WorldWideScience

Sample records for fluid turbulent cascades

  1. Cascades and Dissipative Anomalies in Compressible Fluid Turbulence

    Directory of Open Access Journals (Sweden)

    Gregory L. Eyink

    2018-02-01

    Full Text Available We investigate dissipative anomalies in a turbulent fluid governed by the compressible Navier-Stokes equation. We follow an exact approach pioneered by Onsager, which we explain as a nonperturbative application of the principle of renormalization-group invariance. In the limit of high Reynolds and Péclet numbers, the flow realizations are found to be described as distributional or “coarse-grained” solutions of the compressible Euler equations, with standard conservation laws broken by turbulent anomalies. The anomalous dissipation of kinetic energy is shown to be due not only to local cascade but also to a distinct mechanism called pressure-work defect. Irreversible heating in stationary, planar shocks with an ideal-gas equation of state exemplifies the second mechanism. Entropy conservation anomalies are also found to occur via two mechanisms: an anomalous input of negative entropy (negentropy by pressure work and a cascade of negentropy to small scales. We derive “4/5th-law”-type expressions for the anomalies, which allow us to characterize the singularities (structure-function scaling exponents required to sustain the cascades. We compare our approach with alternative theories and empirical evidence. It is argued that the “Big Power Law in the Sky” observed in electron density scintillations in the interstellar medium is a manifestation of a forward negentropy cascade or an inverse cascade of usual thermodynamic entropy.

  2. Cascades and Dissipative Anomalies in Compressible Fluid Turbulence

    Science.gov (United States)

    Eyink, Gregory L.; Drivas, Theodore D.

    2018-02-01

    We investigate dissipative anomalies in a turbulent fluid governed by the compressible Navier-Stokes equation. We follow an exact approach pioneered by Onsager, which we explain as a nonperturbative application of the principle of renormalization-group invariance. In the limit of high Reynolds and Péclet numbers, the flow realizations are found to be described as distributional or "coarse-grained" solutions of the compressible Euler equations, with standard conservation laws broken by turbulent anomalies. The anomalous dissipation of kinetic energy is shown to be due not only to local cascade but also to a distinct mechanism called pressure-work defect. Irreversible heating in stationary, planar shocks with an ideal-gas equation of state exemplifies the second mechanism. Entropy conservation anomalies are also found to occur via two mechanisms: an anomalous input of negative entropy (negentropy) by pressure work and a cascade of negentropy to small scales. We derive "4 /5 th-law"-type expressions for the anomalies, which allow us to characterize the singularities (structure-function scaling exponents) required to sustain the cascades. We compare our approach with alternative theories and empirical evidence. It is argued that the "Big Power Law in the Sky" observed in electron density scintillations in the interstellar medium is a manifestation of a forward negentropy cascade or an inverse cascade of usual thermodynamic entropy.

  3. Cascade of circulations in fluid turbulence.

    Science.gov (United States)

    Eyink, Gregory L

    2006-12-01

    Kelvin's theorem on conservation of circulations is an essential ingredient of Taylor's theory of turbulent energy dissipation by the process of vortex-line stretching. In previous work, we have proposed a nonlinear mechanism for the breakdown of Kelvin's theorem in ideal turbulence at infinite Reynolds number. We develop here a detailed physical theory of this cascade of circulations. Our analysis is based upon an effective equation for large-scale coarse-grained velocity, which contains a turbulent-induced vortex force that can violate Kelvin's theorem. We show that singularities of sufficient strength, which are observed to exist in turbulent flow, can lead to nonvanishing dissipation of circulation for an arbitrarily small coarse-graining length in the effective equations. This result is an analog for circulation of Onsager's theorem on energy dissipation for singular Euler solutions. The physical mechanism of the breakdown of Kelvin's theorem is diffusion of lines of large-scale vorticity out of the advected loop. This phenomenon can be viewed as a classical analog of the Josephson-Anderson phase-slip phenomenon in superfluids due to quantized vortex lines. We show that the circulation cascade is local in scale and use this locality to develop concrete expressions for the turbulent vortex force by a multiscale gradient expansion. We discuss implications for Taylor's theory of turbulent dissipation and we point out some related cascade phenomena, in particular for magnetic flux in magnetohydrodynamic turbulence.

  4. Astrophysical Gyrokinetics: Kinetic and Fluid Turbulent Cascades In Magnetized Weakly Collisional Plasmas

    International Nuclear Information System (INIS)

    Schekochihin, A.A.; Cowley, S.C.; Dorland, W.; Hammett, G.W.; Howes, G.G.; Quataert, E.; Tatsuno, T.

    2009-01-01

    This paper presents a theoretical framework for understanding plasma turbulence in astrophysical plasmas. It is motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks. All of these plasmas and many others have turbulent motions at weakly collisional and collisionless scales. The paper focuses on turbulence in a strong mean magnetic field. The key assumptions are that the turbulent fluctuations are small compared to the mean field, spatially anisotropic with respect to it and that their frequency is low compared to the ion cyclotron frequency. The turbulence is assumed to be forced at some system-specific outer scale. The energy injected at this scale has to be dissipated into heat, which ultimately cannot be accomplished without collisions. A kinetic cascade develops that brings the energy to collisional scales both in space and velocity. The nature of the kinetic cascade in various scale ranges depends on the physics of plasma fluctuations that exist there. There are four special scales that separate physically distinct regimes: the electron and ion gyroscales, the mean free path and the electron diffusion scale. In each of the scale ranges separated by these scales, the fully kinetic problem is systematically reduced to a more physically transparent and computationally tractable system of equations, which are derived in a rigorous way. In the 'inertial range' above the ion gyroscale, the kinetic cascade separates into two parts: a cascade of Alfvenic fluctuations and a passive cascade of density and magnetic-field strength fluctuations. The former are governed by the Reduced Magnetohydrodynamic (RMHD) equations at both the collisional and collisionless scales; the latter obey a linear kinetic equation along the (moving) field lines associated with the Alfvenic component (in the collisional limit, these compressive fluctuations

  5. Astrophysical Gyrokinetics: Kinetic and Fluid Turbulent Cascades In Magentized Weakly Collisional Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Schekochihin, A. A.; Cowley, S. C.; Dorland, W.; Hammett, G. W.; Howes, G. G.; Quataert, E.; Tatsuno, T.

    2009-04-23

    This paper presents a theoretical framework for understanding plasma turbulence in astrophysical plasmas. It is motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks. All of these plasmas and many others have turbulentmotions at weakly collisional and collisionless scales. The paper focuses on turbulence in a strong mean magnetic field. The key assumptions are that the turbulent fluctuations are small compared to the mean field, spatially anisotropic with respect to it and that their frequency is low compared to the ion cyclotron frequency. The turbulence is assumed to be forced at some system-specific outer scale. The energy injected at this scale has to be dissipated into heat, which ultimately cannot be accomplished without collisions. A kinetic cascade develops that brings the energy to collisional scales both in space and velocity. The nature of the kinetic cascade in various scale ranges depends on the physics of plasma fluctuations that exist there. There are four special scales that separate physically distinct regimes: the electron and ion gyroscales, the mean free path and the electron diffusion scale. In each of the scale ranges separated by these scales, the fully kinetic problem is systematically reduced to a more physically transparent and computationally tractable system of equations, which are derived in a rigorous way. In the "inertial range" above the ion gyroscale, the kinetic cascade separates into two parts: a cascade of Alfvenic fluctuations and a passive cascade of density and magnetic-fieldstrength fluctuations. The former are governed by the Reduced Magnetohydrodynamic (RMHD) equations at both the collisional and collisionless scales; the latter obey a linear kinetic equation along the (moving) field lines associated with the Alfvenic component (in the collisional limit, these compressive fluctuations

  6. Realization of a Tunable Dissipation Scale in a Turbulent Cascade using a Quantum Gas

    Science.gov (United States)

    Navon, Nir; Eigen, Christoph; Zhang, Jinyi; Lopes, Raphael; Smith, Robert; Hadzibabic, Zoran

    2017-04-01

    Many turbulent flows form so-called cascades, where excitations injected at large length scales, are transported to gradually smaller scales until they reach a dissipation scale. We initiate a turbulent cascade in a dilute Bose fluid by pumping energy at the container scale of an optical box trap using an oscillating magnetic force. In contrast to classical fluids where the dissipation scale is set by the viscosity of the fluid, the turbulent cascade of our quantum gas finishes when the particles kinetic energy exceeds the laser-trap depth. This mechanism thus allows us to effectively tune the dissipation scale where particles (and energy) are lost, and measure the particle flux in the cascade at the dissipation scale. We observe a unit power-law decay of the particle-dissipation rate with trap depth, which confirms the surprising prediction that in a wave-turbulent direct energy cascade, the particle flux vanishes in the ideal limit where the dissipation length scale tends to zero.

  7. Introduction to the theory of fluid and magnetofluid turbulence

    International Nuclear Information System (INIS)

    Montgomery, D.

    1984-03-01

    This set of notes was transcribed from the tape recording of three lectures given at the Institute of Plasma Physics, Nagoya University, in June, 1983. The lectures were intended to provide an introduction to the theory of magnetofluid turbulence which is a relatively new branch of plasma physics. It is related more closely to classic fluid dynamics than to the nonlinear theory of plasma oscillation. For this reason, fluid turbulence theory was reviewed as the background of the subject. The first lecture is on the origins of fluid and magnetofluid turbulence. The universal transition to turbulence takes place at sufficiently high Reynolds number, well above the critical threshold. The second lecture is on closures, attempt on dynamical theories. The Navier-Stokes case is discussed, and the attempt to reduce the number of the degrees of freedom, the importance of helicity in MHD, the direct interaction approximation (DIA) and others are explained. The third lecture is on the cascade and inverse cascade in fluid and magnetofluid. The idea of cascade was introduced into the theory of Navier-Stokes turbulence around 1941. The calculation of a form for inertial range energy spectra, the relation with dissipation rate, the tendency of migrating to long wavelength, the simulation of decaying turbulence, the numbers characterizing MHD and others are discussed. (Kako, I.)

  8. Information Theory Analysis of Cascading Process in a Synthetic Model of Fluid Turbulence

    Directory of Open Access Journals (Sweden)

    Massimo Materassi

    2014-02-01

    Full Text Available The use of transfer entropy has proven to be helpful in detecting which is the verse of dynamical driving in the interaction of two processes, X and Y . In this paper, we present a different normalization for the transfer entropy, which is capable of better detecting the information transfer direction. This new normalized transfer entropy is applied to the detection of the verse of energy flux transfer in a synthetic model of fluid turbulence, namely the Gledzer–Ohkitana–Yamada shell model. Indeed, this is a fully well-known model able to model the fully developed turbulence in the Fourier space, which is characterized by an energy cascade towards the small scales (large wavenumbers k, so that the application of the information-theory analysis to its outcome tests the reliability of the analysis tool rather than exploring the model physics. As a result, the presence of a direct cascade along the scales in the shell model and the locality of the interactions in the space of wavenumbers come out as expected, indicating the validity of this data analysis tool. In this context, the use of a normalized version of transfer entropy, able to account for the difference of the intrinsic randomness of the interacting processes, appears to perform better, being able to discriminate the wrong conclusions to which the “traditional” transfer entropy would drive.

  9. Cascade of kinetic energy and scalar variance in DC electrokinetic turbulence

    Science.gov (United States)

    Zhao, Wei; Wang, Guiren

    2017-11-01

    Turbulent flow can be generated by DC electrokinetic (EK) force based on the electric conductivity and permittivity variations in fluids, as have been demonstrated by Varshney et al (2016), where a -1.4 slope of velocity power spectrum is observed. Here, we theoretically found the scaling exponents of velocity and scalar structures in the electric-body-force (EBF) dominant subregion of DC EK turbulence were 2/5 (equivalent to the -7/5 slope of velocity power spectrum) and 4/5 respectively. The theory perfectly explains the experimental results of Varshney et al. (2016). Based on Kármán-Howarth equation with forcing terms, the energy cascade process of DC EK turbulence was also investigated. Depending on the electric Rayleigh number (Rae) , two different energy cascade processes may happen. When Rae is small, the kinetic energy cascades along inertial subregion and EBF dominant subregion in sequence, before it is dissipated by fluid viscosity. When Rae is sufficiently large, the inertial subregion may be absent with EBF dominant subregion left. This investigation is very important on understand EK turbulence, which could be widely existed in nature and applied in engineerings. The work was supported by NSFC (11672229), and NSF (CAREER CBET-0954977 and MRI CBET-1040227).

  10. Energy Transfer and Dual Cascade in Kinetic Magnetized Plasma Turbulence

    International Nuclear Information System (INIS)

    Plunk, G. G.; Tatsuno, T.

    2011-01-01

    The question of how nonlinear interactions redistribute the energy of fluctuations across available degrees of freedom is of fundamental importance in the study of turbulence and transport in magnetized weakly collisional plasmas, ranging from space settings to fusion devices. In this Letter, we present a theory for the dual cascade found in such plasmas, which predicts a range of new behavior that distinguishes this cascade from that of neutral fluid turbulence. These phenomena are explained in terms of the constrained nature of spectral transfer in nonlinear gyrokinetics. Accompanying this theory are the first observations of these phenomena, obtained via direct numerical simulations using the gyrokinetic code AstroGK. The basic mechanisms that are found provide a framework for understanding the turbulent energy transfer that couples scales both locally and nonlocally.

  11. Energy Transfer and Dual Cascade in Kinetic Magnetized Plasma Turbulence

    Science.gov (United States)

    Plunk, G. G.; Tatsuno, T.

    2011-04-01

    The question of how nonlinear interactions redistribute the energy of fluctuations across available degrees of freedom is of fundamental importance in the study of turbulence and transport in magnetized weakly collisional plasmas, ranging from space settings to fusion devices. In this Letter, we present a theory for the dual cascade found in such plasmas, which predicts a range of new behavior that distinguishes this cascade from that of neutral fluid turbulence. These phenomena are explained in terms of the constrained nature of spectral transfer in nonlinear gyrokinetics. Accompanying this theory are the first observations of these phenomena, obtained via direct numerical simulations using the gyrokinetic code AstroGK. The basic mechanisms that are found provide a framework for understanding the turbulent energy transfer that couples scales both locally and nonlocally.

  12. Transition between inverse and direct energy cascades in multiscale optical turbulence

    Science.gov (United States)

    Malkin, V. M.; Fisch, N. J.

    2018-03-01

    Multiscale turbulence naturally develops and plays an important role in many fluid, gas, and plasma phenomena. Statistical models of multiscale turbulence usually employ Kolmogorov hypotheses of spectral locality of interactions (meaning that interactions primarily occur between pulsations of comparable scales) and scale-invariance of turbulent pulsations. However, optical turbulence described by the nonlinear Schrodinger equation exhibits breaking of both the Kolmogorov locality and scale-invariance. A weaker form of spectral locality that holds for multi-scale optical turbulence enables a derivation of simplified evolution equations that reduce the problem to a single scale modeling. We present the derivation of these equations for Kerr media with random inhomogeneities. Then, we find the analytical solution that exhibits a transition between inverse and direct energy cascades in optical turbulence.

  13. Transition between inverse and direct energy cascades in multiscale optical turbulence.

    Science.gov (United States)

    Malkin, V M; Fisch, N J

    2018-03-01

    Multiscale turbulence naturally develops and plays an important role in many fluid, gas, and plasma phenomena. Statistical models of multiscale turbulence usually employ Kolmogorov hypotheses of spectral locality of interactions (meaning that interactions primarily occur between pulsations of comparable scales) and scale-invariance of turbulent pulsations. However, optical turbulence described by the nonlinear Schrodinger equation exhibits breaking of both the Kolmogorov locality and scale-invariance. A weaker form of spectral locality that holds for multi-scale optical turbulence enables a derivation of simplified evolution equations that reduce the problem to a single scale modeling. We present the derivation of these equations for Kerr media with random inhomogeneities. Then, we find the analytical solution that exhibits a transition between inverse and direct energy cascades in optical turbulence.

  14. Influence of polymer additives on turbulent energy cascading in forced homogeneous isotropic turbulence studied by direct numerical simulations

    International Nuclear Information System (INIS)

    Li Feng-Chen; Cai Wei-Hua; Zhang Hong-Na; Wang Yue

    2012-01-01

    Direct numerical simulations (DNS) were performed for the forced homogeneous isotropic turbulence (FHIT) with/without polymer additives in order to elaborate the characteristics of the turbulent energy cascading influenced by drag-reducing effects. The finite elastic non-linear extensibility-Peterlin model (FENE-P) was used as the conformation tensor equation for the viscoelastic polymer solution. Detailed analyses of DNS data were carried out in this paper for the turbulence scaling law and the topological dynamics of FHIT as well as the important turbulent parameters, including turbulent kinetic energy spectra, enstrophy and strain, velocity structure function, small-scale intermittency, etc. A natural and straightforward definition for the drag reduction rate was also proposed for the drag-reducing FHIT based on the decrease degree of the turbulent kinetic energy. It was found that the turbulent energy cascading in the FHIT was greatly modified by the drag-reducing polymer additives. The enstrophy and the strain fields in the FHIT of the polymer solution were remarkably weakened as compared with their Newtonian counterparts. The small-scale vortices and the small-scale intermittency were all inhibited by the viscoelastic effects in the FHIT of the polymer solution. However, the scaling law in a fashion of extended self-similarity for the FHIT of the polymer solution, within the presently simulated range of Weissenberg numbers, had no distinct differences compared with that of the Newtonian fluid case

  15. Cascades, ``Blobby'' Turbulence, and Target Pattern Formation in Elastic Systems: A New Take on Classic Themes in Plasma Turbulence

    Science.gov (United States)

    Fan, Xiang

    2017-10-01

    Concerns central to understanding turbulence and transport include: 1) Dynamics of dual cascades in EM turbulence; 2) Understanding `negative viscosity phenomena' in drift-ZF systems; 3) The physics of blobby turbulence (re: SOL). Here, we present a study of a simple model - that of Cahn-Hilliard Navier-Stokes (CHNS) Turbulence - which sheds important new light on these issues. The CHNS equations describe the motion of binary fluid undergoing a second order phase transition and separation called spinodal decomposition. The CHNS system and 2D MHD are analogous, as they both contain a vorticity equation and a ``diffusion'' equation. The CHNS system differs from 2D MHD by the appearance of negative diffusivity, and a nonlinear dissipative flux. An analogue of the Alfven wave exists in the 2D CHNS system. DNS shows that mean square concentration spectrum Hkψ scales as k - 7 / 3 in the elastic range. This suggests an inverse cascade of Hψ . However, the kinetic energy spectrum EkK scales as k-3 , as in the direct enstrophy cascade range for a 2D fluid (not MHD!). The resolution is that the feedback of capillarity acts only at blob interfaces. Thus, as blob merger progresses, the packing fraction of interfaces decreases, thus explaining the weakened surface tension feedback and the outcome for EkK. We also examine the evolution of scalar concentration in a single eddy in the Cahn-Hilliard system. This extends the classic problem of flux expulsion in 2D MHD. The simulation results show that a target pattern is formed. Target pattern is a meta stable state, since the band merger process continues on a time scale exponentially long relative to the eddy turnover time. Band merger resembles step merger in drift-ZF staircases. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-04ER54738.

  16. A weakened cascade model for turbulence in astrophysical plasmas

    International Nuclear Information System (INIS)

    Howes, G. G.; TenBarge, J. M.; Dorland, W.

    2011-01-01

    A refined cascade model for kinetic turbulence in weakly collisional astrophysical plasmas is presented that includes both the transition between weak and strong turbulence and the effect of nonlocal interactions on the nonlinear transfer of energy. The model describes the transition between weak and strong MHD turbulence and the complementary transition from strong kinetic Alfven wave (KAW) turbulence to weak dissipating KAW turbulence, a new regime of weak turbulence in which the effects of shearing by large scale motions and kinetic dissipation play an important role. The inclusion of the effect of nonlocal motions on the nonlinear energy cascade rate in the dissipation range, specifically the shearing by large-scale motions, is proposed to explain the nearly power-law energy spectra observed in the dissipation range of both kinetic numerical simulations and solar wind observations.

  17. Exact Theory of Compressible Fluid Turbulence

    Science.gov (United States)

    Drivas, Theodore; Eyink, Gregory

    2017-11-01

    We obtain exact results for compressible turbulence with any equation of state, using coarse-graining/filtering. We find two mechanisms of turbulent kinetic energy dissipation: scale-local energy cascade and ``pressure-work defect'', or pressure-work at viscous scales exceeding that in the inertial-range. Planar shocks in an ideal gas dissipate all kinetic energy by pressure-work defect, but the effect is omitted by standard LES modeling of pressure-dilatation. We also obtain a novel inverse cascade of thermodynamic entropy, injected by microscopic entropy production, cascaded upscale, and removed by large-scale cooling. This nonlinear process is missed by the Kovasznay linear mode decomposition, treating entropy as a passive scalar. For small Mach number we recover the incompressible ``negentropy cascade'' predicted by Obukhov. We derive exact Kolmogorov 4/5th-type laws for energy and entropy cascades, constraining scaling exponents of velocity, density, and internal energy to sub-Kolmogorov values. Although precise exponents and detailed physics are Mach-dependent, our exact results hold at all Mach numbers. Flow realizations at infinite Reynolds are ``dissipative weak solutions'' of compressible Euler equations, similarly as Onsager proposed for incompressible turbulence.

  18. Dissipation range turbulent cascades in plasmas

    International Nuclear Information System (INIS)

    Terry, P. W.; Almagri, A. F.; Forest, C. B.; Nornberg, M. D.; Rahbarnia, K.; Sarff, J. S.; Fiksel, G.; Hatch, D. R.; Jenko, F.; Prager, S. C.; Ren, Y.

    2012-01-01

    Dissipation range cascades in plasma turbulence are described and spectra are formulated from the scaled attenuation in wavenumber space of the spectral energy transfer rate. This yields spectra characterized by the product of a power law and exponential fall-off, applicable to all scales. Spectral indices of the power law and exponential fall-off depend on the scaling of the dissipation, the strength of the nonlinearity, and nonlocal effects when dissipation rates of multiple fluctuation fields are different. The theory is used to derive spectra for MHD turbulence with magnetic Prandtl number greater than unity, extending previous work. The theory is also applied to generic plasma turbulence by considering the spectrum from damping with arbitrary wavenumber scaling. The latter is relevant to ion temperature gradient turbulence modeled by gyrokinetics. The spectrum in this case has an exponential component that becomes weaker at small scale, giving a power law asymptotically. Results from the theory are compared to three very different types of turbulence. These include the magnetic plasma turbulence of the Madison Symmetric Torus, the MHD turbulence of liquid metal in the Madison Dynamo Experiment, and gyrokinetic simulation of ion temperature gradient turbulence.

  19. Turbulent cascades in foreign exchange markets

    Science.gov (United States)

    Ghashghaie, S.; Breymann, W.; Peinke, J.; Talkner, P.; Dodge, Y.

    1996-06-01

    THE availability of high-frequency data for financial markets has made it possible to study market dynamics on timescales of less than a day1. For foreign exchange (FX) rates Müller et al.2 have shown that there is a net flow of information from long to short timescales: the behaviour of long-term traders (who watch the markets only from time to time) influences the behaviour of short-term traders (who watch the markets continuously). Motivated by this hierarchical feature, we have studied FX market dynamics in more detail, and report here an analogy between these dynamics and hydrodynamic turbulence3-8. Specifically, the relationship between the probability density of FX price changes (δx) and the time delay (δt) (Fig. la) is much the same as the relationship between the probability density of the velocity differences (δv) of two points in a turbulent flow and their spatial separation δr (Fig. 1b). Guided by this similarity we claim that there is an information cascade in FX market dynamics that corresponds to the energy cascade in hydrodynamic turbulence. On the basis of this analogy we can now rationalize the statistics of FX price differences at different time delays, which is important for, for example, option pricing. The analogy also provides a conceptual framework for understanding the short-term dynamics of speculative markets.

  20. Energy Cascade Rate in Compressible Fast and Slow Solar Wind Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Hadid, L. Z.; Sahraoui, F.; Galtier, S., E-mail: lina.hadid@lpp.polytechnique.fr [LPP, CNRS, Ecole Polytechnique, UPMC Univ Paris 06, Univ. Paris-Sud, Observatoire de Paris, Université Paris-Saclay, Sorbonne Universités, PSL Research University, F-91128 Palaiseau (France)

    2017-03-20

    Estimation of the energy cascade rate in the inertial range of solar wind turbulence has been done so far mostly within incompressible magnetohydrodynamics (MHD) theory. Here, we go beyond that approximation to include plasma compressibility using a reduced form of a recently derived exact law for compressible, isothermal MHD turbulence. Using in situ data from the THEMIS / ARTEMIS spacecraft in the fast and slow solar wind, we investigate in detail the role of the compressible fluctuations in modifying the energy cascade rate with respect to the prediction of the incompressible MHD model. In particular, we found that the energy cascade rate (1) is amplified particularly in the slow solar wind; (2) exhibits weaker fluctuations in spatial scales, which leads to a broader inertial range than the previous reported ones; (3) has a power-law scaling with the turbulent Mach number; (4) has a lower level of spatial anisotropy. Other features of solar wind turbulence are discussed along with their comparison with previous studies that used incompressible or heuristic (nonexact) compressible MHD models.

  1. Energy Cascade Rate in Compressible Fast and Slow Solar Wind Turbulence

    International Nuclear Information System (INIS)

    Hadid, L. Z.; Sahraoui, F.; Galtier, S.

    2017-01-01

    Estimation of the energy cascade rate in the inertial range of solar wind turbulence has been done so far mostly within incompressible magnetohydrodynamics (MHD) theory. Here, we go beyond that approximation to include plasma compressibility using a reduced form of a recently derived exact law for compressible, isothermal MHD turbulence. Using in situ data from the THEMIS / ARTEMIS spacecraft in the fast and slow solar wind, we investigate in detail the role of the compressible fluctuations in modifying the energy cascade rate with respect to the prediction of the incompressible MHD model. In particular, we found that the energy cascade rate (1) is amplified particularly in the slow solar wind; (2) exhibits weaker fluctuations in spatial scales, which leads to a broader inertial range than the previous reported ones; (3) has a power-law scaling with the turbulent Mach number; (4) has a lower level of spatial anisotropy. Other features of solar wind turbulence are discussed along with their comparison with previous studies that used incompressible or heuristic (nonexact) compressible MHD models.

  2. Double cascade turbulence and Richardson dispersion in a horizontal fluid flow induced by Faraday waves.

    Science.gov (United States)

    von Kameke, A; Huhn, F; Fernández-García, G; Muñuzuri, A P; Pérez-Muñuzuri, V

    2011-08-12

    We report the experimental observation of Richardson dispersion and a double cascade in a thin horizontal fluid flow induced by Faraday waves. The energy spectra and the mean spectral energy flux obtained from particle image velocimetry data suggest an inverse energy cascade with Kolmogorov type scaling E(k) ∝ k(γ), γ ≈ -5/3 and an E(k) ∝ k(γ), γ ≈ -3 enstrophy cascade. Particle transport is studied analyzing absolute and relative dispersion as well as the finite size Lyapunov exponent (FSLE) via the direct tracking of real particles and numerical advection of virtual particles. Richardson dispersion with ∝ t(3) is observed and is also reflected in the slopes of the FSLE (Λ ∝ ΔR(-2/3)) for virtual and real particles.

  3. Advances in fluid modeling and turbulence measurements

    International Nuclear Information System (INIS)

    Wada, Akira; Ninokata, Hisashi; Tanaka, Nobukazu

    2002-01-01

    The context of this book consists of four fields: Environmental Fluid Mechanics; Industrial Fluid Mechanics; Fundamentals of Fluid Mechanics; and Turbulence Measurements. Environmental Fluid Mechanics includes free surface flows in channels, rivers, seas, and estuaries. It also discusses wind engineering issues, ocean circulation model and dispersion problems in atmospheric, water and ground water environments. In Industrial Fluid Mechanics, fluid phenomena in energy exchanges, modeling of turbulent two- or multi-phase flows, swirling flows, flows in combustors, variable density flows and reacting flows, flows in turbo-machines, pumps and piping systems, and fluid-structure interaction are discussed. In Fundamentals of Fluid Mechanics, progress in modeling turbulent flows and heat/mass transfers, computational fluid dynamics/numerical techniques, parallel computing algorithms, applications of chaos/fractal theory in turbulence are reported. In Turbulence Measurements, experimental studies of turbulent flows, experimental and post-processing techniques, quantitative and qualitative flow visualization techniques are discussed. Separate abstracts were presented for 15 of the papers in this issue. The remaining 89 were considered outside the subject scope of INIS. (J.P.N.)

  4. Two-dimensional turbulent convection

    Science.gov (United States)

    Mazzino, Andrea

    2017-11-01

    We present an overview of the most relevant, and sometimes contrasting, theoretical approaches to Rayleigh-Taylor and mean-gradient-forced Rayleigh-Bénard two-dimensional turbulence together with numerical and experimental evidences for their support. The main aim of this overview is to emphasize that, despite the different character of these two systems, especially in relation to their steadiness/unsteadiness, turbulent fluctuations are well described by the same scaling relationships originated from the Bolgiano balance. The latter states that inertial terms and buoyancy terms balance at small scales giving rise to an inverse kinetic energy cascade. The main difference with respect to the inverse energy cascade in hydrodynamic turbulence [R. H. Kraichnan, "Inertial ranges in two-dimensional turbulence," Phys. Fluids 10, 1417 (1967)] is that the rate of cascade of kinetic energy here is not constant along the inertial range of scales. Thanks to the absence of physical boundaries, the two systems here investigated turned out to be a natural physical realization of the Kraichnan scaling regime hitherto associated with the elusive "ultimate state of thermal convection" [R. H. Kraichnan, "Turbulent thermal convection at arbitrary Prandtl number," Phys. Fluids 5, 1374-1389 (1962)].

  5. Computational fluid dynamics incompressible turbulent flows

    CERN Document Server

    Kajishima, Takeo

    2017-01-01

    This textbook presents numerical solution techniques for incompressible turbulent flows that occur in a variety of scientific and engineering settings including aerodynamics of ground-based vehicles and low-speed aircraft, fluid flows in energy systems, atmospheric flows, and biological flows. This book encompasses fluid mechanics, partial differential equations, numerical methods, and turbulence models, and emphasizes the foundation on how the governing partial differential equations for incompressible fluid flow can be solved numerically in an accurate and efficient manner. Extensive discussions on incompressible flow solvers and turbulence modeling are also offered. This text is an ideal instructional resource and reference for students, research scientists, and professional engineers interested in analyzing fluid flows using numerical simulations for fundamental research and industrial applications. • Introduces CFD techniques for incompressible flow and turbulence with a comprehensive approach; • Enr...

  6. Spectral Cascade-Transport Turbulence Model Development for Two-Phase Flows

    Science.gov (United States)

    Brown, Cameron Scott

    Turbulence modeling remains a challenging problem in nuclear reactor applications, particularly for the turbulent multiphase flow conditions in nuclear reactor subchannels. Understanding the fundamental physics of turbulent multiphase flows is crucial for the improvement and further development of multiphase flow models used in reactor operation and safety calculations. Reactor calculations with Reynolds-averaged Navier-Stokes (RANS) approach continue to become viable tools for reactor analysis. The on-going increase in available computational resources allows for turbulence models that are more complex than the traditional two-equation models to become practical choices for nuclear reactor computational fluid dynamic (CFD) and multiphase computational fluid dynamic (M-CFD) simulations. Similarly, increased computational capabilities continue to allow for higher Reynolds numbers and more complex geometries to be evaluated using direct numerical simulation (DNS), thus providing more validation and verification data for turbulence model development. Spectral turbulence models are a promising approach to M-CFD simulations. These models resolve mean flow parameters as well as the turbulent kinetic energy spectrum, reproducing more physical details of the turbulence than traditional two-equation type models. Previously, work performed by other researchers on a spectral cascade-transport model has shown that the model behaves well for single and bubbly twophase decay of isotropic turbulence, single and two-phase uniform shear flow, and single-phase flow in a channel without resolving the near-wall boundary layer for relatively low Reynolds number. Spectral models are great candidates for multiphase RANS modeling since bubble source terms can be modeled as contributions to specific turbulence scales. This work focuses on the improvement and further development of the spectral cascadetransport model (SCTM) to become a three-dimensional (3D) turbulence model for use in M

  7. Lumley's energy cascade dissipation rate model for boundary-free turbulent shear flows

    Science.gov (United States)

    Duncan, B. S.

    1992-01-01

    True dissipation occurs mainly at the highest wavenumbers where the eddy sizes are comparatively small. These high wavenumbers receive their energy through the spectral cascade of energy starting with the largest eddies spilling energy into the smaller eddies, passing through each wavenumber until it is dissipated at the microscopic scale. However, a small percentage of the energy does not spill continuously through the cascade but is instantly passed to the higher wavenumbers. Consequently, the smallest eddies receive a certain amount of energy almost immediately. As the spectral energy cascade continues, the highest wavenumber needs a certain time to receive all the energy which has been transferred from the largest eddies. As such, there is a time delay, of the order of tau, between the generation of energy by the largest eddies and the eventual dissipation of this energy. For equilibrium turbulence at high Reynolds numbers, there is a wide range where energy is neither produced by the large eddies nor dissipated by viscosity, but is conserved and passed from wavenumber to higher wavenumbers. The rate at which energy cascades from one wavenumber to another is proportional to the energy contained within that wavenumber. This rate is constant and has been used in the past as a dissipation rate of turbulent kinetic energy. However, this is true only in steady, equilibrium turbulence. Most dissipation models contend that the production of dissipation is proportional to the production of energy and that the destruction of dissipation is proportional to the destruction of energy. In essence, these models state that the change in the dissipation rate is proportional to the change in the kinetic energy. This assumption is obviously incorrect for the case where there is no production of turbulent energy, yet energy continues to cascade from large to small eddies. If the time lag between the onset on the energy cascade to the destruction of energy at the microscale can be

  8. Turbulent black holes.

    Science.gov (United States)

    Yang, Huan; Zimmerman, Aaron; Lehner, Luis

    2015-02-27

    We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.

  9. Energetic particle parallel diffusion in a cascading wave turbulence in the foreshock region

    Directory of Open Access Journals (Sweden)

    F. Otsuka

    2007-09-01

    Full Text Available We study parallel (field-aligned diffusion of energetic particles in the upstream of the bow shock with test particle simulations. We assume parallel shock geometry of the bow shock, and that MHD wave turbulence convected by the solar wind toward the shock is purely transverse in one-dimensional system with a constant background magnetic field. We use three turbulence models: a homogeneous turbulence, a regular cascade from a large scale to smaller scales, and an inverse cascade from a small scale to larger scales. For the homogeneous model the particle motions along the average field are Brownian motions due to random and isotropic scattering across 90 degree pitch angle. On the other hand, for the two cascade models particle motion is non-Brownian due to coherent and anisotropic pitch angle scattering for finite time scale. The mean free path λ|| calculated by the ensemble average of these particle motions exhibits dependence on the distance from the shock. It also depends on the parameters such as the thermal velocity of the particles, solar wind flow velocity, and a wave turbulence model. For the inverse cascade model, the dependence of λ|| at the shock on the thermal energy is consistent with the hybrid simulation done by Giacalone (2004, but the spatial dependence of λ|| is inconsistent with it.

  10. Turbulence theories and modelling of fluids and plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizawa, Akira; Yokoi, Nobumitsu [Institute of Industrial Science, Univ. of Tokyo, Tokyo (Japan); Itoh, Sanae-I. [Research Institute for Applied Mechanics, Kyushu Univ., Kasuga, Fukuoka (Japan); Itoh, Kimitaka [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2001-04-01

    Theoretical and heuristic modelling methods are reviewed for studying turbulence phenomena of fluids and plasmas. Emphasis is put on understanding of effects on turbulent characteristics due to inhomogeneities of field and plasma parameters. The similarity and dissimilarity between the methods for fluids and plasmas are sought in order to shed light on the properties that are shared or not by fluid and plasma turbulence. (author)

  11. Turbulence-cascade interaction noise using an advanced digital filter method

    OpenAIRE

    Gea Aguilera, Fernando; Gill, James; Zhang, Xin; Nodé-Langlois, Thomas

    2016-01-01

    Fan wakes interacting with outlet guide vanes is a major source of noise in modern turbofan engines. In order to study this source of noise, the current work presents two-dimensional simulations of turbulence-cascade interaction noise using a computational aeroacoustic methodology. An advanced digital filter method is used for the generation of isotropic synthetic turbulence in a linearised Euler equation solver. A parameter study is presented to assess the influence of airfoil thickness, mea...

  12. Turbulence Amplification with Incidence at the Leading Edge of a Compressor Cascade

    Directory of Open Access Journals (Sweden)

    Garth V. Hobson

    1999-01-01

    Full Text Available Detailed measurements, with a two-component laser-Doppler velocimeter and a thermal anemometer were made near the suction surface leading edge of controlled-diffusion airfoils in cascade. The Reynolds number was near 700,000, Mach number equal to 0.25, and freestream turbulence was at 1.5% ahead of the cascade.

  13. Major disruptions, inverse cascades, and the Strauss equations

    International Nuclear Information System (INIS)

    Montgomery, D.

    1982-01-01

    Current-carrying plasmas in a strong dc magnetic field are subject to violent disruptions above certain thresholds. At present difficult to verify, explanations are typically sought in terms of tearing modes. An alternative explanation is in terms of inverse magnetic helicity cascades, generated from a variety of possible sources of small-scale MHD turbulence. Strongly anisotropic MHD plasmas may be described by the Strauss equations. Indications of turbulent inverse cascade behavior for the Strauss equations are sought, in parallel with earlier examples from MHD and fluid mechanics

  14. Dynamics of homogeneous shear turbulence: A key role of the nonlinear transverse cascade in the bypass concept.

    Science.gov (United States)

    Mamatsashvili, G; Khujadze, G; Chagelishvili, G; Dong, S; Jiménez, J; Foysi, H

    2016-08-01

    To understand the mechanism of the self-sustenance of subcritical turbulence in spectrally stable (constant) shear flows, we performed direct numerical simulations of homogeneous shear turbulence for different aspect ratios of the flow domain with subsequent analysis of the dynamical processes in spectral or Fourier space. There are no exponentially growing modes in such flows and the turbulence is energetically supported only by the linear growth of Fourier harmonics of perturbations due to the shear flow non-normality. This non-normality-induced growth, also known as nonmodal growth, is anisotropic in spectral space, which, in turn, leads to anisotropy of nonlinear processes in this space. As a result, a transverse (angular) redistribution of harmonics in Fourier space is the main nonlinear process in these flows, rather than direct or inverse cascades. We refer to this type of nonlinear redistribution as the nonlinear transverse cascade. It is demonstrated that the turbulence is sustained by a subtle interplay between the linear nonmodal growth and the nonlinear transverse cascade. This course of events reliably exemplifies a well-known bypass scenario of subcritical turbulence in spectrally stable shear flows. These two basic processes mainly operate at large length scales, comparable to the domain size. Therefore, this central, small wave number area of Fourier space is crucial in the self-sustenance; we defined its size and labeled it as the vital area of turbulence. Outside the vital area, the nonmodal growth and the transverse cascade are of secondary importance: Fourier harmonics are transferred to dissipative scales by the nonlinear direct cascade. Although the cascades and the self-sustaining process of turbulence are qualitatively the same at different aspect ratios, the number of harmonics actively participating in this process (i.e., the harmonics whose energies grow more than 10% of the maximum spectral energy at least once during evolution) varies

  15. Dynamics of homogeneous shear turbulence: A key role of the nonlinear transverse cascade in the bypass concept

    Science.gov (United States)

    Mamatsashvili, G.; Khujadze, G.; Chagelishvili, G.; Dong, S.; Jiménez, J.; Foysi, H.

    2016-08-01

    To understand the mechanism of the self-sustenance of subcritical turbulence in spectrally stable (constant) shear flows, we performed direct numerical simulations of homogeneous shear turbulence for different aspect ratios of the flow domain with subsequent analysis of the dynamical processes in spectral or Fourier space. There are no exponentially growing modes in such flows and the turbulence is energetically supported only by the linear growth of Fourier harmonics of perturbations due to the shear flow non-normality. This non-normality-induced growth, also known as nonmodal growth, is anisotropic in spectral space, which, in turn, leads to anisotropy of nonlinear processes in this space. As a result, a transverse (angular) redistribution of harmonics in Fourier space is the main nonlinear process in these flows, rather than direct or inverse cascades. We refer to this type of nonlinear redistribution as the nonlinear transverse cascade. It is demonstrated that the turbulence is sustained by a subtle interplay between the linear nonmodal growth and the nonlinear transverse cascade. This course of events reliably exemplifies a well-known bypass scenario of subcritical turbulence in spectrally stable shear flows. These two basic processes mainly operate at large length scales, comparable to the domain size. Therefore, this central, small wave number area of Fourier space is crucial in the self-sustenance; we defined its size and labeled it as the vital area of turbulence. Outside the vital area, the nonmodal growth and the transverse cascade are of secondary importance: Fourier harmonics are transferred to dissipative scales by the nonlinear direct cascade. Although the cascades and the self-sustaining process of turbulence are qualitatively the same at different aspect ratios, the number of harmonics actively participating in this process (i.e., the harmonics whose energies grow more than 10% of the maximum spectral energy at least once during evolution) varies

  16. On the late phase of relaxation of two-dimensional fluids: turbulence of unitons

    International Nuclear Information System (INIS)

    Spineanu, F; Vlad, M

    2017-01-01

    The two-dimensional ideal fluid and the plasma confined by a strong magnetic field exhibit an intrinsic tendency to organization due to the inverse spectral cascade. In the asymptotic states reached at relaxation the turbulence has vanished and there are only coherent vortical structures. We are interested in the regime that precedes these ordered flow patterns, in which there still is turbulence and imperfect but robust structures have emerged. To develop an analytical description we propose to start from the stationary coherent states and (in the direction opposite to relaxation) explore the space of configurations before the extremum of the functional that defines the structures has been reached. We find necessary to assemble different but related models: point-like vortices, its field theoretical formulation as interacting matter and gauge fields, chiral model and surfaces with constant mean curvature. These models are connected by the similar ability to described randomly interacting coherent structures. They derive exactly the same equation for the asymptotic state (sinh-Poisson equation, confirmed by numerical calculation of fluid flows). The chiral model, to which one can arrive from self-duality equation of the field theoretical model for fluid and from constant mean curvature surface equations, appears to be the suitable analytical framework. Its solutions, the unitons, aquire dynamics when the system is not at the extremum of the action. In the present work we provide arguments that the underlying common nature of these models can be used to develop an approach to fluid and plasma states of turbulence interacting with structures. (paper)

  17. Correlation Scales of the Turbulent Cascade at 1 au

    Science.gov (United States)

    Smith, Charles W.; Vasquez, Bernard J.; Coburn, Jesse T.; Forman, Miriam A.; Stawarz, Julia E.

    2018-05-01

    We examine correlation functions of the mixed, third-order expressions that, when ensemble-averaged, describe the cascade of energy in the inertial range of magnetohydrodynamic turbulence. Unlike the correlation function of primitive variables such as the magnetic field, solar wind velocity, temperature, and density, the third-order expressions decorrelate at a scale that is approximately 20% of the lag. This suggests the nonlinear dynamics decorrelate in less than one wavelength. Therefore, each scale can behave differently from one wavelength to the next. In the same manner, different scales within the inertial range can behave independently at any given time or location. With such a cascade that can be strongly patchy and highly variable, it is often possible to obtain negative cascade rates for short periods of time, as reported earlier for individual samples of data.

  18. Energy partitioning constraints at kinetic scales in low-β turbulence

    Science.gov (United States)

    Gershman, Daniel J.; F.-Viñas, Adolfo; Dorelli, John C.; Goldstein, Melvyn L.; Shuster, Jason; Avanov, Levon A.; Boardsen, Scott A.; Stawarz, Julia E.; Schwartz, Steven J.; Schiff, Conrad; Lavraud, Benoit; Saito, Yoshifumi; Paterson, William R.; Giles, Barbara L.; Pollock, Craig J.; Strangeway, Robert J.; Russell, Christopher T.; Torbert, Roy B.; Moore, Thomas E.; Burch, James L.

    2018-02-01

    Turbulence is a fundamental physical process through which energy injected into a system at large scales cascades to smaller scales. In collisionless plasmas, turbulence provides a critical mechanism for dissipating electromagnetic energy. Here, we present observations of plasma fluctuations in low-β turbulence using data from NASA's Magnetospheric Multiscale mission in Earth's magnetosheath. We provide constraints on the partitioning of turbulent energy density in the fluid, ion-kinetic, and electron-kinetic ranges. Magnetic field fluctuations dominated the energy density spectrum throughout the fluid and ion-kinetic ranges, consistent with previous observations of turbulence in similar plasma regimes. However, at scales shorter than the electron inertial length, fluctuation power in electron kinetic energy significantly exceeded that of the magnetic field, resulting in an electron-motion-regulated cascade at small scales. This dominance is highly relevant for the study of turbulence in highly magnetized laboratory and astrophysical plasmas.

  19. Numerical study of corner separation in a linear compressor cascade using various turbulence models

    Directory of Open Access Journals (Sweden)

    Liu Yangwei

    2016-06-01

    Full Text Available Three-dimensional corner separation is a common phenomenon that significantly affects compressor performance. Turbulence model is still a weakness for RANS method on predicting corner separation flow accurately. In the present study, numerical study of corner separation in a linear highly loaded prescribed velocity distribution (PVD compressor cascade has been investigated using seven frequently used turbulence models. The seven turbulence models include Spalart–Allmaras model, standard k–ɛ model, realizable k–ɛ model, standard k–ω model, shear stress transport k–ω model, v2–f model and Reynolds stress model. The results of these turbulence models have been compared and analyzed in detail with available experimental data. It is found the standard k–ɛ model, realizable k–ɛ model, v2–f model and Reynolds stress model can provide reasonable results for predicting three dimensional corner separation in the compressor cascade. The Spalart–Allmaras model, standard k–ω model and shear stress transport k–ω model overestimate corner separation region at incidence of 0°. The turbulence characteristics are discussed and turbulence anisotropy is observed to be stronger in the corner separating region.

  20. Shell Models of Superfluid Turbulence

    International Nuclear Information System (INIS)

    Wacks, Daniel H; Barenghi, Carlo F

    2011-01-01

    Superfluid helium consists of two inter-penetrating fluids, a viscous normal fluid and an inviscid superfluid, coupled by a mutual friction. We develop a two-fluid shell model to study superfluid turbulence and investigate the energy spectra and the balance of fluxes between the two fluids in a steady state. At sufficiently low temperatures a 'bottle-neck' develops at high wavenumbers suggesting the need for a further dissipative effect, such as the Kelvin wave cascade.

  1. How plasmas dissipate: cascade and the production of internal energy and entropy in weakly collisional plasma turbulence

    Science.gov (United States)

    Matthaeus, W. H.; Yang, Y.; Servidio, S.; Parashar, T.; Chasapis, A.; Roytershteyn, V.

    2017-12-01

    Turbulence cascade transfers energy from large scale to small scale but what happens once kinetic scales are reached? In a collisional medium, viscosity and resistivity remove fluctuation energy in favor of heat. In the weakly collisional solar wind, (or corona, m-sheath, etc.), the sequence of events must be different. Heating occurs, but through what mechanisms? In standard approaches, dissipation occurs though linear wave modes or instabilities and one seeks to identify them. A complementary view is that cascade leads to several channels of energy conversion, interchange and spatial rearrangement that collectively leads to production of internal energy. Channels may be described using compressible MHD & multispecies Vlasov Maxwell formulations. Key steps are: Conservative rearrangement of energy in space; Parallel incompressible and compressible cascades - conservative rearrangment in scale; electromagnetic work on particles that drives flows, both macroscopic and microscopic; and pressure-stress interactions, both compressive and shear-like, that produces internal energy. Examples given from MHD, PIC simulations and MMS observations. A more subtle issue is how entropy is related to this degeneration (or, "dissipation") of macroscopic, fluid-scale fluctuations. We discuss this in terms of Boltzmann and thermodynamic entropies, and velocity space effects of collisions.

  2. Turbulence and fossil turbulence lead to life in the universe

    International Nuclear Information System (INIS)

    Gibson, Carl H

    2013-01-01

    Turbulence is defined as an eddy-like state of fluid motion where the inertial-vortex forces of the eddies are larger than all the other forces that tend to damp the eddies out. Fossil turbulence is a perturbation produced by turbulence that persists after the fluid ceases to be turbulent at the scale of the perturbation. Because vorticity is produced at small scales, turbulence must cascade from small scales to large, providing a consistent physical basis for Kolmogorovian universal similarity laws. Oceanic and astrophysical mixing and diffusion are dominated by fossil turbulence and fossil turbulent waves. Observations from space telescopes show turbulence and vorticity existed in the beginning of the universe and that their fossils persist. Fossils of big bang turbulence include spin and the dark matter of galaxies: clumps of ∼10 12 frozen hydrogen planets that make globular star clusters as seen by infrared and microwave space telescopes. When the planets were hot gas, they hosted the formation of life in a cosmic soup of hot-water oceans as they merged to form the first stars and chemicals. Because spontaneous life formation according to the standard cosmological model is virtually impossible, the existence of life falsifies the standard cosmological model. (paper)

  3. Three-fluid, three-dimensional magnetohydrodynamic solar wind model with eddy viscosity and turbulent resistivity

    Energy Technology Data Exchange (ETDEWEB)

    Usmanov, Arcadi V.; Matthaeus, William H. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Goldstein, Melvyn L., E-mail: arcadi.usmanov@nasa.gov [Code 672, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-06-10

    We have developed a three-fluid, three-dimensional magnetohydrodynamic solar wind model that incorporates turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating. The solar wind plasma is described as a system of co-moving solar wind protons, electrons, and interstellar pickup protons, with separate energy equations for each species. Numerical steady-state solutions of Reynolds-averaged solar wind equations coupled with turbulence transport equations for turbulence energy, cross helicity, and correlation length are obtained by the time relaxation method in the corotating with the Sun frame of reference in the region from 0.3 to 100 AU (but still inside the termination shock). The model equations include the effects of electron heat conduction, Coulomb collisions, photoionization of interstellar hydrogen atoms and their charge exchange with the solar wind protons, turbulence energy generation by pickup protons, and turbulent heating of solar wind protons and electrons. The turbulence transport model is based on the Reynolds decomposition and turbulence phenomenologies that describe the conversion of fluctuation energy into heat due to a turbulent cascade. In addition to using separate energy equations for the solar wind protons and electrons, a significant improvement over our previous work is that the turbulence model now uses an eddy viscosity approximation for the Reynolds stress tensor and the mean turbulent electric field. The approximation allows the turbulence model to account for driving of turbulence by large-scale velocity gradients. Using either a dipole approximation for the solar magnetic field or synoptic solar magnetograms from the Wilcox Solar Observatory for assigning boundary conditions at the coronal base, we apply the model to study the global structure of the solar wind and its three-dimensional properties, including embedded turbulence, heating, and acceleration throughout the heliosphere. The model results are

  4. Bispectral experimental estimation of the nonlinear energy transfer in two-dimensional plasma turbulence

    DEFF Research Database (Denmark)

    Manz, P.; Ramisch, M.; Stroth, U.

    2008-01-01

    Experimental density and potential fluctuation data from a 2D probe array have been analysed to study the turbulent cascade in a toroidally confined magnetized plasma. The bispectral analysis technique used is from Ritz et al ( 1989 Phys. Fluids B 1 153) and Kim et al ( 1996 Phys. Plasmas 3 3998...... scales. This is the first experimental evidence for the dual turbulent cascade in a magnetized plasma....

  5. Inverse energy cascade and emergence of large coherent vortices in turbulence driven by Faraday waves.

    Science.gov (United States)

    Francois, N; Xia, H; Punzmann, H; Shats, M

    2013-05-10

    We report the generation of large coherent vortices via inverse energy cascade in Faraday wave driven turbulence. The motion of floaters in the Faraday waves is three dimensional, but its horizontal velocity fluctuations show unexpected similarity with two-dimensional turbulence. The inverse cascade is detected by measuring frequency spectra of the Lagrangian velocity, and it is confirmed by computing the third moment of the horizontal velocity fluctuations. This is observed in deep water in a broad range of wavelengths and vertical accelerations. The results broaden the scope of recent findings on Faraday waves in thin layers [A. von Kameke et al., Phys. Rev. Lett. 107, 074502 (2011)].

  6. The turbulent mixing of non-Newtonian fluids

    Science.gov (United States)

    Demianov, A. Yu; Doludenko, A. N.; Inogamov, N. A.; Son, E. E.

    2013-07-01

    The turbulence caused by the Rayleigh-Taylor instability represents a complicated phenomenon. It is usually related to the major hydrodynamic activities, the tangling of the media contact boundary, merging, separation and intermixing of originally smoothed initial structures. An important role in the theory of the Rayleigh-Taylor instability is played by the discontinuity of density on a contact interface between two homogeneous (in terms of density) fluids. A numerical modeling of the intermixing of two fluids with different rheology whose densities differ twice as a result of the Rayleigh-Taylor instability has been carried out. The coefficients of turbulent intermixing in a multimode statement of the problem for the Bingham, dilatant and pseudo-plastic fluids have been obtained.

  7. Homogeneous shear turbulence – bypass concept via interplay of linear transient growth and nonlinear transverse cascade

    International Nuclear Information System (INIS)

    Mamatsashvili, George; Dong, Siwei; Jiménez, Javier; Khujadze, George; Chagelishvili, George; Foysi, Holger

    2016-01-01

    We performed direct numerical simulations of homogeneous shear turbulence to study the mechanism of the self-sustenance of subcritical turbulence in spectrally stable (constant) shear flows. For this purpose, we analyzed the turbulence dynamics in Fourier/wavenumber/spectral space based on the simulation data for the domain aspect ratio 1 : 1 : 1. Specifically, we examined the interplay of linear transient growth of Fourier harmonics and nonlinear processes. The transient growth of harmonics is strongly anisotropic in spectral space. This, in turn, leads to anisotropy of nonlinear processes in spectral space and, as a result, the main nonlinear process appears to be not a direct/inverse, but rather a transverse/angular redistribution of harmonics in Fourier space referred to as the nonlinear transverse cascade. It is demonstrated that the turbulence is sustained by the interplay of the linear transient, or nonmodal growth and the transverse cascade. This course of events reliably exemplifies the wellknown bypass scenario of subcritical turbulence in spectrally stable shear flows. These processes mainly operate at large length scales, comparable to the box size. Consequently, the central, small wavenumber area of Fourier space (the size of which is determined below) is crucial in the self-sustenance and is labeled the vital area. Outside the vital area, the transient growth and the transverse cascade are of secondary importance - Fourier harmonics are transferred to dissipative scales by the nonlinear direct cascade. The number of harmonics actively participating in the self-sustaining process (i.e., the harmonics whose energies grow more than 10% of the maximum spectral energy at least once during evolution) is quite large - it is equal to 36 for the considered box aspect ratio - and obviously cannot be described by low-order models. (paper)

  8. Group-kinetic theory and modeling of atmospheric turbulence

    Science.gov (United States)

    Tchen, C. M.

    1989-01-01

    A group kinetic method is developed for analyzing eddy transport properties and relaxation to equilibrium. The purpose is to derive the spectral structure of turbulence in incompressible and compressible media. Of particular interest are: direct and inverse cascade, boundary layer turbulence, Rossby wave turbulence, two phase turbulence; compressible turbulence, and soliton turbulence. Soliton turbulence can be found in large scale turbulence, turbulence connected with surface gravity waves and nonlinear propagation of acoustical and optical waves. By letting the pressure gradient represent the elementary interaction among fluid elements and by raising the Navier-Stokes equation to higher dimensionality, the master equation was obtained for the description of the microdynamical state of turbulence.

  9. Application of foam-extend on turbulent fluid-structure interaction

    Science.gov (United States)

    Rege, K.; Hjertager, B. H.

    2017-12-01

    Turbulent flow around flexible structures is likely to induce structural vibrations which may eventually lead to fatigue failure. In order to assess the fatigue life of these structures, it is necessary to take the action of the flow on the structure into account, but also the influence of the vibrating structure on the fluid flow. This is achieved by performing fluid-structure interaction (FSI) simulations. In this work, we have investigated the capability of a FSI toolkit for the finite volume computational fluid dynamics software foam-extend to simulate turbulence-induced vibrations of a flexible structure. A large-eddy simulation (LES) turbulence model has been implemented to a basic FSI problem of a flexible wall which is placed in a confined, turbulent flow. This problem was simulated for 2.32 seconds. This short simulation required over 200 computation hours, using 20 processor cores. Thereby, it has been shown that the simulation of FSI with LES is possible, but also computationally demanding. In order to make turbulent FSI simulations with foam-extend more applicable, more sophisticated turbulence models and/or faster FSI iteration schemes should be applied.

  10. Magnetic field sensor based on cascaded microfiber coupler with magnetic fluid

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Lianmin; Su, Delong; Wang, Zhaofang [College of Science, University of Shanghai for Science and Technology, Shanghai 200093 (China); Pu, Shengli, E-mail: shlpu@usst.edu.cn [College of Science, University of Shanghai for Science and Technology, Shanghai 200093 (China); Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093 (China); Zeng, Xianglong [The Key Lab of Specialty Fiber Optics and Optical Access Network, Shanghai University, Shanghai 200072 (China); Lahoubi, Mahieddine [Laboratory L.P.S., Department of Physics, Faculty of Sciences, Badji-Mokhtar Annaba University, Annaba 23000 (Algeria)

    2016-09-07

    A kind of magnetic field sensor based on cascaded microfiber coupler with magnetic fluid is proposed and experimentally demonstrated. The magnetic fluid is utilized as the cladding of the fused regions of the cascaded microfiber coupler. As the interference valley wavelength of the sensing structure is sensitive to the ambient variation, considering the magnetic-field-dependent refractive index of magnetic fluid, the proposed structure is employed for magnetic field sensing. The effective coupling length for each coupling region of the as-fabricated cascaded microfiber coupler is 6031 μm. The achieved sensitivity is 125 pm/Oe, which is about three times larger than that of the previously similar structure based on the single microfiber coupler. Experimental results indicate that the sensing sensitivity can be easily improved by increasing the effective coupling length or cascading more microfiber couplers. The proposed magnetic field sensor is attractive due to its low cost, immunity to electromagnetic interference, as well as high sensitivity, which also has the potentials in other tunable all-fiber photonic devices, such as filter.

  11. Scaling, Intermittency and Decay of MHD Turbulence

    International Nuclear Information System (INIS)

    Lazarian, A.; Cho, Jungyeon

    2005-01-01

    We discuss a few recent developments that are important for understanding of MHD turbulence. First, MHD turbulence is not so messy as it is usually believed. In fact, the notion of strong non-linear coupling of compressible and incompressible motions along MHD cascade is not tenable. Alfven, slow and fast modes of MHD turbulence follow their own cascades and exhibit degrees of anisotropy consistent with theoretical expectations. Second, the fast decay of turbulence is not related to the compressibility of fluid. Rates of decay of compressible and incompressible motions are very similar. Third, viscosity by neutrals does not suppress MHD turbulence in a partially ionized gas. Instead, MHD turbulence develops magnetic cascade at scales below the scale at which neutrals damp ordinary hydrodynamic motions. Forth, density statistics does not exhibit the universality that the velocity and magnetic field do. For instance, at small Mach numbers the density is anisotropic, but it gets isotropic at high Mach numbers. Fifth, the intermittency of magnetic field and velocity are different. Both depend on whether the measurements are done in a local system of reference oriented along the local magnetic field or in the global system of reference related to the mean magnetic field

  12. Forward and inverse cascades in decaying two-dimensional electron magnetohydrodynamic turbulence

    International Nuclear Information System (INIS)

    Wareing, C. J.; Hollerbach, R.

    2009-01-01

    Electron magnetohydrodynamic (EMHD) turbulence in two dimensions is studied via high-resolution numerical simulations with a normal diffusivity. The resulting energy spectra asymptotically approach a k -5/2 law with increasing R B , the ratio of the nonlinear to linear time scales in the governing equation. No evidence is found of a dissipative cutoff, consistent with nonlocal spectral energy transfer. Dissipative cutoffs found in previous studies are explained as artificial effects of hyperdiffusivity. Relatively stationary structures are found to develop in time, rather than the variability found in ordinary or MHD turbulence. Further, EMHD turbulence displays scale-dependent anisotropy with reduced energy transfer in the direction parallel to the uniform background field, consistent with previous studies. Finally, the governing equation is found to yield an inverse cascade, at least partially transferring magnetic energy from small to large scales.

  13. Resonant quasiparticles in plasma turbulence

    International Nuclear Information System (INIS)

    Mendonca, J.T.; Bingham, R.; Shukla, P.K.

    2003-01-01

    A general view is proposed on wave propagation in fluids and plasmas where the resonant interaction of monochromatic waves with quasiparticles is considered. A kinetic equation for quasiparticles is used to describe the broadband turbulence interacting with monochromatic waves. Resonant interactions occur when the phase velocity of the long wavelength monochromatic wave is nearly equal to the group velocity of short wavelength wave packets, or quasiparticles, associated with the turbulent spectrum. It is shown that quasiparticle Landau damping can take place, as well as quasiparticle beam instabilities, thus establishing a direct link between short and large wavelength perturbations of the medium. This link is distinct from the usual picture of direct and inverse energy cascades, and it can be used as a different paradigm for the fluid and plasma turbulence theories

  14. The turbulent cascade and proton heating in the solar wind during solar minimum

    International Nuclear Information System (INIS)

    Coburn, Jesse T.; Smith, Charles W.; Vasquez, Bernard J.; Stawarz, Joshua E.; Forman, Miriam A.

    2013-01-01

    Solar wind measurements at 1 AU during the recent solar minimum and previous studies of solar maximum provide an opportunity to study the effects of the changing solar cycle on in situ heating. Our interest is to compare the levels of activity associated with turbulence and proton heating. Large-scale shears in the flow caused by transient activity are a source that drives turbulence that heats the solar wind, but as the solar cycle progresses the dynamics that drive the turbulence and heat the medium are likely to change. The application of third-moment theory to Advanced Composition Explorer (ACE) data gives the turbulent energy cascade rate which is not seen to vary with the solar cycle. Likewise, an empirical heating rate shows no significan changes in proton heating over the cycle.

  15. Bidirectional Energy Cascades and the Origin of Kinetic Alfvenic and Whistler Turbulence in the Solar Wind

    Science.gov (United States)

    Che, H.; Goldstein, M. L.; Vinas, A. F.

    2014-01-01

    The observed steep kinetic scale turbulence spectrum in the solar wind raises the question of how that turbulence originates. Observations of keV energetic electrons during solar quiet time suggest them as a possible source of free energy to drive kinetic turbulence. Using particle-in-cell simulations, we explore how the free energy released by an electron two-stream instability drives Weibel-like electromagnetic waves that excite wave-wave interactions. Consequently, both kinetic Alfvénic and whistler turbulence are excited that evolve through inverse and forward magnetic energy cascades.

  16. BOOK REVIEW: Plasma and Fluid Turbulence: Theory and Modelling

    Science.gov (United States)

    Yoshizawa, A.; Itoh, S. I.; Itoh, K.

    2003-03-01

    The area of turbulence has been covered by many books over the years. This has, of course, mainly been fluid turbulence, while the area of plasma turbulence has been treated much less. This book by Yoshizawa et al covers both plasma and fluid turbulence, in a way that does justice to both areas at the same time as cross-disciplinary aspects are illuminated. The book should be useful to physicists working in both areas partly because it examines fundamental aspects in a pedagogical way, partly because it is up to date and partly because of the cross-disciplinary aspects which enrich both areas. It is written as an advanced textbook. The reader should have previous knowledge of at least one of the areas and also some background in statistical physics. The book starts with the very important and highly up to date area of structure formation which is relevant both to fluids and plasmas. Here, pipe flow of fluids is treated as an introduction to the area, then follows discussion of the generation of magnetic fields by turbulent motion in stellar objects and stucture formation in plasmas confined by a magnetic field. Also the concept of bifurcation is introduced. This part builds up knowledge from the simple fluid case to the problems of magnetic confinement of plasmas in a very pedagogical way. It continues by introducing the fundamentals of fluid turbulence. This is done very systematically and concepts useful for industrial applications like the K-e method and several ways of heuristic modelling are introduced. Also the two dimensional vortex equation, which is also relevant to magnetized plasmas is introduced. In chapter 5 the statistical theory of turbulence is treated. It starts with a very nice and easy to understand example of renormalization of a simple nonlinear equation where the exact solution is known. It introduces the method of partial renormalization, Greens functions and the direct interaction approximation (DIA). The book then continues with an

  17. Development of bubble-induced turbulence model for advanced two-fluid model

    International Nuclear Information System (INIS)

    Hosoi, Hideaki; Yoshida, Hiroyuki

    2011-01-01

    A two-fluid model can simulate two-phase flow by computational cost less than detailed two-phase flow simulation method such as interface tracking method. The two-fluid model is therefore useful for thermal hydraulic analysis in the large-scale domain such as rod bundles. However, since the two-fluid model includes a lot of constitutive equations verified by use of experimental results, it has problems that the result of analyses depends on accuracy of the constitutive equations. To solve these problems, an advanced two-fluid model has been developed by Japan Atomic Energy Agency. In this model, interface tracking method is combined with two-fluid model to accurately predict large interface structure behavior. Liquid clusters and bubbles larger than a computational cell are calculated using the interface tracking method, and those smaller than the cell are simulated by the two-fluid model. The constitutive equations to evaluate the effects of small bubbles or droplets on two-phase flow are also required in the advanced two-fluid model, just as with the conventional two-fluid model. However, the dependency of small bubbles and droplets on two-phase flow characteristics is relatively small, and fewer experimental results are required to verify the characteristics of large interface structures. Turbulent dispersion force model is one of the most important constitutive equations for the advanced two-fluid model. The turbulent dispersion force model has been developed by many researchers for the conventional two-fluid model. However, existing models implicitly include the effects of large bubbles and the deformation of bubbles, and are unfortunately not applicable to the advanced two-fluid model. In the previous study, the authors suggested the turbulent dispersion force model based on the analogy of Brownian motion. And the authors improved the turbulent dispersion force model in consideration of bubble-induced turbulence to improve the analysis results for small

  18. Fluid simulations of ∇Te-driven turbulence and transport in boundary plasmas

    International Nuclear Information System (INIS)

    Xu, X.Q.; Cohen, R.H.

    1993-01-01

    This paper is a report on simulations of a new drift wave type instability driven by the electron temperature gradient in tokamak scrapeoff-layers (SOL). A 2D(x,y) fluid code has been developed in order to explore the anomalous transport in the boundary plasmas. The simulation consists of a set of fluid equations (in the electrostatic limit) for the vorticity ∇ perpendicular 2 φ, the electron density n e and the temperature T e in a shearless plasma slab confined by a uniform, straight magnetic field B z with two diverter (or limiter) plates intercepting the magnetic field. The model has two regions separated by a magnetic separatrix: in the edge region inside the separatrix, the model is periodic along the magnetic field while in the SOL region outside the separatrix, the magnetic field is taken to be of finite length with model (logical sheath) boundary conditions at diverter (or limiter) plates. The simulation results show that the observed linear instability agrees well with theory, and that a saturated state of turbulence is reached. In saturated turbulence, clear evidence of the expected long-wavelength mode penetration into the edge is seen, an inverse cascade of wave energy (toward both long wavelengths and low frequencies) is observed. The simulation results also show that amplitudes of potential and the electron temperature fluctuations are somewhat above and the heat flux are somewhat below those of the simplest mixing-length estimates. The results from the self-consistent simulations to determine the microturbulent SOL electron temperature profile agree reasonably with the experimental measurements. The effects on the mode of neutral gas collisions at the divertor sheath and comparisons with the ionization driven turbulence are discussed

  19. Low frequency fluid drift turbulence in magnetised plasmas

    International Nuclear Information System (INIS)

    Scott, B.

    2001-03-01

    We start with the first principles of fluid dynamics and classical electrodynamics and then find the regime in which we can reduce to quasineutral dynamics, which also implicitly underlies MHD. Then, we find the limits under which we can specialise to the MHD model as a subset, first of two fluid dynamics, then of the fluid drift dynamics that results when the motions are not vigorous enough to compress the magnetic field. In Chapters 4 and 5 we find the basic character of small disturbances in this system. Chapters 6 through 9 treat various aspects of fluid drift turbulence, also called drift wave turbulence, moving from a simple consideration of the underlying nonlinear dynamics, to some methods by which one can diagnose computations to find out what is going on, and then to the nonlinear instability which is the hallmark of this physics, and then to the interactions with large scale sheared flows. Chapter 10 introduces interchange turbulence, which is the plasma analog of the buoyant convection well known from fluid dynamics. Chapters 11 through 13 treat electromagnetic drift wave turbulence in closed magnetic field geometry, starting with a simplified model treating only the electron pressure and then introducing the electron and ion temperatures. Chapter 14 treats the basic characteristics of the transport that results from fluid drift turbulence, as this is quite different from the kinetic diffusion, such as heat conduction, that is more familiar. Appendices A and B treat the details of the numerical methods and models of magnetic field geometry necessary to treat all but the simplest cases. For this subject is dominated by nonlinear physics and therefore numerical computation. Computations therefore form an integral part of its study right from the beginning. Citations to the literature are not intended to be comprehensive but to serve as starting points for further reading, a section for which is included in every chapter. Much of this work is very new, and

  20. Dissipation of Turbulence in the Solar Wind as Measured by Cluster

    Science.gov (United States)

    Goldstein, Melvyn

    2012-01-01

    Turbulence in fluids and plasmas is a scale-dependent process that generates fluctuations towards ever-smaller scales until dissipation occurs. Recent Cluster observations in the solar wind demonstrate the existence of a cascade of magnetic energy from the scale of the proton Larmor radius, where kinetic properties of ions invalidate fluid approximations, down to the electron Larmor radius, where electrons become demagnetized. The cascade is quasi-two-dimensional and has been interpreted as consisting of highly oblique kinetic Alfvenic fluctuations that dissipate near at the electron gyroradius scale via proton and electron Landau damping. Here we investigate for the first time the spatial properties of the turbulence at these scales. We report the presence of thin current sheets and discontinuities with spatial sizes greater than or approximately equal to the proton Larmor radius. These isolated structures may be manifestations of intermittency, and such would localize sites of turbulent dissipation. Studying the relationship between turbulent dissipation, reconnection and intermittency is crucial for understanding the dynamics of laboratory and astrophysical plasmas.

