal dialysis (PD) patients. However, accurate tools to evaluate volume status in clinical practice and data on volume status in PD patients as compared to healthy population, and the associated factors, have not been available so far. Methods We used a bio-impedance spectroscopy device, the Body Composition Monitor (BCM) to assess volume status in a cross-sectional cohort of prevalent PD patients in different European countries. The results were compared to an age and gender matched healthy population. Results Only 40% out of 639 patients from 28 centres in 6 countries were normovolemic. Severe fluid overload was present in 25.2%. There was a wide scatter in the relation between blood pressure and volume status. In a multivariate analysis in the subgroup of patients from countries with unrestricted availability of all PD modalities and fluid types, older age, male gender, lower serum albumin, lower BMI, diabetes, higher systolic blood pressure, and use of at least one exchange per day with the highest hypertonic glucose were associated with higher relative tissue hydration. Neither urinary output nor ultrafiltration, PD fluid type or PD modality were retained in the model (total R2 of the model = 0.57). Conclusions The EuroBCM study demonstrates some interesting issues regarding volume status in PD. As in HD patients, hypervolemia is a frequent condition in PD patients and blood pressure can be a misleading clinical tool to evaluate volume status. To monitor fluid balance, not only fluid output but also dietary input should be considered. Close monitoring of volume status, a correct dialysis prescription adapted to the needs of the patient and dietary measures seem to be warranted to avoid hypervolemia. PMID:21390320

  19. A comparative study of lattice Boltzmann and volume of fluid method for two dimensional multiphase flows

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Seung Yeob [Korea Atomic Energy Research Institute (KAERI), Daejeon (Korea, Republic of); Ko, Sung Ho [Dept. of Mechanical Design Engineering, Chungnam National University, Daejeon (Korea, Republic of)

    2012-08-15

    The volume of fluid (VOF) model of FLUENT and the lattice Boltzmann method (LBM) are used to simulate two-phase flows. Both methods are validated for static and dynamic bubble test cases and then compared to experimental results. The VOF method does not reduce the spurious currents of the static droplet test and does not satisfy the Laplace law for small droplets at the acceptable level, as compared with the LBM. For single bubble flows, simulations are executed for various Eotvos numbers, Morton numbers and Reynolds numbers, and the results of both methods agree well with the experiments in the case of low Eotvos numbers. For high Eotvos numbers, the VOF results deviated from the experiments. For multiple bubbles, the bubble flow characteristics are related by the wake of the leading bubble. The coaxial and oblique coalescence of the bubbles are simulated successfully and the subsequent results are presented. In conclusion, the LBM performs better than the VOF method.

  20. Particles at fluid-fluid interfaces: A new Navier-Stokes-Cahn-Hilliard surface- phase-field-crystal model.

    Science.gov (United States)

    Aland, Sebastian; Lowengrub, John; Voigt, Axel

    2012-10-01

    Colloid particles that are partially wetted by two immiscible fluids can become confined to fluid-fluid interfaces. At sufficiently high volume fractions, the colloids may jam and the interface may crystallize. The fluids together with the interfacial colloids form an emulsion with interesting material properties and offer an important route to new soft materials. A promising approach to simulate these emulsions was presented in Aland et al. [Phys. Fluids 23, 062103 (2011)], where a Navier-Stokes-Cahn-Hilliard model for the macroscopic two-phase fluid system was combined with a surface phase-field-crystal model for the microscopic colloidal particles along the interface. Unfortunately this model leads to spurious velocities which require very fine spatial and temporal resolutions to accurately and stably simulate. In this paper we develop an improved Navier-Stokes-Cahn-Hilliard-surface phase-field-crystal model based on the principles of mass conservation and thermodynamic consistency. To validate our approach, we derive a sharp interface model and show agreement with the improved diffuse interface model. Using simple flow configurations, we show that the new model has much better properties and does not lead to spurious velocities. Finally, we demonstrate the solid-like behavior of the crystallized interface by simulating the fall of a solid ball through a colloid-laden multiphase fluid.

  1. Multi-fluid modelling of pulsed discharges for flow control applications

    Science.gov (United States)

    Poggie, J.

    2015-02-01

    Experimental evidence suggests that short-pulse dielectric barrier discharge actuators are effective for speeds corresponding to take-off and approach of large aircraft, and thus are a fruitful direction for flow control technology development. Large-eddy simulations have reproduced some of the main fluid dynamic effects. The plasma models used in such simulations are semi-empirical, however, and need to be tuned for each flowfield under consideration. In this paper, the discharge physics is examined in more detail with multi-fluid modelling, comparing a five-moment model (continuity, momentum, and energy equations) to a two-moment model (continuity and energy equations). A steady-state, one-dimensional discharge was considered first, and the five-moment model was found to predict significantly lower ionisation rates and number densities than the two-moment model. A two-dimensional, transient discharge problem with an elliptical cathode was studied next. Relative to the two-moment model, the five-moment model predicted a slower response to the activation of the cathode, and lower electron velocities and temperatures as the simulation approached steady-state. The primary reason for the differences in the predictions of the two models can be attributed to the effects of particle inertia, particularly electron inertia in the cathode layer. The computational cost of the five-moment model is only about twice that of the simpler variant, suggesting that it may be feasible to use the more sophisticated model in practical calculations for flow control actuator design.

  2. High concentrations of pepsin in bronchoalveolar lavage fluid from children with cystic fibrosis are associated with high interleukin-8 concentrations.

    LENUS (Irish Health Repository)

    McNally, P

    2012-02-01

    BACKGROUND: Gastro-oesophageal reflux is common in children with cystic fibrosis (CF) and is thought to be associated with pulmonary aspiration of gastric contents. The measurement of pepsin in bronchoalveolar lavage (BAL) fluid has recently been suggested to be a reliable indicator of aspiration. The prevalence of pulmonary aspiration in a group of children with CF was assessed and its association with lung inflammation investigated. METHODS: This was a cross-sectional case-control study. BAL fluid was collected from individuals with CF (n=31) and healthy controls (n=7). Interleukin-8 (IL-8), pepsin, neutrophil numbers and neutrophil elastase activity levels were measured in all samples. Clinical, microbiological and lung function data were collected from medical notes. RESULTS: The pepsin concentration in BAL fluid was higher in the CF group than in controls (mean (SD) 24.4 (27.4) ng\\/ml vs 4.3 (4.0) ng\\/ml, p=0.03). Those with CF who had raised pepsin concentrations had higher levels of IL-8 in the BAL fluid than those with a concentration comparable to controls (3.7 (2.7) ng\\/ml vs 1.4 (0.9) ng\\/ml, p=0.004). Within the CF group there was a moderate positive correlation between pepsin concentration and IL-8 in BAL fluid (r=0.48, p=0.04). There was no association between BAL fluid pepsin concentrations and age, sex, body mass index z score, forced expiratory volume in 1 s or Pseudomonas aeruginosa colonisation status. CONCLUSIONS: Many children with CF have increased levels of pepsin in the BAL fluid compared with normal controls. Increased pepsin levels were associated with higher IL-8 concentrations in BAL fluid. These data suggest that aspiration of gastric contents occurs in a subset of patients with CF and is associated with more pronounced lung inflammation.

