WorldWideScience

Sample records for fluid temperature transient

  1. Determination of transient fluid temperature using the inverse method

    Directory of Open Access Journals (Sweden)

    Jaremkiewicz Magdalena

    2014-03-01

    Full Text Available This paper proposes an inverse method to obtain accurate measurements of the transient temperature of fluid. A method for unit step and linear rise of temperature is presented. For this purpose, the thermometer housing is modelled as a full cylindrical element (with no inner hole, divided into four control volumes. Using the control volume method, the heat balance equations can be written for each of the nodes for each of the control volumes. Thus, for a known temperature in the middle of the cylindrical element, the distribution of temperature in three nodes and heat flux at the outer surface were obtained. For a known value of the heat transfer coefficient the temperature of the fluid can be calculated using the boundary condition. Additionally, results of experimental research are presented. The research was carried out during the start-up of an experimental installation, which comprises: a steam generator unit, an installation for boiler feed water treatment, a tray-type deaerator, a blow down flashvessel for heat recovery, a steam pressure reduction station, a boiler control system and a steam header made of martensitic high alloy P91 steel. Based on temperature measurements made in the steam header using the inverse method, accurate measurements of the transient temperature of the steam were obtained. The results of the calculations are compared with the real temperature of the steam, which can be determined for a known pressure and enthalpy.

  2. Stratification in horizontal pipes subjected to fluid temperature transient at inlet

    International Nuclear Information System (INIS)

    Dhir, V.K.; Amar, R.C.; Mills, J.C.

    1984-01-01

    A one-dimensional hydrodynamic model to predict stratification in horizontal pipes subjected to a temperature transient at the inlet of a pipe has been developed. The model is based on the relative velocity difference created by the difference in hydrostatic heads of cold and hot fluid. The lighter (hotter) fluid occupies the upper half of the pipe, while the heavier (colder) fluid tends to flow underneath the lighter fluid in the lower half of the pipe. Expressions for the time-dependent density difference causing the velocity difference are obtained for slow and fast transients and for specific durations of interest. The thermal aspect of the problem - namely, the fluid-pipe wall interaction - has also been analyzed. The fluid-wall interaction is handled by the transient lumped capacity (in the radial direction) method, which is one-dimensional in space (i.e., along the pipe length). It is shown that for a thin Pyrex pipe with water as the test fluid, the thermal effects play a minimal role. However, for thick pipes of high thermal conductivity material, this is not true

  3. Modeling of the transient behavior of heat pipes with room-temperature working fluids

    Science.gov (United States)

    Brocheny, Pascal O.

    2006-07-01

    The heat pipe is a capillary-driven and two-phase flow device, capable of transporting and converting large amounts of energy with minimal losses. As a means of thermal management, uses of heat pipe technology not only include thermal control of satellites and spacecrafts in aerospace applications, but also the cooling of electronic components for ground applications. Recently, there has been a flourishing interest in exploring the use of heat pipe technology in the automotive field. However, in many thermal control applications, heat pipes using room-temperature working fluids, such as water or ammonia, with operating temperatures between 200 K (-73ºC) and 550 K (277ºC), can hardly operate at steady state conditions. The study of transient heat pipe phenomena becomes a significant area of research interests including not only startup and shutdown phases, but also heat redistribution, changes of thermal loading and heat removal. The transient performance is affected by thermal capacity and conductance of the heat pipe, capillary pumping forces, heating and cooling conditions. In the present study, the transient operations of different conventional room-temperature heat pipes were investigated analytically, including the capillary dryout and rewetting behaviors occurring at the evaporator section during startups. The physical model is based on the displacement of a leading-edge front of a thin liquid layer flowing on finite groove uniformly heated with a constant heat flux. A one-dimensional transient heat conduction model along the evaporator wall is coupled with the movement of the fluid layer during startup. Numerical solutions were obtained by a fully implicit Finite Difference Method, accounting for the movement of the liquid and a known time-variable temperature boundary condition at the liquid front. The velocity and position of the liquid front were found to vary with the applied heat flux, the initial conditions, and the thermophysical properties of the

  4. Fluid dynamic transient analysis

    International Nuclear Information System (INIS)

    Vilhena Reigosa, R. de

    1992-01-01

    This paper describes the methodology adopted at NUCLEN for the fluid dynamic analyses for ANGRA 2. The fluid dynamic analysis allows, through computer codes to simulate and quantify the loads resulting from fluid dynamic transients caused by postulated ruptures or operational transients, in the piping of the safety systems and of the important operational systems. (author)

  5. A High-Temperature Transient Hot-Wire Thermal Conductivity Apparatus for Fluids

    OpenAIRE

    Perkins, R. A.; Roder, H. M.; Nieto de Castro, C. A.

    1991-01-01

    A new apparatus for measuring both the thermal conductivity and thermal diffusivity of fluids at temperatures from 220 to 775 K at pressures to 70 MPa is described. The instrument is based on the step-power-forced transient hot-wire technique. Two hot wires are arranged in different arms of a Wheatstone bridge such that the response of the shorter compensating wire is subtracted from the response of the primary wire. Both hot wires are 12.7 ?m diameter platinum wire and are simultaneously use...

  6. A High-Temperature Transient Hot-Wire Thermal Conductivity Apparatus for Fluids.

    Science.gov (United States)

    Perkins, R A; Roder, H M; Nieto de Castro, C A

    1991-01-01

    A new apparatus for measuring both the thermal conductivity and thermal diffusivity of fluids at temperatures from 220 to 775 K at pressures to 70 MPa is described. The instrument is based on the step-power-forced transient hot-wire technique. Two hot wires are arranged in different arms of a Wheatstone bridge such that the response of the shorter compensating wire is subtracted from the response of the primary wire. Both hot wires are 12.7 µm diameter platinum wire and are simultaneously used as electrical heat sources and as resistance thermometers. A microcomputer controls bridge nulling, applies the power pulse, monitors the bridge response, and stores the results. Performance of the instrument was verified with measurements on liquid toluene as well as argon and nitrogen gas. In particular, new data for the thermal conductivity of liquid toluene near the saturation line, between 298 and 550 K, are presented. These new data can be used to illustrate the importance of radiative heat transfer in transient hot-wire measurements. Thermal conductivity data for liquid toluene, which are corrected for radiation, are reported. The precision of the thermal conductivity data is ± 0.3% and the accuracy is about ±1%. The accuracy of the thermal diffusivity data is about ± 5%. From the measured thermal conductivity and thermal diffusivity, we can calculate the specific heat, C p , of the fluid, provided that the density is measured, or available through an equation of state.

  7. Determining solid-fluid interface temperature distribution during phase change of cryogenic propellants using transient thermal modeling

    Science.gov (United States)

    Bellur, K.; Médici, E. F.; Hermanson, J. C.; Choi, C. K.; Allen, J. S.

    2018-04-01

    Control of boil-off of cryogenic propellants is a continuing technical challenge for long duration space missions. Predicting phase change rates of cryogenic liquids requires an accurate estimation of solid-fluid interface temperature distributions in regions where a contact line or a thin liquid film exists. This paper described a methodology to predict inner wall temperature gradients with and without evaporation using discrete temperature measurements on the outer wall of a container. Phase change experiments with liquid hydrogen and methane in cylindrical test cells of various materials and sizes were conducted at the Neutron Imaging Facility at the National Institute of Standards and Technology. Two types of tests were conducted. The first type of testing involved thermal cycling of an evacuated cell (dry) and the second involved controlled phase change with cryogenic liquids (wet). During both types of tests, temperatures were measured using Si-diode sensors mounted on the exterior surface of the test cells. Heat is transferred to the test cell by conduction through a helium exchange gas and through the cryostat sample holder. Thermal conduction through the sample holder is shown to be the dominant mode with the rate of heat transfer limited by six independent contact resistances. An iterative methodology is employed to determine contact resistances between the various components of the cryostat stick insert, test cell and lid using the dry test data. After the contact resistances are established, inner wall temperature distributions during wet tests are calculated.

  8. An investigation of loads generated by temperature transients in pipes

    International Nuclear Information System (INIS)

    Maneschy, C.E.

    1988-12-01

    An analysis is presented of the effect of a transient temperature on the stress distribution due to a fluid flowing through a pipe, is analytically determined using the definition of a variable called in this paper as ''shifted time''. This variable, which is related to the axial coordinate, the average fluid velocity and the real time, is defined to make the transient thermal problem one-dimensional. The stresses are then calculated from the temperature solution using the linear theory of viscoelasticity. (author) [pt

  9. Transient flows of a Burgers' fluid

    International Nuclear Information System (INIS)

    Khan, M.

    2005-12-01

    An analysis is performed to develop the analytical solutions for some unsteady magnetohydrodynamic (MHD) flows of a Burgers' fluid between two plates. A uniform magnetic field is applied transversely to the fluid motion. The exact solutions are given for three problems. Results for the velocity fields are discussed and compared with the flows of Oldroyd-B, Maxwell, second grade and Newtonian fluids. (author)

  10. Primary system temperature limits and transient mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Drucker, G.S.; Bost, D.S.

    1978-10-03

    Results of a study to determine the limiting temperature conditions in a large reactor system are presented. The study considers a sodium-cooled breeder reactor system having a loop-type primary system configuration. A temperature range of 930 to 1050/sup 0/F in reactor outlet temperature is covered. Significant findings were that the use of the materials for the 930/sup 0/F reference design, i.e., a core material of 20% cold-worked 316 stainless steel, a primary piping material of 316SS, and a steam generator material of unstabilized 2-1/4 Cr - 1 Mo resulted in limiting conditions in component performance at the higher temperatures. Means to circumvent these limits through the use of alternate materials, mitigation of thermal transients, and/or design changes are presented. The economic incentive to make some materials changes is also presented.

  11. Successive Bifurcation Conditions of a Lorenz-Type Equation for the Fluid Convection Due to the Transient Thermal Field

    Directory of Open Access Journals (Sweden)

    Xiaoling He

    2007-01-01

    Full Text Available This paper investigates the convection flow between the two parallel plates in a fluid cell subject to the transient thermal field. We use the modal approximations similar to that of the original Lorenz model to obtain a generalized Lorenz-type model for the flow induced by the transient thermal field at the bottom plate. This study examines the convection flow bifurcation conditions in relation to the transient temperature variations and the flow properties. We formulated successive bifurcation conditions and illustrated the various flow behaviors and their steady-state attractors affected by the thermal field functions and fluid properties.

  12. Torque converter transient characteristics prediction using computational fluid dynamics

    International Nuclear Information System (INIS)

    Yamaguchi, T; Tanaka, K

    2012-01-01

    The objective of this research is to investigate the transient torque converter performance used in an automobile. A new technique in computational fluid dynamics is introduced, which includes the inertia of the turbine in a three dimensional simulation of the torque converter during a launch condition. The simulation results are compared to experimental test data with good agreement across the range of data. In addition, the simulated flow structure inside the torque converter is visualized and compared to results from a steady-state calculation.

  13. Nanoscale transient porosity controls large-scale metamorphic fluid flow

    Science.gov (United States)

    Plümper, Oliver; Botan, Alexandru; Los, Catharina; Malthe-Sørenssen, Anders; Jamtveit, Bjørn

    2016-04-01

    investigations we used non-equilibrium thermodynamics and molecular dynamics simulations to investigate the influence of nanoscale pore transport phenomena on metamorphic mineral replacement reactions. Our findings suggest that fluid transport through nanoscale transient pore networks may control regional-scale metamorphism and metasomatism, at least in the feldspar-dominated crust.

  14. Network Flow Simulation of Fluid Transients in Rocket Propulsion Systems

    Science.gov (United States)

    Bandyopadhyay, Alak; Hamill, Brian; Ramachandran, Narayanan; Majumdar, Alok

    2011-01-01

    Fluid transients, also known as water hammer, can have a significant impact on the design and operation of both spacecraft and launch vehicle propulsion systems. These transients often occur at system activation and shutdown. The pressure rise due to sudden opening and closing of valves of propulsion feed lines can cause serious damage during activation and shutdown of propulsion systems. During activation (valve opening) and shutdown (valve closing), pressure surges must be predicted accurately to ensure structural integrity of the propulsion system fluid network. In the current work, a network flow simulation software (Generalized Fluid System Simulation Program) based on Finite Volume Method has been used to predict the pressure surges in the feed line due to both valve closing and valve opening using two separate geometrical configurations. The valve opening pressure surge results are compared with experimental data available in the literature and the numerical results compared very well within reasonable accuracy (< 5%) for a wide range of inlet-to-initial pressure ratios. A Fast Fourier Transform is preformed on the pressure oscillations to predict the various modal frequencies of the pressure wave. The shutdown problem, i.e. valve closing problem, the simulation results are compared with the results of Method of Characteristics. Most rocket engines experience a longitudinal acceleration, known as "pogo" during the later stage of engine burn. In the shutdown example problem, an accumulator has been used in the feed system to demonstrate the "pogo" mitigation effects in the feed system of propellant. The simulation results using GFSSP compared very well with the results of Method of Characteristics.

  15. Simulation and experiment on transient temperature field of a magnetorheological clutch for vehicle application

    Science.gov (United States)

    Wang, Daoming; Zi, Bin; Zeng, Yishan; Qian, Sen; Qian, Jun

    2017-09-01

    The unpredictable power fluctuation due to severe heating has been demonstrated to be a critical bottleneck technique restricting the application of magnetorheological (MR) clutches in vehicle industry. The aim of this study is to introduce a low-cost transient simulation approach for evaluating the heat build-up and dissipation of a liquid-cooled MR vehicle clutch. This paper firstly performs a detailed description of the developed MR clutch in terms of operation principle, material selection and configuration. Subsequently, transient temperature simulations are carried out under various conditions to reveal the distribution, variation and impact factors of the transient temperature field. Following these, an experimental setup is established for heating tests of the clutch prototype. Experimental results concerning the temperature variation of magnetorheological fluids and the maximum allowable transient slip power of the clutch prototype are presented, which in return verify the correctness and feasibility of the simulation.

  16. Ubiquitous transient stagnant domain formation during thermal convection in a well-mixed two component fluid with large viscosity difference.

    Science.gov (United States)

    Kobayashi, Kazuya U; Kurita, Rei

    2017-10-11

    The formation of a transient stagnant domain in the presence of thermal convection was previously reported near the sol-gel transition temperature of a gelatin solution. The transient stagnant domain is observed near a critical Rayleigh number where a "roll" pattern is usually stable. It is important to understand the origin of the transient stagnant domain formation since it induces a large deformation of convection patterns; the nature of the formation of the transient stagnant domain remains unclear. Here, we observe thermal convection using several different fluids and find that stagnant domain formation is ubiquitous in two component mixtures. In addition, we find that difference in viscosity between the two components is crucial for transient stagnant domain formation, more so than the concentration gradient induced by the temperature gradient.

  17. Effect of irrigation fluid temperature on body temperature during ...

    African Journals Online (AJOL)

    ... of dogs were hypothermic (<37oC). The addition of warmed irrigation fluids to a temperature management protocol in dogs undergoing elbow arthroscopy during general anaesthesia did not lead to decreased temperature losses. Keywords: Arthroscopy, Hypothermia, Irrigation fluid temperature, Thermoregulation.

  18. Transient computation fluid dynamics modeling of a single proton exchange membrane fuel cell with serpentine channel

    Science.gov (United States)

    Hu, Guilin; Fan, Jianren

    The proton exchange membrane fuel cell (PEMFC) has become a promising candidate for the power source of electrical vehicles because of its low pollution, low noise and especially fast startup and transient responses at low temperatures. A transient, three-dimensional, non-isothermal and single-phase mathematical model based on computation fluid dynamics has been developed to describe the transient process and the dynamic characteristics of a PEMFC with a serpentine fluid channel. The effects of water phase change and heat transfer, as well as electrochemical kinetics and multicomponent transport on the cell performance are taken into account simultaneously in this comprehensive model. The developed model was employed to simulate a single laboratory-scale PEMFC with an electrode area about 20 cm 2. The dynamic behavior of the characteristic parameters such as reactant concentration, pressure loss, temperature on the membrane surface of cathode side and current density during start-up process were computed and are discussed in detail. Furthermore, transient responses of the fuel cell characteristics during step changes and sinusoidal changes in the stoichiometric flow ratio of the cathode inlet stream, cathode inlet stream humidity and cell voltage are also studied and analyzed and interesting undershoot/overshoot behavior of some variables was found. It was also found that the startup and transient response time of a PEM fuel cell is of the order of a second, which is similar to the simulation results predicted by most models. The result is an important guide for the optimization of PEMFC designs and dynamic operation.

  19. In vitro comparison of output fluid temperatures for room temperature and prewarmed fluids.

    Science.gov (United States)

    Soto, N; Towle Millard, H A; Lee, R A; Weng, H Y

    2014-08-01

    To determine if prewarmed intravenous fluids produce superior fluid output temperatures compared with room temperature fluids at common anaesthetic fluid rates for small animal patients. A prospective, randomised, in vitro fluid line test-vein study was performed. Nine flow rates were analysed (10, 20, 60, 100, 140, 180, 220, 260 and 300 mL/hour) for room temperature fluids (21°C) and for five prewarmed fluids (40, 45, 50, 55 and 60°C). For each flow rate tested, room temperature fluids never exceeded 25°C at any time point for each trial (range 18 to 25°C). For each flow rate tested, prewarmed fluids never exceeded 25 · 5°C at any time point for each trial (range 18 to 25 · 5°C). The mean output fluid temperature of prewarmed fluids was significantly warmer than room temperature fluids only at 300 mL/hour for 40°C (P = 0 · 0012), 45°C (P = 0 · 004), 50°C (P = 0 · 0002), 55°C (P = 0 · 0001) and 60°C (P fluids (up to 60°C) compared with room temperature intravenous fluids at common anaesthetic fluid rates for small animals. © 2014 British Small Animal Veterinary Association.

  20. Computer program TMOC for calculating of pressure transients in fluid filled piping networks

    International Nuclear Information System (INIS)

    Siikonen, T.

    1978-01-01

    The propagation of a pressure wave in fluid filles tubes is significantly affected by the pipe wall motion and vice versa. A computer code TMOC (Transients by the Method of Characteristics) is being developed for the analysis of the coupled fluid and pipe wall transients. Because of the structural feedback, the pressure can be calculated more accurately than in the programs commonly used. (author)

  1. Transient Thermal Model and Analysis of the Lunar Surface and Regolith for Cryogenic Fluid Storage

    Science.gov (United States)

    Christie, Robert J.; Plachta, David W.; Yasan, Mohammad M.

    2008-01-01

    A transient thermal model of the lunar surface and regolith was developed along with analytical techniques which will be used to evaluate the storage of cryogenic fluids at equatorial and polar landing sites. The model can provide lunar surface and subsurface temperatures as a function of latitude and time throughout the lunar cycle and season. It also accounts for the presence of or lack of the undisturbed fluff layer on the lunar surface. The model was validated with Apollo 15 and Clementine data and shows good agreement with other analytical models.

  2. Severe transient tests on operating steam generator: analysis of the fluid-structure dynamic thermal interaction

    International Nuclear Information System (INIS)

    David, J.; Procaccia, H.; Billon, F.

    1983-08-01

    The operating efficiency of steam generators (S.G.s) and their structural integrity depend on the design configurations of the feedwater spray within the S.G., and on the operating procedure. To check the merit of some design modifications, and to verify the fluid-structure interaction with a view to preserve the S.G.s integrity during severe operating transients, a special instrumentation that admits the determination of the instantaneous thermal hydraulic characteristics of the flow in the secondary water and the corresponding metal temperature, in particular in the S.G. downcomer and near the S.G. tube sheet, has been installed by EDF on one steam generator of Tricastin unit 1 power plant. In parallel, FRAMATOME has developped a computer code, TEMPTRON, that allows the calculation of the thermal loads and the consequent stresses in the most sollicited zones of the steam generator during transient operation of the plant

  3. Transient Thermo-fluid Model of Meniscus Behavior and Slag Consumption in Steel Continuous Casting

    Science.gov (United States)

    Jonayat, A. S. M.; Thomas, Brian G.

    2014-10-01

    The behavior of the slag layer between the oscillating mold wall, the slag rim, the slag/liquid steel interface, and the solidifying steel shell, is of immense importance for the surface quality of continuous-cast steel. A computational model of the meniscus region has been developed, that includes transient heat transfer, multi-phase fluid flow, solidification of the slag, and movement of the mold during an oscillation cycle. First, the model is applied to a lab experiment done with a "mold simulator" to verify the transient temperature-field predictions. Next, the model is verified by matching with available literature and plant measurements of slag consumption. A reasonable agreement has been observed for both temperature and flow-field. The predictions show that transient temperature behavior depends on the location of the thermocouple during the oscillation relative to the meniscus. During an oscillation cycle, heat transfer variations in a laboratory frame of reference are more severe than experienced by the moving mold thermocouples, and the local heat transfer rate is increased greatly when steel overflows the meniscus. Finally, the model is applied to conduct a parametric study on the effect of casting speed, stroke, frequency, and modification ratio on slag consumption. Slag consumption per unit area increases with increase of stroke and modification ratio, and decreases with increase of casting speed while the relation with frequency is not straightforward. The match between model predictions and literature trends suggests that this methodology can be used for further investigations.

  4. Numerical analysis of the transient conjugated heat transfer in a circular duct with a power-law fluid

    Energy Technology Data Exchange (ETDEWEB)

    Luna, N. [Secretaria de Energia, Direccion de Operacion Petrolera, Mexico DF (Mexico); Mendez, F. [UNAM, Facultad de Ingenieria, Mexico DF (Mexico); Bautista, O. [ITESM, Division de Ingenieria y Arquitectura, Mexico DF (Mexico)

    2005-05-01

    We treat numerically in this paper, the transient analysis of a conjugated heat transfer process in the thermal entrance region of a circular tube with a fully developed laminar power-law fluid flow. We apply the quasi-steady approximation for the power-law fluid, identifying the suitable time scales of the process. Thus, the energy equation in the fluids is solved analytically using the well-known integral boundary layer technique. This solution is coupled to the transient energy equation for the solid where the transverse and longitudinal heat conduction effects are taken into account. The numerical results for the temporal evolution of the average temperature of the tube wall, {theta}{sub av,} is plotted for different nondimensional parameters such as conduction parameter, {alpha}, the aspect ratios of the tube, {epsilon} and {epsilon}{sub 0} and the index of power-law fluid, n. (orig.)

  5. Empirical method to calculate Clinch River Breeder Reactor (CRBR) inlet plenum transient temperatures

    International Nuclear Information System (INIS)

    Howarth, W.L.

    1976-01-01

    Sodium flow enters the CRBR inlet plenum via three loops or inlets. An empirical equation was developed to calculate transient temperatures in the CRBR inlet plenum from known loop flows and temperatures. The constants in the empirical equation were derived from 1/4 scale Inlet Plenum Model tests using water as the test fluid. The sodium temperature distribution was simulated by an electrolyte. Step electrolyte transients at 100 percent model flow were used to calculate the equation constants. Step electrolyte runs at 50 percent and 10 percent flow confirmed that the constants were independent of flow. Also, a transient was tested which varied simultaneously flow rate and electrolyte. Agreement of the test results with the empirical equation results was good which verifies the empirical equation

  6. Determining temperature limits of drilling fluids

    Energy Technology Data Exchange (ETDEWEB)

    Thuren, J.B.; Chenevert, M.E.; Huang, W.T.W.; Szymanski, E.; Arkeketa, P.

    1979-01-01

    A capillary three tube viscometer has been designed which allows the measurement of rheological properties of time dependent non-Newtonian fluids in laminar flow at high temperture and pressure. The objective of this investigation is to determine the temperature stability of clay-water suspensions containing various drilling fluid additives. The additives studied consisted of viscosifiers, filtrate reducers, and chemical thinners. The temperature range studied is from room temperature to 550{sup 0}F. The system pressure is consistently maintained above the vapor pressure. The Bentonite and water standardized base mud used is equivalent to a 25 ppB fluid. Stabilization of the base mud is necessary to obtain steady state laminar flow conditions and to obtain reliable temperature thinning effects with each temperature interval under investigation. Generally the temperature levels are maintained for one hour until 550{sup 0}F is attained. The last interval is then maintained until system fluid degradation occurs. Rheological measurements are obtained from differential pressure transducers located in a three diameter tube test section and externally at ambient conditions from a Baroid Rotational Viscometer. The power law model for non-Newtonian fluids is used to correlate the data.

  7. Computational scheme for transient temperature distribution in PWR vessel wall

    International Nuclear Information System (INIS)

    Dedovic, S.; Ristic, P.

    1980-01-01

    Computer code TEMPNES is a part of joint effort made in Gosa Industries in achieving the technique for structural analysis of heavy pressure vessels. Transient heat conduction problems analysis is based on finite element discretization of structures non-linear transient matrix formulation and time integration scheme as developed by Wilson (step-by-step procedure). Convection boundary conditions and the effect of heat generation due to radioactive radiation are both considered. The computation of transient temperature distributions in reactor vessel wall when the water temperature suddenly drops as a consequence of reactor cooling pump failure is presented. The vessel is treated as as axisymmetric body of revolution. The program has two finite time element options a) fixed predetermined increment and; b) an automatically optimized time increment for each step dependent on the rate of change of the nodal temperatures. (author)

  8. Temperature and concentration transients in the aluminum-air battery

    Science.gov (United States)

    Homsy, R. V.

    1981-08-01

    Coupled conservation equations of heat and mass transfer are solved that predict temperature and concentration of the electrolyte of an aluminum-air battery system upon start-up and shutdown. Results of laboratory studies investigating the crystallization kinetics and solubility of the caustic-aluminate electrolyte system are used in the predictions. Temperature and concentration start-up transients are short, while during standby conditions, temperature increases to maximum and decreases slowly.

  9. Steam generator transient studies using a simplified two-fluid computer code

    International Nuclear Information System (INIS)

    Munshi, P.; Bhatnagar, R.; Ram, K.S.

    1985-01-01

    A simplified two-fluid computer code has been used to simulate reactor-side (or primary-side) transients in a PWR steam generator. The disturbances are modelled as ramp inputs for pressure, internal energy and mass flow-rate for the primary fluid. The CPU time for a transient duration of 4 s is approx. 10 min on a DEC-1090 computer system. The results are thermodynamically consistent and encouraging for further studies. (author)

  10. ELOCA: fuel element behaviour during high temperature transients

    International Nuclear Information System (INIS)

    Sills, H.E.

    1979-03-01

    The ELOCA computer code was developed to simulate the uniform thermal-mechanical behaviour of a fuel element during high-temperature transients such as a loss-of-coolant accident (LOCA). Primary emphasis is on the diametral expansion of the fuel sheath. The model assumed is a single UO2/zircaloy-clad element with axisymmetric properties. Physical effects considered by the code are fuel expansion, cracking and melting; variation, during the transient, of internal gas pressure; changing fuel/sheath heat transfer; thermal, elastic and plastic sheath deformation (anisotropic); Zr/H 2 O chemical reaction effects; and beryllium-assisted crack penetration of the sheath. (author)

  11. Intermediate Temperature Fluids Life Tests — Theory

    Science.gov (United States)

    Tarau, Calin; Sarraf, David B.; Locci, Ivan E.; Anderson, William G.

    2007-01-01

    There are a number of different applications that could use heat pipes or loop heat pipes (LHPs) in the intermediate temperature range of 450 to 750 K, including space nuclear power system radiators, and high temperature electronics cooling. Potential working fluids include organic fluids, elements, and halides, with halides being the least understood, with only a few life tests conducted. Potential envelope materials for halide working fluids include pure aluminum, aluminum alloys, commercially pure (CP) titanium, titanium alloys, and corrosion resistant superalloys. Life tests were conducted with three halides (AlBr3, SbBr3, and TiCl4) and water in three different envelopes: two aluminum alloys (Al-5052, Al-6061) and CP-2 titanium. The AlBr3 attacked the grain boundaries in the aluminum envelopes, and formed TiAl compounds in the titanium. The SbBr3 was incompatible with the only envelope material that it was tested with, Al-6061. TiCl4 and water were both compatible with CP2-titanium. A theoretical model was developed that uses electromotive force differences to predict the compatibility of halide working fluids with envelope materials. This theory predicts that iron, nickel, and molybdenum are good envelope materials, while aluminum and titanium halides are good working fluids. The model is in good agreement with results from previous life tests, as well as the current life tests.

  12. Intermediate Temperature Fluids Life Tests - Theory

    Science.gov (United States)

    Tarau, Calin; Sarraf, David B.; Locci, Ivan E.; Anderson, William G.

    2008-01-01

    There are a number of different applications that could use heat pipes or loop heat pipes (LHPs) in the intermediate temperature range of 450 to 750 K, including space nuclear power system radiators, and high temperature electronics cooling. Potential working fluids include organic fluids, elements, and halides, with halides being the least understood, with only a few life tests conducted. Potential envelope materials for halide working fluids include pure aluminum, aluminum alloys, commercially pure (CP) titanium, titanium alloys, and corrosion resistant superalloys. Life tests were conducted with three halides (AlBr3, SbBr3, and TiCl4) and water in three different envelopes: two aluminum alloys (Al-5052, Al-6061) and Cp-2 titanium. The AlBr3 attacked the grain boundaries in the aluminum envelopes, and formed TiAl compounds in the titanium. The SbBr3 was incompatible with the only envelope material that it was tested with, Al-6061. TiCl4 and water were both compatible with CP2-titanium. A theoretical model was developed that uses electromotive force differences to predict the compatibility of halide working fluids with envelope materials. This theory predicts that iron, nickel, and molybdenum are good envelope materials, while aluminum and titanium halides are good working fluids. The model is in good agreement with results form previous life tests, as well as the current life tests.

  13. An explicit ''ALE'' finite element formulation for 3D transient dynamic fluid-structure interaction problems

    International Nuclear Information System (INIS)

    Donea, J.; Giuliani, S.

    1989-01-01

    Finite element models, implemented in the computed code EURDYN-3M, are presented for the prediction of the non-linear response of three-dimensional fluid-structure systems exposed to transient dynamic loading. An arbitrary Lagrangian-Eulerian kinematical description of the fluid domain is adopted in which the grid points can be displaced independently of the fluid motion. This formulation leads to an easy and accurate treatment of fluid-structure interfaces and permits significant fluid sloshing and swirling to occur without producing excessive distorsions of the computational mesh. Two numerical examples are presented to illustrate the potential of the proposed modelling procedures

  14. Study on a transient optical fiber high temperature measurement system

    Science.gov (United States)

    Cai, Lulu; Liu, Yusha; Wang, Yutian

    2009-07-01

    High temperature is one of the most important parameters in the fields of scientific research and industrial production. At present, thermocouple, thermo resistive and radiance thermometer are already technologically mature which can be adopted to measure the general temperature, but when it comes to the transient high temperature that changes pretty quickly in wretched conditions, those traditional pyrometers can not meet the requirements any more. In this paper, we designed a transient optical high temperature measurement system. First, design of the temperature measurement probe. The system took blackbody cavity sensor together with optical fiber to receive the measured signal, here, the integrated emissivity model of the blackbody cavity was established and the optimum structure parameters were confirmed. Secondly, design of the entire temperature measurement system. A contact-noncontact measurement method was applied, which is to make the blackbody cavity and the measured high-temperature source contact, the fiber probe and the blackbody cavity noncontact, as a result, the error caused by contact measurement is overcame and the precision is guaranteed at the same time. In addition, a fiber grating was introduced as the wavelength filter device which can realize the dynamic filter of narrow-band signals and reduce the impact of background light. Thirdly, signal processing. In this part, we applied labVIEW software and wavelet analysis method. All of the signal acquisition and processing were realized in the labVIEW environment. Through calling matlab in labVIEW, the signals from optical fiber detector were wavelet denoised and decomposed, thus the temperature information was extracted, and the temperature value was obtained. On basis of wavelet transformation, the paper adopted the 4dB wavelet with horizontal scale of 5 to realize the feature extraction and noise removal, parts of the signals before and after the wavelet noise removal were given and analyzed

  15. Modeling quantum fluid dynamics at nonzero temperatures

    Science.gov (United States)

    Berloff, Natalia G.; Brachet, Marc; Proukakis, Nick P.

    2014-01-01

    The detailed understanding of the intricate dynamics of quantum fluids, in particular in the rapidly growing subfield of quantum turbulence which elucidates the evolution of a vortex tangle in a superfluid, requires an in-depth understanding of the role of finite temperature in such systems. The Landau two-fluid model is the most successful hydrodynamical theory of superfluid helium, but by the nature of the scale separations it cannot give an adequate description of the processes involving vortex dynamics and interactions. In our contribution we introduce a framework based on a nonlinear classical-field equation that is mathematically identical to the Landau model and provides a mechanism for severing and coalescence of vortex lines, so that the questions related to the behavior of quantized vortices can be addressed self-consistently. The correct equation of state as well as nonlocality of interactions that leads to the existence of the roton minimum can also be introduced in such description. We review and apply the ideas developed for finite-temperature description of weakly interacting Bose gases as possible extensions and numerical refinements of the proposed method. We apply this method to elucidate the behavior of the vortices during expansion and contraction following the change in applied pressure. We show that at low temperatures, during the contraction of the vortex core as the negative pressure grows back to positive values, the vortex line density grows through a mechanism of vortex multiplication. This mechanism is suppressed at high temperatures. PMID:24704874

  16. Concrete creep at transient temperature: constitutive law and mechanism

    International Nuclear Information System (INIS)

    Chern, J.C.; Bazant, Z.P.; Marchertas, A.H.

    1985-01-01

    A constitutive law which describes the transient thermal creep of concrete is presented. Moisture and temperature are two major parameters in this constitutive law. Aside from load, creep, cracking, and thermal (shrinkage) strains, stress-induced hygrothermal strains are also included in the analysis. The theory agrees with most types of test data which include basic creep, thermal expansion, shrinkage, swelling, creep at cyclic heating or drying, and creep at heating under compression or bending. Examples are given to demonstrate agreement between the theory and the experimental data. 15 refs., 6 figs

  17. Coupled problems in transient fluid and structural dynamics in nuclear engineering

    International Nuclear Information System (INIS)

    Krieg, R.

    1978-01-01

    Some important problems in coupled fluid-structural dynamics which occur in safety investigations of liquid metal fast breeder reactors (LMFBR). light water reactors and nuclear reprocessing plants are discussed and a classification of solution methods is introduced. A distinction is made between the step by step solution procedure, where available computer codes in fluid and structural dynamics are coupled, and advanced simultaneous solution methods, where the coupling is carried out at the level of the fundamental equations. Results presented include the transient deformation of a two-row pin bundle surrounded by an infinite fluid field, vapour explosions in a fluid container and containment distortions due to bubble collapse in the pressure suppression system of a boiling water reactor. A recently developed simultaneous solution method is presented in detail. Here the fluid dynamics (inviscid, incompressible fluid) is described by a singularity method which reduces the three-dimensional fluid dynamics problems to a two-dimensional formulation. In this way the three-dynamics fluid dynamics as well as the structural (shell) dynamics can be described essentially by common unknowns at the fluid-structural interface. The resulting equations for the coupled fluid-structural dynamics are analogous to to the equations of motion of the structural dynamics alone. (author)

  18. Transient molecular dynamics simulations of liquid viscosity for nonpolar and polar fluids

    Science.gov (United States)

    Thomas, Jason C.; Rowley, Richard L.

    2011-01-01

    A transient molecular dynamics (TMD) method for obtaining fluid viscosity is extended to multisite, force-field models of both nonpolar and polar liquids. The method overlays a sinusoidal velocity profile over the peculiar particle velocities and then records the transient decay of the velocity profile. The viscosity is obtained by regression of the solution of the momentum equation with an appropriate constitutive equation and initial and boundary conditions corresponding to those used in the simulation. The transient velocity decays observed appeared to include both relaxation and retardation effects. The Jeffreys viscoelastic model was found to model accurately the transient responses obtained for multisite models for n-butane, isobutane, n-hexane, water, methanol, and 1-hexanol. TMD viscosities obtained for saturated liquids over a wide range of densities agreed well for the polar fluids, both with nonequilibrium molecular dynamics (NEMD) results using the same force-field models and with correlations based on experimental data. Viscosities obtained for the nonpolar fluids agreed well with the experimental and NEMD results at low to moderate densities, but underpredicted experimental values at higher densities where shear-thinning effects and viscous heating may impact the TMD simulations.

  19. Magic angle spinning NMR below 6 K with a computational fluid dynamics analysis of fluid flow and temperature gradients

    Science.gov (United States)

    Sesti, Erika L.; Alaniva, Nicholas; Rand, Peter W.; Choi, Eric J.; Albert, Brice J.; Saliba, Edward P.; Scott, Faith J.; Barnes, Alexander B.

    2018-01-01

    We report magic angle spinning (MAS) up to 8.5 kHz with a sample temperature below 6 K using liquid helium as a variable temperature fluid. Cross polarization 13C NMR spectra exhibit exquisite sensitivity with a single transient. Remarkably, 1H saturation recovery experiments show a 1H T1 of 21 s with MAS below 6 K in the presence of trityl radicals in a glassy matrix. Leveraging the thermal spin polarization available at 4.2 K versus 298 K should result in 71 times higher signal intensity. Taking the 1H longitudinal relaxation into account, signal averaging times are therefore predicted to be expedited by a factor of >500. Computer assisted design (CAD) and finite element analysis were employed in both the design and diagnostic stages of this cryogenic MAS technology development. Computational fluid dynamics (CFD) models describing temperature gradients and fluid flow are presented. The CFD models bearing and drive gas maintained at 100 K, while a colder helium variable temperature fluid stream cools the center of a zirconia rotor. Results from the CFD were used to optimize the helium exhaust path and determine the sample temperature. This novel cryogenic experimental platform will be integrated with pulsed dynamic nuclear polarization and electron decoupling to interrogate biomolecular structure within intact human cells.

  20. SOLA-VOF, 2-D Transient Hydrodynamic Using Fractional Volume of Fluid Method

    International Nuclear Information System (INIS)

    Nichols, B.D.; Hirt, C.W.; Hotchkiss, R.S.

    1991-01-01

    1 - Description of problem or function: SOLA-VOF is a program for the solution of two-dimensional transient fluid flow with free boundaries, based on the concept of a fractional volume of fluid (VOF). Its basic mode of operation is for single fluid calculations having multiple free surfaces. However, SOLA-VOF can also be used for calculations involving two fluids separated by a sharp interface. In either case, the fluids may be treated as incompressible or as having limited compressibility. Surface tension forces with wall adhesion are permitted in both cases. Internal obstacles may be defined by blocking out any desired combination of cells in the mesh, which is composed of rectangular cells of variable size. 2 - Method of solution: The basis of the SOLA-VOF method is the fractional volume of fluid scheme for tracking free boundaries. In this technique, a function F(x,y,t) is defined whose value is unity at any point occupied by fluid and zero elsewhere. When averaged over the cells of a computational mesh, the average value of F in a cell is equal to the fractional volume of the cell occupied by fluid. In particular, a unit value of F corresponds to a cell full of fluid, whereas a zero value indicates that the cell contains no fluid. Cells with F values between zero and one contain a free surface. SOLA-VOF uses an Eulerian mesh of rectangular cells having variable sizes. The fluid equations solved are the finite difference approximations of the Navier-Stokes equations. 3 - Restrictions on the complexity of the problem: The setting of array dimensions is controlled through PARAMETER statements

  1. Fluid transients in fluid-structure interaction - 1987; Proceedings of the Third Symposium, Boston, MA, Dec. 13-18, 1987

    Science.gov (United States)

    Dodge, F. T.; Moody, F. J.

    Papers are presented on a three-dimensional analysis of liquid oxygen sloshing in the Space Shuttle external tank, the flow-induced oscillations of a novel double-wing spring-mass system, added mass and damping coefficents for a hexagonal cylinder, and a new hydraulic pressure intensifier using an oil hammer. Other topics include junction losses in pulsating flow, a finite element analysis of a slender fluid-structure system, two-phase blowdown through a short tube, and check valve behavior under transient flow conditions. Also considered are forces in initially empty pipes subject to rapid filling, a modal analysis of vibrations in liquid-filled piping systems, efficient computation of the pipeline break problem, and fluid dynamics associated with ductile pipeline fracture.

  2. Closed fluid system without moving parts controls temperature

    Science.gov (United States)

    Stenger, F. J.

    1965-01-01

    Closed fluid system maintains a constant temperature in an insulated region without the use of any moving parts. Within the system, the energy for thermodynamic cycling of two-phase heat transfer fluid and a hydraulic fluid is entirely supplied by the heat generated in the thermally insulated region.

  3. Thermal fluids in low temperature systems. Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Lynde, P.G.; Yonkers, E.D. [Albert Kahn Associates, Inc., Detroit, MI (United States)

    1996-02-01

    This article focuses on the lifeblood of these systems, the thermal transfer fluid itself. Low-temperature heat-transfer fluids are used to condition engine fluids, test chambers, cooling fluids, or a combination of these in environmental test facilities. To meet the specific test criteria, these fluids may be required to maintain pumpability and function with thermal efficiency at temperatures as low as {minus}120 F. This article presents information related to heat-transfer fluids used in low-temperature cooling applications. Three general groups of fluids are discussed: water-based antifreezes (ethylene and propylene glycol solutions); chlorinated solvents (methylene chloride and trichloroethylene); organic and synthetic coolants (diethylbenzene, two forms of dimethylpolysiloxane, heavy naphtha hydrotreated, and citrus terpene).

  4. An experimental investigation of fluid flow and wall temperature distributions in an automotive headlight

    International Nuclear Information System (INIS)

    Sousa, J.M.M.; Vogado, J.; Costa, M.; Bensler, H.; Freek, C.; Heath, D.

    2005-01-01

    Detailed measurements of wall temperatures and fluid flow velocities inside an automotive headlight with venting apertures are presented. Thermocouples have been used to characterize the temperature distributions in the walls of the reflectors under transient and steady operating conditions. Quantification of the markedly three-dimensional flow field inside the headlight cavities was achieved through the use of laser-Doppler velocimetry for the latter condition only. Significant thermal stratification occurs in the headlight cavities. The regime corresponding to steady operating conditions is characterized by the development of a vortex-dominated flow. The interaction of the main vortex flow with the stream of colder fluid entering the enclosed volume through the venting aperture contributes significantly to increase the complexity of the basic flow pattern. Globally, the results have improved the understanding of the temperature loads and fluid flow phenomena inside a modern automotive headlight

  5. NASA-VOF2D, 2-D Transient Free Surface Incompressible Fluid Dynamic

    International Nuclear Information System (INIS)

    Torrey, M.D.

    1988-01-01

    1 - Description of program or function: NASA-VOF2D is a two- dimensional, transient, free surface incompressible fluid dynamics program. It allows multiple free surfaces with surface tension and wall adhesion forces and has a partial cell treatment which allows curved boundaries and interior obstacles. 2 - Method of solution: NASA-VOF2D simulates incompressible flows with free surfaces using the volume-of-fluid (VOF) algorithm. This technique is based on the use of donor-acceptor differencing to track the free surface across an Eulerian grid. The complete Navier-Stokes equations in primitive variables for an incompressible fluid are solved by finite differences with surface tension and wall adhesion included. Optionally the pressure equation can be solved by a conjugate residual method rather than the successive over-relaxation (SOR) method

  6. Transient computational fluid dynamics analysis of emergency core cooling injection at natural circulation conditions

    International Nuclear Information System (INIS)

    Scheuerer, Martina; Weis, Johannes

    2012-01-01

    Highlights: ► Pressurized thermal shocks are important phenomena for plant life extension and aging. ► The thermal-hydraulics of PTS have been studied experimentally and numerically. ► In the Large Scale Test Facility a loss of coolant accident was investigated. ► CFD software is validated to simulate the buoyancy driven flow after ECC injection. - Abstract: Within the framework of the European Nuclear Reactor Integrated Simulation Project (NURISP), computational fluid dynamics (CFD) software is validated for the simulation of the thermo-hydraulics of pressurized thermal shocks. A proposed validation experiment is the test series performed within the OECD ROSA V project in the Large Scale Test Facility (LSTF). The LSTF is a 1:48 volume-scaled model of a four-loop Westinghouse pressurized water reactor (PWR). ROSA V Test 1-1 investigates temperature stratification under natural circulation conditions. This paper describes calculations which were performed with the ANSYS CFD software for emergency core cooling injection into one loop at single-phase flow conditions. Following the OECD/NEA CFD Best Practice Guidelines (Mahaffy, 2007) the influence of grid resolution, discretisation schemes, and turbulence models (shear stress transport and Reynolds stress model) on the mixing in the cold leg were investigated. A half-model was used for these simulations. The transient calculations were started from a steady-state solution at natural circulation conditions. The final calculations were obtained in a complete model of the downcomer. The results are in good agreement with data.

  7. Magnetocaloric effect in temperature-sensitive magnetic fluids

    Indian Academy of Sciences (India)

    Unknown

    magnetization, heat capacity of the material and carrier liquid. In this paper, we report the magnetocaloric pro- perties of certain temperature-sensitive magnetic fluids. Here, an indirect measurement technique to determine the change in entropy using temperature-dependent magnetic property of magnetic fluid, is reported.

  8. Validation of a fluid-structure interaction numerical model for predicting flow transients in arteries.

    Science.gov (United States)

    Kanyanta, V; Ivankovic, A; Karac, A

    2009-08-07

    Fluid-structure interaction (FSI) numerical models are now widely used in predicting blood flow transients. This is because of the importance of the interaction between the flowing blood and the deforming arterial wall to blood flow behaviour. Unfortunately, most of these FSI models lack rigorous validation and, thus, cannot guarantee the accuracy of their predictions. This paper presents the comprehensive validation of a two-way coupled FSI numerical model, developed to predict flow transients in compliant conduits such as arteries. The model is validated using analytical solutions and experiments conducted on polyurethane mock artery. Flow parameters such as pressure and axial stress (and precursor) wave speeds, wall deformations and oscillating frequency, fluid velocity and Poisson coupling effects, were used as the basis of this validation. Results show very good comparison between numerical predictions, analytical solutions and experimental data. The agreement between the three approaches is generally over 95%. The model also shows accurate prediction of Poisson coupling effects in unsteady flows through flexible pipes, which up to this stage have only being predicted analytically. Therefore, this numerical model can accurately predict flow transients in compliant vessels such as arteries.

  9. Fluid-Structure Interaction Analysis on Turbulent Annular Seals of Centrifugal Pumps during Transient Process

    Directory of Open Access Journals (Sweden)

    Qinglei Jiang

    2011-01-01

    Full Text Available The current paper studies the influence of annular seal flow on the transient response of centrifugal pump rotors during the start-up period. A single rotor system and three states of annular seal flow were modeled. These models were solved using numerical integration and finite difference methods. A fluid-structure interaction method was developed. In each time step one of the three annular seal models was chosen to simulate the annular seal flow according to the state of rotor systems. The objective was to obtain a transient response of rotor systems under the influence of fluid-induced forces generated by annular seal flow. This method overcomes some shortcomings of the traditional FSI method by improving the data transfer process between two domains. Calculated results were in good agreement with the experimental results. The annular seal was shown to have a supportive effect on rotor systems. Furthermore, decreasing the seal clearance would enhance this supportive effect. In the transient process, vibration amplitude and critical speed largely changed when the acceleration of the rotor system increased.

  10. SOLA-VOF: a solution algorithm for transient fluid flow with multiple free boundaries

    International Nuclear Information System (INIS)

    Nichols, B.D.; Hirt, C.W.; Hotchkiss, R.S.

    1980-08-01

    In this report a simple, but powerful, computer program is presented for the solution of two-dimensional transient fluid flow with free boundaries. The SOLA-VOF program, which is based on the concept of a fractional volume of fluid (VOF), is more flexible and efficient than other methods for treating arbitrary free boundaries. SOLA-VOF has a variety of user options that provide capabilities for a wide range of applications. Its basic mode of operation is for single fluid calculations having multiple free surfaces. However, SOLA-VOF can also be used for calculations involving two fluids separated by a sharp interface. In either case, the fluids may be treated as incompressible or as having limited compressibility. Surface tension forces with wall adhesion are permitted in both cases. Internal obstacles may be defined by blocking out any desired combination of cells in the mesh, which is composed of rectangular cells of variable size. SOLA-VOF is an easy-to-use program. Its logical parts are isolated in separate subroutines, and numerous special features have been included to simplify its operation, such as an automatic time-step control, a flexible mesh generator, extensive output capabilities, a variety of optional boundary conditions, and instructive internal documentation

  11. Numerical methods and parallel algorithms for fast transient strongly coupled fluid-structure dynamics

    International Nuclear Information System (INIS)

    Faucher, V.

    2014-01-01

    This HDR is dedicated to the research in the framework of fast transient dynamics for industrial fluid-structure systems carried in the Laboratory of Dynamic Studies from CEA, implementing new numerical methods for the modelling of complex systems and the parallel solution of large coupled problems on supercomputers. One key issue for the proposed approaches is the limitation to its minimum of the number of non-physical parameters, to cope with constraints arising from the area of usage of the concepts: safety for both nuclear applications (CEA, EDF) and aeronautics (ONERA), protection of the citizen (EC/JRC) in particular. Kinematic constraints strongly coupling structures (namely through unilateral contact) or fluid and structures (with both conformant or non-conformant meshes depending on the geometrical situation) are handled through exact methods including Lagrange Multipliers, with consequences on the solution strategy to be dealt with. This latter aspect makes EPX, the simulation code where the methods are integrated, a singular tool in the community of fast transient dynamics software. The document mainly relies on a description of the modelling needs for industrial fast transient scenarios, for nuclear applications in particular, and the proposed solutions built in the framework of the collaboration between CEA, EDF (via the LaMSID laboratory) and the LaMCoS laboratory from INSA Lyon. The main considered examples are the tearing of the fluid-filled tank after impact, the Code Disruptive Accident for a Generation IV reactor or the ruin of reinforced concrete structures under impact. Innovative models and parallel algorithms are thus proposed, allowing to carry out with robustness and performance the corresponding simulations on supercomputers made of interconnected multi-core nodes, with a strict preservation of the quality of the physical solution. This was particularly the main point of the ANR RePDyn project (2010-2013), with CEA as the pilot. (author

  12. A computer program for transient incompressible fluid flow based on quadratic finite elements

    International Nuclear Information System (INIS)

    Laval, H.

    1981-01-01

    The computer code CONVEC is a general computer program designed for the solution of transient two-dimensional incompressible fluid flow problems. The solution procedure is based on the finite element method. The class of problems treated by the present version of CONVEC are those described by the time-dependent, two-dimensional (plane or axisymmetric) form of the Navier-Stokes equations. The flow field is assumed to be laminar and the fluid Newtonian and incompressible within the Boussinesq approximation. The present report is intended to provide a description of the input data necessary to access and execute the code. In the following sections, the basic dimensions and input data of CONVEC are described. Then a test problem is solved in order to illustrate the input and output of the code

  13. Volume and density changes of biological fluids with temperature

    Science.gov (United States)

    Hinghofer-Szalkay, H.

    1985-01-01

    The thermal expansion of human blood, plasma, ultrafiltrate, and erythrocycte concentration at temperatures in the range of 4-48 C is studied. The mechanical oscillator technique which has an accuracy of 1 x 10 to the -5 th g/ml is utilized to measure fluid density. The relationship between thermal expansion, density, and temperature is analyzed. The study reveals that: (1) thermal expansion increases with increasing temperature; (2) the magnitude of the increase declines with increasing temperature; (3) thermal expansion increases with density at temperatures below 40 C; and (4) the thermal expansion of intracellular fluid is greater than that of extracellular fluid in the temperature range of 4-10 C, but it is equal at temperatures greater than or equal to 40 C.

  14. A Pressure Transient Model for Power-Law Fluids in Porous Media Embedded with a Tree-Shaped Fractal Network

    Directory of Open Access Journals (Sweden)

    Xiao-Hua Tan

    2014-01-01

    Full Text Available This work studies the pressure transient of power-law fluids in porous media embedded with a tree-shaped fractal network. A pressure transient model was created based on the fractal properties of tree-shaped capillaries, generalized Darcy’s law and constitutive equation for power-law fluids. The dimensionless pressure model was developed using the Laplace transform and Stehfest numerical inversion method. According to the model’s solution, the bi-logarithmic type curves of power-law fluids in porous media embedded with a tree-shaped fractal network are illustrated. The influences of different fractal factors and Power-law fluids parameters on pressure transient responses are discussed.

  15. Magnetocaloric effect in temperature-sensitive magnetic fluids

    Indian Academy of Sciences (India)

    Unknown

    Magnetic fluid; pyromagnetic coefficient; Curie temperature. 1. Introduction. A magnetic fluid also known as a ferrofluid is a suspen- sion of nanosize ferromagnetic or ferrimagnetic particles in a carrier liquid. Upon application of magnetic field, the entropy associated with the magnetic degree of freedom is changed due to the ...

  16. A scaling approach for fluid mixing in rapid boron-dilution transients

    International Nuclear Information System (INIS)

    Gavrilas, Mirela; Palazov, Vesselin

    1999-01-01

    The issue of rapid-boron dilution transients has been investigated for a decade with few definitive conclusions. The potential reactivity insertion that would result from the transport of a boron-dilute slug to the core region depends on the spatial and temporal concentration of neutron poison in the fluid that penetrates the core. Difficulties in assessing the consequences of a boron-dilution transient lie in the diversity of postulated on-set scenarios, and in the large dependence of the resulting reactivity insertion on plant conditions and geometric features. The University of Maryland (UM) 2 x 4 Thermohydraulic Loop Facility is collecting code validation data for rapid boron-dilution transients. The data has to be representative of the prototype. scaling thus becomes an important consideration. The mixing of the boron-dilute slug with the highly borated coolant present in the primary system is advective-diffusive. Therefore, the scaling approach involves extracting relevant parameters from the advection-diffusion equation. The dimensionless numbers that govern mixing are shown to be the Strouhal and Schmidt numbers. They have to be considered simultaneously to properly scale the flow in the model facility. A closer investigation of the relation between these two numbers reveals that, for fully developed turbulent flows, matching only one of these numbers is sufficient. This conclusion is substantiated by experimental results from Vattenfall. (author)

  17. Poiseuille Flow of Fluid Whose Viscosity is Temperature Dependent ...

    African Journals Online (AJOL)

    We discuss a fluid flowing between two parallel plates. We assume a Poiseuille flow. Furthermore, we assume that the viscosity μ, depends on temperature T. We show that the velocity equation has two solutions. Graph features prominently in the presentation.

  18. Low-temperature heat capacity of magnetic fluids

    Science.gov (United States)

    Lebedev, A. V.

    2008-12-01

    This paper continues the previous investigation into a recently discovered phenomenon of magnetic fluid solidification at temperatures essentially exceeding the freezing point of the base fluid. Physically, this phenomenon is related to the fact that at decreasing temperatures the magnetic fluid loses fluidity (with its viscosity tending to infinity) at a temperature higher than the freezing point of the base fluid. The main factor determining the freezing point is the type of the surface-active substance covering the particles. A group of different surfactants is examined with the aim of finding the lowest possible solidification temperature. The best result is obtained for linoleic acid (-100°C). In order to gain a deeper insight into the mechanisms of fluid solidification, a series of thermophysical measurements has been done. Heat capacity measurements made for an isooctane-based magnetic fluid stabilized by oleic acid at a temperature ranging from -130°C to 0 did not reveal any noticeable heat capacity anomalies in the vicinity of the solidification temperature. This suggests that the solidification of the magnetic fluid proceeds without phase transition. The highest peak of the heat flux is observed at the freezing point of isooctane. The position of the maximum slightly changes with the concentration of magnetic particles. With an increase of the concentration the temperature of the heat flux maximum decreases. In the presence of free oleic acid in isooctane a low peak is observed at a temperature of about -15°C. The peak position is independent of the oleic acid concentration. Tables 1, Figs 7, Refs 1.

  19. Rheological behavior of drilling fluids under low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Lomba, Rosana F.T.; Sa, Carlos H.M. de; Brandao, Edimir M. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas]. E-mails: rlomba, chsa, edimir@cenpes.petrobras.com.br

    2000-07-01

    The so-called solid-free fluids represent a good alternative to drill through productive zones. These drill-in fluids are known to be non-damaging to the formation and their formulation comprise polymers, salts and acid soluble solids. Xanthan gum is widely used as viscosifier and modified starch as fluid loss control additive. The salts most commonly used are sodium chloride and potassium chloride, although the use of organic salt brines has been increasing lately. Sized calcium carbonate is used as bridging material, when the situation requires. The low temperatures encountered during deep water drilling demand the knowledge of fluid rheology at this temperature range. The rheological behavior of drill-in fluids at temperatures as low as 5 deg C was experimentally evaluated. Special attention was given to the low shear rate behavior of the fluids. A methodology was developed to come up with correlations to calculate shear stress variations with temperature. The developed correlations do not depend on a previous choice of a rheological model. The results will be incorporated in a numerical simulator to account for temperature effects on well bore cleaning later on. (author)

  20. Temperature dependence of photonic crystals based on thermoresponsive magnetic fluids

    International Nuclear Information System (INIS)

    Pu Shengli; Bai Xuekun; Wang Lunwei

    2011-01-01

    The influence mechanisms of temperature on the band gap properties of the magnetic fluids based photonic crystals are elaborated. A method has been developed to obtain the temperature-dependent structure information (A sol /A) from the existing experimental data and then two critical parameters, i.e. the structure ratio (d/a) and the refractive index contrast (Δn) of the magnetic fluids photonic crystals are deduced for band diagram calculations. The temperature-dependent band gaps are gained for z-even and z-odd modes. Band diagram calculations display that the mid frequencies and positions of the existing forbidden bands are not very sensitive to the temperature, while the number of the forbidden bands at certain strengths of magnetic field may change with the temperature variation. The results presented in this work give a guideline for designing the potential photonic devices based on the temperature characteristics of the magnetic fluids based photonic crystals and are helpful for improving their quality. - Highlights: → Mechanisms of temperature dependence of magnetic fluids based photonic crystals are elaborated. → Properties of existing forbidden bands have relatively fine temperature stability. → Disappearance of existing forbidden band is found for some magnetic fields. → Emergence of new forbidden band with temperature is found for some magnetic fields.

  1. Modeling of thermoelectric module operation in inhomogeneous transient temperature field using finite element method

    Directory of Open Access Journals (Sweden)

    Nikolić Radovan H.

    2014-01-01

    Full Text Available This paper is the result of research and operation modeling of the new systems for cooling of cutting tools based on thermoelectric module. A copper inlay with thermoelectric module on the back side was added to a standard turning tool for metal processing. For modeling and simulating the operation of thermoelectric module, finite element method was used as a method for successful solving the problems of inhomogeneous transient temperature field on the cutting tip of lathe knives. Developed mathematical model is implemented in the software package PAK-T through which numerical results are obtained. Experimental research was done in different conditions of thermoelectric module operation. Cooling of the hot module side was done by a heat exchanger based on fluid using automatic temperature regulator. After the calculation is done, numerical results are in good agreement with experimental. It can be concluded that developed mathematical model can be used successfully for modeling of cooling of cutting tools. [Projekat Ministarstva nauke Republike Srbije, br. TR32036

  2. Magnetocaloric effect in temperature-sensitive magnetic fluids

    Indian Academy of Sciences (India)

    The magnetocaloric properties of three different temperature-sensitive magnetic fluids were studied. The pyromagnetic coefficient for all the materials were obtained and it was found that this property depends on physical and magnetic properties like size, magnetization and Curie temperature. A theoretical model was ...

  3. Analysis for transient temperature distribution two phase flow using test section QUEEN-02

    International Nuclear Information System (INIS)

    Ainur Rosidi; Joko Prasetio; Edy Sumarno; Kiswanta; Heru Bambang

    2013-01-01

    Experiments on the transient temperature distribution using a two-phase flow test facility QUEEN-02 and BETA test loop was conducted. Purpose of the experiment is to study temperature distribution during the transient cooling process. Experiments performed with the variation of the initial temperature of hot rod test section QUEEN-02 of 350 °C and 500 °C as well as the flow of cooling water temperature is 90 °C with the direction of flow from the bottom up from the BETA test loop. The analysis shows that temperature have the same downward trend in its every point thermocouple for the same initial temperature during cooling. Initial temperature of 350 °C hot rods produced when temperatures drop to 90 °C (the same as the temperature of the cooling water) for 78 seconds while the initial temperature of 500 °C produces hot rod drop time 190 seconds. (author)

  4. Equilibrium temperature in a clump of bacteria heated in fluid.

    OpenAIRE

    Davey, K R

    1990-01-01

    A theoretical model was developed and used to estimate quantitatively the "worst case", i.e., the longest, time to reach equilibrium temperature in the center of a clump of bacteria heated in fluid. For clumps with 10 to 10(6) cells heated in vapor, such as dry and moist air, and liquid fluids such as purees and juices, predictions show that temperature equilibrium will occur with sterilization temperatures up to 130 degrees C in under 0.02 s. Model development highlighted that the controllin...

  5. NASA-VOF3D, 3-D Transient, Free Surface, Incompressible Fluid Dynamic

    International Nuclear Information System (INIS)

    Torrey, M.D.

    1992-01-01

    1 - Description of program or function: NASA-VOF3D is a three- dimensional, transient, free surface, incompressible fluid dynamics program. It is specifically designed to calculate confined flows in a low gravity environment in which surface physics must be accurately treated. It allows multiple free surfaces with surface tension and wall adhesion and includes a partial cell treatment that allows curved boundaries and internal obstacles. Variable mesh spacing is permitted in all three coordinate directions. Boundary conditions available are rigid free-slip wall, rigid no-slip, wall, continuative, periodic, and specified pressure outflow boundary. 2 - Method of solution: NASA-VOF3D simulates incompressible flows with free surfaces using the volume-of-fluid (VOF) algorithm. This technique is based on the use of donor-acceptor differencing to track the free surface across an Eulerian grid. The free surfaces are treated by introducing a function defined to be unity at any point occupied by the fluid and zero elsewhere. The complete Navier- Stokes equations for an incompressible fluid are solved by finite differences with surface tension effects included. Wall adhesion may be included or neglected as a user option. The pressures (and velocities) are advanced in time throughout the computing mesh by either a conjugate residual method or the successive over-relaxation (SOR) method. The conjugate residual method is vectorized for the Cray and uses a scaled coefficient matrix. 3 - Restrictions on the complexity of the problem: NASA-VOF3D is restricted to cylindrical coordinate representation of the geometry. A three-dimensional wall-adhesion procedure is available only for straight-walled containers

  6. Busy period analysis, rare events and transient behavior in fluid flow models

    Directory of Open Access Journals (Sweden)

    Søren Asmussen

    1994-01-01

    Full Text Available We consider a process {(Jt,Vt}t≥0 on E×[0,∞, such that {Jt} is a Markov process with finite state space E, and {Vt} has a linear drift ri on intervals where Jt=i and reflection at 0. Such a process arises as a fluid flow model of current interest in telecommunications engineering for the purpose of modeling ATM technology. We compute the mean of the busy period and related first passage times, show that the probability of buffer overflow within a busy cycle is approximately exponential, and give conditioned limit theorems for the busy cycle with implications for quick simulation. Further, various inequalities and approximations for transient behavior are given. Also explicit expressions for the Laplace transform of the busy period are found. Mathematically, the key tool is first passage probabilities and exponential change of measure for Markov additive processes.

  7. Identification of relaxation parameter of a physical model of vein from fluid transient experiment

    Directory of Open Access Journals (Sweden)

    Hromádka David

    2014-03-01

    Full Text Available This paper presents a new fluid transient inflation experiment applied on a physical model of vein (short latex tube, 5mm diameter. Aim of experiments is assessment of wall viscous behaviour from attenuated pulsation of the tested sample. Experimental data obtained from dynamic test are compared with numerical simulation and a viscoelastic parameter of Haslach constitutive model is identified. It is verified that the viscoelasticity of wall has a greater impact to the damping of pulsation than the viscosity of water filling the sample and the attached capillary. Volume of sample depends on internal pressure measured by a pressure transducer. The maximum dissipation constitutive model of viscoelastic wall sample was employed for description of viscoelastic behaviour. Frequency of natural oscillation of pressure is determined by inertia of water column within the tested sample and attached capillary and by the tested specimen stiffness. The pressure pulsations are initiated by a sudden pressure drop at water surface.

  8. The effect of transient conditions on synovial fluid protein aggregation lubrication.

    Science.gov (United States)

    Myant, Connor William; Cann, Philippa

    2014-06-01

    Little is known about the prevailing lubrication mechanisms in artificial articular joints and the way in which these mechanisms determine implant performance. The authors propose that interfacial film formation is determined by rheological changes local to the contact and is driven by aggregation of synovial fluid proteins within the contact inlet region. A direct relationship between contact film thickness and size of the protein aggregation within the inlet region has been observed. In this paper the latest experimental observations of the protein aggregation mechanism are presented for conditions which more closely mimic joint kinematics and loading. Lubricant films were measured for a series of bovine calf serum solutions for CoCrMo femoral component sliding against a glass disc. An optical interferometric apparatus was employed to study the effects of transient motion on lubricant film formation. Central film thickness was measured as a function of time for a series of transient entrainment conditions; start-up motion, steady-state and non-steady-state uni-directional sliding, and bi-directional sliding. The size of the inlet aggregations was found to be dependent upon the type of transient condition. Thick protective protein films were observed to build up within the main contact region for all uni-directional tests. In contrast the inlet aggregation was not observed for bi-directional tests. Contact film thickness and wear was found to be directly proportional to the presence of the inlet protein phase. The inlet phase and contact films were found to be fragile when disrupted by surface scratches or subjected to reversal of the sliding direction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Low-temperature susceptibility of concentrated magnetic fluids

    Science.gov (United States)

    Pshenichnikov, Alexander F.; Lebedev, Alexander V.

    2004-09-01

    The initial susceptibility of concentrated magnetic fluids (ferrocolloids) has been experimentally investigated at low temperatures. The results obtained indicate that the interparticle dipole-dipole interactions can increase the susceptibility by several times as compared to the Langevin value. It is shown that good agreement between recent theoretical models and experimental observations can be achieved by introducing a correction for coefficients in the series expansion of susceptibility in powers of density and aggregation parameter. A modified equation for equilibrium susceptibility is offered to sum over corrections made by Kalikmanov (Statistical Physics of Fluids, Springer-Verlag, Berlin, 2001) and by B. Huke and M. Lücke (Phys. Rev. E 67, 051403, 2003). The equation gives good quantitative agreement with the experimental data in the wide range of temperature and magnetic particles concentration. It has been found that in some cases the magnetic fluid solidification occurs at temperature several tens of kelvins higher than the crystallization temperature of the carrier liquid. The solidification temperature of magnetic fluids is independent of particle concentration (i.e., magneto-dipole interparticle interactions) and dependent on the surfactant type and carrier liquid. This finding allows us to suggest that molecular interactions and generation of some large-scale structure from colloidal particles in magnetic fluids are responsible for magnetic fluid solidification. If the magnetic fluid contains the particles with the Brownian relaxation mechanism of the magnetic moment, the solidification manifests itself as the peak on the "susceptibility-temperature" curve. This fact proves the dynamic nature of the observed peak: it arises from blocking the Brownian mechanism of the magnetization relaxation.

  10. Measuring transient high temperature thermal phenomena in hostile environment

    International Nuclear Information System (INIS)

    Brenden, B.B.; Hartman, J.S.; Reich, F.R.

    1980-01-01

    The design of equipment for measuring temperature and strain in a rapidly heated and pressurized cylinder of stainless steel is discussed. Simultaneous cinematography of the full circumference of the cylinder without interference with temperature and strain measurements is also illustrated. The integrated system uses a reflective chamber for the sample and requires careful consideration of the spectral energy distribution utilized by each instrument

  11. Effect of temperature on fluidity of irrigation fluids.

    Science.gov (United States)

    de Freitas Fonseca, M; Andrade, C M; de Mello, M J E; Crispi, C P

    2011-01-01

    Fluid overload is a major complication during surgical hysteroscopy and transurethral resection of the prostate. We evaluated the role of temperature on absorption of the irrigation solution (IRRSOL) in endoscopic surgery when warm fluids are used to minimize hypothermia. We measured the density and dynamic fluidity of five IRRSOLs (0.9% saline, Ringer's lactate, 1.5% glycine, 5% dextrose, and 2.5/0.54% sorbitol/mannitol) at three different temperatures (17°C, 27°C, and 37°C). Next, a hypothetical typical endoscopic resection surgery was defined as the reference: total IRRSOL absorption (750 ml), resection time (30 min), and IRRSOL temperature (17°C). On the basis of Poiseuille's law, we calculated new values for intravasation using the predetermined dynamic fluidity values at 27°C and 37°C to assess the influence of the IRRSOL temperature on intravascular absorption (under identical conditions) and then estimated the time to reach fluid overload at each temperature with both electrolyte and non-electrolyte IRRSOLs. Density and fluidity varied with temperature. In these specific conditions, when the temperature of the IRRSOL was increased from 17°C to 37°C, the mean absorption rate was predicted to increase about 54% and the theoretical 'safe' duration of surgery decreased by ∼65%, for both electrolyte and non-electrolyte IRRSOLs. The reduction in the 'safe' duration of surgery averaged 21.1 min for non-electrolyte IRRSOL (reduced from 60.0 to 38.9 min) and 35.2 min when electrolyte IRRSOLs were used (reduced from 100.0 to 64.8 min). Compared with cold fluids, isothermic IRRSOL may increase the risk of fluid overload because dynamic viscosity decreases at higher temperatures.

  12. Syndrome of transient headache and neurologic deficits with cerebrospinal fluid lymphocytosis (HaNDL): a pediatric case report.