  1. Magnetohydrodynamic turbulence revisited

    International Nuclear Information System (INIS)

    Goldreich, P.; Sridhar, S.

    1997-01-01

    In 1965, Kraichnan proposed that MHD turbulence occurs as a result of collisions between oppositely directed Alfvacute en wave packets. Recent work has generated some controversy over the nature of nonlinear couplings between colliding Alfvacute en waves. We find that the resolution to much of the confusion lies in the existence of a new type of turbulence, intermediate turbulence, in which the cascade of energy in the inertial range exhibits properties intermediate between those of weak and strong turbulent cascades. Some properties of intermediate MHD turbulence are the following: (1) in common with weak turbulent cascades, wave packets belonging to the inertial range are long-lived; (2) however, components of the strain tensor are so large that, similar to the situation in strong turbulence, perturbation theory is not applicable; (3) the breakdown of perturbation theory results from the divergence of neighboring field lines due to wave packets whose perturbations in velocity and magnetic fields are localized, but whose perturbations in displacement are not; (4) three-wave interactions dominate individual collisions between wave packets, but interactions of all orders n≥3 make comparable contributions to the intermediate turbulent energy cascade; (5) successive collisions are correlated since wave packets are distorted as they follow diverging field lines; (6) in common with the weak MHD cascade, there is no parallel cascade of energy, and the cascade to small perpendicular scales strengthens as it reaches higher wavenumbers; (7) for an appropriate weak excitation, there is a natural progression from a weak, through an intermediate, to a strong cascade. copyright 1997 The American Astronomical Society

  2. Renormalization of the fragmentation equation: Exact self-similar solutions and turbulent cascades

    Science.gov (United States)

    Saveliev, V. L.; Gorokhovski, M. A.

    2012-12-01

    Using an approach developed earlier for renormalization of the Boltzmann collision integral [Saveliev and Nanbu, Phys. Rev. E1539-375510.1103/PhysRevE.65.051205 65, 051205 (2002)], we derive an exact divergence form for the fragmentation operator. Then we reduce the fragmentation equation to the continuity equation in size space, with the flux given explicitly. This allows us to obtain self-similar solutions and to find the integral of motion for these solutions (we call it the bare flux). We show how these solutions can be applied as a description of cascade processes in three- and two-dimensional turbulence. We also suggested an empirical cascade model of impact fragmentation of brittle materials.

  3. Turbulent characteristics of shear-thinning fluids in recirculating flows

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, A.S. [Inst. Superior de Engenharia do Porto (Portugal). Dept. de Engenharia Quimica; Pinho, F.T. [Centro de Estudos de Fenomenos de Transporte, Departamento de Engenharia Mecanica e Gestao Industrial, Faculdade de Engenharia da Universidade do Porto, Rua dos Bragas, 4050-123 Porto (Portugal)

    2000-03-01

    A miniaturised fibre optic laser-Doppler anemometer was used to carry out a detailed hydrodynamic investigation of the flow downstream of a sudden expansion with 0.1-0.2% by weight shear-thinning aqueous solutions of xanthan gum. Upstream of the sudden expansion the pipe flow was fully-developed and the xanthan gum solutions exhibited drag reduction with corresponding lower radial and tangential normal Reynolds stresses, but higher axial Reynolds stress near the wall and a flatter axial mean velocity profile in comparison with Newtonian flow. The recirculation bubble length was reduced by more than 20% relative to the high Reynolds number Newtonian flow, and this was attributed to the occurrence further upstream of high turbulence for the non-Newtonian solutions, because of advection of turbulence and earlier high turbulence production in the shear layer. Comparisons with the measurements of Escudier and Smith (1999) with similar fluids emphasized the dominating role of inlet turbulence. The present was less anisotropic, and had lower maximum axial Reynolds stresses (by 16%) but higher radial turbulence (20%) than theirs. They reported considerably longer recirculating bubble lengths than we do for similar non-Newtonian fluids and Reynolds numbers. (orig.)

  4. Spectral analysis of the turbulent mixing of two fluids

    Energy Technology Data Exchange (ETDEWEB)

    Steinkamp, M.J.

    1996-02-01

    The authors describe a spectral approach to the investigation of fluid instability, generalized turbulence, and the interpenetration of fluids across an interface. The technique also applies to a single fluid with large variations in density. Departures of fluctuating velocity components from the local mean are far subsonic, but the mean Mach number can be large. Validity of the description is demonstrated by comparisons with experiments on turbulent mixing due to the late stages of Rayleigh-Taylor instability, when the dynamics become approximately self-similar in response to a constant body force. Generic forms for anisotropic spectral structure are described and used as a basis for deriving spectrally integrated moment equations that can be incorporated into computer codes for scientific and engineering analyses.

  5. Interstellar turbulence model : A self-consistent coupling of plasma and neutral fluids

    International Nuclear Information System (INIS)

    Shaikh, Dastgeer; Zank, Gary P.; Pogorelov, Nikolai

    2006-01-01

    We present results of a preliminary investigation of interstellar turbulence based on a self-consistent two-dimensional fluid simulation model. Our model describes a partially ionized magnetofluid interstellar medium (ISM) that couples a neutral hydrogen fluid to a plasma through charge exchange interactions and assumes that the ISM turbulent correlation scales are much bigger than the shock characteristic length-scales, but smaller than the charge exchange mean free path length-scales. The shocks have no influence on the ISM turbulent fluctuations. We find that nonlinear interactions in coupled plasma-neutral ISM turbulence are influenced substantially by charge exchange processes

  6. A computer model for dispersed fluid-solid turbulent flows

    International Nuclear Information System (INIS)

    Liu, C.H.; Tulig, T.J.

    1985-01-01

    A computer model is being developed to simulate two-phase turbulent flow phenomena in fluids containing finely dispersed solids. The model is based on a dual-continuum picture of the individual phases and an extension of a two-equation turbulence closure theory. The resulting set of nonlinear partial differential equations are solved using a finite difference procedure with special treatment to promote convergence. The model has been checked against a number of idealized flow problems with known solutions. The authors are currently comparing model predictions with measurements to determine a proper set of turbulence parameters needed for simulating two-phase turbulent flows

  7. Suppression of Phase Mixing in Drift-Kinetic Plasma Turbulence

    Science.gov (United States)

    Parker, J. T.; Dellar, P. J.; Schekochihin, A. A.; Highcock, E. G.

    2017-12-01

    The solar wind and interstellar medium are examples of strongly magnetised, weakly collisional, astrophysical plasmas. Their turbulent fluctuations are strongly anisotropic, with small amplitudes, and frequencies much lower than the Larmor frequency. This regime is described by gyrokinetic theory, a reduced five-dimensional kinetic system describing averages over Larmor orbits. A turbulent plasma may transfer free energy, a measure of fluctuation amplitudes, from injection at large scales, typically by an instability, to dissipation at small physical scales like a turbulent fluid. Alternatively, a turbulent plasma may form fine scale structures in velocity space via phase-mixing, the mechanism that leads to Landau damping in linear plasma theory. Macroscopic plasma properties like heat and momentum transport are affected by both mechanisms. While each is understood in isolation, their interaction is not. We study this interaction using a Hankel-Hermite velocity space representation of gyrokinetic theory. The Hankel transform interacts neatly with the Bessel functions that arise from averaging over Larmor orbits, so the perpendicular velocity space is decoupled for linearized problems. The Hermite transform expresses phase mixing as nearest-neighbor coupling between parallel velocity space scales represented by Hermite mode numbers. We use this representation to study transfer mechanisms in drift-kinetic plasma turbulence, the long wavelength limit of gyrokinetic theory. We show that phase space is divided into two regions, with one transfer mechanism dominating in each. Most energy is contained in the region where the fluid-like nonlinear cascade dominates. Moreover, in that region the nonlinear cascade interferes with phase mixing by exciting an "anti phase mixing" transfer of free energy from small to large velocity space scales. This cancels out the usual phase mixing, and renders the overall behavior fluid-like. These results profoundly change our understanding

  8. Parallel plasma fluid turbulence calculations

    International Nuclear Information System (INIS)

    Leboeuf, J.N.; Carreras, B.A.; Charlton, L.A.; Drake, J.B.; Lynch, V.E.; Newman, D.E.; Sidikman, K.L.; Spong, D.A.

    1994-01-01

    The study of plasma turbulence and transport is a complex problem of critical importance for fusion-relevant plasmas. To this day, the fluid treatment of plasma dynamics is the best approach to realistic physics at the high resolution required for certain experimentally relevant calculations. Core and edge turbulence in a magnetic fusion device have been modeled using state-of-the-art, nonlinear, three-dimensional, initial-value fluid and gyrofluid codes. Parallel implementation of these models on diverse platforms--vector parallel (National Energy Research Supercomputer Center's CRAY Y-MP C90), massively parallel (Intel Paragon XP/S 35), and serial parallel (clusters of high-performance workstations using the Parallel Virtual Machine protocol)--offers a variety of paths to high resolution and significant improvements in real-time efficiency, each with its own advantages. The largest and most efficient calculations have been performed at the 200 Mword memory limit on the C90 in dedicated mode, where an overlap of 12 to 13 out of a maximum of 16 processors has been achieved with a gyrofluid model of core fluctuations. The richness of the physics captured by these calculations is commensurate with the increased resolution and efficiency and is limited only by the ingenuity brought to the analysis of the massive amounts of data generated

  9. Particle acceleration by Alfven wave turbulence in radio galaxies

    International Nuclear Information System (INIS)

    Eilek, J.A.

    1986-01-01

    Radio galaxies show evidence for acceleration of relativistic electrons locally within the diffuse radio luminous plasma. One likely candidate for the reacceleration mechanism is acceleration by magnetohydrodynamic turbulence which exists within the plasma. If Alfven waves are generated by a fluid turbulent cascade described by a power law energy-wavenumber spectrum, the particle spectrum in the presence of synchrotron losses will evolve towards an asymptotic power law which agrees with the particle spectra observed in these sources

  10. Vortex Thermometry for Turbulent Two-Dimensional Fluids.

    Science.gov (United States)

    Groszek, Andrew J; Davis, Matthew J; Paganin, David M; Helmerson, Kristian; Simula, Tapio P

    2018-01-19

    We introduce a new method of statistical analysis to characterize the dynamics of turbulent fluids in two dimensions. We establish that, in equilibrium, the vortex distributions can be uniquely connected to the temperature of the vortex gas, and we apply this vortex thermometry to characterize simulations of decaying superfluid turbulence. We confirm the hypothesis of vortex evaporative heating leading to Onsager vortices proposed in Phys. Rev. Lett. 113, 165302 (2014)PRLTAO0031-900710.1103/PhysRevLett.113.165302, and we find previously unidentified vortex power-law distributions that emerge from the dynamics.

  11. The dynamics of interacting nonlinearities governing long wavelength driftwave turbulence

    International Nuclear Information System (INIS)

    Newman, D.E.

    1993-09-01

    Because of the ubiquitous nature of turbulence and the vast array of different systems which have turbulent solutions, the study of turbulence is an area of active research. Much present day understanding of turbulence is rooted in the well established properties of homogeneous Navier-Stokes turbulence, which, due to its relative simplicity, allows for approximate analytic solutions. This work examines a group of turbulent systems with marked differences from Navier-Stokes turbulence, and attempts to quantify some of their properties. This group of systems represents a variety of drift wave fluctuations believed to be of fundamental importance in laboratory fusion devices. From extensive simulation of simple local fluid models of long wavelength drift wave turbulence in tokamaks, a reasonably complete picture of the basic properties of spectral transfer and saturation has emerged. These studies indicate that many conventional notions concerning directions of cascades, locality and isotropy of transfer, frequencies of fluctuations, and stationarity of saturation are not valid for moderate to long wavelengths. In particular, spectral energy transfer at long wavelengths is dominated by the E x B nonlinearity, which carries energy to short scale in a manner that is highly nonlocal and anisotropic. In marked contrast to the canonical self-similar cascade dynamics of Kolmogorov, energy is efficiently passed between modes separated by the entire spectrum range in a correlation time. At short wavelengths, transfer is dominated by the polarization drift nonlinearity. While the standard dual cascade applies in this subrange, it is found that finite spectrum size can produce cascades that are reverse directed and are nonconservative in enstrophy and energy similarity ranges. In regions where both nonlinearities are important, cross-coupling between the nolinearities gives rise to large no frequency shifts as well as changes in the spectral dynamics

  12. Anomalous Chained Turbulence in Actively Driven Flows on Spheres

    Science.gov (United States)

    Mickelin, Oscar; Słomka, Jonasz; Burns, Keaton J.; Lecoanet, Daniel; Vasil, Geoffrey M.; Faria, Luiz M.; Dunkel, Jörn

    2018-04-01

    Recent experiments demonstrate the importance of substrate curvature for actively forced fluid dynamics. Yet, the covariant formulation and analysis of continuum models for nonequilibrium flows on curved surfaces still poses theoretical challenges. Here, we introduce and study a generalized covariant Navier-Stokes model for fluid flows driven by active stresses in nonplanar geometries. The analytical tractability of the theory is demonstrated through exact stationary solutions for the case of a spherical bubble geometry. Direct numerical simulations reveal a curvature-induced transition from a burst phase to an anomalous turbulent phase that differs distinctly from externally forced classical 2D Kolmogorov turbulence. This new type of active turbulence is characterized by the self-assembly of finite-size vortices into linked chains of antiferromagnetic order, which percolate through the entire fluid domain, forming an active dynamic network. The coherent motion of the vortex chain network provides an efficient mechanism for upward energy transfer from smaller to larger scales, presenting an alternative to the conventional energy cascade in classical 2D turbulence.

  13. Subchannel analysis with turbulent mixing rate of supercritical pressure fluid

    International Nuclear Information System (INIS)

    Wu, Jianhui; Oka, Yoshiaki

    2015-01-01

    Highlights: • Subchannel analysis with turbulent mixing rate law of supercritical pressure fluid (SPF) is carried out. • Turbulent mixing rate is enhanced, compared with that calculated by the law of pressurized water reactor (PWR). • Increase in maximum cladding surface temperature (MCST) is smaller comparing with PWR model. • The sensitivities of MCST on non-uniformity of subchannel area and power peaking are reduced by using SPF model. - Abstract: The subchannel analysis with turbulent mixing rate law of supercritical pressure fluid (SPF) is carried out for supercritical-pressurized light water cooled and moderated reactor (Super LWR). It is different from the turbulent mixing rate law of pressurized water reactor (PWR), which is widely adopted in Super LWR subchannel analysis study, the density difference between adjacent subchannels is taken into account for turbulent mixing rate law of SPF. MCSTs are evaluated on three kinds of fuel assemblies with different pin power distribution patterns, gap spacings and mass flow rates. Compared with that calculated by employing turbulent mixing rate law of PWR, the increase in MCST is smaller even when peaking factor is large and gap spacing is uneven. The sensitivities of MCST on non-uniformity of the subchannel area and power peaking are reduced

  14. Fragmentation under the Scaling Symmetry and Turbulent Cascade with Intermittency

    Science.gov (United States)

    Gorokhovski, M.

    2003-01-01

    Fragmentation plays an important role in a variety of physical, chemical, and geological processes. Examples include atomization in sprays, crushing of rocks, explosion and impact of solids, polymer degradation, etc. Although each individual action of fragmentation is a complex process, the number of these elementary actions is large. It is natural to abstract a simple 'effective' scenario of fragmentation and to represent its essential features. One of the models is the fragmentation under the scaling symmetry: each breakup action reduces the typical length of fragments, r (right arrow) alpha r, by an independent random multiplier alpha (0 Saveliev, the fragmentation under the scaling symmetry has been reviewed as a continuous evolution process with new features established. The objective of this paper is twofold. First, the paper synthesizes and completes theoretical part of Gorokhovski & Saveliev. Second, the paper shows a new application of the fragmentation theory under the scale invariance. This application concerns the turbulent cascade with intermittency. We formulate here a model describing the evolution of the velocity increment distribution along the progressively decreasing length scale. The model shows that when the turbulent length scale gets smaller, the velocity increment distribution has central growing peak and develops stretched tails. The intermittency in turbulence is manifested in the same way: large fluctuations of velocity provoke highest strain in narrow (dissipative) regions of flow.

  15. Energy Cascade Analysis: from Subscale Eddies to Mean Flow

    Science.gov (United States)

    Cheikh, Mohamad Ibrahim; Wonnell, Louis; Chen, James

    2017-11-01

    Understanding the energy transfer between eddies and mean flow can provide insights into the energy cascade process. Much work has been done to investigate the energy cascade at the level of the smallest eddies using different numerical techniques derived from the Navier-Stokes equations. These methodologies, however, prove to be computationally inefficient when producing energy spectra for a wide range of length scales. In this regard, Morphing Continuum Theory (MCT) resolves the length-scales issues by assuming the fluid continuum to be composed of inner structures that play the role of subscale eddies. The current study show- cases the capabilities of MCT in capturing the dynamics of energy cascade at the level of subscale eddies, through a supersonic turbulent flow of Mach 2.93 over an 8× compression ramp. Analysis of the results using statistical averaging procedure shows the existence of a statistical coupling of the internal and translational kinetic energy fluctuations with the corresponding rotational kinetic energy of the subscale eddies, indicating a multiscale transfer of energy. The results show that MCT gives a new characterization of the energy cascade within compressible turbulence without the use of excessive computational resources. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-17-1-0154.

  16. Spectral properties of electromagnetic turbulence in plasmas

    Directory of Open Access Journals (Sweden)

    D. Shaikh

    2009-03-01

    Full Text Available We report on the nonlinear turbulent processes associated with electromagnetic waves in plasmas. We focus on low-frequency (in comparison with the electron gyrofrequency nonlinearly interacting electron whistlers and nonlinearly interacting Hall-magnetohydrodynamic (H-MHD fluctuations in a magnetized plasma. Nonlinear whistler mode turbulence study in a magnetized plasma involves incompressible electrons and immobile ions. Two-dimensional turbulent interactions and subsequent energy cascades are critically influenced by the electron whisters that behave distinctly for scales smaller and larger than the electron skin depth. It is found that in whistler mode turbulence there results a dual cascade primarily due to the forward spectral migration of energy that coexists with a backward spectral transfer of mean squared magnetic potential. Finally, inclusion of the ion dynamics, resulting from a two fluid description of the H-MHD plasma, leads to several interesting results that are typically observed in the solar wind plasma. Particularly in the solar wind, the high-time-resolution databases identify a spectral break at the end of the MHD inertial range spectrum that corresponds to a high-frequency regime. In the latter, turbulent cascades cannot be explained by the usual MHD model and a finite frequency effect (in comparison with the ion gyrofrequency arising from the ion inertia is essentially included to discern the dynamics of the smaller length scales (in comparison with the ion skin depth. This leads to a nonlinear H-MHD model, which is presented in this paper. With the help of our 3-D H-MHD code, we find that the characteristic turbulent interactions in the high-frequency regime evolve typically on kinetic-Alfvén time-scales. The turbulent fluctuation associated with kinetic-Alfvén interactions are compressive and anisotropic and possess equipartition of the kinetic and magnetic energies.

  17. Turbulent mixing and fluid transport within Florida Bay seagrass meadows

    Science.gov (United States)

    Hansen, Jennifer C. R.; Reidenbach, Matthew A.

    2017-10-01

    Seagrasses serve an important function in the ecology of Florida Bay, providing critical nursery habitat and a food source for a variety of organisms. They also create significant benthic structure that induces drag, altering local hydrodynamics that can influence mixing and nutrient dynamics. Thalassia testudinum seagrass meadows were investigated to determine how shoot density and morphometrics alter local wave conditions, the generation of turbulence, and fluid exchange above and within the canopy. Sparsely vegetated and densely vegetated meadows were monitored, with shoot densities of 259 ± 26 and 484 ± 78 shoots m-2, respectively. The temporal and spatial structure of velocity and turbulence were measured using acoustic Doppler velocimeters and an in situ particle image velocimetry (PIV) system positioned both above and within the seagrass canopy. The retention of fluid within the canopy was determined by examining e-folding times calculated from the concentration curves of dye plumes released within the seagrass canopy. Results show that a shear layer with an inflection point develops at the top of the seagrass canopy, which generates instabilities that impart turbulence into the seagrass meadow. Compared to the overlying water column, turbulence was enhanced within the sparse canopy due to flow interaction with the seagrass blades, but reduced within the dense canopy. Wave generated oscillatory motion penetrated deeper into the canopy than unidirectional currents, enhancing fluid exchange. Both shoot density and the relative magnitude of wave- versus current-driven flow conditions were found to be important controls on turbulent exchange of water masses across the canopy-water interface.

  18. Fluid simulations of ∇Te-driven turbulence and transport in boundary plasmas

    International Nuclear Information System (INIS)

    Xu, X.Q.

    1992-01-01

    It is clear that the edge plasma plays a crucial role in global tokamak confinement. This paper is a report on simulations of a new drift wave type instability driven by the electron temperature gradient in tokamak scrapeoff-layers (SOL). A 2d fluid code has been developed in order to explore the anomalous transport in the boundary plasmas. The simulation consists of a set of fluid equations for the vorticity ∇ perpendicular 2 φ, the electron density n c and the temperature T c in a shearless plasma slab confined by a uniform, straight magnetic field B z with two divertor (or limiter) plates intercepting the magnetic field. The model has two regions separated by a magnetic separatrix: in the edge region inside the separatrix, the model is periodic along the magnetic field while in the SOL region outside the separatrix, the magnetic field is taken to be of finite length with model boundary conditions at diverter plates. The simulation results show that the observed linear instability agrees well with theory, and that a saturated state of turbulence is reached. In saturated turbulence, clear evidence of the expected long-wavelength mode penetration into the edge is seen, an inverse cascade of wave energy is observed. The simulation results also show that amplitudes of potential and the electron temperature fluctuations are somewhat above and the heat flux are somewhat below those of the simplest mixing-length estimates, and furthermore the large-scale radial structures of fluctuation quantities indicate that the cross-field transport is not diffusive. After saturation, the electron density and temperature profiles are flattened. A self-consistent simulation to determine the microturbulent SOL electron temperature profile has been done, the results of which reasonably agree with the experimental measurements

  19. Fluid model of the magnetic presheath in a turbulent plasma

    International Nuclear Information System (INIS)

    Stanojevic, M; Duhovnik, J; Jelic, N; Kendl, A; Kuhn, S

    2005-01-01

    A fluid model of the magnetic presheath in a turbulent boundary plasma is presented. Turbulent transport corrections of the classical three-dimensional fluid transport equations, which can be used to study magnetic presheaths in various geometries, are derived by means of the ensemble averaging procedure from the statistical theory of plasma turbulence. Then, the magnetic presheath in front of an infinite plane surface is analysed in detail. The linearized planar magnetic presheath equations are applied to the plasma-presheath-magnetic-presheath boundary (i.e. the magnetic presheath edge), whereas the original non-linear planar magnetic presheath equations are used for the entire magnetic presheath, allowing for various sets of experimentally relevant free model parameters to be applied. Important new results of this study are, among others, new expressions for the fluid Bohm criterion at the Debye sheath edge and for the ion flux density perpendicular to the wall. These new results, which exhibit corrections due to the turbulent charged particle transport, can qualitatively explain the fact that whenever the angle between the magnetic field and the wall is very small (i.e. several degrees) or zero, electric currents, measured by Langmuir probes in the boundary regions of nuclear fusion devices and in various low-temperature plasmas, are anomalously enhanced in comparison with those expected or predicted by other theoretical models

  20. A glimpse of fluid turbulence from the molecular scale

    KAUST Repository

    Komatsu, Teruhisa S.

    2014-08-01

    Large-scale molecular dynamics (MD) simulations of freely decaying turbulence in three-dimensional space are reported. Fluid components are defined from the microscopic states by eliminating thermal components from the coarse-grained fields. The energy spectrum of the fluid components is observed to scale reasonably well according to Kolmogorov scaling determined from the energy dissipation rate and the viscosity of the fluid, even though the Kolmogorov length is of the order of the molecular scale. © 2014 The Authors.

  1. Plasma Turbulence in Earth's Magnetotail Observed by the Magnetospheric Multiscale Mission

    Science.gov (United States)

    Mackler, D. A.; Avanov, L. A.; Boardsen, S. A.; Pollock, C. J.

    2017-12-01

    Magnetic reconnection, a process in which the magnetic topology undergoes multi-scale changes, is a significant mechanism for particle energization as well as energy dissipation. Reconnection is observed to occur in thin current sheets generated between two regions of magnetized plasma merging with a non-zero shear angle. Within a thinning current sheet, the dominant scale size approaches first the ion and then electron kinetic scale. The plasma becomes demagnetized, field lines transform, then once again the plasma becomes frozen-in. The reconnection process accelerates particles, leading to heated jets of plasma. Turbulence is another fundamental process in collision less plasmas. Despite decades of turbulence studies, an essential science question remains as to how turbulent energy dissipates at small scales by heating and accelerating particles. Turbulence in both plasmas and fluids has a fundamental property in that it follows an energy cascade into smaller scales. Energy introduced into a fluid or plasma can cause large scale motion, introducing vorticity, which merge and interact to make increasingly smaller eddies. It has been hypothesized that turbulent energy in magnetized plasmas may be dissipated by magnetic reconnection, just as viscosity dissipates energy in neutral fluid turbulence. The focus of this study is to use the new high temporal resolution suite of instruments on board the Magnetospheric MultiScale (MMS) mission to explore this hypothesis. An observable feature of the energy cascade in a turbulent magnetized plasma is its similarity to classical hydrodynamics in that the Power Spectral Density (PSD) of turbulent fluctuations follows a Kolmogorov-like power law (Image-5/3). We use highly accurate (0.1 nT) Flux Gate Magnetometer (FGM) data to derive the PSD as a function of frequency in the magnetic fluctuations. Given that we are able to confirm the turbulent nature of the flow field; we apply the method of Partial Variance of Increments (PVI

  2. Mean-Lagrangian formalism and covariance of fluid turbulence.

    Science.gov (United States)

    Ariki, Taketo

    2017-05-01

    Mean-field-based Lagrangian framework is developed for the fluid turbulence theory, which enables physically objective discussions, especially, of the history effect. Mean flow serves as a purely geometrical object of Lie group theory, providing useful operations to measure the objective rate and history integration of the general tensor field. The proposed framework is applied, on the one hand, to one-point closure model, yielding an objective expression of the turbulence viscoelastic effect. Application to two-point closure, on the other hand, is also discussed, where natural extension of known Lagrangian correlation is discovered on the basis of an extended covariance group.

  3. A mixed SOC-turbulence model for nonlocal transport and Lévy-fractional Fokker–Planck equation

    DEFF Research Database (Denmark)

    Juul Rasmussen, Jens; Milovanov, Alexander V.

    2014-01-01

    The phenomena of nonlocal transport in magnetically confined plasma are theoretically analyzed. A hybrid model is proposed, which brings together the notion of inverse energy cascade, typical of drift-wave- and two-dimensional fluid turbulence, and the ideas of avalanching behavior, associable...

  4. New class of turbulence in active fluids

    Science.gov (United States)

    Bratanov, Vasil; Frey, Erwin

    2015-01-01

    Turbulence is a fundamental and ubiquitous phenomenon in nature, occurring from astrophysical to biophysical scales. At the same time, it is widely recognized as one of the key unsolved problems in modern physics, representing a paradigmatic example of nonlinear dynamics far from thermodynamic equilibrium. Whereas in the past, most theoretical work in this area has been devoted to Navier–Stokes flows, there is now a growing awareness of the need to extend the research focus to systems with more general patterns of energy injection and dissipation. These include various types of complex fluids and plasmas, as well as active systems consisting of self-propelled particles, like dense bacterial suspensions. Recently, a continuum model has been proposed for such “living fluids” that is based on the Navier–Stokes equations, but extends them to include some of the most general terms admitted by the symmetry of the problem [Wensink HH, et al. (2012) Proc Natl Acad Sci USA 109:14308–14313]. This introduces a cubic nonlinearity, related to the Toner–Tu theory of flocking, which can interact with the quadratic Navier–Stokes nonlinearity. We show that as a result of the subtle interaction between these two terms, the energy spectra at large spatial scales exhibit power laws that are not universal, but depend on both finite-size effects and physical parameters. Our combined numerical and analytical analysis reveals the origin of this effect and even provides a way to understand it quantitatively. Turbulence in active fluids, characterized by this kind of nonlinear self-organization, defines a new class of turbulent flows. PMID:26598708

  5. Three-dimensional simulations of turbulent spectra in the local interstellar medium

    Directory of Open Access Journals (Sweden)

    D. Shaikh

    2007-07-01

    Full Text Available Three-dimensional time dependent numerical simulations of compressible magnetohydrodynamic fluids describing super-Alfvénic, supersonic and strongly magnetized space and laboratory plasmas show a nonlinear relaxation towards a state of near incompressibility. The latter is characterized essentially by a subsonic turbulent Mach number. This transition is mediated dynamically by disparate spectral energy dissipation rates in compressible magnetosonic and shear Alfvénic modes. Nonlinear cascades lead to super-Alfvénic turbulent motions decaying to a sub-Alfvénic regime that couples weakly with (magnetoacoustic cascades. Consequently, the supersonic plasma motion is transformed into highly subsonic motion and density fluctuations experience a passive convection. This model provides a self-consistent explaination of the ubiquitous nature of incompressible magnetoplasma fluctuations in the solar wind and the interstellar medium.

  6. DNS of Low-Pressure Turbine Cascade Flows with Elevated Inflow Turbulence Using a Discontinuous-Galerkin Spectral-Element Method

    Science.gov (United States)

    Garai, Anirban; Diosady, Laslo T.; Murman, Scott M.; Madavan, Nateri K.

    2016-01-01

    Recent progress towards developing a new computational capability for accurate and efficient high-fidelity direct numerical simulation (DNS) and large-eddy simulation (LES) of turbomachinery is described. This capability is based on an entropy- stable Discontinuous-Galerkin spectral-element approach that extends to arbitrarily high orders of spatial and temporal accuracy, and is implemented in a computationally efficient manner on a modern high performance computer architecture. An inflow turbulence generation procedure based on a linear forcing approach has been incorporated in this framework and DNS conducted to study the effect of inflow turbulence on the suction- side separation bubble in low-pressure turbine (LPT) cascades. The T106 series of airfoil cascades in both lightly (T106A) and highly loaded (T106C) configurations at exit isentropic Reynolds numbers of 60,000 and 80,000, respectively, are considered. The numerical simulations are performed using 8th-order accurate spatial and 4th-order accurate temporal discretization. The changes in separation bubble topology due to elevated inflow turbulence is captured by the present method and the physical mechanisms leading to the changes are explained. The present results are in good agreement with prior numerical simulations but some expected discrepancies with the experimental data for the T106C case are noted and discussed.

  7. Energy Cascade from Internal Modes in Non-uniformly Stratified Fluid through Excitation of Superharmonic Disturbances

    Science.gov (United States)

    Sutherland, B. R.

    2016-02-01

    It is well established that two-dimensional internal plane waves and modes in uniformly stratified fluid efficiently transfer energy to smaller scale waves and ultimately turbulent mixing through parametric subharmonic instability (PSI). The numerical simulations of MacKinnon & Winters (GRL 2005) predicted PSI should act efficiently to disrupt the internal tide. However, while in situ observations showed the presence of PSI, it was not found to be appreciable. One reason for the discrepancy between simulations and observations is that the former examined an internal mode in uniformly stratified fluid whereas, in reality, the internal tide exists in non-uniform stratification and is manifest as sinusoidal oscillations of the thermocline. Through theory supported by numerical simulations, it is shown that internal modes in non-uniform stratification immediately excite superharmonics, not subharmonic disturbances. These have double the horizontal wavenumber and double the frequency of the parent mode and hence move with the same horizontal phase speed of the parent mode. As the disturbances grow in amplitude, however, they interact with the parent mode generating small-scale vertically propagating internal waves within the strongly stratified layer. The occurrence of PSI over very long times can occur, as in the simulations of Hazewinkel and Winters (JPO 2011). However, a comprehensive understanding of the energy cascade from the internal tide to small scales must consider the evolution of excited superharmonic disturbances.

  8. Turbulent Helicity in the Atmospheric Boundary Layer

    Science.gov (United States)

    Chkhetiani, Otto G.; Kurgansky, Michael V.; Vazaeva, Natalia V.

    2018-05-01

    We consider the assumption postulated by Deusebio and Lindborg (J Fluid Mech 755:654-671, 2014) that the helicity injected into the Ekman boundary layer undergoes a cascade, with preservation of its sign (right- or alternatively left-handedness), which is a signature of the system rotation, from large to small scales, down to the Kolmogorov microscale of turbulence. At the same time, recent direct field measurements of turbulent helicity in the steppe region of southern Russia near Tsimlyansk Reservoir show the opposite sign of helicity from that expected. A possible explanation for this phenomenon may be the joint action of different scales of atmospheric flows within the boundary layer, including the sea-breeze circulation over the test site. In this regard, we consider a superposition of the classic Ekman spiral solution and Prandtl's jet-like slope-wind profile to describe the planetary boundary-layer wind structure. The latter solution mimics a hydrostatic shallow breeze circulation over a non-uniformly heated surface. A 180°-wide sector on the hodograph plane exists, within which the relative orientation of the Ekman and Prandtl velocity profiles favours the left rotation with height of the resulting wind velocity vector in the lowermost part of the boundary layer. This explains the negative (left-handed) helicity cascade toward small-scale turbulent motions, which agrees with the direct field measurements of turbulent helicity in Tsimlyansk. A simple turbulent relaxation model is proposed that explains the measured positive values of the relatively minor contribution to turbulent helicity from the vertical components of velocity and vorticity.

  9. Vorticity and turbulence effects in fluid structure interaction an application to hydraulic structure design

    CERN Document Server

    Brocchini, M

    2006-01-01

    This book contains a collection of 11 research and review papers devoted to the topic of fluid-structure interaction.The subject matter is divided into chapters covering a wide spectrum of recognized areas of research, such as: wall bounded turbulence; quasi 2-D turbulence; canopy turbulence; large eddy simulation; lake hydrodynamics; hydraulic hysteresis; liquid impacts; flow induced vibrations; sloshing flows; transient pipe flow and air entrainment in dropshaft.The purpose of each chapter is to summarize the main results obtained by the individual research unit through a year-long activity on a specific issue of the above list. The main feature of the book is to bring state of the art research on fluid structure interaction to the attention of the broad international community.This book is primarily aimed at fluid mechanics scientists, but it will also be of value to postgraduate students and practitioners in the field of fluid structure interaction.

  10. The cascade of energy in homogeneous turbulence: a 5D approach

    Science.gov (United States)

    Cardesa-Duenas, Jose; Vela-Martin, Alberto; Jimenez, Javier

    2017-11-01

    The inherent multi-dimensional nature of the turbulent cascade is a major challenge to its study. In order to characterize a process occurring in space, time and scale, we present a new approach where we track coherent structures representing energy in different scales from a time-resolved simulation of isotropic turbulence lasting 66 large-eddy turnovers. We couple the dynamics at different scales by computing the geometric intersection between individual coherent structures from any two scales. Statistically, we find that eddies at scale r intersect those at scales 2 r and r / 2 preferentially at the beginning and at the end of their life, respectively. With our simulation at Reλ = 315 , we could check this trend to hold for r values spanning a ratio of 8. We thus report on 4 generations of eddies that trace the transfer of energy from scale 8 r to scale r via intermediate steps through a scale-local, spatially-localized process. We found the geometric intersection between scales separated by ratios of 4 or larger to be of the same order of magnitude as the random intersection levels found for those scale combinations. Funded by the ERC project COTURB.

  11. Rank-Ordered Multifractal Analysis (ROMA of probability distributions in fluid turbulence

    Directory of Open Access Journals (Sweden)

    C. C. Wu

    2011-04-01

    Full Text Available Rank-Ordered Multifractal Analysis (ROMA was introduced by Chang and Wu (2008 to describe the multifractal characteristic of intermittent events. The procedure provides a natural connection between the rank-ordered spectrum and the idea of one-parameter scaling for monofractals. This technique has successfully been applied to MHD turbulence simulations and turbulence data observed in various space plasmas. In this paper, the technique is applied to the probability distributions in the inertial range of the turbulent fluid flow, as given in the vast Johns Hopkins University (JHU turbulence database. In addition, a new way of finding the continuous ROMA spectrum and the scaled probability distribution function (PDF simultaneously is introduced.

  12. Numerical test of a weak turbulence approximation for an electromagnetically driven Langmuir turbulence

    International Nuclear Information System (INIS)

    Hanssen, A.; Mjolhus, E.

    1993-01-01

    In ionospheric radio modification experiments, manifestations of excited Langmuir turbulence are observed by means of VHF or UHF radars. Such experiments are performed in Arecibo, Puerto Rico, and at Tromso, Northern Norway. A weak turbulence theory involving parametric cascade of Langmuir waves, has earlier dominated the theoretical understanding of these experiments. This has recently been challenged, both from a theoretical and an experimental point of view, and a theory of strong Langmuir turbulence, involving a large number of nucleation collapse burnout cycles has been advocated. A version of the Zakharov model including damping and parametric driving, contains both of these scenarios, the crucial parameter being ΔΩ = ω-ω pe where ω is the applied frequency and ω pe the plasma frequency. This model allows the construction of a weak turbulence wave kinetic equation. In the present work spectra obtained from full wave solutions of the one dimensional Zakharov model are compared with saturation spectra of the wave kinetic model. The results can be described as follows: (i) for large values of ΔΩ, cascades are formed, and the number of cascades increases with the strength of the driver E 0 ; (ii) the number of cascades found in the full wave solution is smaller than that obtained from the wave kinetic equation; (iii) when E 0 becomes sufficiently large, the narrowly peaked cascade structure of the full wave spectrum breaks down, and a broad spectrum comes instead; (iv) this breakdown comes far before the cascade sequence has reached the Langmuir condensate; thus the Langmuir condensate plays no role in this process. At smaller values of ΔΩ, the turbulence is characterized by caviton nucleation resulting in broad wave number spectra. Also a coexistence range is found at intermediate values of ΔΩ, in which a few cascade lines ride upon a broad cavitation type spectrum

  13. Two-equation and multi-fluid turbulence models for Rayleigh–Taylor mixing

    International Nuclear Information System (INIS)

    Kokkinakis, I.W.; Drikakis, D.; Youngs, D.L.; Williams, R.J.R.

    2015-01-01

    Highlights: • We present a new improved version of the K–L model. • The improved K–L is found in good agreement with the multi-fluid model and ILES. • The study concerns Rayleigh–Taylor flows at initial density ratios 3:1 and 20:1. - Abstract: This paper presents a new, improved version of the K–L model, as well as a detailed investigation of K–L and multi-fluid models with reference to high-resolution implicit large eddy simulations of compressible Rayleigh–Taylor mixing. The accuracy of the models is examined for different interface pressures and specific heat ratios for Rayleigh–Taylor flows at initial density ratios 3:1 and 20:1. It is shown that the original version of the K–L model requires modifications in order to provide comparable results to the multi-fluid model. The modifications concern the addition of an enthalpy diffusion term to the energy equation; the formulation of the turbulent kinetic energy (source) term in the K equation; and the calculation of the local Atwood number. The proposed modifications significantly improve the results of the K–L model, which are found in good agreement with the multi-fluid model and implicit large eddy simulations with respect to the self-similar mixing width; peak turbulent kinetic energy growth rate, as well as volume fraction and turbulent kinetic energy profiles. However, a key advantage of the two-fluid model is that it can represent the degree of molecular mixing in a direct way, by transferring mass between the two phases. The limitations of the single-fluid K–L model as well as the merits of more advanced Reynolds-averaged Navier–Stokes models are also discussed throughout the paper.

  14. Morphing continuum analysis of energy transfer in compressible turbulence

    Science.gov (United States)

    Cheikh, Mohamad Ibrahim; Wonnell, Louis B.; Chen, James

    2018-02-01

    A shock-preserving finite volume solver with the generalized Lax-Friedrichs splitting flux for morphing continuum theory (MCT) is presented and verified. The numerical MCT solver is showcased in a supersonic turbulent flow with Mach 2.93 over an 8∘ compression ramp. The simulation results validated MCT with experiments as an alternative for modeling compressible turbulence. The required size of the smallest mesh cell for the MCT simulation is shown to be almost an order larger than that in a similar direct numerical simulation study. The comparison shows MCT is a much more computationally friendly theory than the classical Navier-Stokes equations. The dynamics of energy cascade at the length scale of individual eddies is illuminated through the subscale rotation introduced by MCT. In this regard, MCT provides a statistical averaging procedure for capturing energy transfer in compressible turbulence, not found in classical fluid theories. Analysis of the MCT results show the existence of a statistical coupling of the internal and translational kinetic energy fluctuations with the corresponding eddy rotational energy fluctuations, indicating a multiscale transfer of energy. In conclusion, MCT gives a new characterization of the energy cascade within compressible turbulence without the use of excessive computational resources.

  15. Occurrence of turbulent flow conditions in supercritical fluid chromatography.

    Science.gov (United States)

    De Pauw, Ruben; Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken

    2014-09-26

    Having similar densities as liquids but with viscosities up to 20 times lower (higher diffusion coefficients), supercritical CO2 is the ideal (co-)solvent for fast and/or highly efficient separations without mass-transfer limitations or excessive column pressure drops. Whereas in liquid chromatography the flow remains laminar in both the packed bed and tubing, except in extreme cases (e.g. in a 75 μm tubing, pure acetonitrile at 5 ml/min), a supercritical fluid can experience a transition from laminar to turbulent flow in more typical operation modes. Due to the significant lower viscosity, this transition for example already occurs at 1.3 ml/min for neat CO2 when using connection tubing with an ID of 127 μm. By calculating the Darcy friction factor, which can be plotted versus the Reynolds number in a so-called Moody chart, typically used in fluid dynamics, higher values are found for stainless steel than PEEK tubing, in agreement with their expected higher surface roughness. As a result turbulent effects are more pronounced when using stainless steel tubing. The higher than expected extra-column pressure drop limits the kinetic performance of supercritical fluid chromatography and complicates the optimization of tubing ID, which is based on a trade-off between extra-column band broadening and pressure drop. One of the most important practical consequences is the non-linear increase in extra-column pressure drop over the tubing downstream of the column which leads to an unexpected increase in average column pressure and mobile phase density, and thus decrease in retention. For close eluting components with a significantly different dependence of retention on density, the selectivity can significantly be affected by this increase in average pressure. In addition, the occurrence of turbulent flow is also observed in the detector cell and connection tubing. This results in a noise-increase by a factor of four when going from laminar to turbulent flow (e.g. going

  16. Wave turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Nazarenko, Sergey [Warwick Univ., Coventry (United Kingdom). Mathematics Inst.

    2011-07-01

    Wave Turbulence refers to the statistical theory of weakly nonlinear dispersive waves. There is a wide and growing spectrum of physical applications, ranging from sea waves, to plasma waves, to superfluid turbulence, to nonlinear optics and Bose-Einstein condensates. Beyond the fundamentals the book thus also covers new developments such as the interaction of random waves with coherent structures (vortices, solitons, wave breaks), inverse cascades leading to condensation and the transitions between weak and strong turbulence, turbulence intermittency as well as finite system size effects, such as ''frozen'' turbulence, discrete wave resonances and avalanche-type energy cascades. This book is an outgrow of several lectures courses held by the author and, as a result, written and structured rather as a graduate text than a monograph, with many exercises and solutions offered along the way. The present compact description primarily addresses students and non-specialist researchers wishing to enter and work in this field. (orig.)

  17. Langmuir turbulence in space plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, M.V. [Colorado Univ., Boulder, CO (United States); Newman, D.L. [Colorado Univ., Boulder, CO (United States); Wang, J.G. [Colorado Univ., Boulder, CO (United States); Muschietti, L. [California Univ., Berkeley (United States). Space Sciences Lab.

    1996-11-01

    Recent developments in theoretical and numerical modeling of Langmuir turbulence in space and laboratory plasmas are addressed. Kinetic effects, which have been missing from (fluid) traditional Zakharov equation models are explored using Vlasov code simulations. These studies are motivated by beam-driven Langmuir waves and particle distributions measured in earth`s foreshock region, and by beam-driven Langmuir waves and beams that underlie type III solar radio emission in the solar wind. The nonlinear physical processes studied in these 1-D Vlasov simulations include both wave-wave interactions and acceleration of particles by waves-leading to electron-beam flattening. We study bump-on-tail instabilities as boundary value problems, and determine the interplay in space and time between beam plateau formation, stimulated wave-wave backscatter cascades, and strong turbulence wave-packet collapse. (orig.).

  18. Thermohydrodynamic analysis of cryogenic liquid turbulent flow fluid film bearings

    Science.gov (United States)

    Andres, Luis San

    1993-01-01

    A thermohydrodynamic analysis is presented and a computer code developed for prediction of the static and dynamic force response of hydrostatic journal bearings (HJB's), annular seals or damper bearing seals, and fixed arc pad bearings for cryogenic liquid applications. The study includes the most important flow characteristics found in cryogenic fluid film bearings such as flow turbulence, fluid inertia, liquid compressibility and thermal effects. The analysis and computational model devised allow the determination of the flow field in cryogenic fluid film bearings along with the dynamic force coefficients for rotor-bearing stability analysis.

  19. Influence of fluid-property variation on turbulent convective heat transfer in vertical annular CHANNEL FLOWS

    International Nuclear Information System (INIS)

    Joong Hun Bae; Jung Yul Yoo; Haecheon Choi

    2005-01-01

    Full text of publication follows: The influence of variable fluid property on turbulent convective heat transfer is investigated using direct numerical simulations. We consider thermally-developing flows of air and supercritical-pressure CO 2 in a vertical annular channel where the inner wall is heated with a constant heat flux and the outer wall is insulated. Turbulence statistics show that the heat and momentum transport characteristics of variable-property flows are significantly different from those of constant-property flows. The difference is mainly caused by the spatial and temporal variations of fluid density. The non-uniform density distribution causes fluid particles to be accelerated either by expansion or buoyancy force, while the temporal density fluctuations change the heat and momentum transfer via transport of turbulent mass flux, ρ'u' i . Both effects of the spatial and temporal variations of density are shown to be important in the analysis of turbulent convective heat transfer for supercritical-pressure fluids. For variable-property heated air flows, however, the effect of temporal density fluctuations can be neglected at low Mach number, which is in good accordance with the Morkovin's hypothesis. (authors)

  20. The structure of vortex tube segments in fluid turbulence

    International Nuclear Information System (INIS)

    Wang Lipo

    2011-01-01

    Geometrical description of the flow fields is an important direction to understand the physics of turbulence. Recently several new analysis approaches addressing the entire field properties have been developed, such as dissipation element analysis for the scalar fields and streamtube segment analysis (J. Fluid Mech. 2010, 648: 183-203) for the velocity vector field. By decomposing into a fundamental structure, i.e. stream-tube segments, the velocity field can be understood from the statistics of these relative simple units. Similar idea can be adopted to analyze the vorticity field. The classic concept of vortex tube has been remaining as a topic of essential importance in many aspects. However, the vortex tube structure is not complete to represent the entire turbulent fields, because of its ambiguous definition and small volume portion. This work presents tentatively the vorticitytube segment structure to overcome the existing deficiency. Vorticitytube segments reveal an inherent topology of turbulence vorticity fields. Based on statistics conditioned on different vorticitytube segments, some problems can be newly understood, such as the enstrophy production. Results hereof may also serve for turbulence modeling.

  1. Spacecraft observations of solar wind turbulence: an overview

    International Nuclear Information System (INIS)

    Horbury, T S; Forman, M A; Oughton, S

    2005-01-01

    Spacecraft measurements in the solar wind offer the opportunity to study magnetohydrodynamic (MHD) turbulence in a collisionless plasma in great detail. We review some of the key results of the study of this medium: the presence of large amplitude Alfven waves propagating predominantly away from the Sun; the existence of an active turbulent cascade; and the presence of intermittency similar to that in neutral fluids. We also discuss the presence of anisotropy in wavevector space relative to the local magnetic field direction. Some models suggest that MHD turbulence can evolve to a state with power predominantly in wavevectors either parallel to the magnetic field ('slab' fluctuations) or approximately perpendicular to it ('2D'). We review the existing evidence for such anisotropy, which has important consequences for the transport of energetic particles. Finally, we present the first results of a new analysis which provides the most accurate measurements to date of the wave-vector anisotropy of wavevector power in solar wind MHD turbulence

  2. Finite-temperature effects in helical quantum turbulence

    Science.gov (United States)

    Clark Di Leoni, Patricio; Mininni, Pablo D.; Brachet, Marc E.

    2018-04-01

    We perform a study of the evolution of helical quantum turbulence at different temperatures by solving numerically the Gross-Pitaevskii and the stochastic Ginzburg-Landau equations, using up to 40963 grid points with a pseudospectral method. We show that for temperatures close to the critical one, the fluid described by these equations can act as a classical viscous flow, with the decay of the incompressible kinetic energy and the helicity becoming exponential. The transition from this behavior to the one observed at zero temperature is smooth as a function of temperature. Moreover, the presence of strong thermal effects can inhibit the development of a proper turbulent cascade. We provide Ansätze for the effective viscosity and friction as a function of the temperature.

  3. Four-fluid description of turbulent plasma focus dynamics

    International Nuclear Information System (INIS)

    Hayd, A.; Maurer, M.; Meinke, P.; Kaeppeler, H.J.

    1984-06-01

    The dynamic phenomena in the compression, pinch and late phases of the plasma focus experiment POSEIDON in its operational mode at 60 kV, 280 kJ, were previously calculated from a two-fluid theory using the new hybrid code REDUCE/FORTRAN. Two important results were found: the neutron production already in the pinch phase for currents larger than 500 kA and filamentary structures on and around the pinch axis. In a continuation of this work, a four-fluid system of dynamical equations was formulated and programmed with the REDUCE/FORTRAN code. Besides macro-turbulence, the new four-fluid theory includes micro-instabilities and anomalous transport properties, as well as the runaway effect for electrons and ions. First results from calculations with this new theory are presented and are compared with previous calculations and with recent experimental observations. (orig.)

  4. Langevin equation of a fluid particle in wall-induced turbulence

    NARCIS (Netherlands)

    Brouwers, J.J.H.

    2010-01-01

    We derive the Langevin equation describing the stochastic process of fluid particle motion in wall-inducedturbulence (turbulent flow in pipes, channels, and boundary layers including the atmospheric surface layer).The analysis is based on the asymptotic behavior at a large Reynolds number. We use

  5. Localness of energy cascade in hydrodynamic turbulence, II. Sharp spectral filter

    Energy Technology Data Exchange (ETDEWEB)

    Aluie, Hussein [Los Alamos National Laboratory; Eyink, Gregory L [JOHNS HOPKINS UNIV.

    2009-01-01

    We investigate the scale-locality of subgrid-scale (SGS) energy flux and interband energy transfers defined by the sharp spectral filter. We show by rigorous bounds, physical arguments, and numerical simulations that the spectral SGS flux is dominated by local triadic interactions in an extended turbulent inertial range. Interband energy transfers are also shown to be dominated by local triads if the spectral bands have constant width on a logarithmic scale. We disprove in particular an alternative picture of 'local transfer by nonlocal triads,' with the advecting wavenumber mode at the energy peak. Although such triads have the largest transfer rates of all individual wavenumber triads, we show rigorously that, due to their restricted number, they make an asymptotically negligible contribution to energy flux and log-banded energy transfers at high wavenumbers in the inertial range. We show that it is only the aggregate effect of a geometrically increasing number of local wavenumber triads which can sustain an energy cascade to small scales. Furthermore, nonlocal triads are argued to contribute even less to the space-average energy flux than is implied by our rigorous bounds, because of additional cancellations from scale-decorrelation effects. We can thus recover the -4/3 scaling of nonlocal contributions to spectral energy flux predicted by Kraichnan's abridged Lagrangian-history direct-interaction approximation and test-field model closures. We support our results with numerical data from a 512{sup 3} pseudospectral simulation of isotropic turbulence with phase-shift dealiasing. We also discuss a rigorous counterexample of Eyink [Physica D 78, 222 (1994)], which showed that nonlocal wavenumber triads may dominate in the sharp spectral flux (but not in the SGS energy flux for graded filters). We show that this mathematical counter example fails to satisfy reasonable physical requirements for a turbulent velocity field, which are employed in our

  6. Wavenumber spectrum of whistler turbulence: Particle-in-cell simulation

    International Nuclear Information System (INIS)

    Saito, S.; Gary, S. Peter; Narita, Y.

    2010-01-01

    The forward cascade of decaying whistler turbulence is studied in low beta plasma to understand essential properties of the energy spectrum at electron scales, by using a two-dimensional electromagnetic particle-in-cell (PIC) simulation. This simulation demonstrates turbulence in which the energy cascade rate is greater than the dissipation rate at the electron inertial length. The PIC simulation shows that the magnetic energy spectrum of forward-cascaded whistler turbulence at electron inertial scales is anisotropic and develops a very steep power-law spectrum which is consistent with recent solar wind observations. A comparison of the simulated spectrum with that predicted by a phenomenological turbulence scaling model suggests that the energy cascade at the electron inertial scale depends on both magnetic fluctuations and electron velocity fluctuations, as well as on the whistler dispersion relation. Thus, not only kinetic Alfven turbulence but also whistler turbulence may explain recent solar wind observations of very steep magnetic spectra at short scales.

  7. Emergence of multi-scaling in fluid turbulence

    Science.gov (United States)

    Donzis, Diego; Yakhot, Victor

    2017-11-01

    We present new theoretical and numerical results on the transition to strong turbulence in an infinite fluid stirred by a Gaussian random force. The transition is defined as a first appearance of anomalous scaling of normalized moments of velocity derivatives (or dissipation rates) emerging from the low-Reynolds-number Gaussian background. It is shown that due to multi-scaling, strongly intermittent rare events can be quantitatively described in terms of an infinite number of different ``Reynolds numbers'' reflecting a multitude of anomalous scaling exponents. We found that anomalous scaling for high order moments emerges at very low Reynolds numbers implying that intense dissipative-range fluctuations are established at even lower Reynolds number than that required for an inertial range. Thus, our results suggest that information about inertial range dynamics can be obtained from dissipative scales even when the former does not exit. We discuss our further prediction that transition to fully anomalous turbulence disappears at Rλ < 3 . Support from NSF is acknowledged.

  8. Comparison between kinetic and fluid simulations of slab ion temperature gradient driven turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, H.; Watanabe, T.-H. [National Inst. for Fusion Science, Toki, Gifu (Japan); Horton, W. [University of Texas at Austin, Institute for Fusion Studies, Austin, Texas (United States)

    2002-10-01

    A detailed comparison between kinetic and fluid simulations of collisionless slab ion temperature gradient (ITG) driven turbulence is made. The nondissipative closure model (NCM) for linearly unstable modes, which is presented by Sugama, Watanabe, and Horton [Phys. Plasmas 8, 2617 (2001)], and the dissipative closure model by Hammett and Perkins (HP) [Phys. Rev. Lett. 64, 3019 (1990)] are used in separate fluid simulations. The validity of these closure models for quantitative prediction of the turbulent thermal transport is examined by comparing nonlinear results of the fluid simulations with those of the collisionless kinetic simulation of high accuracy. Simulation results show that, in the saturated turbulent state, the turbulent thermal diffusivity {chi} obtained from the HP model is significantly larger than the {chi} given by the NCM which is closer to {chi} measured in the kinetic simulation. Contrary to the dissipative form of the parallel heat flux closure relation assumed in the HP model, the NCM describes well the exact kinetic simulation, in which for some unstable wave numbers k, the imaginary part of the ratio of the parallel heat flux q{sub k} to the temperature fluctuation T{sub k} is a oscillatory function of time and sometimes takes positive values. The positive values of Im(q{sub k}/T{sub k}), imply the negative parallel heat diffusivity, correlate with the occasional inward heat flux occurring for the wave numbers k, and reduce the total {chi}. (author)

  9. Comparison between kinetic and fluid simulations of slab ion temperature gradient driven turbulence

    International Nuclear Information System (INIS)

    Sugama, H.; Watanabe, T.-H.; Horton, W.

    2002-10-01

    A detailed comparison between kinetic and fluid simulations of collisionless slab ion temperature gradient (ITG) driven turbulence is made. The nondissipative closure model (NCM) for linearly unstable modes, which is presented by Sugama, Watanabe, and Horton [Phys. Plasmas 8, 2617 (2001)], and the dissipative closure model by Hammett and Perkins (HP) [Phys. Rev. Lett. 64, 3019 (1990)] are used in separate fluid simulations. The validity of these closure models for quantitative prediction of the turbulent thermal transport is examined by comparing nonlinear results of the fluid simulations with those of the collisionless kinetic simulation of high accuracy. Simulation results show that, in the saturated turbulent state, the turbulent thermal diffusivity χ obtained from the HP model is significantly larger than the χ given by the NCM which is closer to χ measured in the kinetic simulation. Contrary to the dissipative form of the parallel heat flux closure relation assumed in the HP model, the NCM describes well the exact kinetic simulation, in which for some unstable wave numbers k, the imaginary part of the ratio of the parallel heat flux q k to the temperature fluctuation T k is a oscillatory function of time and sometimes takes positive values. The positive values of Im(q k /T k ), imply the negative parallel heat diffusivity, correlate with the occasional inward heat flux occurring for the wave numbers k, and reduce the total χ. (author)

  10. MFGA-IDT2 workshop: Astrophysical and geophysical fluid mechanics: the impact of data on turbulence theories

    Science.gov (United States)

    Schertzer, D.; Falgarone, E.

    1 Facts about the Workshop This workshop was convened on November 13-15 1995 by E. Falgarone and D. Schertzer within the framework of the Groupe de Recherche Mecanique des Fluides Geophysiques et Astrophysiques (GdR MFGA, Research Group of Geophysical and Astrophysical Fluid Mechanics) of Centre National de la Recherche Scientifique (CNRS, (French) National Center for Scientific Research). This Research Group is chaired by A. Babiano and the meeting was held at Ecole Normale Superieure, Paris, by courtesy of its Director E. Guyon. More than sixty attendees participated to this workshop, they came from a large number of institutions and countries from Europe, Canada and USA. There were twenty-five oral presentations as well as a dozen posters. A copy of the corresponding book of abstracts can be requested to the conveners. The theme of this meeting is somewhat related to the series of Nonlinear Variability in Geophysics conferences (NVAG1, Montreal, Aug. 1986; NVAG2, Paris, June 1988; NVAG3, Cargese (Corsica), September, 1993), as well as seven consecutive annual sessions at EGS general assemblies and two consecutive spring AGU meeting sessions devoted to similar topics. One may note that NVAG3 was a joint American Geophysical Union Chapman and European Geophysical Society Richardson Memorial conference, the first topical conference jointly sponsored by the two organizations. The corresponding proceedings were published in a special NPG issue (Nonlinear Processes in Geophysics 1, 2/3, 1994). In comparison with these previous meetings, MFGA-IDT2 is at the same time specialized to fluid turbulence and its intermittency, and an extension to the fields of astrophysics. Let us add that Nonlinear Processes in Geophysics was readily chosen as the appropriate journal for publication of these proceedings since this journal was founded in order to develop interdisciplinary fundamental research and corresponding innovative nonlinear methodologies in Geophysics. It had an

  11. MFGA-IDT2 workshop: Astrophysical and geophysical fluid mechanics: the impact of data on turbulence theories

    Directory of Open Access Journals (Sweden)

    D. Schertzer

    1996-01-01

    Full Text Available 1 Facts about the Workshop This workshop was convened on November 13-15 1995 by E. Falgarone and D. Schertzer within the framework of the Groupe de Recherche Mecanique des Fluides Geophysiques et Astrophysiques (GdR MFGA, Research Group of Geophysical and Astrophysical Fluid Mechanics of Centre National de la Recherche Scientifique (CNRS, (French National Center for Scientific Research. This Research Group is chaired by A. Babiano and the meeting was held at Ecole Normale Superieure, Paris, by courtesy of its Director E. Guyon. More than sixty attendees participated to this workshop, they came from a large number of institutions and countries from Europe, Canada and USA. There were twenty-five oral presentations as well as a dozen posters. A copy of the corresponding book of abstracts can be requested to the conveners. The theme of this meeting is somewhat related to the series of Nonlinear Variability in Geophysics conferences (NVAG1, Montreal, Aug. 1986; NVAG2, Paris, June 1988; NVAG3, Cargese (Corsica, September, 1993, as well as seven consecutive annual sessions at EGS general assemblies and two consecutive spring AGU meeting sessions devoted to similar topics. One may note that NVAG3 was a joint American Geophysical Union Chapman and European Geophysical Society Richardson Memorial conference, the first topical conference jointly sponsored by the two organizations. The corresponding proceedings were published in a special NPG issue (Nonlinear Processes in Geophysics 1, 2/3, 1994. In comparison with these previous meetings, MFGA-IDT2 is at the same time specialized to fluid turbulence and its intermittency, and an extension to the fields of astrophysics. Let us add that Nonlinear Processes in Geophysics was readily chosen as the appropriate journal for publication of these proceedings since this journal was founded in order to develop interdisciplinary fundamental research and corresponding innovative nonlinear methodologies in Geophysics

  12. Standoff detection of turbulent chemical mixture plumes using a swept external cavity quantum cascade laser

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Mark C. [Pacific Northwest National Laboratory, Richland, Washington; Brumfield, Brian E. [Pacific Northwest National Laboratory, Richland, Washington

    2017-08-21

    We demonstrate standoff detection of turbulent mixed-chemical plumes using a broadly-tunable external cavity quantum cascade laser (ECQCL). The ECQCL was directed through plumes of mixed methanol/ethanol vapor to a partially-reflective surface located 10 m away. The reflected power was measured as the ECQCL was swept over its tuning range of 930-1065 cm-1 (9.4-10.8 µm) at rates up to 200 Hz. Analysis of the transmission spectra though the plume was performed to determine chemical concentrations with time resolution of 0.005 s. Comparison of multiple spectral sweep rates of 2 Hz, 20 Hz, and 200 Hz shows that higher sweep rates reduce effects of atmospheric and source turbulence, resulting in lower detection noise and more accurate measurement of the rapidly-changing chemical concentrations. Detection sensitivities of 0.13 ppm*m for MeOH and 1.2 ppm*m for EtOH are demonstrated for a 200 Hz spectral sweep rate, normalized to 1 s detection time.

  13. Dissipation of Alfven Waves at Fluid Scale through Parametric Decay Instabilities in Low-beta Turbulent Plasma

    Science.gov (United States)

    Fu, X.; Li, H.; Guo, F.; Li, X.; Roytershteyn, V.

    2017-12-01

    The solar wind is a turbulent magnetized plasma extending from the upper atmosphere of the sun to the edge of the heliosphere. It carries charged particles and magnetic fields originated from the Sun, which have great impact on the geomagnetic environment and human activities in space. In such a magnetized plasma, Alfven waves play a crucial role in carrying energy from the surface of the Sun, injecting into the solar wind and establishing power-law spectra through turbulent energy cascades. On the other hand, in compressible plasmas large amplitude Alfven waves are subject to a parametric decay instability (PDI) which converts an Alfven wave to another counter-propagating Alfven wave and an ion acoustic wave (slow mode). The counter-propagating Alfven wave provides an important ingredient for turbulent cascade, and the slow-mode wave provides a channel for solar wind heating in a spatial scale much larger than ion kinetic scales. Growth and saturation of PDI in quiet plasma have been intensively studied using linear theory and nonlinear simulations in the past. Here using 3D hybrid simulations, we show that PDI is still effective in turbulent low-beta plasmas, generating slow modes and causing ion heating. Selected events in WIND data are analyzed to identify slow modes in the solar wind and the role of PDI, and compared with our simulation results. We also investigate the validity of linear Vlasov theory regarding PDI growth and slow mode damping in turbulent plasmas. Since PDI favors low plasma beta, we expect to see more evidence of PDI in the solar wind close to the Sun, especially from the upcoming NASA's Parker Solar Probe mission which will provide unprecedented wave and plasma data as close as 8.5 solar radii from the Sun.

  14. Superfluid turbulence

    International Nuclear Information System (INIS)

    Donnelly, R.J.

    1988-01-01

    Most flows of fluids, in nature and in technology, are turbulent. Since much of the energy expended by machines and devices that involve fluid flows is spent in overcoming drag caused by turbulence, there is a strong motivation to understand the phenomena. Surprisingly, the peculiar, quantum-mechanical form of turbulence that can form in superfluid helium may turn out to be much simpler to understand that the classical turbulence that forms in normal fluids. It now seems that the study of superfluid turbulence may provide simplified model systems for studying some forms of classical turbulence. There are also practical motivations for studying superfluid turbulence. For example, superfuid helium is often used as a coolant in superconducting machinery. Superfluid turbulence is the primary impediment to the transfer of heat by superfluid helium; an understanding of the phenomena may make it possible to design more efficient methods of refrigeration for superconducting devices. 8 figs

  15. The effect of sediments on turbulent plume dynamics in a stratified fluid

    Science.gov (United States)

    Stenberg, Erik; Ezhova, Ekaterina; Brandt, Luca

    2017-11-01

    We report large eddy simulation results of sediment-loaded turbulent plumes in a stratified fluid. The configuration, where the plume is discharged from a round source, provides an idealized model of subglacial discharge from a submarine tidewater glacier and is a starting point for understanding the effect of sediments on the dynamics of the rising plume. The transport of sediments is modeled by means of an advection-diffusion equation where sediment settling velocity is taken into account. We initially follow the experimental setup of Sutherland (Phys. Rev. Fluids, 2016), considering uniformly stratified ambients and further extend the work to pycnocline-type stratifications typical of Greenland fjords. Apart from examining the rise height, radial spread and intrusion of the rising plume, we gain further insights of the plume dynamics by extracting turbulent characteristics and the distribution of the sediments inside the plume.

  16. Cascade and intermittency model for turbulent compressible self-gravitating matter and self-binding phase-space density fluctuations

    International Nuclear Information System (INIS)

    Biglari, H.; Diamond, P.H.

    1988-01-01

    A simple physical model which describes the dynamics of turbulence and the spectrum of density fluctuations in compressible, self-gravitating matter and self-binding, phase-space density fluctuations is presented. The two systems are analogous to each other in that each tends to self-organize into hierarchical structures via the mechanism of Jeans collapse. The model, the essential physical ingredient of which is a cascade constrained by the physical requirement of quasivirialization, is shown to exhibit interesting geometric properties such as intrinsic intermittency and anisotropy

  17. Exact Turbulence Law in Collisionless Plasmas: Hybrid Simulations

    Science.gov (United States)

    Hellinger, P.; Verdini, A.; Landi, S.; Franci, L.; Matteini, L.

    2017-12-01

    An exact vectorial law for turbulence in homogeneous incompressible Hall-MHD is derived and tested in two-dimensional hybrid simulations of plasma turbulence. The simulations confirm the validity of the MHD exact law in the kinetic regime, the simulated turbulence exhibits a clear inertial range on large scales where the MHD cascade flux dominates. The simulation results also indicate that in the sub-ion range the cascade continues via the Hall term and that the total cascade rate tends to decrease at around the ion scales, especially in high-beta plasmas. This decrease is like owing to formation of non-thermal features, such as collisionless ion energization, that can not be retained in the Hall MHD approximation.

  18. Two-fluid description of wave-particle interactions in strong Buneman turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Che, H. [NASA/Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States)

    2014-06-15

    To understand the nature of anomalous resistivity in magnetic reconnection, we investigate turbulence-induced momentum transport and energy dissipation while a plasma is unstable to the Buneman instability in force-free current sheets. Using 3D particle-in-cell simulations, we find that the macroscopic effects generated by wave-particle interactions in Buneman instability can be approximately described by a set of electron fluid equations. We show that both energy dissipation and momentum transport along electric current in the current layer are locally quasi-static, but globally dynamic and irreversible. Turbulent drag dissipates both the streaming energy of the current sheet and the associated magnetic energy. The net loss of streaming energy is converted into the electron component heat conduction parallel to the magnetic field and increases the electron Boltzmann entropy. The growth of self-sustained Buneman waves satisfies a Bernoulli-like equation that relates the turbulence-induced convective momentum transport and thermal momentum transport. Electron trapping and de-trapping drive local momentum transports, while phase mixing converts convective momentum into thermal momentum. The drag acts like a micro-macro link in the anomalous heating processes. The decrease of magnetic field maintains an inductive electric field that re-accelerates electrons, but most of the magnetic energy is dissipated and converted into the component heat of electrons perpendicular to the magnetic field. This heating process is decoupled from the heating of Buneman instability in the current sheets. Ion heating is weak but ions play an important role in assisting energy exchanges between waves and electrons. Cold ion fluid equations together with our electron fluid equations form a complete set of equations that describes the occurrence, growth, saturation and decay of the Buneman instability.

  19. Two-fluid description of wave-particle interactions in strong Buneman turbulence

    Science.gov (United States)

    Che, H.

    2014-06-01

    To understand the nature of anomalous resistivity in magnetic reconnection, we investigate turbulence-induced momentum transport and energy dissipation while a plasma is unstable to the Buneman instability in force-free current sheets. Using 3D particle-in-cell simulations, we find that the macroscopic effects generated by wave-particle interactions in Buneman instability can be approximately described by a set of electron fluid equations. We show that both energy dissipation and momentum transport along electric current in the current layer are locally quasi-static, but globally dynamic and irreversible. Turbulent drag dissipates both the streaming energy of the current sheet and the associated magnetic energy. The net loss of streaming energy is converted into the electron component heat conduction parallel to the magnetic field and increases the electron Boltzmann entropy. The growth of self-sustained Buneman waves satisfies a Bernoulli-like equation that relates the turbulence-induced convective momentum transport and thermal momentum transport. Electron trapping and de-trapping drive local momentum transports, while phase mixing converts convective momentum into thermal momentum. The drag acts like a micro-macro link in the anomalous heating processes. The decrease of magnetic field maintains an inductive electric field that re-accelerates electrons, but most of the magnetic energy is dissipated and converted into the component heat of electrons perpendicular to the magnetic field. This heating process is decoupled from the heating of Buneman instability in the current sheets. Ion heating is weak but ions play an important role in assisting energy exchanges between waves and electrons. Cold ion fluid equations together with our electron fluid equations form a complete set of equations that describes the occurrence, growth, saturation and decay of the Buneman instability.