  3. Modeling of Dynamic Fluid Forces in Fast Switching Valves

    DEFF Research Database (Denmark)

    Roemer, Daniel Beck; Johansen, Per; Pedersen, Henrik Clemmensen

    2015-01-01

    Switching valves experience opposing fluid forces due to movement of the moving member itself, as the surrounding fluid volume must move to accommodate the movement. This movement-induced fluid force may be divided into three main components; the added mass term, the viscous term and the socalled...... history term. For general valve geometries there are no simple solution to either of these terms. During development and design of such switching valves, it is therefore, common practice to use simple models to describe the opposing fluid forces, neglecting all but the viscous term which is determined...... based on shearing areas and venting channels. For fast acting valves the opposing fluid force may retard the valve performance significantly, if appropriate measures are not taken during the valve design. Unsteady Computational Fluid Dynamics (CFD) simulations are available to simulate the total fluid...

  4. Vibration Control of Sandwich Beams Using Electro-Rheological Fluids

    Science.gov (United States)

    Srikantha Phani, A.; Venkatraman, K.

    2003-09-01

    Electro-rheological (ER) fluids are a class of smart materials exhibiting significant reversible changes in their rheological and hence mechanical properties under the influence of an applied electric field. Efforts are in progress to embed ER fluids in various structural elements to mitigate vibration problems. The present work is an experimental investigation of the behaviour of a sandwich beam with ER fluid acting as the core material. A starch-silicone-oil-based ER fluid is used in the present study. Significant improvements in the damping properties are achieved in experiments and the damping contributions by viscous and non-viscous forces are estimated by force-state mapping (FSM) technique. With the increase in electric field across the ER fluid from 0 to 2 kV, an increase of 25-50% in equivalent viscous damping is observed. It is observed that as concentration of starch is increased, the ER effect grows stronger but eventually is overcome by applied stresses.

  5. Low-volume resuscitation using polyethylene glycol-20k in a preclinical porcine model of hemorrhagic shock.

    Science.gov (United States)

    Plant, Valerie; Limkemann, Ashley; Liebrecht, Loren; Blocher, Charles; Ferrada, Paula; Aboutanos, Michel; Mangino, Martin J

    2016-12-01

    Polyethylene glycol-20k (PEG-20k) is highly effective for low-volume resuscitation (LVR) by increasing tolerance to the low-volume state. In our rodent shock model, PEG-20k increased survival and expanded the "golden hour" 16-fold compared to saline. The molecular mechanism is largely attributed to normalizations in cell and tissue fluid shifts after low-flow ischemia resulting in efficient microvascular exchange. The objective of this study was to evaluate PEG-20k as an LVR solution for hemorrhagic shock in a preclinical model. Anesthetized male Yorkshire pigs (30-40 kg) were hemorrhaged to a mean arterial pressure (MAP) of 35 to 40 mm Hg. Once lactate reached 7 mmol/L, either saline (n = 5) or 10% PEG-20k (n = 5) was rapidly infused at 10% calculated blood volume. The primary outcome was LVR time, defined by the time from LVR administration to the time when lactate again reached 7 mmol/L. Other outcomes measured included MAP, heart rate, cardiac output, mixed venous oxygen saturation, splanchnic blood flow, and hemoglobin. Relative to saline, PEG-20k given after controlled hemorrhage increased LVR time by 16-fold, a conservative estimate given that the lactate never rose after LVR in the PEG-20k group. Survival was 80% for PEG-20k LVR compared to 0% for the saline controls (p the intravascular compartment. In a preclinical model of controlled hemorrhagic shock, PEG-20k-based LVR solution increased tolerance to the shock state 16-fold compared to saline. Polyethylene glycol-20k is a superior crystalloid for LVR that may increase safe transport times in the prehospital setting and find use in hospital emergency departments and operating rooms for patients awaiting volume replacement or normalization of cell, tissue, and compartment fluid volumes.

  6. Low-level waste volume reduction--physicochemical systems

    International Nuclear Information System (INIS)

    Ferrigno, D.P.

    1980-01-01

    In some cases, volume reduction (VR) equipment may be called upon to reduce noncombustible liquid wastes to essentially dry salts and/or oxides. In other cases, it may be called upon to reduce combustible solids and liquids to ashes and innocuous gases. In brand terms, four kinds of processes are available to further reduce the volume of waste generated at nuclear facilities. These include high-solids evaporation, alternative evaporative designs, extruders/mixers, and calciner/incinerators. This paper discusses the following VR processes for radioactive wastes at nuclear facilities: evaporator/crystallizer; fluid bed dryer/incinerator; fluid bed calciner/incinerator; inert carrier radwaste processor; and molten glass incinerator

  7. Peripheral i.v. analysis (PIVA) of venous waveforms for volume assessment in patients undergoing haemodialysis.

    Science.gov (United States)

    Hocking, K M; Alvis, B D; Baudenbacher, F; Boyer, R; Brophy, C M; Beer, I; Eagle, S

    2017-12-01

    The assessment of intravascular volume status remains a challenge for clinicians. Peripheral i.v. analysis (PIVA) is a method for analysing the peripheral venous waveform that has been used to monitor volume status. We present a proof-of-concept study for evaluating the efficacy of PIVA in detecting changes in fluid volume. We enrolled 37 hospitalized patients undergoing haemodialysis (HD) as a controlled model for intravascular volume loss. Respiratory rate (F0) and pulse rate (F1) frequencies were measured. PIVA signal was obtained by fast Fourier analysis of the venous waveform followed by weighing the magnitude of the amplitude of the pulse rate frequency. PIVA was compared with peripheral venous pressure and standard monitoring of vital signs. Regression analysis showed a linear correlation between volume loss and change in the PIVA signal (R2=0.77). Receiver operator curves demonstrated that the PIVA signal showed an area under the curve of 0.89 for detection of 20 ml kg-1 change in volume. There was no correlation between volume loss and peripheral venous pressure, blood pressure or pulse rate. PIVA-derived pulse rate and respiratory rate were consistent with similar numbers derived from the bio-impedance and electrical signals from the electrocardiogram. PIVA is a minimally invasive, novel modality for detecting changes in fluid volume status, respiratory rate and pulse rate in spontaneously breathing patients with peripheral i.v. cannulas. © The Author 2017. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  8. Development op finite volume methods for fluid dynamics; Developpement de methodes de volumes finis pour la mecanique des fluides

    Energy Technology Data Exchange (ETDEWEB)

