Improved Fluid Perturbation Theory: Equation of state for Fluid Xenon
Li, Qiong; Liu, Hai-Feng; Zhang, Gong-Mu; Zhao, Yan-Hong; Tian, Ming-Feng; Song, Hai-Feng
2016-01-01
The traditional fluid perturbation theory is improved by taking electronic excitations and ionizations into account, in the framework of average ion spheres. It is applied to calculate the equation of state for fluid Xenon, which turns out in good agreement with the available shock data.
Theoretical equation of state for classical fluids. I. Test by perturbation theory
International Nuclear Information System (INIS)
Gil-Villegas, A.; Chavez, M.; Del Rio, F.
1993-01-01
This paper shows how to construct the theoretical equation of state (TEOS) of a classical simple fluid. The theory relies on the mean collisional diameter and range, and maps the thermodynamical properties of the fluid into those of an equivalent square-well (ESW) fluid of appropriate depth ε , diameter σ and range R. It is shown that the ESW has the same pressure as the fluid of interest. Hence the THEOS of any simple fluid takes the form of a SW EOS of the given ε , σ and R. The theory is applied to a Lennard-Jones (LJ) system in a first-order perturbation. The mapping equation have a physical solution for densities where the SW EOS is accurate; the resulting LJ TEOS agrees very well with the results of computer simulations, and compares favorably with the recent TEOS developed by Song and Mason. (Author). 17 refs, 7 figs, 1 tab
International Nuclear Information System (INIS)
Murad, S.; Gubbins, K.E.; Gray, C.G.
1983-01-01
We compare several recently proposed theories for the angular pair correlation function g(rω 1 ω 2 ), including first- and second-order perturbation theory (the u-expansion), a Pade approximant to this series, first-order f-expansion, the single superchain, generalized mean field, linearized hypernetted chain, and quadratic hypernetted chain approximations. Numerical results from these theories are compared with available computer simulation data for four model fluids whose intermolecular pair potential is of the form u 0 +usub(a), where u 0 is a hard-sphere of Lennard-Jones model, while usub(a) is a dipole-dipole or quadrupole-quadrupole interaction; we refer to these model fluids as HS+μμ, HS+QQ, LJ+μμ, and LJ+QQ. Properties studied include the angular pair correlation function and its spherical harmonic components, the thermodynamic properties, and the angular correlation parameters G 1 and G 2 that are related to the dielectric and Kerr constants. The second-order perturbation theory is superior to the integral equation theories for the thermodynamic harmonics of g(rω 1 ω 2 ) and for the thermodynamic properties themselves at moderate multipole strengths. For other harmonics and properties, the integral equation theories are better, with the quadratic hypernetted chain approximation being the best overall. (orig.)
Gay-Balmaz, François; Putkaradze, Vakhtang
2018-01-01
We present a theory for the three-dimensional evolution of tubes with expandable walls conveying fluid. Our theory can accommodate arbitrary deformations of the tube, arbitrary elasticity of the walls, and both compressible and incompressible flows inside the tube. We also present the theory of propagation of shock waves in such tubes and derive the conservation laws and Rankine-Hugoniot conditions in arbitrary spatial configuration of the tubes, and compute several examples of particular sol...
International Nuclear Information System (INIS)
Chang, J.; Sandler, S.I.
1995-01-01
We have extended the Wertheim integral equation theory to mixtures of hard spheres with two attraction sites in order to model homonuclear hard-sphere chain fluids, and then solved these equations with the polymer-Percus--Yevick closure and the ideal chain approximation to obtain the average intermolecular and overall radial distribution functions. We obtain explicit expressions for the contact values of these distribution functions and a set of one-dimensional integral equations from which the distribution functions can be calculated without iteration or numerical Fourier transformation. We compare the resulting predictions for the distribution functions with Monte Carlo simulation results we report here for five selected binary mixtures. It is found that the accuracy of the prediction of the structure is the best for dimer mixtures and declines with increasing chain length and chain-length asymmetry. For the equation of state, we have extended the dimer version of the thermodynamic perturbation theory to the hard-sphere chain mixture by introducing the dimer mixture as an intermediate reference system. The Helmholtz free energy of chain fluids is then expressed in terms of the free energy of the hard-sphere mixture and the contact values of the correlation functions of monomer and dimer mixtures. We compared with the simulation results, the resulting equation of state is found to be the most accurate among existing theories with a relative average error of 1.79% for 4-mer/8-mer mixtures, which is the worst case studied in this work. copyright 1995 American Institute of Physics
DEFF Research Database (Denmark)
Liang, Xiaodong; Kontogeorgis, Georgios
2015-01-01
The Perturbed Chain-Statistical Associating Fluid Theory Equation of State (PC-SAFT EOS) has been successfully applied to model phase behavior of various types of systems, while it is also well-known that the PC-SAFT EOS has difficulties in describing some second-order derivative properties...... resolved the mostly criticized numerical pitfall, that is, the presence of more than three volume roots at real application conditions. Finally, the possibility of using the original PC-SAFT EOS parameters with the new universal constants has been investigated for the phase equilibria of the systems...
International Nuclear Information System (INIS)
Chang, J.; Sandler, S.I.
1995-01-01
The correlation functions of homonuclear hard-sphere chain fluids are studied using the Wertheim integral equation theory for associating fluids and the Monte Carlo simulation method. The molecular model used in the simulations is the freely jointed hard-sphere chain with spheres that are tangentially connected. In the Wertheim theory, such a chain molecule is described by sticky hard spheres with two independent attraction sites on the surface of each sphere. The OZ-like equation for this associating fluid is analytically solved using the polymer-PY closure and by imposing a single bonding condition. By equating the mean chain length of this associating hard sphere fluid to the fixed length of the hard-sphere chains used in simulation, we find that the correlation functions for the chain fluids are accurately predicted. From the Wertheim theory we also obtain predictions for the overall correlation functions that include intramolecular correlations. In addition, the results for the average intermolecular correlation functions from the Wertheim theory and from the Chiew theory are compared with simulation results, and the differences between these theories are discussed
1989-01-01
IJ-1_1 - from which we deduce: H U 1/ f II Hu A//- + 2M AtAr , and indeed the expected estimate : // un+l //_ lluo/ + (2MT) Ax since nAt _9 T...the propa- gation of a planar premixed flame with one-step chemistry . In this case, diffusive and reactive terms are added to the energy and species...to use exceedingly fine computational scales, to resolve the chemistry and internal fluid layers fully (which would normally be prohibitive in a large
Equation of state of a hard core fluid with a two-Yukawa tail: toward a simple analytic theory
International Nuclear Information System (INIS)
Jedrzejek, C.
1980-01-01
Thermodynamic properties of simple fluids are calculated using variational theory for a system of hard-core potential with a two-Yukawa tail. Likewise one Yukawa-tail case the working formulas are analytic. Five parameters of the two Yukawa system are chosen so as to get the best fit to a real argon potential or an ''argon-like'' Lennard-Jones potential. The results are fairly good in light of the extreme simplicity of the method. The discrepancies result from using the variational method and a different shape of Yukawa type potential in comparision to the real argon and Lennard-Jones potentials. (author)
Euler's fluid equations: Optimal control vs optimization
International Nuclear Information System (INIS)
Holm, Darryl D.
2009-01-01
An optimization method used in image-processing (metamorphosis) is found to imply Euler's equations for incompressible flow of an inviscid fluid, without requiring that the Lagrangian particle labels exactly follow the flow lines of the Eulerian velocity vector field. Thus, an optimal control problem and an optimization problem for incompressible ideal fluid flow both yield the same Euler fluid equations, although their Lagrangian parcel dynamics are different. This is a result of the gauge freedom in the definition of the fluid pressure for an incompressible flow, in combination with the symmetry of fluid dynamics under relabeling of their Lagrangian coordinates. Similar ideas are also illustrated for SO(N) rigid body motion.
Perturbation theories for the dipolar fluids
International Nuclear Information System (INIS)
Lee, L.L.; Chung, T.H.
1983-01-01
We derive here four different perturbation equations for the calculation of the angular pair correlation functions of dipolar fluids; namely, the first order y-expansion, the modified Percus--Yevik (MPY) expansion, the modified hypernetted chain (MHNC) expansion, and the modified linearized hypernetted chain (MLHNC) equation. Both the method of the functional expansion and the method of the cluster integrals are utilized. Comparison with other perturbation theories (e.g., the Melnyk--Smith equation) is made. While none of the theories is exact, as shown by the cluster diagrams, the MLHNC and the MHNC contain more diagrams than, say, the MPY and y-expansion. The y-expansion equation can be improved by including the correction terms to the Kirkwood superposition approximation for the triplet correlation function. For example, the inclusion of the correction term rho∫d4h(14)h(24)h(34) in a formula given by Henderson, is shown to improve substantially the y-expansion equation. We examine the performance of two of the theories: the y-expansion and the MLHNC equation for a Stockmayer (dipolar) fluid with a reduced dipole moment μ/sup asterisk2/ [ = μ 2 /(epsilonsigma 3 )] = 1.0. Comparison with Monte Carlo simulation results of Adams et al. and with other theories (e.g., the QHNC equation) shows that our results are reasonable. Further improvements of the equations are also pointed out
Quantum field theory of fluids.
Gripaios, Ben; Sutherland, Dave
2015-02-20
The quantum theory of fields is largely based on studying perturbations around noninteracting, or free, field theories, which correspond to a collection of quantum-mechanical harmonic oscillators. The quantum theory of an ordinary fluid is "freer", in the sense that the noninteracting theory also contains an infinite collection of quantum-mechanical free particles, corresponding to vortex modes. By computing a variety of correlation functions at tree and loop level, we give evidence that a quantum perfect fluid can be consistently formulated as a low-energy, effective field theory. We speculate that the quantum behavior is radically different from both classical fluids and quantum fields.
FDTD for Hydrodynamic Electron Fluid Maxwell Equations
Directory of Open Access Journals (Sweden)
Yingxue Zhao
2015-05-01
Full Text Available In this work, we develop a numerical method for solving the three dimensional hydrodynamic electron fluid Maxwell equations that describe the electron gas dynamics driven by an external electromagnetic wave excitation. Our numerical approach is based on the Finite-Difference Time-Domain (FDTD method for solving the Maxwell’s equations and an explicit central finite difference method for solving the hydrodynamic electron fluid equations containing both electron density and current equations. Numerical results show good agreement with the experiment of studying the second-harmonic generation (SHG from metallic split-ring resonator (SRR.
Galois theory of difference equations
Put, Marius
1997-01-01
This book lays the algebraic foundations of a Galois theory of linear difference equations and shows its relationship to the analytic problem of finding meromorphic functions asymptotic to formal solutions of difference equations. Classically, this latter question was attacked by Birkhoff and Tritzinsky and the present work corrects and greatly generalizes their contributions. In addition results are presented concerning the inverse problem in Galois theory, effective computation of Galois groups, algebraic properties of sequences, phenomena in positive characteristics, and q-difference equations. The book is aimed at advanced graduate researchers and researchers.
Oliveira, M B; Llovell, F; Coutinho, J A P; Vega, L F
2012-08-02
In this work, the soft statistical associating fluid theory (soft-SAFT) equation of state (EoS) has been used to provide an accurate thermodynamic characterization of the pyridinium-based family of ionic liquids (ILs) with the bis(trifluoromethylsulfonyl)imide anion [NTf(2)](-). On the basis of recent molecular simulation studies for this family, a simple molecular model was proposed within the soft-SAFT EoS framework. The chain length value was transferred from the equivalent imidazolium-based ILs family, while the dispersive energy and the molecular parameters describing the cation-anion interactions were set to constant values for all of the compounds. With these assumptions, an appropriate set of molecular parameters was found for each compound fitting to experimental temperature-density data at atmospheric pressure. Correlations for the nonconstant parameters (describing the volume of the IL) with the molecular weight were established, allowing the prediction of the parameters for other pyridiniums not included in the fitting. Then, the suitability of the proposed model and its optimized parameters were tested by predicting high-pressure densities and second-order thermodynamic derivative properties such as isothermal compressibilities of selected [NTf(2)] pyridinium ILs, in a large range of thermodynamic conditions. The surface tension was also provided using the density gradient theory coupled to the soft-SAFT equation. Finally, the soft-SAFT EoS was applied to describe the phase behavior of several binary mixtures of [NTf(2)] pyridinium ILs with carbon dioxide, sulfur dioxide, and water. In all cases, a temperature-independent binary parameter was enough to reach quantitative agreement with the experimental data. The description of the solubility of CO(2) in these ILs also allowed identification of a relation between the binary parameter and the molecular weight of the ionic liquid, allowing the prediction of the CO(2) + C(12)py[NTf(2)] mixture. The good
Equational theories of tropical sernirings
DEFF Research Database (Denmark)
Aceto, Luca; Esik, Zoltan; Ingolfsdottir, Anna
2003-01-01
examples of such structures are the (max,+) semiring and the tropical semiring. It is shown that none of the exotic semirings commonly considered in the literature has a finite basis for its equations, and that similar results hold for the commutative idempotent weak semirings that underlie them. For each......This paper studies the equational theories of various exotic semirings presented in the literature. Exotic semirings are semirings whose underlying carrier set is some subset of the set of real numbers equipped with binary operations of minimum or maximum as sum, and addition as product. Two prime...... of these commutative idempotent weak semirings, the paper offers characterizations of the equations that hold in them, decidability results for their equational theories, explicit descriptions of the free algebras in the varieties they generate, and relative axiomatization results. Udgivelsesdato: APR 11...
Bubble dynamics equations in Newton fluid
International Nuclear Information System (INIS)
Xiao, J
2008-01-01
For the high-speed flow of Newton fluid, bubble is produced and expanded when it moves toward the surface of fluid. Bubble dynamics is a very important research field to understand the intrinsic feature of bubble production and motion. This research formulates the bubble expansion by expansion-local rotation transformation, which can be calculated by the measured velocity field. Then, the related dynamic equations are established to describe the interaction between the fluid and the bubble. The research shows that the bubble production condition can be expressed by critical vortex value and fluid pressure; and the bubble expansion rate can be obtained by solving the non-linear dynamic equation of bubble motion. The results may help the related research as it shows a special kind of fluid motion in theoretic sense. As an application example, the nanofiber radium-voltage relation and threshold voltage-surface tension relation in electrospinning process are discussed
Elliptic differential equations theory and numerical treatment
Hackbusch, Wolfgang
2017-01-01
This book simultaneously presents the theory and the numerical treatment of elliptic boundary value problems, since an understanding of the theory is necessary for the numerical analysis of the discretisation. It first discusses the Laplace equation and its finite difference discretisation before addressing the general linear differential equation of second order. The variational formulation together with the necessary background from functional analysis provides the basis for the Galerkin and finite-element methods, which are explored in detail. A more advanced chapter leads the reader to the theory of regularity. Individual chapters are devoted to singularly perturbed as well as to elliptic eigenvalue problems. The book also presents the Stokes problem and its discretisation as an example of a saddle-point problem taking into account its relevance to applications in fluid dynamics.
A new formulation of equations of compressible fluids by analogy with Maxwell's equations
International Nuclear Information System (INIS)
Kambe, Tsutomu
2010-01-01
A compressible ideal fluid is governed by Euler's equation of motion and equations of continuity, entropy and vorticity. This system can be reformulated in a form analogous to that of electromagnetism governed by Maxwell's equations with source terms. The vorticity plays the role of magnetic field, while the velocity field plays the part of a vector potential and the enthalpy (of isentropic flows) plays the part of a scalar potential in electromagnetism. The evolution of source terms of fluid Maxwell equations is determined by solving the equations of motion and continuity. The equation of sound waves can be derived from this formulation, where time evolution of the sound source is determined by the equation of motion. The theory of vortex sound of aeroacoustics is included in this formulation. It is remarkable that the forces acting on a point mass moving in a velocity field of an inviscid fluid are analogous in their form to the electric force and Lorentz force in electromagnetism. The significance of the reformulation is interpreted by examples taken from fluid mechanics. This formulation can be extended to viscous fluids without difficulty. The Maxwell-type equations are unchanged by the viscosity effect, although the source terms have additional terms due to viscosities.
Relativistic fluid theories - Self organization
International Nuclear Information System (INIS)
Mahajan, S.M.; Hazeltine, R.D.; Yoshida, Z.
2003-01-01
Developments in two distinct but related subjects are reviewed: 1) Formulation and investigation of closed fluid theories which transcend the limitations of standard magnetohydrodynamics (MHD), in particular, theories which are valid in the long mean free path limit and in which pressure anisotropy, heat flow, and arbitrarily strong sheared flows are treated consistently, and 2) Exploitation of the two-fluid theories to derive new plasma configurations in which the flow-field is a co-determinant of the overall dynamics; some of these states belong to the category of self-organized relaxed states. Physical processes which may provide a route to self-organization and complexity are also explored. (author)
Moment equation approach to neoclassical transport theory
International Nuclear Information System (INIS)
Hirshman, S.P.
1978-01-01
The neoclassical cross-field fluxes for a toroidally confined, axisymmetric plasma are calculated in terms of the thermodynamic forces from the fluid continuity and momentum balance equations. This macroscopic formulation of neoclassical transport theory unifies the numerous complex expressions for the transport coefficients, previously obtained by solving the Fokker--Planck equation, and elucidates their physical basis. In the large aspect ratio limit, the continuous transition in the scaling of the diffusion coefficient throughout various collisionality regimes is shown to depend on the ratio of parallel viscosity coefficients of the plasma species. Comparison of the present results with the kinetic theory expressions for the neoclassical fluxes determines the parallel viscosity coefficients for a multispecies plasma in the long-mean-free-path regime
Poisson structure of the equations of ideal multispecies fluid electrodynamics
International Nuclear Information System (INIS)
Spencer, R.G.
1984-01-01
The equations of the two- (or multi-) fluid model of plasma physics are recast in Hamiltonian form, following general methods of symplectic geometry. The dynamical variables are the fields of physical interest, but are noncanonical, so that the Poisson bracket in the theory is not the standard one. However, it is a skew-symmetric bilinear form which, from the method of derivation, automatically satisfies the Jacobi identity; therefore, this noncanonical structure has all the essential properties of a canonical Poisson bracket
Hamilton's equations for a fluid membrane
International Nuclear Information System (INIS)
Capovilla, R; Guven, J; Rojas, E
2005-01-01
Consider a homogeneous fluid membrane described by the Helfrich-Canham energy, quadratic in the mean curvature of the membrane surface. The shape equation that determines equilibrium configurations is fourth order in derivatives and cubic in the mean curvature. We introduce a Hamiltonian formulation of this equation which dismantles it into a set of coupled first-order equations. This involves interpreting the Helfrich-Canham energy as an action; equilibrium surfaces are generated by the evolution of space curves. Two features complicate the implementation of a Hamiltonian framework. (i) The action involves second derivatives. This requires treating the velocity as a phase-space variable and the introduction of its conjugate momentum. The canonical Hamiltonian is constructed on this phase space. (ii) The action possesses a local symmetry-reparametrization invariance. The two labels we use to parametrize points on the surface are themselves physically irrelevant. This symmetry implies primary constraints, one for each label, that need to be implemented within the Hamiltonian. The two Lagrange multipliers associated with these constraints are identified as the components of the acceleration tangential to the surface. The conservation of the primary constraints implies two secondary constraints, fixing the tangential components of the momentum conjugate to the position. Hamilton's equations are derived and the appropriate initial conditions on the phase-space variables are identified. Finally, it is shown how the shape equation can be reconstructed from these equations
Collisional drift fluid equations and implications for drift waves
International Nuclear Information System (INIS)
Pfirsch, Dieter; Correa-Restrepo, Dario
1996-01-01
The usual theoretical description of drift-wave turbulence (considered to be one possible cause of anomalous transport in a plasma), e.g. the Hasegawa-Wakatani theory, makes use of various approximations, the effects of which are extremely difficult to assess. This concerns in particular the conservation laws for energy and momentum. The latter law is important in relation to charge separation and the resulting electric fields, which are possibly related to the L-H transition. Energy conservation is crucial to the stability behaviour, it will be discussed by means of an example. New collisional multi-species drift-fluid equations were derived by a new method which yields, in a transparent way, conservation of energy and total angular momentum and the law for energy dissipation. Both electrostatic and electromagnetic field variations are considered. The only restriction involved is the validity of the drift approximation; in particular, there are no assumptions restricting the geometry of the system. The method is based primarily on a Lagrangian for dissipationless fluids in the drift approximation with isotropic pressures. The dissipative terms are introduced by adding corresponding terms to the ideal equations of motion and of the pressures. The equations of motion, of course, no longer result from a Lagrangian via Hamilton's principle. However, their relation to the ideal equations also implies a relation to the ideal Lagrangian, which can be used to advantage. Instead of introducing heat conduction one can also assume isothermal behaviour, e.g. T v (x) = constant. Assumptions of this kind are often made in the literature. The new method of introducing dissipation is not restricted to the present kind of theory; it can equally well be applied to theories such as multi-fluid theories without using the drift approximation of the present paper. (author)
Loop equations in the theory of gravitation
International Nuclear Information System (INIS)
Makeenko, Yu.M.; Voronov, N.A.
1981-01-01
Loop-space variables (matrices of parallel transport) for the theory of gravitation are described. Loop equations, which are equivalent to the Einstein equations, are derived in the classical case. Loop equations are derived for gravity with cosmological constant as well. An analogy with the loop-space approach in Yang-Mills theory is discussed [ru
Introduction to complex theory of differential equations
Savin, Anton
2017-01-01
This book discusses the complex theory of differential equations or more precisely, the theory of differential equations on complex-analytic manifolds. Although the theory of differential equations on real manifolds is well known – it is described in thousands of papers and its usefulness requires no comments or explanations – to date specialists on differential equations have not focused on the complex theory of partial differential equations. However, as well as being remarkably beautiful, this theory can be used to solve a number of problems in real theory, for instance, the Poincaré balayage problem and the mother body problem in geophysics. The monograph does not require readers to be familiar with advanced notions in complex analysis, differential equations, or topology. With its numerous examples and exercises, it appeals to advanced undergraduate and graduate students, and also to researchers wanting to familiarize themselves with the subject.
The theory of hyrogenic plasmas and fluids
International Nuclear Information System (INIS)
Dharma-Wardana, M.W.C.
1978-01-01
A comprehensive theory of the transverse dielectric function, light absorption and other aspects of photon propagation as well as level shifts, the chemical potential and statistical mechanics of hydrogenic fluids ranging from the fully ionized plasma to the atomic fluid, is presented. A coulomb basis is used instead of the usual plane waves for second quantization. The commutation rules for these operators are discussed and a simplification valid for electron-ion systems is considered. The Coulomb basis simplifies the theory by replacing the six interaction potentials involving atoms, ions and electrons by a single term. The free bound and photo processes also reduce to a single term. As in the best available theory of the uniform electron gas we have calculated the mass operator contained in the polarization operator of the photon Green function to second order and included a partial summation of higher order effects via a screening function. The shifted and broadened energy levels, the chemical potential and the modified Saha equation are obtained from the one-particle Green function. The complex refractive index, the absorption profile, etc. contain terms in first order thus easily recovering effects not recovered in the existing theories. In the fully ionized plasma limit the results lead to the usual Geldart and Taylor type Fermi gas response theory. In the atomic fluid limit the polarizable atom models of, for example, Bullough et al., are compared with our microscopic theory. Explicit algebraic expressions together with details of the evaluation of the matrix elements are given for the final results. (Auth.)
Thermodynamic Fluid Equations-of-State
Directory of Open Access Journals (Sweden)
Leslie V. Woodcock
2018-01-01
Full Text Available As experimental measurements of thermodynamic properties have improved in accuracy, to five or six figures, over the decades, cubic equations that are widely used for modern thermodynamic fluid property data banks require ever-increasing numbers of terms with more fitted parameters. Functional forms with continuity for Gibbs density surface ρ(p,T which accommodate a critical-point singularity are fundamentally inappropriate in the vicinity of the critical temperature (Tc and pressure (pc and in the supercritical density mid-range between gas- and liquid-like states. A mesophase, confined within percolation transition loci that bound the gas- and liquid-state by third-order discontinuities in derivatives of the Gibbs energy, has been identified. There is no critical-point singularity at Tc on Gibbs density surface and no continuity of gas and liquid. When appropriate functional forms are used for each state separately, we find that the mesophase pressure functions are linear. The negative and positive deviations, for both gas and liquid states, on either side of the mesophase, are accurately represented by three or four-term virial expansions. All gaseous states require only known virial coefficients, and physical constants belonging to the fluid, i.e., Boyle temperature (TB, critical temperature (Tc, critical pressure (pc and coexisting densities of gas (ρcG and liquid (ρcL along the critical isotherm. A notable finding for simple fluids is that for all gaseous states below TB, the contribution of the fourth virial term is negligible within experimental uncertainty. Use may be made of a symmetry between gas and liquid states in the state function rigidity (dp/dρT to specify lower-order liquid-state coefficients. Preliminary results for selected isotherms and isochores are presented for the exemplary fluids, CO2, argon, water and SF6, with focus on the supercritical mesophase and critical region.
Nonlinear quantum fluid equations for a finite temperature Fermi plasma
International Nuclear Information System (INIS)
Eliasson, Bengt; Shukla, Padma K
2008-01-01
Nonlinear quantum electron fluid equations are derived, taking into account the moments of the Wigner equation and by using the Fermi-Dirac equilibrium distribution for electrons with an arbitrary temperature. A simplified formalism with the assumptions of incompressibility of the distribution function is used to close the moments in velocity space. The nonlinear quantum diffraction effects into the fluid equations are incorporated. In the high-temperature limit, we retain the nonlinear fluid equations for a dense hot plasma and in the low-temperature limit, we retain the correct fluid equations for a fully degenerate plasma
Optimized theory for simple and molecular fluids.
Marucho, M; Montgomery Pettitt, B
2007-03-28
An optimized closure approximation for both simple and molecular fluids is presented. A smooth interpolation between Perkus-Yevick and hypernetted chain closures is optimized by minimizing the free energy self-consistently with respect to the interpolation parameter(s). The molecular version is derived from a refinement of the method for simple fluids. In doing so, a method is proposed which appropriately couples an optimized closure with the variant of the diagrammatically proper integral equation recently introduced by this laboratory [K. M. Dyer et al., J. Chem. Phys. 123, 204512 (2005)]. The simplicity of the expressions involved in this proposed theory has allowed the authors to obtain an analytic expression for the approximate excess chemical potential. This is shown to be an efficient tool to estimate, from first principles, the numerical value of the interpolation parameters defining the aforementioned closure. As a preliminary test, representative models for simple fluids and homonuclear diatomic Lennard-Jones fluids were analyzed, obtaining site-site correlation functions in excellent agreement with simulation data.
Mean field theory for non-abelian gauge theories and fluid dynamics. A brief progress report
International Nuclear Information System (INIS)
Wadia, Spenta R.
2009-01-01
We review the long standing problem of 'mean field theory' for non-abelian gauge theories. As a consequence of the AdS/CFT correspondence, in the large N limit, at strong coupling, and high temperatures and density, the 'mean field theory' is described by the Navier-Stokes equations of fluid dynamics. We also discuss and present results on the non-conformal fluid dynamics of the D1 brane in 1+1 dim. (author)
Some Functional Equations Originating from Number Theory
Indian Academy of Sciences (India)
We will introduce new functional equations (3) and (4) which are strongly related to well-known formulae (1) and (2) of number theory, and investigate the solutions of the equations. Moreover, we will also study some stability problems of those equations.
Statistically derived conservation equations for fluid particle flows
International Nuclear Information System (INIS)
Reyes, J.N. Jr.
1989-01-01
The behavior of water droplets in a heated nuclear fuel channel is of significant interest to nuclear reactor safety studies pertaining to loss-of-coolant accidents. This paper presents the derivation of the mass, momentum, and energy conservation equations for a distribution of fluid particles (bubbles or droplets) transported by a continuous fluid medium. When coupled with the appropriate closure equations, the conservation equations can be used to model nonequilibrium, two-phase, dispersed, fluid flow behavior
Analytic solution of integral equations for molecular fluids
International Nuclear Information System (INIS)
Cummings, P.T.
1984-01-01
We review some recent progress in the analytic solution of integral equations for molecular fluids. The site-site Ornstein-Zernike (SSOZ) equation with approximate closures appropriate to homonuclear diatomic fluids both with and without attractive dispersion-like interactions has recently been solved in closed form analytically. In this paper, the close relationship between the SSOZ equation for homonuclear dumbells and the usual Ornstein-Zernike (OZ) equation for atomic fluids is carefully elucidated. This relationship is a key motivation for the analytic solutions of the SSOZ equation that have been obtained to date. (author)
Perturbation theory for continuous stochastic equations
International Nuclear Information System (INIS)
Chechetkin, V.R.; Lutovinov, V.S.
1987-01-01
The various general perturbational schemes for continuous stochastic equations are considered. These schemes have many analogous features with the iterational solution of Schwinger equation for S-matrix. The following problems are discussed: continuous stochastic evolution equations for probability distribution functionals, evolution equations for equal time correlators, perturbation theory for Gaussian and Poissonian additive noise, perturbation theory for birth and death processes, stochastic properties of systems with multiplicative noise. The general results are illustrated by diffusion-controlled reactions, fluctuations in closed systems with chemical processes, propagation of waves in random media in parabolic equation approximation, and non-equilibrium phase transitions in systems with Poissonian breeding centers. The rate of irreversible reaction X + X → A (Smoluchowski process) is calculated with the use of general theory based on continuous stochastic equations for birth and death processes. The threshold criterion and range of fluctuational region for synergetic phase transition in system with Poissonian breeding centers are also considered. (author)
DEFF Research Database (Denmark)
Arya, Alay; Liang, Xiaodong; von Solms, Nicolas
2016-01-01
using various equations of state and empirical models. In the past few years, association models based on CPA and SAFT equations of state have been found to be promising models for studies of asphaltene precipitation. In this work, we compare asphaltene precipitation results obtained from different...
Oscillation theory for second order dynamic equations
Agarwal, Ravi P; O''Regan, Donal
2003-01-01
The qualitative theory of dynamic equations is a rapidly developing area of research. In the last 50 years, the Oscillation Theory of ordinary, functional, neutral, partial and impulsive differential equations, and their discrete versions, has inspired many scholars. Hundreds of research papers have been published in every major mathematical journal. Many books deal exclusively with the oscillation of solutions of differential equations, but most of these books appeal only to researchers who already know the subject. In an effort to bring Oscillation Theory to a new and broader audience, the authors present a compact, but thorough, understanding of Oscillation Theory for second order differential equations. They include several examples throughout the text not only to illustrate the theory, but also to provide new direction.
Mathematical geophysics an introduction to rotating fluids and the Navier-Stokes equations
Chemin, Jean-Yves; Gallagher, Isabelle; Grenier, Emmanuel
2006-01-01
Aimed at graduate students and researchers in mathematics, engineering, oceanography, meteorology and mechanics, this text provides a detailed introduction to the physical theory of rotating fluids, a significant part of geophysical fluid dynamics. The Navier-Stokes equations are examined in both incompressible and rapidly rotating forms.
Theory of nanolaser devices: Rate equation analysis versus microscopic theory
DEFF Research Database (Denmark)
Lorke, Michael; Skovgård, Troels Suhr; Gregersen, Niels
2013-01-01
A rate equation theory for quantum-dot-based nanolaser devices is developed. We show that these rate equations are capable of reproducing results of a microscopic semiconductor theory, making them an appropriate starting point for complex device simulations of nanolasers. The input...
Theory of inertial waves in rotating fluids
Gelash, Andrey; L'vov, Victor; Zakharov, Vladimir
2017-04-01
The inertial waves emerge in the geophysical and astrophysical flows as a result of Earth rotation [1]. The linear theory of inertial waves is known well [2] while the influence of nonlinear effects of wave interactions are subject of many recent theoretical and experimental studies. The three-wave interactions which are allowed by inertial waves dispersion law (frequency is proportional to cosine of the angle between wave direction and axes of rotation) play an exceptional role. The recent studies on similar type of waves - internal waves, have demonstrated the possibility of formation of natural wave attractors in the ocean (see [3] and references herein). This wave focusing leads to the emergence of strong three-wave interactions and subsequent flows mixing. We believe that similar phenomena can take place for inertial waves in rotating flows. In this work we present theoretical study of three-wave and four-wave interactions for inertial waves. As the main theoretical tool we suggest the complete Hamiltonian formalism for inertial waves in rotating incompressible fluids [4]. We study three-wave decay instability and then present statistical description of inertial waves in the frame of Hamiltonian formalism. We obtain kinetic equation, anisotropic wave turbulence spectra and study the problem of parametric wave turbulence. These spectra were previously found in [5] by helicity decomposition method. Taking this into account we discuss the advantages of suggested Hamiltonian formalism and its future applications. Andrey Gelash thanks support of the RFBR (Grant No.16-31-60086 mol_a_dk) and Dr. E. Ermanyuk, Dr. I. Sibgatullin for the fruitful discussions. [1] Le Gal, P. Waves and instabilities in rotating and stratified flows, Fluid Dynamics in Physics, Engineering and Environmental Applications. Springer Berlin Heidelberg, 25-40, 2013. [2] Greenspan, H. P. The theory of rotating fluids. CUP Archive, 1968. [3] Brouzet, C., Sibgatullin, I. N., Scolan, H., Ermanyuk, E
Extended fluid transport theory in the tokamak plasma edge
Stacey, W. M.
2017-06-01
Fluid theory expressions for the radial particle and energy fluxes and the radial distributions of pressure and temperature in the edge plasma are derived from fundamental conservation (particle, energy, momentum) relations, taking into account kinetic corrections arising from ion orbit loss, and integrated to illustrate the dependence of the observed edge pedestal profile structure on fueling, heating, and electromagnetic and thermodynamic forces. Solution procedures for the fluid plasma and associated neutral transport equations are discussed.
Saint Venant's equation and theory of characteristics
International Nuclear Information System (INIS)
Daubert, Andre
1978-01-01
This theory, in its general scope, will be dealt with through the concrete example of Saint Venant's equations which govern the waves in channels. 1. Finding the characteristic directions. The aim is to interpret the hyperbolic sort of equations to show that there is a way of combining them in order to shape them so that they express a linear relation between the variations of the unknowns when moving along particular differential paths. In certain cases, this differential relation can integrate to lead to Rieman's invariants. 2. Relation between the theory of characteristics and the wave equation. In the linear systems case, it is worthwhile showing simply, how the method of characteristics is linked to the conventional treatment of the wave equation. 3. Relation between the theory of characteristics and the Cauchy problem. The theory of characteristics is frequently introduced as from the Cauchy problem, the characteristics forming the conditions of indetermination of the Cauchy problem [fr
Some functional equations originating from number theory
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
Moreover, we will also study some stability problems of those equations. ... Wisconsin in which he discussed a number of important unsolved problems [18]. ... According to a well-known theorem in number theory, a positive integer of the form.
Poiseuille equation for steady flow of fractal fluid
Tarasov, Vasily E.
2016-07-01
Fractal fluid is considered in the framework of continuous models with noninteger dimensional spaces (NIDS). A recently proposed vector calculus in NIDS is used to get a description of fractal fluid flow in pipes with circular cross-sections. The Navier-Stokes equations of fractal incompressible viscous fluids are used to derive a generalization of the Poiseuille equation of steady flow of fractal media in pipe.
Oscillation theory of linear differential equations
Czech Academy of Sciences Publication Activity Database
Došlý, Ondřej
2000-01-01
Roč. 36, č. 5 (2000), s. 329-343 ISSN 0044-8753 R&D Projects: GA ČR GA201/98/0677 Keywords : discrete oscillation theory %Sturm-Liouville equation%Riccati equation Subject RIV: BA - General Mathematics
Time-dependent quantum fluid density functional theory of hydrogen ...
Indian Academy of Sciences (India)
A time-dependent generalized non-linear Schrödinger equation (GNLSE) of motion was earlier derived in our laboratory by combining density functional theory and quantum fluid dynamics in threedimensional space. In continuation of the work reported previously, the GNLSE is applied to provide additional knowledge on ...
statistical fluid theory for associating fluids containing alternating ...
Indian Academy of Sciences (India)
Statistical associating fluid theory of homonuclear dimerized chain fluids and homonuclear ... The proposed models account for the appropriate .... where gHNM(1,1) is the expression for the contact value of the correlation func- tion of two ...
Coarse-grained forms for equations describing the microscopic motion of particles in a fluid.
Das, Shankar P; Yoshimori, Akira
2013-10-01
Exact equations of motion for the microscopically defined collective density ρ(x,t) and the momentum density ĝ(x,t) of a fluid have been obtained in the past starting from the corresponding Langevin equations representing the dynamics of the fluid particles. In the present work we average these exact equations of microscopic dynamics over the local equilibrium distribution to obtain stochastic partial differential equations for the coarse-grained densities with smooth spatial and temporal dependence. In particular, we consider Dean's exact balance equation for the microscopic density of a system of interacting Brownian particles to obtain the basic equation of the dynamic density functional theory with noise. Our analysis demonstrates that on thermal averaging the dependence of the exact equations on the bare interaction potential is converted to dependence on the corresponding thermodynamic direct correlation functions in the coarse-grained equations.
Vectors, tensors and the basic equations of fluid mechanics
Aris, Rutherford
1962-01-01
Introductory text, geared toward advanced undergraduate and graduate students, applies mathematics of Cartesian and general tensors to physical field theories and demonstrates them in terms of the theory of fluid mechanics. 1962 edition.
Exact collisional moments for plasma fluid theories
Pfefferle, David; Hirvijoki, Eero; Lingam, Manasvi
2017-10-01
The velocity-space moments of the often troublesome nonlinear Landau collision operator are expressed exactly in terms of multi-index Hermite-polynomial moments of the distribution functions. The collisional moments are shown to be generated by derivatives of two well-known functions, namely the Rosenbluth-MacDonald-Judd-Trubnikov potentials for a Gaussian distribution. The resulting formula has a nonlinear dependency on the relative mean flow of the colliding species normalised to the root-mean-square of the corresponding thermal velocities, and a bilinear dependency on densities and higher-order velocity moments of the distribution functions, with no restriction on temperature, flow or mass ratio of the species. The result can be applied to both the classic transport theory of plasmas, that relies on the Chapman-Enskog method, as well as to deriving collisional fluid equations that follow Grad's moment approach. As an illustrative example, we provide the collisional ten-moment equations with exact conservation laws for momentum- and energy-transfer rate.
Charged spin fluid in the Einstein-Cartan theory
International Nuclear Information System (INIS)
de Ritis, R.; Lavorgna, M.; Platania, G.; Stornaiolo, C.
1985-01-01
We propose a variational principle describing a charged spin fluid in the Einstein-Cartan theory. We show that this fluid can be described by the current vector V/sub i/ which has a potential decomposition and generalizes the results given by Taub. We also derive Maxwell's equations in the presence of spin and torsion. The Eulerian description of the fluid is given by an action integral whose Lagrangian is the pressure plus the free Lagrangians of the gravitational and electromagnetic fields. Finally, we analyze the circulation and Bernoulli theorems using the current vector V/sub i/
DEFF Research Database (Denmark)
Ferreira, Luisa; Breil, Martin Peter; Pinho, S. P.
2009-01-01
parameters for the amino acids were fitted to the densities, activity and osmotic coefficients, vapor pressures, and water activity of their aqueous solutions. The solubilities of amino acids in pure and mixed solvent systems were calculated on the basis of the phase equilibrium conditions for a pure solid...... and a fluid phase. The hypothetical melting properties of each amino acid were fitted, to accurately correlate the solubilities in pure water. Only one temperature independent binary parameter is required for each amino acid/solvent pair. The model can accurately describe the solubility of the amino acids...... in water, but the correlation for the solubility in pure alcohols was not so satisfactory. The solubility in mixed solvents (ternary systems) was predicted on the basis of the modeling of the solubility in pure solvents, without any additional fitting of the parameters, and the results achieved were...
Fluid dynamics theory, computation, and numerical simulation
Pozrikidis, C
2001-01-01
Fluid Dynamics Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes Two distinguishing features of the discourse are solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty Matlab codes are presented and discussed for a broad...
Fluid Dynamics Theory, Computation, and Numerical Simulation
Pozrikidis, Constantine
2009-01-01
Fluid Dynamics: Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner. The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming. This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice. There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes. Two distinguishing features of the discourse are: solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty. Matlab codes are presented and discussed for ...
Relativistic nuclear fluid dynamics and VUU kinetic theory
International Nuclear Information System (INIS)
Molitoris, J.J.; Hahn, D.; Alonso, C.; Collazo, I.; D'Alessandris, P.; McAbee, T.; Wilson, J.; Zingman, J.
1987-01-01
Relativistic kinetic theory may be used to understand hot dense hadronic matter. We address the questions of collective flow and pion production in a 3 D relativistic fluid dynamic model and in the VUU microscopic theory. The GSI/LBL collective flow and pion data point to a stiff equation of state. The effect of the nuclear equation of state on the thermodynamic parameters is discussed. The properties of dense hot hadronic matter are studied in Au + Au collisions from 0.1 to 10 GeV/nucleon. 22 refs., 5 figs
Partial Differential Equations and Solitary Waves Theory
Wazwaz, Abdul-Majid
2009-01-01
"Partial Differential Equations and Solitary Waves Theory" is a self-contained book divided into two parts: Part I is a coherent survey bringing together newly developed methods for solving PDEs. While some traditional techniques are presented, this part does not require thorough understanding of abstract theories or compact concepts. Well-selected worked examples and exercises shall guide the reader through the text. Part II provides an extensive exposition of the solitary waves theory. This part handles nonlinear evolution equations by methods such as Hirota’s bilinear method or the tanh-coth method. A self-contained treatment is presented to discuss complete integrability of a wide class of nonlinear equations. This part presents in an accessible manner a systematic presentation of solitons, multi-soliton solutions, kinks, peakons, cuspons, and compactons. While the whole book can be used as a text for advanced undergraduate and graduate students in applied mathematics, physics and engineering, Part II w...
Balance equations for a viscous fluid from a Hamilton type variational principle
International Nuclear Information System (INIS)
Fierros Palacios, A.
1992-01-01
The partial differential field equations for any viscous fluid are obtained from the Lagrangian formalism as in classical field theory. An action functional is introduced as a space-time integral over a region of three-dimensional Euclidean space, of a Lagrangian density function of certain field variables. A Hamilton type extremum action principle is postulated with adequate boundary conditions, and a set of differential field equations is derived. With an appropriate Lagrangian density of the T-V type, the equation of motion for any viscous fluid is reproduced. A theorem referring to the invariance of the action under time variations lead to the generalized energy balance equation for the viscous fluid and to the energy balance equation proper. The same theoretical approach can be used to solve the problem of potential flow. (Author)
Asymptotic solutions and spectral theory of linear wave equations
International Nuclear Information System (INIS)
Adam, J.A.
1982-01-01
This review contains two closely related strands. Firstly the asymptotic solution of systems of linear partial differential equations is discussed, with particular reference to Lighthill's method for obtaining the asymptotic functional form of the solution of a scalar wave equation with constant coefficients. Many of the applications of this technique are highlighted. Secondly, the methods and applications of the theory of the reduced (one-dimensional) wave equation - particularly spectral theory - are discussed. While the breadth of application and power of the techniques is emphasised throughout, the opportunity is taken to present to a wider readership, developments of the methods which have occured in some aspects of astrophysical (particularly solar) and geophysical fluid dynamics. It is believed that the topics contained herein may be of relevance to the applied mathematician or theoretical physicist interest in problems of linear wave propagation in these areas. (orig./HSI)
Common intersection points in dense fluids via equations of state
International Nuclear Information System (INIS)
Parsafar, G. A.; Noorian, R.
2001-01-01
Some new of state which are derived for dense fluids in recent years, namely the linear isotherm regularity, the dense system equation of state, Ihm-Song-Mason equation of state, and a newly derived semi-empirical equation of state have used to investigate the common intersection point of isobaric expansivity (α p ) in dense fluids. We have shown that the accuracy of these equations of state in predicting such a common intersection point is reduced from the new semi-imperial equation of state, dense system equation of state, linear isotherm regularity, to Ihm-Song-Mason equation of state. respectively. Form physical point of view, the van der Waals equation of state is used to investigate such an intersection point. It is shown that the van der Waals repulsion forces and temperature dependency of the effective molecular diameter are important for existence of this common point. Finally, we have shown that the common intersection points of the isotherms of thermal pressure coefficient, the isotherms of heat capacity at constant volume, and the iso chores of internal pressure for a fluid are related to each other. Also, the common intersection points of the reduced bulk modulus and 1/(Tα p ) for isotherms of a fluid both appear at the same density
Thermodynamic perturbation theory for fused hard-sphere and hard-disk chain fluids
International Nuclear Information System (INIS)
Zhou, Y.; Hall, C.K.; Stell, G.
1995-01-01
We find that first-order thermodynamic perturbation theory (TPT1) which incorporates the reference monomer fluid used in the generalized Flory--AB (GF--AB) theory yields an equation of state for fused hard-sphere (FHS) chain fluids that has accuracy comparable to the GF--AB and GF--dimer--AC theories. The new TPT1 equation of state is significantly more accurate than other extensions of the TPT1 theory to FHS chain fluids. The TPT1 is also extended to two-dimensional fused hard-disk chain fluids. For the fused hard-disk dimer fluid, the extended TPT1 equation of state is found to be more accurate than the Boublik hard-disk dimer equation of state. copyright 1995 American Institute of Physics
Spectral theories for linear differential equations
International Nuclear Information System (INIS)
Sell, G.R.
1976-01-01
The use of spectral analysis in the study of linear differential equations with constant coefficients is not only a fundamental technique but also leads to far-reaching consequences in describing the qualitative behaviour of the solutions. The spectral analysis, via the Jordan canonical form, will not only lead to a representation theorem for a basis of solutions, but will also give a rather precise statement of the (exponential) growth rates of various solutions. Various attempts have been made to extend this analysis to linear differential equations with time-varying coefficients. The most complete such extensions is the Floquet theory for equations with periodic coefficients. For time-varying linear differential equations with aperiodic coefficients several authors have attempted to ''extend'' the Foquet theory. The precise meaning of such an extension is itself a problem, and we present here several attempts in this direction that are related to the general problem of extending the spectral analysis of equations with constant coefficients. The main purpose of this paper is to introduce some problems of current research. The primary problem we shall examine occurs in the context of linear differential equations with almost periodic coefficients. We call it ''the Floquet problem''. (author)
Behavioral momentum theory: equations and applications.
Nevin, John A; Shahan, Timothy A
2011-01-01
Behavioral momentum theory provides a quantitative account of how reinforcers experienced within a discriminative stimulus context govern the persistence of behavior that occurs in that context. The theory suggests that all reinforcers obtained in the presence of a discriminative stimulus increase resistance to change, regardless of whether those reinforcers are contingent on the target behavior, are noncontingent, or are even contingent on an alternative behavior. In this paper, we describe the equations that constitute the theory and address their application to issues of particular importance in applied settings. The theory provides a framework within which to consider the effects of interventions such as extinction, noncontingent reinforcement, differential reinforcement of alternative behavior, and other phenomena (e.g., resurgence). Finally, the theory predicts some counterintuitive and potentially counterproductive effects of alternative reinforcement, and can serve as an integrative guide for intervention when its terms are identified with the relevant conditions of applied settings.
Euler's fluid equations: Optimal control vs optimization
Energy Technology Data Exchange (ETDEWEB)
Holm, Darryl D., E-mail: d.holm@ic.ac.u [Department of Mathematics, Imperial College London, SW7 2AZ (United Kingdom)
2009-11-23
An optimization method used in image-processing (metamorphosis) is found to imply Euler's equations for incompressible flow of an inviscid fluid, without requiring that the Lagrangian particle labels exactly follow the flow lines of the Eulerian velocity vector field. Thus, an optimal control problem and an optimization problem for incompressible ideal fluid flow both yield the same Euler fluid equations, although their Lagrangian parcel dynamics are different. This is a result of the gauge freedom in the definition of the fluid pressure for an incompressible flow, in combination with the symmetry of fluid dynamics under relabeling of their Lagrangian coordinates. Similar ideas are also illustrated for SO(N) rigid body motion.
Application of the RISM theory to Lennard-Jones interaction site molecular fluids
International Nuclear Information System (INIS)
Johnson, E.; Hazoume, R.P.
1979-01-01
It seems that reference interaction site model (RISM) theory atom--atom distribution functions have been obtained directly from the RISM equations only for fused hard sphere molecular fluids. RISM distribution functions for Lennard-Jones interaction site fluids are presented. Results presented suggest that these distribution functions are as accurate as RISM distribution functions for fused hard sphere molecular fluids
On the current-voltage relationship in fluid theory
Directory of Open Access Journals (Sweden)
P. Janhunen
1999-01-01
Full Text Available The kinetic theory of precipitating electrons with Maxwellian source plasma yields the well-known current-voltage relationship (CV-relationship; Knight formula, which can in most cases be accurately approximated by a reduced linear formula. Our question is whether it is possible to obtain this CV-relationship from fluid theory, and if so, to what extent it is physically equivalent with the more accurate kinetic counterpart. An answer to this question is necessary before trying to understand how one could combine time-dependent and transient phenomena such as Alfvénic waves with a slowly evolving background described by the CV-relationship. We first compute the fluid quantity profiles (density, pressure etc. along a flux tube based on kinetic theory solution. A parallel potential drop accumulates plasma (and pressure below it, which explains why the current is linearly proportional to the potential drop in the kinetic theory even though the velocity of the accelerated particles is only proportional to the square root of the accelerating voltage. Electron fluid theory reveals that the kinetic theory results can be reproduced, except for different numerical constants, if and only if the polytropic index γ is equal to three, corresponding to one-dimensional motion. The convective derivative term v·∇v provides the equivalent of the "mirror force" and is therefore important to include in a fluid theory trying to describe a CV-relationship. In one-fluid equations the parallel electric field, at least in its functional form, emerges self-consistently. We find that the electron density enhancement below the potential drop disappears because the magnetospheric ions would be unable to neutralize it, and a square root CV-relationship results, in disagreement with kinetic theory and observations. Also, the potential drop concentrates just above the ionosphere, which is at odds with observations as well. To resolve this puzzle, we show that considering
On the current-voltage relationship in fluid theory
Directory of Open Access Journals (Sweden)
P. Janhunen
Full Text Available The kinetic theory of precipitating electrons with Maxwellian source plasma yields the well-known current-voltage relationship (CV-relationship; Knight formula, which can in most cases be accurately approximated by a reduced linear formula. Our question is whether it is possible to obtain this CV-relationship from fluid theory, and if so, to what extent it is physically equivalent with the more accurate kinetic counterpart. An answer to this question is necessary before trying to understand how one could combine time-dependent and transient phenomena such as Alfvénic waves with a slowly evolving background described by the CV-relationship. We first compute the fluid quantity profiles (density, pressure etc. along a flux tube based on kinetic theory solution. A parallel potential drop accumulates plasma (and pressure below it, which explains why the current is linearly proportional to the potential drop in the kinetic theory even though the velocity of the accelerated particles is only proportional to the square root of the accelerating voltage. Electron fluid theory reveals that the kinetic theory results can be reproduced, except for different numerical constants, if and only if the polytropic index γ is equal to three, corresponding to one-dimensional motion. The convective derivative term v·∇v provides the equivalent of the "mirror force" and is therefore important to include in a fluid theory trying to describe a CV-relationship. In one-fluid equations the parallel electric field, at least in its functional form, emerges self-consistently. We find that the electron density enhancement below the potential drop disappears because the magnetospheric ions would be unable to neutralize it, and a square root CV-relationship results, in disagreement with kinetic theory and observations. Also, the potential drop concentrates just above the ionosphere, which is at odds with observations as well. To resolve this puzzle, we show that considering
Fluid Mechanics An Introduction to the Theory of Fluid Flows
Durst, Franz
2008-01-01
Advancements of fluid flow measuring techniques and of computational methods have led to new ways to treat laminar and turbulent flows. These methods are extensively used these days in research and engineering practise. This also requires new ways to teach the subject to students at higher educational institutions in an introductory manner. The book provides the knowledge to students in engineering and natural science needed to enter fluid mechanics applications in various fields. Analytical treatments are provided, based on the Navier-Stokes equations. Introductions are also given into numerical and experimental methods applied to flows. The main benefit the reader will derive from the book is a sound introduction into all aspects of fluid mechanics covering all relevant subfields.