  20. Two-fluid description of wave-particle interactions in strong Buneman turbulence

    International Nuclear Information System (INIS)

    Che, H.

    2014-01-01

    To understand the nature of anomalous resistivity in magnetic reconnection, we investigate turbulence-induced momentum transport and energy dissipation while a plasma is unstable to the Buneman instability in force-free current sheets. Using 3D particle-in-cell simulations, we find that the macroscopic effects generated by wave-particle interactions in Buneman instability can be approximately described by a set of electron fluid equations. We show that both energy dissipation and momentum transport along electric current in the current layer are locally quasi-static, but globally dynamic and irreversible. Turbulent drag dissipates both the streaming energy of the current sheet and the associated magnetic energy. The net loss of streaming energy is converted into the electron component heat conduction parallel to the magnetic field and increases the electron Boltzmann entropy. The growth of self-sustained Buneman waves satisfies a Bernoulli-like equation that relates the turbulence-induced convective momentum transport and thermal momentum transport. Electron trapping and de-trapping drive local momentum transports, while phase mixing converts convective momentum into thermal momentum. The drag acts like a micro-macro link in the anomalous heating processes. The decrease of magnetic field maintains an inductive electric field that re-accelerates electrons, but most of the magnetic energy is dissipated and converted into the component heat of electrons perpendicular to the magnetic field. This heating process is decoupled from the heating of Buneman instability in the current sheets. Ion heating is weak but ions play an important role in assisting energy exchanges between waves and electrons. Cold ion fluid equations together with our electron fluid equations form a complete set of equations that describes the occurrence, growth, saturation and decay of the Buneman instability

  1. Fluid simulations of toroidal ion temperature gradient turbulence

    International Nuclear Information System (INIS)

    Sandberg, I.; Isliker, H.; Pavlenko, V.P.; Hizanidis, K.; Vlahos, L.

    2006-01-01

    The evolution of the toroidal ion temperature gradient mode instability is numerically studied by using the equations based on the standard reactive fluid model. The long-term dynamics of the instability are investigated using random-phase, small-amplitude fluctuations for initial conditions. The main events during the evolution of the instability that lead to the formation of large-scale coherent structures are described and the role of the dominant nonlinearities is clarified. The polarization drift nonlinearity leads to the inverse energy cascade while the convective ion heat nonlinearity is responsible for the saturation of the instability. Finally, the sensitivity of the saturated state to the initial plasma conditions is examined

  2. Turbulent Flow with Embedded Vortical Structures Induced by Vortex Generators in a Cascade

    Czech Academy of Sciences Publication Activity Database

    Součková, Natálie; Uruba, Václav

    2012-01-01

    Roč. 12, č. 1 (2012), s. 571-572 ISSN 1617-7061. [Annual Meeting of the International Association of Applied Mathematics and Mechanics /83./. Darmstadt, 26.03.2012-30.03.2012] R&D Projects: GA ČR GAP101/10/1230; GA ČR GA101/08/1112 Institutional research plan: CEZ:AV0Z20760514 Keywords : vortex generator * turbulent flow * PIV Subject RIV: BK - Fluid Dynamics http://onlinelibrary.wiley.com/doi/10.1002/pamm.201210274/abstract

  3. Scaling for turbulent viscosity of buoyant plumes in stratified fluids: PIV measurement with implications for submarine hydrothermal plume turbulence

    Science.gov (United States)

    Zhang, Wei; He, Zhiguo; Jiang, Houshuo

    2017-11-01

    Time-resolved particle image velocimetry (PIV) has been used to measure instantaneous two-dimensional velocity vector fields of laboratory-generated turbulent buoyant plumes in linearly stratified saltwater over extended periods of time. From PIV-measured time-series flow data, characteristics of plume mean flow and turbulence have been quantified. To be specific, maximum plume penetration scaling and entrainment coefficient determined from the mean flow agree well with the theory based on the entrainment hypothesis for buoyant plumes in stratified fluids. Besides the well-known persistent entrainment along the plume stem (i.e., the 'plume-stem' entrainment), the mean plume velocity field shows persistent entrainment along the outer edge of the plume cap (i.e., the 'plume-cap' entrainment), thereby confirming predictions from previous numerical simulation studies. To our knowledge, the present PIV investigation provides the first measured flow field data in the plume cap region. As to measured plume turbulence, both the turbulent kinetic energy field and the turbulence dissipation rate field attain their maximum close to the source, while the turbulent viscosity field reaches its maximum within the plume cap region; the results also show that maximum turbulent viscosity scales as νt,max = 0.030(B/N)1/2, where B is source buoyancy flux and N is ambient buoyancy frequency. These PIV data combined with previously published numerical simulation results have implications for understanding the roles of hydrothermal plume turbulence, i.e. plume turbulence within the cap region causes the 'plume-cap' entrainment that plays an equally important role as the 'plume-stem' entrainment in supplying the final volume flux at the plume spreading level.

  4. Plasma turbulence calculations on supercomputers

    International Nuclear Information System (INIS)

    Carreras, B.A.; Charlton, L.A.; Dominguez, N.; Drake, J.B.; Garcia, L.; Leboeuf, J.N.; Lee, D.K.; Lynch, V.E.; Sidikman, K.

    1991-01-01

    Although the single-particle picture of magnetic confinement is helpful in understanding some basic physics of plasma confinement, it does not give a full description. Collective effects dominate plasma behavior. Any analysis of plasma confinement requires a self-consistent treatment of the particles and fields. The general picture is further complicated because the plasma, in general, is turbulent. The study of fluid turbulence is a rather complex field by itself. In addition to the difficulties of classical fluid turbulence, plasma turbulence studies face the problems caused by the induced magnetic turbulence, which couples field by itself. In addition to the difficulties of classical fluid turbulence, plasma turbulence studies face the problems caused by the induced magnetic turbulence, which couples back to the fluid. Since the fluid is not a perfect conductor, this turbulence can lead to changes in the topology of the magnetic field structure, causing the magnetic field lines to wander radially. Because the plasma fluid flows along field lines, they carry the particles with them, and this enhances the losses caused by collisions. The changes in topology are critical for the plasma confinement. The study of plasma turbulence and the concomitant transport is a challenging problem. Because of the importance of solving the plasma turbulence problem for controlled thermonuclear research, the high complexity of the problem, and the necessity of attacking the problem with supercomputers, the study of plasma turbulence in magnetic confinement devices is a Grand Challenge problem

  5. Turbulent/non-turbulent interfaces detected in DNS of incompressible turbulent boundary layers

    Science.gov (United States)

    Watanabe, T.; Zhang, X.; Nagata, K.

    2018-03-01

    The turbulent/non-turbulent interface (TNTI) detected in direct numerical simulations is studied for incompressible, temporally developing turbulent boundary layers at momentum thickness Reynolds number Reθ ≈ 2000. The outer edge of the TNTI layer is detected as an isosurface of the vorticity magnitude with the threshold determined with the dependence of the turbulent volume on a threshold level. The spanwise vorticity magnitude and passive scalar are shown to be good markers of turbulent fluids, where the conditional statistics on a distance from the outer edge of the TNTI layer are almost identical to the ones obtained with the vorticity magnitude. Significant differences are observed for the conditional statistics between the TNTI detected by the kinetic energy and vorticity magnitude. A widely used grid setting determined solely from the wall unit results in an insufficient resolution in a streamwise direction in the outer region, whose influence is found for the geometry of the TNTI and vorticity jump across the TNTI layer. The present results suggest that the grid spacing should be similar for the streamwise and spanwise directions. Comparison of the TNTI layer among different flows requires appropriate normalization of the conditional statistics. Reference quantities of the turbulence near the TNTI layer are obtained with the average of turbulent fluids in the intermittent region. The conditional statistics normalized by the reference turbulence characteristics show good quantitative agreement for the turbulent boundary layer and planar jet when they are plotted against the distance from the outer edge of the TNTI layer divided by the Kolmogorov scale defined for turbulent fluids in the intermittent region.

  6. Relation of astrophysical turbulence and magnetic reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Lazarian, A. [Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, Wisconsin 53706 (United States); Eyink, Gregory L. [Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Vishniac, E. T. [Department of Physics and Astronomy, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1 (Canada)

    2012-01-15

    Astrophysical fluids are generically turbulent and this must be taken into account for most transport processes. We discuss how the preexisting turbulence modifies magnetic reconnection and how magnetic reconnection affects the MHD turbulent cascade. We show the intrinsic interdependence and interrelation of magnetic turbulence and magnetic reconnection, in particular, that strong magnetic turbulence in 3D requires reconnection and 3D magnetic turbulence entails fast reconnection. We follow the approach in Eyink et al.[Astrophys. J. 743, 51 (2011)] to show that the expressions of fast magnetic reconnection in A. Lazarian and E. T. Vishniac [Astrophys. J. 517, 700 (1999)] can be recovered if Richardson diffusion of turbulent flows is used instead of ordinary Ohmic diffusion. This does not revive, however, the concept of magnetic turbulent diffusion which assumes that magnetic fields can be mixed up in a passive way down to a very small dissipation scales. On the contrary, we are dealing the reconnection of dynamically important magnetic field bundles which strongly resist bending and have well defined mean direction weakly perturbed by turbulence. We argue that in the presence of turbulence the very concept of flux-freezing requires modification. The diffusion that arises from magnetic turbulence can be called reconnection diffusion as it based on reconnection of magnetic field lines. The reconnection diffusion has important implications for the continuous transport processes in magnetized plasmas and for star formation. In addition, fast magnetic reconnection in turbulent media induces the First order Fermi acceleration of energetic particles, can explain solar flares and gamma ray bursts. However, the most dramatic consequence of these developments is the fact that the standard flux freezing concept must be radically modified in the presence of turbulence.

  7. Fast Propagation in Fluid Transport Models with Evolution of Turbulence Saturation

    International Nuclear Information System (INIS)

    Lopez-Bruna, D.

    2012-01-01

    This report compiles and extends two works on models that reproduce the experimental facts of non local transport and pulse propagation in magnetically confined fusion plasmas. The works are based on fluid transport models, originally designed to explain the formation of edge or internal transport barriers, that include fast evolution equations for the particle and heat fluxes. The heating of the plasma core in response to a sudden edge cooling or the propagation of turbulent fronts around transport barriers are a consequence of the competing roles of linear drive and non-linear reduction of the turbulent fluxes. Possibilities to use the models to interpret TJ-II plasmas are discussed. (Author) 62 refs.

  8. Fast Propagation in Fluid Transport Models with Evolution of Turbulence Saturation

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Bruna, D.

    2012-07-01

    This report compiles and extends two works on models that reproduce the experimental facts of non local transport and pulse propagation in magnetically confined fusion plasmas. The works are based on fluid transport models, originally designed to explain the formation of edge or internal transport barriers, that include fast evolution equations for the particle and heat fluxes. The heating of the plasma core in response to a sudden edge cooling or the propagation of turbulent fronts around transport barriers are a consequence of the competing roles of linear drive and non-linear reduction of the turbulent fluxes. Possibilities to use the models to interpret TJ-II plasmas are discussed. (Author) 62 refs.

  9. Nonconservative and reverse spectral transfer in Hasegawa-Mima turbulence

    International Nuclear Information System (INIS)

    Terry, P.W.; Newman, D.E.

    1993-01-01

    The dual cascade is generally represented as a conservative cascade of enstrophy to short wavelengths through an enstrophy similarity range and an inverse cascade of energy to long wavelengths through an energy similarity range. This picture, based on a proof due to Kraichnan [Phys. Fluids 10, 1417 (1967)], is found to be significantly modified for a spectra of finite extent. Dimensional arguments and direct measurement of spectral flow in Hasegawa-Mima turbulence indicate that for both the energy and enstrophy cascades, transfer of the conserved quantity is accompanied by a nonconservative transfer of the other quantity. The decrease of a given invariant (energy or enstrophy) in the nonconservative transfer in one similarity range is balanced by the increase of that quantity in the other similarity range, thus maintaining net invariance. The increase or decrease of a given invariant quantity in one similarity range depends on the injection scale and is consistent with that quantity being carried in a self-similar transfer of the other invariant quantity. This leads, in an inertial range of finite size, to some energy being carried to small scales and some enstrophy being carried to large scales

  10. Two-scale correlation and energy cascade in three-dimensional turbulent flows

    International Nuclear Information System (INIS)

    Huang, Y X; Schmitt, F G; Gagne, Y

    2014-01-01

    In this paper, we propose a high-order harmonic-free methodology, namely arbitrary-order Hilbert spectral analysis, to estimate the two-scale correlation (TSC). When applied to fully developed turbulent velocity, we find that the scale-dependent Hilbert energy satisfies a lognormal distribution on both the inertial and dissipation ranges. The maximum probability density function of the logarithm of the Hilbert energy obeys a power law with a scaling exponent γ ≃ 0.33 in the inertial range. For the measured TSC, we observe a logarithmic correlation law with an experimental exponent α ≃ 0.37 on both the inertial and dissipation ranges. The correlation itself is found to be self-similar with respect to the distance between the two considered scales and a central frequency ω c in the logarithm space. An empirical nonlinear and nonlocal triad-scale interaction formula is proposed to describe the observed TSC. This triadic interaction can be interpreted as experimental evidence of a small-scale nonlinear and nonlocal coupling inside the self-similarity of the Richardson–Kolmogorov phenomenological cascade picture. (paper)

  11. ADIABATIC HEATING OF CONTRACTING TURBULENT FLUIDS

    International Nuclear Information System (INIS)

    Robertson, Brant; Goldreich, Peter

    2012-01-01

    Turbulence influences the behavior of many astrophysical systems, frequently by providing non-thermal pressure support through random bulk motions. Although turbulence is commonly studied in systems with constant volume and mean density, turbulent astrophysical gases often expand or contract under the influence of pressure or gravity. Here, we examine the behavior of turbulence in contracting volumes using idealized models of compressed gases. Employing numerical simulations and an analytical model, we identify a simple mechanism by which the turbulent motions of contracting gases 'adiabatically heat', experiencing an increase in their random bulk velocities until the largest eddies in the gas circulate over a Hubble time of the contraction. Adiabatic heating provides a mechanism for sustaining turbulence in gases where no large-scale driving exists. We describe this mechanism in detail and discuss some potential applications to turbulence in astrophysical settings.

  12. Computation of inverse magnetic cascades

    International Nuclear Information System (INIS)

    Montgomery, D.

    1981-10-01

    Inverse cascades of magnetic quantities for turbulent incompressible magnetohydrodynamics are reviewed, for two and three dimensions. The theory is extended to the Strauss equations, a description intermediate between two and three dimensions appropriate to tokamak magnetofluids. Consideration of the absolute equilibrium Gibbs ensemble for the system leads to a prediction of an inverse cascade of magnetic helicity, which may manifest itself as a major disruption. An agenda for computational investigation of this conjecture is proposed

  13. Turbulent Fluid Motion 6: Turbulence, Nonlinear Dynamics, and Deterministic Chaos

    Science.gov (United States)

    Deissler, Robert G.

    1996-01-01

    Several turbulent and nonturbulent solutions of the Navier-Stokes equations are obtained. The unaveraged equations are used numerically in conjunction with tools and concepts from nonlinear dynamics, including time series, phase portraits, Poincare sections, Liapunov exponents, power spectra, and strange attractors. Initially neighboring solutions for a low-Reynolds-number fully developed turbulence are compared. The turbulence is sustained by a nonrandom time-independent external force. The solutions, on the average, separate exponentially with time, having a positive Liapunov exponent. Thus, the turbulence is characterized as chaotic. In a search for solutions which contrast with the turbulent ones, the Reynolds number (or strength of the forcing) is reduced. Several qualitatively different flows are noted. These are, respectively, fully chaotic, complex periodic, weakly chaotic, simple periodic, and fixed-point. Of these, we classify only the fully chaotic flows as turbulent. Those flows have both a positive Liapunov exponent and Poincare sections without pattern. By contrast, the weakly chaotic flows, although having positive Liapunov exponents, have some pattern in their Poincare sections. The fixed-point and periodic flows are nonturbulent, since turbulence, as generally understood, is both time-dependent and aperiodic.

  14. New developments in isotropic turbulent models for FENE-P fluids

    Science.gov (United States)

    Resende, P. R.; Cavadas, A. S.

    2018-04-01

    The evolution of viscoelastic turbulent models, in the last years, has been significant due to the direct numeric simulation (DNS) advances, which allowed us to capture in detail the evolution of the viscoelastic effects and the development of viscoelastic closures. New viscoelastic closures are proposed for viscoelastic fluids described by the finitely extensible nonlinear elastic-Peterlin constitutive model. One of the viscoelastic closure developed in the context of isotropic turbulent models, consists in a modification of the turbulent viscosity to include an elastic effect, capable of predicting, with good accuracy, the behaviour for different drag reductions. Another viscoelastic closure essential to predict drag reduction relates the viscoelastic term involving velocity and the tensor conformation fluctuations. The DNS data show the high impact of this term to predict correctly the drag reduction, and for this reason is proposed a simpler closure capable of predicting the viscoelastic behaviour with good performance. In addition, a new relation is developed to predict the drag reduction, quantity based on the trace of the tensor conformation at the wall, eliminating the need of the typically parameters of Weissenberg and Reynolds numbers, which depend on the friction velocity. This allows future developments for complex geometries.

  15. Turbulent entrainment across turbulent-nonturbulent interfaces in stably stratified mixing layers

    Science.gov (United States)

    Watanabe, T.; Riley, J. J.; Nagata, K.

    2017-10-01

    The entrainment process in stably stratified mixing layers is studied in relation to the turbulent-nonturbulent interface (TNTI) using direct numerical simulations. The statistics are calculated with the interface coordinate in an Eulerian frame as well as with the Lagrangian fluid particles entrained from the nonturbulent to the turbulent regions. The characteristics of entrainment change as the buoyancy Reynolds number Reb decreases and the flow begins to layer. The baroclinic torque delays the enstrophy growth of the entrained fluids at small Reb, while this effect is less efficient for large Reb. The entrained particle movement within the TNTI layer is dominated by the small dissipative scales, and the rapid decay of the kinetic energy dissipation rate due to buoyancy causes the entrained particle movement relative to the interface location to become slower. Although the Eulerian statistics confirm that there exists turbulent fluid with strong vorticity or with large buoyancy frequency near the TNTI, the entrained fluid particles circumvent these regions by passing through the TNTI in strain-dominant regions or in regions with small buoyancy frequency. The multiparticle statistics show that once the nonturbulent fluid volumes are entrained, they are deformed into flattened shapes in the vertical direction and diffuse in the horizontal direction. When Reb is large enough for small-scale turbulence to exist, the entrained fluid is able to penetrate into the turbulent core region. Once the flow begins to layer with decreasing Reb, however, the entrained fluid volume remains near the outer edge of the turbulent region and forms a stably stratified layer without vertical overturning.

  16. Energy transfer in compressible magnetohydrodynamic turbulence for isothermal self-gravitating fluids

    Science.gov (United States)

    Banerjee, Supratik; Kritsuk, Alexei G.

    2018-02-01

    Three-dimensional, compressible, magnetohydrodynamic turbulence of an isothermal, self-gravitating fluid is analyzed using two-point statistics in the asymptotic limit of large Reynolds numbers (both kinetic and magnetic). Following an alternative formulation proposed by Banerjee and Galtier [Phys. Rev. E 93, 033120 (2016), 10.1103/PhysRevE.93.033120; J. Phys. A: Math. Theor. 50, 015501 (2017), 10.1088/1751-8113/50/1/015501], an exact relation has been derived for the total energy transfer. This approach results in a simpler relation expressed entirely in terms of mixed second-order structure functions. The kinetic, thermodynamic, magnetic, and gravitational contributions to the energy transfer rate can be easily separated in the present form. By construction, the new formalism includes such additional effects as global rotation, the Hall term in the induction equation, etc. The analysis shows that solid-body rotation cannot alter the energy flux rate of compressible turbulence. However, the contribution of a uniform background magnetic field to the flux is shown to be nontrivial unlike in the incompressible case. Finally, the compressible, turbulent energy flux rate does not vanish completely due to simple alignments, which leads to a zero turbulent energy flux rate in the incompressible case.

  17. On turbulence structure in vertical pipe flow of fiber suspensions [refractivity, flow measurement, turbulent flow, glass fibers, fluid flow

    International Nuclear Information System (INIS)

    Steen, M.

    1989-01-01

    A suspension of glass fibers in alcohol has been used to investigate a upward vertical developing pipe flow. The refractive index of the alcohol was matched to that of the glass fibers, making the whole suspension transparent. Laser Doppler Anemometry (LDA) was applied, and fluid velocities could then be measured for consistencies up to c = 12 g/l. Radial profiles of axial U-velocity and turbulence spectra have been recorded at various positions (z/D = 2, 5, 36) downstream of an orifice (step) with 64% open area. Measurements were taken for different consistencies (c = 1.2, 12 g/l), fiber lengths (l = 1, 3 mm) and Reynolds numbers (R e = 8.5 ⋅ 10 3 , 6.5 ⋅ 10 4 ). The fiber crowding factor (n f ) has been used to discuss the observed effects of the present fibers on momentum transfer and turbulence structure. The results show both an increase (l= 1 mm, c= 1.2 g/l) and decrease (l=3 mm, c = 12 g/l) in turbulence levels in the presence of fibers. Suspensions with long fibers at the highest consistency show plug flow in parts of the core. This causes damping of the turbulence mainly at smaller length scales. For short fibers at low consistency, the increased turbulent energy was mainly observed at small length scales in the spectrum. (author)

  18. Strongly coupled fluid-particle flows in vertical channels. I. Reynolds-averaged two-phase turbulence statistics

    International Nuclear Information System (INIS)

    Capecelatro, Jesse; Desjardins, Olivier; Fox, Rodney O.

    2016-01-01

    Simulations of strongly coupled (i.e., high-mass-loading) fluid-particle flows in vertical channels are performed with the purpose of understanding the fundamental physics of wall-bounded multiphase turbulence. The exact Reynolds-averaged (RA) equations for high-mass-loading suspensions are presented, and the unclosed terms that are retained in the context of fully developed channel flow are evaluated in an Eulerian–Lagrangian (EL) framework for the first time. A key distinction between the RA formulation presented in the current work and previous derivations of multiphase turbulence models is the partitioning of the particle velocity fluctuations into spatially correlated and uncorrelated components, used to define the components of the particle-phase turbulent kinetic energy (TKE) and granular temperature, respectively. The adaptive spatial filtering technique developed in our previous work for homogeneous flows [J. Capecelatro, O. Desjardins, and R. O. Fox, “Numerical study of collisional particle dynamics in cluster-induced turbulence,” J. Fluid Mech. 747, R2 (2014)] is shown to accurately partition the particle velocity fluctuations at all distances from the wall. Strong segregation in the components of granular energy is observed, with the largest values of particle-phase TKE associated with clusters falling near the channel wall, while maximum granular temperature is observed at the center of the channel. The anisotropy of the Reynolds stresses both near the wall and far away is found to be a crucial component for understanding the distribution of the particle-phase volume fraction. In Part II of this paper, results from the EL simulations are used to validate a multiphase Reynolds-stress turbulence model that correctly predicts the wall-normal distribution of the two-phase turbulence statistics.

  19. Strongly coupled fluid-particle flows in vertical channels. I. Reynolds-averaged two-phase turbulence statistics

    Science.gov (United States)

    Capecelatro, Jesse; Desjardins, Olivier; Fox, Rodney O.

    2016-03-01

    Simulations of strongly coupled (i.e., high-mass-loading) fluid-particle flows in vertical channels are performed with the purpose of understanding the fundamental physics of wall-bounded multiphase turbulence. The exact Reynolds-averaged (RA) equations for high-mass-loading suspensions are presented, and the unclosed terms that are retained in the context of fully developed channel flow are evaluated in an Eulerian-Lagrangian (EL) framework for the first time. A key distinction between the RA formulation presented in the current work and previous derivations of multiphase turbulence models is the partitioning of the particle velocity fluctuations into spatially correlated and uncorrelated components, used to define the components of the particle-phase turbulent kinetic energy (TKE) and granular temperature, respectively. The adaptive spatial filtering technique developed in our previous work for homogeneous flows [J. Capecelatro, O. Desjardins, and R. O. Fox, "Numerical study of collisional particle dynamics in cluster-induced turbulence," J. Fluid Mech. 747, R2 (2014)] is shown to accurately partition the particle velocity fluctuations at all distances from the wall. Strong segregation in the components of granular energy is observed, with the largest values of particle-phase TKE associated with clusters falling near the channel wall, while maximum granular temperature is observed at the center of the channel. The anisotropy of the Reynolds stresses both near the wall and far away is found to be a crucial component for understanding the distribution of the particle-phase volume fraction. In Part II of this paper, results from the EL simulations are used to validate a multiphase Reynolds-stress turbulence model that correctly predicts the wall-normal distribution of the two-phase turbulence statistics.

  20. Experimental evidence of the statistical intermittency in a cryogenic turbulent jet of normal and superfluid Helium

    International Nuclear Information System (INIS)

    Duri, D.

    2012-01-01

    This experimental work is focused on the statistical study of the high Reynolds number turbulent velocity field in an inertially driven liquid helium axis-symmetric round jet at temperatures above and below the lambda transition (between 2.3 K and 1.78 K) in a cryogenic wind tunnel. The possibility to finely tune the fluid temperature allows us to perform a comparative study of the quantum He II turbulence within the classical framework of the Kolmogorov turbulent cascade in order to have a better understanding of the energy cascade process in a superfluid. In particular we focused our attention on the intermittency phenomena, in both He I and He II phases, by measuring the high order statistics of the longitudinal velocity increments by means of the flatness and the skewness statistical estimators. A first phase consisted in developing the cryogenic facility, a closed loop pressurized and temperature regulated wind tunnel, and adapting the classic hot-wire anemometry technique in order to be able to work in such a challenging low temperature environment. A detailed calibration procedure of the fully developed turbulent flow was the carried out at 2.3 K at Reynolds numbers based on the Taylor length scale up to 2600 in order to qualify our testing set-up and to identify possible facility-related spurious phenomena. This procedure showed that the statistical properties of the longitudinal velocity increments are in good agreement with respect to previous results. By further reducing the temperature of the working fluid (at a constant pressure) below the lambda point down to 1.78 K local velocity measurements were performed at different superfluid density fractions. The results show a classic behaviour of the He II energy cascade at large scales while, at smaller scales, a deviation has been observed. The occurrence of this phenomenon, which requires further investigation and modelling, is highlighted by the observed changing sign of the third order structure

  1. Three-dimensional kinetic simulations of whistler turbulence in solar wind on parallel supercomputers

    Science.gov (United States)

    Chang, Ouliang

    The objective of this dissertation is to study the physics of whistler turbulence evolution and its role in energy transport and dissipation in the solar wind plasmas through computational and theoretical investigations. This dissertation presents the first fully three-dimensional (3D) particle-in-cell (PIC) simulations of whistler turbulence forward cascade in a homogeneous, collisionless plasma with a uniform background magnetic field B o, and the first 3D PIC simulation of whistler turbulence with both forward and inverse cascades. Such computationally demanding research is made possible through the use of massively parallel, high performance electromagnetic PIC simulations on state-of-the-art supercomputers. Simulations are carried out to study characteristic properties of whistler turbulence under variable solar wind fluctuation amplitude (epsilon e) and electron beta (betae), relative contributions to energy dissipation and electron heating in whistler turbulence from the quasilinear scenario and the intermittency scenario, and whistler turbulence preferential cascading direction and wavevector anisotropy. The 3D simulations of whistler turbulence exhibit a forward cascade of fluctuations into broadband, anisotropic, turbulent spectrum at shorter wavelengths with wavevectors preferentially quasi-perpendicular to B o. The overall electron heating yields T ∥ > T⊥ for all epsilone and betae values, indicating the primary linear wave-particle interaction is Landau damping. But linear wave-particle interactions play a minor role in shaping the wavevector spectrum, whereas nonlinear wave-wave interactions are overall stronger and faster processes, and ultimately determine the wavevector anisotropy. Simulated magnetic energy spectra as function of wavenumber show a spectral break to steeper slopes, which scales as k⊥lambda e ≃ 1 independent of betae values, where lambdae is electron inertial length, qualitatively similar to solar wind observations. Specific

  2. Fluid particles only separate exponentially in the dissipation range of turbulence after extremely long times

    Science.gov (United States)

    Dhariwal, Rohit; Bragg, Andrew D.

    2018-03-01

    In this paper, we consider how the statistical moments of the separation between two fluid particles grow with time when their separation lies in the dissipation range of turbulence. In this range, the fluid velocity field varies smoothly and the relative velocity of two fluid particles depends linearly upon their separation. While this may suggest that the rate at which fluid particles separate is exponential in time, this is not guaranteed because the strain rate governing their separation is a strongly fluctuating quantity in turbulence. Indeed, Afik and Steinberg [Nat. Commun. 8, 468 (2017), 10.1038/s41467-017-00389-8] argue that there is no convincing evidence that the moments of the separation between fluid particles grow exponentially with time in the dissipation range of turbulence. Motivated by this, we use direct numerical simulations (DNS) to compute the moments of particle separation over very long periods of time in a statistically stationary, isotropic turbulent flow to see if we ever observe evidence for exponential separation. Our results show that if the initial separation between the particles is infinitesimal, the moments of the particle separation first grow as power laws in time, but we then observe convincing evidence that at sufficiently long times the moments do grow exponentially. However, this exponential growth is only observed after extremely long times ≳200 τη , where τη is the Kolmogorov time scale. This is due to fluctuations in the strain rate about its mean value measured along the particle trajectories, the effect of which on the moments of the particle separation persists for very long times. We also consider the backward-in-time (BIT) moments of the article separation, and observe that they too grow exponentially in the long-time regime. However, a dramatic consequence of the exponential separation is that at long times the difference between the rate of the particle separation forward in time (FIT) and BIT grows

  3. Soliton turbulence

    Science.gov (United States)

    Tchen, C. M.

    1986-01-01

    Theoretical and numerical works in atmospheric turbulence have used the Navier-Stokes fluid equations exclusively for describing large-scale motions. Controversy over the existence of an average temperature gradient for the very large eddies in the atmosphere suggested that a new theoretical basis for describing large-scale turbulence was necessary. A new soliton formalism as a fluid analogue that generalizes the Schrodinger equation and the Zakharov equations has been developed. This formalism, processing all the nonlinearities including those from modulation provided by the density fluctuations and from convection due to the emission of finite sound waves by velocity fluctuations, treats large-scale turbulence as coalescing and colliding solitons. The new soliton system describes large-scale instabilities more explicitly than the Navier-Stokes system because it has a nonlinearity of the gradient type, while the Navier-Stokes has a nonlinearity of the non-gradient type. The forced Schrodinger equation for strong fluctuations describes the micro-hydrodynamical state of soliton turbulence and is valid for large-scale turbulence in fluids and plasmas where internal waves can interact with velocity fluctuations.

  4. Critical Transitions in Thin Layer Turbulence

    Science.gov (United States)

    Benavides, Santiago; Alexakis, Alexandros

    2017-11-01

    We investigate a model of thin layer turbulence that follows the evolution of the two-dimensional motions u2 D (x , y) along the horizontal directions (x , y) coupled to a single Fourier mode along the vertical direction (z) of the form uq (x , y , z) = [vx (x , y) sin (qz) ,vy (x , y) sin (qz) ,vz (x , y) cos (qz) ] , reducing thus the system to two coupled, two-dimensional equations. Its reduced dimensionality allows a thorough investigation of the transition from a forward to an inverse cascade of energy as the thickness of the layer H = π / q is varied.Starting from a thick layer and reducing its thickness it is shown that two critical heights are met (i) one for which the forward unidirectional cascade (similar to three-dimensional turbulence) transitions to a bidirectional cascade transferring energy to both small and large scales and (ii) one for which the bidirectional cascade transitions to a unidirectional inverse cascade when the layer becomes very thin (similar to two-dimensional turbulence). The two critical heights are shown to have different properties close to criticality that we are able to analyze with numerical simulations for a wide range of Reynolds numbers and aspect ratios. This work was Granted access to the HPC resources of MesoPSL financed by the Region Ile de France and the project Equip@Meso (reference ANR-10-EQPX-29-01).

  5. Two-Fluid Description of Wave-Particle Interactions in Strong Buneman Turbulence

    OpenAIRE

    Che, H.

    2014-01-01

    To understand the nature of anomalous resistivity in magnetic reconnection, we investigate turbulence-induced momentum transport and energy dissipation while a plasma is unstable to the Buneman instability in force-free current sheets. Using 3D particle-in-cell simulations, we find that the macroscopic effects generated by wave-particle interactions in Buneman instability can be approximately described by a set of electron fluid equations. We show that both energy dissipation and momentum tra...

  6. Advances in the simulation of toroidal gyro Landau fluid model turbulence

    International Nuclear Information System (INIS)

    Waltz, R.E.; Kerbel, G.D.; Milovich, J.; Hammett, G.W.

    1994-12-01

    The gyro-Landau fluid (GLF) model equations for toroidal geometry have been recently applied to the study ion temperature gradient (ITG) mode turbulence using the 3D nonlinear ballooning mode representation (BMR). The present paper extends this work by treating some unresolved issues conceming ITG turbulence with adiabatic electrons. Although eddies are highly elongated in the radial direction long time radial correlation lengths are short and comparable to poloidal lengths. Although transport at vanishing shear is not particularly large, transport at reverse global shear, is significantly less. Electrostatic transport at moderate shear is not much effected by inclusion of local shear and average favorable curvature. Transport is suppressed when critical ExB rotational shear is comparable to the maximum linear growth rate with only a weak dependence on magnetic shear. Self consistent turbulent transport of toroidal momentum can result in a transport bifurcation at suffciently large r/(Rq). However the main thrust of the new formulation in the paper deals with advances in the development of finite beta GLF models with trapped electron and BMR numerical methods for treating the fast parallel field motion of the untrapped electrons

  7. Turbulent buoyant jets and plumes

    CERN Document Server

    Rodi, Wolfgang

    The Science & Applications of Heat and Mass Transfer: Reports, Reviews, & Computer Programs, Volume 6: Turbulent Buoyant Jets and Plumes focuses on the formation, properties, characteristics, and reactions of turbulent jets and plumes. The selection first offers information on the mechanics of turbulent buoyant jets and plumes and turbulent buoyant jets in shallow fluid layers. Discussions focus on submerged buoyant jets into shallow fluid, horizontal surface or interface jets into shallow layers, fundamental considerations, and turbulent buoyant jets (forced plumes). The manuscript then exami

  8. Modeling of turbulent flows in porous media and at the interface with a free fluid medium

    International Nuclear Information System (INIS)

    Chandesris, M.

    2006-12-01

    This work deals with the numerical simulation of turbulent flows in the whole nuclear reactor core, using multi-scale approaches. First, a macroscopic turbulence model is built, based on a porous media approach, to describe the flow in the fuel assemblies part of the nuclear core. Then, we study the jump conditions that have to be applied at a free fluid/porous interface. A thorough analytical study is carried out for laminar flows. This study allows to answer some fundamental questions about the physical meaning of the jump conditions, the values of the jump parameters and the location of the interface. Using these results, jump conditions for turbulent flows are proposed. The model is then applied to the simulation of a turbulent flow in a simplified model of a reactor core. (author)

  9. Experimental study of MHD effects on turbulent flow of flibe simulant fluid in a circular pipe

    International Nuclear Information System (INIS)

    Takeuchi, Junichi; Morley, N.B.; Abdou, M.A.; Satake, Shin-ichi; Yokomine, Takehiko

    2007-01-01

    Experimental studies of MHD turbulent pipe flow of Flibe simulant fluid have been conducted as a part of US-Japan JUPITER-II collaboration. Flibe is considered as a promising candidate for coolant and tritium breeder in some fusion reactor design concepts because of its low electrical conductivity compared to liquid metals. This reduces the MHD pressure drop to a negligible level; however, turbulence can be significantly suppressed by MHD effects in fusion reactor magnetic field conditions. Heat transfer in the Flibe coolant is characterized by its high Prandtl number. In order to achieve sufficient heat transfer and to prevent localized heat concentration in a high Prandtl number coolant, high turbulence is essential. Even though accurate prediction of the MHD effects on heat transfer for high Prandtl number fluids in the fusion environment is very important, reliable data is not available. In these experiments, an aqueous solution of potassium hydroxide is used as a simulant fluid for Flibe. This paper presents the experimental results obtained by flow field measurement using particle image velocimetry (PIV) technique. The PIV measurements provide 2-dimensional 2-velocity component information on the MHD flow field. The test section is a circular pipe with 89 mm inner diameter and 7.0 m in length, which is 79 times pipe diameter. This relatively large diameter pipe is selected in order to maximize the MHD effects measured by Hartmann number (Ha=BL(sigma/mu)1/2), and to allow better resolution of the flow in the near-wall region. The test section is placed under maximum 2 Tesla magnetic fields for 1.4m of the axial length. The hydrodynamic developing length under the magnetic field is expected to be 1.2 m. In order to apply PIV technique in the magnetic field condition, special optical devices and visualization sections were created. PIV measurements are performed for Re = 11600 with variable Hartmann numbers. The turbulence statistics of the MHD turbulent flow

  10. A Novel Quasi-3D Method for Cascade Flow Considering Axial Velocity Density Ratio

    Science.gov (United States)

    Chen, Zhiqiang; Zhou, Ming; Xu, Quanyong; Huang, Xudong

    2018-03-01

    A novel quasi-3D Computational Fluid Dynamics (CFD) method of mid-span flow simulation for compressor cascades is proposed. Two dimension (2D) Reynolds-Averaged Navier-Stokes (RANS) method is shown facing challenge in predicting mid-span flow with a unity Axial Velocity Density Ratio (AVDR). Three dimension (3D) RANS solution also shows distinct discrepancies if the AVDR is not predicted correctly. In this paper, 2D and 3D CFD results discrepancies are analyzed and a novel quasi-3D CFD method is proposed. The new quasi-3D model is derived by reducing 3D RANS Finite Volume Method (FVM) discretization over a one-spanwise-layer structured mesh cell. The sidewall effect is considered by two parts. The first part is explicit interface fluxes of mass, momentum and energy as well as turbulence. The second part is a cell boundary scaling factor representing sidewall boundary layer contraction. The performance of the novel quasi-3D method is validated on mid-span pressure distribution, pressure loss and shock prediction of two typical cascades. The results show good agreement with the experiment data on cascade SJ301-20 and cascade AC6-10 at all test condition. The proposed quasi-3D method shows superior accuracy over traditional 2D RANS method and 3D RANS method in performance prediction of compressor cascade.

  11. Study of ultrasonic propagation through vortices for acoustic monitoring of high-temperature and turbulent fluid

    International Nuclear Information System (INIS)

    Massacret, Nicolas; Moysan, Joseph; Ploix, Marie-Aude; Chaouch, Naim; Jeannot, Jean-Philippe

    2016-01-01

    Ultrasonic monitoring in high temperature fluids with turbulences requires the knowledge of wave propagation in such media and the development of simulation tools. Applications could be the monitoring of sodium-cooled fast reactors. The objectives are mainly acoustic telemetry and thermometry, which involve the propagation of ultrasounds in turbulent and heated sodium flows. We developed a ray-tracing model to simulate the wave propagation and to determine wave deviations and delays due to an inhomogeneous medium. In previous work we demonstrated the sensitivity of ultrasounds to temperature gradients in liquid sodium. To complete that study, we need to investigate the sensitivity of ultrasounds to vortices created in a moving fluid. We designed a specific experimental setup called IKHAR (Instabilities of Kelvin-Helmholtz for Acoustic Research) in order to assess the validity of the ray-tracing model and the potential of ultrasounds for monitoring such fluid. In this experiment, Von Karman instabilities were created in a flow of water. Fluid temperature was homogeneous in our experimental setup. Through a careful choice of the parameters, periodic vortices were generated. The experiment was also simulated using Comsol registered to allow discussion about repeatability. The throughtransmission method was used to measure wave delays due to the vortices. Arrays of transducers were used to measure time of flight variations of several nanoseconds with a high spatial resolution. Results were similar to simulation results. They demonstrate that beam delays due to vortices can be measured and confirm the potential of ultrasounds in monitoring very inhomogeneous fluid media such as liquid sodium used as coolant fluid in nuclear fast reactors.

  12. The influence of heat transfer and the variations of the properties of the fluids in turbulent flow in tube

    International Nuclear Information System (INIS)

    Menon, G.J.; Sielwa, J.T.

    1977-01-01

    The study is presented of the effects of heat transfer and the variations of the properties of the fluids in turbulent flow in tube. One model for the turbulent Eddy viscosity and termal Eddy diffusivity developed by CEBECI; NA and HABIB was utilized. The theoretical results agree well with experimental results [pt

  13. Power laws and inverse motion modelling: application to turbulence measurements from satellite images

    Directory of Open Access Journals (Sweden)

    Pablo D. Mininni

    2012-01-01

    Full Text Available In the context of tackling the ill-posed inverse problem of motion estimation from image sequences, we propose to introduce prior knowledge on flow regularity given by turbulence statistical models. Prior regularity is formalised using turbulence power laws describing statistically self-similar structure of motion increments across scales. The motion estimation method minimises the error of an image observation model while constraining second-order structure function to behave as a power law within a prescribed range. Thanks to a Bayesian modelling framework, the motion estimation method is able to jointly infer the most likely power law directly from image data. The method is assessed on velocity fields of 2-D or quasi-2-D flows. Estimation accuracy is first evaluated on a synthetic image sequence of homogeneous and isotropic 2-D turbulence. Results obtained with the approach based on physics of fluids outperform state-of-the-art. Then, the method analyses atmospheric turbulence using a real meteorological image sequence. Selecting the most likely power law model enables the recovery of physical quantities, which are of major interest for turbulence atmospheric characterisation. In particular, from meteorological images we are able to estimate energy and enstrophy fluxes of turbulent cascades, which are in agreement with previous in situ measurements.

  14. Magnetospheric Multiscale (MMS) Observation of Plasma Velocity-Space Cascade Processes

    Science.gov (United States)

    Parashar, T. N.; Servidio, S.; Matthaeus, W. H.; Chasapis, A.; Perrone, D.; Valentini, F.; Veltri, P.; Gershman, D. J.; Schwartz, S. J.; Giles, B. L.; Fuselier, S. A.; Phan, T.; Burch, J.

    2017-12-01

    Plasma turbulence is investigated using high-resolution ion velocity distributions, measured by theMagnetospheric Multiscale Mission (MMS) in the Earth's magnetosheath. The particle distributionmanifests large fluctuations, suggesting a cascade-like process in velocity space, invoked by theoristsfor many years. This complex velocity space structure is investigated using a three-dimensional Hermitetransform that reveals a power law distribution of moments. A Kolmogorov approach leads directlyto a range of predictions for this phase-space cascade. The scaling theory is in agreement withobservations, suggesting a new path for the study of plasma turbulence in weakly collisional spaceand astrophysical plasmas.

  15. Modeling of turbulent bubbly flows; Modelisation des ecoulements turbulents a bulles

    Energy Technology Data Exchange (ETDEWEB)

    Bellakhal, Ghazi

    2005-03-15

    The two-phase flows involve interfacial interactions which modify significantly the structure of the mean and fluctuating flow fields. The design of the two-fluid models adapted to industrial flows requires the taking into account of the effect of these interactions in the closure relations adopted. The work developed in this thesis concerns the development of first order two-fluid models deduced by reduction of second order closures. The adopted reasoning, based on the principle of decomposition of the Reynolds stress tensor into two statistically independent contributions turbulent and pseudo-turbulent parts, allows to preserve the physical contents of the second order relations closure. Analysis of the turbulence structure in two basic flows: homogeneous bubbly flows uniform and with a constant shear allows to deduce a formulation of the two-phase turbulent viscosity involving the characteristic scales of bubbly turbulence, as well as an analytical description of modification of the homogeneous turbulence structure induced by the bubbles presence. The Eulerian two-fluid model was then generalized with the case of the inhomogeneous flows with low void fractions. The numerical results obtained by the application of this model integrated in the computer code MELODIF in the case of free sheared turbulent bubbly flow of wake showed a satisfactory agreement with the experimental data and made it possible to analyze the modification of the characteristic scales of such flow by the interfacial interactions. The two-fluid first order model is generalized finally with the case of high void fractions bubbly flows where the hydrodynamic interactions between the bubbles are not negligible any more. (author)

  16. Study on effects of turbulence promoter on fluid mixing in T-junction piping system

    International Nuclear Information System (INIS)

    Nagao, Akihiro; Hibara, Hideki; Ochi, Junji; Muramatsu, Toshiharu

    2004-07-01

    Flows in T-junction piping system with turbulence promoter have been investigated experimentally using flow visualization techniques (the dye injection method) and velocity measurement by LDV. Effects of turbulent promoter on characteristics of fluid mixing and thermal-striping phenomena are examined. From the experiment, following results are obtained. (1) Arch vortex is formed further than the case without promoter in the upstream station and is rapidly transported to the downstream direction. (2) Secondary flow induced in the cross section become stronger and the diffusion of axial momentum is promoted, as the height of turbulence promoter is higher. (3) Main flow deflects towards to the opposite side of branch pipe at the T-junction, as the height of turbulence promoter is higher, and as velocity ratio becomes smaller, and the flow continues to deflect to a considerably downstream station. (4) Velocity fluctuation is observed in the position where the vortex is formed, and it becomes a maximum at z/Dm=2. In the further downstream, velocity fluctuation decreases with the vortex breakdown, and it considerably remains to the downstream. (author)

  17. Electron Fluid Description of Wave-Particle Interactions in Strong Buneman Turbulence

    Science.gov (United States)

    Che, Haihong

    2013-10-01

    To understand the nature of anomalous resistivity in magnetic reconnection, we investigate turbulence-induced momentum transport and energy dissipation associated with electron heating in Buneman instability. Using 3D particle-in-cell simulations, we find that the macroscopic effects generated by wave-particle interactions can be described by a set of electron fluid equations. These equations show that the energy dissipation and momentum transports in Buneman instability are locally quasi-static but globally non-static and irreversible. Turbulence drag dissipates both the bulk energy of electron streams and the associated magnetic energy. The decrease of magnetic field maintains an inductive electric field that re-accelerates electrons. The net loss of streaming energy is converted into electron heat and increases the electron Boltzmann entropy. The growth of self-sustained Buneman waves satisfies a Bernoulli-like equation which relates the turbulence-induced convective momentum transport and thermal momentum transport. Electron trapping and de-trapping drives local momentum transports, while phase mixing converts convective momentum into thermal momentum.These two local momentum transports sustain the Buneman waves and act as the micro-macro link in the anomalous heating process. This research is supported by the NASA Postdoctoral Program at NASA/GSFC administered by Oak Ridge Associated Universities through a contract with NASA.

  18. Toward the Theory of Turbulence in Magnetized Plasmas

    International Nuclear Information System (INIS)

    Boldyrev, Stanislav

    2013-01-01

    The goal of the project was to develop a theory of turbulence in magnetized plasmas at large scales, that is, scales larger than the characteristic plasma microscales (ion gyroscale, ion inertial scale, etc.). Collisions of counter-propagating Alfven packets govern the turbulent cascade of energy toward small scales. It has been established that such an energy cascade is intrinsically anisotropic, in that it predominantly supplies energy to the modes with mostly field-perpendicular wave numbers. The resulting energy spectrum of MHD turbulence, and the structure of the fluctuations were studied both analytically and numerically. A new parallel numerical code was developed for simulating reduced MHD equations driven by an external force. The numerical setting was proposed, where the spectral properties of the force could be varied in order to simulate either strong or weak turbulent regimes. It has been found both analytically and numerically that weak MHD turbulence spontaneously generates a 'condensate', that is, concentration of magnetic and kinetic energy at small kllel)). A related topic that was addressed in the project is turbulent dynamo action, that is, generation of magnetic field in a turbulent flow. We were specifically concentrated on the generation of large-scale magnetic field compared to the scales of the turbulent velocity field. We investigate magnetic field amplification in a turbulent velocity field with nonzero helicity, in the framework of the kinematic Kazantsev-Kraichnan model

  19. Control over multiscale mixing in broadband-forced turbulence

    NARCIS (Netherlands)

    Kuczaj, Arkadiusz K.; Geurts, Bernardus J.

    2008-01-01

    The effects of explicit flow modulation on the dispersion of a passive scalar field are studied. Broadband forcing is applied to homogeneous isotropic turbulence to modulate the energy cascading and alter the kinetic energy spectrum. Consequently, a manipulation of turbulent flow can be achieved

  20. New perspectives on superparameterization for geophysical turbulence

    International Nuclear Information System (INIS)

    Majda, Andrew J.; Grooms, Ian

    2014-01-01

    This is a research expository paper regarding superparameterization, a class of multi-scale numerical methods designed to cope with the intermittent multi-scale effects of inhomogeneous geophysical turbulence where energy often inverse-cascades from the unresolved scales to the large scales through the effects of waves, jets, vortices, and latent heat release from moist processes. Original as well as sparse space–time superparameterization algorithms are discussed for the important case of moist atmospheric convection including the role of multi-scale asymptotic methods in providing self-consistent constraints on superparameterization algorithms and related deterministic and stochastic multi-cloud parameterizations. Test models for the statistical numerical analysis of superparameterization algorithms are discussed both to elucidate the performance of the basic algorithms and to test their potential role in efficient multi-scale data assimilation. The very recent development of grid-free seamless stochastic superparameterization methods for geophysical turbulence appropriate for “eddy-permitting” mesoscale ocean turbulence is presented here including a general formulation and illustrative applications to two-layer quasigeostrophic turbulence, and another difficult test case involving one-dimensional models of dispersive wave turbulence. This last test case has randomly generated solitons as coherent structures which collapse and radiate wave energy back to the larger scales, resulting in strong direct and inverse turbulent energy cascades

  1. Two-fluid turbulence including electron inertia

    Energy Technology Data Exchange (ETDEWEB)

    Andrés, Nahuel, E-mail: nandres@iafe.uba.ar; Gómez, Daniel [Instituto de Astronomía y Física del Espacio, CC. 67, suc. 28, 1428 Buenos Aires (Argentina); Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón I, 1428 Buenos Aires (Argentina); Gonzalez, Carlos; Martin, Luis; Dmitruk, Pablo [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, 1428 Buenos Aires (Argentina)

    2014-12-15

    We present a full two-fluid magnetohydrodynamic (MHD) description for a completely ionized hydrogen plasma, retaining the effects of the Hall current, electron pressure, and electron inertia. According to this description, each plasma species introduces a new spatial scale: the ion inertial length λ{sub i} and the electron inertial length λ{sub e}, which are not present in the traditional MHD description. In the present paper, we seek for possible changes in the energy power spectrum in fully developed turbulent regimes, using numerical simulations of the two-fluid equations in two-and-a-half dimensions. We have been able to reproduce different scaling laws in different spectral ranges, as it has been observed in the solar wind for the magnetic energy spectrum. At the smallest wavenumbers where plain MHD is valid, we obtain an inertial range following a Kolmogorov k{sup −5∕3} law. For intermediate wavenumbers such that λ{sub i}{sup −1}≪k≪λ{sub e}{sup −1}, the spectrum is modified to a k{sup −7∕3} power-law, as has also been obtained for Hall-MHD neglecting electron inertia terms. When electron inertia is retained, a new spectral region given by k>λ{sub e}{sup −1} arises. The power spectrum for magnetic energy in this region is given by a k{sup −11∕3} power law. Finally, when the terms of electron inertia are retained, we study the self-consistent electric field. Our results are discussed and compared with those obtained in the solar wind observations and previous simulations.

  2. Biomimetic structures for fluid drag reduction in laminar and turbulent flows

    International Nuclear Information System (INIS)

    Jung, Yong Chae; Bhushan, Bharat

    2010-01-01

    Biomimetics allows one to mimic nature to develop materials and devices of commercial interest for engineers. Drag reduction in fluid flow is one of the examples found in nature. In this study, nano, micro, and hierarchical structures found in lotus plant surfaces, as well as shark skin replica and a rib patterned surface to simulate shark skin structure were fabricated. Drag reduction efficiency studies on the surfaces were systematically carried out using water flow. An experimental flow channel was used to measure the pressure drop in laminar and turbulent flows, and the trends were explained in terms of the measured and predicted values by using fluid dynamics models. The slip length for various surfaces in laminar flow was also investigated based on the measured pressure drop. For comparison, the pressure drop for various surfaces was also measured using air flow.

  3. Investigation of the influence of turbulence models on the prediction of heat transfer to low Prandtl number fluids

    International Nuclear Information System (INIS)

    Thiele, R.; Ma, W.; Anglart, H.

    2011-01-01

    Despite many advances in computational fluid dynamics (CFD), heat transfer modeling and validation of code for liquid metal flows needs to be improved. This contribution aims to provide validation of several turbulence models implemented in OpenFOAM. 6 different low Reynolds number and 3 high Reynolds number turbulence models have been validated against experimental data for 3 different Reynolds numbers. The results show that most models are able to predict the temperature profile tendencies and that especially the k-ω-SST by Menter has good predictive capabilities. However, all turbulence models show deteriorating capabilities with decreasing Reynolds numbers. (author)

  4. Study of Variable Turbulent Prandtl Number Model for Heat Transfer to Supercritical Fluids in Vertical Tubes

    Science.gov (United States)

    Tian, Ran; Dai, Xiaoye; Wang, Dabiao; Shi, Lin

    2018-06-01

    In order to improve the prediction performance of the numerical simulations for heat transfer of supercritical pressure fluids, a variable turbulent Prandtl number (Prt) model for vertical upward flow at supercritical pressures was developed in this study. The effects of Prt on the numerical simulation were analyzed, especially for the heat transfer deterioration conditions. Based on the analyses, the turbulent Prandtl number was modeled as a function of the turbulent viscosity ratio and molecular Prandtl number. The model was evaluated using experimental heat transfer data of CO2, water and Freon. The wall temperatures, including the heat transfer deterioration cases, were more accurately predicted by this model than by traditional numerical calculations with a constant Prt. By analyzing the predicted results with and without the variable Prt model, it was found that the predicted velocity distribution and turbulent mixing characteristics with the variable Prt model are quite different from that predicted by a constant Prt. When heat transfer deterioration occurs, the radial velocity profile deviates from the log-law profile and the restrained turbulent mixing then leads to the deteriorated heat transfer.

  5. Turbulent intermittent structure in non-homogeneous non-local flows

    Science.gov (United States)

    Mahjoub, O. B.; Castilla, R.; Vindel, J. M.; Redondo, J. M.

    2010-05-01

    estimated from two characteristic parameters(D,b). For unstable or neutral situations, it is possible to find values for these parameters that represent the empirical scaling exponents D and b obtained from [1]. When D increases, the order smaller than 3 relative scaling exponents also increases (but for orders higher than 3, they decrease) linearly. On the contrary, for a certain value of D, when b increases the behavior of the relative scaling exponents is the opposite and non-linear. [1]Ben-Mahjoub O., Babiano A. y Redondo J.M. Velocity structure and Extended Self Similarity in nonhomogeneous Turbulent Jets and Wakes. Journal of flow turbulence and combustion. 59 , 299-313. 1998. [2]Ben-Mahjoub O., Redondo J.M., and R. Alami. Turbulent Structure Functions in Geophysical Flows, Rapp. Comm. int. Mer Medit., 35, 126-127. 1998 [3]Babiano, A., Dubrulle, B., Frick, P. Some properties of two-dimensional inverse energy cascade dynamics, Phys. Rev. E. 55, 2693, 1997. [4]Vindel J.M., Yague C. and J.M. Redondo, Structure function analysis and intermittency in the ABL, NonLin. Proc. Geophys. 15, 6. 915-929. 2009. [5]Cuxart, J., Yagüe, C., Morales, G., Terradellas, E., Orbe, J., Calvo, J., Fernández, A., Soler, M. R., Infante, C., Buenestado, P., Espinalt, A., Joergensen, H. E., Rees, J. M., Vila, J., Redondo, J. M., Cantalapiedra, I. R., Conangla L., Bound-Layer Meteor. 96, 337-370 2000. [6]Rodríguez, A., Sánchez-Arcilla, A., Redondo, J. M., Mosso, C.: Macroturbulence measurements with electromagnetic and ultrasonic sensors: a comparison under high-turbulent flows, Experiments in Fluids, 27, 31-42. 1999.

  6. Numerical Study of Correlation of Fluid Particle Acceleration and Turbulence Intensity in Swirling Flow

    Directory of Open Access Journals (Sweden)

    Nan Gui

    2015-01-01

    Full Text Available Numerical investigation of correlation between the fluid particle acceleration and the intensity of turbulence in swirling flows at a large Reynolds number is carried out via direct numerical simulation. A weak power-law form correlation ur.m.sE~C(aLφ between the Lagrangian acceleration and the Eulerian turbulence intensity is derived. It is found that the increase of the swirl level leads to the increase of the exponent φ and the trajectory-conditioned correlation coefficient ρ(aL,uE and results in a weak power-law augmentation of the acceleration intermittency. The trajectory-conditioned convection of turbulence fluctuation in the Eulerian viewpoint is generally linearly proportional to the fluctuation of Lagrangian accelerations, indicating a weak but clear relation between the Lagrangian intermittency and Eulerian intermittency effects. Moreover, except the case with vortex breakdown, the weak linear dependency is maintained when the swirl levels change, only with the coefficient of slope varied.

  7. Turbulence, Magnetic Reconnection in Turbulent Fluids and Energetic Particle Acceleration

    Science.gov (United States)

    Lazarian, A.; Vlahos, L.; Kowal, G.; Yan, H.; Beresnyak, A.; de Gouveia Dal Pino, E. M.

    2012-11-01

    Turbulence is ubiquitous in astrophysics. It radically changes many astrophysical phenomena, in particular, the propagation and acceleration of cosmic rays. We present the modern understanding of compressible magnetohydrodynamic (MHD) turbulence, in particular its decomposition into Alfvén, slow and fast modes, discuss the density structure of turbulent subsonic and supersonic media, as well as other relevant regimes of astrophysical turbulence. All this information is essential for understanding the energetic particle acceleration that we discuss further in the review. For instance, we show how fast and slow modes accelerate energetic particles through the second order Fermi acceleration, while density fluctuations generate magnetic fields in pre-shock regions enabling the first order Fermi acceleration of high energy cosmic rays. Very importantly, however, the first order Fermi cosmic ray acceleration is also possible in sites of magnetic reconnection. In the presence of turbulence this reconnection gets fast and we present numerical evidence supporting the predictions of the Lazarian and Vishniac (Astrophys. J. 517:700-718, 1999) model of fast reconnection. The efficiency of this process suggests that magnetic reconnection can release substantial amounts of energy in short periods of time. As the particle tracing numerical simulations show that the particles can be efficiently accelerated during the reconnection, we argue that the process of magnetic reconnection may be much more important for particle acceleration than it is currently accepted. In particular, we discuss the acceleration arising from reconnection as a possible origin of the anomalous cosmic rays measured by Voyagers as well as the origin cosmic ray excess in the direction of Heliotail.

  8. Hydromagnetic turbulence in the direct interaction approximation

    International Nuclear Information System (INIS)

    Nagarajan, S.

    1975-01-01

    The dissertation is concerned with the nature of turbulence in a medium with large electrical conductivity. Three distinct though inter-related questions are asked. Firstly, the evolution of a weak, random initial magnetic field in a highly conducting, isotropically turbulent fluid is discussed. This was first discussed in the paper 'Growth of Turbulent Magnetic Fields' by Kraichnan and Nagargian. The Physics of Fluids, volume 10, number 4, 1967. Secondly, the direct interaction approximation for hydromagnetic turbulence maintained by stationary, isotropic, random stirring forces is formulated in the wave-number-frequency domain. Thirdly, the dynamical evolution of a weak, random, magnetic excitation in a turbulent electrically conducting fluid is examined under varying kinematic conditions. (G.T.H.)

  9. Magnetic Helicity Conservation and Inverse Energy Cascade in Electron Magnetohydrodynamic Wave Packets

    International Nuclear Information System (INIS)

    Cho, Jungyeon

    2011-01-01

    Electron magnetohydrodynamics (EMHD) provides a fluidlike description of small-scale magnetized plasmas. An EMHD wave propagates along magnetic field lines. The direction of propagation can be either parallel or antiparallel to the magnetic field lines. We numerically study propagation of three-dimensional (3D) EMHD wave packets moving in one direction. We obtain two major results. (1) Unlike its magnetohydrodynamic (MHD) counterpart, an EMHD wave packet is dispersive. Because of this, EMHD wave packets traveling in one direction create opposite-traveling wave packets via self-interaction and cascade energy to smaller scales. (2) EMHD wave packets traveling in one direction clearly exhibit inverse energy cascade. We find that the latter is due to conservation of magnetic helicity. We compare inverse energy cascade in 3D EMHD turbulence and two-dimensional (2D) hydrodynamic turbulence.

  10. Magnetic helicity conservation and inverse energy cascade in electron magnetohydrodynamic wave packets.

    Science.gov (United States)

    Cho, Jungyeon

    2011-05-13

    Electron magnetohydrodynamics (EMHD) provides a fluidlike description of small-scale magnetized plasmas. An EMHD wave propagates along magnetic field lines. The direction of propagation can be either parallel or antiparallel to the magnetic field lines. We numerically study propagation of three-dimensional (3D) EMHD wave packets moving in one direction. We obtain two major results. (1) Unlike its magnetohydrodynamic (MHD) counterpart, an EMHD wave packet is dispersive. Because of this, EMHD wave packets traveling in one direction create opposite-traveling wave packets via self-interaction and cascade energy to smaller scales. (2) EMHD wave packets traveling in one direction clearly exhibit inverse energy cascade. We find that the latter is due to conservation of magnetic helicity. We compare inverse energy cascade in 3D EMHD turbulence and two-dimensional (2D) hydrodynamic turbulence.

  11. Sediment and plankton lift off recirculations in strong synthetic turbulence (KS)

    Science.gov (United States)

    Redondo, Jose M.; Castilla, Roberto; Sekula, Emil; Furmanek, Petr

    2014-05-01

    equilibrium (or not) cascade may lead to more physically realistic (and understandable) models to paramerize sub-grid scaling. Care has to be taken when interpreting the direct 3D Kolmogorov cascade and the Inverse 2D Kraichnan Cascade. It is very interesting to use ESS and the third order structure functions (p=3) to investigate the scale to scale transfer of energy (and enstrophy) A parameter space based on Richardson numbers, Rossby numbers and Reynolds Numbers can be used to determine the dominant instability with different intermittencies in a complex full stratified-rotating flow. Intermittency diminishes as spectral slope increases between 5/3 (Kolmogorov's local energy balance) and 3 (Kraichnan's local enstrophy balance) like near a boundary. (Rodriguez et al 1999, Redondo et al. 1993)(Gabaldon and Redondo 2001) Helicity local balance leads to a 7/3 Energy spectra that may be strongly affected by intermittency. It should also depend on the length scale. So in K62, Kolmogorov introduced the notion of intermittency, and he would transpose the universality character of his previous constant to the universality of several parameters, the intermittence which is generalized to higher orders p, μ(p). We know that μ is not universal, as it varies from approximately 0.2 to 0.7, according to different experiments. The new energy spectra, E(k,p), has a correction term in its power: -5/3 becomes -5/3-μ(p)/9, thus, the global form of the spectra is E(k) ~ k -β(p), The different simulations produce very different spatial distributions of the bio-tracers. Gabaldon J., Redondo J.M. (2009) Plankton vertical distribution in the ocean, CUM, XTDFTG in Advances in Environmental Turbulence. UPC, Barcelona. 212. Kraichnan, R.H.: (1966), 'Dispersion of particle pairs in homogeneous turbulence', Physics Fluids, 9, 1728. Kolmogorov, A. N. (1941). The local structure of turbulence in Incompressible viscous fluid at very large Reynolds numbers. C. R. Acad. Sci. URSS 30:301. Richardson, L. F

  12. MHD turbulence in the solar wind: evolution and anisotropy

    International Nuclear Information System (INIS)

    Horbury, T. S.; Forman, M. A.; Oughton, S.

    2005-01-01

    Spacecraft measurements in the solar wind offer the opportunity to study magnetohydrodynamic turbulence in a collisionless plasma in great detail. We review some of the key results of the study of this medium: the presence of large amplitude Alfven waves propagating predominantly away from the Sun; the existence of an active turbulent cascade; and intermittency similar to that in neutral fluids. The presence of a magnetic field leads to anisotropy of the fluctuations, which are predominantly perpendicular to this direction, as well as anisotropy of the spectrum. Some models suggest that MHD turbulence can evolve to a state with power predominantly in wave vectors either parallel to the magnetic field (slab fluctuations) or approximately perpendicular to it (2D). We present results of a new, wavelet-based analysis of magnetic field fluctuations in the solar wind, and demonstrate that the 2D component has a spectral index near the Kolmogorov value of 5/3, while slab fluctuations have a spectral index near 2. We also estimate the relative power levels in slab and 2D fluctuations, as well as the level of compressive fluctuations. Deviations of the data from the simple slab/2D model suggest the presence of power in intermediate directions and we compare our data with critical balance models. (Author)

  13. Density Effects on Post-shock Turbulence Structure

    Science.gov (United States)

    Tian, Yifeng; Jaberi, Farhad; Livescu, Daniel; Li, Zhaorui; Michigan State University Collaboration; Los Alamos National Laboratory Collaboration; Texas A&M University-Corpus Christi Collaboration

    2017-11-01

    The effects of density variations due to mixture composition on post-shock turbulence structure are studied using turbulence-resolving shock-capturing simulations. This work extends the canonical Shock-Turbulence Interaction (STI) problem to involve significant variable density effects. The numerical method has been verified using a series of grid and LIA convergence tests, and is used to generate accurate post-shock turbulence data for a detailed flow study. Density effects on post-shock turbulent statistics are shown to be significant, leading to an increased amplification of turbulent kinetic energy (TKE). Eulerian and Lagrangian analyses show that the increase in the post-shock correlation between rotation and strain is weakened in the case with significant density variations (referred to as the ``multi-fluid'' case). Similar to previous single-fluid results and LIA predictions, the shock wave significantly changes the topology of the turbulent structures, exhibiting a symmetrization of the joint PDF of second and third invariant of the deviatoric part of velocity gradient tensor. In the multi-fluid case, this trend is more significant and mainly manifested in the heavy fluid regions. Lagrangian data are also used to study the evolution of turbulence structure away from the shock wave and assess the accuracy of Lagrangian dynamical models.

  14. Using FlowLab, an educational computational fluid dynamics tool, to perform a comparative study of turbulence models

    International Nuclear Information System (INIS)

    Parihar, A.; Kulkarni, A.; Stern, F.; Xing, T.; Moeykens, S.

    2005-01-01

    Flow over an Ahmed body is a key benchmark case for validating the complex turbulent flow field around vehicles. In spite of the simple geometry, the flow field around an Ahmed body retains critical features of real, external vehicular flow. The present study is an attempt to implement such a real life example into the course curriculum for undergraduate engineers. FlowLab, which is a Computational Fluid Dynamics (CFD) tool developed by Fluent Inc. for use in engineering education, allows students to conduct interactive application studies. This paper presents a synopsis of FlowLab, a description of one FlowLab exercise, and an overview of the educational experience gained by students through using FlowLab, which is understood through student surveys and examinations. FlowLab-based CFD exercises were implemented into 57:020 Mechanics of Fluids and Transport Processes and 58:160 Intermediate Mechanics of Fluids courses at the University of Iowa in the fall of 2004, although this report focuses only on experiences with the Ahmed body exercise, which was used only in the intermediate-level fluids class, 58:160. This exercise was developed under National Science Foundation funding by the authors of this paper. The focus of this study does not include validating the various turbulence models used for the Ahmed body simulation, because a two-dimensional simplification was applied. With the two-dimensional simplification, students may setup, run, and post process this model in a 50 minute class period using a single-CPU PC, as required for the 58:160 class at the University of Iowa. It is educational for students to understand the implication of a two- dimensional approximation for essentially a three-dimensional flow field, along with the consequent variation in both qualitative and quantitative results. Additionally, through this exercise, students may realize that the choice of the respective turbulence model will affect simulation prediction. (author)

  15. Turbulence in the solar wind

    CERN Document Server

    Bruno, Roberto

    2016-01-01

    This book provides an overview of solar wind turbulence from both the theoretical and observational perspective. It argues that the interplanetary medium offers the best opportunity to directly study turbulent fluctuations in collisionless plasmas. In fact, during expansion, the solar wind evolves towards a state characterized by large-amplitude fluctuations in all observed parameters, which resembles, at least at large scales, the well-known hydrodynamic turbulence. This text starts with historical references to past observations and experiments on turbulent flows. It then introduces the Navier-Stokes equations for a magnetized plasma whose low-frequency turbulence evolution is described within the framework of the MHD approximation. It also considers the scaling of plasma and magnetic field fluctuations and the study of nonlinear energy cascades within the same framework. It reports observations of turbulence in the ecliptic and at high latitude, treating Alfvénic and compressive fluctuations separately in...

  16. The Renormalization-Group Method in the Problem on Calculation of the Spectral Energy Density of Fluid Turbulence

    Science.gov (United States)

    Teodorovich, E. V.

    2018-03-01

    In order to find the shape of energy spectrum within the framework of the model of stationary homogeneous isotropic turbulence, the renormalization-group equations, which reflect the Markovian nature of the mechanism of energy transfer along the wavenumber spectrum, are used in addition to the dimensional considerations and the energy balance equation. For the spectrum, the formula depends on three parameters, namely, the wavenumber, which determines the upper boundary of the range of the turbulent energy production, the spectral flux through this boundary, and the fluid kinematic viscosity.