    Delcourte, S

    2007-09-15

    We aim to develop a finite volume method which applies to a greater class of meshes than other finite volume methods, restricted by orthogonality constraints. We build discrete differential operators over the three staggered tessellations needed for the construction of the method. These operators verify some analogous properties to those of the continuous operators. At first, the method is applied to the Div-Curl problem, which can be viewed as a building block of the Stokes problem. Then, the Stokes problem is dealt with with various boundary conditions. It is well known that when the computational domain is polygonal and non-convex, the order of convergence of numerical methods is deteriorated. Consequently, we have studied how an appropriate local refinement is able to restore the optimal order of convergence for the Laplacian problem. At last, we have discretized the non-linear Navier-Stokes problem, using the rotational formulation of the convection term, associated to the Bernoulli pressure. With an iterative algorithm, we are led to solve a saddle-point problem at each iteration. We give a particular interest to this linear problem by testing some pre-conditioners issued from finite elements, which we adapt to our method. Each problem is illustrated by numerical results on arbitrary meshes, such as strongly non-conforming meshes. (author)

  9. An 'attachment kinetics-based' volume of fraction method for organic crystallization: a fluid-dynamic approach to macromolecular-crystal engineering

    International Nuclear Information System (INIS)

    Lappa, Marcello

    2003-01-01

    This analysis exhibits a strong interdisciplinary nature and deals with advances in protein (crystal) engineering models and computational methods as well as with novel results on the relative importance of 'controlling forces' in macromolecular crystal growth. The attention is focused in particular on microgravity fluid-dynamic aspects. From a numerical point of view, the growing crystal gives rise to a moving boundary problem. A 'kinetic-coefficient-based' volume tracking method is specifically and carefully developed according to the complex properties and mechanisms of macromolecular protein crystal growth taking into account the possibility of anisotropic (faceted) surface-orientation-dependent growth. The method is used to shed some light on the interplay of surface attachment kinetics and mass transport (diffusive or convective) in liquid phase and on several mechanisms still poorly understood. It is shown that the size of a growing crystal plays a 'critical role' in the relative importance of surface effects and in determining the intensity of convection. Convective effects, in turn, are found to impact growth rates, macroscopic structures of precipitates, particle size and morphology as well as the mechanisms driving growth. The paper introduces a novel computational method (that simulates the growth due to the slow addition of solute molecules to a lattice and can handle the shape of organic growing crystals under the influence of natural convection) and, at the same time, represents a quite exhaustive attempt to help organic crystal growers to discern the complex interrelations among the various parameters under one's control (that are not independent of one another) and to elaborate rational guidelines relating to physical factors that can influence the probability of success in crystallizing protein substances

  10. Microscope-Based Fluid Physics Experiments in the Fluids and Combustion Facility on ISS

    Science.gov (United States)

    Doherty, Michael P.; Motil, Susan M.; Snead, John H.; Malarik, Diane C.

    2000-01-01

    At the NASA Glenn Research Center, the Microgravity Science Program is planning to conduct a large number of experiments on the International Space Station in both the Fluid Physics and Combustion Science disciplines, and is developing flight experiment hardware for use within the International Space Station's Fluids and Combustion Facility. Four fluids physics experiments that require an optical microscope will be sequentially conducted within a subrack payload to the Fluids Integrated Rack of the Fluids and Combustion Facility called the Light Microscopy Module, which will provide the containment, changeout, and diagnostic capabilities to perform the experiments. The Light Microscopy Module is planned as a fully remotely controllable on-orbit microscope facility, allowing flexible scheduling and control of experiments within International Space Station resources. This paper will focus on the four microscope-based experiments, specifically, their objectives and the sample cell and instrument hardware to accommodate their requirements.

  11. Magnelok technology: a complement to magnetorheological fluids

    Science.gov (United States)

    Carlson, J. David

    2004-07-01

    Magnetorheological or MR fluids have been successfully used to enable highly effective semi-active control systems in automobile primary suspensions to control unwanted motions in civil engineering structures and to provide force-feedback in steer-by-wire systems. A key to the successful use of MR fluids is an appreciation and understanding of the balance and trade-off between the magnetically controlled on-state force and the ever-present off-state viscous force. In all MR fluid applications, one must deal with the fact that MR fluids never fully decouple or go to zero force in their off-state. Magnelok devices are a magnetically controlled compliment to traditional MR fluid devices that have been developed to enable a true force decoupling in the off-state. Magnelok devices may be embodied as linear or rotary dampers, brakes, lockable struts or position holding devices. They are particularly suitable for lock/un-lock applications. Unlike MR fluid devices they contain no fluid yet they do provide a variable level of friction damping that is controlled by the magnitude of the applied magnetic field. Magnelok devices are low cost as they easily accommodate relatively loose mechanical tolerances and require no seals or accumulator. A variety of controllable Magnelok devices and applications are described.

  12. A magnetorheological fluid-based multifunctional haptic device for vehicular instrument controls

    International Nuclear Information System (INIS)

    Han, Young-Min; Kim, Chan-Jung; Choi, Seung-Bok

    2009-01-01

    This paper presents control performances of a magnetorheological (MR) fluid-based multifunctional haptic device which is applicable to vehicular instrument controls. By combining in-vehicle functions into a single device, the proposed haptic device can transmit various reflection forces for each comfort function to a driver without requiring the driver's visual attention. As a multifunctional haptic device, a MR knob is proposed in this work and then devised to be capable of both rotary and push motions with a single knob. Under consideration of the spatial limitations of vehicle dashboards, design parameters are optimally determined by finite element analysis, and the objective function is to maximize a relative control torque. The proposed haptic device is then manufactured, and in-vehicle comfort functions are constructed in a virtual environment which makes the functions to communicate with the haptic device. Subsequently, a feed-forward controller using torque/force maps is formulated for the force tracking control. Control performances such as reflection force of the haptic device are experimentally evaluated via the torque/force map-based feed-forward controller

  13. Synthesis of high-temperature viscosity stabilizer used in drilling fluid

    Science.gov (United States)

    Zhang, Yanna; Luo, Huaidong; Shi, Libao; Huang, Hongjun

    2018-02-01

    Abstract For a well performance drilling fluid, when it operates in deep wells under high temperature, the most important property required is the thermal stability. The drilling fluid properties under high temperature can be controlled by proper selection of viscosity stabilizer, which can capture oxygen to protect polymer agent in the drilling fluid. In this paper a viscosity stabilizer PB-854 is described, which was synthesized by 4-phenoxybutyl bromide, paraformaldehyde, and phloroglucinol using etherification method and condensation reaction. We studied the effect of catalyst dosage, temperature, time, and stirring rate on the synthetic yield. Under this condition: molar ratio of 2-tert-Butylphenol, paraformaldehyde and phloroglucinol of 2:1:2.5, reacting temperature of 100 °C, stirring rate of 100 r min-1, and mass content of catalyst of 15 %, char yield of 5-bromine-3-tert-butyl salicylaldehyde reached 86 %. Under this condition: molar ratio of 5-bromine-3-tert-butyl salicylaldehyde and phloroglucinol of 4, reacting temperature of 60 °C, reacting time of 30 min, volume content of sulphuric acid of 80 %, char yield of the target product viscosity stabilizer PB-854 is 86%. Finally, in this paper, infrared spectroscopy is adopted to analyse the structure of the synthetic product PB-854.The improvement in the stability of drilling fluid was further shown after adding the viscosity stabilizer in the common polymer drilling fluid under high temperature conditions of 120 °C ˜ 180 °C. The results show significant change in terms of fluid stability in the presence of this new stabilizer as it provides better stability.