    Science.gov (United States)

    Gonçalves, Daniel; Meireles, Joana; Rocha, Ruben; Sampaio, Mafalda; Leão, Miguel

    2013-12-01

    The syndrome of transient headache and neurologic deficits associated with cerebrospinal fluid lymphocytosis (HaNDL) is characterized by 1 or more episodes of severe headache, transient neurologic deficits, and lymphocytic pleocytosis in the cerebrospinal fluid. It is a benign and self limited disorder seldom reported in pediatric age. We report the case of a 14-year-old girl who suffered from 2 episodes of headache with transient focal neurologic deficits and pleocytosis consistent with the syndrome of HaNDL. This entity should be taken into account as a differential diagnosis in otherwise healthy children presenting with recurrent headache and acute neurologic deficits. Repeated use of invasive and expensive laboratory and imaging investigations can be avoided when the diagnosis of the syndrome of HaNDL is correctly established.

  13. Transient thermodynamic behavior of cryogenic mixed fluid thermosiphon and its cool-down time estimation

    Science.gov (United States)

    Lee, Jisung; Kim, Youngkwon; Jeong, Sangkwon

    2010-05-01

    Thermosiphon is an efficient heat transfer device by utilizing latent heat of fluid at liquid-vapor phase change. One of the disadvantages of thermosiphon, however, is that the operational temperature range is fundamentally limited from the critical point to the triple point of the working fluid to maintain two phase state. Nitrogen (N 2) and tetrafluoromethane (CF 4) were selected as the mixed working fluid to widen their original operational temperature range. Thermodynamic behavior of mixture and its effect on the cool-down time were investigated. A simple calculation model was proposed to estimate the cool-down time of the thermosiphon evaporator prior to experiments. The calculated results agreed well with the experimental results within 5% error. The cool-down time reduction was not achieved by mixing two components at once due to the separation of mixture. One idea to avoid this problem was suggested in this paper where the estimated cool-down time was reduced 17.8% compared to pure N 2.

  14. High-temperature transient creep properties of CANDU pressure tubes

    International Nuclear Information System (INIS)

    Fong, R.W.L.; Chow, C.K.

    2002-06-01

    During a hypothetical large break loss-of-coolant accident (LOCA), the coolant flow would be reduced in some fuel channels and would stagnate and cause the fuel temperature to rise and overheat the pressure tube. The overheated pressure tube could balloon (creep radially) into contact with its moderator-cooled calandria tube. Upon contact, the stored thermal energy in the pressure tube is transferred to the calandria tube and into the moderator, which acts as a heat sink. For safety analyses, the modelling of fuel channel deformation behaviour during a large LOCA requires a sound knowledge of the high-temperature creep properties of Zr-2.5Nb pressure tubes. To this extent, a ballooning model to predict pressure-tube deformation was developed by Shewfelt et al., based on creep equations derived using uniaxial tensile specimens. It has been recognized, however, that there is an inherent variability in the high-temperature creep properties of CANDU pressure tubes. The variability, can be due to different tube-manufacturing practices, variations in chemical compositions, and changes in microstructure induced by irradiation during service in the reactor. It is important to quantify the variability of high-temperature creep properties so that accurate predictions on pressure-tube creep behaviour can be made. This paper summarizes recent data obtained from high-temperature uniaxial creep tests performed on specimens taken from both unirradiated (offcut) and irradiated pressure tubes, suggesting that the variability is attributed mainly to the initial differences in microstructure (grain size, shape and preferred orientation) and also from tube-to-tube variations in chemical composition, rather than due to irradiation exposure. These data will provide safety analysts with the means to quantify the uncertainties in the prediction of pressure-tube contact temperatures during a postulated large break LOCA. (author)

  15. Analytical model of transient temperature and thermal stress in ...

    Indian Academy of Sciences (India)

    for certain tensile strain as modulus of elasticity increases. The most effective factor that may influence maximum hoop stress is the absorption coefficient, since it is the reciprocal of the effective depth that absorbs power. Increasing absorption power within a small depth means high temperature gradient and consequently, ...

  16. Multibody Dynamics of a Fluid Power Radial Piston Motor Including Transient Hydrodynamic Pressure Models of Lubricating Gaps

    DEFF Research Database (Denmark)

    Johansen, Per; Rømer, Daniel; Andersen, Torben Ole

    2014-01-01

    The increasing interest in hydraulic transmissions in wind and wave energy applications has created an incentive for the development of high efficiency fluid power machinery. Modeling and analysis of fluid power machinery loss mechanisms are necessary in order to accommodate this demand. At present...... fully coupled thermo-elastic models has been used to simulate and study loss mechanisms in various tribological interfaces. Consequently, a reasonable focus of further development is to couple the interface models and the rigid body mechanics of fluid power machinery. The focus of the current paper...... is a multibody dynamics model of a radial piston fluid power motor, which connects the rigid bodies through models of the transient hydrodynamic lubrication pressure in the joint clearance. A finite volume approach is used to model the pressure dynamics of the fluid film lubrication. The model structure...

  17. Intra-hole fluid convection: High-resolution temperature monitoring

    Czech Academy of Sciences Publication Activity Database

    Čermák, Vladimír; Šafanda, Jan; Krešl, Milan

    2008-01-01

    Roč. 348, č. 3-4 (2008), s. 464-479 ISSN 0022-1694 Institutional research plan: CEZ:AV0Z30120515 Keywords : temperature monitoring * convection * fluid dynamics * borehole logging Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.305, year: 2008

  18. Effect of irrigation fluid temperature on core body temperature and inflammatory response during arthroscopic shoulder surgery.

    Science.gov (United States)

    Pan, Xiaoyun; Ye, Luyou; Liu, Zhongtang; Wen, Hong; Hu, Yuezheng; Xu, Xinxian

    2015-08-01

    This study was designed to evaluate the influence of irrigation fluid on the patients' physiological response to arthroscopic shoulder surgery. Patients who were scheduled for arthroscopic shoulder surgery were prospectively included in this study. They were randomly assigned to receive warm arthroscopic irrigation fluid (Group W, n = 33) or room temperature irrigation fluid (Group RT, n = 33) intraoperatively. Core body temperature was measured at regular intervals. The proinflammatory cytokines TNF-α, IL-1, IL-6, and IL-10 were measured in drainage fluid and serum. The changes of core body temperatures in Group RT were similar with those in Group W within 15 min after induction of anesthesia, but the decreases in Group RT were significantly greater after then. The lowest temperature was 35.1 ± 0.4 °C in Group RT and 35.9 ± 0.3 °C in Group W, the difference was statistically different (P irrigation fluid compared with warm irrigation fluid. And local inflammatory response is significantly reduced by using warm irrigation fluid. It seems that warm irrigation fluid is more recommendable for arthroscopic shoulder surgery.

  19. Transient temperature fields in functionally graded materials with different shapes under convective boundary conditions

    Science.gov (United States)

    Zhao, J.; Ai, X.; Li, Y. Z.

    2007-10-01

    This paper presents analyses of the transient temperature fields in an infinite plate, an infinite solid cylinder and a solid sphere made of functionally graded materials (FGMs) under convective boundary conditions. The composition and the thermo-physical properties of the infinite FGM plate, the infinite FGM solid cylinder and the FGM solid sphere are of planar symmetric, axially symmetric and spherically symmetric distributions, respectively. The analytical formulae of the one-dimensional transient temperature fields for the three FGM solids are obtained respectively by using the separation-of-variables method and the variable substitution method. Numerical results reveal that the transient temperature fields of the FGM components exhibit similar shape effect to that of homogeneous components. The present work provides valuable basis for the investigation of the thermal shock resistance of FGMs with various shapes.

  20. Explosive Evaporating Phenomena of Cryogenic Fluids by Direct Contacting Normal Temperature Fluids

    Directory of Open Access Journals (Sweden)

    T Watanabe

    2016-09-01

    Full Text Available Cryogenic fluids have characteristics such as thermal stratification and flashing by pressure release in storage vessel. The mixture of the extreme low temperature fluid and the normal temperature fluid becomes the cause which causes pressure vessel and piping system crush due to explosive boiling and rapid freezing. In recent years in Japan, the demand of cryogenic fluids like a LH2, LNG is increasing because of the advance of fuel cell device technology, hydrogen of engine, and stream of consciousness for environmental agreement. These fuel liquids are cryogenic fluids. On the other hand, as for fisheries as well, the use of a source of energy that environment load is small has been being a pressing need. And, the need of the ice is high, as before, for keeping freshness of marine products in fisheries. Therefore, we carried out the experiments related to promotion of evaporating cryogenic fluids and generation of ice, in the contact directly of the water and liquid nitrogen. From the results of visualization, phenomena of explosive evaporating and ice forming were observed by using video camera.

  1. Feasibility Assessment of Thermal Barrier Seals for Extreme Transient Temperatures

    Science.gov (United States)

    Steinetz, Bruce M.; Dunlap, Patrick H., Jr.

    1998-01-01

    The assembly joints of modem solid rocket motor cases are generally sealed using conventional O-ring type seals. The 5500+ F combustion gases produced by rocket motors are kept a safe distance away from the seals by thick layers of phenolic insulation. Special compounds are used to fill insulation gaps leading up to the seals to prevent a direct flowpath to them. Design criteria require that the seals should not experience torching or charring during operation, or their sealing ability would be compromised. On limited occasions, NASA has observed charring of the primary O-rings of the Space Shuttle solid rocket nozzle assembly joints due to parasitic leakage paths opening up in the gap-fill compounds during rocket operation. NASA is investigating different approaches for preventing torching or charring of the primary O-rings. One approach is to implement a braided rope seal upstream of the primary O-ring to serve as a thermal barrier that prevents the hot gases from impinging on the O-ring seals. This paper presents flow, resiliency, and thermal resistance for several types of NASA rope seals braided out of carbon fibers. Burn tests were performed to determine the time to burn through each of the seals when exposed to the flame of an oxyacetylene torch (5500 F), representative of the 5500 F solid rocket motor combustion temperatures. Rope seals braided out of carbon fibers endured the flame for over six minutes, three times longer than solid rocket motor burn time. Room and high temperature flow tests are presented for the carbon seals for different amounts of linear compression. Room temperature compression tests were performed to assess seal resiliency and unit preloads as a function of compression. The thermal barrier seal was tested in a subscale "char" motor test in which the seal sealed an intentional defect in the gap insulation. Temperature measurements indicated that the seal blocked 2500 F combustion gases on the upstream side with very little temperature

  2. Numerical simulation of transient moisture and temperature distribution in polycarbonate and aluminum electronic enclosures

    DEFF Research Database (Denmark)

    Shojaee Nasirabadi, Parizad; Jabbaribehnam, Mirmasoud; Hattel, Jesper Henri

    2016-01-01

    The challenge of developing a reliable electronic product requires huge amounts of resources and knowledge. Temperature and thermal features directly affect the life of electronic products. Furthermore, moisture can be damaging for electronic components. Nowadays, computational fluid dynamics (CF...

  3. Viscous heating in fluids with temperature-dependent viscosity: implications for magma flows

    Directory of Open Access Journals (Sweden)

    A. Costa

    2003-01-01

    Full Text Available Viscous heating plays an important role in the dynamics of fluids with strongly temperature-dependent viscosity because of the coupling between the energy and momentum equations. The heat generated by viscous friction produces a local temperature increase near the tube walls with a consequent decrease of the viscosity which may dramatically change the temperature and velocity profiles. These processes are mainly controlled by the Peclét number, the Nahme number, the flow rate and the thermal boundary conditions. The problem of viscous heating in fluids was investigated in the past for its practical interest in the polymer industry, and was invoked to explain some rheological behaviours of silicate melts, but was not completely applied to study magma flows. In this paper we focus on the thermal and mechanical effects caused by viscous heating in tubes of finite lengths. We find that in magma flows at high Nahme number and typical flow rates, viscous heating is responsible for the evolution from Poiseuille flow, with a uniform temperature distribution at the inlet, to a plug flow with a hotter layer near the walls. When the temperature gradients  induced by viscous heating are very pronounced, local instabilities may occur and the triggering of secondary flows is possible. For completeness, this paper also describes magma flow in infinitely long tubes both at steady state and in transient phase.

  4. Magic angle spinning NMR below 6 K with a computational fluid dynamics analysis of fluid flow and temperature gradients.

    Science.gov (United States)

    Sesti, Erika L; Alaniva, Nicholas; Rand, Peter W; Choi, Eric J; Albert, Brice J; Saliba, Edward P; Scott, Faith J; Barnes, Alexander B

    2018-01-01

    We report magic angle spinning (MAS) up to 8.5 kHz with a sample temperature below 6 K using liquid helium as a variable temperature fluid. Cross polarization 13 C NMR spectra exhibit exquisite sensitivity with a single transient. Remarkably, 1 H saturation recovery experiments show a 1 H T 1 of 21 s with MAS below 6 K in the presence of trityl radicals in a glassy matrix. Leveraging the thermal spin polarization available at 4.2 K versus 298 K should result in 71 times higher signal intensity. Taking the 1 H longitudinal relaxation into account, signal averaging times are therefore predicted to be expedited by a factor of >500. Computer assisted design (CAD) and finite element analysis were employed in both the design and diagnostic stages of this cryogenic MAS technology development. Computational fluid dynamics (CFD) models describing temperature gradients and fluid flow are presented. The CFD models bearing and drive gas maintained at 100 K, while a colder helium variable temperature fluid stream cools the center of a zirconia rotor. Results from the CFD were used to optimize the helium exhaust path and determine the sample temperature. This novel cryogenic experimental platform will be integrated with pulsed dynamic nuclear polarization and electron decoupling to interrogate biomolecular structure within intact human cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Equilibrium temperature in a clump of bacteria heated in fluid.

    Science.gov (United States)

    Davey, K R

    1990-02-01

    A theoretical model was developed and used to estimate quantitatively the "worst case", i.e., the longest, time to reach equilibrium temperature in the center of a clump of bacteria heated in fluid. For clumps with 10 to 10(6) cells heated in vapor, such as dry and moist air, and liquid fluids such as purees and juices, predictions show that temperature equilibrium will occur with sterilization temperatures up to 130 degrees C in under 0.02 s. Model development highlighted that the controlling influence on time for heating up the clump is the surface convection thermal resistance and that the internal conduction resistance of the clump mass is negligible by comparison. The time for a clump to reach equilibrium sterilization temperature was therefore decreased with relative turbulence (velocity) of the heating fluid, such as occurs in many process operations. These results confirm widely held suppositions that the heat-up time of bacteria in vapor or liquid is not significant with usual sterilization times.

  6. Simulation of dynamic behaviour of a digital displacement motor using transient 3d computational fluid dynamics analysis

    DEFF Research Database (Denmark)

    Rømer, Daniel; Johansen, Per; Pedersen, Henrik C.

    2013-01-01

    A fast rotating 1500 rpm radial piston digital displacement motor connected to a 350 bar high pressure manifold is simulated by means of transient 3D CFD analysis of a single pressure chamber. The analysis includes dynamic piston and valve movement, influencing the boundaries of the fluid domain....... Movement of the low and high pressure valves is coupled to fluid forces and valve actuation is included to control the valve movement according to the pressure cycle of the digital displacement motor. The fluid domain is meshed using a structured/unstructured non-conformal mesh, which is updated throughout...... the simulation using layering zones as required by the moving fluid boundaries. The effect of cavitation at low pressures is included by implementing a pressure dependent density, based on an effective bulk modulus model. In addition, pressure dependent oil viscosity is included in the analysis. As a result...

  7. Application of computational fluid dynamics and fluid structure interaction techniques for calculating the 3D transient flow of journal bearings coupled with rotor systems

    Science.gov (United States)

    Li, Qiang; Yu, Guichang; Liu, Shulian; Zheng, Shuiying

    2012-09-01

    Journal bearings are important parts to keep the high dynamic performance of rotor machinery. Some methods have already been proposed to analysis the flow field of journal bearings, and in most of these methods simplified physical model and classic Reynolds equation are always applied. While the application of the general computational fluid dynamics (CFD)-fluid structure interaction (FSI) techniques is more beneficial for analysis of the fluid field in a journal bearing when more detailed solutions are needed. This paper deals with the quasi-coupling calculation of transient fluid dynamics of oil film in journal bearings and rotor dynamics with CFD-FSI techniques. The fluid dynamics of oil film is calculated by applying the so-called "dynamic mesh" technique. A new mesh movement approach is presented while the dynamic mesh models provided by FLUENT are not suitable for the transient oil flow in journal bearings. The proposed mesh movement approach is based on the structured mesh. When the journal moves, the movement distance of every grid in the flow field of bearing can be calculated, and then the update of the volume mesh can be handled automatically by user defined function (UDF). The journal displacement at each time step is obtained by solving the moving equations of the rotor-bearing system under the known oil film force condition. A case study is carried out to calculate the locus of the journal center and pressure distribution of the journal in order to prove the feasibility of this method. The calculating results indicate that the proposed method can predict the transient flow field of a journal bearing in a rotor-bearing system where more realistic models are involved. The presented calculation method provides a basis for studying the nonlinear dynamic behavior of a general rotor-bearing system.

  8. Advanced parallel strategy for strongly coupled fast transient fluid-structure dynamics with dual management of kinematic constraints

    International Nuclear Information System (INIS)

    Faucher, Vincent

    2014-01-01

    Simulating fast transient phenomena involving fluids and structures in interaction for safety purposes requires both accurate and robust algorithms, and parallel computing to reduce the calculation time for industrial models. Managing kinematic constraints linking fluid and structural entities is thus a key issue and this contribution promotes a dual approach over the classical penalty approach, introducing arbitrary coefficients in the solution. This choice however severely increases the complexity of the problem, mainly due to non-permanent kinematic constraints. An innovative parallel strategy is therefore described, whose performances are demonstrated on significant examples exhibiting the full complexity of the target industrial simulations. (authors)

  9. Single Ion transient-IBIC analyses of semiconductor devices using a cryogenic temperature stage

    International Nuclear Information System (INIS)

    Laird, J.S.; Bardos, R.; Legge, G.J.F.; Jagadish, C.

    1998-01-01

    A new Transient - IBIC data acquisition and analysis system at MARC is described. A discussion on the need for single ion control and temperature control is also given. The recorded signal is used as the trigger for beam pulsing. The new cryostatic temperature control stage is introduced. Data is presented on line profiles across the edge of a Au-Si junction collected over the temperature range of 25-300K using a developed C-V and I-V variable temperature stage incorporating a liquid helium cryostat. It demonstrates the potential improvements in spatial resolution in materials of long lifetime by mapping on timing windows around the prompt charge component in the charge transient

  10. Single Ion transient-IBIC analyses of semiconductor devices using a cryogenic temperature stage

    Energy Technology Data Exchange (ETDEWEB)

    Laird, J.S.; Bardos, R.; Legge, G.J.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Jagadish, C. [Australian National Univ., Canberra, ACT (Australia). School of Physics, Electronic Materials Engineering

    1998-06-01

    A new Transient - IBIC data acquisition and analysis system at MARC is described. A discussion on the need for single ion control and temperature control is also given. The recorded signal is used as the trigger for beam pulsing. The new cryostatic temperature control stage is introduced. Data is presented on line profiles across the edge of a Au-Si junction collected over the temperature range of 25-300K using a developed C-V and I-V variable temperature stage incorporating a liquid helium cryostat. It demonstrates the potential improvements in spatial resolution in materials of long lifetime by mapping on timing windows around the prompt charge component in the charge transient. 2 figs.

  11. User's guide to HEATRAN: a computer program for three-dimensional transient fluid-flow and heat-transfer analysis

    International Nuclear Information System (INIS)

    Wong, C.N.C.; Cheng, S.K.; Todreas, N.E.

    1982-01-01

    This report provides the HEATRAN user with programming and input information. HEATRAN is a computer program which is written to analyze the transient three dimensional single phase incompressible fluid flow and heat transfer problem. In this report, the programming information is given first. This information includes details concerning the code and structure. The description of the required input variables is presented next. Following the input description, the sample problems are described and HEATRAN's results are presented

  12. An expression for transient thermal stress in a nonhomogeneous plate with temperature variation through thickness

    International Nuclear Information System (INIS)

    Sugano, Y.

    1987-01-01

    An expression for nonzero thermal stress in a nonhomogeneous flat plate with arbitrary variation in mechanical properties is presented under a transient temperature distribution. Especially an equation for nonzero thermal stress and its numerical calculation showing the effect of nonhomogeneous thermal and mechanical properties on temperature and thermal stress distribution, is given for the case of an exponentially varying thermal conductivity and Young's modulus, but for a homogeneous Poisson's ratio and coefficient of linear thermal expansion. (orig.) [de

  13. CRISTE - a subcomputer code for axial distribution, transient, of temperatures in a reactor channel of PWR

    International Nuclear Information System (INIS)

    Silva Neto, A.J. da; Roberty, N.C.; Carmo, E.G.D. do.

    1983-12-01

    The subroutine CRISTE was developed to calculate the temperature distribution for transients in a PWR coolant. The Crank-Nicholson approximation was used for the temporal discretization and a semi-analytical spatial solution was obtained. The temperature in the cladding was simulated by a routine adapted from the permanent distribution, and was used in on iterative method, following CRISTE subroutine. (E.G.) [pt

  14. Computer methods for transient fluid-structure analysis of nuclear reactors

    International Nuclear Information System (INIS)

    Belytschko, T.; Liu, W.K.

    1985-01-01

    Fluid-structure interaction problems in nuclear engineering are categorized according to the dominant physical phenomena and the appropriate computational methods. Linear fluid models that are considered include acoustic fluids, incompressible fluids undergoing small disturbances, and small amplitude sloshing. Methods available in general-purpose codes for these linear fluid problems are described. For nonlinear fluid problems, the major features of alternative computational treatments are reviewed; some special-purpose and multipurpose computer codes applicable to these problems are then described. For illustration, some examples of nuclear reactor problems that entail coupled fluid-structure analysis are described along with computational results

  15. A 2-D basin-scale methane hydrate model: equilibrium and transient sensitivity to ocean temperature. (Invited)

    Science.gov (United States)

    Archer, D. E.; McGuire, P. C.; Buffett, B. A.

    2010-12-01

    Carbon and oxygen isotopic variations through the Paleocene-Eocene thermal maximum event suggest that biogenic methane was not the source of the perturbing carbon, but this does not guarantee that the hydrates on Earth today will not eventually respond to the unique provocation of the global warming climate event. The SpongeBOB ocean methane hydrate model is used to simulate the accumulation of sediment along a passive continental margin over geologic time scales. Fluid motions within the sediment column are driven by compaction and variations in sediment permeability, and they impact the efficiency of methane trapping within hydrate deposits. The equilibrium and transient sensitivity of the methane inventory in the sediments to the temperature of the ocean will be assessed.

  16. Stress analysis in pipelines submitted to internal pressure - and temperature transients

    International Nuclear Information System (INIS)

    Mansur, T.R.

    1981-08-01

    Experimental determination of the structural behaviour of a thermal-hydraulic loop, when submitted to simultaneous fast change of pressure and temperature, was performed. For this, electrical strain-gages were positioned at some critical points in order to measure the deformation conditions of the structure. The study of the kinetics of the deformation revealed the presence of important transient stresses, mainly from thermal origin. After this transient behaviour, the structure is submitted to a thermal stress, which is shown to be strongly dependent on the degree of restraint of the structure. (Author) [pt

  17. Unsteady MHD flow of visco-elastic Oldroydian fluid with transient pressure gradient through a rectangular channel: with a possible generalisation

    International Nuclear Information System (INIS)

    Sengupta, P.R.; Kundu, Shyamal Kumar

    2001-01-01

    In this paper, we have determined the unsteady MHD flow of visco-elastic fluid with transient pressure gradient through a rectangular channel. Here we have calculated the velocity profile of a fluid element of the titled problem theoretically and numerically. Then an empirical model of generalisation has been made as proposed by the senior author Dr P.K. Sengupta to cover a wide range of visco-elastic fluids admitting new class of generalised visco-elastic fluids. The problem of unsteady MHD flow of such visco-elastic fluids with transient pressure gradient through a rectangular channel has been calculated. From this generalisation the corresponding flow of Oldroydian first order, second order and n-th order, Maxwell first order, second order and n-th order, Rivlen-Ericksen first order, second order and n-th order fluid and first order special type of Walters fluid as well as ordinary fluids have been derived. (author)

  18. Fluid flow and degassing in high temperature magma

    Science.gov (United States)

    Gaunt, H. E.; Sammonds, P.; Kilburn, C.; Meredith, P.; Smith, R.

    2012-04-01

    Dacitic volcanoes such as Mount St Helens are commonly associated with plinian eruptions. They can also erupt magma as lava domes that, in addition to simple effusion, frequently pass through episodes of major collapse and can also explode in vulcanian eruptions under suitable increases in gas pressure. Both dome collapse and vulcanian events can propagate pyroclastic flows and so extend the hazardous range of a dome far beyond the radius of the dome itself. As magma rises in the conduit it becomes supersaturated with dissolved volatiles and, during decompression, exsolution occurs creating gas bubbles within the melt. The ability of gases to escape the rising magma depends strongly on its permeability. It is common in highly viscous magma for gas pressure to build up until, under a sufficient amount of depressurisation, the tensile strength of the magma is exceeded and fragmentation occurs. However effusion of lava domes requires magma to reach the surface in a relatively volatile free state and the processes that control this gas escape in high temperature magma are still poorly understood. To investigate the controls on degassing processes, we have measured how permeability varies progressively with increasing temperature on samples from the 2004-2008 lava dome at Mount St Helens. Permeability was measured on cylindrical samples 25 mm in diameter in a high temperature triaxial deformation apparatus at temperatures up to 900oC, confining pressures of 10 MPa and pore fluid pressures of 5 MPa. Samples of intact dacite from the interior of Spine 4 were used to test temperature effects on fluid flow. Our preliminary results show that fluid flow in the dacite lava at the core of the lava dome is reduced by over two orders of magnitude when the temperature is increased from 30oC to 400oC, with no apparent discontinuity when the pore fluid water flashes to steam at 264oC. During ascent in the conduit the magma is cooled from around 850oC and depressurisation causes

  19. Thermal transient anemometer

    Science.gov (United States)

    Bailey, James L.; Vresk, Josip

    1989-01-01

    A thermal transient anemometer having a thermocouple probe which is utilized to measure the change in temperature over a period of time to provide a measure of fluid flow velocity. The thermocouple probe is located in the fluid flow path and pulsed to heat or cool the probe. The cooling of the heated probe or the heating of the cooled probe from the fluid flow over a period of time is measured to determine the fluid flow velocity. The probe is desired to be locally heated near the tip to increase the efficiency of devices incorporating the probe.

  20. Analytical solution and computer program (FAST) to estimate fluid fluxes from subsurface temperature profiles

    Science.gov (United States)

    Kurylyk, Barret L.; Irvine, Dylan J.

    2016-02-01

    This study details the derivation and application of a new analytical solution to the one-dimensional, transient conduction-advection equation that is applied to trace vertical subsurface fluid fluxes. The solution employs a flexible initial condition that allows for nonlinear temperature-depth profiles, providing a key improvement over most previous solutions. The boundary condition is composed of any number of superimposed step changes in surface temperature, and thus it accommodates intermittent warming and cooling periods due to long-term changes in climate or land cover. The solution is verified using an established numerical model of coupled groundwater flow and heat transport. A new computer program FAST (Flexible Analytical Solution using Temperature) is also presented to facilitate the inversion of this analytical solution to estimate vertical groundwater flow. The program requires surface temperature history (which can be estimated from historic climate data), subsurface thermal properties, a present-day temperature-depth profile, and reasonable initial conditions. FAST is written in the Python computing language and can be run using a free graphical user interface. Herein, we demonstrate the utility of the analytical solution and FAST using measured subsurface temperature and climate data from the Sendia Plain, Japan. Results from these illustrative examples highlight the influence of the chosen initial and boundary conditions on estimated vertical flow rates.

  1. An earthquake transient method for pebble-bed reactors and a fuel temperature model for TRISO fueled reactors

    Science.gov (United States)

    Ortensi, Javier

    This investigation is divided into two general topics: (1) a new method for analyzing the safe shutdown earthquake event in a pebble bed reactor core, and (2) the development of an explicit tristructural-isotropic fuel model for high temperature reactors. The safe shutdown earthquake event is one of the design basis accidents for the pebble bed reactor. The new method captures the dynamic geometric compaction of the pebble bed core. The neutronic and thermal-fluids grids are dynamically re-meshed to simulate the re-arrangement of the pebbles in the reactor during the earthquake. Results are shown for the PBMR-400 assuming it is subjected to the Idaho National Laboratory's design basis earthquake. The study concludes that the PBMR-400 can safely withstand the reactivity insertions induced by the slumping of the core and the resulting relative withdrawal of the control rods. This characteristic stems from the large negative Doppler feedback of the fuel. This Doppler feedback mechanism is a major contributor to the passive safety of gas-cooled, graphite-moderated, high-temperature reactors that use fuel based on TRISO particles. The correct prediction of the magnitude and time-dependence of this feedback effect is essential to the conduct of safety analyses for these reactors. An explicit TRISO fuel temperature model named THETRIS has been developed in this work and incorporated in the CYNOD-THERMIX-KONVEK suite of coupled codes. The new model yields similar results to those obtained with more complex methods, requiring multi-TRISO calculations within one control volume. The performance of the code during fast and moderately-slow transients is verified. These analyses show how explicit TRISO models improve the predictions of the fuel temperature, and consequently, of the power escalation. In addition, a brief study of the potential effects on the transient behavior of high-temperature reactors due to the presence of a gap inside the TRISO particles is included

  2. A High Temperature Experimental Characterization Procedure for Oxide-Based Thermoelectric Generator Modules under Transient Conditions

    DEFF Research Database (Denmark)

    Man, Elena Anamaria; Schaltz, Erik; Rosendahl, Lasse

    2015-01-01

    Characterization methods for thermoelectric generator (TEG) modules play an important role in studying their behavior and in enhancing the performance and simulation of TEG systems also. The purpose of this study is to analyze the behavior in transient and steady-state of the temperature applied...... is of experimental nature, it includes modules of different leg lengths and it is performed on a test rig known as TEGeta, which can be used to assess the output characteristics of TEG modules at different load values and temperature conditions. The setup offers the possibility to control the hot side temperature up...

  3. Transient receptor potential melastatin 8 (TRPM8) channels are involved in body temperature regulation.

    Science.gov (United States)

    Gavva, Narender R; Davis, Carl; Lehto, Sonya G; Rao, Sara; Wang, Weiya; Zhu, Dawn X D

    2012-05-09

    Transient receptor potential cation channel subfamily M member 8 (TRPM8) is activated by cold temperature in vitro and has been demonstrated to act as a 'cold temperature sensor' in vivo. Although it is known that agonists of this 'cold temperature sensor', such as menthol and icilin, cause a transient increase in body temperature (Tb), it is not known if TRPM8 plays a role in Tb regulation. Since TRPM8 has been considered as a potential target for chronic pain therapeutics, we have investigated the role of TRPM8 in Tb regulation. We characterized five chemically distinct compounds (AMG0635, AMG2850, AMG8788, AMG9678, and Compound 496) as potent and selective antagonists of TRPM8 and tested their effects on Tb in rats and mice implanted with radiotelemetry probes. All five antagonists used in the study caused a transient decrease in Tb (maximum decrease of 0.98°C). Since thermoregulation is a homeostatic process that maintains Tb about 37°C, we further evaluated whether repeated administration of an antagonist attenuated the decrease in Tb. Indeed, repeated daily administration of AMG9678 for four consecutive days showed a reduction in the magnitude of the Tb decrease Day 2 onwards. The data reported here demonstrate that TRPM8 channels play a role in Tb regulation. Further, a reduction of magnitude in Tb decrease after repeated dosing of an antagonist suggests that TRPM8's role in Tb maintenance may not pose an issue for developing TRPM8 antagonists as therapeutics.

  4. Laser metrology in fluid mechanics granulometry, temperature and concentration measurements

    CERN Document Server

    Boutier, Alain

    2013-01-01

    In fluid mechanics, non-intrusive measurements are fundamental in order to improve knowledge of the behavior and main physical phenomena of flows in order to further validate codes.The principles and characteristics of the different techniques available in laser metrology are described in detail in this book.Velocity, temperature and concentration measurements by spectroscopic techniques based on light scattered by molecules are achieved by different techniques: laser-induced fluorescence, coherent anti-Stokes Raman scattering using lasers and parametric sources, and absorption sp

  5. Predicting the Reliability of Ceramics Under Transient Loads and Temperatures With CARES/Life

    Science.gov (United States)

    Nemeth, Noel N.; Jadaan, Osama M.; Palfi, Tamas; Baker, Eric H.

    2003-01-01

    A methodology is shown for predicting the time-dependent reliability of ceramic components against catastrophic rupture when subjected to transient thermomechanical loads (including cyclic loads). The methodology takes into account the changes in material response that can occur with temperature or time (i.e., changing fatigue and Weibull parameters with temperature or time). This capability has been added to the NASA CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code. The code has been modified to have the ability to interface with commercially available finite element analysis (FEA) codes executed for transient load histories. Examples are provided to demonstrate the features of the methodology as implemented in the CARES/Life program.

  6. An analytical approximation for the prediction of transients with temperature feedback

    International Nuclear Information System (INIS)

    Palma, Daniel A.P.; Martinez, Aquilino S.

    2010-01-01

    In the present paper a new analytical solution for the point kinetics equation system with temperature feedback is presented. This solution is based on the expansion of the neutron density in terms of the generation time of prompt neutrons (Nahla, 2009) and presents the advantage of being explicit in time and having a simple functional form in comparison with other existing formulations in supercritical transients. (orig.)

  7. An analytical approximation for the prediction of transients with temperature feedback

    Energy Technology Data Exchange (ETDEWEB)

    Palma, Daniel A.P. [Instituto Federal do Rio de Janeiro (IFRJ), RJ (Brazil); Martinez, Aquilino S. [COPPE/UFRJ, RJ (Brazil). Programa de Engenharia Nuclear

    2010-05-15

    In the present paper a new analytical solution for the point kinetics equation system with temperature feedback is presented. This solution is based on the expansion of the neutron density in terms of the generation time of prompt neutrons (Nahla, 2009) and presents the advantage of being explicit in time and having a simple functional form in comparison with other existing formulations in supercritical transients. (orig.)

  8. Accounting of the influence of temperature dependant transient thermodynamic processes on gas laws

    Science.gov (United States)

    Ivchenko, Vladimir

    2018-01-01

    In this paper the effect of the presence of temperature dependent transient thermodynamic processes such as the dissociation, condensation and excitation of vibrational degrees of freedom on the peculiarities of the behaviour of an imperfect gas was considered on a quantitative level. We also discussed the influence of the nonequilibrium thermodynamic effects on the behaviour of real gas and estimated the order of their magnitudes.

  9. Streaks to rings to vortex grids: generic patterns in transient convective spin up of an evaporating fluid.

    Science.gov (United States)

    Zhong, J-Q; Patterson, M D; Wettlaufer, J S

    2010-07-23

    We observe the transient formation of a ringed pattern state during spin up of an evaporating fluid on a time scale of order a few Ekman spin up times. The ringed state is probed using infrared thermometry and particle image velocimetry and it is demonstrated to be a consequence of the transient balance between Coriolis and viscous forces which dominate inertia, each of which are extracted from the measured velocity field. The breakdown of the ringed state is quantified in terms of the antiphasing of these force components which drives a Kelvin-Helmholtz instability and we show that the resulting vortex grid spacing scales with the ring wavelength. This is the fundamental route to quasi-two-dimensional turbulent vortex flow and thus may have implications in astrophysics and geophysics wherein rotating convection is ubiquitous.

  10. Ag-In transient liquid phase bonding for high temperature stainless steel micro actuators

    OpenAIRE

    Andersson, Martin

    2013-01-01

    A stainless steel, high temperature, phase change micro actuator has been demonstrated using the solid-liquid phase transition of mannitol at 168°C and In-Ag transient liquid phase diffusion bonding. Joints created with this bonding technique can sustain temperatures up to 695°C, while being bonded at only 180°C, and have thicknesses between 1.4 to 6.0 μm. Physical vapour deposition, inkjet printing and electroplating have been evaluated as deposition methods for bond layers. For actuation, c...

  11. Study on numerical methods for transient flow induced by speed-changing impeller of fluid machinery

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dazhuan; Chen, Tao; Wang, Leqin [Zhejiang University, Hangzhou (China); Cheng, Wentao [Research Institute of Product Quality and Standard of Ministry of Water Recourse, Hangzhou (China); Sun, Youbo [Zhejiang Academy of Safety Science and Technology, Hangzhou (China)

    2013-06-15

    In order to establish a reliable numerical method for solving the transient rotating flow induced by a speed-changing impeller, two numerical methods based on finite volume method (FVM) were presented and analyzed in this study. Two-dimensional numerical simulations of incompressible transient unsteady flow induced by an impeller during starting process were carried out respectively by using DM and DSR methods. The accuracy and adaptability of the two methods were evaluated by comprehensively comparing the calculation results. Moreover, an intensive study on the application of DSR method was conducted subsequently. The results showed that transient flow structure evolution and transient characteristics of the starting impeller are obviously affected by the starting process. The transient flow can be captured by both two methods, and the DSR method shows a higher computational efficiency. As an application example, the starting process of a mixed-flow pump was simulated by using DSR method. The calculation results were analyzed by comparing with the experiment data.

  12. Study on numerical methods for transient flow induced by speed-changing impeller of fluid machinery

    International Nuclear Information System (INIS)

    Wu, Dazhuan; Chen, Tao; Wang, Leqin; Cheng, Wentao; Sun, Youbo

    2013-01-01

    In order to establish a reliable numerical method for solving the transient rotating flow induced by a speed-changing impeller, two numerical methods based on finite volume method (FVM) were presented and analyzed in this study. Two-dimensional numerical simulations of incompressible transient unsteady flow induced by an impeller during starting process were carried out respectively by using DM and DSR methods. The accuracy and adaptability of the two methods were evaluated by comprehensively comparing the calculation results. Moreover, an intensive study on the application of DSR method was conducted subsequently. The results showed that transient flow structure evolution and transient characteristics of the starting impeller are obviously affected by the starting process. The transient flow can be captured by both two methods, and the DSR method shows a higher computational efficiency. As an application example, the starting process of a mixed-flow pump was simulated by using DSR method. The calculation results were analyzed by comparing with the experiment data.

  13. Transient Response of a Fluid-Filled, Thick-Walled Spherical Shell Embedded in an Elastic Medium

    Directory of Open Access Journals (Sweden)

    Bahari Ako

    2016-01-01

    Full Text Available The paper addresses the problem of transient elastodynamics analysis of a thick-walled, fluid-filled spherical shell embedded in an elastic medium with an analytical approach. This configuration is investigated at first step for a full-space case. Different constitutive relations for the elastic medium, shell material and filling fluid can be considered, as well as different excitation sources (including S/P wave or plane/spherical incident wave at different locations. With mapmaking visualisation, the wave propagation phenomena can be described and better understood. The methodology is going to be applied to analysis of the tunnels or other shell like structures under the effect of nearby underground explosion.

  14. Safety aspects of forced flow cooldown transients in modular high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Kroeger, P.G.

    1992-01-01

    During some of the design basis accidents in Modular High Temperature Gas Cooled Reactors (MHTGRs) the main Heat Transport System (HTS) and the Shutdown Cooling System (SCS), are assumed to have failed. Decay heat is then removed by the passive Reactor Cavity Cooling System (RCCS) only. If either forced flow cooling system becomes available during such a transient, its restart could significantly reduce the down-time. This paper uses the THATCH code to examine whether such restart, during a period of elevated core temperatures, can be accomplished within safe limits for fuel and metal component temperatures. If the reactor is scrammed, either system can apparently be restarted at any time, without exceeding any safe limits. However, under unscrammed conditions a restart of forced cooling can lead to recriticality, with fuel and metal temperatures significantly exceeding the safety limits

  15. Molecular tagging thermometry for transient temperature mapping within a water droplet.

    Science.gov (United States)

    Huang, De; Hu, Hui

    2007-12-15

    We present the progress made in developing a molecular tagging thermometry (MTT) technique for achieving spatially and temporally resolved temperature measurements within a small water droplet over a solid surface. For MTT measurement, a pulsed laser is used to tag phosphorescent 1-BrNp.Mbeta-CD.ROH molecules premixed with water. Long-lived laser-induced phosphorescence is imaged at two successive times after the same laser excitation pulse. The temperature measurement is achieved by taking advantage of the temperature dependence of the phosphorescence lifetime, which is estimated from the intensity ratio of the acquired phosphorescence image pair. The measured transient temperature distributions can be used to quantify the unsteady heat transfer process inside convectively cooled water droplets over smooth or rough surfaces.

  16. Simulation of transient fluid flow in mold region during steel continuous casting

    International Nuclear Information System (INIS)

    Liu, R; Thomas, B G; Sengupta, J

    2012-01-01

    A system of models has been developed to study transient flow during continuous casting and applied to simulate an event of multiple stopper-rod movements. It includes four sub-models to incorporate different aspects in this transient event. A three-dimensional (3-D) porous-flow model of the nozzle wall calculates the rate argon gas flow into the liquid steel, and the initial mean bubble size is estimated. Transient CFD models simulate multiphase flow of steel and gas bubbles in the Submerged Entry Nozzle (SEN) and mold and have been validated with experimental data from both nail dipping and Sub-meniscus Velocity Control (SVC) measurements. To obtain the transient inlet boundary conditions for the simulation, two semi-empirical models, a stopper-rod-position based model and a metal-level-based model, predict the liquid steel flow rate through the SEN based on recorded plant data. Finally the model system was applied to study the effects of stopper rod movements on SEN/mold flow patterns. Meniscus level fluctuations were calculated using a simple pressure method and compared well with plant measurements. Insights were gained from the simulation results to explain the cause of meniscus level fluctuations and the formation of sliver defects during stopper rod movements.

  17. Transient receptor potential melastatin 8 (TRPM8 channels are involved in body temperature regulation

    Directory of Open Access Journals (Sweden)

    Gavva Narender R

    2012-05-01

    Full Text Available Abstract Background Transient receptor potential cation channel subfamily M member 8 (TRPM8 is activated by cold temperature in vitro and has been demonstrated to act as a ‘cold temperature sensor’ in vivo. Although it is known that agonists of this ‘cold temperature sensor’, such as menthol and icilin, cause a transient increase in body temperature (Tb, it is not known if TRPM8 plays a role in Tb regulation. Since TRPM8 has been considered as a potential target for chronic pain therapeutics, we have investigated the role of TRPM8 in Tb regulation. Results We characterized five chemically distinct compounds (AMG0635, AMG2850, AMG8788, AMG9678, and Compound 496 as potent and selective antagonists of TRPM8 and tested their effects on Tb in rats and mice implanted with radiotelemetry probes. All five antagonists used in the study caused a transient decrease in Tb (maximum decrease of 0.98°C. Since thermoregulation is a homeostatic process that maintains Tb about 37°C, we further evaluated whether repeated administration of an antagonist attenuated the decrease in Tb. Indeed, repeated daily administration of AMG9678 for four consecutive days showed a reduction in the magnitude of the Tb decrease Day 2 onwards. Conclusions The data reported here demonstrate that TRPM8 channels play a role in Tb regulation. Further, a reduction of magnitude in Tb decrease after repeated dosing of an antagonist suggests that TRPM8’s role in Tb maintenance may not pose an issue for developing TRPM8 antagonists as therapeutics.

  18. Estimation of changes in dynamic hydraulic force in a magnetically suspended centrifugal blood pump with transient computational fluid dynamics analysis.

    Science.gov (United States)

    Masuzawa, Toru; Ohta, Akiko; Tanaka, Nobuatu; Qian, Yi; Tsukiya, Tomonori

    2009-01-01

    The effect of the hydraulic force on magnetically levitated (maglev) pumps should be studied carefully to improve the suspension performance and the reliability of the pumps. A maglev centrifugal pump, developed at Ibaraki University, was modeled with 926 376 hexahedral elements for computational fluid dynamics (CFD) analyses. The pump has a fully open six-vane impeller with a diameter of 72.5 mm. A self-bearing motor suspends the impeller in the radial direction. The maximum pressure head and flow rate were 250 mmHg and 14 l/min, respectively. First, a steady-state analysis was performed using commercial code STAR-CD to confirm the model's suitability by comparing the results with the real pump performance. Second, transient analysis was performed to estimate the hydraulic force on the levitated impeller. The impeller was rotated in steps of 1 degrees using a sliding mesh. The force around the impeller was integrated at every step. The transient analysis revealed that the direction of the radial force changed dynamically as the vane's position changed relative to the outlet port during one circulation, and the magnitude of this force was about 1 N. The current maglev pump has sufficient performance to counteract this hydraulic force. Transient CFD analysis is not only useful for observing dynamic flow conditions in a centrifugal pump but is also effective for obtaining information about the levitation dynamics of a maglev pump.

  19. Analysis of Precooling Injection Transient of Steam Generator for High Temperature Gas Cooled Reactor

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2017-01-01

    Full Text Available After a postulated design basis accident leads high temperature gas cooled reactor to emergency shutdown, steam generator still remains with high temperature level and needs to be cooled down by a precooling before reactor restarts with clearing of fault. For the large difference of coolant temperature between inlet and outlet of steam generator in normal operation, the temperature distribution on the components of steam generator is very complicated. Therefore, the temperature descending rate of the components in steam generator needs to be limited to avoid the potential damage during the precooling stage. In this paper, a pebble-bed high temperature gas cooled reactor is modeled by thermal-hydraulic system analysis code and several postulated precooling injection transients are simulated and compared to evaluate their effects, which will provide support for the precooling design. The analysis results show that enough precooling injection is necessary to satisfy the precooling requirements, and larger mass flow rate of precooling water injection will accelerate the precooling process. The temperature decrease of steam generator is related to the precooling injection scenarios, and the maximal mass flow rate of the precooling injection should be limited to avoid the excessively quick temperature change of the structures in steam generator.

  20. Electrical measurement of absolute temperature and temperature transients in a buried nanostructure under ultrafast optical heating

    Science.gov (United States)

    Yang, H. F.; Hu, X. K.; Liebing, N.; Böhnert, T.; Costa, J. D.; Tarequzzaman, M.; Ferreira, R.; Sievers, S.; Bieler, M.; Schumacher, H. W.

    2017-06-01

    We report absolute temperature measurements in a buried nanostructure with a sub-nanosecond temporal resolution. For this purpose, we take advantage of the temperature dependence of the resistance of a magnetic tunnel junction (MTJ) as detected by a fast sampling oscilloscope. After calibrating the measurement setup using steady-state electric heating, we are able to quantify temperature changes in the MTJ induced by femtosecond optical heating of the metal contact lying several 100 nm above the MTJ. We find that a femtosecond pulse train with an average power of 400 mW and a repetition rate of 76 MHz leads to a constant temperature increase of 80 K and a temporally varying temperature change of 2 K in the MTJ. The maximum temperature change in the MTJ occurs 4 ns after the femtosecond laser pulses hit the metal contact, which is supported by simulations. Our work provides a scheme to quantitatively study local temperatures in nanoscale structures and might be important for the testing of nanoscale thermal transport simulations.

  1. Transient temperature response of in-vessel components due to pulsed operation in tokamak fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    Minato, Akio; Tone, Tatsuzo

    1985-12-01

    A transient temperature response of the in-vessel components (first wall, blanket, divertor/limiter and shielding) surrounding plasma in Tokamak Fusion Experimental Reactor (FER) has been analysed. Transient heat load during start up/shut down and pulsed operation cycles causes the transient temperature response in those components. The fatigue lifetime of those components significantly depends upon the resulting cyclic thermal stress. The burn time affects the temperature control in the solid breeder (Li 2 O) and also affects the thermo-mechanical design of the blanket and shielding which are constructed with thick structure. In this report, results of the transient temperature response obtained by the heat transfer and conduction analyses for various pulsed operation scenarios (start up, shut down, burn and dwell times) have been investigated in view of thermo-mechanical design of the in-vessel components. (author)

  2. Transient radon signals driven by fluid pressure pulse, micro-crack closure, and failure during granite deformation experiments

    Science.gov (United States)

    Girault, Frédéric; Schubnel, Alexandre; Pili, Éric

    2017-09-01

    In seismically active fault zones, various crustal fluids including gases are released at the surface. Radon-222, a radioactive gas naturally produced in rocks, is used in volcanic and tectonic contexts to illuminate crustal deformation or earthquake mechanisms. At some locations, intriguing radon signals have been recorded before, during, or after tectonic events, but such observations remain controversial, mainly because physical characterization of potential radon anomalies from the upper crust is lacking. Here we conducted several month-long deformation experiments under controlled dry upper crustal conditions with a triaxial cell to continuously monitor radon emission from crustal rocks affected by three main effects: a fluid pressure pulse, micro-crack closure, and differential stress increase to macroscopic failure. We found that these effects are systematically associated with a variety of radon signals that can be explained using a first-order advective model of radon transport. First, connection to a source of deep fluid pressure (a fluid pressure pulse) is associated with a large transient radon emission increase (factor of 3-7) compared with the background level. We reason that peak amplitude is governed by the accumulation time and the radon source term, and that peak duration is controlled by radioactive decay, permeability, and advective losses of radon. Second, increasing isostatic compression is first accompanied by an increase in radon emission followed by a decrease beyond a critical pressure representing the depth below which crack closure hampers radon emission (150-250 MPa, ca. 5.5-9.5 km depth in our experiments). Third, the increase of differential stress, and associated shear and volumetric deformation, systematically triggers significant radon peaks (ca. 25-350% above background level) before macroscopic failure, by connecting isolated cracks, which dramatically enhances permeability. The detection of transient radon signals before rupture

  3. TEMP: a computer code to calculate fuel pin temperatures during a transient

    International Nuclear Information System (INIS)

    Bard, F.E.; Christensen, B.Y.; Gneiting, B.C.

    1980-04-01

    The computer code TEMP calculates fuel pin temperatures during a transient. It was developed to accommodate temperature calculations in any system of axi-symmetric concentric cylinders. When used to calculate fuel pin temperatures, the code will handle a fuel pin as simple as a solid cylinder or as complex as a central void surrounded by fuel that is broken into three regions by two circumferential cracks. Any fuel situation between these two extremes can be analyzed along with additional cladding, heat sink, coolant or capsule regions surrounding the fuel. The one-region version of the code accurately calculates the solution to two problems having closed-form solutions. The code uses an implicit method, an explicit method and a Crank-Nicolson (implicit-explicit) method

  4. Parasitic bipolar amplification in a single event transient and its temperature dependence

    International Nuclear Information System (INIS)

    Liu Zheng; Chen Shu-Ming; Chen Jian-Jun; Qin Jun-Rui; Liu Rong-Rong

    2012-01-01

    Using three-dimensional technology computer-aided design (TCAD) simulation, parasitic bipolar amplification in a single event transient (SET) current of a single transistor and its temperature dependence are studied. We quantify the contributions of different current components in a SET current pulse, and it is found that the proportion of parasitic bipolar amplification in total collected charge is about 30% in both 130-nm and 90-nm technologies. The temperature dependence of parasitic bipolar amplification and the mechanism of the SET pulse are also investigated and quantified. The results show that the proportion of charge induced by parasitic bipolar increases with rising temperature, which illustrates that the parasitic bipolar amplification plays an important role in the charge collection of a single transistor

  5. Analysis, approximation, and computation of a coupled solid/fluid temperature control problem

    Science.gov (United States)

    Gunzburger, Max D.; Lee, Hyung C.

    1993-01-01

    An optimization problem is formulated motivated by the desire to remove temperature peaks, i.e., 'hot spots', along the bounding surfaces of containers of fluid flows. The heat equation of the solid container is coupled to the energy equations for the fluid. Heat sources can be located in the solid body, the fluid, or both. Control is effected by adjustments to the temperature of the fluid at the inflow boundary. Both mathematical analyses and computational experiments are given.

  6. A High Temperature Experimental Characterization Procedure for Oxide-Based Thermoelectric Generator Modules under Transient Conditions

    Directory of Open Access Journals (Sweden)

    Elena Anamaria Man

    2015-11-01

    Full Text Available The purpose of this study is to analyze the steady-state and transient behavior of the electrical and thermal parameters of thermoelectric generators (TEGs. The focus is on the required wait-time between measurements in order to reduce measurement errors which may appear until the system reaches steady-state. By knowing this waiting time, the total characterization time can also be reduced. The experimental characterization process is performed on a test rig known as TEGeta, which can be used to assess the output characteristics of TEG modules under different load values and temperature conditions. The setup offers the possibility to control the hot side temperature up to 1000 °C with a load variation range value between 0.22–8.13 Ω. A total of ten thermocouples are placed in the setup with the purpose of measuring the temperature in specific points between the heater and the heat sink. Based on the readings, the temperature on the hot and cold side of the modules can be extrapolated. This study provides quantitative data on the minimum waiting time of the temperatures in the surrounding system to reach equilibrium. Laboratory tests are performed on a calcium-manganese oxide module at temperatures between 400 and 800 °C to explore the high temperatures features of the setup.

  7. Analytical study of the liquid phase transient behavior of a high temperature heat pipe. M.S. Thesis

    Science.gov (United States)

    Roche, Gregory Lawrence

    1988-01-01

    The transient operation of the liquid phase of a high temperature heat pipe is studied. The study was conducted in support of advanced heat pipe applications that require reliable transport of high temperature drops and significant distances under a broad spectrum of operating conditions. The heat pipe configuration studied consists of a sealed cylindrical enclosure containing a capillary wick structure and sodium working fluid. The wick is an annular flow channel configuration formed between the enclosure interior wall and a concentric cylindrical tube of fine pore screen. The study approach is analytical through the solution of the governing equations. The energy equation is solved over the pipe wall and liquid region using the finite difference Peaceman-Rachford alternating direction implicit numerical method. The continuity and momentum equations are solved over the liquid region by the integral method. The energy equation and liquid dynamics equation are tightly coupled due to the phase change process at the liquid-vapor interface. A kinetic theory model is used to define the phase change process in terms of the temperature jump between the liquid-vapor surface and the bulk vapor. Extensive auxiliary relations, including sodium properties as functions of temperature, are used to close the analytical system. The solution procedure is implemented in a FORTRAN algorithm with some optimization features to take advantage of the IBM System/370 Model 3090 vectorization facility. The code was intended for coupling to a vapor phase algorithm so that the entire heat pipe problem could be solved. As a test of code capabilities, the vapor phase was approximated in a simple manner.

  8. Empagliflozin Induces Transient Diuresis Without Changing Long-Term Overall Fluid Balance in Japanese Patients With Type 2 Diabetes.

    Science.gov (United States)

    Yasui, Atsutaka; Lee, Ganghyuck; Hirase, Tetsuaki; Kaneko, Tatsuroh; Kaspers, Stefan; von Eynatten, Maximilian; Okamura, Tomoo

    2018-04-01

    Empagliflozin, a sodium glucose co-transporter 2 (SGLT2) inhibitor, ameliorates hyperglycemia in patients with type 2 diabetes (T2D) by inducing sustained glucosuria. Empagliflozin treatment was previously associated with a transient increase in 24-h urine volume in Caucasian patients with T2D, however comparable evidence in Japanese T2D individuals is scarce. We therefore assessed acute and chronic changes in 24-h urine volume and fluid intake with empagliflozin in Japanese patients with T2D. In this randomized, double-blind, placebo-controlled, parallel-group, multiple-dose, 4-week trial, 100 Japanese patients with T2D were randomized to receive either 1, 5, 10, or 25 mg empagliflozin or placebo once-daily. Changes from baseline in 24-h urine volume and fluid intake were assessed at days 1, 27, and 28 after the initiation of empagliflozin. The 24-h urine volume and fluid intake were comparable across all treatment groups at baseline. Patients treated with either 10 or 25 mg empagliflozin (i.e., the licensed doses in Japan) showed a significant increase in 24-h urine volume compared to placebo at day 1 (mean change from baseline: + 0.83, + 1.08, and + 0.29 L/day in the empagliflozin 10 and 25 mg groups and the placebo group, respectively; both p empagliflozin groups were comparable to placebo at day 27 and 28 (differences vs placebo  0.05). The 24-h fluid intake was comparable across all study groups throughout the entire study period. No events consistent with dehydration were reported during empagliflozin treatment. Treatment initiation with empagliflozin in Japanese patients with T2D was associated with transient diuresis; however, overall urine volume returned towards baseline levels within 4 weeks of treatment. These findings are consistent with a physiological, adaptive mechanism of the kidney to maintain overall body fluid balance in response to treatment initiation with a SGLT2 inhibitor. NCT00885118. Nippon Boehringer Ingelheim Co., Ltd.

  9. TRANSENERGY S: computer codes for coolant temperature prediction in LMFBR cores during transient events

    International Nuclear Information System (INIS)

    Glazer, S.; Todreas, N.; Rohsenow, W.; Sonin, A.

    1981-02-01

    This document is intended as a user/programmer manual for the TRANSENERGY-S computer code. The code represents an extension of the steady state ENERGY model, originally developed by E. Khan, to predict coolant and fuel pin temperatures in a single LMFBR core assembly during transient events. Effects which may be modelled in the analysis include temporal variation in gamma heating in the coolant and duct wall, rod power production, coolant inlet temperature, coolant flow rate, and thermal boundary conditions around the single assembly. Numerical formulations of energy equations in the fuel and coolant are presented, and the solution schemes and stability criteria are discussed. A detailed description of the input deck preparation is presented, as well as code logic flowcharts, and a complete program listing. TRANSENERGY-S code predictions are compared with those of two different versions of COBRA, and partial results of a 61 pin bundle test case are presented

  10. Lifetime improvement of sheathed thermocouples for use in high-temperature and thermal transient operations

    International Nuclear Information System (INIS)

    McCulloch, R.W.; Clift, J.H.

    1982-01-01

    Premature failure of small-diameter, magnesium-oxide-insulated sheathed thermocouples occurred when they were placed within nuclear fuel rod simulators (FRSs) to measure high temperatures and to follow severe thermal transients encountered during simulation of nuclear reactor accidents in Oak Ridge National Laboratory (ORNL) thermal-hydraulic test facilities. Investigation of thermally cycled thermocouples yielded three criteria for improvement of thermocouple lifetime: (1) reduction of oxygen impurities prior to and during their fabrication, (2) refinement of thermoelement grain size during their fabrication, and (3) elimination of prestrain prior to use above their recrystallization temperature. The first and third criteria were satisfied by improved techniques of thermocouple assembly and by a recovery anneal prior to thermocouple use

  11. LOFT/L9-3, Loss of Fluid Test, Anticipated Transients with Multiple Failures

    International Nuclear Information System (INIS)

    1992-01-01

    1 - Description of test facility: The LOFT Integral Test Facility is a scale model of a LPWR. The intent of the facility is to model the nuclear, thermal-hydraulic phenomena which would take place in a LPWR during a LOCA. The general philosophy in scaling coolant volumes and flow areas in LOFT was to use the ratio of the LOFT core [50 MW(t)] to a typical LPWR core [3000 MW(t)]. For some components, this factor is not applied; however, it is used as extensively as practical. In general, components used in LOFT are similar in design to those of a LPWR. Because of scaling and component design, the LOFT LOCA is expected to closely model a LPWR LOCA. 2 - Description of test: This was the third of the NRC L9 series of experiments on Anticipated Transients with Multiple Failures. Loss-of-feedwater effects were studied. The experiment was conducted on 7 April 1982

  12. LOFT/L6-7, Loss of Fluid Test, Anticipated Transients with Multiple Failures

    International Nuclear Information System (INIS)

    1992-01-01

    1 - Description of test facility: The LOFT Integral Test Facility is a scale model of a LPWR. The intent of the facility is to model the nuclear, thermal-hydraulic phenomena which would take place in a LPWR during a LOCA. The general philosophy in scaling coolant volumes and flow areas in LOFT was to use the ratio of the LOFT core [50 MW(t)] to a typical LPWR core [3000 MW(t)]. For some components, this factor is not applied; however, it is used as extensively as practical. In general, components used in LOFT are similar in design to those of a LPWR. Because of scaling and component design, the LOFT LOCA is expected to closely model a LPWR LOCA. 2 - Description of test: This was the seventh in the NRC L6 Series of Anticipated Transients experiments. Rapid secondary side induced cooldown was studied. The experiment was conducted on 31 September 1981

  13. Transient Fluid Flow Modeling in Fractured Aquifer of Sechahoon Iron Mine Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Mojtaba Darabi

    2016-06-01

    Full Text Available Considering the fact that a large volume of iron reserve in the Sechahoon Iron Mine in Yazd Province has located under the water table, it is necessary to conduct a comprehensive study on water flow within the pit and its surroundings. The conceptual model of the aquifer was created using surface and underground geological information compared with water table data of the area of interest. In the data preparation stages, in order to create the numerical model, Logan and Lufran tests were studied to determine the hydrodynamic coefficients of the layers, precipitation and evaporation were investigated, and fractures and faults of the region, as a medium for flow channels in the hard formation, were also studied. The model was created in a transient state between 2000 and 2014. To validate its results, the water table was measured 4 times in the last 4 months of 2014. Considering the complexities in the heterogeneous fractured aquifer of the study area, numerical modeling results for the basin in a transient state present 90 percent correlation with field studies. Having investigated the water balance in the region, the boundary condition of the model was determined as the input water from the eastern south and the runoff water in the western north of the region. Since the general trend of faults in the area is north-south, variation in the water table is slight on north-south and intense on the east-west direction. On the other hand, due to the fact that the maximum flow is along the faults and fractures, the water table contour lines in different locations over the region are closed.

  14. Transient thermal model of passenger car's cabin and implementation to saturation cycle with alternative working fluids

    International Nuclear Information System (INIS)

    Lee, Hoseong; Hwang, Yunho; Song, Ilguk; Jang, Kilsang

    2015-01-01

    A transient thermal model of a passenger car's cabin is developed to investigate the dynamic behavior of cabin thermal conditions. The model is developed based on a lumped-parameter model and solved using integral methods. Solar radiation, engine heat through the firewall, and engine heat to the air ducts are all considered. Using the thermal model, transient temperature profiles of the interior mass and cabin air are obtained. This model is used to investigate the transient behavior of the cabin under various operating conditions: the recirculation mode in the idling state, the fresh air mode in the idling state, the recirculation mode in the driving state, and fresh air mode in the driving state. The developed model is validated by comparing with experimental data and is within 5% of deviation. The validated model is then applied for evaluating the mobile air conditioning system's design. The study found that a saturation cycle concept (four-stage cycle with two-phase refrigerant injection) could improve the system efficiency by 23.9% and reduce the power consumption by 19.3%. Lastly, several alternative refrigerants are applied and their performance is discussed. When the saturation cycle concept is applied, R1234yf MAC (mobile air conditioning) shows the largest COP (coefficient of performance) improvement and power consumption reduction. - Highlights: • The transient thermal model of the passenger car cabin is developed. • The developed model is validated with experimental data and showed 5% deviation. • Saturation cycle concept is applied to the developed cabin model. • There is 24% COP improvement by applying the saturation cycle concept. • R1234yf showed the highest potential when it is applied to the saturation cycle.

  15. AMPTRACT: an algebraic model for computing pressure tube circumferential and steam temperature transients under stratified channel coolant conditions

    International Nuclear Information System (INIS)

    Gulshani, P.; So, C.B.

    1986-10-01

    In a number of postulated accident scenarios in a CANDU reactor, some of the horizontal fuel channels are predicted to experience periods of stratified channel coolant condition which can lead to a circumferential temperature gradient around the pressure tube. To study pressure tube strain and integrity under stratified flow channel conditions, it is, necessary to determine the pressure tube circumferential temperature distribution. This paper presents an algebraic model, called AMPTRACT (Algebraic Model for Pressure Tube TRAnsient Circumferential Temperature), developed to give the transient temperature distribution in a closed form. AMPTRACT models the following modes of heat transfer: radiation from the outermost elements to the pressure tube and from the pressure to calandria tube, convection between the fuel elements and the pressure tube and superheated steam, and circumferential conduction from the exposed to submerged part of the pressure tube. An iterative procedure is used to solve the mass and energy equations in closed form for axial steam and fuel-sheath transient temperature distributions. The one-dimensional conduction equation is then solved to obtain the pressure tube circumferential transient temperature distribution in a cosine series expansion. In the limit of large times and in the absence of convection and radiation to the calandria tube, the predicted pressure tube temperature distribution reduces identically to a parabolic profile. In this limit, however, radiation cannot be ignored because the temperatures are generally high. Convection and radiation tend to flatten the parabolic distribution

  16. Local-heterogeneous responses and transient dynamics of cage breaking and formation in colloidal fluids.

    Science.gov (United States)

    Nag, Preetom; Teramoto, Hiroshi; Li, Chun-Biu; Terdik, Joseph Z; Scherer, Norbert F; Komatsuzaki, Tamiki

    2014-09-14

    Quantifying the interactions in dense colloidal fluids requires a properly designed order parameter. We present a modified bond-orientational order parameter, ψ̄6, to avoid problems of the original definition of bond-orientational order parameter. The original bond-orientational order parameter can change discontinuously in time but our modified order parameter is free from the discontinuity and, thus, it is a suitable measure to quantify the dynamics of the bond-orientational ordering of the local surroundings. Here we analyze ψ̄6 in a dense driven monodisperse quasi-two-dimensional colloidal fluids where a single particle is optically trapped at the center. The perturbation by the trapped and driven particle alters the structure and dynamics of the neighboring particles. This perturbation disturbs the flow and causes spatial and temporal distortion of the bond-orientational configuration surrounding each particle. We investigate spatio-temporal behavior of ψ̄6 by a Wavelet transform that provides a time-frequency representation of the time series of ψ̄6. It is found that particles that have high power in frequencies corresponding to the inverse of the timescale of perturbation undergo distortions of their packing configurations that result in cage breaking and formation dynamics. To gain insight into the dynamic structure of cage breaking and formation of bond-orientational ordering, we compare the cage breaking and formation dynamics with the underlying dynamical structure identified by Lagrangian Coherent Structures (LCSs) estimated from the finite-time Lyapunov exponent (FTLE) field. The LCSs are moving separatrices that effectively divide the flow into distinct regions with different dynamical behavior. It is shown that the spatial distribution of the FTLE field and the power of particles in the wavelet transform have positive correlation, implying that LCSs provide a dynamic structure that dominates the dynamics of cage breaking and formation of the

  17. Heat-equilibrium low-temperature plasma decay in synthesis of ammonia via transient components N2H6

    International Nuclear Information System (INIS)

    Cao Guobin; Song Youqun; Chen Qing; Zhou Qiulan; Cao Yun; Wang Chunhe

    2001-01-01

    The author introduced a new method of heat-equilibrium low-temperature plasma in ammonia synthesis and a technique of continuous real-time inlet sampling mass-spectrometry to detect the reaction channel and step of the decay of transient component N 2 H 6 into ammonia. The experimental results indicated that in the process of ammonia synthesis by discharge of N 2 and H 2 mixture, the transient component N 2 H 6 is a necessary step

  18. A Mathematical Model for the Analysis of the Pressure Transient Response of Fluid Flow in Fractal Reservoir

    Directory of Open Access Journals (Sweden)

    Jin-Zhou Zhao

    2015-01-01

    Full Text Available This study uses similar construction method of solution (SCMS to solve mathematical models of fluid spherical flow in a fractal reservoir which can avoid the complicated mathematical deduction. The models are presented in three kinds of outer boundary conditions (infinite, constant pressure, and closed. The influence of wellbore storage effect, skin factor, and variable flow rate production is also involved in the inner boundary conditions. The analytical solutions are constructed in the Laplace space and presented in a pattern with one continued fraction—the similar structure of solution. The pattern can bring convenience to well test analysis programming. The mathematical beauty of fractal is that the infinite complexity is formed with relatively simple equations. So the relation of reservoir parameters (wellbore storage effect, the skin factor, fractal dimension, and conductivity index, the formation pressure, and the wellbore pressure can be learnt easily. Type curves of the wellbore pressure and pressure derivative are plotted and analyzed in real domain using the Stehfest numerical invention algorithm. The SCMS and type curves can interpret intuitively transient pressure response of fractal spherical flow reservoir. The results obtained in this study have both theoretical and practical significance in evaluating fluid flow in such a fractal reservoir and embody the convenience of the SCMS.

  19. Analytical solution for the transient wave propagation of a buried cylindrical P-wave line source in a semi-infinite elastic medium with a fluid surface layer

    Science.gov (United States)

    Shan, Zhendong; Ling, Daosheng

    2018-02-01

    This article develops an analytical solution for the transient wave propagation of a cylindrical P-wave line source in a semi-infinite elastic solid with a fluid layer. The analytical solution is presented in a simple closed form in which each term represents a transient physical wave. The Scholte equation is derived, through which the Scholte wave velocity can be determined. The Scholte wave is the wave that propagates along the interface between the fluid and solid. To develop the analytical solution, the wave fields in the fluid and solid are defined, their analytical solutions in the Laplace domain are derived using the boundary and interface conditions, and the solutions are then decomposed into series form according to the power series expansion method. Each item of the series solution has a clear physical meaning and represents a transient wave path. Finally, by applying Cagniard's method and the convolution theorem, the analytical solutions are transformed into the time domain. Numerical examples are provided to illustrate some interesting features in the fluid layer, the interface and the semi-infinite solid. When the P-wave velocity in the fluid is higher than that in the solid, two head waves in the solid, one head wave in the fluid and a Scholte wave at the interface are observed for the cylindrical P-wave line source.