Mathematical theory of compressible viscous fluids analysis and numerics
Feireisl, Eduard; Pokorný, Milan
2016-01-01
This book offers an essential introduction to the mathematical theory of compressible viscous fluids. The main goal is to present analytical methods from the perspective of their numerical applications. Accordingly, we introduce the principal theoretical tools needed to handle well-posedness of the underlying Navier-Stokes system, study the problems of sequential stability, and, lastly, construct solutions by means of an implicit numerical scheme. Offering a unique contribution – by exploring in detail the “synergy” of analytical and numerical methods – the book offers a valuable resource for graduate students in mathematics and researchers working in mathematical fluid mechanics. Mathematical fluid mechanics concerns problems that are closely connected to real-world applications and is also an important part of the theory of partial differential equations and numerical analysis in general. This book highlights the fact that numerical and mathematical analysis are not two separate fields of mathematic...
Graph theory and the Virasoro master equation
International Nuclear Information System (INIS)
Obers, N.A.J.
1991-01-01
A brief history of affine Lie algebra, the Virasoro algebra and its culmination in the Virasoro master equation is given. By studying ansaetze of the master equation, the author obtains exact solutions and gains insight in the structure of large slices of affine-Virasoro space. He finds an isomorphism between the constructions in the ansatz SO(n) diag , which is a set of unitary, generically irrational affine-Virasoro constructions on SO(n), and the unlabeled graphs of order n. On the one hand, the conformal constructions, are classified by the graphs, while, conversely, a group-theoretic and conformal field-theoretic identification is obtained for every graph of graph theory. He also defines a class of magic Lie group bases in which the Virasoro master equation admits a simple metric ansatz {g metric }, whose structure is visible in the high-level expansion. When a magic basis is real on compact g, the corresponding g metric is a large system of unitary, generically irrational conformal field theories. Examples in this class include the graph-theory ansatz SO(n) diag in the Cartesian basis of SO(n), and the ansatz SU(n) metric in the Pauli-like basis of SU(n). Finally, he defines the 'sine-area graphs' of SU(n), which label the conformal field theories of SU(n) metric , and he notes that, in similar fashion, each magic basis of g defines a generalized graph theory on g which labels the conformal field theories of g metric
Mathematical theory of compressible fluid flow
von Mises, Richard
2004-01-01
A pioneer in the fields of statistics and probability theory, Richard von Mises (1883-1953) made notable advances in boundary-layer-flow theory and airfoil design. This text on compressible flow, unfinished upon his sudden death, was subsequently completed in accordance with his plans, and von Mises' first three chapters were augmented with a survey of the theory of steady plane flow. Suitable as a text for advanced undergraduate and graduate students - as well as a reference for professionals - Mathematical Theory of Compressible Fluid Flow examines the fundamentals of high-speed flows, with
Handbook of functional equations stability theory
2014-01-01
This handbook consists of seventeen chapters written by eminent scientists from the international mathematical community, who present important research works in the field of mathematical analysis and related subjects, particularly in the Ulam stability theory of functional equations. The book provides an insight into a large domain of research with emphasis to the discussion of several theories, methods and problems in approximation theory, analytic inequalities, functional analysis, computational algebra and applications. The notion of stability of functional equations has its origins with S. M. Ulam, who posed the fundamental problem for approximate homomorphisms in 1940 and with D. H. Hyers, Th. M. Rassias, who provided the first significant solutions for additive and linear mappings in 1941 and 1978, respectively. During the last decade the notion of stability of functional equations has evolved into a very active domain of mathematical research with...
Exact solutions for a system of nonlinear plasma fluid equations
International Nuclear Information System (INIS)
Prahovic, M.G.; Hazeltine, R.D.; Morrison, P.J.
1991-04-01
A method is presented for constructing exact solutions to a system of nonlinear plasma fluid equations that combines the physics of reduced magnetohydrodynamics and the electrostatic drift-wave description of the Charney-Hasegawa-Mima equation. The system has nonlinearities that take the form of Poisson brackets involving the fluid field variables. The method relies on modifying a class of simple equilibrium solutions, but no approximations are made. A distinguishing feature is that the original nonlinear problem is reduced to the solution of two linear partial differential equations, one fourth-order and the other first-order. The first-order equation has Hamiltonian characteristics and is easily integrated, supplying information about the general structure of solutions. 6 refs
Eight equation model for arbitrary shaped pipe conveying fluid
International Nuclear Information System (INIS)
Gale, J.; Tiselj, I.
2006-01-01
Linear eight-equation system for two-way coupling of single-phase fluid transient and arbitrary shaped one-dimensional pipeline movement is described and discussed. The governing phenomenon described with this system is also known as Fluid-Structure Interaction. Standard Skalak's four-equation model for axial coupling was improved with additional four Timoshenko's beam equations for description of flexural displacements and rotations. In addition to the conventional eight-equation system that enables coupling of straight sections, the applied mathematical model was improved for description of the arbitrary shaped pipeline located in two-dimensional plane. The applied model was solved with second-order accurate numerical method that is based on Godounov's characteristic upwind schemes. The model was successfully used for simulation of the rod impact induced transient and conventional instantaneous valve closure induced transient in the tank-pipe-valve system. (author)
Cosmological Perturbation Theory Using the Schrödinger Equation
Szapudi, István; Kaiser, Nick
2003-01-01
We introduce the theory of nonlinear cosmological perturbations using the correspondence limit of the Schrödinger equation. The resulting formalism is equivalent to using the collisionless Boltzmann (or Vlasov) equations, which remain valid during the whole evolution, even after shell crossing. Other formulations of perturbation theory explicitly break down at shell crossing, e.g., Eulerean perturbation theory, which describes gravitational collapse in the fluid limit. This Letter lays the groundwork by introducing the new formalism, calculating the perturbation theory kernels that form the basis of all subsequent calculations. We also establish the connection with conventional perturbation theories, by showing that third-order tree-level results, such as bispectrum, skewness, cumulant correlators, and three-point function, are exactly reproduced in the appropriate expansion of our results. We explicitly show that cumulants up to N=5 predicted by Eulerian perturbation theory for the dark matter field δ are exactly recovered in the corresponding limit. A logarithmic mapping of the field naturally arises in the Schrödinger context, which means that tree-level perturbation theory translates into (possibly incomplete) loop corrections for the conventional perturbation theory. We show that the first loop correction for the variance is σ2=σ2L+(-1.14- n)σ4L for a field with spectral index n. This yields 1.86 and 0.86 for n=-3 and -2, respectively, to be compared with the exact loop order corrections 1.82 and 0.88. Thus, our tree-level theory recovers the dominant part of first-order loop corrections of the conventional theory, while including (partial) loop corrections to infinite order in terms of δ.
Perfect Fluid Theory and its Extensions
Jackiw, R.; Nair, V. P.; Pi, S. -Y.; Polychronakos, A. P.
2004-01-01
We review the canonical theory for perfect fluids, in Eulerian and Lagrangian formulations. The theory is related to a description of extended structures in higher dimensions. Internal symmetry and supersymmetry degrees of freedom are incorporated. Additional miscellaneous subjects that are covered include physical topics concerning quantization, as well as mathematical issues of volume preserving diffeomorphisms and representations of Chern-Simons terms (= vortex or magnetic helicity).
Hamiltonian models for the Madelung fluid and generalized Langevin equations
International Nuclear Information System (INIS)
Nonnenmacher, T.F.
1985-01-01
We present a Hamiltonian formulation of some type of an 'electromagnetic' Madelung fluid leading to a fluid mechanics interpretation of the Aharonov-Bohm effect and to a subsidary condition to be required in order to make the correspondence between Schroedinger's quantum mechanics and Madelung's fluid mechanics unique. Then we discuss some problems related with the Brownian oscillator. Our aim is to start out with a Hamiltonian for the composite system with surrounding heat bath) and to finally arrive at a stochastic differential equation with completely determined statistical properties. (orig./HSI)
Black Holes with Anisotropic Fluid in Lyra Scalar-Tensor Theory
Directory of Open Access Journals (Sweden)
Melis ULU DOĞRU
2018-02-01
Full Text Available In this paper, we investigate distribution of anisotropic fluid which is a resource of black holes in regard to Lyra scalar-tensor theory. As part of the theory, we obtain field equations of spherically symmetric space-time with anisotropic fluid. By using field equations, we suggest distribution of anisotropic fluid, responsible for space-time geometries such as Schwarzschild, Reissner-Nordström, Minkowski type, de Sitter type, Anti-de Sitter type, BTZ and charged BTZ black holes. Finally, we discuss obtained pressures and density of the fluid for different values of arbitrary constants, geometrically and physically.
Density functional theory of polydisperse fluid interfaces
International Nuclear Information System (INIS)
Baus, M.; Bellier-Castella, L.; Xu, H.
2002-01-01
Most colloids usually exhibit one or several polydispersities. A natural framework for the theoretical description of polydisperse systems is provided by the extension of density functional theory to 'continuous' mixtures. This will be illustrated here by the study of both the bulk and interfacial properties of a simple van der Waals model for a polydisperse colloidal fluid. (author)
Fluid dynamics theory, computation, and numerical simulation
Pozrikidis, C
2017-01-01
This book provides an accessible introduction to the basic theory of fluid mechanics and computational fluid dynamics (CFD) from a modern perspective that unifies theory and numerical computation. Methods of scientific computing are introduced alongside with theoretical analysis and MATLAB® codes are presented and discussed for a broad range of topics: from interfacial shapes in hydrostatics, to vortex dynamics, to viscous flow, to turbulent flow, to panel methods for flow past airfoils. The third edition includes new topics, additional examples, solved and unsolved problems, and revised images. It adds more computational algorithms and MATLAB programs. It also incorporates discussion of the latest version of the fluid dynamics software library FDLIB, which is freely available online. FDLIB offers an extensive range of computer codes that demonstrate the implementation of elementary and advanced algorithms and provide an invaluable resource for research, teaching, classroom instruction, and self-study. This ...
Lorentz-like covariant equations of non-relativistic fluids
International Nuclear Information System (INIS)
Montigny, M de; Khanna, F C; Santana, A E
2003-01-01
We use a geometrical formalism of Galilean invariance to build various hydrodynamics models. It consists in embedding the Newtonian spacetime into a non-Euclidean 4 + 1 space and provides thereby a procedure that unifies models otherwise apparently unrelated. After expressing the Navier-Stokes equation within this framework, we show that slight modifications of its Lagrangian allow us to recover the Chaplygin equation of state as well as models of superfluids for liquid helium (with both its irrotational and rotational components). Other fluid equations are also expressed in a covariant form
Two-fluid static spherical configurations with linear mass function in the Einstein-Cartan theory
International Nuclear Information System (INIS)
Gallakhmetov, A.M.
2002-01-01
In the framework of the Einstein-Cartan theory, two-fluid static spherical configurations with linear mass function are considered. One of these modelling anisotropic matter distributions within star and the other fluid is a perfect fluid representing a source of torsion. It is shown that the solutions of the Einstein equations for anisotropic relativistic spheres in General Relativity may generate the solutions in the Einstein-Cartan theory. Some exact solutions are obtained
Book review: Partial Differential Equations and Fluid Mechanics
Muntean, A.
2011-01-01
The baak is the result of the workshop Partial Differential Equations and Fluid Dynamics that look place at the Mathematics Institute of the University of Warwick. May 21st - 23rd, 2007. It contains ten review and research papers which provide an accessible summary of a wide range of active research
Nonlinear responses of chiral fluids from kinetic theory
Hidaka, Yoshimasa; Pu, Shi; Yang, Di-Lun
2018-01-01
The second-order nonlinear responses of inviscid chiral fluids near local equilibrium are investigated by applying the chiral kinetic theory (CKT) incorporating side-jump effects. It is shown that the local equilibrium distribution function can be nontrivially introduced in a comoving frame with respect to the fluid velocity when the quantum corrections in collisions are involved. For the study of anomalous transport, contributions from both quantum corrections in anomalous hydrodynamic equations of motion and those from the CKT and Wigner functions are considered under the relaxation-time (RT) approximation, which result in anomalous charge Hall currents propagating along the cross product of the background electric field and the temperature (or chemical-potential) gradient and of the temperature and chemical-potential gradients. On the other hand, the nonlinear quantum correction on the charge density vanishes in the classical RT approximation, which in fact satisfies the matching condition given by the anomalous equation obtained from the CKT.
Plasma balance equations based on orbit theory
International Nuclear Information System (INIS)
Lehnert, B.
1982-01-01
A set of plasma balance equations is proposed which is based on orbit theory and the particle distribution function, to provide means for theoretical analysis of a number of finite Larmor radius (FLR) phenomena without use of the Vlasov equation. Several important FLR effects originate from the inhomogeneity of an electric field in the plasma. The exact solution of a simple case shows that this inhomogeneity introduces fundamental changes in the physics of the particle motion. Thus, the periodic Larmor motion (gyration) is shifted in frequency and becomes elliptically polarized. Further, the non-periodic guiding-centre drift obtains additional components, part of which are accelerated such as to make the drift orbits intersect the equipotential surfaces of a static electric field. An attempt is finally made to classify the FLR effects, also with the purpose of identifying phenomena which have so far not been investigated. (author)
Comparison of Kernel Equating and Item Response Theory Equating Methods
Meng, Yu
2012-01-01
The kernel method of test equating is a unified approach to test equating with some advantages over traditional equating methods. Therefore, it is important to evaluate in a comprehensive way the usefulness and appropriateness of the Kernel equating (KE) method, as well as its advantages and disadvantages compared with several popular item…
Global Solutions to the Coupled Chemotaxis-Fluid Equations
Duan, Renjun
2010-08-10
In this paper, we are concerned with a model arising from biology, which is a coupled system of the chemotaxis equations and the viscous incompressible fluid equations through transport and external forcing. The global existence of solutions to the Cauchy problem is investigated under certain conditions. Precisely, for the Chemotaxis-Navier-Stokes system over three space dimensions, we obtain global existence and rates of convergence on classical solutions near constant states. When the fluid motion is described by the simpler Stokes equations, we prove global existence of weak solutions in two space dimensions for cell density with finite mass, first-order spatial moment and entropy provided that the external forcing is weak or the substrate concentration is small. © Taylor & Francis Group, LLC.
Two-Phase Fluid Simulation Using a Diffuse Interface Model with Peng--Robinson Equation of State
Qiao, Zhonghua; Sun, Shuyu
2014-01-01
In this paper, two-phase fluid systems are simulated using a diffusive interface model with the Peng-Robinson equation of state (EOS), a widely used realistic EOS for hydrocarbon fluid in the petroleum industry. We first utilize the gradient theory
Mercier Franco, Luís Fernando; Castier, Marcelo; Economou, Ioannis G
2017-12-07
We show that the Zwanzig first-order perturbation theory can be obtained directly from a truncated Taylor series expansion of a two-body perturbation theory and that such truncation provides a more accurate prediction of thermodynamic properties than the full two-body perturbation theory. This unexpected result is explained by the quality of the resulting approximation for the fluid radial distribution function. We prove that the first-order and the two-body perturbation theories are based on different approximations for the fluid radial distribution function. To illustrate the calculations, the square-well fluid is adopted. We develop an analytical expression for the two-body perturbed Helmholtz free energy for the square-well fluid. The equation of state obtained using such an expression is compared to the equation of state obtained from the first-order approximation. The vapor-liquid coexistence curve and the supercritical compressibility factor of a square-well fluid are calculated using both equations of state and compared to Monte Carlo simulation data. Finally, we show that the approximation for the fluid radial distribution function given by the first-order perturbation theory provides closer values to the ones calculated via Monte Carlo simulations. This explains why such theory gives a better description of the fluid thermodynamic behavior.
Muskhelishvili, N I
2011-01-01
Singular integral equations play important roles in physics and theoretical mechanics, particularly in the areas of elasticity, aerodynamics, and unsteady aerofoil theory. They are highly effective in solving boundary problems occurring in the theory of functions of a complex variable, potential theory, the theory of elasticity, and the theory of fluid mechanics.This high-level treatment by a noted mathematician considers one-dimensional singular integral equations involving Cauchy principal values. Its coverage includes such topics as the Hölder condition, Hilbert and Riemann-Hilbert problem
Difference and differential equations with applications in queueing theory
Haghighi, Aliakbar Montazer
2013-01-01
A Useful Guide to the Interrelated Areas of Differential Equations, Difference Equations, and Queueing Models Difference and Differential Equations with Applications in Queueing Theory presents the unique connections between the methods and applications of differential equations, difference equations, and Markovian queues. Featuring a comprehensive collection of
Difference equations theory, applications and advanced topics
Mickens, Ronald E
2015-01-01
THE DIFFERENCE CALCULUS GENESIS OF DIFFERENCE EQUATIONS DEFINITIONS DERIVATION OF DIFFERENCE EQUATIONS EXISTENCE AND UNIQUENESS THEOREM OPERATORS ∆ AND E ELEMENTARY DIFFERENCE OPERATORS FACTORIAL POLYNOMIALS OPERATOR ∆−1 AND THE SUM CALCULUS FIRST-ORDER DIFFERENCE EQUATIONS INTRODUCTION GENERAL LINEAR EQUATION CONTINUED FRACTIONS A GENERAL FIRST-ORDER EQUATION: GEOMETRICAL METHODS A GENERAL FIRST-ORDER EQUATION: EXPANSION TECHNIQUES LINEAR DIFFERENCE EQUATIONSINTRODUCTION LINEARLY INDEPENDENT FUNCTIONS FUNDAMENTAL THEOREMS FOR HOMOGENEOUS EQUATIONSINHOMOGENEOUS EQUATIONS SECOND-ORDER EQUATIONS STURM-LIOUVILLE DIFFERENCE EQUATIONS LINEAR DIFFERENCE EQUATIONS INTRODUCTION HOMOGENEOUS EQUATIONS CONSTRUCTION OF A DIFFERENCE EQUATION HAVING SPECIFIED SOLUTIONS RELATIONSHIP BETWEEN LINEAR DIFFERENCE AND DIFFERENTIAL EQUATIONS INHOMOGENEOUS EQUATIONS: METHOD OF UNDETERMINED COEFFICIENTS INHOMOGENEOUS EQUATIONS: OPERATOR METHODS z-TRANSFORM METHOD SYSTEMS OF DIFFERENCE EQUATIONS LINEAR PARTIAL DIFFERENCE EQUATI...
Attractors of equations of non-Newtonian fluid dynamics
International Nuclear Information System (INIS)
Zvyagin, V G; Kondrat'ev, S K
2014-01-01
This survey describes a version of the trajectory-attractor method, which is applied to study the limit asymptotic behaviour of solutions of equations of non-Newtonian fluid dynamics. The trajectory-attractor method emerged in papers of the Russian mathematicians Vishik and Chepyzhov and the American mathematician Sell under the condition that the corresponding trajectory spaces be invariant under the translation semigroup. The need for such an approach was caused by the fact that for many equations of mathematical physics for which the Cauchy initial-value problem has a global (weak) solution with respect to the time, the uniqueness of such a solution has either not been established or does not hold. In particular, this is the case for equations of fluid dynamics. At the same time, trajectory spaces invariant under the translation semigroup could not be constructed for many equations of non-Newtonian fluid dynamics. In this connection, a different approach to the construction of trajectory attractors for dissipative systems was proposed in papers of Zvyagin and Vorotnikov without using invariance of trajectory spaces under the translation semigroup and is based on the topological lemma of Shura-Bura. This paper presents examples of equations of non-Newtonian fluid dynamics (the Jeffreys system describing movement of the Earth's crust, the model of motion of weak aqueous solutions of polymers, a system with memory) for which the aforementioned construction is used to prove the existence of attractors in both the autonomous and the non-autonomous cases. At the beginning of the paper there is also a brief exposition of the results of Ladyzhenskaya on the existence of attractors of the two-dimensional Navier-Stokes system and the result of Vishik and Chepyzhov for the case of attractors of the three-dimensional Navier-Stokes system. Bibliography: 34 titles
Numerical solution of plasma fluid equations using locally refined grids
International Nuclear Information System (INIS)
Colella, P.
1997-01-01
This paper describes a numerical method for the solution of plasma fluid equations on block-structured, locally refined grids. The plasma under consideration is typical of those used for the processing of semiconductors. The governing equations consist of a drift-diffusion model of the electrons and an isothermal model of the ions coupled by Poisson's equation. A discretization of the equations is given for a uniform spatial grid, and a time-split integration scheme is developed. The algorithm is then extended to accommodate locally refined grids. This extension involves the advancement of the discrete system on a hierarchy of levels, each of which represents a degree of refinement, together with synchronization steps to ensure consistency across levels. A brief discussion of a software implementation is followed by a presentation of numerical results
Time-dependent quantum fluid density functional theory of hydrogen ...
Indian Academy of Sciences (India)
WINTEC
density functional theory; quantum fluid dynamics. 1. Introduction ... dynamics of strongly non-linear interaction of atoms with intense ... theory and quantum fluid dynamics in real space. .... clear evidence of bond softening since density in the.
Multicomponent fluid flow analysis using a new set of conservation equations
International Nuclear Information System (INIS)
Kamali, Reza; Emdad, Homayoon; Alishahi, Mohammad M
2008-01-01
In this work hydrodynamics of multicomponent ideal gas mixtures have been studied. Starting from the kinetic equations, the Eulerian approach is used to derive a new set of conservation equations for the multicomponent system where each component may have different velocity and kinetic temperature. The equations are based on the Grad's method of moment derived from the kinetic model in a relaxation time approximation (RTA). Based on this model which contains separate equation sets for each component of the system, a computer code has been developed for numerical computation of compressible flows of binary gas mixture in generalized curvilinear boundary conforming coordinates. Since these equations are similar to the Navier-Stokes equations for the single fluid systems, the same numerical methods are applied to these new equations. The Roe's numerical scheme is used to discretize the convective terms of governing fluid flow equations. The prepared algorithm and the computer code are capable of computing and presenting flow fields of each component of the system separately as well as the average flow field of the multicomponent gas system as a whole. Comparison of the present code results with those of a more common algorithm based on the mixture theory in a supersonic converging-diverging nozzle provides the validation of the present formulation. Afterwards, a more involved nozzle cooling problem with a binary ideal gas (helium-xenon) is chosen to compare the present results with those of the ordinary mixture theory. The present model provides the details of the flow fields of each component separately which is not available otherwise. It is also shown that the separate fluids treatment, such as the present study, is crucial when considering time scales on the order of (or shorter than) the intercollisions relaxation times.
Cotter, C J; Gottwald, G A; Holm, D D
2017-09-01
In Holm (Holm 2015 Proc. R. Soc. A 471 , 20140963. (doi:10.1098/rspa.2014.0963)), stochastic fluid equations were derived by employing a variational principle with an assumed stochastic Lagrangian particle dynamics. Here we show that the same stochastic Lagrangian dynamics naturally arises in a multi-scale decomposition of the deterministic Lagrangian flow map into a slow large-scale mean and a rapidly fluctuating small-scale map. We employ homogenization theory to derive effective slow stochastic particle dynamics for the resolved mean part, thereby obtaining stochastic fluid partial equations in the Eulerian formulation. To justify the application of rigorous homogenization theory, we assume mildly chaotic fast small-scale dynamics, as well as a centring condition. The latter requires that the mean of the fluctuating deviations is small, when pulled back to the mean flow.
On the Schrodinger equation in fluid-dynamical form
International Nuclear Information System (INIS)
Wong, C.Y.
1976-01-01
The fluid-dynamical form of the Schrodinger equations is studied to examine the nature of the quantum forces arising from the quantum potential of Madelung and Bohm. It is found that they are in the form of a stress tensor having diagonal and nondiagonal components. Future studies of these quantum stress tensors in a many-body system may shed some light on the mechanism of spontaneous symmetry breaking and the generation of vorticity in many nuclear systems
Review and limitations of 3D plasma blob modeling with reduced collisional fluid equations
Energy Technology Data Exchange (ETDEWEB)
Angus, Justin R., E-mail: jangus@ucsd.edu [University of California, San Diego, La Jolla, CA (United States); Umansky, Maxim V. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Krashenninikov, Sergei I. [University of California, San Diego, La Jolla, CA (United States)
2013-07-15
Recent 3D studies on plasma blobs (coherent structures found in the edge region of magnetic confinement devices) have demonstrated that the drift wave instability can strongly limit the blob’s coherency and cross field convective nature that is predicted by 2D theory. However, the dominant unstable drift wave modes that effect plasma blobs were found to exist in parameter regimes that only marginally satisfied several of the major assumptions considered for the validity of the reduced collisional fluid equations used in the study. Namely, the neglect of electron heat flow, finite electron mean free path effects, and thermal ions. A follow up study demonstrated how the drift wave instability might change if a set of equations that does not suffer from the limitations mentioned above were considered. In the present paper, the results of this later work are used to discuss the limitations on using the collisional fluid equations for 3D studies of plasma blobs.
Fermionic covariant prolongation structure theory for supernonlinear evolution equation
International Nuclear Information System (INIS)
Cheng Jipeng; Wang Shikun; Wu Ke; Zhao Weizhong
2010-01-01
We investigate the superprincipal bundle and its associated superbundle. The super(nonlinear)connection on the superfiber bundle is constructed. Then by means of the connection theory, we establish the fermionic covariant prolongation structure theory of the supernonlinear evolution equation. In this geometry theory, the fermionic covariant fundamental equations determining the prolongation structure are presented. As an example, the supernonlinear Schroedinger equation is analyzed in the framework of this fermionic covariant prolongation structure theory. We obtain its Lax pairs and Baecklund transformation.
Hyperbolic theory of relativistic conformal dissipative fluids
Lehner, Luis; Reula, Oscar A.; Rubio, Marcelo E.
2018-01-01
We develop a complete description of the class of conformal relativistic dissipative fluids of divergence form, following the formalism described in [R. Geroch and L. Lindblom, Phys. Rev. D 41, 1855 (1990), 10.1103/PhysRevD.41.1855, S. Pennisi, Some considerations on a non linear approach to extended thermodynamics and in Proceedings of Symposium of Kinetic Theory and Extended Thermodynamics, Bologna, 1987.]. This type of theory is fully described in terms of evolution variables whose dynamics are governed by total divergence-type conservation laws. Specifically, we give a characterization of the whole family of conformal fluids in terms of a single master scalar function defined up to second-order corrections in dissipative effects, which we explicitly find in general form. This allows us to identify the equilibrium states of the theory and derive constitutive relations and a Fourier-like law for the corresponding first-order theory heat flux. Finally, we show that among this class of theories—and near equilibrium configurations—there exist symmetric hyperbolic ones, implying that for them one can define well-posed initial value problems.
Twistor theory and the Einstein equations
International Nuclear Information System (INIS)
Law, P.R.
1985-01-01
R. Penrose has argued that the goal of twistor theory with regard to the vacuum Einstein equations ought to consist of some kind of unification of twistor-theoretic description of anti-self-dual (a.s.d.) and self-dual (s.d.) space-times. S.d. space-times currently possess a description only in terms of dual twistor space, however, rather than twistor space. In this paper, suggestions due to Penrose for providing a purely twistor space description of s.d. space-times are investigated. It is shown how the points of certain s.d. space-times define mappings on twistor space and the geometry of these mappings is studied. The families of mappings for two particular s.d. space-times are presented explicitly. (author)
Correlated density matrix theory of spatially inhomogeneous Bose fluids
International Nuclear Information System (INIS)
Gernoth, K.A.; Clark, J.W.; Ristig, M.L.
1994-06-01
In this paper, the variational Hartree-Jastrow theory of the ground state of spatially inhomogeneous Bose systems is extended to finite temperatures. The theory presented here is a generalization also in the sense that it extends the correlated density matrix approach, formulated previously for uniform Bose fluids, to systems with nonuniform density profiles. The method provides a framework in which the effects of thermal excitations on the spatial structure of a Bose fluid, as represented by the density profile and the two-body distribution functions, may be discussed on the basis on an ab initio microscopic description of the system. Thermal excitations make their appearance through self-consistently determined one-body and two-body potentials which enter the nonlinear, coupled Euler-Lagrange equations for the one-body density and for the pair distribution function. Since back-flow correlations are neglected, the excitations are described by a Feynman eigenvalue equation, suitably generalized to nonzero temperatures. The only external quantities entering the correlated density matrix theory elaborated here are the bare two-body interaction potential and, in actual applications, the boundary conditions to be imposed on the one-body density. 30 refs
Hamilton's equations for a fluid membrane
Energy Technology Data Exchange (ETDEWEB)
Capovilla, R [Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados, Apdo. Postal 14-740, 07000 Mexico, DF (Mexico); Guven, J [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apdo. Postal 70-543, 04510 Mexico, DF (Mexico); Rojas, E [Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico)
2005-10-14
Consider a homogeneous fluid membrane described by the Helfrich-Canham energy, quadratic in the mean curvature of the membrane surface. The shape equation that determines equilibrium configurations is fourth order in derivatives and cubic in the mean curvature. We introduce a Hamiltonian formulation of this equation which dismantles it into a set of coupled first-order equations. This involves interpreting the Helfrich-Canham energy as an action; equilibrium surfaces are generated by the evolution of space curves. Two features complicate the implementation of a Hamiltonian framework. (i) The action involves second derivatives. This requires treating the velocity as a phase-space variable and the introduction of its conjugate momentum. The canonical Hamiltonian is constructed on this phase space. (ii) The action possesses a local symmetry-reparametrization invariance. The two labels we use to parametrize points on the surface are themselves physically irrelevant. This symmetry implies primary constraints, one for each label, that need to be implemented within the Hamiltonian. The two Lagrange multipliers associated with these constraints are identified as the components of the acceleration tangential to the surface. The conservation of the primary constraints implies two secondary constraints, fixing the tangential components of the momentum conjugate to the position. Hamilton's equations are derived and the appropriate initial conditions on the phase-space variables are identified. Finally, it is shown how the shape equation can be reconstructed from these equations.
On petroleum fluid characterization with the PC-SAFT equation of state
DEFF Research Database (Denmark)
Liang, Xiaodong; Yan, Wei; Thomsen, Kaj
2014-01-01
The perturbed-chain statistical associating fluid theory (PC-SAFT) equation of state has shown promising results for describing complex phase behaviors and high pressure properties of various systems. It has been proposed as an alternative to the classical cubic equations of state in the petroleum...... industry. It is, however, far from a simple task to develop a sophisticated oil characterization method for the PC-SAFT EOS. In this work, in order to answer some fundamental questions of developing new characterization methods for PC-SAFT, six methods are proposed to estimate the model parameters...
Unified dark fluid in Brans-Dicke theory
International Nuclear Information System (INIS)
Tripathy, Sunil K.; Behera, Dipanjali; Mishra, Bivudutta
2015-01-01
Anisotropic dark energy cosmological models are constructed in the frame work of generalised Brans-Dicke theory with a self-interacting potential. A unified dark fluid characterised by a linear equation of state is considered as the source of dark energy. The shear scalar is considered to be proportional to the expansion scalar simulating an anisotropic relationship among the directional expansion rates. The dynamics of the universe in the presence of a unified dark fluid in anisotropic background have been discussed. The presence of an evolving scalar field makes it possible to get an accelerating phase of expansion even for a linear relationship among the directional Hubble rates. It is found that the anisotropy in expansion rates does not affect the scalar field, the self-interacting potential, but it controls the non-evolving part of the Brans-Dicke parameter. (orig.)
The Kerr/fluid duality and the singularity of solutions to the fluid equation
International Nuclear Information System (INIS)
Fujisawa, Ippei; Nakayama, Ryuichi
2016-01-01
An equation for a viscous incompressible fluid on a spheroidal surface that is dual to the perturbation around the near-near-horizon extreme Kerr (near-NHEK) black hole is derived. It is also shown that an expansion scalar θ of a congruence of null geodesics on the perturbed horizon of the perturbed near-NHEK spacetime, which is dual to a viscous incompressible fluid, is not in general positive semidefinite, even if initial conditions on the velocity are smooth. Unless the initial conditions are appropriately adjusted, caustics of null congruence will occur on the perturbed horizon in the future. A similar result is obtained for a perturbed Schwarzschild black hole spacetime, which is dual to a viscous incompressible fluid on S 2 . An initial condition that θ be positive semidefinite at any point on S 2 is a necessary condition for the existence of smooth solutions to the incompressible Navier-Stokes equation on S 2
An integral equation arising in two group neutron transport theory
International Nuclear Information System (INIS)
Cassell, J S; Williams, M M R
2003-01-01
An integral equation describing the fuel distribution necessary to maintain a flat flux in a nuclear reactor in two group transport theory is reduced to the solution of a singular integral equation. The formalism developed enables the physical aspects of the problem to be better understood and its relationship with the corresponding diffusion theory model is highlighted. The integral equation is solved by reducing it to a non-singular Fredholm equation which is then evaluated numerically
The Schroedinger equation and canonical perturbation theory
International Nuclear Information System (INIS)
Graffi, S.; Paul, T.
1987-01-01
Let T 0 (ℎ,ω)+εV be the Schroedinger operator corresponding to the classical Hamiltonian H 0 (ω)+εV, where H 0 (ω) is the d-dimensional harmonic oscillator with non-resonant frequencies ω=(ω 1 ..., ω d ) and the potential V(q 1 , ..., q d ) is an entire function of order (d+l) -1 . We prove that the algorithm of classical, canonical perturbation theory can be applied to the Schroedinger equation in the Bargmann representation. As a consequence, each term of the Rayleigh-Schroedinger series near any eigenvalue of T 0 (ℎ,ω) admits a convergent expansion in powers of ℎ of initial point the corresponding term of the classical Birkhoff expansion. Moreover if V is an even polynomial, the above result and the KAM theorem show that all eigenvalues λ n (ℎ,ε) of T 0 +εV such that nℎ coincides with a KAM torus are given, up to order ε ∞ , by a quantization formula which reduces to the Bohr-Sommerfeld one up to first order terms in ℎ. (orig.)
Application of coarse-mesh methods to fluid dynamics equations
International Nuclear Information System (INIS)
Romstedt, P.; Werner, W.
1977-01-01
An Asymmetric Weighted Residual (ASWR) method for fluid dynamics equations is described. It leads to local operators with a 7-point Finite Difference (FD) structure, which is independent of the degree of the approximating polynomials. An 1-dimensional problem was solved by both this ASWR-method and a commonly used FD-method. The numerical results demonstrate that the ASWR-method combines high accuracy on a coarse computational mesh with short computing time per space point. The posibility of using fewer space points consequently brings about a considerable reduction in total running time for the ASWR-method as compared with conventional FD-methods. (orig.) [de
Landau fluid equations for electromagnetic and electrostatic fluctuations
International Nuclear Information System (INIS)
Hedrick, C.L.; Leboeuf, J.
1992-01-01
Closure relations are developed to allow approximate treatment of Landau damping and growth using fluid equations for both electrostatic and electromagnetic modes. The coefficients in these closure relations are related to approximations of the plasma dispersion function by ratios of polynomials. Thirteen different numerical sets of coefficients are given and explicitly related to previous fits to the plasma dispersion function. The application of the techniques presented in this paper is illustrated with the specific example of resistive g modes. Comparisons of full kinetic and approximate results are made for the solutions to the dispersion relation, radially resolved modes in sheared magnetic geometry, and the plasma dispersion function itself
An introduction to the theory of the Boltzmann equation
Harris, Stewart
2011-01-01
Boltzmann's equation (or Boltzmann-like equations) appears extensively in such disparate fields as laser scattering, solid-state physics, nuclear transport, and beyond the conventional boundaries of physics and engineering, in the fields of cellular proliferation and automobile traffic flow. This introductory graduate-level course for students of physics and engineering offers detailed presentations of the basic modern theory of Boltzmann's equation, including representative applications using both Boltzmann's equation and the model Boltzmann equations developed within the text. It emphasizes
On the Foundational Equations of the Classical Theory of ...
Indian Academy of Sciences (India)
IAS Admin
... Equations of the Classical. Theory of Electrodynamics ... most cherished notions of the Maxwell{Lorentz theory .... dia in the presence of the fields, in which case a self- consistent ..... could benefit from further experimental verification, we.
Derivation of fluid dynamics from kinetic theory with the 14-moment approximation
International Nuclear Information System (INIS)
Denicol, G.S.; Molnar, E.; Niemi, H.; Rischke, D.H.
2012-01-01
We review the traditional derivation of the fluid-dynamical equations from kinetic theory according to Israel and Stewart. We show that their procedure to close the fluid-dynamical equations of motion is not unique. Their approach contains two approximations, the first being the so-called 14-moment approximation to truncate the single-particle distribution function. The second consists in the choice of equations of motion for the dissipative currents. Israel and Stewart used the second moment of the Boltzmann equation, but this is not the only possible choice. In fact, there are infinitely many moments of the Boltzmann equation which can serve as equations of motion for the dissipative currents. All resulting equations of motion have the same form, but the transport coefficients are different in each case. (orig.)
International Nuclear Information System (INIS)
Zhitnikov, V.V.; Ponomarev, V.N.
1986-01-01
An attempt is made to compare the solution of field equations, corresponding to quadratic equations for the fields (g μν , Γ μν α ) in gauge gravitation theory (GGT) with general relativity theory solutions. Without restrictions for a concrete type of metrics only solutions of equations, for which torsion turns to zero, are considered. Equivalence of vacuum equations of gauge quadratic theory of gravity and general relativity theory is proved using the Newman-Penrose formalism
Equations of state of nonspherical fluids by spherical intermolecular potentials
International Nuclear Information System (INIS)
Bastea, S; Ree, F H
1999-01-01
The equilibrium properties of anisotropic molecular fluids can be in principle calculated in a statistical mechanics framework, but the theory is generally too cumbersome for many practical applications. Fortunately, at high densities and temperatures the anisotropy can be averaged-out by means of a density and temperature independent potential (the median) that produces reliable thermodynamics[1,2]. The proposal of Shaw and Johnson[1], which turns out to be the so-called median potential[2], is very successful in predicting the thermodynamics of simple fluids such as N(sub 2) and CO(sub 2) at reasonable high pressures and temperatures[3]. Lebowitz and Percus[2] pointed out some time ago that the success of this approximation could perhaps be understood in terms of a simple theory that treats the asphericity as a perturbation. The median appears to be the best choice for hard nonspherical potential[4], which may explain its success for fluids at high densities, where the hard core contribution is known to be dominant
Einstein equation and Yang-Mills theory of gravitation
International Nuclear Information System (INIS)
Stedile, E.
1988-01-01
The possibility of Yang Mills theory of gravitation being a candidate as a gauge model for the Poincare group is pointed out. If the arguments favoring this theory are accepted then Einstein's equations can be derived by a different method in which they arise from a dynamical equation for the torsion field, in a particular case. (author) [pt
LSZ asymptotic condition and dynamic equations in quantum field theory
International Nuclear Information System (INIS)
Arkhipov, A.A.; Savrin, V.I.
1983-01-01
Some techniques that may be appropriate for the derivation of dynamic equations in quantum field theory are considered. A new method of deriving equations based on the use of LSZ asymptotic condition is described. It is proved that with the help of this method it becomes possible to obtain equations for wave functions both of scattering and bound states. Work is described in several papers under the dame title. The first paper is devoted to the Bethe-Salpeter equation
Partial differential equations methods, applications and theories
Hattori, Harumi
2013-01-01
This volume is an introductory level textbook for partial differential equations (PDE's) and suitable for a one-semester undergraduate level or two-semester graduate level course in PDE's or applied mathematics. Chapters One to Five are organized according to the equations and the basic PDE's are introduced in an easy to understand manner. They include the first-order equations and the three fundamental second-order equations, i.e. the heat, wave and Laplace equations. Through these equations we learn the types of problems, how we pose the problems, and the methods of solutions such as the separation of variables and the method of characteristics. The modeling aspects are explained as well. The methods introduced in earlier chapters are developed further in Chapters Six to Twelve. They include the Fourier series, the Fourier and the Laplace transforms, and the Green's functions. The equations in higher dimensions are also discussed in detail. This volume is application-oriented and rich in examples. Going thr...
Adaptive integral equation methods in transport theory
International Nuclear Information System (INIS)
Kelley, C.T.
1992-01-01
In this paper, an adaptive multilevel algorithm for integral equations is described that has been developed with the Chandrasekhar H equation and its generalizations in mind. The algorithm maintains good performance when the Frechet derivative of the nonlinear map is singular at the solution, as happens in radiative transfer with conservative scattering and in critical neutron transport. Numerical examples that demonstrate the algorithm's effectiveness are presented
A new hybrid code (CHIEF) implementing the inertial electron fluid equation without approximation
Muñoz, P. A.; Jain, N.; Kilian, P.; Büchner, J.
2018-03-01
We present a new hybrid algorithm implemented in the code CHIEF (Code Hybrid with Inertial Electron Fluid) for simulations of electron-ion plasmas. The algorithm treats the ions kinetically, modeled by the Particle-in-Cell (PiC) method, and electrons as an inertial fluid, modeled by electron fluid equations without any of the approximations used in most of the other hybrid codes with an inertial electron fluid. This kind of code is appropriate to model a large variety of quasineutral plasma phenomena where the electron inertia and/or ion kinetic effects are relevant. We present here the governing equations of the model, how these are discretized and implemented numerically, as well as six test problems to validate our numerical approach. Our chosen test problems, where the electron inertia and ion kinetic effects play the essential role, are: 0) Excitation of parallel eigenmodes to check numerical convergence and stability, 1) parallel (to a background magnetic field) propagating electromagnetic waves, 2) perpendicular propagating electrostatic waves (ion Bernstein modes), 3) ion beam right-hand instability (resonant and non-resonant), 4) ion Landau damping, 5) ion firehose instability, and 6) 2D oblique ion firehose instability. Our results reproduce successfully the predictions of linear and non-linear theory for all these problems, validating our code. All properties of this hybrid code make it ideal to study multi-scale phenomena between electron and ion scales such as collisionless shocks, magnetic reconnection and kinetic plasma turbulence in the dissipation range above the electron scales.
Regularity criteria for the 3D magneto-micropolar fluid equations via ...
Indian Academy of Sciences (India)
3D magneto-micropolar fluid equations. It involves only the direction of the velocity and the magnetic field. Our result extends to the cases of Navier–Stokes and MHD equations. Keywords. Magneto-micropolar fluid equations; regularity criteria; direction of velocity. 2010 Mathematics Subject Classification. 35Q35, 76W05 ...
On Pokrovskii's anisotropic gap equations in superconductivity theory
Yang, Yisong
2003-11-01
An existence and uniqueness theorem for Pokrovskii's zero-temperature anisotropic gap equation is proved. Furthermore, it is shown that Pokrovskii's finite-temperature equation is inconsistent with the Bardeen-Cooper-Schrieffer (BCS) theory. A reformulation of the anisotropic gap equation is presented along the line of Pokrovskii and it is shown that the new equation is consistent with the BCS theory for the whole temperature range. As an application, the Markowitz-Kadanoff model for anisotropic superconductivity is considered and a rigorous proof of the half-integer-exponent isotope effect is obtained. Furthermore, a sharp estimate of the gap solution near the transition temperature is established.
Modeling of dielectric properties of complex fluids with an equation of state
DEFF Research Database (Denmark)
Maribo-Mogensen, Bjørn; Kontogeorgis, Georgios M.; Thomsen, Kaj
2013-01-01
permittivity) can be modeled simultaneously with thermodynamic properties. The static permittivity is calculated from an extension of the framework developed by Onsager, Kirkwood, and Fröhlich to associating mixtures. The thermodynamic properties are calculated from the cubic-plus-association (CPA) equation...... of state that includes the Wertheim association model as formulated in the statistical associating fluid theory (SAFT) to account for hydrogen bonding molecules. We show that, by using a simple description of the geometry of the association, we may calculate the Kirkwood g-factor as a function...
Magnetic Positioning Equations Theory and Applications
Esh, Mordechay
2012-01-01
In the study of Magnetic Positioning Equations, it is possible to calculate and create analytical expressions for the intensity of magnetic fields when the coordinates x, y and z are known; identifying the inverse expressions is more difficult. This book is designed to explore the discovery of how to get the coordinates of analytical expressions x, y and z when the intensity of the magnetic fields are known. The discovery also deals with the problem of how to analyze, define and design any type of transmitter along with its positioning equation(s).Presents new simple mathematical solution expr
Electron transfer dynamics: Zusman equation versus exact theory
International Nuclear Information System (INIS)
Shi Qiang; Chen Liping; Nan Guangjun; Xu Ruixue; Yan Yijing
2009-01-01
The Zusman equation has been widely used to study the effect of solvent dynamics on electron transfer reactions. However, application of this equation is limited by the classical treatment of the nuclear degrees of freedom. In this paper, we revisit the Zusman equation in the framework of the exact hierarchical equations of motion formalism, and show that a high temperature approximation of the hierarchical theory is equivalent to the Zusman equation in describing electron transfer dynamics. Thus the exact hierarchical formalism naturally extends the Zusman equation to include quantum nuclear dynamics at low temperatures. This new finding has also inspired us to rescale the original hierarchical equations and incorporate a filtering algorithm to efficiently propagate the hierarchical equations. Numerical exact results are also presented for the electron transfer reaction dynamics and rate constant calculations.
Backward stochastic differential equations from linear to fully nonlinear theory
Zhang, Jianfeng
2017-01-01
This book provides a systematic and accessible approach to stochastic differential equations, backward stochastic differential equations, and their connection with partial differential equations, as well as the recent development of the fully nonlinear theory, including nonlinear expectation, second order backward stochastic differential equations, and path dependent partial differential equations. Their main applications and numerical algorithms, as well as many exercises, are included. The book focuses on ideas and clarity, with most results having been solved from scratch and most theories being motivated from applications. It can be considered a starting point for junior researchers in the field, and can serve as a textbook for a two-semester graduate course in probability theory and stochastic analysis. It is also accessible for graduate students majoring in financial engineering.
Meta fluid dynamic as a gauge field theory
International Nuclear Information System (INIS)
Mendes, A.C.R.; Neves, C.; Oliveira, W.; Takakura, F.I.
2003-01-01
In this paper, the analog of Maxwell electromagnetism for hydrodynamic turbulence, the meta fluid dynamics, is extended in order to reformulate the meta fluid dynamics as a gauge field theory. That analogy opens up the possibility to investigate this theory as a constrained system. Having this possibility in mind, we propose a Lagrangian to describe this new theory of turbulence and, subsequently, analyze it from the symplectic point of view. From this analysis, a hidden gauge symmetry is revealed, providing a clear interpretation and meaning of the physics behind the meta fluid theory. Also, the geometrical interpretation to the gauge symmetries is discussed. (author)
Effective average action for gauge theories and exact evolution equations
International Nuclear Information System (INIS)
Reuter, M.; Wetterich, C.
1993-11-01
We propose a new nonperturbative evolution equation for Yang-Mills theories. It describes the scale dependence of an effective action. The running of the nonabelian gauge coupling in arbitrary dimension is computed. (orig.)
The Price Equation, Gradient Dynamics, and Continuous Trait Game Theory.
Lehtonen, Jussi
2018-01-01
A recent article convincingly nominated the Price equation as the fundamental theorem of evolution and used it as a foundation to derive several other theorems. A major section of evolutionary theory that was not addressed is that of game theory and gradient dynamics of continuous traits with frequency-dependent fitness. Deriving fundamental results in these fields under the unifying framework of the Price equation illuminates similarities and differences between approaches and allows a simple, unified view of game-theoretical and dynamic concepts. Using Taylor polynomials and the Price equation, I derive a dynamic measure of evolutionary change, a condition for singular points, the convergence stability criterion, and an alternative interpretation of evolutionary stability. Furthermore, by applying the Price equation to a multivariable Taylor polynomial, the direct fitness approach to kin selection emerges. Finally, I compare these results to the mean gradient equation of quantitative genetics and the canonical equation of adaptive dynamics.
Magnetoviscosity in magnetic fluids: Testing different models of the magnetization equation
Directory of Open Access Journals (Sweden)
Huei Chu Weng
2013-09-01
Full Text Available Despite a long research history, theoretical predictions for the material properties as well as the flow fields and characteristics of magnetic fluids were not well consistent with the experimental data. The lack of a universally accepted magnetization equation for accurately modeling hydrodynamics of magnetic fluids/nanofluids is particularly a major issue. In this paper, we give an overview on the continuum theory and test the six well-known models via comparisons with magnetoviscosity measurements to make clear the magnetization relaxation due to the rotation of magnetic particles and see how well they make predictions on the basis of numerical calculations. Results reveal that the ML model leads to unexplainable behavior. Moreover, the WC model with a ‘relaxation rate’ modification is found to reproduce the predictions of the MRSh model, which agree well with experimental data. The revised WC model (WCC should therefore be preferred.
Measurement theory and the Schroedinger equation
International Nuclear Information System (INIS)
Schwarz, A.S.; Tyupkin, Yu.S.
1987-01-01
The paper is an analysis of the measuring process in quantum mechanics based on the Schroedinger equation. The arguments employed use an assumption reflecting, to some extent, the statistical properties of the vacuum. A description is given of the cases in which different incoherent superpositions of pure states in quantum mechanics are physically equivalent. The fundamental difference between quantum and classical mechanics as explained by the existence of unobservable variables is discussed. (U.K.)
Initial layer theory and model equations of Volterra type
International Nuclear Information System (INIS)
Bijura, Angelina M.
2003-10-01
It is demonstrated here that there exist initial layers to singularly perturbed Volterra equations whose thicknesses are not of order of magnitude of 0(ε), ε → 0. It is also shown that the initial layer theory is extremely useful because it allows one to construct the approximate solution to an equation, which is almost identical to the exact solution. (author)
BOOK REVIEW: Plasma and Fluid Turbulence: Theory and Modelling
Yoshizawa, A.; Itoh, S. I.; Itoh, K.
2003-03-01
The area of turbulence has been covered by many books over the years. This has, of course, mainly been fluid turbulence, while the area of plasma turbulence has been treated much less. This book by Yoshizawa et al covers both plasma and fluid turbulence, in a way that does justice to both areas at the same time as cross-disciplinary aspects are illuminated. The book should be useful to physicists working in both areas partly because it examines fundamental aspects in a pedagogical way, partly because it is up to date and partly because of the cross-disciplinary aspects which enrich both areas. It is written as an advanced textbook. The reader should have previous knowledge of at least one of the areas and also some background in statistical physics. The book starts with the very important and highly up to date area of structure formation which is relevant both to fluids and plasmas. Here, pipe flow of fluids is treated as an introduction to the area, then follows discussion of the generation of magnetic fields by turbulent motion in stellar objects and stucture formation in plasmas confined by a magnetic field. Also the concept of bifurcation is introduced. This part builds up knowledge from the simple fluid case to the problems of magnetic confinement of plasmas in a very pedagogical way. It continues by introducing the fundamentals of fluid turbulence. This is done very systematically and concepts useful for industrial applications like the K-e method and several ways of heuristic modelling are introduced. Also the two dimensional vortex equation, which is also relevant to magnetized plasmas is introduced. In chapter 5 the statistical theory of turbulence is treated. It starts with a very nice and easy to understand example of renormalization of a simple nonlinear equation where the exact solution is known. It introduces the method of partial renormalization, Greens functions and the direct interaction approximation (DIA). The book then continues with an
Dirac's equation and the nature of quantum field theory
International Nuclear Information System (INIS)
Plotnitsky, Arkady
2012-01-01
This paper re-examines the key aspects of Dirac's derivation of his relativistic equation for the electron in order advance our understanding of the nature of quantum field theory. Dirac's derivation, the paper argues, follows the key principles behind Heisenberg's discovery of quantum mechanics, which, the paper also argues, transformed the nature of both theoretical and experimental physics vis-à-vis classical physics and relativity. However, the limit theory (a crucial consideration for both Dirac and Heisenberg) in the case of Dirac's theory was quantum mechanics, specifically, Schrödinger's equation, while in the case of quantum mechanics, in Heisenberg's version, the limit theory was classical mechanics. Dirac had to find a new equation, Dirac's equation, along with a new type of quantum variables, while Heisenberg, to find new theory, was able to use the equations of classical physics, applied to different, quantum-mechanical variables. In this respect, Dirac's task was more similar to that of Schrödinger in his work on his version of quantum mechanics. Dirac's equation reflects a more complex character of quantum electrodynamics or quantum field theory in general and of the corresponding (high-energy) experimental quantum physics vis-à-vis that of quantum mechanics and the (low-energy) experimental quantum physics. The final section examines this greater complexity and its implications for fundamental physics.