  17. Fluid-structure coupling in the guide vanes cascade of a pump-turbine scale model

    International Nuclear Information System (INIS)

    Roth, S; Hasmatuchi, V; Botero, F; Farhat, M; Avellan, F

    2010-01-01

    The present study concerns fluid-structure coupling phenomena occurring in a guide vane cascade of a pump-turbine scale model placed in the EPFL PF3 test rig. An advanced instrument set is used to monitor both vibrating structures and the surrounding flow. The paper highlights the interaction between vibrating guide vanes and the flow behavior. The pressure fluctuations in the stay vanes region are found to be strongly influenced by the amplitude of the vibrating guide vanes. Moreover, the flow induces different hydrodynamic damping on the vibrating guide vanes depending on the operating point of the pump-turbine.

  18. Fluid-structure coupling in the guide vanes cascade of a pump-turbine scale model

    Science.gov (United States)

    Roth, S.; Hasmatuchi, V.; Botero, F.; Farhat, M.; Avellan, F.

    2010-08-01

    The present study concerns fluid-structure coupling phenomena occurring in a guide vane cascade of a pump-turbine scale model placed in the EPFL PF3 test rig. An advanced instrument set is used to monitor both vibrating structures and the surrounding flow. The paper highlights the interaction between vibrating guide vanes and the flow behavior. The pressure fluctuations in the stay vanes region are found to be strongly influenced by the amplitude of the vibrating guide vanes. Moreover, the flow induces different hydrodynamic damping on the vibrating guide vanes depending on the operating point of the pump-turbine.

  19. Magnetohydrodynamics turbulence: An astronomical perspective

    Indian Academy of Sciences (India)

    MHD turbulence in the solar wind are described in §6, and a theory of ..... on plasmas are very difficult to perform, and so experimental verification was not forth- .... checks of self-consistency regarding the assumed weakness of the cascade.

  20. CFD-based shape optimization of steam turbine blade cascade in transonic two phase flows

    International Nuclear Information System (INIS)

    Noori Rahim Abadi, S.M.A.; Ahmadpour, A.; Abadi, S.M.N.R.; Meyer, J.P.

    2017-01-01

    Highlights: • CFD-based shape optimization of a nozzle and a turbine blade regarding nucleating steam flow is performed. • Nucleation rate and droplet radius are the best suited objective functions for the optimization process. • Maximum 34% reduction in entropy generation rate is reported for turbine cascade. • A maximum 10% reduction in Baumann factor and a maximum 2.1% increase in efficiency is achieved for a turbine cascade. - Abstract: In this study CFD-based shape optimization of a 3D nozzle and a 2D turbine blade cascade is undertaken in the presence of non-equilibrium condensation within the considered flow channels. A two-fluid formulation is used for the simulation of unsteady, turbulent, supersonic and compressible flow of wet steam accounting for relevant phase interaction between nucleated liquid droplets and continuous vapor phase. An in-house CFD code is developed to solve the governing equations of the two phase flow and was validated against available experimental data. Optimization is carried out in respect to various objective functions. It is shown that nucleation rate and maximum droplet radius are the best suited target functions for reducing thermodynamic and aerodynamic losses caused by the spontaneous nucleation. The maximum increase of 2.1% in turbine blade efficiency is achieved through shape optimization process.

  1. Computational Fluid Dynamics

    International Nuclear Information System (INIS)

    Myeong, Hyeon Guk

    1999-06-01

    This book deals with computational fluid dynamics with basic and history of numerical fluid dynamics, introduction of finite volume method using one-dimensional heat conduction equation, solution of two-dimensional heat conduction equation, solution of Navier-Stokes equation, fluid with heat transport, turbulent flow and turbulent model, Navier-Stokes solution by generalized coordinate system such as coordinate conversion, conversion of basic equation, program and example of calculation, application of abnormal problem and high speed solution of numerical fluid dynamics.

  2. Gyrofluid modeling and phenomenology of low-βe Alfvén wave turbulence

    Science.gov (United States)

    Passot, T.; Sulem, P. L.; Tassi, E.

    2018-04-01

    A two-field reduced gyrofluid model including electron inertia, ion finite Larmor radius corrections, and parallel magnetic field fluctuations is derived from the model of Brizard [Brizard, Phys. Fluids B 4, 1213 (1992)]. It assumes low βe, where βe indicates the ratio between the equilibrium electron pressure and the magnetic pressure exerted by a strong uniform magnetic guide field, but permits an arbitrary ion-to-electron equilibrium temperature ratio. It is shown to have a noncanonical Hamiltonian structure and provides a convenient framework for studying kinetic Alfvén wave turbulence, from magnetohydrodynamics to sub-de scales (where de holds for the electron skin depth). Magnetic energy spectra are phenomenologically determined within energy and generalized cross-helicity cascades in the perpendicular spectral plane. Arguments based on absolute statistical equilibria are used to predict the direction of the transfers, pointing out that, within the sub-ion range, the generalized cross-helicity could display an inverse cascade if injected at small scales, for example by reconnection processes.

  3. The flow analysis of supercavitating cascade by linear theory

    Energy Technology Data Exchange (ETDEWEB)

    Park, E.T. [Sung Kyun Kwan Univ., Seoul (Korea, Republic of); Hwang, Y. [Seoul National Univ., Seoul (Korea, Republic of)

    1996-06-01

    In order to reduce damages due to cavitation effects and to improve performance of fluid machinery, supercavitation around the cascade and the hydraulic characteristics of supercavitating cascade must be analyzed accurately. And the study on the effects of cavitation on fluid machinery and analysis on the performances of supercavitating hydrofoil through various elements governing flow field are critically important. In this study comparison of experiment results with the computed results of linear theory using singularity method was obtainable. Specially singularity points like sources and vortexes on hydrofoil and freestreamline were distributed to analyze two dimensional flow field of supercavitating cascade, and governing equations of flow field were derived and hydraulic characteristics of cascade were calculated by numerical analysis of the governing equations. 7 refs., 6 figs.

  4. Turbulent energy generated by accelerations and shocks

    International Nuclear Information System (INIS)

    Mikaelian, K.O.

    1986-01-01

    The turbulent energy generated at the interface between two fluids undergoing a constant acceleration or a shock is calculated. Assuming linear density profiles in the mixed region we find E/sub turbulent//E/sub directed/ = 2.3A 2 % (constant acceleration) and 9.3A 2 % (shock), where A is the Atwood number. Diffusion models predict somewhat less turbulent energy and a density profile with a tail extending into the lower density fluid. Eddy sizes are approximately 27% (constant acceleration) and 17% (shock) of the mixing depth into the heavier fluid. 6 refs., 3 figs

  5. Nonlinear dynamics of a flexible rotor supported by turbulent journal bearings with couple stress fluid

    International Nuclear Information System (INIS)

    Lo, C.-Y.; Chang-Jian, C.-W.

    2008-01-01

    This study presents a dynamic analysis of a rotor supported by two turbulent flow model journal bearings and lubricated with couple stress fluid under nonlinear suspension. The dynamics of the rotor center and bearing center is studied. The dynamic equations are solved using the Runge-Kutta method. The analysis methods employed in this study is inclusive of the dynamic trajectories of the rotor center and bearing center, power spectra, Poincare maps and bifurcation diagrams. The maximum Lyapunov exponent analysis is also used to identify the onset of chaotic motion. The results show that the values of dimensionless parameters l* strongly influence dynamic motions of bearing and rotor centre. It is found that couple stress fluid improve the stability of the system when l* > 0.4 even if the flow of this system is turbulent. We also demonstrated that the dimensionless rotational speed ratios s and the dimensionless unbalance parameter β are also significant system parameters. The modeling results thus obtained by using the method proposed in this paper can be employed to predict the stability of the rotor-bearing system and the undesirable behavior of the rotor and bearing center can be avoided

  6. Quasi-two-dimensional turbulence in shallow fluid layers: the role of bottom friction and fluid layer depth.

    Science.gov (United States)

    Clercx, H J H; van Heijst, G J F; Zoeteweij, M L

    2003-06-01

    The role of bottom friction and the fluid layer depth in numerical simulations and experiments of freely decaying quasi-two-dimensional turbulence in shallow fluid layers has been investigated. In particular, the power-law behavior of the compensated kinetic energy E0(t)=E(t)e(2lambda t), with E(t) the total kinetic energy of the flow and lambda the bottom-drag coefficient, and the compensated enstrophy Omega(0)(t)=Omega(t)e(2lambda t), with Omega(t) the total enstrophy of the flow, have been studied. We also report on the scaling exponents of the ratio Omega(t)/E(t), which is considered as a measure of the characteristic length scale in the flow, for different values of lambda. The numerical simulations on square bounded domains with no-slip boundaries revealed bottom-friction independent power-law exponents for E0(t), Omega(0)(t), and Omega(t)/E(t). By applying a discrete wavelet packet transform technique to the numerical data, we have been able to compute the power-law exponents of the average number density of vortices rho(t), the average vortex radius a(t), the mean vortex separation r(t), and the averaged normalized vorticity extremum omega(ext)(t)/square root E(t). These decay exponents proved to be independent of the bottom friction as well. In the experiments we have varied the fluid layer depth, and it was found that the decay exponents of E0(t), Omega(0)(t), Omega(t)/E(t), and omega(ext)(t)/square root E(t) are virtually independent of the fluid layer depth. The experimental data for rho(t) and a(t) are less conclusive; power-law exponents obtained for small fluid layer depths agree with those from previously reported experiments, but significantly larger power-law exponents are found for experiments with larger fluid layer depths.

  7. Comparison of turbulent particle dispersion models in turbulent shear flows

    Directory of Open Access Journals (Sweden)

    S. Laín

    2007-09-01

    Full Text Available This work compares the performance of two Lagrangian turbulent particle dispersion models: the standard model (e.g., that presented in Sommerfeld et al. (1993, in which the fluctuating fluid velocity experienced by the particle is composed of two components, one correlated with the previous time step and a second one randomly sampled from a Wiener process, and the model proposed by Minier and Peirano (2001, which is based on the PDF approach and performs closure at the level of acceleration of the fluid experienced by the particle. Formulation of a Langevin equation model for the increments of fluid velocity seen by the particle allows capturing some underlying physics of particle dispersion in general turbulent flows while keeping the mathematical manipulation of the stochastic model simple, thereby avoiding some pitfalls and simplifying the derivation of macroscopic relations. The performance of both dispersion models is tested in the configurations of grid-generated turbulence (Wells and Stock (1983 experiments, simple shear flow (Hyland et al., 1999 and confined axisymmetric jet flow laden with solids (Hishida and Maeda (1987 experiments.

  8. Comments on ''theory of dissipative density-gradient-driven turbulence in the tokamak edge'' [Phys. Fluids 28, 1419 (1985)

    International Nuclear Information System (INIS)

    Krommes, J.A.

    1985-11-01

    The author critiques the model of tokamak edge turbulence by P.W. Terry and P.H. Diamond (Phys. Fluids 28, 1419, 1985). The critique includes a discussion of the physical basis, consistency and quantitative accuracy of the Terry-Diamond model. 19 refs

  9. Containerless Ripple Turbulence

    Science.gov (United States)

    Putterman, Seth; Wright, William; Duval, Walter; Panzarella, Charles

    2002-11-01

    One of the longest standing unsolved problems in physics relates to the behavior of fluids that are driven far from equilibrium such as occurs when they become turbulent due to fast flow through a grid or tidal motions. In turbulent flows the distribution of vortex energy as a function of the inverse length scale [or wavenumber 'k'] of motion is proportional to 1/k5/3 which is the celebrated law of Kolmogorov. Although this law gives a good description of the average motion, fluctuations around the average are huge. This stands in contrast with thermally activated motion where large fluctuations around thermal equilibrium are highly unfavorable. The problem of turbulence is the problem of understanding why large fluctuations are so prevalent which is also called the problem of 'intermittency'. Turbulence is a remarkable problem in that its solution sits simultaneously at the forefront of physics, mathematics, engineering and computer science. A recent conference [March 2002] on 'Statistical Hydrodynamics' organized by the Los Alamos Laboratory Center for Nonlinear Studies brought together researchers in all of these fields. Although turbulence is generally thought to be described by the Navier-Stokes Equations of fluid mechanics the solution as well as its existence has eluded researchers for over 100 years. In fact proof of the existence of such a solution qualifies for a 1 M millennium prize. As part of our NASA funded research we have proposed building a bridge between vortex turbulence and wave turbulence. The latter occurs when high amplitude waves of various wavelengths are allowed to mutually interact in a fluid. In particular we have proposed measuring the interaction of ripples [capillary waves] that run around on the surface of a fluid sphere suspended in a microgravity environment. The problem of ripple turbulence poses similar mathematical challenges to the problem of vortex turbulence. The waves can have a high amplitude and a strong nonlinear

  10. Containerless Ripple Turbulence

    Science.gov (United States)

    Putterman, Seth; Wright, William; Duval, Walter; Panzarella, Charles

    2002-01-01

    One of the longest standing unsolved problems in physics relates to the behavior of fluids that are driven far from equilibrium such as occurs when they become turbulent due to fast flow through a grid or tidal motions. In turbulent flows the distribution of vortex energy as a function of the inverse length scale [or wavenumber 'k'] of motion is proportional to 1/k(sup 5/3) which is the celebrated law of Kolmogorov. Although this law gives a good description of the average motion, fluctuations around the average are huge. This stands in contrast with thermally activated motion where large fluctuations around thermal equilibrium are highly unfavorable. The problem of turbulence is the problem of understanding why large fluctuations are so prevalent which is also called the problem of 'intermittency'. Turbulence is a remarkable problem in that its solution sits simultaneously at the forefront of physics, mathematics, engineering and computer science. A recent conference [March 2002] on 'Statistical Hydrodynamics' organized by the Los Alamos Laboratory Center for Nonlinear Studies brought together researchers in all of these fields. Although turbulence is generally thought to be described by the Navier-Stokes Equations of fluid mechanics the solution as well as its existence has eluded researchers for over 100 years. In fact proof of the existence of such a solution qualifies for a 1 M$ millennium prize. As part of our NASA funded research we have proposed building a bridge between vortex turbulence and wave turbulence. The latter occurs when high amplitude waves of various wavelengths are allowed to mutually interact in a fluid. In particular we have proposed measuring the interaction of ripples [capillary waves] that run around on the surface of a fluid sphere suspended in a microgravity environment. The problem of ripple turbulence poses similar mathematical challenges to the problem of vortex turbulence. The waves can have a high amplitude and a strong nonlinear

  11. Multiplicative Process in Turbulent Velocity Statistics: A Simplified Analysis

    Science.gov (United States)

    Chillà, F.; Peinke, J.; Castaing, B.

    1996-04-01

    A lot of models in turbulence links the energy cascade process and intermittency, the characteristic of which being the shape evolution of the probability density functions (pdf) for longitudinal velocity increments. Using recent models and experimental results, we show that the flatness factor of these pdf gives a simple and direct estimate for what is called the deepness of the cascade. We analyse in this way the published data of a Direct Numerical Simulation and show that the deepness of the cascade presents the same Reynolds number dependence as in laboratory experiments. Plusieurs modèles de turbulence relient la cascade d'énergie et l'intermittence, caractérisée par l'évolution des densités de probabilité (pdf) des incréments longitudinaux de vitesse. Nous appuyant aussi bien sur des modèles récents que sur des résultats expérimentaux, nous montrons que la Curtosis de ces pdf permet une estimation simple et directe de la profondeur de la cascade. Cela nous permet de réanalyser les résultats publiés d'une simulation numérique et de montrer que la profondeur de la cascade y évolue de la même façon que pour les expériences de laboratoire en fonction du nombre de Reynolds.

  12. Self-consistent computation of transport barrier formation by fluid drift turbulence in tokamak geometry

    International Nuclear Information System (INIS)

    Scott, B.; Jenko, F.; Peeters, A.G.; Teo, A.C.Y.

    1999-01-01

    (1) Computations of turbulence from the electromagnetic gyro fluid model are performed in a flux surface geometry representing the actual MHD equilibrium of the ASDEX Upgrade edge flux surfaces. The transition to ideal ballooning seen in simple geometries as the plasma beta rises is suppressed, leaving the transport at quantitatively realistic levels. Computations for core parameters at half-radius geometry show significant contribution due to the finite beta electron dynamics, possibly removing the standard ITG threshold. (2) Strong inward vorticity transport in edge turbulence, resulting from ion diamagnetic flows, may lead to a build up of mean ExB vorticity fast enough to cause an H-mode transition. (3) Friction of mean ion flows against neutrals involves both toroidal and poloidal flow components, leading to a finite radial current due to a given ExB profile even with zero poloidal rotation. (author)

  13. ION KINETIC ENERGY CONSERVATION AND MAGNETIC FIELD STRENGTH CONSTANCY IN MULTI-FLUID SOLAR WIND ALFVÉNIC TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Matteini, L.; Horbury, T. S.; Schwartz, S. J. [The Blackett Laboratory, Imperial College London, SW7 2AZ (United Kingdom); Pantellini, F. [LESIA, Observatoire de Paris, CNRS, UPMC, Universit Paris-Diderot, 5 Place Jules Janssen, F-92195 Meudon (France); Velli, M. [Department of Earth, Planetary, and Space Sciences, UCLA, California (United States)

    2015-03-20

    We investigate the properties of plasma fluid motion in the large-amplitude, low-frequency fluctuations of highly Alfvénic fast solar wind. We show that protons locally conserve total kinetic energy when observed from an effective frame of reference comoving with the fluctuations. For typical properties of the fast wind, this frame can be reasonably identified by alpha particles which, due to their drift with respect to protons at about the Alfvén speed along the magnetic field, do not partake in the fluid low-frequency fluctuations. Using their velocity to transform the proton velocity into the frame of Alfvénic turbulence, we demonstrate that the resulting plasma motion is characterized by a constant absolute value of the velocity, zero electric fields, and aligned velocity and magnetic field vectors as expected for unidirectional Alfvénic fluctuations in equilibrium. We propose that this constraint, via the correlation between velocity and magnetic field in Alfvénic turbulence, is the origin of the observed constancy of the magnetic field; while the constant velocity corresponding to constant energy can only be observed in the frame of the fluctuations, the corresponding constant total magnetic field, invariant for Galilean transformations, remains the observational signature in the spacecraft frame of the constant total energy in the Alfvén turbulence frame.

  14. THE EFFECTS OF WAVE ESCAPE ON FAST MAGNETOSONIC WAVE TURBULENCE IN SOLAR FLARES

    International Nuclear Information System (INIS)

    Pongkitiwanichakul, Peera; Chandran, Benjamin D. G.; Karpen, Judith T.; DeVore, C. Richard

    2012-01-01

    One of the leading models for electron acceleration in solar flares is stochastic acceleration by weakly turbulent fast magnetosonic waves ( f ast waves ) . In this model, large-scale flows triggered by magnetic reconnection excite large-wavelength fast waves, and fast-wave energy then cascades from large wavelengths to small wavelengths. Electron acceleration by large-wavelength fast waves is weak, and so the model relies on the small-wavelength waves produced by the turbulent cascade. In order for the model to work, the energy cascade time for large-wavelength fast waves must be shorter than the time required for the waves to propagate out of the solar-flare acceleration region. To investigate the effects of wave escape, we solve the wave kinetic equation for fast waves in weak turbulence theory, supplemented with a homogeneous wave-loss term. We find that the amplitude of large-wavelength fast waves must exceed a minimum threshold in order for a significant fraction of the wave energy to cascade to small wavelengths before the waves leave the acceleration region. We evaluate this threshold as a function of the dominant wavelength of the fast waves that are initially excited by reconnection outflows.

  15. Statistical properties of turbulence: An overview

    Indian Academy of Sciences (India)

    the turbulent advection of passive scalars, turbulence in the one-dimensional Burgers equation, and fluid turbulence in the presence of polymer ... However, it is not easy to state what would consti- tute a solution of the turbulence ...... flow with Lagrangian tracers and use a cubic spline interpolation method to calculate their ...

  16. Multi-CPU plasma fluid turbulence calculations on a CRAY Y-MP C90

    International Nuclear Information System (INIS)

    Lynch, V.E.; Carreras, B.A.; Leboeuf, J.N.; Curtis, B.C.; Troutman, R.L.

    1993-01-01

    Significant improvements in real-time efficiency have been obtained for plasma fluid turbulence calculations by microtasking the nonlinear fluid code KITE in which they are implemented on the CRAY Y-MP C90 at the National Energy Research Supercomputer Center (NERSC). The number of processors accessed concurrently scales linearly with problem size. Close to six concurrent processors have so far been obtained with a three-dimensional nonlinear production calculation at the currently allowed memory size of 80 Mword. With a calculation size corresponding to the maximum allowed memory of 200 Mword in the next system configuration, we expect to be able to access close to nine processors of the C90 concurrently with a commensurate improvement in real-time efficiency. These improvements in performance are comparable to those expected from a massively parallel implementation of the same calculations on the Intel Paragon

  17. Multi-CPU plasma fluid turbulence calculations on a CRAY Y-MP C90

    International Nuclear Information System (INIS)

    Lynch, V.E.; Carreras, B.A.; Leboeuf, J.N.; Curtis, B.C.; Troutman, R.L.

    1993-01-01

    Significant improvements in real-time efficiency have been obtained for plasma fluid turbulence calculations by microtasking the nonlinear fluid code KITE in which they are implemented on the CRAY Y-MP C90 at the National Energy Research Supercomputer Center (NERSC). The number of processors accessed concurrently scales linearly with problem size. Close to six concurrent processors have so far been obtained with a three-dimensional nonlinear production calculation at the currently allowed memory size of 80 Mword. With a calculation size corresponding to the maximum allowed memory of 200 Mword in the next system configuration, they expect to be able to access close to ten processors of the C90 concurrently with a commensurate improvement in real-time efficiency. These improvements in performance are comparable to those expected from a massively parallel implementation of the same calculations on the Intel Paragon

  18. Understanding the sub-critical transition to turbulence in wall flows

    Indian Academy of Sciences (India)

    In contrast with free shear flows presenting velocity profiles with injection points which cascade to turbulence in a relatively mild way, wall bounded flows are deprived of (inertial) instability modes at low Reynolds numbers and become turbulent in a much wilder way, most often marked by the coexistence of laminar and ...

  19. New phenomena in variable-density Rayleigh-Taylor turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Livescu, D; Ristorcelli, J R; Petersen, M R; Gore, R A, E-mail: livescu@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2010-12-15

    This paper presents several issues related to mixing and turbulence structure in buoyancy-driven turbulence at low to moderate Atwood numbers, A, found from direct numerical simulations in two configurations: classical Rayleigh-Taylor instability and an idealized triply periodic Rayleigh-Taylor flow. Simulations at A up to 0.5 are used to examine the turbulence characteristics and contrast them with those obtained close to the Boussinesq approximation. The data sets used represent the largest simulations to date in each configuration. One of the more remarkable issues explored, first reported in (Livescu and Ristorcelli 2008 J. Fluid Mech. 605 145-80), is the marked difference in mixing between different density fluids as opposed to the mixing that occurs between fluids of commensurate densities, corresponding to the Boussinesq approximation. Thus, in the triply periodic configuration and the non-Boussinesq case, an initially symmetric density probability density function becomes skewed, showing that the mixing is asymmetric, with pure heavy fluid mixing more slowly than pure light fluid. A mechanism producing the mixing asymmetry is proposed and the consequences for the classical Rayleigh-Taylor configuration are discussed. In addition, it is shown that anomalous small-scale anisotropy found in the homogeneous configuration (Livescu and Ristorcelli 2008 J. Fluid Mech. 605 145-80) and Rayleigh-Taylor turbulence at A=0.5 (Livescu et al 2008 J. Turbul. 10 1-32) also occurs near the Boussinesq limit. Results pertaining to the moment closure modelling of Rayleigh-Taylor turbulence are also presented. Although the Rayleigh-Taylor mixing layer width reaches self-similar growth relatively fast, the lower-order terms in the self-similar expressions for turbulence moments have long-lasting effects and derived quantities, such as the turbulent Reynolds number, are slow to follow the self-similar predictions. Since eddy diffusivity in the popular gradient transport hypothesis

  20. Annual review of fluid mechanics. Volume 23

    International Nuclear Information System (INIS)

    Lumley, J.L.; Van Dyke, M.; Reed, H.L.

    1991-01-01

    Recent advances in theoretical, experimental, and computational fluid mechanics are discussed in a collection of annual review essays. Topics addressed include Lagrangian ocean studies, drag reduction in nature, the hydraulics of rotating strait and sill flow, analytical methods for the development of Reynolds-stress closures in turbulence, and exact solutions of the Navier-Stokes equations. Consideration is given to the theory of hurricanes, flow phenomena in CVD of thin films, particle-imaging techniques for experimental fluid mechanics, symmetry and symmetry-breaking bifurcations in fluid dynamics, turbulent mixing in stratified fluids, numerical simulation of transition in wall-bounded shear flows, fractals and multifractals in fluid turbulence, and coherent motions in the turbulent boundary layer

  1. Fluid simulation of tokamak ion temperature gradient turbulence with zonal flow closure model

    Energy Technology Data Exchange (ETDEWEB)

    Yamagishi, Osamu, E-mail: yamagisi@nifs.ac.jp; Sugama, Hideo [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan)

    2016-03-15

    Nonlinear fluid simulation of turbulence driven by ion temperature gradient modes in the tokamak fluxtube configuration is performed by combining two different closure models. One model is a gyrofluid model by Beer and Hammett [Phys. Plasmas 3, 4046 (1996)], and the other is a closure model to reproduce the kinetic zonal flow response [Sugama et al., Phys. Plasmas 14, 022502 (2007)]. By including the zonal flow closure, generation of zonal flows, significant reduction in energy transport, reproduction of the gyrokinetic transport level, and nonlinear upshift on the critical value of gradient scale length are observed.

  2. Fluid simulation of tokamak ion temperature gradient turbulence with zonal flow closure model

    Science.gov (United States)

    Yamagishi, Osamu; Sugama, Hideo

    2016-03-01

    Nonlinear fluid simulation of turbulence driven by ion temperature gradient modes in the tokamak fluxtube configuration is performed by combining two different closure models. One model is a gyrofluid model by Beer and Hammett [Phys. Plasmas 3, 4046 (1996)], and the other is a closure model to reproduce the kinetic zonal flow response [Sugama et al., Phys. Plasmas 14, 022502 (2007)]. By including the zonal flow closure, generation of zonal flows, significant reduction in energy transport, reproduction of the gyrokinetic transport level, and nonlinear upshift on the critical value of gradient scale length are observed.

  3. Transfer equations for spectral densities of inhomogeneous MHD turbulence

    International Nuclear Information System (INIS)

    Tu, C.-Y.; Marsch, E.

    1990-01-01

    On the basis of the dynamic equations governing the evolution of magnetohydrodynamic fluctuations expressed in terms of Elsaesser variables and of their correlation functions derived by Marsch and Tu, a new set of equations is presented describing the evolutions of the energy spectrum e ± and of the residual energy spectra e R and e S of MHD turbulence in an inhomogeneous magnetofluid. The nonlinearities associated with triple correlations in these equations are analysed in detail and evaluated approximately. The resulting energy-transfer functions across wavenumber space are discussed. For e ± they are shown to be approximately energy-conserving if the gradients of the flow speed and density are weak. New cascading functions are heuristically determined by an appropriate dimensional analysis and plausible physical arguments, following the standard phenomenology of fluid turbulence. However, for e R the triple correlations do not correspond to an 'energy' conserving process, but also represent a nonlinear source term for e R . If this source term can be neglected, the spectrum equations are found to be closed. The problem of dealing with the nonlinear source terms remains to be solved in future investigations. (author)

  4. On specification of initial conditions in turbulence models

    Energy Technology Data Exchange (ETDEWEB)

    Rollin, Bertrand [Los Alamos National Laboratory; Andrews, Malcolm J [Los Alamos National Laboratory

    2010-12-01

    Recent research has shown that initial conditions have a significant influence on the evolution of a flow towards turbulence. This important finding offers a unique opportunity for turbulence control, but also raises the question of how to properly specify initial conditions in turbulence models. We study this problem in the context of the Rayleigh-Taylor instability. The Rayleigh-Taylor instability is an interfacial fluid instability that leads to turbulence and turbulent mixing. It occurs when a light fluid is accelerated in to a heavy fluid because of misalignment between density and pressure gradients. The Rayleigh-Taylor instability plays a key role in a wide variety of natural and man-made flows ranging from supernovae to the implosion phase of Inertial Confinement Fusion (ICF). Our approach consists of providing the turbulence models with a predicted profile of its key variables at the appropriate time in accordance to the initial conditions of the problem.

  5. PROTOSTELLAR OUTFLOW EVOLUTION IN TURBULENT ENVIRONMENTS

    International Nuclear Information System (INIS)

    Cunningham, Andrew J.; Frank, Adam; Carroll, Jonathan; Blackman, Eric G.; Quillen, Alice C.

    2009-01-01

    The link between turbulence in star-forming environments and protostellar jets remains controversial. To explore issues of turbulence and fossil cavities driven by young stellar outflows, we present a series of numerical simulations tracking the evolution of transient protostellar jets driven into a turbulent medium. Our simulations show both the effect of turbulence on outflow structures and, conversely, the effect of outflows on the ambient turbulence. We demonstrate how turbulence will lead to strong modifications in jet morphology. More importantly, we demonstrate that individual transient outflows have the capacity to re-energize decaying turbulence. Our simulations support a scenario in which the directed energy/momentum associated with cavities is randomized as the cavities are disrupted by dynamical instabilities seeded by the ambient turbulence. Consideration of the energy power spectra of the simulations reveals that the disruption of the cavities powers an energy cascade consistent with Burgers'-type turbulence and produces a driving scale length associated with the cavity propagation length. We conclude that fossil cavities interacting either with a turbulent medium or with other cavities have the capacity to sustain or create turbulent flows in star-forming environments. In the last section, we contrast our work and its conclusions with previous studies which claim that jets cannot be the source of turbulence.

  6. A simple method for potential flow simulation of cascades

    Indian Academy of Sciences (India)

    vortex panel method to simulate potential flow in cascades is presented. The cascade ... The fluid loading on the blades, such as the normal force and pitching moment, may ... of such discrete infinite array singularities along the blade surface.

  7. Recent results on analytical plasma turbulence theory: Realizability, intermittency, submarginal turbulence, and self-organized criticality

    International Nuclear Information System (INIS)

    Krommes, J.A.

    2000-01-01

    Recent results and future challenges in the systematic analytical description of plasma turbulence are described. First, the importance of statistical realizability is stressed, and the development and successes of the Realizable Markovian Closure are briefly reviewed. Next, submarginal turbulence (linearly stable but nonlinearly self-sustained fluctuations) is considered and the relevance of nonlinear instability in neutral-fluid shear flows to submarginal turbulence in magnetized plasmas is discussed. For the Hasegawa-Wakatani equations, a self-consistency loop that leads to steady-state vortex regeneration in the presence of dissipation is demonstrated and a partial unification of recent work of Drake (for plasmas) and of Waleffe (for neutral fluids) is given. Brief remarks are made on the difficulties facing a quantitatively accurate statistical description of submarginal turbulence. Finally, possible connections between intermittency, submarginal turbulence, and self-organized criticality (SOC) are considered and outstanding questions are identified

  8. Cascade system using both trough system and dish system for power generation

    International Nuclear Information System (INIS)

    Zhang, Cheng; Zhang, Yanping; Arauzo, Inmaculada; Gao, Wei; Zou, Chongzhe

    2017-01-01

    Highlights: • A novel solar cascade system using both trough and dish collectors is proposed. • Heat rejected by the Stirling engines is collected by the condensed water. • The directions to increase the efficiency improvement has been pointed out • Influence of flow type of heating/cooling fluids of Stirling engines is considered. - Abstract: This paper represents a novel solar thermal cascade system using both trough and dish systems for power generation. An effective structure using the condensed fluid of Rankine cycle to cool the Stirling engines to use the heat released by Stirling engines was proposed. The cascade system model with different fluid circuits was developed. The models of some important components of the system, such as dish collector, trough collector and Stirling engine array, are presented with detail explanation in this paper. Corresponding stand-alone systems were also developed for comparison. Simulations were conducted with the models to find out efficiency difference between cascade system and corresponding stand-alone systems. The directions to increase the efficiency difference were also considered. Results show that the cascade system can achieve a higher efficiency with a high solar irradiance (>550 W/m"2). The flow type of fluids between heating and cooling Stirling engine array is also required to concern on designing a cascade system with Stirling engine array.

  9. Recent developments in plasma turbulence and turbulent transport

    Energy Technology Data Exchange (ETDEWEB)

    Terry, P.W. [Univ. of Wisconsin, Madison, WI (United States)

    1997-09-22

    This report contains viewgraphs of recent developments in plasma turbulence and turbulent transport. Localized nonlinear structures occur under a variety of circumstances in turbulent, magnetically confined plasmas, arising in both kinetic and fluid descriptions, i.e., in either wave-particle or three-wave coupling interactions. These structures are non wavelike. They cannot be incorporated in the collective wave response, but interact with collective modes through their shielding by the plasma dielectric. These structures are predicted to modify turbulence-driven transport in a way that in consistent with, or in some cases are confirmed by recent experimental observations. In kinetic theory, non wavelike structures are localized perturbations of phase space density. There are two types of structures. Holes are self-trapped, while clumps have a self-potential that is too weak to resist deformation and mixing by ambient potential fluctuations. Clumps remain correlated in turbulence if their spatial extent is smaller than the correlation length of the scattering fields. In magnetic turbulence, clumps travel along stochastic magnetic fields, shielded by the plasma dielectric. A drag on the clump macro-particle is exerted by the shielding, inducing emission into the collective response. The emission in turn damps back on the particle distribution via Landau dampling. The exchange of energy between clumps and particles, as mediated by the collective mode, imposes constraints on transport. For a turbulent spectrum whose mean wavenumber along the equilibrium magnetic field is nonzero, the electron thermal flux is proportional to the ion thermal velocity. Conventional predictions (which account only for collective modes) are larger by the square root of the ion to electron mass ratio. Recent measurements are consistent with the small flux. In fluid plasma,s localized coherent structures can occur as intense vortices.

  10. A pseudo-sound constitutive relationship for the dilatational covariances in compressible turbulence: An analytical theory

    Science.gov (United States)

    Ristorcelli, J. R.

    1995-01-01

    The mathematical consequences of a few simple scaling assumptions about the effects of compressibility are explored using a simple singular perturbation idea and the methods of statistical fluid mechanics. Representations for the pressure-dilation and dilatational dissipation covariances appearing in single-point moment closures for compressible turbulence are obtained. While the results are expressed in the context of a second-order statistical closure they provide some interesting and very clear physical metaphors for the effects of compressibility that have not been seen using more traditional linear stability methods. In the limit of homogeneous turbulence with quasi-normal large-scales the expressions derived are - in the low turbulent Mach number limit - asymptotically exact. The expressions obtained are functions of the rate of change of the turbulence energy, its correlation length scale, and the relative time scale of the cascade rate. The expressions for the dilatational covariances contain constants which have a precise and definite physical significance; they are related to various integrals of the longitudinal velocity correlation. The pressure-dilation covariance is found to be a nonequilibrium phenomena related to the time rate of change of the internal energy and the kinetic energy of the turbulence. Also of interest is the fact that the representation for the dilatational dissipation in turbulence, with or without shear, features a dependence on the Reynolds number. This article is a documentation of an analytical investigation of the implications of a pseudo-sound theory for the effects of compressibility.

  11. Strong Turbulence in Low-beta Plasmas

    DEFF Research Database (Denmark)

    Tchen, C. M.; Pécseli, Hans; Larsen, Søren Ejling

    1980-01-01

    An investigation of the spectral structure of turbulence in a plasma confined by a strong homogeneous magnetic field was made by means of a fluid description. The turbulent spectrum is divided into subranges. Mean gradients of velocity and density excite turbulent motions, and govern the production......-cathode reflex arc, Stellarator, Zeta discharge, ionospheric plasmas, and auroral plasma turbulence....

  12. Conditions for sustainment of magnetohydrodynamic turbulence driven by Alfven waves

    International Nuclear Information System (INIS)

    Dmitruk, P.; Matthaeus, W.H.; Milano, L.J.; Oughton, S.

    2001-01-01

    In a number of space and astrophysical plasmas, turbulence is driven by the supply of wave energy. In the context of incompressible magnetohydrodynamics (MHD) there are basic physical reasons, associated with conservation of cross helicity, why this kind of driving may be ineffective in sustaining turbulence. Here an investigation is made into some basic requirements for sustaining steady turbulence and dissipation in the context of incompressible MHD in a weakly inhomogeneous open field line region, driven by the supply of unidirectionally propagating waves at a boundary. While such wave driving cannot alone sustain turbulence, the addition of reflection permits sustainment. Another sustainment issue is the action of the nonpropagating or quasi-two dimensional part of the spectrum; this is particularly important in setting up a steady cascade. Thus, details of the wave boundary conditions also affect the ease of sustaining a cascade. Supply of a broadband spectrum of waves can overcome the latter difficulty but not the former, that is, the need for reflections. Implications for coronal heating and other astrophysical applications, as well as simulations, are suggested

  13. ANISOTROPIC INTERMITTENCY OF MAGNETOHYDRODYNAMIC TURBULENCE

    International Nuclear Information System (INIS)

    Osman, K. T.; Kiyani, K. H.; Chapman, S. C.; Hnat, B.

    2014-01-01

    A higher-order multiscale analysis of spatial anisotropy in inertial range magnetohydrodynamic turbulence is presented using measurements from the STEREO spacecraft in fast ambient solar wind. We show for the first time that, when measuring parallel to the local magnetic field direction, the full statistical signature of the magnetic and Elsässer field fluctuations is that of a non-Gaussian globally scale-invariant process. This is distinct from the classic multiexponent statistics observed when the local magnetic field is perpendicular to the flow direction. These observations are interpreted as evidence for the weakness, or absence, of a parallel magnetofluid turbulence energy cascade. As such, these results present strong observational constraints on the statistical nature of intermittency in turbulent plasmas

  14. On the relative rotational motion between rigid fibers and fluid in turbulent channel flow

    Energy Technology Data Exchange (ETDEWEB)

    Marchioli, C. [Department of Electrical, Management and Mechanical Engineering, University of Udine, 33100 Udine (Italy); Zhao, L., E-mail: lihao.zhao@ntnu.no [Department of Energy and Process Engineering, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Andersson, H. I. [Department of Electrical, Management and Mechanical Engineering, University of Udine, 33100 Udine (Italy); Department of Energy and Process Engineering, Norwegian University of Science and Technology, 7491 Trondheim (Norway)

    2016-01-15

    In this study, the rotation of small rigid fibers relative to the surrounding fluid in wall-bounded turbulence is examined by means of direct numerical simulations coupled with Lagrangian tracking. Statistics of the relative (fiber-to-fluid) angular velocity, referred to as slip spin in the present study, are evaluated by modelling fibers as prolate spheroidal particles with Stokes number, St, ranging from 1 to 100 and aspect ratio, λ, ranging from 3 to 50. Results are compared one-to-one with those obtained for spherical particles (λ = 1) to highlight effects due to fiber length. The statistical moments of the slip spin show that differences in the rotation rate of fibers and fluid are influenced by inertia, but depend strongly also on fiber length: Departures from the spherical shape, even when small, are associated with an increase of rotational inertia and prevent fibers from passively following the surrounding fluid. An increase of fiber length, in addition, decouples the rotational dynamics of a fiber from its translational dynamics suggesting that the two motions can be modelled independently only for long enough fibers (e.g., for aspect ratios of order ten or higher in the present simulations)

  15. Cascaded recompression closed brayton cycle system

    Energy Technology Data Exchange (ETDEWEB)

    Pasch, James J.

    2018-01-02

    The present disclosure is directed to a cascaded recompression closed Brayton cycle (CRCBC) system and method of operation thereof, where the CRCBC system includes a compressor for compressing the system fluid, a separator for generating fluid feed streams for each of the system's turbines, and separate segments of a heater that heat the fluid feed streams to different feed temperatures for the system's turbines. Fluid exiting each turbine is used to preheat the fluid to the turbine. In an embodiment, the amount of heat extracted is determined by operational costs.

  16. Cascaded recompression closed brayton cycle system

    Science.gov (United States)

    Pasch, James J.

    2018-01-02

    The present disclosure is directed to a cascaded recompression closed Brayton cycle (CRCBC) system and method of operation thereof, where the CRCBC system includes a compressor for compressing the system fluid, a separator for generating fluid feed streams for each of the system's turbines, and separate segments of a heater that heat the fluid feed streams to different feed temperatures for the system's turbines. Fluid exiting each turbine is used to preheat the fluid to the turbine. In an embodiment, the amount of heat extracted is determined by operational costs.

  17. Numerical investigation of kinetic turbulence in relativistic pair plasmas - I. Turbulence statistics

    Science.gov (United States)

    Zhdankin, Vladimir; Uzdensky, Dmitri A.; Werner, Gregory R.; Begelman, Mitchell C.

    2018-02-01

    We describe results from particle-in-cell simulations of driven turbulence in collisionless, magnetized, relativistic pair plasma. This physical regime provides a simple setting for investigating the basic properties of kinetic turbulence and is relevant for high-energy astrophysical systems such as pulsar wind nebulae and astrophysical jets. In this paper, we investigate the statistics of turbulent fluctuations in simulations on lattices of up to 10243 cells and containing up to 2 × 1011 particles. Due to the absence of a cooling mechanism in our simulations, turbulent energy dissipation reduces the magnetization parameter to order unity within a few dynamical times, causing turbulent motions to become sub-relativistic. In the developed stage, our results agree with predictions from magnetohydrodynamic turbulence phenomenology at inertial-range scales, including a power-law magnetic energy spectrum with index near -5/3, scale-dependent anisotropy of fluctuations described by critical balance, lognormal distributions for particle density and internal energy density (related by a 4/3 adiabatic index, as predicted for an ultra-relativistic ideal gas), and the presence of intermittency. We also present possible signatures of a kinetic cascade by measuring power-law spectra for the magnetic, electric and density fluctuations at sub-Larmor scales.

  18. Turbulent Dynamics of Partially-Ionized Fluids in 2D

    Science.gov (United States)

    Benavides, S.; Flierl, G.

    2017-12-01

    Ionization occurs in the upper atmospheres of Hot Jupiters, as well asthe interiors of Gas Giants, leading to Magnetohydrodynamic (MHD) effectswhich can significantly alter the flow. The interactions of these MHDregions with the non-ionized atmosphere will occur in transitionregions where only a fraction of the fluid is ionized. We areexploring the dynamics of Partially-Ionized MHD (PIMHD) using a twofluid model - one neutral and one ionized and subject to MHD -coupled by a collision, or Joule heating, term proportional to thedifference in velocities. By varying both the ionization fraction aswell as the collision frequency (coupling), we examine the parameterspace of 2D PIMHD turbulence in hopes of better understanding itscharacteristics in certain, possibly realistic, regimes. We payparticular attention to the Joule heating term and its role indissipation and energy exchange between the two species. Thisknowledge will serve as the basis to further studies in which we lookat, in a more realistic setting, the PIMHD dynamics in Gas Giant orHot Jupiter atmospheres.

  19. Modeling of turbulent flows in porous media and at the interface with a free fluid medium; Modelisation des ecoulements turbulents dans les milieux poreux et a l'interface avec un milieu libre

    Energy Technology Data Exchange (ETDEWEB)

    Chandesris, M

    2006-12-15

    This work deals with the numerical simulation of turbulent flows in the whole nuclear reactor core, using multi-scale approaches. First, a macroscopic turbulence model is built, based on a porous media approach, to describe the flow in the fuel assemblies part of the nuclear core. Then, we study the jump conditions that have to be applied at a free fluid/porous interface. A thorough analytical study is carried out for laminar flows. This study allows to answer some fundamental questions about the physical meaning of the jump conditions, the values of the jump parameters and the location of the interface. Using these results, jump conditions for turbulent flows are proposed. The model is then applied to the simulation of a turbulent flow in a simplified model of a reactor core. (author)

  20. Parallel computation of fluid-structural interactions using high resolution upwind schemes

    Science.gov (United States)

    Hu, Zongjun

    An efficient and accurate solver is developed to simulate the non-linear fluid-structural interactions in turbomachinery flutter flows. A new low diffusion E-CUSP scheme, Zha CUSP scheme, is developed to improve the efficiency and accuracy of the inviscid flux computation. The 3D unsteady Navier-Stokes equations with the Baldwin-Lomax turbulence model are solved using the finite volume method with the dual-time stepping scheme. The linearized equations are solved with Gauss-Seidel line iterations. The parallel computation is implemented using MPI protocol. The solver is validated with 2D cases for its turbulence modeling, parallel computation and unsteady calculation. The Zha CUSP scheme is validated with 2D cases, including a supersonic flat plate boundary layer, a transonic converging-diverging nozzle and a transonic inlet diffuser. The Zha CUSP2 scheme is tested with 3D cases, including a circular-to-rectangular nozzle, a subsonic compressor cascade and a transonic channel. The Zha CUSP schemes are proved to be accurate, robust and efficient in these tests. The steady and unsteady separation flows in a 3D stationary cascade under high incidence and three inlet Mach numbers are calculated to study the steady state separation flow patterns and their unsteady oscillation characteristics. The leading edge vortex shedding is the mechanism behind the unsteady characteristics of the high incidence separated flows. The separation flow characteristics is affected by the inlet Mach number. The blade aeroelasticity of a linear cascade with forced oscillating blades is studied using parallel computation. A simplified two-passage cascade with periodic boundary condition is first calculated under a medium frequency and a low incidence. The full scale cascade with 9 blades and two end walls is then studied more extensively under three oscillation frequencies and two incidence angles. The end wall influence and the blade stability are studied and compared under different

  1. Iterative and multigrid methods in the finite element solution of incompressible and turbulent fluid flow

    Science.gov (United States)

    Lavery, N.; Taylor, C.

    1999-07-01

    Multigrid and iterative methods are used to reduce the solution time of the matrix equations which arise from the finite element (FE) discretisation of the time-independent equations of motion of the incompressible fluid in turbulent motion. Incompressible flow is solved by using the method of reduce interpolation for the pressure to satisfy the Brezzi-Babuska condition. The k-l model is used to complete the turbulence closure problem. The non-symmetric iterative matrix methods examined are the methods of least squares conjugate gradient (LSCG), biconjugate gradient (BCG), conjugate gradient squared (CGS), and the biconjugate gradient squared stabilised (BCGSTAB). The multigrid algorithm applied is based on the FAS algorithm of Brandt, and uses two and three levels of grids with a V-cycling schedule. These methods are all compared to the non-symmetric frontal solver. Copyright

  2. Spectrum evolution of primordial cosmic turbulence

    International Nuclear Information System (INIS)

    Futamase, T.; Matsuda, T.

    1980-01-01

    The evolution of primordial cosmic turbulence prior to the epoch of plasma recombination is investigated numerically using the Wiener-Hermite expansion technique which gives reasonable results for laboratory turbulence. It is found that the Kolmogorov spectrum is established only within a narrow range of wavenumber space for reasonable parameter sets, because the expansion of the Universe has a tendency to suppress an energy cascade from larger eddies to smaller ones. The present result does not agree with that obtained by Kurskov and Ozernoi, who computed the decay of turbulence in a fictitious non-expanding frame using the Heisenberg closure hypothesis, while it was done in a physical frame in the present work. (author)

  3. Homogeneous turbulence dynamics

    CERN Document Server

    Sagaut, Pierre

    2018-01-01

    This book provides state-of-the-art results and theories in homogeneous turbulence, including anisotropy and compressibility effects with extension to quantum turbulence, magneto-hydodynamic turbulence  and turbulence in non-newtonian fluids. Each chapter is devoted to a given type of interaction (strain, rotation, shear, etc.), and presents and compares experimental data, numerical results, analysis of the Reynolds stress budget equations and advanced multipoint spectral theories. The role of both linear and non-linear mechanisms is emphasized. The link between the statistical properties and the dynamics of coherent structures is also addressed. Despite its restriction to homogeneous turbulence, the book is of interest to all people working in turbulence, since the basic physical mechanisms which are present in all turbulent flows are explained. The reader will find a unified presentation of the results and a clear presentation of existing controversies. Special attention is given to bridge the results obta...

  4. A Computational Fluid Dynamics Study of Turbulence, Radiation, and Combustion Models for Natural Gas Combustion Burner

    Directory of Open Access Journals (Sweden)

    Yik Siang Pang

    2018-01-01

    Full Text Available This paper presents a Computational Fluid Dynamics (CFD study of a natural gas combustion burner focusing on the effect of combustion, thermal radiation and turbulence models on the temperature and chemical species concentration fields. The combustion was modelled using the finite rate/eddy dissipation (FR/EDM and partially premixed flame models. Detailed chemistry kinetics CHEMKIN GRI-MECH 3.0 consisting of 325 reactions was employed to model the methane combustion. Discrete ordinates (DO and spherical harmonics (P1 model were employed to predict the thermal radiation. The gas absorption coefficient dependence on the wavelength is resolved by the weighted-sum-of-gray-gases model (WSGGM. Turbulence flow was simulated using Reynolds-averaged Navier-Stokes (RANS based models. The findings showed that a combination of partially premixed flame, P1 and standard k-ε (SKE gave the most accurate prediction with an average deviation of around 7.8% of combustion temperature and 15.5% for reactant composition (methane and oxygen. The results show the multi-step chemistry in the partially premixed model is more accurate than the two-step FR/EDM. Meanwhile, inclusion of thermal radiation has a minor effect on the heat transfer and species concentration. SKE turbulence model yielded better prediction compared to the realizable k-ε (RKE and renormalized k-ε (RNG. The CFD simulation presented in this work may serve as a useful tool to evaluate a performance of a natural gas combustor. Copyright © 2018 BCREC Group. All rights reserved Received: 26th July 2017; Revised: 9th October 2017; Accepted: 30th October 2017; Available online: 22nd January 2018; Published regularly: 2nd April 2018 How to Cite: Pang, Y.S., Law, W.P., Pung, K.Q., Gimbun, J. (2018. A Computational Fluid Dynamics Study of Turbulence, Radiation, and Combustion Models for Natural Gas Combustion Burner. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1: 155-169 (doi:10.9767/bcrec

  5. 3D fluid simulations of tokamak edge turbulence

    International Nuclear Information System (INIS)

    Zeiler, A.; Biskamp, D.; Drake, J.F.; Guzdar, P.N.

    1995-09-01

    3D simulations of drift resistive ballooning turbulence are presented. The turbulence is basically controlled by a parameter α, the ratio of the drift wave frequency to the ideal ballooning growth rate. If this parameters is small (α≤1, corresponding to Ohmic or L-mode plasmas), the system is dominated by ballooning turbulence, which is strongly peaked at the outside of the torus. If it is large (α≥1, corresponding to H-mode plasmas) field line curvature plays a minor role. The turbulence is nonlinearly sustained even if curvature is removed and all modes are linearly stable due to magnetic shear. In the nonlinear regime without curvature the system obeys a different scaling law compared to the low α regime. The transport scaling is discussed in both regimes and the implications for OH-, L-mode and H-mode transport are discussed. (orig.)

  6. Lagrangian statistics across the turbulent-nonturbulent interface in a turbulent plane jet.

    Science.gov (United States)

    Taveira, Rodrigo R; Diogo, José S; Lopes, Diogo C; da Silva, Carlos B

    2013-10-01

    Lagrangian statistics from millions of particles are used to study the turbulent entrainment mechanism in a direct numerical simulation of a turbulent plane jet at Re(λ) ≈ 110. The particles (tracers) are initially seeded at the irrotational region of the jet near the turbulent shear layer and are followed as they are drawn into the turbulent region across the turbulent-nonturbulent interface (TNTI), allowing the study of the enstrophy buildup and thereby characterizing the turbulent entrainment mechanism in the jet. The use of Lagrangian statistics following fluid particles gives a more correct description of the entrainment mechanism than in previous works since the statistics in relation to the TNTI position involve data from the trajectories of the entraining fluid particles. The Lagrangian statistics for the particles show the existence of a velocity jump and a characteristic vorticity jump (with a thickness which is one order of magnitude greater than the Kolmogorov microscale), in agreement with previous results using Eulerian statistics. The particles initially acquire enstrophy by viscous diffusion and later by enstrophy production, which becomes "active" only deep inside the turbulent region. Both enstrophy diffusion and production near the TNTI differ substantially from inside the turbulent region. Only about 1% of all particles find their way into pockets of irrotational flow engulfed into the turbulent shear layer region, indicating that "engulfment" is not significant for the present flow, indirectly suggesting that the entrainment is largely due to "nibbling" small-scale mechanisms acting along the entire TNTI surface. Probability density functions of particle positions suggests that the particles spend more time crossing the region near the TNTI than traveling inside the turbulent region, consistent with the particles moving tangent to the interface around the time they cross it.

  7. Turbulent Concentration of mm-Size Particles in the Protoplanetary Nebula: Scale-Dependent Cascades

    Science.gov (United States)

    Cuzzi, J. N.; Hartlep, T.

    2015-01-01

    The initial accretion of primitive bodies (here, asteroids in particular) from freely-floating nebula particles remains problematic. Traditional growth-by-sticking models encounter a formidable "meter-size barrier" (or even a mm-to-cm-size barrier) in turbulent nebulae, making the preconditions for so-called "streaming instabilities" difficult to achieve even for so-called "lucky" particles. Even if growth by sticking could somehow breach the meter size barrier, turbulent nebulae present further obstacles through the 1-10km size range. On the other hand, nonturbulent nebulae form large asteroids too quickly to explain long spreads in formation times, or the dearth of melted asteroids. Theoretical understanding of nebula turbulence is itself in flux; recent models of MRI (magnetically-driven) turbulence favor low-or- no-turbulence environments, but purely hydrodynamic turbulence is making a comeback, with two recently discovered mechanisms generating robust turbulence which do not rely on magnetic fields at all. An important clue regarding planetesimal formation is an apparent 100km diameter peak in the pre-depletion, pre-erosion mass distribution of asteroids; scenarios leading directly from independent nebula particulates to large objects of this size, which avoid the problematic m-km size range, could be called "leapfrog" scenarios. The leapfrog scenario we have studied in detail involves formation of dense clumps of aerodynamically selected, typically mm-size particles in turbulence, which can under certain conditions shrink inexorably on 100-1000 orbit timescales and form 10-100km diameter sandpile planetesimals. There is evidence that at least the ordinary chondrite parent bodies were initially composed entirely of a homogeneous mix of such particles. Thus, while they are arcane, turbulent concentration models acting directly on chondrule size particles are worthy of deeper study. The typical sizes of planetesimals and the rate of their formation can be

  8. Analysis of static characteristic roots and propagation of disturbance of adjustable centrifuge cascade

    International Nuclear Information System (INIS)

    Li Weijie; Wu Zhongdi; Nong Guowei; Zeng Shi

    2014-01-01

    The hydraulic characteristic roots of a centrifuge cascade represent an important property of the cascade performance. Regulators and centrifuges are the key components that have a significant influence on the cascade hydraulic performance. The method used in diffusion cascades was adopted to obtain the static characteristic roots by solving the small disturbance equation for an adjustable centrifuge cascade in which all stages have the same fluid parameters. As the light stream flowrate of a centrifuge is irrelevant to the pressure at the outlet of the light flow, and the heavy stream flows at the speed of sound, there are only 2 static characteristic roots in the centrifuge cascade: the first root Z_1 is the main characteristic root and the second one Z_2 comes into play only when there exists a feed. The value of the main characteristic root is influenced by the amplification factor of the regulators, the fluid resistance in the main feed pipe and other factors. When Z_1 is smaller than 1, it increases with the fluid resistance. A large enough amplification factor has little impact on Z_1. The same distribution of the relative changes of the light fraction along the cascade is obtained by an analytical and a numerical method. (authors)

  9. Turbulent magnetohydrodynamics in liquid metals

    International Nuclear Information System (INIS)

    Berhanu, Michael

    2008-01-01

    In electrically conducting fluids, the electromagnetic field is coupled with the fluid motion by induction effects. We studied different magnetohydrodynamic phenomena, using two experiments involving turbulent flows of liquid metal. The first mid-sized uses gallium. The second, using sodium, is conducted within the VKS (Von Karman Sodium) collaboration. It has led to the observation of the dynamo effect, namely converting a part of the kinetic energy of the fluid into magnetic energy. We have shown that, depending on forcing conditions, a statistically stationary dynamo, or dynamical regimes of magnetic field can be generated. In particular, polarity reversals similar to those of Earth's magnetic field were observed. Meanwhile, experiment with Gallium has been developed to study the effects of electromagnetic induction by turbulent flows in a more homogeneous and isotropic configuration than in the VKS experiment. Using data from these two experiments, we studied the advection of magnetic field by a turbulent flow and the induced fluctuations. The development of probes measuring electrical potential difference allowed us to further highlight the magnetic braking of a turbulent flow of Gallium by Lorentz force. This mechanism is involved in the saturation of the dynamo instability. (author) [fr

  10. Light particles in turbulence

    NARCIS (Netherlands)

    Nagendra Prakash, Vivek

    2013-01-01

    This thesis deals with the broad topic of particles in turbulence, which has applications in a diverse number of fields. A vast majority of fluid flows found in nature and in the industry are turbulent and contain dispersed elements. In this thesis, I have focused on light particles (air bubbles in

  11. Quantify the complexity of turbulence

    Science.gov (United States)

    Tao, Xingtian; Wu, Huixuan

    2017-11-01

    Many researchers have used Reynolds stress, power spectrum and Shannon entropy to characterize a turbulent flow, but few of them have measured the complexity of turbulence. Yet as this study shows, conventional turbulence statistics and Shannon entropy have limits when quantifying the flow complexity. Thus, it is necessary to introduce new complexity measures- such as topology complexity and excess information-to describe turbulence. Our test flow is a classic turbulent cylinder wake at Reynolds number 8100. Along the stream-wise direction, the flow becomes more isotropic and the magnitudes of normal Reynolds stresses decrease monotonically. These seem to indicate the flow dynamics becomes simpler downstream. However, the Shannon entropy keeps increasing along the flow direction and the dynamics seems to be more complex, because the large-scale vortices cascade to small eddies, the flow is less correlated and more unpredictable. In fact, these two contradictory observations partially describe the complexity of a turbulent wake. Our measurements (up to 40 diameters downstream the cylinder) show that the flow's degree-of-complexity actually increases firstly and then becomes a constant (or drops slightly) along the stream-wise direction. University of Kansas General Research Fund.

  12. Sudden viscous dissipation in compressing plasma turbulence

    Science.gov (United States)

    Davidovits, Seth; Fisch, Nathaniel

    2015-11-01

    Compression of a turbulent plasma or fluid can cause amplification of the turbulent kinetic energy, if the compression is fast compared to the turnover and viscous dissipation times of the turbulent eddies. The consideration of compressing turbulent flows in inviscid fluids has been motivated by the suggestion that amplification of turbulent kinetic energy occurred on experiments at the Weizmann Institute of Science Z-Pinch. We demonstrate a sudden viscous dissipation mechanism whereby this amplified turbulent kinetic energy is rapidly converted into thermal energy, which further increases the temperature, feeding back to further enhance the dissipation. Application of this mechanism in compression experiments may be advantageous, if the plasma can be kept comparatively cold during much of the compression, reducing radiation and conduction losses, until the plasma suddenly becomes hot. This work was supported by DOE through contract 67350-9960 (Prime # DOE DE-NA0001836) and by the DTRA.

  13. Advances in engineering turbulence modeling. [computational fluid dynamics

    Science.gov (United States)

    Shih, T.-H.

    1992-01-01

    Some new developments in two equation models and second order closure models are presented. In this paper, modified two equation models are proposed to remove shortcomings such as computing flows over complex geometries and the ad hoc treatment near the separation and reattachment points. The calculations using various two equation models are compared with direct numerical solutions of channel flows and flat plate boundary layers. Development of second order closure models will also be discussed with emphasis on the modeling of pressure related correlation terms and dissipation rates in the second moment equations. All existing models poorly predict the normal stresses near the wall and fail to predict the three dimensional effect of mean flow on the turbulence. The newly developed second order near-wall turbulence model to be described in this paper is capable of capturing the near-wall behavior of turbulence as well as the effect of three dimension mean flow on the turbulence.

  14. Numerical investigation on thermal striping conditions for a tee junction of LMFBRE coolant pipes. 7. Effect of the 'Turbulence promoter' on the fluid mixing

    International Nuclear Information System (INIS)

    Tanaka, Masa-aki; Muramatsu, Toshiharu

    2004-06-01

    It is important to evaluate thermal-striping phenomena, which is the thermal fatigue issue in the structure generated by the temperature fluctuation due to the fluid mixing. Especially, the high amplitude and the high number of repetitions of the temperature fluctuation are needed to take into consideration. Moreover, it is necessary to consider the comparatively low frequency components of fluid temperature fluctuation, since the influence to structure material is large. Therefore, it is required to know the generating mechanism and conditions of the high amplitude and the low frequency component of fluid temperature fluctuation. In Japan Nuclear Cycle Development Institute, basic research on the promote system for fluid mixing is conducted, which system ('Turbulence promoter') is expected to reduce the large amplitude and low frequency components of fluid temperature fluctuation in T junction pipe. In this investigation, it is aimed to validate the effect and to generalize the mixing characteristics of 'Turbulence promoter' on the fluid mixing in T-junction pipe, and to contribute the knowledge to the rational design of LMFBR. In this report, numerical simulation for the existing experiment was conducted using a quasi-direct simulation code (DINUS-3). From the numerical simulation, the following results are obtained. (1) Numerical calculations could simulate well the flow patterns observed in the visualization experiment, in impinging jet case (Pattern-C) and deflecting jet cases (Pattern-B1 and Pattern-B). (2) By installing Turbulence promoter', cross-section area of main pipe after the mixing point is narrowed, and the fluid of main pipe is accelerated and flows along the slope of the promoter on the opposite side of branch pipe. this accelerated flow acts to prevent the collision of the branch pipe flow to the promoter. Therefore, the branch pipe flow conditions in deflecting jet category are extended. (3) At the throat of the main pipe, the flow was separated

  15. Connections between turbulence and jet morphology

    International Nuclear Information System (INIS)

    Benford, G.

    1982-01-01

    The author discusses the crucial problem of how to generate large scale turbulence and convey the stored energy to reaccelerated particles, without simultaneously heating the jet so that it expands drastically. He assumes that the cascade process is efficient enough, and allows estimations of the time scale for energy transfer. (Auth.)

  16. Use Deflected Trailing Edge to Improve the Aerodynamic Performance and Develop Low Solidity LPT Cascade

    Science.gov (United States)

    Chao, Li; Peigang, Yan; Xiangfeng, Wang; Wanjin, Han; Qingchao, Wang

    2017-08-01

    This paper investigates the feasibility of improving the aerodynamic performance of low pressure turbine (LPT) blade cascades and developing low solidity LPT blade cascades through deflected trailing edge. A deflected trailing edge improved aerodynamic performance of both LPT blade cascades and low solidity LPT blade cascades. For standard solidity LPT cascades, deflecting the trailing edge can decrease the energy loss coefficient by 20.61 % for a Reynolds number (Re) of 25,000 and freestream turbulence intensities (FSTI) of 1 %. For a low solidity LPT cascade, aerodynamic performance was also improved by deflecting the trailing edge. Solidity of the LPT cascade can be reduced by 12.5 % for blades with a deflected trailing edge without a drop in efficiency. Here, the flow control mechanism surrounding a deflected trailing edge was also revealed.

  17. Gyrokinetic Simulations of Solar Wind Turbulence from Ion to Electron Scales

    International Nuclear Information System (INIS)

    Howes, G. G.; TenBarge, J. M.; Dorland, W.; Numata, R.; Quataert, E.; Schekochihin, A. A.; Tatsuno, T.

    2011-01-01

    A three-dimensional, nonlinear gyrokinetic simulation of plasma turbulence resolving scales from the ion to electron gyroradius with a realistic mass ratio is presented, where all damping is provided by resolved physical mechanisms. The resulting energy spectra are quantitatively consistent with a magnetic power spectrum scaling of k -2.8 as observed in in situ spacecraft measurements of the 'dissipation range' of solar wind turbulence. Despite the strongly nonlinear nature of the turbulence, the linear kinetic Alfven wave mode quantitatively describes the polarization of the turbulent fluctuations. The collisional ion heating is measured at subion-Larmor radius scales, which provides evidence of the ion entropy cascade in an electromagnetic turbulence simulation.

  18. TURBO: a computer program for two-dimensional incompressible fluid flow analysis using a two-equations turbulence model

    International Nuclear Information System (INIS)

    Botelho, D.A.; Moreira, M.L.

    1991-06-01

    The Reynolds turbulent transport equations for an incompressible fluid are integrated on a bi-dimensional staggered grid, for velocity and pressure, using the SIMPLER method. With the resulting algebraic relations it was developed the TURBO program, which final objectives are the thermal stratification and natural convection analysis of nuclear reactor pools. This program was tested in problems applications with analytic or experimental solutions previously known. (author)

  19. Integrated analysis of energy transfers in elastic-wave turbulence.

    Science.gov (United States)

    Yokoyama, Naoto; Takaoka, Masanori

    2017-08-01

    In elastic-wave turbulence, strong turbulence appears in small wave numbers while weak turbulence does in large wave numbers. Energy transfers in the coexistence of these turbulent states are numerically investigated in both the Fourier space and the real space. An analytical expression of a detailed energy balance reveals from which mode to which mode energy is transferred in the triad interaction. Stretching energy excited by external force is transferred nonlocally and intermittently to large wave numbers as the kinetic energy in the strong turbulence. In the weak turbulence, the resonant interactions according to the weak turbulence theory produce cascading net energy transfer to large wave numbers. Because the system's nonlinearity shows strong temporal intermittency, the energy transfers are investigated at active and moderate phases separately. The nonlocal interactions in the Fourier space are characterized by the intermittent bundles of fibrous structures in the real space.

  20. Electromotive force in strongly compressible magnetohydrodynamic turbulence

    Science.gov (United States)

    Yokoi, N.

    2017-12-01

    Variable density fluid turbulence is ubiquitous in geo-fluids, not to mention in astrophysics. Depending on the source of density variation, variable density fluid turbulence may be divided into two categories: the weak compressible (entropy mode) turbulence for slow flow and the strong compressible (acoustic mode) turbulence for fast flow. In the strong compressible turbulence, the pressure fluctuation induces a strong density fluctuation ρ ', which is represented by the density variance ( denotes the ensemble average). The turbulent effect on the large-scale magnetic-field B induction is represented by the turbulent electromotive force (EMF) (u': velocity fluctuation, b': magnetic-field fluctuation). In the usual treatment in the dynamo theory, the expression for the EMF has been obtained in the framework of incompressible or weak compressible turbulence, where only the variation of the mean density , if any, is taken into account. We see from the equation of the density fluctuation ρ', the density variance is generated by the large mean density variation ∂ coupled with the turbulent mass flux . This means that in the region where the mean density steeply changes, the density variance effect becomes relevant for the magnetic field evolution. This situation is typically the case for phenomena associated with shocks and compositional discontinuities. With the aid of the analytical theory of inhomogeneous compressible magnetohydrodynamic (MHD) turbulence, the expression for the turbulent electromotive force is investigated. It is shown that, among others, an obliqueness (misalignment) between the mean density gradient ∂ and the mean magnetic field B may contribute to the EMF as ≈χ B×∂ with the turbulent transport coefficient χ proportional to the density variance (χ ). This density variance effect is expected to strongly affect the EMF near the interface, and changes the transport properties of turbulence. In the case of an interface under the MHD slow

  1. Turbulence modelling; Modelisation de la turbulence isotherme

    Energy Technology Data Exchange (ETDEWEB)

    Laurence, D. [Electricite de France (EDF), Direction des Etudes et Recherches, 92 - Clamart (France)

    1997-12-31

    This paper is an introduction course in modelling turbulent thermohydraulics, aimed at computational fluid dynamics users. No specific knowledge other than the Navier Stokes equations is required beforehand. Chapter I (which those who are not beginners can skip) provides basic ideas on turbulence physics and is taken up in a textbook prepared by the teaching team of the ENPC (Benque, Viollet). Chapter II describes turbulent viscosity type modelling and the 2k-{epsilon} two equations model. It provides details of the channel flow case and the boundary conditions. Chapter III describes the `standard` (R{sub ij}-{epsilon}) Reynolds tensions transport model and introduces more recent models called `feasible`. A second paper deals with heat transfer and the effects of gravity, and returns to the Reynolds stress transport model. (author). 37 refs.

  2. Turbulent diffusion of small particles

    International Nuclear Information System (INIS)

    Margolin, L.G.

    1977-11-01

    The diffusion of small, spherical, rigid particles suspended in an incompressible turbulent fluid, but not interacting with each other, was studied. As a stochastic process, the turbulent fluid velocity field is assumed to be homogeneous, isotropic and stationary. Assuming the Stokes regime, a particle of equation of motion is used which includes only the effects of Stokes drag and a virtual mass force and an exact solution is found for the particle velocity correlation function, for all times and initial conditions, in terms of a fluid velocity correlation function measured along the motion of the particle. This shows that for times larger than a certain time scale, the particle velocity correlation becomes stationary. The effect of small shears in the fluid velocity was considered, under the additional restrictions of a certain high frequency regime for the turbulence. The shears convected past the particle much faster than the growth of the boundary layer. New force terms due to the presence of such shears are calculated and incorporated into the equation of motion. A perturbation solution to this equation is constructed, and the resultant particle velocity correlation function and diffusion coefficient are calculated. To lowest order, the particle diffusivity is found to be unaltered by the presence of small mean flow shears. The last model treated is one in which particles traverse a turbulent fluid with a large mean velocity. Among other restrictions, linearized form drag is assumed. The diffusion coefficient for such particles was calculated, and found to be much smaller than the passive scalar diffusion coefficient. This agrees within 5 percent with the experimental results of Snyder and Lumley

  3. Time-Series Analysis of Intermittent Velocity Fluctuations in Turbulent Boundary Layers

    Science.gov (United States)

    Zayernouri, Mohsen; Samiee, Mehdi; Meerschaert, Mark M.; Klewicki, Joseph

    2017-11-01

    Classical turbulence theory is modified under the inhomogeneities produced by the presence of a wall. In this regard, we propose a new time series model for the streamwise velocity fluctuations in the inertial sub-layer of turbulent boundary layers. The new model employs tempered fractional calculus and seamlessly extends the classical 5/3 spectral model of Kolmogorov in the inertial subrange to the whole spectrum from large to small scales. Moreover, the proposed time-series model allows the quantification of data uncertainties in the underlying stochastic cascade of turbulent kinetic energy. The model is tested using well-resolved streamwise velocity measurements up to friction Reynolds numbers of about 20,000. The physics of the energy cascade are briefly described within the context of the determined model parameters. This work was supported by the AFOSR Young Investigator Program (YIP) award (FA9550-17-1-0150) and partially by MURI/ARO (W911NF-15-1-0562).