  20. Development and Transient Analysis of a Helical-coil Steam Generator for High Temperature Reactors

    International Nuclear Information System (INIS)

    Hoffer, Nathan V.; Anderson, Nolan A.; Sabharwall, Piyush

    2011-01-01

    A high temperature gas-cooled reactor (HTGR) is under development by the Next Generation Nuclear Plant (NGNP) Project at the Idaho National Laboratory (INL). Its design emphasizes electrical power production which may potentially be coupled with process heat for hydrogen production and other industrial applications. NGNP is considering a helical-coil steam generator for the primary heat transport loop heat exchanger based on its increased heat transfer and compactness when compared to other steam generators. The safety and reliability of the helical-coil steam generator is currently under evaluation as part of the development of NGNP. Transients, such as loss of coolant accidents (LOCA), are of interest in evaluating the safety of steam generators. In this study, a complete steam generator inlet pipe break (double ended pipe break) LOCA was simulated by an exponential loss of primary side pressure. For this analysis, a model of the helical-coil steam generator was developed using RELAP5-3D, an INL inhouse systems analysis code. The steam generator model behaved normally during the transient simulating the complete steam generator inlet pipe break LOCA. Further analysis is required to comprehensively evaluate the safety and reliability of the helical-coil steam generator design in the NGNP setting.

  1. Transient studies of low temperature catalysts for methane conversion. Final report, [September 1992--March 1996

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, E.E.

    1996-09-30

    The objective of this project is to use transient techniques to study gas surface interactions during the oxidative conversion of methane. Two groups of catalysts were studied: a double oxide of vanadium and phosphate or VPO, and double oxides of Ni, Co and Rh and lanthana. The objective of the studies involving the VPO catalyst was to understand gas-surface interactions leading to the formation of formaldehyde. In the second group of catalysts, involving metallo-oxides, the main objective was to study the gas-surface interactions that determine the selectivity to C{sub 2} hydrocarbons or synthesis gas. Transient techniques were used to study the methane-surface interactions and the role of lattice oxygen. The selection of the double oxides was made on the hypothesis that the metal oxide would provide an increase interaction with methane whereas the phosphate or lanthanide would provide the sites for oxygen adsorption. The hypothesis behind this selection of catalysts was that increasing the methane interaction with the catalysts would lower the reaction temperature and thus increase the selectivity to the desired products over the total oxidation reaction. In both groups of catalysts the role of Li as a modifier of the selectivity was also studied in detail.

  2. Fluid pressure, sediment compressibility, and secular and transient strain in subduction prisms: Results from ODP CORK borehole hydrologic observatories

    Science.gov (United States)

    Davis, E. E.; Becker, K.

    2005-12-01

    Instruments for long-term hydrogeological monitoring in Ocean Drilling Program boreholes have been installed in five subduction zone settings, including Cascadia, Barbados, Mariana, Costa Rica, and Nankai. Pressure records reveal a wide range of average formation states that are consistent with formation permeability and proximity to sources of formation fluid. For example, near-hydrostatic pressures (excess pore-pressure ratio λ* ~ 0) are observed in the silty parts of the Nankai accretionary prism and in the upper oceanic crust beneath the Costa Rica prism, where well-drained conditions are inferred to be present, and elevated pressures (λ* up to 0.5) have been recorded in finer-grained sedimentary sections near the toe of prisms (e.g., at the level of the decollement in the fine-grained part of the Barbados accretionary prism). In no instances have high pressures (approaching lithostatic, λ* = 1) been observed, although operational difficulties have thus far precluded installations in underthrust sediment sequences where the highest average pressures are expected to be maintained. Records often reveal non-steady behavior, with variations occurring over a broad frequency range. Tidal-frequency variations present in all records are the consequence of oceanographic loading at the seafloor. The amplitude of these signals provide constraints on formation compressibility. Estimated values vary with depth and consolidation state, and range from 5 x 10-9 to 3.5 x 10-10 Pa-1. Once these signals are removed, other transients can be observed, including ones correlated with both seismic and aseismic deformation. Secular strain has been seen in hydrologically isolated parts of the formations at several sites. At the Mariana forearc site, seismic-frequency pressure variations and persistent positive pressure changes were observed at the time of two large (Mb ~ 7.0) deep (~ 70 km) earthquakes located roughly 200 km away; these signals are inferred to reflect local formation

  3. Computation of the temperatures of a fluid flowing through a pipe from temperature measurements on the pipe's outer surface

    International Nuclear Information System (INIS)

    Sauer, G.

    1999-01-01

    A method for computing the temperatures of a fluid flowing through a pipe on the basis of temperatures recorded at the pipe's outer surface is presented. The heat conduction in the pipe wall is described by one-dimensional heat conduction elements. Heat transfer between fluid, pipe and surrounding is allowed for. The equation system resulting from the standard finite element discretization is reformulated to enable the computation of temperature events preceding the recorded temperature in time. It is shown that the method can be used to identify the actual fluid temperature from temperature data obtained only at the outer surface of the pipe. The temperatures in the pipe wall are computed with good accuracy even in the case of a severe thermal shock. (orig.) [de

  4. VARR2 VARRLXSG, 2-D Transient Fluid Flow and Heat Transfer in X-Y and Cylindrical Geometry

    International Nuclear Information System (INIS)

    Cook, J. L.; Nakayama, P. I.; Andreychek, T.

    1980-01-01

    1 - Description of problem or function: VARR2 is a two-dimensional transient slightly-compressible fluid dynamics program. It solves the complete unsteady Navier-Stokes equation, the energy equation, and the continuity equation in either Cartesian or axisymmetric cylindrical geometry. Slight density variations are accounted for by use of the Boussinesq approximation, which couples the energy and momentum equations. At a cell face, the normal velocity component may be inward, outward, or zero; the tangential velocity component may specify free slip, no slip, or no slip with a turbulent velocity profile. For heat transfer problems, adiabatic or constant heat flux boundary conditions can be specified. By specifying the totality of cell-face boundary conditions in a self-consistent manner, the user can specify a wide spectrum of overall boundary conditions; for example, those called rigid, continuative, periodic, inflow/outflow, or derived. 2 - Method of solution: The governing differential equations are replaced by finite difference equations of explicit type and solved over a region of fixed rectangular cells by using the simplified marker and cell technique (SMAC) of Amsden and Harlow. The continuity equation is solved through a successive over- relaxation (SOR) iterative process on a Poisson equation for pressure. 3 - Restrictions on the complexity of the problem: With current dimensioning, the maximum number of cells is about 1600; roughly a 40 x 40 mesh. The problem geometry must be reasonably approximated by a two-dimensional net of rectangular cells, either in Cartesian geometry or transformed from axisymmetric cylindrical geometry. Interior obstacles are allowed. The working fluid may be specified as either sodium or water if the built-in material property coefficients are used. Otherwise, the properties of the working fluid may be entered as part of the problem input

  5. Transient analysis of nuclear graphite oxidation for high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Xu Wei; Shi Lei; Zheng Yanhua

    2014-01-01

    Graphite is widely used in the high temperature gas-cooled reactor pebble-bed modular (HTR-PM). There are about 420,000 spherical fuel elements in the reactor core. The amount of graphite matrix in the reactor is dozens of tons. In normal operating conditions or water/air ingress accident, the matrix graphite of spherical fuel element may be oxidized by air or steam. This paper developed a new graphite oxidation model, considering the graphite porosity variation with the fractional burn-off. This model also considered the effects of microstructure development during oxidation and the resulting changing of diffusivity as well as the oxidation rate. Based on this theoretical model, this paper analyzed penetration depth and the graphite transient oxidation by oxygen. In addition, this paper obtained the weight loss ratio and oxidation rate trend over time and space. (author)

  6. 3D transient model to predict temperature and ablated areas during laser processing of metallic surfaces

    Directory of Open Access Journals (Sweden)

    Babak. B. Naghshine

    2017-02-01

    Full Text Available Laser processing is one of the most popular small-scale patterning methods and has many applications in semiconductor device fabrication and biomedical engineering. Numerical modelling of this process can be used for better understanding of the process, optimization, and predicting the quality of the final product. An accurate 3D model is presented here for short laser pulses that can predict the ablation depth and temperature distribution on any section of the material in a minimal amount of time. In this transient model, variations of thermal properties, plasma shielding, and phase change are considered. Ablation depth was measured using a 3D optical profiler. Calculated depths are in good agreement with measured values on laser treated titanium surfaces. The proposed model can be applied to a wide range of materials and laser systems.

  7. Transient plane source (tps) sensors for simultaneous measurements of thermal conductivity and thermal diffusivity of insulators, fluids and conductors

    Science.gov (United States)

    Maqsood, Asghari; Anis-ur-Rehman, M.

    2013-12-01

    Thermal conductivity and thermal diffusivity are two important physical properties for designing any food engineering processes1. The knowledge of thermal properties of the elements, compounds and different materials in many industrial applications is a requirement for their final functionality. Transient plane source (tps) sensors are reported2 to be useful for the simultaneous measurement of thermal conductivity, thermal diffusivity and volumetric heat capacity of insulators, conductor liquids3 and high-TC superconductors4. The tps-sensor consists of a resistive element in the shape of double spiral made of 10 micrometer thick Ni-foils covered on both sides with 25 micrometer thick Kapton. This sensor acts both as a heat source and a resistance thermometer for recording the time dependent temperature increase. From the knowledge of the temperature co-efficient of the metal spiral, the temperature increase of the sensor can be determined precisely by placing the sensor in between two surfaces of the same material under test. This temperature increase is then related to the thermal conductivity, thermal diffusivity and volumetric heat capacity by simple relations2,5. The tps-sensor has been used to measure thermal conductivities from 0.001 Wm-1K-1to 600 Wm-1K-1 and temperature ranges covered from 77K- 1000K. This talk gives the design, advantages and limitations of the tpl-sensor along with its applications to the measurementof thermal properties in a variety of materials.

  8. Transient plane source (tps) sensors for simultaneous measurements of thermal conductivity and thermal diffusivity of insulators, fluids and conductors

    International Nuclear Information System (INIS)

    Maqsood, Asghari; Anis-ur-Rehman, M

    2013-01-01

    Thermal conductivity and thermal diffusivity are two important physical properties for designing any food engineering processes 1 . The knowledge of thermal properties of the elements, compounds and different materials in many industrial applications is a requirement for their final functionality. Transient plane source (tps) sensors are reported 2 to be useful for the simultaneous measurement of thermal conductivity, thermal diffusivity and volumetric heat capacity of insulators, conductor liquids 3 and high-T C superconductors 4 . The tps-sensor consists of a resistive element in the shape of double spiral made of 10 micrometer thick Ni-foils covered on both sides with 25 micrometer thick Kapton. This sensor acts both as a heat source and a resistance thermometer for recording the time dependent temperature increase. From the knowledge of the temperature co-efficient of the metal spiral, the temperature increase of the sensor can be determined precisely by placing the sensor in between two surfaces of the same material under test. This temperature increase is then related to the thermal conductivity, thermal diffusivity and volumetric heat capacity by simple relations 2,5 . The tps-sensor has been used to measure thermal conductivities from 0.001 Wm −1 K −1 to 600 Wm −1 K −1 and temperature ranges covered from 77K– 1000K. This talk gives the design, advantages and limitations of the tpl-sensor along with its applications to the measurementof thermal properties in a variety of materials

  9. Transient temperature rise in a mouse due to low-frequency regional hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Trakic, Adnan; Liu Feng; Crozier, Stuart [School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Qld 4072 (Australia)

    2006-04-07

    A refined nonlinear heat transfer model of a mouse has been developed to simulate the transient temperature rise in a neoplastic tumour and neighbouring tissue during regional hyperthermia using a 150 kHz inductive coil. In this study, we incorporate various bio-energetic enhancements to the heat transfer equation and numerical validations based on experimental findings for the mouse, in terms of nonlinear metabolic heat production, homeothermy, blood perfusion parameters, thermoregulation, psychological and physiological effects. The discretized bio-heat transfer equation has been validated with the commercial software FEMLAB on a canonical multi-sphere object before applying the scheme to the inhomogeneous mouse voxel phantom. The time-dependent numerical results of regional hyperthermia of mouse thigh have been compared with the available experimental temperature results with only a few small disparities. During the first 20 min of local unfocused heating, the temperature in the tumour and the surrounding tissue increased by around 7.5 deg. C. The objective of this preliminary study was to develop a validated electrothermal numerical scheme for inductive hyperthermia of a small mammal with the intention of expanding the model into a complete numerical solution involving ferromagnetic nanoparticles for targeted heating of tumours at low frequencies. In addition, the numerical scheme herein could assist in optimizing and tailoring of focused electromagnetic fields for hyperthermia.

  10. Fluid flow distribution optimization for minimizing the peak temperature of a tubular solar receiver

    International Nuclear Information System (INIS)

    Wei, Min; Fan, Yilin; Luo, Lingai; Flamant, Gilles

    2015-01-01

    High temperature solar receiver is a core component of solar thermal power plants. However, non-uniform solar irradiation on the receiver walls and flow maldistribution of heat transfer fluid inside the tubes may cause the excessive peak temperature, consequently leading to the reduced lifetime. This paper presents an original CFD (computational fluid dynamics)-based evolutionary algorithm to determine the optimal fluid distribution in a tubular solar receiver for the minimization of its peak temperature. A pressurized-air solar receiver comprising of 45 parallel tubes subjected to a Gaussian-shape net heat flux absorbed by the receiver is used for study. Two optimality criteria are used for the algorithm: identical outlet fluid temperatures and identical temperatures on the centerline of the heated surface. The influences of different filling materials and thermal contact resistances on the optimal fluid distribution and on the peak temperature reduction are also evaluated and discussed. Results show that the fluid distribution optimization using the algorithm could minimize the peak temperature of the receiver under the optimality criterion of identical temperatures on the centerline. Different shapes of optimal fluid distribution are determined for various filling materials. Cheap material with low thermal conductivity can also meet the peak temperature threshold through optimizing the fluid distribution. - Highlights: • A 3D pressurized-air solar receiver based on the tube-in-matrix concept is studied. • An original evolutionary algorithm is developed for fluid distribution optimization. • A new optimality criterion is proposed for minimizing the receiver peak temperature. • Different optimal fluid distributions are determined for various filling materials. • Filling material with high thermal conductivity is more favorable in practical use.

  11. Probabilistic Fracture Mechanics Analysis of Boling Water Reactor Vessel for Cool-Down and Low Temperature Over-Pressurization Transients

    Directory of Open Access Journals (Sweden)

    Jeong Soon Park

    2016-04-01

    Full Text Available The failure probabilities of the reactor pressure vessel (RPV for low temperature over-pressurization (LTOP and cool-down transients are calculated in this study. For the cool-down transient, a pressure–temperature limit curve is generated in accordance with Section XI, Appendix G of the American Society of Mechanical Engineers (ASME code, from which safety margin factors are deliberately removed for the probabilistic fracture mechanics analysis. Then, sensitivity analyses are conducted to understand the effects of some input parameters. For the LTOP transient, the failure of the RPV mostly occurs during the period of the abrupt pressure rise. For the cool-down transient, the decrease of the fracture toughness with temperature and time plays a main role in RPV failure at the end of the cool-down process. As expected, the failure probability increases with increasing fluence, Cu and Ni contents, and initial reference temperature-nil ductility transition (RTNDT. The effect of warm prestressing on the vessel failure probability for LTOP is not significant because most of the failures happen before the stress intensity factor reaches the peak value while its effect reduces the failure probability by more than one order of magnitude for the cool-down transient.

  12. Computational Fluid Dynamics Analysis of Very High Temperature Gas-Cooled Reactor Cavity Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Frisani, Angelo; Hassan, Yassin A; Ugaz, Victor M

    2010-11-02

    The design of passive heat removal systems is one of the main concerns for the modular very high temperature gas-cooled reactors (VHTR) vessel cavity. The reactor cavity cooling system (RCCS) is a key heat removal system during normal and off-normal conditions. The design and validation of the RCCS is necessary to demonstrate that VHTRs can survive to the postulated accidents. The computational fluid dynamics (CFD) STAR-CCM+/V3.06.006 code was used for three-dimensional system modeling and analysis of the RCCS. A CFD model was developed to analyze heat exchange in the RCCS. The model incorporates a 180-deg section resembling the VHTR RCCS experimentally reproduced in a laboratory-scale test facility at Texas A&M University. All the key features of the experimental facility were taken into account during the numerical simulations. The objective of the present work was to benchmark CFD tools against experimental data addressing the behavior of the RCCS following accident conditions. Two cooling fluids (i.e., water and air) were considered to test the capability of maintaining the RCCS concrete walls' temperature below design limits. Different temperature profiles at the reactor pressure vessel (RPV) wall obtained from the experimental facility were used as boundary conditions in the numerical analyses to simulate VHTR transient evolution during accident scenarios. Mesh convergence was achieved with an intensive parametric study of the two different cooling configurations and selected boundary conditions. To test the effect of turbulence modeling on the RCCS heat exchange, predictions using several different turbulence models and near-wall treatments were evaluated and compared. The comparison among the different turbulence models analyzed showed satisfactory agreement for the temperature distribution inside the RCCS cavity medium and at the standpipes walls. For such a complicated geometry and flow conditions, the tested turbulence models demonstrated that the

  13. Fluid Pressure and Temperature Response at the Nankai Trough Megasplay Fault: Initial Results of the SmartPlug Borehole Observatory

    Science.gov (United States)

    Hammerschmidt, S.; Kopf, A.; Expedition 332 Scientists, T.

    2011-12-01

    The SmartPlug is the first borehole observatory in the IODP Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE). It was installed at Site C0010 where it penetrates one of the shallow branches of the Megasplay fault to obtain pressure and temperature data from the fault and from a hydrostatic reference section. Here, a 15 months-lasting pore pressure and temperature record collected by the SmartPlug was evaluated. The main objective was to clarify the origin of transients in the data and its possible relationship to natural processes such as earthquakes, tectonic deformation or splay fault activity, as well as storms or low-pressure weather systems. After pressure and temperature data were processed properly, comparisons were made using seismic data from the Japanese F-Net and Hi-Net, theoretical travel time calculations provided by the USGS as well as earthquake lists from the ISC. Additionally, meteorological data provided by the JMA and the U.S. COAPS as well as theoretical travel time calculations for tsunamis from the U.S. NGDC were used. It can be shown that pulse-like pressure transients are related to regional/teleseismic earthquakes, originating mainly from the "Pacific Ring of Fire", from various depths and with diverse focal mechanisms. Approaching seismic waves of at least one regional earthquake led to a significant drop in the formation pressure, which is interpreted as a seismic wave-induced increase in permeability. The arrival of Rayleigh waves caused amplification of the borehole pressure, probably due to induced fluid flow. Tremor-like pressure transients are interpreted to be microseism, which is, based on pressure transient characteristics, triggered by storms or low-pressure weather systems on the open ocean. Approaching tsunamis look similar but caused longer period oscillations in the pressure record. Mainly in the seafloor pressure data distinct peaks are visible, some of which look similar to distinct peaks in the temperature data

  14. The application of the 3D transient computational fluid dynamics to the radionuclide dispersion

    International Nuclear Information System (INIS)

    Silva, Eliene B.S. da; Sampaio, Paulo A.B. de

    2013-01-01

    The Computational Fluid Dynamics (CFD) provides powerful tools for the study of dispersion of radionuclides, including problems where there is radioactive decay. This work presents a treatment to the dispersion of radionuclides through the usage of CFD, namely from the internal dispersion to the external one through either atmospheric or aquatic via. The first one is of fundamental importance, for example, to optimize the design of a room that will shelter the radioactive material, with the intent of aiming at the safety and the minimization of the dose in case of dispersion. The second one concerns the external dispersion, being of major relevance in accidents with releasing out from nuclear power plants, in order to study the safety analysis and also the environmental impact in the surroundings of the installation. In this work, the equations governing momentum, energy and transport with decay of radioactive materials are discretized in order that numerical solutions can be obtained. Finite element meshes and techniques for parallel and distributed computing are combined into a computer code, designed to take into account the effect of turbulence locally in the dispersion of the radioactive material released. Additionally, the code developed employs Large Eddy Simulation (LES) of turbulence. (author)

  15. The Swedish study of Irrigation-fluid temperature in the evacuation of Chronic subdural hematoma (SIC!)

    DEFF Research Database (Denmark)

    Bartley, Andreas; Jakola, Asgeir S; Bartek, Jiri

    2017-01-01

    BACKGROUND: Chronic subdural hematoma (cSDH) is one of the most common conditions encountered in neurosurgical practice. Recurrence, observed in 5-30% of patients, is a major clinical problem. The temperature of the irrigation fluid used during evacuation of the hematoma might theoretically...... for warmed fluids during surgery. Our main aim is to investigate the effect of irrigation-fluid temperature on recurrence rates and clinical outcomes after cSDH evacuation using a multicenter randomized controlled trial design. METHODS: The study will be conducted in three neurosurgical departments...... and health-related quality of life. DISCUSSION: Irrigation-fluid temperature might influence recurrence rates in the evacuation of chronic subdural hematomas. We present a study protocol for a multicenter randomized controlled trial investigating our hypothesis that irrigation fluid at body temperature...

  16. High Temperature Heat Pump Integration using Zeotropic Working Fluids for Spray Drying Facilities

    DEFF Research Database (Denmark)

    Zühlsdorf, Benjamin; Bühler, Fabian; Mancini, Roberta

    2017-01-01

    and show a large potential to reuse the excess heat from exhaust gases. This study analyses a heat pump application with an improved integration by choosing the working fluid as a mixture in such a way, that the temperature glide during evaporation and condensation matches the temperature glide of the heat...... source and sink best possibly. Therefore, a set of six common working fluids is defined and the possible binary mixtures of these fluids are analyzed. The performance of the fluids is evaluated based on the energetic performance (COP) and the economic potential (NPV). The results show...

  17. Hydraulic tests with measuring and control plug for KNK II temperature transient experiments (TETRA)

    International Nuclear Information System (INIS)

    Reimann, G.; Grossgarten, H.-D.; Heckert, K.

    1985-07-01

    For the temperature transient experiments (TETRA) at KNK II the sodium flow rate of a 19-pin test bundle integrated in an annular fuel element shall be reduced and the coolant temperature consequently increased with the help of a measuring and control plug. A valve will act as orificing device. It is designed in such a way that even in closed condition a remaining mass flow will be given, with which the aimed maximum coolant temperature of 750 deg. C will be reached at the outlet of the test bundle. With the nominal mass flow of the test bundle of 1.35 kg/s and a core pressure drop of 1.33 bar, for the test operation with maximum coolant outlet temperature a minimum mass flow of 0.76 kg/s and a test element pressure drop of 0.4 bar is calculated. The experimental plug has therefore to provide a pressure drop of 0.9 bar. During the hydraulic tests the pressure drop of the plug and the characteristic of the valve had to be determined. For this purpose a test line with the same inner dimensions and installations as the plug was established and a first series of experiments was performed in a water circuit. The experiments showed that most of the pressure drop was caused by the valve. It amounts to 0.5 bar with the minimum mass flow, i.e. the aimed pressure drop of 0.9 bar is not yet reached. Further tests will be performed with smaller ring gaps of the valve. In a second series of experiments the characteristics of four valves with different geometries have been determined

  18. Trace elements in migrating high-temperature fluids: Effects of diffusive exchange with the adjoining solid

    Science.gov (United States)

    Kenyon, Patricia M.

    1993-01-01

    Trace element concentrations and isotopic ratios are frequently used to study the behavior of high-temperature fluids in both metamorphic and igneous systems. Many theoretical formulations of the effects of fluid migration on trace elements have assumed instantaneous reequilibration between the migrating fluid and the solid material through which it is passing. This paper investigates the additional effects which arise when equilibration is not instantaneous due to a limited rate of diffusion in the solid, using an analytical steady state solution to a set of partial differential equations describing the exchange of trace elements between the fluid and the solid during the migration of the fluid.

  19. Design of a day tank glass furnace using a transient model and steady-state computation fluid dynamics

    International Nuclear Information System (INIS)

    Díaz-Ibarra, Oscar; Abad, Pablo; Molina, Alejandro

    2013-01-01

    To design day tanks with energy efficiency and good operation standards, a detailed transient model that considers the melting, refining, cooling and working stages of the glass production process was developed. With the model, the required power input was determined, with glass coverage with batch (β) as parameter, for a furnace with a daily production of 1130 kg of soda-lime glass and 14 h for melting/refining. A detailed analysis of the energy balance with the model showed that during the daily cycle about 70% of the energy input is released with the flue gas. During the working stage most of the energy escapes through the doors. As the peak of energy consumption is during the refining process, the power requirement for this stage defines the global power requirement. Calculated energy efficiencies vary between 13% and 16% for β = 70% and 30% respectively. A steady state CFD simulation of the combustion chamber and glass tank shows that a side-fired burner configuration allows for lower gas velocities and temperatures close to the glass and the furnace walls while guaranteeing the same heat transfer characteristics to the glass than the more traditional end-fired (U-type) furnaces. -- Highlights: ► A transient model of a day tank glass furnace captures main process characteristics. ► Heat loss through doors during working stage impacts thermal efficiency. ► A side-fired burner configuration should be preferred to an end-fired approach

  20. Effects of transient high temperature treatment on the intestinal flora of the silkworm Bombyx mori.

    Science.gov (United States)

    Sun, Zhenli; Kumar, Dhiraj; Cao, Guangli; Zhu, Liyuan; Liu, Bo; Zhu, Min; Liang, Zi; Kuang, Sulan; Chen, Fei; Feng, Yongjie; Hu, Xiaolong; Xue, Renyu; Gong, Chengliang

    2017-06-13

    The silkworm Bombyx mori is a poikilotherm and is therefore sensitive to various climatic conditions. The influence of temperature on the intestinal flora and the relationship between the intestinal flora and gene expression in the silkworm remain unknown. In the present study, changes of the intestinal flora at 48, 96 and 144 h following transient high temperature treatment (THTT) of 37 °C for 8 h were investigated. According to principal component analysis, the abundances of Enterococcus and Staphylococcus showed a negative correlation with other dominant genera. After THTT, the gene expression levels of spatzle-1 and dicer-2 were increased and decreased, respectively, which suggested that the Toll and RNAi pathways were activated and suppressed, respectively. The species-gene expression matrix confirmed that the spatzle-1 and dicer-2 gene expression levels were negatively and positively correlated, respectively, with the abundance of Enterococcus and Staphylococcus in the control. The abundance of Variovorax post-THTT was positively correlated with the spatzle-1 gene expression level, whereas the community richness of Enterococcus was negatively correlated with the spatzle-1 gene expression level and positively correlated with the dicer-2. The results of the present investigation provide new evidence for understanding the relationships among THTT, intestinal flora and host gene expression.

  1. Green’s Function Approach to Solution of Transient Temperature for Thermal Stresses of Functionally Graded Material

    Science.gov (United States)

    Kim, Kui-Seob; Noda, Naotake

    The transient temperature solution for a functionally graded material (FGM) is formulated by Green’s function based on the Galerkin method. An approximate solution that satisfies the homogeneous boundary condition is substituted into the governing equation to yield an eigenvalue problem. To solve the eigenvalue problem, the eigenfunctions are approximated by a series of polynomials satisfying the homogeneous boundary condition. The Galerkin method is used to determine the coefficients of eigenfunctions. The transient temperature solution for a general heat conduction equation with a source and nonhomogeneous boundary conditions is obtained by using Green’s function, which is expressed by eigenvalues and corresponding eigenfunctions. Transient thermal stresses in a FGM plate and a FGM hollow circular cylinder are discussed.

  2. Modeling Study of High Pressure and High Temperature Reservoir Fluids

    DEFF Research Database (Denmark)

    Varzandeh, Farhad

    S-characterization combinations and 260 reservoir fluids. PC-SAFT with the new general characterization method is shown to give the lowest AAD% and maximum deviation in calculation of saturation pressure, density and STO density, among all the tested characterization methods for PC-SAFT. Application of the new characterization...... be highly rewarding if successfully produced. This PhD project is part of the NextOil (New Extreme Oil and Gas in the Danish North Sea) project which is intended to reduce the uncertainties in HPHT field development. The main focus of this PhD is on accurate description of the reservoir fluid behavior under...... HPHT conditions to minimize the production risks from these types of reservoirs. In particular, the study has thoroughly evaluated several non-cubic Equations of State (EoSs) which are considered promising for HPHT fluid modeling, showing their advantages and short comings based on an extensive...

  3. Modelling of temperature field in a reactor vessel downcomer during transients

    International Nuclear Information System (INIS)

    Prosicky, M.; Zacha, P.

    2003-01-01

    The B test series from the course of ISP Nr. 43 was analysed. The boundary conditions measured include the initial temperature of the primary system, the front/slug injection flowrate and temperature, and the pressure drop across the core. Temperature data were collected at 185 thermocouple positions in the downcomer and 38 positions in the lower plenum. The frequency of data acquisition for code predictions was set to 2 Hz, which corresponds to the acquisition frequency of the two experimental setups. Calculations were performed using the FLUENT Computational Fluid Dynamics (CFD) code. This program is based on the finite volume method, The computational mesh was generated by the pre-processor - GAMBIT program. FLUENT uses a control-volume-based technique to convert the governing equations to algebraic equations, which can be solved numerically. This control volume technique consists of integrating the governing equations about each control volume, yielding discrete equations that conserve each quantity on a control-volume basis. The connection between the values at single cell and adjacent cells is done by and interpolation scheme. (P.A.)

  4. Thermal transient effect and improved junction temperature measurement method in high-voltage light-emitting diodes

    NARCIS (Netherlands)

    Ye, H.; Chen, X.; Zeijl, H. van; Gielen, A.W.J.; Zhang, G.

    2013-01-01

    The diode forward voltage method with pulsed currents was widely used for monitoring junction temperature (Tj of light-emitting diodes (LEDs). However, a thermal transient effect (TTE) was observed by the pulsed currents and consequent errors were introduced. Thermoelectric physics was conducted to

  5. Effect of thermal aging on stability of transformer oil based temperature sensitive magnetic fluids

    Science.gov (United States)

    Kaur, Navjot; Chudasama, Bhupendra

    2018-04-01

    Synthesizing stable temperature sensitive magnetic fluids with tunable magnetic properties that can be used as coolant in transformers is of great interest, however not exploited commercially due to the lack of its stability at elevated temperatures in bulk quantities. The task is quite challenging as the performance parameters of magnetic fluids are strongly influenced by thermal aging. In this article, we report the effect of thermal aging on colloidal stability and magnetic properties of Mn1-xZnxFe2O4 magnetic fluids prepared in industrial grade transformer oil. As-synthesized magnetic fluids possess good dispersion stability and tunable magnetic properties. Effect of accelerated thermal aging on the dispersion stability and magnetic properties have been evaluated by photon correlation spectroscopy and vibration sample magnetometry, respectively. Magnetic fluids are stable under accelerated aging at elevated temperatures (from 50 °C to 125 °C), which is critical for their efficient performance in high power transformers.

  6. Fluid temperatures: Modeling the thermal regime of a river network

    Science.gov (United States)

    Rhonda Mazza; Ashley Steel

    2017-01-01

    Water temperature drives the complex food web of a river network. Aquatic organisms hatch, feed, and reproduce in thermal niches within the tributaries and mainstem that comprise the river network. Changes in water temperature can synchronize or asynchronize the timing of their life stages throughout the year. The water temperature fluctuates over time and place,...

  7. Thickened water-based hydraulic fluid with reduced dependence of viscosity on temperature

    Energy Technology Data Exchange (ETDEWEB)

    Deck, C. F.

    1985-01-01

    Improved hydraulic fluids or metalworking lubricants, utilizing mixtures of water, metal lubricants, metal corrosion inhibitors, and an associative polyether thickener, have reduced dependence of the viscosity on temperature achieved by the incorporation therein of an ethoxylated polyether surfactant.

  8. The growth of necks in fuel sheaths during high temperature transients in steam

    International Nuclear Information System (INIS)

    Hunt, C.E.L.

    1980-02-01

    In fuel sheaths oxidizing under stress during a high temperature transient, diametral strain is localized in regions where the oxide film cracks. As a result, the total strain in a tube depends on the number of cracks formed. The opening of a crack and the formation of the associated neck observed on the inner surface can be described by a sequence of slip steps. The initial width of the neck is equal to twice the tube wall thickness. If oxide cracks form at a spacing less than twice the wall thickness their associated necks interact. If the cracks are close together the combined neck will have a fairly smooth profile but as the crack spacing increases the combined neck profile will roughen. For a fuel sheath of the dimensions typically used in the Pickering Nuclear Generating Station (15.24 mm OD x 0.43 mm wall) any single crack and its associated neck can contribute up to about 5% diametral strain before penetration of the wall occurs. (auth)

  9. Calculations of fuel temperature transients in the LPTR following a main coolant system pump trip

    International Nuclear Information System (INIS)

    Stein, W.

    1976-01-01

    An analysis was made to determine the fuel temperature in the Livermore Pool Type Reactor, LPTR, during a transient involving a reactor scram following a cooling system pump trip. A computer code was obtained for this purpose from the University of Virginia. This code was used in preparation of UVAR-18, the SAR Manual of the University of Virginia Reactor. This reactor is very similar to the LPTR. The code incorporates a form of the reactor point kinetics equation with six delayed neutron groups, and standard heat transfer equations. The code was modified for use in this study. These modifications included rewriting the code in Fortran IV from ALGO, replacing a straight line pump coastdown by an equation closely following the actual pump RPM during a pump trip, modifying flow resistance equations to conform to the conditions in the LPTR, and replacing various constants with others applicable to the LPTR. The calculations in this study apply to a reactor scram from conditions at the ''safety limit'' settings

  10. Calculations of fuel temperature transients in the LPTR following a main coolant system pump trip

    Energy Technology Data Exchange (ETDEWEB)

    Stein, W.

    1976-09-28

    An analysis was made to determine the fuel temperature in the Livermore Pool Type Reactor, LPTR, during a transient involving a reactor scram following a cooling system pump trip. A computer code was obtained for this purpose from the University of Virginia. This code was used in preparation of UVAR-18, the SAR Manual of the University of Virginia Reactor. This reactor is very similar to the LPTR. The code incorporates a form of the reactor point kinetics equation with six delayed neutron groups, and standard heat transfer equations. The code was modified for use in this study. These modifications included rewriting the code in Fortran IV from ALGO, replacing a straight line pump coastdown by an equation closely following the actual pump RPM during a pump trip, modifying flow resistance equations to conform to the conditions in the LPTR, and replacing various constants with others applicable to the LPTR. The calculations in this study apply to a reactor scram from conditions at the ''safety limit'' settings.

  11. Transient simulation of coolant peak temperature due to prolonged fan and/or water pump operation after the vehicle is keyed-off

    Science.gov (United States)

    Pang, Suh Chyn; Masjuki, Haji Hassan; Kalam, Md. Abul; Hazrat, Md. Ali

    2014-01-01

    Automotive designers should design a robust engine cooling system which works well in both normal and severe driving conditions. When vehicles are keyed-off suddenly after some distance of hill-climbing driving, the coolant temperature tends to increase drastically. This is because heat soak in the engine could not be transferred away in a timely manner, as both the water pump and cooling fan stop working after the vehicle is keyed-off. In this research, we aimed to visualize the coolant temperature trend over time before and after the vehicles were keyed-off. In order to prevent coolant temperature from exceeding its boiling point and jeopardizing engine life, a numerical model was further tested with prolonged fan and/or water pump operation after keying-off. One dimensional thermal-fluid simulation was exploited to model the vehicle's cooling system. The behaviour of engine heat, air flow, and coolant flow over time were varied to observe the corresponding transient coolant temperatures. The robustness of this model was proven by validation with industry field test data. The numerical results provided sensible insights into the proposed solution. In short, prolonging fan operation for 500 s and prolonging both fan and water pump operation for 300 s could reduce coolant peak temperature efficiently. The physical implementation plan and benefits yielded from implementation of the electrical fan and electrical water pump are discussed.

  12. Natural occurrence and significance of fluids indicating high pressure and temperature

    Science.gov (United States)

    Roedder, E.

    1981-01-01

    Most natural minerals have formed from a fluid phase such as a silicate melt or a saline aqueous solution. Fluid inclusions are tiny volumes of such fluids that were trapped within the growing crystals. These inclusions can provide valuable but sometimes ambiguous data on the temperature, pressure, and composition of these fluids, many of which are not available from any other source. They also provide "visual autoclaves" in which it is possible to watch, through the microscope, the actual phase changes take place as the inclusions are heated. This paper reviews the methods of study and the results obtained, mainly on inclusions formed from highly concentrated solutions, at temperatures ???500??C. Many such fluids have formed as a result of immiscibility with silicate melt in igneous or high-temperature metamorphic rocks. These include fluids consisting of CO2, H2O, or hydrosaline melts that were <50% H2O. From the fluid inclusion evidence it is clear that a boiling, very hot, very saline fluid was present during the formation of most of the porphyry copper deposits in the world. Similarly, from the inclusion evidence it is clear that early (common) pegmatites formed from essentially silicate melts and that the late, rare-element-bearing and chamber-type pegmatites formed from a hydrosaline melt or a more dilute water solution. The evidence on whether this change in composition from early to late solutions was generally continuous or involved immiscibility is not as clear. ?? 1981.

  13. Combined Effect of Pressure and Temperature on the Viscous Behaviour of All-Oil Drilling Fluids

    Directory of Open Access Journals (Sweden)

    Hermoso J.

    2014-12-01

    Full Text Available The overall objective of this research was to study the combined influence of pressure and temperature on the complex viscous behaviour of two oil-based drilling fluids. The oil-based fluids were formulated by dispersing selected organobentonites in mineral oil, using a high-shear mixer, at room temperature. Drilling fluid viscous flow characterization was performed with a controlled-stress rheometer, using both conventional coaxial cylinder and non-conventional geometries for High Pressure/High Temperature (HPHT measurements. The rheological data obtained confirm that a helical ribbon geometry is a very useful tool to characterise the complex viscous flow behaviour of these fluids under extreme conditions. The different viscous flow behaviours encountered for both all-oil drilling fluids, as a function of temperature, are related to changes in polymer-oil pair solvency and oil viscosity. Hence, the resulting structures have been principally attributed to changes in the effective volume fraction of disperse phase due to thermally induced processes. Bingham’s and Herschel-Bulkley’s models describe the rheological properties of these drilling fluids, at different pressures and temperatures, fairly well. It was found that Herschel-Bulkley’s model fits much better B34-based oil drilling fluid viscous flow behaviour under HPHT conditions. Yield stress values increase linearly with pressure in the range of temperature studied. The pressure influence on yielding behaviour has been associated with the compression effect of different resulting organoclay microstructures. A factorial WLF-Barus model fitted the combined effect of temperature and pressure on the plastic viscosity of both drilling fluids fairly well, being this effect mainly influenced by the piezo-viscous properties of the continuous phase.

  14. Shape factors inclusion in a one‐dimensional, transient two‐fluid model for stratified and slug flow simulations in pipes

    OpenAIRE

    Bonzanini, Arianna; Picchi, Davide; Ferrari, Marco; Poesio, Pietro

    2017-01-01

    In previous works, (Ferrari et al., 2017) have shown that a onedimensional, hyperbolic, transient five equations two-fluid model is able to numerically describe stratified, wavy, and slug flow in horizontal and near-horizontal pipes. Slug statistical characteristics, such as slug velocity, frequency, and length can be numerically predicted with results in good agreement with experimental data and well-known empirical relations. In this model some approximated and simplified assumptions are ad...

  15. A Conditionally Stable Scheme for a Transient Flow of a Non-Newtonian Fluid Saturating a Porous Medium

    KAUST Repository

    El-Amin, Mohamed

    2012-06-02

    The problem of thermal dispersion effects on unsteady free convection from an isothermal horizontal circular cylinder to a non-Newtonian fluid saturating a porous medium is examined numerically. The Darcy-Brinkman-Forchheimer model is employed to describe the flow field. The thermal diffusivity coefficient has been assumed to be the sum of the molecular diffusivity and the dynamic diffusivity due to mechanical dispersion. The simultaneous development of the momentum and thermal boundary layers are obtained by using finite difference method. The stability conditions are determined for each difference equation. Using an explicit finite difference scheme, solutions at each time-step have been found and then stepped forward in time until reaching steady state solution. Velocity and temperature profiles are shown graphically. It is found that as time approaches infinity, the values of friction factor and heat transfer coefficient approach the steady state values.

  16. Rheological Properties with Temperature Response Characteristics and a Mechanism of Solid-Free Polymer Drilling Fluid at Low Temperatures

    Directory of Open Access Journals (Sweden)

    Sheng Wang

    2016-12-01

    Full Text Available The rheological properties of drilling fluid have important effects during drilling in natural gas hydrate at low temperatures. The present study was performed using theoretical analysis. Experiments and micro-analyses were carried out to determine the rheological properties with temperature response characteristics and the mechanism involved in solid-free polymer drilling fluid (SFPDF at low temperatures when drilling in permafrost with natural gas hydrates (NGH. The curves of shear stress with the shear rates of three kinds of polymer drilling fluids, Semen Lepidii natural vegetable gum, polyacrylamide, and xanthan gum, were drawn. Then, statistical and related analyses of test data were performed using Matlab ver. 8.0. Through regression analysis, the Herschel–Bulkley model was used to characterize the rheological characteristics of SFPDF. On this basis, the laws regarding the rheological properties of the three kinds of SFPDF under changing temperatures were analyzed and rheological properties with temperature response state equations were established. Next, the findings of previous studies on rheological properties with temperature response characteristics of the SFPDF were reviewed. Finally, the rheological properties with temperature response mechanisms were assessed using scanning electron microscopy and infrared spectrum analysis.

  17. Analysis of transient and hysteresis behavior of cross-flow heat exchangers under variable fluid mass flow rate for data center cooling applications

    International Nuclear Information System (INIS)

    Gao, Tianyi; Murray, Bruce; Sammakia, Bahgat

    2015-01-01

    Effective thermal management of data centers is an important aspect of reducing the energy required for the reliable operation of data processing and communications equipment. Liquid and hybrid (air/liquid) cooling approaches are becoming more widely used in today's large and complex data center facilities. Examples of these approaches include rear door heat exchangers, in-row and overhead coolers and direct liquid cooled servers. Heat exchangers are primary components of liquid and hybrid cooling systems, and the effectiveness of a heat exchanger strongly influences the thermal performance of a cooling system. Characterizing and modeling the dynamic behavior of heat exchangers is important for the design of cooling systems, especially for control strategies to improve energy efficiency. In this study, a dynamic thermal model is solved numerically in order to predict the transient response of an unmixed–unmixed crossflow heat exchanger, of the type that is widely used in data center cooling equipment. The transient response to step and ramp changes in the mass flow rate of both the hot and cold fluid is investigated. Five model parameters are varied over specific ranges to characterize the transient performance. The parameter range investigated is based on available heat exchanger data. The thermal response to the magnitude, time period and initial and final conditions of the transient input functions is studied in detail. Also, the hysteresis associated with the fluid mass flow rate variation is investigated. The modeling results and performance data are used to analyze specific dynamic performance of heat exchangers used in practical data center cooling applications. - Highlights: • The transient performance of a crossflow heat exchanger was modeled and studied. • This study provides design information for data center thermal management. • The time constant metric was used to study the impacts of many variable inputs. • The hysteresis behavior

  18. Evaluation of dynamic loads induced by transient regimes of fluid flows in the pipe systems and devices of reducing the loads and their effects

    International Nuclear Information System (INIS)

    Serban, Viorel; Chirita, Alexandru Mihai; Androne, Marian; Alexandru, Constantin; Ciuca, Camelia; Badara, Janina; Alexandru, Carmen

    1995-01-01

    The paper presents the analytic methods for estimating the dynamic effects induced in pipe systems in transient regimes. They are based on computation programs developed in order to check the behaviour of ECCS and EWS under 'water hammer effect' and the behaviour of the primary circuit system under stresses caused by pipe cracks. Computation examples are presented in order to emphasize the capabilities of the programs to model transient phenomena in complex pipe networks. The overpressure induced by the water hammer effect, as revealed by comparing several transient regimes, depends on the fluid viscosity, the initial speed, the duration of starting the transient regime, the system rigidity, etc. Values several ten times higher that the initial one could be thus reached. An overview of new types of devices designed for damping the effect of water hammer phenomenon, as well as of sustaining supports for pipe systems and equipment able to damp the vibrations produced by the transient regimes of fluid flows and seismic movements is presented. These devices have also to cope with the high shocks produced by pipe breakage as well as high static loads. The paper contains the following sections: 1. Introduction; 2. Evaluating dynamic loads associated to the water hammer phenomenon; 3. Determining loads associated to the water hammer phenomenon for the ECC system of the Cernavoda NPP Unit 1; 4. Device for reducing the water hammer effects; 5. Evaluating dynamic loads associated to pipe cracks; 6. Determining loads associated to pipe cracks in the Cernavoda NPP primary circuit; 7. Devices for absorbing and damping the dynamic loads in pipe systems and equipment; 8. Conclusions. (authors)

  19. Microstructures Indicate Large Influence of Temperature and Fluid Pressure on the Reactivation of the Alpine Fault, New Zealand

    Science.gov (United States)

    Schuck, B.; Janssen, C.; Schleicher, A.; Toy, V.; Dresen, G.

    2017-12-01

    The transpressional Alpine Fault within New Zealand's South Island is the major structure that accommodates relative motion between the Pacific and the Australian Plates. It has been intensively studied, because it is late in its 291-year seismic cycle (Cochran et al., 2017; doi: 10.1016/j.epsl.2017.02.026), is likely to generate large (i.e. MW > 8) earthquakes, thus presents the biggest seismic hazard in the region. However, because it is severely misoriented in the present-day stress field for reactivation (Boese et al., 2013; doi: 10.1016/j.epsl.2013.06.030), supra-lithostatic fluid-pressures are required for rupture nucleation. We have analyzed microstructures (SEM and TEM), geochemistry (ICP-OES) and mineralogy (XRD) of outcrop samples of the fault core to investigate the influence of fluids on the geomechanical behavior of the fault. Fluid-related alteration is pervasive within 20 m of the principal slip zone (PSZ) (Sutherland et al., 2012; doi: 10.1130/G33614.1), which is an incohesive, cemented and repeatedly reworked fault gouge mostly consisting of a fine-grained matrix composed of comminuted detrital quartz and feldspar as well as authigenic chlorite and calcite. Authigenic phases seal the PSZ for interseismic cross-fault fluid flow and enable fluid pressure to build-up. Notable, smectite, previously considered to significantly influence propagation of Alpine Fault ruptures, is not present in these samples. Undeformed, euhedral chlorite grains suggest that the processes leading to fault sealing are not only active at greater depths but also close to the surface. The absence of smectite and the presence of undeformed chlorite at very shallow depths can be attributed to the fault's high geothermal gradient of > 120 °C km-1 (Sutherland et al., 2012; doi:10.1038/nature22355), which gives temperature conditions unfavorable for smectite to be stable and fostering chlorite growth. A pervasive network of anastomosing calcite veins in the fault core, depicting

  20. CRT code and results of some studies for power, reactivity and temperatures for LMFBR fuel rods under operational transients

    International Nuclear Information System (INIS)

    Om Pal Singh; Ponpondi, S.; Parikh, M.V.

    1985-01-01

    The paper describes the details of the computer code, CRT, that has been developed to study the reactor power, reactivity and temperature transients in LMFBR fuel rods under operational transients. The code is based upon suitable modelling of reactor neutron kinetics, heat transfer phenomena and reactivity feedback effects coming from: axial/radial expansion of the fuel/clad/coolant; core boundary movement to axial and radial blankets; sodium entry/expulsion during the radial expansion of the core and apparent insertion/removal of control rods during core/reactor vessel expansion. Further, the results of some studies like, transient behaviour of reactor power and temperature distribution in fuel rods for reactor at low and high initial powers and for fresh and irradiated fuels; comparison of lumped and exact heat transfer models and evaluation of limiting reactivity addition rates for the lumped model to be adequate; influence of the gap conductance on the temperature distributions inside the fuel pellet and the clad and break up of reactivity coming from different feedback mechanisms and their dependence upon the heat transfer parameters are also presented. (author)

  1. High temperature-high pressure apparatus for neutron diffraction on fluids: structure factor of expanded fluid rubidium

    International Nuclear Information System (INIS)

    Freyland, W.; Hensel, F.; Glaeser, W.

    1979-01-01

    The paper describes a new experimental set-up for neutron scattering experiments on fluid systems at high temperatures and pressures. This technique has been applied for the investigation of the static structure factor S(Q) of expanded fluid rubidium up to 1970 K and 150 bat. The first results obtained up to these conditions show a strong decrease of the intensity of the first peak in S(Q) and a pronounced increase of the scattering at small angles with reducing densities. Within experimental errors no shift in the position of the first peak is found above 900 K. These observations together with the corresponding behaviour of the Fourier transform of S(Q) indicate, that with expansion the distance of nearest neighbours changes only a little, whereas the number of nearest neighbours decreases by about a factor of two, if the density is reduced from 1.2 g cm -3 at 900 K. It is the first time that such a change in the microscopic structure has been studied experimentally for a fluid metal over a wide range of temperatures and densities. The correlation between the increase in S(O) and the change in the mean interatomic is briefly discussed. (orig.) 891 HK/orig. 892 BRE

  2. Imaging heat transfer processes in a fluid with temperature sensitive paint

    Science.gov (United States)

    Huang, Jun; Liu, Tianshu; Luo, Weili

    2014-03-01

    The temperature profile inside a fluid was imaged by temperature sensitive paint in a quasi one-dimensional cell, where temperature gradients were established by heating on one side of the sample and cooling on the other. Similar experiment was performed on colloids consisting nanoparticles suspended in solvent. The change of the profile for different heat-transfer processes as functions of time will be discussed.

  3. MHD flow of Kuvshinski fluid through porous medium with temperature gradient heat source

    International Nuclear Information System (INIS)

    Goyal, Mamta; Banshiwal, Anna

    2014-01-01

    MHD free convection time dependent flow of a viscous, dissipative, incompressible, electrically conducting, non Newtonian fluid name as Kuvshinski fluid past an infinite vertical plate is considered The plate is moving with uniform velocity in the direction of flow. Analytical solutions have been obtained for velocity, temperature and concentration using perturbation technique. The effects of governing parameter on flow quantities are discussed with the help of graphs. (author)

  4. Acquisition of 3D temperature distributions in fluid flow using proton resonance frequency thermometry.

    Science.gov (United States)

    Buchenberg, Waltraud B; Wassermann, Florian; Grundmann, Sven; Jung, Bernd; Simpson, Robin

    2016-07-01

    Proton resonance frequency thermometry is well established for monitoring small temperature changes in tissue. Application of the technique to the measurement of complex temperature distributions within fluid flow is of great interest to the engineering community and could also have medical applications. This work presents an experimental approach to reliably measure three-dimensional (3D) temperature fields in fluid flow using proton resonance frequency thermometry. A velocity-compensated three-dimensional gradient echo sequence was used. A flexible pumping system was attached to an MR compatible double pipe heat exchanger. The temperature of two separate flow circuits could be adjusted to produce various three-dimensional spatial temperature distributions within the fluid flow. Validation was performed using MR compatible temperature probes in a uniformly heated flow. A comparative study was conducted with thermocouples in the presence of a spatially varying temperature distribution. In uniformly heated flow, temperature changes were accurately measured to within 0.5 K using proton resonance frequency thermometry, while spatially varying temperature changes measured with MR showed good qualitative agreement with pointwise measurements using thermocouples. Proton resonance frequency thermometry can be used in a variety of complex flow situations to address medical as well as engineering questions. This work makes it possible to gain new insights into fundamental heat transfer phenomena. Magn Reson Med 76:145-155, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  5. Approximate Analytic Solutions of Transient Nonlinear Heat Conduction with Temperature-Dependent Thermal Diffusivity

    Directory of Open Access Journals (Sweden)

    M. T. Mustafa

    2014-01-01

    Full Text Available A new approach for generating approximate analytic solutions of transient nonlinear heat conduction problems is presented. It is based on an effective combination of Lie symmetry method, homotopy perturbation method, finite element method, and simulation based error reduction techniques. Implementation of the proposed approach is demonstrated by applying it to determine approximate analytic solutions of real life problems consisting of transient nonlinear heat conduction in semi-infinite bars made of stainless steel AISI 304 and mild steel. The results from the approximate analytical solutions and the numerical solution are compared indicating good agreement.

  6. Basic thermo-fluid dynamic problems in high temperature heat exchangers

    International Nuclear Information System (INIS)

    McEligot, D.M.

    1986-01-01

    The authors consider high temperature heat exchangers to be ones where the heat transfer coefficients cannot be predicted confidently by classical analyses for pure forced convection with constant fluid properties. Alternatively, one could consider heat exchangers operating above some arbitrary temperature, say 1000F or 600C perhaps, to be at high temperature conditions. In that case, most common working fluids will be superheated vapors or gases. While some liquid metal heat exchangers are designed to operate in this range, the heat transfer coefficients of liquid metals are usually sufficiently high that the dominant thermal resistance would be due to the second fluid. This paper concentrates on convective heat transfer with gases. Typical applications include modular gas cooled nuclear reactors, proposed nuclear propulsion systems and space power plants, and superheaters in Rankine steam cycles

  7. Analysis of oil lubricated, fluid film, thrust bearings with allowance for temperature dependent viscosity

    Science.gov (United States)

    Pan, C. H. T.; Malanoski, S. B.

    1972-01-01

    A preliminary design study was performed to seek a fluid-film thrust bearing design intended to be part of a high-speed, hybrid (rolling element/fluid film) bearing configuration. The base line used is a design previously tested. To improve the accuracy of theoretical predictions of load capacity, flow rate, and friction power loss, an analytical procedure was developed to include curvature effects inherent in thrust bearings and to allow for the temperature rise in the fluid due to viscous heating. Also, a narrow-groove approximation in the treatment of the temperature field was formulated to apply the procedure to the Whipple thrust bearing. A comparative trade-off study was carried out assuming isothermal films; its results showed the shrouded-step design to be superior to the Whipple design for the intended application. An extensive parametric study was performed, employing isoviscous calculations, to determine the optimized design, which was subsequently recalculated allowing for temperature effects.

  8. High temperature, short time pasteurization temperatures inversely affect bacterial numbers during refrigerated storage of pasteurized fluid milk.

    Science.gov (United States)

    Ranieri, M L; Huck, J R; Sonnen, M; Barbano, D M; Boor, K J

    2009-10-01

    The grade A Pasteurized Milk Ordinance specifies minimum processing conditions of 72 degrees C for at least 15 s for high temperature, short time (HTST) pasteurized milk products. Currently, many US milk-processing plants exceed these minimum requirements for fluid milk products. To test the effect of pasteurization temperatures on bacterial numbers in HTST pasteurized milk, 2% fat raw milk was heated to 60 degrees C, homogenized, and treated for 25 s at 1 of 4 different temperatures (72.9, 77.2, 79.9, or 85.2 degrees C) and then held at 6 degrees C for 21 d. Aerobic plate counts were monitored in pasteurized milk samples at d 1, 7, 14, and 21 postprocessing. Bacterial numbers in milk processed at 72.9 degrees C were lower than in milk processed at 85.2 degrees C on each sampling day, indicating that HTST fluid milk-processing temperatures significantly affected bacterial numbers in fluid milk. To assess the microbial ecology of the different milk samples during refrigerated storage, a total of 490 psychrotolerant endospore-forming bacteria were identified using DNA sequence-based subtyping methods. Regardless of processing temperature, >85% of the isolates characterized at d 0, 1, and 7 postprocessing were of the genus Bacillus, whereas more than 92% of isolates characterized at d 14 and 21 postprocessing were of the genus Paenibacillus, indicating that the predominant genera present in HTST-processed milk shifted from Bacillus spp. to Paenibacillus spp. during refrigerated storage. In summary, 1) HTST processing temperatures affected bacterial numbers in refrigerated milk, with higher bacterial numbers in milk processed at higher temperatures; 2) no significant association was observed between genus isolated and pasteurization temperature, suggesting that the genera were not differentially affected by the different processing temperatures; and 3) although typically present at low numbers in raw milk, Paenibacillus spp. are capable of growing to numbers that can

  9. Synthesis of high-temperature viscosity stabilizer used in drilling fluid

    Science.gov (United States)

    Zhang, Yanna; Luo, Huaidong; Shi, Libao; Huang, Hongjun

    2018-02-01

    Abstract For a well performance drilling fluid, when it operates in deep wells under high temperature, the most important property required is the thermal stability. The drilling fluid properties under high temperature can be controlled by proper selection of viscosity stabilizer, which can capture oxygen to protect polymer agent in the drilling fluid. In this paper a viscosity stabilizer PB-854 is described, which was synthesized by 4-phenoxybutyl bromide, paraformaldehyde, and phloroglucinol using etherification method and condensation reaction. We studied the effect of catalyst dosage, temperature, time, and stirring rate on the synthetic yield. Under this condition: molar ratio of 2-tert-Butylphenol, paraformaldehyde and phloroglucinol of 2:1:2.5, reacting temperature of 100 °C, stirring rate of 100 r min‑1, and mass content of catalyst of 15 %, char yield of 5-bromine-3-tert-butyl salicylaldehyde reached 86 %. Under this condition: molar ratio of 5-bromine-3-tert-butyl salicylaldehyde and phloroglucinol of 4, reacting temperature of 60 °C, reacting time of 30 min, volume content of sulphuric acid of 80 %, char yield of the target product viscosity stabilizer PB-854 is 86%. Finally, in this paper, infrared spectroscopy is adopted to analyse the structure of the synthetic product PB-854.The improvement in the stability of drilling fluid was further shown after adding the viscosity stabilizer in the common polymer drilling fluid under high temperature conditions of 120 °C ∼ 180 °C. The results show significant change in terms of fluid stability in the presence of this new stabilizer as it provides better stability.

  10. Relation between medium fluid temperature and centroid subchannel temperatures of a nuclear fuel bundle mock-up

    International Nuclear Information System (INIS)

    Carvalho Tofani, P. de.

    1986-01-01

    The subchannel method used in nuclear fuel bundle thermal-hydraulic analysis lies in the statement that subchannel fluid temperatures are taken at mixed mean values. However, the development of mixing correlations and code assessment procedures are, sometimes in the literature, based upon the assumption of identity between lumped and local (subchannel centroid) temperature values. The present paper is concerned with the presentation of an approach for correlating lumped to centroid subchannel temperatures, based upon previously formulated models by the author, applied, applied to a nine heated tube bundle experimental data set. (Author) [pt

  11. Relation between medium fluid temperature and centroid subchannel temperatures of a nuclear fuel bundle mock-up

    International Nuclear Information System (INIS)

    Carvalho Tofani, P. de.

    1986-01-01

    The subchannel method used in nuclear fuel bundle thermal-hydraulic analysis lies in the statement that subchannel fluid temperatures are taken at mixed mean values. However, the development of mixing correlations and code assessment procedures are, sometimes in the literature, based upon the assumption of identity between lumped and local (subchannel centroid) temperature values. The present paper is concerned with the presentation of an approach for correlating lumped to centroid subchannel temperatures, based upon previously formulated models by the author, applied to a nine heated tube bundle experimental data set. (Author) [pt

  12. Effect of warm intravenous and irrigating fluids on body temperature during transurethral resection of the prostate gland

    Directory of Open Access Journals (Sweden)

    Okeke LI

    2007-09-01

    Full Text Available Abstract Background Transurethral resection of the prostate gland with irrigation fluid at room temperature leads to perioperative hypothermia which could give rise to adverse cardiovascular events in the perioperative period. The use of isothermic irrigation fluid reduces but does not eliminate this risk. Routine use of warm intravenous fluids along with isothermic irrigation had not been documented. This study set out to investigate the effect of the use of warm intravenous fluid together with isothermic irrigation fluid on the body temperature in patients undergoing transurethral resection of the prostate gland. Methods One hundred and twenty consented patients with obstructing benign prostatic hyperplasia were randomly assigned to one of 3 groups. Group 1 received irrigation and intravenous fluids at room temperature, group 2 received warmed irrigation fluid at 38°C along with intravenous fluid at room temperature while group 3 patients received warmed irrigation fluid and warmed intravenous fluids at 38°C. Their perioperative body temperature changes were monitored, analyzed and compared. Results The mean decrease in body temperature at the end of the procedure was significantly greater in group 1 (0.98 ± 0.56°C than in group 2 (0.42 ± .21°C (p 0.05 and none of them felt cold or shivered. Conclusion It is concluded that the use of isothermic irrigation fluid together with warm intravenous fluids during TURP prevents the occurrence of perioperative hypothermia. Trial registration number CCT-NAPN-15944

  13. Effect of temperature on steady shear magnetorheology of CoNi microcluster-based MR fluids

    Energy Technology Data Exchange (ETDEWEB)

    Arief, Injamamul, E-mail: md.injamamularief@bose.res.in [LCMP, Department of Condensed Matter Physics and Material Sciences, S.N. Bose National Centre for Basic Sciences, Salt Lake, Kolkata 700098, West Bengal (India); Sahoo, Rasmita [School of Physics, University of Hyderabad, Hyderabad 500046 (India); Mukhopadhyay, P.K. [LCMP, Department of Condensed Matter Physics and Material Sciences, S.N. Bose National Centre for Basic Sciences, Salt Lake, Kolkata 700098, West Bengal (India)

    2016-08-15

    We present the study of magnetorheological properties of magnetic fluids containing Co-rich CoNi microcluster that have been measured as a function of both magnetic field and temperature. Co-rich microclusters were synthesized by conventional homogeneous nucleation in liquid polyol. Morphological characterization using FESEM revealed the average diameter of microclusters as 450 nm. Crystal structure and room temperature magnetization measurements were performed by powder XRD and vibrating sample magnetometry. Two MR samples of different particle volume fractions were prepared. Temperature-dependent steady shear MR characterizations for both the samples in the range of 25–55 {sup °}C demonstrated systematic decline of MR parameters with increasing temperatures. The temperature-induced thinning of shear stress and viscosity was explained in terms of change in effective volume fraction. To analyze the measured variation in MR response with increasing temperature, suitable temperature-sensitive scaling parameters were also constructed. Finally to generalize the trend, rheological master curves were constructed by using time-temperature-field superposition method. - Highlights: • Temperature-dependent steady shear magnetorheological studies of Co-rich CoNi containing magnetic fluids are performed. • Significant temperature-induced thinning effect of magnetorheological parameters reported. • Quantitative estimation of temperature sensitive parameters i.e. yield stress, saturation magnetization and carrier fluid viscosity are shown using empirical methods. • A time-temperature-field superposition method is used to construct master curves for samples with different volume fractions of particles. • A satisfactory collapse of rheograms at different temperatures and magnetic fields implies that the systems are dynamically identical under the varying conditions.

  14. Transient Modeling and Analysis of a Metabolic Heat-Regenerated Temperature Swing Adsorption (MTSA) System for a PLSS

    Science.gov (United States)

    Iacomini, Christie; Powers, Aaron; Speight, Garland; Padilla, Sebastian; Paul, Heather L.

    2009-01-01

    A Metabolic heat-regenerated Temperature Swing Adsorption (MTSA) system is being developed for carbon dioxide, water and thermal control in a lunar and martian portable life support system (PLSS). A previous system analysis was performed to evaluate the impact of MTSA on PLSS design. That effort was Mars specific and assumed liquid carbon dioxide (LCO2) coolant made from martian resources. Transient effects were not considered but rather average conditions were used throughout the analysis. This effort takes into further consideration the transient effects inherent in the cycling MTSA system as well as assesses the use of water as coolant. Standard heat transfer, thermodynamic, and heat exchanger methods are presented to conduct the analysis. Assumptions and model verification are discussed. The tool was used to perform various system studies. Coolant selection was explored and takes into account different operational scenarios as the minimum bed temperature is driven by the sublimation temperature of the coolant (water being significantly higher than LCO2). From this, coolant mass is sized coupled with sorbent bed mass because MTSA adsorption performance decreases with increasing sublimation temperature. Reduction in heat exchanger performance and even removal of certain heat exchangers, like a recuperative one between the two sorbent beds, is also investigated. Finally, the coolant flow rate is varied over the cycle to determine if there is a more optimal means of cooling the bed from a mass perspective. Results of these studies and subsequent recommendations for system design are presented.

  15. Evolution of vertebrate transient receptor potential vanilloid 3 channels: opposite temperature sensitivity between mammals and western clawed frogs.

    Directory of Open Access Journals (Sweden)

    Shigeru Saito

    2011-04-01

    Full Text Available Transient Receptor Potential (TRP channels serve as temperature receptors in a wide variety of animals and must have played crucial roles in thermal adaptation. The TRP vanilloid (TRPV subfamily contains several temperature receptors with different temperature sensitivities. The TRPV3 channel is known to be highly expressed in skin, where it is activated by warm temperatures and serves as a sensor to detect ambient temperatures near the body temperature of homeothermic animals such as mammals. Here we performed comprehensive comparative analyses of the TRPV subfamily in order to understand the evolutionary process; we identified novel TRPV genes and also characterized the evolutionary flexibility of TRPV3 during vertebrate evolution. We cloned the TRPV3 channel from the western clawed frog Xenopus tropicalis to understand the functional evolution of the TRPV3 channel. The amino acid sequences of the N- and C-terminal regions of the TRPV3 channel were highly diversified from those of other terrestrial vertebrate TRPV3 channels, although central portions were well conserved. In a heterologous expression system, several mammalian TRPV3 agonists did not activate the TRPV3 channel of the western clawed frog. Moreover, the frog TRPV3 channel did not respond to heat stimuli, instead it was activated by cold temperatures. Temperature thresholds for activation were about 16 °C, slightly below the lower temperature limit for the western clawed frog. Given that the TRPV3 channel is expressed in skin, its likely role is to detect noxious cold temperatures. Thus, the western clawed frog and mammals acquired opposite temperature sensitivity of the TRPV3 channel in order to detect environmental temperatures suitable for their respective species, indicating that temperature receptors can dynamically change properties to adapt to different thermal environments during evolution.

  16. Loop Heat Pipe Transient Behavior Using Heat Source Temperature for Set Point Control with Thermoelectric Converter on Reservoir

    Science.gov (United States)

    Ku, Jentung; Paiva, Kleber; Mantelli, Marcia

    2011-01-01

    The LHP operating temperature is governed by the saturation temperature of its reservoir. Controlling the reservoir saturation temperature is commonly done by cold biasing the reservoir and using electrical heaters to provide the required control power. With this method, the loop operating temperature can be controlled within 0.5K or better. However, because the thermal resistance that exists between the heat source and the LHP evaporator, the heat source temperature will vary with its heat output even if the LHP operating temperature is kept constant. Since maintaining a constant heat source temperature is of most interest, a question often raised is whether the heat source temperature can be used for LHP set point temperature control. A test program with a miniature LHP was carried out to investigate the effects on the LHP operation when the control temperature sensor was placed on the heat source instead of the reservoir. In these tests, the LHP reservoir was cold-biased and was heated by a control heater. Test results show that it was feasible to use the heat source temperature for feedback control of the LHP operation. In particular, when a thermoelectric converter was used as the reservoir control heater, the heat source temperature could be maintained within a tight range using a proportional-integral-derivative or on/off control algorithm. Moreover, because the TEC could provide both heating and cooling to the reservoir, temperature oscillations during fast transients such as loop startup could be eliminated or substantially reduced when compared to using an electrical heater as the control heater.

  17. Factors influencing intra-articular fluid temperature profiles with radiofrequency ablation.

    Science.gov (United States)

    Zoric, Bojan B; Horn, Nils; Braun, Sepp; Millett, Peter J

    2009-10-01

    Radiofrequency ablation devices are being used increasingly in arthroscopic surgery. However, there are concerns that excessive temperatures may damage the articular cartilage. The purpose of this study was to investigate the temperature profiles that occur within the glenohumeral space with the use of one commercially available radiofrequency ablation probe. Ten fresh-frozen human cadaver shoulder specimens were used. Intra-articular temperatures were measured at different time intervals over a two-minute period at a distance of 1, 3, 5, and 10 mm away from the probe. The radiofrequency probe was activated throughout the range of machine power settings, and irrigation fluid flow was varied (no flow, a flow at 60 mm Hg without suction, and a flow at 60 mm Hg with suction). Temperatures deleterious to articular cartilage chondrocytes (i.e., those in excess of 50 degrees C) were seen with an increased duration of application, a decreased distance between the thermometer and the probe, and a decreased irrigation fluid flow rate. The highest recorded irrigation fluid temperature reached >80 degrees C after two minutes in a no-flow setting. The flow rate was found to be the most significant predictor of intra-articular temperature profiles. The various machine power settings had no apparent influence on temperature, meaning that higher probe settings are not necessarily associated with higher temperature profiles. These results demonstrate the importance of the management of the irrigation fluid flow rate across the joint during arthroscopic procedures that involve radiofrequency ablation. Even short intervals of limited flow could lead to supraphysiological temperature profiles and potentially to cartilage damage.

  18. Risk Associated With The Decompression Of High Pressure High Temperature Fluids - Study On Black Oil

    DEFF Research Database (Denmark)

    Figueroa, D. C.; Fosbøl, P. L.; Thomsen, K.

    2015-01-01

    Fluids produced from deep underground reservoirs may result in exponential increase in temperature. It is a consequence of adiabatic fluid decompression from the inverse Joule Thomson Effect (JTE). The phenomenon requires analysis in order to avoid any operational risks. This study evaluates...... the JTE upon decompression of black oil in high pressure-high temperature reservoirs. Also the effect caused by the presence of water and brine on the black oil is studied. The final temperature is calculated from the corresponding energy balance at isenthalpic and non-isenthalpic conditions. It is found...... as well, but the increase is less. The effect of water is studied at different water fractions; it results in lower increase of the final temperature than observed for black oil. The presence of brine in black oil is also studied at different brine fractions. The addition of brine increases the final...