Two-dimensional nonlinear equations of supersymmetric gauge theories
International Nuclear Information System (INIS)
Savel'ev, M.V.
1985-01-01
Supersymmetric generalization of two-dimensional nonlinear dynamical equations of gauge theories is presented. The nontrivial dynamics of a physical system in the supersymmetry and supergravity theories for (2+2)-dimensions is described by the integrable embeddings of Vsub(2/2) superspace into the flat enveloping superspace Rsub(N/M), supplied with the structure of a Lie superalgebra. An equation is derived which describes a supersymmetric generalization of the two-dimensional Toda lattice. It contains both super-Liouville and Sinh-Gordon equations
Neutronics equations: Positiveness; compactness; spectral theory; time asymptotic behavior
International Nuclear Information System (INIS)
Mokhtar-Kharroubi, M.
1987-12-01
Neutronics equations are studied: the continuous model (with and without delayed neutrons) and the multigroup model. Asymptotic descriptions of these equations (t→+∞) are obtained, either by the Dunford method or by using semigroup perturbation techniques, after deriving the spectral theory for the equations. Compactness problems are reviewed, and a general theory of compact injection in neutronic functional space is derived. The effects of positiveness in neutronics are analyzed: the irreducibility of the transport semigroup, and the properties of the main eigenvalue (existence, nonexistence, frame, strict dominance, strict monotony in relation to all the parameters). A class of transport operators whose real spectrum can be completely described is shown [fr
The force distribution probability function for simple fluids by density functional theory.
Rickayzen, G; Heyes, D M
2013-02-28
Classical density functional theory (DFT) is used to derive a formula for the probability density distribution function, P(F), and probability distribution function, W(F), for simple fluids, where F is the net force on a particle. The final formula for P(F) ∝ exp(-AF(2)), where A depends on the fluid density, the temperature, and the Fourier transform of the pair potential. The form of the DFT theory used is only applicable to bounded potential fluids. When combined with the hypernetted chain closure of the Ornstein-Zernike equation, the DFT theory for W(F) agrees with molecular dynamics computer simulations for the Gaussian and bounded soft sphere at high density. The Gaussian form for P(F) is still accurate at lower densities (but not too low density) for the two potentials, but with a smaller value for the constant, A, than that predicted by the DFT theory.
Galois Theory of Differential Equations, Algebraic Groups and Lie Algebras
Put, Marius van der
1999-01-01
The Galois theory of linear differential equations is presented, including full proofs. The connection with algebraic groups and their Lie algebras is given. As an application the inverse problem of differential Galois theory is discussed. There are many exercises in the text.
On the WDVV equations in five-dimensional gauge theories
Hoevenaars, L.K.; Martini, Ruud
2003-01-01
It is well known that the perturbative prepotentials of four-dimensional N = 2 supersymmetric Yang–Mills theories satisfy the generalized WDVV equations, regardless of the gauge group. In this Letter we study perturbative prepotentials of the five-dimensional theories for some classical gauge groups
Extended Thermodynamics: a Theory of Symmetric Hyperbolic Field Equations
Müller, Ingo
2008-12-01
Extended thermodynamics is based on a set of equations of balance which are supplemented by local and instantaneous constitutive equations so that the field equations are quasi-linear first order differential equations. If the constitutive functions are subject to the requirements of the entropy principle, one may write them in symmetric hyperbolic form by a suitable choice of fields. The kinetic theory of gases, or the moment theories based on the Boltzmann equation provide an explicit example for extended thermodynamics. The theory proves its usefulness and practicality in the successful treatment of light scattering in rarefied gases. This presentation is based upon the book [1] of which the author of this paper is a co-author. For more details about the motivation and exploitation of the basic principles the interested reader is referred to that reference. It would seem that extended thermodynamics is worthy of the attention of mathematicians. It may offer them a non-trivial field of study concerning hyperbolic equations, if ever they get tired of the Burgers equation. Physicists may prefer to appreciate the success of extended thermodynamics in light scattering and to work on the open problems concerning the modification of the Navier-Stokes-Fourier theory in rarefied gases as predicted by extended thermodynamics of 13, 14, and more moments.
Theory of a higher-order Sturm-Liouville equation
Kozlov, Vladimir
1997-01-01
This book develops a detailed theory of a generalized Sturm-Liouville Equation, which includes conditions of solvability, classes of uniqueness, positivity properties of solutions and Green's functions, asymptotic properties of solutions at infinity. Of independent interest, the higher-order Sturm-Liouville equation also proved to have important applications to differential equations with operator coefficients and elliptic boundary value problems for domains with non-smooth boundaries. The book addresses graduate students and researchers in ordinary and partial differential equations, and is accessible with a standard undergraduate course in real analysis.
Nevanlinna theory, normal families, and algebraic differential equations
Steinmetz, Norbert
2017-01-01
This book offers a modern introduction to Nevanlinna theory and its intricate relation to the theory of normal families, algebraic functions, asymptotic series, and algebraic differential equations. Following a comprehensive treatment of Nevanlinna’s theory of value distribution, the author presents advances made since Hayman’s work on the value distribution of differential polynomials and illustrates how value- and pair-sharing problems are linked to algebraic curves and Briot–Bouquet differential equations. In addition to discussing classical applications of Nevanlinna theory, the book outlines state-of-the-art research, such as the effect of the Yosida and Zalcman–Pang method of re-scaling to algebraic differential equations, and presents the Painlevé–Yosida theorem, which relates Painlevé transcendents and solutions to selected 2D Hamiltonian systems to certain Yosida classes of meromorphic functions. Aimed at graduate students interested in recent developments in the field and researchers wor...
Fluid bed porosity equation for an inverse fluidized bed bioreactor with particles growing biofilm
International Nuclear Information System (INIS)
Campos-Diaz, K. E.; Limas-Ballesteros, R.
2009-01-01
Fluid Bed Bioreactor performance is strongly affected by bed void fraction or bed porosity fluctuations. Particle size enlargement due to biofilm growth is an important factor that is involved in these variations and until now there are no mathematical equations that consider biofilm growth. In this work a mathematical equation is proposed to calculate bed void fraction in an inverse fluid bed bioreactor. (Author)
Critical asymmetry in renormalization group theory for fluids.
Zhao, Wei; Wu, Liang; Wang, Long; Li, Liyan; Cai, Jun
2013-06-21
The renormalization-group (RG) approaches for fluids are employed to investigate critical asymmetry of vapour-liquid equilibrium (VLE) of fluids. Three different approaches based on RG theory for fluids are reviewed and compared. RG approaches are applied to various fluid systems: hard-core square-well fluids of variable ranges, hard-core Yukawa fluids, and square-well dimer fluids and modelling VLE of n-alkane molecules. Phase diagrams of simple model fluids and alkanes described by RG approaches are analyzed to assess the capability of describing the VLE critical asymmetry which is suggested in complete scaling theory. Results of thermodynamic properties obtained by RG theory for fluids agree with the simulation and experimental data. Coexistence diameters, which are smaller than the critical densities, are found in the RG descriptions of critical asymmetries of several fluids. Our calculation and analysis show that the approach coupling local free energy with White's RG iteration which aims to incorporate density fluctuations into free energy is not adequate for VLE critical asymmetry due to the inadequate order parameter and the local free energy functional used in the partition function.
Pesch, L.; van der Vegt, Jacobus J.W.
2008-01-01
Using the generalized variable formulation of the Euler equations of fluid dynamics, we develop a numerical method that is capable of simulating the flow of fluids with widely differing thermodynamic behavior: ideal and real gases can be treated with the same method as an incompressible fluid. The
International Nuclear Information System (INIS)
Roskosch, Dennis; Atakan, Burak
2015-01-01
Fluid selection for thermodynamic cycles like refrigeration cycles, heat pumps or organic Rankine cycles remains an actual topic. Generally the search for a working fluid is based on experimental approaches or on a not very systematic trial and error approach, far from being elegant. An alternative method may be a theory based reverse engineering approach, proposed and investigated here: The design process should start with an optimal process and with (abstract) properties of the fluid needed to fit into this optimal process, best described by some general equation of state and the corresponding fluid-describing parameters. These should be analyzed and optimized with respect to the defined model process, which also has to be optimized simultaneously. From this information real fluids can be selected or even synthesized which have fluid defining properties in the optimum regime like critical temperature or ideal gas capacities of heat, allowing to find new working fluids, not considered so far. The number and kind of the fluid-defining parameters is mainly based on the choice of the used EOS (equation of state). The property model used in the present work is based on the cubic Peng–Robinson equation, chosen due to its moderate numerical expense, sufficient accuracy as well as a general availability of the fluid-defining parameters for many compounds. The considered model-process works between the temperature levels of 273.15 and 333.15 K and can be used as heat pump for supplying buildings with heat, typically. The objective functions are the COP (coefficient of performance) and the VHC (volumetric heating capacity) as a function of critical pressure, critical temperature, acentric factor and two coefficients for the temperature-dependent isobaric ideal gas heat capacity. Also, the steam quality at the compressor entrance has to be regarded as a problem variable. The results give clear hints regarding optimal fluid parameters of the analyzed process and deepen
An introduction to geometric theory of fully nonlinear parabolic equations
International Nuclear Information System (INIS)
Lunardi, A.
1991-01-01
We study a class of nonlinear evolution equations in general Banach space being an abstract version of fully nonlinear parabolic equations. In addition to results of existence, uniqueness and continuous dependence on the data, we give some qualitative results about stability of the stationary solutions, existence and stability of the periodic orbits. We apply such results to some parabolic problems arising from combustion theory. (author). 24 refs
Incompressible Navier-Stokes equations. Theory and practice
Energy Technology Data Exchange (ETDEWEB)
Gjesdal, T.
1996-12-31
This paper contains notes from a seminar presented at the Dept. of Mathematics in the University of Bergen, Norway, Oct. 1996. It first introduces the theory of existence and uniqueness of solutions to the incompressible Navier-Stokes equation and defines a well-posed initial-boundary value problem. It then discusses different methods for solving numerically the Navier-Stokes equations in velocity-pressure formulation. The emphasis is on pressure correction methods. 19 refs.
On some properties of Einstein equations with the perfect fluid energy-momentum tensor
International Nuclear Information System (INIS)
Biesiada, M.; Szydlowski, M.; Szczesny, J.
1989-01-01
We discuss the symmetries of Einstein equations with the perfect fluid energy momentum tensor. We show that the symmetries inherited from vacuum equations enforce the equation of state in the form p p 0 = γρ which is the most often used one and contains models with the cosmological constant. 9 refs. (author)
Nonrelativistic Schroedinger equation in quasi-classical theory
International Nuclear Information System (INIS)
Wignall, J.W.G.
1987-01-01
The author has recently proposed a quasi-classical theory of particles and interactions in which particles are pictured as extended periodic disturbances in a universal field chi(x,t), interacting with each other via nonlinearity in the equation of motion for chi. The present paper explores the relationship of this theory to nonrelativistic quantum mechanics; as a first step, it is shown how it is possible to construct from chi a configuration-space wave function Psi(x 1 , X 2 , t), and that the theory requires that Psi satisfy the two-particle Schroedinger equation in the case where the two particles are well separated from each other. This suggests that the multiparticle Schroedinger equation can be obtained as a direct consequence of the quasi-classical theory without any use of the usual formalism (Hilbert space, quantization rules, etc.) of conventional quantum theory and in particular without using the classical canonical treatment of a system as a crutch theory which has subsequently to be quantized. The quasi-classical theory also suggests the existence of a preferred absolute gauge for the electromagnetic potentials
Quantization conditions and functional equations in ABJ(M) theories
International Nuclear Information System (INIS)
Grassi, Alba; Marino, Marcos; Hatsuda, Yasuyuki
2014-12-01
The partition function of ABJ(M) theories on the three-sphere can be regarded as the canonical partition function of an ideal Fermi gas with a non-trivial Hamiltonian. We propose an exact expression for the spectral determinant of this Hamiltonian, which generalizes recent results obtained in the maximally supersymmetric case. As a consequence, we find an exact WKB quantization condition determining the spectrum which is in agreement with numerical results. In addition, we investigate the factorization properties and functional equations for our conjectured spectral determinants. These functional equations relate the spectral determinants of ABJ theories with consecutive ranks of gauge groups but the same Chern-Simons coupling.
Partial differential equations II elements of the modern theory equations with constant coefficients
Shubin, M
1994-01-01
This book, the first printing of which was published as Volume 31 of the Encyclopaedia of Mathematical Sciences, contains a survey of the modern theory of general linear partial differential equations and a detailed review of equations with constant coefficients. Readers will be interested in an introduction to microlocal analysis and its applications including singular integral operators, pseudodifferential operators, Fourier integral operators and wavefronts, a survey of the most important results about the mixed problem for hyperbolic equations, a review of asymptotic methods including short wave asymptotics, the Maslov canonical operator and spectral asymptotics, a detailed description of the applications of distribution theory to partial differential equations with constant coefficients including numerous interesting special topics.
Modern Fluid Dynamics Intermediate Theory and Applications
Kleinstreuer, Clement
2010-01-01
Features pedagogical elements that include consistent 50/50 physics-mathematics approach when introducing material, illustrating concepts, showing flow visualizations, and solving problems. This title intends to help serious undergraduate student solve basic fluid dynamics problems independently, and suggest system design improvements
Open problems in Gaussian fluid queueing theory
Dȩbicki, K.; Mandjes, M.
2011-01-01
We present three challenging open problems that originate from the analysis of the asymptotic behavior of Gaussian fluid queueing models. In particular, we address the problem of characterizing the correlation structure of the stationary buffer content process, the speed of convergence to
Perturbation theory for water with an associating reference fluid
Marshall, Bennett D.
2017-11-01
The theoretical description of the thermodynamics of water is challenged by the structural transition towards tetrahedral symmetry at ambient conditions. As perturbation theories typically assume a spherically symmetric reference fluid, they are incapable of accurately describing the liquid properties of water at ambient conditions. In this paper we address this problem by introducing the concept of an associated reference perturbation theory (APT). In APT we treat the reference fluid as an associating hard sphere fluid which transitions to tetrahedral symmetry in the fully hydrogen bonded limit. We calculate this transition in a theoretically self-consistent manner without appealing to molecular simulations. This associated reference provides the reference fluid for a second order Barker-Henderson perturbative treatment of the long-range attractions. We demonstrate that this approach gives a significantly improved description of water as compared to standard perturbation theories.
Numerical implication of Riemann problem theory for fluid dynamics
International Nuclear Information System (INIS)
Menikoff, R.
1988-01-01
The Riemann problem plays an important role in understanding the wave structure of fluid flow. It is also crucial step in some numerical algorithms for accurately and efficiently computing fluid flow; Godunov method, random choice method, and from tracking method. The standard wave structure consists of shock and rarefaction waves. Due to physical effects such as phase transitions, which often are indistinguishable from numerical errors in an equation of state, anomalkous waves may occur, ''rarefaction shocks'', split waves, and composites. The anomalous waves may appear in numerical calculations as waves smeared out by either too much artificial viscosity or insufficient resolution. In addition, the equation of state may lead to instabilities of fluid flow. Since these anomalous effects due to the equation of state occur for the continuum equations, they can be expected to occur for all computational algorithms. The equation of state may be characterized by three dimensionless variables: the adiabatic exponent γ, the Grueneisen coefficient Γ, and the fundamental derivative G. The fluid flow anomalies occur when inequalities relating these variables are violated. 18 refs
Shinbrot, Marvin
2012-01-01
Readable and user-friendly, this high-level introduction explores the derivation of the equations of fluid motion from statistical mechanics, classical theory, and a portion of the modern mathematical theory of viscous, incompressible fluids. 1973 edition.
Kurzweil, J
1986-01-01
The author, Professor Kurzweil, is one of the world's top experts in the area of ordinary differential equations - a fact fully reflected in this book. Unlike many classical texts which concentrate primarily on methods of integration of differential equations, this book pursues a modern approach: the topic is discussed in full generality which, at the same time, permits us to gain a deep insight into the theory and to develop a fruitful intuition. The basic framework of the theory is expanded by considering further important topics like stability, dependence of a solution on a parameter, Car
Elizondo-Aguilera, L. F.; Zubieta Rico, P. F.; Ruiz-Estrada, H.; Alarcón-Waess, O.
2014-11-01
A self-consistent generalized Langevin-equation theory is proposed to describe the self- and collective dynamics of a liquid of linear Brownian particles. The equations of motion for the spherical harmonics projections of the collective and self-intermediate-scattering functions, Fl m ,l m(k ,t ) and Flm ,l m S(k ,t ) , are derived as a contraction of the description involving the stochastic equations of the corresponding tensorial one-particle density nl m(k ,t ) and the translational (α =T ) and rotational (α =R ) current densities jlm α(k ,t ) . Similar to the spherical case, these dynamic equations require as an external input the equilibrium structural properties of the system contained in the projections of the static structure factor, denoted by Sl m ,l m(k ) . Complementing these exact equations with simple (Vineyard-like) approximate relations for the collective and the self-memory functions we propose a closed self-consistent set of equations for the dynamic properties involved. In the long-time asymptotic limit, these equations become the so-called bifurcation equations, whose solutions (the nonergodicity parameters) can be written, extending the spherical case, in terms of one translational and one orientational scalar dynamic order parameter, γT and γR, which characterize the possible dynamical arrest transitions of the system. As a concrete illustrative application of this theory we determine the dynamic arrest diagram of the dipolar hard-sphere fluid. In qualitative agreement with mode coupling theory, the present self-consistent equations also predict three different regions in the state space spanned by the macroscopic control parameters η (volume fraction) and T* (scaled temperature): a region of fully ergodic states, a region of mixed states, in which the translational degrees of freedom become arrested while the orientational degrees of freedom remain ergodic, and a region of fully nonergodic states.
Elizondo-Aguilera, L F; Zubieta Rico, P F; Ruiz-Estrada, H; Alarcón-Waess, O
2014-11-01
A self-consistent generalized Langevin-equation theory is proposed to describe the self- and collective dynamics of a liquid of linear Brownian particles. The equations of motion for the spherical harmonics projections of the collective and self-intermediate-scattering functions, F_{lm,lm}(k,t) and F_{lm,lm}^{S}(k,t), are derived as a contraction of the description involving the stochastic equations of the corresponding tensorial one-particle density n_{lm}(k,t) and the translational (α=T) and rotational (α=R) current densities j_{lm}^{α}(k,t). Similar to the spherical case, these dynamic equations require as an external input the equilibrium structural properties of the system contained in the projections of the static structure factor, denoted by S_{lm,lm}(k). Complementing these exact equations with simple (Vineyard-like) approximate relations for the collective and the self-memory functions we propose a closed self-consistent set of equations for the dynamic properties involved. In the long-time asymptotic limit, these equations become the so-called bifurcation equations, whose solutions (the nonergodicity parameters) can be written, extending the spherical case, in terms of one translational and one orientational scalar dynamic order parameter, γ_{T} and γ_{R}, which characterize the possible dynamical arrest transitions of the system. As a concrete illustrative application of this theory we determine the dynamic arrest diagram of the dipolar hard-sphere fluid. In qualitative agreement with mode coupling theory, the present self-consistent equations also predict three different regions in the state space spanned by the macroscopic control parameters η (volume fraction) and T* (scaled temperature): a region of fully ergodic states, a region of mixed states, in which the translational degrees of freedom become arrested while the orientational degrees of freedom remain ergodic, and a region of fully nonergodic states.
The Navier-Stokes Equations Theory and Numerical Methods
Masuda, Kyûya; Rautmann, Reimund; Solonnikov, Vsevolod
1990-01-01
These proceedings contain original (refereed) research articles by specialists from many countries, on a wide variety of aspects of Navier-Stokes equations. Additionally, 2 survey articles intended for a general readership are included: one surveys the present state of the subject via open problems, and the other deals with the interplay between theory and numerical analysis.
Generalized force in classical field theory. [Euler-Lagrange equations
Energy Technology Data Exchange (ETDEWEB)
Krause, J [Universidad Central de Venezuela, Caracas
1976-02-01
The source strengths of the Euler-Lagrange equations, for a system of interacting fields, are heuristically interpreted as generalized forces. The canonical form of the energy-momentum tensor thus consistently appears, without recourse to space-time symmetry arguments. A concept of 'conservative' generalized force in classical field theory is also briefly discussed.
Impossibility results for the equational theory of timed CCS
Aceto, L.; Ingólfsdóttir, A.; Mousavi, M.; Mossakowski, T.; Montanari, U.; Haveraaen, M.
2007-01-01
We study the equational theory of Timed CCS as proposed by Wang Yi in CONCUR’90. Common to Wang Yi’s paper, we particularly focus on a class of linearly-ordered time domains exemplified by the positive real or rational numbers. We show that, even when the set of basic actions is a singleton, there
The equational theory of prebisimilarity over basic CCS with divergence
Aceto, L.; Capobianco, S.; Ingólfsdóttir, A.; Luttik, B.
2008-01-01
This paper studies the equational theory of prebisimilarity, a bisimulation-based preorder introduced by Hennessy and Milner in the early 1980s, over basic CCS with the divergent process O. It is well known that prebisimilarity affords a finite ground-complete axiomatization over this language; this
On two functional equations originating from number theory
Indian Academy of Sciences (India)
On two functional equations originating from number theory. JAEYOUNG CHUNG1 and JEONGWOOK CHANG2,∗. 1Department of Mathematics, Kunsan National University, Kunsan, 573-701, Korea. 2Department of Mathematics Education, Dankook University, Yongin 448-701, Korea. *Corresponding author. E-mail: ...
Perfect fluid cosmological Universes: One equation of state and the ...
Indian Academy of Sciences (India)
Anadijiban Das
2018-01-04
Jan 4, 2018 ... equation of state, one may calculate the geometric vari- ables, such as the ... connected by any analytic function ψ, the evolutions equations, mainly ... [3] J E Marsden and A J Tromba, Vector calculus, 3rd edn. (W. H. Freeman ...
Supersymmetric electroweak baryogenesis, nonequilibrium field theory and quantum Boltzmann equations
Riotto, Antonio
1998-01-01
The closed time-path (CPT) formalism is a powerful Green's function formulation to describe nonequilibrium phenomena in field theory and it leads to a complete nonequilibrium quantum kinetic theory. In this paper we make use of the CPT formalism to write down a set of quantum Boltzmann equations describing the local number density asymmetries of the particles involved in supersymmetric electroweak baryogenesis. These diffusion equations automatically and self-consistently incorporate the CP-violating sources which fuel baryogenesis when transport properties allow the CP-violating charges to diffuse in front of the bubble wall separating the broken from the unbroken phase at the electroweak phase transition. This is a significant improvement with respect to recent approaches where the CP-violating sources are inserted by hand into the diffusion equations. Furthermore, the CP-violating sources and the particle number changing interactions manifest ``memory'' effects which are typical of the quantum transp ort t...
International Nuclear Information System (INIS)
Elliott, J.A.
1993-01-01
Plasma kinetic theory is discussed and a comparison made with the kinetic theory of gases. The plasma is described by a modified set of fluid equations and it is shown how these fluid equations can be derived. (UK)
Binary Mixture of Perfect Fluid and Dark Energy in Modified Theory of Gravity
Shaikh, A. Y.
2016-07-01
A self consistent system of Plane Symmetric gravitational field and a binary mixture of perfect fluid and dark energy in a modified theory of gravity are considered. The gravitational field plays crucial role in the formation of soliton-like solutions, i.e., solutions with limited total energy, spin, and charge. The perfect fluid is taken to be the one obeying the usual equation of state, i.e., p = γρ with γ∈ [0, 1] whereas, the dark energy is considered to be either the quintessence like equation of state or Chaplygin gas. The exact solutions to the corresponding field equations are obtained for power-law and exponential volumetric expansion. The geometrical and physical parameters for both the models are studied.
Raychaudhuri equation in the self-consistent Einstein-Cartan theory with spin-density
Fennelly, A. J.; Krisch, Jean P.; Ray, John R.; Smalley, Larry L.
1988-01-01
The physical implications of the Raychaudhuri equation for a spinning fluid in a Riemann-Cartan spacetime is developed and discussed using the self-consistent Lagrangian based formulation for the Einstein-Cartan theory. It was found that the spin-squared terms contribute to expansion (inflation) at early times and may lead to a bounce in the final collapse. The relationship between the fluid's vorticity and spin angular velocity is clarified and the effect of the interaction terms between the spin angular velocity and the spin in the Raychaudhuri equation investigated. These results should prove useful for studies of systems with an intrinsic spin angular momentum in extreme astrophysical or cosmological problems.
Stability theory for dynamic equations on time scales
Martynyuk, Anatoly A
2016-01-01
This monograph is a first in the world to present three approaches for stability analysis of solutions of dynamic equations. The first approach is based on the application of dynamic integral inequalities and the fundamental matrix of solutions of linear approximation of dynamic equations. The second is based on the generalization of the direct Lyapunovs method for equations on time scales, using scalar, vector and matrix-valued auxiliary functions. The third approach is the application of auxiliary functions (scalar, vector, or matrix-valued ones) in combination with differential dynamic inequalities. This is an alternative comparison method, developed for time continuous and time discrete systems. In recent decades, automatic control theory in the study of air- and spacecraft dynamics and in other areas of modern applied mathematics has encountered problems in the analysis of the behavior of solutions of time continuous-discrete linear and/or nonlinear equations of perturbed motion. In the book “Men of Ma...
Whitham modulation theory for the Kadomtsev- Petviashvili equation
Ablowitz, Mark J.; Biondini, Gino; Wang, Qiao
2017-08-01
The genus-1 Kadomtsev-Petviashvili (KP)-Whitham system is derived for both variants of the KP equation; namely the KPI and KPII equations. The basic properties of the KP-Whitham system, including symmetries, exact reductions and its possible complete integrability, together with the appropriate generalization of the one-dimensional Riemann problem for the Korteweg-de Vries equation are discussed. Finally, the KP-Whitham system is used to study the linear stability properties of the genus-1 solutions of the KPI and KPII equations; it is shown that all genus-1 solutions of KPI are linearly unstable, while all genus-1 solutions of KPII are linearly stable within the context of Whitham theory.
Modeling of aqueous electrolyte solutions with perturbed-chain statistical associated fluid theory
DEFF Research Database (Denmark)
Cameretti, Luca F.; Sadowski, Gabriele; Mollerup, Jørgen
2005-01-01
The vapor pressures and liquid densities of single-salt electrolyte solutions containing NaCl, LiCl, KCl, NaBr, LiBr, KBr, NaI, LiI, KI, Li2SO4, Na2SO4, and K2SO4 were modeled with an equation of state based on perturbed-chain statistical associated fluid theory (PC-SAFT). The PC-SAFT model...
The onset of fluid-dynamical behavior in relativistic kinetic theory
Noronha, Jorge; Denicol, Gabriel S.
2017-11-01
In this proceedings we discuss recent findings regarding the large order behavior of the Chapman-Enskog expansion in relativistic kinetic theory. It is shown that this series in powers of the Knudsen number has zero radius of convergence in the case of a Bjorken expanding fluid described by the Boltzmann equation in the relaxation time approximation. This divergence stems from the presence of non-hydrodynamic modes, which give non-perturbative contributions to the Knudsen series.
Nonlinear fluid equations for fully toroidal electromagnetic waves for the core tokamak plasma
Weiland, J.; Liu, C. S.; Liu
2013-12-01
The rather general set of fluid equations with full curvature effects (Shukla and Weiland, Phys. Rev. A 40, 341 (1989)) has been modified to apply to the core and generalized to include also microtearing modes.
Exact Theory of Compressible Fluid Turbulence
Drivas, Theodore; Eyink, Gregory
2017-11-01
We obtain exact results for compressible turbulence with any equation of state, using coarse-graining/filtering. We find two mechanisms of turbulent kinetic energy dissipation: scale-local energy cascade and ``pressure-work defect'', or pressure-work at viscous scales exceeding that in the inertial-range. Planar shocks in an ideal gas dissipate all kinetic energy by pressure-work defect, but the effect is omitted by standard LES modeling of pressure-dilatation. We also obtain a novel inverse cascade of thermodynamic entropy, injected by microscopic entropy production, cascaded upscale, and removed by large-scale cooling. This nonlinear process is missed by the Kovasznay linear mode decomposition, treating entropy as a passive scalar. For small Mach number we recover the incompressible ``negentropy cascade'' predicted by Obukhov. We derive exact Kolmogorov 4/5th-type laws for energy and entropy cascades, constraining scaling exponents of velocity, density, and internal energy to sub-Kolmogorov values. Although precise exponents and detailed physics are Mach-dependent, our exact results hold at all Mach numbers. Flow realizations at infinite Reynolds are ``dissipative weak solutions'' of compressible Euler equations, similarly as Onsager proposed for incompressible turbulence.
Electrorheological fluids modeling and mathematical theory
Růžička, Michael
2000-01-01
This is the first book to present a model, based on rational mechanics of electrorheological fluids, that takes into account the complex interactions between the electromagnetic fields and the moving liquid. Several constitutive relations for the Cauchy stress tensor are discussed. The main part of the book is devoted to a mathematical investigation of a model possessing shear-dependent viscosities, proving the existence and uniqueness of weak and strong solutions for the steady and the unsteady case. The PDS systems investigated possess so-called non-standard growth conditions. Existence results for elliptic systems with non-standard growth conditions and with a nontrivial nonlinear r.h.s. and the first ever results for parabolic systems with a non-standard growth conditions are given for the first time. Written for advanced graduate students, as well as for researchers in the field, the discussion of both the modeling and the mathematics is self-contained.
Properties of some nonlinear Schroedinger equations motivated through information theory
International Nuclear Information System (INIS)
Yuan, Liew Ding; Parwani, Rajesh R
2009-01-01
We update our understanding of nonlinear Schroedinger equations motivated through information theory. In particular we show that a q-deformation of the basic nonlinear equation leads to a perturbative increase in the energy of a system, thus favouring the simplest q = 1 case. Furthermore the energy minimisation criterion is shown to be equivalent, at leading order, to an uncertainty maximisation argument. The special value η = 1/4 for the interpolation parameter, where leading order energy shifts vanish, implies the preservation of existing supersymmetry in nonlinearised supersymmetric quantum mechanics. Physically, η might be encoding relativistic effects.
Lectures on the theory of group properties of differential equations
Ovsyannikov, LV
2013-01-01
These lecturers provide a clear introduction to Lie group methods for determining and using symmetries of differential equations, a variety of their applications in gas dynamics and other nonlinear models as well as the author's remarkable contribution to this classical subject. It contains material that is useful for students and teachers but cannot be found in modern texts. For example, the theory of partially invariant solutions developed by Ovsyannikov provides a powerful tool for solving systems of nonlinear differential equations and investigating complicated mathematical models. Readers
Brito, Irene; Mena, Filipe C
2017-08-01
We prove that, for a given spherically symmetric fluid distribution with tangential pressure on an initial space-like hypersurface with a time-like boundary, there exists a unique, local in time solution to the Einstein equations in a neighbourhood of the boundary. As an application, we consider a particular elastic fluid interior matched to a vacuum exterior.
Smoothed particle hydrodynamics model for phase separating fluid mixtures. I. General equations
Thieulot, C; Janssen, LPBM; Espanol, P
We present a thermodynamically consistent discrete fluid particle model for the simulation of a recently proposed set of hydrodynamic equations for a phase separating van der Waals fluid mixture [P. Espanol and C.A.P. Thieulot, J. Chem. Phys. 118, 9109 (2003)]. The discrete model is formulated by
Fluid analog model for boundary effects in field theory
International Nuclear Information System (INIS)
Ford, L. H.; Svaiter, N. F.
2009-01-01
Quantum fluctuations in the density of a fluid with a linear phonon dispersion relation are studied. In particular, we treat the changes in these fluctuations due to nonclassical states of phonons and to the presence of boundaries. These effects are analogous to similar effects in relativistic quantum field theory, and we argue that the case of the fluid is a useful analog model for effects in field theory. We further argue that the changes in the mean squared density are, in principle, observable by light scattering experiments.
Introduction to the theory of fluid and magnetofluid turbulence
International Nuclear Information System (INIS)
Montgomery, D.
1984-03-01
This set of notes was transcribed from the tape recording of three lectures given at the Institute of Plasma Physics, Nagoya University, in June, 1983. The lectures were intended to provide an introduction to the theory of magnetofluid turbulence which is a relatively new branch of plasma physics. It is related more closely to classic fluid dynamics than to the nonlinear theory of plasma oscillation. For this reason, fluid turbulence theory was reviewed as the background of the subject. The first lecture is on the origins of fluid and magnetofluid turbulence. The universal transition to turbulence takes place at sufficiently high Reynolds number, well above the critical threshold. The second lecture is on closures, attempt on dynamical theories. The Navier-Stokes case is discussed, and the attempt to reduce the number of the degrees of freedom, the importance of helicity in MHD, the direct interaction approximation (DIA) and others are explained. The third lecture is on the cascade and inverse cascade in fluid and magnetofluid. The idea of cascade was introduced into the theory of Navier-Stokes turbulence around 1941. The calculation of a form for inertial range energy spectra, the relation with dissipation rate, the tendency of migrating to long wavelength, the simulation of decaying turbulence, the numbers characterizing MHD and others are discussed. (Kako, I.)
Collisionless two-fluid theory of toroidal ηi stability
International Nuclear Information System (INIS)
Mondt, J.; Weiland, J.
1989-01-01
A collisionless two-fluid theory based on a fourteen-moment generalization of the 'double-adiabatic' equations is developed to lowest order in the Larmor radius parameter, and applied to derive the toroidal η i stability boundary for all values of the ratio of the density gradient scale length divided by the field curvature length. The present model is an improvement over existing collisional two-fluid models in view of the collisionless nature of the η i instability, while retaining the advantage over kinetic theory of the practability of mode-coupling simulations. The linear stability boundary, linear growth rate and real frequency agree fairly accurately with draft-kinetic theory
Regularity criteria for the 3D magneto-micropolar fluid equations via ...
Indian Academy of Sciences (India)
We consider sufficient conditions to ensure the smoothness of solutions to 3D magneto-micropolar fluid equations. It involves only the direction of the velocity and the magnetic field. Our result extends to the cases of Navier–Stokes and MHD equations.
Conservation form of the equations of fluid dynamics in general nonsteady coordinates
Zhang, H.; Camarero, R.; Kahawita, R.
1985-11-01
Many of the differential equations arising in fluid dynamics may be stated in conservation-law form. A number of investigations have been conducted with the aim to derive the conservation-law form of the Navier-Stokes equations in general nonsteady coordinate systems. The present note has the objective to illustrate a mathematical methodology with which such forms of the equations may be derived in an easier and more general fashion. For numerical applications, the scalar form of the equations is eventually provided. Attention is given to the conservation form of equations in curvilinear coordinates and numerical considerations.
Conservation form of the equations of fluid dynamics in general nonsteady coordinates
International Nuclear Information System (INIS)
Zhang, H.; Camarero, R.; Kahawita, R.
1985-01-01
Many of the differential equations arising in fluid dynamics may be stated in conservation-law form. A number of investigations have been conducted with the aim to derive the conservation-law form of the Navier-Stokes equations in general nonsteady coordinate systems. The present note has the objective to illustrate a mathematical methodology with which such forms of the equations may be derived in an easier and more general fashion. For numerical applications, the scalar form of the equations is eventually provided. Attention is given to the conservation form of equations in curvilinear coordinates and numerical considerations. 6 references
Master equations in the microscopic theory of nuclear collective dynamics
International Nuclear Information System (INIS)
Matsuo, M.; Sakata, F.; Marumori, T.; Zhuo, Y.
1988-07-01
In the first half of this paper, the authors describe briefly a recent theoretical approach where the mechanism of the large-amplitude dissipative collective motions can be investigated on the basis of the microscopic theory of nuclear collective dynamics. Namely, we derive the general coupled master equations which can disclose, in the framework of the TDHF theory, not only non-linear dynamics among the collective and the single-particle modes of motion but also microscopic dynamics responsible for the dissipative processes. In the latter half, the authors investigate, without relying on any statistical hypothesis, one possible microscopic origin which leads us to the transport equation of the Fokker-Planck type so that usefullness of the general framework is demonstrated. (author)
Geometry of Kaluza-Klein theory. II. Field equations
International Nuclear Information System (INIS)
Maia, M.D.
1985-01-01
In the preceding paper a geometric formulation of Kaluza-Klein theory was presented with the basic assumption that the space-time is locally and isometrically embedded in the high-dimensional space which emerged at the big bang. In the present note the Gauss-Codazzi-Ricci equations which are the integrability equations for the embedding are interpreted as the dynamical equations for a low-energy observer. The second quadratic form which results from the embedding is interpreted as a fundamental spin-two massless field. The dynamics for an observer with high-energy probes is described as usual by the Einstein-Hilbert action defined in the high-dimensional space and dimensionally reduced by integration over the internal space. The behavior of fermion masses under different gravitational field strengths is implemented by use of the mass operator defined with the second-order Casimir operator of the embedding symmetry group
Travelling wave solutions for a surface wave equation in fluid mechanics
Directory of Open Access Journals (Sweden)
Tian Yi
2016-01-01
Full Text Available This paper considers a non-linear wave equation arising in fluid mechanics. The exact traveling wave solutions of this equation are given by using G'/G-expansion method. This process can be reduced to solve a system of determining equations, which is large and difficult. To reduce this process, we used Wu elimination method. Example shows that this method is effective.
General fluid theories, variational principles and self-organization
International Nuclear Information System (INIS)
Mahajan, S.M.
2002-01-01
This paper reports two distinct but related advances: (1) The development and application of fluid theories that transcend conventional magnetohydrodynamics (MHD), in particular, theories that are valid in the long-mean-free-path limit and in which pressure anisotropy, heat flow, and arbitrarily strong sheared flows are treated consistently. (2) The discovery of new pressure-confining plasma configurations that are self-organized relaxed states. (author)
Classical fluid aspects of nonlinear SchrÃƒÂ¶dinger equations and solitons
Directory of Open Access Journals (Sweden)
James G. Gilson
1987-01-01
Full Text Available The author extends his alternative theory for SchrÃƒÂ¶dinger quantum mechanics by introducing the idea of energy reference strata over configuration space. It is then shown that the view from various such strata defines, the content of the system of interest and enables a variety of different descriptions of events in the same space time region. Thus according to Ã‚Â“the point of viewÃ‚Â” or energy stratum chosen so the type of SchrÃƒÂ¶dinger equation, linear or otherwise, appropriate to describe the system is determined. A nonlinear information channel between two dimensional fluid action in hyperspace into two dimensional energy hyperspace is shown to exist generally as a background to nonlinear SchrÃƒÂ¶dinger structures. In addition it is shown how soliton solutions of the one dimensional SchrÃƒÂ¶dinger equation are related to two dimensional vortex fields in hyperspace.
Kinetic theory of flocking: derivation of hydrodynamic equations.
Ihle, Thomas
2011-03-01
It is shown how to explicitly coarse-grain the microscopic dynamics of the rule-based Vicsek model for self-propelled agents. The hydrodynamic equations are derived by means of an Enskog-type kinetic theory. Expressions for all transport coefficients are given. The transition from a disordered to a flocking state, which at large particle speeds appears to be a fluctuation-induced first-order phase transition, is studied numerically and analytically.
Parquet equations for numerical self-consistent-field theory
International Nuclear Information System (INIS)
Bickers, N.E.
1991-01-01
In recent years increases in computational power have provided new motivation for the study of self-consistent-field theories for interacting electrons. In this set of notes, the so-called parquet equations for electron systems are derived pedagogically. The principal advantages of the parquet approach are outlined, and its relationship to simpler self-consistent-field methods, including the Baym-Kadanoff technique, is discussed in detail. (author). 14 refs, 9 figs
Oulebsir, Fouad; Vermorel, Romain; Galliero, Guillaume
2018-01-16
With the advent of graphene material, membranes based on single-layer nanoporous solids appear as promising devices for fluid separation, be it liquid or gaseous mixtures. The design of such architectured porous materials would greatly benefit from accurate models that can predict their transport and separation properties. More specifically, there is no universal understanding of how parameters such as temperature, fluid loading conditions, or the ratio of the pore size to the fluid molecular diameter influence the permeation process. In this study, we address the problem of pure supercritical fluids diffusing through simplified models of single-layer porous materials. Basically, we investigate a toy model that consists of a single-layer lattice of Lennard-Jones interaction sites with a slit gap of controllable width. We performed extensive equilibrium and biased molecular dynamics simulations to document the physical mechanisms involved at the molecular scale. We propose a general constitutive equation for the diffusional transport coefficient derived from classical statistical mechanics and kinetic theory, which can be further simplified in the ideal gas limit. This transport coefficient relates the molecular flux to the fluid density jump across the single-layer membrane. It is found to be proportional to the accessible surface porosity of the single-layer porous solid and to a thermodynamic factor accounting for the inhomogeneity of the fluid close to the pore entrance. Both quantities directly depend on the potential of mean force that results from molecular interactions between solid and fluid atoms. Comparisons with the simulations data show that the kinetic model captures how narrowing the pore size below the fluid molecular diameter lowers dramatically the value of the transport coefficient. Furthermore, we demonstrate that our general constitutive equation allows for a consistent interpretation of the intricate effects of temperature and fluid loading
Investigation of two and three parameter equations of state for cryogenic fluids
International Nuclear Information System (INIS)
Jenkins, S.L.; Majumdar, A.K.; Hendricks, R.C.
1990-01-01
Two-phase flows are a common occurrence in cryogenic engines and an accurate evaluation of the heat-transfer coefficient in two-phase flow is of significant importance in their analysis and design. The thermodynamic equation of state plays a key role in calculating the heat transfer coefficient which is a function of thermodynamic and thermophysical properties. An investigation has been performed to study the performance of two- and three-parameter equations of state to calculate the compressibility factor of cryogenic fluids along the saturation loci. The two-parameter equations considered here are van der Waals and Redlich-Kwong equations of state. The three-parameter equation represented here is the generalized Benedict-Webb-Rubin (BWR) equation of Lee and Kesler. Results have been compared with the modified BWR equation of Bender and the extended BWR equations of Stewart. Seven cryogenic fluids have been tested; oxygen, hydrogen, helium, nitrogen, argon, neon, and air. The performance of the generalized BWR equation is poor for hydrogen and helium. The van der Waals equation is found to be inaccurate for air near the critical point. For helium, all three equations of state become inaccurate near the critical point. 13 refs
Cahn-Hiliard theory for unstable granular fluids
van Noije, T.P.C.; Ernst, M.H.
A Cahn-Hilliard-type theory for hydrodynamic fluctuations is proposed that gives a quantitative description of the slowly evolving spatial correlations and structures in density and flow fields in the early stages of evolution of freely cooling granular fluids. Two mechanisms for pattern selection
Multivector field formulation of Hamiltonian field theories: equations and symmetries
Energy Technology Data Exchange (ETDEWEB)
Echeverria-Enriquez, A.; Munoz-Lecanda, M.C.; Roman-Roy, N. [Departamento de Matematica Aplicada y Telematica, Edificio C-3, Campus Norte UPC, Barcelona (Spain)
1999-12-03
We state the intrinsic form of the Hamiltonian equations of first-order classical field theories in three equivalent geometrical ways: using multivector fields, jet fields and connections. Thus, these equations are given in a form similar to that in which the Hamiltonian equations of mechanics are usually given. Then, using multivector fields, we study several aspects of these equations, such as the existence and non-uniqueness of solutions, and the integrability problem. In particular, these problems are analysed for the case of Hamiltonian systems defined in a submanifold of the multimomentum bundle. Furthermore, the existence of first integrals of these Hamiltonian equations is considered, and the relation between Cartan-Noether symmetries and general symmetries of the system is discussed. Noether's theorem is also stated in this context, both the 'classical' version and its generalization to include higher-order Cartan-Noether symmetries. Finally, the equivalence between the Lagrangian and Hamiltonian formalisms is also discussed. (author)
A stochastic differential equation analysis of cerebrospinal fluid dynamics.
Raman, Kalyan
2011-01-18
Clinical measurements of intracranial pressure (ICP) over time show fluctuations around the deterministic time path predicted by a classic mathematical model in hydrocephalus research. Thus an important issue in mathematical research on hydrocephalus remains unaddressed--modeling the effect of noise on CSF dynamics. Our objective is to mathematically model the noise in the data. The classic model relating the temporal evolution of ICP in pressure-volume studies to infusions is a nonlinear differential equation based on natural physical analogies between CSF dynamics and an electrical circuit. Brownian motion was incorporated into the differential equation describing CSF dynamics to obtain a nonlinear stochastic differential equation (SDE) that accommodates the fluctuations in ICP. The SDE is explicitly solved and the dynamic probabilities of exceeding critical levels of ICP under different clinical conditions are computed. A key finding is that the probabilities display strong threshold effects with respect to noise. Above the noise threshold, the probabilities are significantly influenced by the resistance to CSF outflow and the intensity of the noise. Fluctuations in the CSF formation rate increase fluctuations in the ICP and they should be minimized to lower the patient's risk. The nonlinear SDE provides a scientific methodology for dynamic risk management of patients. The dynamic output of the SDE matches the noisy ICP data generated by the actual intracranial dynamics of patients better than the classic model used in prior research.
A stochastic differential equation analysis of cerebrospinal fluid dynamics
Directory of Open Access Journals (Sweden)
Raman Kalyan
2011-01-01
Full Text Available Abstract Background Clinical measurements of intracranial pressure (ICP over time show fluctuations around the deterministic time path predicted by a classic mathematical model in hydrocephalus research. Thus an important issue in mathematical research on hydrocephalus remains unaddressed--modeling the effect of noise on CSF dynamics. Our objective is to mathematically model the noise in the data. Methods The classic model relating the temporal evolution of ICP in pressure-volume studies to infusions is a nonlinear differential equation based on natural physical analogies between CSF dynamics and an electrical circuit. Brownian motion was incorporated into the differential equation describing CSF dynamics to obtain a nonlinear stochastic differential equation (SDE that accommodates the fluctuations in ICP. Results The SDE is explicitly solved and the dynamic probabilities of exceeding critical levels of ICP under different clinical conditions are computed. A key finding is that the probabilities display strong threshold effects with respect to noise. Above the noise threshold, the probabilities are significantly influenced by the resistance to CSF outflow and the intensity of the noise. Conclusions Fluctuations in the CSF formation rate increase fluctuations in the ICP and they should be minimized to lower the patient's risk. The nonlinear SDE provides a scientific methodology for dynamic risk management of patients. The dynamic output of the SDE matches the noisy ICP data generated by the actual intracranial dynamics of patients better than the classic model used in prior research.
DEFF Research Database (Denmark)
Karakatsani, Eirini; Kontogeorgis, Georgios; Economou, Ioannis
2006-01-01
Perturbed chain-statistical associating fluid theory (PC-SAFT) was extended rigorously to polar fluids based on the theory of Stell and co-workers [Mol. Phys. 1977, 33, 987]. The new PC-PSAFT was simplified to truncated PC-PSAFT (tPC-PSAFT) so that it can be practical for real polar fluid...
Incompressible Navier-Stokes equation from Einstein-Maxwell and Gauss-Bonnet-Maxwell theories
International Nuclear Information System (INIS)
Niu Chao; Tian Yu; Wu Xiaoning; Ling Yi
2012-01-01
The dual fluid description for a general cutoff surface at radius r=r c outside the horizon in the charged AdS black brane bulk space-time is investigated, first in the Einstein-Maxwell theory. Under the non-relativistic long-wavelength expansion with parameter ε, the coupled Einstein-Maxwell equations are solved up to O(ε 2 ). The incompressible Navier-Stokes equation with external force density is obtained as the constraint equation at the cutoff surface. For non-extremal black brane, the viscosity of the dual fluid is determined by the regularity of the metric fluctuation at the horizon, whose ratio to entropy density η/s is independent of both the cutoff r c and the black brane charge. Then, we extend our discussion to the Gauss-Bonnet-Maxwell case, where the incompressible Navier-Stokes equation with external force density is also obtained at a general cutoff surface. In this case, it turns out that the ratio η/s is independent of the cutoff r c but dependent on the charge density of the black brane.
International Nuclear Information System (INIS)
Bleyer, U.; Muecket, J.P.
1980-01-01
In general the Birkhoff theorem is violated in non-Einsteinian theories of gravitation. We show for theories in which the dynamical equations do not follow from the field equations that time-dependent vacuum solutions are needed in order to join nonstatic spherically symmetric incoherent matter distributions. It is shown for Treder's tetrad theories that such vacuum solutions exist and a continuous and unique junction is possible. In generalization of these results we consider the problem in what theories of gravitation the dynamical equations do not follow from the field equations. This consideration leads to non-Einsteinian theories like bimetric theories or Treder's tetrad theories containing supplementary geometrical quantities which are not dynamical variables of the theory. (author)
Theory and computer simulation of structure, transport, and flow of fluid in micropores
International Nuclear Information System (INIS)
Davis, H.T.; Bitsanis, I.; Vanderlick, T.K.; Tirrell, M.V.
1987-01-01
An overview is given of recent progress made in our laboratory on this topic. The density profiles of fluid in micropores are found by solving numerically an approximate Yvon-Born-Green equation. A related local average density model (LADM) allows prediction of transport and flow in inhomogeneous fluids from density profiles. A rigorous extension of the Enskog theory of transport is also outlined. Simple results of this general approach for the tracer diffusion and Couette flow between planar micropore walls are presented. Equilibrium and flow (molecular dynamics) simulations are compared with the theoretical predictions. Simulated density profiles of the micropore fluid exhibit substantial fluid layering. The number and sharpness of fluid layers depend sensitively on the pore width. The solvation force and the pore average density and diffusivity are oscillating functions of the pore width. The theoretical predictions for these quantities agree qualitatively with the simulation results. The flow simulations indicate that the flow does not affect the fluid structure and diffusivity even at extremely high shear rates (10/sup 10/s/sup -1/). The fluid structure induces large deviations of the shear stress and the effective viscosity from the bulk fluid values. The flow velocity profiles are correlated with the density profiles and differ from those of a bulk fluid. The LADM and extended Enskog theory predictions for the velocity profiles and the pore average diffusivity agree very well with each other and with the simulation results. The LADM predictions for the shear stress and the effective viscosity agrees fairly well with the simulation results
Impact simulation of liquid-filled containers including fluid-structure interaction--Part 1: Theory
International Nuclear Information System (INIS)
Sauve, R.G.; Morandin, G.D.; Nadeau, E.
1993-01-01
In a number of applications, the hydrodynamic effect of a fluid must be included in the structural evaluation of liquid-filled vessels undergoing transient loading. Prime examples are liquid radioactive waste transportation packages. These packages must demonstrate the ability to withstand severe accidental impact scenarios. A hydrodynamic model of the fluid is developed using a finite element discretization of the momentum equations for a three-dimensional continuum. An inviscid fluid model with an isotropic stress state is considered. A barotropic equation of state, relating volumetric strain to pressure, is used to characterize the fluid behavior. The formulation considers the continuum as a compressible medium only, so that no tension fields are permitted. The numerical technique is incorporated into the existing general-purpose three-dimensional structural computer code H3DMAP. Part 1 of the paper describes the theory and implementation along with comparisons with classical theory. Part 2 describes the experimental validations of the theoretical approach. Excellent correlation between predicted and experimental results is obtained
Theory of the shock process in dense fluids
International Nuclear Information System (INIS)
Wallace, D.C.