  4. Optimization of a Two-Fluid Hydrodynamic Model of Churn-Turbulent Flow

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen

    2009-07-01

    A hydrodynamic model of two-phase, churn-turbulent flows is being developed using the computational multiphase fluid dynamics (CMFD) code, NPHASE-CMFD. The numerical solutions obtained by this model are compared with experimental data obtained at the TOPFLOW facility of the Institute of Safety Research at the Forschungszentrum Dresden-Rossendorf. The TOPFLOW data is a high quality experimental database of upward, co-current air-water flows in a vertical pipe suitable for validation of computational fluid dynamics (CFD) codes. A five-field CMFD model was developed for the continuous liquid phase and four bubble size groups using mechanistic closure models for the ensemble-averaged Navier-Stokes equations. Mechanistic models for the drag and non-drag interfacial forces are implemented to include the governing physics to describe the hydrodynamic forces controlling the gas distribution. The closure models provide the functional form of the interfacial forces, with user defined coefficients to adjust the force magnitude. An optimization strategy was devised for these coefficients using commercial design optimization software. This paper demonstrates an approach to optimizing CMFD model parameters using a design optimization approach. Computed radial void fraction profiles predicted by the NPHASE-CMFD code are compared to experimental data for four bubble size groups.

  5. Experimental investigation of turbulent mixing by Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Youngs, D.L.

    1992-01-01

    A key feature of compressible turbulent mixing is the generation of vorticity via the ∇px ∇(1/ρ) term. This source of vorticity is also present in incompressible flows involving the mixing of fluids of different density, for example Rayleigh-Taylor unstable flows. This paper gives a summary of an experimental investigation of turbulent mixing at a plane boundary between two fluids, of densities ρ 1 , and ρ 2 . (ρ 1 > ρ 2 ) due to Rayleigh-Taylor instability. The two fluids are near incompressible and mixing occurs when an approximately constant acceleration, g, is applied normal to the interface with direction from fluid 2 to fluid 1. Full details of the experimental programme are given in a set of three reports. Some of the earlier experiments are also described by Read. Previous experimental work and much of the theoretical research has concentrated on studying the growth of the instability from a single wavelength perturbation rather than turbulent mixing. Notable exceptions are published in the Russian literature. A related process, turbulent mixing induced by the passage of shock waves though an interface between fluids of different density is described by Andronov et al. The major purpose of the experiments described here was to study the evolution of the instability from small random perturbations where it is found that large and larger structures appear as time proceeds. A novel technique was used to provide the desired acceleration. The two fluids were enclosed in a rectangular tank, the lighter fluid 2 initially resting on top of the denser fluid 1. One or more rocket motors were then used to drive the tank vertically downwards. The aim of the experimental programme is to provide data for the calibration of a turbulence model used to predict mixing in real situations

  6. Scaling Properties of Particle Density Fields Formed in Simulated Turbulent Flows

    Science.gov (United States)

    Hogan, Robert C.; Cuzzi, Jeffrey N.; Dobrovolskis, Anthony R.; DeVincenzi, Donald (Technical Monitor)

    1998-01-01

    Direct numerical simulations (DNS) of particle concentrations in fully developed 3D turbulence were carried out in order to study the nonuniform structure of the particle density field. Three steady-state turbulent fluid fields with Taylor microscale Reynolds numbers (Re(sub lambda)) of 40, 80 and 140 were generated by solving the Navier-Stokes equations with pseudospectral methods. Large scale forcing was used to drive the turbulence and maintain temporal stationarity. The response of the particles to the fluid was parameterized by the particle Stokes number St, defined as the ratio of the particle's stopping time to the mean period of eddies on the Kolmogorov scale (eta). In this paper, we consider only passive particles optimally coupled to these eddies (St approx. = 1) because of their tendency to concentrate more than particles with lesser or greater St values. The trajectories of up to 70 million particles were tracked in the equilibrated turbulent flows until the particle concentration field reached a statistically stationary state. The nonuniform structure of the concentration fields was characterized by the multifractal singularity spectrum, f(alpha), derived from measures obtained after binning particles into cells ranging from 2(eta) to 15(eta) in size. We observed strong systematic variations of f(alpha) across this scale range in all three simulations and conclude that the particle concentration field is not statistically self similar across the scale range explored. However, spectra obtained at the 2(eta), 4(eta), and 8(eta) scales of each flow case were found to be qualitatively similar. This result suggests that the local structure of the particle concentration field may be flow-Independent. The singularity spectra found for 2n-sized cells were used to predict concentration distributions in good agreement with those obtained directly from the particle data. This Singularity spectrum has a shape similar to the analogous spectrum derived for the

  7. Weak and strong turbulence in the CGL equation

    International Nuclear Information System (INIS)

    Gibbon, J.D.; Bartuccelli, M.V.; Doering, C.R.

    1993-01-01

    To many fluid dynamicists, the only real turbulence is the fine scale 3-dimensional turbulence which occurs at high Reynolds numbers, with an energy cascade and an inertial subrange. The number of degrees of freedom in 3d strong turbulence is clearly many orders of magnitude greater than in such phenomena as convection in a box where perhaps only a few spatial modes govern the dynamics. Only in 2d are the incompressible Navier Stokes equations understood analytically in the sense that there is a rigorous proof of the existence of a finite dimensional global attractor. Computational methods are generally good enough to resolve the smallest scale in a 2d flow and, for 2d homogeneous decaying turbulence, the vorticity obeys a maximum principle. No such maximum principle is known to exist in 3d and regularity remains to be proved. Numerical resolution of the smallest scale in a fully turbulent 3d flow is still a long way off. In order to attempt to get a better grip on the tantalizing phenomena displayed by the Navier Stokes equations, it is a useful exercise to see whether it is possible to mimic some limited features of the 3d Navier Stokes equations with a different PDE system which displays similar functional properties but in a lower spatial dimension. This exercise, however, must obviously be limited by the fact that simpler models in lower dimensions cannot display the vortex stretching properties displayed by the 3d Navier Stokes equations, although the lowering of the spatial dimension does make it easier to compute the dynamics. One equation which will be shown to have some of the desired properites is a version of the d dimensional complex Ginzburg Landau (CDL) equation on the periodic domain [0,1]. It is not our intention here to treat it in its physical context. Our intention in using it is to try and mimic limited features of the Navier Stokes equations with an equation over which we have more analytical control

  8. Direct numerical simulation of droplet-laden isotropic turbulence

    Science.gov (United States)

    Dodd, Michael S.

    Interaction of liquid droplets with turbulence is important in numerous applications ranging from rain formation to oil spills to spray combustion. The physical mechanisms of droplet-turbulence interaction are largely unknown, especially when compared to that of solid particles. Compared to solid particles, droplets can deform, break up, coalesce and have internal fluid circulation. The main goal of this work is to investigate using direct numerical simulation (DNS) the physical mechanisms of droplet-turbulence interaction, both for non-evaporating and evaporating droplets. To achieve this objective, we develop and couple a new pressure-correction method with the volume-of-fluid (VoF) method for simulating incompressible two-fluid flows. The method's main advantage is that the variable coefficient Poisson equation that arises in solving the incompressible Navier-Stokes equations for two-fluid flows is reduced to a constant coefficient equation. This equation can then be solved directly using, e.g., the FFT-based parallel Poisson solver. For a 10243 mesh, our new pressure-correction method using a fast Poisson solver is ten to forty times faster than the standard pressure-correction method using multigrid. Using the coupled pressure-correction and VoF method, we perform direct numerical simulations (DNS) of 3130 finite-size, non-evaporating droplets of diameter approximately equal to the Taylor lengthscale and with 5% droplet volume fraction in decaying isotropic turbulence at initial Taylor-scale Reynolds number Relambda = 83. In the droplet-laden cases, we vary one of the following three parameters: the droplet Weber number based on the r.m.s. velocity of turbulence (0.1 ≤ Werms ≤ 5), the droplet- to carrier-fluid density ratio (1 ≤ rhod/rho c ≤ 100) or the droplet- to carrier-fluid viscosity ratio (1 ≤ mud/muc ≤ 100). We derive the turbulence kinetic energy (TKE) equations for the two-fluid, carrier-fluid and droplet-fluid flow. These equations allow

  9. Direct numerical simulation of homogeneous stratified rotating turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Iida, O.; Tsujimura, S.; Nagano, Y. [Nagoya Institute of Technology, Department of Mech. Eng., Nagoya (Japan)

    2005-12-01

    The effects of the Prandtl number on stratified rotating turbulence have been studied in homogeneous turbulence by using direct numerical simulations and a rapid distortion theory. Fluctuations under strong stable-density stratification can be theoretically divided into the WAVE and the potential vorticity (PV) modes. In low-Prandtl-number fluids, the WAVE mode deteriorates, while the PV mode remains. Imposing rotation on a low-Prandtl-number fluid makes turbulence two-dimensional as well as geostrophic; it is found from the instantaneous turbulent structure that the vortices merge to form a few vertically-elongated vortex columns. During the period toward two-dimensionalization, the vertical vortices become asymmetric in the sense of rotation. (orig.)

  10. Turbulence prediction in two-dimensional bundle flows using large eddy simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, W.A.; Hassan, Y.A. [Texas A& M Univ., College Station, TX (United States)

    1995-09-01

    Turbulent flow is characterized by random fluctuations in the fluid velocity and by intense mixing of the fluid. Due to velocity fluctuations, a wide range of eddies exists in the flow field. Because these eddies carry mass, momentum, and energy, this enhanced mixing can sometimes lead to serious problems, such as tube vibrations in many engineering systems that include fluid-tube bundle combinations. Nuclear fuel bundles and PWR steam generators are existing examples in nuclear power plants. Fluid-induced vibration problems are often discovered during the operation of such systems because some of the fluid-tube interaction characteristics are not fully understood. Large Eddy Simulation, incorporated in a three dimensional computer code, became one of the promising techniques to estimate flow turbulence, predict and prevent of long-term tube fretting affecting PWR steam generators. the present turbulence investigations is a step towards more understanding of fluid-tube interaction characteristics by comparing the tube bundles with various pitch-to-diameter ratios were performed. Power spectral densities were used for comparison with experimental data. Correlations, calculations of different length scales in the flow domain and other important turbulent-related parameters were calculated. Finally, important characteristics of turbulent flow field were presented with the aid of flow visualization with tracers impeded in the flow field.

  11. Zonal flows and turbulence in fluids and plasmas

    Science.gov (United States)

    Parker, Jeffrey Bok-Cheung

    In geophysical and plasma contexts, zonal flows are well known to arise out of turbulence. We elucidate the transition from statistically homogeneous turbulence without zonal flows to statistically inhomogeneous turbulence with steady zonal flows. Starting from the Hasegawa--Mima equation, we employ both the quasilinear approximation and a statistical average, which retains a great deal of the qualitative behavior of the full system. Within the resulting framework known as CE2, we extend recent understanding of the symmetry-breaking 'zonostrophic instability'. Zonostrophic instability can be understood in a very general way as the instability of some turbulent background spectrum to a zonally symmetric coherent mode. As a special case, the background spectrum can consist of only a single mode. We find that in this case the dispersion relation of zonostrophic instability from the CE2 formalism reduces exactly to that of the 4-mode truncation of generalized modulational instability. We then show that zonal flows constitute pattern formation amid a turbulent bath. Zonostrophic instability is an example of a Type I s instability of pattern-forming systems. The broken symmetry is statistical homogeneity. Near the bifurcation point, the slow dynamics of CE2 are governed by a well-known amplitude equation, the real Ginzburg-Landau equation. The important features of this amplitude equation, and therefore of the CE2 system, are multiple. First, the zonal flow wavelength is not unique. In an idealized, infinite system, there is a continuous band of zonal flow wavelengths that allow a nonlinear equilibrium. Second, of these wavelengths, only those within a smaller subband are stable. Unstable wavelengths must evolve to reach a stable wavelength; this process manifests as merging jets. These behaviors are shown numerically to hold in the CE2 system, and we calculate a stability diagram. The stability diagram is in agreement with direct numerical simulations of the quasilinear

  12. Imposing resolved turbulence in CFD simulations

    DEFF Research Database (Denmark)

    Gilling, L.; Sørensen, Niels N.

    2011-01-01

    In large‐eddy simulations, the inflow velocity field should contain resolved turbulence. This paper describes and analyzes two methods for imposing resolved turbulence in the interior of the domain in Computational Fluid Dynamics simulations. The intended application of the methods is to impose...

  13. Heating and Acceleration of Solar Wind Ions by Turbulent Wave Spectrum in Inhomogeneous Expanding Plasma

    Science.gov (United States)

    Ofman, Leon; Ozak, Nataly; Vinas, Adolfo F.

    2016-01-01

    Near the Sun (plasma. The heating and the acceleration of the solar wind ions by turbulent wave spectrum in inhomogeneous plasma is studied using a 2.5D hybrid model. The hybrid model describes the kinetics of the ions, while the electrons are modeled as massless neutralizing fluid in an expanding box approach. Turbulent magnetic fluctuations dominated by power-law frequency spectra, which are evident from in-situ as well as remote sensing measurements, are used in our models. The effects of background density inhomogeneity across the magnetic field on the resonant ion heating are studied. The effect of super- Alfvenic ion drift on the ion heating is investigated. It is found that the turbulent wave spectrum of initially parallel propagating waves cascades to oblique modes, and leads to enhanced resonant ion heating due to the inhomogeneity. The acceleration of the solar wind ions is achieved by the parametric instability of large amplitude waves in the spectrum, and is also affected by the inhomogeneity. The results of the study provide the ion temperature anisotropy and drift velocity temporal evolution due to relaxation of the instability. The non-Maxwellian velocity distribution functions (VDFs) of the ions are modeled in the inhomogeneous solar wind plasma in the acceleration region close to the Sun.

  14. Particle-turbulence interaction; Partikkelitihentymien ja turbulenssin vuorovaikutus

    Energy Technology Data Exchange (ETDEWEB)

    Karvinen, R.; Savolainen, K. [Tampere Univ. of Technology (Finland). Energy and Process Technology

    1997-10-01

    In this work the interaction between solid particles and turbulence of the carrier fluid in two-phase flow is studied. The aim of the study is to find out prediction methods for the interaction of particles and fluid turbulence. Accurate measured results are needed in order to develop numerical simulations. There are very few good experimental data sets concerning the particulate matter and its effect on the gas turbulence. Turbulence of the gas phase in a vertical, dilute gas-particle pipe flow has been measured with the laser-Doppler anemometer in Tampere University of Technology. Special attention was paid to different components of the fluctuating velocity. Numerical simulations were done with the Phoenics-code in which the models of two-phase flows suggested in the literature were implemented. It has been observed that the particulate phase increases the rate of anisotropy of the fluid turbulence. It seems to be so that small rigid particles increase the intensity of the axial and decrease the intensity of the radial component in a vertical pipe flow. The change of the total kinetic energy of turbulence obviously depends on the particle size. In the case of 150 ,{mu} spherical glass particles flowing upwards with air, it seems to be slightly positive near the centerline of the pipe. This observation, i.e. the particles decrease turbulence in the radial direction, is very important; because mass and heat transfer in flows is strongly dependent on the component of fluctuating velocity perpendicular to the main flow direction

  15. Turbulence modification in bubbly upward pipe flow. Extraction of time resolved turbulent microscopic structure by high speed PIV

    International Nuclear Information System (INIS)

    Yoshimura, Koki; Minato, Daiju; Sato, Yohei; Hishida, Koichi

    2004-01-01

    The objective of the present study is to obtain detailed information on the effects of bubbles on modification of turbulent structure by time-series measurements using a high speed time-resolved PIV. The experiments were carried out in a fully-developed vertical pipe with upflow of water at the Reynolds number of 9700 and the void fraction of 0.5%. It is observed that turbulence production was decreased and the dissipation rate was enhanced in the whole domain. We analyzed the effects of bubbles on modification of the energy cascade process from power spectra of velocity fluctuation of the continuous phase. (author)

  16. Multilocality and fusion rules on the generalized structure functions in two-dimensional and three-dimensional Navier-Stokes turbulence.

    Science.gov (United States)

    Gkioulekas, Eleftherios

    2016-09-01

    Using the fusion-rules hypothesis for three-dimensional and two-dimensional Navier-Stokes turbulence, we generalize a previous nonperturbative locality proof to multiple applications of the nonlinear interactions operator on generalized structure functions of velocity differences. We call this generalization of nonperturbative locality to multiple applications of the nonlinear interactions operator "multilocality." The resulting cross terms pose a new challenge requiring a new argument and the introduction of a new fusion rule that takes advantage of rotational symmetry. Our main result is that the fusion-rules hypothesis implies both locality and multilocality in both the IR and UV limits for the downscale energy cascade of three-dimensional Navier-Stokes turbulence and the downscale enstrophy cascade and inverse energy cascade of two-dimensional Navier-Stokes turbulence. We stress that these claims relate to nonperturbative locality of generalized structure functions on all orders and not the term-by-term perturbative locality of diagrammatic theories or closure models that involve only two-point correlation and response functions.

  17. Turbulent mixing of a slightly supercritical van der Waals fluid at low-Mach number

    International Nuclear Information System (INIS)

    Battista, F.; Casciola, C. M.; Picano, F.

    2014-01-01

    Supercritical fluids near the critical point are characterized by liquid-like densities and gas-like transport properties. These features are purposely exploited in different contexts ranging from natural products extraction/fractionation to aerospace propulsion. Large part of studies concerns this last context, focusing on the dynamics of supercritical fluids at high Mach number where compressibility and thermodynamics strictly interact. Despite the widespread use also at low Mach number, the turbulent mixing properties of slightly supercritical fluids have still not investigated in detail in this regime. This topic is addressed here by dealing with Direct Numerical Simulations of a coaxial jet of a slightly supercritical van der Waals fluid. Since acoustic effects are irrelevant in the low Mach number conditions found in many industrial applications, the numerical model is based on a suitable low-Mach number expansion of the governing equation. According to experimental observations, the weakly supercritical regime is characterized by the formation of finger-like structures – the so-called ligaments – in the shear layers separating the two streams. The mechanism of ligament formation at vanishing Mach number is extracted from the simulations and a detailed statistical characterization is provided. Ligaments always form whenever a high density contrast occurs, independently of real or perfect gas behaviors. The difference between real and perfect gas conditions is found in the ligament small-scale structure. More intense density gradients and thinner interfaces characterize the near critical fluid in comparison with the smoother behavior of the perfect gas. A phenomenological interpretation is here provided on the basis of the real gas thermodynamics properties

  18. Turbulent mixing of a slightly supercritical van der Waals fluid at low-Mach number

    Energy Technology Data Exchange (ETDEWEB)

    Battista, F.; Casciola, C. M. [Department of Mechanical and Aerospace Engineering, Sapienza University, via Eudossiana 18, 00184 Rome (Italy); Picano, F. [Department of Industrial Engineering, University of Padova, via Venezia 1, 35131 Padova (Italy)

    2014-05-15

    Supercritical fluids near the critical point are characterized by liquid-like densities and gas-like transport properties. These features are purposely exploited in different contexts ranging from natural products extraction/fractionation to aerospace propulsion. Large part of studies concerns this last context, focusing on the dynamics of supercritical fluids at high Mach number where compressibility and thermodynamics strictly interact. Despite the widespread use also at low Mach number, the turbulent mixing properties of slightly supercritical fluids have still not investigated in detail in this regime. This topic is addressed here by dealing with Direct Numerical Simulations of a coaxial jet of a slightly supercritical van der Waals fluid. Since acoustic effects are irrelevant in the low Mach number conditions found in many industrial applications, the numerical model is based on a suitable low-Mach number expansion of the governing equation. According to experimental observations, the weakly supercritical regime is characterized by the formation of finger-like structures – the so-called ligaments – in the shear layers separating the two streams. The mechanism of ligament formation at vanishing Mach number is extracted from the simulations and a detailed statistical characterization is provided. Ligaments always form whenever a high density contrast occurs, independently of real or perfect gas behaviors. The difference between real and perfect gas conditions is found in the ligament small-scale structure. More intense density gradients and thinner interfaces characterize the near critical fluid in comparison with the smoother behavior of the perfect gas. A phenomenological interpretation is here provided on the basis of the real gas thermodynamics properties.

  19. Two-dimensional turbulent flows on a bounded domain

    NARCIS (Netherlands)

    Kramer, W.

    2006-01-01

    Large-scale flows in the oceans and the atmosphere reveal strong similarities with purely two-dimensional flows. One of the most typical features is the cascade of energy from smaller flow scales towards larger scales. This is opposed to three-dimensional turbulence where larger flow structures

  20. L-H transition dynamics in fluid turbulence simulations with neoclassical force balance

    Energy Technology Data Exchange (ETDEWEB)

    Chôné, L. [Aix–Marseille Université, CNRS, PIIM UMR 7345, 13397 Marseille Cedex 20 (France); CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Beyer, P.; Fuhr, G.; Benkadda, S. [Aix–Marseille Université, CNRS, PIIM UMR 7345, 13397 Marseille Cedex 20 (France); Sarazin, Y.; Bourdelle, C. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France)

    2014-07-15

    Spontaneous transport barrier generation at the edge of a magnetically confined plasma is reproduced in flux-driven three-dimensional fluid simulations of electrostatic turbulence. Here, the role on the radial electric field of collisional friction between trapped and passing particles is shown to be the key ingredient. Especially, accounting for the self-consistent and precise dependence of the friction term on the actual plasma temperature allows for the triggering of a transport barrier, provided that the input power exceeds some threshold. In addition, the barrier is found to experience quasi-periodic relaxation events, reminiscent of edge localised modes. These results put forward a possible key player, namely, neoclassical physics via radial force balance, for the low- to high-confinement regime transition observed in most of controlled fusion devices.

  1. Similarity Decay of Enstrophy in an Electron Fluid

    International Nuclear Information System (INIS)

    Rodgers, D. J.; Matthaeus, W. H.; Mitchell, T. B.; Montgomery, D. C.

    2010-01-01

    A similarity decay law is proposed for enstrophy of a one-signed-vorticity fluid in a circular free-slip domain. It excludes the metastable equilibrium enstrophy which cannot drive turbulence, and approaches Batchelor's t -2 law for strong turbulence. Measurements of the decay of a turbulent electron fluid agree well with the predictions of the decay law for a variety of initial conditions.

  2. Effects of solid inertial particles on the velocity and temperature statistics of wall bounded turbulent flow

    DEFF Research Database (Denmark)

    Nakhaei, Mohammadhadi; Lessani, B.

    2016-01-01

    and particles, and the scatter plotsof fluid-particle temperature differences are presented. In addition, the variations of different budgetterms for the turbulent kinetic energy equation and fluctuating temperature variance equation in thepresence of particles are reported. The fluid turbulent heat flux...... is reduced by the presence of particles,and in spite of the additional heat exchange between the carrier fluid and the particles, the total heattransfer rate stays always lower for particle-laden flows. To further clarify this issue, the total Nusseltnumber is split into a turbulence contribution...... and a particle contribution, and the effects of particles inertiaon fluid turbulent heat flux and fluid-particle heat transfer are examined in detail...

  3. Stress assessment in piping under synthetic thermal loads emulating turbulent fluid mixing

    Energy Technology Data Exchange (ETDEWEB)

    Costa Garrido, Oriol, E-mail: oriol.costa@ijs.si; El Shawish, Samir, E-mail: samir.elshawish@ijs.si; Cizelj, Leon, E-mail: leon.cizelj@ijs.si

    2015-03-15

    Highlights: • Generation of complex space-continuous and time-dependent temperature fields. • 1D and 3D thermo-mechanical analyses of pipes under complex surface thermal loads. • Surface temperatures and stress fluctuations are highly linearly correlated. • 1D and 3D results agree for a wide range of Fourier and Biot numbers. • Global thermo-mechanical loading promotes non-equibiaxial stress state. - Abstract: Thermal fatigue assessment of pipes due to turbulent fluid mixing in T-junctions is a rather difficult task because of the existing uncertainties and variability of induced thermal stresses. In these cases, thermal stresses arise on three-dimensional pipe structures due to complex thermal loads, known as thermal striping, acting at the fluid-wall interface. A recently developed approach for the generation of space-continuous and time-dependent temperature fields has been employed in this paper to reproduce fluid temperature fields of a case study from the literature. The paper aims to deliver a detailed study of the three-dimensional structural response of piping under the complex thermal loads arising in fluid mixing in T-junctions. Results of three-dimensional thermo-mechanical analyses show that fluctuations of surface temperatures and stresses are highly linearly correlated. Also, surface stress fluctuations, in axial and hoop directions, are almost equi-biaxial. These findings, representative on cross sections away from system boundaries, are moreover supported by the sensitivity analysis of Fourier and Biot numbers and by the comparison with standard one-dimensional analyses. Agreement between one- and three-dimensional results is found for a wide range of studied parameters. The study also comprises the effects of global thermo-mechanical loading on the surface stress state. Implemented mechanical boundary conditions develop more realistic overall system deformation and promote non-equibiaxial stresses.

  4. Log-Normal Turbulence Dissipation in Global Ocean Models

    Science.gov (United States)

    Pearson, Brodie; Fox-Kemper, Baylor

    2018-03-01

    Data from turbulent numerical simulations of the global ocean demonstrate that the dissipation of kinetic energy obeys a nearly log-normal distribution even at large horizontal scales O (10 km ) . As the horizontal scales of resolved turbulence are larger than the ocean is deep, the Kolmogorov-Yaglom theory for intermittency in 3D homogeneous, isotropic turbulence cannot apply; instead, the down-scale potential enstrophy cascade of quasigeostrophic turbulence should. Yet, energy dissipation obeys approximate log-normality—robustly across depths, seasons, regions, and subgrid schemes. The distribution parameters, skewness and kurtosis, show small systematic departures from log-normality with depth and subgrid friction schemes. Log-normality suggests that a few high-dissipation locations dominate the integrated energy and enstrophy budgets, which should be taken into account when making inferences from simplified models and inferring global energy budgets from sparse observations.

  5. Vortex locking in direct numerical simulations of quantum turbulence.

    Science.gov (United States)

    Morris, Karla; Koplik, Joel; Rouson, Damian W I

    2008-07-04

    Direct numerical simulations are used to examine the locking of quantized superfluid vortices and normal fluid vorticity in evolving turbulent flows. The superfluid is driven by the normal fluid, which undergoes either a decaying Taylor-Green flow or a linearly forced homogeneous isotropic turbulent flow, although the back reaction of the superfluid on the normal fluid flow is omitted. Using correlation functions and wavelet transforms, we present numerical and visual evidence for vortex locking on length scales above the intervortex spacing.

  6. A Molecular Dynamics Simulation of the Turbulent Couette Minimal Flow Unit

    Science.gov (United States)

    Smith, Edward

    2016-11-01

    What happens to turbulent motions below the Kolmogorov length scale? In order to explore this question, a 300 million molecule Molecular Dynamics (MD) simulation is presented for the minimal Couette channel in which turbulence can be sustained. The regeneration cycle and turbulent statistics show excellent agreement to continuum based computational fluid dynamics (CFD) at Re=400. As MD requires only Newton's laws and a form of inter-molecular potential, it captures a much greater range of phenomena without requiring the assumptions of Newton's law of viscosity, thermodynamic equilibrium, fluid isotropy or the limitation of grid resolution. The fundamental nature of MD means it is uniquely placed to explore the nature of turbulent transport. A number of unique insights from MD are presented, including energy budgets, sub-grid turbulent energy spectra, probability density functions, Lagrangian statistics and fluid wall interactions. EPSRC Post Doctoral Prize Fellowship.

  7. Competition between drag and Coulomb interactions in turbulent particle-laden flows using a coupled-fluid-Ewald-summation based approach

    Science.gov (United States)

    Yao, Yuan; Capecelatro, Jesse

    2018-03-01

    We present a numerical study on inertial electrically charged particles suspended in a turbulent carrier phase. Fluid-particle interactions are accounted for in an Eulerian-Lagrangian (EL) framework and coupled to a Fourier-based Ewald summation method, referred to as the particle-particle-particle-mesh (P3M ) method, to accurately capture short- and long-range electrostatic forces in a tractable manner. The EL P3M method is used to assess the competition between drag and Coulomb forces for a range of Stokes numbers and charge densities. Simulations of like- and oppositely charged particles suspended in a two-dimensional Taylor-Green vortex and three-dimensional homogeneous isotropic turbulence are reported. It is found that even in dilute suspensions, the short-range electric potential plays an important role in flows that admit preferential concentration. Suspensions of oppositely charged particles are observed to agglomerate in the form of chains and rings. Comparisons between the particle-mesh method typically employed in fluid-particle calculations and P3M are reported, in addition to one-point and two-point statistics to quantify the level of clustering as a function of Reynolds number, Stokes number, and nondimensional electric settling velocity.

  8. Description and detection of burst events in turbulent flows

    Science.gov (United States)

    Schmid, P. J.; García-Gutierrez, A.; Jiménez, J.

    2018-04-01

    A mathematical and computational framework is developed for the detection and identification of coherent structures in turbulent wall-bounded shear flows. In a first step, this data-based technique will use an embedding methodology to formulate the fluid motion as a phase-space trajectory, from which state-transition probabilities can be computed. Within this formalism, a second step then applies repeated clustering and graph-community techniques to determine a hierarchy of coherent structures ranked by their persistencies. This latter information will be used to detect highly transitory states that act as precursors to violent and intermittent events in turbulent fluid motion (e.g., bursts). Used as an analysis tool, this technique allows the objective identification of intermittent (but important) events in turbulent fluid motion; however, it also lays the foundation for advanced control strategies for their manipulation. The techniques are applied to low-dimensional model equations for turbulent transport, such as the self-sustaining process (SSP), for varying levels of complexity.

  9. Turbulent thermal convection at high Rayleigh numbers for a Boussinesq fluid of constant Prandtl number

    International Nuclear Information System (INIS)

    Amati, G.; Koal, K.; Massaioli, F.; Sreenivasan, K.R.; Verzicco, R.

    2006-12-01

    The results from direct numerical simulations of turbulent Boussinesq convection are briefly presented. The flow is computed for a cylindrical cell of aspect ratio 1/2 in order to compare with the results from recent experiments. The results span eight decades of Ra from 2x10 6 to 2x10 14 and form the baseline data for a strictly Boussinesq fluid of constant Prandtl number (Pr=0.7). A conclusion is that the Nusselt number varies nearly as the 1/3 power of Ra for about four decades towards the upper end of the Ra range covered. (author)

  10. Direct numerical simulation of turbulent mixing in grid-generated turbulence

    International Nuclear Information System (INIS)

    Nagata, Kouji; Suzuki, Hiroki; Sakai, Yasuhiko; Kubo, Takashi; Hayase, Toshiyuki

    2008-01-01

    Turbulent mixing of passive scalar (heat) in grid-generated turbulence (GGT) is simulated by means of direct numerical simulation (DNS). A turbulence-generating grid, on which the velocity components are set to zero, is located downstream of the channel entrance, and it is numerically constructed on the staggered mesh arrangement using the immersed boundary method. The grid types constructed are: (a) square-mesh biplane grid, (b) square-mesh single-plane grid, (c) composite grid consisting of parallel square-bars and (d) fractal grid. Two fluids with different temperatures are provided separately in the upper and lower streams upstream of the turbulence-generating grids, generating the thermal mixing layer behind the grids. For the grid (a), simulations for two different Prandtl numbers of 0.71 and 7.1, corresponding to air and water flows, are conducted to investigate the effect of the Prandtl number. The results show that the typical grid turbulence and shearless mixing layer are generated downstream of the grids. The results of the scalar field show that a typical thermal mixing layer is generated as well, and the effects of the Prandtl numbers on turbulent heat transfer are observed.

  11. Direct numerical simulation of turbulent mixing in grid-generated turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Kouji; Suzuki, Hiroki; Sakai, Yasuhiko; Kubo, Takashi [Department of Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603 (Japan); Hayase, Toshiyuki [Institute of Fluid Science, Tohoku University, Sendai 980-8577 (Japan)], E-mail: nagata@nagoya-u.jp, E-mail: hsuzuki@nagoya-u.jp, E-mail: ysakai@mech.nagoya-u.ac.jp, E-mail: t-kubo@nagoya-u.jp, E-mail: hayase@ifs.tohoku.ac.jp

    2008-12-15

    Turbulent mixing of passive scalar (heat) in grid-generated turbulence (GGT) is simulated by means of direct numerical simulation (DNS). A turbulence-generating grid, on which the velocity components are set to zero, is located downstream of the channel entrance, and it is numerically constructed on the staggered mesh arrangement using the immersed boundary method. The grid types constructed are: (a) square-mesh biplane grid, (b) square-mesh single-plane grid, (c) composite grid consisting of parallel square-bars and (d) fractal grid. Two fluids with different temperatures are provided separately in the upper and lower streams upstream of the turbulence-generating grids, generating the thermal mixing layer behind the grids. For the grid (a), simulations for two different Prandtl numbers of 0.71 and 7.1, corresponding to air and water flows, are conducted to investigate the effect of the Prandtl number. The results show that the typical grid turbulence and shearless mixing layer are generated downstream of the grids. The results of the scalar field show that a typical thermal mixing layer is generated as well, and the effects of the Prandtl numbers on turbulent heat transfer are observed.

  12. Numerical calculation of two-phase turbulent jets

    Energy Technology Data Exchange (ETDEWEB)

    Saif, A.A.

    1995-05-01

    Two-phase turbulent round jets were numerically simulated using a multidimensional two-phase CFD code based on the two-fluid model. The turbulence phenomena were treated with the standard k-{epsilon} model. It was modified to take into account the additional dissipation of turbulent kinetic energy by the dispersed phase. Within the context of the two-fluid model it is more appropriate and physically justified to treat the diffusion by an interfacial force in the momentum equation. In this work, the diffusion force and the additional dissipation effect by the dispersed phase were modeled starting from the classical turbulent energy spectrum analysis. A cut-off frequency was proposed to decrease the dissipation effect by the dispersed phase when large size particles are introduced in the flow. The cut-off frequency combined with the bubble-induced turbulence effect allows for an increase in turbulence for large particles. Additional care was taken in choosing the right kind of experimental data from the literature so that a good separate effect test was possible for their models. The models predicted the experimental data very closely and they were general enough to predict extreme limit cases: water-bubble and air-droplet jets.

  13. Interaction of Strong Turbulence With Free Surfaces

    Science.gov (United States)

    Dalrymple, Robert A.

    Spray from a nozzle, spilling breakers, and “rooster tails” from speeding boats are all examples of a turbulent flow with a free surface. In many cases like these, the free surface is difficult to discern as the volume of air in the fluid can exceed that of the water.In traditional studies, the free surface is simply defined as a continuous surface separating the fluid from air. The pressure at the surface is assumed to be atmospheric pressure and the fluid comprising the surface moves with the surface. While these conditions are sufficient for non-turbulent flows, such as nonbreaking water waves, and lead to the (albeit non-linear) dynamic and kinematic free surface boundary conditions that serve to provide sufficient conditions to determine the surface, they are not valid descriptions for a bubbly free surface in a highly turbulent regime, such as the roller in front of a spilling breaker or the propeller wash behind a ship.

  14. Impact of large scale flows on turbulent transport

    Energy Technology Data Exchange (ETDEWEB)

    Sarazin, Y [Association Euratom-CEA, CEA/DSM/DRFC centre de Cadarache, 13108 St-Paul-Lez-Durance (France); Grandgirard, V [Association Euratom-CEA, CEA/DSM/DRFC centre de Cadarache, 13108 St-Paul-Lez-Durance (France); Dif-Pradalier, G [Association Euratom-CEA, CEA/DSM/DRFC centre de Cadarache, 13108 St-Paul-Lez-Durance (France); Fleurence, E [Association Euratom-CEA, CEA/DSM/DRFC centre de Cadarache, 13108 St-Paul-Lez-Durance (France); Garbet, X [Association Euratom-CEA, CEA/DSM/DRFC centre de Cadarache, 13108 St-Paul-Lez-Durance (France); Ghendrih, Ph [Association Euratom-CEA, CEA/DSM/DRFC centre de Cadarache, 13108 St-Paul-Lez-Durance (France); Bertrand, P [LPMIA-Universite Henri Poincare Nancy I, Boulevard des Aiguillettes BP239, 54506 Vandoe uvre-les-Nancy (France); Besse, N [LPMIA-Universite Henri Poincare Nancy I, Boulevard des Aiguillettes BP239, 54506 Vandoe uvre-les-Nancy (France); Crouseilles, N [IRMA, UMR 7501 CNRS/Universite Louis Pasteur, 7 rue Rene Descartes, 67084 Strasbourg (France); Sonnendruecker, E [IRMA, UMR 7501 CNRS/Universite Louis Pasteur, 7 rue Rene Descartes, 67084 Strasbourg (France); Latu, G [LSIIT, UMR 7005 CNRS/Universite Louis Pasteur, Bd Sebastien Brant BP10413, 67412 Illkirch (France); Violard, E [LSIIT, UMR 7005 CNRS/Universite Louis Pasteur, Bd Sebastien Brant BP10413, 67412 Illkirch (France)

    2006-12-15

    The impact of large scale flows on turbulent transport in magnetized plasmas is explored by means of various kinetic models. Zonal flows are found to lead to a non-linear upshift of turbulent transport in a 3D kinetic model for interchange turbulence. Such a transition is absent from fluid simulations, performed with the same numerical tool, which also predict a much larger transport. The discrepancy cannot be explained by zonal flows only, despite they being overdamped in fluids. Indeed, some difference remains, although reduced, when they are artificially suppressed. Zonal flows are also reported to trigger transport barriers in a 4D drift-kinetic model for slab ion temperature gradient (ITG) turbulence. The density gradient acts as a source drive for zonal flows, while their curvature back stabilizes the turbulence. Finally, 5D simulations of toroidal ITG modes with the global and full-f GYSELA code require the equilibrium density function to depend on the motion invariants only. If not, the generated strong mean flows can completely quench turbulent transport.

  15. Impact of large scale flows on turbulent transport

    International Nuclear Information System (INIS)

    Sarazin, Y; Grandgirard, V; Dif-Pradalier, G; Fleurence, E; Garbet, X; Ghendrih, Ph; Bertrand, P; Besse, N; Crouseilles, N; Sonnendruecker, E; Latu, G; Violard, E

    2006-01-01

    The impact of large scale flows on turbulent transport in magnetized plasmas is explored by means of various kinetic models. Zonal flows are found to lead to a non-linear upshift of turbulent transport in a 3D kinetic model for interchange turbulence. Such a transition is absent from fluid simulations, performed with the same numerical tool, which also predict a much larger transport. The discrepancy cannot be explained by zonal flows only, despite they being overdamped in fluids. Indeed, some difference remains, although reduced, when they are artificially suppressed. Zonal flows are also reported to trigger transport barriers in a 4D drift-kinetic model for slab ion temperature gradient (ITG) turbulence. The density gradient acts as a source drive for zonal flows, while their curvature back stabilizes the turbulence. Finally, 5D simulations of toroidal ITG modes with the global and full-f GYSELA code require the equilibrium density function to depend on the motion invariants only. If not, the generated strong mean flows can completely quench turbulent transport

  16. Planktivorous feeding in calm and turbulent environments, with emphasis on copepods

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Saiz, E.

    1995-01-01

    Turbulence may enhance contact rates between planktonic predators and their prey. We formulate simple and general models of prey encounter rates, taking into account the behaviours and motility patterns of both prey and predator as well as turbulent fluid motion. Using these models we determine...... the levels of turbulence (as dissipation rate) at which ambient fluid motion is important in enhancing prey encounter rates for various types of predators (e.g, ambush and cruise predators, suspension feeders). Generally, turbulence has the largest effect on prey encounters for predators with low motility...... and long reaction distances. Also, turbulence is most important for meso-sized (mm to cm) predators and insignificant for smaller and larger predators. The effect of turbulence on copepods is specifically examined. For copepods that establish feeding currents, turbulence is of minor importance; for ambush...

  17. Coherent Structures and Intermittency in Plasma Turbulence

    International Nuclear Information System (INIS)

    Das, Amita; Kaw, Predhiman; Sen, Abhijit

    2008-01-01

    The paper discusses some fundamental issues related to the phenomenon of intermittency in plasma turbulence with particular reference to experimental observations in fusion devices. Intermittency is typically associated with the presence of coherent structures in turbulence. Since coherent structures can play an important role in governing the transport properties of a system they have received a great deal of attention in fusion research. We review some of the experimental measurements and numerical simulation studies on the presence and formation of coherent structures in plasmas and discuss their relevance to intermittency. Intermittency, as widely discussed in the context of neutral fluid turbulence, implies multiscaling behaviour in contrast to self-similar scaling patterns observed in self organized criticality (SOC) phenomenon. The experimental evidence from plasma turbulence measurements reveal a mixed picture--while some observations support the SOC model description others indicate the presence of multiscaling behaviour. We discuss these results in the light of our present understanding of plasma turbulence and in terms of certain unique aspects of intermittency as revealed by fluid models of plasmas.

  18. Fluid Mechanics and Fluid Power (FMFP)

    Indian Academy of Sciences (India)

    Amitabh Bhattacharya

    of renewable energy (e.g., via wind, hydrokinetic generators), creating low-cost healthcare ... multiphase flow, turbulence, bio-fluid dynamics, atmospheric flows, microfluidic flows, and ... study the challenging problem of entry of solids in water.

  19. Pipe Flow and Wall Turbulence Using a Modified Navier-Stokes Equation

    International Nuclear Information System (INIS)

    Jirkovsky, L.; Muriel, A.

    2012-01-01

    We use a derived incompressible modified Navier-Stokes equation to model pipe flow and wall turbulence. We reproduce the observed flattened paraboloid velocity profiles of turbulence that cannot be obtained directly using standard incompressible Navier-Stokes equation. The solutions found are in harmony with multi-valued velocity fields as a definition of turbulence. Repeating the procedure for the flow of turbulent fluid between two parallel flat plates we find similar flattened velocity profiles. We extend the analysis to the turbulent flow along a single wall and compare the results with experimental data and the established controversial von Karman logarithmic law of the wall. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  20. Self-organized criticality revisited: non-local transport by turbulent amplification

    DEFF Research Database (Denmark)

    Milovanov, Alexander V.; Rasmussen, Jens Juul

    2015-01-01

    We revise the applications of self-organized criticality (SOC) as a paradigmatic model for tokamak plasma turbulence. The work, presented here, is built around the idea that some systems do not develop a pure critical state associable with SOC, since their dynamical evolution involves as a compet......We revise the applications of self-organized criticality (SOC) as a paradigmatic model for tokamak plasma turbulence. The work, presented here, is built around the idea that some systems do not develop a pure critical state associable with SOC, since their dynamical evolution involves...... as a competing key factor an inverse cascade of the energy in reciprocal space. Then relaxation of slowly increasing stresses will give rise to intermittent bursts of transport in real space and outstanding transport events beyond the range of applicability of the 'conventional' SOC. Also, we are concerned...... with the causes and origins of non-local transport in magnetized plasma, and show that this type of transport occurs naturally in self-consistent strong turbulence via a complexity coupling to the inverse cascade. We expect these coupling phenomena to occur in the parameter range of strong nonlinearity and time...

  1. Properties of Turbulence in the Reconnection Exhaust: Numerical Simulations Compared with Observations

    Energy Technology Data Exchange (ETDEWEB)

    Pucci, F.; Olshevsky, V.; Lapenta, G. [Center for Mathematical Plasma Astrophysics, Department Wiskunde, KU Leuven, 200B Celestijnenlaan, Leuven, B-3001 (Belgium); Servidio, S.; Malara, F. [Dipartimento di Fisica, Università della Calabria, I-87036 Cosenza (Italy); Sorriso-Valvo, L. [Nanotec-CNR, U.O.S. di Cosenza, Via P. Bucci, Cubo 31C, Arcavacata di Rende, I-87036 (Italy); Matthaeus, W. H. [Department of Physics and Astronomy, University of Delaware, 217 Sharp Lab, Newark, DE 19716 (United States); Goldman, M. V.; Newman, D. L., E-mail: francesco.pucci@kuleuven.be [University of Colorado, Boulder, CO 80309 (United States)

    2017-05-20

    The properties of the turbulence that develops in the outflows of magnetic reconnection have been investigated using self-consistent plasma simulations, in three dimensions. As commonly observed in space plasmas, magnetic reconnection is characterized by the presence of turbulence. Here we provide a direct comparison of our simulations with reported observations of reconnection events in the magnetotail, investigating the properties of the electromagnetic field and the energy conversion mechanisms. In particular, simulations show the development of a turbulent cascade consistent with spacecraft observations, statistics of the dissipation mechanisms in the turbulent outflows similar to the ones observed in reconnection jets in the magnetotail, and that the properties of turbulence vary as a function of the distance from the reconnecting X-line.

  2. Principles of fluid mechanics

    International Nuclear Information System (INIS)

    Kreider, J.F.

    1985-01-01

    This book is an introduction on fluid mechanics incorporating computer applications. Topics covered are as follows: brief history; what is a fluid; two classes of fluids: liquids and gases; the continuum model of a fluid; methods of analyzing fluid flows; important characteristics of fluids; fundamentals and equations of motion; fluid statics; dimensional analysis and the similarity principle; laminar internal flows; ideal flow; external laminar and channel flows; turbulent flow; compressible flow; fluid flow measurements

  3. On the origin of turbulence in ionizing waves and in hydrodynamics

    International Nuclear Information System (INIS)

    Krasa, J.; Rothhardt, L.

    1984-01-01

    Research of irregular (turbulent) ionizing waves is reviewed. Measuring techniques and analogies to fluid turbulence are accentuated. The irregular (turbulent) ionizing waves are recommended as a one-dimensional substrate for further basic studies on turbulence generation because of good accessability and ease of contactless measurement. (author)

  4. Self-organization of turbulence. A brief review of self-organization with particular reference to hydrodynamic and magnetohydrodynamic turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, A [Bell Labs., Murray Hill, NJ (USA)

    1982-02-01

    Theoretical treatments of turbulence in fluids and plasmas often assume that the turbulence is isotropic and homogeneous. It is also often considered that turbulence produces uniformly distributed chaos, even when starting with a coherent initial condition. Recently, however, phenomena which do not obey these classic concepts have emerged. For example, in two-dimensional Navier-Stokes turbulence, an organized flow or structure is found to appear even from a chaotic initial condition. The author attempts to review some of the recent developments of a phenomenon called self-organization in the field of hydrodynamics and plasma physics.

  5. Turbulence Model

    DEFF Research Database (Denmark)

    Nielsen, Mogens Peter; Shui, Wan; Johansson, Jens

    2011-01-01

    term with stresses depending linearly on the strain rates. This term takes into account the transfer of linear momentum from one part of the fluid to another. Besides there is another term, which takes into account the transfer of angular momentum. Thus the model implies a new definition of turbulence...

  6. A correlation for single phase turbulent mixing in square rod arrays under highly turbulent conditions

    International Nuclear Information System (INIS)

    Jeong, Hae Yong; Ha, Kwi Seok; Kwon, Young Min; Chang, Won Pyo; Lee, Yong Bum

    2006-01-01

    The existing experimental data related to the turbulent mixing factor in rod arrays is examined and a new definition of the turbulent mixing factor is introduced to take into account the turbulent mixing of fluids with various Prandtl numbers. The new definition of the mixing factor is based on the eddy diffusivity of energy. With this definition of the mixing factor, it was found that the geometrical parameter, δ ij /D h , correlates the turbulent mixing data better than S/d, which has been used frequently in existing correlations. Based on the experimental data for a highly turbulent condition in square rod arrays, a correlation describing turbulent mixing dependent on the parameter δ ij /D h has been developed. The correlation is insensitive to the Re number and it takes into account the effect of the turbulent Prandtl number. The proposed correlation predicts a reasonable mixing even at a lower S/d ratio

  7. Mathematical and numerical foundations of turbulence models and applications

    CERN Document Server

    Chacón Rebollo, Tomás

    2014-01-01

    With applications to climate, technology, and industry, the modeling and numerical simulation of turbulent flows are rich with history and modern relevance. The complexity of the problems that arise in the study of turbulence requires tools from various scientific disciplines, including mathematics, physics, engineering, and computer science. Authored by two experts in the area with a long history of collaboration, this monograph provides a current, detailed look at several turbulence models from both the theoretical and numerical perspectives. The k-epsilon, large-eddy simulation, and other models are rigorously derived and their performance is analyzed using benchmark simulations for real-world turbulent flows. Mathematical and Numerical Foundations of Turbulence Models and Applications is an ideal reference for students in applied mathematics and engineering, as well as researchers in mathematical and numerical fluid dynamics. It is also a valuable resource for advanced graduate students in fluid dynamics,...

  8. A non-traditional fluid problem: transition between theoretical models from Stokes’ to turbulent flow

    Science.gov (United States)

    Salomone, Horacio D.; Olivieri, Néstor A.; Véliz, Maximiliano E.; Raviola, Lisandro A.

    2018-05-01

    In the context of fluid mechanics courses, it is customary to consider the problem of a sphere falling under the action of gravity inside a viscous fluid. Under suitable assumptions, this phenomenon can be modelled using Stokes’ law and is routinely reproduced in teaching laboratories to determine terminal velocities and fluid viscosities. In many cases, however, the measured physical quantities show important deviations with respect to the predictions deduced from the simple Stokes’ model, and the causes of these apparent ‘anomalies’ (for example, whether the flow is laminar or turbulent) are seldom discussed in the classroom. On the other hand, there are various variable-mass problems that students tackle during elementary mechanics courses and which are discussed in many textbooks. In this work, we combine both kinds of problems and analyse—both theoretically and experimentally—the evolution of a system composed of a sphere pulled by a chain of variable length inside a tube filled with water. We investigate the effects of different forces acting on the system such as weight, buoyancy, viscous friction and drag force. By means of a sequence of mathematical models of increasing complexity, we obtain a progressive fit that accounts for the experimental data. The contrast between the various models exposes the strengths and weaknessess of each one. The proposed experience can be useful for integrating concepts of elementary mechanics and fluids, and is suitable as laboratory practice, stressing the importance of the experimental validation of theoretical models and showing the model-building processes in a didactic framework.

  9. Computational fluid dynamics investigation of turbulent separated ...

    African Journals Online (AJOL)

    user

    Turbulent mixing is largely suppressed by the proximity of a wall boundary and ... the uncertainty between the experimental and CFD values falls within ± 3.8% of f .... Numerical, Experimental, and Theoretical Aspects, Vieweg, Berlin, 1989, pp.

  10. Homogeneous internal wave turbulence driven by tidal flows

    Science.gov (United States)

    Le Reun, Thomas; Favier, Benjamin; Le Bars, Michael; Erc Fludyco Team

    2017-11-01

    We propose a novel investigation of the stability of strongly stratified planetary fluid layers undergoing periodic tidal distortion in the limit where rotational effects are negligible compared to buoyancy. With the help of a local model focusing on a small fluid area compared to the global layer, we find that periodic tidal distortion drives a parametric subharmonic resonance of internal. This instability saturates into an homogeneous internal wave turbulence pervading the whole fluid interior: the energy is injected in the unstable waves which then feed a succession of triadic resonances also generating small spatial scales. As the timescale separation between the forcing and Brunt-Väisälä is increased, the temporal spectrum of this turbulence displays a -2 power law reminiscent of the Garrett and Munk spectrum measured in the oceans (Garett & Munk 1979). Moreover, in this state consisting of a superposition of waves in weak non-linear interaction, the mixing efficiency is increased compared to classical, Kolmogorov-like stratified turbulence. This study is of wide interest in geophysical fluid dynamics ranging from oceanic turbulence and tidal heating in icy satellites to dynamo action in partially stratified planetary cores as it could be the case in the Earth. We acknowledge support from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant Agreement No. 681835-FLUDYCO-ERC-2015-CoG).

  11. Onset of meso-scale turbulence in active nematics

    NARCIS (Netherlands)

    Doostmohammadi, A.; Shendruk, T.N.; Thijssen, K.; Yeomans, J.M.

    2017-01-01

    Meso-scale turbulence is an innate phenomenon, distinct from inertial turbulence, that spontaneously occurs at low Reynolds number in fluidized biological systems. This spatiotemporal disordered flow radically changes nutrient and molecular transport in living fluids and can strongly affect the

  12. Entropy generation in turbulent mixed convection heat transfer to highly variable property pipe flow of supercritical fluids

    International Nuclear Information System (INIS)

    Mohseni, Mahdi; Bazargan, Majid

    2014-01-01

    Highlights: • The entropy generation in supercritical fluid flows has been numerically investigated. • The mechanisms of entropy generation are different near and away from the walls. • In the near wall region, the energy dissipation is the deciding parameter. • Away from the wall, the heat transfer is the effective factor in entropy generation. • The bulk Be number is greater in the liquid-like region than in vapor-like region. - Abstract: In this study, a two dimensional CFD code has been developed to investigate entropy generation in turbulent mixed convection heat transfer flow of supercritical fluids. Since the fluid properties vary significantly under supercritical conditions, the changes of entropy generation are large. The contribution of each of the mechanisms of entropy production (heat transfer and energy dissipation) is compared in different regions of the flow. The results show that the mechanisms of entropy generation act differently in the near wall region within the viscous sub-layer and in the region away from the wall. The effects of the wall heat flux on the entropy generation are also investigated

  13. Statistical Mechanics of Turbulent Flows

    International Nuclear Information System (INIS)

    Cambon, C

    2004-01-01

    counterparts at the molecular level. In addition, equations are given for multicomponent reacting systems. The chapter ends with miscellaneous topics, including DNS (idea of) the energy cascade, and RANS. Chapter 5 is devoted to stochastic models for the large scales of turbulence. Langevin-type models for velocity (and particle position) are presented, and their various consequences for second-order single-point correlations (Reynolds stress components, Kolmogorov constant) are discussed. These models are then presented for the scalar. The chapter ends with compressible high-speed flows and various models, ranging from k-ε to hybrid RANS-pdf. Stochastic models for small-scale turbulence are addressed in chapter 6. These models are based on the concept of a filter density function (FDF) for the scalar, and a more conventional SGS (sub-grid-scale model) for the velocity in LES. The final chapter, chapter 7, is entitled 'The unification of turbulence models' and aims at reconciling large-scale and small-scale modelling. This book offers a timely survey of techniques in modern computational fluid mechanics for turbulent flows with reacting scalars. It should be of interest to engineers, while the discussion of the underlying tools, namely pdfs, stochastic and statistical equations should also be attractive to applied mathematicians and physicists. The book's emphasis on local pdfs and stochastic Langevin models gives a consistent structure to the book and allows the author to cover almost the whole spectrum of practical modelling in turbulent CFD. On the other hand, one might regret that non-local issues are not mentioned explicitly, or even briefly. These problems range from the presence of pressure-strain correlations in the Reynolds stress transport equations to the presence of two-point pdfs in the single-point pdf equation derived from the Navier--Stokes equations. (One may recall that, even without scalar transport, a general closure problem for turbulence statistics

  14. Tearing instabilities in turbulence

    International Nuclear Information System (INIS)

    Ishizawa, A.; Nakajima, N.

    2009-01-01

    Full text: Effects of micro-turbulence on tearing instabilities are investigated by numerically solving a reduced set of two-fluid equations. Micro-turbulence excites both large-scale and small-scale Fourier modes through energy transfer due to nonlinear mode coupling. The energy transfer to large scale mode does not directly excite tearing instability but it gives an initiation of tearing instability. When tearing instability starts to grow, the excited small scale mode plays an important role. The mixing of magnetic flux by micro-turbulence is the dominant factor of non-ideal MHD effect at the resonant surface and it gives rise to magnetic reconnection which causes tearing instability. Tearing instabilities were investigated against static equilibrium or flowing equilibrium so far. On the other hand, the recent progress of computer power allows us to investigate interactions between turbulence and coherent modes such as tearing instabilities in magnetically confined plasmas by means of direct numerical simulations. In order to investigate effects of turbulence on tearing instabilities we consider a situation that tearing mode is destabilized in a quasi-equilibrium including micro-turbulence. We choose an initial equilibrium that is unstable against kinetic ballooning modes and tearing instabilities. Tearing instabilities are current driven modes and thus they are unstable for large scale Fourier modes. On the other hand kinetic ballooning modes are unstable for poloidal Fourier modes that are characterized by ion Larmor radius. The energy of kinetic ballooning modes spreads over wave number space through nonlinear Fourier mode coupling. We present that micro-turbulence affects tearing instabilities in two different ways by three-dimensional numerical simulation of a reduced set of two-fluid equations. One is caused by energy transfer to large scale modes, the other is caused by energy transfer to small scale modes. The former is the excitation of initial

  15. Energy spectrum scaling in an agent-based model for bacterial turbulence

    Science.gov (United States)

    Mikel-Stites, Maxwell; Staples, Anne

    2017-11-01

    Numerous models have been developed to examine the behavior of dense bacterial swarms and to explore the visually striking phenomena of bacterial turbulence. Most models directly impose fluid dynamics physics, either by modeling the active matter as a fluid or by including interactions between the bacteria and a fluid. In this work, however, the `turbulence' is solely an emergent property of the collective behavior of the bacterial population, rather than a consequence of imposed fluid dynamics physical modeling. The system is simulated using a two dimensional Vicsek-style model, with the addition of individual repulsion to simulate bacterial collisions and physical interactions, and without the common flocking or sensing behaviors. Initial results indicate the presence of k-1 scaling in a portion of the kinetic energy spectrum that can be considered analogous to the inertial subrange in turbulent energy spectra. This result suggests that the interaction of large numbers of individual active bacteria may also be a contributing factor in the emergence of fluid dynamics phenomena, in addition to the physical interactions between bacteria and their fluid environment.

  16. Measurement of beam driven hydrodynamic turbulence

    International Nuclear Information System (INIS)

    Norem, J.; Black, E.; Bandura, L.; Errede, D.; Cummings, M. A. C.

    2003-01-01

    Cooling intense muon beams in liquid hydrogen absorbers introduces kW of heating to the cold fluid, which will drive turbulent flow. The amount of turbulence may be sufficient to help cool the liquid, but calculations are difficult. We have used a 20 MeV electron beam in a water tank to look at the scale of the beam driven convection and turbulence. The density and flow measurements are made with schlieren and Ronchi systems. We describe the optical systems and the turbulence measured. These data are being used to calibrate hydrodynamic calculations of convection driven and forced flow cooling in muon cooling absorbers

  17. Measurements of Turbulence at Two Tidal Energy Sites in Puget Sound, WA

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, Jim; Polagye, Brian; Durgesh, Vibhav; Richmond, Marshall C.

    2012-06-05

    Field measurements of turbulence are pre- sented from two sites in Puget Sound, WA (USA) that are proposed for electrical power generation using tidal current turbines. Rapidly sampled data from multiple acoustic Doppler instruments are analyzed to obtain statistical mea- sures of fluctuations in both the magnitude and direction of the tidal currents. The resulting turbulence intensities (i.e., the turbulent velocity fluctuations normalized by the harmonic tidal currents) are typically 10% at the hub- heights (i.e., the relevant depth bin) of the proposed turbines. Length and time scales of the turbulence are also analyzed. Large-scale, anisotropic eddies dominate the energy spectra, which may be the result of proximity to headlands at each site. At small scales, an isotropic turbulent cascade is observed and used to estimate the dissipation rate of turbulent kinetic energy. Data quality and sampling parameters are discussed, with an emphasis on the removal of Doppler noise from turbulence statistics.

  18. Turbulent mixing between subchannels in a gas-liquid two-phase flow. For the equilibrium flow without net fluid transfer between subchannels

    International Nuclear Information System (INIS)

    Kawahara, Akimaro; Sadatomi, Michio; Sato, Yoshifusa; Saito, Hidetoshi.

    1995-01-01

    To provide data necessary for modeling turbulent mixing between subchannels in a nuclear fuel rod bundle, three experiments were made in series for equilibrium two-phase flows, in which net mass exchange does not occur between subchannels for each phase. The first one was the measurement of turbulent mixing rates of both gas and liquid phases by a tracer technique, using air and water as the working fluids. Three kinds of vertical test channels consisting of two subchannels were used. The data have shown that the turbulent mixing rate of each phase in a two-phase flow is strongly dependent on flow regime. So, to see the relation between turbulent mixing and two-phase flow configuration in the subchannels, the second experiment, flow visualization, was made. It was observed in slug and churn flows that a lateral inter-subchannel liquid flow of a large scale is caused by the successive axial transit of large gas bubbles in each subchannel, and the turbulent mixing for the liquid phase is dominated by this lateral flow. To investigate a driving force of such large scale lateral flow, the third experiment, the measurement of an instantaneous pressure differential between the subchannels, was made. The result showed that there is a close relationship between the liquid phase mixing rate and the magnitude of the pressure differential fluctuation. (author)

  19. Editorial Special Issue on Fluid Mechanics and Fluid Power (FMFP ...

    Indian Academy of Sciences (India)

    a shark is more efficient than a propeller; the notoriously complicated and nonlinear Navier–. Stokes equations governing fluid motion provide fertile ground for research to both applied and pure mathematicians. There is the phenomenon of turbulence in fluid flows. A statement in 1932, attributed to Horace Lamb, author of ...

  20. Flux surface shaping effects on tokamak edge turbulence and flows

    Energy Technology Data Exchange (ETDEWEB)

    Kendl, A. [Innsbruck Univ., Institut fuer Theoretische Physik, Association EURATOM (Austria); Scott, B.D. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Garching bei Muenchen (Germany)

    2004-07-01

    The influence of shaping of magnetic flux surfaces in tokamaks on gyro-fluid edge turbulence is studied numerically. Magnetic field shaping in tokamaks is mainly due to elongation, triangularity, shift and the presence of a divertor X-point. A series of tokamak configurations with varying elongation 1 {<=} {kappa} {>=} 2 and triangularity 0 {<=} {delta} {<=} 0.4, and an actual ASDEX Upgrade divertor configuration are obtained with the equilibrium code HELENA and implemented into the gyro-fluid turbulence code GEM. The study finds minimal impact on the zonal flow physics itself, but strong impact on the turbulence and transport. (authors)

  1. Flux surface shaping effects on tokamak edge turbulence and flows

    International Nuclear Information System (INIS)

    Kendl, A.; Scott, B.D.

    2004-01-01

    The influence of shaping of magnetic flux surfaces in tokamaks on gyro-fluid edge turbulence is studied numerically. Magnetic field shaping in tokamaks is mainly due to elongation, triangularity, shift and the presence of a divertor X-point. A series of tokamak configurations with varying elongation 1 ≤ κ ≥ 2 and triangularity 0 ≤ δ ≤ 0.4, and an actual ASDEX Upgrade divertor configuration are obtained with the equilibrium code HELENA and implemented into the gyro-fluid turbulence code GEM. The study finds minimal impact on the zonal flow physics itself, but strong impact on the turbulence and transport. (authors)

  2. Beyond scale separation in gyrokinetic turbulence

    International Nuclear Information System (INIS)

    Garbet, X.; Sarazin, Y.; Grandgirard, V.; Dif-Pradalier, G.; Darmet, G.; Ghendrih, Ph.; Angelino, P.; Bertrand, P.; Besse, N.; Gravier, E.; Morel, P.; Sonnendruecker, E.; Crouseilles, N.; Dischler, J.-M.; Latu, G.; Violard, E.; Brunetti, M.; Brunner, S.; Lapillonne, X.; Tran, T.-M.; Villard, L.; Boulet, M.

    2007-01-01

    This paper presents the results obtained with a set of gyrokinetic codes based on a semi-Lagrangian scheme. Several physics issues are addressed, namely, the comparison between fluid and kinetic descriptions, the intermittent behaviour of flux driven turbulence and the role of large scale flows in toroidal ITG turbulence. The question of the initialization of full-F simulations is also discussed

  3. Parametric Instability, Inverse Cascade, and the 1/f Range of Solar-Wind Turbulence.

    Science.gov (United States)

    Chandran, Benjamin D G

    2018-02-01

    In this paper, weak turbulence theory is used to investigate the nonlinear evolution of the parametric instability in 3D low- β plasmas at wavelengths much greater than the ion inertial length under the assumption that slow magnetosonic waves are strongly damped. It is shown analytically that the parametric instability leads to an inverse cascade of Alfvén wave quanta, and several exact solutions to the wave kinetic equations are presented. The main results of the paper concern the parametric decay of Alfvén waves that initially satisfy e + ≫ e - , where e + and e - are the frequency ( f ) spectra of Alfvén waves propagating in opposite directions along the magnetic field lines. If e + initially has a peak frequency f 0 (at which fe + is maximized) and an "infrared" scaling f p at smaller f with -1 scaling throughout a range of frequencies that spreads out in both directions from f 0 . At the same time, e - acquires an f -2 scaling within this same frequency range. If the plasma parameters and infrared e + spectrum are chosen to match conditions in the fast solar wind at a heliocentric distance of 0.3 astronomical units (AU), then the nonlinear evolution of the parametric instability leads to an e + spectrum that matches fast-wind measurements from the Helios spacecraft at 0.3 AU, including the observed f -1 scaling at f ≳ 3 × 10 -4 Hz. The results of this paper suggest that the f -1 spectrum seen by Helios in the fast solar wind at f ≳ 3 × 10 -4 Hz is produced in situ by parametric decay and that the f -1 range of e + extends over an increasingly narrow range of frequencies as r decreases below 0.3 AU. This prediction will be tested by measurements from the Parker Solar Probe .

  4. Intermittency exponent of the turbulent energy cascade

    International Nuclear Information System (INIS)

    Cleve, J.; Greiner, M.; Pearson, B.R.; Sreenivasan, K.R.

    2006-12-01

    We consider the turbulent energy dissipation from one-dimensional records in experiments using air and gaseous helium at cryogenic temperatures, and obtain the intermittency exponent via the two-point correlation function of the energy dissipation. The air data are obtained in a number of flows in a wind tunnel and the atmospheric boundary layer at a height of about 35 m above the ground. The helium data correspond to the centerline of a jet exhausting into a container. The air data on the intermittency exponent are consistent with each other and with a trend that increases with the Taylor microscale Reynolds number, R λ , of up to about 1000 and saturates thereafter. On the other hand, the helium data cluster around a constant value at nearly all R λ , this being about half of the asymptotic value for the air data. Some possible explanation is offered for this anomaly. (author)

  5. Dual cascade and minimum enstrophy state in the tokamak scrape-off layer

    International Nuclear Information System (INIS)

    Mattor, N.; Cohen, R.H.; Xu, X.Q.

    1993-01-01

    In the Tokamak Scrape-off layer (SOL), there is experimental, theoretical, and computational evidence of an inverse energy cascade, wherein fluctuation energy transfers nonlinearly to large scale lengths. If the inverse cascade proceeds to the largest scales, it gives transport which is inherently nonlocal, precluding standard descriptions with local transport coefficients. This includes DIA based renormalization theories, γ/k 2 open-quotes mixing lengthclose quotes theories, and spectral or pseudo-spectral codes, all of which tend to involve a two-scale assumption, that turbulence acts on very short time and length scales relative to the equilibrium. The two-scale assumption is violated by turbulence undergoing a significant inverse cascade, and a different approach is called for. The authors postulate that the net effect of such turbulence is not local transport, but rather to supply the equilibrium with a steady source of energy at the minimum enstrophy. The form of the supplied energy is assessed through a variational calculation, which gives an equation for the equilibrium velocity profile, ∇ 2 V = λ 2 V, where λ 2 is an undetermined Lagrange multiplier. For a slab model, the solution in the SOL is V = V a exp[-λ(r-a)]y, where V a is the poloidal velocity at the SOL/edge interface. This velocity (from E x B in the simple model), leads to the potential profile, φ = -(V a B/λc)exp[-λ(r-a)]. For field lines connected to an endplate eφ = ΛT e , (where Λ ∼ 4 is nearly constant) giving also the T e profile. Thus, the profiles are given and the transport problem is solved, up to the two unknown constants λ and V a . One relation comes from heat balance. There are several candidates for the second constant, and the authors present numerical simulations which evaluate these

  6. Analysis and optimisation of a mixed fluid cascade (MFC) process

    Science.gov (United States)

    Ding, He; Sun, Heng; Sun, Shoujun; Chen, Cheng

    2017-04-01

    A mixed fluid cascade (MFC) process that comprises three refrigeration cycles has great capacity for large-scale LNG production, which consumes a great amount of energy. Therefore, any performance enhancement of the liquefaction process will significantly reduce the energy consumption. The MFC process is simulated and analysed by use of proprietary software, Aspen HYSYS. The effect of feed gas pressure, LNG storage pressure, water-cooler outlet temperature, different pre-cooling regimes, liquefaction, and sub-cooling refrigerant composition on MFC performance are investigated and presented. The characteristics of its excellent numerical calculation ability and the user-friendly interface of MATLAB™ and powerful thermo-physical property package of Aspen HYSYS are combined. A genetic algorithm is then invoked to optimise the MFC process globally. After optimisation, the unit power consumption can be reduced to 4.655 kW h/kmol, or 4.366 kW h/kmol on condition that the compressor adiabatic efficiency is 80%, or 85%, respectively. Additionally, to improve the process further, with regards its thermodynamic efficiency, configuration optimisation is conducted for the MFC process and several configurations are established. By analysing heat transfer and thermodynamic performances, the configuration entailing a pre-cooling cycle with three pressure levels, liquefaction, and a sub-cooling cycle with one pressure level is identified as the most efficient and thus optimal: its unit power consumption is 4.205 kW h/kmol. Additionally, the mechanism responsible for the weak performance of the suggested liquefaction cycle configuration lies in the unbalanced distribution of cold energy in the liquefaction temperature range.