  19. Multi-solid model modified to predict paraffin in petroleum fluids at high temperatures and pressures

    International Nuclear Information System (INIS)

    Escobar Remolina, Juan Carlos M; Barrios Ortiz, Wilson; Santoyo Ramirez Gildardo

    2009-01-01

    A thermodynamic structure has been modified in order to calculate cloud point, fluidity and amount of precipitated wax under a wide range of temperature conditions, composition, and high pressures. The model is based on a combination of ideal solution concepts, fluid characterization, and formation of multiple solid phases using Cubic State Equations. The experimental data utilized for testing the prediction capacity and potentiality of a model exhibit different characteristics: continuous series synthetic systems of heavy alkanes, discontinuous series, and dead or living petroleum fluids with indefinite fractions such as C7+, C10+, C20+, and C30+. The samples were taken from the literature, petroleum fluids from the main Colombian reservoirs, and some samples of Bolivian fluids. Results presented in this paper show the minimum standard deviations between experimental data and data calculated with a model. This allows a progress in decision-making processes for flow assurance in reservoirs, wells, and surface facilities in the petroleum industry.

  20. Unsteady mixed convection of a micropolar fluid past a circular cylinder due to time-dependent free stream velocity and temperature

    Directory of Open Access Journals (Sweden)

    Nepal C. Roy

    2016-06-01

    Full Text Available Unsteady mixed convection boundary-layer flow of an electrically conducting micropolar fluid past a circular cylinder is investigated taking into account the effect of thermal radiation and heat generation or absorption. The reduced non-similar boundary-layer equations are solved using the finite difference method. It is found that the magnitude of the friction factor and the couple stress significantly increases due to the increase of the mixed convection parameter, the conduction-radiation parameter, the surface temperature parameter, the heat absorption parameter and the frequency parameter. However the magnitude of the heat transfer rate decreases with these parameters. The converse characteristics are observed for the Prandtl number. The magnitude of the couple stress and the heat transfer rate is seen to decrease whereas the magnitude of the skin factor increases with increasing the vortex viscosity parameter. The magnetic field parameter reduces the skin factor, couple stress and heat transfer rate. The amplitude of oscillation of the transient skin factor and couple stress gradually increases owing to an increase of $\\xi$. But the transient heat transfer rate is found to be oscillating with almost the same amplitude for any value of $\\xi$. The amplitude of oscillation of the transient skin factor and couple stress increases with an increase of $S$ and $\\xi$ while the amplitude of the transient heat transfer rate increases with increasing Pr and $S$.

  1. Fluid Structure Interaction in a Cold Flow Test and Transient CFD Analysis of Out-of-Round Nozzles

    Science.gov (United States)

    Ruf, Joseph; Brown, Andrew; McDaniels, David; Wang, Ten-See

    2010-01-01

    This viewgraph presentation describes two nozzle fluid flow interactions. They include: 1) Cold flow nozzle tests with fluid-structure interaction at nozzle separated flow; and 2) CFD analysis for nozzle flow and side loads of nozzle extensions with various out-of-round cases.

  2. Temperature and concentration stratification effects on non-Newtonian fluid flow past a cylindrical surface

    Science.gov (United States)

    Rehman, Khalil Ur; Khan, Abid Ali; Malik, M. Y.; Zehra, Iffat; Ali, Usman

    The theme of present work is to report the numerical solution of mixed convection tangent hyperbolic fluid flow towards stretching cylindrical surface immersed in a double stratified media. The fluid flow is attained through no slip condition. The flow regime characteristics are modelled in terms of partial differential equations. A similarity transformation is used to transform partial differential equations into coupled non-linear ordinary differential equations. A computational algorithm is executed to predict numerical results. The effects of flow controlling parameters namely, mixed convection parameter, thermal stratification and solutal stratification parameters on velocity, temperature and concentration are examined and offered by means of graphical outcomes. It is noticed that in the presence of mixed convection effect both the fluid temperature and concentration are decreasing function of thermal stratification and solutal stratification parameters respectively. The obtained values are certified by developing comparison with existing values and an excellent agreement is observed which confirms the execution of computational algorithm.

  3. ANALYSIS OF MARANGONI CONVECTION OF NON-NEWTONIAN POWER LAW FLUIDS WITH LINEAR TEMPERATURE DISTRIBUTION

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2011-01-01

    Full Text Available The problem of steady, laminar, thermal Marangoni convection flow of non-Newtonian power law fluid along a horizontal surface with variable surface temperature is studied. The partial differential equations are transformed into ordinary differential equations by using a suitable similarity transformation and analytical approximate solutions are obtained by an efficient transformation, asymptotic expansion and Padé approximants technique. The effects of power law index and Marangoni number on velocity and temperature profiles are examined and discussed.

  4. Transient forced convection with viscous dissipation to power-law fluids in thermal entrance region of circular ducts with constant wall heat flux

    International Nuclear Information System (INIS)

    Dehkordi, Asghar Molaei; Mohammadi, Ali Asghar

    2009-01-01

    A numerical investigation was conducted on the transient behavior of a hydrodynamically, fully developed, laminar flow of power-law fluids in the thermally developing entrance region of circular ducts taking into account the effect of viscous dissipation but neglecting the effect of axial conduction. In this regard, the unsteady state thermal energy equation was solved by using a finite difference method, whereas the steady state thermal energy equation without wall heat flux was solved analytically as the initial condition of the former. The effects of the power-law index and wall heat flux on the local Nusselt number and thermal entrance length were investigated. Moreover, the local Nusselt number of steady state conditions was correlated in terms of the power-law index and wall heat flux and compared with literature data, which were obtained by an analytic solution for Newtonian fluids. Furthermore, a relationship was proposed for the thermal entrance length

  5. Estimation of the equilibrium formation temperature in the presence of bore fluid invasion

    DEFF Research Database (Denmark)

    Poulsen, Søren Erbs; Nielsen, S.B.; Balling, N.

    2012-01-01

    Bottom hole temperatures (BHTs) measured during drilling operations are thermally disturbed by the drilling process. This paper presents a method, CSMI (Cylindrical Source Model with Invasion of bore mud filtrate), for estimating equilibrium formation temperatures with probability distributions...... the possibility of invasion (advection) of mud filtrate into the formation. In a synthetic example, it is demonstrated that given bore fluid invasion and a low and high temperature of the bore mud and formation, respectively, the equilibrium formation temperature and the uncertainty hereon is underestimated...... with the CSMI scheme. The analysis of five BHT records measured onshore Denmark, for which the equilibrium formation temperature is known, shows that CSMI temperatures based on single datum records are highly uncertain because of a strong negative coupling between the temperature of the mud filtrate...

  6. WATER TEMPERATURE, VOLUNTARY DRINKING AND FLUID BALANCE IN DEHYDRATED TAEKWONDO ATHLETES

    Directory of Open Access Journals (Sweden)

    Saeed Khamnei

    2011-12-01

    Full Text Available Voluntary drinking is one of the major determiners of rehydration, especially as regards exercise or workout in the heat. The present study undertakes to search for the effect of voluntary intake of water with different temperatures on fluid balance in Taekwondo athletes. Six young healthy male Taekwondo athletes were dehydrated by moderate exercise in a chamber with ambient temperature at 38-40°C and relative humidity between 20-30%. On four separate days they were allowed to drink ad libitum plane water with the four temperatures of 5, 16, 26, and 58°C, after dehydration. The volume of voluntary drinking and weight change was measured; then the primary percentage of dehydration, sweat loss, fluid deficit and involuntary dehydration were calculated. Voluntary drinking of water proved to be statistically different in the presented temperatures. Water at 16°C involved the greatest intake, while fluid deficit and involuntary dehydration were the lowest. Intake of water in the 5°C trial significantly correlated with the subject's plasma osmolality change after dehydration, yet it showed no significant correlation with weight loss. In conclusion, by way of achieving more voluntary intake of water and better fluid state, recommending cool water (~16°C for athletes is in order. Unlike the publicly held view, drinking cold water (~5°C does not improve voluntary drinking and hydration status.

  7. A Comparative Study of the Effect of Surfactant and Temperature in Fluid Interfaces

    Science.gov (United States)

    Cortes-Estrada, Aldo H.; Ibarra-Bracamontes, Laura A.; Aguilar-Corona, Alicia; Viramontes-Gamboa, Gonzalo

    2016-11-01

    A fluid interface is the boundary region formed when two immiscible fluids come into contact. One of the most important properties of fluid interfaces is the interfacial tension. The interfacial tension between two fluids can be modified by the presence of surfactant. In addition, the temperature is a relevant factor that can also modify the interfacial properties. In this work the behavior of the interface formed by oil and water in the presence of surfactant at different temperatures is presented. Interfacial tension measurements were obtained by the Pendant Drop technique. Two types of surfactant were tested, Sodium Dodecyl Sulfate (SDS) as a hydrophilic surfactant, and Sorbitan Monooleate (Span 80) as a lipophilic surfactant. The range of variations in temperature was from 25 to 60 Celsius degree. Hexane or Dodecane was used as the oil phase. The main results showed that the lipophilic surfactant showed a greater efficiency with respect to the hydrophilic surfactant used. As the temperature increased in the range considered an exponential decay for the interfacial tension was observed. This decay was dominated by the surfactant concentration. This study was supported by the Mexican Council of Science and Technology (CONACyT) and by the Scientific Research Coordination of the University of Michoacan in Mexico.

  8. Computational fluid dynamics model of avian tracheal temperature control as a model for extant and extinct animals.

    Science.gov (United States)

    Sverdlova, N S; Arkali, F; Witzel, U; Perry, S F

    2013-10-01

    Respiratory evaporative cooling is an important mechanism of temperature control in bird. A computational simulation of the breathing cycle, heat and water loss in anatomical avian trachea/air sac model has not previously been conducted. We report a first attempt to simulate a breathing cycle in a three-dimensional model of avian trachea and air sacs (domestic fowl) using transient computational fluid dynamics. The airflow in the trachea of the model is evoked by changing the volume of the air sacs based on the measured tidal volume and inspiratory/expiratory times for the domestic fowl. We compare flow parameters and heat transfer results with in vivo data and with our previously reported results for a two-dimensional model. The total respiratory heat loss corresponds to about 13-19% of the starvation metabolic rate of domestic fowl. The present study can lend insight into a possible thermoregulatory function in species with long necks and/or a very long trachea, as found in swans and birds of paradise. Assuming the structure of the sauropod dinosaur respiratory system was close to avian, the simulation of the respiratory temperature control (using convective and evaporative cooling) in the extensively experimentally studied domestic fowl may also help in making simulations of respiratory heat control in these extinct animals. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Modular high-temperature gas-cooled reactor short-term thermal response to flow and reactivity transients

    Energy Technology Data Exchange (ETDEWEB)

    Cleveland, J.C. (Oak Ridge National Lab., TN (United States))

    1993-02-01

    The research reported here has been conducted at the Oak Ridge National Laboratory for the Nuclear Regulatory Commission's Division of Regulatory Applications of the Office of Nuclear Regulatory Research. The short-term thermal response of the Modular High-Temperature Gas-Cooled Reactor (MHTGR) is analyzed for a range of flow and reactivity transients. These transients include loss of forced circulation without scram, spurious withdrawal of a control rod group, moisture ingress, control rod and control rod group ejections, and a rapid core cooling event. For each event analyzed, an event description, a discussion of the analysis approach and assumptions, and results are presented. When possible, results of these analyses are compared with those presented by the designers in the MHTGR Preliminary Safety Information Document and in the MHTGR Probabilistic Risk Assessment. The importance of inherent safety features is illustrated, and conclusions are presented regarding the safety performance of the MHTGR. Recommendations are made for a more in-depth examination of MHTGR response for some of the analyzed transients. The coupled heat transfer-neutron kinetics model is described in detail in Appendix A.

  10. Modular high-temperature gas-cooled reactor short-term thermal response to flow and reactivity transients

    International Nuclear Information System (INIS)

    Cleveland, J.C.

    1993-02-01

    The research reported here has been conducted at the Oak Ridge National Laboratory for the Nuclear Regulatory Commission's Division of Regulatory Applications of the Office of Nuclear Regulatory Research. The short-term thermal response of the Modular High-Temperature Gas-Cooled Reactor (MHTGR) is analyzed for a range of flow and reactivity transients. These transients include loss of forced circulation without scram, spurious withdrawal of a control rod group, moisture ingress, control rod and control rod group ejections, and a rapid core cooling event. For each event analyzed, an event description, a discussion of the analysis approach and assumptions, and results are presented. When possible, results of these analyses are compared with those presented by the designers in the MHTGR Preliminary Safety Information Document and in the MHTGR Probabilistic Risk Assessment. The importance of inherent safety features is illustrated, and conclusions are presented regarding the safety performance of the MHTGR. Recommendations are made for a more in-depth examination of MHTGR response for some of the analyzed transients. The coupled heat transfer-neutron kinetics model is described in detail in Appendix A

  11. Analysis of SORS: a computer program for analyzing fission product release from HTGR cores during transient temperature excursions

    International Nuclear Information System (INIS)

    Dickey, J.M.

    1978-04-01

    The code SORS was written by General Atomic to calculate the release of fission products from the fuel into the primary coolant during a hypothetical uncontrolled transient temperature excursion. The code assumes that the graphite core remains structurally intact. The release from the fuel particles is calculated using a coarse time step for several sections of the core. For the non-volatile elements, the code calculates a diffusion rate and an evaporation rate in each section of the core. The expression used for the evaporation rate is found to be incompatible with the rest of the assumptions used in the calculation

  12. Modular High-Temperature Gas-Cooled Reactor short term thermal response to flow and reactivity transients

    Energy Technology Data Exchange (ETDEWEB)

    Cleveland, J.C.

    1988-01-01

    The analyses reported here have been conducted at the Oak Ridge National Laboratory (ORNL) for the US Nuclear Regulatory Commission's (NRC's) Division of Regulatory Applications of the Office of Nuclear Regulatory Research. The short-term thermal response of the Modular High-Temperature Gas-Cooled Reactor (MHTGR) is analyzed for a range of flow and reactivity transients. These include loss of forced circulation (LOFC) without scram, moisture ingress, spurious withdrawal of a control rod group, hypothetical large and rapid positive reactivity insertion, and a rapid core cooling event. The coupled heat transfer-neutron kinetics model is also described.

  13. MRI temperature and velocity measurements in a fluid layer with heat transfer

    Science.gov (United States)

    Leclerc, S.; Métivier, C.

    2018-02-01

    Magnetic resonance thermometry (MRT) is an innovative technique which can provide 2D and 3D temperature measurements using magnetic resonance imaging (MRI). Despite the powerful advantages of MRT, this technique is sparcely developed and used in the engineering sciences. In this paper, we investigate the possibility to measure temperatures with MRI in a fluid layer submitted to heat transfer. By imposing a vertical temperature gradient, we study the temperature fields in both conductive and convective regimes. The temperature fields are obtained by measuring the transverse relaxation time T_2 in glycerol, a Newtonian fluid. The MRT protocol is described in detail and the results are presented. We show that for a conductive regime, temperature measurements are in very good agreement with the theoretical profile. In the convective regime, when comparing the temperature and velocity fields obtained by MRI, we get an excellent agreement in terms of flow structure. Temperature uncertainties are found to be less than 1°C for all our results.

  14. Transient deformational properties of high temperature alloys used in solid oxide fuel cell stacks

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye; Kwok, Kawai; Frandsen, Henrik Lund

    2017-01-01

    Stresses and probability of failure during operation of solid oxide fuel cells (SOFCs) is affected by the deformational properties of the different components of the SOFC stack. Though the overall stress relaxes with time during steady state operation, large stresses would normally appear through...... the transient behavior of Crofer 22 APU, a typical iron-chromium alloy used in SOFC stacks. The material parameters for the model are determined by measurements involving relaxation and constant strain rate experiments. The constitutive law is implemented into commercial finite element software using a user...

  15. The Pyrexia transient receptor potential channel mediates circadian clock synchronization to low temperature cycles in Drosophila melanogaster.

    Science.gov (United States)

    Wolfgang, Werner; Simoni, Alekos; Gentile, Carla; Stanewsky, Ralf

    2013-10-07

    Circadian clocks are endogenous approximately 24 h oscillators that temporally regulate many physiological and behavioural processes. In order to be beneficial for the organism, these clocks must be synchronized with the environmental cycles on a daily basis. Both light : dark and the concomitant daily temperature cycles (TCs) function as Zeitgeber ('time giver') and efficiently entrain circadian clocks. The temperature receptors mediating this synchronization have not been identified. Transient receptor potential (TRP) channels function as thermo-receptors in animals, and here we show that the Pyrexia (Pyx) TRP channel mediates temperature synchronization in Drosophila melanogaster. Pyx is expressed in peripheral sensory organs (chordotonal organs), which previously have been implicated in temperature synchronization. Flies deficient for Pyx function fail to synchronize their behaviour to TCs in the lower range (16-20°C), and this deficit can be partially rescued by introducing a wild-type copy of the pyx gene. Synchronization to higher TCs is not affected, demonstrating a specific role for Pyx at lower temperatures. In addition, pyx mutants speed up their clock after being exposed to TCs. Our results identify the first TRP channel involved in temperature synchronization of circadian clocks.

  16. Study of ultrasonic propagation through vortices for acoustic monitoring of high-temperature and turbulent fluid

    International Nuclear Information System (INIS)

    Massacret, Nicolas; Moysan, Joseph; Ploix, Marie-Aude; Chaouch, Naim; Jeannot, Jean-Philippe

    2016-01-01

    Ultrasonic monitoring in high temperature fluids with turbulences requires the knowledge of wave propagation in such media and the development of simulation tools. Applications could be the monitoring of sodium-cooled fast reactors. The objectives are mainly acoustic telemetry and thermometry, which involve the propagation of ultrasounds in turbulent and heated sodium flows. We developed a ray-tracing model to simulate the wave propagation and to determine wave deviations and delays due to an inhomogeneous medium. In previous work we demonstrated the sensitivity of ultrasounds to temperature gradients in liquid sodium. To complete that study, we need to investigate the sensitivity of ultrasounds to vortices created in a moving fluid. We designed a specific experimental setup called IKHAR (Instabilities of Kelvin-Helmholtz for Acoustic Research) in order to assess the validity of the ray-tracing model and the potential of ultrasounds for monitoring such fluid. In this experiment, Von Karman instabilities were created in a flow of water. Fluid temperature was homogeneous in our experimental setup. Through a careful choice of the parameters, periodic vortices were generated. The experiment was also simulated using Comsol registered to allow discussion about repeatability. The throughtransmission method was used to measure wave delays due to the vortices. Arrays of transducers were used to measure time of flight variations of several nanoseconds with a high spatial resolution. Results were similar to simulation results. They demonstrate that beam delays due to vortices can be measured and confirm the potential of ultrasounds in monitoring very inhomogeneous fluid media such as liquid sodium used as coolant fluid in nuclear fast reactors.

  17. The electromagnetic force field, fluid flow field and temperature profiles in levitated metal droplets

    Science.gov (United States)

    El-Kaddah, N.; Szekely, J.

    1982-01-01

    A mathematical representation was developed for the electromagnetic force field, the flow field, the temperature field (and for transport controlled kinetics), in a levitation melted metal droplet. The technique of mutual inductances was employed for the calculation of the electromagnetic force field, while the turbulent Navier - Stokes equations and the turbulent convective transport equations were used to represent the fluid flow field, the temperature field and the concentration field. The governing differential equations, written in spherical coordinates, were solved numerically. The computed results were in good agreement with measurements, regarding the lifting force, and the average temperature of the specimen and carburization rates, which were transport controlled.

  18. Biot Critical Frequency Applied as Common Friction Factor for Chalk with Different Pore Fluids and Temperatures

    DEFF Research Database (Denmark)

    Andreassen, Katrine Alling; Fabricius, Ida Lykke

    2010-01-01

    Injection of water into chalk hydrocarbon reservoirs has lead to mechanical yield and failure. Laboratory experiments on chalk samples correspondingly show that the mechanical properties of porous chalk depend on pore fluid and temperature. Water has a significant softening effect on elastic...... and rate independent b-factor used when describing the time dependent mechanical properties of soft rock or soils. As a consequence it is then possible to further characterize the material constant from the porosity and permeability of the rock as well as from pore fluid density and viscosity which...

  19. Temperature and displacement transients in inertial confinement fusion first-walls

    International Nuclear Information System (INIS)

    Hunter, T.O.; Kulcinski, G.L.

    1977-01-01

    A quasi-analytic general model is developed for determination of temperature response and displacement damage in materials exposed to bursts of thermonuclear radiations. Temperature response can be determined for any time or position. Materials are assessed, using the model, which might be employed for dry first walls, collectors, laser mirrors, or other exposed reactor components. The resulting magnitude and temporal distribution of temperature and displacement production show that effects on material micro-structure must be treated in a dynamic fashion

  20. Modeling of temperature profiles in an environmental transmission electron microscope using computational fluid dynamics

    International Nuclear Information System (INIS)

    Mølgaard Mortensen, Peter; Willum Hansen, Thomas; Birkedal Wagner, Jakob; Degn Jensen, Anker

    2015-01-01

    The temperature and velocity field, pressure distribution, and the temperature variation across the sample region inside an environmental transmission electron microscope (ETEM) have been modeled by means of computational fluid dynamics (CFD). Heating the sample area by a furnace type TEM holder gives rise to temperature gradients over the sample area. Three major mechanisms have been identified with respect to heat transfer in the sample area: radiation from the grid, conduction in the grid, and conduction in the gas. A parameter sensitivity analysis showed that the sample temperature was affected by the conductivity of the gas, the emissivity of the sample grid, and the conductivity of the grid. Ideally the grid should be polished and made from a material with good conductivity, e.g. copper. With hydrogen gas, which has the highest conductivity of the gases studied, the temperature difference over the TEM grid is less than 5 °C, at what must be considered typical conditions, and it is concluded that the conditions on the sample grid in the ETEM can be considered as isothermal during general use. - Highlights: • Computational fluid dynamics used for mapping flow and temperature in ETEM setup. • Temperature gradient across TEM grid in furnace based heating holder very small in ETEM. • Conduction from TEM grid and gas in addition to radiation from TEM grid most important. • Pressure drop in ETEM limited to the pressure limiting apertures

  1. The sympathetic nervous system is controlled by transient receptor potential vanilloid 1 in the regulation of body temperature

    Science.gov (United States)

    Alawi, Khadija M.; Aubdool, Aisah A.; Liang, Lihuan; Wilde, Elena; Vepa, Abhinav; Psefteli, Maria-Paraskevi; Brain, Susan D.; Keeble, Julie E.

    2015-01-01

    Transient receptor potential vanilloid 1 (TRPV1) is involved in sensory nerve nociceptive signaling. Recently, it has been discovered that TRPV1 receptors also regulate basal body temperature in multiple species from mice to humans. In the present study, we investigated whether TRPV1 modulates basal sympathetic nervous system (SNS) activity. C57BL6/J wild-type (WT) mice and TRPV1 knockout (KO) mice were implanted with radiotelemetry probes for measurement of core body temperature. AMG9810 (50 mg/kg) or vehicle (2% DMSO/5% Tween 80/10 ml/kg saline) was injected intraperitoneally. Adrenoceptor antagonists or vehicle (5 ml/kg saline) was injected subcutaneously. In WT mice, the TRPV1 antagonist, AMG9810, caused significant hyperthermia, associated with increased noradrenaline concentrations in brown adipose tissue. The hyperthermia was significantly attenuated by the β-adrenoceptor antagonist propranolol, the mixed α-/β-adrenoceptor antagonist labetalol, and the α1-adrenoceptor antagonist prazosin. TRPV1 KO mice have a normal basal body temperature, indicative of developmental compensation. d-Amphetamine (potent sympathomimetic) caused hyperthermia in WT mice, which was reduced in TRPV1 KO mice, suggesting a decreased sympathetic drive in KOs. This study provides new evidence that TRPV1 controls thermoregulation upstream of the SNS, providing a potential therapeutic target for sympathetic hyperactivity thermoregulatory disorders.—Alawi, K. M., Aubdool, A. A., Liang, L., Wilde, E., Vepa, A., Psefteli, M.-P., Brain, S. D., Keeble, J. E. The sympathetic nervous system is controlled by transient receptor potential vanilloid 1 in the regulation of body temperature. PMID:26136480

  2. Heat Transfer Fluid Temperature Control in a Thermoelectric Solar Power Plant

    Directory of Open Access Journals (Sweden)

    Lourdes A. Barcia

    2017-07-01

    Full Text Available Thermoelectric solar plants transform solar energy into electricity. Unlike photovoltaic plants, the sun’s energy heats a fluid (heat transfer fluid (HTF and this, in turn, exchanges its energy, generating steam. Finally, the steam generates electricity in a Rankine cycle. One of the main advantages of this double conversion (sun energy to heat in the HTF-Rankine cycle is the fact that it facilitates energy storage without using batteries. It is possible to store the heat energy in melted salts in such a way that this energy will be recovered when necessary, i.e., during the night. These molten salts are stored in containers in a liquid state at high temperature. The HTF comes into the solar field at a given temperature and increases its energy thanks to the solar collectors. In order to optimize the sun to HTF energy transference, it is necessary to keep an adequate temperature control of the fluid at the output of the solar fields. This paper describes three different algorithms to control the HTF output temperature.

  3. Biot Critical Frequency Applied as Common Friction Factor for Chalk with Different Pore Fluids and Temperatures

    DEFF Research Database (Denmark)

    Andreassen, Katrine Alling; Fabricius, Ida Lykke

    2010-01-01

    Injection of water into chalk hydrocarbon reservoirs has lead to mechanical yield and failure. Laboratory experiments on chalk samples correspondingly show that the mechanical properties of porous chalk depend on pore fluid and temperature. Water has a significant softening effect on elastic...... and we propose that the fluid effect on mechanical properties of highly porous chalk may be the result of liquid‐solid friction. Applying a different strain or stress rate is influencing the rock strength and needs to be included. The resulting function is shown to relate to the material dependent...... and rate independent b-factor used when describing the time dependent mechanical properties of soft rock or soils. As a consequence it is then possible to further characterize the material constant from the porosity and permeability of the rock as well as from pore fluid density and viscosity which...

  4. Modeling of temperature profiles in an environmental transmission electron microscope using computational fluid dynamics

    DEFF Research Database (Denmark)

    Mortensen, Peter Mølgaard; Jensen, Anker Degn; Hansen, Thomas Willum

    2015-01-01

    The temperature and velocity field, pressure distribution, and the temperature variation across the sample region inside an environmental transmission electron microscope (ETEM) have been modeled by means of computational fluid dynamics (CFD). Heating the sample area by a furnace type TEM holder...... gives rise to temperature gradients over the sample area. Three major mechanisms have been identified with respect to heat transfer in the sample area: radiation from the grid, conduction in the grid, and conduction in the gas. A parameter sensitivity analysis showed that the sample temperature...... was affected by the conductivity of the gas, the emissivity of the sample grid, and the conductivity of the grid. Ideally the grid should be polished and made from a material with good conductivity, e.g. copper. With hydrogen gas, which has the highest conductivity of the gases studied, the temperature...

  5. Thermal fluid dynamics study of nuclear advanced reactors of high temperature using RELAP5-3D

    International Nuclear Information System (INIS)

    Scari, Maria Elizabeth

    2017-01-01

    Fourth Generation nuclear reactors (GEN-IV) are being designed with special features such as intrinsic safety, reduction of isotopic inventory and use of fuel in proliferation-resistant cycles. Therefore, the investigation and evaluation of operational and safety aspects of the GEN-IV reactors have been the subject of numerous studies by the international community and also in Brazil. In 2008, in Brazil, was created the National Institute of Science and Technology of Innovative Nuclear Reactors, focusing on studies of projects and systems of new generation reactors, which included GEN-IV reactors as well as advanced PWR (Pressurized Water Reactor) concepts. The Department of Nuclear Engineering of the Federal University of Minas Gerais (DEN-UFMG) is a partner of this Institute, having started studies on the GEN-IV reactors in the year 2007. Therefore, in order to add knowledge to these studies, in this work, three projects of advanced reactors were considered to verify the simulation capability of the thermo-hydraulic RELAP5-3D code for these systems, either in stationary operation or in transient situations. The addition of new working fluids such as ammonia, carbon dioxide, helium, hydrogen, various types of liquid salts, among them Flibe, lead, lithium-bismuth, lithium-lead, was a major breakthrough in this version of the code, allowing also the simulation of GEN-IV reactors. The modeling of the respective core of an HTTR (High Temperature Engineering Test Reactor), HTR-10 (High Temperature Test Module Reactor) and LS-VHTR (Liquid-Salt-Cooled Very-High-Temperature Reactor) were developed and verified in steady state comparing the values found through the calculations with reference data from other simulations, when it is possible. The first two reactors use helium gas as coolant and the LS-VHTR uses a mixture of 66% LiF and 34% of BeF 2 , the LiF-BeF 2 , also know as Flibe. All the studied reactors use enriched uranium as fuel, in form of TRISO (Tristructural

  6. Transient thermal stresses in multiple connected region exhibiting temperature dependence of material properties

    International Nuclear Information System (INIS)

    Sugano, Yoshihiro; Maekawa, Toshiya.

    1983-01-01

    The examples of the analysis of thermal stress in multiple connection regions such as heat exchangers, nuclear reactor cores, ingot cases and polygonal region with elliptic holes are not few, but the temperature dependence of material constants was neglected in these researches because of the difficulty of analysis though the industrial problems related to thermal stress are apt to occur in the condition of relatively large temperature gradient. Also, the analysis of heat conduction problems taking the temperature dependence of material constants into account was limited to one-dimensional problems for which Kirchhoff's transmission can be used. The purpose of this study is to derive the equation of condition which assures the one-value property of rotation and displacement, taking the temperature dependence of material constants into account, and to complete the formulation of the plane thermal stress problems in multiple connection regions by stress function method. Also the method of numerical analysis using difference method is shown to examine the effectiveness of various formulated equations and the effect of the temperature dependence of material constants on temperature and thermal stress. The example of numerical calculation on a thin rectangular plate with a rectangular hole is shown. (Kako, I.)

  7. An overview of the transient thermal-hydraulic analysis code, GINKGO. Fluid model, numerical solution and phenomenal tests

    International Nuclear Information System (INIS)

    Ren Zhihao; Kong Xiangyin; Tsai Chiungwen; Ruan Jialei; Li Jinggang; Ma Zhongying; Yan Jianxing; Ma Yinxiang

    2015-01-01

    A system transient thermal-hydraulic analysis code for PWRs named GINKGO is being developed as part of the indigenous effort of China General Nuclear Power Corp. (CGN) to develop a full-spectrum software package for reactor design and safety analysis. Implemented using the Object-Oriented programming technology, GINKGO is designed to be used for simulating all PWR transients except LBLOCA. The primary physical models and key algorithms applied in GINKGO and also the preliminary validation with the phenomena cases are introduced in the paper. To account for reactor coolant transients, the separated phase model under thermal equilibrium is used in the code. The three governing mixture balance equations augmented with Chexal-Lellouche drift-flux model to determine phase velocities are solved at each time step. Thermal equilibrium between the vapor and liquid phases is assumed with the exception of the upper head volume and pressurizer. And two-region non-equilibrium model and multi-region non-equilibrium model are available for the pressurizer simulation. The reactor point kinetics model with six groups of delayed neutrons, the partial derivative approximation of the DNBR model and decay heat model are combined to give a full description for the reactor core. The additional component model, engineered safety system model and models for other auxiliary systems in GINKGO demonstrate a complete capability for PWR safety analysis and thermal-hydraulic design. A fully implicit solution algorithm involving pressure search is applied in GINKGO to improve the stability of the solution method, especially when two-phase conditions with unequal phase velocities exist. Different phenomena cases are set up to demonstrate the capability of GINKGO used in different boundary conditions, steady state achievement, reverse and branch flow, etc. The GINKGO code uses the C/C++ programming language to take advantage of the language's inherent Object Oriented characteristic and to

  8. Reduced-Temperature Transient-Liquid-Phase Bonding of AluminaUsing a Ag-Cu-Based Brazing Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Moo; Glaeser, Andreas M.

    2005-12-19

    The mechanical properties and microstructural evolution ofmetal-ceramic bonds produced using a transient liquid phase (TLP) aredescribed. Alumina (Al2O3) was joined at 500 degrees C, 600 degrees C,and 700 degrees C using a multilayer In/Cusil-ABA (R) (commercialcopper-silver eutectic brazing alloy)/In interlayer. The introduction ofthin In cladding layers allows the system to bond at much lowertemperatures than those typically used for brazing with Cusil-ABA (R),thereby protecting temperature-sensitive components. After chemicalhomogenization, the interlayers retain an operating temperature rangesimilar to that of the brazed joints. TLP bonds made at 500 degrees C,600 degrees C, and 700 degrees C with holding times ranging from as lowas 1.5 h to 24 h had average fracture strengths above 220 MPa. Theeffects of bonding temperature and time on fracture strength aredescribed. Preliminary analysis of the interlayers shows that the Ag-Inor Cu-In intermetallic phases do not form. Considerations unique tosystems with two-phase core layers are discussed. Experiments usingsingle-crystal sapphire indicate rapid formation of a reaction layer at700 degrees C, suggesting the possibility of making strong bonds usinglower temperatures and/or shorter processing times.

  9. Modeling of the transient interstitial diffusion of implanted atoms during low-temperature annealing of silicon substrates

    International Nuclear Information System (INIS)

    Velichko, O.I.; Kavaliova, A.P.

    2012-01-01

    It has been shown that many of the phenomena related to the formation of “tails” in the low-concentration region of ion-implanted impurity distribution are due to the anomalous diffusion of nonequilibrium impurity interstitials. These phenomena include boron implantation in preamorphized silicon, a “hot” implantation of indium ions, annealing of ion-implanted layers et cetera. In particular, to verify this microscopic mechanism, a simulation of boron redistribution during low-temperature annealing of ion-implanted layers has been carried out under different conditions of transient enhanced diffusion suppression. Due to the good agreement with the experimental data, the values of the average migration length of nonequilibrium impurity interstitials have been obtained. It has been shown that for boron implanted into a silicon layer preamorphized by germanium ions the average migration length of impurity interstitials at the annealing temperature of 800 °C can be reduced from 11 nm to approximately 6 nm due to additional implantation of nitrogen. The further shortening of the average migration length is observed if the processing temperature is reduced to 750 °C. It is also found that for implantation of BF 2 ions into silicon crystal, the value of the average migration length of boron interstitials is equal to 7.2 nm for thermal treatment at a temperature of 800 °C.

  10. The interior working mechanism and temperature characteristics of a fluid based micro-vibration isolator

    Science.gov (United States)

    Wang, Jie; Zhao, Shougen; Wu, Dafang; Jing, Xingjian

    2016-01-01

    Micro-vibration isolation is a hot topic in spacecraft vibration control, and fluid based vibration isolators alternatively provide a good and reliable solution to this challenging issue. In this paper, a novel fluid based micro-vibration isolator (FBMVI) is investigated. According to its inherent working principle and deformation pattern, the generation mechanisms of the damping and stiffness characteristics are derived, which are nonlinear functions of the environmental temperature. Then a lumped parameter model which is expressed by the physical design parameters (PDPs) is constructed, and the corresponding performance objective indices (POIs) are also obtained by applying the equivalence of mechanical impedance. Based on the finite element analysis of the internal damping component, a single variable method is further adopted to carry out the parametric study, and the influences of each PDP on the POIs are analyzed in details. Finally, experiments are conducted to identify the variation of fluid bulk modulus with the outside environmental temperature, and to validate the performance of the isolator under different temperature environments. The tested results show great consistence compared with the predicted tendencies of the parametric study. The results of this study can provide a very useful insight into and/or an important guidance for the design and application of this type of FBMVIs in engineering practice.

  11. FLUOROETHERS AS A WORKING FLUIDS FOR LOW TEMPERATURE ORGANIC RANKINE CYCLE

    Directory of Open Access Journals (Sweden)

    Artemenko S.V

    2014-12-01

    Full Text Available Hydrofluoroethers as a new class of working fluids for the organic Rankine cycle have been considered to utilize the low-potential waste heat. Temperature range 300…400 K was chosen to provide energy conversion of waste heat from fuel cells. The direct assessment of the efficiency criteria for the Rankine cycle via artificial neural networks (ANN was used. To create ANN the critical parameters of substance and normal boiling temperature as input were chosen. The forecast of efficiency criteria for the Rankine cycle as output parameter which reproduces the coefficient of performance with high accuracy and without thermodynamic property calculations was presented.

  12. Thermophysical Property Estimation by Transient Experiments: The Effect of a Biased Initial Temperature Distribution

    Directory of Open Access Journals (Sweden)

    Federico Scarpa

    2015-01-01

    Full Text Available The identification of thermophysical properties of materials in dynamic experiments can be conveniently performed by the inverse solution of the associated heat conduction problem (IHCP. The inverse technique demands the knowledge of the initial temperature distribution within the material. As only a limited number of temperature sensors (or no sensor at all are arranged inside the test specimen, the knowledge of the initial temperature distribution is affected by some uncertainty. This uncertainty, together with other possible sources of bias in the experimental procedure, will propagate in the estimation process and the accuracy of the reconstructed thermophysical property values could deteriorate. In this work the effect on the estimated thermophysical properties due to errors in the initial temperature distribution is investigated along with a practical method to quantify this effect. Furthermore, a technique for compensating this kind of bias is proposed. The method consists in including the initial temperature distribution among the unknown functions to be estimated. In this way the effect of the initial bias is removed and the accuracy of the identified thermophysical property values is highly improved.

  13. Method and apparatus for reducing the power level in a nuclear reactor during temperature transient

    International Nuclear Information System (INIS)

    1980-01-01

    Devices for moving control rods with respect to reactor cores are described. Objects of the present invention include prevention of damage to a reactor and its surroundings during a temperature excursion and especially during a loss of flow accident and reduction of the power level in a nuclear reactor in a manner that is directly proportional to the increase in temperature of the primary coolant. Preferably the present invention provides a system that produces a negative temperature coefficient of reactivity in a liquid metal fast breeder reactor and is able to reduce the power level in a nuclear reactor after a loss of flow accident to less than 15 percent of full power without the intervention of any sensing devices or control rod actuators. (U.K.)

  14. Carbon dioxide as working fluid for medium and high-temperature concentrated solar thermal systems

    Directory of Open Access Journals (Sweden)

    Van Duong

    2014-03-01

    Full Text Available This paper explores the benefits and drawbacks of using carbon dioxide in solar thermal systems at medium and high operating temperatures. For medium temperatures, application of CO2 in non-imaging-optics based compound parabolic concentrators (CPC combined with evacuated-tube collectors is studied. These collectors have been shown to obtain efficiencies higher than 40% operating at around 200℃ without the need of tracking. Validated numerical models of external compound parabolic concentrators (XCPCs are used to simulate their performance using CO2 as working fluid. For higher temperatures, a mathematical model is implemented to analyze the operating performance of a parabolic trough solar collector (PTC using CO2 at temperatures between 100℃ and 600℃.

  15. Method of controlling steam temperature of a fluid heating separation type steam generator

    International Nuclear Information System (INIS)

    Iwashita, Tsuyoshi; Monta, Kazuo.

    1975-01-01

    Object: To keep constant the stability and normal deviation in the entire control system by connecting an element of variable gain substantially in proportion to a preset load in series with the ordinary PID type control system. Structure: Changes in steam temperature at an evaporator outlet due to changes in sodium flow rate are detected by a thermocouple. The resultant detection signal is compared with a preset value of the steam generator output temperature, and a portion proportional to the difference between them is added as an operating signal, the operating signal also being used as a sodium flow rate control signal coupled to a sodium flow rate control means. In this method of control of vapor temperature of a fluid heating separation type steam generator, a control gain variable means is connected in series with a temperature control system to obtain control substantially proportional to the preset load. (Kamimura, M.)

  16. Length determination on industrial polymer parts from measurement performed under transient temperature conditions

    DEFF Research Database (Denmark)

    Dalla Costa, Giuseppe; Madruga, Daniel González; De Chiffre, Leonardo

    2016-01-01

    the cooling phase, from 27 °C to 20 °C approximately. The length variation was measured by means of an inductive probe and the temperature with an RTD surface sensor. The frame of the system was composed by elements in Zerodur and Invar to minimize the thermal deformations of the structure. Uniform...... temperature in the part was assumed. The reference length at 20 °C (L20) was calculated with an a posteriori regression of the data from the complete cooling curve. A prediction of L20 was then performed exploiting partial segments of the curve. Several segments with different time spans and starting points...

  17. Strength and reliability of low temperature transient liquid phase bonded Cu-Sn-Cu interconnects

    DEFF Research Database (Denmark)

    Brincker, Mads; Söhl, Stefan; Eisele, Ronald

    2017-01-01

    as a potential technology that could enable the realization of stacks with better thermal performance and reliability than those can be achieved using conventional soldering techniques. Low temperature TLP bonded CuSnCu samples are fabricated, and the strength of the achieved bonds is measured by shear testing...

  18. Transient temperature and stress distributions in the pressure vessel's wall of a nuclear reactor

    International Nuclear Information System (INIS)

    Silva, G.A. da

    1979-01-01

    In order to calculate the temperature distribution in a reactor vessel wall which is under the effect of gamma radiation originated in the reactor core, a numerical solution is proposed. This problem may arise from a reactor cooling pump failure .The thermal stresses are also calculated. (Author) [pt

  19. Cr(III) solubility in aqueous fluids at high pressures and temperatures

    Science.gov (United States)

    Watenphul, Anke; Schmidt, Christian; Jahn, Sandro

    2014-02-01

    Trivalent chromium is generally considered relatively insoluble in aqueous fluids and melts. However, numerous counterexamples in nature indicate Cr(III) mobilization by aqueous fluids during metamorphism or hydrothermal alteration of chromite-bearing rocks, or by pegmatite melts. So far, very little is known about the chromium concentrations and speciation in such fluids. In this study, the solubility of eskolaite (Cr2O3) in 1.6-4.2 m aqueous HCl solutions was determined in situ at elevated pressures up to 1 GPa and temperatures ranging between 400 and 700 °C using synchrotron micro-X-ray fluorescence spectroscopy (μ-XRF). Determined concentrations of dissolved Cr ranged between about 900-18,000 ppm, with the highest concentrations found at 500 °C and 861 MPa. The Cr(III) solubility in aqueous HCl fluids is retrograde in the studied temperature range and increases with pressure. In addition, Cr(III) complexation in these fluids was explored by Raman spectroscopy on a 12.3 mass% HCl fluid in equilibrium with eskolaite at 400 and 600 °C, 0.3-1.6 GPa. All spectra show two prominent Cr-Cl stretching bands at about 275 and 325 cm-1, which display some fine structure, and in some spectra weak bands in the region between 380 and 500 cm-1. The sum of the integrated intensities of the two dominant bands reveals qualitatively the same changes with temperature along an isochore, with pressure at constant temperature, and with the time required for equilibration as the Cr(III) concentrations in the fluid determined by μ-XRF. Complementary ab initio molecular dynamics simulations of a 4 m HCl solution at two different densities (0.8 and 0.97 g/cm3) and temperatures (427 and 727 °C) were performed to investigate the vibrational properties of various(O)y3-x and (O)y(OH)z3-x-z complexes with 3⩽x+z⩽4 and 0⩽y⩽2. Quasi-normal mode analysis reveals that both the tetrahedral symmetric and antisymmetric Cr-Cl stretching vibrations of CrCl4(H2O)0-2- have characteristic

  20. On axial temperature gradients due to large pressure drops in dense fluid chromatography.

    Science.gov (United States)

    Colgate, Sam O; Berger, Terry A

    2015-03-13

    The effect of energy degradation (Degradation is the creation of net entropy resulting from irreversibility.) accompanying pressure drops across chromatographic columns is examined with regard to explaining axial temperature gradients in both high performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC). The observed effects of warming and cooling can be explained equally well in the language of thermodynamics or fluid dynamics. The necessary equivalence of these treatments is reviewed here to show the legitimacy of using whichever one supports the simpler determination of features of interest. The determination of temperature profiles in columns by direct application of the laws of thermodynamics is somewhat simpler than applying them indirectly by solving the Navier-Stokes (NS) equations. Both disciplines show that the preferred strategy for minimizing the reduction in peak quality caused by temperature gradients is to operate columns as nearly adiabatically as possible (i.e. as Joule-Thomson expansions). This useful fact, however, is not widely familiar or appreciated in the chromatography community due to some misunderstanding of the meaning of certain terms and expressions used in these disciplines. In fluid dynamics, the terms "resistive heating" or "frictional heating" have been widely used as synonyms for the dissipation function, Φ, in the NS energy equation. These terms have been widely used by chromatographers as well, but often misinterpreted as due to friction between the mobile phase and the column packing, when in fact Φ describes the increase in entropy of the system (dissipation, ∫TdSuniv>0) due to the irreversible decompression of the mobile phase. Two distinctly different contributions to the irreversibility are identified; (1) ΔSext, viscous dissipation of work done by the external surroundings driving the flow (the pump) contributing to its warming, and (2) ΔSint, entropy change accompanying decompression of

  1. Transitiometric investigation of asphaltenic fluids under real conditions of temperature and pressure

    Energy Technology Data Exchange (ETDEWEB)

    Stachowiak, C.; Grolier, J.P.E. [Univ. Blaise Pascal, Lab. de Thermodynamique et Genie Chimique, Aubiere (France); Randzio, S. [Polish Academy of Sciences, Inst. of Physical Chemistry, Warsaw (Poland)

    2000-08-01

    Flocculation of asphaltenes is a major concern in the petroleum industry in such activities as production, extraction and transport. With the aim of characterising flocculation phenomena and primarily the flocculation threshold, titration calorimetry has already been used to study the effect of solvents on asphaltenic fluids; the precipitation of asphaltenes is in that case induced by the addition of solvent (usually n-alkanes, according to the definition of asphaltenes). We have recently developed a new experimental technique, scanning transitiometry which appears typically suitable to investigate phase changes in asphaltenic fluids. This technique which makes use of a calorimetric detector allows to scan one of the three independent variables p, V or T, while one is maintained constant. From the recording of the variation of the dependent variable and of the associated heat effect, thermomechanical coefficients of the bulk phase can be computed and phase changes detected very accurately. The scanning rates as well as the operating ranges of T and p permit to rigorously monitor the thermodynamic behaviour of the system loaded in the transitiometric cell. Moreover, a full thermodynamic study is possible over an extended p, V, T-surface and fluids under real high T-high p in-well conditions can be treated. This means also that the possible reversibility of phase transitions can be investigated with this technique. We report here a preliminary investigation on real petroleum fluids under in-well conditions of temperature and pressure. Fluids containing asphaltenes have been used to illustrate the advantages of scanning transitiometry to investigate such systems. Of particular importance is the transferring of the fluid system into the measuring cell under isobaric condition. (au)

  2. Temperature and Redox Effect on Mineral Colonization in Juan de Fuca Ridge Flank Subsurface Crustal Fluids

    Science.gov (United States)

    Baquiran, Jean-Paul M.; Ramírez, Gustavo A.; Haddad, Amanda G.; Toner, Brandy M.; Hulme, Samuel; Wheat, Charles G.; Edwards, Katrina J.; Orcutt, Beth N.

    2016-01-01

    To examine microbe-mineral interactions in subsurface oceanic crust, we evaluated microbial colonization on crustal minerals that were incubated in borehole fluids for 1 year at the seafloor wellhead of a crustal borehole observatory (IODP Hole U1301A, Juan de Fuca Ridge flank) as compared to an experiment that was not exposed to subsurface crustal fluids (at nearby IODP Hole U1301B). In comparison to previous studies at these same sites, this approach allowed assessment of the effects of temperature, fluid chemistry, and/or mineralogy on colonization patterns of different mineral substrates, and an opportunity to verify the approach of deploying colonization experiments at an observatory wellhead at the seafloor instead of within the borehole. The Hole U1301B deployment did not have biofilm growth, based on microscopy and DNA extraction, thereby confirming the integrity of the colonization design against bottom seawater intrusion. In contrast, the Hole U1301A deployment supported biofilms dominated by Epsilonproteobacteria (43.5% of 370 16S rRNA gene clone sequences) and Gammaproteobacteria (29.3%). Sequence analysis revealed overlap in microbial communities between different minerals incubated at the Hole U1301A wellhead, indicating that mineralogy did not separate biofilm structure within the 1-year colonization experiment. Differences in the Hole U1301A wellhead biofilm community composition relative to previous studies from within the borehole using similar mineral substrates suggest that temperature and the diffusion of dissolved oxygen through plastic components influenced the mineral colonization experiments positioned at the wellhead. This highlights the capacity of low abundance crustal fluid taxa to rapidly establish communities on diverse mineral substrates under changing environmental conditions such as from temperature and oxygen. PMID:27064928

  3. Temperature and redox effect on mineral colonization in Juan de Fuca Ridge flank subsurface crustal fluids

    Directory of Open Access Journals (Sweden)

    Jean-Paul eBaquiran

    2016-03-01

    Full Text Available To examine microbe-mineral interactions in subsurface oceanic crust, we evaluated microbial colonization on crustal minerals that were incubated in borehole fluids for one year at the seafloor wellhead of a crustal borehole observatory (IODP Hole U1301A, Juan de Fuca Ridge flank as compared to an experiment that was not exposed to subsurface crustal fluids (at nearby IODP Hole U1301B. In comparison to previous studies at these same sites, this approach allowed assessment of the effects of temperature, fluid chemistry, and/or mineralogy on colonization patterns of different mineral substrates, and an opportunity to verify the approach of deploying colonization experiments at an observatory wellhead at the seafloor instead of within the borehole. The Hole U1301B deployment did not have biofilm growth, based on microscopy and DNA extraction, thereby confirming the integrity of the colonization design against bottom seawater intrusion. In contrast, the Hole U1301A deployment supported biofilms dominated by Epsilonproteobacteria (43.5% of 370 16S rRNA gene clone sequences and Gammaproteobacteria (29.3%. Sequence analysis revealed overlap in microbial communities between different minerals incubated at the Hole U1301A wellhead, indicating that mineralogy did not separate biofilm structure within the one-year colonization experiment. Differences in the Hole U1301A wellhead biofilm community composition relative to previous studies from within the borehole using similar mineral substrates suggest that temperature and the diffusion of dissolved oxygen through plastic components influenced the mineral colonization experiments positioned at the wellhead. This highlights the capacity of low abundance crustal fluid taxa to rapidly establish communities on diverse mineral substrates under changing environmental conditions such as from temperature and oxygen.

  4. TRUMP, Steady-State and Transient 1-D, 2-D and 3-D Potential Flow, Temperature Distribution

    International Nuclear Information System (INIS)

    Elrod, D.C.; Turner, W.D.

    1981-01-01

    1 - Description of problem or function: TRUMP solves a general non- linear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady- state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complex shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables--temperature, pressure, or field strength. Initial conditions may vary with spatial position, and among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time-steps or on the computer time, and attainment of steady state. 2 - Method of solution: Solutions may be obtained by use of explicit- or implicit-difference equations, or by an optimized combination of both. 3 - Restrictions on the complexity of the problem: The program currently provides for maxima of: 40 materials, 5 reactants, 105 surface conditions, 20 boundary nodes, 16 entries per tabulated function (table-length)

  5. A Transient Rise in Tropical Sea Surface Temperature During the Paleocene-Eocene Thermal Maximum

    Science.gov (United States)

    Zachos, James C.; Wara, Michael W.; Bohaty, Steven; Delaney, Margaret L.; Petrizzo, Maria Rose; Brill, Amanda; Bralower, Timothy J.; Premoli-Silva, Isabella

    2003-11-01

    The Paleocene-Eocene Thermal Maximum (PETM) has been attributed to a rapid rise in greenhouse gas levels. If so, warming should have occurred at all latitudes, although amplified toward the poles. Existing records reveal an increase in high-latitude sea surface temperatures (SSTs) (8° to 10°C) and in bottom water temperatures (4° to 5°C). To date, however, the character of the tropical SST response during this event remains unconstrained. Here we address this deficiency by using paired oxygen isotope and minor element (magnesium/calcium) ratios of planktonic foraminifera from a tropical Pacific core to estimate changes in SST. Using mixed-layer foraminifera, we found that the combined proxies imply a 4° to 5°C rise in Pacific SST during the PETM. These results would necessitate a rise in atmospheric pCO2 to levels three to four times as high as those estimated for the late Paleocene.

  6. Calculation of Transient Temperature and Thermal Stresses at Calculus of Heat Transfer Coefficient Considering the Radiation

    Directory of Open Access Journals (Sweden)

    Gorbunov A.D.

    2016-04-01

    Full Text Available The problem of simplifications for solving problems of cooling / heating of bodies under the joint action of convection and radiation is considered. The mathematical formulation of the problem of non-stationary nonlinear heat, allowing along with convection, to take approximately into account the heat radiation. The solution of the problem for a thin body thermal model, based on the substitution method, linearizing the right boundary condition, as well as through the integral equation relationship between heat flow and surface-average and mass – average temperatures for the simple bodies in a regular stage of thermal conductivity. Two engineering methods were developed for calculating the temperature fields and axial thermal stresses during cooling (heating bodies of simple shape in the form of a plate, ball, and cylinder by convection and radiation in quasi-stationary stage. It is shown that neglecting heat transfer by radiation can lead to significant errors in calculation of the temperatures (up to 26%. The adequacy of the solutions has been tested at extreme cases, in the lack of heat transfer by radiation.

  7. Phenylnaphthalene as a Heat Transfer Fluid for Concentrating Solar Power: High-Temperature Static Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Jason R [ORNL; Joseph III, Robert Anthony [ORNL; McFarlane, Joanna [ORNL; Qualls, A L [ORNL

    2012-05-01

    Concentrating solar power (CSP) may be an alternative to generating electricity from fossil fuels; however, greater thermodynamic efficiency is needed to improve the economics of CSP operation. One way of achieving improved efficiency is to operate the CSP loop at higher temperatures than the current maximum of about 400 C. ORNL has been investigating a synthetic polyaromatic oil for use in a trough type CSP collector, to temperatures up to 500 C. The oil was chosen because of its thermal stability and calculated low vapor and critical pressures. The oil has been synthesized using a Suzuki coupling mechanism and has been tested in static heating experiments. Analysis has been conducted on the oil after heating and suggests that there may be some isomerization taking place at 450 C, but the fluid appears to remain stable above that temperature. Tests were conducted over one week and further tests are planned to investigate stabilities after heating for months and in flow configurations. Thermochemical data and thermophysical predictions indicate that substituted polyaromatic hydrocarbons may be useful for applications that run at higher temperatures than possible with commercial fluids such as Therminol-VP1.

  8. Ultra-fast biomass pyrolysis in a High-Temperature (22000C), Fluid-Wall Reactor

    International Nuclear Information System (INIS)

    Corella, J.; Monzon, A.; Santamaria, J.; Gonzalez-Canibano, J.

    1988-01-01

    The pyrolysis of pine sawdust has been carried out in a High-Temperature Fluid-Wall Reactor. This unit has been specially designed to withstand working temperatures of up to 2200 0 C. The biomass is fed to the top of the reactor after sieving to the appropriate size, at a rate of 1.0 to 1.8 kgmin. The feed falls and, at the same time is very quickly heated by radiation to the reaction temperature. The estimated heating rate is on the order of 10 60 Cs for reactant surfaces. The fluid-wall, produced by a nitrogen flow through the 30 cm diameter porous reactor core, prevents both reactants and products from reaching the reactor wall. The product distribution at the reactor exit has been determined for different operating conditions. The influence of reactor temperature, biomass feed rate, and biomass particle size on the product distribution and on the heating value of the exit gas has been investigated

  9. Low-temperature, selective catalytic deoxygenation of vegetable oil in supercritical fluid media.

    Science.gov (United States)

    Kim, Seok Ki; Lee, Hong-Shik; Hong, Moon Hyun; Lim, Jong Sung; Kim, Jaehoon

    2014-02-01

    The effects of supercritical fluids on the production of renewable diesel-range hydrocarbons from natural triglycerides were investigated. Various supercritical fluids, which included CO2 (scCO2 ), propane (scC3 H8 ) and n-hexane (scC6 H14 ), were introduced with H2 and soybean oil into a fixed-bed reactor that contained pre-activated CoMo/γ-Al2 O3 . Among these supercritical fluids, scC3 H8 and scC6 H14 efficiently allowed the reduction of the reaction temperature by as much as 50 °C as a result of facilitated heat and mass transfer and afforded similar yields to reactions in the absence of supercritical fluids. The compositional analyses of the gas and liquid products indicated that the addition of scC3 H8 during the hydrotreatment of soybean oil promoted specific deoxygenation pathways, decarbonylation and decarboxylation, which consumed less H2 than the hydrodeoxygenation pathway. As a result, the quantity of H2 required to obtain a high yield of diesel-range hydrocarbons could be reduced to 57 % if scC3 H8 was used. As decarboxylation and decarbonylation are mildly endothermic reactions, the reduced heat transfer resistance in scC3 H8 may drive the deoxygenation reaction to thermodynamically favourable pathways. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Lattice Boltzmann simulation for temperature-sensitive magnetic fluids in a porous square cavity

    International Nuclear Information System (INIS)

    Jin Licong; Zhang Xinrong; Niu Xiaodong

    2012-01-01

    A lattice Boltzmann method is developed to simulate temperature-sensitive magnetic fluids in a porous cavity. In the simulation, the magnetic force, efficient gravity, viscous loss term and geometric loss term in porous medium are imported to the momentum equation. To test the reliability of the method, a validation with water in porous cavity is carried out. Good agreements with the previous results verify that the present lattice Boltzmann method is promising for simulation of magnetic fluids in porous medium. In this study, we investigate the change of magnetization with external magnetic field, and we present numerical results for the streamlines, isotherms, and magnetization at vertical or horizontal mid-profiles for different values of Ram. In addition, Nusselt numbers changing with magnetic Rayleigh numbers are also investigated. - Highlights: → Developed a lattice Boltzmann method for magnetic nano-fluids in porous cavity. → Clarified flow and heat transfer for different values of (magnetic) Rayleigh numbers. → Heat transfer enhancement for magnetic fluid in porous cavity.

  11. A further study of the mean temperature difference of crossflow heat exchangers with one fluid mixed and the other unmixed

    International Nuclear Information System (INIS)

    Wang, Y.; Chen, H.; Jiang, S.; Chen, S.

    1987-01-01

    The mean temperature difference (MTD) characteristics of crossflow heat exchangers with one fluid mixed and other unmixed obtained in 1934 and are still in use in sizing the core of this type of exchanger. However, analysis was based on the assumption that there was no temperature gradient in the shell fluid normal to its direction of flow because of fluid mixing in this direction. Experiments show that the fluid mixing effect is slight. Improved analysis further demonstrates that mixing effect in the shell fluid is also affected by the plan form of the exchanger. So in some cases the actual MTD characteristics of the exchanger in question are very close to those of crossflow exchangers in which both fluids are unmixed and an over conservative assumption should no longer be followed. The author discusses other uses of this type of exchanger

  12. Temperature and velocity measurement fields of fluids using a schlieren system.

    Science.gov (United States)

    Martínez-González, Adrian; Guerrero-Viramontes, J A; Moreno-Hernández, David

    2012-06-01

    This paper proposes a combined method for two-dimensional temperature and velocity measurements in liquid and gas flow using a schlieren system. Temperature measurements are made by relating the intensity level of each pixel in a schlieren image to the corresponding knife-edge position measured at the exit focal plane of the schlieren system. The same schlieren images were also used to measure the velocity of the fluid flow. The measurement is made by using particle image velocimetry (PIV). The PIV software used in this work analyzes motion between consecutive schlieren frames to obtain velocity fields. The proposed technique was applied to measure the temperature and velocity fields in the natural convection of water provoked by a heated rectangular plate.

  13. Modeling and simulation of the transient response of temperature and relative humidity sensors with and without protective housing.

    Science.gov (United States)

    Rocha, Keller Sullivan Oliveira; Martins, José Helvecio; Martins, Marcio Arêdes; Tinôco, Ilda de Fátima Ferreira; Saraz, Jairo Alexander Osorio; Lacerda Filho, Adílio Flauzino; Fernandes, Luiz Henrique Martins

    2014-01-01

    Based on the necessity for enclosure protection of temperature and relative humidity sensors installed in a hostile environment, a wind tunnel was used to quantify the time that the sensors take to reach equilibrium in the environmental conditions to which they are exposed. Two treatments were used: (1) sensors with polyvinyl chloride (PVC) enclosure protection, and (2) sensors with no enclosure protection. The primary objective of this study was to develop and validate a 3-D computational fluid dynamics (CFD) model for analyzing the temperature and relative humidity distribution in a wind tunnel using sensors with PVC enclosure protection and sensors with no enclosure protection. A CFD simulation model was developed to describe the temperature distribution and the physics of mass transfer related to the airflow relative humidity. The first results demonstrate the applicability of the simulation. For verification, a sensor device was successfully assembled and tested in an environment that was optimized to ensure fast change conditions. The quantification setup presented in this paper is thus considered to be adequate for testing different materials and morphologies for enclosure protection. The results show that the boundary layer flow regime has a significant impact on the heat flux distribution. The results indicate that the CFD technique is a powerful tool which provides a detailed description of the flow and temperature fields as well as the time that the relative humidity takes to reach equilibrium with the environment in which the sensors are inserted.

  14. Modeling and Simulation of the Transient Response of Temperature and Relative Humidity Sensors with and without Protective Housing

    Science.gov (United States)

    Rocha, Keller Sullivan Oliveira; Martins, José Helvecio; Martins, Marcio Arêdes; Ferreira Tinôco, Ilda de Fátima; Saraz, Jairo Alexander Osorio; Filho, Adílio Flauzino Lacerda; Fernandes, Luiz Henrique Martins

    2014-01-01

    Based on the necessity for enclosure protection of temperature and relative humidity sensors installed in a hostile environment, a wind tunnel was used to quantify the time that the sensors take to reach equilibrium in the environmental conditions to which they are exposed. Two treatments were used: (1) sensors with polyvinyl chloride (PVC) enclosure protection, and (2) sensors with no enclosure protection. The primary objective of this study was to develop and validate a 3-D computational fluid dynamics (CFD) model for analyzing the temperature and relative humidity distribution in a wind tunnel using sensors with PVC enclosure protection and sensors with no enclosure protection. A CFD simulation model was developed to describe the temperature distribution and the physics of mass transfer related to the airflow relative humidity. The first results demonstrate the applicability of the simulation. For verification, a sensor device was successfully assembled and tested in an environment that was optimized to ensure fast change conditions. The quantification setup presented in this paper is thus considered to be adequate for testing different materials and morphologies for enclosure protection. The results show that the boundary layer flow regime has a significant impact on the heat flux distribution. The results indicate that the CFD technique is a powerful tool which provides a detailed description of the flow and temperature fields as well as the time that the relative humidity takes to reach equilibrium with the environment in which the sensors are inserted. PMID:24851994

  15. Choice of optimal working fluid for binary power plants at extremely low temperature brine

    Science.gov (United States)

    Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.

    2016-12-01

    The geothermal energy development problems based on using binary power plants utilizing lowpotential geothermal resources are considered. It is shown that one of the possible ways of increasing the efficiency of heat utilization of geothermal brine in a wide temperature range is the use of multistage power systems with series-connected binary power plants based on incremental primary energy conversion. Some practically significant results of design-analytical investigations of physicochemical properties of various organic substances and their influence on the main parameters of the flowsheet and the technical and operational characteristics of heat-mechanical and heat-exchange equipment for binary power plant operating on extremely-low temperature geothermal brine (70°C) are presented. The calculation results of geothermal brine specific flow rate, capacity (net), and other operation characteristics of binary power plants with the capacity of 2.5 MW at using various organic substances are a practical interest. It is shown that the working fluid selection significantly influences on the parameters of the flowsheet and the operational characteristics of the binary power plant, and the problem of selection of working fluid is in the search for compromise based on the priorities in the field of efficiency, safety, and ecology criteria of a binary power plant. It is proposed in the investigations on the working fluid selection of the binary plant to use the plotting method of multiaxis complex diagrams of relative parameters and characteristic of binary power plants. Some examples of plotting and analyzing these diagrams intended to choose the working fluid provided that the efficiency of geothermal brine is taken as main priority.

  16. Transient analysis of nuclear graphite oxidation for high temperature gas cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wei, E-mail: wxu12@mails.tsinghua.edu.cn; Shi, Lei; Zheng, Yanhua

    2016-09-15

    Graphite is widely used as moderator, reflector and structural materials in the high temperature gas-cooled reactor pebble-bed modular (HTR-PM). In normal operating conditions or water/air ingress accident, the nuclear graphite in the reactor may be oxidized by air or steam. Oxidation behavior of nuclear graphite IG-110 which is used as the structural materials and reflector of HTR-PM is mainly researched in this paper. To investigate the penetration depth of oxygen in IG-110, this paper developed the one dimensional spherical oxidation model. In the oxidation model, the equations considered graphite porosity variation with the graphite weight loss. The effect of weight loss on the effective diffusion coefficient and the oxidation rate was also considered in this model. Based on this theoretical model, this paper obtained the relative concentration and local weight loss ratio profile in graphite. In addition, the local effective diffusion coefficient and oxidation rate in the graphite were also investigated.

  17. An alternative technique for the implementation of an analytical approximation for transients with temperature feedback

    Energy Technology Data Exchange (ETDEWEB)

    Palma, Daniel A.P. [Instituto Federal do Rio de Janeiro, Nilopolis, RJ (Brazil)], e-mail: dpalmaster@gmail.com; Silva, Adilson C. da; Goncalves, Alessandro C.; Martinez, Aquilino S. [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear], e-mail: asilva@con.ufrj.br, e-mail: agoncalves@con.ufrj.br, e-mail: aquilino@lmp.ufrj.br

    2009-07-01

    The analytical solution of point kinetics equations with a group of delayed neutrons is useful in predicting neutron density variation during the operation of a nuclear reactor. Although different approximate solutions for the system of point kinetics equations with temperature feedback may be found in literature, some of them do not present an explicit dependence in time, which makes the computing implementation difficult and, as a result, its applicability in practical cases. The present paper uses the polynomial adjustment technique to overcome this problem in the analytical approximation as proposed by Nahla. In a systematic comparison with other existing approximations it is concluded that the method is adequate, presenting small deviations in relation to the reference values obtained from the reference numerical method. (author)

  18. An alternative technique for the implementation of an analytical approximation for transients with temperature feedback

    International Nuclear Information System (INIS)

    Palma, Daniel A.P.; Silva, Adilson C. da; Goncalves, Alessandro C.; Martinez, Aquilino S.

    2009-01-01

    The analytical solution of point kinetics equations with a group of delayed neutrons is useful in predicting neutron density variation during the operation of a nuclear reactor. Although different approximate solutions for the system of point kinetics equations with temperature feedback may be found in literature, some of them do not present an explicit dependence in time, which makes the computing implementation difficult and, as a result, its applicability in practical cases. The present paper uses the polynomial adjustment technique to overcome this problem in the analytical approximation as proposed by Nahla. In a systematic comparison with other existing approximations it is concluded that the method is adequate, presenting small deviations in relation to the reference values obtained from the reference numerical method. (author)

  19. Understanding the Hydromechanical Behavior of a Fault Zone From Transient Surface Tilt and Fluid Pressure Observations at Hourly Time Scales

    Science.gov (United States)

    Schuite, Jonathan; Longuevergne, Laurent; Bour, Olivier; Burbey, Thomas J.; Boudin, Frédérick; Lavenant, Nicolas; Davy, Philippe

    2017-12-01

    Flow through reservoirs such as fractured media is powered by head gradients which also generate measurable poroelastic deformation of the rock body. The combined analysis of surface deformation and subsurface pressure provides valuable insights of a reservoir's structure and hydromechanical properties, which are of interest for deep-seated CO2 or nuclear waste storage for instance. Among all surveying tools, surface tiltmeters offer the possibility to grasp hydraulically induced deformations over a broad range of time scales with a remarkable precision. Here we investigate the information content of transient surface tilt generated by the pressurization a kilometer scale subvertical fault zone. Our approach involves the combination of field data and results of a fully coupled poromechanical model. The signature of pressure changes in the fault zone due to pumping cycles is clearly recognizable in field tilt data and we aim to explain the peculiar features that appear in (1) tilt time series alone from a set of four instruments and 2) the ratio of tilt over pressure. We evidence that the shape of tilt measurements on both sides of a fault zone is sensitive to its diffusivity and its elastic modulus. The ratio of tilt over pressure predominantly encompasses information about the system's dynamic behavior and extent of the fault zone and allows separating contributions of flow in the different compartments. Hence, tiltmeters are well suited to characterize hydromechanical processes associated with fault zone hydrogeology at short time scales, where spaceborne surveying methods fail to recognize any deformation signal.