1991-01-01
A shock is assumed to be a steady plane wave, and irreversible thermodynamics is assumed valid. The fluid is characterized by heat conduction and by viscous or viscoelastic response, according to the strain rate. It is shown that setting the viscosity zero produces a solution which constitutes a lower bound through the shock process for the shear stress, and upper bounds for the temperature, entropy, pressure, and heat current. It is shown that there exists an upper bound to the dynamic stresses which can be achieved during shock compression, that this bound corresponds to a purely elastic response of the fluid, and that solution for the shock process along this bound constitutes lower bounds for the temperature and entropy. It is shown that a continuous steady shock is possible only if the heat current is positive and the temperature is an increasing function of compression almost everywhere. In his theory of shocks in gases, Rayleigh showed that there is a maximum shock strength for which a continuous steady solution can exist with heat conduction but without viscosity. Two more limits are shown to exist for dense fluids, based on the fluid response in the leading edge of the shock: for shocks at the overdriven threshold and above, no solution is possible without heat transport; for shocks near the viscous fluid limit and above, viscous fluid theory is not valid, and the fluid response in the leading edge of the shock is approximately that of a nonplastic solid. The viscous fluid limit is estimated to be 13 kbar for water and 690 kbar for mercury
Communication: An exact bound on the bridge function in integral equation theories.
Kast, Stefan M; Tomazic, Daniel
2012-11-07
We show that the formal solution of the general closure relation occurring in Ornstein-Zernike-type integral equation theories in terms of the Lambert W function leads to an exact relation between the bridge function and correlation functions, most notably to an inequality that bounds possible bridge values. The analytical results are illustrated on the example of the Lennard-Jones fluid for which the exact bridge function is known from computer simulations under various conditions. The inequality has consequences for the development of bridge function models and rationalizes numerical convergence issues.
Thermomechanic equations for magnetic fluids of equilibrium magnetization
International Nuclear Information System (INIS)
Bashtovoy, V.G.; Berkovsky, B.M.; Vislovich, A.N.
1988-01-01
The main physical prerequisite for the existence of equilibrium magnetization is the assumption that nothing, except thermal motion, hinders the orientation of elementary magnetic moments along the field and that the mean value of magnetization is achieved instantaneously, i.e., within the times much shorter than the characteristic times of macroscopic processes (hydrodynamic, thermal, electromagnetic, etc.). This assumption makes it possible to consider the fluid magnetization vector M-vector at a given instant to be parallel to the vector of magnetic field intensity H-vector, which in the general form may be related as M-vector = (M/H)H-vector. Magnetization M is determined by the fluid temperature and density and by field intensity: M = M(T,rho,H). It is natural that it decreases with rising temperature and increases with the field intensity. The condition for the vectors M-vector and H-vector to be parallel is realized in a MF only for certain colloid characteristics. Nevertheless, for a wide range of problems this condition may be regarded as fulfilled and enables one to study those effects in a MF which are caused to occur by the volume magnetic force due to the interaction between equilibrium magnetization and the magnetic field
Nonlocal wave propagation in an embedded DWBNNT conveying fluid via strain gradient theory
International Nuclear Information System (INIS)
Ghorbanpour Arani, A.; Kolahchi, R.; Vossough, H.
2012-01-01
Based on the strain gradient and Eringen’s piezoelasticity theories, wave propagation of an embedded double-walled boron nitride nanotube (DWBNNT) conveying fluid is investigated using Euler-Bernoulli beam model. The elastic medium is simulated by the Pasternak foundation. The van der Waals (vdW) forces between the inner and outer nanotubes are taken into account. Since, considering electro-mechanical coupling made the nonlinear motion equations, a numerical procedure is proposed to evaluate the upstream and downstream phase velocities. The results indicate that the effect of nonlinear terms in motion equations on the phase velocity cannot be neglected at lower wave numbers. Furthermore, the effect of fluid-conveying on wave propagation of the DWBNNT is significant at lower wave numbers.
A kinetic theory description of the viscosity of dense fluids consisting of chain molecules.
de Wijn, Astrid S; Vesovic, Velisa; Jackson, George; Trusler, J P Martin
2008-05-28
An expression for the viscosity of a dense fluid is presented that includes the effect of molecular shape. The molecules of the fluid are approximated by chains of equal-sized, tangentially jointed, rigid spheres. It is assumed that the collision dynamics in such a fluid can be approximated by instantaneous collisions between two rigid spheres belonging to different chains. The approach is thus analogous to that of Enskog for a fluid consisting of rigid spheres. The description is developed in terms of two molecular parameters, the diameter sigma of the spherical segment and the chain length (number of segments) m. It is demonstrated that an analysis of viscosity data of a particular pure fluid alone cannot be used to obtain independently effective values of both sigma and m. Nevertheless, the chain lengths of n-alkanes are determined by assuming that the diameter of each rigid sphere making up the chain can be represented by the diameter of a methane molecule. The effective chain lengths of n-alkanes are found to increase linearly with the number C of carbon atoms present. The dependence can be approximated by a simple relationship m=1+(C-1)3. The same relationship was reported within the context of a statistical associating fluid theory equation of state treatment of the fluid, indicating that both the equilibrium thermodynamic properties and viscosity yield the same value for the chain lengths of n-alkanes.
Master equations and the theory of stochastic path integrals
Weber, Markus F.; Frey, Erwin
2017-04-01
them. Upon expanding the forward and the backward path integrals around stationary paths, we then discuss and extend a recent method for the computation of rare event probabilities. Besides, we also derive path integral representations for processes with continuous state spaces whose forward and backward master equations admit Kramers-Moyal expansions. A truncation of the backward expansion at the level of a diffusion approximation recovers a classic path integral representation of the (backward) Fokker-Planck equation. One can rewrite this path integral in terms of an Onsager-Machlup function and, for purely diffusive Brownian motion, it simplifies to the path integral of Wiener. To make this review accessible to a broad community, we have used the language of probability theory rather than quantum (field) theory and do not assume any knowledge of the latter. The probabilistic structures underpinning various technical concepts, such as coherent states, the Doi-shift, and normal-ordered observables, are thereby made explicit.
Master equations and the theory of stochastic path integrals.
Weber, Markus F; Frey, Erwin
2017-04-01
expanding the forward and the backward path integrals around stationary paths, we then discuss and extend a recent method for the computation of rare event probabilities. Besides, we also derive path integral representations for processes with continuous state spaces whose forward and backward master equations admit Kramers-Moyal expansions. A truncation of the backward expansion at the level of a diffusion approximation recovers a classic path integral representation of the (backward) Fokker-Planck equation. One can rewrite this path integral in terms of an Onsager-Machlup function and, for purely diffusive Brownian motion, it simplifies to the path integral of Wiener. To make this review accessible to a broad community, we have used the language of probability theory rather than quantum (field) theory and do not assume any knowledge of the latter. The probabilistic structures underpinning various technical concepts, such as coherent states, the Doi-shift, and normal-ordered observables, are thereby made explicit.
International Nuclear Information System (INIS)
Olson, T.S.; Hiscock, W.A.
1990-01-01
Stability and causality are studied for linear perturbations about equilibrium in Carter's ''regular'' theory of relativistic heat-conducting fluids. The ''regular'' theory, when linearized around an equilibrium state having vanishing expansion and shear, is shown to be equivalent to the inviscid limit of the linearized Israel-Stewart theory of relativistic dissipative fluids for a particular choice of the second-order coefficients β 1 and γ 2 . A set of stability conditions is determined for linear perturbations of a general inviscid Israel-Stewart fluid using a monotonically decreasing energy functional. It is shown that, as in the viscous case, stability implies that the characteristic velocities are subluminal and that perturbations obey hyperbolic equations. The converse theorem is also true. We then apply this analysis to a nonrelativistic Boltzmann gas and to a strongly degenerate free Fermi gas in the ''regular'' theory. Carter's ''regular'' theory is shown to be incapable of correctly describing the nonrelativistic Boltzmann gas and the degenerate Fermi gas (at all temperatures)
Finite field equation for asymptotically free phi4 theory
International Nuclear Information System (INIS)
Brandt, R.A.; Wing-chiu, N.; Wai-Bong, Y.
1979-01-01
We consider the finite local field equation - (D 7 Alembertian + m 2 ) phi (x) = lim/sub xitsarrow-rightts/0[1/6gZ (xi 2 ):phi (x - xi) phi (x) phi (x + xi):- Δ (xi 2 ) phi (x) + sigma (xi 2 )(xi x partial/sub x/) 2 phi (x)], which rigorously describes gphi 4 scalar field theory, and the operator-product expansion phi (xi) phi (0) /sup approximately/ /sub xitsarrow-rightts0/F (xi 2 ) N[phi 2 ], where N[phi 2 ] denotes a normal product. For g 2 ), Δ (xi 2 ), sigma (xi 2 ), and F (xi 2 ). We perform the R transformation phi (x) → phi (x) + r on the finite field equation and obtain the operator part of the change to be proportional to lim/sub xitsarrow-rightts0/Z (xi 2 ) F (xi 2 ) N[phi 2 ] which vanishes by our knowledge of the functions Z (xi 2 ) and F (xi 2 ). We have therefore verified rigorously the partial R invariance of - vertical-bargvertical-barphi 4 theory. We discuss and solve the technical problem of finding the solution for renormalization-group equations with a matrix γ function where the lowest-order expansions of the various elements do not begin with the same powers of g
Hamilton's equations for a fluid membrane: axial symmetry
International Nuclear Information System (INIS)
Capovilla, R; Guven, J; Rojas, E
2005-01-01
Consider a homogeneous fluid membrane, or vesicle, described by the Helfrich-Canham energy, quadratic in the mean curvature. When the membrane is axially symmetric, this energy can be viewed as an 'action' describing the motion of a particle; the contours of equilibrium geometries are identified with particle trajectories. A novel Hamiltonian formulation of the problem is presented which exhibits the following two features: (i) the second derivatives appearing in the action through the mean curvature are accommodated in a natural phase space and (ii) the intrinsic freedom associated with the choice of evolution parameter along the contour is preserved. As a result, the phase space involves momenta conjugate not only to the particle position but also to its velocity, and there are constraints on the phase space variables. This formulation provides the groundwork for a field theoretical generalization to arbitrary configurations, with the particle replaced by a loop in space
Modelling of fluid flow in fractured porous media by the singular integral equations method
International Nuclear Information System (INIS)
Vu, M.N.
2012-01-01
This thesis aims to develop a method for numerical modelling of fluid flow through fractured porous media and for determination of their effective permeability by taking advantage of recent results based on formulation of the problem by Singular Integral Equations. In parallel, it was also an occasion to continue on the theoretical development and to obtain new results in this area. The governing equations for flow in such materials are reviewed first and mass conservation at the fracture intersections is expressed explicitly. Using the theory of potential, the general potential solutions are proposed in the form of a singular integral equation that describes the steady-state flow in and around several fractures embedded in an infinite porous matrix under a far-field pressure condition. These solutions represent the pressure field in the whole body as functions of the infiltration in the fractures, which fully take into account the fracture interaction and intersections. Closed-form solutions for the fundamental problem of fluid flow around a single fracture are derived, which are considered as the benchmark problems to validate the numerical solutions. In particular, the solution obtained for the case of an elliptical disc-shaped crack obeying to the Poiseuille law has been compared to that obtained for ellipsoidal inclusions with Darcy law.The numerical programs have been developed based on the singular integral equations method to resolve the general potential equations. These allow modeling the fluid flow through a porous medium containing a great number of fractures. Besides, this formulation of the problem also allows obtaining a semi-analytical infiltration solution over a single fracture depending on the matrice permeability, the fracture conductivity and the fracture geometry. This result is the important key to up-scaling the effective permeability of a fractured porous medium by using different homogenisation schemes. The results obtained by the self
A symbiotic approach to fluid equations and non-linear flux-driven simulations of plasma dynamics
Halpern, Federico
2017-10-01
The fluid framework is ubiquitous in studies of plasma transport and stability. Typical forms of the fluid equations are motivated by analytical work dating several decades ago, before computer simulations were indispensable, and can be, therefore, not optimal for numerical computation. We demonstrate a new first-principles approach to obtaining manifestly consistent, skew-symmetric fluid models, ensuring internal consistency and conservation properties even in discrete form. Mass, kinetic, and internal energy become quadratic (and always positive) invariants of the system. The model lends itself to a robust, straightforward discretization scheme with inherent non-linear stability. A simpler, drift-ordered form of the equations is obtained, and first results of their numerical implementation as a binary framework for bulk-fluid global plasma simulations are demonstrated. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, Theory Program, under Award No. DE-FG02-95ER54309.
Generalized fluid equations for parallel transport in collisional to weakly collisional plasmas
International Nuclear Information System (INIS)
Zawaideh, E.S.
1985-01-01
A new set of two-fluid equations which are valid from collisional to weakly collisional limits are derived. Starting from gyrokinetic equations in flux coordinates with no zeroth order drifts, a set of moment equations describing plasma transport along the field lines of a space and time dependent magnetic field are derived. No restriction on the anisotropy of the ion distribution function is imposed. In the highly collisional limit, these equations reduce to those of Braginskii while in the weakly collisional limit, they are similar to the double adiabatic or Chew, Goldberger, and Low (CGL) equations. The new transport equations are used to study the effects of collisionality, magnetic field structure, and plasma anisotropy on plasma parallel transport. Numerical examples comparing these equations with conventional transport equations show that the conventional equations may contain large errors near the sound speed (M approx. = 1). It is also found that plasma anisotropy, which is not included in the conventional equations, is a critical parameter in determining plasma transport in varying magnetic field. The new transport equations are also used to study axial confinement in multiple mirror devices from the strongly to weakly collisional regime. A new ion conduction model was worked out to extend the regime of validity of the transport equations to the low density multiple mirror regime
Modified two-fluid model for the two-group interfacial area transport equation
International Nuclear Information System (INIS)
Sun Xiaodong; Ishii, Mamoru; Kelly, Joseph M.
2003-01-01
This paper presents a modified two-fluid model that is ready to be applied in the approach of the two-group interfacial area transport equation. The two-group interfacial area transport equation was developed to provide a mechanistic constitutive relation for the interfacial area concentration in the two-fluid model. In the two-group transport equation, bubbles are categorized into two groups: spherical/distorted bubbles as Group 1 while cap/slug/churn-turbulent bubbles as Group 2. Therefore, this transport equation can be employed in the flow regimes spanning from bubbly, cap bubbly, slug to churn-turbulent flows. However, the introduction of the two groups of bubbles requires two gas velocity fields. Yet it is not practical to solve two momentum equations for the gas phase alone. In the current modified two-fluid model, a simplified approach is proposed. The momentum equation for the averaged velocity of both Group-1 and Group-2 bubbles is retained. By doing so, the velocity difference between Group-1 and Group-2 bubbles needs to be determined. This may be made either based on simplified momentum equations for both Group-1 and Group-2 bubbles or by a modified drift-flux model
Two-fluid equations for a nuclear system with arbitrary motions
Energy Technology Data Exchange (ETDEWEB)
Kim, Byoung Jae [Chungnam National University, Daejeon (Korea, Republic of); Kim, Kyung Doo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2016-10-15
Ocean nuclear systems include a seabed-type plant, a floating-type plant, and a nuclear-propulsion ship. We asked ourselves, 'What governing equations should be used for ocean nuclear systems?' Since ocean nuclear systems are apt to move arbitrarily, the two-fluid model must be formulated in the non-inertial frame of reference that is undergoing acceleration with respect to an inertial frame. Two-phase flow systems with arbitrary motions are barely reported. Kim et al. (1996) added the centripetal and Euler acceleration forces to the homogeneous equilibrium momentum equation embedded in the RETRAN code. However, they did not look into the mass and energy equations. The purpose of this study is to derive general two-fluid equations in the non-inertial frame of reference, which can be used for safety analysis of ocean nuclear systems. The two-fluid equation forms for scalar properties such as mass, internal energy, and enthalpy equation in the moving frame are the same as those in the absolute frame. On the other hand, the fictitious effect must be included in the momentum equation.
Weak turbulence theory for the Gross-Pitaevskii equation
International Nuclear Information System (INIS)
Nazarenko, S.; West, R.; Lvov, Y.
2001-01-01
The goal of this paper is to use the ideas developed for the NLSE to derive a weak turbulence theory for a large set of random waves described by the Gross-Pitaevskii equation. An interesting picture emerges even from a naive application of the results already obtained for the NLSE case. Imagine an arbitrary initial excitation; a superposition of modes with energies somewhere in the middle of the potential well. Because of the nonlinear interaction (''collisions'') there is a redistribution of energy E and particles N among the modes. (orig.)
The qualitative theory of ordinary differential equations an introduction
Brauer, Fred
1989-01-01
""This is a very good book ... with many well-chosen examples and illustrations."" - American Mathematical MonthlyThis highly regarded text presents a self-contained introduction to some important aspects of modern qualitative theory for ordinary differential equations. It is accessible to any student of physical sciences, mathematics or engineering who has a good knowledge of calculus and of the elements of linear algebra. In addition, algebraic results are stated as needed; the less familiar ones are proved either in the text or in appendixes.The topics covered in the first three chapters a
SALE-3D, 3-D Fluid Flow, Navier Stokes Equation Using Lagrangian or Eulerian Method
International Nuclear Information System (INIS)
Amsden, A.A.; Ruppel, H.M.
1991-01-01
1 - Description of problem or function: SALE-3D calculates three- dimensional fluid flows at all speeds, from the incompressible limit to highly supersonic. An implicit treatment of the pressure calculation similar to that in the Implicit Continuous-fluid Eulerian (ICE) technique provides this flow speed flexibility. In addition, the computing mesh may move with the fluid in a typical Lagrangian fashion, be held fixed in an Eulerian manner, or move in some arbitrarily specified way to provide a continuous rezoning capability. This latitude results from use of an Arbitrary Lagrangian-Eulerian (ALE) treatment of the mesh. The partial differential equations solved are the Navier-Stokes equations and the mass and internal energy equations. The fluid pressure is determined from an equation of state and supplemented with an artificial viscous pressure for the computation of shock waves. The computing mesh consists of a three-dimensional network of arbitrarily shaped, six-sided deformable cells, and a variety of user-selectable boundary conditions are provided in the program. 2 - Method of solution: SALE3D uses an ICED-ALE technique, which combines the ICE method of treating flow speeds and the ALE mesh treatment to calculate three-dimensional fluid flow. The finite- difference approximations to the conservation of mass, momentum, and specific internal energy differential equations are solved in a sequence of time steps on a network of deformable computational cells. The basic hydrodynamic part of each cycle is divided into three phases: (1) an explicit solution of the Lagrangian equations of motion updating the velocity field by the effects of all forces, (2) an implicit calculation using Newton-Raphson iterative scheme that provides time-advanced pressures and velocities, and (3) the addition of advective contributions for runs that are Eulerian or contain some relative motion of grid and fluid. A powerful feature of this three-phases approach is the ease with which
On the continuum theory of the two-fluid solar wind for small mass ratio
International Nuclear Information System (INIS)
Johnson, R.S.
1976-01-01
The continuum theory for the two-fluid solar wind is considered. The fluid is assumed to be a fully ionized neutral plasma of electrons and protons which is compressible, viscous and heat conducting with a constant Prandtl number and a viscosity proportional to (temperature) sup(ω), ω > 1. The gas is under the influence of a gravitational field centred on the Sun. It is assumed that the bulk velocity (at any point) is the same for both electrons and protons, but that an energy transfer can occur between the two species due to binary (Coulomb) collisions. The equations are non-dimensionalized and it is shown that the natural parameter to use in the construction of an asymptotic solution is the mass ratio. The limit mass ratio → zero corresponds to the small Prandtl number limit for the one-fluid theory developed by Johnson (Proc. R. Soc. (Lond) A; 347:537 (1976)). By using the method of matched asymptotic expansions, a solution is constructed that starts from the base of the corona and extends out to a diffuse shock layer. The results obtained exactly parallel the one-fluid theory and many details are identified and absorbed into this analysis. It is shown how the temperatures in the corona eventually become the well-known behaviours: rsup(-2/7) (electrons), rsup(-6/7) (protons) when ω = 5/2 and r is the radial coordinate. However, the continuum theory will probably have failed in the shock layer region - the more so since this occurs at about 100 light years distance - and further mathematical details are omitted. The numerical estimates given here compare tolerably well with the observed data and very favourably with other work on the same equations. (author)
International Nuclear Information System (INIS)
Elfelsoufi, Z.; Azrar, L.
2016-01-01
In this paper, a mathematical modeling of flutter and divergence analyses of fluid conveying pipes based on integral equation formulations is presented. Dynamic stability problems related to fluid pressure, velocity, tension, topography slope and viscoelastic supports and foundations are formulated. A methodological approach is presented and the required matrices, associated to the influencing fluid and pipe parameters, are explicitly given. Internal discretizations are used allowing to investigate the deformation, the bending moment, slope and shear force at internal points. Velocity–frequency, pressure-frequency and tension-frequency curves are analyzed for various fluid parameters and internal elastic supports. Critical values of divergence and flutter behaviors with respect to various fluid parameters are investigated. This model is general and allows the study of dynamic stability of tubes crossed by stationary and instationary fluid on various types of supports. Accurate predictions can be obtained and are of particular interest for a better performance and for an optimal safety of piping system installations. - Highlights: • Modeling the flutter and divergence of fluid conveying pipes based on RBF. • Dynamic analysis of a fluid conveying pipe with generalized boundary conditions. • Considered parameters fluid are the pressure, tension, slopes topography, velocity. • Internal support increase the critical velocity value. • This methodologies determine the fluid parameters effects.
Puglisi, Andrea
2015-01-01
This brief offers a concise presentation of granular fluids from the point of view of non-equilibrium statistical physics. The emphasis is on fluctuations, which can be large in granular fluids due to the small system size (the number of grains is many orders of magnitude smaller than in molecular fluids). Firstly, readers will be introduced to the most intriguing experiments on fluidized granular fluids. Then granular fluid theory, which goes through increasing levels of coarse-graining and emerging collective phenomena, is described. Problems and questions are initially posed at the level of kinetic theory, which describes particle densities in full or reduced phase-space. Some answers become clear through hydrodynamics, which describes the evolution of slowly evolving fields. Granular fluctuating hydrodynamics, which builds a bridge to the most recent results in non-equilibrium statistical mechanics, is also introduced. Further and more interesting answers come when the dynamics of a massive intruder are...
Thermodynamics of perfect fluids from scalar field theory
Ballesteros, Guillermo; Pilo, Luigi
2016-01-01
The low-energy dynamics of relativistic continuous media is given by a shift-symmetric effective theory of four scalar fields. These scalars describe the embedding in spacetime of the medium and play the role of Stuckelberg fields for spontaneously broken spatial and time translations. Perfect fluids are selected imposing a stronger symmetry group or reducing the field content to a single scalar. We explore the relation between the field theory description of perfect fluids to thermodynamics. By drawing the correspondence between the allowed operators at leading order in derivatives and the thermodynamic variables, we find that a complete thermodynamic picture requires the four Stuckelberg fields. We show that thermodynamic stability plus the null energy condition imply dynamical stability. We also argue that a consistent thermodynamic interpretation is not possible if any of the shift symmetries is explicitly broken.
Thermodynamic properties of fluids from Fluctuation Solution Theory
International Nuclear Information System (INIS)
O'Connell, J.P.
1990-01-01
Fluctuation Theory develops exact relations between integrals of molecular correlation functions and concentration derivatives of pressure and chemical potential. These quantities can be usefully correlated, particularly for mechanical and thermal properties of pure and mixed dense fluids and for activities of strongly nonideal liquid solutions. The expressions yield unique formulae for the desirable thermodynamic properties of activity and density. The molecular theory origins of the flucuation properties, their behavior for systems of technical interest and some of their successful correlations will be described. Suggestions for fruitful directions will be suggested
Duran-Olivencia, Miguel A.; Goddard, Ben; Kalliadasis, Serafim
2015-11-01
Over the last few decades the classical density-functional theory (DFT) and its dynamic extensions (DDFTs) have become a remarkably powerful tool in the study of colloidal fluids. Recently there has been extensive research to generalise all previous DDFTs finally yielding a general DDFT equation (for spherical particles) which takes into account both inertia and hydrodynamic interactions (HI) which strongly influence non-equilibrium properties. The present work will be devoted to a further generalisation of such a framework to systems of anisotropic particles. To this end, the kinetic equation for the Brownian particle distribution function is derived starting from the Liouville equation and making use of Zwanzig's projection-operator techniques. By averaging over all but one particle, a DDFT equation is finally obtained with some similarities to that for spherical colloids. However, there is now an inevitable translational-rotational coupling which affects the diffusivity of asymmetric particles. Lastly, in the overdamped (high friction) limit the theory is notably simplified leading to a DDFT equation which agrees with previous derivations. We acknowledge financial support from European Research Council via Advanced Grant No. 247031.
Dark energy from cosmological fluids obeying a Shan-Chen non-ideal equation of state
Bini, Donato; Geralico, Andrea; Gregoris, Daniele; Succi, Sauro
2014-01-01
We consider a Friedmann-Robertson-Walker universe with a fluid source obeying a nonideal equation of state with ‘‘asymptotic freedom,’’ namely ideal gas behavior (pressure changes directly proportional to density changes) both at low and high density regimes, following a fluid dynamical model due to Shan and Chen. It is shown that, starting from an ordinary energy density component, such fluids naturally evolve towards a universe with a substantial ‘‘dark energy’’ component at the present tim...
Crossover integral equation theory for the liquid structure study
International Nuclear Information System (INIS)
Lai, S.K.; Chen, H.C.
1994-08-01
The main purpose of this work is to report on a calculation that describes the role of the long-range bridge function [H. Iyetomi and S. Ichimaru, Phys. Rev. A 25, 2434 (1982)] as applied to the study of structure of simple liquid metals. It was found here that this bridge function accounts pretty well for the major part of long-range interactions but is physically inadequate for describing the short-range part of liquid structure. To improve on the theory we have drawn attention to the crossover integral equation method which, in essence, amounts to adding to the above bridge function a short-range correction of bridge diagrams. The suggested crossover procedure has been tested for the case of liquid metal Cs. Remarkably good agreement with experiment was obtained confirming our conjecture that the crossover integral equation approach as stressed in this work is potentially an appropriate theory for an accurate study of liquid structure possibly for the supercooled liquid regime. (author). 21 refs, 3 figs
Generalized fluid equations for parallel transport in collisional to weakly collisional plasmas
International Nuclear Information System (INIS)
Zawaideh, E.; Najmabadi, F.; Conn, R.W.
1986-01-01
A new set of two-fluid equations that are valid from collisional to weakly collisional limits is derived. Starting from gyrokinetic equations in flux coordinates with no zero-order drifts, a set of moment equations describing plasma transport along the field lines of a space- and time-dependent magnetic field is derived. No restriction on the anisotropy of the ion distribution function is imposed. In the highly collisional limit, these equations reduce to those of Braginskii, while in the weakly collisional limit they are similar to the double adiabatic or Chew, Goldberger, and Low (CGL) equations [Proc. R. Soc. London, Ser. A 236, 112 (1956)]. The new set of equations also exhibits a physical singularity at the sound speed. This singularity is used to derive and compute the sound speed. Numerical examples comparing these equations with conventional transport equations show that in the limit where the ratio of the mean free path lambda to the scale length of the magnetic field gradient L/sub B/ approaches zero, there is no significant difference between the solution of the new and conventional transport equations. However, conventional fluid equations, ordinarily expected to be correct to the order (lambda/L/sub B/) 2 , are found to have errors of order (lambda/L/sub u/) 2 = (lambda/L/sub B/) 2 /(1-M 2 ) 2 , where L/sub u/ is the scale length of the flow velocity gradient and M is the Mach number. As such, the conventional equations may contain large errors near the sound speed (Mroughly-equal1)
Woodcock, T E; Woodcock, T M
2012-03-01
I.V. fluid therapy does not result in the extracellular volume distribution expected from Starling's original model of semi-permeable capillaries subject to hydrostatic and oncotic pressure gradients within the extracellular fluid. Fluid therapy to support the circulation relies on applying a physiological paradigm that better explains clinical and research observations. The revised Starling equation based on recent research considers the contributions of the endothelial glycocalyx layer (EGL), the endothelial basement membrane, and the extracellular matrix. The characteristics of capillaries in various tissues are reviewed and some clinical corollaries considered. The oncotic pressure difference across the EGL opposes, but does not reverse, the filtration rate (the 'no absorption' rule) and is an important feature of the revised paradigm and highlights the limitations of attempting to prevent or treat oedema by transfusing colloids. Filtered fluid returns to the circulation as lymph. The EGL excludes larger molecules and occupies a substantial volume of the intravascular space and therefore requires a new interpretation of dilution studies of blood volume and the speculation that protection or restoration of the EGL might be an important therapeutic goal. An explanation for the phenomenon of context sensitivity of fluid volume kinetics is offered, and the proposal that crystalloid resuscitation from low capillary pressures is rational. Any potential advantage of plasma or plasma substitutes over crystalloids for volume expansion only manifests itself at higher capillary pressures.
Flexible equation of state for a hard sphere and Lennard–Jones fluid ...
Indian Academy of Sciences (India)
Equation of state; Lennard–Jones potential; hard-sphere potential; liquid mixture; computer simulation. ... deviation than Barker–Henderson BH2 for LJ fluids, and results are much closer to molecular dynamics (MD) simulations than expectations and reproduce the existing simulation data and present EoS for LJ potential, ...
Langevin equation of a fluid particle in wall-induced turbulence
Brouwers, J.J.H.
2010-01-01
We derive the Langevin equation describing the stochastic process of fluid particle motion in wall-inducedturbulence (turbulent flow in pipes, channels, and boundary layers including the atmospheric surface layer).The analysis is based on the asymptotic behavior at a large Reynolds number. We use
Thermodynamic and transport properties of nitrogen fluid: Molecular theory and computer simulations
Eskandari Nasrabad, A.; Laghaei, R.
2018-04-01
Computer simulations and various theories are applied to compute the thermodynamic and transport properties of nitrogen fluid. To model the nitrogen interaction, an existing potential in the literature is modified to obtain a close agreement between the simulation results and experimental data for the orthobaric densities. We use the Generic van der Waals theory to calculate the mean free volume and apply the results within the modified Cohen-Turnbull relation to obtain the self-diffusion coefficient. Compared to experimental data, excellent results are obtained via computer simulations for the orthobaric densities, the vapor pressure, the equation of state, and the shear viscosity. We analyze the results of the theory and computer simulations for the various thermophysical properties.
Equation-of-State Modeling of Phase Equilibria in Petroleum Fluids
DEFF Research Database (Denmark)
Jørgensen, Marianne
1996-01-01
The Soave-Redlich-Kwong (SRK) equation of state was used to investigate and develop several aspects of the modeling of natural petroleum fluids.A new method was presented for numerical evaluation of PVT experiments. This method was used in the estimation of binary interaction parameters. A comphr......The Soave-Redlich-Kwong (SRK) equation of state was used to investigate and develop several aspects of the modeling of natural petroleum fluids.A new method was presented for numerical evaluation of PVT experiments. This method was used in the estimation of binary interaction parameters....... A comphrensive study of pseudoization procedures is presented. It is concluded that the compared methods exhibit results of comparable accuracy, and that six to eight pseudocomponents are needed for optimal representation of petroleum fluids.Finally, it is investigated how well the EOS can represent the VLLE...
Development of multidimensional two-fluid model code ACE-3D for evaluation of constitutive equations
Energy Technology Data Exchange (ETDEWEB)
Ohnuki, Akira; Akimoto, Hajime [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kamo, Hideki
1996-11-01
In order to perform design calculations for a passive safety reactor with good accuracy by a multidimensional two-fluid model, we developed an analysis code, ACE-3D, which can apply for evaluation of constitutive equations. The developed code has the following features: 1. The basic equations are based on 3-dimensional two-fluid model and the orthogonal or the cylindrical coordinate system can be selected. The fluid system is air-water or steam-water. 2. The basic equations are formulated by the finite-difference scheme of staggered mesh. The convection term is formulated by an upwind scheme and the diffusion term by a center-difference scheme. 3. Semi-implicit numerical scheme is adopted and the mass and the energy equations are treated equally in convergent steps for Jacobi equations. 4. The interfacial stress term consists of drag force, life force, turbulent dispersion force, wall force and virtual mass force. 5. A {kappa}-{epsilon} turbulent model for bubbly flow is incorporated as the turbulent model. The predictive capability of ACE-3D has been verified using a data-base for bubbly flow in a small-scale vertical pipe. In future, the constitutive equations will be improved with a data-base in a large vertical pipe developed in our laboratory and we have a plan to construct a reliable analytical tool through the improvement work, the progress of calculational speed with vector and parallel processing, the assessments for phase change terms and so on. This report describes the outline for the basic equations and the finite-difference equations in ACE-3D code and also the outline for the program structure. Besides, the results for the assessments of ACE-3D code for the small-scale pipe are summarized. (author)
Development of multidimensional two-fluid model code ACE-3D for evaluation of constitutive equations
International Nuclear Information System (INIS)
Ohnuki, Akira; Akimoto, Hajime; Kamo, Hideki.
1996-11-01
In order to perform design calculations for a passive safety reactor with good accuracy by a multidimensional two-fluid model, we developed an analysis code, ACE-3D, which can apply for evaluation of constitutive equations. The developed code has the following features: 1. The basic equations are based on 3-dimensional two-fluid model and the orthogonal or the cylindrical coordinate system can be selected. The fluid system is air-water or steam-water. 2. The basic equations are formulated by the finite-difference scheme of staggered mesh. The convection term is formulated by an upwind scheme and the diffusion term by a center-difference scheme. 3. Semi-implicit numerical scheme is adopted and the mass and the energy equations are treated equally in convergent steps for Jacobi equations. 4. The interfacial stress term consists of drag force, life force, turbulent dispersion force, wall force and virtual mass force. 5. A κ-ε turbulent model for bubbly flow is incorporated as the turbulent model. The predictive capability of ACE-3D has been verified using a data-base for bubbly flow in a small-scale vertical pipe. In future, the constitutive equations will be improved with a data-base in a large vertical pipe developed in our laboratory and we have a plan to construct a reliable analytical tool through the improvement work, the progress of calculational speed with vector and parallel processing, the assessments for phase change terms and so on. This report describes the outline for the basic equations and the finite-difference equations in ACE-3D code and also the outline for the program structure. Besides, the results for the assessments of ACE-3D code for the small-scale pipe are summarized. (author)
Two-Phase Fluid Simulation Using a Diffuse Interface Model with Peng--Robinson Equation of State
Qiao, Zhonghua
2014-01-01
In this paper, two-phase fluid systems are simulated using a diffusive interface model with the Peng-Robinson equation of state (EOS), a widely used realistic EOS for hydrocarbon fluid in the petroleum industry. We first utilize the gradient theory of thermodynamics and variational calculus to derive a generalized chemical equilibrium equation, which is mathematically a second-order elliptic partial differential equation (PDE) in molar density with a strongly nonlinear source term. To solve this PDE, we convert it to a time-dependent parabolic PDE with the main interest in its final steady state solution. A Lagrange multiplier is used to enforce mass conservation. The parabolic PDE is then solved by mixed finite element methods with a semi-implicit time marching scheme. Convex splitting of the energy functional is proposed to construct this time marching scheme, where the volume exclusion effect of an EOS is treated implicitly while the pairwise attraction effect of EOS is calculated explicitly. This scheme is proved to be unconditionally energy stable. Our proposed algorithm is able to solve successfully the spatially heterogeneous two-phase systems with the Peng-Robinson EOS in multiple spatial dimensions, the first time in the literature. Numerical examples are provided with realistic hydrocarbon components to illustrate the theory. Furthermore, our computational results are compared with laboratory experimental data and verified with the Young-Laplace equation with good agreement. This work sets the stage for a broad extension of efficient convex-splitting semi-implicit schemes for numerical simulation of phase field models with a realistic EOS in complex geometries of multiple spatial dimensions.
Partial differential equations in action from modelling to theory
Salsa, Sandro
2016-01-01
The book is intended as an advanced undergraduate or first-year graduate course for students from various disciplines, including applied mathematics, physics and engineering. It has evolved from courses offered on partial differential equations (PDEs) over the last several years at the Politecnico di Milano. These courses had a twofold purpose: on the one hand, to teach students to appreciate the interplay between theory and modeling in problems arising in the applied sciences, and on the other to provide them with a solid theoretical background in numerical methods, such as finite elements. Accordingly, this textbook is divided into two parts. The first part, chapters 2 to 5, is more elementary in nature and focuses on developing and studying basic problems from the macro-areas of diffusion, propagation and transport, waves and vibrations. In turn the second part, chapters 6 to 11, concentrates on the development of Hilbert spaces methods for the variational formulation and the analysis of (mainly) linear bo...
Partial differential equations in action from modelling to theory
Salsa, Sandro
2015-01-01
The book is intended as an advanced undergraduate or first-year graduate course for students from various disciplines, including applied mathematics, physics and engineering. It has evolved from courses offered on partial differential equations (PDEs) over the last several years at the Politecnico di Milano. These courses had a twofold purpose: on the one hand, to teach students to appreciate the interplay between theory and modeling in problems arising in the applied sciences, and on the other to provide them with a solid theoretical background in numerical methods, such as finite elements. Accordingly, this textbook is divided into two parts. The first part, chapters 2 to 5, is more elementary in nature and focuses on developing and studying basic problems from the macro-areas of diffusion, propagation and transport, waves and vibrations. In turn the second part, chapters 6 to 11, concentrates on the development of Hilbert spaces methods for the variational formulation and the analysis of (mainly) linear bo...
Theory of activated glassy dynamics in randomly pinned fluids
Phan, Anh D.; Schweizer, Kenneth S.
2018-02-01
We generalize the force-level, microscopic, Nonlinear Langevin Equation (NLE) theory and its elastically collective generalization [elastically collective nonlinear Langevin equation (ECNLE) theory] of activated dynamics in bulk spherical particle liquids to address the influence of random particle pinning on structural relaxation. The simplest neutral confinement model is analyzed for hard spheres where there is no change of the equilibrium pair structure upon particle pinning. As the pinned fraction grows, cage scale dynamical constraints are intensified in a manner that increases with density. This results in the mobile particles becoming more transiently localized, with increases of the jump distance, cage scale barrier, and NLE theory mean hopping time; subtle changes of the dynamic shear modulus are predicted. The results are contrasted with recent simulations. Similarities in relaxation behavior are identified in the dynamic precursor regime, including a roughly exponential, or weakly supra-exponential, growth of the alpha time with pinning fraction and a reduction of dynamic fragility. However, the increase of the alpha time with pinning predicted by the local NLE theory is too small and severely so at very high volume fractions. The strong deviations are argued to be due to the longer range collective elasticity aspect of the problem which is expected to be modified by random pinning in a complex manner. A qualitative physical scenario is offered for how the three distinct aspects that quantify the elastic barrier may change with pinning. ECNLE theory calculations of the alpha time are then presented based on the simplest effective-medium-like treatment for how random pinning modifies the elastic barrier. The results appear to be consistent with most, but not all, trends seen in recent simulations. Key open problems are discussed with regard to both theory and simulation.
Equilibrium properties of dense hydrogen isotope gases based on the theory of simple fluids.
Kowalczyk, Piotr; MacElroy, J M D
2006-08-03
We present a new method for the prediction of the equilibrium properties of dense gases containing hydrogen isotopes. The proposed approach combines the Feynman-Hibbs effective potential method and a deconvolution scheme introduced by Weeks et al. The resulting equations of state and the chemical potentials as functions of pressure for each of the hydrogen isotope gases depend on a single set of Lennard-Jones parameters. In addition to its simplicity, the proposed method with optimized Lennard-Jones potential parameters accurately describes the equilibrium properties of hydrogen isotope fluids in the regime of moderate temperatures and pressures. The present approach should find applications in the nonlocal density functional theory of inhomogeneous quantum fluids and should also be of particular relevance to hydrogen (clean energy) storage and to the separation of quantum isotopes by novel nanomaterials.
Partial differential equations an accessible route through theory and applications
Vasy, András
2015-01-01
This text on partial differential equations is intended for readers who want to understand the theoretical underpinnings of modern PDEs in settings that are important for the applications without using extensive analytic tools required by most advanced texts. The assumed mathematical background is at the level of multivariable calculus and basic metric space material, but the latter is recalled as relevant as the text progresses. The key goal of this book is to be mathematically complete without overwhelming the reader, and to develop PDE theory in a manner that reflects how researchers would think about the material. A concrete example is that distribution theory and the concept of weak solutions are introduced early because while these ideas take some time for the students to get used to, they are fundamentally easy and, on the other hand, play a central role in the field. Then, Hilbert spaces that are quite important in the later development are introduced via completions which give essentially all the fea...
Directory of Open Access Journals (Sweden)
A. A. Hemeda
2013-01-01
Full Text Available An extension of the so-called new iterative method (NIM has been used to handle linear and nonlinear fractional partial differential equations. The main property of the method lies in its flexibility and ability to solve nonlinear equations accurately and conveniently. Therefore, a general framework of the NIM is presented for analytical treatment of fractional partial differential equations in fluid mechanics. The fractional derivatives are described in the Caputo sense. Numerical illustrations that include the fractional wave equation, fractional Burgers equation, fractional KdV equation, fractional Klein-Gordon equation, and fractional Boussinesq-like equation are investigated to show the pertinent features of the technique. Comparison of the results obtained by the NIM with those obtained by both Adomian decomposition method (ADM and the variational iteration method (VIM reveals that the NIM is very effective and convenient. The basic idea described in this paper is expected to be further employed to solve other similar linear and nonlinear problems in fractional calculus.
International Nuclear Information System (INIS)
Johnson, E.
1977-01-01
A theory for site-site pair distribution functions of molecular fluids is derived from the Ornstein-Zernike equation. Atom-atom pair distribution functions of this theory which were obtained by using different approximations for the Percus-Yevick site-site direct correlation functions are compared
Analytical approach to linear fractional partial differential equations arising in fluid mechanics
International Nuclear Information System (INIS)
Momani, Shaher; Odibat, Zaid
2006-01-01
In this Letter, we implement relatively new analytical techniques, the variational iteration method and the Adomian decomposition method, for solving linear fractional partial differential equations arising in fluid mechanics. The fractional derivatives are described in the Caputo sense. The two methods in applied mathematics can be used as alternative methods for obtaining analytic and approximate solutions for different types of fractional differential equations. In these methods, the solution takes the form of a convergent series with easily computable components. The corresponding solutions of the integer order equations are found to follow as special cases of those of fractional order equations. Some numerical examples are presented to illustrate the efficiency and reliability of the two methods
On two functional equations originating from number theory
Indian Academy of Sciences (India)
Reducing the functional equations introduced in Proc. Indian Acad. Sci. (Math. Sci.) 113(2) (2003) 91–98 and in Appl. Math. Lett. 21 (2008) 974–977 to equations in complex variables and quaternions, we find general solutions of the equations. We also obtain the stability of the equations.
Perturbation theory in Lagrangian hydrodynamics for a cosmological fluid with velocity dispersion
International Nuclear Information System (INIS)
Tatekawa, Takayuki; Suda, Momoko; Maeda, Kei-ichi; Morita, Masaaki; Anzai, Hiroki
2002-01-01
We extensively develop a perturbation theory for nonlinear cosmological dynamics, based on the Lagrangian description of hydrodynamics. We solve the hydrodynamic equations for a self-gravitating fluid with pressure, given by a polytropic equation of state, using a perturbation method up to second order. This perturbative approach is an extension of the usual Lagrangian perturbation theory for a pressureless fluid, in view of the inclusion of the pressure effect, which should be taken into account on the occurrence of velocity dispersion. We obtain the first-order solutions in generic background universes and the second-order solutions in a wider range of a polytropic index, whereas our previous work gives the first-order solutions only in the Einstein-de Sitter background and the second-order solutions for the polytropic index 4/3. Using the perturbation solutions, we present illustrative examples of our formulation in one- and two-dimensional systems, and discuss how the evolution of inhomogeneities changes for the variation of the polytropic index
Fluid/Structure Interaction Studies of Aircraft Using High Fidelity Equations on Parallel Computers
Guruswamy, Guru; VanDalsem, William (Technical Monitor)
1994-01-01
Abstract Aeroelasticity which involves strong coupling of fluids, structures and controls is an important element in designing an aircraft. Computational aeroelasticity using low fidelity methods such as the linear aerodynamic flow equations coupled with the modal structural equations are well advanced. Though these low fidelity approaches are computationally less intensive, they are not adequate for the analysis of modern aircraft such as High Speed Civil Transport (HSCT) and Advanced Subsonic Transport (AST) which can experience complex flow/structure interactions. HSCT can experience vortex induced aeroelastic oscillations whereas AST can experience transonic buffet associated structural oscillations. Both aircraft may experience a dip in the flutter speed at the transonic regime. For accurate aeroelastic computations at these complex fluid/structure interaction situations, high fidelity equations such as the Navier-Stokes for fluids and the finite-elements for structures are needed. Computations using these high fidelity equations require large computational resources both in memory and speed. Current conventional super computers have reached their limitations both in memory and speed. As a result, parallel computers have evolved to overcome the limitations of conventional computers. This paper will address the transition that is taking place in computational aeroelasticity from conventional computers to parallel computers. The paper will address special techniques needed to take advantage of the architecture of new parallel computers. Results will be illustrated from computations made on iPSC/860 and IBM SP2 computer by using ENSAERO code that directly couples the Euler/Navier-Stokes flow equations with high resolution finite-element structural equations.
A conservative finite difference method for the numerical solution of plasma fluid equations
International Nuclear Information System (INIS)
Colella, P.; Dorr, M.R.; Wake, D.D.
1999-01-01
This paper describes a numerical method for the solution of a system of plasma fluid equations. The fluid model is similar to those employed in the simulation of high-density, low-pressure plasmas used in semiconductor processing. The governing equations consist of a drift-diffusion model of the electrons, together with an internal energy equation, coupled via Poisson's equation to a system of Euler equations for each ion species augmented with electrostatic force, collisional, and source/sink terms. The time integration of the full system is performed using an operator splitting that conserves space charge and avoids dielectric relaxation timestep restrictions. The integration of the individual ion species and electrons within the time-split advancement is achieved using a second-order Godunov discretization of the hyperbolic terms, modified to account for the significant role of the electric field in the propagation of acoustic waves, combined with a backward Euler discretization of the parabolic terms. Discrete boundary conditions are employed to accommodate the plasma sheath boundary layer on underresolved grids. The algorithm is described for the case of a single Cartesian grid as the first step toward an implementation on a locally refined grid hierarchy in which the method presented here may be applied on each refinement level
Energy Technology Data Exchange (ETDEWEB)
Múnera, Héctor A., E-mail: hmunera@hotmail.com [Centro Internacional de Física (CIF), Apartado Aéreo 4948, Bogotá, Colombia, South America (Colombia); Retired professor, Department of Physics, Universidad Nacional de Colombia, Bogotá, Colombia, South America (Colombia)
2016-07-07
It is postulated that there exists a fundamental energy-like fluid, which occupies the flat three-dimensional Euclidean space that contains our universe, and obeys the two basic laws of classical physics: conservation of linear momentum, and conservation of total energy; the fluid is described by the classical wave equation (CWE), which was Schrödinger’s first candidate to develop his quantum theory. Novel solutions for the CWE discovered twenty years ago are nonharmonic, inherently quantized, and universal in the sense of scale invariance, thus leading to quantization at all scales of the universe, from galactic clusters to the sub-quark world, and yielding a unified Lorentz-invariant quantum theory ab initio. Quingal solutions are isomorphic under both neo-Galilean and Lorentz transformations, and exhibit nother remarkable property: intrinsic unstability for large values of ℓ (a quantum number), thus limiting the size of each system at a given scale. Unstability and scale-invariance together lead to nested structures observed in our solar system; unstability may explain the small number of rows in the chemical periodic table, and nuclear unstability of nuclides beyond lead and bismuth. Quingal functions lend mathematical basis for Boscovich’s unified force (which is compatible with many pieces of evidence collected over the past century), and also yield a simple geometrical solution for the classical three-body problem, which is a useful model for electronic orbits in simple diatomic molecules. A testable prediction for the helicoidal-type force is suggested.
Space-time versus world-sheet renormalization group equation in string theory
International Nuclear Information System (INIS)
Brustein, R.; Roland, K.
1991-05-01
We discuss the relation between space-time renormalization group equation for closed string field theory and world-sheet renormalization group equation for first-quantized strings. Restricting our attention to massless states we argue that there is a one-to-one correspondence between the fixed point solutions of the two renormalization group equations. In particular, we show how to extract the Fischler-Susskind mechanism from the string field theory equation in the case of the bosonic string. (orig.)
International Nuclear Information System (INIS)
Singh, Ram Chandra
2007-01-01
We have used the density-functional theory to study the effect of varying temperature on the isotropic-nematic transition of a fluid of molecules interacting via the Gay-Berne intermolecular potential. The nematic phase is found to be stable with respect to isotropic phase in the temperature range 0.80≤T*≤1.25. Pair correlation functions needed as input information in density-functional theory is calculated using the Percus-Yevick integral equation theory. We find that the density-functional theory is good for studying the isotropic-nematic transition in molecular fluids if the values of the pair-correlation functions in the isotropic phase are known accurately. We have also compared our results with computer simulation results wherever they are available
Finite field equation of Yang--Mills theory
International Nuclear Information System (INIS)
Brandt, R.A.; Wing-Chiu, N.; Yeung, W.
1980-01-01
We consider the finite local field equation -][1+1/α (1+f 4 )]g/sup munu/D'Alembertian-partial/sup μ/partial/sup ν/]A/sup nua/ =-(1+f 3 ) g 2 N[A/sup c/νA/sup a/μA/sub ν//sup c/] +xxx+(1-s) 2 M 2 A/sup a/μ, introduced by Lowenstein to rigorously describe SU(2) Yang--Mills theory, which is written in terms of normal products. We also consider the operator product expansion A/sup c/ν(x+xi) A/sup a/μ(x) A/sup b/lambda(x-xi) approx.ΣM/sup c/abνμlambda/sub c/'a'b'ν'μ'lambda' (xi) N[A/sup nuprimec/'A/sup muprimea/'A/sup lambdaprimeb/'](x), and using asymptotic freedom, we compute the leading behavior of the Wilson coefficients M/sup ...//sub .../(xi) with the help of a computer, and express the normal products in the field equation in terms of products of the c-number Wilson coefficients and of operator products like A/sup c/ν(x+xi) A/sup a/μ(x) A/sup b/lambda(x-xi) at separated points. Our result is -][1+(1/α)(1+f 4 )]g/sup munu/D'Alembertian-partial/sup μ/partial/sup ν/]A/sup nua/ =-(1+f 3 ) g 2 lim/sub xiarrow-right0/] (lnxi)/sup -0.28/2b/[A/sup c/ν (x+xi) A/sup a/μ(x) A/sub ν//sup c/(x-xi) +epsilon/sup a/bcA/sup muc/(x+xi) partial/sup ν/A/sup b//sub ν/(x)+xxx] +xxx]+(1-s) 2 M 2 A/sup a/μ, where β (g) =-bg 3 , and so (lnxi)/sup -0.28/2b/ is the leading behavior of the c-number coefficient multiplying the operator products in the field equation
Energy Technology Data Exchange (ETDEWEB)
Paolucci, S.