  7. Incompressible Turbulent Flow Simulation Using the κ-ɛ Model and Upwind Schemes

    Directory of Open Access Journals (Sweden)

    V. G. Ferreira

    2007-01-01

    Full Text Available In the computation of turbulent flows via turbulence modeling, the treatment of the convective terms is a key issue. In the present work, we present a numerical technique for simulating two-dimensional incompressible turbulent flows. In particular, the performance of the high Reynolds κ-ɛ model and a new high-order upwind scheme (adaptative QUICKEST by Kaibara et al. (2005 is assessed for 2D confined and free-surface incompressible turbulent flows. The model equations are solved with the fractional-step projection method in primitive variables. Solutions are obtained by using an adaptation of the front tracking GENSMAC (Tomé and McKee (1994 methodology for calculating fluid flows at high Reynolds numbers. The calculations are performed by using the 2D version of the Freeflow simulation system (Castello et al. (2000. A specific way of implementing wall functions is also tested and assessed. The numerical procedure is tested by solving three fluid flow problems, namely, turbulent flow over a backward-facing step, turbulent boundary layer over a flat plate under zero-pressure gradients, and a turbulent free jet impinging onto a flat surface. The numerical method is then applied to solve the flow of a horizontal jet penetrating a quiescent fluid from an entry port beneath the free surface.

  8. Gyrokinetic Statistical Absolute Equilibrium and Turbulence

    International Nuclear Information System (INIS)

    Zhu, Jian-Zhou; Hammett, Gregory W.

    2011-01-01

    A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence (T.-D. Lee, 'On some statistical properties of hydrodynamical and magnetohydrodynamical fields,' Q. Appl. Math. 10, 69 (1952)) is taken to study gyrokinetic plasma turbulence: A finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N + 1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.

  9. Gyrokinetic statistical absolute equilibrium and turbulence

    International Nuclear Information System (INIS)

    Zhu Jianzhou; Hammett, Gregory W.

    2010-01-01

    A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence [T.-D. Lee, Q. Appl. Math. 10, 69 (1952)] is taken to study gyrokinetic plasma turbulence: a finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N+1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.

  10. Numerical simulation of Rayleigh-Taylor turbulent mixing layers

    International Nuclear Information System (INIS)

    Poujade, O.; Lardjane, N.; Peybernes, M.; Boulet, M.

    2009-01-01

    Accelerations in actual Rayleigh-Taylor instabilities are often variable. This article focuses on a particular class of variable accelerations where g(t) ∝ t n . A reference database is built from high resolution hydrodynamic numerical simulations. The successful comparison with a simple OD analytical model and the statistical 2SFK (2-Structure, 2-Fluid, 2-Turbulence) turbulence model is provided. Moreover, we show the difference between the mechanism at play in the Rayleigh-Taylor turbulent mixing zone and Kolmogorov's in the self similar developed turbulent regime. (authors)

  11. The pdf approach to turbulent polydispersed two-phase flows

    Science.gov (United States)

    Minier, Jean-Pierre; Peirano, Eric

    2001-10-01

    The purpose of this paper is to develop a probabilistic approach to turbulent polydispersed two-phase flows. The two-phase flows considered are composed of a continuous phase, which is a turbulent fluid, and a dispersed phase, which represents an ensemble of discrete particles (solid particles, droplets or bubbles). Gathering the difficulties of turbulent flows and of particle motion, the challenge is to work out a general modelling approach that meets three requirements: to treat accurately the physically relevant phenomena, to provide enough information to address issues of complex physics (combustion, polydispersed particle flows, …) and to remain tractable for general non-homogeneous flows. The present probabilistic approach models the statistical dynamics of the system and consists in simulating the joint probability density function (pdf) of a number of fluid and discrete particle properties. A new point is that both the fluid and the particles are included in the pdf description. The derivation of the joint pdf model for the fluid and for the discrete particles is worked out in several steps. The mathematical properties of stochastic processes are first recalled. The various hierarchies of pdf descriptions are detailed and the physical principles that are used in the construction of the models are explained. The Lagrangian one-particle probabilistic description is developed first for the fluid alone, then for the discrete particles and finally for the joint fluid and particle turbulent systems. In the case of the probabilistic description for the fluid alone or for the discrete particles alone, numerical computations are presented and discussed to illustrate how the method works in practice and the kind of information that can be extracted from it. Comments on the current modelling state and propositions for future investigations which try to link the present work with other ideas in physics are made at the end of the paper.

  12. Quantum Cascade Lasers Modulation and Applications

    Science.gov (United States)

    Luzhansky, Edward

    The mid-wave IR (MWIR) spectral band, extending from 3 to 5 microns, is considered to be a low loss atmospheric window. There are several spectral sub-bands with relatively low atmospheric attenuation in this region making it popular for various commercial and military applications. Relatively low thermal and solar background emissions, effective penetration through the natural and anthropogenic obscurants and eye safety add to the long list of advantages of MWIR wavelengths. Quantum Cascade Lasers are compact semiconductor devices capable of operating in MWIR spectrum. They are based on inter-subband transitions in a multiple-quantum-well (QW) hetero-structure, designed by means of band-structure engineering. The inter-subband nature of the optical transition has several key advantages. First, the emission wavelength is primarily a function of the QW thickness. This characteristic allows choosing well-understood and reliable semiconductors for the generation of light in a wavelength range of interest. Second, a cascade process in which tens of photons are generated per injected electron. This cascading process is behind the intrinsic high-power capabilities of QCLs. This dissertation is focused on modulation properties of Quantum Cascade Lasers. Both amplitude and phase/frequency modulations were studied including modulation bandwidth, modulation efficiency and chirp linearity. Research was consisted of the two major parts. In the first part we describe the theory of frequency modulation (FM) response of Distributed Feedback Quantum Cascade Lasers (DFB QCL). It includes cascading effect on the QCL's maximum modulation frequency. The "gain levering" effect for the maximum FM response of the two section QCLs was studied as well. In the second part of research we concentrated on the Pulse Position Amplitude Modulation of a single section QCL. The low complexity, low size, weight and power Mid-Wavelength Infra-Red optical communications transceiver concept is

  13. Pressure atomizer having multiple orifices and turbulent generation feature

    Science.gov (United States)

    VanBrocklin, Paul G.; Geiger, Gail E.; Moran, Donald James; Fournier, Stephane

    2002-01-01

    A pressure atomizer includes a silicon plate having a top surface and a bottom surface. A portion of the top surface defines a turbulent chamber. The turbulent chamber is peripherally bounded by the top surface of the plate. The turbulent chamber is recessed a predetermined depth relative to the top surface. The silicon plate further defines at least one flow orifice. Each flow orifice extends from the bottom surface of the silicon plate to intersect with and open into the turbulent chamber. Each flow orifice is in fluid communication with the turbulent chamber.

  14. Computational analysis of turbulent flow in hydroelectric plant intakes

    Energy Technology Data Exchange (ETDEWEB)

    Bouhadji, L.; Lemon, D.D.; Billenness, D.; Fissel, D. [ASL Environmental Sciences Inc., Sidney, British Columbia (Canada)]. E-mail: lbouhadji@aslenv.com; Djilali, N. [Univ. of Victoria, Dept. of Mechanical Engineering, Victoria, British Columbia (Canada)]. E-mail: ndjilali@uvic.ca

    2003-07-01

    Turbulent flows in the Lower Monumental powerhouse intake are investigated using computational fluid dynamics. Simulations are carried out to gain an understanding into the impact of a grid-like trash rack on the downstream turbulent flow characteristics within the intake. (author)

  15. Strained spiral vortex model for turbulent fine structure

    Science.gov (United States)

    Lundgren, T. S.

    1982-01-01

    A model for the intermittent fine structure of high Reynolds number turbulence is proposed. The model consists of slender axially strained spiral vortex solutions of the Navier-Stokes equation. The tightening of the spiral turns by the differential rotation of the induced swirling velocity produces a cascade of velocity fluctuations to smaller scale. The Kolmogorov energy spectrum is a result of this model.

  16. A combined volume-of-fluid method and low-Mach-number approach for DNS of evaporating droplets in turbulence

    Science.gov (United States)

    Dodd, Michael; Ferrante, Antonino

    2017-11-01

    Our objective is to perform DNS of finite-size droplets that are evaporating in isotropic turbulence. This requires fully resolving the process of momentum, heat, and mass transfer between the droplets and surrounding gas. We developed a combined volume-of-fluid (VOF) method and low-Mach-number approach to simulate this flow. The two main novelties of the method are: (i) the VOF algorithm captures the motion of the liquid gas interface in the presence of mass transfer due to evaporation and condensation without requiring a projection step for the liquid velocity, and (ii) the low-Mach-number approach allows for local volume changes caused by phase change while the total volume of the liquid-gas system is constant. The method is verified against an analytical solution for a Stefan flow problem, and the D2 law is verified for a single droplet in quiescent gas. We also demonstrate the schemes robustness when performing DNS of an evaporating droplet in forced isotropic turbulence.

  17. Electron thermal transport in tokamak: ETG or TEM turbulences?

    International Nuclear Information System (INIS)

    Lin, Z.; Chen, L.; Nishimura, Y.; Qu, H.; Hahm, T.S.; Lewandowski, J.; Rewoldt, G.; Wang, W.X.; Diamond, P.H.; Holland, C.; Zonca, F.; Li, Y.

    2005-01-01

    This paper reports progress on numerical and theoretical studies of electron transport in tokamak including: (1) electron temperature gradient turbulence; (2) trapped electron mode turbulence; and (3) a new finite element solver for global electromagnetic simulation. In particular, global gyrokinetic particle simulation and nonlinear gyrokinetic theory find that electron temperature gradient (ETG) instability saturates via nonlinear toroidal couplings, which transfer energy successively from unstable modes to damped modes preferably with longer poloidal wavelengths. The electrostatic ETG turbulence is dominated by nonlinearly generated radial streamers. The length of streamers scales with the device size and is much longer than the distance between mode rational surfaces or electron radial excursions. Both fluctuation intensity and transport level are independent of the streamer size. These simulations with realistic plasma parameters find that the electron heat conductivity is much smaller than the experimental value and in contrast with recent findings of flux-tube simulations that ETG turbulence is responsible for the anomalous electron thermal transport in fusion plasmas. The nonlinear toroidal couplings represent a new paradigm for the spectral cascade in plasma turbulence. (author)

  18. Redistribution of Kinetic Energy in Turbulent Flows

    Directory of Open Access Journals (Sweden)

    Alain Pumir

    2014-10-01

    Full Text Available In statistically homogeneous turbulent flows, pressure forces provide the main mechanism to redistribute kinetic energy among fluid elements, without net contribution to the overall energy budget. This holds true in both two-dimensional (2D and three-dimensional (3D flows, which show fundamentally different physics. As we demonstrate here, pressure forces act on fluid elements very differently in these two cases. We find in numerical simulations that in 3D pressure forces strongly accelerate the fastest fluid elements, and that in 2D this effect is absent. In 3D turbulence, our findings put forward a mechanism for a possibly singular buildup of energy, and thus may shed new light on the smoothness problem of the solution of the Navier-Stokes equation in 3D.

  19. Speed-resolution advantage of turbulent supercritical fluid chromatography in open tubular columns: II - Theoretical and experimental evidences.

    Science.gov (United States)

    Gritti, Fabrice; Fogwill, Michael

    2017-06-09

    The potential advantage of turbulent supercritical fluid chromatography (TSFC) in open tubular columns (OTC) was evaluated on both theoretical and practical viewpoints. First, the dispersion model derived by Golay in 1958 and recently extended from laminar to turbulent flow regime is used for the predictions of the speed-resolution performance in TSFC. The average dispersion coefficient of matter in the turbulent flow regime was taken from the available experimental data over a range of Reynolds number from 2000 to 6000. Kinetic plots are built at constant pressure drop (ΔP=4500psi) and Schmidt number (Sc=15) for four inner diameters (10, 30, 100, and 300μm) of the OTC and for three retention factors (0, 1, and 10). Accordingly, in turbulent flow regime, for a Reynolds number of 4000 and a retention factor of 1 (the stationary film thickness is assumed to be negligible with respect to the OTC diameter), the theory projects that a 300μm i.d. OTC has the same speed-resolution power (200,000 theoretical plates; 2.4min hold-up time) as that of a 10μm i.d. OTC operated in laminar flow regime. Secondly, the experimental plate heights of n-butylbenzene are measured in laminar and turbulent flow regimes for a 180μm×4.8m fused silica capillary column using pure carbon dioxide as the mobile phase. The back pressure regulator was set at 1500psi, the temperature was uniform at 297K, and the flow rate was increased step-wise from 0.50 to 3.60mL/min so that the experimental Reynolds number increases from 700 to 5400. The experiments are in good agreement with the plate heights projected in TSFC at high flow rates and with those expected at low flow rates in a laminar flow regime. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Workshop on Engineering Turbulence Modeling

    Science.gov (United States)

    Povinelli, Louis A. (Editor); Liou, W. W. (Editor); Shabbir, A. (Editor); Shih, T.-H. (Editor)

    1992-01-01

    Discussed here is the future direction of various levels of engineering turbulence modeling related to computational fluid dynamics (CFD) computations for propulsion. For each level of computation, there are a few turbulence models which represent the state-of-the-art for that level. However, it is important to know their capabilities as well as their deficiencies in order to help engineers select and implement the appropriate models in their real world engineering calculations. This will also help turbulence modelers perceive the future directions for improving turbulence models. The focus is on one-point closure models (i.e., from algebraic models to higher order moment closure schemes and partial differential equation methods) which can be applied to CFD computations. However, other schemes helpful in developing one-point closure models, are also discussed.

  1. Density-ratio effects on buoyancy-driven variable-density turbulent mixing

    Science.gov (United States)

    Aslangil, Denis; Livescu, Daniel; Banerjee, Arindam

    2017-11-01

    Density-ratio effects on the turbulent mixing of two incompressible, miscible fluids with different densities subject to constant acceleration are studied by means of high-resolution Direct Numerical Simulations. In a triply periodic domain, turbulence is generated by stirring in response to the differential buoyancy forces within the flow. Later, as the fluids become molecularly mixed, dissipation starts to overcome turbulence generation by bouyancy. Thus, the flow evolution includes both turbulence growth and decay, and it displays features present in the core region of the mixing layer of the Rayleigh-Taylor as well as Richtmyer-Meshkov instabilities. We extend the previous studies by investigating a broad range of density-ratio, from 1-14.4:1, corresponding to Atwood numbers of 0.05-0.87. Here, we focus on the Atwood number dependence of mixing-efficiency, that is defined based on the energy-conversion ratios from potential energy to total and turbulent kinetic energies, the decay characteristics of buoyancy-assisted variable-density homogeneous turbulence, and the effects of high density-ratios on the turbulence structure and mixing process. Authors acknowledge financial support from DOE-SSAA (DE-NA0003195) and NSF CAREER (#1453056) awards.

  2. Numerical Simulation of Turbulent Fluid Flow and Heat Transfer in a Ribbed Rotating Two-Pass Square Duct

    Directory of Open Access Journals (Sweden)

    Liou Tong-Miin

    2005-01-01

    Full Text Available The local turbulent fluid flow and heat transfer in a rotating two-pass square duct with 19 pairs of in-line 90 ∘ ribs have been investigated computationally. A Reynolds-averaged Navier-Stokes equation (RANS with a two-layer k − ϵ turbulence model was solved. The in-line 90 ∘ ribs were arranged on the leading and trailing walls with rib height-to-hydraulic diameter ratio and pitch-to-height ratio of 0.136 and 10, respectively. The Reynolds number, based on duct hydraulic diameter and bulk mean velocity, was fixed at 1.0 × 10 4 whereas the rotational number varied from 0 to 0.2 . Results are validated with previous measured velocity field and heat transfer coefficient distributions. The validation shows that the effect of rotation on the passage-averaged Nusselt number ratio can be predicted reasonably well; nevertheless, the transverse mean velocity and, in turn, the distribution of regional-averaged Nusselt number ratio are markedly underpredicted in the regions toward which the Coriolis force is directed. Further CFD studies are needed.

  3. Modeling molecular mixing in a spatially inhomogeneous turbulent flow

    Science.gov (United States)

    Meyer, Daniel W.; Deb, Rajdeep

    2012-02-01

    Simulations of spatially inhomogeneous turbulent mixing in decaying grid turbulence with a joint velocity-concentration probability density function (PDF) method were conducted. The inert mixing scenario involves three streams with different compositions. The mixing model of Meyer ["A new particle interaction mixing model for turbulent dispersion and turbulent reactive flows," Phys. Fluids 22(3), 035103 (2010)], the interaction by exchange with the mean (IEM) model and its velocity-conditional variant, i.e., the IECM model, were applied. For reference, the direct numerical simulation data provided by Sawford and de Bruyn Kops ["Direct numerical simulation and lagrangian modeling of joint scalar statistics in ternary mixing," Phys. Fluids 20(9), 095106 (2008)] was used. It was found that velocity conditioning is essential to obtain accurate concentration PDF predictions. Moreover, the model of Meyer provides significantly better results compared to the IECM model at comparable computational expense.

  4. Simulation of turbulent flows with and without combustion with emphasis on the impact of coherent structures on the turbulent mixing

    Energy Technology Data Exchange (ETDEWEB)

    Cunha Galeazzo, Flavio Cesar

    2016-07-01

    The analysis of turbulent mixing in complex turbulent flows is a challenging task. The effective mixing of entrained fluids to a molecular level is a vital part of the dynamics of turbulent flows, especially when combustion is involved. The work has shown the limitations of the steady-state simulations and acknowledged the need of applying high-fidelity unsteady methods for the calculation of flows with pronounced unsteadiness promoted by large-scale coherent structures or other sources.

  5. Software for principles of fluid mechanics

    International Nuclear Information System (INIS)

    Kreider, J.F.

    1985-01-01

    This book is intended as a software supplement and provides a means for solving problems rapidly to determine the relative importance of flow and environmental parameters. Topics covered include the following: momentum equation: rocket trajectory; Bernoulli's equation: pipe plug-flow or Bernoulli's equation: tank drawing; fluid statics: submerged gate, or fluid statics: manometry; laminar flow: pipe fittings plus straight pipe, or laminar external flow: between parallel planes; ideal flow: plot of pressure distribution on a cylinder with circulation; laminar external flow: drag force and friction coefficient; turbulent external flow: drag force and friction coefficient on flat plate; turbulent external flow: drag force and friction coefficient on sphere; turbulent pipe flow: fittings plus straight sections (moody diagram); turbulent channel flow; isentropic compressible flow; normal shocks: property changes errors; choked nozzle flow; pump curve and system curve simultaneous solution; and fan affinity laws

  6. On relative spatial diffusion in plasma and fluid turbulences: clumps, Richardson's law and intrinsic stochasticity

    International Nuclear Information System (INIS)

    Misguich, J.H.; Balescu, R.

    1981-02-01

    Three different time regimes are presented for relative spatial diffusion of charged particles in fluctuating electric fields, which behave like tau 3 , exp (tau) and tau 3 , respectively. The first regime, corresponding to a quasi-linear description of the trajectories, is analogous to the one observed in fluid turbulence and is valid in the limit of a small amplitude turbulent spectrum, or for not too small initial separation of the particles. The third regime, appearing for long times, describes the diffusion of independent particles at very large separations. Its existence is ensured by the nonlinear renormalization of the propagators. The second, intermediate, regime appears in a stochastic treatment of the renormalization effect for particles with a very small spatial and velocity difference, and describes Dupree's clumps diffusion. The appearance of the corresponding regime is similar to that of the Suzuki scaling regime of non-linear Langevin equations. It is also shown that the clumps have a behaviour similar to an intrinsic stochasticity, but which is of extrinsic nature. Similar failure of the quasi-linear approximation for spacific velocity domains has been previously studied and solved for classical Landau collisions, as well as for pitch angle diffusion where renormalization effects have been proved also to be important

  7. Turbulent kinetic energy balance measurements in the wake of a low-pressure turbine blade

    International Nuclear Information System (INIS)

    Sideridis, A.; Yakinthos, K.; Goulas, A.

    2011-01-01

    The turbulent kinetic energy budget in the wake generated by a high lift, low-pressure two-dimensional blade cascade of the T106 profile was investigated experimentally using hot-wire anemometry. The purpose of this study is to examine the transport mechanism of the turbulent kinetic energy and provide validation data for turbulence modeling. Point measurements were conducted on a high spatial resolution, two-dimensional grid that allowed precise derivative calculations. Positioning of the probe was achieved using a high accuracy traversing mechanism. The turbulent kinetic energy (TKE) convection, production, viscous diffusion and turbulent diffusion were all obtained directly from experimental measurements. Dissipation and pressure diffusion were calculated indirectly using techniques presented and validated by previous investigators. Results for all terms of the turbulent kinetic energy budget are presented and discussed in detail in the present work.

  8. Radiative heat transfer in a heat generating and turbulently convecting fluid layer

    International Nuclear Information System (INIS)

    Cheung, F.B.; Chan, S.H.; Chawla, T.C.; Cho, D.H.

    1980-01-01

    The coupled problem of radiative transport and turbulent natural convection in a volumetrically heated, horizontal gray fluid medium, bounded from above by a rigid, isothermal wall and below by a rigid, adiabatic wall, is investigated analytically. An approximate method based upon the boundary layer approach is employed to obtain the dependence of heat transfer at the upper wall on the principal parameters of the problem, which, for moderate Prandtl number, are the Rayleigh number, Ra, the optical thickness, KL, and the conduction-radiation coupling parameter, N. Also obtained in this study is the behaviour of the thermal boundary layer at the upper wall. At large kL, the contribution of thermal radiation to heat transfer in the layer is found to be negligible for N > 10, moderate for N approximately 1, and overwhelming for N < 0.1. However, at small kL, thermal radiation is found to be important only for N < 0.01. While a higher level of turbulence results in a thinner boundary layer, a larger effect of radiation is found to result in a thicker one. Thus, in the presence of strong thermal radiation, a much larger value of Ra is required for the boundary layer approach to remain valid. Under severe radiation conditions, no boundary layer flow regime is found to exist even at very high Rayleigh numbers. Accordingly, the ranges of applicability of the present results are determined and the approximate method justified. In particular, the validity of the present analysis is tested in three limiting cases, ie those of kL → infinity, N → infinity, and Ra → infinity, and is further confirmed by comparison with the numerical solution (author)

  9. Turbulent structure of stably stratified inhomogeneous flow

    Science.gov (United States)

    Iida, Oaki

    2018-04-01

    Effects of buoyancy force stabilizing disturbances are investigated on the inhomogeneous flow where disturbances are dispersed from the turbulent to non-turbulent field in the direction perpendicular to the gravity force. Attaching the fringe region, where disturbances are excited by the artificial body force, a Fourier spectral method is used for the inhomogeneous flow stirred at one side of the cuboid computational box. As a result, it is found that the turbulent kinetic energy is dispersed as layered structures elongated in the streamwise direction through the vibrating motion. A close look at the layered structures shows that they are flanked by colder fluids at the top and hotter fluids at the bottom, and hence vertically compressed and horizontally expanded by the buoyancy related to the countergradient heat flux, though they are punctuated by the vertical expansion of fluids at the forefront of the layered structures, which is related to the downgradient heat flux, indicating that the layered structures are gravity currents. However, the phase between temperature fluctuations and vertical velocity is shifted by π/2 rad, indicating that temperature fluctuations are generated by the propagation of internal gravity waves.

  10. Direct numerical simulation and statistical analysis of turbulent convection in lead-bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Otic, I.; Grotzbach, G. [Forschungszentrum Karlsruhe GmbH, Institut fuer Kern-und Energietechnik (Germany)

    2003-07-01

    Improved turbulent heat flux models are required to develop and analyze the reactor concept of an lead-bismuth cooled Accelerator-Driven-System. Because of specific properties of many liquid metals we have still no sensors for accurate measurements of the high frequency velocity fluctuations. So, the development of the turbulent heat transfer models which are required in our CFD (computational fluid dynamics) tools needs also data from direct numerical simulations of turbulent flows. We use new simulation results for the model problem of Rayleigh-Benard convection to show some peculiarities of the turbulent natural convection in lead-bismuth (Pr = 0.025). Simulations for this flow at sufficiently large turbulence levels became only recently feasible because this flow requires the resolution of very small velocity scales with the need for recording long-wave structures for the slow changes in the convective temperature field. The results are analyzed regarding the principle convection and heat transfer features. They are also used to perform statistical analysis to show that the currently available modeling is indeed not adequate for these fluids. Basing on the knowledge of the details of the statistical features of turbulence in this convection type and using the two-point correlation technique, a proposal for an improved statistical turbulence model is developed which is expected to account better for the peculiarities of the heat transfer in the turbulent convection in low Prandtl number fluids. (authors)

  11. Heating and acceleration of solar wind ions by turbulent wave spectrum in inhomogeneous expanding plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ofman, Leon, E-mail: Leon.Ofman@nasa.gov [Department of Physics, The Catholic University of America, Washington, DC (United States); NASA Goddard Space Flight Center, Greenbelt, MD (United States); Visiting, Department of Geosciences, Tel Aviv University, Tel Aviv (Israel); Ozak, Nataly [Centre for mathematical Plasma Astrophysics, KU Leuven, Celestijnenlaan 200B, 3001 Leuven (Belgium); Viñas, Adolfo F. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    2016-03-25

    Near the Sun (< 10R{sub s}) the acceleration, heating, and propagation of the solar wind are likely affected by the background inhomogeneities of the magnetized plasma. The heating and the acceleration of the solar wind ions by turbulent wave spectrum in inhomogeneous plasma is studied using a 2.5D hybrid model. The hybrid model describes the kinetics of the ions, while the electrons are modeled as massless neutralizing fluid in an expanding box approach. Turbulent magnetic fluctuations dominated by power-law frequency spectra, which are evident from in-situ as well as remote sensing measurements, are used in our models. The effects of background density inhomogeneity across the magnetic field on the resonant ion heating are studied. The effect of super-Alfvénic ion drift on the ion heating is investigated. It is found that the turbulent wave spectrum of initially parallel propagating waves cascades to oblique modes, and leads to enhanced resonant ion heating due to the inhomogeneity. The acceleration of the solar wind ions is achieved by the parametric instability of large amplitude waves in the spectrum, and is also affected by the inhomogeneity. The results of the study provide the ion temperature anisotropy and drift velocity temporal evolution due to relaxation of the instability. The non-Maxwellian velocity distribution functions (VDFs) of the ions are modeled in the inhomogeneous solar wind plasma in the acceleration region close to the Sun.

  12. Definition of the local fields of velocity, temperature and turbulent characteristics for axial stabilized fluid in arbitrary formed rod bundle assemblies

    International Nuclear Information System (INIS)

    Sedov, A.A.; Gagin, V.L.

    1995-01-01

    For the temperature fields in rod clads of experimental assemblies a good agreement have been got with use of prior calculations by subchannel code COBRA-IV-I, from results of which an additional information about δt/δX 3 distribution was taken. The method of definition the local fields of velocity, turbulent kinetic energy, temperature and eddy diffusivities for one-phase axial stabilized fluids in arbitrary formed rod bundle assemblies with invariable upward geometry was developed. According to this model the AGURA code was worked out to calculate local thermal hydraulic problems in combination with temperature fields in fuel rods and constructive elements of fuel assemblies. The method does not use any prior geometric scales and is based only on invariant local flow parameters: turbulent kinetic energy, velocity field deformation tensor and specific work of inner friction. Verification of this method by available experimental data showed a good agreement of calculation data and findings of velocity and t.k.e. fields, when the secondary flows have not a substantial influence to a balance of axial momentum and turbulent kinetic energy. (author)

  13. Analysis of the K-epsilon turbulence model

    International Nuclear Information System (INIS)

    Mohammadi, B.; Pironneau, O.

    1993-12-01

    This book is aimed at applied mathematicians interested in numerical simulation of turbulent flows. The book is centered around the k - ε model but it also deals with other models such as subgrid scale models, one equation models and Reynolds Stress models. The reader is expected to have some knowledge of numerical methods for fluids and, if possible, some understanding of fluid mechanics, the partial differential equations used and their variational formulations. This book presents the k - ε method for turbulence in a language familiar to applied mathematicians, stripped bare of all the technicalities of turbulence theory. The model is justified from a mathematical standpoint rather than from a physical one. The numerical algorithms are investigated and some theoretical and numerical results presented. This book should prove an invaluable tool for those studying a subject that is still controversial but very useful for industrial applications. (authors). 71 figs., 200 refs

  14. Split energy–helicity cascades in three-dimensional homogeneous and isotropic turbulence

    NARCIS (Netherlands)

    Biferale, L.; Musacchio, S.; Toschi, F.

    2013-01-01

    We investigate the transfer properties of energy and helicity fluctuations in fully developed homogeneous and isotropic turbulence by changing the nature of the nonlinear Navier–Stokes terms. We perform a surgery of all possible interactions, by keeping only those triads that have sign-definite

  15. Influence of various aspects of low Reynolds number k-ε turbulence models on predicting in-tube buoyancy affected heat transfer to supercritical pressure fluids

    International Nuclear Information System (INIS)

    Zhao, Chen-Ru; Zhang, Zhen; Jiang, Pei-Xue; Bo, Han-Liang

    2017-01-01

    Highlights: • Understanding of the mechanism of buoyancy effect on supercritical heat transfer. • Turbulence related parameters in upward and downward flows were compared. • Turbulent Prandtl number affected the prediction insignificantly. • Buoyancy production was insignificant compared with shear production. • Damping function had the greatest effect and is a priority for further modification. - Abstract: Heat transfer to supercritical pressure fluids was modeled for normal and buoyancy affected conditions using several low Reynolds number k-ε models, including the Launder and Sharma, Myong and Kasagi, and Abe, Kondoh and Nagano, with the predictions compared with experimental data. All three turbulence models accurately predicted the cases without heat transfer deterioration, but failed to accurately predict the cases with heat transfer deterioration although the general trends were captured, indicating that further improvements and modifications are needed for the low Reynolds number k-ε turbulence models to better predict buoyancy deteriorated heat transfer. Further investigations studied the influence of various aspects of the low Reynolds number k-ε turbulence models, including the turbulent Prandtl number, the buoyancy production of turbulent kinetic energy, and the damping function to provide guidelines for model development to more precisely predict buoyancy affected heat transfer. The results show that the turbulent Prandtl number and the buoyancy production of turbulent kinetic energy have little influence on the predictions for cases in this study, while new damping functions with carefully selected control parameters are needed in the low Reynolds number k-ε turbulence models to correctly predict the buoyancy effect for heat transfer simulations in various applications such as supercritical pressure steam generators (SPSGs) in the high temperature gas cooled reactor (HTR) and the supercritical pressure water reactor (SCWR).

  16. Influence of various aspects of low Reynolds number k-ε turbulence models on predicting in-tube buoyancy affected heat transfer to supercritical pressure fluids

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chen-Ru; Zhang, Zhen [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Centre, Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Jiang, Pei-Xue, E-mail: jiangpx@tsinghua.edu.cn [Beijing Key Laboratory of CO_2 Utilization and Reduction Technology/Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Bo, Han-Liang [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Centre, Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China)

    2017-03-15

    Highlights: • Understanding of the mechanism of buoyancy effect on supercritical heat transfer. • Turbulence related parameters in upward and downward flows were compared. • Turbulent Prandtl number affected the prediction insignificantly. • Buoyancy production was insignificant compared with shear production. • Damping function had the greatest effect and is a priority for further modification. - Abstract: Heat transfer to supercritical pressure fluids was modeled for normal and buoyancy affected conditions using several low Reynolds number k-ε models, including the Launder and Sharma, Myong and Kasagi, and Abe, Kondoh and Nagano, with the predictions compared with experimental data. All three turbulence models accurately predicted the cases without heat transfer deterioration, but failed to accurately predict the cases with heat transfer deterioration although the general trends were captured, indicating that further improvements and modifications are needed for the low Reynolds number k-ε turbulence models to better predict buoyancy deteriorated heat transfer. Further investigations studied the influence of various aspects of the low Reynolds number k-ε turbulence models, including the turbulent Prandtl number, the buoyancy production of turbulent kinetic energy, and the damping function to provide guidelines for model development to more precisely predict buoyancy affected heat transfer. The results show that the turbulent Prandtl number and the buoyancy production of turbulent kinetic energy have little influence on the predictions for cases in this study, while new damping functions with carefully selected control parameters are needed in the low Reynolds number k-ε turbulence models to correctly predict the buoyancy effect for heat transfer simulations in various applications such as supercritical pressure steam generators (SPSGs) in the high temperature gas cooled reactor (HTR) and the supercritical pressure water reactor (SCWR).

  17. Existence of the passage to the limit of an inviscid fluid.

    Science.gov (United States)

    Goldobin, Denis S

    2017-11-24

    In the dynamics of a viscous fluid, the case of vanishing kinematic viscosity is actually equivalent to the Reynolds number tending to infinity. Hence, in the limit of vanishing viscosity the fluid flow is essentially turbulent. On the other hand, the Euler equation, which is conventionally adopted for the description of the flow of an inviscid fluid, does not possess proper turbulent behaviour. This raises the question of the existence of the passage to the limit of an inviscid fluid for real low-viscosity fluids. To address this question, one should employ the theory of turbulent boundary layer near an inflexible boundary (e.g., rigid wall). On the basis of this theory, one can see how the solutions to the Euler equation become relevant for the description of the flow of low-viscosity fluids, and obtain the small parameter quantifying accuracy of this description for real fluids.

  18. Some fluid dynamical problems in astrophysics

    International Nuclear Information System (INIS)

    Drury, L.O.

    1979-06-01

    Certain aspects of the cosmic turbulence theory of galaxy formation are considered. Using a generalized form of a transformation due to Kurskov and Ozernoi I exhibit a formal equivalence between the problem of turbulence in an expanding universe containing a coupled matter-radiation fluid and in a non-expanding fluid with a time-dependent viscosity. This enables me to extend the Olson-Sachs formula for vorticity generation in cosmic turbulence to a matter-radiation fluid and to show that, the turbulence can not have an inertial subrange at the epoch of recombination. The linear inviscid stability of axisymmetric flows is considered. Using the projective form of the perturbation equations I obtain a simple proof of a generalised Richardson criterion which holds for all boundary conditions which do not actively feed energy to the perturbation. Further analysis shows the uniform density and pressure discs with self-similar rotation laws, are stable to perturbations which are incompressible in character, but that instability is a generic feature of differentially rotating compressible systems. The problem of numerically solving boundary value problems of the Orr-Sommerfeld type by shooting methods is considered, and a unifying geometrical interpretation of the principal methods is described. (author)

  19. ALFVEN WAVE REFLECTION AND TURBULENT HEATING IN THE SOLAR WIND FROM 1 SOLAR RADIUS TO 1 AU: AN ANALYTICAL TREATMENT

    International Nuclear Information System (INIS)

    Chandran, Benjamin D. G.; Hollweg, Joseph V.

    2009-01-01

    We study the propagation, reflection, and turbulent dissipation of Alfven waves in coronal holes and the solar wind. We start with the Heinemann-Olbert equations, which describe non-compressive magnetohydrodynamic fluctuations in an inhomogeneous medium with a background flow parallel to the background magnetic field. Following the approach of Dmitruk et al., we model the nonlinear terms in these equations using a simple phenomenology for the cascade and dissipation of wave energy and assume that there is much more energy in waves propagating away from the Sun than waves propagating toward the Sun. We then solve the equations analytically for waves with periods of hours and longer to obtain expressions for the wave amplitudes and turbulent heating rate as a function of heliocentric distance. We also develop a second approximate model that includes waves with periods of roughly one minute to one hour, which undergo less reflection than the longer-period waves, and compare our models to observations. Our models generalize the phenomenological model of Dmitruk et al. by accounting for the solar wind velocity, so that the turbulent heating rate can be evaluated from the coronal base out past the Alfven critical point-that is, throughout the region in which most of the heating and acceleration occurs. The simple analytical expressions that we obtain can be used to incorporate Alfven-wave reflection and turbulent heating into fluid models of the solar wind.

  20. Inverse Problem and Variation Method to Optimize Cascade Heat Exchange Network in Central Heating System

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yin; WEI Zhiyuan; ZHANG Yinping; WANG Xin

    2017-01-01

    Urban heating in northern China accounts for 40% of total building energy usage.In central heating systems,heat is often transfened from heat source to users by the heat network where several heat exchangers arc installed at heat source,substations and terminals respectively.For given overall heating capacity and heat source temperarure,increasing the terminal fluid temperature is an effective way to improve the thermal performance of such cascade heat exchange network for energy saving.In this paper,the mathematical optimization model of the cascade heat exchange network with three-stage heat exchangers in series is established.Aim at maximizing the cold fluid temperature for given hot fluid temperature and overall heating capacity,the optimal heat exchange area distribution and the medium fluids' flow rates are determined through inverse problem and variation method.The preliminary results show that the heat exchange areas should be distributed equally for each heat exchanger.It also indicates that in order to improve the thernmal performance of the whole system,more heat exchange areas should be allocated to the heat exchanger where flow rate difference between two fluids is relatively small.This work is important for guiding the optimization design of practical cascade heating systems.

  1. Density based topology optimization of turbulent flow heat transfer systems

    DEFF Research Database (Denmark)

    Dilgen, Sümer Bartug; Dilgen, Cetin Batur; Fuhrman, David R.

    2018-01-01

    The focus of this article is on topology optimization of heat sinks with turbulent forced convection. The goal is to demonstrate the extendibility, and the scalability of a previously developed fluid solver to coupled multi-physics and large 3D problems. The gradients of the objective and the con...... in the optimization process, while also demonstrating extension of the methodology to include coupling of heat transfer with turbulent flows.......The focus of this article is on topology optimization of heat sinks with turbulent forced convection. The goal is to demonstrate the extendibility, and the scalability of a previously developed fluid solver to coupled multi-physics and large 3D problems. The gradients of the objective...

  2. Has the ultimate state of turbulent thermal convection been observed?

    Czech Academy of Sciences Publication Activity Database

    Skrbek, L.; Urban, Pavel

    2015-01-01

    Roč. 785, DEC (2015), s. 270-282 ISSN 0022-1120 R&D Projects: GA ČR GA14-02005S Institutional support: RVO:68081731 Keywords : turbulent convection * turbulent flows Subject RIV: BK - Fluid Dynamics Impact factor: 2.514, year: 2015

  3. Lattice Boltzmann model for three-dimensional decaying homogeneous isotropic turbulence

    International Nuclear Information System (INIS)

    Xu Hui; Tao Wenquan; Zhang Yan

    2009-01-01

    We implement a lattice Boltzmann method (LBM) for decaying homogeneous isotropic turbulence based on an analogous Galerkin filter and focus on the fundamental statistical isotropic property. This regularized method is constructed based on orthogonal Hermite polynomial space. For decaying homogeneous isotropic turbulence, this regularized method can simulate the isotropic property very well. Numerical studies demonstrate that the novel regularized LBM is a promising approximation of turbulent fluid flows, which paves the way for coupling various turbulent models with LBM

  4. CFD modeling of heat transfer performance of MgO-water nanofluid under turbulent flow

    OpenAIRE

    Davarnejad, Reza; Jamshidzadeh, Maryam

    2015-01-01

    In this paper, Computational fluid dynamics (CFD) modeling of turbulent heat transfer behavior of Magnesium Oxide-water nanofluid in a circular tube was studied. The modeling was two dimensional under k–ε turbulence model. The base fluid was pure water and the volume fraction of nanoparticles in the base fluid was 0.0625%, 0.125%, 0.25%, 0.5% and 1%. The applied Reynolds number range was 3000–19000. Three individual models including single phase, Volume of Fluid (VOF) and mixture were used. T...

  5. Modification of homogeneous and isotropic turbulence by solid particles

    Science.gov (United States)

    Hwang, Wontae

    2005-12-01

    Particle-laden flows are prevalent in natural and industrial environments. Dilute loadings of small, heavy particles have been observed to attenuate the turbulence levels of the carrier-phase flow, up to 80% in some cases. We attempt to increase the physical understanding of this complex phenomenon by studying the interaction of solid particles with the most fundamental type of turbulence, which is homogeneous and isotropic with no mean flow. A flow facility was developed that could create air turbulence in a nearly-spherical chamber by means of synthetic jet actuators mounted on the corners. Loudspeakers were used as the actuators. Stationary turbulence and natural decaying turbulence were investigated using two-dimensional particle image velocimetry for the base flow qualification. Results indicated that the turbulence was fairly homogeneous throughout the measurement domain and very isotropic, with small mean flow. The particle-laden flow experiments were conducted in two different environments, the lab and in micro-gravity, to examine the effects of particle wakes and flow structure distortion caused by settling particles. The laboratory experiments showed that glass particles with diameters on the order of the turbulence Kolmogorov length scale attenuated the fluid turbulent kinetic energy (TKE) and dissipation rate with increasing particle mass loadings. The main source of fluid TKE production in the chamber was the speakers, but the loss of potential energy of the settling particles also resulted in a significant amount of production of extra TKE. The sink of TKE in the chamber was due to the ordinary fluid viscous dissipation and extra dissipation caused by particles. This extra dissipation could be divided into "unresolved" dissipation caused by local velocity disturbances in the vicinity of the small particles and dissipation caused by large-scale flow distortions from particle wakes and particle clusters. The micro-gravity experiments in NASA's KC-135

  6. Turbulent mixing of a critical fluid: The non-perturbative renormalization

    Directory of Open Access Journals (Sweden)

    M. Hnatič

    2018-01-01

    Full Text Available Non-perturbative Renormalization Group (NPRG technique is applied to a stochastical model of a non-conserved scalar order parameter near its critical point, subject to turbulent advection. The compressible advecting flow is modeled by a random Gaussian velocity field with zero mean and correlation function 〈υjυi〉∼(Pji⊥+αPji∥/kd+ζ. Depending on the relations between the parameters ζ, α and the space dimensionality d, the model reveals several types of scaling regimes. Some of them are well known (model A of equilibrium critical dynamics and linear passive scalar field advected by a random turbulent flow, but there is a new nonequilibrium regime (universality class associated with new nontrivial fixed points of the renormalization group equations. We have obtained the phase diagram (d, ζ of possible scaling regimes in the system. The physical point d=3, ζ=4/3 corresponding to three-dimensional fully developed Kolmogorov's turbulence, where critical fluctuations are irrelevant, is stable for α≲2.26. Otherwise, in the case of “strong compressibility” α≳2.26, the critical fluctuations of the order parameter become relevant for three-dimensional turbulence. Estimations of critical exponents for each scaling regime are presented.

  7. On turbulence models for rod bundle flow computations

    International Nuclear Information System (INIS)

    Hazi, Gabor

    2005-01-01

    In commercial computational fluid dynamics codes there is more than one turbulence model built in. It is the user responsibility to choose one of those models, suitable for the problem studied. In the last decade, several computations were presented using computational fluid dynamics for the simulation of various problems of the nuclear industry. A common feature in a number of those simulations is that they were performed using the standard k-ε turbulence model without justifying the choice of the model. The simulation results were rarely satisfactory. In this paper, we shall consider the flow in a fuel rod bundle as a case study and discuss why the application of the standard k-ε model fails to give reasonable results in this situation. We also show that a turbulence model based on the Reynolds stress transport equations can provide qualitatively correct results. Generally, our aim is pedagogical, we would like to call the readers attention to the fact that turbulence models have to be selected based on theoretical considerations and/or adequate information obtained from measurements

  8. Energy transfer in turbulence under rotation

    Science.gov (United States)

    Buzzicotti, Michele; Aluie, Hussein; Biferale, Luca; Linkmann, Moritz

    2018-03-01

    It is known that rapidly rotating turbulent flows are characterized by the emergence of simultaneous upscale and downscale energy transfer. Indeed, both numerics and experiments show the formation of large-scale anisotropic vortices together with the development of small-scale dissipative structures. However the organization of interactions leading to this complex dynamics remains unclear. Two different mechanisms are known to be able to transfer energy upscale in a turbulent flow. The first is characterized by two-dimensional interactions among triads lying on the two-dimensional, three-component (2D3C)/slow manifold, namely on the Fourier plane perpendicular to the rotation axis. The second mechanism is three-dimensional and consists of interactions between triads with the same sign of helicity (homochiral). Here, we present a detailed numerical study of rotating flows using a suite of high-Reynolds-number direct numerical simulations (DNS) within different parameter regimes to analyze both upscale and downscale cascade ranges. We find that the upscale cascade at wave numbers close to the forcing scale is generated by increasingly dominant homochiral interactions which couple the three-dimensional bulk and the 2D3C plane. This coupling produces an accumulation of energy in the 2D3C plane, which then transfers energy to smaller wave numbers thanks to the two-dimensional mechanism. In the forward cascade range, we find that the energy transfer is dominated by heterochiral triads and is dominated primarily by interaction within the fast manifold where kz≠0 . We further analyze the energy transfer in different regions in the real-space domain. In particular, we distinguish high-strain from high-vorticity regions and we uncover that while the mean transfer is produced inside regions of strain, the rare but extreme events of energy transfer occur primarily inside the large-scale column vortices.

  9. Energy spectrum of tearing mode turbulence in sheared background field

    Science.gov (United States)

    Hu, Di; Bhattacharjee, Amitava; Huang, Yi-Min

    2018-06-01

    The energy spectrum of tearing mode turbulence in a sheared background magnetic field is studied in this work. We consider the scenario where the nonlinear interaction of overlapping large-scale modes excites a broad spectrum of small-scale modes, generating tearing mode turbulence. The spectrum of such turbulence is of interest since it is relevant to the small-scale back-reaction on the large-scale field. The turbulence we discuss here differs from traditional MHD turbulence mainly in two aspects. One is the existence of many linearly stable small-scale modes which cause an effective damping during the energy cascade. The other is the scale-independent anisotropy induced by the large-scale modes tilting the sheared background field, as opposed to the scale-dependent anisotropy frequently encountered in traditional critically balanced turbulence theories. Due to these two differences, the energy spectrum deviates from a simple power law and takes the form of a power law multiplied by an exponential falloff. Numerical simulations are carried out using visco-resistive MHD equations to verify our theoretical predictions, and a reasonable agreement is found between the numerical results and our model.

  10. Fluid dynamics transactions

    CERN Document Server

    Fiszdon, W

    1965-01-01

    Fluid Dynamics Transactions, Volume 2 compiles 46 papers on fluid dynamics, a subdiscipline of fluid mechanics that deals with fluid flow. The topics discussed in this book include developments in interference theory for aeronautical applications; diffusion from sources in a turbulent boundary layer; unsteady motion of a finite wing span in a compressible medium; and wall pressure covariance and comparison with experiment. The certain classes of non-stationary axially symmetric flows in magneto-gas-dynamics; description of the phenomenon of secondary flows in curved channels by means of co

  11. Eulerian-Lagranigan simulation of aerosol evolution in turbulent mixing layer

    KAUST Repository

    Zhou, Kun

    2016-09-23

    The formation and evolution of aerosol in turbulent flows are ubiquitous in both industrial processes and nature. The intricate interaction of turbulent mixing and aerosol evolution in a canonical turbulent mixing layer was investigated by a direct numerical simulation (DNS) in a recent study (Zhou, K., Attili, A., Alshaarawi, A., and Bisetti, F. Simulation of aerosol nucleation and growth in a turbulent mixing layer. Physics of Fluids, 26, 065106 (2014)). In this work, Monte Carlo (MC) simulation of aerosol evolution is carried out along Lagrangian trajectories obtained in the previous simulation, in order to quantify the error of the moment method used in the previous simulation. Moreover, the particle size distribution (PSD), not available in the previous works, is also investigated. Along a fluid parcel moving through the turbulent flow, temperature and vapor concentration exhibit complex fluctuations, triggering complicate aerosol processes and rendering complex PSD. However, the mean PSD is found to be bi-modal in most of the mixing layer except that a tri-modal distribution is found in the turbulent transition region. The simulated PSDs agree with the experiment observations available in the literature. A different explanation on the formation of such PSDs is provided.

  12. The PDF of fluid particle acceleration in turbulent flow with underlying normal distribution of velocity fluctuations

    International Nuclear Information System (INIS)

    Aringazin, A.K.; Mazhitov, M.I.

    2003-01-01

    We describe a formal procedure to obtain and specify the general form of a marginal distribution for the Lagrangian acceleration of fluid particle in developed turbulent flow using Langevin type equation and the assumption that velocity fluctuation u follows a normal distribution with zero mean, in accord to the Heisenberg-Yaglom picture. For a particular representation, β=exp[u], of the fluctuating parameter β, we reproduce the underlying log-normal distribution and the associated marginal distribution, which was found to be in a very good agreement with the new experimental data by Crawford, Mordant, and Bodenschatz on the acceleration statistics. We discuss on arising possibilities to make refinements of the log-normal model

  13. Turbulent equipartitions in two dimensional drift convection

    International Nuclear Information System (INIS)

    Isichenko, M.B.; Yankov, V.V.

    1995-01-01

    Unlike the thermodynamic equipartition of energy in conservative systems, turbulent equipartitions (TEP) describe strongly non-equilibrium systems such as turbulent plasmas. In turbulent systems, energy is no longer a good invariant, but one can utilize the conservation of other quantities, such as adiabatic invariants, frozen-in magnetic flux, entropy, or combination thereof, in order to derive new, turbulent quasi-equilibria. These TEP equilibria assume various forms, but in general they sustain spatially inhomogeneous distributions of the usual thermodynamic quantities such as density or temperature. This mechanism explains the effects of particle and energy pinch in tokamaks. The analysis of the relaxed states caused by turbulent mixing is based on the existence of Lagrangian invariants (quantities constant along fluid-particle or other orbits). A turbulent equipartition corresponds to the spatially uniform distribution of relevant Lagrangian invariants. The existence of such turbulent equilibria is demonstrated in the simple model of two dimensional electrostatically turbulent plasma in an inhomogeneous magnetic field. The turbulence is prescribed, and the turbulent transport is assumed to be much stronger than the classical collisional transport. The simplicity of the model makes it possible to derive the equations describing the relaxation to the TEP state in several limits

  14. A numerical method to calculate flow-induced vibrations in a turbulent flow

    International Nuclear Information System (INIS)

    Sadaoka, Noriyuki; Umegaki, Kikuo

    1993-01-01

    An unsteady fluid force on structures in a turbulent flow can cause their vibration. The phenomenon is the most important among various flow-induced vibrations and it is an important subject in design nuclear plant components such as heat exchangers. A new approach to simulate flow-induced vibrations is introduced. A fully coupled analysis of fluid-structure interaction has been realized in a turbulent flow field by integrating the following calculational steps: (a) solving turbulent flow by a direct simulation method where the ALE (arbitrary Lagrangian Eulerian) type approximation is adopted to take account of structure displacements; (b) estimating fluid force on structures by integrating fluid pressure and shear stress; (c) calculating dynamic response of structures and determining the amount of displacement; (d) regenerate curvilinear grids for new geometry using the boundary-fitted coordinate transformation method. Forced vibration of a circular cylinder in a cross flow were successfully simulated and the synchronization phenomena between Karman-vortices and cylinder vibrations were clearly seen

  15. The dynamics of variable-density turbulence

    International Nuclear Information System (INIS)

    Sandoval, D.L.

    1995-11-01

    The dynamics of variable-density turbulent fluids are studied by direct numerical simulation. The flow is incompressible so that acoustic waves are decoupled from the problem, and implying that density is not a thermodynamic variable. Changes in density occur due to molecular mixing. The velocity field, is in general, divergent. A pseudo-spectral numerical technique is used to solve the equations of motion. Three-dimensional simulations are performed using a grid size of 128 3 grid points. Two types of problems are studied: (1) the decay of isotropic, variable-density turbulence, and (2) buoyancy-generated turbulence in a fluid with large density fluctuations. In the case of isotropic, variable-density turbulence, the overall statistical decay behavior, for the cases studied, is relatively unaffected by the presence of density variations when the initial density and velocity fields are statistically independent. The results for this case are in quantitative agreement with previous numerical and laboratory results. In this case, the initial density field has a bimodal probability density function (pdf) which evolves in time towards a Gaussian distribution. The pdf of the density field is symmetric about its mean value throughout its evolution. If the initial velocity and density fields are statistically dependent, however, the decay process is significantly affected by the density fluctuations. For the case of buoyancy-generated turbulence, variable-density departures from the Boussinesq approximation are studied. The results of the buoyancy-generated turbulence are compared with variable-density model predictions. Both a one-point (engineering) model and a two-point (spectral) model are tested against the numerical data. Some deficiencies in these variable-density models are discussed and modifications are suggested

  16. Computational fluid mechanics qualification calculations for the code TEACH

    International Nuclear Information System (INIS)

    DeGrazia, M.C.; Fitzsimmons, L.B.; Reynolds, J.T.

    1979-11-01

    KAPL is developing a predictive method for three-dimensional (3-D) turbulent fluid flow configurations typically encountered in the thermal-hydraulic design of a nuclear reactor. A series of experiments has been selected for analysis to investigate the adequacy of the two-equation turbulence model developed at Imperial College, London, England for predicting the flow patterns in simple geometries. The analysis of these experiments is described with the two-dimensional (2-D) turbulent fluid flow code TEACH. This work qualifies TEACH for a variety of geometries and flow conditions

  17. Investigation on the applicability of turbulent-Prandtl-number models for liquid lead-bismuth eutectic

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fei, E-mail: chenfei@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); North China University of Water Resources and Electric Power, Zhengzhou, Henan 450011 (China); Huai, Xiulan, E-mail: hxl@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); Cai, Jun, E-mail: caijun@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); Li, Xunfeng, E-mail: lixunfeng@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China); Meng, Ruixue, E-mail: mengruixue@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190 (China)

    2013-04-15

    Highlights: ► We examine the applicability of various Pr{sub t} models into the simulation of LBE flow. ► Reynolds analogy suitable for conventional fluids cannot accurately simulate the heat transfer characteristics of LBE flow. ► The different Pr{sub t} model should be selected for the different thermal boundary condition of LBE flow. -- Abstract: With the proposal of Accelerator Driven Sub-critical System (ADS) together with liquid lead-bismuth eutectic (LBE) as coolant for both reactor and spallation target, the use of accurate heat transfer correlation and reliable turbulent-Prandtl-number model of LBE in turbulent flows is essential when designing ADS components of primary loop and heat exchanger of secondary loop. Unlike conventional fluids, there is not an acknowledged turbulent-Prandtl-number model for LBE flows. This paper reviews and assesses the existing turbulent-Pandtl-number models and various heat transfer correlations in circular tubes. Computational fluid dynamics (CFD) analysis is employed to evaluate the applicability of various turbulent-Prandtl-number models for LBE in the circular tube under boundary conditions of constant heat flux and constant wall temperature. Based on the assessment of turbulent-Prandtl-number models, the reliable turbulent-Prandtl-number models are recommended for CFD applications to LBE flows under boundary conditions of constant heat flux and constant wall temperature. The present study indicates that turbulent Prandtl number has a significant difference in turbulent LBE flow between constant-heat-flux and constant-wall-temperature boundary conditions.

  18. Warm-ion drift Alfven turbulence and the L-H transition

    International Nuclear Information System (INIS)

    Scott, B.

    1998-01-01

    Computations of fluid drift turbulence treating ions and electrons on equal footing, including both temperatures, are conducted in a model toroidal geometry. The resulting 'ion mixing mode' turbulence bears features of both electron drift-Alfven and ion temperature gradient turbulence, and nonlinear sensitivity to the relative strengths of the density and temperature gradients provides a possible route to the bifurcation needed for the L-H transition. (author)

  19. Direct Numerical Simulation of heat transfer in a turbulent flume

    International Nuclear Information System (INIS)

    Bergant, R.; Tiselj, I.

    2001-01-01

    Direct Numerical Simulation (DNS) can be used for the description of turbulent heat transfer in the fluid at low Reynolds numbers. DNS means precise solving of Navier-Stoke's equations without any extra turbulent models. DNS should be able to describe all relevant length scales and time scales in observed turbulent flow. The largest length scale is actually dimension of system and the smallest length and time scale is equal to Kolmogorov scale. In the present work simulations of fully developed turbulent velocity and temperature fields were performed in a turbulent flume (open channel) with pseudo-spectral approach at Reynolds number 2670 (friction Reynolds number 171) and constant Prandtl number 5.4, considering the fluid temperature as a passive scalar. Two ideal thermal boundary conditions were taken into account on the heated wall. The first one was an ideal isothermal boundary condition and the second one an ideal isoflux boundary condition. We observed different parameters like mean temperature and velocity, fluctuations of temperature and velocity, and auto-correlation functions.(author)

  20. Annual review of fluid mechanics. Volume 15

    International Nuclear Information System (INIS)

    Van Dyke, M.; Wehausen, J.V.; Lumley, J.L.

    1983-01-01

    A survey of experimental results and analytical techniques for modelling various flows and the behavior of flows around flown-driven machinery is presented. Attention is given to analytical models for wind flows and power extraction by horizontal axis wind turbines. The phenomena occurring in the impact of compressible fluids with a solid body are described, as are the instabilities, pattern formation, and turbulence in flames. Homogeneous turbulence is explored, theories for autorotation by falling bodies are discussed, and attention is devoted to theoretical models for magneto-atmospheric waves and their presence in solar activity. The design characteristics of low Reynolds number airfoils are explored, and numerical and fluid mechanics formulations for integrable, chaotic, and turbulent vortex motion in two-dimensional flows are reviewed. Finally, measurements and models of turbulent wall jets for engineering purposes are examined

  1. Vortex currents in turbulent superfluid and classical fluid channel flow, the magnus effect, and Goldstone boson fields

    International Nuclear Information System (INIS)

    Huggins, E.R.

    1994-01-01

    Expressing hydrodynamics in terms of the flow of vorticity, using the vortex current tensor, helps unify the picture of turbulent channel flow for viscous fluids and for superfluids. In both, eddy viscosity plays a major role in energy dissipation, and in both there is a similar cross stream flow of vorticity, which in the case of superfluids leads to the Josephson frequency. The vortex current tensor, which was introduced in an earlier paper to derive an exact three dimensional Magnus effect formula, turns out to be the classical hydrodynamic limit of the vortex current that is the source for a classical Goldstone-boson field

  2. Modeling Compressed Turbulence with BHR

    Science.gov (United States)

    Israel, Daniel

    2011-11-01

    Turbulence undergoing compression or expansion occurs in systems ranging from internal combustion engines to supernovae. One common feature in many of these systems is the presence of multiple reacting species. Direct numerical simulation data is available for the single-fluid, low turbulent Mach number case. Wu, et al. (1985) compared their DNS results to several Reynolds-averaged Navier-Stokes models. They also proposed a three-equation k - ɛ - τ model, in conjunction with a Reynolds-stress model. Subsequent researchers have proposed alternative corrections to the standard k - ɛ formulation. Here we investigate three variants of the BHR model (Besnard, 1992). BHR is a model for multi-species variable-density turbulence. The three variants are the linear eddy-viscosity, algebraic-stress, and full Reynolds-stress formulations. We then examine the predictions of the model for the fluctuating density field for the case of variable-density turbulence.

  3. Three-Dimensional Flow Field Measurements in a Transonic Turbine Cascade

    Science.gov (United States)

    Giel, P. W.; Thurman, D. R.; Lopez, I.; Boyle, R. J.; VanFossen, G. J.; Jett, T. A.; Camperchioli, W. P.; La, H.

    1996-01-01

    Three-dimensional flow field measurements are presented for a large scale transonic turbine blade cascade. Flow field total pressures and pitch and yaw flow angles were measured at an inlet Reynolds number of 1.0 x 10(exp 6) and at an isentropic exit Mach number of 1.3 in a low turbulence environment. Flow field data was obtained on five pitchwise/spanwise measurement planes, two upstream and three downstream of the cascade, each covering three blade pitches. Three-hole boundary layer probes and five-hole pitch/yaw probes were used to obtain data at over 1200 locations in each of the measurement planes. Blade and endwall static pressures were also measured at an inlet Reynolds number of 0.5 x 10(exp 6) and at an isentropic exit Mach number of 1.0. Tests were conducted in a linear cascade at the NASA Lewis Transonic Turbine Blade Cascade Facility. The test article was a turbine rotor with 136 deg of turning and an axial chord of 12.7 cm. The flow field in the cascade is highly three-dimensional as a result of thick boundary layers at the test section inlet and because of the high degree of flow turning. The large scale allowed for very detailed measurements of both flow field and surface phenomena. The intent of the work is to provide benchmark quality data for CFD code and model verification.

  4. BOOK REVIEW: Statistical Mechanics of Turbulent Flows

    Science.gov (United States)

    Cambon, C.

    2004-10-01

    counterparts at the molecular level. In addition, equations are given for multicomponent reacting systems. The chapter ends with miscellaneous topics, including DNS, (idea of) the energy cascade, and RANS. Chapter 5 is devoted to stochastic models for the large scales of turbulence. Langevin-type models for velocity (and particle position) are presented, and their various consequences for second-order single-point corelations (Reynolds stress components, Kolmogorov constant) are discussed. These models are then presented for the scalar. The chapter ends with compressible high-speed flows and various models, ranging from k-epsilon to hybrid RANS-pdf. Stochastic models for small-scale turbulence are addressed in chapter 6. These models are based on the concept of a filter density function (FDF) for the scalar, and a more conventional SGS (sub-grid-scale model) for the velocity in LES. The final chapter, chapter 7, is entitled `The unification of turbulence models' and aims at reconciling large-scale and small-scale modelling. This book offers a timely survey of techniques in modern computational fluid mechanics for turbulent flows with reacting scalars. It should be of interest to engineers, while the discussion of the underlying tools, namely pdfs, stochastic and statistical equations should also be attractive to applied mathematicians and physicists. The book's emphasis on local pdfs and stochastic Langevin models gives a consistent structure to the book and allows the author to cover almost the whole spectrum of practical modelling in turbulent CFD. On the other hand, one might regret that non-local issues are not mentioned explicitly, or even briefly. These problems range from the presence of pressure-strain correlations in the Reynolds stress transport equations to the presence of two-point pdfs in the single-point pdf equation derived from the Navier--Stokes equations. (One may recall that, even without scalar transport, a general closure problem for turbulence statistics

  5. Achieving fast reconnection in resistive MHD models via turbulent means

    Directory of Open Access Journals (Sweden)

    G. Lapenta

    2012-04-01

    Full Text Available Astrophysical fluids are generally turbulent and this preexisting turbulence must be taken into account for models of magnetic reconnection in astrophysical, solar or heliospheric environments. In addition, reconnection itself induces turbulence which provides an important feedback on the reconnection process. In this paper we discuss both the theoretical model and numerical evidence that magnetic reconnection becomes fast in the approximation of resistive MHD. We consider the relation between the Lazarian and Vishniac turbulent reconnection theory and Lapenta's numerical experiments testifying of the spontaneous onset of turbulent reconnection in systems which are initially laminar.

  6. Experimental and Numerical Studies of Mechanically- and Convectively-Driven Turbulence in Planetary Interiors

    Science.gov (United States)

    Grannan, Alexander Michael

    2017-08-01

    The energy for driving turbulent flows in planetary fluid layers comes from a combination of thermocompositional sources and the motion of the boundary in contact with the fluid through mechanisms like precessional, tidal, and librational forcing. Characterizing the resulting turbulent fluid motions are necessary for understanding many aspects of the planet's dynamics and evolution including the generation of magnetic fields in the electrically conducting fluid layers and dissipation in the oceans. Although such flows are strongly inertial they are also strongly influenced by the Coriolis force whose source is in the rotation of the body and tends to constrain the inertial effects and provide support for fluid instabilities that might in-turn generate turbulence. Furthermore, the magnetic fields generated by the electrically conducting fluids act back on the fluid through the Lorentz force that also tends to constrain the flow. The goal of this dissertation is to investigate the characteristics of turbulent flows under the influence of mechanical, convective, rotational and magnetic forcing. In order to investigate the response of the fluid to mechanical forcing, I have modified a unique set of laboratory experiments that allows me to quantify the generation of turbulence driven by the periodic oscillations of the fluid containing boundary through tides and libration. These laboratory experiments replicate the fundamental ingredients found in planetary environments and are necessary for the excitation of instabilities that drive the turbulent fluid motions. For librational forcing, a rigid ellipsoidal container and ellipsoidal shell of isothermal unstratified fluid is made to rotate with a superimposed oscillation while, for tidal forcing, an elastic ellipsoidal container of isothermal unstratified fluid is made to rotate while an independently rotating perturbance also flexes the elastic container. By varying the strength and frequencies of these oscillations the

  7. Randomness Representation of Turbulence in Canopy Flows Using Kolmogorov Complexity Measures

    Directory of Open Access Journals (Sweden)

    Dragutin Mihailović

    2017-09-01

    Full Text Available Turbulence is often expressed in terms of either irregular or random fluid flows, without quantification. In this paper, a methodology to evaluate the randomness of the turbulence using measures based on the Kolmogorov complexity (KC is proposed. This methodology is applied to experimental data from a turbulent flow developing in a laboratory channel with canopy of three different densities. The methodology is even compared with the traditional approach based on classical turbulence statistics.

  8. On the decay of homogeneous isotropic turbulence

    Science.gov (United States)

    Skrbek, L.; Stalp, Steven R.

    2000-08-01

    Decaying homogeneous, isotropic turbulence is investigated using a phenomenological model based on the three-dimensional turbulent energy spectra. We generalize the approach first used by Comte-Bellot and Corrsin [J. Fluid Mech. 25, 657 (1966)] and revised by Saffman [J. Fluid Mech. 27, 581 (1967); Phys. Fluids 10, 1349 (1967)]. At small wave numbers we assume the spectral energy is proportional to the wave number to an arbitrary power. The specific case of power 2, which follows from the Saffman invariant, is discussed in detail and is later shown to best describe experimental data. For the spectral energy density in the inertial range we apply both the Kolmogorov -5/3 law, E(k)=Cɛ2/3k-5/3, and the refined Kolmogorov law by taking into account intermittency. We show that intermittency affects the energy decay mainly by shifting the position of the virtual origin rather than altering the power law of the energy decay. Additionally, the spectrum is naturally truncated due to the size of the wind tunnel test section, as eddies larger than the physical size of the system cannot exist. We discuss effects associated with the energy-containing length scale saturating at the size of the test section and predict a change in the power law decay of both energy and vorticity. To incorporate viscous corrections to the model, we truncate the spectrum at an effective Kolmogorov wave number kη=γ(ɛ/v3)1/4, where γ is a dimensionless parameter of order unity. We show that as the turbulence decays, viscous corrections gradually become more important and a simple power law can no longer describe the decay. We discuss the final period of decay within the framework of our model, and show that care must be taken to distinguish between the final period of decay and the change of the character of decay due to the saturation of the energy containing length scale. The model is applied to a number of experiments on decaying turbulence. These include the downstream decay of turbulence in

  9. Turbulence of Weak Gravitational Waves in the Early Universe.

    Science.gov (United States)

    Galtier, Sébastien; Nazarenko, Sergey V

    2017-12-01

    We study the statistical properties of an ensemble of weak gravitational waves interacting nonlinearly in a flat space-time. We show that the resonant three-wave interactions are absent and develop a theory for four-wave interactions in the reduced case of a 2.5+1 diagonal metric tensor. In this limit, where only plus-polarized gravitational waves are present, we derive the interaction Hamiltonian and consider the asymptotic regime of weak gravitational wave turbulence. Both direct and inverse cascades are found for the energy and the wave action, respectively, and the corresponding wave spectra are derived. The inverse cascade is characterized by a finite-time propagation of the metric excitations-a process similar to an explosive nonequilibrium Bose-Einstein condensation, which provides an efficient mechanism to ironing out small-scale inhomogeneities. The direct cascade leads to an accumulation of the radiation energy in the system. These processes might be important for understanding the early Universe where a background of weak nonlinear gravitational waves is expected.

  10. Sensitivity study of CFD turbulent models for natural convection analysis

    International Nuclear Information System (INIS)

    Yu sun, Park

    2007-01-01

    The buoyancy driven convective flow fields are steady circulatory flows which were made between surfaces maintained at two fixed temperatures. They are ubiquitous in nature and play an important role in many engineering applications. Application of a natural convection can reduce the costs and efforts remarkably. This paper focuses on the sensitivity study of turbulence analysis using CFD (Computational Fluid Dynamics) for a natural convection in a closed rectangular cavity. Using commercial CFD code, FLUENT and various turbulent models were applied to the turbulent flow. Results from each CFD model will be compared each other in the viewpoints of grid resolution and flow characteristics. It has been showed that: -) obtaining general flow characteristics is possible with relatively coarse grid; -) there is no significant difference between results from finer grid resolutions than grid with y + + is defined as y + = ρ*u*y/μ, u being the wall friction velocity, y being the normal distance from the center of the cell to the wall, ρ and μ being respectively the fluid density and the fluid viscosity; -) the K-ε models show a different flow characteristic from K-ω models or from the Reynolds Stress Model (RSM); and -) the y + parameter is crucial for the selection of the appropriate turbulence model to apply within the simulation

  11. Vortices and turbulence at very low temperatures

    CERN Document Server

    Schneider, Wilhelm; Sergeev, Yuri

    2009-01-01

    Recent investigations have highlighted the similarities between turbulence in cryogenic fluids at temperatures close to absolute zero. This book contains lectures on various theoretical and experimental aspects of the problem.

  12. Effect of blade sweep on inlet flow in axial compressor cascades

    Directory of Open Access Journals (Sweden)

    Hao Chang

    2015-02-01

    Full Text Available This paper presents comparative numerical studies to investigate the effects of blade sweep on inlet flow in axial compressor cascades. A series of swept and straight cascades was modeled in order to obtain a general understanding of the inlet flow field that is induced by sweep. A computational fluid dynamics (CFD package was used to simulate the cascades and obtain the required three-dimensional (3D flow parameters. A circumferentially averaged method was introduced which provided the circumferential fluctuation (CF terms in the momentum equation. A program for data reduction was conducted to obtain a circumferentially averaged flow field. The influences of the inlet flow fields of the cascades were studied and spanwise distributions of each term in the momentum equation were analyzed. The results indicate that blade sweep does affect inlet radial equilibrium. The characteristic of radial fluid transfer is changed and thus influencing the axial velocity distributions. The inlet flow field varies mainly due to the combined effect of the radial pressure gradient and the CF component. The axial velocity varies consistently with the incidence variation induced by the sweep, as observed in the previous literature. In addition, factors that might influence the radial equilibrium such as blade camber angles, solidity and the effect of the distance from the leading edge are also taken into consideration and comparatively analyzed.