  20. LOFT/LP-FW-1, Loss of Fluid Test, PWR Response to Loss-of-Feedwater Transient

    International Nuclear Information System (INIS)

    1989-01-01

    1 - Description of test facility: The LOFT Integral Test Facility is a scale model of a LPWR. The intent of the facility is to model the nuclear, thermal-hydraulic phenomena which would take place in a LPWR during a LOCA. The general philosophy in scaling coolant volumes and flow areas in LOFT was to use the ratio of the LOFT core [50 MW(t)] to a typical LPWR core [3000 MW(t)]. For some components, this factor is not applied; however, it is used as extensively as practical. In general, components used in LOFT are similar in design to those of a LPWR. Because of scaling and component design, the LOFT LOCA is expected to closely model a LPWR LOCA. 2 - Description of test: The first OECD LOFT experiment was conducted on February 20, 1983. It was designed to evaluate the generic PWR system response during a complete loss-of-feedwater transient. The objective of the experiment was to investigate the performance of primary 'feed and bleed' using a 'bleed' from the PORV and 'feed' from the HPIS to provide decay heat removal and system pressure reduction while maintaining the primary coolant inventory. 3 - Experimental limitations or shortcomings: Short core and steam generator, excessive core bypass, other scaling compromises, and lack of adequate measurements in certain areas

  1. Laminar free convection with variable fluid properties in vertical ducts having uniform wall temperature

    International Nuclear Information System (INIS)

    Aihara, Toshio; Maruyama, Shigenao; Choi, Jun-Seop.

    1985-01-01

    Recently, the research on free convection in vertical ducts has become active again concerning the problem of cooling in nuclear reactor accidents and the cooling of electronic equipment. Generally, in the convection heat transfer in ducts, when the wall temperature is high, the fluid temperature in the ducts conspicuously changes, accordingly, the temperature dependence of the properties cannot be neglected. In this study, about the laminar free convection in parallel plates and a circular pipe having uniform wall temperature, the numerical analysis taking the temperature dependence of all properties into account was carried out, thus the effect of the temperature dependence of properties exerted on free convection heat transfer was clarified, and the relation to the solution in constant properties was examined. Moreover, by introducing a new representative dimension, it was attempted to express mean heat transfer coefficient which is independent of the form of ducts in unified way. The mean Nusselt number of the constant property solution using entrance pressure condition agreed very well with the exact numerical solution. (Kako, I.)

  2. The role of fluid temperature and form on endurance performance in the heat.

    Science.gov (United States)

    Tan, P M S; Lee, J K W

    2015-06-01

    Exercising in the heat often results in an excessive increase in body core temperature, which can be detrimental to health and endurance performance. Research in recent years has shifted toward the optimum temperature at which drinks should be ingested. The ingestion of cold drinks can reduce body core temperature before exercise but less so during exercise. Temperature of drinks does not seem to have an effect on the rate of gastric emptying and intestinal absorption. Manipulating the specific heat capacity of a solution can further induce a greater heat sink. Ingestion of ice slurry exploits the additional energy required to convert the solution from ice to water (enthalpy of fusion). Body core temperature is occasionally observed to be higher at the point of exhaustion with the ingestion of ice slurry. There is growing evidence to suggest that ingesting ice slurry is an effective and practical strategy to prevent excessive rise of body core temperature and improve endurance performance. This information is especially important when only a fixed amount of fluid is allowed to be carried, often seen in some ultra-endurance events and military operations. Future studies should evaluate the efficacy of ice slurry in various exercise and environmental conditions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Parameter estimation from flowing fluid temperature logging data in unsaturated fractured rock using multiphase inverse modeling

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, S.; Tsang, Y.; Finsterle, S.

    2009-01-15

    A simple conceptual model has been recently developed for analyzing pressure and temperature data from flowing fluid temperature logging (FFTL) in unsaturated fractured rock. Using this conceptual model, we developed an analytical solution for FFTL pressure response, and a semianalytical solution for FFTL temperature response. We also proposed a method for estimating fracture permeability from FFTL temperature data. The conceptual model was based on some simplifying assumptions, particularly that a single-phase airflow model was used. In this paper, we develop a more comprehensive numerical model of multiphase flow and heat transfer associated with FFTL. Using this numerical model, we perform a number of forward simulations to determine the parameters that have the strongest influence on the pressure and temperature response from FFTL. We then use the iTOUGH2 optimization code to estimate these most sensitive parameters through inverse modeling and to quantify the uncertainties associated with these estimated parameters. We conclude that FFTL can be utilized to determine permeability, porosity, and thermal conductivity of the fracture rock. Two other parameters, which are not properties of the fractured rock, have strong influence on FFTL response. These are pressure and temperature in the borehole that were at equilibrium with the fractured rock formation at the beginning of FFTL. We illustrate how these parameters can also be estimated from FFTL data.

  4. Thermal fatigue analysis of vertical annulus with inner rotating cylinder induced by two temperature fluid mixing

    International Nuclear Information System (INIS)

    Miyano, Hiroshi; Narabayashi, Tadashi

    2011-01-01

    Mechanical seal for nuclear reactor coolant recirculation pump must purge the cold water supply from the outside. The cold purge water is flowing into the hot water zone in the pump through a narrow gap between pump shaft and casing over. On the mixing region of the cold purge water and hot water in the narrow gap, the random level temperature fluctuation occurs on the structural metal surface of casing cover and pump shaft. Then it could lead to cyclic thermal stress and fatigue damage. The experiments and analysis have done, made clear the mechanism of generation of temperature fluctuations. Also, it was studied how to measure the structure of the mixing zone temperature control and how to prevent the occurrence of a large temperature fluctuation. In addition, it is proposed the method of evaluating a random temperature fluctuation by using the envelope curve and its fatigue by OOR counting to applying to the evaluation of the similar random fluid temperature fluctuation problems. (author)

  5. A negative reactivity feedback driven by induced buoyancy after a temperature transient in lead-cooled fast reactors

    Directory of Open Access Journals (Sweden)

    Francisco J. Arias

    2018-02-01

    Full Text Available Consideration is given to the possibility to use changes in buoyancy as a negative reactivity feedback mechanism during temperature transients in heavy liquid metal fast reactors. It is shown that by the proper use of heavy pellets in the fuel elements, fuel rods could be endowed with a passive self-ejection mechanism and then with a negative feedback. A first estimate of the feasibility of the mechanism is calculated by using a simplified geometry and model. If in addition, a neutron poison pellet is introduced at the bottom of the fuel, then when the fuel element is displaced upward by buoyancy force, the reactivity will be reduced not only by disassembly of the core but also by introducing the neutron poison from the bottom. The use of induced buoyancy opens up the possibility of introducing greater amounts of actinides into the core, as well as providing a palliative solution to the problem of positive coolant temperature reactivity coefficients that could be featured by the heavy liquid metal fast reactors.

  6. Effect of Temperature and Electric Field on the Damping and Stiffness Characteristics of ER Fluid Short Squeeze Film Dampers

    Directory of Open Access Journals (Sweden)

    H. P. Jagadish

    2013-01-01

    Full Text Available Squeeze film dampers are novel rotor dynamic devices used to alleviate small amplitude, large force vibrations and are used in conjunction with antifriction bearings in aircraft jet engine bearings to provide external damping as these possess very little inherent damping. Electrorheological (ER fluids are controllable fluids in which the rheological properties of the fluid, particularly viscosity, can be controlled in accordance with the requirements of the rotor dynamic system by controlling the intensity of the applied electric field and this property can be utilized in squeeze film dampers, to provide variable stiffness and damping at a particular excitation frequency. The paper investigates the effect of temperature and electric field on the apparent viscosity and dynamic (stiffness and damping characteristics of ER fluid (suspension of diatomite in transformer oil using the available literature. These characteristics increase with the field as the viscosity increases with the field. However, these characteristics decrease with increase in temperature and shear strain rate as the viscosity of the fluid decreases with temperature and shear strain rate. The temperature is an important parameter as the aircraft jet engine rotors are located in a zone of high temperature gradients and the damper fluid is susceptible to large variations in temperature.

  7. Modeling of temperature profiles in an environmental transmission electron microscope using computational fluid dynamics.

    Science.gov (United States)

    Mølgaard Mortensen, Peter; Hansen, Thomas Willum; Birkedal Wagner, Jakob; Degn Jensen, Anker

    2015-05-01

    The temperature and velocity field, pressure distribution, and the temperature variation across the sample region inside an environmental transmission electron microscope (ETEM) have been modeled by means of computational fluid dynamics (CFD). Heating the sample area by a furnace type TEM holder gives rise to temperature gradients over the sample area. Three major mechanisms have been identified with respect to heat transfer in the sample area: radiation from the grid, conduction in the grid, and conduction in the gas. A parameter sensitivity analysis showed that the sample temperature was affected by the conductivity of the gas, the emissivity of the sample grid, and the conductivity of the grid. Ideally the grid should be polished and made from a material with good conductivity, e.g. copper. With hydrogen gas, which has the highest conductivity of the gases studied, the temperature difference over the TEM grid is less than 5 °C, at what must be considered typical conditions, and it is concluded that the conditions on the sample grid in the ETEM can be considered as isothermal during general use. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Numerical simulation of long-period fluid temperature fluctuation at a mixing tee for the thermal fatigue problem

    Energy Technology Data Exchange (ETDEWEB)

    Utanohara, Yoichi, E-mail: utanohara@inss.co.jp [Institute of Nuclear Safety System, Inc., 64 Sata, Mihama-cho, Mikata-gun, Fukui 919-1205 (Japan); Nakamura, Akira, E-mail: a-naka@inss.co.jp [Institute of Nuclear Safety System, Inc., 64 Sata, Mihama-cho, Mikata-gun, Fukui 919-1205 (Japan); Miyoshi, Koji, E-mail: miyoshi.koji@inss.co.jp [Institute of Nuclear Safety System, Inc., 64 Sata, Mihama-cho, Mikata-gun, Fukui 919-1205 (Japan); Kasahara, Naoto, E-mail: kasahara@n.t.u-tokyo.ac.jp [University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2016-08-15

    Highlights: • A large eddy simulation of a mixing tee was carried out. • Fluid temperature fluctuation could be predicted qualitatively. • Grid convergence was almost attained and the simulation continued until 100 s. • A longer-period temperature fluctuation than the well-known St = 0.2 appeared. • Prediction of long-period temperature fluctuations improves the thermal fatigue assessment. - Abstract: Thermal fatigue cracks may be initiated at mixing tees where high and low temperature fluids flow in and mix. According to a previous study, damage by thermal fatigue depends on the frequency of the fluid temperature fluctuation near the wall surface. Structures have the time constant of structural response that depends on physical properties of the structure and the gain of the frequency response tends to become maximum at the frequency lower than the typical frequency of fluid temperature fluctuation. Hence the effect of the lower frequency, that is, long-period temperature fluctuation is important for the thermal fatigue assessment. The typical frequency of fluid temperature fluctuation is about St = 0.2 (nearly 6 Hz), where St is Strouhal number and means non-dimensional frequency. In the experimental study by Miyoshi et al. (2014), a longer-period fluctuation than St = 0.2 was also observed. Results of a fluid–structure coupled analysis by Kamaya et al. (2011) showed this long-period temperature fluctuation causes severer damage to piping. In the present study, a large eddy simulation was carried out to investigate the predictive performance of the long-period fluid temperature fluctuation more quantitatively. Numerical simulation was conducted for the WATLON experiment which was the water experiment of a mixing tee performed at the Japan Atomic Energy Agency. Four computational grids were used to confirm grid convergence. In the short time (9 s) simulations, tendencies of time-averaged and fluctuated velocities could be followed. Time

  9. A general framework to select working fluid and configuration of ORCs for low-to-medium temperature heat sources

    International Nuclear Information System (INIS)

    Vivian, Jacopo; Manente, Giovanni; Lazzaretto, Andrea

    2015-01-01

    Highlights: • General guidelines are proposed to select ORC working fluid and cycle layout. • Distance between critical and heat source temperature for optimal fluid selection. • Separate contributions of cycle efficiency and heat recovery factor. - Abstract: The selection of the most suitable working fluid and cycle configuration for a given heat source is a fundamental step in the search for the optimum design of Organic Rankine Cycles. In this phase cycle efficiency and heat source recovery factor lead to opposite design choices in the achievement of maximum system efficiency and, in turn, maximum power output. In this work, both separate and combined effects of these two performance factors are considered to supply a thorough understanding of the compromise resulting in maximum performance. This goal is pursued by carrying out design optimizations of four different ORC configurations operating with twenty-seven working fluids and recovering heat from sensible heat sources in the temperature range 120–180 °C. Optimum working fluids and thermodynamic parameters are those which simultaneously allow high cycle efficiency and high heat recovery from the heat source to be obtained. General guidelines are suggested to reach this target for any system configuration. The distance between fluid critical temperature and inlet temperature of the heat source is found to play a key role in predicting the optimum performance of all system configurations regardless of the inlet temperature of the heat source

  10. Effects of temperature gradient induced nanoparticle motion on conduction and convection of fluid

    International Nuclear Information System (INIS)

    Zhou Leping; Peterson, George P.; Yoda, Minani; Wang Buxuan

    2012-01-01

    The role of temperature gradient induced nanoparticle motion on conduction and convection was investigated. Possible mechanisms for variations resulting from variations in the thermophysical properties are theoretically and experimentally discussed. The effect of the nanoparticle motion on conduction is demonstrated through thermal conductivity measurement of deionized water with suspended CuO nanoparticles (50 nm in diameter) and correlated with the contributions of Brownian diffusion, thermophoresis, etc. The tendencies observed is that the magnitude of and the variation in the thermal conductivity increases with increasing volume fraction for a given temperature, which is due primarily to the Brownian diffusion of the nanoparticles. Using dimensional analysis, the thermal conductivity is correlated and both the interfacial thermal resistance and near-field radiation are found to be essentially negligible. A modification term that incorporates the contributions of Brownian motion and thermophoresis is proposed. The effect of nanoscale convection is illustrated through an experimental investigation that utilized fluorescent polystyrene nanoparticle tracers (200 nm in diameter) and multilayer nanoparticle image velocimetry. The results indicate that both the magnitude and the deviation of the fluid motion increased with increasing heat flux in the near-wall region. Meanwhile, the fluid motion tended to decrease with the off-wall distance for a given heating power. A corresponding numerical study of convection of pure deionized water shows that the velocity along the off-wall direction is several orders of magnitude lower than that of deionized water, which indicates that Brownian motion in the near-wall region is crucial for fluid with suspended nanoparticles in convection.

  11. Aluminum speciation in aqueous fluids at deep crustal pressure and temperature

    Science.gov (United States)

    Mookherjee, Mainak; Keppler, Hans; Manning, Craig E.

    2014-05-01

    We investigated aluminum speciation in aqueous fluids in equilibrium with corundum using in situ Raman spectroscopy in hydrothermal diamond anvil cells to 20 kbar and 1000 °C. We have studied aluminum species in (a) pure H2O, (b) 5.3 m KOH solution, and (c) 1 m KOH solution. In order to better understand the spectral features of the aqueous fluids, we used ab initio simulations based on density functional theory to calculate and predict the energetics and vibrational spectra for various aluminum species that are likely to be present in aqueous solutions. The Raman spectra of pure water in equilibrium with Al2O3 are devoid of any characteristic spectral features. In contrast, aqueous fluids with 5.3 m and 1 m KOH solution in equilibrium with Al2O3 show a sharp band at ˜620 cm-1 which could be attributed to the [ species. The band grows in intensity with temperature along an isochore. A shoulder on the high-frequency side of this band may be due to a hydrated, charge neutral Al(OH)3·H2O species. In the limited pressure, temperature and density explored in the present study, we do not find any evidence for the polymerization of the [ species to dimers [(OH)2-Al-(OH)2-Al(OH)2] or [(OH)3-Al-O-Al(OH)3]2-. This is likely due to the relatively low concentration of Al in the solutions and does not rule out significant polymerization at higher pressures and temperatures. Upon cooling of Al-bearing solutions to room temperatures, Raman bands indicating the precipitation of diaspore (AlOOH) were observed in some experiments. The Raman spectra of the KOH solutions (with or without dissolved alumina) showed a sharp OH stretching band at ˜3614 cm-1 and an in-plane OH bending vibration at ˜1068 cm-1, likely related to an OH- ion with the oxygen atom attached to a water molecule by hydrogen bonding. A weak feature at ˜935 cm-1 may be related to the out-of-plane bending vibration of the same species or to an OH species with a different environment.

  12. Natural convection in Bingham plastic fluids from an isothermal spheroid: Effects of fluid yield stress, viscous dissipation and temperature-dependent viscosity

    Science.gov (United States)

    Gupta, Anoop Kumar; Gupta, Sanjay; Chhabra, Rajendra Prasad

    2017-08-01

    In this work, the buoyancy-induced convection from an isothermal spheroid is studied in a Bingham plastic fluid. Extensive results on the morphology of approximate yield surfaces, temperature profiles, and the local and average Nusselt numbers are reported to elucidate the effects of the pertinent dimensionless parameters: Rayleigh number, 102 ≤ Ra ≤ 106; Prandtl number, 20 ≤ Pr ≤ 100; Bingham number, 0 ≤ Bn ≤ 103, and aspect ratio, 0.2 ≤ e ≤ 5. Due to the fluid yield stress, fluid-like (yielded) and solid-like (unyielded) regions coexist in the flow domain depending upon the prevailing stress levels vis-a-vis the value of the fluid yield stress. The yielded parts progressively grow in size with the rising Rayleigh number while this tendency is countered by the increasing Bingham and Prandtl numbers. Due to these two competing effects, a limiting value of the Bingham number ( Bn max) is observed beyond which heat transfer occurs solely by conduction due to the solid-like behaviour of the fluid everywhere in the domain. Such limiting values bear a positive dependence on the Rayleigh number ( Ra) and aspect ratio ( e). In addition to this, oblate shapes ( e 1) impede it. Finally, simple predictive expressions for the maximum Bingham number and the average Nusselt number are developed which can be used to predict a priori the overall heat transfer coefficient in a new application. Also, a criterion is developed in terms of the composite parameter Bn• Gr-1/2 which predicts the onset of convection in such fluids. Similarly, another criterion is developed which delineates the conditions for the onset of settling due to buoyancy effects. The paper is concluded by presenting limited results to delineate the effects of viscous dissipation and the temperature-dependent viscosity on the Nusselt number. Both these effects are seen to be rather small in Bingham plastic fluids.

  13. MORECA-2: Interactive simulator for modular high-temperature gas-cooled reactor core transients and heatup accidents with ATWS options

    Energy Technology Data Exchange (ETDEWEB)

    Ball, S.J.; Nypaver, D.J. [Oak Ridge National Lab., TN (United States)

    1992-12-01

    This is a follow-up to an earlier report documenting the MORECA code, an interactive simulation tool for performing independent analyses of postulated modular high-temperature gascooled reactor (MHTGR) core transients and heatup accidents. This research was performed at Oak Ridge National Laboratory to assist the Nuclear Regulator Commission in preliminary determinations of licensability of the US Department of Energy reference design of a standard MHTGR. The additional features of MORECA documented in this report are the interactive workstation capabilities and the options for studying anticipated transients without scram events.

  14. Fluid and rock interactions in silicate and aluminosilicate systems at elevated pressure and temperature

    Science.gov (United States)

    Davis, Mary Kathleen

    Understanding fluid chemistry in the subduction zone environment is key to unraveling the details of element transport from the slab to the surface. Solubilities of cations, such as silicon, in water strongly affect both the physical and chemical properties of supercritical metamorphic fluids. Modeling the thermodynamics of fluid-rock interactions requires therefore a profound understanding of cation dissolution and aqueous speciation. In situ Raman experiments of the silica-water, alumina-water, and alumina water systems were performed in an externally heated Bassett-type diamond-anvil cell at the Department of Geological Sciences, University of Michigan. Natural quartz samples and synthetic ruby samples were used in the experiments. Samples were loaded in the sample chamber with a water pressure medium. All experiments used rhenium gaskets of uniform thickness with a 500 mum drill hole for the sample chamber. Temperature was measured using K-type thermocouples encompassing both the upper and lower diamond anvils. Pressures are obtained on the basis of the Raman shift of the 464 cm-1 quartz mode where possible or the Raman shift of the tips of the diamond anvils according to a method developed in this work. This work characterizes the state of stress in the diamond anvil cell, which is used as the basis for the pressure calibration using only the diamond anvils. Raman measurements of silicate fluid confirm the presence of H4 SiO4 and H6Si2O7 in solution and expand the pressure range for in-situ structural observations in the silica-water system. Additionally, we identify the presence of another silica species present at mantle conditions, which occurs at long time scales in the diamond cell. This study provides the first in situ data in the alumina-water and alumina-silica-water systems at pressures and temperatures relevant to the slab environment. Al(OH) 3 appears to be the dominant form of alumina present under these conditions and in the alumina

  15. An experimental study on the effects of temperature and magnetic field strength on the magnetorheological fluid stability and MR effect.

    Science.gov (United States)

    Rabbani, Yahya; Ashtiani, Mahshid; Hashemabadi, Seyed Hassan

    2015-06-14

    In this study, the stability and rheological properties of a suspension of carbonyl iron microparticles (CIMs) in silicone oil were investigated within a temperature range of 10 to 85 °C. The effect of adding two hydrophobic (stearic and palmitic) acids on the stability and magnetorheological effect of a suspension of CIMs in silicone oil was studied. According to the results, for preparing a stable and efficient magnetorheological (MR) fluid, additives should be utilized. Therefore, 3 wt% of stearic acid was added to the MR fluid which led to an enhancement of the fluid stability over 92% at 25 °C. By investigating shear stress variation due to the changes in the shear rate for acid-based MR fluids, the maximum yield stress was obtained by fitting the Bingham plastic rheological model at high shear rates. Based on the existing correlations of yield stress and either temperature or magnetic field strength, a new model was fitted to the experimental data to monitor the simultaneous effect of magnetic field strength and temperature on the maximum yield stress. The results demonstrated that as the magnetic field intensified or the temperature decreased, the maximum yield stress increased dramatically. In addition, when the MR fluid reached its magnetic saturation, the viscosity of fluid depended only on the shear rate.

  16. Onset of slugging criterion based on singular points and stability analyses of transient one-dimensional two-phase flow equations of two-fluid model

    International Nuclear Information System (INIS)

    Sung, Chang Kyung; Chun, Moon Hyun

    1996-01-01

    A two-step approach has been used to obtain a new criterion for the onset of slug formation : (1) In the first step, a more general expression than the existing models for the onset of slug flow criterion has been derived from the analysis of singular points and neutral stability conditions of the transient one-dimensional two-phase flow equations of two-fluid model. (2) In the second step, introducing simplifications and incorporating a parameter into the general expression obtained in the first step to satisfy a number of physical conditions a priori specified, a new simple criterion for the onset of slug flow has been derived. Comparisons of the present model with existing models and experimental data show that the present model agree very closely with Taitel and Dukler's model and experimental data in horizontal pipes. In an inclined pipe (θ=50 deg ), however, the difference between the predictions of the present model and those of existing models is appreciably large and the present model gives the best agreement with Ohnuki et al.'s data. 17 refs., 5 figs., 1 tab. (author)

  17. High-accuracy CFD prediction methods for fluid and structure temperature fluctuations at T-junction for thermal fatigue evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Shaoxiang, E-mail: qian.shaoxiang@jgc.com [EN Technology Center, Process Technology Division, JGC Corporation, 2-3-1 Minato Mirai, Nishi-ku, Yokohama 220-6001 (Japan); Kanamaru, Shinichiro [EN Technology Center, Process Technology Division, JGC Corporation, 2-3-1 Minato Mirai, Nishi-ku, Yokohama 220-6001 (Japan); Kasahara, Naoto [Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-07-15

    Highlights: • Numerical methods for accurate prediction of thermal loading were proposed. • Predicted fluid temperature fluctuation (FTF) intensity is close to the experiment. • Predicted structure temperature fluctuation (STF) range is close to the experiment. • Predicted peak frequencies of FTF and STF also agree well with the experiment. • CFD results show the proposed numerical methods are of sufficiently high accuracy. - Abstract: Temperature fluctuations generated by the mixing of hot and cold fluids at a T-junction, which is widely used in nuclear power and process plants, can cause thermal fatigue failure. The conventional methods for evaluating thermal fatigue tend to provide insufficient accuracy, because they were developed based on limited experimental data and a simplified one-dimensional finite element analysis (FEA). CFD/FEA coupling analysis is expected as a useful tool for the more accurate evaluation of thermal fatigue. The present paper aims to verify the accuracy of proposed numerical methods of simulating fluid and structure temperature fluctuations at a T-junction for thermal fatigue evaluation. The dynamic Smagorinsky model (DSM) is used for large eddy simulation (LES) sub-grid scale (SGS) turbulence model, and a hybrid scheme (HS) is adopted for the calculation of convective terms in the governing equations. Also, heat transfer between fluid and structure is calculated directly through thermal conduction by creating a mesh with near wall resolution (NWR) by allocating grid points within the thermal boundary sub-layer. The simulation results show that the distribution of fluid temperature fluctuation intensity and the range of structure temperature fluctuation are remarkably close to the experimental results. Moreover, the peak frequencies of power spectrum density (PSD) of both fluid and structure temperature fluctuations also agree well with the experimental results. Therefore, the numerical methods used in the present paper are

  18. A study of the proteorhodopsin primary photoreaction by low-temperature FTIR difference and ultrafast transient infrared spectroscopy

    Science.gov (United States)

    Amsden, Jason J.

    Proteorhodopsin (PR), a newly discovered microbial rhodopsin found in marine proteobacteria, functions as a light-driven proton pump similar to bacteriorhodopsin (BR). PR-containing bacteria account for ˜13% of the microorganisms in the oceans' photic zone and are responsible for a significant fraction of the biosphere's solar energy conversion. We study the initial response of proteorhodopsin to photon absorption using a combination of low-temperature (80 K) Fourier transform infrared (FTIR) difference spectroscopy and ultrafast transient infrared (TIR) spectroscopy. Low-temperature FTIR difference spectroscopy combined with site-directed mutagenesis and isotope labeling is used to detect and characterize changes occurring in the conformation of the retinal chromophore, protein, and internal water molecules of green-absorbing PR (GPR) and blue-absorbing PR (BPR) during the initial phototransition. Measurements on cryogenically trapped intermediates do not accurately reflect all native structural changes occurring in PR and other microbial rhodopsins on ultrafast time scales at room temperature. Recent studies demonstrate that photoactive proteins such as photoactive yellow protein, myoglobin, and green-fluorescent protein, can react within several picoseconds to photon absorption by their chromophores. Faster subpicosecond protein responses have been suggested to occur in rhodopsin-like proteins where retinal chromophore photoisomerization may impulsively drive structural changes in nearby protein groups. Here, I test this possibility by investigating the earliest protein and chromophore structural changes occurring in GPR using ultrafast TIR spectroscopy with ˜200 fs time resolution combined with non-perturbing isotope labeling. On the basis of total-15N and retinal C15D (retinal with a deuterium on carbon 15) isotope labeling, the all-trans to 13-cis retinal chromophore isomerization occurs with a 500-700 fs time constant and the amide II mode of one or more

  19. Synthetic cold-inducible promoter enhances recombinant protein accumulation during Agrobacterium-mediated transient expression in Nicotiana excelsior at chilling temperatures.

    Science.gov (United States)

    Gerasymenko, I M; Sheludko, Y V

    2017-07-01

    To exploit cold-inducible biochemical processes beneficial for foreign mRNA transcription, translation and storage, as well as protein product stability, during Agrobacterium-mediated transient expression. The efficiency of three different 5'-regulatory sequences to achieve transient expression of the GFP-based reporter gene under chilling conditions (6-8 °C since the 3rd day post inoculation) was compared. We studied the upstream sequences of a cold-inducible Arabidopsis thaliana cor15a gene, the core element of 35S CaMV promoter fused to the TMV omega 5'-UTR, and the synthetic promoter including the 35S core sequence and two binding sites for cold-inducible CBF transcription factors (P_DRE::35S). Cultivation of plants transiently expressing reporter gene under control of the synthetic P_DRE::35S promoter under chilling conditions since the 3rd dpi led to the reliably higher reporter accumulation as compared to the other tested regulatory sequences under chilling or greenhouse conditions. Reporter protein fluorescence under chilling conditions using P_DRE::35S reached 160% as compared to the transient expression in the greenhouse. Period of transient expression considerably extended if plants were cultivated at chilling temperature since the 3rd dpi: reporter protein fluorescence reached its maximum at the 20th dpi and was detected in leaves up to the 65th dpi. The enhanced protein accumulation at low temperature was accompanied by the prolonged period of corresponding mRNA accumulation. Transient expression under chilling conditions using synthetic cold-inducible promoter enhances target protein accumulation and may decrease greenhouse heating expenses.

  20. Nickel and platinum in high-temperature H2O + HCl fluids: Implications for hydrothermal mobilization

    Science.gov (United States)

    Scholten, Lea; Watenphul, Anke; Beermann, Oliver; Testemale, Denis; Ames, Doreen; Schmidt, Christian

    2018-03-01

    The dissolution of NiS and NiAs (nickeline) in 0.1 and 1 molal HCl at 400 °C, 80 MPa, and of PtAs2 (sperrylite) and Pt metal in 1 and 6.86 molal HCl at 500 °C, 80 MPa was studied in-situ using synchrotron radiation X-ray fluorescence and absorption spectroscopy. The Pt concentration in the fluid averaged 8 · 10-5 molal (12.8 ppm) during dissolution of Pt metal in 6.86 molal HCl, and was below the minimum detection limit (mdl; 2.6 · 10-5 molal) in all other experiments. Dissolution of NiS was congruent or nearly congruent. Equilibrium was attained rapidly in about 250 min at an initial HCl concentration of 1 molal HCl, and in about 500 min at 0.1 molal HCl. Addition of HCl resulted in a large increase in the Ni solubility from 7.2 · 10-3 molal Ni (423 ppm) at 0.1 molal HCl to 8.72 · 10-2 molal Ni (4959 ppm) at 1 molal HCl. Dissolution of NiAs in 0.1 and 1 molal HCl was incongruent. A steady state was not reached even at a run duration of more than 16 h, and the maximum recorded Ni concentrations in the fluid were much lower than the Ni solubility in the corresponding experiments with NiS at the same HCl molality. Measured K-edge XANES spectra in comparison with literature data indicated that arsenic in the fluid was present as As(V) and that nickel complexed with Cl and H2O as tetrahedral [NiCl2(H2O)2]0 and [NiCl3(H2O)]- and octahedral [NiCl2(H2O)4]0 species. In addition, Raman spectra of H2O + NiCl2 and H2O + NiCl2 + HCl solutions and of H2O + HCl fluids reacted with NiS crystals were acquired at temperatures (T) up to 600 °C and pressures (P) up to 1.15 GPa. All spectra at T ≥ 300 °C and P Based on calculated vibrational frequencies available in the literature, it may stem from the species [NiCl4]2- or [NiCl2(H2O)4]0, although particularly the first assignment is in conflict with the information from published XAS data. The results of this study demonstrate that nickel is readily mobilized by acidic chloridic hydrothermal fluids, but platinum remains

  1. Estimating thermodynamic properties by molecular dynamics simulations: The properties of fluids at high pressures and temperatures

    International Nuclear Information System (INIS)

    Fraser, D.G.; Refson, K.

    1992-01-01

    The molecular dynamics calculations reported above give calculated P-V-T properties for H 2 O up to 1500 K and 100 GPa, which agree remarkably well with the available experimental data. We also observe the phase transition to a crystalline, orientationally disordered cubic ice structure. No account was taken of molecular flexibility in these calculations nor of potential dissociation at high pressures as suggested by Hamman (1981). However, we note that the closest next-nearest-neighbour O-H approach remains significantly greater than the TIP4P fixed O-H bond length within the water molecule for all pressures studied. The equation of state proposed here should be useful for estimating the properties of H 2 O at up to 1500 K and 100 G Pa (1 Mbar) and is much easier to use in practice than modified Redlich Kwong equations. Extension of these methods to the studies of other fluids and of fluid mixtures at high temperatures and pressures will require good potential models for the species involved, and this is likely to involve a combination of good ab initio work and semiempirical modelling. Once developed, these models should allow robust predictions of thermodynamic properties beyond the range of the experimental data on the basis of fundamental molecular information

  2. A systematic review of randomised controlled trials of the effects of warmed irrigation fluid on core body temperature during endoscopic surgeries.

    Science.gov (United States)

    Jin, Yinghui; Tian, Jinhui; Sun, Mei; Yang, Kehu

    2011-02-01

    The purpose of this systematic review was to establish whether warmed irrigation fluid temperature could decrease the drop of body temperature and incidence of shivering and hypothermia. Irrigation fluid, which is used in large quantities during endoscopic surgeries at room temperature, is considered to be associated with hypothermia and shivering. It remains controversial whether using warmed irrigation fluid to replace room-temperature irrigation fluid will decrease the drop of core body temperature and the occurrence of hypothermia. A comprehensive search (computerised database searches, footnote chasing, citation chasing) was undertaken to identify all the randomised controlled trials that explored temperature of irrigation fluid in endoscopic surgery. An approach involving meta-analysis was used. We searched PubMed, EMBASE, Cochrane Library, SCI, China academic journals full-text databases, Chinese Biomedical Literature Database, Chinese scientific journals databases and Chinese Medical Association Journals for trials that meet the inclusion criteria. Study quality was assessed using standards recommended by Cochrane Library Handbook 5.0.1. Disagreement was resolved by consensus. Thirteen randomised controlled trials including 686 patients were identified. The results showed that room-temperature irrigation fluid caused a greater drop of core body temperature in patients, compared to warmed irrigation fluid (p temperature fluid. In endoscopic surgeries, irrigation fluid is recommended to be warmed to decrease the drop of core body temperature and the risk of perioperative shivering and hypothermia. Warming irrigating fluid should be considered standard practice in all endoscopic surgeries. © 2011 Blackwell Publishing Ltd.

  3. Determination of transient temperature and heat flux on the surface of a reactor control rod based on temperature measurements at the interior points

    International Nuclear Information System (INIS)

    Cebula, Artur; Taler, Jan

    2014-01-01

    The paper presents heat transfer calculation results concerning a control rod of nuclear power plant. Apart from numerical calculation results, experimental heat transfer measurements of the control rod model are also presented. The control rod that is the object of interest is surrounded by a mixing region of hot and cold streams and, as a consequence, is subjected to thermal fluctuations. The paper describes a method based on the solution of the inverse heat conduction problem (IHCP) for determining heat flux on the outer surface of the rod. Numerical tests were conducted to validate the method by comparison of the results with the time changes of surface temperature and heat flux which were obtained from the computational fluid dynamics (CFD) simulation of the mixing process. A measuring instrument was designed to measure the heat flux at the outer surface of the control rod model. In addition, the principle of operation and construction of heat flux meter is presented in detail. -- Highlights: • Temperature and heat flux estimation during cooling of control rod are presented. • The inverse technique is based on the space marching method. • The instrument for surface heat flux measurement was manufactured and tested. • CFD simulations were used to validate the developed inverse technique. • Actual data were used to demonstrate practical applicability of the method

  4. Design and feasibility of high temperature nanoparticle fluid filter in hybrid thermal/photovoltaic concentrating solar power

    Science.gov (United States)

    DeJarnette, Drew; Brekke, Nick; Tunkara, Ebrima; Hari, Parameswar; Roberts, Kenneth; Otanicar, Todd

    2015-09-01

    A nanoparticle fluid filter used with concentrating hybrid solar/thermal collector design is presented. Nanoparticle fluid filters could be situated on any given concentrating system with appropriate customized engineering. This work shows the design in the context of a trough concentration system. Geometric design and physical placement in the optical path was modeled using SolTrace. It was found that a design can be made that blocks 0% of the traced rays. The nanoparticle fluid filter is tunable for different concentrating systems using various PV cells or operating at varying temperatures.

  5. Predicting critical temperatures of ionic and non-ionic fluids from thermophysical data obtained near the melting point

    Science.gov (United States)

    Weiss, Volker C.

    2015-10-01

    In the correlation and prediction of thermophysical data of fluids based on a corresponding-states approach, the critical temperature Tc plays a central role. For some fluids, in particular ionic ones, however, the critical region is difficult or even impossible to access experimentally. For molten salts, Tc is on the order of 3000 K, which makes accurate measurements a challenging task. Room temperature ionic liquids (RTILs) decompose thermally between 400 K and 600 K due to their organic constituents; this range of temperatures is hundreds of degrees below recent estimates of their Tc. In both cases, reliable methods to deduce Tc based on extrapolations of experimental data recorded at much lower temperatures near the triple or melting points are needed and useful because the critical point influences the fluid's behavior in the entire liquid region. Here, we propose to employ the scaling approach leading to universal fluid behavior [Román et al., J. Chem. Phys. 123, 124512 (2005)] to derive a very simple expression that allows one to estimate Tc from the density of the liquid, the surface tension, or the enthalpy of vaporization measured in a very narrow range of low temperatures. We demonstrate the validity of the approach for simple and polar neutral fluids, for which Tc is known, and then use the methodology to obtain estimates of Tc for ionic fluids. When comparing these estimates to those reported in the literature, good agreement is found for RTILs, whereas the ones for the molten salts NaCl and KCl are lower than previous estimates by 10%. The coexistence curve for ionic fluids is found to be more adequately described by an effective exponent of βeff = 0.5 than by βeff = 0.33.

  6. Pressure-temperature-fluid constraints for the Emmaville-Torrington emerald deposit, New South Wales, Australia: Fluid inclusion and stable isotope studies

    Science.gov (United States)

    Loughrey, Lara; Marshall, Dan; Jones, Peter; Millsteed, Paul; Main, Arthur

    2012-06-01

    The Emmaville-Torrington emeralds were first discovered in 1890 in quartz veins hosted within a Permian metasedimentary sequence, consisting of meta-siltstones, slates and quartzites intruded by pegmatite and aplite veins from the Moule Granite. The emerald deposit genesis is consistent with a typical granite-related emerald vein system. Emeralds from these veins display colour zonation alternating between emerald and clear beryl. Two fluid inclusion types are identified: three-phase (brine+vapour+halite) and two-phase (vapour+liquid) fluid inclusions. Fluid inclusion studies indicate the emeralds were precipitated from saline fluids ranging from approximately 33 mass percent NaCl equivalent. Formational pressures and temperatures of 350 to 400 °C and approximately 150 to 250 bars were derived from fluid inclusion and petrographic studies that also indicate emerald and beryl precipitation respectively from the liquid and vapour portions of a two-phase (boiling) system. The distinct colour zonations observed in the emerald from these deposits is the first recorded emerald locality which shows evidence of colour variation as a function of boiling. The primary three-phase and primary two-phase FITs are consistent with alternating chromium-rich `striped' colour banding. Alternating emerald zones with colourless beryl are due to chromium and vanadium partitioning in the liquid portion of the boiling system. The chemical variations observed at Emmaville-Torrington are similar to other colour zoned emeralds from other localities worldwide likely precipitated from a boiling system as well.

  7. Measurement of Thermal Properties of Rocks at Temperature up to 1,000°C with Transient Plane Source Techniques

    Science.gov (United States)

    Kim, S. K.; Lee, Y.

    2017-12-01

    A set of devices that can measure thermal properties of rocks over a temperature range from room temperature up to 1,000°C with transient plane source techniques (also known as a Hot Disk method) is introduced. It consists of a main control system (e.g., TPS 2500 S from Hot Disk), mica-insulated sensor, tubular furnace, N2 gas supplier, and pressure regulator. The TPS 2500 S is the core instrument designed for precise analysis of thermal transport properties including thermal conductivity, thermal diffusivity, and volumetric heat capacity. The mica-insulated sensor is composed of an insulated nickel double spiral, which is utilized for both transient heating and precise temperature reading; a mica insulator protects the sensor against mechanical and thermal damage at high temperatures. The tubular furnace can hold two rock core samples of 50-mm-diameter and 25-mm-height with increasing temperatures up to 1,000°C. N2 gas supplier and pressure regulator are used to keep the inside the furnace away from oxygen. Thermal properties of most rocks and minerals vary with increasing temperatures. Experimental measurements of thermal properties at high temperatures have been made mostly using laser flash, needle probe, and divided bar methods in the previous researches, and no previous measurements with the Hot Disk method have been reported yet. We report thermal conductivities, thermal diffusivities, and volumetric heat capacities determined by a transient plane heat source method for fused silica and mafic rock samples using the introduced transient plane source apparatus. The thermal properties of fused silica have been measured mainly over the temperature range from ambient temperature to 500°C. The results seem to agree moderately with the previously reported values by Birch and Clark (Am. J. Sci., 1940). We now check the possible causes of measurement errors in our measurements and prepare to measure thermal properties of the mafic rock samples at temperatures up

  8. User's manual for ASTERIX-2: A two-dimensional modular code system for the steady state and xenon transient analysis of a pebble bed high temperature reactor

    International Nuclear Information System (INIS)

    Wu, T.; Cowan, C.L.; Lauer, A.; Schwiegk, H.J.

    1982-03-01

    The ASTERIX modular code package was developed at KFA Laboratory-Juelich for the steady state and xenon transient analysis of a pebble bed high temperature reactor. The code package was implemented on the Stanford Linear Accelerator Center Computer in August, 1980, and a user's manual for the current version of the code, identified as ASTERIX-2, was prepared as a cooperative effort by KFA Laboratory and GE-ARSD. The material in the manual includes the requirements for accessing the program, a description of the major subroutines, a listing of the input options, and a listing of the input data for a sample problem. The material is provided in sufficient detail for the user to carry out a wide range of analysis from steady state operations to the xenon induced power transients in which the local xenon, temperature, buckling and control feedback effects have been incorporated in the problem solution. (orig.)

  9. Emergence of coherent localized structures in shear deformations of temperature dependent fluids

    KAUST Repository

    Katsaounis, Theodoros

    2016-11-25

    Shear localization occurs in various instances of material instability in solid mechanics and is typically associated with Hadamard-instability for an underlying model. While Hadamard instability indicates the catastrophic growth of oscillations around a mean state, it does not by itself explain the formation of coherent structures typically observed in localization. The latter is a nonlinear effect and its analysis is the main objective of this article. We consider a model that captures the main mechanisms observed in high strain-rate deformation of metals, and describes shear motions of temperature dependent non-Newtonian fluids. For a special dependence of the viscosity on the temperature, we carry out a linearized stability analysis around a base state of uniform shearing solutions, and quantitatively assess the effects of the various mechanisms affecting the problem: thermal softening, momentum diffusion and thermal diffusion. Then, we turn to the nonlinear model, and construct localized states - in the form of similarity solutions - that emerge as coherent structures in the localization process. This justifies a scenario for localization that is proposed on the basis of asymptotic analysis in \\\\cite{KT}.

  10. Computational Fluid Dynamics Analyses on Very High Temperature Reactor Air Ingress

    Energy Technology Data Exchange (ETDEWEB)

    Chang H Oh; Eung S. Kim; Richard Schultz; David Petti; Hyung S. Kang

    2009-07-01

    A preliminary computational fluid dynamics (CFD) analysis was performed to understand density-gradient-induced stratified flow in a Very High Temperature Reactor (VHTR) air-ingress accident. Various parameters were taken into consideration, including turbulence model, core temperature, initial air mole-fraction, and flow resistance in the core. The gas turbine modular helium reactor (GT-MHR) 600 MWt was selected as the reference reactor and it was simplified to be 2-D geometry in modeling. The core and the lower plenum were assumed to be porous bodies. Following the preliminary CFD results, the analysis of the air-ingress accident has been performed by two different codes: GAMMA code (system analysis code, Oh et al. 2006) and FLUENT CFD code (Fluent 2007). Eventually, the analysis results showed that the actual onset time of natural convection (~160 sec) would be significantly earlier than the previous predictions (~150 hours) calculated based on the molecular diffusion air-ingress mechanism. This leads to the conclusion that the consequences of this accident will be much more serious than previously expected.

  11. PUMP DESIGN AND COMPUTATIONAL FLUID DYNAMIC ANALYSIS FOR HIGH TEMPERATURE SULFURIC ACID TRANSFER SYSTEM

    Directory of Open Access Journals (Sweden)

    JUNG-SIK CHOI

    2014-06-01

    Full Text Available In this study, we proposed a newly designed sulfuric acid transfer system for the sulfur-iodine (SI thermochemical cycle. The proposed sulfuric acid transfer system was evaluated using a computational fluid dynamics (CFD analysis for investigating thermodynamic/hydrodynamic characteristics and material properties. This analysis was conducted to obtain reliable continuous operation parameters; in particular, a thermal analysis was performed on the bellows box and bellows at amplitudes and various frequencies (0.1, 0.5, and 1.0 Hz. However, the high temperatures and strongly corrosive operating conditions of the current sulfuric acid system present challenges with respect to the structural materials of the transfer system. To resolve this issue, we designed a novel transfer system using polytetrafluoroethylene (PTFE, Teflon® as a bellows material for the transfer of sulfuric acid. We also carried out a CFD analysis of the design. The CFD results indicated that the maximum applicable temperature of PTFE is about 533 K (260 °C, even though its melting point is around 600 K. This result implies that the PTFE is a potential material for the sulfuric acid transfer system. The CFD simulations also confirmed that the sulfuric acid transfer system was designed properly for this particular investigation.

  12. Buoyancy-Marangoni convection in confined volatile binary fluids subject to a horizontal temperature gradient

    Science.gov (United States)

    Qin, Tongran; Grigoriev, Roman

    2017-11-01

    We consider convection in a layer of binary fluid with free surface subject to a horizontal temperature gradient in the presence of noncondensable gases, which is driven by a combination of three different forces: buoyancy, thermocapillarity, and solutocapillarity. Unlike buoyancy, both thermo- and solutocapillary stresses depend sensitively on the local phase equilibrium at the liquid-gas interface. In particular, thermocapillarity associated with the interfacial temperature gradient is controlled by the vapors' concentration along the interface, and solutocapillarity associated with the interfacial concentration gradient is controlled by differential phase change of two components of the liquid, which is strongly influenced by the presence of noncondensables. Therefore, flows in both phases, phase change, and effect of noncondensables all have to be considered. Numerical simulations based on a comprehensive model taking these effects into account show qualitative agreement with recent experiments which identified a number of flow regimes at various compositions of both phases. In particular,we find that the composition of both the gas and liquid phase have a significant effect on the observed convection patterns; this dependence can be understood using a simple analytical model. This material is based upon work supported by the National Science Foundation under Grant No. 1511470.

  13. Evaluation of serum and gingival crevicular fluid C-reactive protein and IL-6 levels in patients with periodontitis and transient ischemic attacks.

    Science.gov (United States)

    Haba, Danisia; Teslaru, Silvia; Ungureanu, Didona; Hodorog, Diana; Alecu, C; Benghiac, Ana Gabriela; Zetu, L; Ancuţa, Codrina; Ancuţa, E; Nemţoi, A; Iordache, Cristina

    2011-01-01

    Recent advances have suggested that periodontitis (PD), the paradigm of chronic infection in dental pathology, shares several pathogenic pathways with cardio- and cerebro-vascular disorders (CVD), based on inflammatory mediators including IL-1, IL-6, TNF-α. To assess pro-inflammatory biomarkers (C-reactive protein - CRP, IL-6) in serum and gingival crevicular fluid (GCF) in patients with PD and with transient ischemic attacks (TIAs). Prospective observational study on 143 patients classified as follows: 40 healthy subjects (group A), 50 PD patients (group B) and 53 PD-TIAs patients (group C). The predefined assessment protocol has included: current medical data, risk factors for CRP changes, periodontal status (clinical, orthopantomography, Schei Ruler technique), inflammatory biomarkers (CRP, IL-6). High serum CRP and IL-6 have been reported in both TIAs and PD, while statistically significant increase in GCF CRP only in PD-TIAs (p<0.05). Moreover, both generalized and localized chronic PD may be at higher risk for CVD, since CRP level was higher in these subgroups. However, no significant differences were reported in serum IL-6 between generalized and localized PD. A score function was demonstrated, including bone loss degree, bleeding index, collection site depth, serum and GCF IL-6 and CRP, tooth loss, allowing the classification of PD based on risk for developing TIAs. CRP and IL-6 are commonly involved in the pathways of PD and TIAs. Interdisciplinary assessment should be promoted in order to implement the stratification of PD patients according to the risk for TIAs as suggested by the proposed algorithm.

  14. Effects of incubation time and temperature on microbiologic sampling procedures for hemodialysis fluids.

    Science.gov (United States)

    Arduino, M J; Bland, L A; Aguero, S M; Favero, M S

    1991-07-01

    To prevent pyrogenic reactions and bacteremia in hemodialysis patients, the Association for the Advancement of Medical Instrumentation and the Centers for Disease Control recommend culturing of hemodialysis fluids (water and dialysate) at least once a month. The recommendations for total microbial counts are (i) less than or equal to 200 CFU/ml in water used to prepare dialysate or reprocess hemodialyzers and (ii) less than or equal to 2,000 CFU/ml for the dialysate. In accordance with the Association for the Advancement of Medical Instrumentation recommendations all cultures should be incubated at 37 degrees C for 48 h on suitable culture media, such as Trypticase soy agar, standard methods agar, or one of several commercially available assay systems. There have been suggestions that lower temperatures and longer incubation might improve the recovery of bacteria from water and dialysate. In this study bacterial recovery from various dialysis fluids (water, bicarbonate dialysate, and bicarbonate concentrate) at 30 and 37 degrees C was compared. Duplicate sets of samples were membrane filtered (pore size, 0.45 microns); one set was incubated at 30 degrees C and the other was incubated at 37 degrees C for 72 h. The number of visible colonies was counted every 24 h by using a dissecting microscope. No significant difference was observed in specimens incubated at 37 degrees C for 48 h compared with those incubated at 30 degrees C for 72 h. Also, bacterial recovery was significantly better when samples of bicarbonate dialysate or bicarbonate concentrate were plated on Trypticase soy agar as opposed to standard methods agar.

  15. Simultaneous measurements of droplet size, flying velocity and transient temperature of in-flight droplets by using a molecular tagging technique

    Science.gov (United States)

    Li, Haixing; Chen, Fang; Hu, Hui

    2015-10-01

    In the present study, a molecular tagging technique is introduced to achieve simultaneous measurements of droplet size, flying velocity and transient temperature of in-flight liquid droplets in a spray flow. For the molecular tagging measurements, a pulsed laser is used to "tag" phosphorescent 1-BrNp·Mβ-CD·ROH triplex molecules premixed within liquid droplets. After the same laser excitation pulse, long-lived laser-induced phosphorescence is imaged at two successive times within the phosphorescence lifetime of the tagged phosphorescent triplex molecules. While the sizes of the droplets are determined quantitatively based on the acquired droplet images with a precalibrated scale ratio between the image plane and the object plane, the displacement vectors of the in-flight droplets between the two image acquisitions are used to estimate the flying velocities of the droplets. The simultaneous measurements of the transient temperatures of the in-flight droplets are achieved by taking advantage of the temperature dependence of phosphorescence lifetime, which is estimated from the intensity ratio of the acquired phosphorescence image pair of the inflight droplets. The feasibility and implementation of the molecular tagging technique are demonstrated by conducting simultaneous measurements of droplet size, flying velocity and transient temperature of micro-sized water droplets exhausted from a piezoelectric droplet generator into ambient air at different test conditions in order to characterize the dynamic and thermodynamic behaviors of the micro-sized in-flight droplets. The unsteady heat transfer process between the in-flight droplets and the ambient air is also analyzed theoretically by using a lumped capacitance method to predict the temperature changes of the in-flight water droplets along their flight trajectories. The measured temperature data are compared with the theoretical analysis results quantitatively, and the discrepancies between measurement results and

  16. Effect of drilling fluid systems and temperature on oil mist and vapour levels generated from shale shaker.

    Science.gov (United States)

    Steinsvåg, Kjersti; Galea, Karen S; Krüger, Kirsti; Peikli, Vegard; Sánchez-Jiménez, Araceli; Sætvedt, Esther; Searl, Alison; Cherrie, John W; van Tongeren, Martie

    2011-05-01

    Workers in the drilling section of the offshore petroleum industry are exposed to air pollutants generated by drilling fluids. Oil mist and oil vapour concentrations have been measured in the drilling fluid processing areas for decades; however, little work has been carried out to investigate exposure determinants such as drilling fluid viscosity and temperature. A study was undertaken to investigate the effect of two different oil-based drilling fluid systems and their temperature on oil mist, oil vapour, and total volatile organic compounds (TVOC) levels in a simulated shale shaker room at a purpose-built test centre. Oil mist and oil vapour concentrations were sampled simultaneously using a sampling arrangement consisting of a Millipore closed cassette loaded with glass fibre and cellulose acetate filters attached to a backup charcoal tube. TVOCs were measured by a PhoCheck photo-ionization detector direct reading instrument. Concentrations of oil mist, oil vapour, and TVOC in the atmosphere surrounding the shale shaker were assessed during three separate test periods. Two oil-based drilling fluids, denoted 'System 2.0' and 'System 3.5', containing base oils with a viscosity of 2.0 and 3.3-3.7 mm(2) s(-1) at 40°C, respectively, were used at temperatures ranging from 40 to 75°C. In general, the System 2.0 yielded low oil mist levels, but high oil vapour concentrations, while the opposite was found for the System 3.5. Statistical significant differences between the drilling fluid systems were found for oil mist (P = 0.025),vapour (P oil mist, oil vapour, and TVOC levels. Oil vapour levels at the test facility exceeded the Norwegian oil vapour occupational exposure limit (OEL) of 30 mg m(-3) when the drilling fluid temperature was ≥50°C. The practice of testing compliance of oil vapour exposure from drilling fluids systems containing base oils with viscosity of ≤2.0 mm(2) s(-1) at 40°C against the Norwegian oil vapour OEL is questioned since these base oils

  17. Geochemistry of High Temperature Vent Fluids in Yellowstone Lake: Dissolved Carbon and Sulfur Concentrations and Isotopic Data

    Science.gov (United States)

    Cino, C.; Seyfried, W. E., Jr.; Tan, C.; Fu, Q.

    2017-12-01

    Yellowstone National Park is a dynamic environment home to an array of geysers, hot springs, and hydrothermal vents fueled by the underlying continental magmatic intrusion. Yellowstone Lake vent fluids accounts for approximately 10% of the total geothermal flux for all of Yellowstone National Park. Though studying this remote hydrothermal system poses severe challenges, it provides an excellent natural laboratory to research hydrothermal fluids that undergo higher pressure and temperature conditions in an environment largely shielded from atmospheric oxygen. The location of these vents also provides chemistry that is characteristic of fluids deeper in the Yellowstone hydrothermal system. In August 2016, hydrothermal fluids were collected from the Stevenson Island vents in collaboration with the Hydrothermal Dynamics of Yellowstone Lake (HD-YLAKE) project using novel sampling techniques and monitoring instrumentation. The newly built ROV Yogi was deployed to reach the vents in-situ with temperatures in excess of 151oC at 100-120 m depth, equipped with a 12-cylinder isobaric sampler to collect the hydrothermal fluids. Results from geochemical analyses indicate the fluids are rich in gases such as CO2, CH4, and H2S, with sample concentrations of approximately 12 mM, 161 μm, and 2.1 mM respectively. However, lake water mixing with the hydrothermal endmember fluid likely diluted these concentrations in the collected samples. Isotopic analyses indicate CO2 has a δ13C of -6 indicating magmatic origins, however the CH4 resulted in a δ13C of -65 which is in the biological range. This biogenic signature is likely due to the pyrolysis of immature organic matter in the lake bottom sediment, since the high temperatures measured for the fluids would not allow the presence of methanogens. H2S concentrations have not been previously measured for the hydrothermal fluids in Yellowstone Lake, and our vent fluid samples indicate significantly higher H2S concentrations than reported

  18. Summary of transient management

    International Nuclear Information System (INIS)

    Sheron, B.W.

    1984-01-01

    This chapter reviews the papers on evaluating and managing transients, as given at the American Nuclear Society Topical Meeting on Anticipated and Abnormal Plant Transients in Light Water Reactors. Transient management involves both diverse and related areas such as analysis, systems performance, human performance, procedures, and training. State-of-the-art simulators are being improved to solve the constitutive equations for two-phase fluid flow by the development of a new generation of analysis codes which are simpler and faster than earlier codes. Both the US NRC and the nuclear industry are criticized for solving problems by adding additional requirements for the reactor operator rather than by recognizing design deficiencies

  19. Exact Solutions for Unsteady Free Convection Flow of Casson Fluid over an Oscillating Vertical Plate with Constant Wall Temperature

    Directory of Open Access Journals (Sweden)

    Asma Khalid

    2015-01-01

    Full Text Available The unsteady free flow of a Casson fluid past an oscillating vertical plate with constant wall temperature has been studied. The Casson fluid model is used to distinguish the non-Newtonian fluid behaviour. The governing partial differential equations corresponding to the momentum and energy equations are transformed into linear ordinary differential equations by using nondimensional variables. Laplace transform method is used to find the exact solutions of these equations. Expressions for shear stress in terms of skin friction and the rate of heat transfer in terms of Nusselt number are also obtained. Numerical results of velocity and temperature profiles with various values of embedded flow parameters are shown graphically and their effects are discussed in detail.

  20. One-dimensional modeling of radial heat removal during depressurized heatup transients in modular pebble-bed and prismatic high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Savage, M.G.

    1984-07-01

    A one-dimensional computational model was developed to evaluate the heat removal capabilities of both prismatic-core and pebble-bed modular HTGRs during depressurized heatup transients. A correlation was incorporated to calculate the temperature- and neutron-fluence-dependent thermal conductivity of graphite. The modified Zehner-Schluender model was used to determine the effective thermal conductivity of a pebble bed, accounting for both conduction and radiation. Studies were performed for prismatic-core and pebble-bed modular HTGRs, and the results were compared to analyses performed by GA and GR, respectively. For the particular modular reactor design studied, the prismatic HTGR peak temperature was 2152.2 0 C at 38 hours following the transient initiation, and the pebble-bed peak temperature was 1647.8 0 C at 26 hours. These results compared favorably with those of GA and GE, with only slight differences caused by neglecting axial heat transfer in a one-dimensional radial model. This study found that the magnitude of the initial power density had a greater effect on the temperature excursion than did the initial temperature

  1. Modeling Temperature Development of Li-ion Battery Packs using Phase Change Materials (PCM) and Fluid Flow

    DEFF Research Database (Denmark)

    Coman, Paul Tiberiu; Veje, Christian

    2014-01-01

    This paper presents a dynamic model for simulating the heat generation and the impact of Phase Change Materials (PCMs) on the maximum temperature in LiFePO4 battery cells. The model is constructed by coupling a one-dimensional electro-chemical model with a two-dimensional thermal model and fluid...

  2. Characteristics of temperature rise in variable inductor employing magnetorheological fluid driven by a high-frequency pulsed voltage source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho-Young; Kang, In Man, E-mail: imkang@ee.knu.ac.kr [School of Electronics Engineering, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Shon, Chae-Hwa [Korea Electrotechnology Research Institute, Changwon 642-120 (Korea, Republic of); Lee, Se-Hee, E-mail: shlees@knu.ac.kr [Department of Electrical Engineering, Kyungpook National University, Daegu 702-701 (Korea, Republic of)

    2015-05-07

    A variable inductor with magnetorheological (MR) fluid has been successfully applied to power electronics applications; however, its thermal characteristics have not been investigated. To evaluate the performance of the variable inductor with respect to temperature, we measured the characteristics of temperature rise and developed a numerical analysis technique. The characteristics of temperature rise were determined experimentally and verified numerically by adopting a multiphysics analysis technique. In order to accurately estimate the temperature distribution in a variable inductor with an MR fluid-gap, the thermal solver should import the heat source from the electromagnetic solver to solve the eddy current problem. To improve accuracy, the B–H curves of the MR fluid under operating temperature were obtained using the magnetic property measurement system. In addition, the Steinmetz equation was applied to evaluate the core loss in a ferrite core. The predicted temperature rise for a variable inductor showed good agreement with the experimental data and the developed numerical technique can be employed to design a variable inductor with a high-frequency pulsed voltage source.

  3. Characteristics of temperature rise in variable inductor employing magnetorheological fluid driven by a high-frequency pulsed voltage source

    International Nuclear Information System (INIS)

    Lee, Ho-Young; Kang, In Man; Shon, Chae-Hwa; Lee, Se-Hee

    2015-01-01

    A variable inductor with magnetorheological (MR) fluid has been successfully applied to power electronics applications; however, its thermal characteristics have not been investigated. To evaluate the performance of the variable inductor with respect to temperature, we measured the characteristics of temperature rise and developed a numerical analysis technique. The characteristics of temperature rise were determined experimentally and verified numerically by adopting a multiphysics analysis technique. In order to accurately estimate the temperature distribution in a variable inductor with an MR fluid-gap, the thermal solver should import the heat source from the electromagnetic solver to solve the eddy current problem. To improve accuracy, the B–H curves of the MR fluid under operating temperature were obtained using the magnetic property measurement system. In addition, the Steinmetz equation was applied to evaluate the core loss in a ferrite core. The predicted temperature rise for a variable inductor showed good agreement with the experimental data and the developed numerical technique can be employed to design a variable inductor with a high-frequency pulsed voltage source

  4. The Swedish study of Irrigation-fluid temperature in the evacuation of Chronic subdural hematoma (SIC!): study protocol for a multicenter randomized controlled trial.

    Science.gov (United States)

    Bartley, Andreas; Jakola, Asgeir S; Bartek, Jiri; Sundblom, Jimmy; Förander, Petter; Marklund, Niklas; Tisell, Magnus

    2017-10-11

    Chronic subdural hematoma (cSDH) is one of the most common conditions encountered in neurosurgical practice. Recurrence, observed in 5-30% of patients, is a major clinical problem. The temperature of the irrigation fluid used during evacuation of the hematoma might theoretically influence recurrence rates since irrigation fluid at body temperature (37 o C) may beneficially influence coagulation and cSDH solubility when compared to irrigation fluid at room temperature. Should no difference in recurrence rates be observed when comparing irrigation-fluid temperatures, there is no need for warmed fluids during surgery. Our main aim is to investigate the effect of irrigation-fluid temperature on recurrence rates and clinical outcomes after cSDH evacuation using a multicenter randomized controlled trial design. The study will be conducted in three neurosurgical departments with population-based catchment areas using a similar surgical strategy. In total, 600 patients fulfilling the inclusion criteria will randomly be assigned to either intraoperative irrigation with fluid at body temperature or room temperature. The power calculation is based on a retrospective study performed at our department showing a recurrence rate of 5% versus 12% when comparing irrigation fluid at body temperature versus fluid at room temperature (unpublished data). The primary endpoint is recurrence rate of cSDH analyzed at 6 months post treatment. Secondary endpoints are mortality rate, complications and health-related quality of life. Irrigation-fluid temperature might influence recurrence rates in the evacuation of chronic subdural hematomas. We present a study protocol for a multicenter randomized controlled trial investigating our hypothesis that irrigation fluid at body temperature is superior to room temperature in reducing recurrence rates following evacuation of cSDH. ClinicalTrials.gov, ID: NCT02757235 . Registered on 2 May 2016.

  5. Pressure-temperature condition and hydrothermal-magmatic fluid evolution of the Cu-Mo Senj deposit, Central Alborz: fluid inclusion evidence

    Directory of Open Access Journals (Sweden)

    Ebrahim Tale Fazel

    2017-02-01

    Full Text Available Introduction The Senj deposit has significant potential for different types of mineralization, particularly porphyry-like Cu deposits, associated with subduction-related Eocene–Oligocene calc-alkaline porphyritic volcano-plutonic rocks. The study of fluid inclusions in hydrothermal ore deposits aims to identify and characterize the pressure, temperature, volume and fluid composition, (PTX conditions of fluids under which they were trapped (Heinrich et al., 1999; Ulrich and Heinrich, 2001; Redmond et al., 2004. Different characteristics of the deposit such as porphyrtic nature, alteration assemblage and the quartz-sulfide veins of the stockwork were poorly known. In this approach on the basis of alterations, vein cutting relationship and field distribution of fluid inclusions, the physical and chemical evolution of the hydrothermal system forming the porphyry Cu-Mo (±Au-Ag deposit in Senj is reconstructed. Materials and Methods Over 1000 m of drill core was logged at a scale of 1:1000 by Pichab Kavosh Co. and samples containing various vein and alteration types from different depths were collected for laboratory analyses. A total of 14 samples collected from the altered and least altered igneous rocks in the Senj deposit were analyzed for their major oxide concentrations by X-ray fluorescence in the SGS Mineral Services (Toronto, Canada. The detection limit for major oxide analysis is 0.01%. Trace and rare earth elements (REE were analyzed using inductively coupled plasma-mass spectrometery (ICP-MS, in the commercial laboratory of SGS Mineral Services. The analytical error for most elements is less than 2%. The detection limit for trace elements and REEs analysis is 0.01 to 0.1 ppm. Fluid inclusion microthermometry was conducted using a Linkam THMS600 heating–freezing stage (-190 °C to +600 °C mounted on a ZEISS Axioplan2 microscope in the fluid inclusion laboratory of the Iranian Mineral Processing Research Center (Karaj, Iran. Results

  6. Superradiant MeV γ Scattered by a Room-Temperature Spinor Quantum Fluid

    Directory of Open Access Journals (Sweden)

    Yao Cheng

    2017-07-01

    Full Text Available Recent reports have revealed the rich long-lived Mossbauer phenomenon of 93mNb, in which it has long been speculated that the delocalized 93mNb undergoes Bose-Einstein condensation following an increase in the 93mNb density beyond the threshold of 1012 cm−3 at room temperature. We now report on the superradiant Rayleigh of the M4 γ at 662 keV scattered into end-fire modes along the long axis of the sample, as evidence of Bose-Einstein condensation. We observed the Arago (Poisson’s spot in order to demonstrate a near-field γ-ray diffraction from a mm-sized γ source, as well as a γ interference beyond the Huygens-Fresnel principle. During the 107-day monitoring period, seven Sisyphus cycles of mode hopping appeared in the superradiance, which demonstrates the optomechanic bistabilty provided by the collective interaction between the spinor quantum fluid and the impinging γs. Condensate-light interaction produces a pm matter-wave grating to become a Fabry-Pérot resonator with a Q-factor on the order of 1020, from which end-fired γs lase.

  7. Solid-to-fluid DNA transition inside HSV-1 capsid close to the temperature of infection

    Energy Technology Data Exchange (ETDEWEB)

    Sae-Ueng, Udom; Li, Dong; Zuo, Xiaobing; Huffman, Jamie B.; Homa, Fred L.; Rau, Donald; Evilevitch, Alex

    2014-10-01

    DNA in the human Herpes simplex virus type 1 (HSV-1) capsid is packaged to a tight density. This leads to tens of atmospheres of internal pressure responsible for the delivery of the herpes genome into the cell nucleus. In this study we show that, despite its liquid crystalline state inside the capsid, the DNA is fluid-like, which facilitates its ejection into the cell nucleus during infection. We found that the sliding friction between closely packaged DNA strands, caused by interstrand repulsive interactions, is reduced by the ionic environment of epithelial cells and neurons susceptible to herpes infection. However, variations in the ionic conditions corresponding to neuronal activity can restrict DNA mobility in the capsid, making it more solid-like. This can inhibit intranuclear DNA release and interfere with viral replication. In addition, the temperature of the human host (37 °C) induces a disordering transition of the encapsidated herpes genome, which reduces interstrand interactions and provides genome mobility required for infection.

  8. An automated system for performing continuous viscosity versus temperature measurements of fluids using an Ostwald viscometer

    Science.gov (United States)

    Beaulieu, L. Y.; Logan, E. R.; Gering, K. L.; Dahn, J. R.

    2017-09-01

    An automated system was developed to measure the viscosity of fluids as a function of temperature using image analysis tracking software. An Ostwald viscometer was placed in a three-wall dewar in which ethylene glycol was circulated using a thermal bath. The system collected continuous measurements during both heating and cooling cycles exhibiting no hysteresis. The use of video tracking analysis software greatly reduced the measurement errors associated with measuring the time required for the meniscus to pass through the markings on the viscometer. The stability of the system was assessed by performing 38 consecutive measurements of water at 42.50 ± 0.05 °C giving an average flow time of 87.7 ± 0.3 s. A device was also implemented to repeatedly deliver a constant volume of liquid of 11.00 ± 0.03 ml leading to an average error in the viscosity of 0.04%. As an application, the system was used to measure the viscosity of two Li-ion battery electrolyte solvents from approximately 10 to 40 °C with results showing excellent agreement with viscosity values calculated using Gering's Advanced Electrolyte Model (AEM).

  9. An automated system for performing continuous viscosity versus temperature measurements of fluids using an Ostwald viscometer.

    Science.gov (United States)

    Beaulieu, L Y; Logan, E R; Gering, K L; Dahn, J R

    2017-09-01

    An automated system was developed to measure the viscosity of fluids as a function of temperature using image analysis tracking software. An Ostwald viscometer was placed in a three-wall dewar in which ethylene glycol was circulated using a thermal bath. The system collected continuous measurements during both heating and cooling cycles exhibiting no hysteresis. The use of video tracking analysis software greatly reduced the measurement errors associated with measuring the time required for the meniscus to pass through the markings on the viscometer. The stability of the system was assessed by performing 38 consecutive measurements of water at 42.50 ± 0.05 °C giving an average flow time of 87.7 ± 0.3 s. A device was also implemented to repeatedly deliver a constant volume of liquid of 11.00 ± 0.03 ml leading to an average error in the viscosity of 0.04%. As an application, the system was used to measure the viscosity of two Li-ion battery electrolyte solvents from approximately 10 to 40 °C with results showing excellent agreement with viscosity values calculated using Gering's Advanced Electrolyte Model (AEM).

  10. Steady-state and transient heat transfer through fins of complex geometry

    Directory of Open Access Journals (Sweden)

    Taler Dawid

    2014-06-01

    Full Text Available Various methods for steady-state and transient analysis of temperature distribution and efficiency of continuous-plate fins are presented. For a constant heat transfer coefficient over the fin surface, the plate fin can be divided into imaginary rectangular or hexangular fins. At first approximate methods for determining the steady-state fin efficiency like the method of equivalent circular fin and the sector method are discussed. When the fin geometry is complex, thus transient temperature distribution and fin efficiency can be determined using numerical methods. A numerical method for transient analysis of fins with complex geometry is developed. Transient temperature distributions in continuous fins attached to oval tubes is computed using the finite volume - finite element methods. The developed method can be used in the transient analysis of compact heat exchangers to calculate correctly the heat flow rate transferred from the finned tubes to the fluid.