1982-12-01
An approximation leading to anelastic equations capable of describing thermal convection in a compressible fluid is given. These equations are more general than the Oberbeck-Boussinesq equations and different than the standard anelastic equations in that they can be used for the computation of convection in a fluid with large density gradients present. We show that the equations do not contain acoustic waves, while at the same time they can still describe the propagation of internal waves. Throughout we show that the filtering of acoustic waves, within the limits of the approximation, does not appreciably alter the description of the physics.
All static spherically symmetric perfect-fluid solutions of Einstein's equations
International Nuclear Information System (INIS)
Lake, Kayll
2003-01-01
An algorithm based on the choice of a single monotone function (subject to boundary conditions) is presented which generates all regular static spherically symmetric perfect-fluid solutions of Einstein's equations. For physically relevant solutions the generating functions must be restricted by nontrivial integral-differential inequalities. Nonetheless, the algorithm is demonstrated here by the construction of an infinite number of previously unknown physically interesting exact solutions
Czech Academy of Sciences Publication Activity Database
Penel, P.; Straškraba, Ivan
2010-01-01
Roč. 134, č. 3 (2010), s. 278-294 ISSN 0007-4497 R&D Projects: GA ČR GA201/08/0012 Institutional research plan: CEZ:AV0Z10190503 Keywords : compressible fluid * Navier-Stokes equations * asymptotic behavior Subject RIV: BA - General Mathematics Impact factor: 0.722, year: 2010 http://www.sciencedirect.com/science/article/pii/S0007449709000153
Vispoel, Walter P; Morris, Carrie A; Kilinc, Murat
2018-03-01
Although widely recognized as a comprehensive framework for representing score reliability, generalizability theory (G-theory), despite its potential benefits, has been used sparingly in reporting of results for measures of individual differences. In this article, we highlight many valuable ways that G-theory can be used to quantify, evaluate, and improve psychometric properties of scores. Our illustrations encompass assessment of overall reliability, percentages of score variation accounted for by individual sources of measurement error, dependability of cut-scores for decision making, estimation of reliability and dependability for changes made to measurement procedures, disattenuation of validity coefficients for measurement error, and linkages of G-theory with classical test theory and structural equation modeling. We also identify computer packages for performing G-theory analyses, most of which can be obtained free of charge, and describe how they compare with regard to data input requirements, ease of use, complexity of designs supported, and output produced. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Effective equations for fluid-structure interaction with applications to poroelasticity
Brown, Donald; Popov, Peter V.; Efendiev, Yalchin R.
2012-01-01
Modeling of fluid-solid interactions in porous media is a challenging and computationally demanding task. Due to the multiscale nature of the problem, simulating the flow and mechanics by direct numerical simulation is often not feasible and an effective model is preferred. In this work, we formally derive an effective model for Fluid-Structure Interaction (FSI). In earlier work, assuming infinitesimal pore-scale deformations, an effective poroelastic model of Biot was derived. We extend this model to a nonlinear Biot model that includes pore-scale deformation into the effective description. The main challenge is the difference in coordinate systems of the fluid and solid equations. This is circumvented by utilizing the Arbitrary Lagrange-Eulerian (ALE) formulation of the FSI equations, giving a unified frame in which to apply two-scale asymptotic techniques. In the derived nonlinear Biot model, the local cell problem are coupled to the macroscopic equations via the effective coefficients. These coefficients may be viewed as tabular functions of the macroscopic parameters. After simplifying this dependence, we assume the coefficients depend on macroscopic pressure only. Using a three dimensional pore geometry we calculate, as a proof-of-concept example, the effective permeability and Biot coefficients for various values or pressure. We observe that, for this geometry, a stronger pressure dependence on flow quantities than on mechanically based effective quantities. © 2014 Taylor & Francis Group, LLC.
Cosmological model with viscosity media (dark fluid) described by an effective equation of state
International Nuclear Information System (INIS)
Ren Jie; Meng Xinhe
2006-01-01
A generally parameterized equation of state (EOS) is investigated in the cosmological evolution with bulk viscosity media modelled as dark fluid, which can be regarded as a unification of dark energy and dark matter. Compared with the case of the perfect fluid, this EOS has possessed four additional parameters, which can be interpreted as the case of the non-perfect fluid with time-dependent viscosity or the model with variable cosmological constant. From this general EOS, a completely integrable dynamical equation to the scale factor is obtained with its solution explicitly given out. (i) In this parameterized model of cosmology, for a special choice of the parameters we can explain the late-time accelerating expansion universe in a new view. The early inflation, the median (relatively late time) deceleration, and the recently cosmic acceleration may be unified in a single equation. (ii) A generalized relation of the Hubble parameter scaling with the redshift is obtained for some cosmology interests. (iii) By using the SNe Ia data to fit the effective viscosity model we show that the case of matter described by p=0 plus with effective viscosity contributions can fit the observational gold data in an acceptable level
Effective equations for fluid-structure interaction with applications to poroelasticity
Brown, Donald
2012-11-05
Modeling of fluid-solid interactions in porous media is a challenging and computationally demanding task. Due to the multiscale nature of the problem, simulating the flow and mechanics by direct numerical simulation is often not feasible and an effective model is preferred. In this work, we formally derive an effective model for Fluid-Structure Interaction (FSI). In earlier work, assuming infinitesimal pore-scale deformations, an effective poroelastic model of Biot was derived. We extend this model to a nonlinear Biot model that includes pore-scale deformation into the effective description. The main challenge is the difference in coordinate systems of the fluid and solid equations. This is circumvented by utilizing the Arbitrary Lagrange-Eulerian (ALE) formulation of the FSI equations, giving a unified frame in which to apply two-scale asymptotic techniques. In the derived nonlinear Biot model, the local cell problem are coupled to the macroscopic equations via the effective coefficients. These coefficients may be viewed as tabular functions of the macroscopic parameters. After simplifying this dependence, we assume the coefficients depend on macroscopic pressure only. Using a three dimensional pore geometry we calculate, as a proof-of-concept example, the effective permeability and Biot coefficients for various values or pressure. We observe that, for this geometry, a stronger pressure dependence on flow quantities than on mechanically based effective quantities. © 2014 Taylor & Francis Group, LLC.
Mathematical well-posedness of a two-fluid equations for bubbly two-phase flows
International Nuclear Information System (INIS)
Okawa, Tomio; Kataoka, Isao
2000-01-01
It is widely known that two-fluid equations used in most engineering applications do not satisfy the necessary condition for being mathematical well-posed as initial-value problems. In the case of stratified two-phase flows, several researchers have revealed that differential models satisfying the necessary condition are to be derived if the pressure difference between the phases is related to the spatial gradient of the void fraction through the effects of gravity or surface tension. While, in the case of dispersed two-phase flows, no physically reasonable method to derive mathematically well-posed two-fluid model has been proposed. In the present study, particularly focusing on the effect of interfacial pressure terms, we derived the mathematically closed form of the volume-averaged two-fluid model for bubbly two-phase flows. As a result of characteristic analyses, it was shown that the proposed two-fluid equations satisfy the necessary condition of mathematical well-posedness if the void fraction is sufficiently small. (author)
Functional renormalisation group equations for supersymmetric field theories
Energy Technology Data Exchange (ETDEWEB)
Synatschke-Czerwonka, Franziska
2011-01-11
This work is organised as follows: In chapter 2 the basic facts of quantum field theory are collected and the functional renormalisation group equations are derived. Chapter 3 gives a short introduction to the main concepts of supersymmetry that are used in the subsequent chapters. In chapter 4 the functional RG is employed for a study of supersymmetric quantum mechanics, a supersymmetric model which are studied intensively in the literature. A lot of results have previously been obtained with different methods and we compare these to the ones from the FRG. We investigate the N=1 Wess-Zumino model in two dimensions in chapter 5. This model shows spontaneous supersymmetry breaking and an interesting fixed-point structure. Chapter 6 deals with the three dimensional N=1 Wess-Zumino model. Here we discuss the zero temperature case as well as the behaviour at finite temperature. Moreover, this model shows spontaneous supersymmetry breaking, too. In chapter 7 the two-dimensional N=(2,2) Wess-Zumino model is investigated. For the superpotential a non-renormalisation theorem holds and thus guarantees that the model is finite. This allows for a direct comparison with results from lattice simulations. (orig.)
Modern integral equation techniques for quantum reactive scattering theory
International Nuclear Information System (INIS)
Auerbach, S.M.
1993-11-01
Rigorous calculations of cross sections and rate constants for elementary gas phase chemical reactions are performed for comparison with experiment, to ensure that our picture of the chemical reaction is complete. We focus on the H/D+H 2 → H 2 /DH + H reaction, and use the time independent integral equation technique in quantum reactive scattering theory. We examine the sensitivity of H+H 2 state resolved integral cross sections σ v'j',vj (E) for the transitions (v = 0,j = 0) to (v' = 1,j' = 1,3), to the difference between the Liu-Siegbahn-Truhlar-Horowitz (LSTH) and double many body expansion (DMBE) ab initio potential energy surfaces (PES). This sensitivity analysis is performed to determine the origin of a large discrepancy between experimental cross sections with sharply peaked energy dependence and theoretical ones with smooth energy dependence. We find that the LSTH and DMBE PESs give virtually identical cross sections, which lends credence to the theoretical energy dependence
Two-equation and multi-fluid turbulence models for Rayleigh–Taylor mixing
International Nuclear Information System (INIS)
Kokkinakis, I.W.; Drikakis, D.; Youngs, D.L.; Williams, R.J.R.
2015-01-01
Highlights: • We present a new improved version of the K–L model. • The improved K–L is found in good agreement with the multi-fluid model and ILES. • The study concerns Rayleigh–Taylor flows at initial density ratios 3:1 and 20:1. - Abstract: This paper presents a new, improved version of the K–L model, as well as a detailed investigation of K–L and multi-fluid models with reference to high-resolution implicit large eddy simulations of compressible Rayleigh–Taylor mixing. The accuracy of the models is examined for different interface pressures and specific heat ratios for Rayleigh–Taylor flows at initial density ratios 3:1 and 20:1. It is shown that the original version of the K–L model requires modifications in order to provide comparable results to the multi-fluid model. The modifications concern the addition of an enthalpy diffusion term to the energy equation; the formulation of the turbulent kinetic energy (source) term in the K equation; and the calculation of the local Atwood number. The proposed modifications significantly improve the results of the K–L model, which are found in good agreement with the multi-fluid model and implicit large eddy simulations with respect to the self-similar mixing width; peak turbulent kinetic energy growth rate, as well as volume fraction and turbulent kinetic energy profiles. However, a key advantage of the two-fluid model is that it can represent the degree of molecular mixing in a direct way, by transferring mass between the two phases. The limitations of the single-fluid K–L model as well as the merits of more advanced Reynolds-averaged Navier–Stokes models are also discussed throughout the paper.
Solving the Fluid Pressure Poisson Equation Using Multigrid-Evaluation and Improvements.
Dick, Christian; Rogowsky, Marcus; Westermann, Rudiger
2016-11-01
In many numerical simulations of fluids governed by the incompressible Navier-Stokes equations, the pressure Poisson equation needs to be solved to enforce mass conservation. Multigrid solvers show excellent convergence in simple scenarios, yet they can converge slowly in domains where physically separated regions are combined at coarser scales. Moreover, existing multigrid solvers are tailored to specific discretizations of the pressure Poisson equation, and they cannot easily be adapted to other discretizations. In this paper we analyze the convergence properties of existing multigrid solvers for the pressure Poisson equation in different simulation domains, and we show how to further improve the multigrid convergence rate by using a graph-based extension to determine the coarse grid hierarchy. The proposed multigrid solver is generic in that it can be applied to different kinds of discretizations of the pressure Poisson equation, by using solely the specification of the simulation domain and pre-assembled computational stencils. We analyze the proposed solver in combination with finite difference and finite volume discretizations of the pressure Poisson equation. Our evaluations show that, despite the common assumption, multigrid schemes can exploit their potential even in the most complicated simulation scenarios, yet this behavior is obtained at the price of higher memory consumption.
Transport equations, Level Set and Eulerian mechanics. Application to fluid-structure coupling
International Nuclear Information System (INIS)
Maitre, E.
2008-11-01
My works were devoted to numerical analysis of non-linear elliptic-parabolic equations, to neutron transport equation and to the simulation of fabrics draping. More recently I developed an Eulerian method based on a level set formulation of the immersed boundary method to deal with fluid-structure coupling problems arising in bio-mechanics. Some of the more efficient algorithms to solve the neutron transport equation make use of the splitting of the transport operator taking into account its characteristics. In the present work we introduced a new algorithm based on this splitting and an adaptation of minimal residual methods to infinite dimensional case. We present the case where the velocity space is of dimension 1 (slab geometry) and 2 (plane geometry) because the splitting is simpler in the former
Lee, Yang-Sub
A time-domain numerical algorithm for solving the KZK (Khokhlov-Zabolotskaya-Kuznetsov) nonlinear parabolic wave equation is developed for pulsed, axisymmetric, finite amplitude sound beams in thermoviscous fluids. The KZK equation accounts for the combined effects of diffraction, absorption, and nonlinearity at the same order of approximation. The accuracy of the algorithm is established via comparison with analytical solutions for several limiting cases, and with numerical results obtained from a widely used algorithm for solving the KZK equation in the frequency domain. The time domain algorithm is used to investigate waveform distortion and shock formation in directive sound beams radiated by pulsed circular piston sources. New results include predictions for the entire process of self-demodulation, and for the effect of frequency modulation on pulse envelope distortion. Numerical results are compared with measurements, and focused sources are investigated briefly.
International Nuclear Information System (INIS)
Kambe, Tsutomu
2013-01-01
A new representation of the solution to Euler's equation of motion is presented by using a system of expressions for compressible rotational flows of an ideal fluid. This is regarded as a generalization of Bernoulli's theorem to compressible rotational flows. The present expressions are derived from the variational principle. The action functional for the principle consists of the main terms of the total kinetic, potential and internal energies, together with three additional terms yielding the equations of continuity, entropy and a third term that provides the rotational component of velocity field. The last term has the form of scalar product satisfying gauge symmetry with respect to both translation and rotation. This is a generalization of the Clebsch transformation from a physical point of view. It is verified that the system of new expressions, in fact, satisfies Euler's equation of motion. (paper)
Energy Technology Data Exchange (ETDEWEB)
Lee, Seung Jun; Park, Ik Kyu; Yoon, Han Young [Thermal-Hydraulic Safety Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Jae, Byoung [School of Mechanical Engineering, Chungnam National University, Daejeon (Korea, Republic of)
2017-01-15
Two-fluid equations are widely used to obtain averaged behaviors of two-phase flows. This study addresses a problem that may arise when the two-fluid equations are used for multi-dimensional bubbly flows. If steady drag is the only accounted force for the interfacial momentum transfer, the disperse-phase velocity would be the same as the continuous-phase velocity when the flow is fully developed without gravity. However, existing momentum equations may show unphysical results in estimating the relative velocity of the disperse phase against the continuous-phase. First, we examine two types of existing momentum equations. One is the standard two-fluid momentum equation in which the disperse-phase is treated as a continuum. The other is the averaged momentum equation derived from a solid/ fluid particle motion. We show that the existing equations are not proper for multi-dimensional bubbly flows. To resolve the problem mentioned above, we modify the form of the Reynolds stress terms in the averaged momentum equation based on the solid/fluid particle motion. The proposed equation shows physically correct results for both multi-dimensional laminar and turbulent flows.
Brehm, Christoph; Barad, Michael F.; Kiris, Cetin C.
2016-01-01
An immersed boundary method for the compressible Navier-Stokes equation and the additional infrastructure that is needed to solve moving boundary problems and fully coupled fluid-structure interaction is described. All the methods described in this paper were implemented in NASA's LAVA solver framework. The underlying immersed boundary method is based on the locally stabilized immersed boundary method that was previously introduced by the authors. In the present paper this method is extended to account for all aspects that are involved for fluid structure interaction simulations, such as fast geometry queries and stencil computations, the treatment of freshly cleared cells, and the coupling of the computational fluid dynamics solver with a linear structural finite element method. The current approach is validated for moving boundary problems with prescribed body motion and fully coupled fluid structure interaction problems in 2D and 3D. As part of the validation procedure, results from the second AIAA aeroelastic prediction workshop are also presented. The current paper is regarded as a proof of concept study, while more advanced methods for fluid structure interaction are currently being investigated, such as geometric and material nonlinearities, and advanced coupling approaches.
Energy Technology Data Exchange (ETDEWEB)
Klimachkov, D. A., E-mail: klimchakovdmitry@gmail.com; Petrosyan, A. S., E-mail: apetrosy@iki.rssi.ru [Russian Academy of Sciences, Space Research Institute (Russian Federation)
2016-09-15
Shallow water magnetohydrodynamic (MHD) theory describing incompressible flows of plasma is generalized to the case of compressible flows. A system of MHD equations is obtained that describes the flow of a thin layer of compressible rotating plasma in a gravitational field in the shallow water approximation. The system of quasilinear hyperbolic equations obtained admits a complete simple wave analysis and a solution to the initial discontinuity decay problem in the simplest version of nonrotating flows. In the new equations, sound waves are filtered out, and the dependence of density on pressure on large scales is taken into account that describes static compressibility phenomena. In the equations obtained, the mass conservation law is formulated for a variable that nontrivially depends on the shape of the lower boundary, the characteristic vertical scale of the flow, and the scale of heights at which the variation of density becomes significant. A simple wave theory is developed for the system of equations obtained. All self-similar discontinuous solutions and all continuous centered self-similar solutions of the system are obtained. The initial discontinuity decay problem is solved explicitly for compressible MHD equations in the shallow water approximation. It is shown that there exist five different configurations that provide a solution to the initial discontinuity decay problem. For each configuration, conditions are found that are necessary and sufficient for its implementation. Differences between incompressible and compressible cases are analyzed. In spite of the formal similarity between the solutions in the classical case of MHD flows of an incompressible and compressible fluids, the nonlinear dynamics described by the solutions are essentially different due to the difference in the expressions for the squared propagation velocity of weak perturbations. In addition, the solutions obtained describe new physical phenomena related to the dependence of the
International Nuclear Information System (INIS)
Turner, L.
1996-01-01
Adhering to the lore that vorticity is a critical ingredient of fluid turbulence, a triad of coupled helicity (vorticity) states of the incompressible Navier-Stokes fluid are followed. Effects of the remaining states of the fluid on the triad are then modeled as a simple driving term. Numerical solution of the equations yield attractors that seem strange and chaotic. This suggests that the unpredictability of nonlinear fluid dynamics (i.e., turbulence) may be traced back to the most primordial structure of the Navier-Stokes equation; namely, the driven triadic interaction. copyright 1996 The American Physical Society
Fluid flow in porous media using image-based modelling to parametrize Richards' equation.
Cooper, L J; Daly, K R; Hallett, P D; Naveed, M; Koebernick, N; Bengough, A G; George, T S; Roose, T
2017-11-01
The parameters in Richards' equation are usually calculated from experimentally measured values of the soil-water characteristic curve and saturated hydraulic conductivity. The complex pore structures that often occur in porous media complicate such parametrization due to hysteresis between wetting and drying and the effects of tortuosity. Rather than estimate the parameters in Richards' equation from these indirect measurements, image-based modelling is used to investigate the relationship between the pore structure and the parameters. A three-dimensional, X-ray computed tomography image stack of a soil sample with voxel resolution of 6 μm has been used to create a computational mesh. The Cahn-Hilliard-Stokes equations for two-fluid flow, in this case water and air, were applied to this mesh and solved using the finite-element method in COMSOL Multiphysics. The upscaled parameters in Richards' equation are then obtained via homogenization. The effect on the soil-water retention curve due to three different contact angles, 0°, 20° and 60°, was also investigated. The results show that the pore structure affects the properties of the flow on the large scale, and different contact angles can change the parameters for Richards' equation.
Detailed balance principle and finite-difference stochastic equation in a field theory
International Nuclear Information System (INIS)
Kozhamkulov, T.A.
1986-01-01
A finite-difference equation, which is a generalization of the Langevin equation in field theory, has been obtained basing upon the principle of detailed balance for the Markov chain. Advantages of the present approach as compared with the conventional Parisi-Wu method are shown for examples of an exactly solvable problem of zero-dimensional quantum theory and a simple numerical simulation
Principle of detailed balance and the finite-difference stochastic equation in field theory
International Nuclear Information System (INIS)
Kozhamkulov, T.A.
1986-01-01
The principle of detailed balance for the Markov chain is used to obtain a finite-difference equation which generalizes the Langevin equation in field theory. The advantages of using this approach compared to the conventional Parisi-Wu method are demonstrated for the examples of an exactly solvable problem in zero-dimensional quantum theory and a simple numerical simulation
DEFF Research Database (Denmark)
Marcussen, Lis; Aasberg-Petersen, K.; Krøll, Annette Elisabeth
2000-01-01
An adsorption isotherm equation for nonideal pure component adsorption based on vacancy solution theory and the Non-Random-Two-Liquid (NRTL) equation is found to be useful for predicting pure component adsorption equilibria at a variety of conditions. The isotherm equation is evaluated successfully...... adsorption systems, spreading pressure and isosteric heat of adsorption are also calculated....
Sigma set scattering equations in nuclear reaction theory
International Nuclear Information System (INIS)
Kowalski, K.L.; Picklesimer, A.
1982-01-01
The practical applications of partially summed versions of the Rosenberg equations involving only special subsets (sigma sets) of the physical amplitudes are investigated with special attention to the Pauli principle. The requisite properties of the transformations from the pair labels to the set of partitions labeling the sigma set of asymptotic channels are established. New, well-defined, scattering integral equations for the antisymmetrized transition operators are found which possess much less coupling among the physically distinct channels than hitherto expected for equations with kernels of equal complexity. In several cases of physical interest in nuclear physics, a single connected-kernel equation is obtained for the relevant antisymmetrized elastic scattering amplitude
grim: A Flexible, Conservative Scheme for Relativistic Fluid Theories
Energy Technology Data Exchange (ETDEWEB)
Chandra, Mani; Gammie, Charles F. [Department of Astronomy, University of Illinois, 1110 West Green Street, Urbana, IL, 61801 (United States); Foucart, Francois, E-mail: manic@illinois.edu, E-mail: gammie@illinois.edu, E-mail: fvfoucart@lbl.gov [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)
2017-03-01
Hot, diffuse, relativistic plasmas such as sub-Eddington black-hole accretion flows are expected to be collisionless, yet are commonly modeled as a fluid using ideal general relativistic magnetohydrodynamics (GRMHD). Dissipative effects such as heat conduction and viscosity can be important in a collisionless plasma and will potentially alter the dynamics and radiative properties of the flow from that in ideal fluid models; we refer to models that include these processes as Extended GRMHD. Here we describe a new conservative code, grim, that enables all of the above and additional physics to be efficiently incorporated. grim combines time evolution and primitive variable inversion needed for conservative schemes into a single step using an algorithm that only requires the residuals of the governing equations as inputs. This algorithm enables the code to be physics agnostic as well as flexibility regarding time-stepping schemes. grim runs on CPUs, as well as on GPUs, using the same code. We formulate a performance model and use it to show that our implementation runs optimally on both architectures. grim correctly captures classical GRMHD test problems as well as a new suite of linear and nonlinear test problems with anisotropic conduction and viscosity in special and general relativity. As tests and example applications, we resolve the shock substructure due to the presence of dissipation, and report on relativistic versions of the magneto-thermal instability and heat flux driven buoyancy instability, which arise due to anisotropic heat conduction, and of the firehose instability, which occurs due to anisotropic pressure (i.e., viscosity). Finally, we show an example integration of an accretion flow around a Kerr black hole, using Extended GRMHD.
Augmented Lagrangian methods to solve Navier-Stokes equations for a Bingham fluid flow
International Nuclear Information System (INIS)
Boscardin, Laetitia
1999-01-01
The objective of this research thesis is to develop one or more methods for the numerical resolution of equations of movement obtained for a Bingham fluid. The resolution of Navier-Stokes equations is processed by splitting elliptic and hyperbolic operators (Galerkin transport). In this purpose, the author first studied the Stokes problem, and then addressed issues of stability and consistency of the global scheme. The variational formulation of the Stokes problem can be expressed under the form of a minimisation problem under the constraint of non linear and non differentiable functions. Then, the author proposes a discretization of the Stokes problem based on a hybrid finite element method. Then he extends the demonstrations of stability and consistency of the Galerkin-transport scheme which have been established for a Newtonian fluid, to the case of a Bingham fluid. A relaxation algorithm and a Newton-GMRES algorithm are developed to solve the problem, and their convergence is studied. To ensure this convergence, some constraints must be verified. In order to do so, a specific speed element has been developed [fr
International Nuclear Information System (INIS)
Carver, M.B.
1995-08-01
The discussion briefly establishes some requisite concepts of differential equation theory, and applies these to describe methods for numerical solution of the thermalhydraulic conservation equations in their various forms. The intent is to cover the general methodology without obscuring the principles with details. As a short overview of computational thermalhydraulics, the material provides an introductory foundation, so that those working on the application of thermalhydraulic codes can begin to understand the many intricacies involved without having to locate and read the references given. Those intending to work in code development will need to read and understand all the references. (author). 49 refs
Modeling Pore-Scale Oil-Gas Systems Using Gradient Theory with Peng-Robinson Equation of State
Fan, Xiaolin
2016-06-01
This research addresses a sequential convex splitting method for numerical simulation of multicomponent two-phase fluids mixture in a single-pore at constant temperature, which is modeled by the gradient theory with Peng-Robinson equation of state. The gradient theory of thermodynamics and variational calculus are utilized to obtain a system of chemical equilibrium equations which are transformed into a transient system as a numerical strategy on which the numerical scheme is based. The proposed numerical algorithm avoids computing Hessian matrix arising from the second-order derivative of homogeneous contribution of free energy; it is also quite robust. This scheme is proved to be unconditionally component-wise energy stable. The Raviart-Thomas mixed finite element method is applied to spatial discretization.
Modeling Pore-Scale Oil-Gas Systems Using Gradient Theory with Peng-Robinson Equation of State
Fan, Xiaolin; Kou, Jisheng; Qiao, Zhonghua; Sun, Shuyu
2016-01-01
This research addresses a sequential convex splitting method for numerical simulation of multicomponent two-phase fluids mixture in a single-pore at constant temperature, which is modeled by the gradient theory with Peng-Robinson equation of state. The gradient theory of thermodynamics and variational calculus are utilized to obtain a system of chemical equilibrium equations which are transformed into a transient system as a numerical strategy on which the numerical scheme is based. The proposed numerical algorithm avoids computing Hessian matrix arising from the second-order derivative of homogeneous contribution of free energy; it is also quite robust. This scheme is proved to be unconditionally component-wise energy stable. The Raviart-Thomas mixed finite element method is applied to spatial discretization.
Test of a new heat-flow equation for dense-fluid shock waves.
Holian, Brad Lee; Mareschal, Michel; Ravelo, Ramon
2010-09-21
Using a recently proposed equation for the heat-flux vector that goes beyond Fourier's Law of heat conduction, we model shockwave propagation in the dense Lennard-Jones fluid. Disequilibrium among the three components of temperature, namely, the difference between the kinetic temperature in the direction of a planar shock wave and those in the transverse directions, particularly in the region near the shock front, gives rise to a new transport (equilibration) mechanism not seen in usual one-dimensional heat-flow situations. The modification of the heat-flow equation was tested earlier for the case of strong shock waves in the ideal gas, which had been studied in the past and compared to Navier-Stokes-Fourier solutions. Now, the Lennard-Jones fluid, whose equation of state and transport properties have been determined from independent calculations, allows us to study the case where potential, as well as kinetic contributions are important. The new heat-flow treatment improves the agreement with nonequilibrium molecular-dynamics simulations under strong shock wave conditions, compared to Navier-Stokes.
International Nuclear Information System (INIS)
Guo, Shimin; Mei, Liquan; Li, Ying; Sun, Youfa
2012-01-01
By introducing a new general ansätz, the improved fractional sub-equation method is proposed to construct analytical solutions of nonlinear evolution equations involving Jumarie's modified Riemann–Liouville derivative. By means of this method, the space–time fractional Whitham–Broer–Kaup and generalized Hirota–Satsuma coupled KdV equations are successfully solved. The obtained results show that the proposed method is quite effective, promising and convenient for solving nonlinear fractional differential equations. -- Highlights: ► We propose a novel method for nonlinear fractional differential equations. ► Two important fractional differential equations in fluid mechanics are solved successfully. ► Some new exact solutions of the fractional differential equations are obtained. ► These solutions will advance the understanding of nonlinear physical phenomena.
Conformal Field Theory as Microscopic Dynamics of Incompressible Euler and Navier-Stokes Equations
International Nuclear Information System (INIS)
Fouxon, Itzhak; Oz, Yaron
2008-01-01
We consider the hydrodynamics of relativistic conformal field theories at finite temperature. We show that the limit of slow motions of the ideal hydrodynamics leads to the nonrelativistic incompressible Euler equation. For viscous hydrodynamics we show that the limit of slow motions leads to the nonrelativistic incompressible Navier-Stokes equation. We explain the physical reasons for the reduction and discuss the implications. We propose that conformal field theories provide a fundamental microscopic viewpoint of the equations and the dynamics governed by them
Conformal field theory as microscopic dynamics of incompressible Euler and Navier-Stokes equations.
Fouxon, Itzhak; Oz, Yaron
2008-12-31
We consider the hydrodynamics of relativistic conformal field theories at finite temperature. We show that the limit of slow motions of the ideal hydrodynamics leads to the nonrelativistic incompressible Euler equation. For viscous hydrodynamics we show that the limit of slow motions leads to the nonrelativistic incompressible Navier-Stokes equation. We explain the physical reasons for the reduction and discuss the implications. We propose that conformal field theories provide a fundamental microscopic viewpoint of the equations and the dynamics governed by them.
The Kadomtsev-Petviashvili equations and fundamental string theory
International Nuclear Information System (INIS)
Gilbert, G.
1988-01-01
In this paper the infinite sequence of non-linear partial differential equations known as the Kadomtsev-Petviashvili equations is described in simple terms and possible applications to a fundamental description of interacting strings are addressed. Lines of research likely to prove useful in formulating a description of non-perturbative string configurations are indicated. (orig.)
Study of a Model Equation in Detonation Theory
Faria, Luiz; Kasimov, Aslan R.; Rosales, Rodolfo R.
2014-01-01
Here we analyze properties of an equation that we previously proposed to model the dynamics of unstable detonation waves [A. R. Kasimov, L. M. Faria, and R. R. Rosales, Model for shock wave chaos, Phys. Rev. Lett., 110 (2013), 104104]. The equation
Distribution theory for Schrödinger’s integral equation
Lange, R.J.
2015-01-01
Much of the literature on point interactions in quantum mechanics has focused on the differential form of Schrödinger's equation. This paper, in contrast, investigates the integral form of Schrödinger's equation. While both forms are known to be equivalent for smooth potentials, this is not true for
DEFF Research Database (Denmark)
Johannesson, Björn
2010-01-01
A numerical scheme for the transient solution of generalized version of the Poisson-Nernst-Planck equations is presented. The finite element method is used to establish the coupled non-linear matrix system of equations capable of solving the present problem iteratively. The Poisson......-scale and that it includes the volume fractions of phases in its structure. The background to the Poisson-Nernst-Planck equations can by the HMT approach be described by using the postulates of mass conservation of constituents together with the Gauss’ law used together with consistent constitutive laws. The HMT theory......-Nernst-Planck equations represent a set of diffusion equations for charged species, i.e. dissolved ions. These equations are coupled to the ‘internally’ induced electrical field and to the velocity field of the fluid. The Nernst-Planck equations describing the diffusion of the ionic species and the Gauss’ law in used are...
International Nuclear Information System (INIS)
Frink, L.J.D.; Salinger, A.G.
2000-01-01
Fluids adsorbed near surfaces, near macromolecules, and in porous materials are inhomogeneous, exhibiting spatially varying density distributions. This inhomogeneity in the fluid plays an important role in controlling a wide variety of complex physical phenomena including wetting, self-assembly, corrosion, and molecular recognition. One of the key methods for studying the properties of inhomogeneous fluids in simple geometries has been density functional theory (DFT). However, there has been a conspicuous lack of calculations in complex two- and three-dimensional geometries. The computational difficulty arises from the need to perform nested integrals that are due to nonlocal terms in the free energy functional. These integral equations are expensive both in evaluation time and in memory requirements; however, the expense can be mitigated by intelligent algorithms and the use of parallel computers. This paper details the efforts to develop efficient numerical algorithms so that nonlocal DFT calculations in complex geometries that require two or three dimensions can be performed. The success of this implementation will enable the study of solvation effects at heterogeneous surfaces, in zeolites, in solvated (bio)polymers, and in colloidal suspensions
On the variational principle for the equations of perfect fluid dynamics
International Nuclear Information System (INIS)
Serre, D.
1993-01-01
One gives a new version of the variational principle δL = 0, L being the usual Lagrangian, for the perfect fluid mechanics. It is formally equivalent to the well-known principle but it gives the first rigorous derivation of the conservation laws (momentum and energy), including the discontinuous case (shock waves, contact discontinuities). Thanks to a new formulation of the constraints, we do not involve any Lagrange multiplier, which in previous works were neither physically relevant, since they do not appear in the Euler equations, nor mathematically relevant. We even give a variational interpretation of the entropy inequality when shock waves occur. Our method covers all aspects of the perfect fluids, including stationary and unstationary motion, compressible and incompressible fluids, axisymmetric case. When the velocity field admits a stream function, the variational principle gives rise to extremal points of the Lagrangian on various infinite dimensional manifolds. For a suitable choice of this manifold, the flow is itself periodic, that is all the fluid particles have a periodic motion with the same period. The flow describes a closed geodesic on some group of diffeomorphisms. (author). 10 refs
Sound velocity and equation-of-state measurements in high pressure fluid and solid helium
International Nuclear Information System (INIS)
Liebenberg, D.H.; Mills, R.L.; Bronson, J.C.
1979-01-01
A piston--cylinder apparatus was used to obtain P, V, T, and simultaneous values of longitudinal sound velocity in helium fluid throughout the ranges 75 to 300 0 K and 3 to 20 kbar. Some 670 data sets were obtained for the fluid and used in a double-process least-squares fit to an equation of state of the Benedict type. Additional measurements extended across the melting line into the solid phase at pressures up to 18 kbar. Measurements of the compressibility are compared with those obtained by Stewart along the 4 0 K isotherm up to 20 kbar. We discuss the use of helium as a pressure medium in high-pressure diamond anvil cells. Essentially no data are given
Pseudo-Newtonian Equations for Evolution of Particles and Fluids in Stationary Space-times
Energy Technology Data Exchange (ETDEWEB)
Witzany, Vojtěch; Lämmerzahl, Claus, E-mail: vojtech.witzany@zarm.uni-bremen.de, E-mail: claus.laemmerzahl@zarm.uni-bremen.de [ZARM, Universität Bremen, Am Fallturm, D-28359 Bremen (Germany)
2017-06-01
Pseudo-Newtonian potentials are a tool often used in theoretical astrophysics to capture some key features of a black hole space-time in a Newtonian framework. As a result, one can use Newtonian numerical codes, and Newtonian formalism, in general, in an effective description of important astrophysical processes such as accretion onto black holes. In this paper, we develop a general pseudo-Newtonian formalism, which pertains to the motion of particles, light, and fluids in stationary space-times. In return, we are able to assess the applicability of the pseudo-Newtonian scheme. The simplest and most elegant formulas are obtained in space-times without gravitomagnetic effects, such as the Schwarzschild rather than the Kerr space-time; the quantitative errors are smallest for motion with low binding energy. Included is a ready-to-use set of fluid equations in Schwarzschild space-time in Cartesian and radial coordinates.
Witten, Matthew
1983-01-01
Hyperbolic Partial Differential Equations, Volume 1: Population, Reactors, Tides and Waves: Theory and Applications covers three general areas of hyperbolic partial differential equation applications. These areas include problems related to the McKendrick/Von Foerster population equations, other hyperbolic form equations, and the numerical solution.This text is composed of 15 chapters and begins with surveys of age specific population interactions, populations models of diffusion, nonlinear age dependent population growth with harvesting, local and global stability for the nonlinear renewal eq
Sun, Hongbing; Feistel, Rainer; Koch, Manfred; Markoe, Andrew
2008-10-01
A set of fitted polynomial equations for calculating the physical variables density, entropy, heat capacity and potential temperature of a thermal saline fluid for a temperature range of 0-374 °C, pressure range of 0.1-100 MPa and absolute salinity range of 0-40 g/kg is established. The freshwater components of the equations are extracted from the recently released tabulated data of freshwater properties of Wagner and Pruß [2002. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. Journal of Physical and Chemical Reference Data 31, 387-535]. The salt water component of the equation is based on the near-linear relationship between density, salinity and specific heat capacity and is extracted from the data sets of Feistel [2003. A new extended Gibbs thermodynamic potential of seawater. Progress in Oceanography 58, 43-114], Bromley et al. [1970. Heat capacities and enthalpies of sea salt solutions to 200 °C. Journal of Chemical and Engineering Data 15, 246-253] and Grunberg [1970. Properties of sea water concentrates. In: Third International Symposium on Fresh Water from the Sea, vol. 1, pp. 31-39] in a temperature range 0-200 °C, practical salinity range 0-40, and varying pressure and is also calibrated by the data set of Millero et al. [1981. Summary of data treatment for the international high pressure equation of state for seawater. UNESCO Technical Papers in Marine Science 38, 99-192]. The freshwater and salt water components are combined to establish a workable multi-polynomial equation, whose coefficients were computed through standard linear regression analysis. The results obtained in this way for density, entropy and potential temperature are comparable with those of existing models, except that our new equations cover a wider temperature—(0-374 °C) than the traditional (0-40 °C) temperature range. One can apply these newly established equations to the calculation of in-situ or
Solutions to three-dimensional Navier-Stokes equations for incompressible fluids
Directory of Open Access Journals (Sweden)
Jorma Jormakka
2010-07-01
Full Text Available This article gives explicit solutions to the space-periodic Navier-Stokes problem with non-periodic pressure. These type of solutions are not unique and by using such solutions one can construct a periodic, smooth, divergence-free initial vector field allowing a space-periodic and time-bounded external force such that there exists a smooth solution to the 3-dimensional Navier-Stokes equations for incompressible fluid with those initial conditions, but the solution cannot be continued to the whole space.
The Lorentz-Dirac equation in light of quantum theory
International Nuclear Information System (INIS)
Nikishov, A.I.
1996-01-01
To high accuracy, an electron in ultrarelativistic motion 'sees' an external field in its rest frame as a crossed field (E=H, E·H=0). In this case, quantum expressions allow the introduction of a local intensity of the radiation, which determines the radiative term of the force of radiative reaction. For γ=(1-v2)-1/2>> 1 this term is much larger than the mass term, i.e., the term with xd3do. Under these conditions, the reduced Lorentz-Dirac equation, which is obtained from the full Lorentz-Dirac equation by eliminating the terms xd3do and xe on the right side using the equation of motion without taking into account the force of radiative reaction, is equivalent to good accuracy to the original Lorentz-Dirac equation. Exact solutions to the reduced Lorentz-Dirac equation are obtained for a constant field and the field of a plane wave. For γ∼1 a local expression for the radiative term cannot be obtained quantitatively from the quantum expressions. In this case the mass (Lorentz-Dirac) terms in the original and reduced Lorentz-Dirac equations are not small compared to the radiative term. The predictions of these equations, which depend appreciably on the mass terms, are therefore less reliable
Critical properties of effective gauge theories for novel quantum fluids
Energy Technology Data Exchange (ETDEWEB)
Smoergrav, Eivind
2005-07-01
Critical properties of U(1) symmetric gauge theories are studied in 2+1 dimensions, analytically through duality transformations and numerically through Monte Carlo simulations. Physical applications range from quantum phase transitions in two dimensional insulating materials to superfluid and superconducting properties of light atoms such as hydrogen under extreme pressure. A novel finite size scaling method, utilizing the third moment M{sub 3} of the action, is developed. Finite size scaling analysis of M{sub 3} yields the ratio (1 + alpha)/ny and 1/ny separately, so that critical exponents alpha and ny can be obtained independently without invoking hyperscaling. This thesis contains eight research papers and an introductory part covering some basic concepts and techniques. Paper 1: The novel M{sub 3} method is introduced and employed together with Monte Carlo simulations to study the compact Abelian Higgs model in the adjoint representation with q = 2. Paper 2: We study phase transitions in the compact Abelian Higgs model for fundamental charge q = 2; 3; 4; 5. Various other models are studied to benchmark the M{sub 3} method. Paper 3: This is a proceeding paper based on a talk given by F. S. Nogueira at the Aachen EPS HEP 2003 conference. A review of the results from Paper 1 and Paper 2 on the compact Abelian Higgs model together with some results on q = 1 obtained by F. S. Nogueira, H. Kleinert, and A. Sudboe is given. Paper 4: The effect of a Chern-Simons (CS) term in the phase structure of two Abelian gauge theories is studied. Paper 5: We study the critical properties of the N-component Ginzburg-Landau theory. Paper 6: We consider the vortices in the 2-component Ginzburg-Landau model in a finite but low magnetic field. The ground state is a lattice of co centered vortices in both order parameters. We find two novel phase transitions. i) A 'vortex sub-lattice melting' transition where vortices in the field with lowest phase stiffness (&apos
Molecular dynamics studies of transport properties and equation of state of supercritical fluids
Nwobi, Obika C.
Many chemical propulsion systems operate with one or more of the reactants above the critical point in order to enhance their performance. Most of the computational fluid dynamics (CFD) methods used to predict these flows require accurate information on the transport properties and equation of state at these supercritical conditions. This work involves the determination of transport coefficients and equation of state of supercritical fluids by equilibrium molecular dynamics (MD) simulations on parallel computers using the Green-Kubo formulae and the virial equation of state, respectively. MD involves the solution of equations of motion of a system of molecules that interact with each other through an intermolecular potential. Provided that an accurate potential can be found for the system of interest, MD can be used regardless of the phase and thermodynamic conditions of the substances involved. The MD program uses the effective Lennard-Jones potential, with system sizes of 1000-1200 molecules and, simulations of 2,000,000 time-steps for computing transport coefficients and 200,000 time-steps for pressures. The computer code also uses linked cell lists for efficient sorting of molecules, periodic boundary conditions, and a modified velocity Verlet algorithm for particle displacement. Particle decomposition is used for distributing the molecules to different processors of a parallel computer. Simulations have been carried out on pure argon, nitrogen, oxygen and ethylene at various supercritical conditions, with self-diffusion coefficients, shear viscosity coefficients, thermal conductivity coefficients and pressures computed for most of the conditions. Results compare well with experimental and the National Institute of Standards and Technology (NIST) values. The results show that the number of molecules and the potential cut-off radius have no significant effect on the computed coefficients, while long-time integration is necessary for accurate determination of the
Analytical approach for the Floquet theory of delay differential equations.
Simmendinger, C; Wunderlin, A; Pelster, A
1999-05-01
We present an analytical approach to deal with nonlinear delay differential equations close to instabilities of time periodic reference states. To this end we start with approximately determining such reference states by extending the Poincaré-Lindstedt and the Shohat expansions, which were originally developed for ordinary differential equations. Then we systematically elaborate a linear stability analysis around a time periodic reference state. This allows us to approximately calculate the Floquet eigenvalues and their corresponding eigensolutions by using matrix valued continued fractions.
Energy Technology Data Exchange (ETDEWEB)
Steinmann, O [Bielefeld Univ. (F.R. Germany). Fakultaet fuer Physik
1975-01-01
Massive quantum electrodynamics of the electron is formulated as an LSZ theory of the electromagnetic field F(..mu nu..) and the electron-positron fields PSI. The interaction is introduced with the help of mathematically well defined subsidiary conditions. These are: 1) gauge invariance of the first kind, assumed to be generated by a conserved current j(..mu..); 2) the homogeneous Maxwell equations and a massive version of the inhomogeneous Maxwell equations; 3) a minimality condition concerning the high momentum behaviour of the theory. The inhomogeneous Maxwell equation is a linear differential equation connecting Fsub(..mu nu..) with the current Jsub(..mu..). No Lagrangian, no non-linear field equations, and no explicit expression of Jsub(..mu..) in terms of PSI, anti-PSI are needed. It is shown in perturbation theory that the proposed conditions fix the physically relevant (i.e. observable) quantities of the theory uniquely.
Cartan's equations define a topological field theory of the BF type
International Nuclear Information System (INIS)
Cuesta, Vladimir; Montesinos, Merced
2007-01-01
Cartan's first and second structure equations together with first and second Bianchi identities can be interpreted as equations of motion for the tetrad, the connection and a set of two-form fields T I and R J I . From this viewpoint, these equations define by themselves a field theory. Restricting the analysis to four-dimensional spacetimes (keeping gravity in mind), it is possible to give an action principle of the BF type from which these equations of motion are obtained. The action turns out to be equivalent to a linear combination of the Nieh-Yan, Pontrjagin, and Euler classes, and so the field theory defined by the action is topological. Once Einstein's equations are added, the resulting theory is general relativity. Therefore, the current results show that the relationship between general relativity and topological field theories of the BF type is also present in the first-order formalism for general relativity
Spherically Symmetric Solutions of the Einstein-Bach Equations and a Consistent Spin-2 Field Theory
International Nuclear Information System (INIS)
Janda, A.
2006-01-01
We briefly present a relationship between General Relativity coupled to certain spin-0 and spin-2 field theories and higher derivatives metric theories of gravity. In a special case, described by the Einstein-Bach equations, the spin-0 field drops out from the theory and we obtain a consistent spin-two field theory interacting gravitationally, which overcomes a well known inconsistency of the theory for a linear spin-two field coupled to the Einstein's gravity. Then we discuss basic properties of static spherically symmetric solutions of the Einstein-Bach equations. (author)
Dynamic field theory and equations of motion in cosmology
Energy Technology Data Exchange (ETDEWEB)
Kopeikin, Sergei M., E-mail: kopeikins@missouri.edu [Department of Physics and Astronomy, University of Missouri, 322 Physics Bldg., Columbia, MO 65211 (United States); Petrov, Alexander N., E-mail: alex.petrov55@gmail.com [Sternberg Astronomical Institute, Lomonosov Moscow State University, Universitetskij Prospect 13, Moscow 119992 (Russian Federation)
2014-11-15
We discuss a field-theoretical approach based on general-relativistic variational principle to derive the covariant field equations and hydrodynamic equations of motion of baryonic matter governed by cosmological perturbations of dark matter and dark energy. The action depends on the gravitational and matter Lagrangian. The gravitational Lagrangian depends on the metric tensor and its first and second derivatives. The matter Lagrangian includes dark matter, dark energy and the ordinary baryonic matter which plays the role of a bare perturbation. The total Lagrangian is expanded in an asymptotic Taylor series around the background cosmological manifold defined as a solution of Einstein’s equations in the form of the Friedmann–Lemaître–Robertson–Walker (FLRW) metric tensor. The small parameter of the decomposition is the magnitude of the metric tensor perturbation. Each term of the series expansion is gauge-invariant and all of them together form a basis for the successive post-Friedmannian approximations around the background metric. The approximation scheme is covariant and the asymptotic nature of the Lagrangian decomposition does not require the post-Friedmannian perturbations to be small though computationally it works the most effectively when the perturbed metric is close enough to the background FLRW metric. The temporal evolution of the background metric is governed by dark matter and dark energy and we associate the large scale inhomogeneities in these two components as those generated by the primordial cosmological perturbations with an effective matter density contrast δρ/ρ≤1. The small scale inhomogeneities are generated by the condensations of baryonic matter considered as the bare perturbations of the background manifold that admits δρ/ρ≫1. Mathematically, the large scale perturbations are given by the homogeneous solution of the linearized field equations while the small scale perturbations are described by a particular solution of
Directory of Open Access Journals (Sweden)
Boričić Zoran
2005-01-01
Full Text Available This paper deals with laminar, unsteady flow of viscous, incompressible and electro conductive fluid caused by variable motion of flat plate. Fluid electro conductivity is variable. Velocity of the plate is time function. Plate moves in its own plane and in "still" fluid. Present external magnetic filed is perpendicular to the plate. Plate temperature is a function of longitudinal coordinate and time. Viscous dissipation, Joule heat, Hole and polarization effects are neglected. For obtaining of universal equations system general similarity method is used as well as impulse and energy equation of described problem.
Stability of EBT of guiding-centre fluid theory
International Nuclear Information System (INIS)
Miller, R.L.
1981-01-01
The stability of the hot-electron annulus in the ELMO Bumpy Torus (EBT) is not yet completely understood despite considerable attention. Most stability studies have dealt with localized analysis of simplified models in which the actual magnetic configuration is replaced by a straight-line slab with a gravity to emulate the effects of curvature and gradients in the actual magnetic field. Here, a more realistic geometry, a 'bumpy' cylinder with a 2:1 magnetic mirror ratio, is considered and the response of the hot-electron rings to various non-local perturbations, specifying only the mode number in the ignorable co-ordinate, is examined. Guiding-centre theory (with psub(perpendicular) > psub(parallel)) is used and the second variation in the plasma energy (σW) using a finite-element representation to identify the least stable mode for the plasma is studied. All the equilibria that are examined are found to be unstable for all poloidal mode numbers m>=1, with growth rates increasing with increasing ring beta, plasma beta, and poloidal mode number. It is concluded that two-fluid and/or kinetic effects are required to explain the observed global stability of EBT-I. (author)
Directory of Open Access Journals (Sweden)
Zhang Sheng
2015-01-01
Full Text Available In this paper, Painleve analysis is used to test the Painleve integrability of a forced variable-coefficient extended Korteveg-de Vries equation which can describe the weakly-non-linear long internal solitary waves in the fluid with continuous stratification on density. The obtained results show that the equation is integrable under certain conditions. By virtue of the truncated Painleve expansion, a pair of new exact solutions to the equation is obtained.
International Nuclear Information System (INIS)
Kraenkel, R.A.; Pereira, J.G.; Manna, M.A.
1991-01-01
The (2+1)-dimensional Burgers equation is obtained as the equation of motion governing the surface perturbations of a shallow viscous fluid heated from below, provided the Rayleigh number of the system satisfy the condition R ≠ 30. A solution to this equation is explicity exhibited and it is argued that it describes the nonlinear evolution of a nearly one-dimensional kink. (author)
Nayak, Bishnupriya; Menon, S. V. G.
2018-01-01
Enthalpy-based equation of state based on a modified soft sphere model for the fluid phase, which includes vaporization and ionization effects, is formulated for highly porous materials. Earlier developments and applications of enthalpy-based approach had not accounted for the fact that shocked states of materials with high porosity (e.g., porosity more than two for Cu) are in the expanded fluid region. We supplement the well known soft sphere model with a generalized Lennard-Jones formula for the zero temperature isotherm, with parameters determined from cohesive energy, specific volume and bulk modulus of the solid at normal condition. Specific heats at constant pressure, ionic and electronic enthalpy parameters and thermal excitation effects are calculated using the modified approach and used in the enthalpy-based equation of state. We also incorporate energy loss from the shock due to expansion of shocked material in calculating porous Hugoniot. Results obtained for Cu, even up to initial porosities ten, show good agreement with experimental data.
International Nuclear Information System (INIS)
Jiang, Hao; Adidharma, Hertanto
2014-01-01
The thermodynamic modeling of flexible charged hard-sphere chains representing polyampholyte or polyelectrolyte molecules in solution is considered. The excess Helmholtz energy and osmotic coefficients of solutions containing short polyampholyte and the osmotic coefficients of solutions containing short polyelectrolytes are determined by performing canonical and isobaric-isothermal Monte Carlo simulations. A new equation of state based on the thermodynamic perturbation theory is also proposed for flexible charged hard-sphere chains. For the modeling of such chains, the use of solely the structure information of monomer fluid for calculating the chain contribution is found to be insufficient and more detailed structure information must therefore be considered. Two approaches, i.e., the dimer and dimer-monomer approaches, are explored to obtain the contribution of the chain formation to the Helmholtz energy. By comparing with the simulation results, the equation of state with either the dimer or dimer-monomer approach accurately predicts the excess Helmholtz energy and osmotic coefficients of polyampholyte and polyelectrolyte solutions except at very low density. It also well captures the effect of temperature on the thermodynamic properties of these solutions
Relativistic many-body theory of atomic transitions: the relativistic equation-of-motion approach
International Nuclear Information System (INIS)
Huang, K.N.