  14. Fluids engineering

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Fluids engineering has played an important role in many applications, from ancient flood control to the design of high-speed compact turbomachinery. New applications of fluids engineering, such as in high-technology materials processing, biotechnology, and advanced combustion systems, have kept up unwaining interest in the subject. More accurate and sophisticated computational and measurement techniques are also constantly being developed and refined. On a more fundamental level, nonlinear dynamics and chaotic behavior of fluid flow are no longer an intellectual curiosity and fluid engineers are increasingly interested in finding practical applications for these emerging sciences. Applications of fluid technology to new areas, as well as the need to improve the design and to enhance the flexibility and reliability of flow-related machines and devices will continue to spur interest in fluids engineering. The objectives of the present seminar were: to exchange current information on arts, science, and technology of fluids engineering; to promote scientific cooperation between the fluids engineering communities of both nations, and to provide an opportunity for the participants and their colleagues to explore possible joint research programs in topics of high priority and mutual interest to both countries. The Seminar provided an excellent forum for reviewing the current state and future needs of fluids engineering for the two nations. With the Seminar ear-marking the first formal scientific exchange between Korea and the United States in the area of fluids engineering, the scope was deliberately left broad and general

  15. Controlled air incinerator for radioactive waste. Volume II. Engineering design references manual

    International Nuclear Information System (INIS)

    Koenig, R.A.; Draper, W.E.; Newmyer, J.M.; Warner, C.L.

    1982-11-01

    This two-volume report is a detailed design and operating documentation of the Los Alamos National Laboratory Controlled Air Incinerator (CAI) and is an aid to technology transfer to other Department of Energy contractor sites and the commercial sector. Volume I describes the CAI process, equipment, and performance, and it recommends modifications based on Los Alamos experience. It provides the necessary information for conceptual design and feasibility studies. Volume II provides descriptive engineering information such as drawings, specifications, calculations, and costs. It aids duplication of the process at other facilities

  16. Confining dyon gas with finite-volume effects under control

    Energy Technology Data Exchange (ETDEWEB)

    Bruckmann, Falk [Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Dinter, Simon [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Ilgenfritz, Ernst-Michael [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Joint Institute for Nuclear Research, VBLHEP, Dubna (Russian Federation); Maier, Benjamin; Mueller-Preussker, Michael [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Wagner, Marc [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik

    2011-11-15

    As an approach to describe the long-range properties of non-Abelian gauge theories at non-zero temperature Tvolume effects. Therefore, we demonstrate the application of Ewald's summation method to this system. Finite-volume effects are shown to be under control, which is a crucial requirement for numerical studies of interacting dyon ensembles. (orig.)

  17. Confining dyon gas with finite-volume effects under control

    International Nuclear Information System (INIS)

    Bruckmann, Falk; Maier, Benjamin; Mueller-Preussker, Michael; Wagner, Marc; Frankfurt Univ.

    2011-11-01

    As an approach to describe the long-range properties of non-Abelian gauge theories at non-zero temperature T c , we consider a non-interacting ensemble of dyons (magnetic monopoles) with non-trivial holonomy. We show analytically, that the quark-antiquark free energy from the Polyakov loop correlator grows linearly with the distance, and how the string tension scales with the dyon density. In numerical treatments, the long-range tails of the dyon fields cause severe finite-volume effects. Therefore, we demonstrate the application of Ewald's summation method to this system. Finite-volume effects are shown to be under control, which is a crucial requirement for numerical studies of interacting dyon ensembles. (orig.)

  18. Torque Measurement of 3-DOF Haptic Master Operated by Controllable Electrorheological Fluid

    Directory of Open Access Journals (Sweden)

    Oh Jong-Seok

    2015-02-01

    Full Text Available This work presents a torque measurement method of 3-degree-of-freedom (3-DOF haptic master featuring controllable electrorheological (ER fluid. In order to reflect the sense of an organ for a surgeon, the ER haptic master which can generate the repulsive torque of an organ is utilized as a remote controller for a surgery robot. Since accurate representation of organ feeling is essential for the success of the robot-assisted surgery, it is indispensable to develop a proper torque measurement method of 3-DOF ER haptic master. After describing the structural configuration of the haptic master, the torque models of ER spherical joint are mathematically derived based on the Bingham model of ER fluid. A new type of haptic device which has pitching, rolling, and yawing motions is then designed and manufactured using a spherical joint mechanism. Subsequently, the field-dependent parameters of the Bingham model are identified and generating repulsive torque according to applied electric field is measured. In addition, in order to verify the effectiveness of the proposed torque model, a comparative work between simulated and measured torques is undertaken.

  19. Magnetic properties of carbonyl iron particles in magnetorheological fluids

    International Nuclear Information System (INIS)

    Gorodkin, S R; James, R O; Kordonski, W I

    2009-01-01

    Knowledge of the magnetic properties of dispersed magnetic particles is a prerequisite to the design an MR fluid with desired performance. A term specific susceptibility is introduced for characterization of particle susceptibility. The study was performed with the Bartington MS2B magnetic susceptibility system on small samples volume. Specific magnetic susceptibility of iron particles was found to be a linear function of median particle size. Structural change in the fluid, including particle organization, led to susceptibility drift and may affect fluid performance. It was shown that susceptibility data can be used for evaluation of the concentration of carbonyl iron particles in MR fluids.

  20. Engineering applications of computational fluid dynamics

    CERN Document Server

    Awang, Mokhtar

    2015-01-01

    This volume presents the results of Computational Fluid Dynamics (CFD) analysis that can be used for conceptual studies of product design, detail product development, process troubleshooting. It demonstrates the benefit of CFD modeling as a cost saving, timely, safe and easy to scale-up methodology.