  11. Multi-modes interferometer for magnetic field and temperature measurement using Photonic crystal fiber filled with magnetic fluid

    Science.gov (United States)

    Li, Xue-gang; Zhou, Xue; Zhao, Yong; Lv, Ri-Qing

    2018-03-01

    An in-line modal Mach-Zehnder interferometer (MZI) based on a magnetic fluid-filled photonic crystal fiber (PCF) was proposed in this paper. The Mach-Zehnder interference was induced by the single mode fiber (SMF)-photonic crystal fiber (PCF)-single mode fiber (SMF) structure. And the photonic crystal fiber was filled with magnetic fluid to measure the magnetic field and temperature. There are multiple cladding modes are involved into the interference. Hence simultaneous measurement of temperature and refractive index can be achieved by simultaneously monitoring the two different modes interference spectra. The sensitivities of magnetic field and temperature can reach up to 0.072 nm/Gs and -0.080 nm/°C, respectively.

  12. Activity and phylogenetic diversity of sulfate-reducing microorganisms in low-temperature subsurface fluids within the upper oceanic crust

    Science.gov (United States)

    Robador, Alberto; Jungbluth, Sean P.; LaRowe, Douglas E.; Bowers, Robert M.; Rappé, Michael S.; Amend, Jan P.; Cowen, James P.

    2015-01-01

    The basaltic ocean crust is the largest aquifer system on Earth, yet the rates of biological activity in this environment are unknown. Low-temperature (fluid samples were investigated from two borehole observatories in the Juan de Fuca Ridge (JFR) flank, representing a range of upper oceanic basement thermal and geochemical properties. Microbial sulfate reduction rates (SRR) were measured in laboratory incubations with 35S-sulfate over a range of temperatures and the identity of the corresponding sulfate-reducing microorganisms (SRM) was studied by analyzing the sequence diversity of the functional marker dissimilatory (bi)sulfite reductase (dsrAB) gene. We found that microbial sulfate reduction was limited by the decreasing availability of organic electron donors in higher temperature, more altered fluids. Thermodynamic calculations indicate energetic constraints for metabolism, which together with relatively higher cell-specific SRR reveal increased maintenance requirements, consistent with novel species-level dsrAB phylotypes of thermophilic SRM. Our estimates suggest that microbially-mediated sulfate reduction may account for the removal of organic matter in fluids within the upper oceanic crust and underscore the potential quantitative impact of microbial processes in deep subsurface marine crustal fluids on marine and global biogeochemical carbon cycling. PMID:25642212

  13. Activity and phylogenetic diversity of sulfate-reducing microorganisms in low-temperature subsurface fluids within the upper oceanic crust

    Directory of Open Access Journals (Sweden)

    Alberto eRobador

    2015-01-01

    Full Text Available The basaltic ocean crust is the largest aquifer system on Earth, yet the rates of biological activity in this environment are unknown. Low-temperature (<100 °C fluid samples were investigated from two borehole observatories in the Juan de Fuca Ridge flank, representing a range of upper oceanic basement thermal and geochemical properties. Microbial sulfate reduction rates were measured in laboratory incubations with 35S-sulfate over a range of temperatures, with microbial activity limited by the availability of organic electron donors. Thermodynamic calculations indicate energetic constraints for metabolism in the higher temperature, more altered and isolated fluids, which together with relatively higher cell-specific sulfate reduction rates reveal increased maintenance requirements, consistent with novel species-level dsrAB phylotypes of thermophilic sulfate-reducing microorganisms. Our estimates suggest that microbially-mediated sulfate reduction may account for the removal of organic matter in fluids within the upper oceanic crust and underscore the potential quantitative impact of microbial processes in deep subsurface marine crustal fluids on marine and global biogeochemical carbon cycling.

  14. Computer program MCAP-TOSS calculates steady-state fluid dynamics of coolant in parallel channels and temperature distribution in surrounding heat-generating solid

    Science.gov (United States)

    Lee, A. Y.

    1967-01-01

    Computer program calculates the steady state fluid distribution, temperature rise, and pressure drop of a coolant, the material temperature distribution of a heat generating solid, and the heat flux distributions at the fluid-solid interfaces. It performs the necessary iterations automatically within the computer, in one machine run.

  15. Effects of aeration on matrix temperature by infrared thermal imager and computational fluid dynamics during sludge bio-drying.

    Science.gov (United States)

    Yu, Dawei; Yang, Min; Qi, Lu; Liu, Mengmeng; Wang, Yawei; Wei, Yuansong

    2017-10-01

    The effect of aeration on the pile matrix temperature was investigated using thermocouples and Infrared Thermal Imager (IRI) for temperature sensing, and Computational Fluid Dynamics (CFD) for modelling of temperature variation during aeration in a full-scale sludge biodrying plant. With aeration saving of 20%, the improved strategy speeded up biodrying from 21 days to 14 days, while achieving similar drying effect. A persistent thermocouple recorded the one-dimensional (1D) total temperature variation of all aeration strategies. The IRI captured the rapid two-dimensional (2D) pile temperature dropped from 72.5 °C to 30.3 °C during 6 min of aeration, which mechanism suggested as the latent heat of moisture evaporation and sensible heat of air exchange. The CFD three-dimensional (3D) CFD results highlight the importance of latent heat rather than sensible heat. Therefore, the pile temperature drop inferred is ΔT = 5.38 °C theoretically and ΔT = 5.17 ± 4.56 °C practically, per unit of MC removed. These findings also emphasize the possibility of a pile temperature valley, due to excessive aeration under unsaturated vapour conditions. Surface temperature monitored by IRI coupled with 3D temperature simulated by CFD rapidly gives a clear matrix temperature evolution, empowering biodrying by more accurate temperature and aeration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Steady- and transient-state analyses of fully ceramic microencapsulated fuel loaded reactor core via two-temperature homogenized thermal-conductivity model

    International Nuclear Information System (INIS)

    Lee, Yoonhee; Cho, Nam Zin

    2015-01-01

    Highlights: • Fully ceramic microencapsulated fuel-loaded core is analyzed via a two-temperature homogenized thermal-conductivity model. • The model is compared to harmonic- and volumetric-average thermal conductivity models. • The three thermal analysis models show ∼100 pcm differences in the k eff eigenvalue. • The three thermal analysis models show more than 70 K differences in the maximum temperature. • There occur more than 3 times differences in the maximum power for a control rod ejection accident. - Abstract: Fully ceramic microencapsulated (FCM) fuel, a type of accident-tolerant fuel (ATF), consists of TRISO particles randomly dispersed in a SiC matrix. In this study, for a thermal analysis of the FCM fuel with such a high heterogeneity, a two-temperature homogenized thermal-conductivity model was applied by the authors. This model provides separate temperatures for the fuel-kernels and the SiC matrix. It also provides more realistic temperature profiles than those of harmonic- and volumetric-average thermal conductivity models, which are used for thermal analysis of a fuel element in VHTRs having a composition similar to the FCM fuel, because such models are unable to provide the fuel-kernel and graphite matrix temperatures separately. In this study, coupled with a neutron diffusion model, a FCM fuel-loaded reactor core is analyzed via a two-temperature homogenized thermal-conductivity model at steady- and transient-states. The results are compared to those from harmonic- and volumetric-average thermal conductivity models, i.e., we compare k eff eigenvalues, power distributions, and temperature profiles in the hottest single-channel at steady-state. At transient-state, we compare total powers, reactivity, and maximum temperatures in the hottest single-channel obtained by the different thermal analysis models. The different thermal analysis models and the availability of fuel-kernel temperatures in the two-temperature homogenized thermal

  17. Transient thermal performance analysis of micro heat pipes

    International Nuclear Information System (INIS)

    Liu, Xiangdong; Chen, Yongping

    2013-01-01

    A theoretical analysis of transient fluid flow and heat transfer in a triangular micro heat pipes (MHP) has been conducted to study the thermal response characteristics. By introducing the system identification theory, the quantitative evaluation of the MHP's transient thermal performance is realized. The results indicate that the evaporation and condensation processes are both extended into the adiabatic section. During the start-up process, the capillary radius along axial direction of MHP decreases drastically while the liquid velocity increases quickly at the early transient stage and an approximately linear decrease in wall temperature arises along the axial direction. The MHP behaves as a first-order LTI control system with the constant input power as the 'step input' and the evaporator wall temperature as the 'output'. Two corresponding evaluation criteria derived from the control theory, time constant and temperature constant, are able to quantitatively evaluate the thermal response speed and temperature level of MHP under start-up, which show that a larger triangular groove's hydraulic diameter within 0.18–0.42 mm is able to accelerate the start-up and decrease the start-up temperature level of MHP. Additionally, the MHP starts up fastest using the fluid of ethanol and most slowly using the working fluid of methanol, and the start-up temperature reaches maximum level for acetone and minimum level for the methanol. -- Highlights: • Transient thermal response of micro heat pipe is simulated by an improved model. • Control theory is introduced to quantify the thermal response of micro heat pipe. • Evaluation criteria are proposed to represent thermal response of micro heat pipe. • Effects of groove dimensions and working fluids on start-up of micro heat pipe are evaluated

  18. Lithium in low-temperature fluid-affected zircons. Paleoproterozoic weathering horizon (Karelia, the Baltic shield).

    Science.gov (United States)

    Alfimova, Nadezhda; Klimova, Ekaterina; Matrenichev, Vjacheslav; Zinger, Tatjana

    2017-04-01

    Zircon is a mineral, which is widely used in geochronology. At the same time, low-temperature fluids had been shown to affect the inner structure, chemical and even isotopic composition of zircons (Geisler et al., 2007, Pidgeon et al., 2013). Here we report changes in the inner structure and chemical composition of zircon grains, preserved in Paleoproterozoic weathering horizon from Karelia craton (N. Ladoga region, Russia) in spite of greenschist metamorphism. Detailed zircon SEM and CL study revealed that zircons in weathered samples can be classified into two groups depending on their microstructural characteristics: 1- the zircons with an unusual and complex (breccia-like) structure with almost no relics of magmatic zonation. The inner structure of that grains is often composed of a mosaic of angular crystal pieces cemented with silicates or even other generation of zircon itself. Group 2- zircons with clearly seen relics of magmatic (oscillatory) zonation. Both groups have outer rims which are forming the facets of the grains. These two groups are also different in chemistry. Group 1 zircons contain more than 10 ppm of Ba and Sr, >1000 ppm U and Th/U there is ≤0.1, REE spectra show LREE/HREE > 0.5, positive Cean (enrichment of non-formula elements (Ca, Mg, Fe, Al) and water. Lithium varies broadly - from 33 to 136 ppm (av.value around 60 ppm). Group 2 zircons are characterized by Th/U >0.3, Ba and Sr are less than 10 ppm each, LREE/HREE+2.0, Euan ≤ +1.0, Li is from 19 to 73 ppm with average meaning 49 ppm. A separate geochemical group can be identified within "a-structural" grains (group 1) -parts of zircons and grains light-colored in SEM. These part of group 1 zircons demonstrate specific REE spectra - LREE/HREE < 0.1, ∑REE ≤750 ppm, thus being lower, then LREE part of spectra from grains with magmatic structure. These group also has the highest concentration of Li (up to 136 ppm with av. 88 ppm) and lowest Ba/Sr ratio of all measured points, thus

  19. Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes.

    Science.gov (United States)

    Weis, P; Driesner, T; Heinrich, C A

    2012-12-21

    Porphyry-type ore deposits are major resources of copper and gold, precipitated from fluids expelled by crustal magma chambers. The metals are typically concentrated in confined ore shells within vertically extensive vein networks, formed through hydraulic fracturing of rock by ascending fluids. Numerical modeling shows that dynamic permeability responses to magmatic fluid expulsion can stabilize a front of metal precipitation at the boundary between lithostatically pressured up-flow of hot magmatic fluids and hydrostatically pressured convection of cooler meteoric fluids. The balance between focused heat advection and lateral cooling controls the most important economic characteristics, including size, shape, and ore grade. This self-sustaining process may extend to epithermal gold deposits, venting at active volcanoes, and regions with the potential for geothermal energy production.

  20. An investigation of characteristics of thermal stress caused by fluid temperature fluctuation at a T-junction pipe

    International Nuclear Information System (INIS)

    Miyoshi, Koji; Nakamura, Akira; Utanohara, Yoichi

    2014-01-01

    Thermal fatigue cracking may initiate at a T-junction pipe where high and low temperature fluids flow in from different directions and mix. Thermal stress is caused by a temperature gradient in a structure and by its variation. It is possible to obtain stress distributions if the temperature distributions at the pipe inner surface are obtained by experiments. The wall temperature distributions at a T-junction pipe were measured by experiments. The thermal stress distributions were calculated using the experimental data. The circumferential and axial stress fluctuations were larger than the radial stress fluctuation range. The stress fluctuation at the position of the maximum stress fluctuation had 10sec period. The distribution of the stress fluctuation was similar to that of the temperature fluctuation. The large stress fluctuations were caused by the time variation of the heating region by the hot jet flow. (author)

  1. Similarities and differences among fluid milk products: traditionally produced, extended shelf life and ultrahigh-temperature processed.

    Science.gov (United States)

    Grabowski, N T; Ahlfeld, B; Brix, A; Hagemann, A; von Münchhausen, C; Klein, G

    2013-06-01

    Extended shelf life milk is a relatively new kind of fluid milk, generally manufactured by high-temperature treatment and/or micro-filtration. Being advertised as 'pasteurized milk with an extended shelf life', its flavour, compositional quality and labelling was questioned. Extended shelf life (high-temperature treatment), pasteurized ('traditionally produced') and ultrahigh-temperature milk were, therefore, compared at the beginning and end of shelf life. In triangle tests, panellists distinguished clearly between all products. High-temperature treatment milk's flavour was closer to ultrahigh-temperature and traditionally produced milk in the beginning and at the end of shelf life, respectively. Physicochemically and bacteriologically, all three types could be distinguished. Since 'extended shelf life' comprises many process varieties (each affecting flavour differently), consumer information and appropriate package labelling beyond 'long-lasting' is necessary, e.g. by mentioning the heat treatment applied.

  2. Documentation and verification of VST2D; a model for simulating transient, Variably Saturated, coupled water-heat-solute Transport in heterogeneous, anisotropic 2-Dimensional, ground-water systems with variable fluid density

    Science.gov (United States)

    Friedel, Michael J.

    2001-01-01

    This report describes a model for simulating transient, Variably Saturated, coupled water-heatsolute Transport in heterogeneous, anisotropic, 2-Dimensional, ground-water systems with variable fluid density (VST2D). VST2D was developed to help understand the effects of natural and anthropogenic factors on quantity and quality of variably saturated ground-water systems. The model solves simultaneously for one or more dependent variables (pressure, temperature, and concentration) at nodes in a horizontal or vertical mesh using a quasi-linearized general minimum residual method. This approach enhances computational speed beyond the speed of a sequential approach. Heterogeneous and anisotropic conditions are implemented locally using individual element property descriptions. This implementation allows local principal directions to differ among elements and from the global solution domain coordinates. Boundary conditions can include time-varying pressure head (or moisture content), heat, and/or concentration; fluxes distributed along domain boundaries and/or at internal node points; and/or convective moisture, heat, and solute fluxes along the domain boundaries; and/or unit hydraulic gradient along domain boundaries. Other model features include temperature and concentration dependent density (liquid and vapor) and viscosity, sorption and/or decay of a solute, and capability to determine moisture content beyond residual to zero. These features are described in the documentation together with development of the governing equations, application of the finite-element formulation (using the Galerkin approach), solution procedure, mass and energy balance considerations, input requirements, and output options. The VST2D model was verified, and results included solutions for problems of water transport under isohaline and isothermal conditions, heat transport under isobaric and isohaline conditions, solute transport under isobaric and isothermal conditions, and coupled water

  3. Exploratory boreholes Boettstein, Weiach, Riniken, Schafisheim, Kaisten, Leuggern: fluid-logging. Temperature, salinometer and spinner-flowmeter measurements

    International Nuclear Information System (INIS)

    Kleboth, P.

    1988-11-01

    As part of the hydrogeological investigations in the six exploratory boreholes drilled by NAGRA in northern Switzerland until 1986, a comprehensive data collection programme aimed at the localisation and characterization of zones of increased rock permeability was carried out. Within this programme the 'Fluid Logging' campaign investigated temperature, conductivity and flow conditions of the borehole fluid column. The present report is a comprehensive collection of the most important Fluid-logging runs from all six boreholes (Boettstein, Weiach, Riniken, Schafisheim, Kaisten and Leuggern). The first part of the report presents the methodology followed and describes the operating principles of the temperature, salinometer and spinner-flowmeter tools used, the range of their application and their performance. The second part of the report details the individual logging runs for each borehole. It describes the borehole history, which is important for the interpretation of results and states the boundary conditions e.g. water level in well, pump rate, difficulties encountered etc. Results are presented as composite logs. The fluid logs are compared with the relevant geological data indicating high permeability zones and the provisional results from the numerous hydraulic tests. (author) 15 tabs., 35 figs

  4. Analytical and numerical study of natural convection in a stably stratified fluid along vertical plates and cylinders with temporally-periodic surface temperature variations

    International Nuclear Information System (INIS)

    Shapiro, A.; Fedorovich, E.

    2005-01-01

    This paper describes one-dimensional (parallel) laminar and transitional regimes of natural convection in a viscous stably stratified fluid due to temporally-periodic variations in the surface temperature of infinite vertical plates and cylinders. Analytical solutions are obtained for the periodic laminar regime for arbitrary values of stratification, Prandtl number and forcing frequency. The solutions for plates and cylinders are qualitatively similar and show that (i) the flows are composed of two waves that decay exponentially with distance from the surface; a fast long wave and a slow short wave, (ii) for forcing frequencies less than the natural frequency, both waves propagate away from the surface, while (iii) for forcing frequencies less than this natural frequency, the short wave propagates away from the surface while the long wave propagates toward the surface. The analytical results are complemented, for the plate problem, with three-dimensional numerical simulations of flows that start from rest and are suddenly subjected to a periodic thermal forcing. The numerical results depict the transient (start-up) stage of the laminar flow and the approach to the periodicity, and confirm that the analytical solutions provide the appropriate description of the periodic regime for the laminar convection case. Preliminary numerical data are presented for transition from the laminar to turbulent convection. (authors)

  5. Effect of vibrating electrode on temperature profiles, fluid flow, and pool shape in ESR system based on a comprehensive coupled model

    Directory of Open Access Journals (Sweden)

    Fang Wang

    2015-07-01

    Full Text Available The vibrating electrode method was proposed in the electro-slag remelting (ESR process in this paper, and the effect of vibrating electrode on the solidification structure of ingot was studied. A transient three-dimensional (3D coupled mathematical model was established to simulate the electromagnetic phenomenon, fluid flow as well as pool shape in the ESR process with the vibrating electrode. The finite element volume method is developed to solve the electromagnetic field using ANSYS mechanical APDL software. Moreover, the electromagnetic force and Joule heating are interpolated as the source term of the momentum and energy equations. The multi-physical fields have been investigated and compared between the traditional electrode and the vibrating electrode in the ESR process. The results show that the drop process of metal droplets with the traditional electrode is scattered randomly. However, the drop process of metal droplets with the vibrating electrode is periodic. The highest temperature of slag layer with the vibrating electrode is higher than that with the traditional electrode, which can increase the melting rate due to the enhanced heat transfer in the vicinity of the electrode tip. The results also show that when the amplitude and frequency of the vibrating electrode increase, the cycle of drop process of metal droplets decreases significantly.

  6. Oxygen isotope exchange in rocks and minerals from the Cerro Prieto geothermal system: Indicators of temperature distribution and fluid flow

    Energy Technology Data Exchange (ETDEWEB)

    Williams, A.E.; Elders, W.A.

    1981-01-01

    Oxygen isotopic compositions have been measured in drill cuttings and core samples from more than 40 wells ranging in depth to more than 3.5 km in the Cerro Prieto geothermal field. Profiles of isotopic ratios versus sampling depths provide information on the three-dimensional distribution of temperature and fluid flow. These parameters also indicate variations in the history of hydrothermal processes in different areas of the geothermal field.

  7. Selection of working fluids for a novel low-temperature geothermally-powered ORC based cogeneration system

    International Nuclear Information System (INIS)

    Guo, T.; Wang, H.X.; Zhang, S.J.

    2011-01-01

    Highlights: → Performances of a novel cogeneration system using low-temperature geothermal sources under disturbance conditions were investigated. → It aimed at identifying appropriate fluids yielding high PPR and QQR values. → Fluids group presenting higher normal boiling point values showed averagely 7.7% higher PPR with a larger variation than QQR values under disturbance conditions. → Smaller T P value, higher η t value, higher geothermal source parameters and lower heating supply parameters led to higher PPR values but lower QQR values. -- Abstract: A novel cogeneration system driven by low-temperature geothermal sources was investigated in this study. This system consists of a low-temperature geothermally-powered organic Rankine cycle (ORC) subsystem, an intermediate heat exchanger and a commercial R134a-based heat pump subsystem. The main purpose is to identify appropriate fluids which may yield high PPR (the ratio of power produced by the power generation subsystem to power consumed by the heat pump subsystem) value and QQR (the ratio of heat supplied to the user to heat produced by the geothermal source) value. Performances of the novel cogeneration system under disturbance conditions have also been studied. Results indicate that fluids group presenting higher normal boiling point values shows averagely 7.7% higher PPR values and R236ea and R245ca outstand among the group. ΔT P (pinch temperature difference in heat exchangers) and η t (turbine efficiency) values play more important roles on the variation of PPR values. QQR values change slightly with various ΔT P , η t and η rp (refrigerant pump efficiency) values while the variation range is larger under various geothermal source and heating supply parameters. Smaller ΔT P value, higher η t value, higher geothermal source parameters and lower heating supply parameters lead to higher PPR values but lower QQR values.

  8. Process for heating a part of an equipment to bring a fluid flowing in this part at a fixed temperature

    International Nuclear Information System (INIS)

    Chavanne, Claude; Vanderchmitt, Andre.

    1978-01-01

    Processs for heating a valve, pump and connections of a circuit so as to bring or maintain the fluid flowing through them at a temperature such that its change of state or a modification of its physical characteristics is avoided, by means of a heating unit built in a high thermal conductivity material, made integral with the heated component and including electric heating facilities [fr

  9. Intermediate Temperature Fluids for Heat Pipes and Loop Heat Pipes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will develop heat pipe and loop heat pipe (LHP) working fluids for what is known as the intermediate...

  10. The influence of bleaching agent and temperature on bleaching efficacy and volatile components of fluid whey and whey retentate.

    Science.gov (United States)

    Fox, A J; Smith, T J; Gerard, P D; Drake, M A

    2013-10-01

    Fluid whey or retentate are often bleached to remove residual annatto Cheddar cheese colorant, and this process causes off-flavors in dried whey proteins. This study determined the impact of temperature and bleaching agent on bleaching efficacy and volatile components in fluid whey and fluid whey retentate. Freshly manufactured liquid whey (6.7% solids) or concentrated whey protein (retentate) (12% solids, 80% protein) were bleached using benzoyl peroxide (BP) at 100 mg/kg (w/w) or hydrogen peroxide (HP) at 250 mg/kg (w/w) at 5 °C for 16 h or 50 °CC for 1 h. Unbleached controls were subjected to a similar temperature profile. The experiment was replicated three times. Annatto destruction (bleaching efficacy) among treatments was compared, and volatile compounds were extracted and separated using solid phase microextraction gas chromatography mass spectrometry (SPME GC-MS). Bleaching efficacy of BP was higher than HP (P 0.05). Retentate bleached with HP at either temperature had higher relative abundances of pentanal, hexanal, heptanal, and octanal than BP bleached retentate (P < 0.05). Liquid wheys generally had lower concentrations of selected volatiles compared to retentates. These results suggest that the highest bleaching efficacy (within the parameters evaluated) in liquid whey is achieved using BP at 5 or 50 °C and at 50 °C with HP or BP in whey protein retentate. © 2013 Institute of Food Technologists®

  11. Criteria for selection of working fluid in low-temperature ORC

    Directory of Open Access Journals (Sweden)

    Mikielewicz Dariusz

    2016-09-01

    Full Text Available The economics of an ORC system is strictly linked to thermodynamic properties of the working fluid. A bad choice of working fluid could lead to a less efficient and expensive plant/generation unit. Some selection criteria have been put forward by various authors, incorporating thermodynamic properties, provided in literature but these do not have a general character. In the paper a simple analysis has been carried out which resulted in development of thermodynamic criteria for selection of an appropriate working fluid for subcritical and supercritical cycles. The postulated criteria are expressed in terms of non-dimensional numbers, which are characteristic for different fluids. The efficiency of the cycle is in a close relation to these numbers. The criteria are suitable for initial fluid selection. Such criteria should be used with other ones related to environmental impact, economy, system size, etc. Examples of such criteria have been also presented which may be helpful in rating of heat exchangers, which takes into account both heat transfer and flow resistance of the working fluid.

  12. Effect of oxidation on base liquids of oil and synthetic-based drilling fluids at high pressure and high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Shahbazi, K.; Mehta, S.A.; Moore, R.G.; Ursenbach, M.G. [Calgary Univ., AB (Canada)

    2005-07-01

    Diesels and distillates are used as a base liquid for most oil-based drilling fluids in conventional drilling and as the liquid phase in gasified liquids in some underbalanced drilling operations. They are also used as friction reducing agents to free stuck pipes. It is important to understand the true downhole rheological properties because they affect equivalent circulating density, hole cleaning, barite sag, surge/swab pressures during tripping, pump pressure and bit hydraulics. Also, gelation and high viscosity are major concerns, particularly at high temperatures. An experimental study was conducted to evaluate the effect of oxidation on some base liquids for oil-based and synthetic-based drilling fluids at high pressures and high temperatures. Gas and liquid phases were characterized and the solid phase was measured along with viscosity measurements at temperatures and pressures ranging from 20 to 152 degrees C at atmospheric pressures to 103.4 MPa. The viscosity of the liquid samples after aging was compared with that of corresponding fresh samples. The results indicate that the degree of oxidation plays an important role in increasing the sample viscosity. The increase in viscosity depends on temperature, and is more significant at low temperatures. Agitation of samples during aging with air resulted in increased amounts of solid precipitation while lowering the viscosity of the liquid phase. This study demonstrated that oxidation has an important influence on rheological properties of the oil, because it affects the mobility of the oil and therefore the recovery factor. 11 refs., 7 tabs., 22 figs.

  13. Exploration of the phase diagram of liquid water in the low-temperature metastable region using synthetic fluid inclusions

    DEFF Research Database (Denmark)

    Qiu, Chen; Krüger, Yves; Wilke, Max

    2016-01-01

    We present new experimental data of the low-temperature metastable region of liquid water derived from high-density synthetic fluid inclusions (996−916 kg/m3) in quartz. Microthermometric measurements include: i) Prograde (upon heating) and retrograde (upon cooling) liquid-vapour homogenisation. ...... a maximum of the bubble nucleation curve in the ϱ–T plane at around 40 °C. The new experimental data represent valuable benchmarks to evaluate and further improve theoretical models describing the p–V–T properties of metastable water in the low-temperature region......We present new experimental data of the low-temperature metastable region of liquid water derived from high-density synthetic fluid inclusions (996−916 kg/m3) in quartz. Microthermometric measurements include: i) Prograde (upon heating) and retrograde (upon cooling) liquid-vapour homogenisation. We...... used single ultrashort laser pulses to stimulate vapour bubble nucleation in initially monophase liquid inclusions. Water densities were calculated based on prograde homogenisation temperatures using the IAPWS-95 formulation. We found retrograde liquid-vapour homogenisation temperatures in excellent...

  14. Effect temperature of supercritical CO2 fluid extraction on phytochemical analysis and antioxidant activity of Zingiber officinale Roscoe

    Science.gov (United States)

    Sondari, Dewi; Irawadi, Tun Tedja; Setyaningsih, Dwi; Tursiloadi, Silvester

    2017-11-01

    Supercritical fluid extraction of Zingiber officinale Roscoe has been carried out at a pressure of 16 MPa, with temperatures between 20-40 °C, during extraction time of 6 hours and the flow rate of CO2 fluid 5.5 ml/min. The result of supercritical method was compared with the extraction maceration using a mixture of water and ethanol (70% v/v) for 24 hours. The main content in ginger that has a main role as an antioxidant is a gingerol compound that can help neutralize the damaging effects caused by free radicals in the body, as anti-coagulant, and inhibit the occurrence of blood clots. This study aims to determine the effect of temperature on chemical components contained in rough extract of Zingiber officinale Roscoe and its antioxidant activity, total phenol and total flavonoid content. To determine the chemical components contained in the crude extract of Zingiber officinale Roscoe extracted by supercritical fluid and maceration extraction, GC-MS analysis was performed. Meanwhile, the antioxidant activity of the extract was evaluated based on a 2.2-diphenyl-1-picrylhydrazyl (DPPH) free radical damping method. The results of the analysis show that the result of ginger extract by using the supercritical CO2 extraction method has high antioxidant activity than by using maceration method. The highest total phenol content and total flavonoids were obtained on ginger extraction using supercritical CO2 fluid extraction, indicating that phenol and flavonoid compounds contribute to antioxidant activity. Chromatographic analysis showed that the chemical profile of ginger extract containing oxygenated monoterpenes, monoterpene hydrocarbons, sesquiterpene hydrocarbons, oxygenated monoterpene gingerol and esters. In supercritical fluid extraction, the compounds that can be identified at a temperature of 20-40 °C contain 27 compounds, and 11 compounds from the result of maceration extract. The main component of Zingiber officinale Roscoe extracted using supercritical fluid

  15. The use of organic zeotropic mixture with high temperature glide as a working fluid in medium-temperature vapor power plant

    Directory of Open Access Journals (Sweden)

    Borsukiewicz Aleksandra

    2017-01-01

    Full Text Available The paper presents the idea of using organic substances as working fluids in vapor power plants, in order to convert the low and medium temperature thermal energy sources into electrical energy. The calculation results of the power plant efficiency for butane-ethane zeotropic mixtures of different mass compositions, for the power plant supplied with hot water having a temperature of 120°C. Based on the results of thermal-flow calculations it was found that the use of zeotropic mixture does not allow to increase the efficiency and output of the power plant (these values appeared as slightly lower ones. However, it was found that, through the selection of a mixture of sufficiently large temperature glide, the heat exchange surface of the condenser can be reduced or a co-generation system can be implemented.

  16. Ultra-fast biomass pyrolysis in a High-Temperature (2200/sup 0/C), Fluid-Wall Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Corella, J.; Monzon, A.; Santamaria, J.; Gonzalez-Canibano, J.

    1988-02-01

    The pyrolysis of pine sawdust has been carried out in a High-Temperature Fluid-Wall Reactor. This unit has been specially designed to withstand working temperatures of up to 2200/sup 0/C. The biomass is fed to the top of the reactor after sieving to the appropriate size, at a rate of 1.0 to 1.8 kgmin. The feed falls and, at the same time is very quickly heated by radiation to the reaction temperature. The estimated heating rate is on the order of 10/sup 60/Cs for reactant surfaces. The fluid-wall, produced by a nitrogen flow through the 30 cm diameter porous reactor core, prevents both reactants and products from reaching the reactor wall. The product distribution at the reactor exit has been determined for different operating conditions. The influence of reactor temperature, biomass feed rate, and biomass particle size on the product distribution and on the heating value of the exit gas has been investigated.

  17. Syndrome of transient headache and neurological deficits with cerebrospinal fluid lymphocytosis (HaNDL) in a patient with confusional symptoms, diffuse EEG abnormalities, and bilateral vasospasm in transcranial Doppler ultrasound: A case report and literature review.

    Science.gov (United States)

    Hidalgo de la Cruz, M; Domínguez Rubio, R; Luque Buzo, E; Díaz Otero, F; Vázquez Alén, P; Orcajo Rincón, J; Prieto Montalvo, J; Contreras Chicote, A; Grandas Pérez, F

    2017-04-17

    HaNDL syndrome (transient headache and neurological deficits with cerebrospinal fluid lymphocytosis) is characterised by one or more episodes of headache and transient neurological deficits associated with cerebrospinal fluid lymphocytosis. To date, few cases of HaNDL manifesting with confusional symptoms have been described. Likewise, very few patients with HaNDL and confusional symptoms have been evaluated with transcranial Doppler ultrasound (TCD). TCD data from patients with focal involvement reveal changes consistent with vasomotor alterations. We present the case of a 42-year-old man who experienced headache and confusional symptoms and displayed pleocytosis, diffuse slow activity on EEG, increased blood flow velocity in both middle cerebral arteries on TCD, and single-photon emission computed tomography (SPECT) findings suggestive of diffuse involvement, especially in the left hemisphere. To our knowledge, this is the first description of a patient with HaNDL, confusional symptoms, diffuse slow activity on EEG, and increased blood flow velocity in TCD. Our findings suggest a relationship between cerebral vasomotor changes and the pathophysiology of HaNDL. TCD may be a useful tool for early diagnosis of HaNDL. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Influence of size, shape, type of nanoparticles, type and temperature of the base fluid on natural convection MHD of na

    Directory of Open Access Journals (Sweden)

    P. Sudarsana Reddy

    2016-03-01

    Full Text Available In this paper, we have presented MHD natural convection boundary layer flow, heat and mass transfer characteristics of nanofluid through porous media over a vertical cone influenced by different aspects of nanoparticles such as size, shape, type of nanoparticles and type of the base fluid and working temperature of base fluid. To increase the physical significance of the problem, we have taken dynamic viscosity and thermal conductivity as the functions of local volume fraction of nanoparticles. The drift-flux model of nanofluids, Brownian motion, thermophoresis, and enhancement ratio parameters are also considered in the present analysis. The influence of non-dimensional parameters such as magnetic field (M, buoyancy ratio parameter (Nr, conductivity parameter (Nc, viscosity parameter (Nv, Brownian motion parameter (Nb, thermophoresis parameter (Nt, Lewis number (Le on velocity, temperature and volume fraction of nanoparticles in the boundary layer region is examined in detail. Furthermore the impact of these parameters on local Nusselt number (Nux and enhancement ratio hnfhbf is also investigated. The results of present study reveal that significant natural convection heat transfer enhancement is noticed as the size of nanoparticles decreases. Moreover, type of the nanoparticles and type of the base fluid also influenced the natural convection heat transfer.

  19. Calc-silicate assemblages from the Kerala Khondalite Belt, southern India: implications for pressure-temperature-fluid histories

    Science.gov (United States)

    Satish-Kumar, M.; Santosh, M.; Harley, S. L.; Yoshida, M.

    This paper reports several new localities of wollastonite- and scapolite-bearing calc-silicate assemblages from the granulite-facies supracrustal Kerala Khondalite Belt (KKB), southern India. Based on mineralogy, these calc-silicate rocks are classified into four types: Type I, lacking wollastonite and grossular; Type II, wollastonite-bearing but grossular-absent; Type III, wollastonite- and grossular-bearing; and Type IV, dolomitic marbles. Detailed petrographic studies reveal a variety of reaction textures overprinting the polygonal granoblastic peak metamorphic assemblages in these rocks. The Type II calc-silicate rocks preserve reaction textures, including meionite breaking down to anorthite-calcite-quartz, wollastonite breaking down to calcite-quartz and meionite-quartz symplectites after K-feldspar and wollastonite. Type III calc-silicate rocks have porphyroblastic and coronal grossular. Grossular-quartz coronas separating wollastonite and anorthite and the development of grossular within the anorthite-calcite-quartz pseudomorphs of meionite form important retrograde reaction textures in this type. In Type IV dolomitic marble assemblages, meionite forming in grain boundaries of calcite and feldspars, forsterite rimmed by diopside-dolomite and the formation of grossular in feldspar-rich zones are the important textures. Calculated partial petrogenetic grids in the CaOAl 2O 3SiO 2CO 2 system are used to deduce the pressure-temperature-fluid evolution of the calc-silicate rocks. The Type II assemblages provide CO 2 activity estimates of > 0.5, with a peak metamorphic temperature of about 790°C. Initial cooling followed by later CO 2 influx can be deduced from reaction modelling in these calc-silicate rocks. Type III assemblages are characterized by internal fluid buffering throughout their tectonic history. The formation of coronal grossular indicates an initial cooling from peak metamorphic temperatures of about 830°C deduced from vapour

  20. Effects of Solder Temperature on Pin Through-Hole during Wave Soldering: Thermal-Fluid Structure Interaction Analysis

    Directory of Open Access Journals (Sweden)

    M. S. Abdul Aziz

    2014-01-01

    Full Text Available An efficient simulation technique was proposed to examine the thermal-fluid structure interaction in the effects of solder temperature on pin through-hole during wave soldering. This study investigated the capillary flow behavior as well as the displacement, temperature distribution, and von Mises stress of a pin passed through a solder material. A single pin through-hole connector mounted on a printed circuit board (PCB was simulated using a 3D model solved by FLUENT. The ABAQUS solver was employed to analyze the pin structure at solder temperatures of 456.15 K (183°C < T < 643.15 K (370°C. Both solvers were coupled by the real time coupling software and mesh-based parallel code coupling interface during analysis. In addition, an experiment was conducted to measure the temperature difference (ΔT between the top and the bottom of the pin. Analysis results showed that an increase in temperature increased the structural displacement and the von Mises stress. Filling time exhibited a quadratic relationship to the increment of temperature. The deformation of pin showed a linear correlation to the temperature. The ΔT obtained from the simulation and the experimental method were validated. This study elucidates and clearly illustrates wave soldering for engineers in the PCB assembly industry.

  1. Winter stream temperature in the rain-on-snow zone of the Pacific Northwest: influences of hillslope runoff and transient snow cover

    Directory of Open Access Journals (Sweden)

    J. A. Leach

    2014-02-01

    Full Text Available Stream temperature dynamics during winter are less well studied than summer thermal regimes, but the winter season thermal regime can be critical for fish growth and development in coastal catchments. The winter thermal regimes of Pacific Northwest headwater streams, which provide vital winter habitat for salmonids and their food sources, may be particularly sensitive to changes in climate because they can remain ice-free throughout the year and are often located in rain-on-snow zones. This study examined winter stream temperature patterns and controls in small headwater catchments within the rain-on-snow zone at the Malcolm Knapp Research Forest, near Vancouver, British Columbia, Canada. Two hypotheses were addressed by this study: (1 winter stream temperatures are primarily controlled by advective fluxes associated with runoff processes and (2 stream temperatures should be depressed during rain-on-snow events, compared to rain-on-bare-ground events, due to the cooling effect of rain passing through the snowpack prior to infiltrating the soil or being delivered to the stream as saturation-excess overland flow. A reach-scale energy budget analysis of two winter seasons revealed that the advective energy input associated with hillslope runoff overwhelms vertical energy exchanges (net radiation, sensible and latent heat fluxes, bed heat conduction, and stream friction and hyporheic energy fluxes during rain and rain-on-snow events. Historical stream temperature data and modelled snowpack dynamics were used to explore the influence of transient snow cover on stream temperature over 13 winters. When snow was not present, daily stream temperature during winter rain events tended to increase with increasing air temperature. However, when snow was present, stream temperature was capped at about 5 °C, regardless of air temperature. The stream energy budget modelling and historical analysis support both of our hypotheses. A key implication is that

  2. Perturbative calculations of flow patterns in free convection between coaxial cylinders. Non-linear temperature dependences of the fluid properties

    International Nuclear Information System (INIS)

    Navarro, J. A.; Madariaga, J. A.; Santamaria, C. M.; Saviron, J. M.

    1980-01-01

    10 refs. Flow pattern calculations in natural convection between two vertical coaxial cylinders are reported. It is assumed trough the paper. that fluid properties, viscosity, thermal conductivity and density, depend no-linearly on temperature and that the aspects (height/radius) ratio of the cylinders is high. Velocity profiles are calculated trough a perturbative scheme and analytic results for the three first perturbation orders are presented. We outline also an iterative method to estimate the perturbations on the flow patterns which arise when a radial composition gradient is established by external forces in a two-component fluid. This procedure, based on semiempirical basis, is applied to gaseous convection. The influence of the molecules gas properties on tho flow is also discussed. (Author) 10 refs

  3. Properties and heat transfer coefficients of four molten-salt high temperature heat transfer fluid candidates for concentrating solar power plants

    Science.gov (United States)

    Liu, T. L.; Liu, W. R.; Xu, X. H.

    2017-11-01

    Heat transfer fluid is one critical component for transferring and storing heat energy in concentrating solar power systems. Molten-salt mixtures can be used as high temperature heat transfer fluids because of their thermophysical properties. This paper studied the thermophysical properties of Li2CO3-Na2CO3-K2CO3 eutectic salt and three eutectic chloride salts NaCl-KCl-ZnCl2 with different compositions in the range of 450-600°C and 250-800°C, respectively. Properties including specific heat capacity, thermal conductivity, density and viscosity were determined based on imperial correlations and compared at different operating temperatures. The heat transfer coefficients of using different eutectic salts as heat transfer fluids were also calculated and compared in their operating temperature range. It is concluded that all the four eutectic salts can satisfy the requirements of a high-temperature heat transfer fluid.

  4. Protection Of TEG Module at High Temperature Transient Boundary Condition Using Phase Change Materials, an Experimental Investigation

    DEFF Research Database (Denmark)

    Ahmadi Atouei,, Saeed; Rezaniakolaei, Alireza; Akbar Ranjbar, Ali

    2017-01-01

    phase change materials (PCM) in an aluminium box are placed between heat source and the thermoelectric module. The results show when the input heat flux is high, a fraction of the thermal energy is saved in the PCM during the melting process, and when the heat source is off, the saved energy in the PCM...... release slowly, causing a more stable electrical energy production by the TEM and lower the effect of the heat source temperature fluctuations. This study also shows by design of a proper geometry and selection of efficient PCMs, not only the high temperature pulse by the heat source is damped, also more...

  5. [Effect of traditional Chinese medicines with different properties on thermoregulation and temperature-sensitive transient receptor potentialion channel protein of rats with yeast-induced fever].

    Science.gov (United States)

    Wan, Hong-Ye; Kong, Xiang-Ying; Li, Xiao-Min; Zhu, Hong-Wei; Su, Xiao-Hui; Lin, Na

    2014-10-01

    To compare the intervention effects of four traditional Chinese medicines (TCMs) with typical cold or hot property on body temperature and temperature-sensitive transient receptor potential ion channel proteins (TRPs) of rats with yeast-induced fever. The pyrexia model was induced by injecting yeast suspension subcutaneously. Totally 108 male SD rats were randomly divided into the normal group, the model group, the Rhei Radix et Rhizoma treated group, the Coptidis Rhizoma treated group, the Euodiae Fructus treated group, and the Alpiniae Officinarum Rhizoma treated group, with 18 rats in each group. At the 4 h, 8 h and 12 h after injection of yeast, the rats were sacrificed to collect their hypothalamus and dorsal root ganglion. The expressions of TRPV1 and TRPM8 were detected by immunohistochemistry and Western blot method. Compared with the normal group, after injection of yeast, the temperature of rats in the model group notably increased, and reached the peak at 8 h (P < 0.01). The TRPV1 level in hypothalamus and dorsal root ganglia (DRG) of the model group significantly increased, whereas the TRPM8 level significantly reduced. Compared with the model group, the Rhei Radix et Rhizoma group and the Coptidis Rhizoma group showed significant decrease in the high body temperature of rats caused by yeast, down-regulation in the expression of TRPV1, and up-regulation in the expression of TRPM8 (P < 0.05 or P < 0.01). Euodiae Fructus and Alpiniae Officinarum Rhizoma had no significant effect on either temperature or TRPs of fever rats. Rhei Radix et Rhizoma and Coptidis Rhizoma, both are TCMs with cold property, can reduce the temperature of fever rats induced by yeast, which may be related to their effective regulation of TRPV1 and TRPM8 in hypothalamus and DRG, while Euodiae Fructus and Alpiniae Officinarum Rhizoma had no relevant effect.

  6. Flow Rates Measurement and Uncertainty Analysis in Multiple-Zone Water-Injection Wells from Fluid Temperature Profiles

    Directory of Open Access Journals (Sweden)

    José E. O. Reges

    2016-07-01

    Full Text Available This work is a contribution to the development of flow sensors in the oil and gas industry. It presents a methodology to measure the flow rates into multiple-zone water-injection wells from fluid temperature profiles and estimate the measurement uncertainty. First, a method to iteratively calculate the zonal flow rates using the Ramey (exponential model was described. Next, this model was linearized to perform an uncertainty analysis. Then, a computer program to calculate the injected flow rates from experimental temperature profiles was developed. In the experimental part, a fluid temperature profile from a dual-zone water-injection well located in the Northeast Brazilian region was collected. Thus, calculated and measured flow rates were compared. The results proved that linearization error is negligible for practical purposes and the relative uncertainty increases as the flow rate decreases. The calculated values from both the Ramey and linear models were very close to the measured flow rates, presenting a difference of only 4.58 m³/d and 2.38 m³/d, respectively. Finally, the measurement uncertainties from the Ramey and linear models were equal to 1.22% and 1.40% (for injection zone 1; 10.47% and 9.88% (for injection zone 2. Therefore, the methodology was successfully validated and all objectives of this work were achieved.

  7. Motor models and transient analysis for high-temperature, superconductor switch-based adjustable speed drive applications. Final report

    International Nuclear Information System (INIS)

    Bailey, J.M.

    1996-06-01

    New high-temperature superconductor (HTSC) technology may allow development of an energy-efficient power electronics switch for adjustable speed drive (ASD) applications involving variable-speed motors, superconducting magnetic energy storage systems, and other power conversion equipment. This project developed a motor simulation module for determining optimal applications of HTSC-based power switches in ASD systems

  8. Ab initio molecular dynamics study of fluid H2O-CO2 mixture in broad pressure-temperature range

    Directory of Open Access Journals (Sweden)

    Jie Fu

    2017-11-01

    Full Text Available Properties of H2O and CO2 fluid and their mixtures under extreme pressures and temperatures are poorly known yet critically important in a number of applications. Several hundreds of first-principles molecular dynamics (FPMD runs have been performed to obtain the pressure-volume-temperature (P-V-T data on supercritical H2O, CO2, and H2O-CO2 mixtures. The pressure-temperature (P-T range are from 0.5 GPa to 104 GPa (48.5 GPa for CO2 and from 600 K to 4000 K. Based on these data, we evaluate several existing equations of state (EOS for the fluid H2O, CO2, and H2O-CO2 mixture. The results show that the EOS for H2O from Belonoshko et al. [Geochim. Cosmochim. Acta 55, 381–387; Geochim. Cosmochim. Acta 55, 3191–3208; Geochim. Cosmochim. Acta 56, 3611–3626; Comput. Geosci. 18, 1267–1269] not only can be used in the studied P-T range but also is accurate enough to be used for prediction of P-V-T data. In addition, IAPWS-95 EOS for H2O shows excellent extrapolation behavior beyond 1.0 GPa and 1273 K. However, for the case of CO2, none of the existing EOS produces data in agreement with the FPMD results. We created new EOS for CO2. The precision of the new EOS is tested by comparison to the calculated P-V-T data, fugacity coefficient of the CO2 fluid derived from high P-T experimental data as well as to the (very scarce experimental volumetric data in the high P-T range. On the basis of our FPMD data we created a new EOS for H2O-CO2 mixture. The new EOS for the mixture is in reasonable agreement with experimental data.

  9. Ab initio molecular dynamics study of fluid H2O-CO2 mixture in broad pressure-temperature range

    Science.gov (United States)

    Fu, Jie; Zhao, Jijun; Plyasunov, Andrey V.; Belonoshko, Anatoly B.

    2017-11-01

    Properties of H2O and CO2 fluid and their mixtures under extreme pressures and temperatures are poorly known yet critically important in a number of applications. Several hundreds of first-principles molecular dynamics (FPMD) runs have been performed to obtain the pressure-volume-temperature (P-V-T) data on supercritical H2O, CO2, and H2O-CO2 mixtures. The pressure-temperature (P-T) range are from 0.5 GPa to 104 GPa (48.5 GPa for CO2) and from 600 K to 4000 K. Based on these data, we evaluate several existing equations of state (EOS) for the fluid H2O, CO2, and H2O-CO2 mixture. The results show that the EOS for H2O from Belonoshko et al. [Geochim. Cosmochim. Acta 55, 381-387; Geochim. Cosmochim. Acta 55, 3191-3208; Geochim. Cosmochim. Acta 56, 3611-3626; Comput. Geosci. 18, 1267-1269] not only can be used in the studied P-T range but also is accurate enough to be used for prediction of P-V-T data. In addition, IAPWS-95 EOS for H2O shows excellent extrapolation behavior beyond 1.0 GPa and 1273 K. However, for the case of CO2, none of the existing EOS produces data in agreement with the FPMD results. We created new EOS for CO2. The precision of the new EOS is tested by comparison to the calculated P-V-T data, fugacity coefficient of the CO2 fluid derived from high P-T experimental data as well as to the (very scarce) experimental volumetric data in the high P-T range. On the basis of our FPMD data we created a new EOS for H2O-CO2 mixture. The new EOS for the mixture is in reasonable agreement with experimental data.

  10. Analysis of high injection pressure and ambient temperature on biodiesel spray characteristics using computational fluid dynamics

    Science.gov (United States)

    Hashim, Akasha; Khalid, Amir; Jaat, Norrizam; Sapit, Azwan; Razali, Azahari; Nizam, Akmal

    2017-09-01

    Efficiency of combustion engines are highly affected by the formation of air-fuel mixture prior to ignition and combustion process. This research investigate the mixture formation and spray characteristics of biodiesel blends under variant in high ambient and injection conditions using Computational Fluid Dynamics (CFD). The spray characteristics such as spray penetration length, spray angle and fluid flow were observe under various operating conditions. Results show that increase in injection pressure increases the spray penetration length for both biodiesel and diesel. Results also indicate that higher spray angle of biodiesel can be seen as the injection pressure increases. This study concludes that spray characteristics of biodiesel blend is greatly affected by the injection and ambient conditions.

  11. Transient compounds of high alkaline earth metals with custom-made organic ligands as potential precursors for the gas phase separator of high temperature ceramic superconductors

    International Nuclear Information System (INIS)

    Teske, M.

    1993-01-01

    The aim of this work was the representation of new transient custom-made metal/organic compounds of the high alkaline earth metals Ca, Sr and Ba as potential precursors for the gas phase separation (chemical vapour deposition, CVD) of high temperature ceramic superconductors. There is a report on the synthesis and comprehensive characterisation of representatives of the class of compounds of substituted metallocenes and the B diketone compounds of these metals. Some selected compounds were examined as regards their suitability for CVD. The main task was the examination of the effect of structural and electronic parameters of ligands on the properties of the compounds, where the volatility was to the fore. (orig./MM) [de

  12. PRISMATIC CORE COUPLED TRANSIENT BENCHMARK

    Energy Technology Data Exchange (ETDEWEB)

    J. Ortensi; M.A. Pope; G. Strydom; R.S. Sen; M.D. DeHart; H.D. Gougar; C. Ellis; A. Baxter; V. Seker; T.J. Downar; K. Vierow; K. Ivanov

    2011-06-01

    The Prismatic Modular Reactor (PMR) is one of the High Temperature Reactor (HTR) design concepts that have existed for some time. Several prismatic units have operated in the world (DRAGON, Fort St. Vrain, Peach Bottom) and one unit is still in operation (HTTR). The deterministic neutronics and thermal-fluids transient analysis tools and methods currently available for the design and analysis of PMRs have lagged behind the state of the art compared to LWR reactor technologies. This has motivated the development of more accurate and efficient tools for the design and safety evaluations of the PMR. In addition to the work invested in new methods, it is essential to develop appropriate benchmarks to verify and validate the new methods in computer codes. The purpose of this benchmark is to establish a well-defined problem, based on a common given set of data, to compare methods and tools in core simulation and thermal hydraulics analysis with a specific focus on transient events. The benchmark-working group is currently seeking OECD/NEA sponsorship. This benchmark is being pursued and is heavily based on the success of the PBMR-400 exercise.

  13. Effect of Metal Alloys, Degradation Inhibitors, Temperatures, and Exposure Duration on the Stability of Poly(hexafluoropropene oxide) Fluid

    Science.gov (United States)

    Paciorek, Kazimiera J. L.; Masuda, Steven R.; Lin, Wen-Huey; Jones, William R., Jr.

    1997-01-01

    Results of the action of 440C steel, Ti(4Al,4Mn), and Ti(6Al,4V) alloys on poly(hexafluoropropene oxide) fluid and the degradation inhibition by phosphate esters, phosphine, and monophospha-s-triazine are reported. The effects of temperature, exposure duration, and metal surface area are discussed. The studies show clearly the autocatalytic nature of the metal-promoted degradation, which explains the effectiveness of the degradation-arresting additives, even in the case of the highly detrimental titanium alloys.

  14. Development of a test facility for analyzing supercritical fluid blowdown

    Energy Technology Data Exchange (ETDEWEB)

    Roberto, Thiago D.; Alvim, Antonio C.M., E-mail: thiagodbtr@gmail.com [Coordenacao dos Programas de Pos-Graduacao em Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Silva, Mario A.B. da, E-mail: mabs500@gmail.com [Universidade Federal de Pernambuco (CTG/UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Lapa, Celso M.F., E-mail: lapa@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The generation IV nuclear reactors under development mostly use supercritical fluids as the working fluid because higher temperatures improve the thermal efficiency. Supercritical fluids are used by modern nuclear power plants to achieve thermal efficiencies of around 45%. With water as the supercritical working fluid, these plants operate at a high temperature and pressure. However, experiments on supercritical water are limited by technical and financial difficulties. These difficulties can be overcome by using model fluids, which have more feasible supercritical conditions and exhibit a lower critical pressure and temperature. Experimental research is normally used to determine the conditions under which model fluids represent supercritical fluids under steady-state conditions. A fluid-to-fluid scaling approach has been proposed to determine model fluids that can represent supercritical fluids in a transient state. This paper presents an application of fractional scale analysis to determine the simulation parameters for a depressurization test facility. Carbon dioxide (CO{sub 2}) and R134a gas were considered as the model fluids because their critical point conditions are more feasible than those of water. The similarities of water (prototype), CO{sub 2} (model) and R134a (model) for depressurization in a pressure vessel were analyzed. (author)

  15. Development of a test facility for analyzing supercritical fluid blowdown

    International Nuclear Information System (INIS)

    Roberto, Thiago D.; Alvim, Antonio C.M.

    2015-01-01

    The generation IV nuclear reactors under development mostly use supercritical fluids as the working fluid because higher temperatures improve the thermal efficiency. Supercritical fluids are used by modern nuclear power plants to achieve thermal efficiencies of around 45%. With water as the supercritical working fluid, these plants operate at a high temperature and pressure. However, experiments on supercritical water are limited by technical and financial difficulties. These difficulties can be overcome by using model fluids, which have more feasible supercritical conditions and exhibit a lower critical pressure and temperature. Experimental research is normally used to determine the conditions under which model fluids represent supercritical fluids under steady-state conditions. A fluid-to-fluid scaling approach has been proposed to determine model fluids that can represent supercritical fluids in a transient state. This paper presents an application of fractional scale analysis to determine the simulation parameters for a depressurization test facility. Carbon dioxide (CO 2 ) and R134a gas were considered as the model fluids because their critical point conditions are more feasible than those of water. The similarities of water (prototype), CO 2 (model) and R134a (model) for depressurization in a pressure vessel were analyzed. (author)

  16. Steady-state and transient temperature measurements on BWR-type fuel up to 68 MWd/kgUO2 (IFA-533.2)

    International Nuclear Information System (INIS)

    Alvarez, M.T.

    1996-03-01

    The demonstration test IFA-533.2, for re-instrumentation of irradiated rods with fuel thermocouples, has been irradiated in HBWR from March 1992. The objectives of the irradiation include in-pile testing of the re-instrumentation technique and the generation of temperature data, in order to study the fuel thermal behaviour at high burn-up. With this technique, changes in UO 2 thermal conductivity, rim effects and temperature response to fission gas release can be investigated at high irradiation levels. On the other hand, data obtained from this rig enlarge the Halden data base on the thermal behaviour of UO 2 fuel at high burn-up. The rig contains two BWR-type fuel rods, pre-irradiated in IFA-409 to a bum-up of around 44 MWd/kgUO 2 , and re-instrumented with fresh fuel thermocouples. Reliable data could be obtained from one of the thermocouples (TF2), while the other was affected by a bad connection in the in-core plug. This report presents an evaluation of the results in steady-state and transient operation to a burn-up of 68 MWd/kgUO 2 . The data can be interpreted in terms of fuel conductivity degradation and fission gas release. The results are consistent with fuel temperature data obtained in other IFAs. (author)

  17. Transient Shifts of Incubation Temperature Reveal Immediate and Long-Term Transcriptional Response in Chicken Breast Muscle Underpinning Resilience and Phenotypic Plasticity.

    Science.gov (United States)

    Naraballobh, Watcharapong; Trakooljul, Nares; Murani, Eduard; Brunner, Ronald; Krischek, Carsten; Janisch, Sabine; Wicke, Michael; Ponsuksili, Siriluck; Wimmers, Klaus

    2016-01-01

    transiently decreased incubation temperature, which did not affect the phenotypes, prompts compensatory effects reflecting resilience. In contrast, higher incubation temperature triggers gene expression and has long-term effects on the phenotype. These mechanisms of considerable phenotypic plasticity contribute to the biodiversity and broaden the basis for managing poultry populations.

  18. Detection and quantification of local anthropogenic and regional climatic transient signals in temperature logs from Czechia and Slovenia

    Czech Academy of Sciences Publication Activity Database

    Dědeček, Petr; Šafanda, Jan; Rajver, D.

    2012-01-01

    Roč. 113, č. 3-4 (2012), s. 787-801 ISSN 0165-0009 R&D Projects: GA ČR(CZ) GAP210/11/0183; GA AV ČR KSK3046108; GA ČR GETOP/08/E014 Institutional research plan: CEZ:AV0Z30120515 Keywords : subsurface temperature * thermal conductivity * urbanization Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 3.634, year: 2012

  19. Flame temperature trends in reacting vanadium and tungsten ethoxide fluid sprays during CO2-laser pyrolysis

    CSIR Research Space (South Africa)

    Mwakikunga, BW

    2011-09-01

    Full Text Available [z] in Eq. 6, shortened for ProductLog[z], is a Mathematica command which gives the solution of w in the expression z = w ew. The final ?equilibrium? temperature of molecules that are entrained into a CO2 laser beam found either by letting t as can...) and was thus compared to the black body spectrum of known emissivity, (assumed to be unity) and known temperature 900 K. In order to calculate ?equilibrium temperature? at a particular point in the flame, either spectral emissivity of the flame...

  20. Transient analyzer

    International Nuclear Information System (INIS)

    Muir, M.D.

    1975-01-01

    The design and design philosophy of a high performance, extremely versatile transient analyzer is described. This sub-system was designed to be controlled through the data acquisition computer system which allows hands off operation. Thus it may be placed on the experiment side of the high voltage safety break between the experimental device and the control room. This analyzer provides control features which are extremely useful for data acquisition from PPPL diagnostics. These include dynamic sample rate changing, which may be intermixed with multiple post trigger operations with variable length blocks using normal, peak to peak or integrate modes. Included in the discussion are general remarks on the advantages of adding intelligence to transient analyzers, a detailed description of the characteristics of the PPPL transient analyzer, a description of the hardware, firmware, control language and operation of the PPPL transient analyzer, and general remarks on future trends in this type of instrumentation both at PPPL and in general

  1. Generalized Fluid System Simulation Program (GFSSP) Version 6 - General Purpose Thermo-Fluid Network Analysis Software

    Science.gov (United States)

    Majumdar, Alok; Leclair, Andre; Moore, Ric; Schallhorn, Paul

    2011-01-01

    GFSSP stands for Generalized Fluid System Simulation Program. It is a general-purpose computer program to compute pressure, temperature and flow distribution in a flow network. GFSSP calculates pressure, temperature, and concentrations at nodes and calculates flow rates through branches. It was primarily developed to analyze Internal Flow Analysis of a Turbopump Transient Flow Analysis of a Propulsion System. GFSSP development started in 1994 with an objective to provide a generalized and easy to use flow analysis tool for thermo-fluid systems.

  2. Numerical analysis for temperature profile of the closed house using computational fluid dynamics

    Science.gov (United States)

    Setiadi, Rizki; Munadi, Tauviqirrahman, Mohammad

    2018-03-01

    This study aims to analyze the air temperature distribution in the closed house system for broiler using ABAQUS CFD Model. The obtained data is used for placing the temperature sensor before making the control system for the closed house. The dimesion of the experimental house was 30 m × 12 m × 2 m (length × width × height) which could be occupied by 7.500 broiler. The wall was made from expose mercy brick and curtain, ventilation system used 7 exhaust fan with diameter 1 m and 2 cooling unit, the roof was made from wood, and system used 45 of 7 watt lamp. The results of the analysis show that temperature distribution occurs on temperature 21-33.5°C and still relatively comfortable for broiler at the age of 1-21days. The air temperature distribution near the cooling unit is lower and increases to near the exhaust fan. In addition, the air temperature in the area near the roof is more high than others.

  3. Quantifying temperature changes in tissue-mimicking fluid phantoms using optical coherence tomography and envelope statistics

    Science.gov (United States)

    Seevaratnam, Subaagari; Bains, Amitpal; Farid, Mashal; Farhat, Golnaz; Kolios, Michael; Standish, Beau A.

    2014-02-01

    Several therapies make use of a hypo or hyperthermia tissue environment to induce cell death in both benign and malignant tumors. Current progression in optical technologies, such as optical coherence tomography (OCT) and fiber Bragg gratings (FBG) sensors, could potentially provide viable information to explore the response of tissue when these temperature induced treatments are implemented. Studies were conducted with tissue-mimicking phantoms fabricated with polystyrene microspheres and glycerin to observe any relationship between the pixel intensities of the OCT images and their concurring envelope statistics. OCT images of the monitored region of interest were taken at 5°C intervals from 25°C to 60°C. Four probability distribution functions (PDF), Rician, Rayleigh, Normal and Generalized Gamma were used to investigate OCT envelope statistics as the temperature was altered. Using the Kolmogrov-Smirnov goodness of fit test, it was determined that the Generalized Gamma was the best fit. The scaling and shape parameters associated with the Generalized Gamma PDF were used to quantify the OCT envelope data to identify temperature changes within the tissue mimicking media. The Generalized Gamma PDF was verified as the best fit based on the Kolmogorov-Smirnov (K-S) test correlation factor being less than 0.05 (p = 0.0158). In addition to the PDFs, the OCT speckle decorrelation at varying temperature were also measured and quantified to detect the microspheres response to temperature changes. Initial results are very promising with future research focused on extending this methodology to monitor relative temperature changes in tissue during therapy. Clinical utility can be achieved if these optical techniques are used to evaluate the temperature-derived biological response of tissue and provide a feedback mechanism to improve procedural efficiency.

  4. Stresses and strains in the steel containment resulting from transient pressure and temperature loading during loss-of-coolant accident

    International Nuclear Information System (INIS)

    Gruner, P.; Kuntze, W.M.; Jansky, J.

    1985-01-01

    Posttest calculations of stresses and strains in the steel containment of the German research reactor HDR were performed for a simulated LOCA. The results of the theoretical investigations are presented and compared to experimental findings. The pressure and temperature loading of the shell was determined with the thermodynamic code COFLOW on the basis of a multi-compartment model. Using a three-dimensional finite element model the temporal behaviour of the containment was calculated employing the structural mechanics code ASKA. Global bending deformations and local negative straining of the steel shell is discussed. Theoretical and experimental results agree in most cases rather well. Reasons for deviations will be discussed. The specific behaviour of strains found in the vicinity of locally heated areas will be explained by means of analytical considerations. (orig.)

  5. REMIX: a computer program for temperature transients due to high pressure injection after interruption of natural circulation

    International Nuclear Information System (INIS)

    Iyer, K.; Nourbakhsh, H.P.; Theofanous, T.G.

    1986-05-01

    This report describes the features and use of several computer programs developed on the basis of the Regional Mixing Model (RMM). This model provides a phenomenologically-based analytical description of the stratified flow and temperature fields resulting from High Pressure Safety Injection (HPI) in the stagnated loops of a Pressurized Water Reactor (PWR). The basic program is called REMIX and is intended for thermally-induced stratification at low Froude number injections. The REMIX-S version is intended for solute-induced stratification with or without thermal effects as found in several experimental simulations. The NEWMIX program is a derivative of REMIX representing the limit of maximum possible mixing within the cold leg and is intended for high Froude number injections. The NEWMIX-S version accounts for solute effects. Listings of all programs and sample problem input and output files are included. 10 refs

  6. Acetosyringone, pH and temperature effects on transient genetic transformation of immature embryos of Brazilian wheat genotypes by Agrobacterium tumefaciens

    Directory of Open Access Journals (Sweden)

    Ernandes Manfroi

    2015-01-01

    Full Text Available AbstractLow transformation efficiency is one of the main limiting factors in the establishment of genetic transformation of wheat via Agrobacterium tumefaciens. To determine more favorable conditions for T-DNA delivery and explant regeneration after infection, this study investigated combinations of acetosyringone concentration and pH variation in the inoculation and co-cultivation media and co-culture temperatures using immature embryos from two Brazilian genotypes (BR 18 Terena and PF 020037. Based on transient expression of uidA, the most favorable conditions for T-DNA delivery were culture media with pH 5.0 and 5.4 combined with co-culture temperatures of 22 °C and 25 °C, and a 400 μM acetosyringone supplement. These conditions resulted in blue foci in 81% of the embryos. Media with more acidic pH also presented reduced A. tumefaciensovergrowth during co-culture, and improved regeneration frequency of the inoculated explants. BR 18 Terena was more susceptible to infection by A. tumefaciens than PF 020037. We found that it is possible to improve T-DNA delivery and explant regeneration by adjusting factors involved in the early stages of A. tumefaciens infection. This can contribute to establishing a stable transformation procedure in the future.

  7. Transient Heat Conduction

    DEFF Research Database (Denmark)

    Rode, Carsten

    1998-01-01

    Analytical theory of transient heat conduction.Fourier's law. General heat conducation equation. Thermal diffusivity. Biot and Fourier numbers. Lumped analysis and time constant. Semi-infinite body: fixed surface temperature, convective heat transfer at the surface, or constant surface heat flux...

  8. Examining the Effect of Temperature, Pressure, Seismicity and Diffuse Fluid Flow on Floc Events at Axial Seamount

    Science.gov (United States)

    Rahman, M.; Crone, T. J.; Knuth, F.; Garcia, C.; Soule, D. C.; Fatland, R.

    2017-12-01

    Flocculation (floc) events are characterized by the ejection of bacterial material, possibly associated with thermophiles originating from warmer sub-seafloor habitats, into the water column. These events are anecdotally linked to magmatic and tectonic processes common in mid-ocean ridge seafloor environments. However, little is known about the relationship between flocculation events and other potentially triggering processes. The Cabled Array at Axial Seamount provides a suite of interdisciplinary real-time datasets to examine system-level processes governing the volcanic marine environment. The eruption at Axial Seamount in 2015 creates an opportunity to study this volcanic system as it evolves post eruption and identify the relationships between the temperature, pressure, seismicity and the biological response. The Diffuse Vent Fluid 3-D Temperature Array (TMPSF), located within the ASHES hydrothermal vent field at Axial Seamount, uses 24 separate sensors to provide a 3-dimensional distribution of diffuse flow temperatures near the Mushroom hydrothermal vent. Preliminary analysis suggests that the temperature signal is strongly influenced by tides observed using the ocean bottom pressure sensors, which may be related to either gradual shifts in tidal currents above the seafloor, or related to subsurface flux. CamHD, also located within the ASHES field, produces high definition video data, which we analyze to identify changes in water column floc concentration. These data streams allow us to examine the controls on the temperature signal and the associated correlations with microbial seafloor processes. We are currently examining the flocculation event identified in Crone (2016) to determine its relationship to changes in seawater temperatures near the seafloor, seismic activity and seafloor pressure. We will use this proxy to examine other CamHD data and determine if subsequent flocculation events have occurred and if they have a similar relationship to local

  9. Two-dimensional transient temperature distribution within a metal undergoing multiple phase changes caused by laser irradiation at the surface

    Energy Technology Data Exchange (ETDEWEB)

    Minardi, A.; Bishop, P.J. (Univ. of Central Florida, Orlando (USA))

    1988-11-01

    Metal-laser interactions have become increasingly important due to advances in laser-machining processes, laser weaponry, and rocket propulsion using laser beams. An interesting physical phenomenon that is not well understood is the interaction of the metal plasma above a surface with a laser beam. Although most models neglect the natural convection, other papers, such as by Sparrow et al., have considered this effect and found it to be of importance at low energy fluxes. This study assumes that the laser beam has a spatial variation, and thus a two-dimensional model for the temperature distribution within the substrate is required. Further, it was assumed at first that the thermophysical properties are constant, but modifications were made to allow for different thermal conductivities of the liquid and solid phases. The model was developed to describe the physical processes until the vapor just forms, so that movement of the vapor away from the surface will not be considered. Natural convection will be neglected in the liquid pool, and radiation losses from the surface wil be neglected since these are very small in comparison to the energy absorbed from the high intensity laser beam.