1981-01-01
An equation-of-motion approach is used to develop the relativistic many-body theory of atomic transitions. The relativistic equations of motion for transition matrices are formulated using techniques of quantum field theory. To reduce the equation of motion to a tractable form which is appropriate for numerical calculations, a graphical method is employed to resolve the complication arising from the antisymmetrization and angular momentum coupling. The relativistic equation-of-motion method allows an ab initio treatment of correlation and relativistic effects in both closed- and open-shell many-body systems. A special case of the present formulation reduces to the relativistic random-phase approximation
Generalized Lorentz-Dirac Equation for a Strongly Coupled Gauge Theory
Chernicoff, Mariano; García, J. Antonio; Güijosa, Alberto
2009-06-01
We derive a semiclassical equation of motion for a “composite” quark in strongly coupled large-Nc N=4 super Yang-Mills theory, making use of the anti-de Sitter space/conformal field theory correspondence. The resulting nonlinear equation incorporates radiation damping, and reduces to the standard Lorentz-Dirac equation for external forces that are small on the scale of the quark Compton wavelength, but has no self-accelerating or preaccelerating solutions. From this equation one can read off a nonstandard dispersion relation for the quark, as well as a Lorentz-covariant formula for its radiation rate.
Generalized Lorentz-Dirac Equation for a Strongly Coupled Gauge Theory
International Nuclear Information System (INIS)
Chernicoff, Mariano; Garcia, J. Antonio; Gueijosa, Alberto
2009-01-01
We derive a semiclassical equation of motion for a 'composite' quark in strongly coupled large-N c N=4 super Yang-Mills theory, making use of the anti-de Sitter space/conformal field theory correspondence. The resulting nonlinear equation incorporates radiation damping, and reduces to the standard Lorentz-Dirac equation for external forces that are small on the scale of the quark Compton wavelength, but has no self-accelerating or preaccelerating solutions. From this equation one can read off a nonstandard dispersion relation for the quark, as well as a Lorentz-covariant formula for its radiation rate.
Efficient kinetic method for fluid simulation beyond the Navier-Stokes equation.
Zhang, Raoyang; Shan, Xiaowen; Chen, Hudong
2006-10-01
We present a further theoretical extension to the kinetic-theory-based formulation of the lattice Boltzmann method of Shan [J. Fluid Mech. 550, 413 (2006)]. In addition to the higher-order projection of the equilibrium distribution function and a sufficiently accurate Gauss-Hermite quadrature in the original formulation, a regularization procedure is introduced in this paper. This procedure ensures a consistent order of accuracy control over the nonequilibrium contributions in the Galerkin sense. Using this formulation, we construct a specific lattice Boltzmann model that accurately incorporates up to third-order hydrodynamic moments. Numerical evidence demonstrates that the extended model overcomes some major defects existing in conventionally known lattice Boltzmann models, so that fluid flows at finite Knudsen number Kn can be more quantitatively simulated. Results from force-driven Poiseuille flow simulations predict the Knudsen's minimum and the asymptotic behavior of flow flux at large Kn.
Beyond the perfect fluid hypothesis for the dark energy equation of state
International Nuclear Information System (INIS)
Cardone, V.F.; Troisi, A.; Tortora, C.; Capozziello, S.
2006-01-01
Abandoning the perfect fluid hypothesis, we investigate here the possibility that the dark energy equation of state (EoS) w is a nonlinear function of the energy density ρ. To this aim, we consider four different EoS describing classical fluids near thermodynamical critical points and discuss the main features of cosmological models made out of dust matter and a dark energy term with the given EoS. Each model is tested against the data on the dimensionless coordinate distance to Type Ia Supernovae and radio galaxies, the shift and the acoustic peak parameters and the positions of the first three peaks in the anisotropy spectrum of the comic microwave background radiation. We propose a possible interpretation of each model in the framework of scalar field quintessence determining the shape of the self-interaction potential V(φ) that gives rise to each one of the considered thermodynamical EoS. As a general result, we demonstrate that replacing the perfect fluid EoS with more general expressions gives both the possibility of successfully solving the problem of cosmic acceleration escaping the resort to phantom models
Energy Technology Data Exchange (ETDEWEB)
Faisal, F H.M. [Bielefeld Univ. (Germany, F.R.). Fakultaet fuer Physik
1976-06-11
In this work the perturbation theory for multiphoton processes at high intensities is investigated and it is described an analytical method of summing the perturbation series to extract the contribution from all terms that give rise to the absorption of N photons by an atomic system. The method is first applied to the solution of a simple model problem and the result is confirmed by direct integration of the model Schroedinger equation. The usual lowest (nonvanishing)-order perturbation-theoretical calculation is also carried out for this model to demonstrate explicitly that the full result correctly reproduces that of the lowest-order theory in the limit of low intensity. The method is then extended to the case of an atomic system with well-developed spectrum (e.g. H atom) and the N-photon T-matrix is derived in terms of a ''photon matrix'' asub(N), for which a three-term recurrence relation is established. Next, from the vantage point of the general result obtained here, A probe is made into the nature of several approximate nonperturbative solutions that have appeared in the literature in the past. It is shown here that their applicability is severely restricted by the requirement of the essential spectral degeneracy of the atomic system. Finally, appendix A outlines a prescription of computing the photon matrix asub(N), which (as in the usual lowest-order perturbation-theoretical calculation)requires a knowledge of the eigenfunctions and eigenvalues of the atomic Hamiltonian only.
International Nuclear Information System (INIS)
Kawashima, S.; Matsumara, A.; Nishida, T.
1979-01-01
The compressible and heat-conductive Navier-Stokes equation obtained as the second approximation of the formal Chapman-Enskog expansion is investigated on its relations to the original nonlinear Boltzmann equation and also to the incompressible Navier-Stokes equation. The solutions of the Boltzmann equation and the incompressible Navier-Stokes equation for small initial data are proved to be asymptotically equivalent (mod decay rate tsup(-5/4)) as t → + infinitely to that of the compressible Navier-Stokes equation for the corresponding initial data. (orig.) 891 HJ/orig. 892 MKO
Survey on Dirac equation in general relativity theory
International Nuclear Information System (INIS)
Paillere, P.
1984-10-01
Starting from an infinitesimal transformation expressed with a Killing vector and using systematically the formalism of the local tetrades, we show that, in the area of the general relativity, the Dirac equation may be formulated only versus the four local vectors which determine the gravitational potentials, their gradients and the 4-vector potential of the electromagnetic field [fr
The roots to an equation in particle slowing down theory
International Nuclear Information System (INIS)
Sjoestrand, N.G.
1979-08-01
Previous work on the roots to an equation arising in studies on anisotropic neutron scattering has been extended to include parameter values of interest for a problem put forward by M.M.R. Williams. Detailed numerical results are given. (author)
Whitham modulation theory for the two-dimensional Benjamin-Ono equation.
Ablowitz, Mark; Biondini, Gino; Wang, Qiao
2017-09-01
Whitham modulation theory for the two-dimensional Benjamin-Ono (2DBO) equation is presented. A system of five quasilinear first-order partial differential equations is derived. The system describes modulations of the traveling wave solutions of the 2DBO equation. These equations are transformed to a singularity-free hydrodynamic-like system referred to here as the 2DBO-Whitham system. Exact reductions of this system are discussed, the formulation of initial value problems is considered, and the system is used to study the transverse stability of traveling wave solutions of the 2DBO equation.
Approach in Theory of Nonlinear Evolution Equations: The Vakhnenko-Parkes Equation
Directory of Open Access Journals (Sweden)
V. O. Vakhnenko
2016-01-01
Full Text Available A variety of methods for examining the properties and solutions of nonlinear evolution equations are explored by using the Vakhnenko equation (VE as an example. The VE, which arises in modelling the propagation of high-frequency waves in a relaxing medium, has periodic and solitary traveling wave solutions some of which are loop-like in nature. The VE can be written in an alternative form, known as the Vakhnenko-Parkes equation (VPE, by a change of independent variables. The VPE has an N-soliton solution which is discussed in detail. Individual solitons are hump-like in nature whereas the corresponding solution to the VE comprises N-loop-like solitons. Aspects of the inverse scattering transform (IST method, as applied originally to the KdV equation, are used to find one- and two-soliton solutions to the VPE even though the VPE’s spectral equation is third-order and not second-order. A Bäcklund transformation for the VPE is used to construct conservation laws. The standard IST method for third-order spectral problems is used to investigate solutions corresponding to bound states of the spectrum and to a continuous spectrum. This leads to N-soliton solutions and M-mode periodic solutions, respectively. Interactions between these types of solutions are investigated.
Galois theory and algorithms for linear differential equations
Put, Marius van der
2005-01-01
This paper is an informal introduction to differential Galois theory. It surveys recent work on differential Galois groups, related algorithms and some applications. (c) 2005 Elsevier Ltd. All rights reserved.
Dynamical theory of neutron diffraction. [One-body Schroedinger equation, review
Energy Technology Data Exchange (ETDEWEB)
Sears, V F [Atomic Energy of Canada Ltd., Chalk River, Ontario. Chalk River Nuclear Labs.
1978-10-01
We present a review of the dynamical theory of neutron diffraction by macroscopic bodies which provides the theoretical basis for the study of neutron optics. We consider both the theory of dispersion, in which it is shown that the coherent wave in the medium satisfies a macroscopic one-body Schroedinger equation, and the theory of reflection, refraction, and diffraction in which the above equation is solved for a number of special cases of interest. The theory is illustrated with the help of experimental results obtained over the past 10 years by a number of new techniques such as neutron gravity refractometry. Pendelloesung interference, and neutron interferometry.
Algebraic equations an introduction to the theories of Lagrange and Galois
Dehn, Edgar
2004-01-01
Meticulous and complete, this presentation of Galois' theory of algebraic equations is geared toward upper-level undergraduate and graduate students. The theories of both Lagrange and Galois are developed in logical rather than historical form. And they are given a more thorough exposition than is customary. For this reason, and also because the author concentrates on concrete applications of algebraic theory, Algebraic Equations is an excellent supplementary text, offering students a concrete introduction to the abstract principles of Galois theory. Of further value are the many numerical ex
Langevin equation in effective theory of interacting QCD pomerons in the limit of large Nc
International Nuclear Information System (INIS)
Bondarenko, S.
2007-01-01
Effective field theory of interacting BFKL pomerons is investigated and Langevin equation for the theory, which arises after the introduction of additional auxiliary field, is obtained. The Langevin equations are considered for the case of interacting BFKL pomerons with both splitting and merging vertexes and for the interaction which includes additional 'toy' four pomeron interaction vertex. In the latest case an analogy with the Regge field theory in zero dimensions (RFT-0) was used in order to obtain this 'toy' vertex, which coincided with the four point function of two-dimensional conformal field theory obtained in [G.P. Korchemsky, Nucl. Phys. B 550 (1999) 397]. The comparison between the Langevin equations obtained in the frameworks of dipole and RFT approaches is performed, the interpretation of results is given and possible application of obtained equations is discussed
International Nuclear Information System (INIS)
Gogala, B.
1983-01-01
The equations of the gauge theory of gravitation are derived from a complex quadratic Lagrangian with torsion. The derivation is performed in a coordinate basis in a completely covariant way. (author)
International Nuclear Information System (INIS)
Killingbeck, J.
1979-01-01
By using the methods of perturbation theory it is possible to construct simple formulae for the numerical integration of the Schroedinger equation, and also to calculate expectation values solely by means of simple eigenvalue calculations. (Auth.)
Turbulence theories and modelling of fluids and plasmas
Energy Technology Data Exchange (ETDEWEB)
Yoshizawa, Akira; Yokoi, Nobumitsu [Institute of Industrial Science, Univ. of Tokyo, Tokyo (Japan); Itoh, Sanae-I. [Research Institute for Applied Mechanics, Kyushu Univ., Kasuga, Fukuoka (Japan); Itoh, Kimitaka [National Inst. for Fusion Science, Toki, Gifu (Japan)
2001-04-01
Theoretical and heuristic modelling methods are reviewed for studying turbulence phenomena of fluids and plasmas. Emphasis is put on understanding of effects on turbulent characteristics due to inhomogeneities of field and plasma parameters. The similarity and dissimilarity between the methods for fluids and plasmas are sought in order to shed light on the properties that are shared or not by fluid and plasma turbulence. (author)
Numerical schemes for dynamically orthogonal equations of stochastic fluid and ocean flows
International Nuclear Information System (INIS)
Ueckermann, M.P.; Lermusiaux, P.F.J.; Sapsis, T.P.
2013-01-01
The quantification of uncertainties is critical when systems are nonlinear and have uncertain terms in their governing equations or are constrained by limited knowledge of initial and boundary conditions. Such situations are common in multiscale, intermittent and non-homogeneous fluid and ocean flows. The dynamically orthogonal (DO) field equations provide an adaptive methodology to predict the probability density functions of such flows. The present work derives efficient computational schemes for the DO methodology applied to unsteady stochastic Navier–Stokes and Boussinesq equations, and illustrates and studies the numerical aspects of these schemes. Semi-implicit projection methods are developed for the mean and for the DO modes, and time-marching schemes of first to fourth order are used for the stochastic coefficients. Conservative second-order finite-volumes are employed in physical space with new advection schemes based on total variation diminishing methods. Other results include: (i) the definition of pseudo-stochastic pressures to obtain a number of pressure equations that is linear in the subspace size instead of quadratic; (ii) symmetric advection schemes for the stochastic velocities; (iii) the use of generalized inversion to deal with singular subspace covariances or deterministic modes; and (iv) schemes to maintain orthonormal modes at the numerical level. To verify our implementation and study the properties of our schemes and their variations, a set of stochastic flow benchmarks are defined including asymmetric Dirac and symmetric lock-exchange flows, lid-driven cavity flows, and flows past objects in a confined channel. Different Reynolds number and Grashof number regimes are employed to illustrate robustness. Optimal convergence under both time and space refinements is shown as well as the convergence of the probability density functions with the number of stochastic realizations.
Differential equation for genus-two characters in arbitrary rational conformal field theories
International Nuclear Information System (INIS)
Mathur, S.D.; Sen, A.
1989-01-01
We develop a general method for deriving ordinary differential equations for the genus-two ''characters'' of an arbitrary rational conformal field theory using the hyperelliptic representation of the genus-two moduli space. We illustrate our method by explicitly deriving the character differential equations for k=1 SU(2), G 2 , and F 4 WZW models. Our method provides an intrinsic definition of conformal field theories on higher genus Riemann surfaces. (orig.)
Study of a Model Equation in Detonation Theory
Faria, Luiz
2014-04-24
Here we analyze properties of an equation that we previously proposed to model the dynamics of unstable detonation waves [A. R. Kasimov, L. M. Faria, and R. R. Rosales, Model for shock wave chaos, Phys. Rev. Lett., 110 (2013), 104104]. The equation is ut+ 1/2 (u2-uu (0-, t))x=f (x, u (0-, t)), x > 0, t < 0. It describes a detonation shock at x = 0 with the reaction zone in x > 0. We investigate the nature of the steady-state solutions of this nonlocal hyperbolic balance law, the linear stability of these solutions, and the nonlinear dynamics. We establish the existence of instability followed by a cascade of period-doubling bifurcations leading to chaos. © 2014 Society for Industrial and Applied Mathematics.
Integration of Schwinger equation for (φ* φ)d2 theory
International Nuclear Information System (INIS)
Rochev, V.E.
1993-01-01
A general solution for the Schwinger equation for the generating functional of the complex scalar field theory with (φ * φ) d 2 interaction has been constructed. The method is based on the reduction of the order of this equation using the particular solution
Functionals Hartree-Fock equations in the Schrodinger representation of quantum field theory
International Nuclear Information System (INIS)
Gamboa, J.
1989-08-01
Hartree-Fock equations for a scalar field theory in the Schrodinger representation are derived. It is shown that renormalization of the total energy in the functional Schrodinger equation is enterely contained in the eigenvalues of the Hartree-Fock hamiltonian. (A.C.A.S.) [pt
Minimal gravitational coupling in the Newtonian theory and the covariant Schroedinger equation
International Nuclear Information System (INIS)
Duval, C.; Kuenzle, H.P.
1983-02-01
The role of the Bargmann group (11-dimensional extended Galilei group) in non relativistic gravitation theory is investigated. The generalized Newtonian gravitation theory (Newton-Cartan theory) achieves the status of a gauge theory about as much as General Relativity and couples minimally to a complex scalar field leading to a fourdimensionally covariant Schroedinger equation. Matter current and stress-energy tensor follow correctly from the Lagrangian. This theory on curved Newtonian space-time is also shown to be a limit of the Einstein-Klein-Gordon theory
Minimal gravitational coupling in the Newtonian theory and the covariant Schroedinger equation
International Nuclear Information System (INIS)
Duval, C.; Kuenzle, H.P.
1984-01-01
The role of the Bargmann group (11-dimensional extended Galilei group) in nonrelativistic gravitation theory is investigated. The generalized Newtonian gravitation theory (Newton-Cartan theory) achieves the status of a gauge theory about as much as general relativity and couples minimally to a complex scalar field leading to a four-dimensionally covariant Schroedinger equation. Matter current and stress-energy tensor follow correctly from the Lagrangian. This theory on curved Newtonian space-time is also shown to be a limit of the Einstein-Klein-Gordon theory. (author)
The multidensity integral equation approach in the theory of complex liquids
International Nuclear Information System (INIS)
Holovko, M.F.
2001-01-01
Recent development of the multi-density integral equation approach and its application to the statistical mechanical modelling of a different type of association and clusterization in liquids and solutions are reviewed. The effects of dimerization, polymerization and network formation are discussed. The numerical and analytical solutions of the integral equations in the multi-density formalism for pair correlation functions are used for the description of structural and thermodynamical properties of ionic solutions, polymers and network forming fluids
Methods of qualitative theory of differential equations and related topics
Lerman, L; Shilnikov, L
2000-01-01
Dedicated to the memory of Professor E. A. Leontovich-Andronova, this book was composed by former students and colleagues who wished to mark her contributions to the theory of dynamical systems. A detailed introduction by Leontovich-Andronova's close colleague, L. Shilnikov, presents biographical data and describes her main contribution to the theory of bifurcations and dynamical systems. The main part of the volume is composed of research papers presenting the interests of Leontovich-Andronova, her students and her colleagues. Included are articles on traveling waves in coupled circle maps, b
International Nuclear Information System (INIS)
Kataoka, Isao; Tomiyama, Akio
2004-01-01
The simplified and physically reasonable basic equations for the gas-liquid dispersed flow were developed based on some appropriate assumptions and the treatment of dispersed phase as isothermal rigid particles. Based on the local instant formulation of mass, momentum and energy conservation of the dispersed flow, time-averaged equations were obtained assuming that physical quantities in the dispersed phase are uniform. These assumptions are approximately valid when phase change rate and/or chemical reaction rate are not so large at gas-liquid interface and there is no heat generation in within the dispersed phase. Detailed discussions were made on the characteristics of obtained basic equations and physical meanings of terms consisting the basic equations. It is shown that, in the derived averaged momentum equation, the terms of pressure gradient and viscous momentum diffusion do not appear and, in the energy equation, the term of molecular thermal diffusion heat flux does not appear. These characteristics of the derived equations were shown to be very consistent concerning the physical interpretation of the gas-liquid dispersed flow. Furthermore, the obtained basic equations are consistent with experiments for the dispersed flow where most of averaged physical quantities are obtained assuming that the distributions of those are uniform within the dispersed phase. Investigation was made on the problem whether the obtained basic equations are well-posed or ill-posed for the initial value problem. The eigenvalues of the simplified mass and momentum equations are calculated for basic equations obtained here and previous two-fluid basic equations with one pressure model. Well-posedness and ill-posedness are judged whether the eigenvalues are real or imaginary. The result indicated the newly developed basic equations always constitute the well-posed initial value problem while the previous two-fluid basic equations based on one pressure model constitutes ill
Exact Solutions of the Field Equations for Empty Space in the Nash Gravitational Theory
Directory of Open Access Journals (Sweden)
Matthew T. Aadne
2017-02-01
Full Text Available John Nash has proposed a new theory of gravity. We define a Nash-tensor equal to the curvature tensor appearing in the Nash field equations for empty space, and calculate its components for two cases: 1. A static, spherically symmetric space; and 2. The expanding, homogeneous and isotropic space of the Friedmann-Lemaitre-Robertson-Walker (FLRW universe models. We find the general, exact solution of Nash’s field equations for empty space in the static case. The line element turns out to represent the Schwarzschild-de Sitter spacetime. Also we find the simplest non-trivial solution of the field equations in the cosmological case, which gives the scale factor corresponding to the de Sitter spacetime. Hence empty space in the Nash theory corresponds to a space with Lorentz Invariant Vacuum Energy (LIVE in the Einstein theory. This suggests that dark energy may be superfluous according to the Nash theory. We also consider a radiation filled universe model in an effort to find out how energy and matter may be incorporated into the Nash theory. A tentative interpretation of the Nash theory as a unified theory of gravity and electromagnetism leads to a very simple form of the field equations in the presence of matter. It should be noted, however, that the Nash theory is still unfinished. A satisfying way of including energy momentum into the theory has yet to be found.
Mathematical Theory of Compressible Viscous, and Heat Conducting Fluids
Czech Academy of Sciences Publication Activity Database
Feireisl, Eduard
2007-01-01
Roč. 33, č. 4 (2007), s. 461-490 ISSN 0898-1221 R&D Projects: GA ČR GA201/05/0164 Institutional research plan: CEZ:AV0Z10190503 Keywords : compressible fluid * viscous fluid * entropy Subject RIV: BA - General Mathematics Impact factor: 0.720, year: 2007
International Nuclear Information System (INIS)
Liebenberg, D.H.; Mills, R.L.; Bronson, J.C.
1977-01-01
Hydrogen isotopes play an important role in energy technologies, in particular, the compression to high densities for initiation of controlled thermonuclear fusion energy. At high densities the properties of the compressed hydrogen isotopes depart drastically from ideal thermodynamic predictions. The measurement of accurate data including the author's own recent measurements of n-H 2 and n-D 2 in the range 75 to 300 K and 0.2 to 2.0 GPa (2 to 20 kbar) is reviewed. An equation-of-state of the Benedict type is fit to these data with a double-process least-squares computer program. The results are reviewed and compared with existing data and with a variety of theoretical work reported for fluid hydrogens. A new heuristic correlation is presented for simplicity in predicting volumes and sound velocity at high pressures. 9 figures, 1 table
An exploration of viscosity models in the realm of kinetic theory of liquids originated fluids
Hussain, Azad; Ghafoor, Saadia; Malik, M. Y.; Jamal, Sarmad
The preeminent perspective of this article is to study flow of an Eyring Powell fluid model past a penetrable plate. To find the effects of variable viscosity on fluid model, continuity, momentum and energy equations are elaborated. Here, viscosity is taken as function of temperature. To understand the phenomenon, Reynold and Vogel models of variable viscosity are incorporated. The highly non-linear partial differential equations are transfigured into ordinary differential equations with the help of suitable similarity transformations. The numerical solution of the problem is presented. Graphs are plotted to visualize the behavior of pertinent parameters on the velocity and temperature profiles.
Stability by fixed point theory for functional differential equations
Burton, T A
2006-01-01
This book is the first general introduction to stability of ordinary and functional differential equations by means of fixed point techniques. It contains an extensive collection of new and classical examples worked in detail and presented in an elementary manner. Most of this text relies on three principles: a complete metric space, the contraction mapping principle, and an elementary variation of parameters formula. The material is highly accessible to upper-level undergraduate students in the mathematical sciences, as well as working biologists, chemists, economists, engineers, mathematicia
Schaum's outline of theory and problems of differential equations
Bronson, Richard
1994-01-01
If you want top grades and thorough understanding of differential equations, this powerful study tool is the best tutor you can have! It takes you step-by-step through the subject and gives you 563 accompanying problems with fully worked solutions. You also get plenty of practice problems to do on your own, working at your own speed. (Answers at the back show you how you're doing.) Famous for their clarity, wealth of illustrations and examples, and lack of dreary minutiae, Schaum’s Outlines have sold more than 30 million copies worldwide—and this guide will show you why!
Equation-of-motion coupled cluster perturbation theory revisited
DEFF Research Database (Denmark)
Eriksen, Janus Juul; Jørgensen, Poul; Olsen, Jeppe
2014-01-01
The equation-of-motion coupled cluster (EOM-CC) framework has been used for deriving a novel series of perturbative corrections to the coupled cluster singles and doubles energy that formally con- verges towards the full configuration interaction energy limit. The series is based on a Møller-Ples......-Plesset partitioning of the Hamiltonian and thus size extensive at any order in the perturbation, thereby rem- edying the major deficiency inherent to previous perturbation series based on the EOM-CC ansatz. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4873138]...
Differential equations with Matlab exploration, applications, and theory
McKibben, Mark
2014-01-01
ORDINARY DIFFERENTIAL EQUATIONS Welcome! Introduction This Book Is a Field Guide. What Does That Mean for YOU? Mired in Jargon - A Quick Language Lesson! Introducing MATLAB A First Look at Some Elementary Mathematical Models A Basic Analysis Toolbox Some Basic Mathematical Shorthand Set Algebra Functions The Space (R; j_j) A Closer Look at Sequences in (R; j_j) The Spaces (RN; k_kRN ) and (MN(R); k_kMN(R)Calculus of RN-valued and MN(R)-valued FunctionsSome Elementary ODEs Looking Ahead A First Wave of Mathematical Models Newton's Law of Heating and Cooling-Revisited Pharmocokinetics Uniform Mi
A modified two-fluid model for the application of two-group interfacial area transport equation
International Nuclear Information System (INIS)
Sun, X.; Ishii, M.; Kelly, J.
2003-01-01
This paper presents the modified two-fluid model that is ready to be applied in the approach of the two-group interfacial area transport equation. The two-group interfacial area transport equation was developed to provide a mechanistic constitutive relation for the interfacial area concentration in the two-fluid model. In the two-group transport equation, bubbles are categorized into two groups: spherical/distorted bubbles as Group 1 while cap/slug/churn-turbulent bubbles as Group 2. Therefore, this transport equation can be employed in the flow regimes spanning from bubbly, cap bubbly, slug to churn-turbulent flows. However, the introduction of the two groups of bubbles requires two gas velocity fields. Yet it is not desirable to solve two momentum equations for the gas phase alone. In the current modified two-fluid model, a simplified approach is proposed. The momentum equation for the averaged velocity of both Group-1 and Group-2 bubbles is retained. By doing so, the velocity difference between Group-1 and Group-2 bubbles needs to be determined. This may be made either based on simplified momentum equations for both Group-1 and Group-2 bubbles or by a modified drift-flux model
MINI-TRAC code: a driver program for assessment of constitutive equations of two-fluid model
International Nuclear Information System (INIS)
Akimoto, Hajime; Abe, Yutaka; Ohnuki, Akira; Murao, Yoshio
1991-05-01
MINI-TRAC code, a driver program for assessment of constitutive equations of two-fluid model, has been developed to perform assessment and improvement of constitutive equations of two-fluid model widely and efficiently. The MINI-TRAC code uses one-dimensional conservation equations for mass, momentum and energy based on the two-fluid model. The code can work on a personal computer because it can be operated with a core memory size less than 640 KB. The MINI-TRAC code includes constitutive equations of TRAC-PF1/MOD1 code, TRAC-BF1 code and RELAP5/MOD2 code. The code is modulated so that one can easily change constitutive equations to perform a test calculation. This report is a manual of the MINI-TRAC code. The basic equations, numerics, constitutive, equations included in the MINI-TRAC code will be described. The user's manual such as input description will be presented. The program structure and contents of main variables will also be mentioned in this report. (author)
International Nuclear Information System (INIS)
Jakubov, T.S.; Mainwaring, D.E.
2006-01-01
In the present work a generalized Kelvin equation for a fluid confined in thick-walled cylindrical capillary is developed. This has been accomplished by including the potential energy function for interaction between a solid wall of a capillary and a confined fluid into the Kelvin equation. Using the Lennard-Jones 12-6 potential, an explicit form of the potential energy functions as expressed by hypergeometrical functions have been derived-firstly, for the interaction between a solid wall and a test atom placed at an arbitrary point in a long open-end capillary, and thereafter for the body-body interaction between the solid wall and a confined Lennard-Jones fluid. Further, this generalized Kelvin equation has been applied to detailed description hysteresis phenomena in such capillaries. All numerical calculations have been carried out for the model argon-graphite system at 90 K
Thermodynamic study of fluid in terms of equation of state containing physical parameters
International Nuclear Information System (INIS)
Khasare, S. B.
2015-01-01
We introduce a simple condition for one mole fluid by considering the thermodynamics of molecules pointing towards the effective potential for the cluster. Efforts are made to estimate new physical parameter f in liquid state using the equation of state containing only two physical parameters such as the hard sphere diameter and binding energy. The temperature dependence of the structural properties and the thermodynamic behavior of the clusters are studied. Computations based on f predict the variation of numbers of particles at the contact point of the molecular cavity (radial distribution function). From the thermodynamic profile of the fluid, the model results are discussed in terms of the cavity due to the closed surface along with suitable energy. The present calculation is based upon the sample thermodynamic data for n-hexanol, such as the ultrasonic wave, density, volume expansion coefficient, and ratio of specific heat in the liquid state, and it is consistent with the thermodynamic relations containing physical parameters such as size and energy. Since the data is restricted to n-hexanol, we avoid giving the physical meaning of f, which is the key parameter studied in the present work. (paper)
A global numerical solution of the radial Schroedinger equation by second-order perturbation theory
International Nuclear Information System (INIS)
Adam, G.
1979-01-01
A global numerical method, which uses second-order perturbation theory, is described for the solution of the radial Schroedinger equation. The perturbative numerical (PN) solution is derived in two stages: first, the original potential is approximated by a piecewise continuous parabolic function, and second, the resulting Schroedinger equation is solved on each integration step by second-order perturbation theory, starting with a step function reference approximation for the parabolic potential. We get a manageable PN algorithm, which shows an order of accuracy equal to six in the solution of the original Schroedinger equation, and is very stable against round off errors. (author)
Cluster-enriched Yang-Baxter equation from SUSY gauge theories
Yamazaki, Masahito
2018-04-01
We propose a new generalization of the Yang-Baxter equation, where the R-matrix depends on cluster y-variables in addition to the spectral parameters. We point out that we can construct solutions to this new equation from the recently found correspondence between Yang-Baxter equations and supersymmetric gauge theories. The S^2 partition function of a certain 2d N=(2,2) quiver gauge theory gives an R-matrix, whereas its FI parameters can be identified with the cluster y-variables.
Knotted solutions for linear and nonlinear theories: Electromagnetism and fluid dynamics
Directory of Open Access Journals (Sweden)
Daniel W.F. Alves
2017-10-01
Full Text Available We examine knotted solutions, the most simple of which is the “Hopfion”, from the point of view of relations between electromagnetism and ideal fluid dynamics. A map between fluid dynamics and electromagnetism works for initial conditions or for linear perturbations, allowing us to find new knotted fluid solutions. Knotted solutions are also found to be solutions of nonlinear generalizations of electromagnetism, and of quantum-corrected actions for electromagnetism coupled to other modes. For null configurations, electromagnetism can be described as a null pressureless fluid, for which we can find solutions from the knotted solutions of electromagnetism. We also map them to solutions of Euler's equations, obtained from a type of nonrelativistic reduction of the relativistic fluid equations.
Extension of the new proposed association equation of state (AEOS) to associating fluid mixtures
International Nuclear Information System (INIS)
Rezaei, H.; Modarress, H.; Mohsen-Nia, M.
2010-01-01
Recently, a new statistical mechanic-based equation of state has been proposed by Mohsen-Nia and Modarress [M. Mohsen-Nia, H. Modarress, Chem. Phys. 336 (2007) 22-26] for associating pure fluids. The new association equation of state (AEOS) was successfully applied to calculate the saturated properties of water, methanol, and ammonia. In this work, the new proposed AEOS is used to evaluate the (vapour + liquid) equilibrium (VLE) of 25 associating pure compounds and the adjusted parameters are reported. The new AEOS is also extended to mixtures containing associating and non-associating compounds. The calculated saturated properties of the pure compounds are compared with those calculated by other AEOSs. The results of VLE calculation for various binary mixtures such as: alcohol/hydrocarbon, alcohol/CO 2 , alcohol/aromatic-hydrocarbons, and the quaternary system (H 2 O/CH 4 /CO 2 /H 2 S) indicate the capability of the new proposed AEOS for associating pure and mixture calculations.
International Nuclear Information System (INIS)
Menezes, G.; Svaiter, N.F.
2006-04-01
We use the method of stochastic quantization in a topological field theory defined in an Euclidean space, assuming a Langevin equation with a memory kernel. We show that our procedure for the Abelian Chern-Simons theory converges regardless of the nature of the Chern-Simons coefficient. (author)
Theory of Perturbed Equilibria for Solving the Grad-Shafranov Equation
International Nuclear Information System (INIS)
Pletzer, A.; Zakharov, L.E.
1999-01-01
The theory of perturbed magnetohydrodynamic equilibria is presented for different formulations of the tokamak equilibrium problem. For numerical codes, it gives an explicit Newton scheme for solving the Grad-Shafranov equation subject to different constraints. The problem of stability of axisymmetric modes is shown to be a particular case of the equilibrium perturbation theory
Sensitivity theory for general non-linear algebraic equations with constraints
International Nuclear Information System (INIS)
Oblow, E.M.
1977-04-01
Sensitivity theory has been developed to a high state of sophistication for applications involving solutions of the linear Boltzmann equation or approximations to it. The success of this theory in the field of radiation transport has prompted study of possible extensions of the method to more general systems of non-linear equations. Initial work in the U.S. and in Europe on the reactor fuel cycle shows that the sensitivity methodology works equally well for those non-linear problems studied to date. The general non-linear theory for algebraic equations is summarized and applied to a class of problems whose solutions are characterized by constrained extrema. Such equations form the basis of much work on energy systems modelling and the econometrics of power production and distribution. It is valuable to have a sensitivity theory available for these problem areas since it is difficult to repeatedly solve complex non-linear equations to find out the effects of alternative input assumptions or the uncertainties associated with predictions of system behavior. The sensitivity theory for a linear system of algebraic equations with constraints which can be solved using linear programming techniques is discussed. The role of the constraints in simplifying the problem so that sensitivity methodology can be applied is highlighted. The general non-linear method is summarized and applied to a non-linear programming problem in particular. Conclusions are drawn in about the applicability of the method for practical problems
Long-range weight functions in fundamental measure theory of the non-uniform hard-sphere fluid
International Nuclear Information System (INIS)
Hansen-Goos, Hendrik
2016-01-01
We introduce long-range weight functions to the framework of fundamental measure theory (FMT) of the non-uniform, single-component hard-sphere fluid. While the range of the usual weight functions is equal to the hard-sphere radius R , the modified weight functions have range 3 R . Based on the augmented FMT, we calculate the radial distribution function g (r) up to second order in the density within Percus’ test particle theory. Consistency of the compressibility and virial routes on this level allows us to determine the free parameter γ of the theory. As a side result, we obtain a value for the fourth virial coefficient B 4 which deviates by only 0.01% from the exact result. The augmented FMT is tested for the dense fluid by comparing results for g (r) calculated via the test particle route to existing results from molecular dynamics simulations. The agreement at large distances (r > 6 R) is significantly improved when the FMT with long-range weight functions is used. In order to improve agreement close to contact (r = 2 R) we construct a free energy which is based on the accurate Carnahan–Starling equation of state, rather than the Percus–Yevick compressibility equation underlying standard FMT. (paper)
A coupled deformation-diffusion theory for fluid-saturated porous solids
Henann, David; Kamrin, Ken; Anand, Lallit
2012-02-01
Fluid-saturated porous materials are important in several familiar applications, such as the response of soils in geomechanics, food processing, pharmaceuticals, and the biomechanics of living bone tissue. An appropriate constitutive theory describing the coupling of the mechanical behavior of the porous solid with the transport of the fluid is a crucial ingredient towards understanding the material behavior in these varied applications. In this work, we formulate and numerically implement in a finite-element framework a large-deformation theory for coupled deformation-diffusion in isotropic, fluid-saturated porous solids. The theory synthesizes the classical Biot theory of linear poroelasticity and the more-recent Coussy theory of poroplasticity in a large deformation framework. In this talk, we highlight several salient features of our theory and discuss representative examples of the application of our numerical simulation capability to problems of consolidation as well as deformation localization in granular materials.
Equations of motion and conservation laws in a theory of stable stratified turbulence
L'vov, V.S.; Rudenko, O.
2008-01-01
This paper is part of an invited talk given at the international conference 'Turbulent Mixing and Beyond'. We consider non-isothermal fluid flows and revise simplifications of basic hydrodynamic equations for such flows, arriving eventually at a generalization of the Oberbeck–Boussinesq
Complex fluids in biological systems experiment, theory, and computation
2015-01-01
This book serves as an introduction to the continuum mechanics and mathematical modeling of complex fluids in living systems. The form and function of living systems are intimately tied to the nature of surrounding fluid environments, which commonly exhibit nonlinear and history dependent responses to forces and displacements. With ever-increasing capabilities in the visualization and manipulation of biological systems, research on the fundamental phenomena, models, measurements, and analysis of complex fluids has taken a number of exciting directions. In this book, many of the world’s foremost experts explore key topics such as: Macro- and micro-rheological techniques for measuring the material properties of complex biofluids and the subtleties of data interpretation Experimental observations and rheology of complex biological materials, including mucus, cell membranes, the cytoskeleton, and blood The motility of microorganisms in complex fluids and the dynamics of active suspensions Challenges and solut...
BISON Theory Manual The Equations behind Nuclear Fuel Analysis
International Nuclear Information System (INIS)
Hales, J. D.; Williamson, R. L.; Novascone, S. R.; Pastore, G.; Spencer, B. W.; Stafford, D. S.; Gamble, K. A.; Perez, D. M.; Liu, W.
2016-01-01
BISON is a finite element-based nuclear fuel performance code applicable to a variety of fuel forms including light water reactor fuel rods, TRISO particle fuel, and metallic rod and plate fuel. It solves the fully-coupled equations of thermomechanics and species diffusion, for either 2D axisymmetric or 3D geometries. Fuel models are included to describe temperature and burnup dependent thermal properties, fission product swelling, densification, thermal and irradiation creep, fracture, and fission gas production and release. Plasticity, irradiation growth, and thermal and irradiation creep models are implemented for clad materials. Models are also available to simulate gap heat transfer, mechanical contact, and the evolution of the gap/plenum pressure with plenum volume, gas temperature, and fission gas addition. BISON is based on the MOOSE framework and can therefore efficiently solve problems using standard workstations or very large high-performance computers. This document describes the theoretical and numerical foundations of BISON.
Equation of state experiments and theory relevant to planetary modelling
International Nuclear Information System (INIS)
Ross, M.; Graboske, H.C. Jr.; Nellis, W.J.
1981-01-01
In recent years there have been a number of static and shockwave experiments on the properties of planetary materials. The highest pressure measurements, and the ones most relevant to planetary modelling, have been obtained by shock compression. Of particular interest to the Jovian group are results for H 2 , H 2 O, CH 4 and NH 3 . Although the properties of metallic hydrogen have not been measured, they have been the subject of extensive calculations. In addition recent shock wave experiments on iron report to have detected melting under Earth core conditions. From this data theoretical models have been developed for computing the equations of state of materials used in planetary studies. A compelling feature that has followed from the use of improved material properties is a simplification in the planetary models. (author)
BISON Theory Manual The Equations behind Nuclear Fuel Analysis
Energy Technology Data Exchange (ETDEWEB)
Hales, J. D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Williamson, R. L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Novascone, S. R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pastore, G. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Spencer, B. W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Stafford, D. S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gamble, K. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Perez, D. M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Liu, W. [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2016-09-01
BISON is a finite element-based nuclear fuel performance code applicable to a variety of fuel forms including light water reactor fuel rods, TRISO particle fuel, and metallic rod and plate fuel. It solves the fully-coupled equations of thermomechanics and species diffusion, for either 2D axisymmetric or 3D geometries. Fuel models are included to describe temperature and burnup dependent thermal properties, fission product swelling, densification, thermal and irradiation creep, fracture, and fission gas production and release. Plasticity, irradiation growth, and thermal and irradiation creep models are implemented for clad materials. Models are also available to simulate gap heat transfer, mechanical contact, and the evolution of the gap/plenum pressure with plenum volume, gas temperature, and fission gas addition. BISON is based on the MOOSE framework and can therefore efficiently solve problems using standard workstations or very large high-performance computers. This document describes the theoretical and numerical foundations of BISON.
Structural Equation Modeling: Theory and Applications in Forest Management
Directory of Open Access Journals (Sweden)
Tzeng Yih Lam
2012-01-01
Full Text Available Forest ecosystem dynamics are driven by a complex array of simultaneous cause-and-effect relationships. Understanding this complex web requires specialized analytical techniques such as Structural Equation Modeling (SEM. The SEM framework and implementation steps are outlined in this study, and we then demonstrate the technique by application to overstory-understory relationships in mature Douglas-fir forests in the northwestern USA. A SEM model was formulated with (1 a path model representing the effects of successively higher layers of vegetation on late-seral herbs through processes such as light attenuation and (2 a measurement model accounting for measurement errors. The fitted SEM model suggested a direct negative effect of light attenuation on late-seral herbs cover but a direct positive effect of northern aspect. Moreover, many processes have indirect effects mediated through midstory vegetation. SEM is recommended as a forest management tool for designing silvicultural treatments and systems for attaining complex arrays of management objectives.
Bethe-salpeter equation from many-body perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Sander, Tobias; Starke, Ronald; Kresse, Georg [Computational Materials Physics, University of Vienna, Sensengasse 8/12, 1090 Vienna (Austria)
2013-07-01
The Green function formalism is a powerful tool to calculate not only electronic structure within the quasi-particle (QP) picture, but it also gives access to optical absorption spectra. Starting from QP energies within the GW method, the polarizability, as central quantity, is calculated from the solution of a Bethe-Salpeter-like equation (BSE). It is usually solved within the Tamm-Dancoff Approximation (TDA) which neglects the coupling of resonant (positive frequency branch) and anti-resonant (negative frequency branch) excitations. In this work we solve the full BSE (beyond TDA) based on self-consistently calculated QP orbitals and energies for typical systems. The dielectric function is averaged over many low dimensional shifted k-meshes to obtain k-point converged results. We compare the results to recently introduced approximation to the BSE kernel. Additionally, the time-evolution ansatz is employed to calculate the polarizability, which avoids the direct solution of the BSE.
The dynamical Yang-Baxter equation, representation theory, and quantum integrable systems
Etingof, Pavel
2005-01-01
The text is based on an established graduate course given at MIT that provides an introduction to the theory of the dynamical Yang-Baxter equation and its applications, which is an important area in representation theory and quantum groups. The book, which contains many detailed proofs and explicit calculations, will be accessible to graduate students of mathematics, who are familiar with the basics of representation theory of semisimple Lie algebras.
International Nuclear Information System (INIS)
Bender, C.M.; Cooper, F.
1985-01-01
An apparent difference between formulating mean field perturbation theory for lambdaphi 4 field theory via path integrals or via functional differential equations when there are external sources present is shown not to exist when mean field theory is considered as the N = 1 limit of the 0(N)lambdaphi 4 field theory. A simply method is given for determining the 1/N expansion for the Green's functions in the presence of external sources by directly solving the functional differential equations order by order in 1/N. The 1/N expansion for the effective action GAMMA(phi,chi) is obtained by directly integrating the functional differential equations for the fields phi and chi (equivalent1/2lambda/Nphi/sub α/phi/sup α/-μ 2 ) in the presence of two external sources j = -deltaGAMMA/deltaphi, S = -deltaGAMMA/deltachi
Pure gauge configurations and solutions to fermionic superstring field theory equations of motion
International Nuclear Information System (INIS)
Aref'eva, I Ya; Gorbachev, R V; Medvedev, P B
2009-01-01
Recent results on solutions to the equation of motion of the cubic fermionic string field theory and an equivalence of nonpolynomial and cubic string field theory are discussed. To have the possibility of dealing with both GSO(+) and GSO(-) sectors in the uniform way, a matrix formulation for the NS fermionic SFT is used. In constructions of analytical solutions to open-string field theories truncated pure gauge configurations parametrized by wedge states play an essential role. The matrix form of this parametrization for NS fermionic SFT is presented. Using the cubic open superstring field theory as an example we demonstrate explicitly that for the large parameter of the perturbation expansion these truncated pure gauge configurations give divergent contributions to the equations of motion on the subspace of the wedge states. The perturbation expansion is corrected by adding extra terms that are just those necessary for the equation of motion contracted with the solution itself to be satisfied.
International Nuclear Information System (INIS)
Doering, C.R.
1985-01-01
Applications of nonlinear parabolic stochastic differential equations with additive colored noise in equilibrium and nonequilibrium statistical mechanics and quantum field theory are developed in detail, providing a new unified mathematical approach to many problems. The existence and uniqueness of solutions to these equations is established, and some of the properties of the solutions are investigated. In particular, asymptotic expansions for the correlation functions of the solutions are introduced and compared to rigorous nonperturbative bounds on the moments. It is found that the perturbative analysis is in qualitative disagreement with the exact result in models corresponding to cut-off self-interacting nonperturbatively renormalizable scalar quantum field theories. For these theories the nonlinearities cannot be considered as perturbations of the linearized theory
RISM theory distribution functions for Lennard--Jones interaction site fluids
International Nuclear Information System (INIS)
Johnson, E.; Hazoume, R.P.
1978-01-01
Reference interaction site model (RISM) theory distribution functions for Lennard-Jones interaction site fluids are discussed. The comparison with computer simulation results suggests that these distribution functions are as accurate as RISM distribution functions for fused hard sphere molecular fluids
Forte, Esther; Llovell, Felix; Vega, Lourdes F; Trusler, J P Martin; Galindo, Amparo
2011-04-21
An accurate prediction of phase behavior at conditions far and close to criticality cannot be accomplished by mean-field based theories that do not incorporate long-range density fluctuations. A treatment based on renormalization-group (RG) theory as developed by White and co-workers has proven to be very successful in improving the predictions of the critical region with different equations of state. The basis of the method is an iterative procedure to account for contributions to the free energy of density fluctuations of increasing wavelengths. The RG method has been combined with a number of versions of the statistical associating fluid theory (SAFT), by implementing White's earliest ideas with the improvements of Prausnitz and co-workers. Typically, this treatment involves two adjustable parameters: a cutoff wavelength L for density fluctuations and an average gradient of the wavelet function Φ. In this work, the SAFT-VR (variable range) equation of state is extended with a similar crossover treatment which, however, follows closely the most recent improvements introduced by White. The interpretation of White's latter developments allows us to establish a straightforward method which enables Φ to be evaluated; only the cutoff wavelength L then needs to be adjusted. The approach used here begins with an initial free energy incorporating only contributions from short-wavelength fluctuations, which are treated locally. The contribution from long-wavelength fluctuations is incorporated through an iterative procedure based on attractive interactions which incorporate the structure of the fluid following the ideas of perturbation theories and using a mapping that allows integration of the radial distribution function. Good agreement close and far from the critical region is obtained using a unique fitted parameter L that can be easily related to the range of the potential. In this way the thermodynamic properties of a square-well (SW) fluid are given by the same
Wills, John M.; Mattsson, Ann E.
2012-02-01
Density functional theory (DFT) provides a formally predictive base for equation of state properties. Available approximations to the exchange/correlation functional provide accurate predictions for many materials in the periodic table. For heavy materials however, DFT calculations, using available functionals, fail to provide quantitative predictions, and often fail to be even qualitative. This deficiency is due both to the lack of the appropriate confinement physics in the exchange/correlation functional and to approximations used to evaluate the underlying equations. In order to assess and develop accurate functionals, it is essential to eliminate all other sources of error. In this talk we describe an efficient first-principles electronic structure method based on the Dirac equation and compare the results obtained with this method with other methods generally used. Implications for high-pressure equation of state of relativistic materials are demonstrated in application to Ce and the light actinides. Sandia National Laboratories is a multi-program laboratory managed andoperated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Keshavarzi, Ezat; Kamalvand, Mohammad
2009-04-23
The structure and properties of fluids confined in nanopores may show a dramatic departure from macroscopic bulk fluids. The main reason for this difference lies in the influence of system walls. In addition to the entropic wall effect, system walls can significantly change the energy of the confined fluid compared to macroscopic bulk fluids. The energy effect of the walls on a nanoconfined fluid appears in two forms. The first effect is the cutting off of the intermolecular interactions by the walls, which appears for example in the integrals for calculation of the thermodynamic properties. The second wall effect involves the wall-molecule interactions. In such confined fluids, the introduction of wall forces and the competition between fluid-wall and fluid-fluid forces could lead to interesting thermodynamic properties, including new kinds of phase transitions not observed in the macroscopic fluid systems. In this article, we use the perturbative fundamental measure density functional theory to study energy effects on the structure and properties of a hard core two-Yukawa fluid confined in a nanoslit. Our results show the changes undergone by the structure and phase transition of the nanoconfined fluids as a result of energy effects.
International Nuclear Information System (INIS)
Sieniutycz, S.; Berry, R.S.
1993-01-01
A Lagrangian with dissipative (e.g., Onsager's) potentials is constructed for the field description of irreversible heat-conducting fluids, off local equilibrium. Extremum conditions of action yield Clebsch representations of temperature, chemical potential, velocities, and generalized momenta, including a thermal momentum introduced recently [R. L. Selinger and F. R. S. Whitham, Proc. R. Soc. London, Ser. A 302, 1 (1968); S. Sieniutycz and R. S. Berry, Phys. Rev. A 40, 348 (1989)]. The basic question asked is ''To what extent may irreversibility, represented by a given form of the entropy source, influence the analytical form of the conservation laws for the energy and momentum?'' Noether's energy for a fluid with heat flow is obtained, which leads to a fundamental equation and extended Hamiltonian dynamics obeying the second law of thermodynamics. While in the case of the Onsager potentials this energy coincides numerically with the classical energy E, it contains an extra term (vanishing along the path) still contributing to an irreversible evolution. Components of the energy-momentum tensor preserve all terms regarded standardly as ''irreversible'' (heat, tangential stresses, etc.) generalized to the case when thermodynamics includes the state gradients and the so-called thermal phase, which we introduce here. This variable, the Lagrange multiplier of the entropy generation balance, is crucial for consistent treatment of irreversible processes via an action formalism. We conclude with the hypothesis that embedding the first and second laws in the context of the extremal behavior of action under irreversible conditions may imply accretion of an additional term to the classical energy
DEFF Research Database (Denmark)
Larsen, Jon Steffen; Santos, Ilmar
2015-01-01
An efficient finite element scheme for solving the non-linear Reynolds equation for compressible fluid coupled to compliant structures is presented. The method is general and fast and can be used in the analysis of airfoil bearings with simplified or complex foil structure models. To illustrate...
Gaik*, Tay Kim; Demiray, Hilmi; Tiong, Ong Chee
In the present work, treating the artery as a prestressed thin-walled and long circularly cylindrical elastic tube with a mild symmetrical stenosis and the blood as an incompressible Newtonian fluid, we have studied the pro pagation of weakly nonlinear waves in such a composite medium, in the long wave approximation, by use of the reductive perturbation method. By intro ducing a set of stretched coordinates suitable for the boundary value type of problems and expanding the field variables into asymptotic series of the small-ness parameter of nonlinearity and dispersion, we obtained a set of nonlinear differential equations governing the terms at various order. By solving these nonlinear differential equations, we obtained the forced perturbed Korteweg-de Vries equation with variable coefficient as the nonlinear evolution equation. By use of the coordinate transformation, it is shown that this type of nonlinear evolution equation admits a progressive wave solution with variable wave speed.