  13. Ludwig Prandtl and Boundary Layers in Fluid Flow

    Indian Academy of Sciences (India)

    His research is ... research in fluid mechan- ... For common fluids the viscous force is proportional to .... that the analogy is only a very crude, qualitative one. ..... separation is turbulent and the fluid in the wake is nearly stagnant. Method of.

  14. Quantifying near-wall coherent structures in turbulent convection

    Science.gov (United States)

    Gunasegarane, G. S.; A Puthenveettil, Baburaj; K Agrawal, Yogesh; Schmeling, Daniel; Bosbach, Johannes; Arakeri, Jaywant; IIT Madras-DLR-IISc Collaboration

    2011-11-01

    We present planforms of line plumes formed on horizontal surfaces in turbulent convection, along with the length of near- wall line plumes measured from these planforms, in a six decade range of Rayleigh numbers (105 < Ra <1011) and at three Prandtl numbers (Pr = 0 . 7 , 6 , 602). Using geometric constraints on the relations for the mean plume spacings, we obtain expressions for the total length of these near-wall plumes in turbulent convection. The plume length per unit area (Lp / A), made dimensionless by the near-wall length scale in turbulent convection (Zw) remains a constant for a given fluid. The Nusselt number is shown to be directly proportional to Lp H / A for a given fluid layer of height H. Increase in Pr has a weak influence in decreasing Lp / A . These expressions match the measurements, thereby showing that the assumption of laminar natural convection boundary layers in turbulent convection is consistent with the observed total length of line plumes. We then show that similar relationships are obtained based on the assumption that the line plumes are the outcome of the instability of laminar natural convection boundary layers on the horizontal surfaces.

  15. Numerical Study of Transonic Axial Flow Rotating Cascade Aerodynamics – Part 1: 2D Case

    Directory of Open Access Journals (Sweden)

    Irina Carmen ANDREI

    2014-06-01

    Full Text Available The purpose of this paper is to present a 2D study regarding the numerical simulation of flow within a transonic highly-loaded rotating cascade from an axial compressor. In order to describe an intricate flow pattern of a complex geometry and given specific conditions of cascade’s loading and operation, an appropriate accurate flow model is a must. For such purpose, the Navier-Stokes equations system was used as flow model; from the computational point of view, the mathematical support is completed by a turbulence model. A numerical comparison has been performed for different turbulence models (e.g. KE, KO, Reynolds Stress and Spallart-Allmaras models. The convergence history was monitored in order to focus on the numerical accuracy. The force vector has been reported in order to express the aerodynamics of flow within the rotating cascade at the running regime, in terms of Lift and Drag. The numerical results, expressed by plots of the most relevant flow parameters, have been compared. It comes out that the selecting of complex flow models and appropriate turbulence models, in conjunction with CFD techniques, allows to obtain the best computational accuracy of the numerical results. This paper aims to carry on a 2D study and a prospective 3D will be intended for the same architecture.

  16. Self-similar solutions for poloidal magnetic field in turbulent jet

    International Nuclear Information System (INIS)

    Komissarov, S.S.; Ovchinnikov, I.L.

    1990-01-01

    Evolution of a large-scale magnetic field in a turbulent extragalactic source radio jets is considered. Self-similar solutions for a weak poloidal magnetic field transported by turbulent jet of incompressible fluid are found. It is shown that the radial profiles of the solutions are the eigenfunctions of a linear differential operator. In all the solutions, the strength of a large-scale field decreases more rapidly than that of a small-scale turbulent field. This can be understood as a decay of a large-scale field in the turbulent jet

  17. Topology optimization of turbulent flows

    DEFF Research Database (Denmark)

    Dilgen, Cetin B.; Dilgen, Sumer B.; Fuhrman, David R.

    2018-01-01

    The aim of this work is to present a fast and viable approach for taking into account turbulence in topology optimization of complex fluid flow systems, without resorting to any simplifying assumptions in the derivation of discrete adjoints. Topology optimization is an iterative gradient...

  18. Fractal dimension of turbulent black holes

    Science.gov (United States)

    Westernacher-Schneider, John Ryan

    2017-11-01

    We present measurements of the fractal dimension of a turbulent asymptotically anti-de Sitter black brane reconstructed from simulated boundary fluid data at the perfect fluid order using the fluid-gravity duality. We argue that the boundary fluid energy spectrum scaling as E (k )˜k-2 is a more natural setting for the fluid-gravity duality than the Kraichnan-Kolmogorov scaling of E (k )˜k-5 /3, but we obtain fractal dimensions D for spatial sections of the horizon H ∩Σ in both cases: D =2.584 (1 ) and D =2.645 (4 ), respectively. These results are consistent with the upper bound of D =3 , thereby resolving the tension with the recent claim in Adams et al. [Phys. Rev. Lett. 112, 151602 (2014), 10.1103/PhysRevLett.112.151602] that D =3 +1 /3 . We offer a critical examination of the calculation which led to their result, and show that their proposed definition of the fractal dimension performs poorly as a fractal dimension estimator on one-dimensional curves with known fractal dimension. Finally, we describe how to define and in principle calculate the fractal dimension of spatial sections of the horizon H ∩Σ in a covariant manner, and we speculate on assigning a "bootstrapped" value of fractal dimension to the entire horizon H when it is in a statistically quasisteady turbulent state.

  19. Experimental analysis of turbulence effect in settling velocity of suspended sediments

    Directory of Open Access Journals (Sweden)

    H. Salinas–Tapia

    2008-01-01

    Full Text Available Settling velocities of sediment particles for different size ranges were measured in this work using PIV with the help of discriminatory filters. An experimental channel 10x15 cm cross section was used in order to obtain two set of turbulent characteristics corresponding with two different flow rates. The purpose was to analyze the effect of turbulence on the solids settling velocity. The technique allowed us to measure the individual settling velocity of the particles and the flow velocity field of the fluid. Capture and image analysis was performed with digital cameras (CCD using the software Sharp–provision PIV and the statistical cross correlation technique. Results showed that settling velocity of particles is affected by turbulence which enhances the fluid drag coefficient. Physical explanation of this phenomenon is related with the magnitude of the vertical fluctuating velocity of the fluid. However, more research is needed in order to define settling velocity formulas that takes into account this effect

  20. Limits on the ions temperature anisotropy in turbulent intracluster medium

    Energy Technology Data Exchange (ETDEWEB)

    Santos-Lima, R. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Potsdam Univ. (Germany). Inst. fuer Physik und Astronomie; Univ. de Sao Paulo (Brazil). Inst. de Astronomia, Geofisica e Ciencias Atmosfericas; Yan, H. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Potsdam Univ. (Germany). Inst. fuer Physik und Astronomie; Gouveia Dal Pino, E.M. de [Univ. de Sao Paulo (Brazil). Inst. de Astronomia, Geofisica e Ciencias Atmosfericas; Lazarian, A. [Wisconsin Univ., Madison, WI (United States). Dept. of Astronomy

    2016-05-15

    Turbulence in the weakly collisional intracluster medium of galaxies (ICM) is able to generate strong thermal velocity anisotropies in the ions (with respect to the local magnetic field direction), if the magnetic moment of the particles is conserved in the absence of Coulomb collisions. In this scenario, the anisotropic pressure magnetohydrodynamic (AMHD) turbulence shows a very different statistical behaviour from the standard MHD one and is unable to amplify seed magnetic fields, in disagreement with previous cosmological MHD simulations which are successful to explain the observed magnetic fields in the ICM. On the other hand, temperature anisotropies can also drive plasma instabilities which can relax the anisotropy. This work aims to compare the relaxation rate with the growth rate of the anisotropies driven by the turbulence. We employ quasilinear theory to estimate the ions scattering rate due to the parallel firehose, mirror, and ion-cyclotron instabilities, for a set of plasma parameters resulting from AMHD simulations of the turbulent ICM. We show that the ICM turbulence can sustain only anisotropy levels very close to the instabilities thresholds. We argue that the AMHD model which bounds the anisotropies at the marginal stability levels can describe the Alfvenic turbulence cascade in the ICM.

  1. Vertical migration of motile phytoplankton chains through turbulence

    Science.gov (United States)

    Climent, Eric; Lovecchio, Salvatore; Durham, William; Stocker, Roman

    2017-11-01

    Daily, phytoplankton needs to migrate vertically from and towards the ocean surface to find nutrients such as dissolved oxygen. To travel through the water column they need to fight against gravity (by swimming) and fluid turbulence which can make their journey longer. It is often observed that cells migrate across the water column as chains. The first benefit to form chains is that micro-organisms sum up their thrust while reducing their drag. Therefore, upwards swimming is faster for chains in a quiescent fluid with steady vertical orientation. However, as chain length increases their tendency to periodically tumble in turbulent structures increases which reduces orientation stability and limits their capacity to swim upwards. The purpose of our study is to elaborate on this apparent contradiction. We carried out direct numerical simulations and physical analysis of the coupled system of homogeneous isotropic turbulence and chain trajectories through Lagrangian tracking. Formation of chains is indeed favorable for vertical migration through the upper layer of the ocean.

  2. Turbulence at Hydroelectric Power Plants and its Potential Effects on Fish.

    Energy Technology Data Exchange (ETDEWEB)

    Cada, Glenn F.; Odeh, Mufeed

    2001-01-01

    The fundamental influence of fluid dynamics on aquatic organisms is receiving increasing attention among aquatic ecologists. For example, the importance of turbulence to ocean plankton has long been a subject of investigation (Peters and Redondo 1997). More recently, studies have begun to emerge that explicitly consider the effects of shear and turbulence on freshwater invertebrates (Statzner et al. 1988; Hart et al. 1996) and fishes (Pavlov et al. 1994, 1995). Hydraulic shear stress and turbulence are interdependent natural fluid phenomena that are important to fish, and consequently it is important to develop an understanding of how fish sense, react to, and perhaps utilize these phenomena under normal river flows. The appropriate reaction to turbulence may promote movement of migratory fish or prevent displacement of resident fish. It has been suggested that one of the adverse effects of flow regulation by hydroelectric projects is the reduction of normal turbulence, particularly in the headwaters of reservoirs, which can lead to disorientation and slowing of migration (Williams et al. 1996; Coutant et al. 1997; Coutant 1998). On the other hand, greatly elevated levels of shear and turbulence may be injurious to fish; injuries can range from removal of the mucous layer on the body surface to descaling to torn opercula, popped eyes, and decapitation (Neitzel et al. 2000a,b). Damaging levels of fluid stress can occur in a variety of circumstances in both natural and man-made environments. This paper discusses the effects of shear stress and turbulence on fish, with an emphasis on potentially damaging levels in man-made environments. It defines these phenomena, describes studies that have been conducted to understand their effects, and identifies gaps in our knowledge. In particular, this report reviews the available information on the levels of turbulence that can occur within hydroelectric power plants, and the associated biological effects. The final section

  3. Asymptotic expansion and statistical description of turbulent systems

    International Nuclear Information System (INIS)

    Hagan, W.K. III.

    1986-01-01

    A new approach to studying turbulent systems is presented in which an asymptotic expansion of the general dynamical equations is performed prior to the application of statistical methods for describing the evolution of the system. This approach has been applied to two specific systems: anomalous drift wave turbulence in plasmas and homogeneous, isotropic turbulence in fluids. For the plasma case, the time and length scales of the turbulent state result in the asymptotic expansion of the Vlasov/Poisson equations taking the form of nonlinear gyrokinetic theory. Questions regarding this theory and modern Hamiltonian perturbation methods are discussed and resolved. A new alternative Hamiltonian method is described. The Eulerian Direct Interaction Approximation (EDIA) is slightly reformulated and applied to the equations of nonlinear gyrokinetic theory. Using a similarity transformation technique, expressions for the thermal diffusivity are derived from the EDIA equations for various geometries, including a tokamak. In particular, the unique result for generalized geometry may be of use in evaluating fusion reactor designs and theories of anomalous thermal transport in tokamaks. Finally, a new and useful property of the EDIA is pointed out. For the fluid case, an asymptotic expansion is applied to the Navier-Stokes equation and the results lead to the speculation that such an approach may resolve the problem of predicting the Kolmogorov inertial range energy spectrum for homogeneous, isotropic turbulence. 45 refs., 3 figs

  4. Preferrential Concentration of Particles in Protoplanetary Nebula Turbulence

    Science.gov (United States)

    Hartlep, Thomas; Cuzzi, Jeffrey N.

    2015-01-01

    Preferential concentration in turbulence is a process that causes inertial particles to cluster in regions of high strain (in-between high vorticity regions), with specifics depending on their stopping time or Stokes number. This process is thought to be of importance in various problems including cloud droplet formation and aerosol transport in the atmosphere, sprays, and also in the formation of asteroids and comets in protoplanetary nebulae. In protoplanetary nebulae, the initial accretion of primitive bodies from freely-floating particles remains a problematic subject. Traditional growth-by-sticking models encounter a formidable "meter-size barrier" [1] in turbulent nebulae. One scenario that can lead directly from independent nebula particulates to large objects, avoiding the problematic m-km size range, involves formation of dense clumps of aerodynamically selected, typically mm-size particles in protoplanetary turbulence. There is evidence that at least the ordinary chondrite parent bodies were initially composed entirely of a homogeneous mix of such particles generally known as "chondrules" [2]. Thus, while it is arcane, turbulent preferential concentration acting directly on chondrule size particles are worthy of deeper study. Here, we present the statistical determination of particle multiplier distributions from numerical simulations of particle-laden isotopic turbulence, and a cascade model for modeling turbulent concentration at lengthscales and Reynolds numbers not accessible by numerical simulations. We find that the multiplier distributions are scale dependent at the very largest scales but have scale-invariant properties under a particular variable normalization at smaller scales.

  5. Rotor cascade shape optimization with unsteady passing wakes using implicit dual time stepping method

    Science.gov (United States)

    Lee, Eun Seok

    2000-10-01

    An improved aerodynamics performance of a turbine cascade shape can be achieved by an understanding of the flow-field associated with the stator-rotor interaction. In this research, an axial gas turbine airfoil cascade shape is optimized for improved aerodynamic performance by using an unsteady Navier-Stokes solver and a parallel genetic algorithm. The objective of the research is twofold: (1) to develop a computational fluid dynamics code having faster convergence rate and unsteady flow simulation capabilities, and (2) to optimize a turbine airfoil cascade shape with unsteady passing wakes for improved aerodynamic performance. The computer code solves the Reynolds averaged Navier-Stokes equations. It is based on the explicit, finite difference, Runge-Kutta time marching scheme and the Diagonalized Alternating Direction Implicit (DADI) scheme, with the Baldwin-Lomax algebraic and k-epsilon turbulence modeling. Improvements in the code focused on the cascade shape design capability, convergence acceleration and unsteady formulation. First, the inverse shape design method was implemented in the code to provide the design capability, where a surface transpiration concept was employed as an inverse technique to modify the geometry satisfying the user specified pressure distribution on the airfoil surface. Second, an approximation storage multigrid method was implemented as an acceleration technique. Third, the preconditioning method was adopted to speed up the convergence rate in solving the low Mach number flows. Finally, the implicit dual time stepping method was incorporated in order to simulate the unsteady flow-fields. For the unsteady code validation, the Stokes's 2nd problem and the Poiseuille flow were chosen and compared with the computed results and analytic solutions. To test the code's ability to capture the natural unsteady flow phenomena, vortex shedding past a cylinder and the shock oscillation over a bicircular airfoil were simulated and compared with

  6. A turbulent time scale based k–ε model for probability density function modeling of turbulence/chemistry interactions: Application to HCCI combustion

    International Nuclear Information System (INIS)

    Maroteaux, Fadila; Pommier, Pierre-Lin

    2013-01-01

    Highlights: ► Turbulent time evolution is introduced in stochastic modeling approach. ► The particles number is optimized trough a restricted initial distribution. ► The initial distribution amplitude is modeled by magnitude of turbulence field. -- Abstract: Homogenous Charge Compression Ignition (HCCI) engine technology is known as an alternative to reduce NO x and particulate matter (PM) emissions. As shown by several experimental studies published in the literature, the ideally homogeneous mixture charge becomes stratified in composition and temperature, and turbulent mixing is found to play an important role in controlling the combustion progress. In a previous study, an IEM model (Interaction by Exchange with the Mean) has been used to describe the micromixing in a stochastic reactor model that simulates the HCCI process. The IEM model is a deterministic model, based on the principle that the scalar value approaches the mean value over the entire volume with a characteristic mixing time. In this previous model, the turbulent time scale was treated as a fixed parameter. The present study focuses on the development of a micro-mixing time model, in order to take into account the physical phenomena it stands for. For that purpose, a (k–ε) model is used to express this micro-mixing time model. The turbulence model used here is based on zero dimensional energy cascade applied during the compression and the expansion cycle; mean kinetic energy is converted to turbulent kinetic energy. Turbulent kinetic energy is converted to heat through viscous dissipation. Besides, in this study a relation to calculate the initial heterogeneities amplitude is proposed. The comparison of simulation results against experimental data shows overall satisfactory agreement at variable turbulent time scale

  7. Thermal load determination in the mixing TEE impacted by a turbulent flow generated by two fluids at large gap of temperature

    International Nuclear Information System (INIS)

    Braillard, O.

    2005-01-01

    A 304L mixing tee mock-up is instrumented to assess the fluctuating temperature in the mixing area generated by two fluids (water) at large gap of temperature meet. The turbulent mixing layer impacts the structure wall and creates stresses, which lead to the damages. The case studied in this paper corresponds to the 'swinging streak' within a flow rate ratio of 25 %. The instrumentation is specifically planned to measure the fluctuating temperature in the fluid close to the internal skin and inside the wall too. This experiment is performed using a new sensor 'fluxmeter' which is non intrusive and typically designed to catch the fluctuation without any signal attenuation, within a frequency range 0-25Hz. The facility called 'Fatherino' supplies an available delta T of 70 degree C in water at 4 m/s mixture velocity in a mixing tee mock-up 50 mm in diameter. The flow features generate a large turbulent flow in the mixing layer and favour the heat flux transfer to the wall. By applying an inverse heat conduction method applied to the output data given by the fluxmeter, both the heat flux is deduced and the temperature (mean and fluctuating values) at the internal surface can be accurately determined. In addition, a calculation using the Trio U code (thermal hydraulic code) within the large eddy simulation module is computed to assess the fluid temperature distribution in the mixing area close to the internal surface. The output data in mean and standard deviation are compared with the Fatherino measurements. The comparison consists in analysing the main parameters as the mean and standard deviation in the fluid along the main axis and in a circumferential view. The mixing layer geometry and the frequency of the fluctuation are also analysed. These experiments added to the calculation allow us improving the state of the knowledge in the mixing tees and the thermal load to be used in the industrial mixing tees in operating for the long lifetime assessment or for the

  8. Towards a collisionless fluid closure in plasma turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Dif Pradalier, G

    2005-07-01

    In this work 2 generic possible descriptions of a plasma have been compared namely the kinetic and the fluid approaches. The latter focuses on the successive moments (n, u, p, q,...) of the distribution function, whereas the former describes the time-evolution in phase space of this distribution function, both being based on the Vlasov equation. The fluid description is attractive for the Vlasov equation is tractable with great difficulties. Nevertheless it rests on a major difficulty: as the set of fluid equations constitute an infinite hierarchy, a closure equation must be chosen. The first chapter details physical characteristics of a fundamental kinetic interaction mechanism between waves and particles. In chapter 2 we propose a fluid closure that allows analytic comparison with a linear fully kinetic result, near an homogeneous, electrostatic, Maxwellian equilibrium. This approach consists in adjusting chosen parameters in order to minimize the discrepancies between fluid and kinetic linear response functions. In chapter 3 we present a general frame for a fluid closure in a magnetized plasma. This is attempted in a linear, simplified model with low dimensionality.

  9. Statistics of the turbulent/non-turbulent interface in a spatially evolving mixing layer

    KAUST Repository

    Cristancho, Juan

    2012-12-01

    The thin interface separating the inner turbulent region from the outer irrotational fluid is analyzed in a direct numerical simulation of a spatially developing turbulent mixing layer. A vorticity threshold is defined to detect the interface separating the turbulent from the non-turbulent regions of the flow, and to calculate statistics conditioned on the distance from this interface. Velocity and passive scalar statistics are computed and compared to the results of studies addressing other shear flows, such as turbulent jets and wakes. The conditional statistics for velocity are in remarkable agreement with the results for other types of free shear flow available in the literature. In addition, a detailed analysis of the passive scalar field (with Sc 1) in the vicinity of the interface is presented. The scalar has a jump at the interface, even stronger than that observed for velocity. The strong jump for the scalar has been observed before in the case of high Schmidt number, but it is a new result for Schmidt number of order one. Finally, the dissipation for the kinetic energy and the scalar are presented. While the kinetic energy dissipation has its maximum far from the interface, the scalar dissipation is characterized by a strong peak very close to the interface.

  10. New Theories on Boundary Layer Transition and Turbulence Formation

    Directory of Open Access Journals (Sweden)

    Chaoqun Liu

    2012-01-01

    Full Text Available This paper is a short review of our recent DNS work on physics of late boundary layer transition and turbulence. Based on our DNS observation, we propose a new theory on boundary layer transition, which has five steps, that is, receptivity, linear instability, large vortex structure formation, small length scale generation, loss of symmetry and randomization to turbulence. For turbulence generation and sustenance, the classical theory, described with Richardson's energy cascade and Kolmogorov length scale, is not observed by our DNS. We proposed a new theory on turbulence generation that all small length scales are generated by “shear layer instability” through multiple level ejections and sweeps and consequent multiple level positive and negative spikes, but not by “vortex breakdown.” We believe “shear layer instability” is the “mother of turbulence.” The energy transferring from large vortices to small vortices is carried out by multiple level sweeps, but does not follow Kolmogorov's theory that large vortices pass energy to small ones through vortex stretch and breakdown. The loss of symmetry starts from the second level ring cycle in the middle of the flow field and spreads to the bottom of the boundary layer and then the whole flow field.

  11. Universal equations and constants of turbulent motion

    International Nuclear Information System (INIS)

    Baumert, H Z

    2013-01-01

    This paper presents a parameter-free theory of shear-generated turbulence at asymptotically high Reynolds numbers in incompressible fluids. It is based on a two-fluids concept. Both components are materially identical and inviscid. The first component is an ensemble of quasi-rigid dipole-vortex tubes (vortex filaments, excitations) as quasi-particles in chaotic motion. The second is a superfluid performing evasive motions between the tubes. The local dipole motions follow Helmholtz' law. The vortex radii scale with the energy-containing length scale. Collisions between quasi-particles lead either to annihilation (likewise rotation, turbulent dissipation) or to scattering (counterrotation, turbulent diffusion). There are analogies with birth and death processes of population dynamics and their master equations and with Landau's two-fluid theory of liquid helium. For free homogeneous decay the theory predicts the turbulent kinetic energy to follow t −1 . With an adiabatic wall condition it predicts the logarithmic law with von Kármán's constant as 1/√(2 π)= 0.399. Likewise rotating couples form localized dissipative patches almost at rest (→ intermittency) wherein under local quasi-steady conditions the spectrum evolves into an ‘Apollonian gear’ as discussed first by Herrmann (1990 Correlation and Connectivity (Dordrecht: Kluwer) pp 108–20). Dissipation happens exclusively at scale zero and at finite scales this system is frictionless and reminds of Prigogine's (1947 Etude Thermodynamique des Phenomenes Irreversibles (Liege: Desoer) p 143) law of minimum (here: zero) entropy production. The theory predicts further the prefactor of the 3D-wavenumber spectrum (a Kolmogorov constant) as 1/3 (4 π) 2/3 =1.802, well within the scatter range of observational, experimental and direct numerical simulation results. (paper)

  12. Universal equations and constants of turbulent motion

    Science.gov (United States)

    Baumert, H. Z.

    2013-07-01

    This paper presents a parameter-free theory of shear-generated turbulence at asymptotically high Reynolds numbers in incompressible fluids. It is based on a two-fluids concept. Both components are materially identical and inviscid. The first component is an ensemble of quasi-rigid dipole-vortex tubes (vortex filaments, excitations) as quasi-particles in chaotic motion. The second is a superfluid performing evasive motions between the tubes. The local dipole motions follow Helmholtz' law. The vortex radii scale with the energy-containing length scale. Collisions between quasi-particles lead either to annihilation (likewise rotation, turbulent dissipation) or to scattering (counterrotation, turbulent diffusion). There are analogies with birth and death processes of population dynamics and their master equations and with Landau's two-fluid theory of liquid helium. For free homogeneous decay the theory predicts the turbulent kinetic energy to follow t-1. With an adiabatic wall condition it predicts the logarithmic law with von Kármán's constant as 1/\\sqrt {2\\,\\pi }= 0.399 . Likewise rotating couples form localized dissipative patches almost at rest (→ intermittency) wherein under local quasi-steady conditions the spectrum evolves into an ‘Apollonian gear’ as discussed first by Herrmann (1990 Correlation and Connectivity (Dordrecht: Kluwer) pp 108-20). Dissipation happens exclusively at scale zero and at finite scales this system is frictionless and reminds of Prigogine's (1947 Etude Thermodynamique des Phenomenes Irreversibles (Liege: Desoer) p 143) law of minimum (here: zero) entropy production. The theory predicts further the prefactor of the 3D-wavenumber spectrum (a Kolmogorov constant) as \\frac {1}{3}(4\\,\\pi )^{2/3}=1.802 , well within the scatter range of observational, experimental and direct numerical simulation results.

  13. Magnetohydrodynamic Turbulence

    Science.gov (United States)

    Montgomery, David C.

    2004-01-01

    Magnetohydrodynamic (MHD) turbulence theory is modeled on neutral fluid (Navier-Stokes) turbulence theory, but with some important differences. There have been essentially no repeatable laboratory MHD experiments wherein the boundary conditions could be controlled or varied and a full set of diagnostics implemented. The equations of MHD are convincingly derivable only in the limit of small ratio of collision mean-free-paths to macroscopic length scales, an inequality that often goes the other way for magnetofluids of interest. Finally, accurate information on the MHD transport coefficients-and thus, the Reynolds-like numbers that order magnetofluid behavior-is largely lacking; indeed, the algebraic expressions used for such ingredients as the viscous stress tensor are often little more than wishful borrowing from fluid mechanics. The one accurate thing that has been done extensively and well is to solve the (strongly nonlinear) MHD equations numerically, usually in the presence of rectangular periodic boundary conditions, and then hope for the best when drawing inferences from the computations for those astrophysical and geophysical MHD systems for which some indisputably turbulent detailed data are available, such as the solar wind or solar prominences. This has led to what is perhaps the first field of physics for which computer simulations are regarded as more central to validating conclusions than is any kind of measurement. Things have evolved in this way due to a mixture of the inevitable and the bureaucratic, but that is the way it is, and those of us who want to work on the subject have to live with it. It is the only game in town, and theories that have promised more-often on the basis of some alleged ``instability''-have turned out to be illusory.

  14. Numerical investigation of turbulent fluid flow and heat transfer in complex ducts

    Energy Technology Data Exchange (ETDEWEB)

    Rokni, M.

    1998-01-01

    The need for a reliable and reasonable accurate turbulence model without specific convergence problem for calculating duct flows in industrial applications has become more evident. In this study a general computational method has been developed for calculating turbulent quantities in any arbitrary three dimensional duct. Four different turbulence models for predicting the turbulent Reynolds stresses namely; standard k-{epsilon} model, the non-linear-k-{epsilon} model of Speziale, an Explicit Algebraic Stress Model (EASM) and a full Reynolds Stress Model (RSM) are compared with each other. The advantages, disadvantages and accuracy of these models are discussed. The turbulent heat fluxes are modeled by the SED concept, the GGDH and the WET methods. The advantages of GGDH and WET compared to SED are discussed and the limitations of these models are clarified. The two-equation model of temperature invariance and its dissipation rate for calculating turbulent heat fluxes are also discussed. The low Reynolds number version of all the models are considered except for the RSM. At high Reynolds numbers the wall functions for both the temperature field and the flow field are applied. It has been shown that the standard k-{epsilon} model with the curvilinear transformation provides false secondary motions in general non-orthogonal ducts and can not be used for predicting the turbulent secondary motions in ducts. The numerical method is based on the finite volume technique with non-staggered grid arrangement. The SIMPLEC algorithm is used for pressure-velocity coupling. A modified SIP and TDMA solving methods are implemented for solving the equations. The van Leer, QUICK and hybrid schemes are applied for treating the convective terms. However, in order to achieve stability in the k and {epsilon} equations, the hybrid scheme is used for the convective terms in these equations. Periodic boundary conditions are imposed in the main flow direction for decreasing the number of

  15. On the correlation of heat transfer in turbulent boundary layers subjected to free-stream turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, M.J.; Hollingsworth, D.K.

    1999-07-01

    The turbulent flow of a fluid bounded by a heated surface is a wonderfully complex yet derisively mundane phenomenon. Despite its commonness in natural and man-made environments, the authors struggle to accurately predict its behavior in many simple situations. A complexity encountered in a number of flows is the presence of free-stream turbulence. A turbulent free-stream typically yields increased surface friction and heat transfer. Turbulent boundary layers with turbulent free-streams are encountered in gas-turbine engines, rocket nozzles, electronic-cooling passages, geophysical flows, and numerous other dynamic systems. Here, turbulent boundary layers were subjected to grid-generated free-stream turbulence to study the effects of length scale and intensity on heat transfer. The research focused on correlating heat transfer without the use of conventional boundary-layer Reynolds numbers. The boundary-layers studied ranged from 400 to 2,700 in momentum-thickness Reynolds number and from 450 to 1,900 in enthalpy-thickness Reynolds number. Free-stream turbulence intensities varied from 0.1 to 8.0%. The turbulent-to-viscous length-scale ratios presented are the smallest found in the heat-transfer literature; the ratios spanned from 100 to 1000. The turbulent-to-thermal ratios (using enthalpy thickness as the thermal scale) are also the smallest reported; the ratios ranged from 3.2 to 12.3. A length-scale dependence was identified in a Stanton number based on a near-wall streamwise velocity fluctuation. A new near-wall Stanton number was introduced; this parameter was regarded as a constant in a two-region boundary-layer model. The new model correlated heat-transfer to within 7%.

  16. Impact of a small ellipticity on the sustainability condition of developed turbulence in a precessing spheroid

    Science.gov (United States)

    Horimoto, Yasufumi; Simonet-Davin, Gabriel; Katayama, Atsushi; Goto, Susumu

    2018-04-01

    We experimentally investigate the flow transition to developed turbulence in a precessing spheroid with a small ellipticity. Fully developed turbulence appears through a subcritical transition when we fix the Reynolds number (the spin rate) and gradually increase the Poincaré number (the precession rate). In the transitional range of the Poincaré number, two qualitatively different turbulent states (i.e., fully developed turbulence and quiescent turbulence with a spin-driven global circulation) are stable and they are connected by a hysteresis loop. This discontinuous transition is in contrast to the continuous transition in a precessing sphere, for which neither bistable turbulent states nor hysteresis loops are observed. The small ellipticity of the container makes the global circulation of the confined fluid more stable, and it requires much stronger precession of the spheroid, than a sphere, for fully developed turbulence to be sustained. Nevertheless, once fully developed turbulence is sustained, its flow structures are almost identical in the spheroid and sphere. The argument [Lorenzani and Tilgner, J. Fluid Mech. 492, 363 (2003), 10.1017/S002211200300572X; Noir et al., Geophys. J. Int. 154, 407 (2003), 10.1046/j.1365-246X.2003.01934.x] on the basis of the analytical solution [Busse, J. Fluid Mech. 33, 739 (1968), 10.1017/S0022112068001655] of the steady global circulation in a weak precession range well describes the onset of the fully developed turbulence in the spheroid.

  17. Meta fluid dynamic as a gauge field theory

    International Nuclear Information System (INIS)

    Mendes, A.C.R.; Neves, C.; Oliveira, W.; Takakura, F.I.

    2003-01-01

    In this paper, the analog of Maxwell electromagnetism for hydrodynamic turbulence, the meta fluid dynamics, is extended in order to reformulate the meta fluid dynamics as a gauge field theory. That analogy opens up the possibility to investigate this theory as a constrained system. Having this possibility in mind, we propose a Lagrangian to describe this new theory of turbulence and, subsequently, analyze it from the symplectic point of view. From this analysis, a hidden gauge symmetry is revealed, providing a clear interpretation and meaning of the physics behind the meta fluid theory. Also, the geometrical interpretation to the gauge symmetries is discussed. (author)

  18. Richardson effects in turbulent buoyant flows

    Science.gov (United States)

    Biggi, Renaud; Blanquart, Guillaume

    2010-11-01

    Rayleigh Taylor instabilities are found in a wide range of scientific fields from supernova explosions to underwater hot plumes. The turbulent flow is affected by the presence of buoyancy forces and may not follow the Kolmogorov theory anymore. The objective of the present work is to analyze the complex interactions between turbulence and buoyancy. Towards that goal, simulations have been performed with a high order, conservative, low Mach number code [Desjardins et. al. JCP 2010]. The configuration corresponds to a cubic box initially filled with homogeneous isotropic turbulence with heavy fluid on top and light gas at the bottom. The initial turbulent field was forced using linear forcing up to a Reynolds number of Reλ=55 [Meneveau & Rosales, POF 2005]. The Richardson number based on the rms velocity and the integral length scale was varied from 0.1 to 10 to investigate cases with weak and strong buoyancy. Cases with gravity as a stabilizer of turbulence (gravity pointing up) were also considered. The evolution of the turbulent kinetic energy and the total kinetic energy was analyzed and a simple phenomenological model was proposed. Finally, the energy spectra and the isotropy of the flow were also investigated.

  19. Cascaded FSO-VLC Communication System

    KAUST Repository

    Gupta, Akash

    2017-08-28

    The proposed cascaded free space optics (FSO)-visible light communication (VLC) system consists of multiple VLC access points which caters the end users connected via a decode and forward (DF) relay to the FSO backhaul link. The FSO link is assumed to be affected by path-loss, pointing error and atmospheric turbulence while the end-to-end signal-to-noise ratio (SNR) of VLC downlinks are statistically characterized considering the randomness of users position. In this study, the novel closed form expressions of the statistics like probability density function (PDF) and cumulative distribution function (CDF) of the equivalent SNR are derived. Capitalizing on these, the closed form expressions for various performance metrics such as outage probability and error probability are provided. The simulation results are provided to verify the functional curves of mathematical analysis.

  20. Ten iterative steps for model development and evaluation applied to Computational Fluid Dynamics for Environmental Fluid Mechanic

    NARCIS (Netherlands)

    Blocken, B.J.E.; Gualtieri, C.

    2012-01-01

    Computational Fluid Dynamics (CFD) is increasingly used to study a wide variety of complex Environmental Fluid Mechanics (EFM) processes, such as water flow and turbulent mixing of contaminants in rivers and estuaries and wind flow and air pollution dispersion in urban areas. However, the accuracy

  1. Optimized parallel convolutions for non-linear fluid models of tokamak ηi turbulence

    International Nuclear Information System (INIS)

    Milovich, J.L.; Tomaschke, G.; Kerbel, G.D.

    1993-01-01

    Non-linear computational fluid models of plasma turbulence based on spectral methods typically spend a large fraction of the total computing time evaluating convolutions. Usually these convolutions arise from an explicit or semi implicit treatment of the convective non-linearities in the problem. Often the principal convective velocity is perpendicular to magnetic field lines allowing a reduction of the convolution to two dimensions in an appropriate geometry, but beyond this, different models vary widely in the particulars of which mode amplitudes are selectively evolved to get the most efficient representation of the turbulence. As the number of modes in the problem, N, increases, the amount of computation required for this part of the evolution algorithm then scales as N 2 /timestep for a direct or analytic method and N ln N/timestep for a pseudospectral method. The constants of proportionality depend on the particulars of mode selection and determine the size problem for which the method will perform equally. For large enough N, the pseudospectral method performance is always superior, though some problems do not require correspondingly high resolution. Further, the Courant condition for numerical stability requires that the timestep size must decrease proportionately as N increases, thus accentuating the need to have fast methods for larger N problems. The authors have developed a package for the Cray system which performs these convolutions for a rather arbitrary mode selection scheme using either method. The package is highly optimized using a combination of macro and microtasking techniques, as well as vectorization and in some cases assembly coded routines. Parts of the package have also been developed and optimized for the CM200 and CM5 system. Performance comparisons with respect to problem size, parallelization, selection schemes and architecture are presented

  2. Responding to flow: How phytoplankton adapt migration strategies to tackle turbulence

    Science.gov (United States)

    Sengupta, Anupam; Carrara, Francesco; Stocker, Roman

    2014-11-01

    Phytoplankton are among the ocean's most important organisms and it has long been recognized that turbulence is a primary determinant of their fitness. Yet, mechanisms by which phytoplankton may adapt to turbulence have remained unknown. We present experiments that demonstrate how phytoplankton are capable of rapid adaptive behavior in response to fluid flow disturbances that mimic turbulence. Our study organism was the toxic marine alga Heterosigma akashiwo, known to exhibit ``negative gravitaxis,'' i . e . , to frequently migrate upwards against gravity. To mimic the effect of Kolmogorov-scale turbulent eddies, which expose cells to repeated reorientations, we observed H. akashiwo in a ``flip chamber,'' whose orientation was periodically flipped. Tracking of single cells revealed a striking, robust behavioral adaptation, whereby within tens of minutes half of the population reversed its direction of migration to swim downwards, demonstrating an active response to fluid flow. Using confocal microscopy, we provide a physiological rationalization of this behavior in terms of the redistribution of internal organelles, and speculate on the motives for this bet-hedging-type strategy. This work suggests that the effects of fluid flow - not just passive but also active - on plankton represents a rich area of investigation with considerable implications for some of earth's most important organisms.

  3. Study on turbulent characteristics and transition behavior of combined-convection boundary layer

    International Nuclear Information System (INIS)

    Hattori, Yasuo

    2001-01-01

    The stabilizing mechanism of the turbulent combined-convection boundary layer along an isothermally-heated flat plate in air aided by a weak freestream are investigated experimentally and theoretically. The turbulent statistics of the combined-convection boundary layer measured with hot- and cold wires at different Grashof numbers indicates that with an increase in the freestream velocity, a similar change in the turbulent quantities appears independently of local Grashof number. Then based on the such experimental results, it is verified that the laminarization of the boundary layer due to an increase in freestream velocity arises at Grx / Rex 6 . Then, through the experiments with a particle image velocimetry (PIV), the spatio-temporal structure of the turbulent combined-convection boundary layer is investigated. For instantaneous velocity vectors obtained with PIV, large-scale fluid motions, which play a predominant role in the generation of turbulence, are frequently observed in the outer layer, while quasi-coherent structures do not exist in the near-wall region. Thus, it is revealed that increasing freestream restricts large-scale fluid motions in the outer layer, and consequently the generation of turbulence is suppressed and the boundary layer becomes laminar. (author)

  4. A DNS Investigation of Non-Newtonian Turbulent Open Channel Flow

    Science.gov (United States)

    Guang, Raymond; Rudman, Murray; Chryss, Andrew; Slatter, Paul; Bhattacharya, Sati

    2010-06-01

    The flow of non-Newtonian fluids in open channels has great significance in many industrial settings from water treatment to mine waste disposal. The turbulent behaviour during transportation of these materials is of interest for many reasons, one of which is keeping settleable particles in suspension. The mechanism governing particle transport in turbulent flow has been studied in the past, but is not well understood. A better understanding of the mechanism operating in the turbulent flow of non-Newtonian suspensions in open channel would lead to improved design of many of the systems used in the mining and mineral processing industries. The objective of this paper is to introduce our work on the Direct Numerical Simulation of turbulent flow of non-Newtonian fluids in an open channel. The numerical method is based on spectral element/Fourier formulation. The flow simulation of a Herschel-Bulkley fluid agrees qualitatively with experimental results. The simulation results over-predict the flow velocity by approximately 15% for the cases considered, although the source of the discrepancy is difficult to ascertain. The effect of variation in yield stress and assumed flow depth are investigated and used to assess the sensitivity of the flow to these physical parameters. This methodology is seen to be useful in designing and optimising the transport of slurries in open channels.

  5. Electrohydrodynamic (EHD) vortices in helical turbulence

    International Nuclear Information System (INIS)

    Kikuchi, H.

    1996-01-01

    The study of large-scale coherent hydrodynamic (HD) vortex generation has been extended to electrified charged dusty vortices to be termed as electrohydrodynamic (EHD) vortices, incorporating helical turbulence in electric and magnetic fields into that in fluid velocity, which are all created by an external DC electric field on the background. A new equation of EHD vortices is introduced on the basis of a set of EHD or electromagnetohydrodynamic (EMHD) equations, including equations of state and a full set of Maxwell's equations by using functional techniques for estimating equations for an ensemble average, turbulent background, and additional random field. In fact, EHD vortices for a charged dusty fluid can be more explosive with larger instabilities than HD vortices. In addition, it is inferred that an external DC electric field could provide the origin of additional self-organization to a coalescence of fluid vortex and electric field lines as a manifestation of a new frozen-in field concept for electric fields when the electric Reynolds number is sufficiently high. This is discussed on the basis of a set of general transport equations for fluid vorticity, magnetic and electric fields that are rederived concisely. In particular, a novel concept of electric field line merging-reconnection is developed in close relation to fluid vortex line merging, indicating a coalescence of fluid vortex breakdown or merging point and electric field line reconnection point, X-type or O-type with possible application to tornadic thunderstorms. In fact, a thundercloud charge distribution so as to provide a coalescence of fluid vortex and electric field lines is quite possible without theoretical inconsistency, and is thought most likely to occur from observations available so far. (orig.)

  6. Direct numerical simulation of fractal-generated turbulence

    International Nuclear Information System (INIS)

    Suzuki, H; Hasegawa, Y; Ushijima, T; Nagata, K; Sakai, Y; Hayase, T

    2013-01-01

    We simulate fractal-generated turbulence (Hurst and Vassilicos 2007 Phys. Fluids 19 035103)) by means of a direct numerical simulation and address its fundamental characteristics. We examine whether the fractal-generated turbulence in the upstream region has a nature similar to that of a wake. We propose an equation for predicting peak values of the velocity fluctuation intensity and devise a method for formulating the functional form of the quantity of interest by focusing on the time scale of decaying turbulence, and we examine those forms for the turbulent kinetic energy and rms of pressure fluctuation through this method. By using the method, both of these functional forms are found to be power-law functions in the downstream region, even though these profiles follow exponential functions around these peaks. In addition, decay exponents of these quantities are estimated. The integral length scales of velocity fluctuations for transverse as well as streamwise directions are essentially constant in the downstream direction. Decaying turbulence having both these characteristics conflicts with decaying turbulence described by the theory predicting exponential decay. We discuss a factor causing the difference by focusing on the functional form of the transfer function of homogeneous, isotropic turbulence. (paper)

  7. Intrinsic momentum generation by a combined neoclassical and turbulence mechanism in diverted DIII-D plasma edge

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Janghoon; Choe, W. [Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Chang, C. S.; Ku, S. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Kwon, J. M. [National Fusion Research institute, Daejeon 305-806 (Korea, Republic of); Müller, Stefan H. [Max Planck Institute for Plasma Physics, Garching 85748 (Germany); Center for Energy Research, University of California San Diego, La Jolla, California 92093 (United States)

    2014-09-15

    Fluid Reynolds stress from turbulence has usually been considered to be responsible for the anomalous toroidal momentum transport in tokamak plasma. Experiment by Müller et al. [Phys. Rev. Lett. 106, 115001 (2011)], however, reported that neither the observed edge rotation profile nor the inward momentum transport phenomenon at the edge region of an H-mode plasma could be explained by the fluid Reynolds stress measured with reciprocating Langmuir-probe. The full-function gyrokinetic code XGC1 is used to explain, for the first time, Müller et al.'s experimental observations. It is discovered that, unlike in the plasma core, the fluid Reynolds stress from turbulence is not sufficient for momentum transport physics in plasma edge. The “turbulent neoclassical” physics arising from the interaction between kinetic neoclassical orbit dynamics and plasma turbulence is key in the tokamak edge region across the plasma pedestal into core.

  8. Forced excitation and active control for the measurement of fluid-elastic forces

    International Nuclear Information System (INIS)

    Caillaud, Sebastien

    1999-01-01

    The action of a fluid flow on a tubes bundle is commonly decomposed into a random turbulent excitation and a fluid-elastic excitation. The fluid-elastic forces which are coupled to the tubes movement can be experimentally determined from an analysis of the vibratory response of the structure excited by turbulent forces. For low flow velocities, the turbulent excitation can be insufficient to make the tube significantly vibrate and to permit a correct vibratory analysis. On the opposite side, the structure can become unstable for high flow velocities: the fluid-elastic forces make the fluid-structure damping system fall towards zero. Two experimental methods are proposed in order to extend the considered flow rate. An additional excitation force allows to increase the tube vibration level for improving the signal-noise ratio at low velocities. When the tube is submitted to fluid-elastic instability, an artificial damping contribution by active control allows to stabilize it. Methods are implemented on a flexible tube inserted into rigid tubes bundle water and water-air transverse flows. Two actuator technologies are used: an electromagnetic exciter and piezoelectric actuators. The additional excitation method shows that the fluid-elastic forces remain insignificant at low velocity single phase flow. With the active control method, it is possible to carry out tests beyond the fluid-elastic instability. In two-phase flow, the stabilization of the structure is observed for low vacuum rates. The obtained new results are analyzed with the literature expected results in terms of fluid-elastic coupling and turbulent excitation. (author) [fr

  9. Numerical Coupling and Simulation of Point-Mass System with the Turbulent Fluid Flow

    Science.gov (United States)

    Gao, Zheng

    A computational framework that combines the Eulerian description of the turbulence field with a Lagrangian point-mass ensemble is proposed in this dissertation. Depending on the Reynolds number, the turbulence field is simulated using Direct Numerical Simulation (DNS) or eddy viscosity model. In the meanwhile, the particle system, such as spring-mass system and cloud droplets, are modeled using the ordinary differential system, which is stiff and hence poses a challenge to the stability of the entire system. This computational framework is applied to the numerical study of parachute deceleration and cloud microphysics. These two distinct problems can be uniformly modeled with Partial Differential Equations (PDEs) and Ordinary Differential Equations (ODEs), and numerically solved in the same framework. For the parachute simulation, a novel porosity model is proposed to simulate the porous effects of the parachute canopy. This model is easy to implement with the projection method and is able to reproduce Darcy's law observed in the experiment. Moreover, the impacts of using different versions of k-epsilon turbulence model in the parachute simulation have been investigated and conclude that the standard and Re-Normalisation Group (RNG) model may overestimate the turbulence effects when Reynolds number is small while the Realizable model has a consistent performance with both large and small Reynolds number. For another application, cloud microphysics, the cloud entrainment-mixing problem is studied in the same numerical framework. Three sets of DNS are carried out with both decaying and forced turbulence. The numerical result suggests a new way parameterize the cloud mixing degree using the dynamical measures. The numerical experiments also verify the negative relationship between the droplets number concentration and the vorticity field. The results imply that the gravity has fewer impacts on the forced turbulence than the decaying turbulence. In summary, the

  10. Self-similar regimes of turbulence in weakly coupled plasmas under compression

    Science.gov (United States)

    Viciconte, Giovanni; Gréa, Benoît-Joseph; Godeferd, Fabien S.

    2018-02-01

    Turbulence in weakly coupled plasmas under compression can experience a sudden dissipation of kinetic energy due to the abrupt growth of the viscosity coefficient governed by the temperature increase. We investigate in detail this phenomenon by considering a turbulent velocity field obeying the incompressible Navier-Stokes equations with a source term resulting from the mean velocity. The system can be simplified by a nonlinear change of variable, and then solved using both highly resolved direct numerical simulations and a spectral model based on the eddy-damped quasinormal Markovian closure. The model allows us to explore a wide range of initial Reynolds and compression numbers, beyond the reach of simulations, and thus permits us to evidence the presence of a nonlinear cascade phase. We find self-similarity of intermediate regimes as well as of the final decay of turbulence, and we demonstrate the importance of initial distribution of energy at large scales. This effect can explain the global sensitivity of the flow dynamics to initial conditions, which we also illustrate with simulations of compressed homogeneous isotropic turbulence and of imploding spherical turbulent layers relevant to inertial confinement fusion.

  11. An accurate conservative level set/ghost fluid method for simulating turbulent atomization

    International Nuclear Information System (INIS)

    Desjardins, Olivier; Moureau, Vincent; Pitsch, Heinz

    2008-01-01

    This paper presents a novel methodology for simulating incompressible two-phase flows by combining an improved version of the conservative level set technique introduced in [E. Olsson, G. Kreiss, A conservative level set method for two phase flow, J. Comput. Phys. 210 (2005) 225-246] with a ghost fluid approach. By employing a hyperbolic tangent level set function that is transported and re-initialized using fully conservative numerical schemes, mass conservation issues that are known to affect level set methods are greatly reduced. In order to improve the accuracy of the conservative level set method, high order numerical schemes are used. The overall robustness of the numerical approach is increased by computing the interface normals from a signed distance function reconstructed from the hyperbolic tangent level set by a fast marching method. The convergence of the curvature calculation is ensured by using a least squares reconstruction. The ghost fluid technique provides a way of handling the interfacial forces and large density jumps associated with two-phase flows with good accuracy, while avoiding artificial spreading of the interface. Since the proposed approach relies on partial differential equations, its implementation is straightforward in all coordinate systems, and it benefits from high parallel efficiency. The robustness and efficiency of the approach is further improved by using implicit schemes for the interface transport and re-initialization equations, as well as for the momentum solver. The performance of the method is assessed through both classical level set transport tests and simple two-phase flow examples including topology changes. It is then applied to simulate turbulent atomization of a liquid Diesel jet at Re=3000. The conservation errors associated with the accurate conservative level set technique are shown to remain small even for this complex case

  12. Density distribution function of a self-gravitating isothermal compressible turbulent fluid in the context of molecular clouds ensembles

    Science.gov (United States)

    Donkov, Sava; Stefanov, Ivan Z.

    2018-03-01

    We have set ourselves the task of obtaining the probability distribution function of the mass density of a self-gravitating isothermal compressible turbulent fluid from its physics. We have done this in the context of a new notion: the molecular clouds ensemble. We have applied a new approach that takes into account the fractal nature of the fluid. Using the medium equations, under the assumption of steady state, we show that the total energy per unit mass is an invariant with respect to the fractal scales. As a next step we obtain a non-linear integral equation for the dimensionless scale Q which is the third root of the integral of the probability distribution function. It is solved approximately up to the leading-order term in the series expansion. We obtain two solutions. They are power-law distributions with different slopes: the first one is -1.5 at low densities, corresponding to an equilibrium between all energies at a given scale, and the second one is -2 at high densities, corresponding to a free fall at small scales.

  13. A Wall Boundary Condition for the Simulation of a Turbulent Non-Newtonian Domestic Slurry in Pipes

    Directory of Open Access Journals (Sweden)

    Dhruv Mehta

    2018-01-01

    Full Text Available The concentration (using a lesser amount of water of domestic slurry promotes resource recovery (nutrients and biomass while saving water. This article is aimed at developing numerical methods to support engineering processes such as the design and implementation of sewerage for concentrated domestic slurry. The current industrial standard for computational fluid dynamics-based analyses of turbulent flows is Reynolds-averaged Navier–Stokes (RANS modelling. This is assisted by the wall function approach proposed by Launder and Spalding, which permits the use of under-refined grids near wall boundaries while simulating a wall-bounded flow. Most RANS models combined with wall functions have been successfully validated for turbulent flows of Newtonian fluids. However, our experiments suggest that concentrated domestic slurry shows a Herschel–Bulkley-type non-Newtonian behaviour. Attempts have been made to derive wall functions and turbulence closures for non-Newtonian fluids; however, the resulting laws or equations are either inconsistent across experiments or lack relevant experimental support. Pertinent to this study, laws or equations reported in literature are restricted to a class of non-Newtonian fluids called power law fluids, which, as compared to Herschel–Bulkley fluids, yield at any amount of applied stress. An equivalent law for Herschel–Bulkley fluids that require a minimum-yield stress to flow is yet to be reported in literature. This article presents a theoretically derived (with necessary approximations law of the wall for Herschel–Bulkley fluids and implements it in a RANS solver using a specified shear approach. This results in a more accurate prediction of the wall shear stress experienced by a circular pipe with a turbulent Herschel–Bulkley fluid flowing through it. The numerical results are compared against data from our experiments and those reported in literature for a range of Reynolds numbers and rheological

  14. Anisotropy and buoyancy in nuclear turbulent heat transfer - critical assessment and needs for modelling

    International Nuclear Information System (INIS)

    Groetzbach, G.

    2007-12-01

    Computational Fluid Dynamics (CFD) programs have a wide application field in reactor technique, like to diverse flow types which have to be considered in Accelerator Driven nuclear reactor Systems (ADS). This requires turbulence models for the momentum and heat transfer with very different capabilities. The physical demands on the models are elaborated for selected transport mechanisms, the status quo of the modelling is discussed, and it is investigated which capabilities are offered by the market dominating commercial CFD codes. One topic of the discussion is on the already earlier achieved knowledge on the distinct anisotropy of the turbulent momentum and heat transport near walls. It is shown that this is relevant in channel flows with inhomogeneous wall conditions. The related consequences for the turbulence modelling are discussed. The second topic is the turbulent heat transport in buoyancy influenced flows. The only turbulence model for heat transfer which is available in the large commercial CFD-codes is based on the Reynolds analogy. This means, it is required to prescribe suitable turbulent Prandtl number distributions. There exist many correlations for channel flows, but they are seldom used in practical applications. Here, a correlation is deduced for the local turbulent Prandtl number which accounts for many parameters, like wall distance, molecular Prandtl number of the fluid, wall roughness and local shear stress, thermal wall condition, etc. so that it can be applied to most ADS typical heat transporting channel flows. The spatial dependence is discussed. It is shown that it is essential for reliable temperature calculations to get accurate turbulent Prandtl numbers especially near walls. If thermal wall functions are applied, then the correlation for the turbulent Prandtl number has to be consistent with the wall functions to avoid unphysical discretisation dependences. In using Direct Numerical Simulation (DNS) data for horizontal fluid layers it

  15. Homogeneous wave turbulence driven by tidal flows

    Science.gov (United States)

    Favier, B.; Le Reun, T.; Barker, A.; Le Bars, M.

    2017-12-01

    When a moon orbits around a planet, the rotation of the induced tidal bulge drives a homogeneous, periodic, large-scale flow. The combination of such an excitation with the rotating motion of the planet has been shown to drive parametric resonance of a pair of inertial waves in a mechanism called the elliptical instability. Geophysical fluid layers can also be stratified: this is the case for instance of the Earth's oceans and, as suggested by several studies, of the upper part of the Earth's liquid Outer Core. We thus investigate the stability of a rotating and stratified layer undergoing tidal distortion in the limit where either rotation or stratification is dominant. We show that the periodic tidal flow drives a parametric subharmonic resonance of inertial (resp. internal) waves in the rotating (resp. stratified) case. The instability saturates into a wave turbulence pervading the whole fluid layer. In such a state, the instability mechanism conveys the tidal energy from the large scale tidal flow to the resonant modes, which then feed a succession of triadic resonances also generating small spatial scales. In the rotating case, we observe a kinetic energy spectrum with a k-2 slope for which the Coriolis force is dominant at all spatial scales. In the stratified case, where the timescale separation is increased between the tidal excitation and the Brunt-Väisälä frequencies, the temporal spectrum decays with a ω-2 power law up to the cut-off frequency beyond which waves do not exist. This result is reminiscent of the Garrett and Munk spectrum measured in the oceans and theoretically described as a manifestation of internal wave turbulence. In addition to revealing an instability driving homogeneous turbulence in geophysical fluid layers, our approach is also an efficient numerical tool to investigate the possibly universal properties of wave turbulence in a geophysical context.

  16. The Research of Optical Turbulence Model in Underwater Imaging System

    Directory of Open Access Journals (Sweden)

    Liying Sun

    2014-01-01

    Full Text Available In order to research the effect of turbulence on underwater imaging system and image restoration, the underwater turbulence model is simulated by computer fluid dynamics. This model is obtained in different underwater turbulence intensity, which contains the pressure data that influences refractive index distribution. When the pressure value is conversed to refractive index, the refractive index distribution can be received with the refraction formula. In the condition of same turbulent intensity, the distribution of refractive index presents gradient in the whole region, with disorder and mutations in the local region. With the turbulence intensity increase, the holistic variation of the refractive index in the image is larger, and the refractive index change more tempestuously in the local region. All the above are illustrated by the simulation results with he ray tracing method and turbulent refractive index model. According to different turbulence intensity analysis, it is proved that turbulence causes image distortion and increases noise.

  17. Reynolds number scaling in cryogenic turbulent Rayleigh-Benard convection in a cylindrical aspect ratio one cell

    Czech Academy of Sciences Publication Activity Database

    Musilová, Věra; Králík, Tomáš; La Mantia, M.; Macek, Michal; Urban, Pavel; Skrbek, L.

    2017-01-01

    Roč. 832, OCT 26 (2017), s. 721-744 ISSN 0022-1120 R&D Projects: GA ČR(CZ) GA17-03572S; GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : Benard convection * turbulent convection * turbulent flows Subject RIV: BK - Fluid Dynamics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.821, year: 2016

  18. Large Eddy Simulations of turbulent flows at supercritical pressure

    Energy Technology Data Exchange (ETDEWEB)

    Kunik, C.; Otic, I.; Schulenberg, T., E-mail: claus.kunik@kit.edu, E-mail: ivan.otic@kit.edu, E-mail: thomas.schulenberg@kit.edu [Karlsruhe Inst. of Tech. (KIT), Karlsruhe (Germany)

    2011-07-01

    A Large Eddy Simulation (LES) method is used to investigate turbulent heat transfer to CO{sub 2} at supercritical pressure for upward flows. At those pressure conditions the fluid undergoes strong variations of fluid properties in a certain temperature range, which can lead to a deterioration of heat transfer (DHT). In this analysis, the LES method is applied on turbulent forced convection conditions to investigate the influence of several subgrid scale models (SGS-model). At first, only velocity profiles of the so-called inflow generator are considered, whereas in the second part temperature profiles of the heated section are investigated in detail. The results are statistically analyzed and compared with DNS data from the literature. (author)

  19. Statistics of the turbulent/non-turbulent interface in a spatially developing mixing layer

    KAUST Repository

    Attili, Antonio

    2014-06-02

    The thin interface separating the inner turbulent region from the outer irrotational fluid is analysed in a direct numerical simulation of a spatially developing turbulent mixing layer. A vorticity threshold is defined to detect the interface separating the turbulent from the non-turbulent regions of the flow, and to calculate statistics conditioned on the distance from this interface. The conditional statistics for velocity are in remarkable agreement with the results for other free shear flows available in the literature, such as turbulent jets and wakes. In addition, an analysis of the passive scalar field in the vicinity of the interface is presented. It is shown that the scalar has a jump at the interface, even stronger than that observed for velocity. The strong jump for the scalar has been observed before in the case of high Schmidt number (Sc). In the present study, such a strong jump is observed for a scalar with Sc ≈ 1. Conditional statistics of kinetic energy and scalar dissipation are presented. While the kinetic energy dissipation has its maximum far from the interface, the scalar dissipation is characterised by a strong peak very close to the interface. Finally, it is shown that the geometric features of the interfaces correlate with relatively large scale structures as visualised by low-pressure isosurfaces. © 2014 Taylor & Francis.

  20. Modern fluid dynamics for physics and astrophysics

    CERN Document Server

    Regev, Oded; Yecko, Philip A

    2016-01-01

    This book grew out of the need to provide students with a solid introduction to modern fluid dynamics. It offers a broad grounding in the underlying principles and techniques used, with some emphasis on applications in astrophysics and planetary science. The book comprehensively covers recent developments, methods and techniques, including, for example, new ideas on transitions to turbulence (via transiently growing stable linear modes), new approaches to turbulence (which remains the enigma of fluid dynamics), and the use of asymptotic approximation methods, which can give analytical or semi-analytical results and complement fully numerical treatments. The authors also briefly discuss some important considerations to be taken into account when developing a numerical code for computer simulation of fluid flows. Although the text is populated throughout with examples and problems from the field of astrophysics and planetary science, the text is eminently suitable as a general introduction to fluid dynamics. It...

  1. Mirror Instability in the Turbulent Solar Wind

    Energy Technology Data Exchange (ETDEWEB)

    Hellinger, Petr [Astronomical Institute, CAS, Bocni II/1401,CZ-14100 Prague (Czech Republic); Landi, Simone; Verdini, Andrea; Franci, Luca [Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze Largo E. Fermi 2, I-50125 Firenze (Italy); Matteini, Lorenzo, E-mail: petr.hellinger@asu.cas.cz [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom)

    2017-04-01

    The relationship between a decaying strong turbulence and the mirror instability in a slowly expanding plasma is investigated using two-dimensional hybrid expanding box simulations. We impose an initial ambient magnetic field perpendicular to the simulation box, and we start with a spectrum of large-scale, linearly polarized, random-phase Alfvénic fluctuations that have energy equipartition between kinetic and magnetic fluctuations and a vanishing correlation between the two fields. A turbulent cascade rapidly develops, magnetic field fluctuations exhibit a Kolmogorov-like power-law spectrum at large scales and a steeper spectrum at sub-ion scales. The imposed expansion (taking a strictly transverse ambient magnetic field) leads to the generation of an important perpendicular proton temperature anisotropy that eventually drives the mirror instability. This instability generates large-amplitude, nonpropagating, compressible, pressure-balanced magnetic structures in a form of magnetic enhancements/humps that reduce the perpendicular temperature anisotropy.

  2. THE MATRYOSHKA RUN. II. TIME-DEPENDENT TURBULENCE STATISTICS, STOCHASTIC PARTICLE ACCELERATION, AND MICROPHYSICS IMPACT IN A MASSIVE GALAXY CLUSTER

    International Nuclear Information System (INIS)

    Miniati, Francesco

    2015-01-01

    We use the Matryoshka run to study the time-dependent statistics of structure-formation-driven turbulence in the intracluster medium of a 10 15 M ☉ galaxy cluster. We investigate the turbulent cascade in the inner megaparsec for both compressional and incompressible velocity components. The flow maintains approximate conditions of fully developed turbulence, with departures thereof settling in about an eddy-turnover time. Turbulent velocity dispersion remains above 700 km s –1 even at low mass accretion rate, with the fraction of compressional energy between 10% and 40%. The normalization and the slope of the compressional turbulence are susceptible to large variations on short timescales, unlike the incompressible counterpart. A major merger occurs around redshift z ≅ 0 and is accompanied by a long period of enhanced turbulence, ascribed to temporal clustering of mass accretion related to spatial clustering of matter. We test models of stochastic acceleration by compressional modes for the origin of diffuse radio emission in galaxy clusters. The turbulence simulation model constrains an important unknown of this complex problem and brings forth its dependence on the elusive microphysics of the intracluster plasma. In particular, the specifics of the plasma collisionality and the dissipation physics of weak shocks affect the cascade of compressional modes with strong impact on the acceleration rates. In this context radio halos emerge as complex phenomena in which a hierarchy of processes acting on progressively smaller scales are at work. Stochastic acceleration by compressional modes implies statistical correlation of radio power and spectral index with merging cores distance, both testable in principle with radio surveys

  3. Energy comparison between CO2 cascade systems and state of the art R404A systems

    DEFF Research Database (Denmark)

    Knudsen, Hans-Jørgen Høgaard; Pachai, A.C.

    2004-01-01

    , freezer or cooling plant is being built in Denmark that requires HFC¿s or other greenhouse effect gases.1¿ Taxes linked to the GWP value and phase out plans have lead to intense investigations in alternative solutions. Amongst these systems are also cascade systems for supermarkets with CO2 as working...... fluid for both medium and low temperature applications. In 2002 two of these cascade systems with CO2 and R404A were installed. The displays cabinets and cooling/freezing rooms are cooled directly by CO2 in the low temperature part of the cascade plant, while the high temperature part of the cascade...

  4. Anomalous diffusion, clustering, and pinch of impurities in plasma edge turbulence

    DEFF Research Database (Denmark)

    Priego, M.; Garcia, O.E.; Naulin, V.

    2005-01-01

    The turbulent transport of impurity particles in plasma edge turbulence is investigated. The impurities are modeled as a passive fluid advected by the electric and polarization drifts, while the ambient plasma turbulence is modeled using the two-dimensional Hasegawa-Wakatani paradigm for resistive...... drift-wave turbulence. The features of the turbulent transport of impurities are investigated by numerical simulations using a novel code that applies semi-Lagrangian pseudospectral schemes. The diffusive character of the turbulent transport of ideal impurities is demonstrated by relative...... orientation determined by the charge of the impurity particles. Second, a radial pinch scaling linearly with the mass-charge ratio of the impurities is discovered. Theoretical explanation for these observations is obtained by analysis of the model equations. (C) 2005 American Institute of Physics....

  5. Turbulent convection in liquid metal with and without rotation.

    Science.gov (United States)

    King, Eric M; Aurnou, Jonathan M

    2013-04-23

    The magnetic fields of Earth and other planets are generated by turbulent, rotating convection in liquid metal. Liquid metals are peculiar in that they diffuse heat more readily than momentum, quantified by their small Prandtl numbers, Pr rotating Rayleigh-Bénard convection experiments in the liquid metal gallium (Pr = 0.025) over a range of nondimensional buoyancy forcing (Ra) and rotation periods (E). Our primary diagnostic is the efficiency of convective heat transfer (Nu). In general, we find that the convective behavior of liquid metal differs substantially from that of moderate Pr fluids, such as water. In particular, a transition between rotationally constrained and weakly rotating turbulent states is identified, and this transition differs substantially from that observed in moderate Pr fluids. This difference, we hypothesize, may explain the different classes of magnetic fields observed on the Gas and Ice Giant planets, whose dynamo regions consist of Pr 1 fluids, respectively.

  6. Lagrangian investigations of vorticity dynamics in compressible turbulence

    Science.gov (United States)

    Parashar, Nishant; Sinha, Sawan Suman; Danish, Mohammad; Srinivasan, Balaji

    2017-10-01

    In this work, we investigate the influence of compressibility on vorticity-strain rate dynamics. Well-resolved direct numerical simulations of compressible homogeneous isotropic turbulence performed over a cubical domain of 10243 are employed for this study. To clearly identify the influence of compressibility on the time-dependent dynamics (rather than on the one-time flow field), we employ a well-validated Lagrangian particle tracker. The tracker is used to obtain time correlations between the instantaneous vorticity vector and the strain-rate eigenvector system of an appropriately chosen reference time. In this work, compressibility is parameterized in terms of both global (turbulent Mach number) and local parameters (normalized dilatation-rate and flow field topology). Our investigations reveal that the local dilatation rate significantly influences these statistics. In turn, this observed influence of the dilatation rate is predominantly associated with rotation dominated topologies (unstable-focus-compressing, stable-focus-stretching). We find that an enhanced dilatation rate (in both contracting and expanding fluid elements) significantly enhances the tendency of the vorticity vector to align with the largest eigenvector of the strain-rate. Further, in fluid particles where the vorticity vector is maximally misaligned (perpendicular) at the reference time, vorticity does show a substantial tendency to align with the intermediate eigenvector as well. The authors make an attempt to provide physical explanations of these observations (in terms of moment of inertia and angular momentum) by performing detailed calculations following tetrads {approach of Chertkov et al. ["Lagrangian tetrad dynamics and the phenomenology of turbulence," Phys. Fluids 11(8), 2394-2410 (1999)] and Xu et al. ["The pirouette effect in turbulent flows," Nat. Phys. 7(9), 709-712 (2011)]} in a compressible flow field.

  7. Development and anisotropy of three-dimensional turbulence in a current sheet

    International Nuclear Information System (INIS)

    Onofri, M.; Veltri, P.; Malara, F.

    2007-01-01

    The nonlinear evolution of three-dimensional reconnection instabilities are studied in a current sheet where many resonant surfaces are simultaneously present at different locations of the simulation domain. The nonlinear evolution produces the development of anisotropic magnetohydrodynamic turbulence. The development of the energy spectrum is followed until the energy is transported to the dissipative length scale and the anisotropy of the spectrum is analyzed. The energy cascade is affected by the Alfven effect and it takes place mainly in the direction perpendicular to the local average magnetic field. Anisotropy is also affected by propagation of perturbations across the main magnetic field, due to the growth of a transverse component related to reconnection. The direction of anisotropy varies with the position in space. The spectral index is different both from what is found in homogeneous isotropic turbulence and from the values predicted for magnetohydrodynamic turbulence with a uniform large-scale magnetic field

  8. Electromagnetic radiation from strong Langmuir turbulence

    International Nuclear Information System (INIS)

    Akimoto, K.; Rowland, H.L.; Papadopoulos, K.

    1988-01-01

    A series of computer simulations is reported showing the generation of electromagnetic radiation by strong Langmuir turbulence. The simulations were carried out with a fully electromagnetic 2 1/2 -dimensional fluid code. The radiation process takes place in two stages that reflect the evolution of the electrostatic turbulence. During the first stage while the electrostatic turbulence is evolving from an initial linear wave packet into a planar soliton, the radiation is primarily at ω/sub e/. During the second stage when transverse instabilities lead to the collapse and dissipation of the solitons, 2ω/sub e/ and ω/sub e/ radiation are comparable, and 3ω/sub e/ is also present. The radiation power at ω = 2ω/sub e/ is in good agreement with theoretical predictions for electromagnetic emissions by collapsing solitons

  9. Boundary Plasma Turbulence Simulations for Tokamaks

    International Nuclear Information System (INIS)

    Xu, X.; Umansky, M.; Dudson, B.; Snyder, P.