  10. Experimental observation of transient δ18O interaction between snow and advective airflow under various temperature gradient conditions

    Directory of Open Access Journals (Sweden)

    P. P. Ebner

    2017-07-01

    Full Text Available Stable water isotopes (δ18O obtained from snow and ice samples of polar regions are used to reconstruct past climate variability, but heat and mass transport processes can affect the isotopic composition. Here we present an experimental study on the effect of airflow on the snow isotopic composition through a snow pack in controlled laboratory conditions. The influence of isothermal and controlled temperature gradient conditions on the δ18O content in the snow and interstitial water vapour is elucidated. The observed disequilibrium between snow and vapour isotopes led to the exchange of isotopes between snow and vapour under non-equilibrium processes, significantly changing the δ18O content of the snow. The type of metamorphism of the snow had a significant influence on this process. These findings are pertinent to the interpretation of the records of stable isotopes of water from ice cores. These laboratory measurements suggest that a highly resolved climate history is relevant for the interpretation of the snow isotopic composition in the field.

  11. CORRELATION OF THE GLASS TRANSITION TEMPERATURE OF PLASTICIZED PVC USING A LATTICE FLUID MODEL

    Science.gov (United States)

    A model has been developed to describe the composition dependence of the glass transition temperature (Tg) of polyvinyl chloride (PVC) + plasticizer mixtures. The model is based on Sanchez-Lacombe equation of state and the Gibbs-Di Marzio criterion, which states that th...

  12. A Transient Liquid Phase Sintering Bonding Process Using Nickel-Tin Mixed Powder for the New Generation of High-Temperature Power Devices

    Science.gov (United States)

    Feng, Hongliang; Huang, Jihua; Yang, Jian; Zhou, Shaokun; Zhang, Rong; Chen, Shuhai

    2017-07-01

    A transient liquid phase sintering (TLPS) bonding process, Ni-Sn TLPS bonding was developed for the new generation of power semiconductor packaging. A model Ni/Ni-Sn/Ni sandwiched structure was assembled by using 30Ni-70Sn mixed powder as the reactive system. The results show that the bonding layer is composed of Ni3Sn4 and residual fine Ni particles with a small amount of Ni3Sn2 at 340°C for 240 min, which has a heat-resistant temperature higher than 790°C. The microstructural evolution and thermal characteristic of the bonding layer for various times at 300°C and 340°C were also studied, respectively. This reveals that, after isothermally holding for 240 min at 300°C and for 180 min at 340°C, Sn has been completely transformed into Ni-Sn intermetallic compounds (IMCs) and the bonding layer is mainly composed of Ni3Sn4 and residual Ni particles. The analysis result for the mechanical properties of the joint shows that the hardness of the bonding layer at 340°C for 240 min is uniform and that the average value reaches 3.66 GPa, which is close to that of the Ni3Sn4 block material. The shear test shows that, as the holding time increases from 60 min to 180 min at 340°C, because of the existence of Sn, the disparity of shear strength between room temperature and 350°C is large. But when the holding time is 180 min or longer, Sn has been completely transformed into Ni-Sn IMCs. Their performances are very similar whether at room temperature or 350°C.

  13. Steady- and transient-state analysis of fully ceramic microencapsulated fuel with randomly dispersed tristructural isotropic particles via two-temperature homogenized model-II: Applications by coupling with COREDAX

    International Nuclear Information System (INIS)

    Lee, Yoon Hee; Cho, Bum Hee; Cho, Nam Zin

    2016-01-01

    In Part I of this paper, the two-temperature homogenized model for the fully ceramic microencapsulated fuel, in which tristructural isotropic particles are randomly dispersed in a fine lattice stochastic structure, was discussed. In this model, the fuel-kernel and silicon carbide matrix temperatures are distinguished. Moreover, the obtained temperature profiles are more realistic than those obtained using other models. Using the temperature-dependent thermal conductivities of uranium nitride and the silicon carbide matrix, temperature-dependent homogenized parameters were obtained. In Part II of the paper, coupled with the COREDAX code, a reactor core loaded by fully ceramic microencapsulated fuel in which tristructural isotropic particles are randomly dispersed in the fine lattice stochastic structure is analyzed via a two-temperature homogenized model at steady and transient states. The results are compared with those from harmonic- and volumetric-average thermal conductivity models; i.e., we compare keff eigenvalues, power distributions, and temperature profiles in the hottest single channel at a steady state. At transient states, we compare total power, average energy deposition, and maximum temperatures in the hottest single channel obtained by the different thermal analysis models. The different thermal analysis models and the availability of fuel-kernel temperatures in the two-temperature homogenized model for Doppler temperature feedback lead to significant differences

  14. An assessment of ion temperature measurements in the boundary of the Alcator C-Mod tokamak and implications for ion fluid heat flux limiters

    International Nuclear Information System (INIS)

    Brunner, D; LaBombard, B; Churchill, R M; Hughes, J; Lipschultz, B; Ochoukov, R; Theiler, C; Walk, J; Rognlien, T D; Umansky, M V; Whyte, D

    2013-01-01

    The ion temperature is not frequently measured in the boundary of magnetic fusion devices. Comparisons among different ion temperature techniques and simulations are even rarer. Here we present a comparison of ion temperature measurements in the boundary of the Alcator C-Mod tokamak from three different diagnostics: charge exchange recombination spectroscopy (CXRS), an ion sensitive probe (ISP), and a retarding field analyzer (RFA). Comparison between CXRS and the ISP along with close examination of the ISP measurements reveals that the ISP is space charge limited. It is thus unable to measure ion temperature in the high density (>10 19 m −3 ) boundary plasma of C-Mod with its present geometry. Comparison of ion temperatures measured by CXRS and the RFA shows fair agreement. Ion and electron parallel heat flow is analyzed with a simple 1D fluid code. The code takes divertor measurements as input and results are compared to the measured ratios of upstream ion to electron temperature, as inferred respectively by CXRS and a Langmuir probe. The analysis reveals the limits of the fluid model at high Knudsen number. The upstream temperature ratio is under predicted by a factor of 2. Heat flux limiters (kinetic corrections) to the fluid model are necessary to match experimental data. The values required are found to be close to those reported in kinetic simulations. The 1D code is benchmarked against the 2D plasma fluid code UEDGE with good agreement. (paper)

  15. An assessment of ion temperature measurements in the boundary of the Alcator C-Mod tokamak and implications for ion fluid heat flux limiters

    Science.gov (United States)

    Brunner, D.; LaBombard, B.; Churchill, R. M.; Hughes, J.; Lipschultz, B.; Ochoukov, R.; Rognlien, T. D.; Theiler, C.; Walk, J.; Umansky, M. V.; Whyte, D.

    2013-09-01

    The ion temperature is not frequently measured in the boundary of magnetic fusion devices. Comparisons among different ion temperature techniques and simulations are even rarer. Here we present a comparison of ion temperature measurements in the boundary of the Alcator C-Mod tokamak from three different diagnostics: charge exchange recombination spectroscopy (CXRS), an ion sensitive probe (ISP), and a retarding field analyzer (RFA). Comparison between CXRS and the ISP along with close examination of the ISP measurements reveals that the ISP is space charge limited. It is thus unable to measure ion temperature in the high density (>1019 m-3) boundary plasma of C-Mod with its present geometry. Comparison of ion temperatures measured by CXRS and the RFA shows fair agreement. Ion and electron parallel heat flow is analyzed with a simple 1D fluid code. The code takes divertor measurements as input and results are compared to the measured ratios of upstream ion to electron temperature, as inferred respectively by CXRS and a Langmuir probe. The analysis reveals the limits of the fluid model at high Knudsen number. The upstream temperature ratio is under predicted by a factor of 2. Heat flux limiters (kinetic corrections) to the fluid model are necessary to match experimental data. The values required are found to be close to those reported in kinetic simulations. The 1D code is benchmarked against the 2D plasma fluid code UEDGE with good agreement.

  16. Development of a high temperature pH electrode for geothermal fluids. Final report, Task 1

    Energy Technology Data Exchange (ETDEWEB)

    Niedrach, L.W.; Stoddard, W.H.

    1981-04-01

    There has been no serious application of pH measurements above 150/sup 0/C stemming from the fact that there have been no practical probes available that are capable of operation under the required conditions of temperature and pressure. Recently, a new approach to such measurements was developed in which an oxygen ion conducting ceramic membrane (e.g., stabilized zirconia) is being employed in a sensor somewhat analogous to the glass electrode. The new sensor retains the specificity of the glass electrode, is equally insensitive to interference from redox active species, and possesses markedly superior resistance to attack by aqueous media at high temperatures. The status of the new sense at the inception of the contract is summarized and plans for the first year's investigation are outlined.

  17. Application of infrared thermography for temperature distributions in fluid-saturated porous media

    DEFF Research Database (Denmark)

    Imran, Muhammad; Nick, Hamid; Schotting, Ruud J.

    2016-01-01

    Infrared thermography has increasingly gained importance because of environmental and technological advancements of this method and is applied in a variety of disciplines related to non-isothermal flow. However, it has not been used so far for quantitative thermal analysis in saturated porous media....... This article suggests infrared thermographic approach to obtain the entire surface temperature distribution(s) in water-saturated porous media. For this purpose, infrared thermal analysis is applied with in situ calibration for a better understanding of the heat transfer processes in porous media. Calibration...... is achieved with a combination of invasive sensors which are inserted into the medium and non-invasive thermal sensors in which sensors are not inserted to measure temperatures but it works through the detection of infrared radiation emitted from the surface. Thermocouples of relatively thin diameter are used...

  18. An advanced straight tube heat exchanger in which a fluid flows at variable and elevated temperatures

    International Nuclear Information System (INIS)

    Mauget, C.; Benoit, G.; Stalport, G.

    1993-01-01

    Straight tube heat exchangers are used as steam generators in nuclear reactors such as in fast neutron nuclear power plants; elevated and highly variable temperatures induce very high thermal expansion constraints in these long straight tubes. In order to avoid the expansion problems, an expansion bellow is disposed between the heat exchanger and the collector tubular plate in such a way that the bundle differential expansions may be absorbed

  19. Thermoregulation During Extended Exercise in the Heat: Comparisons of Fluid Volume and Temperature.

    Science.gov (United States)

    Hailes, Walter S; Cuddy, John S; Cochrane, Kyle; Ruby, Brent C

    2016-09-01

    This study aimed to determine the physiological and thermoregulatory responses of individuals exercising in the heat (US military red flag conditions, wet-bulb globe temperature 31.5-32.2ºC) while consuming varied volumes of ambient temperature water and ice slurry. Participants (N = 12) walked on a treadmill for 3 hours at approximately 40% peak aerobic capacity in a hot environment while consuming ambient temperature (35.5°C) water (W), ice slurry (0°C, two-thirds shaved ice and one-third water) at a ratio of 2 g·kg(-1) body mass every 10 minutes (FS), and reduced volume ice slurry as described at a rate of 1 g·kg(-1) body mass every 10 minutes (HS). Trials were completed at least 14 days apart, in a randomized, repeated measures design. Percent body weight loss was higher during the HS trial (1.8 ± 0.01%) compared with FS (0.5 ± 0.01%; P thermoregulation and other physiological responses for extended work in hot environments. Copyright © 2016 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  20. Ion temperature profiles in front of a negative planar electrode studied by a one-dimensional two-fluid model

    Science.gov (United States)

    Gyergyek, T.; Kovačič, J.

    2016-06-01

    Plasma-wall transition is studied by a one-dimensional steady state two-fluid model. Continuity and momentum exchange equations are used for the electrons, while the continuity, momentum exchange, and energy transport equation are used for the ions. Electrons are assumed to be isothermal. The closure of ion equations is made by the assumption that the heat flux is zero. The model equations are solved for potential, ion and electron density, and velocity and ion temperature as independent variables. The model includes coulomb collisions between ions and electrons and charge exchange collisions between ions and neutral atoms of the same species and same mass. The neutral atoms are assumed to be essentially at rest. The model is solved for finite ratio ɛ = /λ D L between the Debye length and λD and ionization length L in the pre-sheath and in the sheath at the same time. Charge exchange collisions heat the ions in the sheath and the pre-sheath. Even a small increase of the frequency of charge exchange collisions causes a substantial increase of ion temperature. Coulomb collisions have negligible effect on ion temperature in the pre-sheath, while in the sheath they cause a small cooling of ions. The increase of ɛ causes the increase of ion temperature. From the ion density and temperature profiles, the polytropic function κ is calculated according to its definition given by Kuhn et al. [Phys. Plasmas 13, 013503 (2006)]. The obtained profiles of κ indicate that the ion flow is isothermal only in a relatively narrow region in the pre-sheath, while close to the sheath edge and in the sheath it is closer to adiabatic. The ion sound velocity is space dependent and exhibits a maximum. This maximum indicates the location of the sheath edge only in the limit ɛ → 0 .

  1. In-situ, high pressure and temperature experimental determination of hydrogen isotope fractionation between coexisting hydrous melt and silicate-saturated aqueous fluid

    Science.gov (United States)

    Mysen, B. O.

    2012-12-01

    Hydrogen isotope fractionation between water-saturated silicate melt and silicate-saturated aqueous fluid has been determined experimentally, in-situ with the samples in the 450-800C and 101-1567 MPa temperature and pressure range, respectively. The temperatures are, therefore higher than those where hydrogen bonding in fluids and melts is important [1]. The experiments were conducted with a hydrothermal diamond anvil cell (HDAC) as the high-temperature/-pressure tool and vibrational spectroscopy to determine D/H fractionation. Compositions were along the haploandesite join, Na2Si4O9 - Na2(NaAl)4O9 [Al/(Al+Si)=0-0.1], and a 50:50 (by volume) H2O:D2O fluid mixture as starting material. Platinum metal was used to enhance equilibration rate. Isotopic equilibrium was ascertained by using variable experimental duration at given temperature and pressure. In the Al-free Na-silicate system, the enthalpy change of the (D/H) equilibrium of fluid is 3.1±0.7 kJ/mol, whereas for coexisting melt, ΔH=0 kJ/mol within error. With Al/(Al+Si)=0.1, ΔH=5.2±0.9 kJ/mol for fluid and near 0 within error for coexisting melt melt. For the exchange equilibrium between melt and fluid, H2O(melt)+D2O(fluid)=H2O(fluid)+D2O(melt), the ΔH=4.6±0.7 and 6.5±0.7 kJ/mol for the two Al-free and Al-bearing compositions, respectively, respectively. The D/H equilibration within fluids and melts and, therefore, D/H partitioning between coexisting fluid and melt reflect the influence of dissolved H2O(D2O) in melts and dissolved silicate components in H2O(D2O) fluid on their structure. The positive temperature- and pressure-dependence of silicate solubility and on silicate structure in silicate-saturated aqueous fluid governs the D/H fractionation in the fluid because increasing silicate solute concentration in fluid results in silicate polymerization [2]. These structural effects may be analogous to observed solute-dependent oxygen isotope fractionation between brine and CO2 [3]. In the temperature

  2. Effect of viscous dissipation of a magneto hydrodynamic micropolar fluid with momentum and temperature dependent slip flow

    Science.gov (United States)

    Gangadhar, K.; Kumar, Sathies; Lakshmi Narayana, K.; Subhakar, M. J.; Rushi Kumar, B.

    2017-11-01

    In this paper, MHD flow and heat transfer of electrically conducting micro polar fluid over a permeable stretching surface with slip flow in the existence of viscous dissipation and temperature dependent slip flow are investigated. With the help of similarity transformations, the fundamental equations have been altered into a system of ordinary differential equations. It is difficult to solve these equations methodically. That’s why we used bvp4c MATLAB solver. We found the Numerical values for the wall couple stress, skin-friction coefficient, and the local Nusselt number in addition to the micro rotation, velocity, and temperature reports for diverse values of the principal parameters like thermal slip parameter, material parameter, magnetic parameter, heat generation/absorption parameter, velocity slip parameter and Eckert number It is observed that the values of suction/injection parameters rise corresponding to the lessening in the values of velocity, angular velocity, and temperature. Moreover, the change in the values of the Eckert number is opposite to the change in the values of the local Nusselt number.

  3. Serum biobank certification and the establishment of quality controls for biological fluids: examples of serum biomarker stability after temperature variation.

    Science.gov (United States)

    Chaigneau, Christine; Cabioch, Thomas; Beaumont, Katy; Betsou, Fotini

    2007-01-01

    One of the main issues in biobanking is the establishment of standard operating procedures for specimen collection, preparation and storage to control for pre-analytical variation. For biological fluids such as serum, there is currently a lack of sensitive biomarkers for the quality control of cryopreservation conditions. The process approach was used to establish an ISO 9001:2000 quality management system. Immunoenzymatic and functional assays were used to assess the stability of the following candidate quality control biomarkers: secretory phospholipase A2, matrix metalloprotease 7, transforming growth factor beta1 and anti-HBs immunoglobulin. Five product processes and their corresponding indicators were identified. In the preparation-aliquoting-storage process, no quality control indicator for serum was identified. Only matrix metalloprotease 7 showed moderate susceptibility to freeze-thaw cycles. Biomarkers that have an on-off response to temperature variation could serve as quality indicators for the core processes of biobanking, which are the preparation and storage of biological fluids. The identification of such biomarkers is needed.

  4. Stability of 11 prevalent synthetic cannabinoids in authentic neat oral fluid samples: glass versus polypropylene containers at different temperatures.

    Science.gov (United States)

    Kneisel, Stefan; Speck, Michael; Moosmann, Bjoern; Auwärter, Volker

    2013-07-01

    Although synthetic cannabinoids have been intensively investigated in recent years and oral fluid testing is becoming increasingly popular in suspected driving under the influence of drugs cases, only scarce data on their stability in authentic neat oral fluid (nOF) samples are yet available. However, especially for these new psychoactive drugs, investigations focusing on stability issues are necessary as inappropriate storage conditions may lead to considerable analytical problems. Since it has been shown for Δ(9) -tetrahydrocannabinol that adsorption to plastic surfaces may lead to considerable drug loss, we aimed to evaluate whether adsorption also has to be taken into account for synthetic cannabinoids in nOF samples. In this paper, the results of investigations on the recovery of 11 prevalent synthetic cannabinoids from authentic nOF samples stored over 72 h in RapidEASE (high quality borosilicate glass) and Sciteck Saliva Split Collector (polypropylene) tubes at 4 and 25 °C are presented. Our findings clearly demonstrate that lipophilic synthetic cannabinoids present in nOF samples adsorb to the surface of polypropylene containers when stored at room temperature, leading to considerable drug loss. Hence, when using polypropylene tubes, samples should be shipped cooled in order to avoid a substantial decrease of the analyte concentration during transportation. Copyright © 2013 John Wiley & Sons, Ltd.

  5. [Therapeutic hypothermia after cardiac arrest. A cold intravenous fluid, a cooling helmet and a cooling blanket efficiently reduce body temperature].

    Science.gov (United States)

    Friberg, Hans; Nielsen, Niklas; Karlsson, Torbjörn; Cronberg, Tobias; Widner, Håkan; Englund, Elisabet; Ersson, Anders

    2004-07-22

    Two controlled randomized trials have shown that mild systemic hypothermia after cardiac arrest is beneficial for neurological outcome and one of the studies shows an improved survival rate. A pilot study was performed to evaluate a model of induced hypothermia after cardiac arrest, using cold intravenous fluids and surface cooling with a cold helmet and a coldwater blanket (Thermowrap). The main purpose was to evaluate our cooling method regarding efficacy, safety and usability. Five unconscious patients after cardiac arrest were treated with induced hypothermia of whom three survived with good recovery to six-month follow up. Two patients died in the ICU without regaining consciousness. There were no adverse events during treatment. We conclude that our method is reasonably fast compared to other published methods, it is easy to perform and it offers a good temperature control during cooling and rewarming. Routines for evaluating prognosis and neurological outcome after cardiac arrest and hypothermia treatment need to be revised.

  6. Effect of rotational speed modulation on heat transport in a fluid layer with temperature dependent viscosity and internal heat source

    Directory of Open Access Journals (Sweden)

    B.S. Bhadauria

    2014-12-01

    Full Text Available In this paper, a theoretical investigation has been carried out to study the combined effect of rotation speed modulation and internal heating on thermal instability in a temperature dependent viscous horizontal fluid layer. Rayleigh–Bénard momentum equation with Coriolis term has been considered to describe the convective flow. The system is rotating about it is own axis with non-uniform rotational speed. In particular, a time-periodic and sinusoidally varying rotational speed has been considered. A weak nonlinear stability analysis is performed to find the effect of modulation on heat transport. Nusselt number is obtained in terms of amplitude of convection and internal Rayleigh number, and depicted graphically for showing the effects of various parameters of the system. The effect of modulated rotation speed is found to have a stabilizing effect for different values of modulation frequency. Further, internal heating and thermo-rheological parameters are found to destabilize the system.

  7. Solution of magnetohydrodynamic flow and heat transfer of radiative viscoelastic fluid with temperature dependent viscosity in wire coating analysis.

    Science.gov (United States)

    Khan, Zeeshan; Khan, Muhammad Altaf; Siddiqui, Nasir; Ullah, Murad; Shah, Qayyum

    2018-01-01

    Wire coating process is a continuous extrusion process for primary insulation of conducting wires with molten polymers for mechanical strength and protection in aggressive environments. In the present study, radiative melt polymer satisfying third grade fluid model is used for wire coating process. The effect of magnetic parameter, thermal radiation parameter and temperature dependent viscosity on wire coating analysis has been investigated. Reynolds model and Vogel's models have been incorporated for variable viscosity. The governing equations characterizing the flow and heat transfer phenomena are solved analytically by utilizing homotopy analysis method (HAM). The computed results are also verified by ND-Solve method (Numerical technique) and Adomian Decomposition Method (ADM). The effect of pertinent parameters is shown graphically. In addition, the instability of the flow in the flows of the wall of the extrusion die is well marked in the case of the Vogel model as pointed by Nhan-Phan-Thien.

  8. Pressure/temperature fluid cell apparatus for the neutron powder diffractometer instrument: Probing atomic structure in situ

    International Nuclear Information System (INIS)

    Wang, Hsiu-Wen; Fanelli, Victor R.; Reiche, Helmut M.; Larson, Eric; Taylor, Mark A.; Siewenie, Joan; Xu, Hongwu; Zhu, Jinlong; Page, Katharine

    2014-01-01

    This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO 2 measurements. The new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO 2 sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H 2 and natural gas uptake/storage

  9. Pressure/temperature fluid cell apparatus for the neutron powder diffractometer instrument: Probing atomic structure in situ

    Science.gov (United States)

    Wang, Hsiu-Wen; Fanelli, Victor R.; Reiche, Helmut M.; Larson, Eric; Taylor, Mark A.; Xu, Hongwu; Zhu, Jinlong; Siewenie, Joan; Page, Katharine

    2014-12-01

    This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO2 measurements. The new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO2 sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H2 and natural gas uptake/storage.

  10. Pressure/temperature fluid cell apparatus for the neutron powder diffractometer instrument: probing atomic structure in situ.

    Science.gov (United States)

    Wang, Hsiu-Wen; Fanelli, Victor R; Reiche, Helmut M; Larson, Eric; Taylor, Mark A; Xu, Hongwu; Zhu, Jinlong; Siewenie, Joan; Page, Katharine

    2014-12-01

    This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO2 measurements. The new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO2 sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H2 and natural gas uptake/storage.

  11. The role of the dynamic crossover temperature and the arrest in glass-forming fluids.

    Science.gov (United States)

    Mallamace, F; Corsaro, C; Stanley, H E; Chen, S-H

    2011-09-01

    We discuss the role of the dynamic glass-forming fragile-to-strong crossover (FSC) in supercooled liquids. In the FSC, significant dynamic changes such as the decoupling (the violation of the Stokes-Einstein relation) of homologous transport parameters, e.g., the density relaxation time τ and the viscosity η, occur at a characteristic temperature T(c). We study the FSC using a scaling law approach. In particular, we use both forms of the mode-coupling theory (MCT): the original (ideal) and the extended form, which explicitly describes energy hopping processes. We demonstrate that T(c) plays the most important physical role in understanding dynamic arrest processes.

  12. EPR spectroscopy of MRI-related Gd(III) complexes: simultaneous analysis of multiple frequency and temperature spectra, including static and transient crystal field effects.

    Science.gov (United States)

    Rast, S; Borel, A; Helm, L; Belorizky, E; Fries, P H; Merbach, A E

    2001-03-21

    For the first time, a very general theoretical method is proposed to interpret the full electron paramagnetic resonance (EPR) spectra at multiple temperatures and frequencies in the important case of S-state metal ions complexed in liquid solution. This method is illustrated by a careful analysis of the measured spectra of two Gd3+ (S = 7/2) complexes. It is shown that the electronic relaxation mechanisms at the origin of the EPR line shape arise from the combined effects of the modulation of the static crystal field by the random Brownian rotation of the complex and of the transient zero-field splitting. A detailed study of the static crystal field mechanism shows that, contrarily to the usual global models involving only second-order terms, the fourth and sixth order terms can play a non-negligible role. The obtained parameters are well interpreted in the framework of the physics of the various underlying relaxation processes. A better understanding of these mechanisms is highly valuable since they partly control the efficiency of paramagnetic metal ions in contrast agents for medical magnetic resonance imaging (MRI).

  13. Fluid inclusion and oxygen-isotope evidence for low-temperature Au-Pt-Pd (± U) mineralization at Corronation Hill, NT

    International Nuclear Information System (INIS)

    Mernagh, T.

    1992-01-01

    The fluid inclusion and isotope data have been used to constrain the ore genesis models for the Au-Pt-Pd-U mineralization at Coronation Hill. The fluid inclusions demonstrate that the ore fluid was strongly saline with an unusually high CaCl 2 content, and that the mineralisation was probably formed from a boiling fluid at around 140 deg C. Furthermore, the fluids were highly oxidised and the replacement of earlier chlorite by hematite is common throughout the deposit. It is concluded that both U-rich and U-poor Au-Pt-Pd mineralisation were formed by descending, low-temperature, highly oxidised, very saline, meteoric fluids. The segregation of U was controlled by fluid-rock interaction in the feldspathic or carbonate rocks. Interaction with carbonaceous or chloritic rocks resulted in a reduction in fO 2 , and consequent precipitation of U, Au, Pt and Pd. The other two types of metal associations can be explained by further reaction of the mineralizing fluids. 3 figs

  14. Transient filament stretching rheometer II

    DEFF Research Database (Denmark)

    Kolte, Mette Irene; Rasmussen, Henrik K.; Hassager, Ole

    1997-01-01

    The Lagrangian sspecification is used to simulate the transient stretching filament rheometer. Simulations are performed for dilute PIB-solutions modeled as a four mode Oldroyd-B fluid and a semidilute PIB-solution modeled as a non-linear single integral equation. The simulations are compared...

  15. Effect of Variable Fluid Properties on Natural Convection of Nanofluids in a Cavity with Linearly Varying Wall Temperature

    Directory of Open Access Journals (Sweden)

    M. Bhuvaneswari

    2015-01-01

    Full Text Available The present study analyzed convective heat transfer and fluid flow characteristics of nanofluid in a two-dimensional square cavity under different combinations of thermophysical models of nanofluids. The right vertical wall temperature is varying linearly with height and the left wall is maintained at low temperature whereas the horizontal walls are adiabatic. Finite volume method is used to solve the governing equations. Two models are considered to calculate the effective thermal conductivity of the nanofluid and four models are considered to calculate the effective viscosity of the nanofluid. Numerical solutions are carried out for different combinations of effective viscosity and effective thermal conductivity models with different volume fractions of nanoparticles and Rayleigh numbers. It is found that the heat transfer rate increases for Models M1 and M3 on increasing the volume fraction of the nanofluid, whereas heat transfer rate decreases for Model M4 on increasing the volume fraction of the nanoparticle. The difference among the effective dynamic viscosity models of nanofluid plays an important role here such that the average Nusselt number demonstrates an increasing or decreasing trend with the concentration of nanoparticle.

  16. Time-temperature evolution of microtextures and contained fluids in a plutonic alkali feldspar during heating

    Science.gov (United States)

    Parsons, Ian; Fitz Gerald, John D.; Lee, James K. W.; Ivanic, Tim; Golla-Schindler, Ute

    2010-08-01

    at 500°C following the simulated 40Ar/39Ar step-heating schedule. New features called ‘slots’ developed away from albite lamellae, often with planar traces linking slots to the closest lamella. Slot arrays were often aligned along ghost-like regions of diffraction contrast which may mark the original edges of lamellae. We suggest that the slot arrays result from healing of pull-aparts containing fluid. At 700°C and above, the dominant defects were subspherical ‘bubbles’, which evolved from slots or from regions of deuteric coarsening. The small degree of partial melting observed after 5 h at 1,100°C was often in the vicinity of bubbles. Larger micropores, which formed at subgrain boundaries in patch perthite during deuteric coarsening, retain their shape up to the melting point, as do the subgrain boundaries themselves. It is clear that modification of defects providing potential fast pathways for diffusion in granitic alkali feldspars begins below 500°C and that defect character progressively changes up to, and beyond, the onset of melting.

  17. Development of a test facility for analyzing transients in supercritical water-cooled reactors by fractional scaling analysis

    Energy Technology Data Exchange (ETDEWEB)

    Roberto, Thiago D., E-mail: thiagodbtr@gmail.com [Instituto de Engenharia Nuclear (IEN/CNEN—RJ), Rua Hélio de Almeida, 75 21941-972, Rio de Janeiro Caixa-Postal: 68550, RJ (Brazil); Silva, Mário A. B. da, E-mail: mabs500@gmail.com [Departamento de Energia Nuclear (CTG/UFPE), Av. Professor Luiz Freire, 1000, Recife 50740-540, PE (Brazil); Lapa, Celso M.F., E-mail: lapa@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN—RJ), Rua Hélio de Almeida, 75 21941-972, Rio de Janeiro Caixa-Postal: 68550, RJ (Brazil)

    2016-01-15

    The feasibility of performing experiments using water under supercritical conditions is limited by technical and financial difficulties. These difficulties can be overcome by using model fluids that are characterized by feasible supercritical conditions, that is, lower critical pressure and critical temperature. Experimental investigations are normally used to determine the conditions under which model fluids reliably represent supercritical fluids under steady-state conditions. A fluid-to-fluid scaling approach has been proposed to determine the model fluids that represent supercritical fluids in a transient state. Recently, a similar technique known as fractional scaling analysis was developed to establish the conditions under which experiments can be performed using models that represent transients in prototypes. This paper presents a fractional scaling analysis application to determine parameters for a test facility in which transient conditions in supercritical water-cooled reactors are simulated by using carbon dioxide as a model fluid, whose critical point conditions are more feasible than those of water. Similarity is obtained between water (prototype) and carbon dioxide (model) by depressurization in a simple vessel. The main parameters required for the construction of a future test facility are obtained using the proposed method.

  18. Numerical simulation of temperature and thermal stress for nuclear piping by using computational fluid dynamics analysis and Green’s function

    Energy Technology Data Exchange (ETDEWEB)

    Boo, Myung-Hwan [Korea Hydro and Nuclear Power Company, Daejeon (Korea, Republic of); Oh, Chang-Kyun; Kim, Hyun-Su [KEPCO Engineering and Construction Company, Gimcheon (Korea, Republic of); Choi, Choeng-Ryul [ELSOLTEC, Inc., Yongin (Korea, Republic of)

    2017-05-15

    Owing to the fact that thermal fatigue is a well-known damage mechanism in nuclear power plants, accurate stress and fatigue evaluation are highly important. Operating experience shows that the design condition is conservative compared to the actual one. Therefore, various fatigue monitoring methods have been extensively utilized to consider the actual operating data. However, defining the local temperature in the piping is difficult because temperature-measuring instruments are limited. The purpose of this paper is to define accurate local temperature in the piping and evaluate thermal stress using Green’s function (GF) by performing a series of computational fluid dynamics analyses considering the complex fluid conditions. Also, the thermal stress is determined by adopting GF and comparing it with that of the design condition. The fluid dynamics analysis result indicates that the fluid temperature slowly varies compared to the designed one even when the flow rate changes abruptly. In addition, the resulting thermal stress can significantly decrease when reflecting the actual temperature.

  19. Acid and low temperature treatments on Salmonella Enteritidis inoculated in pork and its subsequent survival in simulated gastric fluid

    Directory of Open Access Journals (Sweden)

    Simone Quintão Silva

    2016-03-01

    Full Text Available ABSTRACT: The objective of this study was to evaluate the acid resistance of Salmonella enterica serovar Enteritidis (S. Enteritidis in stored pork and in simulated gastric fluid (SGF. A culture of S. Enteritidis was subjected to acid treatment prior to inoculation into pork, stored under refrigeration at frozen temperatures and exposed to SGF. The S. Enteritidis CCS3 and ATCC 13076 strains previously subjected to acid treatment (at pH 4.0-5.0 were inoculated in pork and stored at 4°C and -18°C. Storage at 4ºC did not affect the populations of both S. Enteritidis strains. After 84 days at -18°C, the mean population of both CCS3 and ATCC strains were reduced by 0.8 and 1.5 log cycles, respectively. Prior acid treatment did not enhance the survival of both strains at low temperatures. After acid treatment and low temperature storage, S. Enteritidis ATCC 13076 lost culturability after being exposed to SGF for 10 minutes. In contrast, S. Enteritidis CCS3 was tolerant until three hours of SGF exposure. S. Enteritidis CCS3 submitted to pH 4.0 was more tolerant to SGF exposure than when submitted to pH 4.5, 5.0 and without acid treatment. Therefore, this study indicates that exposure to an acidic and cold environment during processing enhanced the ability of S. Enteritidis to survive in the gastric environment of the human stomach, possibly increasing the risk of a Salmonella infection after consumption of pork.

  20. Analysis of ionization wave dynamics in low-temperature plasma jets from fluid modeling supported by experimental investigations

    Science.gov (United States)

    Yousfi, M.; Eichwald, O.; Merbahi, N.; Jomaa, N.

    2012-08-01

    This work is devoted to fluid modeling based on experimental investigations of a classical setup of a low-temperature plasma jet. The latter is generated at atmospheric pressure using a quartz tube of small diameter crossed by helium gas flow and surrounded by an electrode system powered by a mono-polar high-voltage pulse. The streamer-like behavior of the fast plasma bullets or ionization waves launched in ambient air for every high-voltage pulse, already emphasized in the literature from experimental or analytical considerations or recent preliminary fluid models, is confirmed by a numerical one-moment fluid model for the simulation of the ionization wave dynamics. The dominant interactions between electron and the main ions present in He-air mixtures with their associated basic data are taken into account. The gradual dilution of helium in air outside the tube along the axis is also considered using a gas hydrodynamics model based on the Navier-Stokes equation assuming a laminar flow. Due to the low magnitude of the reduced electric field E/N (not exceeding 15 Td), it is first shown that consideration of the stepwise ionization of helium metastables is required to reach the critical size of the electron avalanches in order to initiate the formation of ionization waves. It is also shown that a gas pre-ionization ahead of the wave front of about 109 cm-3 (coming from Penning ionization without considering the gas photo-ionization) is required for the propagation. Furthermore, the second ionization wave experimentally observed during the falling time of the voltage pulse, between the powered electrode and the tube exit, is correlated with the electric field increase inside the ionized channel in the whole region between the electrode and the tube exit. The propagation velocity and the distance traveled by the front of the ionization wave outside the tube in the downstream side are consistent with the present experimental measurements. In comparison with the

  1. Verification and validation of COBRA-SFS transient analysis capability

    International Nuclear Information System (INIS)

    Rector, D.R.; Michener, T.E.; Cuta, J.M.

    1998-05-01

    This report provides documentation of the verification and validation testing of the transient capability in the COBRA-SFS code, and is organized into three main sections. The primary documentation of the code was published in September 1995, with the release of COBRA-SFS, Cycle 2. The validation and verification supporting the release and licensing of COBRA-SFS was based solely on steady-state applications, even though the appropriate transient terms have been included in the conservation equations from the first cycle. Section 2.0, COBRA-SFS Code Description, presents a capsule description of the code, and a summary of the conservation equations solved to obtain the flow and temperature fields within a cask or assembly model. This section repeats in abbreviated form the code description presented in the primary documentation (Michener et al. 1995), and is meant to serve as a quick reference, rather than independent documentation of all code features and capabilities. Section 3.0, Transient Capability Verification, presents a set of comparisons between code calculations and analytical solutions for selected heat transfer and fluid flow problems. Section 4.0, Transient Capability Validation, presents comparisons between code calculations and experimental data obtained in spent fuel storage cask tests. Based on the comparisons presented in Sections 2.0 and 3.0, conclusions and recommendations for application of COBRA-SFS to transient analysis are presented in Section 5.0

  2. Multiple stable isotope fronts during non-isothermal fluid flow

    Science.gov (United States)

    Fekete, Szandra; Weis, Philipp; Scott, Samuel; Driesner, Thomas

    2018-02-01

    Stable isotope signatures of oxygen, hydrogen and other elements in minerals from hydrothermal veins and metasomatized host rocks are widely used to investigate fluid sources and paths. Previous theoretical studies mostly focused on analyzing stable isotope fronts developing during single-phase, isothermal fluid flow. In this study, numerical simulations were performed to assess how temperature changes, transport phenomena, kinetic vs. equilibrium isotope exchange, and isotopic source signals determine mineral oxygen isotopic compositions during fluid-rock interaction. The simulations focus on one-dimensional scenarios, with non-isothermal single- and two-phase fluid flow, and include the effects of quartz precipitation and dissolution. If isotope exchange between fluid and mineral is fast, a previously unrecognized, significant enrichment in heavy oxygen isotopes of fluids and minerals occurs at the thermal front. The maximum enrichment depends on the initial isotopic composition of fluid and mineral, the fluid-rock ratio and the maximum change in temperature, but is independent of the isotopic composition of the incoming fluid. This thermally induced isotope front propagates faster than the signal related to the initial isotopic composition of the incoming fluid, which forms a trailing front behind the zone of transient heavy oxygen isotope enrichment. Temperature-dependent kinetic rates of isotope exchange between fluid and rock strongly influence the degree of enrichment at the thermal front. In systems where initial isotope values of fluids and rocks are far from equilibrium and isotope fractionation is controlled by kinetics, the temperature increase accelerates the approach of the fluid to equilibrium conditions with the host rock. Consequently, the increase at the thermal front can be less dominant and can even generate fluid values below the initial isotopic composition of the input fluid. As kinetics limit the degree of isotope exchange, a third front may

  3. High-temperature isothermal capacitance transient spectroscopy study on SiN deposition damages for low-Mg-doped p-GaN Schottky diodes

    International Nuclear Information System (INIS)

    Shiojima, Kenji; Wakayama, Hisashi; Aoki, Toshichika; Kaneda, Naoki; Nomoto, Kazuki; Mishima, Tomoyoshi

    2014-01-01

    Attempt to achieve a surface passivation of p-type GaN was conducted on low-Mg-doped p-GaN by employing SiN films depositions by an Ar-plasma-sputtering and a plasma-enhancement chemical vapor deposition. Process induced damages were then characterized by using a high-temperature isothermal capacitance transient spectroscopy. A large single peak, likely attributed to acceptor-type surface states, was detected in the as-grown samples. The energy level was measured to be 1.18 eV above the valence band edge, which is close to a Ga-vacancy (V Ga ) reported elsewhere. It was suggested that a small portion of Ga atoms were missing from the surface, and a large density of V Ga were created in a few surface layers. The peak intensity was found to significantly decrease by the SiN depositions, irrespective of the deposition methods, and further decreases upon annealing at 800 °C. After the SiN deposition and the annealing, the peak intensity decreased: the pure Ga vacancies may transform into complex defects in the course of the SiN deposition and annealing. These results show that the present characterization method with the low-Mg-doped p-GaN Schottky contacts is effective and serves as sensitive characterization of the surface defects. - Highlights: • Process induced damages on a surface passivation of p-type GaN were characterized. • Acceptor-type single surface-states were detected at 1.18 eV from the valence band. • The peak intensity was found to significantly decrease by the SiN depositions

  4. Viscous Flow with Large Fluid-Fluid Interface Displacement

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole; Saasen, Arild

    1998-01-01

    The arbitrary Lagrange-Euler (ALE) kinematic description has been implemented in a 3D transient finite element program to simulate multiple fluid flows with fluid-fluid interface or surface displacements. The description of fluid interfaces includes variable interfacial tension, and the formulation...... is useful in the simulation of low and intermediate Reynolds number viscous flow. The displacement of two immiscible Newtonian fluids in a vertical (concentric and eccentric) annulus and a (vertical and inclined)tube is simulated....

  5. Thermal striping tests in mixing tees with same pipe diameters. 1st report, characteristics of flow patterns and fluid temperature fluctuations

    International Nuclear Information System (INIS)

    Kawamura, Tsutomu; Shiina, Kouji; Ohtsuka, Masaya

    2003-01-01

    Thermal striping tests in mixing tees with same pipe diameters were conducted in order to construct databases for establishment of an evaluation method for high-cycle thermal fatigue of piping systems. The flow patterns were visualized and fluid temperature distributions near the pipe wall were measured to clarify the temperature fluctuation characteristics. The velocity ratio, which is the ratio of the velocity in the branch pipe to that in the main pipe, was changed from 0.1 to 5. Temperature difference of incoming flows was about 40 degrees Celsius. Large temperature fluctuations more than 90% of the incoming flow temperature difference occurred near the mixing tees and frequency characteristics were random. The temperature fluctuation characteristics depended on the velocity ratio. The effects of the upstream and downstream piping elements such as a diffuser, valve, and elbow on the temperature fluctuation were small. (author)

  6. The proof of two-temperature kinetic (2 T fluid) model by means of comparison of kinetic and fluid calculations at simulation of plasma of positive column of direct-current oxygen discharge

    International Nuclear Information System (INIS)

    Bogdanov, E.A.; Kudryavtsev, A.A.; Tsendin, L.D.; Arslanbekov, R.R.; Kolobov, V.I.; Kudryavtsev, V.V.

    2003-01-01

    The comparison of the kinetic and fluid calculations by modeling the plasma of the positive column of the direct-current discharge in oxygen is carried out through the CDFRC commercial software, making it possible to conduct the simulations in the arbitrary 3D geometry with application of both the fluid equations for all the components and with the solution of the kinetic equation for determining the electrons distribution function. It is shown, that both in the local and in the nonlocal modes of the electrons distribution function formation its nonmaxwelliality is well accounted for through approximation by two groups of electrons. This makes it possible to account in the simplest way for the kinetic effects within the frames of the traditional fluid model through applying the proposed two-temperature approximation of the nonequilibrium and nonlocal electrons distribution function [ru

  7. Trace elements chemistry of low-temperature pyrites - an indicator of past changes in fluid chemistry and fluid migration paths (Eger Graben, Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Zachariáš, J.; Adamovič, Jiří; Langrová, Anna

    2008-01-01

    Roč. 59, č. 2 (2008), s. 117-132 ISSN 1335-0552 R&D Projects: GA AV ČR IAA3013302 Institutional research plan: CEZ:AV0Z30130516 Keywords : pyrite * silicification * fluid chemistry, * Eger Graben Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.081, year: 2008 http://www.geologicacarpathica.sk/src/main.php

  8. High temperature hydrothermal vent fluids in Yellowstone Lake: Observations and insights from in-situ pH and redox measurements

    Science.gov (United States)

    Tan, Chunyang; Cino, Christie D.; Ding, Kang; Seyfried, William E.

    2017-09-01

    ROV investigation of hydrothermal fluids issuing from vents on the floor of Yellowstone lake revealed temperatures in excess of 170 °C - the highest temperature yet reported for vent fluids within Yellowstone National Park (YNP). The study site is east of Stevenson Island at depth of approximately 100-125 m. In-situ pH and redox measurements of vent fluids were made using solid state sensors designed to sustain the elevated temperatures and pressures. YSZ membrane electrode with Ag/Ag2O internal element and internal pressure balanced Ag/AgCl reference electrode were used to measure pH, while a platinum electrode provided redox constraints. Lab verification of the pH sensor confirmed excellent agreement with Nernst law predictions, especially at temperatures in excess of 120 °C. In-situ pH values of between 4.2 and 4.5 were measured for the vent fluids at temperatures of 120 to 150 °C. The slightly acidic vent fluids are likely caused by CO2 enrichment in association with magmatic degassing effects that occur throughout YNP. This is consistent with results of simple model calculations and direct observation of CO2 bubbles in the immediate vicinity of the lake floor vents. Simultaneous redox measurements indicated moderate to highly reducing conditions (- 0.2 to - 0.3 V). As typical of measurements of this kind, internal and external redox disequilibria likely preclude unambiguous determination of redox controlling reactions. Redox disequilibria, however, can be expected to drive microbial metabolism and diversity in the near vent environment. Thus, the combination of in-situ pH and redox sensor deployments may ultimately provide the requisite framework to better understand the microbiology of the newly discovered hot vents on Yellowstone lake floor.

  9. Unlocking the potential of supported liquid phase catalysts with supercritical fluids: low temperature continuous flow catalysis with integrated product separation.

    Science.gov (United States)

    Franciò, Giancarlo; Hintermair, Ulrich; Leitner, Walter

    2015-12-28

    Solution-phase catalysis using molecular transition metal complexes is an extremely powerful tool for chemical synthesis and a key technology for sustainable manufacturing. However, as the reaction complexity and thermal sensitivity of the catalytic system increase, engineering challenges associated with product separation and catalyst recovery can override the value of the product. This persistent downstream issue often renders industrial exploitation of homogeneous catalysis uneconomical despite impressive batch performance of the catalyst. In this regard, continuous-flow systems that allow steady-state homogeneous turnover in a stationary liquid phase while at the same time effecting integrated product separation at mild process temperatures represent a particularly attractive scenario. While continuous-flow processing is a standard procedure for large volume manufacturing, capitalizing on its potential in the realm of the molecular complexity of organic synthesis is still an emerging area that requires innovative solutions. Here we highlight some recent developments which have succeeded in realizing such systems by the combination of near- and supercritical fluids with homogeneous catalysts in supported liquid phases. The cases discussed exemplify how all three levels of continuous-flow homogeneous catalysis (catalyst system, separation strategy, process scheme) must be matched to locate viable process conditions. © 2015 The Authors.

  10. Unlocking the potential of supported liquid phase catalysts with supercritical fluids: low temperature continuous flow catalysis with integrated product separation

    Science.gov (United States)

    Franciò, Giancarlo; Hintermair, Ulrich; Leitner, Walter

    2015-01-01

    Solution-phase catalysis using molecular transition metal complexes is an extremely powerful tool for chemical synthesis and a key technology for sustainable manufacturing. However, as the reaction complexity and thermal sensitivity of the catalytic system increase, engineering challenges associated with product separation and catalyst recovery can override the value of the product. This persistent downstream issue often renders industrial exploitation of homogeneous catalysis uneconomical despite impressive batch performance of the catalyst. In this regard, continuous-flow systems that allow steady-state homogeneous turnover in a stationary liquid phase while at the same time effecting integrated product separation at mild process temperatures represent a particularly attractive scenario. While continuous-flow processing is a standard procedure for large volume manufacturing, capitalizing on its potential in the realm of the molecular complexity of organic synthesis is still an emerging area that requires innovative solutions. Here we highlight some recent developments which have succeeded in realizing such systems by the combination of near- and supercritical fluids with homogeneous catalysts in supported liquid phases. The cases discussed exemplify how all three levels of continuous-flow homogeneous catalysis (catalyst system, separation strategy, process scheme) must be matched to locate viable process conditions. PMID:26574523

  11. Transients in pipes

    International Nuclear Information System (INIS)

    Marchesin, D.; Paes-Leme, P.J.S.; Sampaio, R.

    1981-01-01

    The motion of a fluid in a pipe is commonly modeled utilizing the one space dimension conservation laws of mass and momentum. The development of shocks and spikes utilizing the uniform sampling method is studied. The effects of temperature variations and friction are compared for gas pipes. (Author) [pt

  12. Modelling transient 3D multi-phase criticality in fluidised granular materials - the FETCH code

    International Nuclear Information System (INIS)

    Pain, C.C.; Gomes, J.L.M.A.; Eaton, M.D.; Ziver, A.K.; Umpleby, A.P.; Oliveira, C.R.E. de; Goddard, A.J.H.

    2003-01-01

    The development and application of a generic model for modelling criticality in fluidised granular materials is described within the Finite Element Transient Criticality (FETCH) code - which models criticality transients in spatial and temporal detail from fundamental principles, as far as is currently possible. The neutronics model in FETCH solves the neutron transport in full phase space with a spherical harmonics angle of travel representation, multi-group in neutron energy, Crank Nicholson based in time stepping, and finite elements in space. The fluids representation coupled with the neutronics model is a two-fluid-granular-temperature model, also finite element fased. A separate fluid is used to represent the liquid/vapour gas and the solid fuel particle phases, respectively. Particle-particle, particle-wall interactions are modelled using a kinetic theory approach on an analogy between the motion of gas molecules subject to binary collisions and granular flows. This model has been extensively validated by comparison with fluidised bed experimental results. Gas-fluidised beds involve particles that are often extremely agitated (measured by granular temperature) and can thus be viewed as a particularly demanding application of the two-fluid model. Liquid fluidised systems are of criticality interest, but these can become demanding with the production of gases (e.g. radiolytic and water vapour) and large fluid/particle velocities in energetic transients. We present results from a test transient model in which fissile material ( 239 Pu) is presented as spherical granules subsiding in water, located in a tank initially at constant temperature and at two alternative over-pressures in order to verify the theoretical model implemented in FETCH. (author)

  13. Evaluation of approaches for modeling temperature wave propagation in district heating pipelines

    DEFF Research Database (Denmark)

    Gabrielaitiene, I.; Bøhm, Benny; Sunden, B.

    2008-01-01

    The limitations of a pseudo-transient approach for modeling temperature wave propagation in district heating pipes were investigated by comparing numerical predictions with experimental data. The performance of two approaches, namely a pseudo-transient approach implemented in the finite element...... code ANSYS and a node method, was examined for a low turbulent Reynolds number regime and small velocity fluctuations. Both approaches are found to have limitations in predicting the temperature response time and predicting the peak values of the temperature wave, which is further hampered by the fact...... that the fluid is represented as an ideal fluid. The approaches failed to adequately predict the temperature wave propagation in the case of rapid inlet temperature changes. The overall conclusion from this case study was that in order to improve the prediction of the transient temperature, attention has...

  14. Diagnostic system for measuring temperature, pressure, CO.sub.2 concentration and H.sub.2O concentration in a fluid stream

    Science.gov (United States)

    Partridge, Jr., William P.; Jatana, Gurneesh Singh; Yoo, Ji Hyung; Parks, II, James E.

    2017-12-26

    A diagnostic system for measuring temperature, pressure, CO.sub.2 concentration and H.sub.2O concentration in a fluid stream is described. The system may include one or more probes that sample the fluid stream spatially, temporally and over ranges of pressure and temperature. Laser light sources are directed down pitch optical cables, through a lens and to a mirror, where the light sources are reflected back, through the lens to catch optical cables. The light travels through the catch optical cables to detectors, which provide electrical signals to a processer. The processer utilizes the signals to calculate CO.sub.2 concentration based on the temperatures derived from H.sub.2O vapor concentration. A probe for sampling CO.sub.2 and H.sub.2O vapor concentrations is also disclosed. Various mechanical features interact together to ensure the pitch and catch optical cables are properly aligned with the lens during assembly and use.

  15. Transient local heat fluxes during the entire vapor bubble life time

    International Nuclear Information System (INIS)

    Stephan, P.; Fuchs, T; Wagner, E.; Schweizer, N.

    2009-01-01

    Recent experimental and numerical investigations of the nucleate boiling heat transfer process at a single active nucleation site are presented and used for an evaluation of the local heat fluxes during the entire life time of a vapor bubble from its nucleation to the rise through the thermal boundary layer. In a special boiling cell, vapor bubbles are generated at a single nucleation site on a 20 μm thin stainless steel heating foil. An infrared camera captures the temperature distribution at the wall with high temporal and spatial resolution. The bubble shape is recorded with a high-speed camera. Measurements were conducted with the pure fluids FC-84 and FC-3284 and with its binary mixtures. For pure fluids, up to 50-60% of the latent heat flows through the three-phase-contact line region. For mixtures, this ratio is clearly reduced. These observations are in agreement with the numerical model of the author's group. The fully transient model contains a multi scale approach ranging from the nanometer to the millimeter scale for the detailed description of the relevant local and global phenomena. It describes the transient heat and fluid flow during the entire periodic cycle of a growing, detaching and rising bubble including the waiting time between two successive bubbles from a single nucleation site. The detailed analysis of the computed transient temperature profiles in wall and fluid give accurate information about the heat supply, temporal energy storage and local evaporation rates. (author)

  16. Transient heat transfer performance of stainless steel structured surfaces combined with air-water spray evaporative cooling at high temperature scenarios

    International Nuclear Information System (INIS)

    Aamir, Muhammad; Qiang, Liao; Hong, Wang; Xun, Zhu; Wang, Jiaqiu; Sajid, Muhammad

    2017-01-01

    geometries at different initial sample temperature (T s ) under air-water spray having constant spray parameters. Seven sample structured surfaces has been used. Square wide fin (Sq-W), square narrow fin (Sq-N), straight wide fin (Str-W), straight narrow fin (Str-N), pyramid wide pins (Py-W), pyramid narrow fin (Py-N) were machined on the top surface of the stainless steel cylindrical blocks. A smooth reference surface (FL) was also machined to be used as base line. Top surface diameter of each block was 27 mm and bottom surface diameter was 25 mm. The height, H of each cylinder was 12.5 mm. Each cylinder was providing with two thermocouple holes of 2 mm diameter at different geometrical locations. Square narrow fin (Sq-N) surface , gives maximum enhanced surface area (A E ) of 1689.1 mm 2 with an A E /A S ration of 2.9. Nozzle to surface distance (y) spray angle (θ) and fluid temperature (T f ) are fixed to 25 mm, 0° and 23.5 °C. Commercial inverse heat conduction solver INTEMP was used to estimate the time-varying surface heat flux and surface temperature of the quenched samples. It was determined that geometry of structured surfaces has significant effect on heat transfer rate. Burnout heat flux (q b ) and critical heat flux (q c ) showed significant increase for Sq-W at all tested sample temperatures with respect to smooth reference surface. The q c for Py-N is 85.5% and 58.3% higher than Sq-W at T s = 800 °C and T s = 900 °C respectively. The highest cooling rate of 166 °C/sec was achieved with sample Sq-W for T s = 900 °C. In addition, heat transfer coefficient (h) increases gradually with decreasing surface super heat (ΔT). A sharp increase in heat transfer coefficient is observed when cooling process enters into nucleate boiling regime. Boiling Number, B o for FL is smaller than for Py-N and Sq-W which is another way to see better heat performance of these two structured surfaces; making them better choice for high temperature safety applications.

  17. Numerical Calculation of Transient Thermal Characteristics in Gas-Insulated Transmission Lines

    Directory of Open Access Journals (Sweden)

    Hongtao Li

    2013-11-01

    Full Text Available For further knowledge of the thermal characteristics in gas-insulated transmission lines (GILs installed above ground, a finite-element model coupling fluid field and thermal field is established, in which the corresponding assumptions and boundary conditions are given.  Transient temperature rise processes of the GIL under the conditions of variable ambient temperature, wind velocity and solar radiation are respectively investigated. Equivalent surface convective heat transfer coefficient and heat flux boundary conditions are updated in the analysis process. Unlike the traditional finite element methods (FEM, the variability of the thermal properties with temperature is considered. The calculation results are validated by the tests results reported in the literature. The conclusion provides method and theory basis for the knowledge of transient temperature rise characteristics of GILs in open environment.

  18. Survey of Properties of Key Single and Mixture Halide Salts for Potential Application as High Temperature Heat Transfer Fluids for Concentrated Solar Thermal Power Systems

    Directory of Open Access Journals (Sweden)

    Chao-Jen Li

    2014-04-01

    Full Text Available In order to obtain high energy efficiency in a concentrated solar thermal power plant, more and more high concentration ratio to solar radiation are applied to collect high temperature thermal energy in modern solar power technologies. This incurs the need of a heat transfer fluid being able to work at more and more high temperatures to carry the heat from solar concentrators to a power plant. To develop the third generation heat transfer fluids targeting at a high working temperature at least 800 ℃, a research team from University of Arizona, Georgia Institute of Technology, and Arizona State University proposed to use eutectic halide salts mixtures in order to obtain the desired properties of low melting point, low vapor pressure, great stability at temperatures at least 800 ℃, low corrosion, and favorable thermal and transport properties. In this paper, a survey of the available thermal and transport properties of single and eutectic mixture of several key halide salts is conducted, providing information of great significance to researchers for heat transfer fluid development.

  19. Study of critical free-area ratio during the snow-melting process on pavement using low-temperature heating fluids

    International Nuclear Information System (INIS)

    Wang Huajun; Chen Zhihao

    2009-01-01

    Critical free-area ratio (CFR) is an interesting phenomenon during the snow-melting process on pavement using low-temperature heating fluids such as geothermal tail water and industrial waste water. This paper is performed to further investigate the mechanism of CFR and its influencing factors. A simplified theoretical model is presented to describe the heat and mass transfer process on pavement. Especially the variation of thermal properties and the capillary effect of snow layer are considered. Numerical computation shows that the above theoretical model is effective for the prediction of CFR during the snow-melting process. Furthermore, the mechanism of CFR is clarified in detail. CFR is independent of the layout of hydronic pipes, the fluid temperature, the idling time, and weather conditions. It is both the non-uniform temperature distribution and complicated porous structure of snow layer that lead to the occurrence of CFR. Besides, the influences of operation parameters including the fluid temperature, the idling time, the pipe spacing and buried depths on snow melting are analyzed, which are helpful for the next optimal design of snow-melting system

  20. TRAC analyses of severe overcooling transients for the Oconee-1 PWR

    Energy Technology Data Exchange (ETDEWEB)

    Ireland, J R [comp.

    1985-05-01

    This report describes the results of several Transient Reactor Analysis Code (TRAC)-PF1 calculations of overcooling transients in a Babcock and Wilcox lowered-loop, pressurized water reactor (Oconee-1). The purpose of this study is to provide detailed input on thermal-hydraulic data to Oak Ridge National Laboratory for pressurized thermal-shock analyses. The transient calculations performed were plant specific in that details of the primary system, the secondary system, and the plant-integrated control system of Oconee-1 were included in the TRAC input model. The results of the calculations indicate that the turbine-bypass valve failure transient was the most severe in terms of resulting in relatively cold liquid temperatures in the downcomer region of the vessel. The power-operated relief valve loss-of-coolant accident transient was the least severe in terms of downcomer liquid temperatures because of vent-valve fluid mixing and near-saturated conditions in the primary system. It is recommended that future calculations consider a wider range of operator actions to cover the spectra of overcooling transient sequences more completely. 6 refs., 287 figs., 32 tabs.

  1. Impact of CO2 injection protocol on fluid-solid reactivity: high-pressure and temperature microfluidic experiments in limestone

    Science.gov (United States)

    Jimenez-Martinez, Joaquin; Porter, Mark; Carey, James; Guthrie, George; Viswanathan, Hari

    2017-04-01

    Geological sequestration of CO2 has been proposed in the last decades as a technology to reduce greenhouse gas emissions to the atmosphere and mitigate the global climate change. However, some questions such as the impact of the protocol of CO2 injection on the fluid-solid reactivity remain open. In our experiments, two different protocols of injection are compared at the same conditions (8.4 MPa and 45 C, and constant flow rate 0.06 ml/min): i) single phase injection, i.e., CO2-saturated brine; and ii) simultaneous injection of CO2-saturated brine and scCO2. For that purpose, we combine a unique high-pressure/temperature microfluidics experimental system, which allows reproducing geological reservoir conditions in geo-material substrates (i.e., limestone, Cisco Formation, Texas, US) and high resolution optical profilometry. Single and multiphase flow through etched fracture networks were optically recorded with a microscope, while processes of dissolution-precipitation in the etched channels were quantified by comparison of the initial and final topology of the limestone micromodels. Changes in hydraulic conductivity were quantified from pressure difference along the micromodel. The simultaneous injection of CO2-saturated brine and scCO2, reduced the brine-limestone contact area and also created a highly heterogeneous velocity field (i.e., low velocities regions or stagnation zones, and high velocity regions or preferential paths), reducing rock dissolution and enhancing calcite precipitation. The results illustrate the contrasting effects of single and multiphase flow on chemical reactivity and suggest that multiphase flow by isolating parts of the flow system can enhance CO2 mineralization.

  2. Boron doped diamond synthesized from detonation nanodiamond in a C-O-H fluid at high pressure and high temperature

    Science.gov (United States)

    Shakhov, Fedor M.; Abyzov, Andrey M.; Takai, Kazuyuki

    2017-12-01

    Boron doped diamond (BDD) was synthesized under high pressure and high temperature (HPHT) of 7 GPa, 1230 °C in a short time of 10 s from a powder mixtures of detonation nanodiamond (DND), pentaerythritol C5H8(OH)4 and amorphous boron. SEM, TEM, XRD, XPS, FTIR and Raman spectroscopy indicated that BDD nano- and micro-crystals have formed by consolidation of DND particles (4 nm in size). XRD showed the enlargement of crystallites size to 6-80 nm and the increase in diamond lattice parameter by 0.02-0.07% without appearance of any microstrains. Raman spectroscopy was used to estimate the content of boron atoms embedded in the diamond lattice. It was found that the Raman diamond peak shifts significantly from 1332 cm-1 to 1290 cm-1 without appearance of any non-diamond carbon. The correlation between Raman peak position, its width, and boron content in diamond is proposed. Hydrogenated diamond carbon in significant amount was detected by IR spectroscopy and XPS. Due to the doping with boron content of about 0.1 at%, the electrical conductivity of the diamond achieved approximately 0.2 Ω-1 cm-1. Reaction mechanism of diamond growth (models of recrystallization and oriented attachment) is discussed, including the initial stages of pentaerythritol pyrolysis and thermal desorption of functional groups from the surface of DND particles with the generation of supercritical fluid of low-molecular substances (H2O, CH4, CO, CO2, etc.), as well as byproducts formation (B2O3, B4C).

  3. [Effects of transient receptor potential melastatin 8 cation channels on inflammatory reaction induced by cold temperatures in human airway epithelial cells].

    Science.gov (United States)

    Li, Min-chao; Perelman, Juliy M; Kolosov, Victor P; Zhou, Xiang-dong

    2011-10-01

    To explore the role of transient receptor potential melastatin 8 cation channels (TRPM8) in cold-induced production of inflammatory factors in airway epithelial cells and related signal transduction mechanism. The 16HBE human airway epithelial cells were stimulated with cold temperature (18°C). In intervention experiments, cells were pretreated with TRPM8 channel antagonist BCTC, protein kinase C (PKC) specific inhibitor calphostin C and transfected with TRPM8 shRNA or control shRNA respectively, and thereafter cold stimulation was applied. Cells were divided into 6 groups: a control group (incubated at 37°C), a cold stimulation group, a cold stimulation + BCTC group, a cold stimulation + TRPM8 shRNA group, a cold stimulation + control shRNA group, a cold stimulation + calphostin C group. Western blot was performed to show the extent of knockdown in TRPM8 protein expression in the TRPM8 shRNA transfected cells. Dynamics of relative concentration of intracellular Ca(2+) in the former 5 groups were measured by calcium imaging techniques. Images were taken at one frame per 10 seconds. The levels of interleukin (IL)-6, IL-8, tumor necrosis factor (TNF)-α mRNA and protein were detected by real-time PCR and ELISA respectively. The highest relative concentration of intracellular calcium in cold stimulation group (2.36 ± 0.24) was higher than that of control group (1.01 ± 0.02) (t = 12.52, P cold stimulation group (t = 6.69 and 9.12, all P cold stimulation group[0.66 ± 0.16, 0.77 ± 0.15, 0.73 ± 0.09 and (92 ± 13) ng/L, (125 ± 22) ng/L, (88 ± 12) ng/L ] were significantly higher than those in control group [0.37 ± 0.08, 0.32 ± 0.07, 0.48 ± 0.10 and (52 ± 8) ng/L, (50 ± 9) ng/L, (61 ± 8) ng/L] (t = 3.20 - 6.26, all P cold stimulation + BCTC group [0.42 ± 0.09, 0.52 ± 0.13, 0.52 ± 0.12 and (72 ± 8) ng/L, (92 ± 14) ng/L, (68 ± 11) ng/L], cold stimulation + TRPM8 shRNA group [0.41 ± 0.10, 0.49 ± 0.08, 0.50 ± 0.08 and (60 ± 12) ng/L, (89 ± 14) ng

  4. Determination of heat transfer coefficient between a fluid and a wall

    International Nuclear Information System (INIS)

    Petit, D.; Dard, J.; Degiovanni, A.

    1981-01-01

    The authors show the extent to which one can assume the existence of a constant heat transfer coefficient between a fluid and a wall in transient thermal conditions, and the means of estimating it. After reviewing investigations reported in the literature (coefficient assumed constant or not), they present two models based on a pulse method: sudden increase in wall temperature, cooling by fluid flow, temperature recording of the wall face not in contact with the fluid-wether or not the fluid is heated. They present the experimental system, define the tranfer coefficient, and make the calculation from the thermogram obtained. For water and air, they analyze the variations in coefficient as a function of fluid flow rate, initial pulse, temperature detector position, and show that the method proposed yields reproducible results [fr

  5. Transient-Absorption Spectroscopy of Cis-Trans Isomerization of N,N-dimethyl-4,4'-Azodianiline with 3D-Printed Temperature-Controlled Sample Holder

    Science.gov (United States)

    Kosenkov, Dmytro; Shaw, James; Zuczek, Jennifer; Kholod, Yana

    2016-01-01

    The laboratory unit demonstrates a project based approach to teaching physical chemistry laboratory where upper-division undergraduates carry out a transient-absorption experiment investigating the kinetics of cis-trans isomerization of N,N-dimethyl-4,4'-azodianiline. Students participate in modification of a standard flash-photolysis spectrometer…

  6. Automated Fluid Feature Extraction from Transient Simulations

    Science.gov (United States)

    Haimes, Robert

    2000-01-01

    In the past, feature extraction and identification were interesting concepts, but not required in understanding the physics of a steady flow field. This is because the results of the more traditional tools like iso-surfaces, cuts and streamlines, were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of a great deal of interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one 'snap-shot' of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for co-processing environments like pV3). And methods must be developed to abstract the feature and display it in a manner that physically makes sense.

  7. Thermo-Economic and Heat Transfer Optimization of Working-Fluid Mixtures in a Low-Temperature Organic Rankine Cycle System

    Directory of Open Access Journals (Sweden)

    Oyeniyi A. Oyewunmi

    2016-06-01

    Full Text Available In the present paper, we consider the employment of working-fluid mixtures in organic Rankine cycle (ORC systems with respect to thermodynamic and heat-transfer performance, component sizing and capital costs. The selected working-fluid mixtures promise reduced exergy losses due to their non-isothermal phase-change behaviour, and thus improved cycle efficiencies and power outputs over their respective pure-fluid components. A multi-objective cost-power optimization of a specific low-temperature ORC system (operating with geothermal water at 98 °C reveals that the use of working-fluid-mixtures does indeed show a thermodynamic improvement over the pure-fluids. At the same time, heat transfer and cost analyses, however, suggest that it also requires larger evaporators, condensers and expanders; thus, the resulting ORC systems are also associated with higher costs. In particular, 50% n-pentane + 50% n-hexane and 60% R-245fa + 40% R-227ea mixtures lead to the thermodynamically optimal cycles, whereas pure n-pentane and pure R-245fa have lower plant costs, both estimated as having ∼14% lower costs per unit power output compared to the thermodynamically optimal mixtures. These conclusions highlight the importance of using system cost minimization as a design objective for ORC plants.

  8. Understanding heat and fluid flow in linear GTA welds

    Science.gov (United States)

    Zacharia, T.; David, S. A.; Vitek, J. M.

    A transient heat flow and fluid flow model was used to predict the development of gas tungsten arc (GTA) weld pools in 1.5 mm thick AISI 304 SS. The welding parameters were chosen so as to correspond to an earlier experimental study which produced high-resolution surface temperature maps. The motivation of the present study was to verify the predictive capability of the computational model. Comparison of the numerical predictions and experimental observations indicate good agreement.

  9. Hydrothermal Fluid Permeability, Temperature, and Nutrient Fluxes: Three Controls on the Structure and the Dynamics of Subsurface Extremophilic Microbe Communities

    Science.gov (United States)

    Ryan, M. P.; Yang, J.

    2002-05-01

    We continue to develop a set of models whose aim is to provide broad constraints on the range of possible community structures for subsurface thermally-tolerant microbes. We combine studies of the three-dimensional internal structure of the dike and sill complexes of active volcanoes, studies of the scale- and direction-dependent 3-D in-situ permeability of intrusive and extrusive rocks from in-situ and laboratory data, numerical modelling of hydrothermal convection in volcanic interiors, data on the optimal metabolic and life-limiting thermal requirements of extremophilic microbes, with the set of nutrients and nutrient pathways required for the survival of given species of thermophiles and hyperthermophiles. With this mix of data bases and analysis tools, we can begin to divine a set of broad theoretical guidelines for constraining the structure and dynamics of extremophilic communities in the subsurface environments of volcanoes. We are searching for the first-order controls on transport. The effects of mineral attachment, detachment, and microbial reproduction may be incorporated in refinements of this basic model. Critical thermal intervals and/or isotherms that correlate with (1) optimal metabolic and (2) life-limiting temperatures for thermophilic microbes are, e.g., in degrees Celcius: Thermus thermophilius [70, 85]; Thermomicrobium roseum [70-75, 85]; Thermus aquaticus [70, 79]; and Sulfolobus acidocaldarius [70-75, 90]. Numerical models of the convective migration of thermophilic (50-80 C), and hyperthermophilic (80-113 C) microbes and their macromolecular amino acid building blocks (113- ~200 C) have been developed that explicitly incorporate the roles of fractures and fluid properties. Fluid transport properties are evaluated through the optimal metabolic and life-limiting temperate ranges and beyond. These models quantify our intuition with respect to controls on community structure and dynamics. Important relationships appear to be: (1) Great

  10. A comparison of hydration effect on body fluid and temperature regulation between Malaysian and Japanese males exercising at mild dehydration in humid heat.