What Does Dynamical Systems Theory Teach Us about Fluids?
International Nuclear Information System (INIS)
Bosetti, Hadrien; Posch, Harald A.
2014-01-01
We use molecular dynamics simulations to compute the Lyapunov spectra of many-particle systems resembling simple fluids in thermal equilibrium and in non-equilibrium stationary states. Here we review some of the most interesting results and point to open questions. (general)
A theory of post-stall transients in axial compression systems. I - Development of equations
Moore, F. K.; Greitzer, E. M.
1985-01-01
An approximate theory is presented for post-stall transients in multistage axial compression systems. The theory leads to a set of three simultaneous nonlinear third-order partial differential equations for pressure rise, and average and disturbed values of flow coefficient, as functions of time and angle around the compressor. By a Galerkin procedure, angular dependence is averaged, and the equations become first order in time. These final equations are capable of describing the growth and possible decay of a rotating-stall cell during a compressor mass-flow transient. It is shown how rotating-stall-like and surgelike motions are coupled through these equations, and also how the instantaneous compressor pumping characteristic changes during the transient stall process.
Relativistic many-body theory of atomic transitions. The relativistic equation-of-motion approach
International Nuclear Information System (INIS)
Huang, K.
1982-01-01
An equation-of-motion approach is used to develop the relativistic many-body theory of atomic transitions. The relativistic equations of motion for transition matrices are formulated with the use of techniques of quantum-field theory. To reduce the equations of motion to a tractable form which is appropriate for numerical calculations, a graphical method to resolve the complication arising from the antisymmetrization and angular-momentum coupling is employed. The relativistic equation-of-motion method allows an ab initio treatment of correlation and relativistic effects in both closed- and open-shell many-body systems. A special case of the present formulation reduces to the relativistic random-phase approximation
Directory of Open Access Journals (Sweden)
Zulfiqar Ali
2013-01-01
Full Text Available We find exact solutions of the Generalized Modified Boussinesq (GMB equation, the Kuromoto-Sivashinsky (KS equation the and, Camassa-Holm (CH equation by utilizing the double reduction theory related to conserved vectors. The fourth order GMB equation involves the arbitrary function and mixed derivative terms in highest derivative. The partial Noether’s approach yields seven conserved vectors for GMB equation and one conserved for vector KS equation. Due to presence of mixed derivative term the conserved vectors for GMB equation derived by the Noether like theorem do not satisfy the divergence relationship. The extra terms that constitute the trivial part of conserved vectors are adjusted and the resulting conserved vectors satisfy the divergence property. The double reduction theory yields two independent solutions and one reduction for GMB equation and one solution for KS equation. For CH equation two independent solutions are obtained elsewhere by double reduction theory with the help of conserved Vectors.
Mobile point sensors and actuators in the controllability theory of partial differential equations
Khapalov, Alexander Y
2017-01-01
This book presents a concise study of controllability theory of partial differential equations when they are equipped with actuators and/or sensors that are finite dimensional at every moment of time. Based on the author’s extensive research in the area of controllability theory, this monograph specifically focuses on the issues of controllability, observability, and stabilizability for parabolic and hyperbolic partial differential equations. The topics in this book also cover related applied questions such as the problem of localization of unknown pollution sources based on information obtained from point sensors that arise in environmental monitoring. Researchers and graduate students interested in controllability theory of partial differential equations and its applications will find this book to be an invaluable resource to their studies.
Danwanichakul, Panu; Glandt, Eduardo D
2004-11-15
We applied the integral-equation theory to the connectedness problem. The method originally applied to the study of continuum percolation in various equilibrium systems was modified for our sequential quenching model, a particular limit of an irreversible adsorption. The development of the theory based on the (quenched-annealed) binary-mixture approximation includes the Ornstein-Zernike equation, the Percus-Yevick closure, and an additional term involving the three-body connectedness function. This function is simplified by introducing a Kirkwood-like superposition approximation. We studied the three-dimensional (3D) system of randomly placed spheres and 2D systems of square-well particles, both with a narrow and with a wide well. The results from our integral-equation theory are in good accordance with simulation results within a certain range of densities.
Equations of State: From the Ideas of van der Waals to Association Theories
DEFF Research Database (Denmark)
Kontogeorgis, Georgios; Economou, Ioannis G.
2010-01-01
equations of state are sensitive to the mixing and combining rules used. Moreover, it is shown that previously reported deficiencies for size-asymmetric systems are more related to the van der Waals one fluid mixing rules used rather than the functionality of the cubic equation of state itself. Improved...... models for polar systems have been developed using the so-called EoS/GE mixing rules and we illustrate with the same methodology how these mixing rules should best be used for size-asymmetric systems. Despite the significant capabilities of cubic equations of state, their limitations lie especially...... in the description of complex phase behavior, e.g. liquid–liquid equilibria for highly polar and/or hydrogen bonding containing molecules. In these cases, advanced equations of state based on statistical mechanics that incorporate ideas from perturbation (e.g. SAFT and CPA), chemical (e.g. APACT) and lattice (e...
Higher equations of motion in N=2 superconformal Liouville field theory
International Nuclear Information System (INIS)
Ahn, Changrim; Stanishkov, Marian; Stoilov, Michail
2011-01-01
We present an infinite set of higher equations of motion in N=2 supersymmetric Liouville field theory. They are in one to one correspondence with the degenerate representations and are enumerated in addition to the U(1) charge ω by the positive integers m or (m,n) respectively. We check that in the classical limit these equations hold as relations among the classical fields.
Hadronic equation of state in the statistical bootstrap model and linear graph theory
International Nuclear Information System (INIS)
Fre, P.; Page, R.
1976-01-01
Taking a statistical mechanical point og view, the statistical bootstrap model is discussed and, from a critical analysis of the bootstrap volume comcept, it is reached a physical ipothesis, which leads immediately to the hadronic equation of state provided by the bootstrap integral equation. In this context also the connection between the statistical bootstrap and the linear graph theory approach to interacting gases is analyzed
Picard-Fuchs equations and the moduli space of superconformal field theories
International Nuclear Information System (INIS)
Cadavid, A.C.; Ferrara, S.
1991-01-01
We derive simple techniques which allow us to relate Picard-Fuchs differential equations for the periods of holomorphic p-forms on certain complex manifolds, to their moduli space and its modular group (target space duality). For Calabi-Yau manifolds the special geometry of moduli space gives the Zamolodchikov metric and the Yukawa couplings in terms of the periods. For general N=2 superconformal theories these equations exactly determine perturbed correlation functions of the chiral rings of primary fields. (orig.)
On the theory of weak turbulence for the nonlinear Schrödinger equation
Escobedo, M
2015-01-01
The authors study the Cauchy problem for a kinetic equation arising in the weak turbulence theory for the cubic nonlinear Schrödinger equation. They define suitable concepts of weak and mild solutions and prove local and global well posedness results. Several qualitative properties of the solutions, including long time asymptotics, blow up results and condensation in finite time are obtained. The authors also prove the existence of a family of solutions that exhibit pulsating behavior.
International Nuclear Information System (INIS)
Frank, T.D.
2002-01-01
We study many particle systems in the context of mean field forces, concentration-dependent diffusion coefficients, generalized equilibrium distributions, and quantum statistics. Using kinetic transport theory and linear nonequilibrium thermodynamics we derive for these systems a generalized multivariate Fokker-Planck equation. It is shown that this Fokker-Planck equation describes relaxation processes, has stationary maximum entropy distributions, can have multiple stationary solutions and stationary solutions that differ from Boltzmann distributions
Perturbation theory for the Bethe-Salpeter equation in the field of a plane electromagnetic wave
International Nuclear Information System (INIS)
Starostin, V.S.; Litskevich, I.K.
1990-01-01
The completeness and orthogonality of the solutions of the Bethe-Salpeter equation is proven. A correct derivation of perturbation-theory equations is given. A generalization that includes the field of a plane electromagnetic wave is proposed. The rate of one-photon annihilation of positronium in this field is calculated. If the one-photon decay is allowed, the stationary states of the system are found (states of light-positronium)
Shimizu, Kenji
2017-10-01
The 2nd-order Korteweg-de Vries (KdV) equation and the Gardner (or extended KdV) equation are often used to investigate internal solitary waves, commonly observed in oceans and lakes. However, application of these KdV-type equations for continuously stratified fluids to geophysical problems is hindered by nonuniqueness of the higher-order coefficients and the associated correction functions to the wave fields. This study proposes to reduce arbitrariness of the higher-order KdV theory by considering its uniqueness in the following three physical senses: (i) consistency of the nonlinear higher-order coefficients and correction functions with the corresponding phase speeds, (ii) wavenumber-independence of the vertically integrated available potential energy, and (iii) its positive definiteness. The spectral (or generalized Fourier) approach based on vertical modes in the isopycnal coordinate is shown to enable an alternative derivation of the 2nd-order KdV equation, without encountering nonuniqueness. Comparison with previous theories shows that Parseval's theorem naturally yields a unique set of special conditions for (ii) and (iii). Hydrostatic fully nonlinear solutions, derived by combining the spectral approach and simple-wave analysis, reveal that both proposed and previous 2nd-order theories satisfy (i), provided that consistent definitions are used for the wave amplitude and the nonlinear correction. This condition reduces the arbitrariness when higher-order KdV-type theories are compared with observations or numerical simulations. The coefficients and correction functions that satisfy (i)-(iii) are given by explicit formulae to 2nd order and by algebraic recurrence relationships to arbitrary order for hydrostatic fully nonlinear and linear fully nonhydrostatic effects.
International Nuclear Information System (INIS)
Mulero, A.; Cuadros, F; Faundez, C.A.
1999-01-01
Vapour-liquid equilibrium properties for both three- and two-dimensional Lennard-Jones fluids were obtained using simple cubic-in-density equations of state proposed by the authors. Results were compared with those obtained by other workers from computer simulations and also with results given by other more complex semi-theoretical or semi-empirical equations of state. In the three-dimensional case good agreement is found for all properties and all temperatures. In the two-dimensional case only the coexistence densities were compared, producing good agreement for low temperatures only. The present work is the first to give numerical data for the vapour-liquid equilibrium properties of Lennard-Jones fluids calculated from equations of state. Copyright (1999) CSIRO Australia
Singh, Ram Chandra; Ram, Jokhan
2011-11-01
The effects of quadrupole moments on the isotropic-nematic (IN) phase transitions are studied using the density-functional theory (DFT) for a Gay-Berne (GB) fluid for a range of length-to-breadth parameters ? in the reduced temperature range ? . The pair-correlation functions of the isotropic phase, which enter into the DFT as input parameters are found by solving the Percus-Yevick integral equation theory. The method used involves an expansion of angle-dependent functions appearing in the integral equations in terms of spherical harmonics and the harmonic coefficients are obtained by an iterative algorithm. All the terms of harmonic coefficients which involve l indices up to less than or equal to 6 are considered. The numerical accuracy of the results depends on the number of spherical harmonic coefficients considered for each orientation-dependent function. As the length-to-breadth ratio of quadrupolar GB molecules is increased, the IN transition is seen to move to lower density (and pressure) at a given temperature. It has been observed that the DFT is good to study the IN transitions in such fluids. The theoretical results have also been compared with the computer simulation results wherever they are available.
Fluid Mechanics and Complex Variable Theory: Getting Past the 19th Century
Newton, Paul K.
2017-01-01
The subject of fluid mechanics is a rich, vibrant, and rapidly developing branch of applied mathematics. Historically, it has developed hand-in-hand with the elegant subject of complex variable theory. The Westmont College NSF-sponsored workshop on the revitalization of complex variable theory in the undergraduate curriculum focused partly on…
International Nuclear Information System (INIS)
Prikhodko, I.V.; Victorov, A.I.; Loos, Th.W.de
1995-01-01
A contract-site quasichemical equation of state has been used for the modeling of different kinds of fluid phase equilibria (between a gas phase and one or more liquids) over a wide range of conditions. Among the systems of interest are the ternary mixtures water + alkanols + hydrocarbons (alkanes or alkynes), water + alkanols (or acetone) + CO 2 , water + polyoxyethyleneglycol ethers + heavy alkanes. The model has been applied to describing the thermodynamic properties of the binary subsystems and to predict the phase behavior of the ternary systems. For longer-chain alkanols and hydrocarbons a group-contribution approach is implemented, which allows the modeling when no experimental data are available. The model gives reasonable predictions of phase behavior and the correct trends in the calculated phase diagrams in most cases. The concentrations of associates in liquid and gas phases are estimated by the model and compared with some experimental and computer simulation data. The predictive abilities of the model, its limitations, and possible ways of its improvement are discussed
Two-fluid electromagnetic simulations of plasma-jet acceleration with detailed equation-of-state
International Nuclear Information System (INIS)
Thoma, C.; Welch, D. R.; Clark, R. E.; Bruner, N.; MacFarlane, J. J.; Golovkin, I. E.
2011-01-01
We describe a new particle-based two-fluid fully electromagnetic algorithm suitable for modeling high density (n i ∼ 10 17 cm -3 ) and high Mach number laboratory plasma jets. In this parameter regime, traditional particle-in-cell (PIC) techniques are challenging due to electron timescale and lengthscale constraints. In this new approach, an implicit field solve allows the use of large timesteps while an Eulerian particle remap procedure allows simulations to be run with very few particles per cell. Hall physics and charge separation effects are included self-consistently. A detailed equation of state (EOS) model is used to evolve the ion charge state and introduce non-ideal gas behavior. Electron cooling due to radiation emission is included in the model as well. We demonstrate the use of these new algorithms in 1D and 2D Cartesian simulations of railgun (parallel plate) jet accelerators using He and Ar gases. The inclusion of EOS and radiation physics reduces the electron temperature, resulting in higher calculated jet Mach numbers in the simulations. We also introduce a surface physics model for jet accelerators in which a frictional drag along the walls leads to axial spreading of the emerging jet. The simulations demonstrate that high Mach number jets can be produced by railgun accelerators for a variety of applications, including high energy density physics experiments.
Two-fluid electromagnetic simulations of plasma-jet acceleration with detailed equation-of-state
Energy Technology Data Exchange (ETDEWEB)
Thoma, C.; Welch, D. R.; Clark, R. E.; Bruner, N. [Voss Scientific, LLC, Albuquerque, New Mexico 87108 (United States); MacFarlane, J. J.; Golovkin, I. E. [Prism Computational Sciences, Inc., Madison, Wisconsin 53711 (United States)
2011-10-15
We describe a new particle-based two-fluid fully electromagnetic algorithm suitable for modeling high density (n{sub i} {approx} 10{sup 17} cm{sup -3}) and high Mach number laboratory plasma jets. In this parameter regime, traditional particle-in-cell (PIC) techniques are challenging due to electron timescale and lengthscale constraints. In this new approach, an implicit field solve allows the use of large timesteps while an Eulerian particle remap procedure allows simulations to be run with very few particles per cell. Hall physics and charge separation effects are included self-consistently. A detailed equation of state (EOS) model is used to evolve the ion charge state and introduce non-ideal gas behavior. Electron cooling due to radiation emission is included in the model as well. We demonstrate the use of these new algorithms in 1D and 2D Cartesian simulations of railgun (parallel plate) jet accelerators using He and Ar gases. The inclusion of EOS and radiation physics reduces the electron temperature, resulting in higher calculated jet Mach numbers in the simulations. We also introduce a surface physics model for jet accelerators in which a frictional drag along the walls leads to axial spreading of the emerging jet. The simulations demonstrate that high Mach number jets can be produced by railgun accelerators for a variety of applications, including high energy density physics experiments.
Empirical resistive-force theory for slender biological filaments in shear-thinning fluids
Riley, Emily E.; Lauga, Eric
2017-06-01
Many cells exploit the bending or rotation of flagellar filaments in order to self-propel in viscous fluids. While appropriate theoretical modeling is available to capture flagella locomotion in simple, Newtonian fluids, formidable computations are required to address theoretically their locomotion in complex, nonlinear fluids, e.g., mucus. Based on experimental measurements for the motion of rigid rods in non-Newtonian fluids and on the classical Carreau fluid model, we propose empirical extensions of the classical Newtonian resistive-force theory to model the waving of slender filaments in non-Newtonian fluids. By assuming the flow near the flagellum to be locally Newtonian, we propose a self-consistent way to estimate the typical shear rate in the fluid, which we then use to construct correction factors to the Newtonian local drag coefficients. The resulting non-Newtonian resistive-force theory, while empirical, is consistent with the Newtonian limit, and with the experiments. We then use our models to address waving locomotion in non-Newtonian fluids and show that the resulting swimming speeds are systematically lowered, a result which we are able to capture asymptotically and to interpret physically. An application of the models to recent experimental results on the locomotion of Caenorhabditis elegans in polymeric solutions shows reasonable agreement and thus captures the main physics of swimming in shear-thinning fluids.
Derivation of the Euler equations in Thomas-Fermi theories of a hot nuclear system
International Nuclear Information System (INIS)
Wang, C.
1992-01-01
The variational extreme condition with respect to statistical distribution of nucleons in momentum space is applied to derive the Euler equation of the nuclear density profile. The resultant Euler equation of the nuclear density profile is proven to be identical with that obtained in the usual Thomas-Fermi theories of a hot nuclear system where the variation is made with respect to the nuclear density profile. A Fermi-Dirac-type distribution appears as a result of variation in the present approach, while it is used as a given expression in obtaining the variation of the nuclear density profile in the usual Thomas-Fermi theories
Quantum theory from a nonlinear perspective Riccati equations in fundamental physics
Schuch, Dieter
2018-01-01
This book provides a unique survey displaying the power of Riccati equations to describe reversible and irreversible processes in physics and, in particular, quantum physics. Quantum mechanics is supposedly linear, invariant under time-reversal, conserving energy and, in contrast to classical theories, essentially based on the use of complex quantities. However, on a macroscopic level, processes apparently obey nonlinear irreversible evolution equations and dissipate energy. The Riccati equation, a nonlinear equation that can be linearized, has the potential to link these two worlds when applied to complex quantities. The nonlinearity can provide information about the phase-amplitude correlations of the complex quantities that cannot be obtained from the linearized form. As revealed in this wide ranging treatment, Riccati equations can also be found in many diverse fields of physics from Bose-Einstein-condensates to cosmology. The book will appeal to graduate students and theoretical physicists interested in ...
Hamiltonian fluid closures of the Vlasov-Ampère equations: From water-bags to N moment models
Energy Technology Data Exchange (ETDEWEB)
Perin, M.; Chandre, C.; Tassi, E. [Aix-Marseille Université, Université de Toulon, CNRS, CPT UMR 7332, 13288 Marseille (France); Morrison, P. J. [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712-1060 (United States)
2015-09-15
Moment closures of the Vlasov-Ampère system, whereby higher moments are represented as functions of lower moments with the constraint that the resulting fluid system remains Hamiltonian, are investigated by using water-bag theory. The link between the water-bag formalism and fluid models that involve density, fluid velocity, pressure and higher moments is established by introducing suitable thermodynamic variables. The cases of one, two, and three water-bags are treated and their Hamiltonian structures are provided. In each case, we give the associated fluid closures and we discuss their Casimir invariants. We show how the method can be extended to an arbitrary number of fields, i.e., an arbitrary number of water-bags and associated moments. The thermodynamic interpretation of the resulting models is discussed. Finally, a general procedure to derive Hamiltonian N-field fluid models is proposed.
Mathematical theory of viscous fluids: retrospective and future perspectives
Czech Academy of Sciences Publication Activity Database
Feireisl, Eduard
2010-01-01
Roč. 27, č. 2 (2010), s. 533-555 ISSN 1078-0947 R&D Projects: GA ČR GA201/08/0315 Institutional research plan: CEZ:AV0Z10190503 Keywords : viscous fluid * Navier-Stokes-Fourier system * global-intime solutions Subject RIV: BA - General Mathematics Impact factor: 0.986, year: 2010 http://www.aimsciences.org/journals/displayArticles.jsp?paperID=4942
Kinetic and fluid theory of microwave breakdown in air
International Nuclear Information System (INIS)
Roussel-Dupre, R.A.; Murphy, T.; Johnson, A.
1987-01-01
We have developed time-dependent fluid and kinetic treatments of electron transport in air in the presence of a propagating microwave pulse. In both cases the HPM pulses are assumed to be of short enough duration so that electron spatial diffusion can be neglected. In addition, we limit our calculations to the non-relativistic regime where effects due to the ponderomotive force are negligible. 6 refs., 4 figs
Directory of Open Access Journals (Sweden)
E. Marsch
1998-01-01
Full Text Available Based on quasilinear theory, a closure scheme for anisotropic multi-component fluid equations is developed for the wave-particle interactions of ions with electromagnetic Alfvén and ion-cyclotron waves propagating along the mean magnetic field. Acceleration and heating rates are calculated. They may be used in the multi-fluid momentum and energy equations as anomalous transport terms. The corresponding evolution equation for the average wave spectrum is established, and the effective growth/damping rate for the spectrum is calculated. Given a simple power-law spectrum, an anomalous collision frequency can be derived which depends on the slope and average intensity of the spectrum, and on the gyrofrequency and the differential motion (with respect to the wave frame of the actual ion species considered. The wave-particle interaction terms attain simple forms resembling the ones for collisional friction and temperature anisotropy relaxation (due to pitch angle scattering with collision rates that are proportional to the gyrofrequency but diminished substantially by the relative wave energy or the fluctuation level with respect the background field. In addition, a set of quasilinear diffusion equations is derived for the reduced (with respect to the perpendicular velocity component velocity distribution functions (VDFs, as they occur in the wave dispersion equation and the related dielectric function for parallel propagation. These reduced VDFs allow one to describe adequately the most prominent observed features, such as an ion beam and temperature anisotropy, in association with the resonant interactions of the particles with the waves on a kinetic level, yet have the advantage of being only dependent upon the parallel velocity component.
Gyro-fluid and two-fluid theory and simulations of edge-localized-modes
Energy Technology Data Exchange (ETDEWEB)
Xu, X. Q.; Dimits, A.; Joseph, I.; Umansky, M. V. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Xi, P. W. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); School of Physics, Peking University, Beijing (China); Xia, T. Y.; Gui, B. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Kim, S. S.; Park, G. Y.; Rhee, T.; Jhang, H. [WCI Center for Fusion Theory, National Fusion Research Institute, Daejon 305-333 (Korea, Republic of); Diamond, P. H. [WCI Center for Fusion Theory, National Fusion Research Institute, Daejon 305-333 (Korea, Republic of); Center for Astrophysics and Space Sciences and Department of Physics, University of California, San Diego, La Jolla, California 92093-0424 (United States); Dudson, B. [University of York, Heslington, York YO10 5DD (United Kingdom); Snyder, P. B. [General Atomics, San Diego, California 92186 (United States)
2013-05-15
This paper reports on the theoretical and simulation results of a gyro-Landau-fluid extension of the BOUT++ code, which contributes to increasing the physics understanding of edge-localized-modes (ELMs). Large ELMs with low-to-intermediate-n peeling-ballooning (P-B) modes are significantly suppressed due to finite Larmor radius (FLR) effects when the ion temperature increases. For type-I ELMs, it is found from linear simulations that retaining complete first order FLR corrections as resulting from the incomplete “gyroviscous cancellation” in Braginskii's two-fluid model is necessary to obtain good agreement with gyro-fluid results for high ion temperature cases (T{sub i}≽3 keV) when the ion density has a strong radial variation, which goes beyond the simple local model of ion diamagnetic stabilization of ideal ballooning modes. The maximum growth rate is inversely proportional to T{sub i} because the FLR effect is proportional to T{sub i}. The FLR effect is also proportional to toroidal mode number n, so for high n cases, the P-B mode is stabilized by FLR effects. Nonlinear gyro-fluid simulations show results that are similar to those from the two-fluid model, namely that the P-B modes trigger magnetic reconnection, which drives the collapse of the pedestal pressure. Due to the additional FLR-corrected nonlinear E × B convection of the ion gyro-center density, for a ballooning-dominated equilibrium the gyro-fluid model further limits the radial spreading of ELMs. In six-field two fluid simulations, the parallel thermal diffusivity is found to prevent the ELM encroachment further into core plasmas and therefore leads to steady state L-mode profiles. The simulation results show that most energy is lost via ion channel during an ELM event, followed by particle loss and electron energy loss. Because edge plasmas have significant spatial inhomogeneities and complicated boundary conditions, we have developed a fast non-Fourier method for the computation of
Stresses in non-equilibrium fluids: Exact formulation and coarse-grained theory
Krüger, Matthias; Solon, Alexandre; Démery, Vincent; Rohwer, Christian M.; Dean, David S.
2018-02-01
Starting from the stochastic equation for the density operator, we formulate the exact (instantaneous) stress tensor for interacting Brownian particles and show that its average value agrees with expressions derived previously. We analyze the relation between the stress tensor and forces due to external potentials and observe that, out of equilibrium, particle currents give rise to extra forces. Next, we derive the stress tensor for a Landau-Ginzburg theory in generic, non-equilibrium situations, finding an expression analogous to that of the exact microscopic stress tensor, and discuss the computation of out-of-equilibrium (classical) Casimir forces. Subsequently, we give a general form for the stress tensor which is valid for a large variety of energy functionals and which reproduces the two mentioned cases. We then use these relations to study the spatio-temporal correlations of the stress tensor in a Brownian fluid, which we compute to leading order in the interaction potential strength. We observe that, after integration over time, the spatial correlations generally decay as power laws in space. These are expected to be of importance for driven confined systems. We also show that divergence-free parts of the stress tensor do not contribute to the Green-Kubo relation for the viscosity.
Topological Galois theory solvability and unsolvability of equations in finite terms
Khovanskii, Askold
2014-01-01
This book provides a detailed and largely self-contained description of various classical and new results on solvability and unsolvability of equations in explicit form. In particular, it offers a complete exposition of the relatively new area of topological Galois theory, initiated by the author. Applications of Galois theory to solvability of algebraic equations by radicals, basics of Picard–Vessiot theory, and Liouville's results on the class of functions representable by quadratures are also discussed. A unique feature of this book is that recent results are presented in the same elementary manner as classical Galois theory, which will make the book useful and interesting to readers with varied backgrounds in mathematics, from undergraduate students to researchers. In this English-language edition, extra material has been added (Appendices A–D), the last two of which were written jointly with Yura Burda.
Energy Technology Data Exchange (ETDEWEB)
Kravchenko, Vladislav V [Departmento de Telecomunicaciones, SEPI, Escuela Superior de IngenierIa Mecanica y Electrica, Instituto Politecnico Nacional, CP 07738 Mexico DF (Mexico)
2005-01-28
Given a particular solution of a one-dimensional stationary Schroedinger equation this equation of second order can be reduced to a first-order linear ordinary differential equation. This is done with the aid of an auxiliary Riccati differential equation. In the present work we show that the same fact is true in a multidimensional situation also. For simplicity we consider the case of two or three independent variables. One particular solution of the stationary Schroedinger equation allows us to reduce this second-order equation to a linear first-order quaternionic differential equation. As in the one-dimensional case this is done with the aid of an auxiliary quaternionic Riccati equation. The resulting first-order quaternionic equation is equivalent to the static Maxwell system and is closely related to the Dirac equation. In the case of two independent variables it is the well-known Vekua equation from theory of pseudoanalytic (or generalized analytic) functions. Nevertheless, we show that even in this case it is very useful to consider not only complex valued functions, solutions of the Vekua equation, but complete quaternionic functions. In this way the first-order quaternionic equation represents two separate Vekua equations, one of which gives us solutions of the Schroedinger equation and the other one can be considered as an auxiliary equation of a simpler structure. Moreover for the auxiliary equation we always have the corresponding Bers generating pair (F, G), the base of the Bers theory of pseudoanalytic functions, and what is very important, the Bers derivatives of solutions of the auxiliary equation give us solutions of the main Vekua equation and as a consequence of the Schroedinger equation. Based on this fact we obtain an analogue of the Cauchy integral theorem for solutions of the stationary Schroedinger equation. Other results from theory of pseudoanalytic functions can be written for solutions of the Schroedinger equation. Moreover, for an ample
Directory of Open Access Journals (Sweden)
Hrubý Jan
2012-04-01
Full Text Available The study presents some preliminary results of the density gradient theory (GT combined with two different equations of state (EoS: the classical cubic equation by van der Waals and a recent approach based on the statistical associating fluid theory (SAFT, namely its perturbed-chain (PC modification. The results showed that the cubic EoS predicted for a given surface tension the density profile with a noticeable defect. Bulk densities predicted by the cubic EoS differed as much as by 100 % from the reference data. On the other hand, the PC-SAFT EoS provided accurate results for density profile and both bulk densities in the large range of temperatures. It has been shown that PC-SAFT is a promising tool for accurate modeling of nucleation using the GT. Besides the basic case of a planar phase interface, the spherical interface was analyzed to model a critical cluster occurring either for nucleation of droplets (condensation or bubbles (boiling, cavitation. However, the general solution for the spherical interface will require some more attention due to its numerical difficulty.
Regularity theory for quasilinear elliptic systems and Monge—Ampère equations in two dimensions
Schulz, Friedmar
1990-01-01
These lecture notes have been written as an introduction to the characteristic theory for two-dimensional Monge-Ampère equations, a theory largely developed by H. Lewy and E. Heinz which has never been presented in book form. An exposition of the Heinz-Lewy theory requires auxiliary material which can be found in various monographs, but which is presented here, in part because the focus is different, and also because these notes have an introductory character. Self-contained introductions to the regularity theory of elliptic systems, the theory of pseudoanalytic functions and the theory of conformal mappings are included. These notes grew out of a seminar given at the University of Kentucky in the fall of 1988 and are intended for graduate students and researchers interested in this area.
International Nuclear Information System (INIS)
Roy Choudhury, S.
2007-01-01
The Ostrovsky equation is an important canonical model for the unidirectional propagation of weakly nonlinear long surface and internal waves in a rotating, inviscid and incompressible fluid. Limited functional analytic results exist for the occurrence of one family of solitary-wave solutions of this equation, as well as their approach to the well-known solitons of the famous Korteweg-de Vries equation in the limit as the rotation becomes vanishingly small. Since solitary-wave solutions often play a central role in the long-time evolution of an initial disturbance, we consider such solutions here (via the normal form approach) within the framework of reversible systems theory. Besides confirming the existence of the known family of solitary waves and its reduction to the KdV limit, we find a second family of multihumped (or N-pulse) solutions, as well as a continuum of delocalized solitary waves (or homoclinics to small-amplitude periodic orbits). On isolated curves in the relevant parameter region, the delocalized waves reduce to genuine embedded solitons. The second and third families of solutions occur in regions of parameter space distinct from the known solitary-wave solutions and are thus entirely new. Directions for future work are also mentioned
Ghobadi, Ahmadreza F.; Elliott, J. Richard
2014-07-01
In this work, a new classical density functional theory is developed for group-contribution equations of state (EOS). Details of implementation are demonstrated for the recently-developed SAFT-γ WCA EOS and selective applications are studied for confined fluids and vapor-liquid interfaces. The acronym WCA (Weeks-Chandler-Andersen) refers to the characterization of the reference part of the third-order thermodynamic perturbation theory applied in formulating the EOS. SAFT-γ refers to the particular form of "statistical associating fluid theory" that is applied to the fused-sphere, heteronuclear, united-atom molecular models of interest. For the monomer term, the modified fundamental measure theory is extended to WCA-spheres. A new chain functional is also introduced for fused and soft heteronuclear chains. The attractive interactions are taken into account by considering the structure of the fluid, thus elevating the theory beyond the mean field approximation. The fluctuations of energy are also included via a non-local third-order perturbation theory. The theory includes resolution of the density profiles of individual groups such as CH2 and CH3 and satisfies stoichiometric constraints for the density profiles. New molecular simulations are conducted to demonstrate the accuracy of each Helmholtz free energy contribution in reproducing the microstructure of inhomogeneous systems at the united-atom level of coarse graining. At each stage, comparisons are made to assess where the present theory stands relative to the current state of the art for studying inhomogeneous fluids. Overall, it is shown that the characteristic features of real molecular fluids are captured both qualitatively and quantitatively. For example, the average pore density deviates ˜2% from simulation data for attractive pentadecane in a 2-nm slit pore. Another example is the surface tension of ethane/heptane mixture, which deviates ˜1% from simulation data while the theory reproduces the excess
Computational fluid dynamics in fire engineering theory, modelling and practice
Yuen, Kwok Kit
2009-01-01
Fire and combustion presents a significant engineering challenge to mechanical, civil and dedicated fire engineers, as well as specialists in the process and chemical, safety, buildings and structural fields. We are reminded of the tragic outcomes of 'untenable' fire disasters such as at King's Cross underground station or Switzerland's St Gotthard tunnel. In these and many other cases, computational fluid dynamics (CFD) is at the forefront of active research into unravelling the probable causes of fires and helping to design structures and systems to ensure that they are less likely in the f
Brownian motion in a flowing fluid revisited
International Nuclear Information System (INIS)
Ramshaw, J.D.
1981-01-01
It is shown how the phenomenon of osmosis may be treated using the phenomenological theory of Brownian motion in a flowing fluid. The theory is also generalized to include viscous stresses in the particle and mixture momentum equations
International Nuclear Information System (INIS)
Manoff, S.
1979-07-01
By utilization of the method of Lagrangians with covariant derivatives (MLCD) the different energy-momentum tensors (canonical, generalized canonical, symmetrical) and the relations between them are considered. On this basis, Einstein's theory of gravitation is studied as a field theory with a Lagrangian density of the type Lsub(g)=√-g.Lsub(g)(gsub(ij),Rsub(A)), (Rsub(A)=Rsub(ijkl)). It is shown that the energy-momentum tensors of the gravitational field can be defined for this theory. The symmetrical energy-momentum tensor of the gravitational field sub(gs)Tsub(k)sup(i), which in the general case is not a local conserved quantity (sub(gs)Tsub(k)sup(i)sub(;i) unequal 0) (in contrast to the material fields satisfying condition sub(Ms)Tsub(k)sup(i)sub(;i) = 0), is equal to zero for the gravitational field in vacuum (cosmological constant Λ = 0). Equations of the gravitational field of a new type are suggested, leading to equations of motion (sub(Ms)Tsub(k)sup(i) + sub(gs)Tsub(k)sup(i))sub(;i) = 0. The equations corresponding to the Lagrangian density Lsub(g)=(√-g/kappasub(o)) (R - lambda approximately), lambda approximately = const., are considered. The equations of Einstein Rsub(ij) = 0 are obtained in the case of gravitational field in vacuum. Some particular cases are examined as an illustration to material fields and the corresponding gravitational equations. (author)
The Scherrer equation and the dynamical theory of X-ray diffraction.
Muniz, Francisco Tiago Leitão; Miranda, Marcus Aurélio Ribeiro; Morilla Dos Santos, Cássio; Sasaki, José Marcos
2016-05-01
The Scherrer equation is a widely used tool to determine the crystallite size of polycrystalline samples. However, it is not clear if one can apply it to large crystallite sizes because its derivation is based on the kinematical theory of X-ray diffraction. For large and perfect crystals, it is more appropriate to use the dynamical theory of X-ray diffraction. Because of the appearance of polycrystalline materials with a high degree of crystalline perfection and large sizes, it is the authors' belief that it is important to establish the crystallite size limit for which the Scherrer equation can be applied. In this work, the diffraction peak profiles are calculated using the dynamical theory of X-ray diffraction for several Bragg reflections and crystallite sizes for Si, LaB6 and CeO2. The full width at half-maximum is then extracted and the crystallite size is computed using the Scherrer equation. It is shown that for crystals with linear absorption coefficients below 2117.3 cm(-1) the Scherrer equation is valid for crystallites with sizes up to 600 nm. It is also shown that as the size increases only the peaks at higher 2θ angles give good results, and if one uses peaks with 2θ > 60° the limit for use of the Scherrer equation would go up to 1 µm.
Fukuda, Makoto; Yoshimura, Kengo; Namekawa, Koki; Sakai, Kiyotaka
2017-06-01
The objective of the present study is to evaluate the effect of filtration coefficient and internal filtration on dialysis fluid flow and mass transfer coefficient in dialyzers using dimensionless mass transfer correlation equations. Aqueous solution of vitamin B 12 clearances were obtained for REXEED-15L as a low flux dialyzer, and APS-15EA and APS-15UA as high flux dialyzers. All the other design specifications were identical for these dialyzers except for filtration coefficient. The overall mass transfer coefficient was calculated, moreover, the exponents of Reynolds number (Re) and film mass transfer coefficient of the dialysis-side fluid (k D ) for each flow rate were derived from the Wilson plot and dimensionless correlation equation. The exponents of Re were 0.4 for the low flux dialyzer whereas 0.5 for the high flux dialyzers. Dialysis fluid of the low flux dialyzer was close to laminar flow because of its low filtration coefficient. On the other hand, dialysis fluid of the high flux dialyzers was assumed to be orthogonal flow. Higher filtration coefficient was associated with higher k D influenced by mass transfer rate through diffusion and internal filtration. Higher filtration coefficient of dialyzers and internal filtration affect orthogonal flow of dialysis fluid.
Bollhöfer, Matthias; Kressner, Daniel; Mehl, Christian; Stykel, Tatjana
2015-01-01
This edited volume highlights the scientific contributions of Volker Mehrmann, a leading expert in the area of numerical (linear) algebra, matrix theory, differential-algebraic equations and control theory. These mathematical research areas are strongly related and often occur in the same real-world applications. The main areas where such applications emerge are computational engineering and sciences, but increasingly also social sciences and economics. This book also reflects some of Volker Mehrmann's major career stages. Starting out working in the areas of numerical linear algebra (his first full professorship at TU Chemnitz was in "Numerical Algebra," hence the title of the book) and matrix theory, Volker Mehrmann has made significant contributions to these areas ever since. The highlights of these are discussed in Parts I and II of the present book. Often the development of new algorithms in numerical linear algebra is motivated by problems in system and control theory. These and his later major work on ...
Convergence problems associated with the iteration of adjoint equations in nuclear reactor theory
International Nuclear Information System (INIS)
Ngcobo, E.
2003-01-01
Convergence problems associated with the iteration of adjoint equations based on two-group neutron diffusion theory approximations in slab geometry are considered. For this purpose first-order variational techniques are adopted to minimise numerical errors involved. The importance of deriving the adjoint source from a breeding ratio is illustrated. The results obtained are consistent with the expected improvement in accuracy
The general class of the vacuum spherically symmetric equations of the general relativity theory
International Nuclear Information System (INIS)
Karbanovski, V. V.; Sorokin, O. M.; Nesterova, M. I.; Bolotnyaya, V. A.; Markov, V. N.; Kairov, T. V.; Lyash, A. A.; Tarasyuk, O. R.
2012-01-01
The system of the spherical-symmetric vacuum equations of the General Relativity Theory is considered. The general solution to a problem representing two classes of line elements with arbitrary functions g 00 and g 22 is obtained. The properties of the found solutions are analyzed.
Lp Theory for Super-Parabolic Backward Stochastic Partial Differential Equations in the Whole Space
International Nuclear Information System (INIS)
Du Kai; Qiu, Jinniao; Tang Shanjian
2012-01-01
This paper is concerned with semi-linear backward stochastic partial differential equations (BSPDEs for short) of super-parabolic type. An L p -theory is given for the Cauchy problem of BSPDEs, separately for the case of p∈(1,2] and for the case of p∈(2,∞). A comparison theorem is also addressed.
Asymptotic Standard Errors for Item Response Theory True Score Equating of Polytomous Items
Cher Wong, Cheow
2015-01-01
Building on previous works by Lord and Ogasawara for dichotomous items, this article proposes an approach to derive the asymptotic standard errors of item response theory true score equating involving polytomous items, for equivalent and nonequivalent groups of examinees. This analytical approach could be used in place of empirical methods like…
Arce-Ferrer, Alvaro J.; Bulut, Okan
2017-01-01
This study examines separate and concurrent approaches to combine the detection of item parameter drift (IPD) and the estimation of scale transformation coefficients in the context of the common item nonequivalent groups design with the three-parameter item response theory equating. The study uses real and synthetic data sets to compare the two…
Banks, H. T.; Kunisch, K.
1982-01-01
Approximation results from linear semigroup theory are used to develop a general framework for convergence of approximation schemes in parameter estimation and optimal control problems for nonlinear partial differential equations. These ideas are used to establish theoretical convergence results for parameter identification using modal (eigenfunction) approximation techniques. Results from numerical investigations of these schemes for both hyperbolic and parabolic systems are given.
Equations of motion for the new D=10 N=1 supergravity-Yang-Mills theory
International Nuclear Information System (INIS)
Vashakidze, Sh.I.
1988-01-01
An on-shell superfield formulation of the dual (type IB) ten-dimensional N=1 supergravity coupled to Yang-Mills theory is presented. The coupling is completely specified in superspace by A-tensor supercurrent which, at the same time, takes into account all superstring corrections in the slope parameter expansion. The complete set of equations of motion is derived
Role of secondary instability theory and parabolized stability equations in transition modeling
El-Hady, Nabil M.; Dinavahi, Surya P.; Chang, Chau-Lyan; Zang, Thomas A.
1993-01-01
In modeling the laminar-turbulent transition region, the designer depends largely on benchmark data from experiments and/or direct numerical simulations that are usually extremely expensive. An understanding of the evolution of the Reynolds stresses, turbulent kinetic energy, and quantifies in the transport equations like the dissipation and production is essential in the modeling process. The secondary instability theory and the parabolized stability equations method are used to calculate these quantities, which are then compared with corresponding quantities calculated from available direct numerical simulation data for the incompressible boundary-layer flow of laminar-turbulent transition conditions. The potential of the secondary instability theory and the parabolized stability equations approach in predicting these quantities is discussed; results indicate that inexpensive data that are useful for transition modeling in the early stages of the transition region can be provided by these tools.
Andrei Andreevich Bolibrukh's works on the analytic theory of differential equations
Anosov, Dmitry V.; Leksin, Vladimir P.
2011-02-01
This paper contains an account of A.A. Bolibrukh's results obtained in the new directions of research that arose in the analytic theory of differential equations as a consequence of his sensational counterexample to the Riemann-Hilbert problem. A survey of results of his students in developing topics first considered by Bolibrukh is also presented. The main focus is on the role of the reducibility/irreducibility of systems of linear differential equations and their monodromy representations. A brief synopsis of results on the multidimensional Riemann-Hilbert problem and on isomonodromic deformations of Fuchsian systems is presented, and the main methods in the modern analytic theory of differential equations are sketched. Bibliography: 69 titles.
Initial states in integrable quantum field theory quenches from an integral equation hierarchy
Directory of Open Access Journals (Sweden)
D.X. Horváth
2016-01-01
Full Text Available We consider the problem of determining the initial state of integrable quantum field theory quenches in terms of the post-quench eigenstates. The corresponding overlaps are a fundamental input to most exact methods to treat integrable quantum quenches. We construct and examine an infinite integral equation hierarchy based on the form factor bootstrap, proposed earlier as a set of conditions determining the overlaps. Using quenches of the mass and interaction in Sinh-Gordon theory as a concrete example, we present theoretical arguments that the state has the squeezed coherent form expected for integrable quenches, and supporting an Ansatz for the solution of the hierarchy. Moreover we also develop an iterative method to solve numerically the lowest equation of the hierarchy. The iterative solution along with extensive numerical checks performed using the next equation of the hierarchy provides a strong numerical evidence that the proposed Ansatz gives a very good approximation for the solution.
Initial states in integrable quantum field theory quenches from an integral equation hierarchy
Energy Technology Data Exchange (ETDEWEB)
Horváth, D.X., E-mail: esoxluciuslinne@gmail.com [MTA-BME “Momentum” Statistical Field Theory Research Group, Budafoki út 8, 1111 Budapest (Hungary); Department of Theoretical Physics, Budapest University of Technology and Economics, Budafoki út 8, 1111 Budapest (Hungary); Sotiriadis, S., E-mail: sotiriad@sissa.it [SISSA and INFN, Via Bonomea 265, 34136 Trieste (Italy); Takács, G., E-mail: takacsg@eik.bme.hu [MTA-BME “Momentum” Statistical Field Theory Research Group, Budafoki út 8, 1111 Budapest (Hungary); Department of Theoretical Physics, Budapest University of Technology and Economics, Budafoki út 8, 1111 Budapest (Hungary)
2016-01-15
We consider the problem of determining the initial state of integrable quantum field theory quenches in terms of the post-quench eigenstates. The corresponding overlaps are a fundamental input to most exact methods to treat integrable quantum quenches. We construct and examine an infinite integral equation hierarchy based on the form factor bootstrap, proposed earlier as a set of conditions determining the overlaps. Using quenches of the mass and interaction in Sinh-Gordon theory as a concrete example, we present theoretical arguments that the state has the squeezed coherent form expected for integrable quenches, and supporting an Ansatz for the solution of the hierarchy. Moreover we also develop an iterative method to solve numerically the lowest equation of the hierarchy. The iterative solution along with extensive numerical checks performed using the next equation of the hierarchy provides a strong numerical evidence that the proposed Ansatz gives a very good approximation for the solution.
A hybrid Eulerian–Lagrangian numerical scheme for solving prognostic equations in fluid dynamics
Directory of Open Access Journals (Sweden)
E. Kaas
2013-11-01
Full Text Available A new hybrid Eulerian–Lagrangian numerical scheme (HEL for solving prognostic equations in fluid dynamics is proposed. The basic idea is to use an Eulerian as well as a fully Lagrangian representation of all prognostic variables. The time step in Lagrangian space is obtained as a translation of irregularly spaced Lagrangian parcels along downstream trajectories. Tendencies due to other physical processes than advection are calculated in Eulerian space, interpolated, and added to the Lagrangian parcel values. A directionally biased mixing amongst neighboring Lagrangian parcels is introduced. The rate of mixing is proportional to the local deformation rate of the flow. The time stepping in Eulerian representation is achieved in two steps: first a mass-conserving Eulerian or semi-Lagrangian scheme is used to obtain a provisional forecast. This forecast is then nudged towards target values defined from the irregularly spaced Lagrangian parcel values. The nudging procedure is defined in such a way that mass conservation and shape preservation is ensured in Eulerian space. The HEL scheme has been designed to be accurate, multi-tracer efficient, mass conserving, and shape preserving. In Lagrangian space only physically based mixing takes place; i.e., the problem of artificial numerical mixing is avoided. This property is desirable in atmospheric chemical transport models since spurious numerical mixing can impact chemical concentrations severely. The properties of HEL are here verified in two-dimensional tests. These include deformational passive transport on the sphere, and simulations with a semi-implicit shallow water model including topography.
A general solution of the BV-master equation and BRST field theories
International Nuclear Information System (INIS)
Dayi, O.F.
1993-05-01
For a class of first order gauge theories it was shown that the proper solution of the BV-master equation can be obtained straightforwardly. Here we present the general condition which the gauge generators should satisfy to conclude that this construction is relevant. The general procedure is illustrated by its application to the Chern-Simons theory in any odd-dimension. Moreover, it is shown that this formalism is also applicable to BRST field theories, when one replaces the role of the exterior derivative with the BRST charge of first quantization. (author). 17 refs
Equations of motion and conservation laws in a theory of stably stratified turbulence
Energy Technology Data Exchange (ETDEWEB)
L' vov, Victor S; Rudenko, Oleksii [Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100 (Israel)], E-mail: oleksii.rudenko@weizmann.ac.il
2008-12-15
This paper is part of an invited talk given at the international conference 'Turbulent Mixing and Beyond'. We consider non-isothermal fluid flows and revise simplifications of basic hydrodynamic equations for such flows, arriving eventually at a generalization of the Oberbeck-Boussinesq approximation valid for arbitrary equation of state including both non-ideal gases as well as liquids. The proposed approach is based on a suggested general definition of potential temperature. Special attention is paid to the energy conservation principle: the proposed approximation exactly preserves the total mechanical energy by approximate equations of motion. It is emphasized explicitly the importance for any turbulent boundary layer model to respect the conservation laws.
Energy Technology Data Exchange (ETDEWEB)
Baker, M.
1979-01-01
It was shown using the Schwinger-Dyson equations and the Slavnov-Taylor identities of Yang-Mills theory that no inconsistency arises if the gluon propagator behaves like (1/p/sup 2/)/sup 2/ for small p/sup 2/. To see whether the theory actually contains such singular long range behavior, a nonperturbative closed set of equations was formulated by neglecting the transverse parts of GAMMA and GAMMA/sub 4/ in the Schwinger-Dyson equations. This simplification preserves all the symmetries of the theory and allows the possibility for a singular low-momentum behavior of the gluon propagator. The justification for neglecting GAMMA/sup (T)/ and GAMMA/sub 4//sup (T)/ is not evident but it is expected that the present study of the resulting equations will elucidate this simplification, which leads to a closed set of equations.
International Nuclear Information System (INIS)
Hecht, M.J.; Catton, I.; Kastenberg, W.E.
1976-12-01
An equation of state based on the properties of normal fluids, the law of rectilinear averages, and the second law of thermodynamics can be derived for advanced LMFBR fuels on the basis of the vapor pressure, enthalpy of vaporization, change in heat capacity upon vaporization, and liquid density at the melting point. The method consists of estimating an equation of state by means of the law of rectilinear averages and the second law of thermodynamics, integrating by means of the second law until an instability is reached, and then extrapolating by means of a self-consistent estimation of the enthalpy of vaporization
Parvaneh, Khalil; Shariati, Alireza
2017-09-07
In this study, a new modification of the perturbed chain-statistical associating fluid theory (PC-SAFT) has been proposed by incorporating the lattice fluid theory of Guggenheim as an additional term to the original PC-SAFT terms. As the proposed model has one more term than the PC-SAFT, a new mixing rule has been developed especially for the new additional term, while for the conventional terms of the PC-SAFT, the one-fluid mixing rule is used. In order to evaluate the proposed model, the vapor-liquid equilibria were estimated for binary CO 2 mixtures with 16 different ionic liquids (ILs) of the 1-alkyl-3-methylimidazolium family with various anions consisting of bis(trifluoromethylsulfonyl) imide, hexafluorophosphate, tetrafluoroborate, and trifluoromethanesulfonate. For a comprehensive comparison, three different modes (different adjustable parameters) of the proposed model were compared with the conventional PC-SAFT. Results indicate that the proposed modification of the PC-SAFT EoS is generally more reliable with respect to the conventional PC-SAFT in all the three proposed modes of vapor-liquid equilibria, giving good agreement with literature data.
Relativistic n-body wave equations in scalar quantum field theory
International Nuclear Information System (INIS)
Emami-Razavi, Mohsen
2006-01-01
The variational method in a reformulated Hamiltonian formalism of Quantum Field Theory (QFT) is used to derive relativistic n-body wave equations for scalar particles (bosons) interacting via a massive or massless mediating scalar field (the scalar Yukawa model). Simple Fock-space variational trial states are used to derive relativistic n-body wave equations. The equations are shown to have the Schroedinger non-relativistic limits, with Coulombic interparticle potentials in the case of a massless mediating field and Yukawa interparticle potentials in the case of a massive mediating field. Some examples of approximate ground state solutions of the n-body relativistic equations are obtained for various strengths of coupling, for both massive and massless mediating fields
Perturbation theory of a symmetric center within Liénard equations
Françoise, Jean-Pierre; Xiao, Dongmei
2015-09-01
In this article, we introduce the use of Lambert function to develop further the global perturbation theory of an integrable Liénard equation which displays a symmetric center. We prove a global Morse lemma for the first integral and deduce the existence of an associated Picard-Fuchs system. We revisit previous contributions to first-order perturbation theory with the help of these new analytic techniques and in particular, we check that the fundamental integrals are linearly independent. The Lambert function allows to find an expansion formula for these integrals. We also study the possibility to develop a higher-order perturbation theory. The algorithm of the successive derivatives works in general in the class of analytic functions on the domain D where the level sets of the first integral are ovals. We end the article with some results on the first integral of a symmetric Liénard equation deduced from the algorithm of successive derivatives.