  1. The effects of pleural fluid drainage on respiratory function in mechanically ventilated patients after cardiac surgery

    Science.gov (United States)

    Brims, Fraser J H; Davies, Michael G; Elia, Andy; Griffiths, Mark J D

    2015-01-01

    Background Pleural effusions occur commonly after cardiac surgery and the effects of drainage on gas exchange in this population are not well established. We examined pulmonary function indices following drainage of pleural effusions in cardiac surgery patients. Methods We performed a retrospective study examining the effects of pleural fluid drainage on the lung function indices of patients recovering from cardiac surgery requiring mechanical ventilation for more than 7 days. We specifically analysed patients who had pleural fluid removed via an intercostal tube (ICT: drain group) compared with those of a control group (no effusion, no ICT). Results In the drain group, 52 ICTs were sited in 45 patients. The mean (SD) volume of fluid drained was 1180 (634) mL. Indices of oxygenation were significantly worse in the drain group compared with controls prior to drainage. The arterial oxygen tension (PaO2)/fractional inspired oxygen (FiO2) (P/F) ratio improved on day 1 after ICT placement (mean (SD), day 0: 31.01 (8.92) vs 37.18 (10.7); pdrain group patients were more likely to have an improved mode of ventilation on day 1 compared with controls (p=0.028). Conclusions Pleural effusion after cardiac surgery may impair oxygenation. Drainage of pleural fluid is associated with a rapid and sustained improvement in oxygenation. PMID:26339492

  2. Multicenter Study of Brain Volume Abnormalities in Children and Adolescent-Onset Psychosis

    Science.gov (United States)

    Reig, Santiago; Parellada, Mara; Castro-Fornieles, Josefina; Janssen, Joost; Moreno, Dolores; Baeza, Inmaculada; Bargalló, Nuria; González-Pinto, Ana; Graell, Montserrat; Ortuño, Felipe; Otero, Soraya; Arango, Celso; Desco, Manuel

    2011-01-01

    The goal of the study is to determine the extent of structural brain abnormalities in a multicenter sample of children and adolescents with a recent-onset first episode of psychosis (FEP), compared with a sample of healthy controls. Total brain and lobar volumes and those of gray matter (GM), white matter, and cerebrospinal fluid (CSF) were measured in 92 patients with a FEP and in 94 controls, matched for age, gender, and years of education. Male patients (n = 64) showed several significant differences when compared with controls (n = 61). GM volume in male patients was reduced in the whole brain and in frontal and parietal lobes compared with controls. Total CSF volume and frontal, temporal, and right parietal CSF volumes were also increased in male patients. Within patients, those with a further diagnosis of “schizophrenia” or “other psychosis” showed a pattern similar to the group of all patients relative to controls. However, bipolar patients showed fewer differences relative to controls. In female patients, only the schizophrenia group showed differences relative to controls, in frontal CSF. GM deficit in male patients with a first episode correlated with negative symptoms. Our study suggests that at least part of the GM deficit in children and adolescent-onset schizophrenia and in other psychosis occurs before onset of the first positive symptoms and that, contrary to what has been shown in children-onset schizophrenia, frontal GM deficits are probably present from the first appearance of positive symptoms in children and adolescents. PMID:20478821

  3. MRI contrast agent concentration and tumor interstitial fluid pressure.

    Science.gov (United States)

    Liu, L J; Schlesinger, M

    2016-10-07

    The present work describes the relationship between tumor interstitial fluid pressure (TIFP) and the concentration of contrast agent for dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). We predict the spatial distribution of TIFP based on that of contrast agent concentration. We also discuss the cases for estimating tumor interstitial volume fraction (void fraction or porosity of porous medium), ve, and contrast volume transfer constant, K(trans), by measuring the ratio of contrast agent concentration in tissue to that in plasma. A linear fluid velocity distribution may reflect a quadratic function of TIFP distribution and lead to a practical method for TIFP estimation. To calculate TIFP, the parameters or variables should preferably be measured along the direction of the linear fluid velocity (this is in the same direction as the gray value distribution of the image, which is also linear). This method may simplify the calculation for estimating TIFP. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  4. Nanoparticle enhanced ionic liquid heat transfer fluids

    Science.gov (United States)

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.

    2014-08-12

    A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

  5. Distinction between saltwater drowning and freshwater drowning by assessment of sinus fluid on post-mortem computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kawasumi, Yusuke; Sato, Yuki; Sato, Yumi; Ishibashi, Tadashi [Tohoku University Graduate School of Medicine, Department of Clinical Imaging, Sendai, Miyagi (Japan); Usui, Akihito; Daigaku, Nami; Hosokai, Yoshiyuki [Tohoku University Graduate School of Medicine, Department of Diagnostic Image Analysis, Sendai, Miyagi (Japan); Hayashizaki, Yoshie; Funayama, Masato [Tohoku University Graduate School of Medicine, Department of Forensic Medicine, Sendai, Miyagi (Japan)

    2016-04-15

    To evaluate the difference in sinus fluid volume and density between saltwater and freshwater drowning and diagnose saltwater drowning in distinction from freshwater drowning. Ninety-three drowning cases (22 saltwater and 71 freshwater) were retrospectively investigated; all had undergone post-mortem CT and forensic autopsy. Sinus fluid volume and density were calculated using a 3D-DICOM workstation, and differences were evaluated. Diagnostic performance of these indicators for saltwater drowning was evaluated using a cut-off value calculated by receiver operating characteristic (ROC) analysis. The median sinus fluid volume was 5.68 mL in cases of saltwater drowning (range 0.08 to 37.55) and 5.46 mL in cases of freshwater drowning (0.02 to 27.68), and the average densities were 47.28 (14.26 to 75.98) HU and 32.56 (-14.38 to 77.43) HU, respectively. While sinus volume did not differ significantly (p = 0.6000), sinus density was significantly higher in saltwater than freshwater drowning cases (p = 0.0002). ROC analysis for diagnosis of saltwater drowning determined the cut-off value as 37.77 HU, with a sensitivity of 77 %, specificity of 72 %, PPV of 46 % and NPV of 91 %. The average density of sinus fluid in cases of saltwater drowning was significantly higher than in freshwater drowning cases; there was no significant difference in the sinus fluid volume. (orig.)

  6. Distinction between saltwater drowning and freshwater drowning by assessment of sinus fluid on post-mortem computed tomography

    International Nuclear Information System (INIS)

    Kawasumi, Yusuke; Sato, Yuki; Sato, Yumi; Ishibashi, Tadashi; Usui, Akihito; Daigaku, Nami; Hosokai, Yoshiyuki; Hayashizaki, Yoshie; Funayama, Masato

    2016-01-01

    To evaluate the difference in sinus fluid volume and density between saltwater and freshwater drowning and diagnose saltwater drowning in distinction from freshwater drowning. Ninety-three drowning cases (22 saltwater and 71 freshwater) were retrospectively investigated; all had undergone post-mortem CT and forensic autopsy. Sinus fluid volume and density were calculated using a 3D-DICOM workstation, and differences were evaluated. Diagnostic performance of these indicators for saltwater drowning was evaluated using a cut-off value calculated by receiver operating characteristic (ROC) analysis. The median sinus fluid volume was 5.68 mL in cases of saltwater drowning (range 0.08 to 37.55) and 5.46 mL in cases of freshwater drowning (0.02 to 27.68), and the average densities were 47.28 (14.26 to 75.98) HU and 32.56 (-14.38 to 77.43) HU, respectively. While sinus volume did not differ significantly (p = 0.6000), sinus density was significantly higher in saltwater than freshwater drowning cases (p = 0.0002). ROC analysis for diagnosis of saltwater drowning determined the cut-off value as 37.77 HU, with a sensitivity of 77 %, specificity of 72 %, PPV of 46 % and NPV of 91 %. The average density of sinus fluid in cases of saltwater drowning was significantly higher than in freshwater drowning cases; there was no significant difference in the sinus fluid volume. (orig.)