    Science.gov (United States)

    Wakabayashi, Hitoshi; Wijayanto, Titis; Lee, Joo-Young; Hashiguchi, Nobuko; Saat, Mohamed; Tochihara, Yutaka

    2014-02-04

    This study investigated the effect of hydration differences on body fluid and temperature regulation between tropical and temperate indigenes exercising in the heat. Ten Japanese and ten Malaysian males with matched physical characteristics (height, body weight, and peak oxygen consumption) participated in this study. Participants performed exercise for 60 min at 55% peak oxygen uptake followed by a 30-min recovery at 32°C and 70% relative air humidity with hydration (4 times each, 3 mL per kg body weight, 37°C) or without hydration. Rectal temperature, skin temperature, heart rate, skin blood flow, and blood pressure were measured continuously. The percentage of body weight loss and total sweat loss were calculated from body weight measurements. The percentage change in plasma volume was estimated from hemoglobin concentration and hematocrit. Malaysian participants had a significantly lower rectal temperature, a smaller reduction in plasma volume, and a lower heart rate in the hydrated condition than in the non-hydrated condition at the end of exercise (P hydration conditions. Hydration induced a greater total sweat loss in both groups (P hydrated Malaysians was significantly less than in hydrated Japanese (P hydration conditions was observed for the percentage of mean cutaneous vascular conductance during exercise relative to baseline (P hydrated Malaysians indicated an advantage in body fluid regulation. This may enable Malaysians to reserve more blood for circulation and heat dissipation and thereby maintain lower rectal temperatures in a hydrated condition.

  11. Coupled thermo-fluid stress analysis of Kambara Reactor with various anchors in the stirring of molten iron at extremely high temperatures

    International Nuclear Information System (INIS)

    Huang, De-Shau; Huang, Feng-Chi

    2014-01-01

    Kambara Reactors (KR) are commonly used to reduce sulfur content in steel making, achieving efficiency levels exceeding 85% at 1300 °C. Unfortunately, the operational lifespan of the KR impeller is somewhat limited due to fracturing of the refractory material via thermal shock, resulting in the penetration of molten iron into the inner core. Few studies have investigated the coupled thermo-fluid stress of KR impellers at extremely high temperatures. This study employed CFX and FEM to simulate and analyze the molten iron and the resulting thermal stress imposed on the KR impeller. Simulation results including flow field, temperature, and thermal stress under extremely high temperatures are in strong agreement with empirical data. V-type anchors for the KR impeller outperformed Y-type anchors. - Highlights: • A thermo-fluid coupling approach is proposed to analyze the thermal stress. • The temperature and stress of the impeller are 790 °C and 744 MPa at the final stage. • The highest temperatures occur at the tip of anchors, which causes material crack. • The thermal stress in impellers with Y-type anchors is greater than V-type anchors

  12. Trap behaviours characterization of AlGaN/GaN high electron mobility transistors by room-temperature transient capacitance measurement

    Directory of Open Access Journals (Sweden)

    Bin Dong

    2016-09-01

    Full Text Available In this paper, the trap behaviours in AlGaN/GaN high electron mobility transistors (HEMTs are investigated using transient capacitance measurement. By measuring the transient gate capacitance variance (ΔC with different pulse height, the gate pulse induced trap behaviours in SiNX gate dielectric layer or at the SiNX/AlGaN interface is revealed. Based on the results, a model on electron traps in AlGaN/GaN HEMTs is proposed. The threshold voltage (Vth instability in AlGaN/GaN HEMTs is believed to be correlated with the presence of these traps in SiNX gate dielectric layer or at the SiNX/AlGaN interface. Furthermore, trap density before and after step-stress applied on drain electrode is quantitatively analyzed based on ΔC measurement.

  13. Trap behaviours characterization of AlGaN/GaN high electron mobility transistors by room-temperature transient capacitance measurement

    Science.gov (United States)

    Dong, Bin; Lin, Jie; Wang, Ning; Jiang, Ling-li; Liu, Zong-dai; Hu, Xiaoyan; Cheng, Kai; Yu, Hong-yu

    2016-09-01

    In this paper, the trap behaviours in AlGaN/GaN high electron mobility transistors (HEMTs) are investigated using transient capacitance measurement. By measuring the transient gate capacitance variance (Δ C ) with different pulse height, the gate pulse induced trap behaviours in SiNX gate dielectric layer or at the SiNX/AlGaN interface is revealed. Based on the results, a model on electron traps in AlGaN/GaN HEMTs is proposed. The threshold voltage (Vth) instability in AlGaN/GaN HEMTs is believed to be correlated with the presence of these traps in SiNX gate dielectric layer or at the SiNX/AlGaN interface. Furthermore, trap density before and after step-stress applied on drain electrode is quantitatively analyzed based on Δ C measurement.

  14. Effect of Temperature and Fluid Flow on Dendrite Growth During Solidification of Al-3 Wt Pct Cu Alloy by the Two-Dimensional Cellular Automaton Method

    Science.gov (United States)

    Gu, Cheng; Wei, Yanhong; Liu, Renpei; Yu, Fengyi

    2017-12-01

    A two-dimensional cellular automaton-finite volume model was developed to simulate dendrite growth of Al-3 wt pct Cu alloy during solidification to investigate the effect of temperature and fluid flow on dendrite morphology, solute concentration distribution, and dendrite growth velocity. Different calculation conditions that may influence the results of the simulation, including temperature and flow, were considered. The model was also employed to study the effect of different undercoolings, applied temperature fields, and forced flow velocities on solute segregation and dendrite growth. The initial temperature and fluid flow have a significant impact on the dendrite morphologies and solute profiles during solidification. The release of energy is operated with solidification and results in the increase of temperature. A larger undercooling leads to larger solute concentration near the solid/liquid interface and solute concentration gradient at the same time-step. Solute concentration in the solid region tends to increase with the increase of undercooling. Four vortexes appear under the condition when natural flow exists: the two on the right of the dendrite rotate clockwise, and those on the left of the dendrite rotate counterclockwise. With the increase of forced flow velocity, the rejected solute in the upstream region becomes easier to be washed away and enriched in the downstream region, resulting in acceleration of the growth of the dendrite in the upstream and inhibiting the downstream dendrite growth. The dendrite perpendicular to fluid flow shows a coarser morphology in the upstream region than that of the downstream. Almost no secondary dendrite appears during the calculation process.

  15. A COMETHE version with transient capability

    International Nuclear Information System (INIS)

    Vliet, J. van; Lebon, G.; Mathieu, P.

    1980-01-01

    A version of the COMETHE code is under development to simulate transient situations. This paper focuses on some aspects of the transient heat transfer models. Initially the coupling between transient heat transfer and other thermomechanical models is discussed. An estimation of the thermal characteristic times shows that the cladding temperatures are often in quasi-steady state. In order to reduce the computing time, calculations are therefore switched from a transient to a quasi-static numerical procedure as soon as such a quasi-equilibrium is detected. The temperature calculation is performed by use of the Lebon-Lambermont restricted variational principle, with piecewise polynoms as trial functions. The method has been checked by comparison with some exact results and yields good agreement for transient as well as for quasi-static situations. This method therefore provides a valuable tool for the simulation of the transient behaviour of nuclear reactor fuel rods. (orig.)

  16. Transient Simulation of the Multi-SERTTA Experiment with MAMMOTH

    Energy Technology Data Exchange (ETDEWEB)

    Ortensi, Javier [Idaho National Lab. (INL), Idaho Falls, ID (United States); Baker, Benjamin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wang, Yaqi [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schunert, Sebastian [Idaho National Lab. (INL), Idaho Falls, ID (United States); deHart, Mark [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-07-11

    This work details the MAMMOTH reactor physics simulations of the Static Environment Rodlet Transient Test Apparatus (SERTTA) conducted at Idaho National Laboratory in FY-2017. TREAT static-environment experiment vehicles are being developed to enable transient testing of Pressurized Water Reactor (PWR) type fuel specimens, including fuel concepts with enhanced accident tolerance (Accident Tolerant Fuels, ATF). The MAMMOTH simulations include point reactor kinetics as well as spatial dynamics for a temperature-limited transient. The strongly coupled multi-physics solutions of the neutron flux and temperature fields are second order accurate both in the spatial and temporal domains. MAMMOTH produces pellet stack powers that are within 1.5% of the Monte Carlo reference solutions. Some discrepancies between the MCNP model used in the design of the flux collars and the Serpent/MAMMOTH models lead to higher power and energy deposition values in Multi-SERTTA unit 1. The TREAT core results compare well with the safety case computed with point reactor kinetics in RELAP5-3D. The reactor period is 44 msec, which corresponds to a reactivity insertion of 2.685% delta k/k$. The peak core power in the spatial dynamics simulation is 431 MW, which the point kinetics model over-predicts by 12%. The pulse width at half the maximum power is 0.177 sec. Subtle transient effects are apparent at the beginning insertion in the experimental samples due to the control rod removal. Additional difference due to transient effects are observed in the sample powers and enthalpy. The time dependence of the power coupling factor (PCF) is calculated for the various fuel stacks of the Multi-SERTTA vehicle. Sample temperatures in excess of 3100 K, the melting point UO$_2$, are computed with the adiabatic heat transfer model. The planned shaped-transient might introduce additional effects that cannot be predicted with PRK models. Future modeling will be focused on the shaped-transient by improving the

  17. Temperature measurements in fluid flows (eventually reactive, multi-phase...) using optical methods; Mesure des temperatures dans les ecoulements (eventuellement reactifs, multiphasiques...) par methodes optiques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This conference day was organized by the `radiations` section of the French association of thermal engineers. This book of proceedings contains 8 papers entitled: `simultaneous temperature and NO concentration measurements in a hydrogen-air turbulent flame`; `application of iodine laser induced fluorescence to temperature, pressure and velocity measurements`; `Doppler phase measurement of refractive index and temperature`; `experimental and numerical study of temperature fields of particulates in plasma jets`; `measurement and determination of temperatures and concentrations of hot exhaust gases with FTIR emission spectroscopy`; `combustion control in gas turbines using CO{sub 2} emission spectroscopy`; `analysis of gases temperature fields and particulate jets. Application to hydrogen-air, kerosene stato-reactors and to solid propellant jets`; `restitution of temperature and species profiles in pre-mixing flames by inversion of transmission and IR emission data. (J.S.)

  18. Effects of temperature dependent conductivity and absorptive/generative heat transfer on MHD three dimensional flow of Williamson fluid due to bidirectional non-linear stretching surface

    Directory of Open Access Journals (Sweden)

    S. Bilal

    Full Text Available Present work is communicated to identify characteristics of magnetohydrodynamic (MHD three dimensional boundary layer flow of Williamson fluid confined by a bidirectional stretched surface. Conductivity of working fluid is assumed to be temperature dependent. Generative/absorptive heat transfer is also taken into account. Mathematical model is formulated in the form of partial expressions and then transmuted into ordinary differential equations with the help of newfangled set of similarity transformations. The resulting non-linear differential system of equations is solved numerically with the aid of Runge-Kutta algorithm supported by shooting method. Flow features are exemplified quantitatively through graphs. Scintillating results for friction factor and convective heat transfer are computed and scrutinized tabularly. Furthermore, the accuracy of present results is tested with existing literature and we found an excellent agreement. It is inferred that velocity along x-direction mounts whereas along y-direction depreciates for incrementing values of stretching ratio parameter. Moreover, it is also elucidated that non-linearity index tends to decrement the velocity and thermal distributions of fluid flow. Keywords: MHD flow, Williamson fluid, Variable thermal conductivity, Heat absorption/generation, Bidirectional non-linear stretching

  19. Experiment data report for LOFT anticipated transient without scram Experiment L9-4

    International Nuclear Information System (INIS)

    Batt, D.L.; Divine, J.M.; McKenna, K.J.

    1982-11-01

    Selected pertinent and uninterpreted data from the fourth anticipated transient with multiple failures experiment (Experiment L9-4) conducted on September 24, 1982, in the Loss-of-Fluid Test (LOFT) facility are presented. The LOFT facility is a 50-MW(t) pressurized water reactor (PWR) system with instruments that measure and provide data on the system's thermal-hydraulic and nuclear conditions. The operation of the LOFT system is typical of large [approx. 1000 MW(e)], commercial PWR operations. Experiment L9-4 simulated a loss-of-offsite-power anticipated transient without reactor scram. The loss-of-offsite-power accident led to an increase in the primary coolant system temperature and pressure. The experiment safety relief valve opened and was able to limit and control the pressure transient. In addition, subsequent heat generation was dissipated by the auxiliary feedwater flow in the secondary coolant system until the reactor was scrammed at experiment termination

  20. Effects of temperature-dependent viscosity on fluid flow and heat transfer in a helical rectangular duct with a finite pitch

    Directory of Open Access Journals (Sweden)

    Cuihua Wang

    2014-09-01

    Full Text Available An incompressible fully developed laminar flow in a helical rectangular duct having finite pitch and curvature with temperature-dependent viscosity under heating condition is studied in this work. Both the cases of one wall heated and four walls heated are studied. The cross-sectional dimensions of the rectangular duct are 2a and 2b. The aspect ratio n=2b/2a is 0.5. Water is used as the fluid and Reynolds number (Re is varied in the range of 100 to 400. The secondary flow with temperature-dependent viscosity is enhanced markedly as compared to constant viscosity. An additional pair of vortices is obtained near the center of the outer wall at Re=400 for the model of four walls heated with temperature-dependent viscosity, y, while for constant viscosity, the appearance of two additional vortices near the outer wall cannot be found. Besides, the axial velocity decreases and the temperature increases at the central region of the rectangular duct when the temperature-dependent viscosity is considered. Due to the decrease of the viscosity near the walls, the friction factor obtained with temperature-dependent viscosity is lower than that of constant viscosity, while the convective heat transfer for temperature-dependent viscosity is significantly enhanced owing to the strengthened secondary flow. Especially for four heated walls, the effects of viscosity variation on the flow resistance and heat transfer are more significant.

  1. A Comparison of Simple Methods to Incorporate Material Temperature Dependency in the Green’s Function Method for Estimating Transient Thermal Stresses in Thick-Walled Power Plant Components

    Directory of Open Access Journals (Sweden)

    James Rouse

    2016-01-01

    Full Text Available The threat of thermal fatigue is an increasing concern for thermal power plant operators due to the increasing tendency to adopt “two-shifting” operating procedures. Thermal plants are likely to remain part of the energy portfolio for the foreseeable future and are under societal pressures to generate in a highly flexible and efficient manner. The Green’s function method offers a flexible approach to determine reference elastic solutions for transient thermal stress problems. In order to simplify integration, it is often assumed that Green’s functions (derived from finite element unit temperature step solutions are temperature independent (this is not the case due to the temperature dependency of material parameters. The present work offers a simple method to approximate a material’s temperature dependency using multiple reference unit solutions and an interpolation procedure. Thermal stress histories are predicted and compared for realistic temperature cycles using distinct techniques. The proposed interpolation method generally performs as well as (if not better than the optimum single Green’s function or the previously-suggested weighting function technique (particularly for large temperature increments. Coefficients of determination are typically above 0 . 96 , and peak stress differences between true and predicted datasets are always less than 10 MPa.

  2. Analysis of transient thermal stresses in an orthotropic finite rectangular plate exhibiting temperature-dependent material properties by finite difference method

    International Nuclear Information System (INIS)

    Sugano, Yoshihiro

    1983-01-01

    Recently, the analysis of thermal stress problem taking the temperature dependence of material constants into account has been regarded as an important subject since the various industrial problems concerning thermal stress occur at relatively large temperature gradient. Only the analysis of one-dimensional thermal stress has been made so far, taking the temperature dependence of material constants into account. In this study, in order to examine the effect of the temperature dependence of material constants on the thermal stress arising in a two-dimensional temperature field, the thermal stress problem of an orthotropic rectangular plate was formulated by using stress functions, taking the temperature dependence of thermal conductivity, specific heat, density, Young's modulus, coefficient of linear expansion and Poisson's ratio in consideration. The effects of the temperature dependence of material constants on temperature distribution and thermal stress distribution were examined by carrying out the numerical analysis by difference method. The numerical analysis was carried out for an isotropic rectangular plate of low carbon steel, of which the data on the temperature dependence of material constants are available. The temperature drop of 8 deg C at maximum as compared with the case of constant material properties was obtained. (Kako, I.)

  3. Current interruption transients calculation

    CERN Document Server

    Peelo, David F

    2014-01-01

    Provides an original, detailed and practical description of current interruption transients, origins, and the circuits involved, and how they can be calculated Current Interruption Transients Calculationis a comprehensive resource for the understanding, calculation and analysis of the transient recovery voltages (TRVs) and related re-ignition or re-striking transients associated with fault current interruption and the switching of inductive and capacitive load currents in circuits. This book provides an original, detailed and practical description of current interruption transients, origins,

  4. Fluid Shifts

    Science.gov (United States)

    Stenger, M. B.; Hargens, A. R.; Dulchavsky, S. A.; Arbeille, P.; Danielson, R. W.; Ebert, D. J.; Garcia, K. M.; Johnston, S. L.; Laurie, S. S.; Lee, S. M. C.; hide

    2017-01-01

    Introduction. NASA's Human Research Program is focused on addressing health risks associated with long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but now more than 50 percent of ISS astronauts have experienced more profound, chronic changes with objective structural findings such as optic disc edema, globe flattening and choroidal folds. These structural and functional changes are referred to as the visual impairment and intracranial pressure (VIIP) syndrome. Development of VIIP symptoms may be related to elevated intracranial pressure (ICP) secondary to spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to determine if a relation exists with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as any VIIP-related effects of those shifts, are predicted by the crewmember's pre-flight status and responses to acute hemodynamic manipulations, specifically posture changes and lower body negative pressure. Methods. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, and calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid

  5. Fluid inclusion geothermometry

    Science.gov (United States)

    Cunningham, C.G.

    1977-01-01

    Fluid inclusions trapped within crystals either during growth or at a later time provide many clues to the histories of rocks and ores. Estimates of fluid-inclusion homogenization temperature and density can be obtained using a petrographic microscope with thin sections, and they can be refined using heating and freezing stages. Fluid inclusion studies, used in conjunction with paragenetic studies, can provide direct data on the time and space variations of parameters such as temperature, pressure, density, and composition of fluids in geologic environments. Changes in these parameters directly affect the fugacity, composition, and pH of fluids, thus directly influencing localization of ore metals. ?? 1977 Ferdinand Enke Verlag Stuttgart.

  6. Laminar free convection in a vertical tube with constant wall temperature considering the variation of fluid properties

    International Nuclear Information System (INIS)

    Senna, J.G.

    1981-01-01

    A model to analyze Laminar Free convection with variable properties in the entrance of a vertical open tube with constant wall temperature and for one Prandtl number (0.7), is studied. The velocity and temperature profiles are determined by finite difference methods for different rates of wall to ambient temperatures and different values of the velocity in the entrance of the tube. The results will be compared with those obtained in the same problem with constant properties. (Author) [pt

  7. Generalized Fluid System Simulation Program (GFSSP) - Version 6

    Science.gov (United States)

    Majumdar, Alok; LeClair, Andre; Moore, Ric; Schallhorn, Paul

    2015-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors, flow control valves and external body forces such as gravity and centrifugal. The thermo-fluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids, and 24 different resistance/source options are provided for modeling momentum sources or sinks in the branches. Users can introduce new physics, non-linear and time-dependent boundary conditions through user-subroutine.

  8. Effects of natural increase in temperature on clay formations and determination of the course and the effects of geothermal fluids

    International Nuclear Information System (INIS)

    Polizzano, C.; Benvegnu, F.; Giannotti, G.; Brandimarte, U.

    1986-01-01

    The behaviour of clay cover towards the geothermal fluids rising up to the surface may represent an excellent natural analogue of the potential migration processes from deep waste repositories in clay formations. The ENEA is conducting research in an appropriate area near M. Amiata in southern Tuscany in order to contribute to solving the problem of the expected impermeability of clay formations. Geothermal fields may namely give an opportunity of studying a case of clay behaviour at a scale corresponding to size and time considered in waste disposal. In the considered area a relevant geothermal field is still active. A clay complex represents the impermeable cover of the local geothermal field. Several endogenous phenomena indicate the preferential ways of migrations of fluids from the basement throughout the cover. The data obtained by the present research prove that the upward flow of fluids, is possible only in the points of reduced thickness of the cover where very important faulting or granulometric discontinuity occur. This situation typically occurs at the border and not in the central part of the clay basins

  9. Aeroelastic Modeling of a Nozzle Startup Transient

    Science.gov (United States)

    Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen

    2014-01-01

    Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a tightly coupled aeroelastic modeling algorithm by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed under the framework of modal analysis. Transient aeroelastic nozzle startup analyses at sea level were performed, and the computed transient nozzle fluid-structure interaction physics presented,

  10. Effects of temperature dependent conductivity and absorptive/generative heat transfer on MHD three dimensional flow of Williamson fluid due to bidirectional non-linear stretching surface

    Science.gov (United States)

    Bilal, S.; Khalil-ur-Rehman; Malik, M. Y.; Hussain, Arif; Khan, Mair

    Present work is communicated to identify characteristics of magnetohydrodynamic (MHD) three dimensional boundary layer flow of Williamson fluid confined by a bidirectional stretched surface. Conductivity of working fluid is assumed to be temperature dependent. Generative/absorptive heat transfer is also taken into account. Mathematical model is formulated in the form of partial expressions and then transmuted into ordinary differential equations with the help of newfangled set of similarity transformations. The resulting non-linear differential system of equations is solved numerically with the aid of Runge-Kutta algorithm supported by shooting method. Flow features are exemplified quantitatively through graphs. Scintillating results for friction factor and convective heat transfer are computed and scrutinized tabularly. Furthermore, the accuracy of present results is tested with existing literature and we found an excellent agreement. It is inferred that velocity along x-direction mounts whereas along y-direction depreciates for incrementing values of stretching ratio parameter. Moreover, it is also elucidated that non-linearity index tends to decrement the velocity and thermal distributions of fluid flow.

  11. Effects of fluid flowrate on coconut milk fouling at pasteurization temperature (70ºC - 74.5ºC

    Directory of Open Access Journals (Sweden)

    Suvit Tia

    2006-11-01

    Full Text Available Effects of fluid flowrate on coconut milk fouling at pasteurization temperature (heating from 70ºC to 74.5ºC were investigated. A test section equipped with four flat plates forming one coconut milk channel and two hot water channels was constructed with the total heat transfer area of 0.051 m2. Three different flowrates of coconut milk (2, 4 and 6 litres per minute (LPM were studied. Monitoring of the overall heat transfer coefficient (U with time (t and the rate of increase of the fouling resistance (dRf/dt was done for all experimental runs. The results illustrated that there were two fouling periods: a fouling period and a post-fouling period, where the rate of increase of the fouling resistance of the fouling period was found to be higher than that of the post-fouling period. The effects of fluid flowrate were found to increase the fouling rate when the flowrate decreased. Published fouling models by protein solutions were unable to predict accurately the fouling rate for coconut milk. Non-linear regression models were then provided by using the experimental data to illustrate the effects of fluid flowrate on coconut milk fouling. The role of protein and fat on coconut milk fouling was explained according to microanalysis of the deposit and chemistry data of the coconut milk from previous research.

  12. Nonlinear Diffusion and Transient Osmosis

    International Nuclear Information System (INIS)

    Igarashi, Akira; Rondoni, Lamberto; Botrugno, Antonio; Pizzi, Marco

    2011-01-01

    We investigate both analytically and numerically the concentration dynamics of a solution in two containers connected by a narrow and short channel, in which diffusion obeys a porous medium equation. We also consider the variation of the pressure in the containers due to the flow of matter in the channel. In particular, we identify a phenomenon, which depends on the transport of matter across nano-porous membranes, which we call ''transient osmosis . We find that nonlinear diffusion of the porous medium equation type allows numerous different osmotic-like phenomena, which are not present in the case of ordinary Fickian diffusion. Experimental results suggest one possible candidate for transiently osmotic processes. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  13. Intrapulpal Temperature Increases Caused by 445-nm Diode Laser-Assisted Debonding of Self-Ligating Ceramic Brackets During Simulated Pulpal Fluid Circulation.

    Science.gov (United States)

    Stein, Steffen; Wenzler, Johannes; Hellak, Andreas; Schauseil, Michael; Korbmacher-Steiner, Heike; Braun, Andreas

    2018-01-03

    This study investigated temperature increases in dental pulp resulting from laser-assisted debonding of ceramic brackets using a 445-nm diode laser. Eighteen ceramic brackets were bonded in standardized manner to 18 caries-free human third molars. Pulpal fluid circulation was simulated by pumping distilled water at 37°C through the pulp chamber. The brackets were irradiated with a 445-nm diode laser. Temperatures were measured using a thermal camera at points P1 (center of the pulp) and P2 (in the hard dental tissue) at the baseline (T0), at the start and end of laser application (T1 and T2), and the maximum during the sequence (T max ). Significant differences in the temperatures measured at P1 and P2 were observed among T0, T1, T2, and T max . Significant increases in temperature were noted at points P1 and P2, between T1 and T2, T1 and T max , and T2 and T max . The maximum P2 values were significantly higher than at P1. The maximum temperature increase measured in the pulp was 2.23°C, lower than the critical threshold of 5.5°C. On the basis of the laser settings used, there is no risk to the vitality of dental pulp during laser-assisted debonding of ceramic brackets with a 445-nm diode laser.

  14. Technical Note: How accurate can stalagmite formation temperatures be determined using vapour bubble radius measurements in fluid inclusions?

    DEFF Research Database (Denmark)

    Spadin, F.; Marti, Dominik; Hidalgo-Staub, R.

    2015-01-01

    -induced vapour bubbles inside the inclusions. A reliable method for precisely measuring the radius of vapour bubbles is presented. The method is applied to stalagmite samples for which the formation temperature is known. An assessment of the bubble radius measurement accuracy and how this error influences......-of-principle investigation that the formation temperature of 10–20 yr old inclusions in a stalagmite taken from the Milandre cave is 9.87 ± 0.80 ◦C, while the mean annual surface temperature, that in the case of the Milandre cave correlates well with the cave temperature, was 9.6 ± 0.15 ◦C, calculated from actual...... measurements at that time, showing a very good agreement. Formation temperatures of inclusions formed during the last 450 yr are found in a temperature range between 8.4 and 9.6 ◦C, which corresponds to the calculated average surface temperature. Paleotemperatures can thus be determined within ±1.0 ◦C....

  15. Transient heat transfer behavior of water spray evaporative cooling on a stainless steel cylinder with structured surface for safety design application in high temperature scenario

    Science.gov (United States)

    Aamir, Muhammad; Liao, Qiang; Hong, Wang; Xun, Zhu; Song, Sihong; Sajid, Muhammad

    2017-02-01

    High heat transfer performance of spray cooling on structured surface might be an additional measure to increase the safety of an installation against any threat caused by rapid increase in the temperature. The purpose of present experimental study is to explore heat transfer performance of structured surface under different spray conditions and surface temperatures. Two cylindrical stainless steel samples were used, one with pyramid pins structured surface and other with smooth surface. Surface heat flux of 3.60, 3.46, 3.93 and 4.91 MW/m2 are estimated for sample initial average temperature of 600, 700, 800 and 900 °C, respectively for an inlet pressure of 1.0 MPa. A maximum cooling rate of 507 °C/s was estimated for an inlet pressure of 0.7 MPa at 900 °C for structured surface while for smooth surface maximum cooling rate of 356 °C/s was attained at 1.0 MPa for 700 °C. Structured surface performed better to exchange heat during spray cooling at initial sample temperature of 900 °C with a relative increase in surface heat flux by factor of 1.9, 1.56, 1.66 and 1.74 relative to smooth surface, for inlet pressure of 0.4, 0.7, 1.0 and 1.3 MPa, respectively. For smooth surface, a decreasing trend in estimated heat flux is observed, when initial sample temperature was increased from 600 to 900 °C. Temperature-based function specification method was utilized to estimate surface heat flux and surface temperature. Limited published work is available about the application of structured surface spray cooling techniques for safety of stainless steel structures at very high temperature scenario such as nuclear safety vessel and liquid natural gas storage tanks.

  16. Computational fluid dynamics analysis of an innovative start-up method of high temperature fuel cells using dynamic 3d model

    Directory of Open Access Journals (Sweden)

    Kupecki Jakub

    2017-03-01

    Full Text Available The article presents a numerical analysis of an innovative method for starting systems based on high temperature fuel cells. The possibility of preheating the fuel cell stacks from the cold state to the nominal working conditions encounters several limitations related to heat transfer and stability of materials. The lack of rapid and safe start-up methods limits the proliferation of MCFCs and SOFCs. For that reason, an innovative method was developed and verified using the numerical analysis presented in the paper. A dynamic 3D model was developed that enables thermo-fluidic investigations and determination of measures for shortening the preheating time of the high temperature fuel cell stacks. The model was implemented in ANSYS Fluent computational fluid dynamic (CFD software and was used for verification of the proposed start-up method. The SOFC was chosen as a reference fuel cell technology for the study. Results obtained from the study are presented and discussed.

  17. Thermodynamics of aqueous solutes at high temperatures and pressures: Application of the hydration theory and implications for fluid-mediated mass transfer

    Science.gov (United States)

    Sulak, M.; Dolejs, D.

    2012-04-01

    Magmatic activity and prograde devolatilization of subducting or underplating lithologies release large quantities of aqueous fluids that act as mass and heat transfer agents in the planetary interiors. Understanding of mineral-melt-fluid interactions is essential for evaluating the effects of fluid-mediated mass transport in subduction zones, collisional orogens as well as in igneous provinces. The thermodynamic properties of aqueous species were frequently described by the Helgeson-Kirkham-Flowers equation of state [1] but its utility is limited by inavailability of the solvent dielectric properties at high pressures and temperatures, and by decoupling of species-solvent mechanical and electrostatic interactions that cannot be separated within the Born theory. Systematic description of the hydration process in a Born-Haber cycle leads to the following thermochemical contributions: (i) thermodynamic properties of an unhydrated species, (ii) the pressure-volume work required to create a cavity within the solvent to accommodate the species, described by the scaled particle theory, (iii) entropic contribution related to changes in the solute's and the solvent's kinetic degrees of freedom, and (iv) contribution from the solute-solvent molecular interactions and corresponding rearrangement of the solvent molecules to form the hydration shell. Application of the spatial correlation functions [2, 3] results in apparent Gibbs energy of aqueous species, ΔaGi = a + bT + cTlnT + dP + eTlnρ + fTρlnρ, where athrough f represent constants related to standard thermodynamic properties of aqueous species (ΔfH, S, V, cP) and to solvent volumetric properties at 298.15 K and 1 bar (ρ, α, β etc.). In phase equilibrium calculations, the number of required parameters often reduces to four (c = f = 0) while noting that H2O density as the only solvent-related property is accurately known to extreme temperatures and pressures. The equation of state parameters were calibrated for 30

  18. Steady- and transient-state analysis of fully ceramic microencapsulated fuel with randomly dispersed tristructural isotropic particles via two-temperature homogenized model-I: Theory and method

    International Nuclear Information System (INIS)

    Lee, Yoon Hee; Cho, Bum Hee; Cho, Nam Zin

    2016-01-01

    As a type of accident-tolerant fuel, fully ceramic microencapsulated (FCM) fuel was proposed after the Fukushima accident in Japan. The FCM fuel consists of tristructural isotropic particles randomly dispersed in a silicon carbide (SiC) matrix. For a fuel element with such high heterogeneity, we have proposed a two-temperature homogenized model using the particle transport Monte Carlo method for the heat conduction problem. This model distinguishes between fuel-kernel and SiC matrix temperatures. Moreover, the obtained temperature profiles are more realistic than those of other models. In Part I of the paper, homogenized parameters for the FCM fuel in which tristructural isotropic particles are randomly dispersed in the fine lattice stochastic structure are obtained by (1) matching steady-state analytic solutions of the model with the results of particle transport Monte Carlo method for heat conduction problems, and (2) preserving total enthalpies in fuel kernels and SiC matrix. The homogenized parameters have two desirable properties: (1) they are insensitive to boundary conditions such as coolant bulk temperatures and thickness of cladding, and (2) they are independent of operating power density. By performing the Monte Carlo calculations with the temperature-dependent thermal properties of the constituent materials of the FCM fuel, temperature-dependent homogenized parameters are obtained

  19. Thermally stratified flow of second grade fluid with non-Fourier heat flux and temperature dependent thermal conductivity

    Science.gov (United States)

    Khan, M. Ijaz; Zia, Q. M. Zaigham; Alsaedi, A.; Hayat, T.

    2018-03-01

    This attempt explores stagnation point flow of second grade material towards an impermeable stretched cylinder. Non-Fourier heat flux and thermal stratification are considered. Thermal conductivity dependents upon temperature. Governing non-linear differential system is solved using homotopic procedure. Interval of convergence for the obtained series solutions is explicitly determined. Physical quantities of interest have been examined for the influential variables entering into the problems. It is examined that curvature parameter leads to an enhancement in velocity and temperature. Further temperature for non-Fourier heat flux model is less than Fourier's heat conduction law.

  20. Fluid flow solidification simulation of molten alloys

    International Nuclear Information System (INIS)

    Kaschnitz, E.

    1997-01-01

    In an effort to minimize costs and to obtain optimum designs, computer simulation of shape casting processes is more and more used as a development tool. Accurate predictions are possible by means of three dimensional fluid flow and solidification modelling. The bases of the model are the transient laminar Navier-Stokes-equations for a Newtonian fluid including the tracking of the free surface. They are describing the melt flow pattern during the mold filling sequence. Simultaneously, the temperature development in the alloy and mold is calculated using Fourier's heat transfer equation. At OEGI, a commercial software package (MAGMAsoft) with a finite difference equation solver is used for improvement of casting processes. Different examples of industrial applications will be shown. (author)

  1. Effect of cutoff radius, long range interaction and temperature controller on thermodynamic properties of fluids: Methanol as an example

    Science.gov (United States)

    Obeidat, Abdalla; Jaradat, Adnan; Hamdan, Bushra; Abu-Ghazleh, Hind

    2018-04-01

    The best spherical cutoff radius, long range interaction and temperature controller were determined using surface tension, density, and diffusion coefficients of van Leeuwen and Smit methanol. A quite good range of cutoff radii from 0.75 to 1.45 nm has been studied on Coulomb cut-off and particle mesh Ewald (PME) long range interaction to determine the best cutoff radius and best long range interaction as well for four sets of temperature: 200, 230, 270 and 300 K. To determine the best temperature controller, the cutoff radius of 1.25 nm was fixed using PME long range interaction on calculating the above properties at low temperature range: 200-300 K.

  2. CEDNBR: a computer code for transient thermal margin analysis of a reactor core

    International Nuclear Information System (INIS)

    Shesler, A.T.; Lehmann, C.R.

    1976-09-01

    The report describes the CEDNBR computer code. This code was developed for the transient thermal analysis of a pressurized water reactor core or a critical heat flux test. Included are the code structure, conservation equations, and correlations utilized by CEDNBR. The methods of modelling a reactor core and hot channel and a CHF test are presented. Comparisons of CEDNBR calculations are made with both empirical pressure loss data and simulated loss of flow test data. The code solves the one-dimensional conservation of mass, energy, and momentum equations and the equation of state for the fluid for either steady-state or transient conditions. Tabular time dependent functions of inlet temperatures, pressure, mass velocity, axial heat flux distributions, normalized heat flux, radial peaking factors, and incremental mixing factors are required input to the code. Transient effects are included in the calculation of enthalpy rise and fluid properties. The Departure from Nucleate Boiling Ratio (DNBR) is calculated by applying a Critical Heat Flux (CHF) correlation to the computed local fluid properties. A code user's guide is provided for preparing input to the code. In addition, descriptions of the sub-routines used by CEDNBR are given

  3. Comparing between predicted output temperature of flat-plate solar collector and experimental results: computational fluid dynamics and artificial neural network

    Directory of Open Access Journals (Sweden)

    F Nadi

    2017-05-01

    Full Text Available Introduction The significant of solar energy as a renewable energy source, clean and without damage to the environment, for the production of electricity and heat is of great importance. Furthermore, due to the oil crisis as well as reducing the cost of home heating by 70%, solar energy in the past two decades has been a favorite of many researchers. Solar collectors are devices for collecting solar radiant energy through which this energy is converted into heat and then heat is transferred to a fluid (usually air or water. Therefore, a key component in performance improvement of solar heating system is a solar collector optimization under different testing conditions. However, estimation of output parameters under different testing conditions is costly, time consuming and mostly impossible. As a result, smart use of neural networks as well as CFD (computational fluid dynamics to predict the properties with which desired output would have been acquired is valuable. To the best of our knowledge, there are no any studies that compare experimental results with CFD and ANN. Materials and Methods A corrugated galvanized iron sheet of 2 m length, 1 m wide and 0.5 mm in thickness was used as an absorber plate for absorbing the incident solar radiation (Fig. 1 and 2. Corrugations in absorber were caused turbulent air and improved heat transfer coefficient. Computational fluid dynamics K-ε turbulence model was used for simulation. The following assumptions are made in the analysis. (1 Air is a continuous medium and incompressible. (2 The flow is steady and possesses have turbulent flow characteristics, due to the high velocity of flow. (3 The thermal-physical properties of the absorber sheet and the absorber tube are constant with respect to the operating temperature. (4 The bottom side of the absorber tube and the absorber plate are assumed to be adiabatic. Artificial neural network In this research a one-hidden-layer feed-forward network based on the

  4. Numerical and experimental investigations of transient behaviour of compact plate fin heat exchanger

    Science.gov (United States)

    Chakravarty, Abhilash; Goyal, M.; Chakravarty, A.; Joemon, V.

    2017-02-01

    In this paper, models for the transient simulation of a 2 stream plate fin heat exchanger (PFHE) with offset strip fins (OSF) have been formulated based on unsteady mass and energy conservation equations. The behaviour of a PFHE during start up, cool down and during a ramp change in the inlet temperature of one of the fluids have been studied with the help of these models. Initially, a simplified model considering constant helium properties is developed. This model is further evolved to take into account the temperature dependence of helium properties in the cryogenic temperature domain, along with axial heat conduction (AHC) and thermal capacity of the metal separating plate. Computer codes based on the models have been developed to simulate PFHE behaviour. Experiments at room temperature have been carried out for code validation. It has been found that the model based on constant helium properties is sufficient to predict behaviour of the heat exchanger under room temperature conditions.

  5. Features of chlorophyll fluorescence transients can be used to investigate low temperature induced effects on photosystem II of algal lichens from polar regions

    Czech Academy of Sciences Publication Activity Database

    Mishra, Anamika; Hajek, J.; Tuháčková, T.; Barták, M.; Mishra, Kumud

    2015-01-01

    Roč. 5, č. 1 (2015), s. 99-111 ISSN 1805-0689 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : Rhizoplaca melanophtalma * Umbilicaria antarctica * Xanthoria elegans * temperature stress Subject RIV: EH - Ecology, Behaviour

  6. Thermodynamic modeling of non-ideal mineral-fluid equilibria in the system Si-Al-Fe-Mg-Ca-Na-K-H-O-Cl at elevated temperatures and pressures: Implications for hydrothermal mass transfer in granitic rocks

    Science.gov (United States)

    Dolejš, David; Wagner, Thomas

    2008-01-01

    We present the results of thermodynamic modeling of fluid-rock interaction in the system Si-Al-Fe-Mg-Ca-Na-H-O-Cl using the GEM-Selektor Gibbs free energy minimization code. Combination of non-ideal mixing properties in solids with multicomponent aqueous fluids represents a substantial improvement and it provides increased accuracy over existing modeling strategies. Application to the 10-component system allows us to link fluid composition and speciation with whole-rock mineralogy, mass and volume changes. We have simulated granite-fluid interaction over a wide range of conditions (200-600 °C, 100 MPa, 0-5 m Cl and fluid/rock ratios of 10-2-104) in order to explore composition of magmatic fluids of variable salinity, temperature effects on fluid composition and speciation and to simulate several paths of alteration zoning. At low fluid/rock ratios (f/r) the fluid composition is buffered by the silicate-oxide assemblage and remains close to invariant. This behavior extends to a f/r of 0.1 which exceeds the amount of exsolved magmatic fluids controlled by water solubility in silicate melts. With increasing peraluminosity of the parental granite, the Na-, K- and Fe-bearing fluids become more acidic and the oxidation state increases as a consequence of hydrogen and ferrous iron transfer to the fluid. With decreasing temperature, saline fluids become more Ca- and Na-rich, change from weakly acidic to alkaline, and become significantly more oxidizing. Large variations in Ca/Fe and Ca/Mg ratios in the fluid are a potential geothermometer. The mineral assemblage changes from cordierite-biotite granites through two-mica granites to chlorite-, epidote- and zeolite-bearing rocks. We have carried out three rock-titration simulations: (1) reaction with the 2 m NaCl fluid leads to albitization, chloritization and desilication, reproducing essential features observed in episyenites, (2) infiltration of a high-temperature fluid into the granite at 400 °C leads to hydrolytic

  7. PSH Transient Simulation Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-21

    PSH Transient Simulation Modeling presentation from the WPTO FY14 - FY16 Peer Review. Transient effects are an important consideration when designing a PSH system, yet numerical techniques for hydraulic transient analysis still need improvements for adjustable-speed (AS) reversible pump-turbine applications.

  8. Oxygen isotope exchange in rocks and minerals from the Cerro Prieto geothermal system: Indicators of temperature distribution and fluid flow

    Science.gov (United States)

    Williams, A. E.; Elders, W. A.

    1981-12-01

    Paleotemperatures different from the present thermal regime were studied by examining coexisting mineral systems which exchanged their oxygen with the geothermal brines at different rates. Oxygen isotopic compositions were measured in drill cuttings and core and core samples from more than 40 wells. Oxygen isotopic profiles of pore filling calcites in sandstones are a measure of the recent equilibrium temperature distribution. A three dimensional map was developed, showing the equilibrium temperatures in the geothermal field. A mass balance calculation was performed using measured 18O enrichment of the geothermal brine. This calculation implies an overall water; rock volume ratio of approximately 3:1 during the history of the Cerro Prieto system.

  9. Effect of temperature and duration of ensiling on in vitro degradation of maize silages in rumen fluid

    NARCIS (Netherlands)

    Ali, M.; Cone, J.W.; Khan, N.A.; Hendriks, W.H.; Struik, P.C.

    2015-01-01

    The effects of ensiling temperature and duration of ensiling on the feeding quality of whole-crop maize (Zea mays L.) silages were investigated. Samples of one cultivar of maize plants were collected from two different fields, grown in different years on sandy soils. Samples were collected when the

  10. Analysis of heat transfer and stress in the pipe with hot fluid flowing through

    International Nuclear Information System (INIS)

    Charoensri, Apisara; Pichestapong, Pipat; Rodthongkom, Chouvana

    2003-10-01

    At incomplete mixing area of high temperature and low temperature liquid near the surface of structures, temperature fluctuation of liquid gives thermal fatigue damage to wall structure. This phenomenon is called thermal striping. For designing of piping system, it is important to know thermal stresses of structure due to heat convection. In this study, authors proposed a simplified evaluation method to predict thermal stress from temperature fluctuation, for rational design against thermal striping. It is required to estimate structural responses to temperature fluctuation of fluid. The attenuation process is a thermal coupling problem between fluids and structures and has a sensitive characteristics to frequencies of temperature fluctuations were analyzed by FINAS, which is a computer program based on the finite element method by comparisons of theoretical method. When the inner surface of the pipe is due to heat convection of contained fluid with sinusoidal temperature fluctuation and the outer surface is kept insulated, temperature distribution of structure is analyzed by solving the equation of transient heat conduction. From these temperature distributions, induced thermal stresses in the structure are calculated by thermal elastic analysis. Frequency response characteristics of structures and its mechanism were investigated by both numerical and theoretical methods. Based on above investigation, a structural response diagram was derived, which can predict stress amplitude of structures from temperature amplitude and frequency of fluids

  11. Generalized Fluid System Simulation Program, Version 5.0-Educational

    Science.gov (United States)

    Majumdar, A. K.

    2011-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors and external body forces such as gravity and centrifugal. The thermofluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the point, drag and click method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids and 21 different resistance/source options are provided for modeling momentum sources or sinks in the branches. This Technical Memorandum illustrates the application and verification of the code through 12 demonstrated example problems.

  12. Relativistic thermodynamics of fluids

    International Nuclear Information System (INIS)

    Souriau, J.-M.

    1977-05-01

    The relativistic covariant definition of a statistical equilibrium, applied to a perfect gas, involves a 'temperature four-vector', whose direction is the mean velocity of the fluid, and whose length is the reciprocal temperature. The hypothesis of this 'temperature four-vector' being a relevant variable for the description of the dissipative motions of a simple fluid is discussed. The kinematics is defined by using a vector field and measuring the number of molecules. Such a dissipative fluid is subject to motions involving null entropy generation; the 'temperature four-vector' is then a Killing vector; the equations of motion can be completely integrated. Perfect fluids can be studied by this way and the classical results of Lichnerowicz are obtained. In weakly dissipative motions two viscosity coefficient appear together with the heat conductibility coefficient. Two other coefficients perharps measurable on real fluids. Phase transitions and shock waves are described with using the model [fr

  13. Forced convection of ammonia. Part.1. Liquid ammonia. Small temperature differences between the fluid and the wall; Convection forcee de l'ammoniac. Premiere partie. Ammoniac liquide. Cas de faibles ecarts de temperatures entre fluide et paroi

    Energy Technology Data Exchange (ETDEWEB)

    Perroud, P.; Rebiere, J.; Rowe, A. [Commissariat a l' Energie Atomique, 38 - Grenoble (France). Centre d' Etudes Nucleaires

    1966-07-01

    Experiments have been performed in a cylindrical smooth Inconel tube: 3 mm ID, 3.5 mm OD, electrically heated (50 Hz) along 300 mm length. Pressure varied from 5 to 100 bars (P{sub c} = 113 bars) mass velocity from 40 to 500 g/cm{sup 2}. s, inlet temperature from - 33 deg C to 95 deg C, heat fluxes to 315 W/cm{sup 2}, maximum wall temperatures 850 deg C, quality 0 to 0.80. The correlation Nu = CRe{sup 0.8} Pr{sup 0.4} is found available for homogeneous liquid-phase heat transfer coefficients with C = 0.021. Influences of P, G, t{sub e} and x on critical heat fluxes is discussed. A correlation of the type q{sub c} = A(P)G{sup m} {delta}t{sub sub}{sup n} (Jens and Lottes) is chosen for the negative qualities and for positive qualities we propose q{sub c} = B(P)/G{sup b(P)} x (1000/H{sub c}){sup 2.5}. Two-phase pressure drops can be calculated by Martinelli-Nelson method with a good approximation. Experimental results are presented in tables (burn-out) and measured temperatures profiles are separately published. (authors) [French] Les experiences ont ete realisees a l'aide d'un tube cylindrique lisse en inconel de 3 x 3,5 mm de diametre, chauffe electriquement (50 Hz) sur une longueur de 300 mm. Domaine explore - pression P: de 5 a 100 bars (P{sub c} = 113 bars); vitesse massique G: de 40 a 500 g/cm{sup 2}. s; temperature d'entree t{sub e}: de - 33 deg C a + 95 deg C; densite de flux de chaleur q: jusqu'a 315 W/cm{sup 2}; temperature maximale de paroi tp: 850 deg C; titre de vapeur x jusqu'a 0,80. La correlation classique Nu = C Re{sup 0,8} Pr{sup 0,4} se trouve etre confirmee pour les coefficients d'echange en phase liquide homogene avec C = 0,021. On discute l'influence de P, G, t{sub e} et x sur le flux de chaleur critique q{sub c}. Pour les titres negatifs on a adopte une correlation du type Jens et Lottes q{sub c} = A(P) G{sup m} {delta}{sub sub}{sup n} et pour les titres positifs, on propose q{sub c} B(P)/G{sup b(P)} x (1000/H

  14. Pressurizer and steam-generator behavior under PWR transient conditions

    International Nuclear Information System (INIS)

    Wahba, A.B.; Berta, V.T.; Pointner, W.

    1983-01-01

    Experiments have been conducted in the Loss-of-Fluid Test (LOFT) pressurized water reactor (PWR), at the Idaho National Engineering Laboratory, in which transient phenomena arising from accident events with and without reactor scram were studied. The main purpose of the LOFT facility is to provide data for the development of computer codes for PWR transient analyses. Significant thermal-hydraulic differences have been observed between the measured and calculated results for those transients in which the pressurizer and steam generator strongly influence the dominant transient phenomena. Pressurizer and steam generator phenomena that occurred during four specific PWR transients in the LOFT facility are discussed. Two transients were accompanied by pressurizer inflow and a reduction of the heat transfer in the steam generator to a very small value. The other two transients were accompanied by pressurizer outflow while the steam generator behavior was controlled

  15. temperature

    Directory of Open Access Journals (Sweden)

    G. Polt

    2015-10-01

    Full Text Available In-situ X-ray diffraction was applied to isotactic polypropylene with a high volume fraction of α-phase (α-iPP while it has been compressed at temperatures below and above its glass transition temperature Tg. The diffraction patterns were evaluated by the Multi-reflection X-ray Profile Analysis (MXPA method, revealing microstructural parameters such as the density of dislocations and the size of coherently scattering domains (CSD-size. A significant difference in the development of the dislocation density was found compared to compression at temperatures above Tg, pointing at a different plastic deformation mechanism at these temperatures. Based on the individual evolutions of the dislocation density and CSD-size observed as a function of compressive strain, suggestions for the deformation mechanisms occurring below and above Tg are made.

  16. Late Noachian Icy Highlands climate model: Exploring the possibility of transient melting and fluvial/lacustrine activity through peak annual and seasonal temperatures

    Science.gov (United States)

    Palumbo, Ashley M.; Head, James W.; Wordsworth, Robin D.

    2018-01-01

    The nature of the Late Noachian climate of Mars remains one of the outstanding questions in the study of the evolution of martian geology and climate. Despite abundant evidence for flowing water (valley networks and open/closed basin lakes), climate models have had difficulties reproducing mean annual surface temperatures (MAT) > 273 K in order to generate the ;warm and wet; climate conditions presumed to be necessary to explain the observed fluvial and lacustrine features. Here, we consider a ;cold and icy; climate scenario, characterized by MAT ∼225 K and snow and ice distributed in the southern highlands, and ask: Does the formation of the fluvial and lacustrine features require continuous ;warm and wet; conditions, or could seasonal temperature variation in a ;cold and icy; climate produce sufficient summertime ice melting and surface runoff to account for the observed features? To address this question, we employ the 3D Laboratoire de Météorologie Dynamique global climate model (LMD GCM) for early Mars and (1) analyze peak annual temperature (PAT) maps to determine where on Mars temperatures exceed freezing in the summer season, (2) produce temperature time series at three valley network systems and compare the duration of the time during which temperatures exceed freezing with seasonal temperature variations in the Antarctic McMurdo Dry Valleys (MDV) where similar fluvial and lacustrine features are observed, and (3) perform a positive-degree-day analysis to determine the annual volume of meltwater produced through this mechanism, estimate the necessary duration that this process must repeat to produce sufficient meltwater for valley network formation, and estimate whether runoff rates predicted by this mechanism are comparable to those required to form the observed geomorphology of the valley networks. When considering an ambient CO2 atmosphere, characterized by MAT ∼225 K, we find that: (1) PAT can exceed the melting point of water (>273 K) in

  17. Cold temperature induces mucin hypersecretion from normal human bronchial epithelial cells in vitro through a transient receptor potential melastatin 8 (TRPM8)-mediated mechanism.

    Science.gov (United States)

    Li, MinChao; Li, Qi; Yang, Gang; Kolosov, Victor P; Perelman, Juliy M; Zhou, Xiang Dong

    2011-09-01

    Cold air stimulus is a major environmental factor that exacerbates chronic inflammatory airway diseases, such as chronic obstructive pulmonary disease (COPD) and asthma. At the molecular level, cold is detected by transient receptor potential melastatin 8 (TRPM8). To date, TRPM8 expression has not been characterized in the airway epithelium of patients with COPD. The role of TRPM8 channels in a series of airway responses induced by cold stimuli and the molecular and biochemical pathways of TRPM8 in regulating cold-induced responses are largely unknown. We sought to explore the role of TRPM8 in cold air-provoked mucus hypersecretion and the potential signaling pathway involved in this process. The expression of TRPM8 in the bronchial epithelium was examined by means of immunohistochemistry, RT-PCR, and Western blotting. TRPM8 receptor function and hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) were characterized by means of Ca(2+) imaging and spatiotemporal dynamics of phospholipase C (PLC) δ1-pleckstrin homology-green fluorescent protein, respectively. The expression of MUC5AC mRNA and MUC5AC mucin protein was measured by using real-time PCR and ELISA, respectively. Four serine residues in the myristoylated alanine-rich C kinase substrate (MARCKS)-phosphorylation site domain were mutated to identify the function of MARCKS in TRPM8-mediated airway mucus hypersecretion. TRPM8 protein and mRNA expression were significantly increased in patients with COPD compared with expression seen in healthy subjects. Cold produced robust increases in intracellular Ca(2+) levels and promoted translocation of PLCδ1-pleckstrin homology-green fluorescent protein. Cold increased expression of MUC5AC mRNA and intracellular and secreted MUC5AC protein in a nonsustained way. Phosphorylation site domain-mutant MARCKS cDNA hindered MUC5AC secretion induced by cold. These results indicate that the TRPM8 receptor is involved in cold-induced mucus hypersecretion through the Ca(2

  18. Slab fluid release: localized in space and time

    Science.gov (United States)

    John, T.; Gussone, N. C.; Podladchikov, Y. Y.

    2012-12-01

    As subducting oceanic plates descend into the Earth's mantle, increasing pressures and temperatures lead to the progressive destabilization of hydrous mineral phases and the release of H2O-rich fluids. Some fraction of these fluids ascend into the overlying mantle wedge, inducing partial melting, and their "chemical freight" is thought to contribute to the distinctive chemical signature of the resulting arc magmas. Field evidences suggest that channelized fluid flow may be the dominant mechanism for intra-slab fluid flow. Along their pathways within slabs, these fluids can trigger mineral reactions and produce chemical changes in rocks with which they interact. However, the spatial and temporal scales of this fluid flow remain largely unknown. We employed the Ca and Li isotope systems on a fossil high-pressure fluid pathway and its associated reaction halo (Chinese Tianshan), formed at ~70 km depth during subduction of a coherent oceanic slab, allowing us to constrain the fluid flux, fluid source and the duration of the fluid-rock interaction. In the reaction halo, the degree of eclogitization along with Ca concentration increases towards the vein. A high fluid flux is required to obtain the observed Ca increase and changes in δ44/40Ca. The Ca isotope composition indicate mixing of two distinct Ca sources, the wall-rock blueschist and an external fluid source, the latter of which is enriched in heavy Ca isotopes. The relatively high δ44/40Ca (>1.3‰) of the infiltrating fluid is suggestive of partially hydrated slab mantle as the fluid source. Alternatively, Ca derived from MORB, (0.7 to 0.9‰) and AOC (0.6 to 1.0‰) might evolve towards heavier Ca isotope values while it is ascending through the slab and reacting with wall-rocks and forming carbonates, which are usually associated with the flow structures. This is because calcium carbonate precipitation preferentially removes light Ca from the fluid while the residual fluid will get heavier proportional to

  19. Fluid convection observed from temperature logs in the karst formation of the Yucatán peninsula, Mexico

    Czech Academy of Sciences Publication Activity Database

    Šafanda, Jan; Heidinger, P.; Wilhelm, H.; Čermák, Vladimír

    2005-01-01

    Roč. 2, č. 4 (2005), s. 326-331 ISSN 1742-2132 R&D Projects: GA ČR GA205/03/0997; GA MŠk LA 150 Grant - others:Deutsche Forschungsgemeinschaft(DE) WI 687/17-1,2,3 Institutional research plan: CEZ:AV0Z30120515 Keywords : temperature logging * karst formation * Chicxulub Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.860, year: 2005

  20. Large-eddy simulations of velocity and temperature fluctuations in hot and cold fluids mixing in a tee junction with an upstream straight or elbow main pipe

    International Nuclear Information System (INIS)

    Lu, T.; Attinger, D.; Liu, S.M.

    2013-01-01

    Highlights: • Temperature and velocity fluctuations in a tee junction are predicted using LES. • The numerical results are in good agreement with the experimental data. • Upstream elbow pipe has significant influence on those fluctuations. -- Abstract: Thermal striping resulting in thermal fatigue is an important safety issue for nuclear power plants. In this work, temperature and velocity fluctuations in hot and cold fluids mixing in a tee junction with the main pipe connected either to an upstream straight or elbow pipe have been numerically predicted using large-eddy simulations (LES) on the FLUENT platform with the assumption of fully-developed velocity at both main and branch pipe inlets. The numerical results for the case with an upstream straight pipe were found to be in reasonable agreement with the available experimental data. The reason for the small discrepancy between the numerical results and experimental data can be attributed to the turbulence velocity being 10% of the fully-developed velocity at the main and branch pipe inlets in the LES calculations, while in the experiments the turbulence velocity was about 10% of the average velocity upstream of the tee junction. The simulated normalized mean and root-mean square (RMS) temperatures and the velocities at both straight and elbow tees were then compared, as well as the power spectrum densities (PSD) of the temperature fluctuations. The elbow pipe upstream of the main pipe has a significant influence on the mixing, resulting in increased temperature and velocity fluctuations. The flow pattern of the elbow tee deviates from the wall jet due to the secondary flow in the upstream elbow pipe

  1. Fluid transfer and vein thickness distribution in high and low temperature hydrothermal systems at shallow crustal level in southern Tuscany (Italy

    Directory of Open Access Journals (Sweden)

    Francesco Mazzarini

    2014-06-01

    Full Text Available Geometric analysis of vein systems hosted in upper crustal rocks and developed in high and low temperature hydrothermal systems is presented. The high temperature hydrothermal system consists of tourmaline-rich veins hosted within the contact aureole of the upper Miocene Porto Azzurro pluton in the eastern Elba Island. The low temperature hydrothermal system consists of calcite-rich veins hosted within the Oligocene sandstones of the Tuscan Nappe, exposed along the coast in southern Tuscany. Vein thickness distribution is here used as proxy for inferring some hydraulic properties (transmissivity of the fluid circulation at the time of veins’ formation. We derive estimations of average thickness of veins by using the observed distributions. In the case of power law thickness distributions, the lower the scaling exponent of the distribution the higher the overall transmissivity. Indeed, power law distributions characterised by high scaling exponents have transmissivity three order of magnitude lower than negative exponential thickness distribution. Simple observations of vein thickness may thus provides some clues on the transmissivity in hydrothermal systems.

  2. Heat transfer and fluid flow during laser spot welding of 304 stainless steel

    CERN Document Server

    He, X; Debroy, T

    2003-01-01

    The evolution of temperature and velocity fields during laser spot welding of 304 stainless steel was studied using a transient, heat transfer and fluid flow model based on the solution of the equations of conservation of mass, momentum and energy in the weld pool. The weld pool geometry, weld thermal cycles and various solidification parameters were calculated. The fusion zone geometry, calculated from the transient heat transfer and fluid flow model, was in good agreement with the corresponding experimentally measured values for various welding conditions. Dimensional analysis was used to understand the importance of heat transfer by conduction and convection and the roles of various driving forces for convection in the weld pool. During solidification, the mushy zone grew at a rapid rate and the maximum size of the mushy zone was reached when the pure liquid region vanished. The solidification rate of the mushy zone/liquid interface was shown to increase while the temperature gradient in the liquid zone at...

  3. The Effects of Temperature, Humidity and Aircraft Fluid Exposure on T800H/3900-2 Composites Bonded with AF-555M Adhesive

    Science.gov (United States)

    Miner, Gilda A.; Hou, Tan-Hung; Lowther, Sharon E.; Thibeault, Sheila A.; Connell, John W.; Blasini, Sheila Roman

    2010-01-01

    Fiber reinforced resin matrix composites and structural adhesives have found increased usage on commercial and military aircraft in recent years. Due to the lack of service history of these relatively new material systems, their long-term aging performance has not been well established. In this study, single lap shear specimens (SLS) were fabricated by secondary bonding of Scotch-Weld(TradeMark) AF-555M between pre-cured adherends comprised of T800H/3900-2 uni-directional laminates. The adherends were co-cured with wet peel-ply for surface preparation. Each bond-line of the SLS specimen was measured to determine thickness and inspected visually using an optical microscope for voids. A three-year environmental aging plan for the SLS specimens at 82 C (180 F) and 85% relative humidity was initiated. SLS strengths were measured for both controls and aged specimens at room temperature and 82 C. The effect of this exposure on lap shear strength and failure modes to date is reported. In addition, the effects of water, saline water, deicing fluid, JP-5 jet fuel and hydraulic fluid on both the composite material and the adhesive bonds were investigated. The up to date results on the effects of these exposures will be discussed.

  4. An energy stable evolution method for simulating two-phase equilibria of multi-component fluids at constant moles, volume and temperature

    KAUST Repository

    Kou, Jisheng

    2016-02-25

    In this paper, we propose an energy-stable evolution method for the calculation of the phase equilibria under given volume, temperature, and moles (VT-flash). An evolution model for describing the dynamics of two-phase fluid system is based on Fick’s law of diffusion for multi-component fluids and the Peng-Robinson equation of state. The mobility is obtained from diffusion coefficients by relating the gradient of chemical potential to the gradient of molar density. The evolution equation for moles of each component is derived using the discretization of diffusion equations, while the volume evolution equation is constructed based on the mechanical mechanism and the Peng-Robinson equation of state. It is proven that the proposed evolution system can well model the VT-flash problem, and moreover, it possesses the property of total energy decay. By using the Euler time scheme to discretize this evolution system, we develop an energy stable algorithm with an adaptive choice strategy of time steps, which allows us to calculate the suitable time step size to guarantee the physical properties of moles and volumes, including positivity, maximum limits, and correct definition of the Helmhotz free energy function. The proposed evolution method is also proven to be energy-stable under the proposed time step choice. Numerical examples are tested to demonstrate efficiency and robustness of the proposed method.

  5. High temperature pipeline design

    Energy Technology Data Exchange (ETDEWEB)

    Greenslade, J.G. [Colt Engineering, Calgary, AB (Canada). Pipelines Dept.; Nixon, J.F. [Nixon Geotech Ltd., Calgary, AB (Canada); Dyck, D.W. [Stress Tech Engineering Inc., Calgary, AB (Canada)

    2004-07-01

    It is impractical to transport bitumen and heavy oil by pipelines at ambient temperature unless diluents are added to reduce the viscosity. A diluted bitumen pipeline is commonly referred to as a dilbit pipeline. The diluent routinely used is natural gas condensate. Since natural gas condensate is limited in supply, it must be recovered and reused at high cost. This paper presented an alternative to the use of diluent to reduce the viscosity of heavy oil or bitumen. The following two basic design issues for a hot bitumen (hotbit) pipeline were presented: (1) modelling the restart problem, and, (2) establishing the maximum practical operating temperature. The transient behaviour during restart of a high temperature pipeline carrying viscous fluids was modelled using the concept of flow capacity. Although the design conditions were hypothetical, they could be encountered in the Athabasca oilsands. It was shown that environmental disturbances occur when the fluid is cooled during shut down because the ground temperature near the pipeline rises. This can change growing conditions, even near deeply buried insulated pipelines. Axial thermal loads also constrain the design and operation of a buried pipeline as higher operating temperatures are considered. As such, strain based design provides the opportunity to design for higher operating temperature than allowable stress based design methods. Expansion loops can partially relieve the thermal stress at a given temperature. As the design temperature increase, there is a point at which above grade pipelines become attractive options, although the materials and welding procedures must be suitable for low temperature service. 3 refs., 1 tab., 10 figs.

  6. Batch statistical process control of a fluid bed granulation process using in-line spatial filter velocimetry and product temperature measurements.

    Science.gov (United States)

    Burggraeve, A; Van den Kerkhof, T; Hellings, M; Remon, J P; Vervaet, C; De Beer, T

    2011-04-18

    Fluid bed granulation is a batch process, which is characterized by the processing of raw materials for a predefined period of time, consisting of a fixed spraying phase and a subsequent drying period. The present study shows the multivariate statistical modeling and control of a fluid bed granulation process based on in-line particle size distribution (PSD) measurements (using spatial filter velocimetry) combined with continuous product temperature registration using a partial least squares (PLS) approach. Via the continuous in-line monitoring of the PSD and product temperature during granulation of various reference batches, a statistical batch model was developed allowing the real-time evaluation and acceptance or rejection of future batches. Continuously monitored PSD and product temperature process data of 10 reference batches (X-data) were used to develop a reference batch PLS model, regressing the X-data versus the batch process time (Y-data). Two PLS components captured 98.8% of the variation in the X-data block. Score control charts in which the average batch trajectory and upper and lower control limits are displayed were developed. Next, these control charts were used to monitor 4 new test batches in real-time and to immediately detect any deviations from the expected batch trajectory. By real-time evaluation of new batches using the developed control charts and by computation of contribution plots of deviating process behavior at a certain time point, batch losses or reprocessing can be prevented. Immediately after batch completion, all PSD and product temperature information (i.e., a batch progress fingerprint) was used to estimate some granule properties (density and flowability) at an early stage, which can improve batch release time. Individual PLS models relating the computed scores (X) of the reference PLS model (based on the 10 reference batches) and the density, respectively, flowabililty as Y-matrix, were developed. The scores of the 4 test

  7. Platinum/Carbon nanotube nanocomposite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells.

    Science.gov (United States)

    Lin, Yuehe; Cui, Xiaoli; Yen, Clive; Wai, Chien M

    2005-08-04

    Carbon nanotube (CNT)-supported Pt nanoparticle catalysts have been synthesized in supercritical carbon dioxide (scCO(2)) using platinum(II) acetylacetonate as metal precursor. The structure of the catalysts has been characterized with transmission electron micrograph (TEM) and X-ray photoelectron spectroscopy (XPS). TEM images show that the platinum particles' size is in the range of 5-10 nm. XPS analysis indicates the presence of zero-valence platinum. The Pt-CNT exhibited high catalytic activity both for methanol oxidation and oxygen reduction reaction. The higher catalytic activity has been attributed to the large surface area of carbon nanotubes and the decrease in the overpotential for methanol oxidation and oxygen reduction reaction. Cyclic voltammetric measurements at different scan rates showed that the oxygen reduction reaction at the Pt-CNT electrode is a diffusion-controlled process. Analysis of the electrode kinetics using Tafel plot suggests that Pt-CNT from scCO(2) provides a strong electrocatalytic activity for oxygen reduction reaction. For the methanol oxidation reaction, a high ratio of forward anodic peak current to reverse anodic peak current was observed at room temperature, which implies good oxidation of methanol to carbon dioxide on the Pt-CNT electrode. This work demonstrates that Pt-CNT nanocomposites synthesized in supercritical carbon dioxide are effective electrocatalysts for low-temperature fuel cells.

  8. Thermo-Mechanical Analysis of Coated Particle Fuel Experiencing a Fast Control Rod Ejection Transient

    Energy Technology Data Exchange (ETDEWEB)

    Ortensi, J.; Brian Boer; Abderrafi M. Ougouag

    2010-10-01

    A rapid increase of the temperature and the mechanical stress is expected in TRISO coated particle fuel that experiences a fast Total Control Rod Ejection (CRE) transient event. During this event the reactor power in the pebble bed core increases significantly for a short time interval. The power is deposited instantly and locally in the fuel kernel. This could result in a rapid increase of the pressure in the buffer layer of the coated fuel particle and, consequently, in an increase of the coating stresses. These stresses determine the mechanical failure probability of the coatings, which serve as the containment of radioactive fission products in the Pebble Bed Reactor (PBR). A new calculation procedure has been implemented at the Idaho National Laboratory (INL), which analyzes the transient fuel performance behavior of TRISO fuel particles in PBRs. This early capability can easily be extended to prismatic designs, given the availability of neutronic and thermal-fluid solvers. The full-core coupled neutronic and thermal-fluid analysis has been modeled with CYNOD-THERMIX. The temperature fields for the fuel kernel and the particle coatings, as well as the gas pressures in the buffer layer, are calculated with the THETRIS module explicitly during the transient calculation. Results from this module are part of the feedback loop within the neutronic-thermal fluid iterations performed for each time step. The temperature and internal pressure values for each pebble type in each region of the core are then input to the PArticle STress Analysis (PASTA) code, which determines the particle coating stresses and the fraction of failed particles. This paper presents an investigation of a Total Control Rod Ejection (TCRE) incident in the 400 MWth Pebble Bed Modular reactor design using the above described calculation procedure. The transient corresponds to a reactivity insertion of $3 (~2000 pcm) reaching 35 times the nominal power in 0.5 seconds. For each position in the core