International Nuclear Information System (INIS)
Ghobadi, Ahmadreza F.; Elliott, J. Richard
2014-01-01
In this work, a new classical density functional theory is developed for group-contribution equations of state (EOS). Details of implementation are demonstrated for the recently-developed SAFT-γ WCA EOS and selective applications are studied for confined fluids and vapor-liquid interfaces. The acronym WCA (Weeks-Chandler-Andersen) refers to the characterization of the reference part of the third-order thermodynamic perturbation theory applied in formulating the EOS. SAFT-γ refers to the particular form of “statistical associating fluid theory” that is applied to the fused-sphere, heteronuclear, united-atom molecular models of interest. For the monomer term, the modified fundamental measure theory is extended to WCA-spheres. A new chain functional is also introduced for fused and soft heteronuclear chains. The attractive interactions are taken into account by considering the structure of the fluid, thus elevating the theory beyond the mean field approximation. The fluctuations of energy are also included via a non-local third-order perturbation theory. The theory includes resolution of the density profiles of individual groups such as CH 2 and CH 3 and satisfies stoichiometric constraints for the density profiles. New molecular simulations are conducted to demonstrate the accuracy of each Helmholtz free energy contribution in reproducing the microstructure of inhomogeneous systems at the united-atom level of coarse graining. At each stage, comparisons are made to assess where the present theory stands relative to the current state of the art for studying inhomogeneous fluids. Overall, it is shown that the characteristic features of real molecular fluids are captured both qualitatively and quantitatively. For example, the average pore density deviates ∼2% from simulation data for attractive pentadecane in a 2-nm slit pore. Another example is the surface tension of ethane/heptane mixture, which deviates ∼1% from simulation data while the theory reproduces
The Theory of Equations and the Birth of Modern Group Theory
Indian Academy of Sciences (India)
In school, we learn how to solve quadratic equations ao + alx + a2x2 = O. ... mathematician or how sophisticated the method, one can- not get a 'formula' in the .... nite set of n elements, SeX) is usually denoted by Sn and is called the symmetric ...
A Gas-Kinetic Method for Hyperbolic-Elliptic Equations and Its Application in Two-Phase Fluid Flow
Xu, Kun
1999-01-01
A gas-kinetic method for the hyperbolic-elliptic equations is presented in this paper. In the mixed type system, the co-existence and the phase transition between liquid and gas are described by the van der Waals-type equation of state (EOS). Due to the unstable mechanism for a fluid in the elliptic region, interface between the liquid and gas can be kept sharp through the condensation and evaporation process to remove the "averaged" numerical fluid away from the elliptic region, and the interface thickness depends on the numerical diffusion and stiffness of the phase change. A few examples are presented in this paper for both phase transition and multifluid interface problems.
International Nuclear Information System (INIS)
Khasare, S.B.
2012-01-01
The present work uses the concept of a scaled particle along with the perturbation and variation approach, to develop an equation of state (EOS) for a mixture of hard sphere (HS), Lennard—Jones (LJ) fluids. A suitable flexible functional form for the radial distribution function G(R) is assumed for the mixture, with R as a variable. The function G(R) has an arbitrary parameter m and a different equation of state can be obtained with a suitable choice of m. For m = 0.75 and m = 0.83 results are close to molecular dynamics (MD) result for pure HS and LJ fluid respectively. (physics of gases, plasmas, and electric discharges)
arXiv (3+1)-dimensional anisotropic fluid dynamics with a lattice QCD equation of state
McNelis, M.; Heinz, U.
2018-06-01
Anisotropic hydrodynamics improves upon standard dissipative fluid dynamics by treating certain large dissipative corrections non-perturbatively. Relativistic heavy-ion collisions feature two such large dissipative effects: (i) Strongly anisotropic expansion generates a large shear stress component which manifests itself in very different longitudinal and transverse pressures, especially at early times. (ii) Critical fluctuations near the quark-hadron phase transition lead to a large bulk viscous pressure on the conversion surface between hydrodynamics and a microscopic hadronic cascade description of the final collision stage. We present a new dissipative hydrodynamic formulation for non-conformal fluids where both of these effects are treated nonperturbatively. The evolution equations are derived from the Boltzmann equation in the 14-moment approximation, using an expansion around an anisotropic leading-order distribution function with two momentum-space deformation parameters, accounting for the longitudin...
International Nuclear Information System (INIS)
Lima, M.L.; Mignaco, J.A.
1985-01-01
It is shown that the rational power law potentials in the two-body radial Schrodinger equations admit a systematic treatment available from the classical theory of ordinary linear differential equations of the second order. The resulting potentials come into families evolved from equations having a fixed number of elementary regular singularities. As a consequence, relations are found and discussed among the several potentials in a family. (Author) [pt
International Nuclear Information System (INIS)
Lima, M.L.; Mignaco, J.A.
1985-01-01
It is shown that the rational power law potentials in the two-body radial Schoedinger equation admit a systematic treatment available from the classical theory of ordinary linear differential equations of the second order. The admissible potentials come into families evolved from equations having a fixed number of elementary singularities. As a consequence, relations are found and discussed among the several potentials in a family. (Author) [pt
Khlyupin, Aleksey; Aslyamov, Timur
2017-06-01
Realistic fluid-solid interaction potentials are essential in description of confined fluids especially in the case of geometric heterogeneous surfaces. Correlated random field is considered as a model of random surface with high geometric roughness. We provide the general theory of effective coarse-grained fluid-solid potential by proper averaging of the free energy of fluid molecules which interact with the solid media. This procedure is largely based on the theory of random processes. We apply first passage time probability problem and assume the local Markov properties of random surfaces. General expression of effective fluid-solid potential is obtained. In the case of small surface irregularities analytical approximation for effective potential is proposed. Both amorphous materials with large surface roughness and crystalline solids with several types of fcc lattices are considered. It is shown that the wider the lattice spacing in terms of molecular diameter of the fluid, the more obtained potentials differ from classical ones. A comparison with published Monte-Carlo simulations was discussed. The work provides a promising approach to explore how the random geometric heterogeneity affects on thermodynamic properties of the fluids.
International Nuclear Information System (INIS)
Botelho, D.A.; Moreira, M.L.
1991-06-01
The Reynolds turbulent transport equations for an incompressible fluid are integrated on a bi-dimensional staggered grid, for velocity and pressure, using the SIMPLER method. With the resulting algebraic relations it was developed the TURBO program, which final objectives are the thermal stratification and natural convection analysis of nuclear reactor pools. This program was tested in problems applications with analytic or experimental solutions previously known. (author)
The density functional theory and the charged fluid molecular dynamics
International Nuclear Information System (INIS)
Hansen, J.P.; Zerah, G.
1993-01-01
Car and Parrinello had the idea of combining the density functional theory (Hohenberg, Kohn and Sham) to the 'molecular dynamics' numerical modelling method, in order to simulate metallic or co-valent solids and liquids from the first principles. The objective of this paper is to present a simplified version of this method ab initio, applicable to classical and quantal charged systems. The method is illustrated with recent results on charged colloidal suspensions and highly correlated electron-proton plasmas. 1 fig., 21 refs
Elements of plasma kinetic theory
International Nuclear Information System (INIS)
Guasp, J.
1976-01-01
The physical foundations of plasma kinetic equations are exposed inside a series of seminars on plasma and fusion physics. The Vlasov and collisional equations with its application range have been discussed. The momenta equations for the macroscopic magnitudes and the more usual approximations have been obtained: two fluid equations for cold and warm plasmas, magnetohydrodynamic equations and the double-adiabatic theory. (author)
Asymptotic form of the classical one-component plasma fluid equation of state
International Nuclear Information System (INIS)
DeWitt, H.E.
1976-01-01
The Monte Carlo data of Hansen for the internal energy of the classical one-component plasma in the fluid state is found to satisfy accurately a simple functional form, U/NkT = aGAMMA + bGAMMA/sup 1;4/ + c, for GAMMA > 1. The fluid static energy is very close to the bcc lattice energy of the solid, and the fluid thermal energy varies as T/sup 3;4/. Simple and accurate expressions for other thermodynamic functions for the plasma fluid are given
International Nuclear Information System (INIS)
Benson, A.K.; Wu, J.
2000-01-01
Two of the needed elastic parameters for predicting velocities in porous, fluid-filled rocks, the bulk modulus of the empty, porous rock and the shear modulus of the rock, are very difficult to obtain in situ. A novel modeling approach is developed by inverting the Biot-Geertsma-Gassmann (BGG) and shear-wave equations to generate values for the bulk and shear moduli, respectively, by using available velocity and porosity data obtained from borehole logs and/or cores from water/brine-saturated rocks. These values of bulk and shear moduli, along with reasonable in-situ estimates of rock-matrix and fluid parameters generated from the Batzle-Wang formulation, are then used to predict compressional and shear-wave velocities, compressional-shear wave ratios, and reflection coefficients at the interfaces between host rocks and fluid-saturated rocks, either fully or partially saturated with hydrocarbons or water, as a function of depth and/or porosity
Theory of a peristaltic pump for fermionic quantum fluids
Romeo, F.; Citro, R.
2018-05-01
Motivated by the recent developments in fermionic cold atoms and in nanostructured systems, we propose the model of a peristaltic quantum pump. Differently from the Thouless paradigm, a peristaltic pump is a quantum device that generates a particle flux as the effect of a sliding finite-size microlattice. A one-dimensional tight-binding Hamiltonian model of this quantum machine is formulated and analyzed within a lattice Green's function formalism on the Keldysh contour. The pump observables, as, e.g., the pumped particles per cycle, are studied as a function of the pumping frequency, the width of the pumping potential, the particles mean free path, and system temperature. The proposed analysis applies to arbitrary peristaltic potentials acting on fermionic quantum fluids confined to one dimension. These confinement conditions can be realized in nanostructured systems or, in a more controllable way, in cold atoms experiments. In view of the validation of the theoretical results, we describe the outcomes of the model considering a fermionic cold atoms system as a paradigmatic example.
The two-fermion relativistic wave equations of Constraint Theory in the Pauli-Schroedinger form
International Nuclear Information System (INIS)
Mourad, J.; Sazdjian, H.
1994-01-01
The two-fermion relativistic wave equations of Constraint Theory are reduced, after expressing the components of the 4x4 matrix wave function in terms of one of the 2x2 components, to a single equation of the Pauli-Schroedinger type, valid for all sectors of quantum numbers. The potentials that are present belong to the general classes of scalar, pseudoscalar and vector interactions and are calculable in perturbation theory from Feynman diagrams. In the limit when one of the masses becomes infinite, the equation reduces to the two-component form of the one-particle Dirac equation with external static potentials. The Hamiltonian, to order 1/c 2 , reproduces most of the known theoretical results obtained by other methods. The gauge invariance of the wave equation is checked, to that order, in the case of QED. The role of the c.m. energy dependence of the relativistic interquark confining potential is emphasized and the structure of the Hamiltonian, to order 1/c 2 , corresponding to confining scalar potentials, is displayed. (authors). 32 refs., 2 figs
Byun, Chansup; Guruswamy, Guru P.; Kutler, Paul (Technical Monitor)
1994-01-01
In recent years significant advances have been made for parallel computers in both hardware and software. Now parallel computers have become viable tools in computational mechanics. Many application codes developed on conventional computers have been modified to benefit from parallel computers. Significant speedups in some areas have been achieved by parallel computations. For single-discipline use of both fluid dynamics and structural dynamics, computations have been made on wing-body configurations using parallel computers. However, only a limited amount of work has been completed in combining these two disciplines for multidisciplinary applications. The prime reason is the increased level of complication associated with a multidisciplinary approach. In this work, procedures to compute aeroelasticity on parallel computers using direct coupling of fluid and structural equations will be investigated for wing-body configurations. The parallel computer selected for computations is an Intel iPSC/860 computer which is a distributed-memory, multiple-instruction, multiple data (MIMD) computer with 128 processors. In this study, the computational efficiency issues of parallel integration of both fluid and structural equations will be investigated in detail. The fluid and structural domains will be modeled using finite-difference and finite-element approaches, respectively. Results from the parallel computer will be compared with those from the conventional computers using a single processor. This study will provide an efficient computational tool for the aeroelastic analysis of wing-body structures on MIMD type parallel computers.
Energy Technology Data Exchange (ETDEWEB)
Xia, Yidong [Idaho National Lab. (INL), Idaho Falls, ID (United States); Andrs, David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Martineau, Richard Charles [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2016-08-01
This document presents the theoretical background for a hybrid finite-element / finite-volume fluid flow solver, namely BIGHORN, based on the Multiphysics Object Oriented Simulation Environment (MOOSE) computational framework developed at the Idaho National Laboratory (INL). An overview of the numerical methods used in BIGHORN are discussed and followed by a presentation of the formulation details. The document begins with the governing equations for the compressible fluid flow, with an outline of the requisite constitutive relations. A second-order finite volume method used for solving the compressible fluid flow problems is presented next. A Pressure-Corrected Implicit Continuous-fluid Eulerian (PCICE) formulation for time integration is also presented. The multi-fluid formulation is being developed. Although multi-fluid is not fully-developed, BIGHORN has been designed to handle multi-fluid problems. Due to the flexibility in the underlying MOOSE framework, BIGHORN is quite extensible, and can accommodate both multi-species and multi-phase formulations. This document also presents a suite of verification & validation benchmark test problems for BIGHORN. The intent for this suite of problems is to provide baseline comparison data that demonstrates the performance of the BIGHORN solution methods on problems that vary in complexity from laminar to turbulent flows. Wherever possible, some form of solution verification has been attempted to identify sensitivities in the solution methods, and suggest best practices when using BIGHORN.
Comment on the consistency of truncated nonlinear integral equation based theories of freezing
International Nuclear Information System (INIS)
Cerjan, C.; Bagchi, B.; Rice, S.A.
1985-01-01
We report the results of two studies of aspects of the consistency of truncated nonlinear integral equation based theories of freezing: (i) We show that the self-consistent solutions to these nonlinear equations are unfortunately sensitive to the level of truncation. For the hard sphere system, if the Wertheim--Thiele representation of the pair direct correlation function is used, the inclusion of part but not all of the triplet direct correlation function contribution, as has been common, worsens the predictions considerably. We also show that the convergence of the solutions found, with respect to number of reciprocal lattice vectors kept in the Fourier expansion of the crystal singlet density, is slow. These conclusions imply great sensitivity to the quality of the pair direct correlation function employed in the theory. (ii) We show the direct correlation function based and the pair correlation function based theories of freezing can be cast into a form which requires solution of isomorphous nonlinear integral equations. However, in the pair correlation function theory the usual neglect of the influence of inhomogeneity of the density distribution on the pair correlation function is shown to be inconsistent to the lowest order in the change of density on freezing, and to lead to erroneous predictions
Game theory to characterize solutions of a discrete-time Hamilton-Jacobi equation
International Nuclear Information System (INIS)
Toledo, Porfirio
2013-01-01
We study the behavior of solutions of a discrete-time Hamilton-Jacobi equation in a minimax framework of game theory. The solutions of this problem represent the optimal payoff of a zero-sum game of two players, where the number of moves between the players converges to infinity. A real number, called the critical value, plays a central role in this work; this number is the asymptotic average action of optimal trajectories. The aim of this paper is to show the existence and characterization of solutions of a Hamilton-Jacobi equation for this kind of games
Grössing, Gerhard
2002-04-01
The Klein-Gordon equation is shown to be equivalent to coupled partial differential equations for a sub-quantum Brownian movement of a “particle”, which is both passively affected by, and actively affecting, a diffusion process of its generally nonlocal environment. This indicates circularly causal, or “cybernetic”, relationships between “particles” and their surroundings. Moreover, in the relativistic domain, the original stochastic theory of Nelson is shown to hold as a limiting case only, i.e., for a vanishing quantum potential.
Connection between Einstein equations, nonlinear sigma models, and self-dual Yang-Mills theory
International Nuclear Information System (INIS)
Sanchez, N.; Whiting, B.
1986-01-01
The authors analyze the connection between nonlinear sigma models self-dual Yang-Mills theory, and general relativity (self-dual and non-self-dual, with and without killing vectors), both at the level of the equations and at the level of the different type of solutions (solitons and calorons) of these theories. They give a manifestly gauge invariant formulation of the self-dual gravitational field analogous to that given by Yang for the self-dual Yang-Mills field. This formulation connects in a direct and explicit way the self-dual Yang-Mills and the general relativity equations. They give the ''R gauge'' parametrization of the self-dual gravitational field (which corresponds to modified Yang's-type and Ernst equations) and analyze the correspondence between their different types of solutions. No assumption about the existence of symmetries in the space-time is needed. For the general case (non-self-dual), they show that the Einstein equations contain an O nonlinear sigma model. This connection with the sigma model holds irrespective of the presence of symmetries in the space-time. They found a new class of solutions of Einstein equations depending on holomorphic and antiholomorphic functions and we relate some subclasses of these solutions to solutions of simpler nonlinear field equations that are well known in other branches of physics, like sigma models, SineGordon, and Liouville equations. They include gravitational plane wave solutions. They analyze the response of different accelerated quantum detector models, compare them to the case when the detectors are linterial in an ordinary Planckian gas at a given temperature, and discuss the anisotropy of the detected response for Rindler observers
A Thermodynamical Theory with Internal Variables Describing Thermal Effects in Viscous Fluids
Ciancio, Vincenzo; Palumbo, Annunziata
2018-04-01
In this paper the heat conduction in viscous fluids is described by using the theory of classical irreversible thermodynamics with internal variables. In this theory, the deviation from the local equilibrium is characterized by vectorial internal variables and a generalized entropy current density expressed in terms of so-called current multipliers. Cross effects between heat conduction and viscosity are also considered and some phenomenological generalizations of Fourier's and Newton's laws are obtained.
On the self-similar solution to the Euler equations for an incompressible fluid in three dimensions
Pomeau, Yves
2018-03-01
The equations for a self-similar solution to an inviscid incompressible fluid are mapped into an integral equation that hopefully can be solved by iteration. It is argued that the exponents of the similarity are ruled by Kelvin's theorem of conservation of circulation. The end result is an iteration with a nonlinear term entering a kernel given by a 3D integral for a swirling flow, likely within reach of present-day computational power. Because of the slow decay of the similarity solution at large distances, its kinetic energy diverges, and some mathematical results excluding non-trivial solutions of the Euler equations in the self-similar case do not apply. xml:lang="fr"
Asymptotic Analysis of a System of Algebraic Equations Arising in Dislocation Theory
Hall, Cameron L.; Chapman, S. Jonathan; Ockendon, John R.
2010-01-01
The system of algebraic equations given by σn j=0, j≠=i sgn(xi-xj )|xi-xj|a = 1, i = 1, 2, ⋯ , n, x0 = 0, appears in dislocation theory in models of dislocation pile-ups. Specifically, the case a = 1 corresponds to the simple situation where n dislocations are piled up against a locked dislocation, while the case a = 3 corresponds to n dislocation dipoles piled up against a locked dipole. We present a general analysis of systems of this type for a > 0 and n large. In the asymptotic limit n→∞, it becomes possible to replace the system of discrete equations with a continuum equation for the particle density. For 0 < a < 2, this takes the form of a singular integral equation, while for a > 2 it is a first-order differential equation. The critical case a = 2 requires special treatment, but, up to corrections of logarithmic order, it also leads to a differential equation. The continuum approximation is valid only for i neither too small nor too close to n. The boundary layers at either end of the pile-up are also analyzed, which requires matching between discrete and continuum approximations to the main problem. © 2010 Society for Industrial and Applied Mathematics.
Application of Grounded Theory in Determining Required Elements for IPv6 Risk Assessment Equation
Directory of Open Access Journals (Sweden)
Rosli Athirah
2018-01-01
Full Text Available The deployment of Internet Protocol version 6 (IPv6 has raised security concerns among the network administrators. Thus, in strengthening the network security, administrator requires an appropriate method to assess the possible risks that occur in their networks. Aware of the needs to calculate risk in IPv6 network, it is essential to an organization to have an equation that is flexible and consider the requirements of the network. However, the existing risk assessment equations do not consider the requirement of the network. Therefore, this paper presents the adaptation of grounded theory to search for elements that are needed to develop IPv6 risk assessment (IRA6 equation. The attack scenarios’ experiments; UDP Flooding, TCP Flooding and Multicast attacks were carried out in different network environment to show how the IPv6 risk assessment equation being used. The result shows that the IRA6 equation is more flexible to be used regardless the network sizes and easier to calculate the risk value compared to the existing risk assessment equations. Hence, network administrators can have a proper decision making and strategic planning for a robust network security.
Smooth, cusped, and discontinuous traveling waves in the periodic fluid resonance equation
Kruse, Matthew Thomas
The principal motivation for this dissertation is to extend the study of small amplitude high frequency wave propagation in solutions for hyperbolic conservation laws begun by A. Majda and R. Rosales in 1984. It was then that Majda and Rosales obtained equations governing the leading order wave amplitudes of resonantly interacting weakly nonlinear high frequency wave trains in the compressible Euler equations. The equations were obtained through systematic application of multiple scales and result in a pair of nonlinear acoustic wave equations coupled through a convolution operator. The extended solutions satisfy a pair of inviscid Burgers' equations coupled via a spatial convolution operator. Since then, many mathematicians have used this technique to extend the time validity of solutions to systems of equations other than the Euler equations and have arrived at similar nonlinear non-local systems. This work attempts to look at some of the basic features of the linear and nonlinear coupled and decoupled non- local equations, offering some analytic solutions and numerical insight into the phenomena associated with these equations. We do so by examining a single non-local linear equation, and then a single equation coupling a Burgers' nonlinearity with a linear convolution operator. The linear case is completely solvable. Analytic solutions are provided along with numerical results showing the fundamental properties of the linear non- local equations. In the nonlinear case some analytic solutions, including steady state profiles and traveling wave solutions, are provided along with a battery of numerical simulations. Evidence indicates the existence of attractors for solutions of the single equation with a single mode kernel. Provided resonant interaction takes place, the profile of the attractor is uniquely dependent on the kernel alone. Hamiltonian equations are obtained for both the linear and nonlinear equations with the condition that the resonant kernel must
Theory of activated penetrant diffusion in viscous fluids and colloidal suspensions
International Nuclear Information System (INIS)
Zhang, Rui; Schweizer, Kenneth S.
2015-01-01
We heuristically formulate a microscopic, force level, self-consistent nonlinear Langevin equation theory for activated barrier hopping and non-hydrodynamic diffusion of a hard sphere penetrant in very dense hard sphere fluid matrices. Penetrant dynamics is controlled by a rich competition between force relaxation due to penetrant self-motion and collective matrix structural (alpha) relaxation. In the absence of penetrant-matrix attraction, three activated dynamical regimes are predicted as a function of penetrant-matrix size ratio which are physically distinguished by penetrant jump distance and the nature of matrix motion required to facilitate its hopping. The penetrant diffusion constant decreases the fastest with size ratio for relatively small penetrants where the matrix effectively acts as a vibrating amorphous solid. Increasing penetrant-matrix attraction strength reduces penetrant diffusivity due to physical bonding. For size ratios approaching unity, a distinct dynamical regime emerges associated with strong slaving of penetrant hopping to matrix structural relaxation. A crossover regime at intermediate penetrant-matrix size ratio connects the two limiting behaviors for hard penetrants, but essentially disappears if there are strong attractions with the matrix. Activated penetrant diffusivity decreases strongly with matrix volume fraction in a manner that intensifies as the size ratio increases. We propose and implement a quasi-universal approach for activated diffusion of a rigid atomic/molecular penetrant in a supercooled liquid based on a mapping between the hard sphere system and thermal liquids. Calculations for specific systems agree reasonably well with experiments over a wide range of temperature, covering more than 10 orders of magnitude of variation of the penetrant diffusion constant
Comparison of Theories of Anisotropy in Transformer Oil-Based Magnetic Fluids
Directory of Open Access Journals (Sweden)
Jozef Kudelcik
2013-01-01
Full Text Available The external magnetic field in transformer oil-based magnetic fluids leads to the aggregation of magnetic nanoparticles and formation of clusters. These aggregations are the result of the interaction between the external magnetic field and the magnetic moments of the nanoparticles occurs. However, the temperature of magnetic fluids has also very important influence on the structural changes because the mechanism of thermal motion acts against the cluster creation. The acoustic spectroscopy was used to study the anisotropy of transformer oil-based magnetic fluids upon the effect of an external magnetic field and temperature. In present the anisotropy of the magnetic fluids can be described by two theories. Taketomi theory assumes the existence of spherical clusters. These clusters form long chains, aligned in a magnetic field direction. Shliomis in his theory supposed that only nanoparticles formed chains. A comparison of the experimental results with the predictions of the Taketomi theory allowed a determination of the cluster radius and the number density of the colloidal particles. The proportions of the acoustic wave energy used for excitation of the translational and rotational motion were determined.
A general theory of non-equilibrium dynamics of lipid-protein fluid membranes
DEFF Research Database (Denmark)
Lomholt, Michael Andersen; Hansen, Per Lyngs; Miao, L.
2005-01-01
We present a general and systematic theory of non-equilibrium dynamics of multi-component fluid membranes, in general, and membranes containing transmembrane proteins, in particular. Developed based on a minimal number of principles of statistical physics and designed to be a meso...
Tail estimates for stochastic fixed point equations via nonlinear renewal theory
DEFF Research Database (Denmark)
Collamore, Jeffrey F.; Vidyashankar, Anand N.
2013-01-01
estimate P(V>u)~Cu^{-r} as u tends to infinity, and also present a corresponding Lundberg-type upper bound. To this end, we introduce a novel dual change of measure on a random time interval and analyze the path properties, using nonlinear renewal theory, of the Markov chain resulting from the forward...... iteration of the given stochastic fixed point equation. In the process, we establish several new results in the realm of nonlinear renewal theory for these processes. As a consequence of our techniques, we also establish a new characterization of the extremal index. Finally, we provide some extensions...... of our methods to Markov-driven processes....
Magnetic monopoles and the dual London equation in SU(3) lattice gauge theory
International Nuclear Information System (INIS)
Skala, P.; Faber, M.; Zach, M.
1996-01-01
The dual superconductor model of confinement in non-Abelian gauge theories is studied in a gauge invariant formulation. We propose a method for the determination of magnetic monopole currents in non-Abelian gauge theories which does not need a projection to Abelian degrees of freedom. With this definition we are able to determine the distribution of magnetic currents and electric fields for the gluonic flux tube between a pair of static charges. Further we check the validity of the dual London equation in a gauge invariant formulation. (orig.)
Directory of Open Access Journals (Sweden)
Aqlan Mohammed H.
2016-01-01
Full Text Available We develop the existence theory for sequential fractional differential equations involving Liouville-Caputo fractional derivative equipped with anti-periodic type (non-separated and nonlocal integral boundary conditions. Several existence criteria depending on the nonlinearity involved in the problems are presented by means of a variety of tools of the fixed point theory. The applicability of the results is shown with the aid of examples. Our results are not only new in the given configuration but also yield some new special cases for specific choices of parameters involved in the problems.
Dirac equation in a de Sitter expansion for massive neutrinos from modern Kaluza-Klein theory
International Nuclear Information System (INIS)
Sánchez, Pablo Alejandro; Anabitarte, Mariano; Bellini, Mauricio
2012-01-01
Using the modern Kaluza-Klein theory of gravity (or the Induced Matter theory), we study the Dirac equation for massive neutrinos on a de Sitter background metric from a 5D Riemann-flat (and hence Ricci-flat) extended de Sitter metric, on which is defined the vacuum for test massless 1/2-spin neutral fields minimally coupled to gravity and free of any other interactions. We obtain that the effective 4D masses of the neutrinos can only take three possible values, which are related to the (static) foliation of the fifth and noncompact extra dimension.
Solution of the neutron transport equation by means of Hermite-Ssub(infinity)-theory
International Nuclear Information System (INIS)
Brandt, D.; Haelg, W.; Mennig, J.
1979-01-01
A stable numerical approximation Hsub(α)-Ssub(infinity) is obtained through the use of Hermite's method of order α(Hsub(α)) in the spatial integration of the ID neutron transport equation. The theory for α = 1 is applied to a one-group shielding problem. Numerical calculations show the new method to converge much faster than earlier versions of Ssub(infinity)-theory. Comparison of H 1 - Ssub(infinity) with the well-known Ssub(N)-code ANISN indicates a large gain in computing time for the former. (Auth.)
Renormalization Group Equations of d=6 Operators in the Standard Model Effective Field Theory
CERN. Geneva
2015-01-01
The one-loop renormalization group equations for the Standard Model (SM) Effective Field Theory (EFT) including dimension-six operators are calculated. The complete 2499 × 2499 one-loop anomalous dimension matrix of the d=6 Lagrangian is obtained, as well as the contribution of d=6 operators to the running of the parameters of the renormalizable SM Lagrangian. The presence of higher-dimension operators has implications for the flavor problem of the SM. An approximate holomorphy of the one-loop anomalous dimension matrix is found, even though the SM EFT is not a supersymmetric theory.
Solving Schwinger-Dyson equations by truncation in zero-dimensional scalar quantum field theory
International Nuclear Information System (INIS)
Okopinska, A.
1991-01-01
Three sets of Schwinger-Dyson equations, for all Green's functions, for connected Green's functions, and for proper vertices, are considered in scalar quantum field theory. A truncation scheme applied to the three sets gives three different approximation series for Green's functions. For the theory in zero-dimensional space-time the results for respective two-point Green's functions are compared with the exact value calculated numerically. The best convergence of the truncation scheme is obtained for the case of proper vertices
Ghost sector of vacuum string field theory and the projection equation
International Nuclear Information System (INIS)
Potting, Robertus; Raeymaekers, Joris
2002-01-01
We study the ghost sector of vacuum string field theory where the BRST operator Q is given by the midpoint insertion proposed by Gaiotto, Rastelli, Sen and Zwiebach. We introduce a convenient basis of half-string modes in terms of which Q takes a particularly simple form. We show that there exists a field redefinition which reduces the ghost sector field equation to a pure projection equation for string fields satisfying the constraint that the ghost number is equally divided over the left- and right halves of the string. When this constraint is imposed, vacuum string field theory can be reformulated as a U(∞) cubic matrix model. Ghost sector solutions can be constructed from projection operators on half-string Hilbert space just as in the matter sector. We construct the ghost sector equivalent of various well-known matter sector projectors such as the sliver, butterfly and nothing states. (author)
Similarity-transformed equation-of-motion vibrational coupled-cluster theory
Faucheaux, Jacob A.; Nooijen, Marcel; Hirata, So
2018-02-01
A similarity-transformed equation-of-motion vibrational coupled-cluster (STEOM-XVCC) method is introduced as a one-mode theory with an effective vibrational Hamiltonian, which is similarity transformed twice so that its lower-order operators are dressed with higher-order anharmonic effects. The first transformation uses an exponential excitation operator, defining the equation-of-motion vibrational coupled-cluster (EOM-XVCC) method, and the second uses an exponential excitation-deexcitation operator. From diagonalization of this doubly similarity-transformed Hamiltonian in the small one-mode excitation space, the method simultaneously computes accurate anharmonic vibrational frequencies of all fundamentals, which have unique significance in vibrational analyses. We establish a diagrammatic method of deriving the working equations of STEOM-XVCC and prove their connectedness and thus size-consistency as well as the exact equality of its frequencies with the corresponding roots of EOM-XVCC. We furthermore elucidate the similarities and differences between electronic and vibrational STEOM methods and between STEOM-XVCC and vibrational many-body Green's function theory based on the Dyson equation, which is also an anharmonic one-mode theory. The latter comparison inspires three approximate STEOM-XVCC methods utilizing the common approximations made in the Dyson equation: the diagonal approximation, a perturbative expansion of the Dyson self-energy, and the frequency-independent approximation. The STEOM-XVCC method including up to the simultaneous four-mode excitation operator in a quartic force field and its three approximate variants are formulated and implemented in computer codes with the aid of computer algebra, and they are applied to small test cases with varied degrees of anharmonicity.
Liao, David; Tlsty, Thea D
2014-08-06
Failure to understand evolutionary dynamics has been hypothesized as limiting our ability to control biological systems. An increasing awareness of similarities between macroscopic ecosystems and cellular tissues has inspired optimism that game theory will provide insights into the progression and control of cancer. To realize this potential, the ability to compare game theoretic models and experimental measurements of population dynamics should be broadly disseminated. In this tutorial, we present an analysis method that can be used to train parameters in game theoretic dynamics equations, used to validate the resulting equations, and used to make predictions to challenge these equations and to design treatment strategies. The data analysis techniques in this tutorial are adapted from the analysis of reaction kinetics using the method of initial rates taught in undergraduate general chemistry courses. Reliance on computer programming is avoided to encourage the adoption of these methods as routine bench activities.
On the use of the autonomous Birkhoff equations in Lie series perturbation theory
Boronenko, T. S.
2017-02-01
In this article, we present the Lie transformation algorithm for autonomous Birkhoff systems. Here, we are referring to Hamiltonian systems that obey a symplectic structure of the general form. The Birkhoff equations are derived from the linear first-order Pfaff-Birkhoff variational principle, which is more general than the Hamilton principle. The use of 1-form in formulating the equations of motion in dynamics makes the Birkhoff method more universal and flexible. Birkhoff's equations have a tensorial character, so their form is independent of the coordinate system used. Two examples of normalization in the restricted three-body problem are given to illustrate the application of the algorithm in perturbation theory. The efficiency of this algorithm for problems of asymptotic integration in dynamics is discussed for the case where there is a need to use non-canonical variables in phase space.
Kou, Jisheng
2015-08-01
Surface tension significantly impacts subsurface flow and transport, and it is the main cause of capillary effect, a major immiscible two-phase flow mechanism for systems with a strong wettability preference. In this paper, we consider the numerical simulation of the surface tension of multi-component mixtures with the gradient theory of fluid interfaces. Major numerical challenges include that the system of the Euler-Lagrange equations is solved on the infinite interval and the coefficient matrix is not positive definite. We construct a linear transformation to reduce the Euler-Lagrange equations, and naturally introduce a path function, which is proven to be a monotonic function of the spatial coordinate variable. By using the linear transformation and the path function, we overcome the above difficulties and develop the efficient methods for calculating the interface and its interior compositions. Moreover, the computation of the surface tension is also simplified. The proposed methods do not need to solve the differential equation system, and they are easy to be implemented in practical applications. Numerical examples are tested to verify the efficiency of the proposed methods. © 2014 Elsevier B.V.
Study of high-pressure adsorption from supercritical fluids by the potential theory
DEFF Research Database (Denmark)
Monsalvo, Matias Alfonso; Shapiro, Alexander
2009-01-01
The multicomponent potential theory of adsorption (MPTA), which has been previously used to study low-pressure adsorption of subcritical fluids, is extended to adsorption equilibria from supercritical fluids up to high pressures. The MPTA describes an adsorbed phase as an inhomogeneous fluid...... the adsorbed and the gas phases. We have also evaluated the performance of the classical Soave-Redlich-Kwong (SRK) EoS. The fluid-solid interactions are described by simple Dubinin-Radushkevich-Astakhov (DRA) potentials. In addition, we test the performance of the 10-4-3 Steele potential. It is shown...... that application of sPC-SAFT slightly improves the performance of the MPTA and that in spite of its simplicity, the DRA model can be considered as an accurate potential, especially, for mixture adsorption. We show that, for the sets of experimental data considered in this work, the MPTA is capable of predicting...
Theory of nonlinear acoustic forces acting on fluids and particles in microsystems
DEFF Research Database (Denmark)
Karlsen, Jonas Tobias
fundamentally new capabilities in chemical, biomedical, or clinical studies of single cells and bioparticles. This thesis, entitled Theory of nonlinear acoustic forces acting on fluids and particles in microsystems, advances the fundamental understanding of acoustofluidics by addressing the origin...... of the nonlinear acoustic forces acting on fluids and particles. Classical results in nonlinear acoustics for the non-dissipative acoustic radiation force acting on a particle or an interface, as well as the dissipative acoustic force densities driving acoustic streaming, are derived and discussed in terms...... in the continuous fluid parameters of density and compressibility, e.g., due to a solute concentration field, the thesis presents novel analytical results on the acoustic force density acting on inhomogeneous fluids in acoustic fields. This inhomogeneity-induced acoustic force density is non-dissipative in origin...
Colour magnetic currents and the dual London equation in SU(3) lattice gauge theory
International Nuclear Information System (INIS)
Skala, P.; Faber, M.; Zach, M.
1997-01-01
We propose a method for the determination of magnetic currents in non-Abelian gauge theories which does not need a projection to Abelian degrees of freedom. With this definition we are able to determine the distribution of magnetic currents and electric fields for the gluonic flux tube between a pair of static charges. Further we check the validity of the Gauss law and the dual London equation in a gauge-invariant formulation. (orig.)
Magnetic Monopoles and the Dual London Equation in SU(3) Lattice Gauge Theory
Skala, Peter; Faber, Manfried; Zach, Martin
1996-01-01
We propose a method for the determination of magnetic monopole currents in non-Abelian gauge theories which does not need a projection to Abelian degrees of freedom. With this definition we are able to determine the distribution of magnetic currents and electric fields for the gluonic flux tube between a pair of static charges. Further we check the validity of the Gauss law and the dual London equation in a gauge invariant formulation.
Kou, Jisheng; Sun, Shuyu
2014-01-01
The gradient theory for the surface tension of simple fluids and mixtures is rigorously analyzed based on mathematical theory. The finite element approximation of surface tension is developed and analyzed, and moreover, an adaptive finite element method based on a physical-based estimator is proposed and it can be coupled efficiently with Newton's method as well. The numerical tests are carried out both to verify the proposed theory and to demonstrate the efficiency of the proposed method. © 2013 Elsevier B.V. All rights reserved.
Kou, Jisheng
2014-01-01
The gradient theory for the surface tension of simple fluids and mixtures is rigorously analyzed based on mathematical theory. The finite element approximation of surface tension is developed and analyzed, and moreover, an adaptive finite element method based on a physical-based estimator is proposed and it can be coupled efficiently with Newton\\'s method as well. The numerical tests are carried out both to verify the proposed theory and to demonstrate the efficiency of the proposed method. © 2013 Elsevier B.V. All rights reserved.
Continuous media theory for MR fluids in non-shearing flows
International Nuclear Information System (INIS)
Ruiz-López, J A; Hidalgo-Alvarez, R; Vicente, J de
2013-01-01
The enhanced mechanical response of magnetorheological fluids under slow compression has been investigated by means of experiments, theory and particle-level simulations. A wide range of magnetic field strengths (0–354 kA/m), dispersing medium viscosities (20–500 mPa·s) and particle concentrations (5–30 vol%) were investigated. Plastic media theory in compressive flow was in good agreement with experimental data. Slight deviations from the theory were associated to the so-called strengthening effect as the yield shear stress could increase during compression. Particle-level simulations were in good agreement with both experiments and simulations.
Priors on the effective dark energy equation of state in scalar-tensor theories
Raveri, Marco; Bull, Philip; Silvestri, Alessandra; Pogosian, Levon
2017-10-01
Constraining the dark energy (DE) equation of state, wDE, is one of the primary science goals of ongoing and future cosmological surveys. In practice, with imperfect data and incomplete redshift coverage, this requires making assumptions about the evolution of wDE with redshift z . These assumptions can be manifested in a choice of a specific parametric form, which can potentially bias the outcome, or else one can reconstruct wDE(z ) nonparametrically, by specifying a prior covariance matrix that correlates values of wDE at different redshifts. In this work, we derive the theoretical prior covariance for the effective DE equation of state predicted by general scalar-tensor theories with second order equations of motion (Horndeski theories). This is achieved by generating a large ensemble of possible scalar-tensor theories using a Monte Carlo methodology, including the application of physical viability conditions. We also separately consider the special subcase of the minimally coupled scalar field, or quintessence. The prior shows a preference for tracking behaviors in the most general case. Given the covariance matrix, theoretical priors on parameters of any specific parametrization of wDE(z ) can also be readily derived by projection.
Closed string field theory: Quantum action and the Batalin-Vilkovsky master equation
International Nuclear Information System (INIS)
Zwiebach, B.
1993-01-01
The complete quantum theory of covariant closed strings is constructed in detail. The nonpolynomial action is defined by elementary vertices satisfying recursion relations that give rise to Jacobi-like identities for an infinite chain of string field products. The genus zero string field algebra is the homotopy Lie algebra L ∞ encoding the gauge symmetry of the classical theory. The higher genus algebraic structure implies the Batalin-Vilkovisky (BV) master equation and thus consistent BRST quantization of the quantum action. From the L ∞ algebra, and the BV equation on the off-shell state space we derive the L ∞ algebra, and the BV equation on physical states that were recently constructed in d=2 string theory. The string diagrams are surfaces with minimal area metrics, foliated by closed geodesics of length 2π. These metrics generalize quadratic differentials in that foliation bands can cross. The string vertices are succinctly characterized; they include the surfaces whose foliation bands are all of height smaller than 2π. (orig.)
International Nuclear Information System (INIS)
Curro, J.G.; Schweizer, K.S.; Grest, G.S.; Kremer, K.; Corporate Research Science Laboratory, Exxon Research and Engineering Company, Annandale, New Jersey 08801; Institut fur Festkorperforschung der Kernforschungsanlage Julich, D-5170 Julich, Federal Republic of Germany)
1989-01-01
Recently we (J.G.C. and K.S.S.) formulated a tractable ''reference interaction site model'' (RISM) integral equation theory of flexible polymer liquids. The purpose of this paper is to compare the results of the theory with recent molecular dynamics simulations (G.S.G. and K.K.) on dense chain liquids of degree of polymerization N=50 and 200. Specific comparisons were made between theory and simulation for the intramolecular structure factor ω(k) and the intermolecular radial distribution function g(r) in the liquid. In particular it was possible to independently test the assumptions inherent in the RISM theory and the additional ideality approximation that was made in the initial application of the theory. This comparison was accomplished by calculating the intermolecular g(r) using the simulated intramolecular structure factor, as well as, ω(k) derived from a freely jointed chain model.The RISM theory results, using the simulated ω(k), were found to be in excellent agreement, over all length scales, with the g(r) from molecular dynamics simulations. The theoretical predictions using the ''ideal'' intramolecular structure factor tended to underestimate g(r) near contact, indicating local intramolecular expansion of the chains. This local expansion can be incorporated into the theory self consistently by including the effects of the ''medium induced'' potential on the intramolecular structure
Hansen, J S; Daivis, Peter J; Dyre, Jeppe C; Todd, B D; Bruus, Henrik
2013-01-21
The extended Navier-Stokes theory accounts for the coupling between the translational and rotational molecular degrees of freedom. In this paper, we generalize this theory to non-zero frequencies and wavevectors, which enables a new study of spatio-temporal correlation phenomena present in molecular fluids. To discuss these phenomena in detail, molecular dynamics simulations of molecular chlorine are performed for three different state points. In general, the theory captures the behavior for small wavevector and frequencies as expected. For example, in the hydrodynamic regime and for molecular fluids with small moment of inertia like chlorine, the theory predicts that the longitudinal and transverse intrinsic angular velocity correlation functions are almost identical, which is also seen in the molecular dynamics simulations. However, the theory fails at large wavevector and frequencies. To account for the correlations at these scales, we derive a phenomenological expression for the frequency dependent rotational viscosity and wavevector and frequency dependent longitudinal spin viscosity. From this we observe a significant coupling enhancement between the molecular angular velocity and translational velocity for large frequencies in the gas phase; this is not observed for the supercritical fluid and liquid state points.
International Nuclear Information System (INIS)
Runchal, A.K.; Sagar, B.; Baca, R.G.; Kline, N.W.
1985-09-01
Postclosure performance assessment of the proposed high-level nuclear waste repository in flood basalts at Hanford requires that the processes of fluid flow, heat transfer, and mass transport be numerically modeled at appropriate space and time scales. A suite of computer models has been developed to meet this objective. The theory of one of these models, named PORFLO, is described in this report. Also presented are a discussion of the numerical techniques in the PORFLO computer code and a few computational test cases. Three two-dimensional equations, one each for fluid flow, heat transfer, and mass transport, are numerically solved in PORFLO. The governing equations are derived from the principle of conservation of mass, momentum, and energy in a stationary control volume that is assumed to contain a heterogeneous, anisotropic porous medium. Broad discrete features can be accommodated by specifying zones with distinct properties, or these can be included by defining an equivalent porous medium. The governing equations are parabolic differential equations that are coupled through time-varying parameters. Computational tests of the model are done by comparisons of simulation results with analytic solutions, with results from other independently developed numerical models, and with available laboratory and/or field data. In this report, in addition to the theory of the model, results from three test cases are discussed. A users' manual for the computer code resulting from this model has been prepared and is available as a separate document. 37 refs., 20 figs., 15 tabs
Mirzaeinia, Ali; Feyzi, Farzaneh; Hashemianzadeh, Seyed Majid
2018-03-01
Based on Wertheim's second order thermodynamic perturbation theory (TPT2), equations of state (EOSs) are presented for the fluid and solid phases of tangent, freely jointed spheres. It is considered that the spheres interact with each other through the Weeks-Chandler-Anderson (WCA) potential. The developed TPT2 EOS is the sum of a monomeric reference term and a perturbation contribution due to bonding. MC NVT simulations are performed to determine the structural properties of the reference system in the reduced temperature range of 0.6 ≤ T* ≤ 4.0 and the packing fraction range of 0.1 ≤ η ≤ 0.72. Mathematical functions are fitted to the simulation results of the reference system and employed in the framework of Wertheim's theory to develop TPT2 EOSs for the fluid and solid phases. The extended EOSs are compared to the MC NPT simulation results of the compressibility factor and internal energy of the fully flexible chain systems. Simulations are performed for the WCA chain system for chain lengths of up to 15 at T* = 1.0, 1.5, 2.0, 3.0. Across all the reduced temperatures, the agreement between the results of the TPT2 EOS and MC simulations is remarkable. Overall Average Absolute Relative Percent Deviation at T* = 1.0 for the compressibility factor in the entire chain lengths we covered is 0.51 and 0.77 for the solid and fluid phases, respectively. Similar features are observed in the case of residual internal energy.
Mirzaeinia, Ali; Feyzi, Farzaneh; Hashemianzadeh, Seyed Majid
2018-03-14
Based on Wertheim's second order thermodynamic perturbation theory (TPT2), equations of state (EOSs) are presented for the fluid and solid phases of tangent, freely jointed spheres. It is considered that the spheres interact with each other through the Weeks-Chandler-Anderson (WCA) potential. The developed TPT2 EOS is the sum of a monomeric reference term and a perturbation contribution due to bonding. MC NVT simulations are performed to determine the structural properties of the reference system in the reduced temperature range of 0.6 ≤ T* ≤ 4.0 and the packing fraction range of 0.1 ≤ η ≤ 0.72. Mathematical functions are fitted to the simulation results of the reference system and employed in the framework of Wertheim's theory to develop TPT2 EOSs for the fluid and solid phases. The extended EOSs are compared to the MC NPT simulation results of the compressibility factor and internal energy of the fully flexible chain systems. Simulations are performed for the WCA chain system for chain lengths of up to 15 at T* = 1.0, 1.5, 2.0, 3.0. Across all the reduced temperatures, the agreement between the results of the TPT2 EOS and MC simulations is remarkable. Overall Average Absolute Relative Percent Deviation at T* = 1.0 for the compressibility factor in the entire chain lengths we covered is 0.51 and 0.77 for the solid and fluid phases, respectively. Similar features are observed in the case of residual internal energy.
The solids-flux theory--confirmation and extension by using partial differential equations.
Diehl, Stefan
2008-12-01
The solids-flux theory has been used for half a century as a tool for estimating concentration and fluxes in the design and operation of secondary settling tanks during stationary conditions. The flux theory means that the conservation of mass is used in one dimension together with the batch-settling flux function according to the Kynch assumption. The flux theory results correspond to stationary solutions of a partial differential equation, a conservation law, with discontinuous coefficients modelling the continuous-sedimentation process in one dimension. The mathematical analysis of such an equation is intricate, partly since it cannot be interpreted in the classical sense. Recent results, however, make it possible to partly confirm and extend the previous flux theory statements, partly draw new conclusions also on the dynamic behaviour and the possibilities and limitations for control. We use here a single example of an ideal settling tank and a given batch-settling flux in a whole series of calculations. The mathematical results are adapted towards the application and many of them are conveniently presented in terms of operating charts.
Thermodynamic perturbation theory for associating fluids confined in a one-dimensional pore
Energy Technology Data Exchange (ETDEWEB)
Marshall, Bennett D. [ExxonMobil Research and Engineering, 22777 Springwoods Village Parkway, Spring, Texas 77389 (United States)
2015-06-21
In this paper, a new theory is developed for the self-assembly of associating molecules confined to a single spatial dimension, but allowed to explore all orientation angles. The interplay of the anisotropy of the pair potential and the low dimensional space results in orientationally ordered associated clusters. This local order enhances association due to a decrease in orientational entropy. Unlike bulk 3D fluids which are orientationally homogeneous, association in 1D necessitates the self-consistent calculation of the orientational distribution function. To test the new theory, Monte Carlo simulations are performed and the theory is found to be accurate. It is also shown that the traditional treatment in first order perturbation theory fails to accurately describe this system. The theory developed in this paper may be used as a tool to study hydrogen bonding of molecules in 1D zeolites as well as the hydrogen bonding of molecules in carbon nanotubes.
Beyond the Cahn-Hilliard equation: a vacancy-based kinetic theory
International Nuclear Information System (INIS)
Nastar, M.
2011-01-01
A Self-Consistent Mean Field (SCMF) kinetic theory including an explicit description of the vacancy diffusion mechanism is developed. The present theory goes beyond the usual local equilibrium hypothesis. It is applied to the study of the early time spinodal decomposition in alloys. The resulting analytical expression of the structure function highlights the contribution of the vacancy diffusion mechanism. Instead of the single amplification rate of the Cahn-Hillard linear theory, the linearized SCMF kinetic equations involve three constant rates, first one describing the vacancy relaxation kinetics, second one related to the kinetic coupling between local concentrations and pair correlations and the third one representing the spinodal amplification rate. Starting from the same vacancy diffusion model, we perform kinetic Monte Carlo simulations of a Body Centered Cubic (BCC) demixting alloy. The resulting spherically averaged structure function is compared to the SCMF predictions. Both qualitative and quantitative agreements are satisfying. (authors)
International Nuclear Information System (INIS)
Calzetta, E.; Habib, S.; Hu, B.L.
1988-01-01
We consider quantum fields in an external potential and show how, by using the Fourier transform on propagators, one can obtain the mass-shell constraint conditions and the Liouville-Vlasov equation for the Wigner distribution function. We then consider the Hadamard function G 1 (x 1 ,x 2 ) of a real, free, scalar field in curved space. We postulate a form for the Fourier transform F/sup (//sup Q//sup )/(X,k) of the propagator with respect to the difference variable x = x 1 -x 2 on a Riemann normal coordinate centered at Q. We show that F/sup (//sup Q//sup )/ is the result of applying a certain Q-dependent operator on a covariant Wigner function F. We derive from the wave equations for G 1 a covariant equation for the distribution function and show its consistency. We seek solutions to the set of Liouville-Vlasov equations for the vacuum and nonvacuum cases up to the third adiabatic order. Finally we apply this method to calculate the Hadamard function in the Einstein universe. We show that the covariant Wigner function can incorporate certain relevant global properties of the background spacetime. Covariant Wigner functions and Liouville-Vlasov equations are also derived for free fermions in curved spacetime. The method presented here can serve as a basis for constructing quantum kinetic theories in curved spacetime or for near-uniform systems under quasiequilibrium conditions. It can also be useful to the development of a transport theory of quantum fields for the investigation of grand unification and post-Planckian quantum processes in the early Universe