  7. Plasma volume methodology: Evans blue, hemoglobin-hematocrit, and mass density transformations

    Science.gov (United States)

    Greenleaf, J. E.; Hinghofer-Szalkay, H.

    1985-01-01

    Methods for measuring absolute levels and changes in plasma volume are presented along with derivations of pertinent equations. Reduction in variability of the Evans blue dye dilution technique using chromatographic column purification suggests that the day-to-day variability in the plasma volume in humans is less than + or - 20 m1. Mass density determination using the mechanical-oscillator technique provides a method for measuring vascular fluid shifts continuously for assessing the density of the filtrate, and for quantifying movements of protein across microvascular walls. Equations for the calculation of volume and density of shifted fluid are presented.

  8. An evaluation on elastase enzyme activity in gingival crevicular fluid in periodontitis

    Directory of Open Access Journals (Sweden)

    Qujeq D

    2003-08-01

    Full Text Available Statement of Problem: Changes in protein levels, host calls enzymes and inflammatory mediators in gingival"ncrevicular Fluid (GCF are considered as diagnostic indicators of Periodontitis."nPurpose: he aim of the present study was to measure the elastase enzyme activity in gingival crevicular Fluid"namong patients with periodontitis."nMaterial and Methods: In this study, 52 periodontitis patients (experimental group and 51 healthy subjects"nwithout any gingival inflammatio (control group were participated. Subjects of the periodontitis group"nshowed pockets of 4-5 mm depth without gingival enlargement and recession or pockets of 1-2 mm depth"nwith gingival recession. For enzyme activity measurement, lOOu,! of gingival fluid of each sample was mixed"nwith lOOu! of enzyme substrate on the tube. The mixture was incubated at 34°c for lh with a buffer solution"nof 1ml volume and absorbance was read at 410nm with spectrophotometer. The enzyme activity differences"nbetween two groups were analyzed by student t test."nResults: The elastase enzyme activity in gingival crevicular fluid in subjects with periodontium destruction"nand control subjects was 153±11.3 and 52.7±10.4 enzyme unit in ml per minute, respectively. The difference"nbetween groups was statistically significant (PO.05."nConclusion: Based on the findings of this study, the measurement of elastae enzyme activity could be a useful"nindication of tissue changes that may ultimately manifest clinically as periodontitis.

  9. Diffuse interface immersed boundary method for multi-fluid flows with arbitrarily moving rigid bodies

    Science.gov (United States)

    Patel, Jitendra Kumar; Natarajan, Ganesh

    2018-05-01

    We present an interpolation-free diffuse interface immersed boundary method for multiphase flows with moving bodies. A single fluid formalism using the volume-of-fluid approach is adopted to handle multiple immiscible fluids which are distinguished using the volume fractions, while the rigid bodies are tracked using an analogous volume-of-solid approach that solves for the solid fractions. The solution to the fluid flow equations are carried out using a finite volume-immersed boundary method, with the latter based on a diffuse interface philosophy. In the present work, we assume that the solids are filled with a "virtual" fluid with density and viscosity equal to the largest among all fluids in the domain. The solids are assumed to be rigid and their motion is solved using Newton's second law of motion. The immersed boundary methodology constructs a modified momentum equation that reduces to the Navier-Stokes equations in the fully fluid region and recovers the no-slip boundary condition inside the solids. An implicit incremental fractional-step methodology in conjunction with a novel hybrid staggered/non-staggered approach is employed, wherein a single equation for normal momentum at the cell faces is solved everywhere in the domain, independent of the number of spatial dimensions. The scalars are all solved for at the cell centres, with the transport equations for solid and fluid volume fractions solved using a high-resolution scheme. The pressure is determined everywhere in the domain (including inside the solids) using a variable coefficient Poisson equation. The solution to momentum, pressure, solid and fluid volume fraction equations everywhere in the domain circumvents the issue of pressure and velocity interpolation, which is a source of spurious oscillations in sharp interface immersed boundary methods. A well-balanced algorithm with consistent mass/momentum transport ensures robust simulations of high density ratio flows with strong body forces. The

  10. Comparison of the effect of a single dose of erythromycin with pantoprazole on gastric content volume and acidity in elective general surgery patients

    Science.gov (United States)

    Bhatia, Nidhi; Palta, Sanjeev; Arora, Kanika

    2011-01-01

    Introduction: Pulmonary aspiration of gastric contents remains one of the most feared complications of anesthesia. A gastric pH of 2.5 or less and a volume of 25 ml (0.4 ml/kg body weight) or more in average adult patients are considered critical factors for the development of pulmonary damage in adults. Materials and Methods: This study compared the efficacy of a single oral dose of erythromycin (a macrolide antibiotic) with oral pantoprazole (a proton pump inhibitor) on pre-operative gastric fluid volume and pH in a prospective, randomized, double-blind controlled fashion in 80 adult patients (of ASA physical status I and II) planned for elective surgery under general anesthesia. Patients were divided into two groups of 40 patients each. The pantoprazole group (Group I) received oral pantoprazole 40 mg and the erythromycin group (Group II) received oral erythromycin 250 mg at least 1 h prior to the induction of anesthesia. After tracheal intubation, gastric fluid was aspirated via a Salem Sump tube and its volume and pH were measured. Results: Although both erythromycin and pantoprazole decreased the gastric fluid volume to a similar extent, the decrease in gastric fluid acidity by pantoprazole was significantly greater than that by erythromycin. The proportion of patients at risk of pulmonary aspiration according to traditional criteria, i.e. pH ≤2.5 and volume ≥25ml, was lower in the pantoprazole group. Conclusion: Administration of pantoprazole was found to be more useful than a sub-therapeutic dose of erythromycin in decreasing both volume and acidity of gastric content. PMID:21772679

  11. Comparison of the effect of a single dose of erythromycin with pantoprazole on gastric content volume and acidity in elective general surgery patients

    Directory of Open Access Journals (Sweden)