    2008-05-01

    The boundary plasma turbulence code BOUT models tokamak boundary-plasma turbulence in a realistic divertor geometry using modified Braginskii equations for plasma vorticity, density (ni), electron and ion temperature (T e ; T i ) and parallel momenta. The BOUT code solves for the plasma fluid equations in a three dimensional (3D) toroidal segment (or a toroidal wedge), including the region somewhat inside the separatrix and extending into the scrape-off layer; the private flux region is also included. In this paper, a description is given of the sophisticated physical models, innovative numerical algorithms, and modern software design used to simulate edge-plasmas in magnetic fusion energy devices. The BOUT code's unique capabilities and functionality are exemplified via simulations of the impact of plasma density on tokamak edge turbulence and blob dynamics

  10. DAMPING OF MAGNETOHYDRODYNAMIC TURBULENCE IN PARTIALLY IONIZED PLASMA: IMPLICATIONS FOR COSMIC RAY PROPAGATION

    International Nuclear Information System (INIS)

    Xu, Siyao; Yan, Huirong; Lazarian, A.

    2016-01-01

    We study the damping processes of both incompressible and compressible magnetohydrodynamic (MHD) turbulence in a partially ionized medium. We start from the linear analysis of MHD waves, applying both single-fluid and two-fluid treatments. The damping rates derived from the linear analysis are then used in determining the damping scales of MHD turbulence. The physical connection between the damping scale of MHD turbulence and the cutoff boundary of linear MHD waves is investigated. We find two branches of slow modes propagating in ions and neutrals, respectively, below the damping scale of slow MHD turbulence, and offer a thorough discussion of their propagation and dissipation behavior. Our analytical results are shown to be applicable in a variety of partially ionized interstellar medium (ISM) phases and the solar chromosphere. The importance of neutral viscosity in damping the Alfvenic turbulence in the interstellar warm neutral medium and the solar chromosphere is demonstrated. As a significant astrophysical utility, we introduce damping effects to the propagation of cosmic rays in partially ionized ISM. The important role of turbulence damping in both transit-time damping and gyroresonance is identified.

  11. Advances in quantum cascade lasers for security and crime-fighting

    Science.gov (United States)

    Normand, Erwan L.; Stokes, Robert J.; Hay, Kenneth; Foulger, Brian; Lewis, Colin

    2010-10-01

    Advances in the application of Quantum Cascade Lasers (QCL) to trace gas detection will be presented. The solution is real time (~1 μsec per scan), is insensitive to turbulence and vibration, and performs multiple measurements in one sweep. The QCL provides a large dynamic range, which is a linear response from ppt to % level. The concentration can be derived with excellent immunity from cross interference. Point sensing sensors developed by Cascade for home made and commercial explosives operate by monitoring key constituents in real time and matching this to a spatial event (i.e. sniffer device placed close to an object or person walking through portal (overt or covert). Programmable signature detection capability allows for detection of multiple chemical compounds along the most likely array of explosive chemical formulation. The advantages of configuration as "point sensing" or "stand off" will be discussed. In addition to explosives this method is highly applicable to the detection of mobile drugs labs through volatile chemical release.

  12. DNS of transcritical turbulent boundary layers at supercritical pressures under abrupt variations in thermodynamic properties

    Science.gov (United States)

    Kawai, Soshi

    2014-11-01

    In this talk, we first propose a numerical strategy that is robust and high-order accurate for enabling to simulate transcritical flows at supercritical pressures under abrupt variations in thermodynamic properties due to the real fluid effects. The method is based on introducing artificial density diffusion in a physically-consistent manner in order to capture the steep variation of thermodynamic properties in transcritical conditions robustly, while solving a pressure evolution equation to achieve pressure equilibrium at the transcritical interfaces. We then discuss the direct numerical simulation (DNS) of transcritical heated turbulent boundary layers on a zero-pressure-gradient flat plate at supercritical pressures. To the best of my knowledge, the present DNS is the first DNS of zero-pressure-gradient flat-plate transcritical turbulent boundary layer. The turbulent kinetic budget indicates that the compressibility effects (especially, pressure-dilatation correlation) are not negligible at the transcritical conditions even if the flow is subsonic. The unique and interesting interactions between the real fluid effects and wall turbulence, and their turbulence statistics, which have never been seen in the ideal-fluid turbulent boundary layers, are also discussed. This work was supported in part by Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Young Scientists (A) KAKENHI 26709066 and the JAXA International Top Young Fellowship Program.

  13. Computational fluid dynamic on the temperature simulation of air preheat effect combustion in propane turbulent flame

    Science.gov (United States)

    Elwina; Yunardi; Bindar, Yazid

    2018-04-01

    this paper presents results obtained from the application of a computational fluid dynamics (CFD) code Fluent 6.3 to modelling of temperature in propane flames with and without air preheat. The study focuses to investigate the effect of air preheat temperature on the temperature of the flame. A standard k-ε model and Eddy Dissipation model are utilized to represent the flow field and combustion of the flame being investigated, respectively. The results of calculations are compared with experimental data of propane flame taken from literature. The results of the study show that a combination of the standard k-ε turbulence model and eddy dissipation model is capable of producing reasonable predictions of temperature, particularly in axial profile of all three flames. Both experimental works and numerical simulation showed that increasing the temperature of the combustion air significantly increases the flame temperature.

  14. Transition to turbulence

    International Nuclear Information System (INIS)

    Pomeau, Y.

    1981-07-01

    In this work it is reviewed a few known types of transition to turbulence, as the cascade of period doubling and the intermittent transition. This happens in dynamical systems with a few degrees of freedom, as modelled by the iteration of non linear maps. Then it is presented specific transitions for systems with many degrees of freedom. It is condidered first the occurence of a low frequency broadband noise in large cells at the onset of Rayleigh-Benard convection; then the transition by intermittent bursts in parallel flows. In this last case, one is concerned with localized and finite amplitude perturbations. Simple geometric arguments show that these fluctuations, when they are isolated and with a well definite relative speed, exist for a single value of the Reynolds number only [fr

  15. Fluid Dynamics for Physicists

    Science.gov (United States)

    Faber, T. E.

    1995-08-01

    This textbook provides an accessible and comprehensive account of fluid dynamics that emphasizes fundamental physical principles and stresses connections with other branches of physics. Beginning with a basic introduction, the book goes on to cover many topics not typically treated in texts, such as compressible flow and shock waves, sound attenuation and bulk viscosity, solitary waves and ship waves, thermal convection, instabilities, turbulence, and the behavior of anisotropic, non-Newtonian and quantum fluids. Undergraduate or graduate students in physics or engineering who are taking courses in fluid dynamics will find this book invaluable.

  16. Extreme concentration fluctuations due to local reversibility of mixing in turbulent flows

    Science.gov (United States)

    Xia, Hua; Francois, Nicolas; Punzmann, Horst; Szewc, Kamil; Shats, Michael

    2018-05-01

    Mixing of a passive scalar in a fluid (e.g. a radioactive spill in the ocean) is the irreversible process towards homogeneous distribution of a substance. In a moving fluid, due to the chaotic advection [H. Aref, J. Fluid Mech. 143 (1984) 1; J. M. Ottino, The Kinematics of Mixing: Stretching,Chaos and Transport (Cambridge University Press, Cambridge, 1989)] mixing is much faster than if driven by molecular diffusion only. Turbulence is known as the most efficient mixing flow [B. I. Shraiman and E. D. Siggia, Nature 405 (2000) 639]. We show that in contrast to spatially periodic flows, two-dimensional turbulence exhibits local reversibility in mixing, which leads to the generation of unpredictable strong fluctuations in the scalar concentration. These fluctuations can also be detected from the analysis of the fluid particle trajectories of the underlying flow.

  17. Zonal flow generation in collisionless trapped electron mode turbulence

    International Nuclear Information System (INIS)

    Anderson, J; Nordman, H; Singh, R; Weiland, J

    2006-01-01

    In the present work the generation of zonal flows in collisionless trapped electron mode (TEM) turbulence is studied analytically. A reduced model for TEM turbulence is utilized based on an advanced fluid model for reactive drift waves. An analytical expression for the zonal flow growth rate is derived and compared with the linear TEM growth, and its scaling with plasma parameters is examined for typical tokamak parameter values

  18. The dynamics of small inertial particles in weakly stratified turbulence

    NARCIS (Netherlands)

    van Aartrijk, M.; Clercx, H.J.H.

    We present an overview of a numerical study on the small-scale dynamics and the large-scale dispersion of small inertial particles in stably stratified turbulence. Three types of particles are examined: fluid particles, light inertial particles (with particle-to-fluid density ratio 1Ͽp/Ͽf25) and

  19. The Statistical Mechanics of Ideal MHD Turbulence

    Science.gov (United States)

    Shebalin, John V.

    2003-01-01

    Turbulence is a universal, nonlinear phenomenon found in all energetic fluid and plasma motion. In particular. understanding magneto hydrodynamic (MHD) turbulence and incorporating its effects in the computation and prediction of the flow of ionized gases in space, for example, are great challenges that must be met if such computations and predictions are to be meaningful. Although a general solution to the "problem of turbulence" does not exist in closed form, numerical integrations allow us to explore the phase space of solutions for both ideal and dissipative flows. For homogeneous, incompressible turbulence, Fourier methods are appropriate, and phase space is defined by the Fourier coefficients of the physical fields. In the case of ideal MHD flows, a fairly robust statistical mechanics has been developed, in which the symmetry and ergodic properties of phase space is understood. A discussion of these properties will illuminate our principal discovery: Coherent structure and randomness co-exist in ideal MHD turbulence. For dissipative flows, as opposed to ideal flows, progress beyond the dimensional analysis of Kolmogorov has been difficult. Here, some possible future directions that draw on the ideal results will also be discussed. Our conclusion will be that while ideal turbulence is now well understood, real turbulence still presents great challenges.

  20. Efficient Turbulence Modeling for CFD Wake Simulations

    DEFF Research Database (Denmark)

    van der Laan, Paul

    Wind turbine wakes can cause 10-20% annual energy losses in wind farms, and wake turbulence can decrease the lifetime of wind turbine blades. One way of estimating these effects is the use of computational fluid dynamics (CFD) to simulate wind turbines wakes in the atmospheric boundary layer. Since...... this flow is in the high Reynolds number regime, it is mainly dictated by turbulence. As a result, the turbulence modeling in CFD dominates the wake characteristics, especially in Reynolds-averaged Navier-Stokes (RANS). The present work is dedicated to study and develop RANS-based turbulence models...... verified with a grid dependency study. With respect to the standard k-ε EVM, the k-ε- fp EVM compares better with measurements of the velocity deficit, especially in the near wake, which translates to improved power deficits of the first wind turbines in a row. When the CFD metholody is applied to a large...

  1. Numerical simulation of turbine cascade flow with blade-fluid heat exchange

    Czech Academy of Sciences Publication Activity Database

    Louda, Petr; Sváček, P.; Fořt, J.; Fürst, J.; Halama, J.; Kozel, Karel

    2013-01-01

    Roč. 219, č. 13 (2013), s. 7206-7214 ISSN 0096-3003 R&D Projects: GA ČR(CZ) GAP101/10/1329 Institutional support: RVO:61388998 Keywords : turbomachinery * heat exchange * turbulent flow * coupled problem Subject RIV: BA - General Mathematics Impact factor: 1.600, year: 2013

  2. Scale dependence of the alignment between strain rate and rotation in turbulent shear flow

    KAUST Repository

    Fiscaletti, D.

    2016-10-24

    The scale dependence of the statistical alignment tendencies of the eigenvectors of the strain-rate tensor e(i), with the vorticity vector omega, is examined in the self-preserving region of a planar turbulent mixing layer. Data from a direct numerical simulation are filtered at various length scales and the probability density functions of the magnitude of the alignment cosines between the two unit vectors vertical bar e(i) . (omega) over cap vertical bar are examined. It is observed that the alignment tendencies are insensitive to the concurrent large-scale velocity fluctuations, but are quantitatively affected by the nature of the concurrent large-scale velocity-gradient fluctuations. It is confirmed that the small-scale (local) vorticity vector is preferentially aligned in parallel with the large-scale (background) extensive strain-rate eigenvector e(1), in contrast to the global tendency for omega to be aligned in parallelwith the intermediate strain-rate eigenvector [Hamlington et al., Phys. Fluids 20, 111703 (2008)]. When only data from regions of the flow that exhibit strong swirling are included, the so-called high-enstrophy worms, the alignment tendencies are exaggerated with respect to the global picture. These findings support the notion that the production of enstrophy, responsible for a net cascade of turbulent kinetic energy from large scales to small scales, is driven by vorticity stretching due to the preferential parallel alignment between omega and nonlocal e(1) and that the strongly swirling worms are kinematically significant to this process.

  3. Scale dependence of the alignment between strain rate and rotation in turbulent shear flow

    KAUST Repository

    Fiscaletti, D.; Elsinga, G. E.; Attili, Antonio; Bisetti, Fabrizio; Buxton, O. R. H.

    2016-01-01

    The scale dependence of the statistical alignment tendencies of the eigenvectors of the strain-rate tensor e(i), with the vorticity vector omega, is examined in the self-preserving region of a planar turbulent mixing layer. Data from a direct numerical simulation are filtered at various length scales and the probability density functions of the magnitude of the alignment cosines between the two unit vectors vertical bar e(i) . (omega) over cap vertical bar are examined. It is observed that the alignment tendencies are insensitive to the concurrent large-scale velocity fluctuations, but are quantitatively affected by the nature of the concurrent large-scale velocity-gradient fluctuations. It is confirmed that the small-scale (local) vorticity vector is preferentially aligned in parallel with the large-scale (background) extensive strain-rate eigenvector e(1), in contrast to the global tendency for omega to be aligned in parallelwith the intermediate strain-rate eigenvector [Hamlington et al., Phys. Fluids 20, 111703 (2008)]. When only data from regions of the flow that exhibit strong swirling are included, the so-called high-enstrophy worms, the alignment tendencies are exaggerated with respect to the global picture. These findings support the notion that the production of enstrophy, responsible for a net cascade of turbulent kinetic energy from large scales to small scales, is driven by vorticity stretching due to the preferential parallel alignment between omega and nonlocal e(1) and that the strongly swirling worms are kinematically significant to this process.

  4. Basal melting driven by turbulent thermal convection

    Science.gov (United States)

    Rabbanipour Esfahani, Babak; Hirata, Silvia C.; Berti, Stefano; Calzavarini, Enrico

    2018-05-01

    Melting and, conversely, solidification processes in the presence of convection are key to many geophysical problems. An essential question related to these phenomena concerns the estimation of the (time-evolving) melting rate, which is tightly connected to the turbulent convective dynamics in the bulk of the melt fluid and the heat transfer at the liquid-solid interface. In this work, we consider a convective-melting model, constructed as a generalization of the Rayleigh-Bénard system, accounting for the basal melting of a solid. As the change of phase proceeds, a fluid layer grows at the heated bottom of the system and eventually reaches a turbulent convection state. By means of extensive lattice-Boltzmann numerical simulations employing an enthalpy formulation of the governing equations, we explore the model dynamics in two- and three-dimensional configurations. The focus of the analysis is on the scaling of global quantities like the heat flux and the kinetic energy with the Rayleigh number, as well as on the interface morphology and the effects of space dimensionality. Independently of dimensionality, we find that the convective-melting system behavior shares strong resemblances with that of the Rayleigh-Bénard one, and that the heat flux is only weakly enhanced with respect to that case. Such similarities are understood, at least to some extent, considering the resulting slow motion of the melting front (with respect to the turbulent fluid velocity fluctuations) and its generally little roughness (compared to the height of the fluid layer). Varying the Stefan number, accounting for the thermodynamical properties of the material, also seems to have only a mild effect, which implies the possibility of extrapolating results in numerically delicate low-Stefan setups from more convenient high-Stefan ones. Finally, we discuss the implications of our findings for the geophysically relevant problem of modeling Arctic ice melt ponds.

  5. Magnetic fluctuations in turbulent flow

    International Nuclear Information System (INIS)

    Ruzmaikin, A.A.

    1990-01-01

    For dynamo excitation of the magnetic fluctuations in infinite fluid only a sufficient large magnetic Reynolds number is needed. In a infinite region an additional condition appears. Due to the diffusion of the magnetic field through the boundaries a size of the region must be large enough compare with a correlation length of the turbulence. Author)

  6. Spinning fluids in general relativity

    Science.gov (United States)

    Ray, J. R.; Smalley, L. L.

    1982-01-01

    General relativity field equations are employed to examine a continuous medium with internal spin. A variational principle formerly applied in the special relativity case is extended to the general relativity case, using a tetrad to express the spin density and the four-velocity of the fluid. An energy-momentum tensor is subsequently defined for a spinning fluid. The equations of motion of the fluid are suggested to be useful in analytical studies of galaxies, for anisotropic Bianchi universes, and for turbulent eddies.

  7. Turbulence modulation in dilute particle-laden flow

    DEFF Research Database (Denmark)

    Mandø, Matthias; Lightstone, M. F.; Rosendahl, Lasse

    2009-01-01

    augmentation of the carrier phase turbulence is expected, and small particles, for which attenuation is expected. The new model is derived directly from the balance equations of fluid flow and represents a combination of the so-called standard and consistent approaches. The performance of the new model......A new particle source term to account for the effect of particles on the turbulence equations based on the Euler/Lagrange approach is introduced and compared with existing models and experimental data. Three different sizes of particles are considered to cover the range of large particles, where...

  8. Turbulent solutal convection and surface patterning in solid dissolution

    International Nuclear Information System (INIS)

    Sullivan, T.S.; Liu, Y.; Ecke, R.E.

    1996-01-01

    We describe experiments in which crystals of NaCl, KBr, and KCl are dissolved from below by aqueous solutions containing concentrations of the respective salts from zero concentration to near saturation. The solution near the solid-liquid interface is gravitationally unstable, producing turbulent hydrodynamic motion similar to thermal convection from a single surface cooled from above. The coupling of the fluid flow with the solid dissolution produces irregular patterns at the solid-liquid interface with a distribution of horizontal length scales. The dissolution mass flux and the pattern length scales are compared with a turbulent boundary layer model. Remarkable agreement is found, showing that the fluid motion controls both the dissolution rate and the interface patterning. copyright 1996 The American Physical Society

  9. Low dimensional modeling of wall turbulence

    Science.gov (United States)

    Aubry, Nadine

    2015-11-01

    In this talk we will review the original low dimensional dynamical model of the wall region of a turbulent boundary layer [Aubry, Holmes, Lumley and Stone, Journal of Fluid Dynamics 192, 1988] and discuss its impact on the field of fluid dynamics. We will also invite a few researchers who would like to make brief comments on the influence Lumley had on their research paths. In collaboration with Philip Holmes, Program in Applied and Computational Mathematics and Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ.

  10. Kinetic equation of Lagrange particles and turbulence of an incompressible fluid

    International Nuclear Information System (INIS)

    Gordienko, S.N.

    1999-01-01

    Closed equation for the two-point function of the velocity and pressure gradient distribution is obtained. The spectral properties of the turbulent flow are studied on the basis of the analysis of scaling properties of the above equation and the problem on the role of the vorticity distribution in a turbulent flow alternation was considered. It is shown, that alternation is connected with boundary conditions. The geometric picture of the alternation is found. It is established, that distribution of the vorticity and correspondingly the role of alternation in the currents with spirality and without spirality are completely different

  11. Modification of Spalart-Allmaras model with consideration of turbulence energy backscatter using velocity helicity

    International Nuclear Information System (INIS)

    Liu, Yangwei; Lu, Lipeng; Fang, Le; Gao, Feng

    2011-01-01

    The correlation between the velocity helicity and the energy backscatter is proved in a DNS case of 256 3 -grid homogeneous isotropic decaying turbulence. The helicity is then proposed to be employed to improve turbulence models and SGS models. Then Spalart-Allmaras turbulence model (SA) is modified with the helicity to take account of the energy backscatter, which is significant in the region of corner separation in compressors. By comparing the numerical results with experiments, it can be concluded that the modification for SA model with helicity can appropriately represent the energy backscatter, and greatly improves the predictive accuracy for simulating the corner separation flow in compressors. -- Highlights: → We study the relativity between the velocity helicity and the energy backscatter. → Spalart-Allmaras turbulence model is modified with the velocity helicity. → The modified model is employed to simulate corner separation in compressor cascade. → The modification can greatly improve the accuracy for predicting corner separation. → The helicity can represent the energy backscatter in turbulence and SGS models.

  12. Species Entropies in the Kinetic Range of Collisionless Plasma Turbulence: Particle-in-cell Simulations

    Science.gov (United States)

    Gary, S. Peter; Zhao, Yinjian; Hughes, R. Scott; Wang, Joseph; Parashar, Tulasi N.

    2018-06-01

    Three-dimensional particle-in-cell simulations of the forward cascade of decaying turbulence in the relatively short-wavelength kinetic range have been carried out as initial-value problems on collisionless, homogeneous, magnetized electron-ion plasma models. The simulations have addressed both whistler turbulence at β i = β e = 0.25 and kinetic Alfvén turbulence at β i = β e = 0.50, computing the species energy dissipation rates as well as the increase of the Boltzmann entropies for both ions and electrons as functions of the initial dimensionless fluctuating magnetic field energy density ε o in the range 0 ≤ ε o ≤ 0.50. This study shows that electron and ion entropies display similar rates of increase and that all four entropy rates increase approximately as ε o , consistent with the assumption that the quasilinear premise is valid for the initial conditions assumed for these simulations. The simulations further predict that the time rates of ion entropy increase should be substantially greater for kinetic Alfvén turbulence than for whistler turbulence.

  13. Random forcing of geostrophic motion in rotating stratified turbulence

    Science.gov (United States)

    Waite, Michael L.

    2017-12-01

    Random forcing of geostrophic motion is a common approach in idealized simulations of rotating stratified turbulence. Such forcing represents the injection of energy into large-scale balanced motion, and the resulting breakdown of quasi-geostrophic turbulence into inertia-gravity waves and stratified turbulence can shed light on the turbulent cascade processes of the atmospheric mesoscale. White noise forcing is commonly employed, which excites all frequencies equally, including frequencies much higher than the natural frequencies of large-scale vortices. In this paper, the effects of these high frequencies in the forcing are investigated. Geostrophic motion is randomly forced with red noise over a range of decorrelation time scales τ, from a few time steps to twice the large-scale vortex time scale. It is found that short τ (i.e., nearly white noise) results in about 46% more gravity wave energy than longer τ, despite the fact that waves are not directly forced. We argue that this effect is due to wave-vortex interactions, through which the high frequencies in the forcing are able to excite waves at their natural frequencies. It is concluded that white noise forcing should be avoided, even if it is only applied to the geostrophic motion, when a careful investigation of spontaneous wave generation is needed.

  14. Visualization of grid-generated turbulence in He II using PTV

    Science.gov (United States)

    Mastracci, B.; Guo, W.

    2017-12-01

    Due to its low viscosity, cryogenic He II has potential use for simulating large-scale, high Reynolds number turbulent flow in a compact and efficient apparatus. To realize this potential, the behavior of the fluid in the simplest cases, such as turbulence generated by flow past a mesh grid, must be well understood. We have designed, constructed, and commissioned an apparatus to visualize the evolution of turbulence in the wake of a mesh grid towed through He II. Visualization is accomplished using the particle tracking velocimetry (PTV) technique, where μm-sized tracer particles are introduced to the flow, illuminated with a planar laser sheet, and recorded by a scientific imaging camera; the particles move with the fluid, and tracking their motion with a computer algorithm results in a complete map of the turbulent velocity field in the imaging region. In our experiment, this region is inside a carefully designed He II filled cast acrylic channel measuring approximately 16 × 16 × 330 mm. One of three different grids, which have mesh numbers M = 3, 3.75, or 5 mm, can be attached to the pulling system which moves it through the channel with constant velocity up to 600 mm/s. The consequent motion of the solidified deuterium tracer particles is used to investigate the energy statistics, effective kinematic viscosity, and quantized vortex dynamics in turbulent He II.

  15. Studies of complexity in fluid systems

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, Sidney R.

    2000-06-12

    This is the final report of Grant DE-FG02-92ER25119, ''Studies of Complexity in Fluids'', we have investigated turbulence, flow in granular materials, singularities in evolution of fluid surfaces and selective withdrawal fluid flows. We have studied numerical methods for dealing with complex phenomena, and done simulations on the formation of river networks. We have also studied contact-line deposition that occurs in a drying drop.

  16. Annual review of fluid mechanics. Volume 22

    International Nuclear Information System (INIS)

    Lumley, J.L.; Van Dyke, M.; Reed, H.L.

    1990-01-01

    Topics presented include rapid granular flows, issues in viscoelastic fluid mechanics, wave loads on offshore structures, boundary layers in the general ocean circulation, parametrically forced surface waves, wave-mean flow interactions in the equatorial ocean, and local and global instabilities in spatially developing flows. Also presented are aerodynamics of human-powered flight, aerothermodynamics and transition in high-speed wind tunnels at NASA-Langley, wakes behind blunt bodies, and mixing, chaotic advection, and turbulence. Also addressed are the history of the Reynolds number, panel methods in computational fluid dynamics, numerical multipole and boundary integral equation techniques in Stokes flow, plasma turbulence, optical rheometry, and viscous-flow paradoxes

  17. Eddylicious: A Python package for turbulent inflow generation

    Science.gov (United States)

    Mukha, Timofey; Liefvendahl, Mattias

    2018-01-01

    A Python package for generating inflow for scale-resolving computer simulations of turbulent flow is presented. The purpose of the package is to unite existing inflow generation methods in a single code-base and make them accessible to users of various Computational Fluid Dynamics (CFD) solvers. The currently existing functionality consists of an accurate inflow generation method suitable for flows with a turbulent boundary layer inflow and input/output routines for coupling with the open-source CFD solver OpenFOAM.

  18. Numerical prediction of an axisymmetric turbulent mixing layer using two turbulence models

    Science.gov (United States)

    Johnson, Richard W.

    1992-01-01

    Nuclear power, once considered and then rejected (in the U. S.) for application to space vehicle propulsion, is being reconsidered for powering space rockets, especially for interplanetary travel. The gas core reactor, a high risk, high payoff nuclear engine concept, is one that was considered in the 1960s and 70s. As envisioned then, the gas core reactor would consist of a heavy, slow moving core of fissioning uranium vapor surrounded by a fast moving outer stream of hydrogen propellant. Satisfactory operation of such a configuration would require stable nuclear reaction kinetics to occur simultaneously with a stable, coflowing, probably turbulent fluid system having a dense inner stream and a light outer stream. The present study examines the behavior of two turbulence models in numerically simulating an idealized version of the above coflowing fluid system. The two models are the standard k˜ɛ model and a thin shear algebraic stress model (ASM). The idealized flow system can be described as an axisymmetric mixing layer of constant density. Predictions for the radial distribution of the mean streamwise velocity and shear stress for several axial stations are compared with experiment. Results for the k˜ɛe predictions are broadly satisfactory while those for the ASM are distinctly poorer.

  19. Essentials of fluid dynamics with applications to hydraulics, aeronautics, meteorology and other subjets

    CERN Document Server

    Prandtl, Ludwig

    1953-01-01

    Equilibrium of liquids and gases ; kinematics : dynamics of frictionless fluids ; motion of viscous fluids : turbulence : fluid resistance : practical applications ; flow with appreciable volume changes (dynamics of gases) ; miscellaneous topics.

  20. Conformal invariance in hydrodynamic turbulence

    International Nuclear Information System (INIS)

    Falkovich, Gregory

    2007-01-01

    This short survey is written by a physicist. It contains neither theorems nor precise definitions. Its main content is a description of the results of numerical solution of the equations of fluid mechanics in the regime of developed turbulence. Due to limitations of computers, the results are not very precise. Despite being neither exact nor rigorous, the findings may nevertheless be of interest for mathematicians. The main result is that the isolines of some scalar fields (vorticity, temperature) in two-dimensional turbulence belong to the class of conformally invariant curves called SLE (Scramm-Loewner evolution) curves. First, this enables one to predict and find a plethora of quantitative relations going far beyond what was known previously about turbulence. Second, it suggests relations between phenomena that seemed unrelated, like the Euler equation and critical percolation. Third, it shows that one is able to get exact analytic results in statistical hydrodynamics. In short, physicists have found something unexpected and hope that mathematicians can help to explain it.

  1. Turbulent Liquid Metal Dynamo Experiments

    International Nuclear Information System (INIS)

    Forest, Cary

    2007-01-01

    The self-generation of magnetic fields in planets and stars--the dynamo effect--is a long-standing problem of magnetohydrodynamics and plasma physics. Until recently, research on the self-excitation process has been primarily theoretical. In this talk, I will begin with a tutorial on how magnetic fields are generated in planets and stars, describing the 'Standard Model' of self-excitation known as the alpha-omega dynamo. In this model, axisymmetric differential rotation can produce the majority of the magnetic field, but some non-axisymmetric, turbulence driven currents are also necessary. Understanding the conversion of turbulent kinetic energy in the fluid motion into electrical currents and thus magnetic fields, is a major challenge for both experiments and theory at this time. I will then report on recent results from a 1 meter diameter, spherical, liquid sodium dynamo experiment at the University of Wisconsin, in which the first clear evidence for these turbulence driven currents has been observed.

  2. Kinetic features of interchange turbulence

    International Nuclear Information System (INIS)

    Sarazin, Y; Grandgirard, V; Fleurence, E; Garbet, X; Ghendrih, Ph; Bertrand, P; Depret, G

    2005-01-01

    Non-linear gyrokinetic simulations of the interchange instability are discussed. The semi-Lagrangian numerical scheme allows one to address two critical points achieved with simulations lasting several confinement times: an accurate statistical analysis of the fluctuations and the back reaction of the turbulence on equilibrium profiles. Zonal flows are found to quench a 2D + 1D interchange turbulence when one of the species has a vanishing response to zonal modes. Conversely, when streamers dominate, the equilibrium profiles are found to be stiff. In the non-linear regime and steady-state turbulence, the distribution function exhibits a significant departure from a Maxwellian distribution. This property is characterized by an expansion on generalized Laguerre functions with a slow decay of the series of moments. This justifies the use of gyrokinetic simulations since a standard fluid approach, based on a limited number of moments, would certainly require a complex closure so as to take into account the impact of these non-vanishing high order moments

  3. Analysis of Drag Reduction Methods and Mechanisms of Turbulent

    Directory of Open Access Journals (Sweden)

    Gu Yunqing

    2017-01-01

    Full Text Available Turbulent flow is a difficult issue in fluid dynamics, the rules of which have not been totally revealed up to now. Fluid in turbulent state will result in a greater frictional force, which must consume great energy. Therefore, it is not only an important influence in saving energy and improving energy utilization rate but also an extensive application prospect in many fields, such as ship domain and aerospace. Firstly, bionic drag reduction technology is reviewed and is a hot research issue now, the drag reduction mechanism of body surface structure is analyzed, such as sharks, earthworms, and dolphins. Besides, we make a thorough study of drag reduction characteristics and mechanisms of microgrooved surface and compliant wall. Then, the relevant drag reduction technologies and mechanisms are discussed, focusing on the microbubbles, the vibrant flexible wall, the coating, the polymer drag reduction additives, superhydrophobic surface, jet surface, traveling wave surface drag reduction, and the composite drag reduction methods. Finally, applications and advancements of the drag reduction technology in turbulence are prospected.

  4. The weather and climate: emergent laws and multifractal cascades

    Science.gov (United States)

    Lovejoy, Shaun; Schertzer, Daniel

    2013-04-01

    Science in general and physics and geophysics in particular are hierarchies of interlocking theories and models with low level, fundamental laws such as quantum mechanics and statistical mechanics providing the underpinnings for the emergence of the qualitatively new, higher level laws of thermodynamics and continuum mechanics that provide the current bases for modelling the weather and climate. Yest it was the belief of generations of turbulence pioneers (notably Richardson, Kolmogorov, Obhukhov, Corrsin, Bolgiano) that at sufficiently high levels of nonlinearity (quantified by the Reynold's number, of the order 10**12 in the atmosphere) that new even higher level laws would emerge describing "fully developed turbulence". However for atmospheric applications, the pioneers' eponymous laws suffered from two basic restrictions - isotropy and homogeneity - that prevented them from being valid over wide ranges of scale. Over the last thirty years both of these restrictions have been overcome - the former with the generalization from isotropic to strongly anisotropic notions of scale (to account notably for stratification), and from homogeneity to strong heterogeneity (intermittency) via multifractal cascades. In this presentation we give an overview of recent developments and analyses covering huge ranges of space-time scales (including weather, macroweather and climate time scales). We show how the combination of strong anisotropy and strong intermittency commonly leads to the "phenomenological fallacy" in which morphology is confounded with mechanism. With the help of stochastic models, we show how processes with vastly different large and small scale morphologies can arise from a unique multifractal dynamical mechanisms [Lovejoy and Schertzer, 2013]. References: Lovejoy, S., and D. Schertzer (2013), The Weather and Climate: Emergent Laws and Multifractal Cascades, 480 pp., Cambridge University Press, Cambridge.

  5. Turbulence in nearly incompressible fluids: density spectrum, flows, correlations and implication to the interstellar medium

    Directory of Open Access Journals (Sweden)

    S. Dastgeer

    2005-01-01

    Full Text Available Interstellar scintillation and angular radio wave broadening measurements show that interstellar and solar wind (electron density fluctuations exhibit a Kolmogorov-like k-5/3 power spectrum extending over many decades in wavenumber space. The ubiquity of the Kolmogorov-like interstellar medium (ISM density spectrum led to an explanation based on coupling incompressible magnetohydrodynamic (MHD fluctuations to density fluctuations through a 'pseudosound' relation within the context of 'nearly incompressible' (NI hydrodynamics (HD and MHD models. The NI theory provides a fundamentally different explanation for the observed ISM density spectrum in that the density fluctuations can be a consequence of passive scalar convection due to background incompressible fluctuations. The theory further predicts generation of long-scale structures and various correlations between the density, temperature and the (magneto acoustic as well as convective pressure fluctuations in the compressible ISM fluids in different thermal regimes that are determined purely by the thermal fluctuation level. In this paper, we present the results of our two dimensional nonlinear fluid simulations, exploring various nonlinear aspects that lead to inertial range ISM turbulence within the context of a NI hydrodymanics model. In qualitative agreement with the NI predictions and the in-situ observations, we find that i the density fluctuations exhibit a Kolmogorov-like spectrum via a passive convection in the field of the background incompressible fluctuations, ii the compressible ISM fluctuations form long scale flows and structures, and iii the density and the temperature fluctuations are anti-correlated.

  6. PREFACE: Turbulent Mixing and Beyond Turbulent Mixing and Beyond

    Science.gov (United States)

    Abarzhi, Snezhana I.; Gauthier, Serge; Rosner, Robert

    2008-10-01

    The goals of the International Conference `Turbulent Mixing and Beyond' are to expose the generic problem of Turbulence and Turbulent Mixing in Unsteady Flows to a wide scientific community, to promote the development of new ideas in tackling the fundamental aspects of the problem, to assist in the application of novel approaches in a broad range of phenomena, where the non-canonical turbulent processes occur, and to have a potential impact on technology. The Conference provides the opportunity to bring together scientists from the areas which include, but are not limited to, high energy density physics, plasmas, fluid dynamics, turbulence, combustion, material science, geophysics, astrophysics, optics and telecommunications, applied mathematics, probability and statistics, and to have their attention focused on the long-standing formidable task. The Turbulent Mixing and Turbulence in Unsteady Flows, including multiphase flows, plays a key role in a wide variety of phenomena, ranging from astrophysical to nano-scales, under either high or low energy density conditions. Inertial confinement and magnetic fusion, light-matter interaction and non-equilibrium heat transfer, properties of materials under high strain rates, strong shocks, explosions, blast waves, supernovae and accretion disks, stellar non-Boussinesq and magneto-convection, planetary interiors and mantle-lithosphere tectonics, premixed and non-premixed combustion, oceanography, atmospheric flows, unsteady boundary layers, hypersonic and supersonic flows, are a few examples to list. A grip on unsteady turbulent processes is crucial for cutting-edge technology such as laser-micromachining and free-space optical telecommunications, and for industrial applications in aeronautics. Unsteady Turbulent Processes are anisotropic, non-local and multi-scale, and their fundamental scaling, spectral and invariant properties depart from the classical Kolmogorov scenario. The singular aspects and similarity of the

  7. Turbulent mixing in nonreactive and reactive flows

    CERN Document Server

    1975-01-01

    Turbulence, mixing and the mutual interaction of turbulence and chemistry continue to remain perplexing and impregnable in the fron­ tiers of fluid mechanics. The past ten years have brought enormous advances in computers and computational techniques on the one hand and in measurements and data processing on the other. The impact of such capabilities has led to a revolution both in the understanding of the structure of turbulence as well as in the predictive methods for application in technology. The early ideas on turbulence being an array of complicated phenomena and having some form of reasonably strong coherent struc­ ture have become well substantiated in recent experimental work. We are still at the very beginning of understanding all of the aspects of such coherence and of the possibilities of incorporating such structure into the analytical models for even those cases where the thin shear layer approximation may be valid. Nevertheless a distinguished body of "eddy chasers" has come into existence. T...

  8. Fluid Mechanics An Introduction to the Theory of Fluid Flows

    CERN Document Server

    Durst, Franz

    2008-01-01

    Advancements of fluid flow measuring techniques and of computational methods have led to new ways to treat laminar and turbulent flows. These methods are extensively used these days in research and engineering practise. This also requires new ways to teach the subject to students at higher educational institutions in an introductory manner. The book provides the knowledge to students in engineering and natural science needed to enter fluid mechanics applications in various fields. Analytical treatments are provided, based on the Navier-Stokes equations. Introductions are also given into numerical and experimental methods applied to flows. The main benefit the reader will derive from the book is a sound introduction into all aspects of fluid mechanics covering all relevant subfields.

  9. Master equation for She-Leveque scaling and its classification in terms of other Markov models of developed turbulence

    Science.gov (United States)

    Nickelsen, Daniel

    2017-07-01

    The statistics of velocity increments in homogeneous and isotropic turbulence exhibit universal features in the limit of infinite Reynolds numbers. After Kolmogorov’s scaling law from 1941, many turbulence models aim for capturing these universal features, some are known to have an equivalent formulation in terms of Markov processes. We derive the Markov process equivalent to the particularly successful scaling law postulated by She and Leveque. The Markov process is a jump process for velocity increments u(r) in scale r in which the jumps occur randomly but with deterministic width in u. From its master equation we establish a prescription to simulate the She-Leveque process and compare it with Kolmogorov scaling. To put the She-Leveque process into the context of other established turbulence models on the Markov level, we derive a diffusion process for u(r) using two properties of the Navier-Stokes equation. This diffusion process already includes Kolmogorov scaling, extended self-similarity and a class of random cascade models. The fluctuation theorem of this Markov process implies a ‘second law’ that puts a loose bound on the multipliers of the random cascade models. This bound explicitly allows for instances of inverse cascades, which are necessary to satisfy the fluctuation theorem. By adding a jump process to the diffusion process, we go beyond Kolmogorov scaling and formulate the most general scaling law for the class of Markov processes having both diffusion and jump parts. This Markov scaling law includes She-Leveque scaling and a scaling law derived by Yakhot.

  10. Computational simulation of turbulent natural convection in a volumetrically heated square cavity

    International Nuclear Information System (INIS)

    Vieira, Camila Braga; Su, Jian; Niceno, Bojan

    2012-01-01

    This work aims to analyze the turbulent natural convection in a volumetrically heated fluid with similar characteristics of an oxide layer of a molten core in the lower head of the pressure vessel. The simulations were carried out in a square cavity with isothermal walls, for Rayleigh numbers (Ra) ranging from 10 9 to 10 11 . Different turbulence models based on Reynolds Averaged Navier-Stokes equations were studied, such as the standard k - ε, low-Reynolds-k - ε, and Shear Stress Transport (SST), using the open-source Computational Fluid Dynamics (CFD) code - Open FOAM (Open Field Operation and Manipulation). The results of the three turbulence models were compared versus the results of experimental correlations and other authors’ simulations, and the conclusion was that the most promising model proves to be the SST, due to its accuracy and robustness. (author)

  11. Advancements in engineering turbulence modeling

    Science.gov (United States)

    Shih, T.-H.

    1991-01-01

    Some new developments in two-equation models and second order closure models are presented. Two-equation models (k-epsilon models) have been widely used in computational fluid dynamics (CFD) for engineering problems. Most of low-Reynolds number two-equation models contain some wall-distance damping functions to account for the effect of wall on turbulence. However, this often causes the confusion and difficulties in computing flows with complex geometry and also needs an ad hoc treatment near the separation and reattachment points. A set of modified two-equation models is proposed to remove the aforementioned shortcomings. The calculations using various two-equation models are compared with direct numerical simulations of channel flow and flat boundary layers. Development of a second order closure model is also discussed with emphasis on the modeling of pressure related correlation terms and dissipation rates in the second moment equations. All the existing models poorly predict the normal stresses near the wall and fail to predict the 3-D effect of mean flow on the turbulence (e.g. decrease in the shear stress caused by the cross flow in the boundary layer). The newly developed second order near-wall turbulence model is described and is capable of capturing the near-wall behavior of turbulence as well as the effect of 3-D mean flow on the turbulence.

  12. Self-similar solutions for toroidal magnetic fields in a turbulent jet

    International Nuclear Information System (INIS)

    Komissarov, S.S.; Ovchinnikov, I.L.

    1989-01-01

    Self-similar solutions for weak toroidal magnetic fields transported by a turbulent jet of incompressible fluid are obtained. It is shown that radial profiles of the self-similar solutions form a discrete spectrum of eigenfunctions of a linear differential operator. The strong depatures from the magnetic flux conservation law, used frequently in turbulent jet models for extragalactic radio sources, are found

  13. Small-scale turbulence, marine snow formation, and planktivorous feeding

    DEFF Research Database (Denmark)

    Kiørboe, Thomas

    1997-01-01

    predators encounter prey in turbulent environments, and the equations are modified to take predator and prey behaviour into account. Simple equations that describe prey encounter rates for cruising predators, suspension feeders, ambush feeders, and pause-travel predators in calm and turbulent water...... are derived. The influence of fluid motion on post-encounter prey capture (pursuit success) is examined. Experimental results on various copepod and larval fish predators will be used to illustrate the theory. Finally, the significance of size and behaviour is discussed. It is shown that turbulence...... is potentially very important for prey encounter in mm-cm sized planktonic predators, while it is unimportant for most larger and smaller ones....

  14. An experimental and numerical study of developed single phase axial turbulent flow in a smooth rod bundle

    International Nuclear Information System (INIS)

    Hooper, J.D.

    1977-01-01

    A combined experimental and numerical model of a turbulent single phase coolant, flowing axially along the fuel pins of a nuclear reactor, was developed. The experimental rig represented two interconnected subchannels of a square array at a pitch/diameter ratio of 1.193. Air was the working fluid, and measurements were made of the mean radial velocity profiles, wall shear stress variation, turbulence velocity spectra and intensities. The numerically predicted wall shear distribution and mean velocity profiles, obtained using an empirical two-dimensional mixing length and eddy diffusivity concept to represent fluid turbulence, showed good agreement with the experimental results. (Author)

  15. Comparison of different turbulence models in open channels with smooth-rough bedforms

    International Nuclear Information System (INIS)

    Ghani, U.

    2013-01-01

    The turbulence models play an important role in all types of computational fluid dynamics based numerical modelling. There is no universal turbulence model which can be applied in all the scenarios. Therefore, if a suitable closure model is used in a simulation work, only then the successful numerical modelling will be achieved. This paper presents the evaluation of three turbulence models in numerical modelling of open channel flows having beds comprising of two parallel strips, one being smooth and the other one being rough. The roughness on the rough side of the channel was created with the help of gravels. The turbulence models tested for their suitability in this case were Reynolds stress model, k-model and RNG based k-model. A structured mesh was used in this simulation work. Grid independence test was also conducted in the simulation. The evaluation of the turbulence models was made through the primary velocity contours and secondary velocity vectors over the cross section of the channel. It was revealed that Reynolds stress model simulated the flow behaviour successfully and results obtained through this model matched very closely to that of the experimental data whereas k-model and RNG based k-model failed to reproduce the flow field successfully. These results will be helpful for CFD (Computational Fluid Dynamics) modellers in correct selection of the turbulence model in these types of channels. (author)

  16. Mathematical modeling of turbulent stratified flows. Application of liquid metal fast breeders

    Energy Technology Data Exchange (ETDEWEB)

    Villand, M; Grand, D [CEA-Service des Transferts Thermiques, Grenoble (France)

    1983-07-01

    Mathematical model of turbulent stratified flow was proposed under the following assumptions: Newtonian fluid; incompressible fluid; coupling between temperature and momentum fields according to Boussinesq approximation; two-dimensional invariance for translation or rotation; coordinates cartesian or curvilinear. Solutions obtained by the proposed method are presented.

  17. SYMPOSIUM ON TURBULENCE AND COMBUSTION - SPECIAL SYMPOSIUM TO BRING TOGETHER TOP RESEARCHERS IN THE FIELDS OF FLUID TURBULENCE AND COMBUSTION TO PROMOTE ADVANCES IN TURBULENT, REACTING FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Caughey, David

    2010-10-08

    A Symposium on Turbulence and Combustion was held at Cornell University on August 3-4, 2009. The overall goal of the Symposium was to promote future advances in the study of turbulence and combustion, through an unique forum intended to foster interactions between leading members of these two research communities. The Symposium program consisted of twelve invited lectures given by world-class experts in these fields, two poster sessions consisting of nearly 50 presentations, an open forum, and other informal activities designed to foster discussion. Topics covered in the lectures included turbulent dispersion, wall-bounded flows, mixing, finite-rate chemistry, and others, using experiment, modeling, and computations, and included perspectives from an international community of leading researchers from academia, national laboratories, and industry.

  18. Diagnosis of Magnetic Structures and Intermittency in Space Plasma Turbulence using the Method of Surrogate Data

    Science.gov (United States)

    Sahraoui, Fouad; Goldstein, Melvyn

    2008-01-01

    Several observations in space plasmas have reported the presence of coherent structures at different plasma scales. Structure formation is believed to be a direct consequence of nonlinear interactions between the plasma modes, which depend strongly on phase synchronization of those modes. Despite this important role of the phases in turbulence, very limited work has been however devoted to study the phases as a potential tracers of nonlinearities in comparison with the wealth of literature on power spectra of turbulence where phases are totally missed. We present a method based on surrogate data to systematically detect coherent structures in turbulent signals. The new method has been applied successfully to magnetosheath turbulence (Sahraoui, Phys. Rev. E, 2008, in press), where the relationship between the identified phase coherence and intermittency (classically identified as non Gaussian tails of the PDFs) as well as the energy cascade has been studied. Here we review the main results obtained in that study and show further applications to small scale solar wind turbulence. Implications of the results on theoretical modelling of space turbulence (applicability of weak/wave turbulence, its validity limits and its connection to intermittency) will be discussed.

  19. Flow-induced separation in wall turbulence.

    Science.gov (United States)

    Nguyen, Quoc; Srinivasan, Chiranth; Papavassiliou, Dimitrios V

    2015-03-01

    One of the defining characteristics of turbulence is its ability to promote mixing. We present here a case where the opposite happens-simulation results indicate that particles can separate near the wall of a turbulent channel flow, when they have sufficiently different Schmidt numbers without use of any other means. The physical mechanism of the separation is understood when the interplay between convection and diffusion, as expressed by their characteristic time scales, is considered, leading to the determination of the necessary conditions for a successful separation between particles. Practical applications of these results can be found when very small particles need to be separated or removed from a fluid.

  20. Complexity analysis of the turbulent environmental fluid flow time series

    Science.gov (United States)

    Mihailović, D. T.; Nikolić-Đorić, E.; Drešković, N.; Mimić, G.

    2014-02-01

    We have used the Kolmogorov complexities, sample and permutation entropies to quantify the randomness degree in river flow time series of two mountain rivers in Bosnia and Herzegovina, representing the turbulent environmental fluid, for the period 1926-1990. In particular, we have examined the monthly river flow time series from two rivers (the Miljacka and the Bosnia) in the mountain part of their flow and then calculated the Kolmogorov complexity (KL) based on the Lempel-Ziv Algorithm (LZA) (lower-KLL and upper-KLU), sample entropy (SE) and permutation entropy (PE) values for each time series. The results indicate that the KLL, KLU, SE and PE values in two rivers are close to each other regardless of the amplitude differences in their monthly flow rates. We have illustrated the changes in mountain river flow complexity by experiments using (i) the data set for the Bosnia River and (ii) anticipated human activities and projected climate changes. We have explored the sensitivity of considered measures in dependence on the length of time series. In addition, we have divided the period 1926-1990 into three subintervals: (a) 1926-1945, (b) 1946-1965, (c) 1966-1990, and calculated the KLL, KLU, SE, PE values for the various time series in these subintervals. It is found that during the period 1946-1965, there is a decrease in their complexities, and corresponding changes in the SE and PE, in comparison to the period 1926-1990. This complexity loss may be primarily attributed to (i) human interventions, after the Second World War, on these two rivers because of their use for water consumption and (ii) climate change in recent times.

  1. Wake-Driven Dynamics of Finite-Sized Buoyant Spheres in Turbulence

    Science.gov (United States)

    Mathai, Varghese; Prakash, Vivek N.; Brons, Jon; Sun, Chao; Lohse, Detlef

    2015-09-01

    Particles suspended in turbulent flows are affected by the turbulence and at the same time act back on the flow. The resulting coupling can give rise to rich variability in their dynamics. Here we report experimental results from an investigation of finite-sized buoyant spheres in turbulence. We find that even a marginal reduction in the particle's density from that of the fluid can result in strong modification of its dynamics. In contrast to classical spatial filtering arguments and predictions of particle models, we find that the particle acceleration variance increases with size. We trace this reversed trend back to the growing contribution from wake-induced forces, unaccounted for in current particle models in turbulence. Our findings highlight the need for improved multiphysics based models that account for particle wake effects for a faithful representation of buoyant-sphere dynamics in turbulence.

  2. Bending mode flutter in a transonic linear cascade

    Science.gov (United States)

    Govardhan, Raghuraman; Jutur, Prahallada

    2017-11-01

    Vibration related issues like flutter pose a serious challenge to aircraft engine designers. The phenomenon has gained relevance for modern engines that employ thin and long fan blade rows to satisfy the growing need for compact and powerful engines. The tip regions of such blade rows operate with transonic relative flow velocities, and are susceptible to bending mode flutter. In such cases, the flow field around individual blades of the cascade is dominated by shock motions generated by the blade motions. In the present work, a new transonic linear cascade facility with the ability to oscillate a blade at realistic reduced frequencies has been developed. The facility operates at a Mach number of 1.3, with the central blade being oscillated in heave corresponding to the bending mode of the rotor. The susceptibility of the blade to undergo flutter at different reduced frequencies is quantified by the cycle-averaged power transfer to the blade calculated using the measured unsteady load on the oscillating blade. These measurements show fluid excitation (flutter) at low reduced frequencies and fluid damping (no flutter) at higher reduced frequencies. Simultaneous measurements of the unsteady shock motions are done with high speed shadowgraphy to elucidate the differences in shock motions between the excitation and damping cases.

  3. Langmuir wave turbulence generated by electromagnetic waves in the laboratory and the ionosphere

    International Nuclear Information System (INIS)

    Lee, M.C.; Riddolls, R.J.; Moriarty, D.T.; Dalrymple, N.E.; Rowlands, M.J.

    1996-01-01

    The authors will present some recent results of the laboratory experiments at MIT, using a large plasma device known as the Versatile Toroidal Facility (VTF). These experiments are aimed at cross-checking the ionospheric plasma heating experiments at Arecibo, Puerto Rico using an HF heating facility (heater). The plasma phenomenon under investigation is the spectral characteristic of Langmuir wave turbulence produced by ordinary (o-mode) electromagnetic pump waves. The Langmuir waves excited by o-mode heaters waves at Arecibo have both a frequency-upshifted spectrum and a frequency-downshifted (viz., cascading) spectrum. While the cascading spectrum can be well explained in terms of the parametric decay instability (PDI), the authors have interpreted the frequency-upshifted Langmuir waves to be anti-Stokes Langmuir waves produced by a nonlinear scattering process as follows. Lower hybrid waves creates presumably by lightning-induced whistler waves can scatter nonlinearly the PDI-excited mother langmuir waves, yielding obliquely propagating langmuir waves with frequencies as the summation of the mother Langmuir wave frequencies and the lower hybrid wave frequencies. This suggested process has been confirmed in the laboratory experiments, that can reproduce the characteristic spectra of Langmuir wave turbulence observed in the Arecibo experiments

  4. Turbulence Statistics in a Two-Dimensional Vortex Condensate

    Science.gov (United States)

    Frishman, Anna; Herbert, Corentin

    2018-05-01

    Disentangling the evolution of a coherent mean-flow and turbulent fluctuations, interacting through the nonlinearity of the Navier-Stokes equations, is a central issue in fluid mechanics. It affects a wide range of flows, such as planetary atmospheres, plasmas, or wall-bounded flows, and hampers turbulence models. We consider the special case of a two-dimensional flow in a periodic box, for which the mean flow, a pair of box-size vortices called "condensate," emerges from turbulence. As was recently shown, a perturbative closure describes correctly the condensate when turbulence is excited at small scales. In this context, we obtain explicit results for the statistics of turbulence, encoded in the Reynolds stress tensor. We demonstrate that the two components of the Reynolds stress, the momentum flux and the turbulent energy, are determined by different mechanisms. It was suggested previously that the momentum flux is fixed by a balance between forcing and mean-flow advection: using unprecedently long numerical simulations, we provide the first direct evidence supporting this prediction. By contrast, combining analytical computations with numerical simulations, we show that the turbulent energy is determined only by mean-flow advection and obtain for the first time a formula describing its profile in the vortex.

  5. NONLINEAR DYNAMO IN A ROTATING ELECTRICALLY CONDUCTING FLUID

    Directory of Open Access Journals (Sweden)

    M. I. Kopp

    2017-05-01

    Full Text Available We found a new large-scale instability, which arises in the rotating conductive fluid with small-scale turbulence. Turbulence is generated by small-scale external force with a low Reynolds number. The theory is built simply by the method of multiscale asymptotic expansions. Nonlinear equations for vortex and magnetic perturbations obtained in the third order for small Reynolds number. It is shown that the combined effects of the Coriolis force and the small external forces in a rotating conducting fluid possible large-scale instability. The large-scale increments of the instability, correspond to generation as the vortex and magnetic disturbances. This type of instability is classified as hydrodynamic and MHD alpha-effect. We studied the stationary regimes of nonlinear equations of magneto-vortex dynamo. In the limit of weakly conducting fluid found stationary solutions in the form of helical kinks. In the limit of high conductivity fluid was obtained stationary solutions in the form of nonlinear periodic waves and kinks.

  6. Self-consistent viscous heating of rapidly compressed turbulence

    Science.gov (United States)

    Campos, Alejandro; Morgan, Brandon

    2017-11-01

    Given turbulence subjected to infinitely rapid deformations, linear terms representing interactions between the mean flow and the turbulence dictate the evolution of the flow, whereas non-linear terms corresponding to turbulence-turbulence interactions are safely ignored. For rapidly deformed flows where the turbulence Reynolds number is not sufficiently large, viscous effects can't be neglected and tend to play a prominent role, as shown in the study of Davidovits & Fisch (2016). For such a case, the rapid increase of viscosity in a plasma-as compared to the weaker scaling of viscosity in a fluid-leads to the sudden viscous dissipation of turbulent kinetic energy. As shown in Davidovits & Fisch, increases in temperature caused by the direct compression of the plasma drive sufficiently large values of viscosity. We report on numerical simulations of turbulence where the increase in temperature is the result of both the direct compression (an inviscid mechanism) and the self-consistent viscous transfer of energy from the turbulent scales towards the thermal energy. A comparison between implicit large-eddy simulations against well-resolved direct numerical simulations is included to asses the effect of the numerical and subgrid-scale dissipation on the self-consistent viscous This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  7. The weather and Climate: emergent laws and multifractal cascades

    Science.gov (United States)

    Lovejoy, S.

    2016-12-01

    In the atmosphere, nonlinear terms are typically about a trillion times larger than linear ones; we anticipate the emergence of high level turbulence laws. The classical turbulence laws were restricted to homogeneous and isotropic systems; to apply them to the atmosphere they must be generalized to account for strong anisotropy (especially stratification) and variability (intermittency). Over the last 30 years, using scaling symmetry principles and multifractal cascades, this has been done. While hitherto they were believed applicable only up to ≈ 100 m, (generalized) turbulence laws now anisotropic and multifractal, they cover spatial scales up planetary in extent and in time well beyond weather scales to include the climate. These higher level laws are stochastic in nature and provide the theoretical basis both for stochastic parametrizations as well as stochastic forecasting. In the time domain the emergent laws for fluctuations DT (for example in temperature T) have means T > ≈ DtH i.e. they are scaling (power laws) in the time interval Dt. We find find exponents H>0 (fluctuations increase with scale) up to ≈ Dt ≈10 days (the lifetime of planetary scale structures, the analogous transition in the ocean is at Dt ≈ 1 year on Mars it is Dt ≈ 2 sols). At larger Dt, there is a transition to a new "macroweather" regime with H≈30 years (anthropocene; larger in the pre-industrial epoch), new climate processes begin to dominate, leading to H>0. "The climate is what you expect, the weather is what you get": the climate is thought to be a kind of "average weather". However this "expected" behavior is macroweather, not the climate. On the contrary, the climate is the new even lower frequency regime at scales Dt> 30 yrs and it has statistical properties very similar to the weather. At these scales, "macroweather is what you expect, the climate is what you get". The scaling in the macroweather regime implies that there is a long-term memory. We show how the

  8. Internal wave energy radiated from a turbulent mixed layer

    Energy Technology Data Exchange (ETDEWEB)

    Munroe, James R., E-mail: jmunroe@mun.ca [Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John' s, Newfoundland A1B 3X7 (Canada); Sutherland, Bruce R., E-mail: bsuther@ualberta.ca [Departments of Physics and Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada)

    2014-09-15

    We examine mixed-layer deepening and the generation of internal waves in stratified fluid resulting from turbulence that develops in response to an applied surface stress. In laboratory experiments the stress is applied over the breadth of a finite-length tank by a moving roughened conveyor belt. The turbulence in the shear layer is characterized using particle image velocimetry to measure the kinetic energy density. The internal waves are measured using synthetic schlieren to determine their amplitudes, frequencies, and energy density. We also perform fully nonlinear numerical simulations restricted to two dimensions but in a horizontally periodic domain. These clearly demonstrate that internal waves are generated by transient eddies at the integral length scale of turbulence and which translate with the background shear along the base of the mixed layer. In both experiments and simulations we find that the energy density of the generated waves is 1%–3% of the turbulent kinetic energy density of the turbulent layer.

  9. Hybrid Optical-Magnetic Traps for Studies of 2D Quantum Turbulence in Bose-Einstein Condensates

    Science.gov (United States)

    Myers, Jessica Ann

    Turbulence appears in most natural and man-made flows. However, the analysis of turbulence is particularly difficult. Links between microscopic fluid dynamics and statistical signatures of turbulence appear unobtainable from the postulates of fluid dynamics making turbulence one of the most important unsolved theoretical problems in physics. Two-dimensional quantum turbulence (2DQT), an emerging field of study, involves turbulence in two-dimensional (2D) flows in superfluids, such as Bose-Einstein condensates (BECs). In 2D superfluids, a turbulent state can be characterized by a disordered distribution of numerous vortex cores. The question of how to effectively and efficiently generate turbulent states in superfluids is a fundamental question in the field of quantum turbulence. Therefore, experimental studies of vortex nucleation and the onset of turbulence in a superfluid are important for achieving a deeper understanding of the overall problem of turbulence. My PhD dissertation involves the study of vortex nucleation and the onset of turbulence in quasi-2D BECs. First, I discuss experimental apparatus advancements that now enable BECs to be created in a hybrid optical-magnetic trap, an atom trapping configuration conducive to 2DQT experiments. Next, I discuss the design and construction of a quantum vortex microscope and initial vortex detection tests. Finally, I present the first experiments aimed at studying 2DQT carried out in the updated apparatus. Thermal counterflow in superfluid helium, in which the normal and superfluid components flow in opposite directions, is known to create turbulence in the superfluid. However, this phenomenon has not been simulated or studied in dilute-gas BECs as a possible vortex nucleation method. In this dissertation, I present preliminary data from the first experiments aimed at understanding thermal counterflow turbulence in dilute-gas BECs.

  10. DNS of fully developed turbulent heat transfer of a viscoelastic drag-reducing flow

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Bo [Department of Oil and Gas Storage and Transportation Engineering, China University of Petroleum, Beijing 102249 (China); Kawaguchi, Yasuo [Department of Mechanical Engineering, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan)

    2005-10-01

    A direct numerical simulation (DNS) of turbulent heat transfer in a channel flow with a Giesekus model was carried out to investigate turbulent heat transfer mechanism of a viscoelastic drag-reducing flow by additives. The configuration was a fully-developed turbulent channel flow with uniform heat flux imposed on both the walls. The temperature was considered as a passive scalar with the effect of buoyancy force neglected. The Reynolds number based on the friction velocity and half the channel height was 150. Statistical quantities such as root-mean-square temperature fluctuations, turbulent heat fluxes and turbulent Prandtl number were obtained and compared with those of a Newtonian fluid flow. Budget terms of the temperature variance and turbulent heat fluxes were also presented. (author)

  11. Defect production in simulated cascades: Cascade quenching and short-term annealing

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1983-01-01

    Defect production in displacement cascades in copper has been modeled using the MARLOWE code to generate cascades and the stochastic annealing code ALSOME to simulate cascade quenching and short-term annealing of isolated cascades. Quenching is accomplished by using exaggerated values for defect mobilities and for critical reaction distances in ALSOME for a very short time. The quenched cascades are then short-term annealed with normal parameter values. The quenching parameter values were empirically determined by comparison with results of resistivity measurements. Throughout the collisional, quenching and short-term annealing phases of cascade development, the high energy cascades continue to behave as a collection of independent lower energy lobes. For recoils above about 30 keV the total number of defects and the numbers of free defects scale with the damage energy. As the energy decreases from 30 keV, defect production varies with the changing nature of the cascade configuration, resulting in more defects per unit damage energy. The simulated annealing of a low fluence of interacting cascades revealed an interstitial shielding effect on depleted zones during Stage I recovery. (orig.)

  12. A non-conventional isotope separation cascade without any mixing: net cascade

    International Nuclear Information System (INIS)

    Zeng Shi; Jiang Dongjun; Ying Zhengen

    2012-01-01

    A component has different concentrations in the incoming flows at a confluent point in all existing isotope separations cascades for multi-component isotope separation and mixing is inevitable, which results in deterioration of separation performance of the separation cascade. However, realization of no-mixing at a confluent point is impossible with a conventional cascade. A non-conventional isotope separation cascade, net cascade, is found to be able to realize no mixings for all components at confluent points, and its concept is further developed here. No-mixing is fulfilled by requiring symmetrical separation of two specified key components at every stage, and the procedure of realizing no-mixing is presented in detail. Some properties of net cascade are investigated preliminarily, and the results demonstrated the no-mixing property is indeed realized. Net cascade is the only separation cascade that so far possesses the no-mixing property. (authors)

  13. Local measurement and numerical modeling of mass/heat transfer from a turbine blade in a linear cascade with tip clearance

    Science.gov (United States)

    Jin, Peitong

    2000-11-01

    Local mass/heat transfer measurements from the turbine blade near-tip and the tip surfaces are performed using the naphthalene sublimation technique. The experiments are conducted in a linear cascade consisting of five high-pressure blades with a central test-blade configuration. The incoming flow conditions are close to those of the gas turbine engine environment (boundary layer displacement thickness is about 0.01 of chord) with an exit Reynolds number of 6.2 x 105. The effects of tip clearance level (0.86%--6.90% of chord), mainstream Reynolds number and turbulence intensity (0.2 and 12.0%) are investigated. Two methods of flow visualization---oil and lampblack, laser light sheet smoke wire---as well as static pressure measurement on the blade surface are used to study the tip leakage flow and vortex in the cascade. In addition, numerical modeling of the flow and heat transfer processes in the linear cascade with different tip clearances is conducted using commercial software incorporating advanced turbulence models. The present study confirms many important results on the tip leakage flow and vortex from the literature, contributes to the current understanding in the effects of tip leakage flow and vortex on local heat transfer from the blade near-tip and the tip surfaces, and provides detailed local and average heat/mass transfer data applicable to turbine blade tip cooling design.

  14. Modelling turbulent fluid flows in nuclear and fossil-fired power plants

    International Nuclear Information System (INIS)

    Viollet, P.L.

    1995-06-01

    The turbulent flows encountered in nuclear reactor thermal hydraulic studies or fossil-fired plant thermo-aerodynamic analyses feature widely varying characteristics, frequently entailing heat transfers and two-phase flows so that modelling these phenomena tends more and more to involve coupling between several branches of engineering. Multi-scale geometries are often encountered, with complex wall shapes, such as a PWR vessel, a reactor coolant pump impeller or a circulating fluidized bed combustion chamber. When it comes to validating physical models of these flows, the analytical process highlights the main descriptive parameters of local flow conditions: tensor characterizing the turbulence anisotropy, characteristic time scales for turbulent flow particle dynamics. Cooperative procedures implemented between national or international working parties can accelerate validation by sharing and exchanging results obtained by the various organizations involved. With this principle accepted, we still have to validate the products themselves, i.e. the software used for the studies. In this context, the ESTET, ASTRID and N3S codes have been subjected to a battery of test cases covering their respective fields of application. These test cases are re-run for each new version, so that the sets of test cases systematically benefit from the gradually upgraded functionalities of the codes. (author). refs., 3 figs., 6 tabs

  15. CISM Course on Rotating Fluids

    CERN Document Server

    1992-01-01

    The volume presents a comprehensive overview of rotation effects on fluid behavior, emphasizing non-linear processes. The subject is introduced by giving a range of examples of rotating fluids encountered in geophysics and engineering. This is then followed by a discussion of the relevant scales and parameters of rotating flow, and an introduction to geostrophic balance and vorticity concepts. There are few books on rotating fluids and this volume is, therefore, a welcome addition. It is the first volume which contains a unified view of turbulence in rotating fluids, instability and vortex dynamics. Some aspects of wave motions covered here are not found elsewhere.

  16. Self-sustained large-scale flow in turbulent cryogenic convection

    Czech Academy of Sciences Publication Activity Database

    Niemela, J. J.; Skrbek, Ladislav; Sreenivasan, K. R.; Donnelly, R. J.

    2002-01-01

    Roč. 126, 1/2 (2002), s. 297-302 ISSN 0022-2291 Institutional research plan: CEZ:AV0Z1010914 Keywords : thermal convection * turbulence * cryogenic Subject RIV: BK - Fluid Dynamics Impact factor: 1.139, year: 2002

  17. Inhibition of turbulence in inertial-confinement-fusion hot spots by viscous dissipation.

    Science.gov (United States)

    Weber, C R; Clark, D S; Cook, A W; Busby, L E; Robey, H F

    2014-05-01

    Achieving ignition in inertial confinement fusion (ICF) requires the formation of a high-temperature (>10 keV) central hot spot. Turbulence has been suggested as a mechanism for degrading the hot-spot conditions by altering transport properties, introducing colder, mixed material, or reducing the conversion of radially directed kinetic energy to hot-spot heating. We show, however, that the hot spot is very viscous, and the assumption of turbulent conditions in the hot spot is incorrect. This work presents the first high-resolution, three-dimensional simulations of National Ignition Facility (NIF) implosion experiments using detailed knowledge of implosion dynamics and instability seeds and including an accurate model of physical viscosity. We find that when viscous effects are neglected, the hot spot can exhibit a turbulent kinetic energy cascade. Viscous effects, however, are significant and strongly damp small-scale velocity structures, with a hot-spot Reynolds number in the range of only 10-100.

  18. Study of scattering from turbulence structure generated by propeller with FLUENT

    Science.gov (United States)

    Luo, Gen

    2017-07-01

    In this article, the turbulence structure generated by a propeller is simulated with the computational fluid dynamics (CFD) software FLUENT. With the method of moments, the backscattering radar cross sections (RCS) of the turbulence structure are calculated. The scattering results can reflect the turbulent intensity of the wave profiles. For the wake turbulence with low rotating speed, the scattering intensity of HH polarization is much smaller than VV polarization at large incident angles. When the turbulence becomes stronger with high rotating speed, the scattering intensity of HH polarization also becomes stronger at large incident angles, which is almost the same with VV polarization. And also, the bistatic scattering of the turbulence structure has the similar situation. These scattering results indicate that the turbulence structure can also give rise to an anomaly compared with traditional sea surface. The study of electromagnetic (EM) scattering from turbulence structure generated by the propeller can help in better understanding of the scattering from different kinds of waves and provide more bases to explain the anomalies of EM scattering from sea surfaces.

  19. Self-consistent mean field forces in turbulent plasmas: Current and momentum relaxation

    International Nuclear Information System (INIS)

    Hegna, C.C.

    1997-08-01

    The properties of turbulent plasmas are described using the two-fluid equations. Under some modest assumptions, global constraints for the turbulent mean field forces that act on the ion and electron fluids are derived. These constraints imply a functional form for the parallel mean field forces in the Ohm's law and the momentum balance equation. These forms suggest that the fluctuations attempt to relax the plasma to a state where both the current and the bulk plasma momentum are aligned along the mean magnetic field with proportionality constants that are global constants. Observations of flow profile evolution during discrete dynamo activity in reversed field pinch experiments are interpreted

  20. Finite element analysis of turbulent flow in fast reactor fuel subassembly elementary flow cell

    International Nuclear Information System (INIS)

    Muehlbauer, P.

    1987-03-01

    The method is described of calculating fully developed longitudinal steady-state turbulent flow of an incompressible fluid through an infinite bundle of parallel smooth rods, based on the finite element method and one-equation turbulence model. Theoretical calculation results are compared with experimental results. (author). 5 figs., 3 refs