    Nidhi Bhatia

    2011-01-01

    Full Text Available Introduction: Pulmonary aspiration of gastric contents remains one of the most feared complications of anesthesia. A gastric pH of 2.5 or less and a volume of 25 ml (0.4 ml/kg body weight or more in average adult patients are considered critical factors for the development of pulmonary damage in adults. Materials and Methods: This study compared the efficacy of a single oral dose of erythromycin (a macrolide antibiotic with oral pantoprazole (a proton pump inhibitor on pre-operative gastric fluid volume and pH in a prospective, randomized, double-blind controlled fashion in 80 adult patients (of ASA physical status I and II planned for elective surgery under general anesthesia. Patients were divided into two groups of 40 patients each. The pantoprazole group (Group I received oral pantoprazole 40 mg and the erythromycin group (Group II received oral erythromycin 250 mg at least 1 h prior to the induction of anesthesia. After tracheal intubation, gastric fluid was aspirated via a Salem Sump tube and its volume and pH were measured. Results: Although both erythromycin and pantoprazole decreased the gastric fluid volume to a similar extent, the decrease in gastric fluid acidity by pantoprazole was significantly greater than that by erythromycin. The proportion of patients at risk of pulmonary aspiration according to traditional criteria, i.e. pH ≤2.5 and volume ≥25ml, was lower in the pantoprazole group. Conclusion: Administration of pantoprazole was found to be more useful than a sub-therapeutic dose of erythromycin in decreasing both volume and acidity of gastric content.

  12. HSD is a better resuscitation fluid for hemorrhagic shock with pulmonary edema at high altitude.

    Science.gov (United States)

    Liu, Liang-Ming; Hu, De-Yao; Zhou, Xue-Wu; Liu, Jiang-Cang; Li, Ping

    2008-12-01

    To investigate the fluid tolerance of hemorrhagic shock with pulmonary edema (HSPE) at high altitude in unacclimated rats and the beneficial effect of 7.5% hypertonic saline/6% dextran (HSD). One hundred seventy-six Sprague-Dawley rats, transported to LaSa, Tibet, 3,760 m above the sea level, were anesthetized with sodium pentobarbital (30 mg/kg, i.p.) within 1 week. Hemorrhagic shock with pulmonary edema was induced by bloodletting (50 mmHg for 1 h) plus intravenous injection of oleic acid (50 microL/kg). Seventy-seven rats were equally divided into 11 groups (n = 7/group) including sham-operated control group; hemorrhagic shock control group; HSPE control group; HSPE plus 0.5-, 1.0-, 1.5-, 2.0-, or 3.0-fold volumes of lactated Ringer's solution (LR) groups; and HSPE plus 4, 6, and 8 mL/kg of HSD groups. Hemodynamic parameters including mean arterial blood pressure, left intraventricular systolic pressure, and the maximal change rate of intraventricular pressure rise or decline (+/-dp/dtmax) were observed at baseline and at 15, 30, 60, and 120 min after infusion; blood gases were measured at 30 and 120 min after infusion, and the water content of lung and brain was determined at 120 min after infusion. Additional 99 rats were used to observe the effect of these treatments on the survival time of HSPE rats; 0.5 volume of LR infusion slightly increased the mean arterial blood pressure, left intraventricular systolic pressure, and +/-dp/dtmax and prolonged the survival time of HSPE animals as compared with the HSPE group (P solution infusion, 1.5, 2, and 3 volumes, significantly deteriorated the hemodynamic parameters, increased the water content of lung, and decreased the survival time of HSPE animals. Hypertonic saline/6% dextran (4 - 8 mL/kg) significantly increased the hemodynamic parameters, improved the blood gases, decreased the water content of lung and brain, and prolonged the survival time of HSPE rats. Among the three dosages of HSD, 6 mL/kg of HSD had the

  13. FLUID INGESTION STRATEGIES OF COMPETITIVE CYCLISTS DURING 40 KM TIME TRIAL COMPETITION

    Directory of Open Access Journals (Sweden)

    Karianne Backx

    2007-12-01

    Full Text Available Dear Editor-in- ChiefLoss of fluid during prolonged exercise has been purported to be a cause of fatigue (Below et al., 1995; Walsh et al., 1994, for example. A plethora of information regarding 'optimal' fluid replacement strategies exists; perhaps the most prominent of these in the public domain is the position stand on exercise and fluid replacement published by the American College of Sports Medicine (ACSM. It recommends that one should ingest fluid early and continually at regular intervals in an attempt to replace the volume of fluid lost through sweating or consume as much as can be tolerated (Covertino et al., 1996. Drinking practices associated with different types of endurance activity are not well documented and it may be possible that the guidelines based on empirical data derived from laboratory conditions lack the necessary ecological validity for performance in the field. To our knowledge, there are no data on fluid intake or body mass losses during high-intensity cycling time trials (TT outside of laboratory conditions; although a pilot study questionnaire used by El-Sayed et al., 1997 revealed that the volume ingested in pre-race preparation over a similar TT race distance (46 km ranged between 0.125-0.5 L. Therefore the aim of this investigation was to elucidate the fluid ingestion strategies of competitive cyclists during pre-race preparation and 40 km TT competition and the resultant body mass loss.Seventy-two competitive male cyclists ranging from Elite Category to Category 4 cyclists (according to British Cycling classification volunteered to participated in this investigation from two separate 40 km TT (n = 21 and n = 51, respectively. Mean (±SD body mass, height and age for all participants were 73.4 ± 7.5 kg, 1.77 ± 0.06 m, and 47 ± 13 years. All procedures were approved by the University's Research Ethics Committee and subjects completed informed consent prior to the start of the investigation.Both events were held

  14. Role of α{sub 2}-adrenoceptors in the lateral parabrachial nucleus in the control of body fluid homeostasis

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, C.A.F.; Andrade-Franzé, G.M.F.; De Paula, P.M.; De Luca, L.A. Jr.; Menani, J.V. [Departamento de Fisiologia e Patologia, Faculdade de Odontologia, Universidade Estadual Paulista, Araraquara, SP (Brazil)

    2014-01-10

    Central α{sub 2}-adrenoceptors and the pontine lateral parabrachial nucleus (LPBN) are involved in the control of sodium and water intake. Bilateral injections of moxonidine (α{sub 2}-adrenergic/imidazoline receptor agonist) or noradrenaline into the LPBN strongly increases 0.3 M NaCl intake induced by a combined treatment of furosemide plus captopril. Injection of moxonidine into the LPBN also increases hypertonic NaCl and water intake and reduces oxytocin secretion, urinary sodium, and water excreted by cell-dehydrated rats, causing a positive sodium and water balance, which suggests that moxonidine injected into the LPBN deactivates mechanisms that restrain body fluid volume expansion. Pretreatment with specific α{sub 2}-adrenoceptor antagonists injected into the LPBN abolishes the behavioral and renal effects of moxonidine or noradrenaline injected into the same area, suggesting that these effects depend on activation of LPBN α{sub 2}-adrenoceptors. In fluid-depleted rats, the palatability of sodium is reduced by ingestion of hypertonic NaCl, limiting intake. However, in rats treated with moxonidine injected into the LPBN, the NaCl palatability remains high, even after ingestion of significant amounts of 0.3 M NaCl. The changes in behavioral and renal responses produced by activation of α{sub 2}-adrenoceptors in the LPBN are probably a consequence of reduction of oxytocin secretion and blockade of inhibitory signals that affect sodium palatability. In this review, a model is proposed to show how activation of α{sub 2}-adrenoceptors in the LPBN may affect palatability and, consequently, ingestion of sodium as well as renal sodium excretion.

  15. Computational fluid dynamics (CFD) using porous media modeling predicts recurrence after coiling of cerebral aneurysms.

    Science.gov (United States)

    Umeda, Yasuyuki; Ishida, Fujimaro; Tsuji, Masanori; Furukawa, Kazuhiro; Shiba, Masato; Yasuda, Ryuta; Toma, Naoki; Sakaida, Hiroshi; Suzuki, Hidenori

    2017-01-01

    This study aimed to predict recurrence after coil embolization of unruptured cerebral aneurysms with computational fluid dynamics (CFD) using porous media modeling (porous media CFD). A total of 37 unruptured cerebral aneurysms treated with coiling were analyzed using follow-up angiograms, simulated CFD prior to coiling (control CFD), and porous media CFD. Coiled aneurysms were classified into stable or recurrence groups according to follow-up angiogram findings. Morphological parameters, coil packing density, and hemodynamic variables were evaluated for their correlations with aneurysmal recurrence. We also calculated residual flow volumes (RFVs), a novel hemodynamic parameter used to quantify the residual aneurysm volume after simulated coiling, which has a mean fluid domain > 1.0 cm/s. Follow-up angiograms showed 24 aneurysms in the stable group and 13 in the recurrence group. Mann-Whitney U test demonstrated that maximum size, dome volume, neck width, neck area, and coil packing density were significantly different between the two groups (P CFD and larger RFVs in the porous media CFD. Multivariate logistic regression analyses demonstrated that RFV was the only independently significant factor (odds ratio, 1.06; 95% confidence interval, 1.01-1.11; P = 0.016). The study findings suggest that RFV collected under porous media modeling predicts the recurrence of coiled aneurysms.

  16. Sleep Apnea and Circadian Extracellular Fluid Change as Independent Factors for Nocturnal Polyuria.

    Science.gov (United States)

    Niimi, Aya; Suzuki, Motofumi; Yamaguchi, Yasuhiro; Ishii, Masaki; Fujimura, Tetsuya; Nakagawa, Tohru; Fukuhara, Hiroshi; Kume, Haruki; Igawa, Yasuhiko; Akishita, Masahiro; Homma, Yukio

    2016-10-01

    We investigated the relationships among nocturnal polyuria, sleep apnea and body fluid volume to elucidate the pathophysiology of nocturia in sleep apnea syndrome. We enrolled 104 consecutive patients who underwent polysomnography for suspected sleep apnea syndrome. Self-assessed symptom questionnaires were administered to evaluate sleep disorder and lower urinary tract symptoms, including nocturia. Voiding frequency and voided volume were recorded using a 24-hour frequency-volume chart. Body fluid composition was estimated in the morning and at night using bioelectric impedance analysis. Frequency-volume chart data were analyzed in 22 patients after continuous positive airway pressure therapy. Patients with nocturnal polyuria showed a higher apnea-hypopnea index (33.9 vs 24.2, p = 0.03) and a larger circadian change in extracellular fluid adjusted to lean body mass (0.22 vs -0.19, p = 0.019) than those without nocturnal polyuria. These relations were more evident in patients 65 years old or older than in those 64 years or younger. A multivariate linear regression model showed an independent relationship of nocturnal polyuria with the apnea-hypopnea index and the circadian change in extracellular fluid adjusted to lean body mass (p = 0.0012 and 0.022, respectively). Continuous positive airway pressure therapy significantly improved nocturnal polyuria and nocturia only in patients with nocturnal polyuria. This study identified sleep apnea and the circadian change in extracellular fluid as independent factors for nocturnal polyuria. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  17. Fluid-structure interaction in BWR suppression pool systems. Final report

    International Nuclear Information System (INIS)

    Nickell, R.E.

    1979-09-01

    The discharge of safety relief valves or a severe loss-of-coolant event in a boiling-water-cooled reactor steam supply system triggers a complex pressure suppression system that is based upon sub-surface steam condensation in large pools of water. The physical problems fall into two categories. The first is referred to as vent clearing and describes the process of expelling non-condensables from the system prior to steam flow. The second category covers a variety of phenomena related to the transient overexpansion of a condensable volume and the subsequent inertially-driven volume decrease. The dynamic loading of either event, depending upon fluid-structural design parameters, can be of concern in safety analysis. This report describes the development of a method for calculating the loads and the structural response for both types of problems. The method is embedded in a computer code, called PELE-IC, that couples a two-dimensional, incompressible eulerian fluid algorithm to a finite element shell algorithm. The fluid physics is based upon the SOLA algorithm, which provideds a trial velocity field using the Navier-Stokes equations that is subsequently corrected iteratively so that incompressibility, fluid-structure interface compatibility, and boundary conditions are satisfied. These fluid and fluid-structure algorithms have been extensively verified through calculations of known solutions from the classical literature, and by comparison to air and steam blowdown experiments

  18. The Pi-Theorem Applications to Fluid Mechanics and Heat and Mass Transfer

    CERN Document Server

    Yarin, L P

    2012-01-01

    This volume presents applications of the Pi-Theorem to fluid mechanics and heat and mass transfer. The Pi-theorem yields a physical motivation behind many flow processes and therefore it constitutes a valuable tool for the intelligent planning of experiments in fluids. After a short introduction to the underlying differential equations and their treatments, the author presents many novel approaches how to use the Pi-theorem to understand fluid mechanical issues. The book is a great value to the fluid mechanics community, as it cuts across many subdisciplines of experimental fluid mechanics.

  19. Experimental thermodynamics experimental thermodynamics of non-reacting fluids

    CERN Document Server

    Neindre, B Le

    2013-01-01

    Experimental Thermodynamics, Volume II: Experimental Thermodynamics of Non-reacting Fluids focuses on experimental methods and procedures in the study of thermophysical properties of fluids. The selection first offers information on methods used in measuring thermodynamic properties and tests, including physical quantities and symbols for physical quantities, thermodynamic definitions, and definition of activities and related quantities. The text also describes reference materials for thermometric fixed points, temperature measurement under pressures, and pressure measurements. The publicatio

  20. An introduction to Computational Fluid Dynamics

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt

    1999-01-01

    CFD is the shortname for Computational Fluid Dynamics and is a numerical method by means of which we can analyze systems containing fluids. For instance systems dealing with heat flow or smoke control systems acting when a fire occur in a building.......CFD is the shortname for Computational Fluid Dynamics and is a numerical method by means of which we can analyze systems containing fluids. For instance systems dealing with heat flow or smoke control systems acting when a fire occur in a building....